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A MODELLING STUDY OF THE 

LIGAND-GATED ION-CHANNEL SUPERFAMILY 

OF RECEPTORS

ABSTRACT

In this study an attempt has been made to incorporate the findings of a large 

number of molecular studies into a coherent view using molecular modelling to gen

erate testable models as a basis for experimentation.

Two computer programs were developed. BIOSITE provides for the interactive, 

comparative analysis of aligned homologous protein sequences. SCAFFOLD is a 

program for scanning the known protein structural database for "non-homologous 

similarity" based on relative residue surface-accessibility patterns of proteins.

A component of the agonist/competitive antagonist binding site of the ligand- 

gated ion-channel (LGIC) receptors was identified as a conserved 15 residue 

stretch of primary structure in the N-terminal extracellular region of subunits. This 

subregion termed the cys-loop was modelled as an amphiphilic p-hairpin and it is 

proposed that it is a major determinant of the agonist binding cleft. In the model, 

the positive charge of agonist binds to an invariant aspartate residue at position 11, 

whereas recognition of a specific neurotransmitter is partly a consequence of the 

residue occurring at position 6. This initial, partial binding site model was extended 

in the case of the nicotinic acetylcholine receptor to include residues shown by 

experiment to be spatially adjacent to the binding cleft.
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A model of a whole receptor oligomer was constructed using the four-heiix 

bundle protein myohaemerythrin as a template for the transmembrane domain of 

individual subunits, and the enzyme pyrophosphatase as a possible template fold 

for the N-terminal extracellular domain.

Evolutionary analysis was performed on the LGIC nucleic acid sequences. At 

the molecular level, the tree showed the specialization of the cation and anion 

selective ion-channels, formation of distinct receptor types, and hetero-oligomeriza

tion of receptors. Branch points were also obtained for the segregation of muscle 

and neuronal tissues, and CNS and ganglionic neuronal lineages.
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A CURRENT VIEW OF BIOLOGICAL SCIENCE

"The new paradigm, now emerging, is that all the ’genes’ will be known, and that 

the starting point will be theoretical ... the reagents that the scientist uses will 

include a knowledge of the primary sequence of the organism, together with a list of 

all previous deductions from that sequence."

Waiter Gilbert, 1991
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This poem was written by John Godfrey Saxe (1816-1887).

It was six men from Indostan 

To learning much inclined,

Who went to see the Elephant,

(Though all of them were blind),

That each by observation 

Might satisfy his mind.

The First approached the Elephant,

And happening to fall 

Against his broad and sturdy side,

At once began to bawl:

"God bless me I but the Elephant,

Is very like a wall!"

The Second feeling at the tusk,

Cried, "Ho? what have we here 

So very round and smooth and sharp?

To me ’tis mighty clear 

This wonder of an Elephant 

Is very like a spearl"

The Third approached the animal,

And happening to take 

The squirming trunk within his hands,

Thus boldly up and spake:

"I see" quoth he, "the Elephant 

Is very like a snake."

The Fourth reached out an eager hand,
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And felt about the knee.

"What most this wondrous beast Is like 

Is mighty plain," quoth he;

"Tis clear enough the Elephant 

Is very like a tree."

The Fifth who chanced to touch the ear, 

Said: "E’en the blindest man 

Can tell what this resembles most;

Deny the fact who can,

This marvel of an Elephant 

Is very like a fan I"

The Sixth no sooner began 

About the beast to grope,

Then, seizing on the swinging tail 

That fell within his scope,

"I seel" quoth he, "the Elephant is 

very like a rope."

And so these men of Indostan 

Disputed loud and long.

Each in his own opinion 

Exceeding stiff and strong,

Though each was partly in the right,

And all were in the wrong I
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INTRODUCTION

1. THE LIGAND-GATED ION-CHANNEL RECEPTORS

The ligand-gated ion-channels (LGICs) constitute a superfamily of ionotropic 

receptors, first discovered in 1987, that mediate fast chemical neurotransmission.1 

Presently, this superfamily includes the nicotinic acetylcholine (nACh) receptors,2'6 

the Glycine receptors (with a strychnine type pharmacology),7'9 the y-aminobutyric 

acid GABAa receptors,9'11 and more recently the serotonin 5HT3 receptors.12 In 

these four cases homology at the level of primary structure has been clearly esta

blished.13'15

In terms of their core biological function, LGIC receptors upon binding agonist 

permit a rapid flux of ions across the cell membrane through an ion-channel integral 

to their structure. For a given LGIC receptor type the selectivity of the ion-channel 

is either for cations (ie. the classical nACh receptors and the 5HT3 receptors), or 

for anions (ie. the GABAa receptors and Glycine receptors). Thus, upon activation 

a net influx of ions into an excitable cell leads to a depolarisation or a hyperpolari

sation of the membrane, respectively. The typical physiological role of LGICs in 

neurotransmission is depicted in Figure 1.1., along with other extended protein 

superfamilies that also play a role in synaptic signalling.

1.1. Molecular Characterization of LGICs

The most widely accepted topology of a single LGIC receptor subunit is shown 

in Figure 1.2.16 The common features at the level of the derived amino acid 

sequence used to delineate discrete regions are:
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(i) a signal peptide - this is removed upon membrane translocation of 

the polypeptide chain,

(ii) an N-terminai extracellular agonist-binding domain,

(iii) three predicted transmembrane segments (termed M1, M2, and M3),

(iv) an intracellular region, termed the major intracellular domain,

(v) a fourth predicted transmembrane segment (M4), and

(vi) a short C-terminal region.

Each receptor oligomer is composed of five such subunits arranged in a circular 

array, with the transmembrane ion-channel along the C5-type symmetry axis per

pendicular to the plane of the membrane17,18 (see Fig. 1.2., Fig. 1.3. and 

reviews4-6, 1 1 6| 19).

1.1.1. The Extracellular Domain

The receptor extracellular domain is formed from the first =200 residues of each 

subunit. It contains the determinants for the agonist binding site,2 as well as sites 

for N-linked oiigosaccharide attachment.

1.1.1.1. The Agonlst/Competltlve Antagonist Site

The exact number of agonist binding sites on a given LGIC receptor remains a 

matter of controversy. Insofar as a receptor oligomer comprises five homologous or 

identical subunits, there is the potential of five agonist binding sites.

In the case of the muscle-type nACh receptor (see Section 1.2.), the majority of 

studies indicate the presence of two high-affinity binding sites for agonists per
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Fig. 1.1. Schematic of protein superfamilies of the synapse.

The axon terminal and the postsynaptic membrane are shown. Abbreviations:- 

LGIC = ligand-gated ion-channel; VGIC = voltage-gated ion-channel; GPCR = 

G-protein coupled receptor; G = G-protein complex; Ad Cyc = Adenylate cyclase; N 

= neurotransmitter. Arrows indicate the flow of neurotransmitter.

VGIC

VGIC GPCR

VGIC

UPTAKE
TRANSPORTER

Q Q VGIC
LGIC

Ad Cyc
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/

Fig. 1.2. Predicted Secondary structure of subunits of the Torpedo nACh receptor.

The secondary structure prediction of the extracellular domain was taken from 

Finer-Moore and Stroud (ref. 58). a-Helices are represented by rectangles, and 

p-strands by zig-zag lines. Residue numbering refers to the a-subunit sequence of 

the Torpedo nACh receptor. Residues highlighted by an asterisk are invariant in 

the LGIC multiple alignment, APPENDIX II. Other residues shown are highly con

served, have been studied by site-directed mutagenesis, or are labelled by affinity 

reagents.
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receptor (see reviews3,16 ). These sites have been associated with the two 

a-subunits, as these are labelled by a range of affinity ligands, and interact with the 

snake neurotoxin, a-bungarotoxin (see Section 1.2.1.). However, for a-dendrotoxin, 

a related toxin from Dendroaspis viridis, evidence from stoicheiometric N-terminal 

sequencing indicates there to be four sites per receptor, rather than the two found 

for a-bungarotoxin.21

Furthermore, in the case of the GABAa receptor, although biochemical studies 

have indicated the (5-subunit to contain the agonist site (see Section 1.3.2.), hetero-i

logous expression of just a single type of a-subunit produces weak electrophysio- 

logical responses to applied GABA.22 This suggests that five agonist sites are 

present in these single subunit oligomers, even though Hill coefficients less than 2 

are observed. Similar results have been reported for most other cloned subunits of 

the GABAa23 and Glycine receptors,24*25 even though these endogenous recep

tors contain multiple types of subunit (see Sections 1.3.2. and 1.4.2.). For the 

nACh receptor only the a7-subunit forms a functional homo-oligomeric receptor,26 

but in vivo this may indeed be a single subunit receptor.27*28

Given its fundamental importance to receptor function, there have been surpris

ingly few studies on the location of determinants of the agonist binding site of LGIC 

receptors. Protein chemical studies have focused on the Torpedo nACh receptor 

with attention directed to two regions of the extracellular portion of the a-subunit 

(see reviews3*5*6 ).

The first is the region around the cysteines 192-193. These adjacent cysteine 

residues and the surrounding sequence are unique to the a-subunits of nACh 

receptors. In addition, it has been shown that a disulphide bridge exists between
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these residues. 29 It has been known for a long time that various affinity ligands, 

including the agonists MBTA and bromoacetylcholine,29 label these cysteine resi

dues after reduction of the disulphide bridge. In addition, the surrounding sequence 

from position 185 to 196 has been shown to bind a-bungarotoxin.30 More recently, 

the competitive antagonist [3H]para(N,N)-dimethylaminobenzenediazoniumfluoro- 

borate (DDF), was shown to photoaffinity label in a carbamoylcholine-sensitive 

manner positions Trp-149, Tyr-190, Cys-192, Cys-19331 and Tyr-93.32 of the 

a-subunit of the Torpedo nACh receptor. Tyr-190 is also labelled by a radiolabelled

derivative of lophotoxin33*34 (see Section 1.2.1.). In contrast, the agonist [3H]nico-
%

tine when used as a photosensitive probe labelled Tyr-198 of the a-subunit, but 

incorporation efficiency in this case was low.35

The second region is from position 125 to 147 of the a-subunit. A synthetic pep

tide to this region was indicated to interact with acetylcholine and a-bungarotoxin.36 

This peptide contains a highly conserved fifteen residue stretch of sequence 

termed the cys-loop (see Fig. 1.2.), so called because a disuiphide bridge links cys

teine residues at positions 128 and 142.29 More recently, Madhok et al. have 

reported that for the brain nACh receptor high-affinity binding of nicotine is specifi

cally inhibited by antibodies raised to a peptide covering positions 3-12 of the cys- 

loop of neuronal a-subunits.37

For the snake-toxin polypeptide antagonists that bind nACh receptors (see Sec

tion 1.2.) the common view is that they structurally overlap the agonist binding site, 

since a-bungarotoxin can be coupled to a-subunits and binds short peptides cover

ing the Cys 192-193 sites.38 Recently, the a-subunit of the muscle nACh receptor 

from two snakes insensitive to a-bungarotoxin, was shown to have undergone non

conservative substitution around the 192-193 paired cysteines. 39 A major change
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occurred at position 189 at which an asparagine residue was found to be a potential 

site of N-linked glycosylation. Other stretches of the amino acid sequence of the 

Torpedo a-subunit found to interact with a-bungarotoxin are: 1 - 16, 23 - 49, 100 - 

115, 122 - 150,40 although using a solid-phase assay, the region a125-147 has 

been shown by Griesmann et al. not to bind41 Thus, regions other than Cys 

192-193 and that are common to each subunit can be expected to be involved in 

the binding of snake-toxins.

In the case of neuronal nACh receptors (see Section 1.2.3.), a-bungarotoxin has 

also been shown to interact with the stretch 180-190 of the a5-subunit.42 For neu- 

ronal-bungarotoxin (also named K-bungarotoxin43 ), which displays selectivity for 

the neuronal forms of nACh receptors compared to the muscle-type, the region 

51 -70 of the a3-subunit of rat neuronal nACh receptor was found to interact with 

neuronal-bungarotoxinas did the region 1-1 S.44

Derivatized snake-toxins have been used further to define interactions with the 

native receptor protein. The a-toxin of Naja naja siamensis was fluorescence 

labelled at lysines at positions 23, 35, 49, and 69. This allowed the study of the ori

entation and interaction of this toxin with the Torpedo nACh receptor by energy 

transfer experiments.45 The fluorescence labelled residues were found not to be 

part of the binding surface. Furthermore, the major axis of the neurotoxin appeared 

to be tilted in a perpendicular projection to the membrane, and the receptor binding 

site was estimated to be 40 A from the lipid membrane surface.

The Torpedo nACh receptor-toxin complex has also been studied by Chatrenet 

et al. using photoactivatable derivatives of toxin-a from Naja nigricollis with reac

tive moieties at Lys-15, Lys-47, Lys-51 46 At the high-affinity toxin binding site
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Lys-15 labelled predominantly the a-subunit, whereas Lys-51 reacted with the 

5-subunit. In contrast, for the low-affinity site Lys-47 labelled the a- and p-subunits, 

whereas Lys-15 and Lys-51 labelled the y- and 5-subunits. In accord with these 

results, a co-expression study by Kurosaki et al. showed that the combination of 

a-5-subunits gave rise to a high-affinity a-bungarotoxin binding site, whereas for 

a-y-subunits a low-affinity site was obtained.47

Recent experiments indicate that when antagonists are bound at the nACh 

receptor a part of the binding site is formed by the interface between subunits. It 

was shown by Pedersen and Cohen that d-tubocurarine photoaffinity labels the y- 

and 5-subunits of the Torpedo nACh receptor, in addition to the a-subunit.48 The 

IC50 for inhibition of specific labelling of the y-subunit (40 nM) and 5-subunit (0.9 

pM) gave good correspondence to the binding constants of d-tubocurarine at high- 

(35 nM) and low-affinity sites (1.2 pM) of the Torpedo nACh receptor. In accord with 

this, in a co-expression study by Blount and Merlie, the combination of a-y and of 

a-5 subunits in fibroblasts resulted in high- and low-affinity d-tubocurarine sites, 

respectively.49 These studies suggested that the two types of binding site may be 

formed at the a-y and a-5 interfaces. However, the results are in contrast with those 

of Chatrenet et al.46 and Kurosaki et a l47 using a-bungarotoxin as the ligand.

1.1.1.2. Other features of the Extracellular Domain

The main immunogenic region (MIR), to which >60% of the antibodies in 

myasthenic serum bind, is a conformation-dependent epitope of the extracellular 

region of muscle-type nACh receptors.50 A continuous component of the MIR has 

been mapped, using overlapping synthetic peptides, to the region 67-76 of the 

a-subunits of the human muscle and Torpedo nACh receptor.51 Recently, the point
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mutations a68N->D and a71 D^K52 indicated these positions to be important, giv

ing agreement with a study using peptides that contained giycine amino acid substi

tutions.53 Other regions of the MIR reported to bind antibodies are the stretches 

1 -14, 25-36, 41 -53, 102-114,128-138,172-182 and 188-198.54

Using antibodies raised to short synthetic peptides it was shown that the 

sequence stretches a81-85, a127-132, and a190-195 were freely accessible and 

presumed to be at the surface of the nACh receptor.55 For the a1 -subunit of the 

GABAa receptor a similar approach indicated the N-terminus and C-terminus are
* i

accessible 56 In the gene for the a-subunit of the human muscle nACh receptor a 

novel exon leads to an insertion of 25 residues between positions 58 and 59. In no 

other LGIC subunit sequences is there such a sizable insertion generating an addi

tional isoform, and presumably this region forms an additional surface loop struc

ture.57

1.1.2. The Transmembrane Domain and lon-Channel

The known LGIC subunits have the common feature of four hydrophobic seg

ments, each of which is considered to be of an appropriate length to span the mem

brane in an a-helical conformation with 6 or 7 helical turns (see reviews5*6,19 ). 

These transmembrane segments are termed M1 through to M4 in order of their 

appearance in the polypeptide chain, and occur at equivalent positions in each of 

the known receptor subunits. M1, M2, M3 are always closely linked, being 

separated by short, hydrophilic segments (ie. < 8 residues). M1 starts at about 200 

residues in from the N-terminus. M4 is close to the C-terminus and is separated 

from the M1 to M3 cluster by a hypervariable region, termed the major intracellular 

domain (see Section 1.1.4.).
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Initially in the case of the nACh receptor an additional transmembrane segment, 

an amphipathic helix termed MA, was proposed as lining the ion-channel wall with 

its hydrophilic charged face.58 However, the construction of mutants of the 

a-subunit of the Torpedo nACh receptor in which MA was deleted indicates that this 

segment is not essential for forming the gated ion-channel response.59 Moreover, 

an MA equivalent is not present in the subunits of the other members of the LGIC 

superfamily. Models incorporating MA in the membrane have been largely aban

doned, and MA (retermed HA, an amphiphilic helix) is now indicated to be located 

cytoplasmically. It is of note that as yet there is no function assigned to HA, eveni
though it is well conserved in muscle and neuronal nACh receptor subunits, and 

particularly so in a-subunits.

The transmembrane arrangement of M1-M4 places the C-terminus on the extra

cellular side of the membrane. Indeed, using a hydrophilic reducing reagent60 it 

was reported that the disulphide linkage between oligomers of the Torpedo nACh 

receptor is on the extracellular side. More recently it has been shown that this link 

is between 6-subunits of adjacent oligomers.61 This, therefore, supports the 

present model of membrane topology of LGIC subunits (see Fig. 1.2.).

There is much evidence from experiments on muscle-type nACh receptor to 

suggest that M2 is an important determinant of the ion-channel.62 Several studies 

have made use of different non-competitive antagonists that block the open chan

nel. The neuroleptic chlorpromazine, which can be used as a photoaffinity reagent, 

was shown to label the serine residue at positions 262 and 254 of the 6-subunit and 

the p-subunit, and a leucine residue at position 257 of the p-subunit of the Torpedo 

nACh receptor.63 The serines of the p- and 5-subunits are homologous sites that 

are positioned about a third of the way into the M2 sequence from its cytoplasmic
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end (position 337 in the alignment Appendix II). Triphenylmethylphosphonium 

(TPMP) also labels this site, and the equivalent site in the a- and p-subunits.62 

Recently, the importance of a serine residue at this position has been demonstrated 

using site-directed mutagenesis, and expression of altered receptors in the 

Xenopus oocyte system.64*65 Decreasing the number of the serine residues at the 

homologous sites in the mouse receptor led to a reduction in the equilibrium binding 

of QX-222, a derivative of lidocaine, and to marked changes in ion-channel proper

ties. These findings provide strong support for the suggestion that M2 forms part of 

the pore of the channel and that the serines contribute to the binding site of the 

channel-blocking non-competitive antagonists. Interestingly, synthetic peptides 

with a high serine content that resemble the M2 sequence and that have an a-heli- 

cal conformation have been shown to form ion-channels with permeability and life

time characteristics that resemble the channels of nACh receptors.66

In an earlier series of experiments Numa’s group showed that the 8-subunit M2 

region and flanking sequence is chiefly responsible for observable differences in ion 

conductance of the Torpedo electric organ and bovine muscle forms of nACh 

receptor.67 Using site-directed mutagenesis of the subunits of the Torpedo receptor 

three important sites (1, 2 and 3, see positions 325, 330 and 351 Appendix II) that 

lie at the ends of M2 have been identified 68 This is in contrast to other sites pos

sessing charged residues and in the vicinity of M2 where changes introduced had 

no effect on ion conductance. Remarkably, an almost linear inverse relationship is 

seen between channel conductance and the net negative charge carried at the 

above three sites. Changes at site 2 have a stronger effect than changes at the 

other two sites. In addition, evidence was provided that magnesium ions interact 

with negatively charged residues at position 1 (cytoplasmically located) and posi

tion 3 (extracellularly located) to selectively reduce outward and inward currents,
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respectively. In contrast, changes that decreased the net negative charge at posi

tion 2 displayed reduced sensitivity to magnesium for both inward and outward cur

rents. These observations of Imoto et al. led to the proposal that each of these 

positions is at or close to the mouth of the ion-channel and contribute to rings 

("Imoto rings") of negative charge that selectively repel anions and concentrate 

cations ready for passage through the channel and that position 2 may be close to 

or at the constriction of the ion-channel.68

There are two unrelated proteins that are said to display partial sequence simi

larity to members of the LGIC superfamily. Kosower69 has proposed that the region 

preceding M4 in the GABAa receptor resembles a segment in the anion-exchange 

protein and that this is because of a functional requirement for anion transfer 

across the membrane. The suggestion is that this region in the GABAa receptor is 

functionally equivalent to MA of the nACh receptor. However, this region is not con

served among GABAa receptor subunits. Therefore, this suggestion does not 

seem to hold in the light of evidence that M2 and not MA forms the pore of the ion- 

channel of LGICs. It has also been suggested that there is a resemblance between 

transmembrane segments of the ryanodine receptor and M1, M2 and M3 segments 

of the nACh receptor. However, this seems less likely in the light of the cloning of 

the inositol tris-phosphate receptor which shows distinct homology with the ryano

dine receptor but the initially proposed M2 and M3 segments are not conserved.70

1.1.3. The Major Intracellular Domain

The major intracellular domain is the region between the predicted transmem

brane segments M3 and M4 71 It is highly variable both in length and in sequence 

and ranges in size from approximately 100 to 250 residues. Deletion mutagenesis
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experiments have shown that a length as short as 80 residues does not abolish 

function.59 The differences in the position and number of introns over this region 

suggest that intron slippage and the conversion of intronic sequence into coding 

region is partly a cause of the variation.72

The results of mutagenesis experiments in which a series of deletions were 

made within the major intracellular domain indicate that it does not play a significant 

role in the ligand-gated functioning of the receptors.59 It does, however, contain 

potential sites for serine/threonine and tyrosine phosphorylation which may be 

involved in the enhancement of desensitization of the receptors.73 Additionally, it 

has been suggested to be PEST rich (meaning that it has a high content of proline, 

glutamate, serine, and threonine) which may predispose it to enzymatic degrada

tion.74 The region shown to be susceptible to proteolytic cleavage includes HA, 

which serves as further evidence that this segment is located cytoplasmically rather 

than spanning the membrane.75’76

1.1.4 Quaternary Structure of Receptor Oligomers

The pentameric form of the LGIC receptors was initially established by 

stoicheiometric analysis using simultaneous N-terminal sequencing of subunits of 

the intact Torpedo nACh receptor.77 However, the estimates of subunit 

stoicheiometries by this approach may not be definitive proof that the Torpedo 

receptor is pentameric. This is because the extent of N-terminal block by acetyla- 

tion of the free amino terminus may vary for different types of subunits and may 

depend on the type of amino acid at their N-termini. Serine is the most prevalent of 

the amino acids to give rise to amino-terminal acetylation.78 It is therefore notewor

thy that the terminal residue of the a- and p-subunit of the Torpedo receptor is
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serine, whereas for the y- and 5-subunits it is glutamate and valine, respectively. 

Thus, estimates of the levels of the a- and p-subunit could have been underes

timated.

Electron microscopy has shown the overall shape of the Torpedo nACh recep

tor, including high-density regions corresponding to each of the subunits, which is 

interpreted in terms of a pentameric structure.17 Nevertheless, in a similar study by 

Stroud’s group the density maps presented can be interpreted as pentamers or 

tetramers.18 i

Protein chemical analysis of the Glycine receptor is in accordance with a pen

tameric oligomer, although earlier suggestions prior to the establishment of homol

ogy with nACh receptors was that it is most likely to be a tetrameric structure.79 For 

the GABAa receptor a tetrameric form10 has been proposed, whilst for the brain 

nACh receptor the possibility of it being a tetramer has not been excluded.4

From labelling studies using [3H]d-tubocurarine the clockwise arrangement of 

subunits in the muscle-type receptor is indicated to be a-y-a-5-p.48 However, in an 

electron microscopy study using probes for the a-, p- and 5-subunits of the Torpedo 

nACh receptor the arrangement of subunits was found to be a-p-a-y-5.20 Interest

ingly, this latter arrangement Is consistent with the observation that the p2-subunit 

of neuronal nACh receptors can substitute for the p-subunit in the muscle recep

tor,80 as the p-subunit would be flanked by two highly conserved a-subunits.

1.2. Nicotinic Acetylcholine Receptors

Acetylcholine (ACh) was first synthesized in 1867. However, its biological
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significance was not known for many years after. In 1914 Dale noted that applica

tion of ACh mimicked stimulation of parasympathetic nerves,81 whilst in 1921 

Loewi discovered its effect on the heart.82 Later, in 1936 Dale identified ACh as the 

neurotransmitter at the skeletal neuromuscular junction of vertebrates.83

In the autonomic nervous system (ANS), ganglionic nACh receptors are found 

on postsynaptic neurons in both parasympathetic and sympathetic ganglia and in 

the adrenal gland. In the central nervous system (CNS), nACh receptors are found 

in the spinal cord and cortical and subcortical areas of the brain.84-86

Two factors contributed significantly to the successful characterization of nACh 

receptors.87 The first is the electric organ tissue of electric fish (egs. Torpedo mar- 

morata and Torpedo californica), and electric eel (eg. Electrophorus electricus) as 

an enriched source of receptor. The second is the presence of neurotoxins in snake 

venoms that bind to skeletal muscle and electric organ nACh receptors with high- 

affinity (KdS range from nM - pM), providing tools for both purification and for assay. 

Together these factors have allowed for the isolation of gram quantities of receptor 

protein.

1.2.1. Pharmacological Properties

An essential feature of CNS and ANS cholinergic systems is the presence of 

two types of receptors that are responsive to ACh. They are designated nicotinic 

and muscarinic receptors as the alkaloids nicotine and muscarine are specific 

agonists. Mechanistic distinctions can be made between these receptors; the 

nACh receptors are LGICs, whilst muscarinic receptors are members of the G-pro

tein coupled receptor (GPCR) superfamily88 that give rise to a range of secondary
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responses.

The nACh receptors of skeletal muscle and the autonomic ganglia were classi

fied as C10 and C6 types, respectively. This is on the basis of their preference for 

polymethylene bisonium salts of varying chain length. In the vertebrate CNS, nACh 

receptors have been related both to high-affinity and low-affinity nicotine binding 

sites, and snake-toxin binding sites.28*89 These terms usefully describe pharmaco

logical subtypes of brain nACh receptors, though correlation with the cloned recep

tor subtypes is not yet fully established (but see Wonnacott 199290).

Often the term muscle-type nACh receptor is used to refer to the nACh recep

tors of electric organ tissue as well as of vertebrate skeletal muscle, since the two 

tissues are embryologically equivalent.

Agonists:

Carbamoylcholine, an analogue of acetylcholine, is a weak agonist of nACh 

receptors that is not hydrolyzed by acetylcholinesterase and is, therefore, fre

quently used in physiological studies.

Nicotine, an alkaloid from the tobacco plant, Is the principle agonist of nACh 

receptors. It is often used in a radiolabelled form in binding studies on membrane 

preparations of mammalian brain tissues. Other alkaloids that are potent agonists 

are cytisine,91 isolated from a South American member of the lupin family, and 

anatoxin-a92 isolated from a freshwater algae.

Competitive Antagonists:



- 4 3 -

Both polypeptide as well as a range of non-peptide competitive antagonists are 

known for nACh receptors.91

The best known non-peptide competitive antagonist of nACh receptors is

cftubocurarine, a curare alkaloid of a South American climbing plant. Other such

natural product competitive antagonists include dihydro-p-erythroidine91 from the

seeds of an ornamental tree, lophotoxin91 isolated from Pacific gorgonian corals,

neosurugatoxin from the Japanese ivory shell Babylonia japonica, and methylly-

caconitine (MLA)93 from delphinium seeds. Neosurugatoxin is selective for the*

high-affinity nicotine site, but does not bind to the brain a-bungarotoxin binding site 

or the muscle-type nACh receptors.91 In contrast, MLA is distinct in that it binds 

with high-affinity to brain a-bungarotoxin binding sites of vertebrate and inver

tebrate nervous tissues.94 Lophotoxin is unusual as it is a slow-acting irreversible 

competitive antagonist.34’95

The polypeptide toxins from snakes, of the elapid and hydrophid type, have 

proved valuable tools for studying nACh receptors, as they compete with extremely 

high-affinity for the binding of agonist to muscle-type nACh receptors. Unlike some 

of the non-peptide competitive antagonists, the snake-toxins do not have non-com

petitive effects (see below) and are, therefore, clean competitive antagonists. To 

date over 70 a-neurotoxins from over 25 species have been sequenced. They all 

exhibit sequence homology, but have been divided into two groups.96 The long 

a-neurotoxins consist of 66 to 74 amino acids and contain 5 disulphide bridges and 

include a-bungarotoxin. The short neurotoxins consist of 60-62 amino acid residues 

and contain 4 disulphide bridges and include erabutoxin a and b. The kappa tox

ins97 represent an additional more recently identified family of snake-toxins that are 

most similar to the long a-neurotoxins.
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Certain snake-toxins are of use in studying neuronal nACh receptors as they 

display marked subtype specificity. In particular, kappa toxin from Bungarus multi- 

cinctus has been used to study neuronal nACh receptors in autonomic ganglia.98 

a-bungarotoxin has also been used to study and isolate a component of chick optic 

lobe28 that has recently been shown to be a functional nACh receptor.99

Non-Competitive Antagonists:

Non-competitive antagonists are ligands that block the functional response 

induced by agonist, but do not compete with agonist in binding studies. Included in 

this class of compounds are the amine local anaesthetics, histrionicotoxin from the 

skin of Columbian arrow-poison frogs,91 the neuroleptic chlorpromazine, 

mecamylamine and the psychoactive tranquillizer phencyclidine.100

Electrophysiological studies have led to the "open-channel blockade hypothesis" 

which postulates that the members of this heterogeneous group of compounds bind 

to a site within the pore of the channel.101-102 The hypothesis has been recently 

validated by biochemical experiments showing that the M2 transmembrane seg

ment that lines the ion-channel is the site of covalent coupling of the photoactivat- 

able non-competitive antagonists chlorpromazine^3 and triphenylmethylphos- 

phonium (TPMP).62 It now appears that several agonists,103 and competitive 

antagonists104 as well as many other compounds that carry a formal positive 

charge103 are also effective in blocking the ion-channel of nACh receptors. Thus, 

agonists can often have dual effects on nACh receptors.

1.2.2. Biochemical Characterization
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The muscle-plate nACh receptor of the electric organ of Torpedo californica is 

the most well characterized member of the LGIC superfamily,2*16’105 and is con

sidered to be the archetypal form. The molecular weight of the receptor oligomer is 

estimated to be in the range 230,000 to 350,000j<D by a variety of methods.106*107 

A single oligomer is composed of two a-subunits and one each of p-, y- and 

5-subunit types.77 Their apparent molecular weights are 40 kD, 49 kD, 57 kD and 

64 kD, respectively.108 The Torpedo nACh receptor occurs predominantly as a 

dimer of oligomers, a result of disulphide crosslinking of cysteine residues at the 

C-terminus of the 6-subunits in adjacent oligomers.60*61 This feature distinguishes 

it from all other LGIC receptors including the vertebrate skeletal muscle form of 

nACh receptor.

Electron microscopy (EM) studies have shown that the subunits of the Torpedo 

nACh receptor are oriented in a circle around the central cation channel18*109 (see 

Fig. 1.3.). At an estimated resolution of 15-20 A a receptor oligomer is 120 A in 

length, with 60 A extending out on the extracellular side of the membrane and 20 A 

extending out on the cytoplasmic side. The outer diameter of the extracellular cylin

drical funnel is 80 A, whilst its inner diameter is 25 A. The pore of the channel is 30 

A long and is no more than 10 A in diameter.17 Using subunit specific molecular 

markers in conjunction with EM, the order of subunits around the ion-channel is 

indicated to be in a clockwise direction a-p-a-y-820

The secondary structure of the receptor has also been characterized to some 

extent. The existence of 12-30 lengthy a-helices oriented perpendicular to the 

membrane has been inferred from a small angle X-ray diffraction study.110 These 

secondary structures are considered to correspond to transmembrane a-helical 

structures.105 Circular dichroism studies of solubilized receptor of Torpedo
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nobiliana indicate a secondary structure content of 34% a-helix, 29% p-structure 

(includes turns), and 37% random coil.111 Similar studies on Torpedo californica 

indicated 20% a-helix, 50% p-structure, and 30% random coil,112 whilst Raman 

spectroscopy measurements indicated that 34% of the receptor residues are in 

anti-parallel p-sheet.113 In addition, the secondary structure of the receptor subun

its has been predicted using a Fourier transform analysis of hydrophobicitiesof the 

amino acid sequences in conjunction with the GOR (Gamier, Osguthorpe, and 

Robson) method114 for secondary structure prediction. The majority of the N-termi- 

nal extracellular domain of subunits was assigned antiparallel p-sheet structure 

(see Fig. 1.2.). In addition, an amphiphiiic helix (HA) was predicted to occur just 

before the fourth predicted hydrophobic transmembrane segment.58*115 However, 

evidence now suggests HA is located cytoplasmically.59

A role in agonist recognition has only been clearly delineated for the a-subunit 

of the muscle-type nACh receptors. Initial studies on Torpedo nACh receptor 

showed that following disulphide bond reduction [3H]MBTA reacted with the 

a-subunit as did bromoacetylcholine.116 The irreversible antagonist [3H]trimethyl- 

benzenediazonium fluoroborate (TDF) also reacts selectively with the a-subunit, 

even without prior reduction.117 In addition, sites for a-neurotoxin attachment fol

lowing bifunctional cross-linking also appear to be predominantly on the 

a-subunit.118*119 Thus, it appears that the a-subunit bears the agonist/competitive 

antagonist recognition site as well as the major surface with which the =7 kD 

a-neurotoxins associate.

1.2.3. Molecular Genetics

With the availability of protein sequence data for the subunits of the Torpedo
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nACh receptor77 synthetic oligonucleotides were used to screen cDNA libraries. In 

this way cDNAs encoding the a-f p-, y- and 5-subunit were isolated and their 

nucleotide sequences determined.120*121 The cDNA clones were subsequently 

used to facilitate the isolation of the cognate sequences from other species,122 as 

well as a novel muscle receptor subunit termed e,123 and subunits of neuronal 

nACh receptors.124

To date two main types of neuronal nACh receptor subunits have been identified 

in vertebrates. These are the a-type subunits that contain dicysteines equivalent to 

Cys 192-193 of the Torpedo a-subunit, and the p-type subunits that do not. In rat, 

four neuronal a-subunits have been cloned, a2,80 a3,124 a4125 and a5126 (the 

muscle a-subunit being referred to as a1). In chicken, the cognate subunits have 

been cloned72*127 and an additional subunit, a7.26 For the neuronal p-subunits, in 

rat three such subunits have been cloned and termed p2, p3 and p4.126 In chicken 

the cognate subunits have been cloned, but have been termed non-a1, non-a2, 

and non-a3,127 respectively. The rat nomenclature scheme is used herein to refer 

to the chicken neuronal subunits.

Expression studies using the Xenopus oocyte system have established that 

functional nACh receptors can be made from the a2-, a3- and a4-subunits in pair

wise combination with the p2- or p4-subunits.127’130 In contrast, attempts to dem

onstrate the contribution of p3- or a5-subunits to functional nACh receptors have 

not been successful.126*127*131 Interestingly, the a7-subunit, which contains the 

N-terminal sequence of the 48 kD polypeptide of the a-bungarotoxin binding pro

tein,132 produces functional nACh receptors when expressed alone in the Xenopus 

oocyte. In addition, the response to agonist of this a7 homo-oligomeric form of 

receptor is blocked by a-bungarotoxin.26*133
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Although the main cloning of vertebrate subunits has been carried out on rat and 

chicken, a human a3-134 and (3-type subunit135 as well as several subunits from 

goldfish136*137 have also been reported. In addition, putative Drosophila a-type and 

non-a-type subunits have been cloned, for which no functional expression has 

been reported as yet.138 More recently, a new neuronal a-like subunit was cloned 

from locust139 and Drosophila140 and was shown in both cases to give weak 

responses to applied nicotinic agonists when expressed alone. Interestingly, this 

subunit type is most closely similar to the a7-subunit from vertebrates. Although the 

locust subunit when expressed can be blocked by a-bungarotoxin, the Drosophila 

subunit was reported not to be blocked by this toxin.140

1.3. GABAa Receptors

In 1950 Roberts and Frankel141 reported that GABA could be found in brain 

extracts of many vertebrate species and it was intimated by Roberts in 1956 that 

GABA might have an inhibitory effect on nerve impulses. In the same year Hayashi 

published a book142 describing experiments on the depressant effects of GABA; 

thus, the discovery of GABA as a neurotransmitter has been attributed to Hayashi. 

The evidence that has been accumulated since then has clearly established GABA 

as an inhibitory neurotransmitter in both vertebrates and invertebrates.

In mammals GABA is almost exclusively confined to the brain and spinal cord 

although it has also been found at distinct peripheral sites such as the myenteric 

plexus. In the brain GABA is the major inhibitory neurotransmitter, and its distribu

tion in gray matter is fairly even and widespread.

The initial identification of GABAa receptors was aided by studies on
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sympathetic ganglia, a convenient system to measure physiological responses to 

agonist application. Subsequently, it was shown that the binding equilibrium con

stants of [3H]GABA to brain membrane preparations correlated with the physiologi

cal dose responses.143

1.3.1. Pharmacological Properties

GABA receptors, like the acetylcholine receptors (see Section 1.2.1.), are 

divided into two main classes: (1) GABAa receptors which are members of the 

LGIC superfamily and give rise to direct-gated chloride channel responses, and (2) 

GABAb receptors that are considered to act via G-protein coupling and give rise to 

potassium144 or calcium channel145 secondary responses.

The GABAa receptors have an extremely rich pharmacology. Drugs known to 

act on GABAa receptors include: (i) the benzodiazepine tranquillizer drugs (for 

review see Olsen and Venter146 ), (ii) the barbiturate sedatives147 and (iii) the ion- 

channel blocking convulsants, such as picrotoxinin.

Agonists:

Muscimol, a psychomimetic isoxazole isolated from the mushroom Amanita 

muscaria, is a potent agonist at GABAa receptors. Binding of radiolabelled musci

mol has been employed as a method of characterizing the agonist site. Several 

chemically synthesized GABA analogues are also known, the most notable of 

which is the rigid analogue 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol(THIP),148 

which has potent analgesic properties. These compounds all have zwitterionic 

structures with the charged groups spaced similarly to the amino and carboxylate
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groups of GABA.149*150 

Competitive Antagonists:

Bicuculline, a potent convulsant alkaloid derived from Dicentra cucullaria and 

other related plants, and derivatives of it are the most well known and used antago

nists that compete with GABA at the GABAa agonist site.151 Related alkaloids 

bicucine methyl ester, corlumine and narcotine have also been shown to be effec

tive.152 Other structurally distinct competitive antagonists are securinine,1̂ 3 

pitrazepin154 and the arylamino-pyridazine derivatives of GABA SR5103, SR 

42641 and SR 95531.155

Aliosteric Modulators:

An important advance in neuropyschopharmacology was the realization that the 

anxiolytic benzodiazepine series of drugs act through the potentiation of GABAa 

receptors.156*157

Electrophysiological studies showed that in the presence of GABA the anxiolytic 

benzodiazepines cause an increase in the frequency of chloride channel 

responses, but do not have an effect when applied alone. Additionally, the binding 

of benzodiazepines is enhanced by GABA and its agonists,158 but the converse, an 

enhancement of GABA binding by benzodiazepines, has only been demonstrated 

by Guidotti's group.159 Such studies suggest a non-competitive aliosteric interac

tion between some GABA binding sites and some benzodiazepines.146

Other drugs that have been shown to interact at the benzodiazepine binding site
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indicate further complexity of the GABAa receptor complex. Among these com

pounds is the imidiazodiazepine, Ro15-1788, which has no clinical activity alone, 

but potently antagonizes the actions of anticonvulsant benzodiazepines, such as 

diazepam.160 Compounds displaying this type of pharmacology have been termed 

benzodiazepine antagonists, whilst the anxiolytic/anticonvulsant benzodiazepines 

are referred to as agonists. In addition, certain esters of p-carboline-3-carboxylic 

acid also appear to act at the benzodiazepine binding site, but produce convulsions 

when administered alone. Such compounds, eliciting an opposite in-vivo end-point 

to the benzodiazepine agonists, have been termed inverse agonists.161

Non-competitive Antagonists:

The f-butylbicycloorthobenzoate (TBOB) series of ligands, as well as the chloro- 

cycloalkanes and picrotoxinin, block the anion-channel response of GABAa recep

tor.162 It is generally considered that the sites for these compounds are the same 

or overlap,163 being close to or at the integral chloride channel of the GABAa 

receptor.

Other Compounds:

Other classes of compounds have been shown to Interact specifically with 

GABAa receptors. These are the barbiturates,164 the antihelminthic avermectins165 

and some steroids which includes the steroidal anaesthetic alfaxalone.166 The site 

of action of such compounds and their aliosteric interactions are as yet poorly 

defined.

1.3.2. Biochemical Characterization
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The purification of the GABAa receptors from mammalian brain was achieved 

using benzodiazepine affinity-column chromatography.167’168 Two major bands on 

SDS gel electrophoresis were found, a 53 kD (a-subunit) and a 56 kD 

((3-subunit).168 Because the native molecular weight of GABAa receptors was 

determined to be in the range 220 - 355 kD, the subunit composition was sug

gested to be a2 p2 -169 Photoaffinity labelling of the benzodiazepine binding site with 

[3H]flunitrazepam in crude homogenates identified a polypeptide on SDS gels of 51 

kD, corresponding to the a-subunit.170 In contrast, the GABA binding site was iden

tified by photolabelling with [3H]muscimol as the p-subunit band of SDS electro

phoresis gels.171 This separation of sites Is consistent with reports that the benzo

diazepines do not interact with the GABAa receptor in the same way as does mus

cimol.160 Nonetheless, at high protein concentrations both the a and (3 components 

were photolabelled with [3]flunitrazepam and [3H]muscimol, indicating that both 

subunits may carry both ligand binding sites.172

1.3.3. Molecular Genetics

The successful approach to cloning the subunits of GABAa receptors involved 

the partial sequencing of proteolytic fragments of purified bovine receptor protein, 

followed by the use of oligonucleotide probes in the hybridization screening of a 

cDNA library derived from bovine brain. Initially two distinct cDNAs were isolated 

corresponding to a- and p-subunits of the receptor, which when co-expressed in the 

Xenopus oocyte gave GABA-activated chloride-channels by electrophysiological 

recording.13 Additional a- and p-subunit sequences were obtained by re-screening 

of bovine cDNA libraries indicating a multiplicity of isoforms for both subunit 

types.173,174 Other types of subunits have now been obtained by screening with 

oligonucleotide probes based on conserved transmembrane segment sequences.
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These subunits, termed y,23 8,175 e175 and £23 have so far not been identified as 

polypeptides in the purified receptor or in brain homogenates. Functional expres

sion studies, however, have indicated that the y-subunit is required along with the 

a- and p-subunit to produce GABAa receptors that are potentiated by benzodiazep

ines.23

1.4. Glycine Receptors

Glycine is the simplest of the amino acids in structure and is involved in a multi

tude of metabolic pathways. As a consequence, it was not seriously considered to 

be a neurotransmitter candidate even at the time its inhibitory properties were 

reported.176 However, in 1967 Davidoff et al. showed that aortic occlusion causes 

significant loss of glycine and aspartate, but not GABA or glutamate, in the grey 

matter of spinal cord.177 Along with subsequent histological studies this indicated 

that glycine in the spinal cord has a discrete pattern of localization. This was fol

lowed by a rigorous neurophysiological study in which giycine iontophoresed onto 

motomeurons duplicated the action of the endogenous inhibitory transmitter 

released by stimulation of spinal interneurons.178 Further confirmatory evidence 

that glycine is an inhibitory neurotransmitter came from studies showing a high- 

affinity uptake-system and that glycine is enriched in synaptosomes.179' 180

1.4.1. Pharmacological Properties

Agonists:

Agonists of the Glycine receptor include the structurally simple compounds 

P-alanine and taurine.181
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Competitive Antagonists:

Strychnine, an alkaloid derived from the seeds of a tree native to India, Strych- 

nos nux vomica, is a potent competitive antagonist of the Glycine receptor.182*183 

However, there are other compounds that block the Glycine receptor in a competi

tive manner. Examples are brucine, thebaine, 4-phenyl-4-formyl-A/-methylpiperi- 

dine, and N,/V-dimethylmuscimol.

Non-Competitive Antagonists:

There are no clear examples of compounds that specifically act to block the ion- 

channel of the Glycine receptor. However, picrotoxinin that acts on the GABAa 

receptor at nM concentrations does block glycine responses at jiM concentra

tions.184 In addition, the GABAa receptor cage convulsant isopropyl-1-phos- 

pha^.e.y-trioxabicyclo^^^.Joctane-l-oxide is reported to act on the Glycine 

receptor.185

1.4.2. Biochemical Characterization

Detailed studies of the Glycine receptor have been dependent on the discovery 

that strychnine acts specifically on this receptor. Purification of the Glycine receptor 

from rat and pig spinal cord has been achieved using 3-aminostrychnine affinity col

umn chromatography.186 Three bands were observed on SDS gel electrophoresis 

with molecular weights of 48 kD (ie. a), 58 kD (ie. p) and 93 kD. Radiolabelled 

strychnine has been used in photoaffinity studies and shown to label predominantly 

the a-subunit,187 whilst the 93 kD subunit has been shown to be a peripheral mem

brane protein associated with the receptor.188 From the estimated molecular weight
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of the intact complex of approximately 250,000 kD it was initially suggested that the 

receptor has a tetrameric structure, but more recent biochemical data using cross- 

linking of subunits and monoclonal antibodies indicate it to be pentameric.79

1.4.3. Molecular Genetics

Like the GABAa receptor and the nACh receptor the cloning of the Glycine 

receptor required extensive protein chemical analysis. This provided amino acid 

sequence data which allowed cDNA library screening to be carried out using 

derived oligonucleotide probes. Initially, the a-subunit of the Glycine receptor was 

cloned from rat14 and was subsequently used to isolate two human a-subunit vari

ants.24 Like the GABAa receptor this subunit alone was shown to form a functional 

Glycine receptor in the Xenopus oocyte. More recently, the p-subunit of the recep

tor has been cloned and this too produces electrophysiological responses to the 

applied glycine.25 However, miliimolar concentrations of glycine were required.

1.5. Interest In Ligand-Gated lon-Channels

The main impetus to modelling LGIC receptors at the molecular level is that new 

insights may be gained for the design of new and subtype selective active com

pounds. Such compounds may be of use in drug therapies and in insecticidal prod

uct applications. Moreover, a new generation of subtype specific antagonists may 

prove to be important tools in dissecting out the basic steps in high-level functions 

of the brain, such as memory and learning.

1.6. The Alms of this Study
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Progress in defining the structural details of ligand-receptor interactions at LGIC 

receptors has been achieved over the last twenty years, but much of the data gen

erated is spread out through the literature. The aim of this study was to construct 

explicit atomic models of LGIC receptors to accommodate and assess the current 

body of available experimental data on the different members of the LGIC super

family.

In addition, it was envisaged that the study of the LGIC superfamily in the 

absence of a known detailed three-dimensional structure for any of its members 

should lead to general approaches for the study of protein superfamilies using 

aligned sequence information as the starting point.
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METHODS

2. MOLECULAR MODELLING TECHNIQUES

Molecular modelling comprises a number of techniques for the construction and 

analysis of explicit atomic models representing key states of a dynamic molecular 

system, the ultimate aim being to understand how the structure of a given system 

relates to its important physical/biological properties.

2.1. Molecular Graphics

Molecular graphics is the use of computer graphics to view three-dimensional 

aspects of a molecular system.1

The molecular graphics program used in this study was INSIGHT supplied by 

Biosym Technologies Inc. San Diego, USA and was run on a MicroVax II computer 

linked to an Evans and Sutherland PS-300 vector graphics interface. The system is 

capable of handling large objects, such as proteins, with colour, depth-cueing, dot 

or solid surfaces and time-sliced stereo. It provides not only for the visualization of 

complex molecular systems, but also facilitates their construction, analysis and 

storage.

The use of colour is an important aspect of molecular graphics because it per

mits items within a complex picture to be easily distinguished visually. In particular, 

analysis is often enhanced when a property that varies throughout a molecular sys

tem is quantitatively represented by a colour scale. For proteins, this may include 

colouring amino acid residues by charge, hydrophobicity or some other property.



- 8 2 -

The comparison of two similar molecular structures is facilitated when their topo

logically equivalent groups are superimposed. This can be achieved in two ways. 

In the 'by eye’ method one of the objects is rotated and translated on top of the 

other with qualitative assessment of the 'goodness' of fit. In the numerical method 

corresponding sets of atoms in the two structures are selected and a rigid body 

movement performed such that the sum of the differences in corresponding atom 

co-ordinates is a minimum.2 A root mean square (RMS) deviation can be calcu

lated for the co-ordinates of the superpositioned molecules and this serves as a 

quantitative measure of the goodness of fit. The superposition option of the 

INSIGHT program was used in this study to perform superpositionings and RMS 

deviation calculations.

The magnitude of discrete non-bond interactions between various chemical 

groups may be estimated at the molecular graphics interface using rule-of-thumb 

values3 (see Table 2.1.).

2.2. Real Three-Dimensional Models

As the bond angles and bond distances are almost constant from one molecule 

to another for a given set of atom types it is feasible to make real three-dimensional 

models with the aid of a three-dimensional modelling kit. The value of such models 

is an interactive feel. Using modelling kits, both peptide (kit supplied by Labquip, 

Reading UK) and organic models (Orbit kit supplied by Cochranes of Oxford Ltd, 

UK) were constructed for those small molecular systems examined in this study.

2.3. Energy Calculations



Table 2.1. Strength of different types of non-bond 
interactions.
Bond Type Energy

(kcal/mol)
Distance 

Relationship 
(d to the power)

Ion-Ion 4.5 - 9.0 -1 (linear)
Ion-Dipole 2.0 - 4.5 -2
Dipole-Dipole 0.5 - 3.5 -3
Hydrogen Bond 1.2 - 6.0 -4
Induced Dipoles 0.1 - 1.2 -5 to -8
Hydrophobic (-CH3) 0.5 entropic

Interaction Energy (kcal/mol) = -Log(Kd) x 1.3
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2.3.1. Molecular Mechanics

In the molecular mechanics approach a molecular system is treated as a set of 

spheres representing atoms that are linked by springs for the bonds, with a series 

of classical potential energy terms expressing the component parts of the molecular 

force-field.4 Thus, a force-field equation is typically of the form:

E total= ^stretch+ ^bend+ ^dihedral+ ^VdW+^electrostatics+ ^H-bond

I

The approach can only be used in the computational prediction of molecular 

properties for which molecular orbital electronic effects are not a primary factor. 

These effects are investigated using ab initio type calculations.5 However, molecu

lar mechanics calculations are computationally less expensive. For this reason, 

they are routinely used in analyzing large systems (from 20-30 atoms upwards).

2.3.1.1. Potential Energy Force-Flelds

Within the framework of the above potential energy expression a large number 

of existing force-fields are implemented.

In this study the force-field of the program DISCOVER (Biosym Technologies 

Inc., San Diego, USA) was used. The analytical function of internal co-ordinates 

and interatomic distances is given in Figure 2.1. Assuming all of the parameters 

are defined for a given molecule, it is possible to calculate the magnitude of various 

interactions and contributions to the total potential energy.

2.3.1.2. Energy Minimization
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Fig. 2.1. The Biosym DISCOVER force-field
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Fig. 2.1. The Biosym DISCOVER force-field

The potential energy, E,**, of a molecular system is expressed in terms of an ana

lytical function, the internal co-ordinates of the molecules, and the distance 

between atoms. The Biosym CVFF function above comprises eleven terms 

accounting for: (i) bond stretching (Morse potential); (ii) bond angle bending; (iii) tor

sion angle rotation; (iv) out-of-plane distortion; (v - ix) cross-terms of the above, 

required for fitting to experimental vibrational data and that represent coupling 

between internal motions; (x) 12-6 Lennard-Jones; and (xi) coulombic interactions.
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Potential energy minimization using molecular mechanics involves iterative 

computations to the point that the first-derivative of the energy function is close to 

zero and the energy of the system changes little upon further iterations.4 It should 

be noted, however, that potential energy minimization of complex systems seldom 

gives the global energy minimum conformation as the minimization procedure stops 

at the first of the local minima encountered.

Several analytical methods for potential energy minimization are implemented in 

the DISCOVER program. They are steepest descent, conjugate gradients, quasi 

Newton-Raphson and Newton-Raphson. The protocol for energy minimization used 

in this study involved initial optimization by steepest descent using a harmonic bond 

stretch function, no charges, and no cross-terms until a maximum first derivative of 

2.0 kcal mor1 A"1 was reached. This is required to give satisfactory removal of 

localized high-energy interactions without the system becoming critically unstable. 

Minimization was completed by using conjugate gradients with a Morse bond 

potential, charges, and cross-terms to a maximum first-derivative of 0.5 kcal mol"1 

A-1, or to 0.05 kcal mol-1 A“1 to permit molecular dynamics to be performed.

2.3.1.3. Molecular Dynamics

The technique of molecular dynamics6 is used to calculate the expected motion 

of the component atoms of a molecular system. For proteins many of the funda

mental motions take place over relatively short time intervals (see Table 2.2.). With 

present computer power, simulations on globular proteins often exceed 10ps and 

can be in the nanosecond scale. Molecular dynamics can also be used to search 

for the lowest energy conformation, the global energy minimum, of a system.



Table 2.2. Time-scale of motions of proteins and nucleic 
acids.
Motion Time-scale Spatial extent 

(Angstroms)
proteins:
1. bond vibrations 10 - 100 fs 2 - 5
2. elastic vibrations 1 - 10 ps 10. - 20

(breathing)
3. side-chain rotation:

(i) surface 10 - 100 ps 5 - 1 0
(ii) buried 0.1 ms - 1 s 5

4. hinge bending 10 ps - 100 ns 10 - 20
(relative motion of
globular domains)

5. allosteric transition 10 us - 1 s 5 - 4 0
6. localised denaturation 10 us - 10 s 5 - 1 0

nucleic acids:
1. sugar puckering 1 ps - 1 ns 5
2. global stretching 0.1 - 10 ps 10 - 300
3. global bending 0.1 - 100 ns 100 - 1000
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ln molecular dynamics, the forces on all atoms are estimated from a previously 

calculated potential function of a molecular system. The force on atoms is

Fp-2aVJ9xi
i

where Vis the potential energy of atom i. For free atoms of mass , each force 

produces an acceleration a\ according to Newton’s laws of motion,

%

Frj=m,ai

Thus, with the arbitrary assignment of the initial set of starting velocities based 

on a Maxwell-Boltzmann distribution and appropriate for a given starting tempera

ture the updated positions for each atom of a molecular system can be computed. 

The calculations can then be repeated for each successive time-step in the dynam

ics trajectory.

In this study molecular dynamics trajectories were generated using the Verlet 

algorithm, implemented in the DISCOVER program, and a timestep of 1 fem

tosecond.

Analysis on selected co-ordinates of dynamics trajectories was performed using 

the program FOCUS version 1.O.7

2.4. Database Searching

Interactive computer aided database searching is an important activity in
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biology. It is required in order to fully utilize a large body of information.

In molecular modelling, databases can be used in the assessment of the likeli

hood of occurrence of a particular feature of an ad hoc modelled system by refer

ence to known situations. Thus, where several possibilities are plausible an analy

sis of a database can allow the most likely case to be identified.

2.4.1. Amino Acid Sequence Databases

The databases currently available for amino acid sequence information are the

(1) National Biomedical Research Foundation (NBRF) database, (2) Swissprot; 

consisting mainly of open reading frames from the nucleic acid database of the 

European Molecular Biology Laboratory (EMBL), and (3) OWL; a database formed 

by compiling (1) and (2) above and made available through Daresbury Labora

tories, Warrington, UK.

2.4.2. The BIPED Relational Database of Known Protein Structures

The Birkbeck Integrated Protein Engineering Database (BIPED) developed by 

Islam and Sternberg8 is a relational database of protein structure information. It 

allows for the rapid and flexible listing of structural details of proteins in response to 

specific data queries. The database is maintained under the ORACLE management 

system that utilizes Structured Query Language (SQL).9 As a relational database, 

the collected information is stored in tables and is directly accessible by many dif

ferent paths. A table consists of a row of column names, with rows of data values 

inserted under the column names. The Tables of BIPED are:
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(1) Structure - general information on the X-ray structure record such as author, 

refinement method, and resolution

(2) Crystal - an extension of the Structure table giving details such as cell dimen

sion

(3) Chain - general structural information on individual polypeptide chains

(4) Residue - structural details, with rows containing information on individual res

idues of proteins

(5) Site - details of ligand-binding sites and active sites of proteins

(6) Atom - information on atomic co-ordinates

(7) Salt - information on salt bridges

(8) Hbond - information on hydrogen bonds

(9) Disulphide - information on disulphide bridges

The main tables used to query structural details of proteins are (4), (6), (7), (8) and 

(9). A primary key for these tables is the UNIQID, which contains the Brookhaven 

code, a polypeptide chain identifier, residue number, and the entry type. Impor

tantly, the UNIQID column allows data values in different tables to be tied together.

The BIPED system used in this study was that implemented at Daresbury 

Laboratories, Warrington, UK.

2.5. Multiple Sequence Alignment

Prior to the availability of the multiple sequence alignment program of Barton et 

a/.10 the following procedure was used to generate a multiple alignment of LGIC 

sequences. Pairwise comparisons of the amino acid sequences were made using 

the program PRTALN written by Wilbur and Lipman.11 A half-matrix of the
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percentage identities (ie. the number of identical residues observed after alignment 

of two sequences divided by the number of residues of the smaller sequence) 

resulting from the comparison of the sequences was used to form groupings of 

closely related sequences.

Multiple alignments were created by aligning by visual inspection the most 

closely related pair of sequences within each grouping, using the sequence editing 

program DBUTIL.12 Insertions were kept to a minimum and, if possible, were 

placed between hydrophilic residues. This is based on the observation that inser

tions and deletions in related proteins of known structure occur, without noted 

exceptions, at the protein surface.13 Of the remaining sequences, each one was 

aligned into its grouping with the sequence to which it was most similar. Any gap 

added to a sequence in a grouping during the alignment with a newly added 

sequence was also added at the same position in all members of that grouping. 

Groupings, each containing highly similar sequences, were aligned using the hydro- 

phobic cluster analysis approach of Gaboriaud et a tf4 The amino acid sequence 

alignment obtained was converted to an alignment of the corresponding nucleic 

acid sequences.
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3. DEVELOPMENT OF METHODS

3.1 BIOSITE: An Interactive Program for the Comparison of Aligned Homolo

gous Sequences

The establishment of sequence-functlon relationships is an increasingly impor

tant goal in molecular biology, particularly as amino acid sequences are being 

determined at an increasing rate that already far exceeds the rate at which protein 

structures are currently being determined.

During the course of the work a program, BIOSITE,15 was developed that 

allows for the interactive comparison of aligned amino acid sequences of a homolo

gous series of proteins. The rationale for the program is that by comparing amino 

acid sequences of the members of a superfamily one can tentatively identify resi

due positions conferring a particular property. For example, when two proteins are 

highly similar in amino acid sequence (eg. >90% overall identity), but differ 

markedly in a certain observed property, it follows that those positions that vary are 

candidate sites for the observed difference. Conversely, if two proteins differ greatly 

in their sequence (eg. 20% overall identity), but display similar properties, candi

date sequence positions are most likely to be those that are preserved. Extending 

such comparisons to sets and/or subsets of sequences may allow better definition 

of candidate sites. Such proposals can be subjected to experimental verification 

using DNA mutagenesis techniques coupled with functional assay of expressed 

sequences.

3.1.1 Overview of the Program
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The purpose of the BIOSITE program is to allow a researcher with a knowledge 

of the properties of different members of a set of homologous proteins to rapidly 

and interactively compare their aligned amino acid sequences. A description of the 

main menu options is given in Table 3.1.

The program was developed using Turbo-C and comprises 518 lines of source 

code and 71 commentary lines (see Appendix I). The executable file will run on an 

IBM-PC or IBM compatible PC. The information on the aligned sequences and on 

lists of sequence subsets is maintained as singly linked lists of structures. Memory 

is allocated dynamically and given a memory availability of 640 kbytes the program 

will handle the equivalent of 50 sequences of length up to 1024 residues.

The input required is a multiple sequence alignment file that contains the related 

amino acid sequences, with pad characters added, listed successively in a modified 

NBRF format (see Fig. 3.1.). This is a standard format used by several multiple 

sequence alignment programs.16*17 Although the BIOSITE program was devel

oped for protein sequences an alignment of nucleic acid sequences can also be 

analyzed.

The program interface consists of listed menus followed by question prompts. 

Online help is included. The display of the aligned sequences or a subset is facili

tated, as is the display of the sequence names, and the sequence names plus 

titles. Different subsets of sequences can be easily defined, and stored in a list of 

defined subsets. This allows subgroupings of the sequences to be focused in on 

during a particular analysis. The currently active subset of sequences can be saved 

to disk, the file format being the same as that of the input file.



Table 3.1. Menu menu of the BIOSITE program.
MENU OPTION DESCRIPTION

1. Display Sequences

2. List Sequence Titles

3. Define Subset

4. Activate Subset

5. Save to Disk

6. Help
7. Identity

8. Difference

Lists the aligned sequences of 
the currently active set.
Lists the sequence names and 
titles of the currently active 
set.
Used to define a subset of 
sequences for further analysis.
Activates as the current set a 
predefined subset of sequences.
Saves active sequence set to 
disk.
Provides help on menu options.
Generates identity comparison 
sequence of a list of 
sequences.
Generates difference comparison 
sequence of a list of 
sequences.
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Fig. 3.1. Input file format for the BIOSITE program.

Line 1 is the sequence code, requiring the delimiter >P1; to indicate the start of a 

new sequence record. Line 2 is a title-line. Subsequent lines contain the amino-acid 

sequence in IUPAC one-letter code. The end of the sequence is indicated by \

>P1;SEQ1
Title line for sequence 1
------------- MEPWPLLLLFSLCSAGLVLGSEHE---------------
------------------- TRLVAKLFKD— Y S S W R P  VEDHRQWEVTVGL
QLIQLINVDEVNQIVTTNVRLKQQWVDYNLKWNPDDYGGVKKIHIPSEKI
WRP D LVL YNNAD GD FAIVKF TKVLL Q— YTGHITWTPPAIFKSYCEIIVT
HFPFDEQNCSMKLGTWTYDGSWAINP----------------ESDQPDLSN
FMESGEWVIKESRGWKHSVT— YSCCPDTPYLDITYHFVMQRLPLYFIVN
VIIPCLLFSFLTGLVFYLPTDSG-EKMTLSISVLLSLTVFLLVIVELIPS
TSSAVPLI-GKYMLFTMVFVIASIIITVIVINTHH— RSPST-HVMPNWV
RKVFIDTIPNIMFFSTMK------------------------------------
*

>P1;SEQ2
Title line for sequence 2
------------- MEPRPLLLLLGLCSAGLVLGSEHE---------------
------------------- TRLVAKLFED— YNSWRPVEDHRQAVEVTVGL
QLIQLINVDEVNQIVTTNVRLKQQWVDYNLKWNPDDYGGVKKIHIPSEKI
WRPDLVLYNNADGDFAIVKFTKVLLD--YTGHITWTPPAIFKSYCEIIVT
HFPFDEQNCSMKLGTWTYDGSVWINP----------------ESDQPDLSN

‘ FMESGEWVIKESRGWKHWVF— YACCPSTPYLDITYHFVMQRLPLYFIVN
SPLIKHP--------------------- EVKSAIEGIKYIAETMKSDQESN
NAAEEWKYVAMV— MDHILLAVFMLVC11GTLAVFAGRLIELNQQG----
*
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Comparison sequences may be generated and added to the sequence list and 

defined in subsets. The two types of comparison sequences are (i) an "identity 

sequence", which contains the invariant residues of two or more sequences, and (ii) 

a "difference sequence" of two or more sequences, and contains only residues 

present in the first sequence of a list that do not occur in any of the remaining 

sequences.

3.1.2. A Test Example: Localization of the Main Immunogenic Region of 

Nicotinic Acetylcholine Receptors

in the human disease myasthenia gravis, anti-nACh receptor autoantibodies are 

produced which cause loss of nACh receptors and failure of neuromuscular func

tion. About two thirds of anti-nACh receptor antibodies, both from human 

myasthenic patients and from rats immunized with intact nACh receptor, are 

directed against an extracellular area of the a-subunit called the main immunogenic 

region (MIR).18*19 The MIR is present in the a-subunit of the nACh receptors of 

human, bovine, rat, mouse, and chicken skeletal muscle and of Torpedo californica 

electric organ, but is absent in the p-, y- and 5-subunits of these species,20 and in 

the Xenopus laevis muscle nACh receptor.21 Additionally, Schoepfer et al. recently 

showed that a monoclonal antibody (mAb210) which recognizes the MIR of muscle- 

type receptors binds to the p-subunit of chicken brain nACh receptor, but not to the 

a2- or a4-subunit.22

Taking this information and carrying out an analysis of the aligned subunit 

sequences of nACh receptors using BIOSITE, 5 residues could be identified as 

candidate sites of the MIR (see Fig. 3.2.). An identity sequence was first generated 

from the subunits known to contain the MIR (see above). This identity sequence,
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Fig. 3.2. nACh receptor subunit comparison alignment generated using BIOSITE.

Sequence nomenclature: nACh receptor sequences have the ACH prefix. The fol

lowing lower-case letter signifies the species (ie. h = human, b = bovine; m = 

mouse; c = chicken; x = Xenopus; t = Torpedo). The last two letters denote the 

subunit type (A1 = muscle a; B2 = neuronal p2; A2 = neuronal a2; A4 = neuronal 

a4). MIR+, MIR- and MIR-SITES are comparison sequences. The position of the 

signal peptide and the first transmembrane segment (M1), annotated to the pro

gram output, are indicated by the slashes. The position of the signal peptide and 

the first transmembrane segment (M1), annotated to the program output, are indi

cated by the slashes.



1 HU SIGNAL PEPTIDE 1111111
ACHhAl:  MEPWPLLLLFSLCSAGLVLGSEHE----------------------------
ACHbAl:  MEPRPLLLLLGLCSAGLVLGSEHE----------------------------
ACHmAl:  MELSTVLLLLGLCSAGLVLGSEHE----------------------------
ACHcAl:  MELCRVLLLIFSAAGPALCYEHE----------------------------
ACHtAl:  MILCSYWHVGLVLLLFSCCGLVLGSEHE----------------------------
ACHcB2 : ---------------- MALLRVLCLLAALRRSLCTDTE----------------------------MIR+:  L------------L------E---------------------------------
MIR-SITES :  L-- L-E----------------------------
MIR-:---------  H------------------------------
ACHxAl:  MDYTASCLIFLFIAAGTVFGTDHE----------------------------
ACHCA2: ----- MGWPCRSIIPLLVWCFVTLQAATREQKQPHG----------------------------
ACHcA4 : ----- MGFLVSKGNLLLLLCASIFPAFGHVETPAHA---------------- ------------

61 . . . .
A C H hA l:  TRLVAKLFKD--YSSWRPVEDHRQWEVTVGLQLIQLINVDEVNQIVTTNVR
A C H bA l:  TRLVAKLFED--YNSWRPVEDHRQAVEVTVGLQLIQLINVDEVNQIVTTNVR
ACHmAl: -------------- TRLVAKLFED--YSSWRPVEDHREIVQVTVGLQLIQLINVDEVNQIVTTNVR
A C H cA l: -------------- TRLVDDLFRE— YSKWRPVENHRDAVWTVGLQLIQLINVDEVNQI VTTNVR
ACHtAl: --------TRLVANLLEN— YNKVIRPVEHHTHFVDITVGLQLIQLISVDEVNQIVETNVR
ACHcB2 : --------ERLVEYLLDPTRYNKLIRPATNGSQLVTVQLMVSLAQLISVHEREQIMTTNVW
MIR+ : --------- RLV— L Y R?--------V-------- L-QLI-V-E— QI— TNV-
MIR-SITES : ----------- V----------------------------------- L-------------1-------
MIR- : ---------RL L YN RPV D-V-V--GL QLI-VDE-NQ TN--
ACHxAl:  TRLIGDLFAN--YNKWRPVETYKDQVWTVGLQLIQLINVDEVNQIVSTNIR
ACHCA2:  FAEDRLFKHLFTG--YNRWSRPVPNTSDVVIVKFGLSIAQLIDVDEKNQMMTTNVW
ACHcA4 : ------ EERLLKKLFSG— YNKWSRPVANISDWLVRFGLSIAQLIDVDEKNQMMTTNVW

121 . . . .
ACHhAl: LKQGWVDYNLKWNPDDYGGVKKIHIPSEKIWRPDLVLYNNADGDFAIVKFTKVLLQ— YT
ACHbAl: LKQGWVDYNLKWNPDDYGGVXKIHIPSEKINRPDLVLYNNADGDFAIVKFTKVLLD--YT
ACHmAl: LKQQWVDYNLKWNPDDYGGVKKIHIPSEKIWRPDWLYNNADGDFAIVKFTKVLLD— YT
ACHcAl: LKQQWTDINLKWNPDDYGGVKQIRIPSDDIWRPDLVLYNNADGDFAIVKYTKVLLE— HT
ACHtAl: LRQQWIDVRLRWNPADYGGIKKIRLPSDDVWLPDLVLYNNADGDFAIVHMTKLLLD— YT
ACHcB2 : LTQEWEDYRLTWKPEDFDNMKKVRLPSKHIWLPDWLYNNADGMYEVSFYSNAVIS— YD
MIR+ : L -Q -W -D — L -W -P -D  K PS W-PD-VLYNNADG------------------------------------
MIR-SITES: L----------------D---- K----------------------------------------------
MIR- : -KQ-W-D— L-W-P-----V —  IR-PS—  W-PD-VLYNNADG-FA------TK--L-----
ACHxAl: LKQQWRDVNLKWDPAKYGGVKKIRIPSSDVWSPDLVLYNNADGDFAISKDTKILLE— YT
ACHCA2: LKQEWSDYKLRWNPEDFDNVTSIRVPSEMIWIPDIVLYNNADGEFAVTKMTKAHLF— SN
ACHcA4: VXQEWHDYKLRWDPQEYENVTSIRIPSELIWRPDIVLYNNADGDFAVTHLTKAHLF--YD

181 . . . .
ACHhAl: GHITWTPPAIFKSYCEIIVTHFPFDEQNCSMKLGTWTYDG3WAINP----------------
ACHbAl: GHITWTPPAIFKSYCEIIVTHFPFDEQNCSMKLGTWTYDGSWVINP----------------
ACHmAl: GHITWTPPAIFKSYCEIIVTHFPFDEQNCSMKLGTWTYDGSWAINP----------------
ACHcAl: GKITWTPPAIFKSYCEIIVTYFPFDQQNCSMKLGTWTYDGTMWINP----------------
ACHtAl: GKIMWTPPAIFKSYCEIIVTHFPFDQQNCTMKLGIWTYDGTKVSISP----------------
ACHCB2: GSIFWLPPAIYKSACKIEVKHFPFDQQNCTMKFRSWTYDRTEIDLVL----------------
MIR+: G-I-W-PPAI-KS-C-I-V--FPFD-QNC-MK WTYD-------------------------
MIR-SITES: --I-------------------------------------------------------------------
MIR-: G  W-PPAI-KS-C-I-VT-FPFDQQNC-MKFG-WTYD-------------------------
ACHxAl: GKITWTPPAIFKSYCEIIVTYFPFDQQNCSMKFGTWTYDGSLLVINP----------------
ACHCA2: GKVKWVPPAIYKSSCSIDVTYFPFDQQNCKMKFGSWTYDKAKIDLEN----------------
ACHcA4: GRIKWMPPAIYKSSCSIDVTFFPFDQQNCKMKFGSWTYDKAKIDLVS----------------

241 . . . . // Ml /
ACHhAl: -ESDQPDLSNFMESGEWVIKESRGWKHSVT— YSCCPDTPYLDITYHFVMQRLPLYFIVN
ACHbAl: -ESDQPDLSNFMESGEWVIKESRGWKHWVF— YACCPSTPYLDITYHFVMQRLPLYFIVN
ACHmAl: -ESDQPDLSNFMESGEWVIKEARGWKHWVF— YSCCPTTPYLDITYHFVMQRLPLYFIVN
ACHcAl: -ESDRPDLSNFMESGEWVMKDYRGWKHWVY— YACCPDTPYLDITYHFLMQRLPLYFIVN
ACHtAl: -ESDRPDLSTFMESGEWVMKDYRGWKHWVY— YTCCPDTPYLDITYHFIMQRIPLYFWN
ACHcB2 : -KSEVASLDDFTPSGEWDIVALPGRRNENP------- DDSTYVDITYDFIIRRKPLFYTIN
MIR+ : — S L— F--SGEW------ G------------------ Y-DITY-F R-PL N
MIR-SITES: — S L--F--------------G ------------------------ Y ----------------
MIR+: ------ D-------SGEW----------------- Y-CC----Y-DIT — F---- RLPL---- N
ACHxAl: -ERDRPDLSNFMASGEWMMKDYRCWKHWVY— YTCCPDKPYLDITYHFVLQRLPLYFIVN
ACHCA2: -MEHHVDLKDYWESGEWAIINAIGRYNSKK— YDCCTE-IYPDITFYFVIRRLPLFYTIN
ACHCA4: -MHSHVDQLDYWESGEWVIINAVGNYNSKK— YECCTE-IYPDITYSFIIRRLPLFYTIN
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named MIR+, contained 82 residues in the extracellular domain of mature subunits 

comprising residue positions 33 to 292 (numbering as given in Fig. 3.2.). A second 

identity sequence, named MIR-, was generated using the a2- and a4-subunit 

sequences of the chicken brain nACh receptor and the muscle a-subunit of 

Xenopus laevis, since although all these sequences, being a-subunits, might be 

expected to contain the MIR, they do not. This second identity sequence contained 

95 residues in the extracellular domain. By generating a difference sequence 

(named MIR-SITES) of the MIR+ and MIR- identity sequences, the remaining num

ber of MIR candidate site positions was reduced to 13. Of these residues 8 were 

invariably hydrophobic residue positions in nACh receptor subunit sequences. 

These were discounted as being MIR determinants, as they were assumed to be in 

the hydrophobic core of the protein. This left a total of 5 sites, 3 of which, Asp-136, 

Lys-141 and Ser-243 being charged and polar residues were considered to be can

didate residues of the MIR. Of these, the 2 residues Asp-136 and Lys-141, being 

separated by only 4 amino acids, were considered as residues most likely to be 

within a continuous determinant of the MIR.

From recent experimental studies using peptide mapping Tzartos et al. showed 

that the residues Asp-136 and Lys-141 are contained within the MIR.23 More 

specifically, Saedi et al. concluded from a study involving the point mutation 

Asp-136 -> Lys that an aspartate residue at this position is important in the binding 

of MIR recognizing antibodies.24 The position Ser-243 is contained in a region 

which by using peptides has been shown to bind MIR antibodies by McCormick et 

al.,25 but not by others 26 Thus, this analysis, albeit retrospective, based on the 

observed properties of individual nACh receptor subunits, correctly identified two 

residue sites of the MIR shown to be part of this epitope, and a third site that may 

be part of it.
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3.2. SCAFFOLD: Search String Algorithm for Prediction of Protein Structure 

from Aligned Amino Acid Sequences

The accurate prediction of protein structure from just amino acid sequence infor

mation is an unsolved and challenging goal of molecular biology. However, it could 

ultimately be the approach required to provide the detailed three-dimensional struc

ture of LGIC receptors.

Two main strategies that may lead to possible solutions are (i) an approach 

involving the optimization of a function that defines the solution, and (ii) the build-up 

of a protein structure from fragments of known protein structures. The former 

approach may be based on conformational searching using an energy function, but 

as yet energy calculations cannot discriminate between correctly and incorrectly 

folded protein conformations27 and computing power is not yet available which 

allows for exhaustive conformational searching. That the latter approach should be 

feasible was suggested by a case study by Jones and Thirup 28 in which a Ca-trac- 

ing of retinol binding protein was constructed to within 1 A RMS-deviation of the 

X-ray structure from fragments selected from just 3 non-homologous protein struc

tures. More recently, an attempt has been made to identify the minimum set of pro

tein fragments that define all protein structures by taking oligopeptides from well- 

refined structures and clustering them according to main-chain conformation 29

In this study a method was developed for the tentative prediction of appropriate 

protein fragments for a build-up procedure with the aim of predicting the topology of 

protein folds. The rationale for the method is based on the early observation that at 

least the occurrence of regular secondary structures (eg. a-helices and p-strands) 

in proteins can often be explained in physical-chemical terms by the periodic
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sequence patterns in the hydrophobicities of amino acid side-chains.14’30'32 Thus, 

it was reasoned that comparison of patterns in relative residue surface-accessibili- 

ties, which reflect the tendencies of residue positions to partition between the aque

ous solvent and the hydrophobic core in proteins, could be used to search the 

Brookhaven databank of known protein structures.

3.2.1 Outline of the Method

The method outlined in Figure 3.3. involves first the prediction of a relative resi

due surface-accessibility value for each residue position based on an alignment of 

a homoiogous set of amino acid sequences. For this indices for each amino acid 

type are used that reflect their relative tendency to achieve a particular relative resi

due surface-accessibility (the use of relative rather than absolute values provides a 

normalization of the differences in size of the amino acid side-chains, with the final 

values being scaled between 0 and 100%). By taking the calculated average of the 

amino acid indices at each position of an alignment of sequences a relative residue 

surface-accessibility profile is generated. This serves as a probe in the scanning for 

similar patterns in a database of relative residue surface-accessibiiities generated 

from the known protein structures of the Brookhaven database. For each possible 

comparison made using a window-search algorithm, a difference score is obtained 

by a square-fit approach. The lower the score the more similar are the matched 

windows in their relative residue surface-accessibility profiles. The difference 

scores are then sorted in ascending order either for the total list of window matches 

or separately for the list of matches for each window of the probe.

3.2.2 A Preliminary Test Study on Myoglobin
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Fig. 3.3. Outline of the window-search method using relative residue surface-acces

sibility patterns for protein structure prediction.

1. PROBE GENERATION

2. DATABASE SCREENING

3. SCORE OUTPUT

Comparison of probe and database 
relative residue surface-accessibilities 
using window search algorithm.

Sorting of scores:
(i) for total list of scores
(ii) for each probe window.

Prediction of relative residue surface- 
accessibility of each residue position of an 
alignment of homologous amino acid 
sequences.
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To test the possibility of searching the structural database using a window- 

search method using relative residue surface-accessibilities a preliminary study 

was carried out on known proteins. This involved using the relative residue surface- 

accessibility values derived from the known structure of sperm whale myoglobin (ie. 

Brookhaven code 1MBD)33 as the probe to search a database of relative residue 

surface-accessibiiities of the known protein structures.34

3.2.2.1. Establishment of the Database

Relative residue surface-accessibilities to solvent, calculated using the algorithm 

of Richmond and Richard, were generated using BIPED (Daresbury Laboratories, 

UK).8 Each database file contained records of residue number identifier (UNIQID), 

amino-acid type (IUPAC one-letter code), assigned secondary structure (STRK), 

and the relative residue surface-accessibility (ie. RCSCQ). The database consisted 

100 protein structures (resolution < 2.6 A) of the Brookhaven databank (see Table 

3.2).

3.2.2.2. Experimentally Derived Myoglobin Probe

The experimentally derived myoglobin probe was generated using BIPED (Sec

tion 2.4.2.) based on the relative residue surface-accessibility values of the sperm- 

whale myoglobin structure.

3.2.2.3. WIndow-Search of the Database

The window-search method used the comparison function:
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Table 3.2. Proteins of the search string database.



BRCODE PROTEIN NAME RESOLUTION
351C CYTOCHROME C551 1.6
155C CYTOCHROME C550 2.5
1ABP ARABINOSE-BINDING PROTEIN 2.4
2ABX ALPHA-BUNGAROTCXIN 2.5
2ACT ACTINIDIN 1.7
1ACX ACTINOXANTHIN 2.0
4ADH ALCOHOL DEHYDORGENASE 2.4
4APE ACID PROTEINASE 2.1
2APP ACID PROTEINASE 1.8
2APR ACID PROTEINASE 1.8
1AZA AZURIN 2 2.0
2B5C CYTOCHROME B5 2.0
1BP2 PHOSPHOLIPASE A2 1.7
3C2C CYTOCHROME SC2 1.6
2 CAB CARBONIC ANHYDRASE B 2.0
1CAC CARBONIC ANHYDRASE C 2.0
8 CAT CATALASE 2.5
1CC5 CYTOCHROME C5 2.5
1CCR CYTOCHROME $C 1.5
2CCY CYTOCHROME SC' 1.6
2CDV CYTOCHROME SC3 1. 8
2CGA CHYMOTRYPSINOGEN 1.8
5CHA ALPHA CHYMOTRYPSIN A 1.6
1CHG CHYMOTRYPSINOGEN 2.5
1CLN CALMODULIN 2.2
2CNA CONCANAVALIN A 2.0
5CPA CARBOXYPEPTIDASE A 1.5
2CPP CYTOCHROME P4 50 1. 6
3CPV PARVALBUMIN B 1. 8
1CRN CRAMBIN 1.5
1CY3 CYTOCHROME C3 2.5
1CYC CYTOCHROME C 2.3
2CYP CYTOCHROME PEROX. 1.7
4CYT CYTOCHROME C 1.5
3DFR DIHYDROFOLATE REDUC. 1.7
2EBX ERABUTOXIN B 1. 4
1ECO ERYTHROCRUORIN 1. 4
1ECD ERYTHROCRUORIN (DEOXY) 1.4
2EST ELASTASE 2.5
3 FAB IMMUNOGLOBULIN 2.0
1FB4 IMMUNOGLOBULIN 1.9
1FDH HAEMOGLOBIN (FETAL) 2.5
1FDX FERREDOXIN 2.0
1FX1 FLAVODOXIN 2.0
3FXC FERREDOXIN 2.5
4FXN FLAVODOXIN 1.8
2GCH GAMMA CHYMOTRYPSIN 1.9
1GCR GAMMA-II CRYSTALLIN 1.6
2GN5 GENE-5 DNA BINDING PROTEIN 2.3
1GP1 GLUTATHIONE PEROXIDASE 2.0
2GRS GLUTATHIONE REDUCTASE 2.0
1HDS HEMOGLOBIN (SICKLE) 1.9
4HHB HAEMOGLOBIN (DEOXY) 1.7
1HHO HAEMOGLOBIN 2.1
1HIP HIP IRON PROTEIN 2.0
1HMQ HEMERYTHRIN 2.0
1HMZ HEMERYTHRIN 2.0
1ICB CA-BINDING PROTEIN 2.0
1INS INSULIN 1.5
4LDH LACTATE DEHYDROGENASE 2.0
2LH6 LEGHAEMOGLOBIN 2.0
1LZ1 LYSOZYME 1.5
1MBD MYOGLOBIN (DEOXY) 1.4
1MBO MYOGLOBIN 1.4
2MDH MALATE DEHYDROGENASE 2.5



1MLT MELITTIN 2.
1MT2 METALLOTHIONEIN 2.
1NXB NEUROTOXIN B 1 .
20V0 OVOMUCOID 1 .
2PAB PREALBUMIN 1 .
9PAP PAPAIN 1 .
1PCY PLASTOCYANIN 1 .
2PKA KALLIKREIN A 2.
1PPD PAPAIN D 2.
1PPT PANCREATIC PPEPTIDE 1 .
5PTI TRYPSIN INHIBITOR 1 .
2PTN TRYPSIN 1 .
1REI IMMUNOGLOBULIN 2.
1RHD RHODANESE 2.
2RHE IMMUNOGLOBULIN 1 .
1RN3 RIBONUCLEASE A 1 .
1RNS RIBONUCLEASE-S 2.
1RNT RIBONUCLEASE T1 1 .
3RP2 PROTEINASE II 1 .
5RXN RUBREDOXIN (FE-III) 1 .
1S3T SUBTILISIN NOVO 2.
2SGA PROTEINASE A 1 .
3SGB PROTEINASE B 1 .
15GC PROTEINASE A 1 .
1SN3 SCORPION NEUROTOXIN 1 .
2SNS STAPHYLOCOCCUS NUCLEASE 1 .
2 SOD SUPEROXIDE DISMUTASE 2.
2STV SATELLITE TOBACCO VIRUS 2.
1TGN TRYPSINOGEN 1 .
1TIM TRIOSE PHOSPHATE ISOMERASE 2.
3TLN THERMOLYSIN 1 .
1TPO TRYPSIN (ORTHO) 1 .
1TPP TRYPSIN 1 .
1UBQ UBIQUITIN 1 .
3WGA WHEAT GERM AGGLUTININ 1 .

0
3
3
5
8
6
6
0
0
3
0
5
0
5
6
4
0
9
9
2
5
5
8
8
8
5
0
5
6
5
6
7
4
8
8



- 104-

nw
score = 2  (probe_RCSCQp+i - database_RCSCQq+i)2

i

where nw is the window length in residues, p is the offset in the residue sequence 

to the start residue of the window for the probe, q is the offset in the residue 

sequence to the start residue of the window for the current accessibility database 

protein.

3.2.2.4. Results with the Myoglobin Probe

Using a 20 residue window, out of 1.6 x 106 matches of the sperm whale myo

globin probe with the database, the top-match (ie. lowest score) was of a C-termi- 

nal segment in myoglobin and a C-terminal segment of beef liver catalase (8CAT)35 

(see Table 3.3 and Fig. 3.4.). The Ca RMS-fit is relatively high compared to other 

matches, but this is owing to a structural difference in the 5 residues at the N-ter- 

minus of the matched segments; over the remaining 15 residues the Ca RMS-fit 

was 0.4 A. The second lowest match was with E. coli arabinose binding protein 

(1ABP)36 where similarity involved a-helical segments which had their C-termini 

packed more tightly onto their protein cores than their N-termini (see Fig. 3.5.). 

The first match to a member of the globin family was with erythrocruorin (1ECD) 37 

a haemoglobin of midge-larvae. This involved topologically identical segments (i.e. 

segments that would be classified as equivalent by a sequence alignment), which 

form an unusual surface loop in close contact with the bound haeme-centre (see 

Fig. 3.6.). The fourth and fifth matches were with human a-haemoglobin (4HHB) 

and erythrocruorin (see Fig. 3.7.),38 respectively. In these cases the a-helical seg

ments are structurally similar (according to their RMS-fit values), but would be iden

tified as non-homologous segments by conventional sequence alignment meth

ods.39



Table 3.3. Top five lowest scores of the myoglobin (1MBD) relative residue surface- 

accessibility probe.

BRK CODE and 
residue positions

Aligned sequences SCORE RMS-fit 
(Angstrom)

1. 1MBD: 130-149: 
8CAT:462-467 :

AMNKALELFRKDIAAKYLEL
NFSDVHPEYGSRIQALLDKY

2560 4.0

2. 1MBD:57-76 
1ABP:42-61

ASEDLKKHGVTVLTALGAIL
DGEKTLNAIDSLAASGAKGF

2717 1 .

3. 1MBD:28-47 
1ECD:23-42

ILIRLFKSHPETLEKFDRFK 
ILYAVFKADP SIMAKFTQFA ★ ★ ★ * ★ ★★ *

2755 0 . 8

4. 1MBD:55-74: 
4HHB:70-89:

MKASEDLKKHGVTVLTALGA 2 831
VAHVDDMPNALSALSDLHAH

3.0

5. 1MBD:12 8-14 7 
1ECD:94-113:

QGAMNKALELFRKDIAAKYK
HDQLNNFRAGFVSYMKAHTD

3189 1.1
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Fig. 3.4. Stereoview of the three-helix packing region of sperm whale myoglobin 

(1MBD) and beef liver catalase (8CAT) superpositioned.

Myoglobin and catalase are coloured blue and yellow, respectively, except over the 

matched segments in which case they are coloured green and red, respectively. 

The side-chains of residues in the packing-core are shown, and numbering (89, 90, 

138,142) refers to the sperm whale myoglobin structure.

t



mm
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Fig. 3.5. Matched windows of sperm whale myoglobin (1MBD) and E. coli arabi- 

nose binding protein (1ABP).

The matched segments are coloured red.
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Fig. 3.6. Matched windows of sperm whale myoglobin (1MBD) and erythrocruorin 

(1ECD).

The matched segments are coloured red.
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Fig. 3.7. Matched windows of sperm whale myoglobin (1MBD) and human a-hae- 

moglobin (4HHB).

The matched segments are coloured red.
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Notably, visual analysis of the top-matched segments in the structures of sperm- 

whale myoglobin and beef liver catalase revealed extensive similarity not only in 

the superimposed matched segments, but in the surrounding protein structure (see 

Fig. 3.4.). This involved a three-helix region present in a similar context, with the 

last of the three consecutive helices occurring at the C-terminus in both proteins 

and the first helix packing onto the third helix (ie. the matched segment) with a 

=45° crossover angle.40 Here the helices are labelled X, Y and Z in amino-acid 

sequence order (Helices X, Y and Z correspond to helices F, G and H in myoglobin 

and helices 11 A, 12A and 13A in catalase). For the 34 positions that were assigned 

as being topologically equivalent (see Fig. 3.8.) in the two proteins a Ca RMS-fit of

2.1 A was obtained. The polypeptide leading into helix X also displays similarity, 

being an a-helical region that is set by a sharp turn to almost a right-angle to helix 

X. The major difference in the two regions is the length of the loop linking the over

lap of helices Y and Z. This loop is longer in sperm-whaie myoglobin, mainiy 

because of a three-turn extension in both helices. It is this structural detail which 

leads to the large RMS-fit value of the matched segments (see discussion above).

A further level of similarity of the three-helix region involves a quartet of core 

residues that interdigitate helix X and Z, namely the residue positions Leu-89, 

Ala-90 (helix X), and Phe-138, lie-142 (helix Z) of sperm-whale myoglobin and the 

corresponding positions lie-462, Ala-463, Tyr-488 and lie-492 of beef liver catalase 

(see Fig. 3.4.). It is notable that the amino-acids at the corresponding positions are 

identical or very similar. In addition, their side-chain atoms are similarly placed, 

although the phenylalanine ring at position 138 in sperm-whale myoglobin is not so 

well aligned structurally with the tyrosine ring at position 488 in beef liver catalase 

(%1 side-chain torsion-angles are 166° and -158°, respectively). Interestingly, 

superpositioning and structural comparison of these interdigitating positions gave a
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Fig 3.8. Alignment of myoglobin and catalase amino acid sequences over the three- 

helix packing region.

Myoglobin sequences are: (w) sperm whale, (a) alligator, (t) map turtle and (c) carp. 

Catalase sequences are: (h) human, (b) beef liver, (r) rat and (y) yeast peroxisomal. 

The consensus sequences show invariant and conserved (dot; groupings:- DNEQ, 

RKH, YFW, MILV, STPAGC) residue positions. Assignments of helix structure are 

from the Brookhaven structures 1MBD and 8CAT. Relative residue surface-acces- 

sibility values from these structures are given above their corresponding sequence 

sets. Solid bar shows the position of the matched segments of the database 

search. Numbering below is of the packing-core quartet residue positions.
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better Ca RMS-fit for sperm-whale myoglobin and beef liver catalase, ie. 0.6 A, 

than the homologous globins, ie. 0.8-1.2 A (Table 3.4.). This greater structural simi

larity in the non-homologous case than the homologous cases may be explained by 

the amino-acid similarity seen at the interdigitating positions (see Table 3.4.).

No significant sequence similarity over the three-helix region could be detected 

by inspection of a multiple alignment, which included related sequences for both 

proteins (Fig. 3.8.). This supports the existing view that the catalases and globins 

evolved independently. If divergent evolution were the case the similarity over the 

three-helix region of their structures must have been maintained over a long period 

of time, as both globin41 and catalase42 are present in bacteria. Moreover, from 

visual inspection there is no apparent reason why over divergent evolution the 

three-helix region in the two proteins would have been conserved.

The above shows that a window-search method using experimentally derived 

profiles of relative residue surface-accessibility can be used to identify structural 

similarity between non-homologous proteins.

3.2.3 Prediction of Probe Relative Residue Surface-Accesslbllltles

The next stage in the development of the prediction method was to calculate the 

probe relative residue surface-accessibilities from a set of aligned homologous 

amino acid sequences. For this, amino acid indices were obtained corresponding to 

the median value of relative residue surface-accessibility for each amino acid over 

the database of high-resolution (ie. <2.1 A) protein structures. These values were 

obtained from analysis of the BIPED relational database. A breakdown into the val

ues for different types of secondary structure as well as the values overall are given
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Table 3.4. RMS-fit of interdigitating residues of helix X and Z of globins and beef 

liver catalase.

IDs = number of identical amino acids at core quartet positions. Brookhaven codes: 

8CAT = beef liver catalase; 1MBD = sperm whale myoglobin; 1ECD = erythrociuo- 

rin; 2LH6 = leghaemog!obin;4HHB; human haemoglobin. Numbering of interdigitat

ing positions refers to that given in Fig. 3.8.

Superimposed Interdigitating Positions No. RMS-fit
structures   IDs (Angstrom)

1 2  3 4
i. 8CAT-1MBD I-L A-A Y-F I-I 2 0.6
2. 8CAT-1ECD L-F A-V Y-F I-I 1 0.6
3. 1MBD-1ECD L-F A-V F-F I-I 2 0.8
4 . 8CAT-2LH6 L-L A-G Y-L I-I 2 0.8
5. 1ECD-2LH6 F-L V-G F-L I-I 1 0.8
6. 1MBD-4HHB L-L A-S F-V I-L 1 0.9
7 . 2LH6-4HHB L-L G-S L-V I-L 1 1.0
8. 1MBD-2LH6 L-L A-G F-L I-I 2 1.0
9. 8CAT-4HHB L-L A-S Y-V I-L 1 1.1
10. 1ECD-4HHB F-L V-S F-V I-L 0 1.2
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in Table 3.5.

Using these indices a probe for myoglobin was generated by calculating the 

average of these indices for each residue position of the myoglobin alignment 

shown in Figure 3.9. The positional values of the probe are shown graphically in 

Figure 3.10. by colouring the residues of the sperm-whale myoglobin structure.

3.2.4. Test Results with a Predicted Myoglobin Probe

3.2.4.1. Search Window Length

To assess the effect of window-size on the search method the predicted probe 

for myoglobin was scanned against only the datafile derived from the sperm-whale 

myoglobin structure (1MBD). This was, therefore, a comparison of the predicted 

and experimentally derived relative residue surface-accessibility profiles. The out

put listing of the lowest 100 scores for a range of window lengths were transformed 

to give a diagon plot (see Figs. 3.11 to 3.13). By inspection, these plots indicate 

that probe relative residue surface-accessibilities could be predicted with sufficient 

accuracy such that with a window length of 30 residues exact sequence matches of 

predicted and experimental segments were obtained with little background match

ing. As expected the proportion of exact matches obtained in the 100 lowest scores 

increased with the window length. On the basis of this analysis, because a window 

length of 30 residues would be sensitive to insertions in protein structures, a win

dow length of 20 residues was employed in database scanning.

3.2.4.2. Database Searching



Table 3.5. Statistical analysis of amino acid relative 
residue accessibilities of the Brookhaven database.
Amino ALL HELIX EXTENDED TURN
Acid Mn. Md. SD. Mn. Md. SD. M n . Md. SD. Mn. Md. SD.
ALA 26 7 34 29 10 35 13 1 22 45- 44 39
CYS 6 0 12 7 0 13 4 0 9 11 1 17
ASP 42 43 34 44 47 35 30 25 28 55 57 34
GLU 45 46 32 44 45 32 37 39 29 67 70 28
PHE 10 3 16 9 2 15 9 1 15 22 14 26
GLY 0 0 5 0 0 4 1 0 7 0 0 0
HIS 24 13 26 24 12 27 20 10 22 35 31 29
ILE 11 1 19 12 2 20 9 0 17 24 14 29
LYS 51 54 26 51 55 26 46 48 26 64 65 26
LEU 12 2 20 12 2 20 9 0 17 26 23 28
MET 14 2 23 13 2 21 12 1 20 35 26 36
ASN 38 38 30 39 41 29 28 23 26 56 55 34
PRO 50 50 21 54 57 21 40 38 20 50- 50 20
QLN 36 34 29 35 33 28 34 28 29 49 54 27
ARG 33 32 26 30 29 26 31 30 25 50 52 25
SER 37 29 35 32 20 33 34 27 34 55 59 37
THR 31 28 28 29 20 30 31 30 26 40 31 30
VAL 12 2 20 13 2 22 10 2 18 22 10 26
TRP 16 6 22 19 10 25 9 2 15 36 34 26
TYR 18 12 20 16 10 19 14 8 17 34 32 25
Abbreviations: Mn. Mean/ Md. Median; SD. Standard 
Deviation.
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Fig. 3.9. Alignment of myoglobin amino acid sequences.

Invariant residues are given below the aligned sequences.

1 . . . .
1 GLSDDEWHHVLGIWAKVEPDLSAHGQEVIIRLFQVHPETQERFAKFKNLK
2 VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPETLEKFDRFKHLK
3 MELSDQWKHVLDIWTKVESKLPEHGHEVIIRLLQEHPETQERFEKFKHMK
4 HDAELVLKCWGGVEADFEGTGGEVLTRLFKQHPETQKLFPKFVGI
5 SLSAAEADLAGKSWAPVFANKNANGADFLVALFEKFPDSANFFADFKG K

W V G L P F F
31 . . . .

1 TIDELRSSEEVKKHGTTVLTALGRILKLKNNHEPELKPLAESHATKHKIP
2 TEAEMKASEDLKKHGVTVLTALGAILKKKGHHEAELKPLAQSHATKHKIP
3 TADEMKSSEKMKQHGNTVFTALGNILKQKGNHAEVLKPLAKSHALEHKIP
4 ASNELAGNAAVKAHGATVLKKLGELLKARGDHAAILKPLATTHANTHKIA
5 SVADIKASPKLRDVSSRIFTRLNEFVNDAANAGKMSAMLSQFAKEHVGFG

L L
101 . . . .

1 VKYLEFICEIIVKVIAEKHPSDFGADSQAAMRKALELFRNDMASKYKEFGFQG
2 IKYLEFISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
3 VKYLEFISEIIVKVIAEKYPADFGADSQAAMRKALELFRNDMASKYKEFGYQG
4 LNNFRLITEVLVKVMAEK AGLDAGGQSALRRVMDWIGDIDTYYKEIGFAG
5 VGSAQF ENVRSMFPGFVASVAAPPAGADAWTKLFGLIIDALKAAGK

K
1. Turtle
2. Sperm whale
3. Alligator
4. Carp
5. Sea snail
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Fig. 3.10. Stereoview of sperm whale myoglobin (1MBD) with predicted relative 

residue surface-accessibility (ie. AVERAGE value) colouring scale of residues.

The scale is blue = 0% exposed (ie. fully buried) to green = 70% exposed.
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Fig. 3.11. Diagon plot (window-size = 20 residues) of myoglobin predicted and

experimental (1MBD) relative residue surface-accessibilities.

top 100 scoring matches are 

matches; stars: sequence mismatches.
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Fig. 3.12. Diagon plot (window-size = 30 residues) of myoglobin predicted and

experimental (1MBD) relative residue surface-accessibilities.

Only the top 100 scoring matches are displayed. Squares: exact sequence 

matches; stars: sequence mismatches.
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Fig. 3.13. Diagon plot (window-size = 40 residues) of myoglobin predicted and

experimental (1MBD) relative residue surface-accessibilities.

Only the top 100 scoring matches are displayed. Squares: exact sequence 

matches; stars: sequence mismatches.

window

100
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The predicted myoglobin probe was scanned against the established database 

(section 3.2.2.1.) using a 20 residue window. The resulting matches were then 

sorted in ascending order of score and Ca RMS-fitting performed (see Fig. 3.14.).

Interestingly, in the top 30 matches the method successfully recognized 15 

homologous matches in the globins, 14 of which were to sperm whale myoglobin 

and 1 was to foetal haemoglobin (ie. match 26 in the list). This served as an indica

tion of the accuracy of the prediction of the probe relative residue surface-accessi- 

bilities given that the total number of possible matches of the probe to the database 

is 2.4 x10s.

3.2.3 Critical Assessment of the Search String Method

The window search method outlined above is still at a preliminary stage of 

development. Nevertheless, the example of myoglobin shows that the method does 

carry some specificity. Thus, a probe generated on the basis of a multiple sequence 

alignment does recognize matches in a database derived from structural informa

tion. The method is not yet sufficiently developed to allow the ab initio prediction of 

protein structure, but may be used in tentative prediction schemes involving other 

prediction methods. The advantage of the method over secondary structure predic

tion algorithms43 is the fact that a three-dimensional fragment is obtained rather 

than an abstract secondary structure assignment. In addition, as can be seen from 

the above example of similarity between myoglobin and catalase, improvement of 

the method could lead to identification of fragments in non-homologous proteins.

Myoglobin is an all a-helical type structure and it could be that the periodic vari

ation in hydrophobicity of a-helices makes them more suited to prediction by the



-122 -

Fig. 3.14. RMS-fit analysis of probe-database window matches with the predicted 

myoglobin probe.



BRCD #1 #2 score RMS Sequence Match

1. 1MBO 92 89 2253

2. 1MBO 99. 96 2388

3. 1MBD 99 96 2434

4. 5CPA 100 279 2650

5. 1MBO 98 95 2669

6. 1MBO 97 94 2753

7. 4HHB 12 27 2868

8. 1MBO 96 93 3020

9. 5CPA 101 280 3031

10. 1MBO 95 92 3033

11. 1APR 14 77 3080

12. 1MBO 91 88 3083

13. 1APR 13 76 3117

14. 1MBO 93 90 3135

15. 4HHB 11 26 3160

16. 1MBO 94 91 3177

0.10 LAESHANKHKVPIKYLEFIS 
LAQSHATKHKIPIKYLEFIS * * #***  **★***★*★

0.07 KHKVPIKYLEFISDAIIHVL 
KHKIPIKYLEFISEAIIHVL 
a * * ^ * * * * * * * * * ^ * * * * * *

0.00 KHKVPIKYLEFISDAIIHVL 
KHKIPIKYLEFISEAIIHVL 
★ *  *  * * * * * * * * *  * * * * * *

3.81 HKVPIKYLEFISDAIIHVLH 
FLLPASQIIPTAQETWLGVL 

_ *

0.08 NKHKVPIKYLEFISDAIIHV 
TKHKIPIKYLEFISEAIIHV *** _********* *****

0.09 ANKHKVPIKY LEFISDA11H 
ATKHKIPIKYLEFISEAIIH 
*  * * *  * * * * * * * * *  * * * *

3.92 AVLNAWGKVEADVAGHGQEV 
EALERMFLSFPTTKTYFPHF

0.09 HANKHKVPIKYLEFISDAII 
HATKHKIPIKYLEFISEAII 
* *  * * *  * * * * * * * * *  * * *

3.80 KVPIKYLEFISDAIIHVLHA 
' LLPASQIIPTAQETWLGVLT

0.08 SHANKHKVPIKYLEFISDAI 
SHATKHKIPIKYLEFISEAI *** ***^*********_**

6.63 LNAWGKVEADVAGHGQEVLI 
GYGDGSASGVLGYDTVQVGG *  ̂*

0.09 HLAESHANKHKVPIKYLEFI 
PLAQSHATKHKIPIKYLEFI 

* * ^ * * *  * * * ^ * * * * * * * *

6.83 VLNAWGKVEADVAGHGQEVL 
IGYGDGSASGVLGYDTVQVG

0.10 AESHANKHKVPIKYLEFI SD 
AQSHATKHKIPIKYLEFISE *^***^*** *********^

3.75 QAVLNAWGKVEADVAGHGQE 
AEALERMFLSFPTTKTYFPH

0.09 ESHANKHKVPIKYLEFISDA 
QSHATKHKIPIKYLEFISEA



17.

18.

19.

2 0 . 

21 . 

22 . 

23. 

24 .

25.

26.

27.

28.

29.

30.

4HHB 10 25 3192 3.36 WQAVLNAWGKVEADVAGHGQ
GAEALERMFLSFPTTKTYFP

8CAT 16 252 3410 3.20 AWGKVEADVAGHGQEVLIRL
LAHEDPDYGLRDLFNAIATG

1MBO 89 86 3410 0.01 VKHLAESHANKHKVPIKYLE
LKPLAQSHATKHKIPIKYLE

*  *  *  *  *  *  *  *  *  * * * * * *

5CPA 22 287 34 4 7 3. 95 ADVAGHGQEVLIRLFTGHP E
IPTAQETWLGVLTIMEHTVN 

*

1MBO 88 85

5CHA 67 189

34 47 0.09 EVKHLAESHANKHKVPIKYL
ELKPLAQSHATKHKIPIKYL
*  *  * *  * * *  * * *  * * * * *

34 72 6.71 HGNTVLTALGGILKKKGHHE
GVSSCMGDSGGPLVCKKNGA

*  *  *  *

1MBO 90 87 3509 0.01 KHLAESHANKHKVPIKYLEF
KPLAQSHATKHKIPIKYLEF 
*  * *  * * *  * * *  * * * * * * *

2CPP 109 349 3518 5.38 FISDAIIHVLHAKHPSNFAA
TFGHGSHLCLGQHLARREII

1ABP 24 252 3564 6.41 VAGHGQEVLIRLFTGHPETL 
LLPSPDVHGYKSSEMLYNWV

1HDS 103 121 3595 0.01 PIKYLEFISDAIIHVLHAKH
VHANLNKFLANDSTVLTSKY 

*  *  *  *

1MBD 92 89 3612 0.01 LAESHANKHKVPIKYLEFIS
LAQSHATKHKIPIKYLEFIS 
* *  * * *  * * *  * * * * * * * * *

1RHD 68 122 364 8 5.10 GNTVLTALGGILKKKGHHEA
TVSVLNGGFRNWLKEGHPVT 

*  *  *  *  *

2SNS 16 92 3677 4.63 AWGKVEADVAGHGQEVLIRL
IYADGKMVNEALVRQGLAKV

1HDS 19 116 3691 2.72 KVEADVAGHGQEVLIRLFTG
NFTPAVHANLNKFLANDSTV 

*  *  *
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method than other types of secondary structure. However, the initial analysis with 

myoglobin did identify structurally similar fragments for a surface loop region (Fig. 

3.7.), albeit in the homologous protein erythrocruorin.

A prerequisite of the method is a set of sequences ranging in homology of about 

30-80% to reveal the tendency for a particular relative residue surface-accessibility 

to occur at a given position. Inclusion of sequences with greater than 90% 

sequence identity to each other in the myoglobin test study was avoided because 

this would have lead to over-representation and biasing of the average values of 

relative residue surface-accessibilities.



REFERENCES: METHODS

1. Lesk, A. M. Protein Architecture: a practical approach, IRL Press, Oxford, 

1991.

2. McLachlan, A. D. Rapid comparison of protein structures. Acta Crystallogra- 

pher A38:871-873,1982.

3. Bowman, W. C. and Rand, M. J., Textbook of Pharmacology, p. 39.7 (1980).

4. White, D, N. J., Ruddock, J. N., and Edgington, P. R. Molecular mechanics.

Computer-aided molecular design:23-42, IBC, London, 1989.

5. Richards, W. G. Quantum mechanics in molecular design. Computer Aided 

Molecular Design:43-50, IBC, London, 1989.

6. Karpius, M. and McCammon, J. A. Dynamics of proteins: elements and func

tion. Ann. Rev. Biochemistry 53:263-300,1983.

7. Dauber-Osguthorpe, P., Sessions, R. B., and Osguthorpe, D. J., FOCUS, ver

sion 1.0, Molecular Modelling Unit, University of Bath, Bath UK (1988).

8. Islam, S. A. and Sternberg, M. J. E. A relational database of protein struc

tures designed for flexible enquiries about conformation. Prot. Engineer.

2:431-442,1989.

9. Hursch, J. L. and Hursch, C. J. Working with Oracle TAB Books, Blue Ridge, 

1987.

10. Barton, G. J. and Sternberg, M. J. A strategy for the rapid multiple alignment 

of protein sequences - confidence levels from tertiary structure comparisons. 

J. Mol. Biol. 198:327-337,1987.

T1. Wilbur, W. J. and Lipman, D. J. Rapid similarity searches of nucleic acid and 

protein databanks. Proc. Natl. Acad. Sci. USA 80:726-730,1983.

12. Staden, R. Methods to define and locate patterns of motifs in sequences. 

CABIOS 4:53-60,1988.



-125-

13. Pacarella, S. and Argos, P. Analysis of insertions deletions in protein struc

tures. J. Mol. Biol. 224:461 -471,1992.

14. Gaboriaud, C.f Bissery, V., Benchetrit, T., and Mornon, J. P. Hydrophobic 

• cluster analysis: an efficient new way to compare and analyse amino acid

sequence. FEBS Lett 224:149-155,1987.

15. Cockcroft, V. B., Pederson, J. T., Lunt, G. G., and Osguthorpe, D. J. 

BIOSITE: an interactive Program for the comparison of aligned homologous 

protein sequences. CABIOS 8:71-73,1992.

16. Higgins, D., Bleasby, A. J., and Fuchs, R. ClustalV - improved software for 

multiple sequence alignment. CABIOS 8:189-191,1992.

17. Barton, G. J. and Sternberg, M. J. E. Evaluation and improvements in the 

automatic alignment of protein sequences. Protein Eng. 1:89-94,1987.

18. Tzartos, S., Rand, D., Einarson, B., and Lindstrom, J. Mapping of surface 

structures on electrophorus acetylcholine receptor using monoclonal antibo

dies. J. Biol. Chem. 256:8635-8645,1981.

19. Tzartos, S., Langeberg, L., Hochschwender, S., and Lindstrom, J. Demon

stration of a main immunogenic region on acetylcholine receptors from human 

muscle using monoclonal antibodies to human receptor. FEBS Lett. 

158:116-118,1983.

20. Lindstrom, J., Schoepfer, R., and Whiting, P. Molecular studies of the neu

ronal nicotinic acetylcholine receptor family. Mol. Neurobiol. 1:281 -327,1987.

21. Sargent, P., Hedges, B., Tsavaler, L., Clemmons, L., Tzartos, S., and 

Lindstrom, J. The structure and transmembrane nature of the acetylcholine 

receptor in amphibian skeletal muscles revealed by crossreacting monoclonal 

antibodies. J. Cell Biol. 98:609-618,1983.



-126-

22. Schoepfer, R.f Halvorsen, S. W., Conroy, W. G.f Whiting, P., and Lindstrom, 

J. Antisera against an acetylcholine receptor a3 fusion protein bind to gangli

onic but not to brain nicotinic acetylcholine receptors. Febs Lett. 257:393-399, 

1989.

23. Tzartos, S. J., Loutrari, H. V., Tang, F., Kokla, A., Walgrave, S. L., Milius, R. 

P., and Conti-Troconi, B. M. Main immunogenic region of Torpedo electroplax 

and human muscle acetylcholine receptor: localization and microheterogeneity 

revealed by the use of synthetic peptides. J. Neurochem. 54:51 -61,1990.

24. Saedi, M. S., Anand, R., Conroy, W. G., and Lindstrom, J. Determination of 

amino acids critical to the main immunogenic region of intact acetylcholine 

receptors by in vitro mutagenesis. FEBS Lett. 267:55-59,1990.

25. McCormick, D. J., Lennon, V. A., and Atassi, M. Z. Synthesis of an antigenic 

site of native acetylcholine receptor peptide 159-169 of Torpedo acetylcholine 

receptor a-chain. Biochemistry J. 226:193-197,1985.

26. Juiilerat, M. A., Barkas, T., and Tzartos, S. J. Antigenic sites of the nicotinic 

acetylcholine receptor cannot be predicted from the hydrophilicity profile. 

Febs Lett. 168:143-148,1984.

27. Novotny, J., Rashin, A. A., and Bruccoleri, R. E. Criteria that discriminate 

between native proteins and incorrectly folded models. Proteins: Struc. Func. 

Genet. 4:19-30,1988.

28. Jones, T. A. and Thimp, S. Using known substructures in protein model build

ing and crystallography. EMBO J. 5:819-822,1986.

29. Unger, R., Harel, D., Wherland, S., and Sussman, J. L. A 3D building blocks 

approach to analyzing and predicting structure of proteins. Proteins: Struc. 

Func. Genet. 5:355-373,1989.



-127 -

30. Perutz, M. F.f Kendrew, J. C., and Watson, H. C. Structure and function of 

haemoglobin. Some relations between polypeptide chain configuration and 

amino acid sequence. J. Mol. Biol. 13:669-678,1965.

31. Hubbard, T. J. P. and Blundell, T. L. Comparison of solvent-inaccessible 

cores of homologous proteins: definitions useful for protein modelling. Prot. 

Engineer. 1(3):159-171,1987.

32. Bowie, J. U., Clarke, N. D., Pabo, C. O., and Sauer, R. T. Identification of 

protein folds: matching hydrophobicity patterns of sequence sets with solvent 

accessibility patterrns of known structures. Proteins: Struct. Func. Genet. 

7:257-264,1990.

33. Phillips, S. E. V. and Schoenborn, B. P. Neutron diffraction reveals oxygen 

histidine hydrogen bond in oxymyoglobin. Nature 292:81 -84,1981.

34. Cockcroft, V. B. and Osguthorpe, D. J. Relative residue surface-accessiblity 

patterns reveal myoglobin and catalase similarity. FEBS Lett. 293:149-152, 

1991.

35. Melik-Adamyan, W. R., Barynin, V. V., Vagin, A. A., Borisov, V. V., Vainshtein, 

B. K., Eita, I., Marthy, M. R. N., and Rossman, M. G. Comparison of beef 

liver and penicillium vitale catalases. J. Mol. Biol. 188:63,1986.

36. Newcomer, M. E., Gilliard, G. L., and Quicho, F. A. L-arabinose binding pro

tein sugar complex at 2.4 A resolution. Stereochemistry and evidence for a 

structural change. J. Biol. Chem. 256:13213,1981.

37. Steigeman, W. and Webster, E. Structure of erythrocruorin. J. Mol. Biol.

127:309,1979.

38. Fermi, G., Perutz, M. F., Shaanan, B., and Fourme, R. The crystal structure

of human deoxyhaemoglobin at 1.74 angstroms resolution. J. Mol. Biol.

75:159,1984.



-128 -

39. Bashford, D., Chothia, C., and Lesk, A. M. Determinants of a protein fold. 

Unique features of the globin amino acid sequences. J. Mol. Biol. 

196:199-241,1987.

40. Chothia, C., Levitt, M., and Richardson, D. Helix to helix packing in proteins. 

J. Mol. Biol. 145:215-250,1981.

41. Wakabayashi, S., Matsubara, H., and Webster, D. A. Primary sequence of a 

dimeric bacterial haemoglobin from Vitreoscilla. Nature 322:481 -483,1986.

42. Triggs-Raine, B. L., Doble, B. W., Mulvey, M. R., Sorby, P. A., and Loewen, 

P. C. Nucleotide sequence of katG, encoding catalase HPI of Eschericia coli. 

J. Bacteriol. 170:4425-4429,1988.

43. Kabsch, W. and Sander, C. Dictionary of protein secondary structure: pattern 

recognition of hydrogen-bonded and geometrical features. Biopolymers 

22:2577-2637,1984.

i



RESULTS AND DISCUSSION

4. MODELLING OF THE AGONIST/COMPETITIVE ANTAGONIST BINDING 

SITE

The agonist and competitive antagonist binding site is of interest as a site to 

which pharmacologically active compounds may be targeted for therapeutic and 

research use.

4.1 A Unified Pharmacophore Model

The structural and conformational requirements for agonist binding to the recep

tors for acetylcholine,1 GABA2 and glycine3 based on SAR studies of each of them 

separately have been covered in the literature. Here a unified pharmacophore 

model is proposed for LGIC receptor agonists as a class.

4.1.1. Comparison of Agonist Structures

Examples of agonists of LGICs and a schematic representation of proposed 

common features are shown in Figures 4.1. and 4.2., respectively. From analysis of 

these structures, the following basic structural requirements are proposed for agon

ist activity:- (i) a positively charged centre (termed the "positive pole") - this group 

is essential, (ii) a rc-electron system containing a sp2 hybridized electronegative 

centre that produces a local dipole in the jc-electron system. The distance between 

the nitrogen atom of the positive pole and the electronegative atom is 4.5 to 5.5 A 

for acetylcholine, and GABA ligands, whereas for glycine the distance is around 3.5 

A. The similarity of agonists is strikingly demonstrated by comparison of the almost



Fig. 4.1. Structures of agonists of LGIC receptors.

The ligands in columns from left to right are for the nACh receptor, the GABAa 

receptor and the Glycine receptor. In rows from top to bottom are the neuro

transmitters, semi-rigid analogues, and almost totaly rigid analogues.

Acetylcholine GABA Glycine

Nicotine Muscimol L-AIanine

Cytisine THIP
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Fig. 4.2. Unified pharmacophore model of LGIC receptors.

The circle containing a plus symbol represents the positive pole. The local dipole is 

indicated by the symbols 6+ and 5-, with the latter representing the electronegative 

centre of the local dipole.

5

5 3.5 to 5.5
o



- 132-

totally rigid analogues cytisine and THIP (see Fig. 4.1.), agonists of the nACh 

receptor and the GABAa receptor, respectively. The similarity is more notable when 

it is suggested that these receptors are only distantly related in evolutionary terms 

(see Chapter 6). This broad similarity is considered to reflect structural conserva

tion in the agonist binding sites of the LGIC receptors.

Both of the above features occur in glutamate, histamine and serotonin, which is 

consistent with the tentative assignment of at least some receptor subtypes for 

these neurotransmitters4*6 to the LGIC superfamily.

To assess the significance of the proposed similarities, agonists recognized by 

G-protein coupled receptors (GPCRs) were also considered. The endogenous 

ligands of this receptor superfamily are numerous and are structurally diverse com

pared with those of the LGIC superfamily. They include cAMP,7 retinol,8 and sub

stance K,9 as well as acetylcholine,10 the catecholamines,11*12 and serotonin.13 It 

can be noted that the absence of a rc-electron system in muscarine (see Fig 4.3.) is 

an indication that the requirements for agonist binding to GPCRs are not identical 

to those of LGIC receptors.

4.2 The Cys-loop as a Candidate Determinant of the Agonist Binding Site

The cys-loop (see alignment positions 196-210 Appendix II) is the most con

served stretch of amino acid sequence in the diverse set of sequences of LGIC 

subunits known to date; 4 of its 15 residue positions are invariant (see Appendix II 

and Fig. 4.4a). In contrast, only 11 residues are invariant in the N-terminal extra

cellular region of LGIC subunits, which is >200 residues long. Additionally, at posi

tion 11 of the cys-loop an invariant aspartic acid residue occurs, which is one of



-133 -

Fig. 4.3. Structures of agonists of G-protein coupled receptors.

I. Muscarine II. Serotonin I I I .  Do p a m i n e

1
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only two invariant acidic residue positions present in the extracellular region of 

LGIC subunits and is, therefore, a good candidate for the anionic site. In none of 

the cys-loop sequences does an insertion or deletion of amino acid residues occur. 

For this reason and because the first and last position are disulphide linked, it can 

be considered to be a coherent structural motif of LGIC receptors.

4.2.1. Construction of the Cys-Loop Model

A comparative molecular modelling approach was used in the modelling of the 

cys-loop as a determinant of the agonist binding site. This involved the use of 

aligned amino-acid sequences of LGIC subunits (see Appendix II), of which over 80 

are now known, to identify residues that may be of importance in ligand-binding.

An alignment of cys-loop sequences and a motif to represent the conservation 

of amino acid residues within it are given in Figures 4.4a. and 4.4b., respectively.

To define the main-chain conformation of the cys-loop the method of Gaboriaud 

et a/.14 was used in the prediction of a-helix and p-strand. Only a subset of the 

aligned cys-loop sequences was used in this analysis (see Fig. 4.5.), in order to 

avoid biasing by over-representation. A marked two residue periodicity in the aver

age hydrophobicityl 5 predicted a p-strand to occur over positions 1 to 7 and over 

positions 10 to 14. A chain-reversal to allow for the formation of the disulphide 

bridge between the cysteine residues at positions 1 and 15 is provided by a type 

Via p-turn starting at position 7, and was selected by examination of similar 

sequence turns occurring in known protein structures (see Table 4.1.).16 This turn- 

type assignment is consistent with the invariance of both the proline residue at 

position 9 of the cys-loop and a single ring aromatic residue preceding it.17 In
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Fig. 4.4a. Alignment of cys-loop amino acid sequences.

The numbering of residue positions within the cys-loop are equivalent to positions 

128-142 of the a-subunit of Torpedo nACh receptor. Asparagine residues that occur 

as part of a consensus sequence for N-glycosylation (ie. N,X,S/T)) are underlined. 

Abbreviations of species names are given as lower case letters In brackets: (h) = 

human; (r) = rat; (m) = mouse; (b) = bovine; (c) = chicken; (x) = Xenopusr, (g) = 

goldfish; (t) = Torpedo; (d) = Drosophila



nXCh *  
 1__

1 2 3 4 5 6 7 6 9 0 1 2 3 4 S 1 2 3 4 5 6 7 8 0 1 2 3 4 5

A lp h a ( h )  
1 .  |

C E Z Z V T H F P F 0 E 0 i i  c A lp h a 2 ir)
if i

C s Z D o q o  n  c
I ■ 1
( b )

1 C 1
C s z 0 V T F F D Q Q H C

( c ) - - - - - - r - - - - - “  JU -
U ) -  *  -
( t ) - - - - - - - - - - - - -  - i.  - A lp h a 3 ( r ) c X I 0 V T F F D Y Q n  C

c E Z z V T - P P F D I  Q H C ( c ) - - - - - - - - -  -  -  j .  -
c X z 0 V T F F D Y o n  C

R a ta (B> c 5 z 0 D w 0 21 C
( b ) - - - - - - - - - - - - A lp h a 4 ( r ) c s Z 0 V T r F o q o  n  c
( t ) - T - K - K - - - - - • -  A  - ( c ) - - - - - - - - . . . . .

c z ' V “ T r P F D w 0 J l  c c s z D

Gaaiaa ( h )
1 m 1

c S z s V T Y p P F D "  Q £  c B e ta 2 ( r ) c X z E V X M F F o Q Q I C
\ ■ 1 
( b ) - P V _ - . r . . . . "*■

c X z E V X H F F D 0  Q I  c
( c ) -  A  -
<») - P V V -  a*. -
I t  J - - - M - - - - - - - - -  -a. - Be t  a3 ( r ) c T M 0 V T F F F 0 0  o T C

c - - - V T - r P F D w o n e
GF-OA2 * 9 ) c T M 0 V T F F F D X 0  n  C

D a l t a (■ ) c P z S V T Y F P F D » o n c AXD I d ) c T z 0 V T Y r F D 0  0  T C
( b ) - • - - «• - • - - - - . -  — -
<c) -  - -  - ALS <d) c E z 0 V E Y r F D E Q T C
( ■ )  -  S -  N -  N  .  -
I t )  -  -  -  N -  L ........................................ -

c  -  i  - v  - - r p r o *  g j t c

E p a i l o n  ( b )  C A V E V T Y r P F D K Q J i . C

D w 0 JL C

sir »

1 1 1 1 1 1
  1 2 3 4 S 6 7 8 9 0 1  2 3 4 5

Al p h a  1 ( b )  C P H H L E D F P K C A H A C
A l p h a 2 ( b )   S -
A l p h a l  ( b )   V -  -  -

c f m h l e d f p h o - h - c

R a t a l  ( r )  C H K D L  I t r  f  U  E g ]  C
( b )  ................ ..............................

R a t a l  ( r )  - .....................................................................<b)  a. -
R a t a l  ( r )    -  a.  -

C K K D L I U P I D I O J I C  

( h )  C Q L Q L H N F P M D E H S C

* 1 U)  l r )  C P H D L F N F P H D V Q T C

I



-136 -

Fig. 4.4b. The cys-loop sequence motif.

Invariant or strongly conserved residues are in upper case letters, h = concorved 

hydrophobic; vertical arrow = binding surface residue; (-) = anionic site; * = specifi

city residue. The assigned conformations (+ = gauche+; t = trans) used in the 

construction of cys-loop models are indicated in the bottom line.

1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

( - )
Sequence Motif C - h - h * - F P h D - Q - C

Y H
T T T T T+ + + + t + + + + + t + + +



-137-

Fig. 4.5. Hydrophobicity plot of the cys-loop.

The hydrophobicity scale of Eisenberg (ref. 15) was used. The average (circle), 

minimum (triangle) and maximum (inverted triangle) values are shown and are 

based on an analysis of the a and p-subunits of the bovine muscle nACh receptor, 

the a2 and p2 subunits of rat neuronal nACh receptor, the a1, p1 and y2 subunits 

of the GABAa receptor, and the 48kD subunit of the Glycine receptor.
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Table. 4.1. Turns from the Chou and Fasman Catalogue with proline at position i + 

2.

PROTEIN RESIDUE (i to i+3) TURN TYPE PHI 2 PSI 2 PHI 3 PSI 3

Carbonic 27-30 Gln-Ser-Pro-Val VI -170 152 o ?
anhydrase 80-83 Gly-Gly-Pro-Leu III -35 -56 o 10
(human) 198-201 Thr-Pro-Pro-Leu VI ? ? ? ?

Haemoglobin 
(midge larva)

72-75 Glu-Leu-Pro-Asn VI -49 136 -96 -11

Papain 84-87 Asn-Thr-Pro-Asn I -82 8 -173 46
(papaya) 115-118 Tyr-Lys-Pro-Asn VI -53 133 -83 14

Subtilisin 
BPN'

166-169 Gly-Tyr-Pro-Gly VI -96 145 -86 13

Ribonuclease 91-94 Lys-Tyr-Pro-Asn VI -39 132 -89 11
S (bovine) 112-115 Gly-Asn-Pro-Tyr VI -150 105 -64 162

Thermolysin 49-52 Thr-Leu-Pro-Gly VI -113 156 -68 -29
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addition, energy calculations also indicated that a type Via turn was favoured over 

each of the alternative defined p-turns (see Table 4.2.).

The preference values of MacGregor et a/.,18 obtained from an analysis of 

known protein structures, were used to define the conformations of the side-chains. 

The most favoured xi torsion angle, either g+, t or g-, was deduced using the 

alignment of cys-ioop sequences and the assigned secondary structure for each 

residue position (see Fig. 4.6.). With the fa torsion angles defined the remaining 

side-chain torsion angles used were as given by Sutcliffe et a/.19

An initial model was constructed using the cys-loop sequence of the a2-subunit 

of chick brain nACh receptor, as this sequence does not have an N-glycosylation 

site at position 14. Energy minimization was then performed to produce an energet

ically reasonable structure (see Fig. 4.7.).

4.2.2. Structural Features of the Cys-Loop Model

A model for different cys-loop types was constructed by residue substitution of 

the side-chains of the initial model, followed by energy minimization. The final 

derived structure in each case was a p-hairpin with a type Via turn and a disulphide 

bridge between positions 1 and 15. Each of the derived structures clearly had a 

hydrophobic and a hydrophilic face with the latter presumed to be exposed to the 

solvent.

The comparison of the different cys-loop models revealed a marked conserva

tion in the amino acid groups surrounding the invariant aspartate residue at position 

11, on the hydrophilic face. An invariant proline at position 9, in the cis-peptide
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Table 4.2. Minimized energies of different turn types for the sequence Acetyi-Tyr- 

Phe-Pro-Phe-N-methyl.

Table 4.2. Minimized energies of different turn types 
for the sequence Acetyl-Tyr-Phe-Pro-Phe-N-methyl.

Turn type Energy (kcal/mol
I 163.9
I' 167.5
II 160.5
II' 167.5
III 163. 9
III' 162.2
IVa 160. 6
IVb 160.5
Via 154 .2
VIb 157.8
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Fig. 4.6. Assignment of xi torsion angles of cys-loop residues.

g+ = gauche+; t = trans; g- = gauche-. Values are preferred torsion angles for the 

secondary structure assignments (E = extended; T = turn) for each position. The 

average values were calculated considering only the different residue types that 

occur at a given position.



P R E F E R R E D  SIDE-CHAIN TORSION ANGLES (CHI 1 )  FOR VARIANTS OF LIGAND-GATED RECEPTOR ION-CHANNEL CYS-LOOPS.

Residue 0 0 0 0 0 0 0 0 0 1 1 1 1 1 I
Number 1 2 3 4 5 6 7 8 9 0 1 ‘2 3 4 5

1. ACB c S I D V T Y F P F D 0 0 N C

g- 5 39 15 13 17 27 19 14 50 36 14 15 15 28 5
32 27 14 44 69 14 25 34 0 19 41 53 53 20 32

g* 64 34 70 44 14 59 56 52 50 45 45 32 32 46 64

2 . ACM C E I 1 V T H F P F D E 0 N C

g- 13 14 19 11
45 14 41 47

g* 42 71 41 42

3 . GAB C M M D L R R Y P L D E 0 N c

i
g- 12 12 9 15 15 14 B

42 42 40 40 40 40 41

g* 46 46 52 45 45 56 51

: . GLB c p M D L K N F P M D V 0 T c

g- 50 5 20 12 17 27
t 0 39 46 42 69 14

g» 50 56 34 46 14 59

5. BZA c P M H I E D F P M D A H A c

g- 14 13 14 19
t 10 45 41 41

1 8*1
76 42 45 41

16.
O v e ra ll
P re fe re n c e

r  —  

c X h X h X X * p h D X X X C

g - 5 29 14 14 13 15 22 14 50 19 14 17 17 28 5
t 32 29 28 23 55 35 39 32 0 34 41 56 47 17 32
g* 64 43 58 64 33 51 44 54 50 47 45 29 37 53 64

g * g * g* g* t g* g’ g* g ‘ g* t t g* g*

KEY

ACB - Brain Acetylcholine Receptor Alpha Subunit 

ACM - Muscle Acetylcholine Receptor Alpha Subunit 

CAB - Brain Gaba Receptor Beta Subunit 

GLB - Brain Glycine Receptor 48RD Subunit 

BZA - Brain Gaba Receptor Alpha Subunit
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Fig. 4.7. Energy minimized model of the cys-loop structure of the a2-subunit of 

chick brain nACh receptor.

Numbering refers to the residue position within the cys-loop. Side-chains are 

coloured:- magenta = serine, threonine, asparagine and glutamine; red = aspartic 

acid; green =* valine, isoleucine, phenylalanine and tyrosine; white = proline; yellow 

= cysteine. The atoms of the main-chain are coloured white.
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conformation, appears to have a structural role In maintaining the stereochemistry 

of the type Via turn.16 A phenylalanine residue at position 8 occurs in all LGIC 

sequences, except the p-subunit of the GABAa receptor, in which case a tyrosine 

residue is present. Only glutamine or histidine occur at position 13, which suggests 

that the residue at this position acts as a hydrogen bond donor. This residue could 

possibly form a conserved hydrogen bond in a network involving the invariant 

aspartate residue at position 11. As discussed below (section 4.2.4.2.) the residue 

at position 6 is proposed as conferring selectivity in the recognition of different 

LGIC receptor agonists. Although the residue at this position does vary between 

members of the superfamily, it is highly conserved for a given LGIC subunit type.

On the hydrophobic face the residues at positions 3, 5, and 10 are invariably 

hydrophobic and a patch is formed that could contribute to the inner-core of the 

folded protein. An asparagine residue often occurs at position 14 of this same face 

as part of an N-glycosylation consensus sequence. Experimental evidence indi

cates that in the Torpedo nACh receptor this site is glycosylated.20,21 It is, there

fore, likely that this site is at the protein surface. In accord with this, the plot of the 

average hydrophobicity (see Fig. 4.5.) shows that the strand containing this site is 

more hydrophilic than the oppositely facing strand.

A disulphide bridge between the strands of a p-hairpin rarely occurs in known 

protein structures because the distance between cysteine residues of a disulphide 

bridge (Ca...Ca average distance = 5.5 A) opposes the formation of anti-parallel 

P-strands (Ca...Ca average distance = 4.9 A).22 An example of a disulphide bridged 

p-hairpin has been reported for neuraminidase,23 in which case a distortion of the 

main-chain was found to accommodate the disulphide bridge. Likewise, a local 

main-chain distortion (<J> = -80; = 100) at position 2 of the cys-loop was clearly
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evident when proline occurred at this position. Interestingly, in the cys-loop models 

with serine and threonine at this position the same main-chain distortion was stabi

lized by the formation of a side-chain to main-chain hydrogen bond.

4.2.3. Molecular Dynamics Analysis of the Cys-Loop

An accessible conformation search using molecular dynamics was conducted to 

determine whether this cys-loop had other plausible structures. A high temperature 

simulation (5 picoseconds) was performed with initial velocities of a random 

Maxwell-Boltzmann distribution for 600K assigned to the coordinates of the mini

mized structure of the nACh receptor a2-subunit cys-loop. Analysis of the trajectory 

revealed no tendency for any residue to undergo major conformational change - 

only fluctuations around the original structure occurred. However, because the side- 

chains of residues of (3-hairpins interlock and could limit the conformations 

searched, structurally modified forms of the cys-loop were also analyzed (see Fig. 

4.8.). Surprisingly, when each of the residues except the two cysteines were substi

tuted for alanine, or when the disulphide bridge of the original cys-loop was 

reduced, there was little change in the main-chain conformation. Only when the 

disulphide bridge was reduced in the alanine substituted cys-loop did major confor

mational changes occur to the cys-loop structure. This analysis indicated that the 

residue side-chains as well as the disulphide bridge of the cys-loop act to constrain 

its main-chain flexibility. In addition, a high degree of rigidity for the cys-loop is sug

gested by the absence of glycine residues in any of the known cys-loop sequences 

and the common occurrence at positions 3 and 5 of p-branched residues.

4.2.4 The Cys-Loop Model for Agonlst-Receptor Binding
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Fig. 4.8. Standard deviation of Ca atom co-ordinates from the average co-ordinate 

set in the dynamic trajectories of the cys-loop of the a2-subunit of chick brain nACh 

receptor and modified forms of it.

Symbols are: circle = the cys-loop; triangle = alanine substituted cys-loop; diamond 

= the cys-loop with the disulphide bridge reduced; square = alanine substituted cys- 

loop with the disulphide bridge reduced.
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4.2.4.1. Conserved Interactions

The main approach in modelling the Interactions of ligand docking was to com

plement the common features of LGIC agonists (see Section 4.1.) with the conser

vation of the groups surrounding the invariant aspartate residue in the different cys- 

loop sequences. The energy minimized model of (-)nicotine in its pharmacophore 

conformation docked onto the cys-loop model of the a2-subunit of chick brain nACh 

receptor is shown in Figure 4.9. The following interactions are proposed as com

mon features of recognition of LGIC agonists by their receptors. The first is the for

mation of an ion-pair interaction between the positive pole of agonist and the invari

ant aspartate residue at position 11. The possibility that the positive charge of the 

agonist is stabilized by hydrogen bonding was considered unlikely, as acetylcholine 

contains a quaternary ammonium group. The second is the interaction of the s ring- 

proton of the conserved aromatic residue at position 8 with the rc-electron density 

over the electronegative atom of the rc-electron system of the agonist. The interac

tion is one in which the plane of the aromatic ring is orthogonal to that of the agon

ist ^-electron system (this type of interaction is documented in the literature24*28 ). 

In addition, the conserved local dipole of the agonist ^-electron system is favour

ably oriented in the electrostatic field of the invariant aspartate group.

4.2.4.2. Agonist Binding Selectivity

It is proposed that the residue at position 6 of the cys-loop is a key determinant 

of selective recognition of GABA, glycine and acetylcholine at their receptors. An 

arginine residue occurs at this position in the p-type subunits of the GABAa recep

tor, along with a tyrosine residue at position 8. it is noteworthy that this is the only 

LGIC sequence having a tyrosine residue at this position of the cys-loop; a
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Fig. 4.9. Energy minimized model of (-)nicotine (pharmacophore conformation) 

docked onto the cys-loop of the a2-subunit of chick brain nACh receptor.

Atom colours are: carbon = green for the cys-loop, and yellow for (-)nicotine; nitro

gen = blue; oxygen = red; hydrogen = white. Main-chain atoms are coloured white.
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phenylalanine residue occurs in all other LGIC sequences known to date. It is pro

posed that a hydrogen bond formed between the tyrosine and the arginine residue 

maintains the arginine residue at the right distance from the invariant aspartate res

idue to make an interaction with the carboxylate group of GABA (see Fig. 4.10.). 

That a hydrogen bond can form between these two residues is supported by an 

analysis of known protein structures, which indicates that hydrogen bonds can 

occur between the side-chains of these residue types when separated in primary 

structure by two residues (see Table 4.3.). In contrast to this, a lysine residue 

occurs at position 6 in the 48 kD subunit of the Glycine receptor. The proposal is 

that the flexibility of the lysine side-chain and the small size of its primary amine 

group allows it to bend back and interact with the carboxylate group of glycine (Fig. 

4.11.). Thus, the shorter methylene chain length separating the amino and the car

boxylate moieties of glycine as compared to that of GABA can be accommodated 

(see Fig. 4.12.). In the acetylcholine cys-loop a threonine residue occurs at posi

tion 6. It is proposed in this case that the hydroxyl group of threonine forms a 

hydrogen bond interaction with the ether oxygen of the ester bond of acetylcholine 

(Fig. 4.13.).

A feature of semi-rigid LGIC agonists is that they can accommodate a chiral 

centre between their positive pole and the electronegative atom of their rc-electron 

system, even when the chiral atom is within a cyclic ring structure. Thus, (R)-nico- 

tine,29 and (R)-dihydromuscimoP are less potent than their S-isomeric forms but, 

nevertheless, have greater than expected potency. Such weak stereo-selectivity, on 

first analysis, may suggest a two rather than a three attachment-site model for 

ligand binding. In contrast, the weak stereoselectivity is accountable in the pro

posed model by point-surface interactions, rather than discrete point-point interac

tions.
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Fig. 4.10. View of energy minimized model of GABA docked onto the cys-loop of 

the pi -subunit of the bovine GABAa receptor.

Side-chains are coloured: red = aspartic acid; blue = lysine; magenta = glutamine 

and proline; green = tyrosine. The main-chain atoms are coloured white. Dots rep

resent the Connolly surface. GABA is at the top-centre above Asp-11.
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Table 4.3. Analysis of tyrosine and arginine side-chain side- 
chain hydrogen bond interaction .

BIPED QUERY RESULT SUMMARY

Number of side-chain side-chain 
hydrogen bonds made by arginine 
with residue i + 2.

Number of side-chain side-chain 
hydrogen bonds made by tyrosine 
with residue i - 2.

glutamate(19), tyrosine(11)/ 
aspartate(9)/ serine (7), 
histidine(1) , glutamine(1) , 
asparagine(1) ,  total (50)
arginine(11), lysine (10), 
serine(9), glutamine(8), 
asparagine(8), threonine (6), 
glutamate(5), aspartate (3), 
methionine (2), histidine(1), 
total(63)

Number of side-chain side-chain 112 
hydrogen bonds between tyrosine 
and arginine.
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Fig. 4.11. View of energy minimized model of glycine docked onto the cys-loop of 

the 48 kD subunit of the rat Glycine receptor.

Side-chains are coloured: red = aspartic acid; blue = lysine; magenta = glutamine 

and proline; green = tyrosine. The main-chain atoms are coloured white. Dots rep

resent the Connolly surface. Gycine is at the top-centre above Asp-11.





-152-

Fig. 4.12. Accommodation of methylene chain length of GABA and glycine in cys- 

loop ligand docking models.
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Fig. 4.13. View of energy minimized model of acetylcholine docked onto the cys- 

loop of the a1-subunit of the chick brain nACh receptor.

Side-chains are coloured: red = aspartic acid; magenta = threonine, glutamine and 

proline; green = phenyalanine. The main-chain atoms are coloured white. Dots rep

resent the Connolly surface. Acetylcholine is at the top-centre above Asp-11.
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4.2.4.3. Low- and Hlgh-Affinlty Agonist Binding Interaction Energies

The formation of a counter-ion pair can account for 5-10 kcal mol-1 of binding 

energy,30 whereas the weaker interaction between the aromatic ring proton of the 

cys-ioop and the rc-electron system of agonist could account for a further 1 kcal 

moP1.24 The sum of these two energies of interaction reasonably accounts for the 

low-affinity binding of agonists to LGICs, which for potent agonists of the well stu

died Torpedo nACh receptor and the GABAa receptor is around the micromolar 

concentration range.31,32 It is noted that a property common to the nACh receptor 

and the G ABAa receptor is that they convert to a desensitized state, and the recep

tors in this state bind agonist with an affinity that is typically several orders of mag

nitude higher than the low-affinity state.31"33 Interestingly, this change in affinity 

equates well with the provision of 3-5 kcal mol"1 of binding energy resulting from 

the formation of a hydrogen bond with the electronegative atom within the 7r-elect- 

ron system of agonist.

4.2.4.4. An Agonist Recognition Pathway Model

From the docking model a recognition pathway is proposed. (1) When the agon

ist is within 12 A from the invariant aspartate residue, long-range electrostatic inter

action between the negative charge of this residue and the positive pole of agonist 

is sufficient to cause the agonist to be attracted towards it.34 (2) The local dipole of 

the agonist becomes oriented by the electrostatic field of the invariant aspartate 

when the agonist is within about 6 A of it.34 The re-orientation of the ligand at this 

step may assist subsequent binding. (3) On close approach, the size of the local 

dipole of the agonist is increased in the electrostatic field of the invariant aspartate, 

causing a shift of electron density over the electronegative atom of the rc-electron
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system. This in turn favours the interaction of this electronegative centre with the e 

ring-proton of the aromatic residue at position 8 of the cys-loop.

4.2.4.5. Correlates with Experimental Studies

The specific residues that are spatial neighbours of the invariant aspartate resi

due, particularly that at position 6 of the cys-loop proposed above as being impor

tant in selective recognition of agonist, in the case of the GABAa receptor and the 

Glycine receptor account for several experimental findings:

(1) Agonist binding to the GABAa receptor is abolished by chemical modification 

of arginine residues with either 2,3-butadione or phenylglyoxal.35 It is the p-subunit 

of the GABAa receptor that is the site of photoaffinity labelling by the agonist mus

cimol.36'37 Thus, the presence of an arginine residue at position 6 of the cys-loop 

of the p-type subunits of the GABAa receptor agrees with these observations.

(2) Chemical modification of tyrosine residues with p-diazobenzenesuiphonic 

acid, tetranitromethane or N-acetylimidazole also causes disruption of agonist bind

ing to the GABAa receptor.38 This is explained by the unique occurrence of a tyro

sine residue at position 8 of the cys-loop of the p-type subunits of the GABAa 

receptor, as this residue is proposed as forming a crucial hydrogen bond interaction 

with the arginine residue at position 6 (see Section 4.2.4.2.).

(3) The modification of histidine residues with diethylpyrocarbonate specifically 

disrupts benzodiazepine binding with no marked effect on GABA agonist bind

ing.38-39 The a-type subunits and y2-subunit of the GABAa receptor may tenta

tively be assumed to contain determinants of the high-affinity site of
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benzodiazepines as based on photoaffinity labeliing studies using [3 H]flunitrazepam 

and recent cloning and functional expression data.40 Both the cys-loops of the 

a-type and y-type subunits have two histidine residues that are spatial neighbours 

of the invariant aspartate residue, whereas the cys-loop of the p-type subunit, the 

site of GABA agonist labelling, contains no histidine residues.

(4) For the Glycine receptor, Gomez et a l41 have recently shown that chemical 

modification of lysine residues with fluorescein isothiocyanate affects the interac

tion of glycine at its binding site. Chemical cleavage at tryptophan residues 

revealed that an 8.5 kD and a 13.9 kD fragment of the 48 kD subunit is labelled. 

These observations are in accord with the occurrence of a lysine residue at position 

6  of the cys-loop of the 48 kD subunit, as this residue is in a predicted cleavage 

fragment of 9.3 kD and a predicted partial cleavage fragment of 13.3 kD.

Additionally, there is evidence to suggest that for the Torpedo nACh receptor 

there are multiple low-affinity binding sites involved in receptor activation, which 

may be on other subunits besides the a-subunit.31 It is recognized that the pho- 

toactivatable ligand p-(dimethylamino)benzenediazoniumfluoroborate (DDF) labels 

not only the a-subunit of the Torpedo nACh receptor but also the y-subunit in this 

receptor.42 Moreover, labelling is inhibited by the agonist carbamoylcholine, sug

gesting that the y-subunit may indeed have its own agonist site. This is also sug

gested by the cys-loop of this subunit which shares with the a-subunit the feature 

of a threonine at position 6 , whereas the p- and the 8 -subunit have methionine and 

leucine, respectively.

4.3. An Extended Model of the Nicotinic Binding Site
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Studies on the covalent coupling of activated ligands to the agonist/competitive 

antagonist binding site of the Torpedo electric organ nACh receptor indicate that 

the binding site comprises residue positions discontinuous in the primary structure 

of the a-subunit (see Section 1.1.1.). The positions implicated are Cys 192-193, 

Tyr-190, Trp-149, Tyr-15143 and more recently Tyr-93 and Tyr-198.44

To accommodate this data, an extended model of the Torpedo nACh receptor 

was constructed which included the regions 148-151 and 190-194 of the a-subunit, 

with the cys-loop forming a conserved surface of a hypothetical binding cavity.

4.3.1. Construction of the Extended model

The initial models of the 190-194 region and the 148-151 region of the a-subunit 

of the Torpedo nACh receptor were constructed with each residue position initially 

in an extended main-chain conformation. This conformation was chosen because 

from spectroscopic analysis it has been suggested that the extracellular domain of 

the Torpedo nACh receptor comprises antiparallel p-strands.45 ,46  A cis-peptide 

bond conformation was introduced between cysteine residues 192-193 and a disul

phide bridge introduced. A cis-peptide rather than the typical trans-peptide confor

mation was used, as it has been shown by energy calculations47 and by X-ray 

crystallography48 to be favoured in the case when two adjacent cysteine residues 

are disulphide bridged. The effect of the cis-peptide bond was to introduce a notice

able bend in the peptide chain centred on the 192-193 positions. After their con

struction the models of the two regions were subjected to energy minimization.

The above modelled fragments were positioned around a model of the cys-loop 

with acetylcholine docked onto it. The 190-194 region was located so that the



-158-

sulphur atoms of cysteines 192-193 were in close proximity to the acetyl moiety of 

the acetylcholine molecule. This accommodated the fact that on mild reduction of 

the Torpedo nACh receptor these two cysteine residues readily covalently couple 

bromoacetylcholine,49 which has a bromine atom on the methyl of the acetyl moi

ety. The xi side-chain torsion angle of Tyr-190 was at this stage set to the trans 

conformation to bring its phenol ring also in to close proximity to the acetyl moiety. 

This was done to accommodate the finding that the photoactivatable antagonist 

[3 H]DDF readily incorporates radiolabel at this position and is the unique site for 

covalent coupling of [3 H]lophotoxin analogue-1.50 The model of the 148-151 region 

was included into the model so that both Trp-149 and Tyr-151 were pointed towards 

the acetylcholine molecule producing a binding cavity around it. This docking 

arrangement with Trp-149 and Tyr-151 as spatial neighbours on the same side of a 

(3-strand accommodated the data showing that both these residues can covalently 

couple [3 H]DDF, with Trp-149 being the more heavily labelled. The completed 

extended binding site model was subjected to energy minimization (see Fig. 4.14).

4.3.2. The Cys 192-193 Region

In the extended model of the nACh receptor the Cys 192-193 region is sug

gested to be a hypervariabie loop region close to the agonist binding site that may 

thus be involved in selective ligand recognition. It is of note that the majority of the 

positions within this region can accept completely non-conservative amino acid 

substitutions. Using the BIOSITE program (see Section 3.1.) and inspection of the 

amino acid sequences proposals are made on which positions may be involved in 

the selective pharmacology seen for several nACh receptor ligands that bind to the 

agonist/competitive antagonist binding site (see Fig. 4.15.).
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Fig. 4.14. Stereoview of the extended model of the nicotinic acetylcholine binding 

site.

The cys-loop is at bottom, the disulphide bridged Cys 192-193 at top left, and the 

photolabelled Trp-149 at top right. Acetylcholine is in the centre of the view.
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Fig. 4.15. Comparison of cytisine, acetylcholine and MLA structures.

Arrow 1 points to the electronegative atom centre of the jr-electron system. Arrow 

2 points to the amine nitrogen atom of the positive pole. The lycaconitine portion of 

MLA is indicated by the dashed line.

Cytisine

Acetylcholine

Methyllycaconitine
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MLA (see Section 1.2.1.) is a subtype selective antagonist with marked selec

tivity for the a-bungarotoxin binding forms of nACh receptors in vertebrate and 

invertebrate nervous tissues. From comparative binding studies MLA interacts at 

these receptor sites with 2-3 orders of magnitude higher-affinity than at either brain 

high-affinity nicotinic binding sites or muscle nACh receptors in vertebrates.51 

Although as yet no analogues of MLA have been synthesized to identify moieties of 

its structure that give rise to its specificity, on the basis of molecular modelling, the 

A/-phenyisuccinimide side-chain of MLA (see Fig. 4.15.) has been implicated.51 

Thus, comparison of MLA with acetylcholine and the rigid agonist cytisine suggests 

that the /V-phenylsuccinimide side-chain occupies a region in the nACh receptor 

site that extends out from the position occupied by the acetyl group of acetylcho

line. From photoaffinity labeling studies with bromoacetylcholine it can be deduced 

that this would then be in the vicinity of the a-subunit Cys 192-193 region. Using 

the BIOSITE program three candidate sites can be identified within this region that 

may confer MLA’s specificity. These are positions 185, 187 and 189 (see Fig. 

4.16.). Of these, position 189 is suggested as being the site for interaction with the 

/V-phenylsuccinimide side-chain of MLA on the basis of proximity in the sequence 

to cysteines 192-193 and on expected functional group complementation. Thus, it 

can be envisaged that the A/-phenylsuccinimide side-chain of MLA interacts with 

the aromatic ring of phenylalanine or tyrosine residues present at this position in 

the chicken a7- and locust a2-subunits, respectively. In contrast, interaction may 

be less favourable with the threonine or lysine residue in the a1- and a4-subunits of 

muscle and brain nACh receptors, respectively.

The Cys 192-193 region has been shown to be an important determinant for the 

binding of a-bungarotoxin. Three candidate sites proposed as being essential for 

the selective recognition of a-bungarotoxin can be identified within the region
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Fig. 4.16. Candidate sites conferring subtype selectivity to nACh receptor ligands.

Abbreviations: M = MLA sites; A = a-bungarotoxin sites; n = high-affinity nicotine 

sites; L = Labelled by lophotoxin; D = labelled by DDF; N = labelled by nicotine.
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surrounding Cys 192-193 region (see Fig. 4.16.). These are positions 185,194 and 

197. Position 194 involves the deletion of a single residue in the non-a-bungaro- 

toxin binding brain nACh receptors, whilst position 197 involves the non-conserva

tive substitution from proline to an isoleucine residue. Positions 187 and 189 may 

affect only the relative affinity of a-bungarotoxin at its binding sites. However, for

mation of an N-glycosylation site at position 189, as is suggested for the snake 

muscle a-subunit,52 may prevent toxin binding, owing to the steric bulk of the car

bohydrate chain.

Binding of nicotine to nACh receptors with either high- or low-affinity may reflect 

a difference in receptor desensitization. On the basis of this premise, 2 candidate 

sites were identified within the Cys 192-193 region. These were positions 183 and 

197. The latter is of most interest as it involves the occurrence of a proline in the 

low-affinity nicotine binding receptors in contrast to an isoleucine residue in the 

high-affinity nicotine binding receptors. Given the unique effect of proline residues 

on reducing the local flexibility of the polypeptide main-chain, such a difference may 

well effect the rate of conversion to a high-affinity desensitized state. In addition, 

this residue position is followed by a conserved tyrosine residue which has been 

shown in the case of the Torpedo nACh receptor to covalently couple [3 H]nicotine 

on photoaffinity labelling.53
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5. WHOLE RECEPTOR MODELLING

The higher level phase of the modelling was to construct a whole receptor 

model. This included the transmembrane ion-channel region and the complete 

extracellular domain. The major intracellular domain located between M3 and M4 

transmembrane segments was not modelled as DNA mutagenesis studies have 

shown this region to be non-essential for the basic ligand-gated ion-channel func

tion.54

5.1. Transmembrane Ion-Channel Domain

The protein hemerythrin is a four-helix antiparallel bundle with a left-handed 

helix packing topology.55 Notably, the helices of this protein are of comparable 

length to the predicted M1-M4 transmembrane helices of LGICs (see Section

1.1.2.). For this reason, hemerythrin was used as a tertiary template onto which 

the sequences of the M1-M4 segments of LGIC subunits were fitted.

5.1.1. Construction of the Model

An outline of the steps in the construction of the transmembrane ion-channel 

domain of the Torpedo nACh receptor is given in Figure 5.1. Assignment of 

transmembrane helices (see Fig. 5.2.) was based on inspection of the LGIC multi

ple sequence alignment (Appendix II). The helices were defined by taking into 

account the occurrence of insertions/deletions and charged/polar residue positions 

flanking the ends of hydrophobic segments. Energy minimized a-helices were con

structed for each of the transmembrane segments M1-M4 using a standard helix 

geometry of <> = -65, \|/ = -40, and ^  values assigned by the program MOLEDT.
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Fig. 5.1. Outline of steps in the construction of the transmembrane ion-channel 

domain.
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Fig. 5.2. Structural alignment of Torpedo nACh receptor transmembrane helices 

onto the hemerythrin structure.

Sequence names: MHTHEZO = myohemerythrin Thermiste zostericola; HHEDY = 

hemerythrin Thermiste dyscritum ; HPHAGO = hemerythrin Phascolopsis gouldii ; 

HTHEZO = hemerythrin Thermiste zostericola (NB. sequences from the OWL 

sequence database, HHEDY sequence is that of the Brookhaven structure 1HMQ); 

tA1 = Torpedo a-subunit transmembrane sequences. Hashes highlight the pre

dicted M1-M4 transmembrane segments of the Torpedo nACh receptor a-subunit. 

Symbols under the tA1 sequence: C = ion-channel lining position; 2, 3, 4 = "Imoto 

ring positions". Invariant residues of the hemerythrin sequences are given in the 

line underneath the sequences.
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The constructed helices were fitted onto those of hemerythrin (Brookhaven code 

1HMQ55 ) by carrying out Ca superpositionings at the graphics interface so that 

various considerations could be taken into account jointly and interactively. Atten

tion was given to patterns seen in the LGIC sequences including conservation, vari

ability, hydrophobicity and size, as well as preference of certain amino-acids to 

occur at the helix termini.56 In particular, it was assumed that positions facing the 

lipid would be poorly conserved, whereas those forming inter-subunit contacts 

would display high subunit specific conservation, and those in the packing core of 

the four-helical bundle would be moderately conserved.57 Additionally, biochemical 

and mutagenesis data assigning residue positions in M2 as sites lining the ion- 

channel,58 and in M4 as accessible from the lipid phase59 were used. The final 

structural alignment of the Torpedo nACh receptor transmembrane segments onto 

hemerythrin is given in Figure 5.2. Loops between consecutive helices were built 

onto the energy minimized framework using the loop builder of INSIGHT and the 

system energy minimized. Models of the p-, y- and 5-subunits were then generated 

from the a-subunit by side-chain replacement using the Biosym program MOLEDT, 

followed by energy minimization. With the y-subunit a single residue insertion at the 

start of the M2 segment was introduced using the loop builder of INSIGHT prior to 

energy minimization. Two copies of the a-subunit model and one each of the p-, y- 

and 5-subunit models were docked together at the graphics interface in a clockwise 

orientation of a-p-a-y-5 as viewed from the extracellular side of the membrane such 

that the M2 helices formed the central ion-channel lining. The final model is shown 

in Figure 5.3.

5.1.2. Structural Features of the Model

For each subunit M1 is the most tightly packed helix, making intra-subunit
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Fig. 5.3. Model of the transmembrane ion-channel domain of the Torpedo nACh 

receptor.

Ml
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contacts with M2 and M4, and inter-subunit contacts with M3 of the adjacent 

subunit. This leads to the M4 heiix lying on the outside of the helix bundles and 

making no contacts with the helices of adjacent subunits. Thus, from the model 

there seem to be few structural constraints on the M4 helix, as is suggested by the 

sequence alignments that show it to be the least conserved of the transmembrane 

segments. This is also consistent with the mutagenesis experiments of Tobimatsu 

et a/.60 in which foreign transmembrane segments from interleukin-2  receptor and 

vesicular stomatitis vims glycoprotein were shown to replace M4 of the a-subunit of 

the Torpedo nACh receptor without loss of channel activity, whereas similar 

replacement of M1, M2 or M3 resulted in loss of activity.

The examination of the multiple aligned sequences showed M4 positions 413, 

417, 420 and 423 (Torpedo a-subunit numbering) to be highly variable, and these 

form the lipid contacting surface of the M4 helix in the model. This is in line with an 

analysis of the photoreaction centre, a transmembrane protein for which a struc

ture61 and several related sequences are known.62 For this protein a higher degree 

of conservation was observed for the contacts between one transmembrane helix 

with its neighbours than for sites on the helix facing the lipid bilayer.57’ 63

The axis of the M2 segment is parallel to the central axis of the ion-channel. 

This accommodated residue positions 248, 252, and 253 (Torpedo a-subunit num

bering) within the channel pore and positions 241 and 262 pointing in towards the 

channel mouth at the intracellular and extracellular ends of the M2 helix, respec

tively. The minimum diameter of the pore ranges from 14 to 17 A. This was a result 

of constraints on the close packing of M2 helices by the steric bulk of the flanking 

M1 and M3 helices. The M1 and M3 helices of adjacent subunits are tilted with 

respect to each other, with a cross-over angle of = 2 0  °.
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5.2. The Extracellular Domain

The first assumption used in modelling the extracellular domain was that as it 

appears to be entirely external to the membrane it is highly likely that its structure is 

determined by the same rules as for normal globular proteins, for which there is a 

large body of structural data. However, using database sequence searching tech

niques available at Daresbury laboratories, Warrington UK no homology was found 

to any protein of known structure.

When the method for scanning a database of known structures using a relative 

residue surface-accessibility probe based on the aligned sequences (see Section

3.2.) was applied to the set of nACh receptor sequences the protein yeast pyro

phosphatase was identified as having a degree of similarity to the N-terminal extra

cellular domain. This prompted comparisons of the N-terminal domain of LGIC 

receptor amino acid sequences with the set of pyrophosphatase sequences.64'66 

This showed that the lowest pairwise similarity amongst the pyrophosphatase 

sequences is 28.0% identity, whereas amongst the LGIC sequences it is 20.8% 

identity (see Table 5.1.). This is as compared to the value of 19.9% identity for the 

pairwise comparison of a GABAa receptor sequence with the cytoplasmic pyro

phosphatase sequence, and an average pairwise identity between the two sets of 

sequences of 17.4% identity. In contrast, the highest similarity between an Ig 

sequence and any of the pyrophosphatase or LGIC sequences is 16.6% identity, 

and the average of the comparisons was 14.8% identity. The Ig sequence was 

used as a control comparison since immunoglobulin and the pyrophosphatase 

structures both comprise antiparallel p-strand, although pyrophosphatase contains 

some a-helix. The sequence comparisons between LGICs and the pyrophospha

tase might reflect either homology, structural similarity, or fortuitous background
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Table 5.1. Sequence comparison scores of LGIC receptors and pyrophosphatases.

The values for each comparison are from top to bottom: the % amino acid identity; 

the number of gaps introduced; the significance score. Sequence names: PPC = 

yeast cytomplasmic PPase (ref. 64); PPM = yeast mitochondrial PPase (ref. 66); 

PPE = E. coli PPase (ref. 65); GLY = rat a-subunit; GABA = bovine a1-subunit; 

ACH = Torpedo californica a-subunit; IGG = IgG (McP603) control sequence.

PPM 49.3
5

31.5
PPE 30.9

16
4.3

28.0
15

3.9
GLY 16.7

13
0.5

19.7
14

1.3
15.3

13
-0.1

GABA 19.9
13

0.3
18.0

16
0.4

15.2
10

0.8
35.1

4
24.3

ACH 19.6
14

0.0
15.1

16
-0.3

17.1 
9

-0.9
20.8

7
11.1

21.4
5

9.1

IGG 12.3
11

-1.0
15.5

13
0.3

16.6
10

0.9
10.7

10
1.3

12.9
9

1.5
14.2

6
-0.7

PPC PPM PPE GLY GABA ACH
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sequence similarity. Nevertheless, such low but extended sequence similarity 

throughout two compared sequences is an initial indication of a distant evolutionary 

relationship. Indeed, a common folding topology has been observed for the 

chaperone protein of E. coli and the immunoglobulins of vertebrates,67 in which 

case the similarity is less than 10% identity. The mapping of LGIC sequences onto 

the pyrophosphatase sequences is shown in Figure 5.4. with the secondary struc

ture elements of the yeast pyrophosphatase structure added.

5.3. Construction of the Whole Receptor Model

On the basis of possible homology, the known structure of pyrophosphatase 

(Brookhaven code 1PYP68 ) was used to provide a candidate fold for the extracel

lular domain of the LGICs.

The whole receptor model was constructed by graphically docking five copies of 

the yeast pyrophosphatase structure close to the extracellular side of the ion-chan

nel transmembrane model to form the extracellular domains of each of the five 

receptor subunits. The orientation of the extracellular domain was mainly dictated 

by the requirement to bring the C-terminus of the pyrophosphatase structure into 

close proximity to the N-terminus of the M1 transmembrane helix. In addition, dock

ing was carried out to maximize the subunit-subunit interface areas, whilst main

taining the same orientation of the five pyrophosphatase structures around the axis 

of the ion-channel. Finally, the whole receptor model produced was packed into a 

lipid bilayer model as provided by Dr. Richard Sessions. This step was achieved by 

setting the transmembrane ion-channel domain into the lipid and deleting lipid mole

cules which overlapped with this domain from the model.
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Fig. 5.4. Alignment of pyrophosphatase and LGIC amino acid sequences.

Sequence names as given in Table 5.1. Secondary structure assignments from the 

1PYP PPase structure is given below the PPase sequences: t = turn; B = p-strand; 

H = helix. Symbols below the LGIC sequences: g = invariant glycine in LGIC 

sequences (see position 114 of alignment in Appendix II); asterisk = residue posi

tions conserved in property in the two sets of sequences; underline = sites of 

potential N-glycosylation in LGIC sequences; + = DDF photoaffinity labelled resi

dues (see Section 1.1.1.1.). The position of the cys-loop in the LGIC sequences is 

highlighted.



1 . . . . .
1 . PPC -TYTTRQIGAKNTLEYKVYIEK-DGKPVSAFHDIPLYADKEDNIFNMWEIPRWTNA-KL
2 . PPM -QFSTIQQGSKYTLGFKKYLTLLNGEVGSFFHDVPLDLNEHEKTVNMIVEVPRWTTG-KF
3. PPE --------------------------------- MSLLNVPAGKDLPEDIY-WIEIPANADPIKY

<— 31— >---- <---- B2---- B3> tttt ttttttt <— 314— >tttt<-B5-

4. GLY SDFLDKLMG-R— T — SGY--- DARIRPNFKG-P-PVNVSCNI— FINSFGS-IA-----
5. GAB TTVFTRILD-R— L-LDGY--- DNRLRPGLGE-R-VTEVKTDI--FVTSFGP-VS-----
6. ACH SEHETRLVA-K— L-FEDY--- NSWRPVEDH-RQAVEVTVGL— QLIQLIN-VD-----

61 . . . . .
1. PPC EITKEETLNPIIQNTK-GKLRFVRNCFPHHGYIHNYGAFPQTWEDPNVSHPETKAV-----
2 . PPM EISKELRFNPIVQDTKNGKLRFVNNIFPYHGYIHNYGAIPQTWEDPTIEHKLGKCDVALK
3. PPE EIDKES— GALFVD------RFMSTAMFY—  PCNYGYI--------- N'HTLSL--------

-> tttt<-B4-> <— B6— > <B15>tttt ttttttt

4 . GLY ETTMDYRVNIFLRQ------ QWNDPRLAYNEY— PDDSL--------DLDPSMLD-
5. GAB DHDMEYTIDVFFRQ------ SWKDERLKFKG PMTVL--------RLNNLMAS-
6. ACH EVNQIVTTNVRLKQ------ QWVDYNLKWNPD— DYGGV--------XKIHIPSE-

0 *  *  *  *  *  *

121 .
1. PPC GDNNPIDVLQIGETIAYTGQVKEVKALGIMALLDEGETDWKV-IAIDINDPLAPKLNDIE
2 . PPM GDNDPLDCCEIGSDVLEMGSIKKVKVLGSLALIDDGELDWKV-IVIDVNDPLSSKIDDLE
3 . PPE -DGDPVDVLVPTPYPLQPGSVIRCRPVGVLKMTDEAGEDAKL-VAVP-HSKLSKEYDHIK

<--- B16--- > tttt<-318----- 39>tttt<38— 317>tttt ttttt<---
4. GLY SIWKP-DLFFANEKGAHFHEITTDNKL— LRISRNGNVLYSIRITLTLACPM— DLKNFP
5 . GAB KIWTP-DTFFHNGKKSVAHNMTMPNKL— LRITEDGTLLYTMRLTVRAECPM--HLEDFP
6 . ACH KIWRP-DLVLYNNADGDFAIVKFTKVL— LDY— TGHITWTPPAIFKSYCEI--IVTHFP

P D  * « « g * * «
+_________ ___  <-CYS-LOOP-

181 . . . . . .
1 . PPC -DVEKYFPGLLRATDEWFRIYKIPDGKPENQFAFSGEAKNKKYALDIIKETHNSWKQLIA
2 . PPM -KIEEYFPGILDTTREWFRK-KVPAGKPLNSFAFHEQYQNSNKTIQTIKKCHNSWKNLIS
3. PPE -DVND-LPELLKA---------QIAH--------- FFEHYKD---- LEKGK------WVKV—

-HI— > <  H2 >tttt <310>ttttBl3<------- H3--------- >t
4. GLY MDVQTC-IMQLES----F— GYTMNDL--- IFEW QEQGAVQVADGLTLPQ-FI -LXE
5. GAB MDAHAC-PLKFGS----Y--AYTRAEV--- VYEWTREPARSVWAEDGSRLNQ-YD-LLG
6. ACH FDEQNC-SMKLGT----W — T Y D G S W --- VIN PESDQPDLSNFKESGE-WV-IKE

241 . . . .
1 . PPC----GKSSDSKGIDLTNVTLPDTPTYSKAASDAIPPASPKADAPIDK---- SIDKWFF-
2. PPM G -------SLQEKYDNLPNT ERAGNGVTLEDSVKPPSQIPP EVQKWYYV
3. PPE ----------------------------- EGWENAEAAKAEIVASFER---- AKNK-----

ttttttt tttttttttt<— H4— > tttt <B7-
4 . GLY --------EKDLRYCT----------- KHYNTGKFTCIEARFHLER------- QM----
5. GAB -------- QT-VDSGI-----------VQSSTGEYWMTTHFHLKR------- KI----
6. ACH --------SRGWKHWVF--------YACCPSTPYLDITYHFVMQRL--------------

+ ++
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5.4. Features of the Whole Receptor Model

A main feature of the whole receptor model (see Fig. 5.5.) is that the extracellu

lar domain protrudes no more than 55 A above the outer surface of the lipid bilayer. 

As pyrophosphatase is of a comparable size to the extracellular domain of Torpedo 

nAGh receptor subunits it should at least give a rough impression of the protein 

mass of this part of receptor subunits. Initially from electron microscopy studies, the 

protrusion of the extracellular domain of the Torpedo nACh receptor above the 

bilayer was indicated to be about 80 A. More recently, however, it has been sug

gested that part of this protruding mass is not protein but carbohydrate covalently 

attached to the extracellular domain. The extent of protein mass above the bilayer 

is now indicated from electron microscopy studies to be about 60 A.69

5.5. Critical Assessment of the Model

The use of pyrophosphatase in the whole receptor model can be justified on the 

basis of possible homology indicated by low sequence similarity with LGICs when 

considering multiple sequences. In addition, N-glycosylation sites present in LGIC 

sequences map onto positions outside the core polypeptide segments of pyrophos

phatase.

However, the representations in which pyrophosphatase is used as the extracel

lular domain LGICs (see Fig. 5.5.) gives the impression that the structure of the 

model is as accurate as the x-ray structure. It is stressed that this is not the case, 

and a more schematic rendering of the model over this region may be more appro

priate. To avoid confusion on such modelling the term soft modelling is recom

mended (see Section 7.3.) to indicate that the structural details of the model are 

highly speculative, but nevertheless worth documenting.
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6. EVOLUTIONARY ANALYSIS OF THE SUPERFAMILY

Sufficient information is now at hand to make a reasonable proposal of how the 

set of LGIC subunit sequences may have evolved. This is of interest because it 

may lead to insights into how LGIC receptors have become integrated into the 

physiology of complex nervous systems. In connection to molecular modelling, the 

phylogenetic relationships of a superfamily of proteins provides a framework from 

which to understand functionally important molecular adaptations of different LGIC 

receptors.

6.1 Methods and Strategies

6.1.1. Generation of Molecular Evolutionary Trees

6.1.1.1. Pairwise Analysis

The aligned nucleic acid sequences were used in computations in which posi

tions were excluded where a gap occurred in any sequence. The main structure of 

the evolutionary tree was obtained according to the ’pairwise’ procedure of Bishop 

& Friday,70 in which estimates of divergence are calculated for all pairs of 

sequences, and these estimates are then analyzed by the unweighted pair-group 

method of cluster analysis (UPGMA) to obtain the tree pattern. In this approach, 

each of the pairwise divergences is calculated according to the pairwise estimator:

ut=-1/2ln(1 -4d/3N), for d/N<3/4... (6.1.)



-177-

where t is the time of divergence, u the rate of change, d the observed number of 

differences between the pair of sequences, N the total number of comparable sites 

able to vary and the circumflex f )  denotes an estimator. Equation 6.1. indicates 

that a rate-time, rather than a time, is being estimated because u, the rate of 

change, and t, the time of divergence, are compounded. To interpret the estimated 

quantities as relative times of divergence it is necessary to set the rate, u, to the 

arbitrary constant value of 1 .0 .

6.1.1.2. Joint analysis

The joint maximum likelihood analysis of sequence data was pioneered by Fel- 

senstein.71 The particular approach used in this study is that described by Bishop 

& Friday.70 In the joint method the estimates of times of divergence are succes

sively refined in cycles of iteration until the overall likelihood of the tree pattern 

under analysis reaches a maximum. As the joint approach is computationally far 

more expensive than the pairwise approach only subsets of the data were exam

ined. The method does, however, enable the stability of particular tree patterns of 

subsets to be evaluated and serves to test whether a particular branching order of 

sequences is correct.

6.1.1.3. Calibration to Absolute Time

To convert the relative times to absolute times requires calibration of at least 

one relative time with a corresponding absolute value derived from external evi

dence, such as dates of speciation events obtained from interpretation of the fossil 

record. Figure 6.1. shows the evolutionary relationships and dates of divergence of 

the animals represented by sequence data in this study (provided by Dr. Adrian
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Fig. 6.1. Phylogenetic tree based on interpretation of the fossil record (provided by 

Dr. Arian Friday, Zoology Department, Cambridge University).

Dates given are in millions of years ago from the present, with values in brackets 

reflecting uncertainty in dates.

Homo Bos Rodents Gallus Torpedo Drosophila

(65-70) 80 '  
(55-780+)

300 \
(290-310)

420 >
(408-428)

590
(530-7700+)
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Friday). The pattern of relationships shown is relatively noncontroversial, with the 

exception of the ordering of the three mammalian species.70 Most probable dates 

are shown on the tree together with an indication of range, based on different esti

mates. Generally, uncertainty in the estimation of dates increases as events farther 

back in the fossil record are considered.

The separation of birds and mammals at about 300 million years ago was used 

to calibrate the time scale of the molecular sequences tree. Thus, the average rela

tive time for the chicken/rat branch points in the neural lineage of the nACh 

sequence subtree was set to 300 million years ago and the time-scale proportion

ately adjusted.

The sequences analyzed provide, in several cases, data for the same pair of 

species from different subtypes. Thus, violations of the assumption of uniformity of 

rate show up on the tree as differences in times of divergence for a given species 

pair for different sequence subtypes. For example, comparison of the times of 

divergence of the chicken/rodent branch points indicates that the muscle non-a 

nACh receptor sequences have evolved at a faster rate than the muscle a  

sequences and the neural lineage nACh receptor sequences. No adjustment of the 

tree was made to accommodate differences in evolutionary rate. However, it was 

observed that the relative times of divergence of species found for a given subunit 

subtype are in reasonable accord with such relative times obtained from the phylo

genetic tree of Figure 6.1.

6.2. Analysis of the Molecular Evolutionary Tree

The evolutionary tree shown in Figure 6.2. was estimated from the aligned DNA
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sequences. For the tree in general, the pairwise method of comparison was 

used.71 Checks were made in it by the joint analysis method on subsets of 

sequences using the configuration of sequence nodes as given by the pairwise 

analysis. The divergence of the muscie nACh receptor p-subunit sequence close to 

the 6 sequence node, the nodal configuration of the muscle nACh receptor £-7  pair, 

the unexpected branching of the neuronal nACh receptor p2 sequence within the 

vertebrate neural lineage, and the branching of the GABA/Glycine receptor set 

were confirmed in the more robust joint analysis.

In only a single case was a branch actually reassigned on the pairwise tree as a 

result of joint analysis. The branch in question is that leading to the Drosophila 

nACh receptor sequence ARD. Taking this sequence and the other nACh receptor 

sequence from Drosophila, ALS, together with various subsets of muscle nACh 

receptor a  and neuronal nACh receptor a and p sequences, two stable patterns of 

branching were found. These differed little in likelihood but the pattern in which the 

two Drosophila sequences shared common ancestry to the nodal point’d’ was the 

most favoured. There must, however, remain some uncertainty over the position of 

the Drosophila sequences, particularly that of the sequence ARD.

6.2.1 Origins of the Superfamily

Under the model of the analysis and using the calibration of the time scale as 

described above, the dating of the initial nodal point of the tree is at least 2 0 0 0  mil

lion years ago. This date for the common origin of the receptors is surprisingly 

early,72 as it would roughly correspond with, or exceed, current estimates for the 

time of origin of eukaryotes. That the ancestral "protoreceptor" originated in a uni

cellular organism raises the possibility that members of this structurally related



-181 -

Fig. 6.2. Molecular evolutionary tree of LGICs.

The nomenclature scheme referring to the sequences is as given in Appendix II. 

Labelled branch points: a = hetero-oligomerization step in muscle-type receptor 

(ancestor); b = hetero-oligomerization step of muscle-type receptor; c = segregation 

of muscle and neuronal tissues; d = putative invertebrate/vertebrate divergence; e 

= formation of CNS/ganglionic neuronal lineages.

nACH

insect

vert.
neural

muscle

GABA
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protein set might be widely dispersed throughout living systems, including plant and 

fungal tissues and any of the non-nervous cell-types of animals.

As all the LGIC receptor subunits share a common ancestry, it appears that the 

gating mechanism had evolved before the formation of separate gene lines for 

cation-selective and anion-selective LGICs. Nevertheless, ion-channel selectivity 

appears to have evolved relatively early on, well before hetero-oligomerization of 

any of the presently established LGICs. Glutamate and glycine are the most likely 

candidates for being the activating ligand of the earliest receptors, as these are 

essential cellular metabolites, and plausibly an early organism used primitive LGIC 

receptor forms in seeking out a nutrient-rich environment.

6.2.2. Events in Nicotinic Acetylcholine Receptor Evolution

The part of the tree concerned with the evolution of nACh receptors indicates 

evolution from a deduced ancestral homo-oligomer to a hetero-oligomericform (Fig. 

6.2., branch-point ’a’) not yet differentiated into muscle and neuronal types. The 

date for this duplication event is estimated to be 900 to 1200 million years ago. It 

remains uncertain, therefore, whether this duplication took place before or after the 

formation of early Metazoa.

The initial branch off the common lineage of the non-a-subunits of the muscle 

receptor (ie. at point b, Fig. 6.2.) leads to the p-subunit and a y/e/5 lineage.73 That 

the y- and e-subunits diverged relatively recently is in line with the observation that 

during late muscle development, at least in mammals, a y-subunit in the foetal 

muscle nACh receptor is replaced by an e-subunit in the adult form.74 It can be 

deduced from the tree that an e-subunit should occur in Torpedo and chicken,
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although no subunit of this type has yet been cloned from these species.

The divergence of muscle and neuronal receptors is indicated by the separation 

of their a-subunits (ie. see point c, Fig. 6.2.). This event is estimated to have 

occurred around 700-800 million years ago. On current evidence, this would have 

been early in Metazoan evolution, and the branch point could conceivably mark the 

evolution of the developmental segregation of mesoderm and ectoderm. That the 

neuronal/muscle divergence predates the separation of insects and vertebrates 

(point d, Fig. 6.2.) would suggest that the muscle of vertebrates and insects derived 

from a common origin. Paradoxically, glutamate and not acetylcholine is the excita

tory neurotransmitter used at insect and crustacean motornerve-muscle junc

tions.75 Possibly subunits of these glutamate receptors may be more similar to 

subunits of vertebrate muscle nACh receptor than they are to either vertebrate or 

invertebrate glutamate receptor subunits from nervous tissue. Indeed, the phar

macology of the ion-channel of the glutamate receptor in insect muscle shows simi

larity to that of vertebrate nACh receptors.75*76 Based on the local pattern around 

the neuronal/muscle branch point, it is also deduced that a "new" homo-oligomer 

was formed which contained five of the neuronal-type a-subunits, with the original 

hetero-oligomeric receptor evolving to become the muscle nACh receptor.

The first branch involving the neuronal a-subunit in the vertebrate lineage gives 

rise to the neuronal subunit, p2 (point e, Fig. 6.2.). Notably, this represents a sec

ond hetero-oligomerization event in the evolution of nACh receptors. This event is 

estimated to have taken place around 600-700 million years ago. Surprisingly, 

although the p2 -subunit is only distantly related to the p-subunit of the muscle 

receptor, this subunit was shown in functional expression studies to substitute for 

the p-subunit of the muscle nACh receptor, but not for any of the other muscle
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receptor subunits.77 This gives indirect support for the tentative positioning of the 

p-type subunit between two a-subunits in both neuronal and muscle nACh recep

tors.

It is of interest to assess whether formation of the independent subtypes of the 

a-subunits of neuronal nACh receptor marks stages of expansion of the vertebrate 

nervous system. Almost certainly the divergence of the a3-subtype from the branch 

leading to the a2- and a4-subtypes appears to have taken place early on in verte

brate evolution. This divergence may represent the formation of two distinct neu

ronal receptor types, one predominantly involved in autonomic control78 and the 

other involved in motor control. The divergence of a2- and a4-subtypes is 

estimated to have occurred around 300 to 400 million years ago. As the a4-subtype 

is expressed at high levels throughout several distinct regions of the CNS, whereas 

the a 2 -subtype is more restricted in its distribution,79*80 the ancestral gene at this 

stage is most likely to have been of the a4-subtype.

6.2.3. Events in GABAa and Glycine Receptor Evolution

In the subtree of the receptor anion-channels, the specialization of the three 

subtypes of a-subunit of the bovine GABAa receptor occurs much later in the tree 

than the separation of the GABAa and Glycine receptors. This more recent evolu

tion of a-subtypes is in agreement with biochemical analysis of the number of this 

type of subunit in various vertebrate species.81 Nevertheless, the a-subunit type, 

which is considered to be involved in binding benzodiazepines,82 from the tree is 

estimated to have evolved as a distinct line more than 1000 million years ago. In 

accord with this early date, the GABA-Bz receptor complex has been identified in 

insects.83
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Since GABA and glycine have similar chemical structures, this presumabiy 

would have favoured the evolution of their receptors one from the other. It might be 

expected that glycine rather than GABA was the initial ligand as the evolution of the 

GABAergic transmission most probably depended on the evolution of glutamate 

decarboxylase,84 required for GABA synthesis (NB. a similar argument could be 

considered also for the excitatory neurotransmitters since acetylcholine requires 

choline-acetyltransferase for its synthesis). However, once evolved, the restricted 

use of GABA as a chemical transmitter may have conferred a greater degree of 

specificity in signalling. Interestingly, for the anion-channels a Glycine receptor has 

not yet been found in invertebrates,85 although the relevant studies on this point 

are perhaps as yet too few to exclude the possibility.



- 186-

7. GENERAL DISCUSSION

7.1. The Agonlst/Competltlve Antagonist Binding Site

The major strength of the modelling of the cys-loop is that, firstly, a single type 

of structure accommodates all of the sequence variations of the cys-loop In the >80 

known polypeptides of the LGIC superfamily. Secondly, specific chemical modifica

tions of the GABAa receptor and Glycine receptor can be accounted for by the resi

dues that are spatial neighbours of the invariant aspartate group on the hydrophilic
i

face of the cys-loop, and in particular the residue at position 6  of the cys-loop (see 

Section 4.2.4.5.).

The conceptual framework that has been used in this study for the agonist bind

ing site of LGICs is to see it as two parts, a variable region encoding the recogni

tion site for the address, and a conserved region for receiving the message 

required for activation. That is, in the proposed docking model (Chapter 4) the mes

sage is the positive pole of the agonist and the moiety that recognizes it is the 

invariant aspartate residue of the cys-loop. However, there is no direct experimen

tal evidence that the structural organization of agonist binding sites in LGICs is 

essentially well conserved. Two other possibilities exist. (1) The overall position in 

the protein structure of the agonist binding site could be conserved but the binding 

region itself in terms of its main-chain conformation could lack any structural corre

lation between LGIC types. This would be a situation analogous to that seen for the 

antigen combining sites of antibodies. (2) Even the overall location of the binding 

site may vary in the protein such that binding sites could have been made anew for 

the different LGIC types. Although evolutionary arguments can be used to support 

any one of the above possibilities, the precedence is that ligand binding sites are
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stmcturally well preserved for members of a homologous set of proteins of similar 

function.

That there are examples of highly potent rigid agonists for the different LGIC 

receptor types may itself be an indication that their agonist binding sites are essen

tially similar. The implication is that there is a conserved mechanism for activation 

and this can be achieved without any major change in the conformation of bound 

agonist. Another general feature of ligands supporting the notion that the binding 

site is structurally conserved is that agonists tend to be small, whereas non-peptide
i

competitive antagonists are almost always large and tend to have molecular 

weights > 200. A simple model for agonist binding would then be that LGIC recep

tors undergo a change upon binding agonist and that antagonists may bind and 

hold the binding cleft in the open conformational state. This then resembles the 

induced-fit model proposed for certain globular enzymes.

It Is presently believed that the agonist/competitive antagonist binding site is 

formed at the interface between adjacent subunits within a receptor oligomer. This 

is based on the finding of Pedersen and Cohen that [3 H]d-tubocurarine photoaffinity 

labels the y- and 8 -subunits of the Torpedo nACh receptor, in addition to the 

a-subunit.86 In accord with this study, co-expression of the subunit combinations 

a-y and a-5 in fibroblasts resulted in high- and low-affinity d-tubocurarine sites, 

respectively.87 However, these studies do not yet rule out the possibility that the 

binding cavity is formed mainly within a single subunit with some access to parts of 

adjacent subunits, especially by large antagonists such as d-tubocurarine. It is of 

note that Middleton and Cohen found that the agonist [3 H]nicotine labels the Tor

pedo nACh receptor predominantly on the a-subunit, some label is incorporated 

into the y-subunit, but neither the p- nor the 5-subunit is labelled to any extent.53 As



- 188-

discussed earlier (see Section 4.2.4.5.) the labelling of the y-subunit of this receptor 

can be explained by the cys-loop model.

For different forms of neuronal nACh receptors expressed in the Xenopus 

oocyte system it has been shown that the type of p-subunit has more of an effect 

on the whole cell electrophysiological response than the type of a-subunit.88 This 

was taken as providing further evidence that the agonist binding site is between 

subunits. However, this may reflect the fact that LGIC receptors are pseudosym- 

metrical oligomers for which allosteric interactions leading to ion-channel opening 

are important.89 Indeed, from expression studies of the GABAa receptor it was 

shown that switching a-subunits, whilst keeping the p-subunit constant, effects the 

half-maximal but not the maximal dose response.90 This suggests that the binding 

constant is unaltered, as this would give a parallel shift in the dose response curve, 

but that the difference may lie in the allosteric mechanism involved in coupling 

agonist binding to ion-channel opening.

Although a dominant role in agonist binding is often suggested for the Cys 

192-193 region of the Torpedo nACh receptor from studies using labelling reagents 

such as DDF,42 for such reagents the active part of the molecule is in a position 

that corresponds to the bromomethyl group of bromoacetylcholine. Thus, these 

compounds are probing for residues in a limited region of the whole binding site. 

The cys-loop docking model in no way precludes specific labelling outside of the 

cys-loop. Indeed in the extended model of the Torpedo nACh receptor binding cav

ity, cysteines 192-193 could be accommodated spatially close to the cys-loop 

region.

Interestingly, sequence variation in the surrounding region of Cys 192-193 even
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between a-subunits of the muscle/electric organ type73 and the neuronal subtypes 

of nACh receptor91 indicates that this region readily accepts residue substitutions 

and insertions/deletions. Moreover, cysteines 192-193 have been experimentally 

mutated to serines without complete loss of agonist binding.54 This noted lack of 

structural conservation based on the modelling was considered inconsistent with 

the overlap in nicotinoid pharmacology seen for members of the nACh receptor. 

Thus, the proposal from this modelling study is that the 192-193 region is close to 

the agonist binding site as part of a binding cleft and that it contains important 

determinants of toxin binding.

A key assumption in choosing the cys-loop as a candidate determinant of the 

agonist binding site was that the positive pole seen for LGIC agonists is comple

mented in the receptors by a conserved anionic group as could be provided by 

either a glutamate or aspartate residue. The precedence that this may be the case 

is given by the acetylcholine and monoamine receptors that couple through G-pro- 

teins for which it has been established that the ammonium group present in these 

ligands is bound by a conserved aspartate residue in the third transmembrane seg

ment.92'95 In addition, in the X-ray structure of phosphocholine bound to antibody 

McP603 there is a carboxylate group in Van der Waals contact with the trimethy- 

lammonium group of the ligand.96 In contrast, recently it has been shown that ace

tylcholine binds a synthetic macrocyclic host comprised primarily of aromatic rings 

with a Kd of 50 pM from which it is proposed that the methyl groups of the quater

nary ammonium moiety interact with the electron density of the aromatic rings.97 In 

addition, [3 H]DDF labels predominantly aromatic residues which also suggests that 

the cation binding site may comprise aromatic residues. However, the reactive part 

of [3 H]DDF is distinct from the positively charged ammonium group in this com

pound and photochemical activation of the aromatic residues in the protein would
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be expected to favour labelling of such residues. Interestingly, Cohen et al. 

showed that [3 H]acetylcholine mustard labels the Torpedo nACh receptor at posi

tion Tyr-93 with no other detectable site of labelling elsewhere in the protein.98 

From this it was suggested that Tyr-93 is also part of the cation-binding site. How

ever, the positively charged residue arginine, which would clearly not be expected 

to be involved in cation-binding, frequently occurs in GABAa receptor subunits at 

this position. Nevertheless, it is surprising that [3 H]acetylcholine mustard does not 

appear to label either an aspartate or a glutamate residue. As such a reaction is 

thought to be of the Sn2  type, reaction could be restricted by local geometric and
i

steric constraints at the binding site of the nACh receptor.

Several models involving at least part of the cys-loop have already been pub

lished. The model of Smart et a l."  covered the region of the a-subunit from 

135-142 and therefore did not include the disulphide bridge between positions 128 

and 142. This model is invalid because the Cys-142 was modelled as the site that 

covalently coupled to bromoacetylcholine rather than the cysteines at 192 and 193, 

the established sites of labelling.49 The model of Luyten100 likewise did not include 

the mutual pairing of the cysteines 128 and 142. Nonetheless, the overall structure 

proposed for the region corresponding to the cys-loop was an amphiphilic p-hairpin. 

The interaction of acetylcholine was suggested to involve hydrogen bonding of the 

carbonyl oxygen of the acetyl group to a glutamine residue at position 13 of the 

cys-loop. This proposal would not account for selective recognition of glycine, as 

glutamine also occurs at this position in the Glycine receptor. Indeed, the Luyten 

model Is based only on the consideration of nACh receptors.

Recently, Ruan et al. proposed a three-dimensional model of the a-bungarotoxin 

binding site of the human muscle nACh receptor.101 This model was based on in
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vitro peptide mapping studies which indicated that four regions of the a-subunit, 

34-49, 100-115, 122-138 and 194-210,102 interact with a-bungarotoxin and three 

regions of the toxin, 1-16, 26-41, and 45-59,103 interact with the muscle nACh 

receptor. The model was constructed by packing of the above a-subunit peptide 

fragments, modelled as four (3-strands, around the 2.5 A resolution X-ray struc

ture104 of a-bungarotoxin. A cavity with a depth of 30.5 A was formed by an 

antiparallel arrangement of the (3-strands such that they run in the line from the 

mouth to the inner most end of the cavity. A main criticism of the model is that there 

was no consideration of how agonists or non-peptide competitive antagonists may 

interact with the receptor. In particular, none of the residues shown by labelling stu

dies to be part of the binding site are included in the model even though a-bungaro-
• s

toxin is known to be a competitive antagonist. However, the first strand of the cys- 

loop (ie. positions 128-135) is included in the model, but not the invariant aspartic 

acid residue of the cys-loop, which is at position 138 of the muscle nACh receptor 

a-subunit.

7.2. The Transmembrane lon-Channel Domain

Studies carried out so far on the muscle-type nACh receptor suggest two 

aspects of the channel that are important for ion passage. The first is rings of nega

tive charge at either end of M2 and the second is the presence of polar hydroxyl 

containing residues towards the middle of the pore. Therefore, it should be possible 

to see whether in anion selective members of the superfamily changes at these 

sites can explain the observed switch in ion selectivity.

In comparing the residues at "Imoto ring" positions (see Section 1.1.2.) and the 

surrounding sequence of cation and anion selective channels it can be seen that
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there is no correlation between the overall ring charge and the type of ion to flow 

through the ion-channel. The exception is ring position 4, for which no experimen

tal data has been presented. 105 However, electrostatic interactions are long range 

forces that could act over distances greater than the diameter of a single helix. If 

absolute positioning of appropriately charged residues may not be essential, it 

might be necessary to search for analogous "ring" residues on M1 and/or M3.

A major difference between anions and cations apart from their charge is the 

way in which they co-ordinate water molecules. Whereas it is the oxygen atom of
i

water molecules that is involved in co-ordinate bonding of cations, with anions 

waters interact via hydrogen bonds. Bormann et al. proposed that at least some of 

the inner solvation waters are lost during passage of ions through both cation and 

anion selective channels, since from electrophysiological studies the minimum bore 

diameters of cation and anion selective channels formed by LGICs are estimated to 

be 7.5 and 5.5 A, respectively. 106 If this is the case, then the importance of the ser

ine and threonine residues that predominate in the pore of the cation and anion 

selective channels, respectively, might be in displacing inner solvation sphere water 

molecules by forming an appropriate interaction with the migrating ion. In the case 

rf cation selective channels the serine hydroxyl groups might be hydrogen bonded 

to the main chain carbonyl groups at position (i - 3) or (i - 4) of the M2 helix. This 

would present to the channel an oxygen atom for co-ordination to cations. 

Threonine residues present in the anion selective channels, however, may be pre

vented from forming such hydrogen bonds by means of steric restrictions involving 

the side-chain methyl group, which would then leave their hydroxyl groups free to 

hydrogen bond with anions passing through the channel.

All explicit atomic models published so far of the ion-channel of LGICs only
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define the packing of the M2-helix,107’ 108 although the positioning of M1 to partly 

line the channel was addressed by Furois-Cort>in and Pullman.109 Such models In 

which the pentameric form of the LGIC receptors was taken to be correct allowed 

models to be constructed with a pore diameter of a size consistent with the experi

mentally determined values.110 However, using hemerythrin as a four helix packing 

model it was found that the packing of such units only gave a pore size consistent 

with experiment when four subunits were packed together. With five subunits the 

channel was much larger than expected (14-17 A) - a result of constraints on pack

ing imposed by the bulk of the M1 and M3 helices flanking the M2  helix. As recent 

studies on the stoicheiometry of neuronal nACh receptor subunits has substan

tiated the pentameric oligomeric state of LGIC receptors this suggests that hem

erythrin is not a suitable template for the transmembrane region. Instead, M2 may 

be flanked on both sides by p-strand (preliminary results of Nigel Unwin, MRC Cen

tre, Cambridge), which would allow close packing of M2 regions in a model based 

on pentameric symmetry. It thus appears that the generally accepted transmem

brane topology of LGIC subunits is incorrect as M1 and M3 may not be transmem

brane a-helices.

Interestingly, a high resolution structure of an enterotoxin related to cholera toxin 

present in E. co//111 and a moderate resolution structure of heavy riboflavin syn

thase from Bacillus subtilis112 both contain channels with pentameric symmetry 

formed by the parallel packing of a-helices flanked by p-strands. Moreover, the lat

ter has a channel 9 A in diameter, which is roughly similar to that seen for LGICs. 

Thus, examination of the riboflavin structure may be of use in constructing 

improved models of the ion-channel.

7.3. Molecular Modelling of Protein Superfamilies
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One trend in biology is to deal with gene superfamilies. This is because the 

homology approach can greatly simplify understanding by allowing large amounts 

of information to be related and put into a broader context. The concept of a super

family can perhaps best be understood in terms of a modal theme in which individ

ual members are viewed within the context of the whole superfamily; common fea

tures are fitted to the central part of the theme, whereas those that are less com

mon may be grouped as variants off it. The role of molecular modelling in studying 

superfamilies is that it should assist in the compiling and consolidating of informa

tion pertaining to the molecular level into coherent view reflecting the current status
i

of knowledge.

One advantage of studying superfamilies as a whole experimentally is that the 

most suitable member of a superfamily can be selected to answer a particular 

question in a definitive way. Thus, if multiple competing hypotheses are proposed 

to explain a particular property it may be that one protein of the superfamily offers a 

handle to carry out a definitive experimental test.

«
As molecular modelling is still in its infancy as an adjunct to experimental stu

dies, and in particular when applied to proteins of unknown structure, its use is 

often in question. A distinction is presently required to avoid a misunderstanding of 

the accuracy and validity of proposed models in the literature. One possibility 

would be to use the terms "hard" and "soft" in the presentation of a model. Thus, 

hard modelling might be based on three-dimensional structural information on the 

study system itself or a closely-related system. An example would be the modelling 

of the structure of a protein from the known structure of a homologous protein, in 

contrast, soft modelling is more speculative, making use of structural information on 

analogous systems, biochemical data, and amino acid sequence information. The
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main purpose of soft modelling would be to give a theoretical framework to molecu

lar studies to assist in the design of definitive experiments.

7.4. Future Studies

7.4.1. Structural Determination

The understanding of ligand interactions of LGIC receptors will ultimately require 

an intimate knowledge of three-dimensional structure probably obtained from direct
i

experimental analysis.

A tissue that naturally expresses high levels of a receptor is perhaps the best 

source of material for the successful structural determination of a whole LGIC 

receptor oligomer. The Torpedo electric organ is the tissue of choice with the 

advantages that the nACh receptor present has been well-characterized and its 

sequence is known. So far, Unwin and co-workers have determined the structure of 

the Torpedo nACh receptor to 15 A resolution by electron microscopy110 and it is 

expected that over the next year a resolution to 8  A will be achieved. This should 

give assignment of the helical secondary structures of the transmembrane region 

and may provide sufficient information to construct a useful full atomic model of the 

ion-channel. From the alignment of the LGIC sequences the ion-channel appears 

structurally well conserved in terms of its main-chain structure so both cation and 

anion selective ion-channel models should be possible. Such models may be refin- 

able by comparative analysis using information from experimental and mutagenesis 

studies. It will almost certainly not be possible to define the main-chain of the 

extracellular domain using electron microscopy with its present limitations, as this 

domain is likely to be composed mainly of p-strand structure.
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Stroud and co-workers have reported a 12 A resolution structure of the Torpedo 

nACh receptor.69 Large crystals have been grown, but it is not known whether a 

high resolution structure will be forthcoming. Hucho and co-workers have been able 

to devise a method for the rapid preparation of small crystals of the Torpedo nACh 

receptor113 which may lead to a high resolution structure being obtained by neutron 

diffraction. This work is currently underway and is presently a hopeful route by 

which a high resolution structure of a whole LGIC receptor might be obtained.

Recently, Fraenkel et a/.114 have expressed fragments of the extracellular
i

domain of the Torpedo and human muscle nACh receptors fused to the TrpE pro

tein of E. coli, and showed that sufficient protein can be prepared to carry out NMR 

studies. This approach may yield information on substructures that in the long term 

will allow a structural model to be constructed of the entire extracellular domain. 

Improvements in NMR techniques may allow a complete structural determination of 

the whole extracellular domain of an LGIC subunit expressed as a fusion protein.

If a complete structural determination of the extracellular domain can be 

achieved this will allow homology modelling of all other LGICs to be performed. If 

the main determinants of the agonist binding site are contained on a conserved 

structural framework, such as is suggested for the cys-loop, then homology models 

will probably be sufficient to reveal important aspects of ligand-protein recognition. 

However, if the region corresponding to Cys 192-193 of the a-subunit of the Tor

pedo nACh receptor is indeed a key determinant then homology modelling alone 

will be of limited use.

7.4.2. Mutagenesis Studies
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DNA mutagenesis is the most direct method of testing the features of molecular 

models, particularly with respect to functional domains such as the ion-channel and 

ligand-binding site of LGICs. Suprisingly, although very informative, only relatively 

few DNA mutagenesis studies have so far been carried out on LGICs54,115"120 and 

none have been done in close collaboration with the molecular modelling.

The importance of molecular modelling becomes apparent when one attempts 

to list site-directed mutations on a protein of undetermined structure. In analyzing 

just sequence information even when isoforms, subtypes and functional variants
i

are available the number of candidate mutations can be unrealistically large and dif

ficult to prioritise and the results difficult to interpret.

An obvious set of experiments on LGIC receptors is to mutate each of the 14 

invariant amino acids to alanine (see alignment Appendix II) and test the heterolo- 

gously expressed altered receptors for (i) functional response electrophysiologi- 

cally, (ii) for agonist and competitive antagonist binding, and (iii) levels of expres

sion. The a7-subunit form of nACh receptor is presently the most suitable receptor 

to carry out such studies on. The advantages of this receptor are (i) it forms a fully 

functional homo-oligomeric receptor protein and thus problems of co-expression of 

mutant and wild-type subunits are avoided, (ii) a-bungarotoxin binds with high-affin- 

ity and in the radio-iodinated form can be used to accurately determine expressed 

levels of protein, and (iii) the pharmacology of the native protein is well-character

ized.121

Recently, Revah et a/.118 performed a mutagenesis study on Leu-247 of the 

a7-subunit. This residue is highly conserved in LGIC subunits. Interestingly, substi

tution by phenylalanine, valine, threonine and serine resulted in functional protein in
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temns of a ligand-gated ion-channel response. However, the prolonged time course 

of the measured responses would be expected to be non-viable for efficient neuro

signalling and therefore it appears that this residue is invariant because of physio

logical constraints. It would be of great interest to determine whether other residues 

invariant to LGICs are so because of functional or structural reasons.

It would also be of interest to determine whether the ion-channel response can 

be abolished whilst retaining agonist binding properties. This has been indicated to 

be the case by the mutagenesis studies of Mishina et al.54 , but a-bungarotoxin
i

was used as the probe for the agonist binding site which may not be a valid 

approach given the affinity for a-bungarotoxin of short peptide fragments.

A main advantage of molecular modelling is that the explicit atomic details indi

cate more directed changes. For the cys-loop, changes at position 6  could be 

tested to see whether this position does indeed effect agonist recognition as is sug

gested would be the case by the model proposed in this study. If the cys-loop is 

shown to be important this will allow further modelling studies to be carried out with 

confidence. It would be of interest to change the invariant aspartic acid residue at 

position 11 of the cys-loop to see whether this has a crucial role in agonist binding. 

For this, as mutation to alanine or to asparagine, a non-charged minimal size 

change substitution would be expected to abolish agonist binding completely - 

determination of the levels of oligomeric protein expressed would be necessary.

A cassette approach to site-directed mutagenesis is suggested as the most 

expedient way of carrying out changes in the amino acid sequence of continuous 

functional determinants of proteins. The main advantage of the approach is that 

once a pair of unique restriction sites have been identified or introduced that flank a
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particular region of the primary structure to be studied, totally non-conservative 

substitutions can be readily made.

An alternative approach to site-directed mutagenesis is the construction of 

chimeric subunits from two closely similar subunits that different in an observable 

way using restriction sites common to both subunit coding regions. Thus, a series 

of chimeric subunits may allow the identification of the minimum exchangeable por

tion between the subunits leading to a switch in the observed property. In this way 

the initial identification of the M2 segment as a determinant of the ion-channel was 

performed.122

7.4.3. Molecular Modelling

Construction of accurate explicit atomic models of the ion-channel of LGICs 

may be possible using the 8  A resolution data from electron microscopy studies. 

This would include making use of the multiple alignment of LGICs sequences to 

map the Torpedo nACh receptor amino acid sequences on to the protein density 

maps obtained for the ion-channel region.

Recently, Maricq et a/.123 reported the sequence of the 5HT3 receptor obtained 

by functional expression cloning using the Xenopus oocyte system. This study 

established the 5HT3 receptor to be a member of the LGIC superfamily. Its subunit 

sequence displays greatest similarity with nACh receptors, as might be expected 

given that it is known to have a cation- rather than an anion-selective ion-channel. 

Of interest, d-tubocurarine acts as a highly potent competitive antagonist of this 

receptor. Given then the overlap of this pharmacology with that of nACh receptors it 

may be possible to identify by comparative modelling and sequence analysis the
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residues involved in the recognition of d-tubocurarine can be identified, it is of note 

that Cys 192-193 is absent in the 5HT3 receptor subunit, suggesting that this 

region is not important for d-tubocurarine binding at least.

Recently, the X-ray structure of acetylcholinesterase from Torpedo electric 

organ was determined.124 Modelling could be usefully carried out on this protein to 

see what features are required for the recognition of acetylcholine as a prelude to 

identifying those features that give rise to the pharmacological differences between 

acetylcholinesterase and the nACh receptors.
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APPENDICES



APPENDIX I. Source Code of the Biosite Program
This appendix contains the source code of the biosite 

program for the interactive comparison of sequences of an 
extended protein superfamily. The program was written in 
TURBO C version 2.0 on a Vig I personal computer. The 
executable file will run on any IBM compatible personal 
computer.

^include <stdio.h>
^include <stdlib.h>
^include <alloc.h>
^include <string.h>
^include <conio.h>
^define LINE 256
^define BUFFER 128
^define FILENAME 15
^define NAME_LEN 1 5
#define TITLE_LEN 1 28
^define SEQ_LEN 800
^define OUT_LEN 50
^define SUBSET_SIZE 50
/*------------------------- CONDITIONAL COMPILATION--------
/* ^define RUN */
/* ^define DEBUG_RALIGN */
/* ^define DEBUG_RWRITE */
/* ^define DEBUG SUBSET *//*  -----------------------------------------------------------------
 * /

/ *   -----------------------------------------
 * /
/* Multiple-alignment maintained as a singly linked
list *//*----------------------------------------------------------------------------------------------------------------
 * /
/* SEQUENCE STRUCTURE------------
 * /
struct record
{ char name[NAME_LEN]; 

char title[TITLE_LEN]; 
char seg[SEQ_LEN]; 
int num;
struct record *next;

} list entry;
/ * ----------------------------------------------------------------------------------------------------------------
 */



/*--------------------------- SUBSETS STRUCTURE----
struct subset 
{ char name[NAME_LEN]; 

char title[TITLE_LEN]; 
int num; 
int num_seq;
int seq_list[SUBSET_SIZE]; 
struct subset *next;

} set entry;
/ * — : ---------------------------------------------------------------------------------------
 * /
/*---------- ------------------GLOBAL VARIABLES-----
struct record *start; 
struct record *last; 
struct record *find(int);
struct subset *start_set; 
struct subset *last_set; 
struct subset *cur_set;
/ * -----------------------------------------------------------------------------------------
 */
/★---------------------------PROTOTYPING-----------
void lstore(struct record *i,

struct record **start, 
struct record **last);

void set__store( struct subset *i,
struct subset **start_set, 

struct subset **last_set);
void ralign(void), walign(void), display(void), 
subset(void), scrline(void),
list_subset(void) , advert(void), disp_sub(void),
id__menu(void),
sub_menu(void), help(void);
int main menu(void);
/ *  : ---------------------------------------------------------------------------------
 * /

main() 
{ start = last = NULL;

start_set = last__set = cur_set = NULL; 
ralign(); 
f o r ( ; ; )  {

switch(main__menu()) {
case 1: display(); 

break;



case 2: disp_sub();
break; 

case 3: subset();
break; 

case 4: active();
break;

case 5: walign();
break; 

case 6: help();
break; 

case 7: id_menu();
break; 

case 8: sub_menu();
break; 

case 0: exit(1);

)

int main_menu(void) 
{ char s [8]; 

int c;
printf( "

\n");
printf("\n 

\n");
printf(

Titles \n")
printf(

\n");
printf(

\n");
printf(

\n") ;
printf(

\n\n");
printf(

ANALYSIS —
printf("\n 

\n");
printf( "

\n");

\n");

do {
printf( "\n

to Quit]: ");
gets(s); 
c = atoi(s);

} while(I(c>=0 && c<9));

—  MAIN MENU —

1. Display Sequences
2. List Sequence
3. Define Subset
4. Activate Subset
5. Save to Disk
6. Help

—  COMPARISON

7. Identity
8. Difference

Enter Option ['O'



return c;
}

void display()
{ struct record *info;

char ch, s[30], outline[OUT_LEN], line[LINE]; 
int i = 0, count = 1, j = 0;

printf("\n\n");
printf( " <Hit SPACE-BAR to quit>")

while(count < cur_set->num_seq)
{if(kbhit())
{ch = getch(); 
if(ch == ' ') break;
} printf("\n\n"); 

printf(H %5d
.\n", (i + 1)); 
j = 0;
for(j=0; j < cur_set->num_seq; j++)
{

info = find(cur_set->seq_list[j]);
memset(line, '\0', sizeof(line)); 
strncpy(line,&(info->seq[i]),OUT_LEN); 
strcat(line, '\0'); 

if(strchr(line, 42)) count++; 
sprintf(outline, M%d.%-14s\t\b\b\b\b\b\b\b% 

info->num, &(info->name[4]), line);
printf("%s\n", outline);

}i = i + OUT_LEN;
)delay(1000);
clrscr(); 
printf("\n\n\n");

}

void disp_sub()
{ struct record *info;

char s[1), outline[OUT_LEN], line[LINE]; 
int j;
clrscr();
for(j=0; j < cur_set->num_seq; j++)
{ memset(line, '\0', LINE); 

info = find(cur__set->seq_list [ j ]);



strncpy(line, info->title, 50); 
strcat(line, '\0'); 

printf("%3d.%-15s%-s\n", info->num, &(info- 
>name[4]), line);

)printf("\n< Hit any key to continue >"); 
gets(s); 

clrscr(); 
printf("\n\n\n");

>

void list_seq()
{ struct record *info; 

clrscr();
printf("\n SEQUENCES

________________ \n"71info = start; 
do 
{ printf("%d.%-s \tM, info->num, &(info->name[4])) 

info = info->next;
}while(info); 
scrline(); 
printf("\n");

)

void subset(void)
{ struct subset *iset; 

char buffer[BUFFER], s[80); 
int inum, i = 0; 

static int set_num = 1;
list_seq();

iset = (struct subset *)malloc(sizeof(set_entry)); 
if(!iset)
{

printf("\n Out of memory\n");
return;

)

memset (iset->seq__list, 0, SUBSET_SIZE) ; 
iset->num = ++set_num;
printf(M\n Enter name of subset: ");
gets(buffer);
strcpy(iset->name, buffer);
printf( " Title [40 characters]: ");
gets(buffer);
strcpy(iset->title, buffer); 
printf("\n");



{ printf( " Sequence number [<CR> to
Quit]: ");

gets(buffer);
if(!strcmp(buffer, "")) break; 
inum = atoi(buffer); 
iset->seq_list[i] = inum;
i++;

) while(s !=NULL); 
iset->num_seq = i++;
set_store(iset, &start_set, &last__set);
clrscr();
printf("\n\n\n");

>

void set_store(struct subset *i,
struct subset **start_set, 

struct subset **last_set)
{ if(!*last_set)

{ *start_set = i;
*last_set = i;

}else (*last_set)->next = i; 
i->next = NULL;
*last_jset = i;
cur_set = i;

)

struct record *find(int seq__num)
{ struct record *info; 

info = start; 
while(info)
{ if(info->num == seq_num) return info; 

info = info->next;
}

printf("\n Sequence number not found\nM);
return NULL;

}

void list_subset(void)
{

struct subset *iset; 
iset = start_set; 

clrscr();



printf ( " SUBSETS_________  DESCRIPTION________________
______________ SEQUENCES Xn77! ;

while(iset)
{ printf("%d. %-20s%-40s %-3d \n", iset->num/

iset->name, iset->title, iset->num__seq); 
iset = iset->next;

>printf("____________________________________________________
________ \n");
printf("\n\n");
}

extern int count;
void mainset(int count)
{ struct subset *iset;

char buffer[BUFFER], main_title[80]; 
int inum, i = 0, j, it;

iset = (struct subset *)malloc(sizeof(set_entry)); 
if(!iset)
{ printf("\n Out of memory\n");

return;
}memset(iset->seq_list, 0, (SUBSET_SIZE)) ;

iset->num = 1;
strcpy(iset->name, "Main");
sprintf(main_title, "Main database of sequences"); 
strcpy(iset->title, main_title); 
iset->num_seq = count; 

for(i= 1, j=0; i <= count; i++, j++)
{

iset->seq__list [ j ] = i;
}
set_store(iset, &start_set, &last_set);

struct subset *find_sub( int sub__num) 
{ struct subset *iset; 

iset = start_set; 
while(iset)
{ if(iset->num == sub num)

{
cur_set = iset; 
return;

}
iset = iset->next;



printf("\n Subset number not found\n");
return;
/^return NULL;*/

}

active(void)
{ char buffer[10]; 

int sub__num;
list_subset();
printf( " Subset number: ");
gets(buffer); 

sub_num = atoi (buffer); 
f ind__sub (sub_num) ;

#ifdef DEBUG_SUBSET
printf("%s\nM, cur_set->name);

#endif
clrscr();

printf(M\n\n\n");
>

void lstore(
struct record *i,

struct record **start, 
struct record **last)

{ if(!*last)
{ *start = i;

*last = i;
}else (*last)->next = i; 
i->next = NULL;
*last = i;

}

void list__active()
{ struct record *info;

char s[30], outline[OUT_LEN], line[LINE]; 
int j=0;
while(cur_set->seq_list != NULL)
{info = find(cur_set->seq_list[ j ]);

sprintf(outline, "%d.%-14s\n", info->num, &(info-
>name[4]));

printf("%s\n", outline); 
info = f ind(cur__set->seq_list [ j ]); 

j++;
)



void ralign(void)
{ struct record *info;

FILE *infile; 
char line[LINE], inline[LINE]; 

int count = 0, first__line;
printf("\n Enter name of alignment file:

"); gets(line);
if((infile = fopen(line, "r")) == NULL)

{ printf( " Can't open file - %s\n",
line);

printf("\n Enter name of alignment
file: ");

gets(line);
if((infile = fopen(line, "r")) == NULL)
{printf( " Error in opening file -

%s\n", line);
exit(1);

)
>clrscr();
printf("\nReading in sequences ..."); 
scrline();
while((fgets(line,LINE,infile) != NULL))
{#ifdef DEBUG_RLIGN

printf("test6\n");
#endif

if(line[0] == 62) /*
checks for ">" */

{info = (struct record 
*)malloc(sizeof(list_entry));

memset(info->name, '\0;, sizeof(info->name)); 
memset(info->title, '\0', sizeof(info-

>title));
memset(info->seq, '\0', sizeof(info->seq)); 

if(!info) {printf("\nOut of memory\n"); return;}
info->num = ++count;

/* sequence number */
sscanf(line,"%s",info->name);

/* sequence name */
#ifndef DEBUG__RAL IGN

printf("%d.%s \t",count, &(info->name[4]));
#endif

fgets(line,LINE,infile);



strncpy(info->title,line,(strlen(line)-l )); 
/* sequence title */

first_line = 0;
while(fgets(line,LINE,infile) 1= NULL)
{ sscanf(line,"%s",inline);

if(!strchr(inline, 42)) /* checks for
» * »  * /

{
if(first_line == 0)
{

strcpy(info->seq,inline); 
first_line++;

}else strcat(info->seq,inline);
)
else break;

} if(first_line == 0) strcpy(info-
>seq,inline);

else strcat(info-
>seq,inline);
#ifdef DEBUG_RALIGN
printf("%d.%s\nM, count, info->name);
printf(Mtest2\nM);
printf("%s\n", info->title);
printf("test3\n");
printf("%s\n", info->seq);
s^endif

lstore(info, Sstart, &last);
}#ifdef DEBUG_RALIGN
printf("test4\n");

#endif
}#ifdef DEBUG_RALIGN 

printf("test5\n");
#endif

scrline(); 
fclose(infile);
printf("\n %d sequences in alignment\n"

count);
delay(2500); 

mainset(count); 
clrscr(); 
printf("\n\n\n");

void walign(void)
{

struct record *info;



FILE *outfile;
char s[30], out__buf fer[SEQ__LEN], line [LINE]; 

int i, j;
printf(M\n Filename: ");
gets(s);
outfile = fopen(s, "w"); 
if(loutfile)

{printf("Cannot open file\n"); 
return;

}printf("\n Saving file ...\nM);
j=0 ;for(j=0; j < cur_set->num_seq; j++)
{info = find(cur_set->seq_list[j]); 
fprintf(outfile, "%s\n", info->name);

fprintf(outfile, "%s\n", info->title); 
strcpy(out__buffer, info->seq);

#ifdef DEBUG_RWRITE 
printf ("%s\n", out__buffer);
#endif

i = 0; 
do 
{

memset(line, ' \ Qr , sizeof(line)); 
strncpy(line,&out_buffer[i],50); 
strcat(line, '\0; ); 
fprintf(outfile, "%s\n", line); 
i = i + 50;

)while(!strchr(line, 42)); /* checks for "*" */
}fclose(outfile);
clrscr(); 

printf("\n\n\n");

% void scrline()
{
printf("\n
___________________________________ \n "T T
)

/*#define DEBUG_ID */
void id_menu(void)
{

struct record *info;



struct record *comp1; 
struct record *comp2;
char buffer[BUFFER], s[80], name[30]; 
int inum, j, id = 0;

info = (struct record *)malloc(sizeof (list__entry)); 
if(i info)
{ printf("\n Out of raemory\n");

return;
}j = last->num; 
info->num = ++j;
list_seq(); 
printf("\n\n");
printf( " GENERATE IDENTITY

SEQUENCE:\n\n");
printf( " Output sequence name: ");
gets(buffer);
sprintf(name, ">P1;%s", buffer); 
strcpy(info->name, name);
printf( " Title [40 characters]: ");
gets(buffer);
strcpy(info->title, buffer);
printf("\n Enter sequence number [<CR>

to quit]: " );
gets(buffer); 
inum = atoi(buffer); 
compl = find(inum); 

if(compl == NULL)
{ delay(1500) ; 

clrscr(); 
printf("\n\n\n"); 

return;
}
strcpy(info->seq, comp1->seq); 
do 
{
printf( " Enter sequence number [<CR>

to quit]: " );
gets(buffer);
inum = atoi(buffer);
if(!strcmp(buffer, "")) break;
comp2 = find(inum);
id = identity(comp2, info);
}
while(strcmp(buffer, "")); 
lstore(info, &start, &last);



start__set->seq_list [ (start_set->num__seq) ] = ((start_set- 
>num_seq) +1);start_set->num_seq = ((start_set->num_seq) + 1);
#ifndef DEBUG_ID

printf("\n");printf( " %d identity positions\n",
id);

printf( " \"%s\" added to MAIN
list\n\n", &(info->name[4]));

delay(1500); 
clrscr(); 
printf("\n\n\n");

#endif
}

int identity(
struct record *comp2, 
struct record *info 
)

{ int i, id__count; 
size_t p;

#ifdef D E B U G _ ID
printf("test3 %s %d %s %d\n"/ last->seq, last->num/ 

last->name, info->num);
#endif
#ifdef D E B U G _ ID

printf("%s Is",comp2->seq, info->seq);
#endif

id_count = 0;
for(i = 0; info->seq[i] != 42; i++)
{

if(info->seq[i] != comp2->seq[i])
{info->seq[i) =
)
if(info->seq[i] >64 && info->seq[i] < 91) 

id_count++;
}

strcat(info->seq, '\0'); 
return(id_count);

#ifdef DEBUG __ID
printf("test4 %s %d %s %d\n", last->seq, last->num, 

last->name, info->num);
#endif
}



void sub__menu( void)
{ struct record *info; 

struct record *comp1; 
struct record *comp2;
char buffer[BUFFER], s[80], name[30]; 
int inum, j, sub;

info = (struct record *)malloc(sizeof(list_entry)); 
if(!info)
{ printf(M\n Out of memory\n");

return;
)j = last->num; 
info->num = ++j; 
list_seq(); 
printf("\n\n");
printf( " GENERATE DIFFERENCE

SEQUENCE:\n\n");
printf( " Output sequence name: ");
gets(buffer);
sprintf(name, ">P1;%s", buffer); 
strcpy(info->name, name);
printf( " Title [40 characters]: ");
gets(buffer);
strcpy(info->title, buffer);
printf("\n Enter sequence number [<CR>

to quit]: 11);
gets(buffer); 
inum = atoi(buffer); 
compl = find(inum); 

if(compl == NULL)
{ delay(1500); 

clrscr(); 
printf("\n\n\n"); 

return;
}strcpy(info->seq, comp1->seq); 
do 
{
printf( " Enter sequence number [<CR>

to quit]: ");
gets(buffer);
inum = atoi(buffer);
if(!strcmp(buffer, "")) break;
comp2 = find(inum);
sub = subtract(comp2, info);



}while(strcmp(buffer, "")); 
lstore(info, &start, &last);

start_set->seq__list[ (start_set->num_seq) ] = ((start_set- 
>num__seq) + 1);

start_set->num_seq = ((start_set->num_seq) + 1);
#ifndef DEBUG_ID

printf("\n");
printf( " %d difference positions\n",

sub);
printf ( " \"%s\,! added to MAIN

list\n\n", &(info->name[4])); 
delay(1500); 

clrscr(); 
printf("\n\n\n");

#endif
>

subtract(
struct record *comp2, 
struct record *info 
)

{ int i, sub_count = 0; 
size_t p;

#ifdef D E B U G _ ID
printf("%s %sM,comp2->seq, info->seq);

#endif
for(i = 0; info->seq[i] != 42; i++)
{if(info->seq[i) == comp2->seq[i]) 

info->seq[i] = 
if(info->seq[i] > 64 && info->seq[i] < 91) sub_count++ 
}

strcat(info->seq, 'XO'); 
return (sub__count);

■ }

void help(void)
{ char s[8); 

int c; 
clrscr();
printf( "BIOSITE: an interactive program for comparing 

sequences of an alignment\n");
printf ( 11 of amino-acid or nucleotide

sequences.\n\n");
printf( "MENU OPTIONS:\n\n");



printf( "1. Display Sequences: Displays the alignment of 
the active list of sequences.\n\n");

printf( "2. List Sequence Titles: Lists the names and 
the titles of the active list\n"); 

printf( " of sequences.\n\n");
printf( "3. Define Subset: Defines a subset list of 

sequences. The 'MAIN' subset\n");
printf( " contains all of the sequences.\n\n"); 
printf( "4. Activate List: Activates a subset list of 

sequences.\n\n");
printf( "5. Save to Disk: Writes the active list of 

sequences to a disk file.\n\nM);
printf( "7. Identity: Generates a \"comparison\" 

sequence of identity residue positions\n");
printf( " of two or more sequences.\n\n"); 
printf( M8. Difference: Generates a \"comparison\" 

sequence of the residue positions\n");
printf( " which differ between a chosen sequence and 

one or more of the other \nM); 
printf( " sequences.\n\n");
printf( "Hit any key to continue");

gets(s); 
clrscr(); 
printf("\n\n\n");

}



APPENDIX II. Alignment of LG1C Amino Acid Sequences.

The correspondence of key residue positions of the a-subunit of the Torpedo 

nACh receptor (see Fig. 1.2.) in the following LGIC alignment is:

a-subunit = LGIC alignment position 

Ser-1 = 63 (mature N-terminus)

Tyr-15 = 79 (LGIC invariant)

Arg-20 = 84 (LGIC highly conserved)

Pro-21 = 85 (LGIC invariant)

Trp-60 = 124 (LGIC invariant)

Asp-62 = 126 (LGIC invariant)

Leu-65 = 129 (LGIC highly conserved)

Asp-70 = 137 (MIR residue)

Lys-76 = 142 (MIR residue)

Trp-8 6  = 152 (LGIC highly conserved)

Pro-8 8  = 154 (LGIC invariant)

Tyr-93 = 159 (DDF labelled site)

Gly-114 = 182 (LGIC invariant)

Cys-128 = 196 (LGIC invariant)

Pro-136 = 204 (LGIC invariant)

Asp-138 = 206 (LGIC invariant)

Cys-142 = 210 (LGIC invariant)

Trp-149 = 217 (DDF labelled site)

Tyr-151 =219 (DDF labelled site)

Tyr-190 = 272 (DDF labelled site)

Cys-192 = 274 (DDF labelled site)



Cys-193 = 275 (DDF labelled site)

Tyr-198 = 285 (nicotine labelled site) 

Arg-209 = 296 (LGIC invariant)

Pro-221 = 308 (LGIC invariant)

Asp-238 = 325 (Imoto ring position 1) 

Glu-241 = 330 (Imoto ring position 2) 

Ser-248 = 337 (channel residue) 

Leu-251 = 340 (channel residue) 

Ser-252 = 341 (channel residue) 

GIu-262 = 351 (Imoto ring position 3) 

Pro-265 = 354 (LGIC invariant)

Ser-266 = 355 (Imoto ring position 4) 

Asn-297 = 386 (LGIC highly conserved) 

Asp-407 = 673 (LGIC invariant)

Nomenclature scheme: lowercase letter represents the species (h = human; r = rat; 

m = mouse; b = bovine; c = chicken; t = torpedo; d = drosophila; I = locust). This is 

folllowed by three uppercase letters designating the receptor type (GAB = GABAa 

receptor; GLY = Glycine receptor; ACH = Acetylcholine receptor), an upper case 

letter designating the subunit type (A = a; B = P; G = y; D = 8 ; E = e) and a number 

indicating the subtype of a particular subunit type.



) G A B hA I 
) G A B bA I 
) G A B rA I 
) GABCA1 
)G A B b A 2  
) G ABbA3  
)G A B rA 3  
) G ABbA4  
)G A B rA 5  
)GABmA6  
) A LPH A  
) G A B hB l 
) G A B bB I 
)G A B rB 1  
) G A B rB 2  
)G A B rB 3  
)G A B cB 3  
) B ETA  
)G A B hG 2  
)G A B rG 2  
)GABmG2 
) GAMMA 
) G A B rD I 
) GABmDl 
)G A B rD 2  
) D E LTA  
)G L Y rA 1  
)G L Y rA 2  
)G L Y rB 1  
)G L Y d B  
)G L Y  
) A N IO N  
) A C H hA I 
) A C H bA I 
) ACHmAl 
) A C H cA l 
) A C H xA l 
) A C H s IA  
) A C H tA I  
) A C tm A l 
) ALPH A  
)A C H rA 2  
) A C H cA 2  
) A C H rA3  
) A C H cA 3  
)A C H g A 3  
) A C H rA 4  
) A C H cA 4  
) A C H rA 5  
) A C H cA 7  
) A CH dA L  
)A C H d A 2  
) A C H 1A 2  
) N _A LP H A  
)A C H rB 2

4 5 6
4 5 6
4 5 5
4 5 5
451
4 9 2
4 9 3

HUMAN GABA RECEPTOR A L P H A -1 S U B U N IT  
B O V IN E  GABA RECEPTOR A L P H A -1 S U B U N IT  
RAT GABA RECEPTOR A L P H A -1 S U B U N IT  
C H IC K E N  GABA RECEPTOR A L P H A -1 S U B U N IT  
B O V IN E  GABA RECEPTOR A L P H A -2 S U B U N IT  
B O V IN E  GABA RECEPTOR A L P H A -3 S U B U N IT  
B O V IN E  GABA RECEPTOR A L P H A -3 S U B U N IT  

5 5 6  B O V IN E  GABA RECEPTOR A L P H A -4 S U B U N IT  
4 6 4  RAT GABA RECEPTOR A L P H A -5 S U B U N IT  
4 4 3  MOUSE GABA RECEPTOR A L P H A -6  S U B U N IT  
C O N SEN SU S: GABA RECEPTOR ALPHA  
4 7 4  HUMAN GABA RECEPTOR B E T A -1  S U B U N IT  
4 7 4  B O V IN E  GABA RECEPTOR B E T A -1  S U B U N IT  
47  4 RAT GABA RECEPTOR B E T A -1  S U B U N IT
4 7 4  RAT GABA RECEPTOR B E T A -2 S U B U N IT
4 7 3  RAT GABA RECEPTOR B E T A -3 S U B U N IT
4 7 6  C H IC K E N  GABA RECEPTOR B E T A -3  S U B U N IT  
C O N SEN SU S: GABA RECEPTOR BETA  
4 6 7  HUMAN GABA RECEPTOR GAM M A-2 S U B U N IT  
4 6 6  RAT GABA RECEPTOR GAM M A-2 S U B U N IT  
4 6 6  MOUSE GABA RECEPTOR GAMMA-2 S U B U N IT  
CO N SEN SU S: GABA RECEPTOR GAMMA 
4 4 9  RAT GABA RECEPTOR GAM M A-2 S U B U N IT  
4 4 9  MOUSE GABA RECEPTOR GAM M A-2 S U B U N IT  
4 49 RAT GABA RECEPTOR D ELTA  S U B U N IT  
CO N SEN SU S: GABA RECEPTOR D ELTA
4 2 7  RAT G L Y C IN E  RECEPTOR A L P H A -1  S U B U N IT
4 5 2  RAT G L Y C IN E  RECEPTOR A L P H A -2 S U B U N IT
4 9 6  RAT G L Y C IN E  RECEPTOR B E T A -1  S U B U N IT

D R O S O P H ILA  G L Y C IN E  RECEPTOR
C O N SEN SU S: G L Y C IN E  RECEPTOR
C O N SEN SU S: A N IO N  CHANNEL
4 5 7  HUMAN nACH RECEPTOR A L P H A -1 S U B U N IT
4 5 7  BOVINE nACH RECEPTOR ALPHA-1 SUBUNIT
4 5 7  MOUSE nACH RECEPTOR ALPHA-1 SUBUNIT
4 5 6  CHICKEN nACH RECEPTOR ALPHA-1 SUBUNIT
4 5 7  XENOPUS nACH RECEPTOR ALPHA-1 SUBUNIT 
1 0 4  SNAKE nACH RECEPTOR ALPHA-1 SUBUNIT

TORPEDO nACH RECEPTOR A L P H A -1 S U B U N IT  
MOUSE nACH RECEPTOR A L P H A -1 S U B U N IT  

C O N SEN SU S: nACH RECEPTOR A L P H A -1
511  R AT nACH RECEPTOR A L P H A -2 S U B U N IT  
5 2 8  C H IC K E N  nACH RECEPTOR A L P H A -2 S U B U N IT  
4 9 9  RAT nACH RECEPTOR A L P H A -3 S U B U N IT
4 9 7  C H IC K E N  nACH RECEPTOR A L P H A -3  S U B U N IT
5 1 2  G O L D F IS H  nACH RECEPTOR A L P H A -3  S U B U N IT  
6 3 3  RAT nACH RECEPTOR A L P H A -4 S U B U N IT
6 2 2  C H IC K E N  nACH RECEPTOR A L P H A -4 S U B U N IT  
4 5 2  RAT nACH RECEPTOR A L P H A -5 S U B U N IT
5 0 2  C H IC K E N  nACH RECEPTOR A L P H A -7  S U B U N IT  
5 6 7  D R O S O P H ILA  nACH RECEPTOR ALPHA S U B U N IT  
5 3 5  D R O S O P H ILA  nACH RECEPTOR A L P H A -2 S U B U N IT  
5 3 3  LO C U ST nACH RECEPTOR A L P H A -2 S U B U N IT  
C O N SEN SU S: nACH RECEPTOR NEURONAL ALPHA
5 0 3  R A T nACH RECEPTOR B E T A -2 S U B U N IT

461
461



5 5 A C H cB 2
5 6 A C H gB 2
57 A C H rB 3
5 8 A CH gN 3
5 9 ACHgNA
60 A C H rB 4
61 ACHdNA
62 N B E TA
63 A C H hB I
64 A C H bB l
65 ACHmBI
66 A C H tB l
67 B ETA
6 8 A C H hG I
69 A C H bG I
70 ACHmGI
71 A C H cG I
72 A C H xG I
73 A C H tG I
74 GAMMA
75 A C H b E l
7 6 A C H rE I
77 A C hm EI
78 E P S IL O N
79 A C H bD l
8 0 ACHmDl
81 A C H c D l
8 2 A C H xD l
83 A C H tD l
8 4 D E LTA
85 C A T IO N
B lo c k  1 .
<1 - 5 0 )
01 G A B hA I
0 2 G A B bA l
03 G A B rA I
04 G A B cA l
0 5 G A B bA 2
0 6 G ABbA3
07 G A B rA 3
0 8 G A B bA 4
0 9 G A B rA 5
10 GABmA6
11 ALPH A
1 2 G A B hB l
13 G A B b B I
1 4 <3ABrB1
15 G A B rB 2
16 G A B rB 3
17 G A B cB3
1 8 B ETA
19 GABhG2
2 0 G A B rG 2
21 GABmG2
2 2 GAMMA

491  C H IC K E N  nACH RECEPTOR B E T A -2 S U B U N IT  
4 5 9  G O L D F IS H  nACH RECEPTOR B E T A -2 S U B U N IT  
4 6 4  RAT nACH RECEPTOR B E T A -2 S U B U N IT  
4 6 6  G O L D F IS H  nACH RECEPTOR B E T A -2 S U B U N IT  
4 6 2  G O L D F IS H  nACH RECEPTOR B E T A -2  S U B U N IT  
4 9 5  RAT nACH RECEPTOR B E T A -2 S U B U N IT  
5 2 8  D R O S O P H ILA  nACH RECEPTOR N O N -A LP H A  S U B U N IT  
C O N SEN SU S: nACH RECEPTOR NEURONAL B E T A -2 
501 HUMAN nACH RECEPTOR B E T A -1  S U B U N IT
5 0 5  B O V IN E  nACH RECEPTOR B E T A -1  S U B U N IT  
501  MOUSE nACH RECEPTOR B E T A -1  S U B U N IT  
4 9 3  TORPEDO nACH RECEPTOR B E T A -1  S U B U N IT  
C O N SEN SU S : nACH RECEPTOR B E T A -1
5 1 7  HUMAN nACH RECEPTOR GAMM A-1 S U B U N IT
5 1 9  B O V IN E  nACH RECEPTOR GAMM A-1 S U B U N IT  
4 9 7  MOUSE nACH RECEPTOR GAMM A-1 S U B U N IT  
5 1 4  C H IC K E N  nACH RECEPTOR GAM M A-1 S U B U N IT
5 1 0  XENOPUS nACH RECEPTOR GAM M A-1 S U B U N IT
5 0 6  TORPEDO nACH RECEPTOR GAM M A-1 S U B U N IT
C O N SEN SU S: nACH RECEPTOR MUSCLE GAMMA
491 B O V IN E  nACH RECEPTOR E P S IL O N -1 S U B U N IT  
4 9 3  RAT nACH RECEPTOR E P S IL O N -1  S U B U N IT  
4 9 3  MOUSE nACH RECEPTOR E P S IL O N -1  S U B U N IT  
C O N SEN SU S: nACH RECEPTOR MUSCLE E P S IL O N  
5 1 6  B O V IN E  nACH RECEPTOR D E L T A -1 S U B U N IT
5 2 0  MOUSE nACH RECEPTOR D E L T A -1 S U B U N IT  
5 1 3  C H IC K E N  nACH RECEPTOR D E L T A -1 S U B U N IT
521 XENOPUS nACH RECEPTOR D E L T A -1 S U B U N IT
5 2 2  TORPEDO nACH RECEPTOR D E L T A -1 S U B U N IT
C O N SEN SU S: nACH RECEPTOR MUSCLE DELTA  
C O N SEN SU S: C A T IO N  CHANNEL

MRKSPGLSDCLW AW ILLLSTLTGRS
MKKSPGLSDYLW AW TLFLSTLTGRS
M KKSRGLSDYLW AW TLILSTLSGRS
MKRLLVLCDCLW AW SLLLNALTERS
M KTKLNSSNM QLLLFVFLAW DPARL

M IIT Q M S Q F Y M A G LG LL F L IN IL P G T T G Q V E S R R Q E P G D FV K Q D IG G L S P
M ITTQ M W H FY V TR V G LLLL IS ILP G TTG Q G E S R R Q E P G D FV K Q D IG G LS P

M VSA K K VPA IA M SFG VSFA LLH FLC LA A C LN  
M D N G M LS R FIM TK TLLV FC IS M TLS  S HFGFSQ

M V L L L P W L F IIL W L E

M W TVQ N R ESLG LLSFPVM IT  
M W TVQ N RESLG LLSFPVM IA  
MW TVQNRESLGLLSFPVMVA  
M W R V R K R G Y F G IW S FP L IIA  
M W G FAGG RLFGIFSAPVLVA  
M W G FG G G R IFG IFSA PVLVA  
MW G S P

M S S PN IW S TG SSV YSTPV FSQ K M TVW ILLLLSLYPG FTSQ K S D D D YE D Y  
MSSPNTW STG STVYS PVFSQ K M TLW ILLLLSLYPG FTS Q K SD D D Y ED Y  
M SS PN TW SIG SSVYS  PVFSQ K M TLW ILLLLSLYP G FTSQ K SD D D YED Y  

S S PVFSQKMT W ILLLLS LY PG FTS Q K S D D D Y E D Y



2 3 G A B rD I < M DVLG W LLLPLLLLCTQPHHG AR
2 4 GABmDI ( M DVLG W LLLPLLLLCTQPHHG AR
2 5 G A B rD 2  < M DVLG W LLLPLLLLCTQPHHG AR
2 6 D E L T A  < MDVLG W LLLPLLLLCTQPHHG AR
2 7 G L Y r A l < SKE
2 8 G L Y rA 2  < M N R Q LVN ILTA LFA FFLG TN H FR EA FC K D H D
2 9 G L Y r B I < M K FSLA VSFFILM SLLFEDA CSKEK SSK KG KG KK KQ YLC
8 6 G LY dB  < M S D S K M D K LA R M A P LP R TP LLTIW LA IN M A LIA Q E TG H K R IH
3 0
31
3 2

G LY  < 
A N IO N  < 
A C H h A l < MEPWPLL

3 3 A C H b A l < M EPRPLL
3 4 ACHm AI < M ELSTVL
3 5 A C H c A l < MELCRV
3 6 A C H x A l < MDYTASC
3 7
3 8

A C H s IA  < 
A C H tA l < M ILCSYW HVGL

39 A C tm A I < M ILCSYW HVGL
40
41

A LP H A  < 
A C H rA 2 < MTLSHSALQFW THLYLW CL

42 A C H cA 2 < M G W PC R SIIP LLV W C FV
43 A C H rA 3  < M G VVLLPPPLSM
4 4 A C H cA 3 < MVQRGCRAHS
4 5 A C H gA 3 < M N S A S R IT L F
4 6 A C H rA 4  < M E IG G P G A G TG A P P P LLLLP LLLLLG
47 A C H cA 4 < M G FLVSK G N LLLLLC
4 8 A C H rA 5 < MVQLLAGRWRPTGAR
49 A C H cA 7 < MGLRALMLW
5 0 A C H dA L < MGSVLFAA
51 A C H dA 2 < M A P G C C TTR PR PIA LLA H IW R H C K PLC L
5 2
5 3
5 4

A C H 1A 2 < 
N A L P H A < 
A C H rB 2 < MLACMAGHSNSMALF

5 5 A C H cB 2 < MALLR
5 6
57

A C H gB 2 < 
A C H rB 3  < M TG FLR V FLVLS A TLS G S

5 8 A C H gN 3 < M K LQ IS G LL L V TA V A
5 9 ACH gN A  < M T L A V IG L F T L F T S
60 A C H rB 4  < M RG TPLLLV
61 A C H dN A  < MESSCKSWLLC
6 2
6 3

N B ETA  < 
A C H h B l < M TPGALLMLL

6 4 A C H b B l < M TP G A LLLLLL
6 5 ACHm BI < M A LG A LLLLL
6 6 A C H tB l < MENVRRMALGL
6 7 B E TA  < L
6 8 A C H hG I < MHGGQGPLL
6 9 A C H bG I < MCGGQRPLF
7 0
71

ACHmGI < 
A C H c G I < M RCSDLLLL

7 2 A C H x G I < MDTV
7 3 A C H tG I < M VLT
7 4
7 5

GAMMA < 
A C H b E I < MAGALLC

7 6 A C H rE I < MTMALLG



7 7
7 8
79
8 0  
81 
8 2
8 3
8 4
8 5  
Con 
B1 
( 5  
01 
02
0 3
0 4
0 5
0 6
0 7
0 8
0 9
10 
11 
12
13
14
15
16
17
18
19
20 
21 
22
23
24
25
2 6
2 7
2 8
2 9
86
3 0
31
3 2
3 3
3 4
3 5
3 6
3 7
3 8
39
40
41
42

AChmEI 
EPSILON 
ACHbDI 
ACHmDI 
ACHcDI 
ACHxDI 
ACHtDl 
DELTA 
CATION 
sensus 

ock 2. 
1- 1 0 0 ) 
)GABhA1 
)GABbAI 
)GABrAl 
)GABcAl 
)GABbA2 
)GABbA3 
)GABrA3 
)GABbA4 
)GABrA5 
)GABmA6 
)ALPHA 
)GABhBl 
)GABbBl 
)GABrBl 
)GABrB2 
)GABrB3 
)GABcB3 
) BETA 
)GABhG2 
)GABrG2 
)GABmG2 
)GAMMA 
)GABrDI 
)GABmD1 
)GABrD2 
)DELTA 
)GLYrA1 
)GLYrA2 
)GLYrB1 
)GLYdB 
) GLY 
)ANION 
)ACHhAI 
)ACHbAI 
)ACHmAl 
)ACHcAl 
)ACHxAl 
)ACHsIA 
)ACHtAI 
)ACtmAl 
)ALPHA 
)ACHrA2 
)ACHcA2

5 1 ------------------ 6 1 ------------------- 7 1 --------------
YGQPSLQDELKDNTTVFTRILDRLLDG 
YGQPSLQDELKDNTTVFTRILDRLLDG 
YGQPS QDELKDNTTVFTRILDRLLDG 
YGQTSSQDELKDNTTVFTRILDRLLDG 
VLANIQEDEAKNNITIFTRILDRLLDG 
KHAPDIPDDSTDNITIFTRILDRLLDG 
KHAPDIPDDSTDNITIFTRILDRLLDG 
ESPGQNQKEEKLCPENFTRILDSLLDG 
MPTSSVQDETNDNITIFTRILDGLLDG 
NAQAQLEDEGNFYSENVSRILDNLLEG

RILD LL G
MVCCAHSTNEPSNMPYVKETVDRLLKG 
MVCCAHSANEPSNMSYVKETVDRLLKG 
MVCCAHS SNEPSNMSYVKETVDRLLKG 
AVCAQSVNDPSNMSLVKETVDRLLKG 

WCCAQSVNDPGNMSFVKETVDKLLKG 
VVCCAQSVNDPGNMSFVKETVDKLLKG 

CA S N P NM VKETVD LLKG 
ASNKTWVLTPKVPEGDVTVILNNLLEG 
ASNKTWVLTPKVPEGDVTVILNNLLEG 
TSNKTWVLTPKVPEGDVTVILNNLLEG 
SNKTWVLTPKVPEGDVTVILNNLLEG 

AMNDIGDYVGSNLEISWLPNLDGLMEG 
AMNDIGDYVGSNLEISWLPNLDGLMEG 
AMNDIGDYVGSNLEISWLPNLDGLMEG 
AMNDIGDYVGSNLEISWLPNLDGLMEG 
ADAARSAPKPMSPSDFLDKLMGRT SG 
SRSGKHPSQTLSPSDFLDKLMGRT SG 
PSQQSAEDLARVPPNSTSNILNRLLVS 
TVQAATGGGSMLGDVNISAILDSFSVS 

P R
LLFSLCSAGLVLGSEHETRLVAKLFKD 
LLLGLCSAGLVLGSEHETRLVAKLFED 
LLLGLCSAGLVLGSEHETRLVAKLFED 
LLLIFSAAGPALCYEHETRLVDDLFRE 
LIFLFIAAGTVFGTDHETRLIGDLFAN
VLLLFSCCGLVLGSEHETRLVANLLEN 
VLLLFSCCGLVLGSEHETRLVANLLEN 

G HETRL L
LLVPAVLTQQGSHTHAEDRLFKHLFGG 
TLQAATREQKQPHGFAEDRLFKHLFTG

MAGALLG
L

MEGSVLTL
MAGPVLTLGLL

MAVLL
MAWIWISL
MGNIHFVY

■ - 8 1 ------------------ 9 1 ---------------------
YDNRLRPGLGER VTEVKTDI 
YDNRLRPGLGER VTEVKTDI 
YDNRLRPGLGER VTEVKTDI 
YDNRLRPGLGER VTEVKTDI 
YDNRLRPGLGDS ITEVFTNI 
YDNRLRPGLGDA VTEVKTDI 
YDNRLRPGLGDA VTEVKTDI 
YDNRLRPGFGGP VTEVKTDI 
YDNRLRPGLGER ITQVRTDI 
YDNRLRPGFGGA VTEVKTDI 
YDNRLRPG G T V T I 
YDIRLRPDFGGP PVDVGMRI 
YDIRLRPDFGGP PVDVGMRI 
YDIRLRPDFGGP PVDVGMRI 
YDIRLRPDFGGP PVAVGMNI 
YDIRLRPDFGGP PVCVGMNI 
YDIRLRPDFGGP PVCVGMNI 
YDIRLRPDFGGP PV VGM I 
YDNKLRPDIGVK PTLIHTDM 
YDNKLRPDIGVK PTLIHTDM 
YDNKLRPDIGVK PTLIHTDM 
YDNKLRPDIGVK PTLIHTDM 
YARNFRPGIGGP PVNVALAL 
YARNFRPGIGGA PVNVALAL 
YARNFRPGIGGP PVNVALAL 
YARNFRPGIGG PVNVALAL 
YDARIRPNFKGP PVNVSCNI 
YDARIRPNFKGP PVNVTCNI 
YDPRIRPNFKGI PVDVVVNI 
YDKRVRPNYGGP PVEVGVTM 
YD RIRPNFKG PV V NI
Y RP
Y S S WRPVEDHRQWE VTVGL 
YNSWRPVEDHRQAVEVTVGL 
YSSWRPVEDHREIVQVTVGL 
YSKWRPVENHRDAVWTVGL 
YNKWRPVETYKDQWVTVGL
YNKVIRPVEHHTHFVDITVGL
YNKVIRPVEHHTHFVDITVGL
Y V RPVE V TVGL
YNRWARPVPNTSDWIVRFGL 
YNRW S RPVPNTS DWIVKFGL



43 A C H rA 3
4 4 A C H cA 3
45 A CH gA 3
4 6 A C H rA 4
4 7 A C H cA 4
4 8 A C H rA 5
49 A C H cA 7
5 0 A CH dA L
51 A C H dA 2
5 2 A C H 1A 2
5 3 N A LPH A
5 4 A C H rB 2
5 5 A C H cB 2
5 6 A CH gB 2
57 A C H rB 3
5 8 AC H gN 3
5 9 ACHgNA
6 0 A C H rB 4
61 ACHdNA
6 2 N B ETA
6 3 A C H hB I
6 4 A C H bB I
6 5 ACHmBI
6 6 A C H tB l
6 7 B ETA
6 8 A C H hG I
6 9 A C H bG I
7 0 ACHmGI
71 A C H cG I
7 2 A C H xG I
7 3 A C H tG I
7 4 GAMMA
7 5 A C H b E I
7 6 A C H rE I
7 7 A C hm EI
7 8 E P S IL O N
7 9 A C H bD l
8 0 ACHmDl
81 A C H cD l
8 2 A C H x D l
8 3 A C H tD l
8 4 D E LTA
8 5 C A T IO N
C o n s e n s u s
B lo c k  3 .
< 1 0 1 - 1 5 0 )
0 1 )G ABhA1
0 2 ) G A B bA I
0 3 )G A B rA 1
0 4 )G A B c A1
0 5 )G A B bA 2
0 6 )G A B bA 3
0 7 )G A B rA 3
0 8 )G A B bA 4
0 9 )G A B rA 5

LM LVLM LLPA A SA SEA EH R LFQ YLFED  Y N E IIR P V A N V S H P V IIQ F E V  
A G VSSVPLASCG G SEPEHRLYAALFKN Y N Q F V R P V K N A S D P V IIQ F E V  
F L L T V L IT Q E C L S S K G E D R L F R R L F R R  Y N Q FIR P V E N V S D P V TV E FE V  
T G LLP A S S H IE T R A H A E E R L LK R LF S G  Y N K W S R P V G N IS D W LV R FG L  
A S IFP A FG H V E TR A H A E E R LLK K LFS G  YNKW S RPV AN IS  D W L V R F  GL 
R G TRG G LPELSSAA KH ED SLFR DLFED  Y E R W V R P V E H LS D K IK IK FG L  
LLA A AG LVR ESLQ G EFQ RK LYK ELLKN  Y N P LER P VA N D S Q PLTVY FTL  
VFIA LH FA TG G LA N P D A K R LY D D LLS N  Y N R LIR PV G N N S  DRLTVKMGL 
LLVLLLLC ETV Q A N P D A K R LY D D LLS N  Y N R L IR P V S N N T D T V LV K LG L  

NPDAKRLYDDLL SN Y N R L IR P V S N N T D T V LV K LG L  
L L  Y RPV

S FS LLW LC S G V LG TD TEER LVE H LLD PS R YN K LIR PA TN G SE LVTVQ LM V  
V LC LLA A LR R S LC TD TE E R LV E YLLD P TR Y N K LIR P A TN G S Q LVTV Q LM V

L R S D F L L G P E R Y N K L IR P A V N K S Q Q V T IG IK V  
W VTLTATA G LSSVA EH EDA LLR HLFQ G  Y QKWVRPVLN S S D 11K V Y FG L  
Y A T IE A P E E F V S L A E M E D TL L R N L FR G  Y Q K W V R P ILH A N D TITV R FG L  
IIA IT P A R E F V S L A E R E D A L L R E L F Q G  YQRWVRPVQHANHSVKVRFGL 
S LF S L LQ D G D C R L A N A E E K L M D D L LN K TR Y N N LIR P A TS S S Q L IS IR L E L  
S IL V LV A FS L V S A S E D E E R L V R D L F R G  YNKLIRPVQ NM TQ KVG VRFG L

L  Y RP
GALGPALAPG VRG SEAEG RLREKLFSG YDS SVRPAREVGDRVRVSVGL  
GVLGAHLAPGARGSEAEGRLREKLFSG YDSTVRPAREVG DRVW VSIG L  
G VLG TPLA P G A R G SEA E G Q LIK K LFSN  YDSSVR PAR EVG DR VG VSIG L  
W M M A LA LS G V G A S VM ED TLLS V LFE T YNPKVRPAQTVGDKVTVRVGL  

G S E L  L F  Y VRPA VGD V  V GL 
LLLLLAVCLG AQ GRNQ EERLLADLM Q N Y D P N LR P A E R D S D W N VS LK L  
LLPLLAVCLGAKGRNQEERLLGDLM QG YNPHLRPAEHDSDVVNVSLKL  

RNQEERLLADLMRN Y D P H LR P A E R D S D W N VS LK L  
FLLA LC V LP G IS C R N Q E E K LLQ D LM TN  Y N R H LR PA LR G D Q VID VTLK L  
L LL V S LC IS A A FC N N E E E R LLN D LM K N  Y N K N L R P V E K D G D IIS V S IK L  
L L L IIC L A L E V R S E N E E G R L IE K L L G D  Y D K R IIP A K T L D H IID V T L K L  

N E L L  Y P V K L
A LLLLQ LLG R G EG K N E ELR LYH YLFD T Y D P G R R PV Q E P E D TV TIS LK V  
TLLLLA LFG R SQ G K N E E LS LY H H LFD N  Y D P E C R P V R R P E D T V T IT LK V  
A LLLLTLFG R SQ G K N E E LSLY H H LFD N  Y D P E C R P V R R P E D T V T IT LK V  

L L  S G NEE L  H LF  Y E RP E V I L
VLLA A LW C G S W G LN EE E R LIR H LFE EK A Y N K E LR P A A H K E  S V E IS L A L  
A ALW CA LPG SW G LN EEQ R LIQ H LFN EK G YD K D LR PVA R K ED K VD VA LSL  
A LFG A LV LS G G LC V N Q E E R LIH H LFEE R G Y N K E VR P VA S A D EW D V YLA L  
L L P IL IY F P G C F S E S E E E R L L N H IF V E R G Y R K E L R P V E H T G E T V N V S L A L  
L L IS C L Y Y S G C S G V N E E E R L IN D L L IV N K Y N K H V R P V K H N N E W N IA L S L  

G E R L  Y K RP V L L
Y P
Y P

1 0 1 ---------------- 1 1 1 ----------------- 1 2 1 ------------------1 3 1 - - -
<FVTSFG PVSD H D M EYTID VFFR Q SW K D ER LK FK G  
<FVTSFG PVSD H D M EYTID VFFR Q SW K D ER LK FK G  
<FVTSFG PVSD H D M EYTID VFFR Q SW K D ER LK FK G  
<FVTSFG PVSD H D M EYTID VFFR Q SW K D ER LK FK G  
<YVTSFG PVSD TD M EYTID VFFR Q K W K D ER LK FK G  
<YVTSFG PVSD TD M E YTID VFFR Q TW H D ER LK FD G  
< YVTS FGPV S D TD M EYTIDVFFR Q TW H DER LK FDG  
<YVTSFG PVSD VEM EYTM D VFFRQ TW IDK R LK YDG  
<YVTSFG PV SD TEM EYTID VFFR Q SW K D ER LR FK G

 1 4 1 --------------------
PMTVLRLNNLMAS
PMTVLRLNNLMAS
PMTVLRLNNLMAS
PMTVLRLNNLMAS
PM N ILRLN NLM A S
P M K IL P L N N L L A S
P M K IL P L N N L L A S
P IE IL R L N N M M V T
PMQRLPLNNLLAS



10 GABmA6
11 ALPH A
12 G A B hB I
13 G A B bB l
1 4 G A B rB I
15 G A B rB 2
16 G A B rB 3
17 GABCB3
18 B ETA
19 GABhG2
20 G A B rG 2
21 GABmG2
22 GAMMA
23 G A B rD l
24 GABmDI
25 G A B rD 2
26 D E LTA
27 G L Y rA I
28 G L Y rA 2
29 G L Y rB I
8 6 G LYdB
30 GLY
31 A N IO N
32 A C H hA l
33 A C H bA I
34 ACHmAI
35 A C H cA l
36 A C H xA l
37 A C H s IA
38 A C H tA I
39 A C tm A I
40 ALPHA
41 A C H rA 2
42 A CH cA 2
43 A C H rA 3
44 ACHCA3
45 ACHgA3
4 6 A C H rA 4
47 A C H cA 4
48 A C H rA 5
49 A C H cA 7
50 A CH dA L
51 ACH dA 2
52 A C H 1A 2
53 N ALPH A
5 4 A C H rB 2
55 A C H cB 2
56 ACH gB 2
57 A C H rB 3
5 8 ACHgN3
59 ACHgNA
60 A C H rB 4
61 ACHdNA
62 N B ETA
63 A C H hB I

YVTSFG PVSD VEM  TW TDERLKFKG
V TS FG P V S D  M W D RL G

DVASIDM VSEVNM DYTLTM YFQQSW KDKRLSYSG  
DVASIDM VSEVNM DYTLTM YFQQSW KDKRLSYSG  
DVASIDMVSEVNM DYTLTMYFQQSW KDKRLS YS G 
D IA SIDM VSEVN M D YTLTM YFQ Q A W RD K RLSYN V  
D IA SIDM VSEVN M D YTLTM YFQ Q YW R DK RLA YSG  
D IA S ID M V S  EVNMDYTLTMYFQQYWRDKRLAYAG  
D ASIDM VSEVN M D YTLTM YFQ Q  W DKRL Y 
Y V N S IG P V N A IN M E Y T ID IF F A Q M W Y D R R L K F N S  
YVN S IG P V N A IN M E Y T ID IF F A Q T W Y D R R L K F N S  
YVN S IG P V N A IN M E Y T ID IF F A Q T W Y D R R L K F N S  
Y V N S IG P V N A IN M E Y T ID IF F A Q  WYDRRLKFNS  
E VA SID H ISEA N M EY TM TVFLH Q SW R D SR LSYN H  
E VA SID H ISEA N M EY TM TVFLH Q SW R D SR LSYN H  
E VA SID H ISEA N M EYTM TVFLH R A W R D SR LSYN H  
E V A S ID H IS E A N M E Y T M T V F L H  WRDSRLSYNH  
F IN S FG S IA E TTM D Y R V N IFLR Q Q W N D P R LA Y N E Y  
FIN SFG SV TE TTM D Y R V N IFLR Q Q W N D S R LA Y S E Y  
F IN S F G S IQ E TTM D Y R VN IFLR Q K W N D P R LK LPS D FR G S D A LTVD P TM Y K  
Y VLSIS S V SE V LM D FTLD FYFR Q FW TD P R LA YR K R  P G V E T L S V G S E F IK  
F IN S F G S  E TTM D Y R V N IFLR Q  WND RL 

S M W D RL
Q LIQ LIN VD E VN Q IVTTN VR LK Q Q W VD YN LK W N PD  
Q LIQ LIN VD EVN Q IVTTN VR LK Q Q W VD YN LK W N PD  
Q LIQ LIN VD EVN Q IVTTN VR LK Q Q W VD YN LK W N PD  
Q L IQ L IN V D E V N Q IV TTN V R LK Q Q W TD IN LK W N P D  
Q LIQ L IN V D E V N Q IV STN IR LK Q Q W R D V N LK W D P A

P A E IL S L N N L M V S
P L LNN
IP L N L T L D N R V A D
IP L N L T L D N R V A D
IP L N L T L D N R V A D
IP L N L T L D N R V A D
IP L N L T L D N R V A D
IP L N L T L D N R V A D
IP L N L T L D N R V A D
T IK V L R L N S N M V G
T IK V L R L N S N M V G
T IK V L R L N S N M V G
T IK V L R L N S N M V G
T N E T LG L D S R F V D
T N E T LG L D S R F V D
T N E T LG L D S R F V D
T N E T LG L D S R F V D
PD D SLD LDPSM LD
PDD SLD LDPSM LD

DP M

D Y G G V K K IH IP S E
D Y G G V K K IH IP S E
D Y G G V K K IH IP S E
D Y G G V K Q IR IP S D
K Y G G V K K IR IP S S

Q L IQ L IS V D E V N Q IV E TN V R LR Q Q W ID V R LR W N P A  
Q LIQ L IN V D E V N Q IV E TN V R LR Q Q W ID V R LR W N P A  
Q L IQ L I  V D E V N Q IV  TN RL QQW D L W P 
SIAQLIDVDEKNQMMTTNVW LKQEW NDYNVRW DPA  
SIAQLIDVDEKNQM MTTNVW LKQEW SDYKLRW NPE  
S MSQLVKVDEVNQIMETNLW LKQIW NDYKLKW KPS  
SMSQLVKVDEVNQIM ETNLW LKHIW NDYKLRW NPV  
S ISQ LVK VD EVN Q IM ETN LW LR H IW N D YK LK W LPA  
SIAQLIDVDEKNQMMTTNVW VKQEW HDYKLRW DPG  
SIAQLIDVDEKNQMMTTNVW VKQEW HDYKLRW DPQ  
AISQLVDVDEKNQ LM TTNVW LKQEW IDVKLRW NPD  
SLM QIMDVDEKNQVLTTNIW LQMYW TDHYLQW NVS  
RLSQLIDVNLKNQ IM TTNVW VEQEW NDYKLKW NPD  
RLS QLIDLNLKDQ ILTTNVW LEHEW Q DHKFKW DPS  
R LSQ LIDLNLK DQ ILTTN VW LEH EW Q DH K FR W DPA  

Q Q TN  W W D W
SLA Q LISVH ER EQ IM TTN VW LTQ EW EDYR LTW K PE  
SLA Q LISVH ER EQ IM TTN VW LTQ EW EDYR LTW K PE  
SLA Q LISVN ER EQ IM TTN VW LTQ EW TDYR LVW D PN  
KISQLVDVDEKNQLMTTNVW LKQEW TDQKLRW NPE  
KISQLVDVDEKNHLMTTNVW LW QEW TDYKLRW NPE  
KISQLVDVDEKNQLMTTNVWLWQEWLDYKLRWNPE  
SLSQ LISVN ER EQ IM TTS IW LK Q EW TD YR LA W N S S  
AFVQLINVNEKNQVMKSNVW LRLVW YDYQLQW DEA  

QL E M L W D L W
ILA Q LIS LN E K D E EM STK VYLD LEW TD YR LSW D PA

D Y G G IK K IR L P S D  
D Y G G IK K IR L P S D  

YGG K I  PS 
E FG N V TS LR V P S E  
D F D N V T S IR V P S E  
DYQGVEFM RVPAE  
D Y G G A E F IR V P S G  
E F D G IE F IR V P S N  
D Y E N V T S IR IP S E  
E Y E N V T S IR IP S E  
D Y G G IK IIR V P S D  
EYPG VK NVR FPD G  
D YG G VD TLH VPSE  
E YG G V TE LY V PS E  
E YG G V TE LY V PS E  

P
DFDNM KKVRLPSK  
DFDNM KKVRLPSK  
E Y E G IK K L R IP S Q  
E Y G G IN S IK V P S E  
D Y G G IT S IR V P S E  
N Y G G IT S IR V P S E  
C Y E G V N IL R IP A K  
D Y G G IG V L R L P P D  

R P
E H E G ID S L R IT A E



64)ACHbBl
65)ACHmBI
66)ACHtBl
67)BETA
68)ACHhGI
69)ACHbGI
70)ACHmGI
71)ACHcGI
72)ACHxGI
73)ACHtGI 
7 4)GAMMA
75)ACHbEI
76)ACHrEI
77)AChmEI
78)EPSILON
79)ACHbDl
80)ACHmDI
81)ACHcDI
82)ACHxDI
83)ACHtDl
84)DELTA
85)CATION 
Consensus 
Block 4. 
(151-200)
01 GABhAI
02 GABbAl
03 GABrAI
04 GABCA1
05 GABbA2
06 GABbA3
07 GABrA3
08 GABbA4
09 GABrA5
10 GABmA6
11 ALPHA
12 GABhBI
13 GABbBI
14 GABrBI
15 GABrB2
16 GABrB3
17 GABCB3
18 BETA
19 GABhG2
20 GABrG2
21 GABmG2
22 GAMMA
23 GABrDI
24 GABmDI
25 GABrD2
26 DELTA
27 GLYrAI
28 GLYrA2
29 GLYrBI
86 GLYdB

TLAQLISLNEKDEEMSTKVYLDLEWTDYRLSWDPE 
TLAQLISLNEKDEEMSTKVYLDLEWTDYRLSWDPA 
TLTNLLILNEKIEEMTTNVFLNLAWTDYRLQWDPA 
L L LNEK EEM T V L L WTDYRL WDP 

TLTNLISLNEREEALTTNVWIEMQWCDYRLRWDPR 
TLTNLISLNEREEALTTNVWIEMQWCDYRLRWDPR 
TLTNLISLNEREEALTTNVWIEMQWCDYRLRWDPK 
TLTNLISLNEREETLTTNVWIEMQWSDYRLRWDPD 
TLTNLISLNEKEEALTTNVWVEMQWKDYRLSWDPN 
TLTNLISLNEKEEALTTNVWIEIQWNDYRLSWNTS 
TLTNLISLNE EE LTTNVW E QW DYRL W 
TLTNLISLNEKEETLTTSVWIGIDWQDYRLNYSKG 
TLTNLISLNEKEETLTTSVWIGIEWQDYRLNFSKD 
TLTNLISLNEKEETLTTSVWIGIDWHDYRLNYSKD 
TL NLISL E EETLTT VWI W D RL 
TLSNLISLKEVEETLTTNVWIEQGWTDSRLQWDAE 
TLSNLISLKEVEETLTTNVWIDHAWVDSRLQWDAN 
TLS NLISLKEVDETLTTNVWVEQSWTDYRLQWNTS 
TLSNLISLKEADETLTTNVWVELAWYDKRLAWDME 
TLSNLISLKETDETLTSNVWMDHAWYDHRLTWNAS 
TLSNLISLKE ETLT NVW W D RL W

W D 
W D

EHEGIDSLRISAE 
EHDGIDSLRITAE 
AYEGIKDLRIPSS 

GI LRI 
DYEGLWVLRVPST 
DYGGLWVLRVPST 
DYEGLWILRVPST 
KYDDIQQLRVPSA 
DYHGISMMRIPST 
EYEGIDLVRIPSE 
Y R PS

DFGGVETLRVPSE 
DFAGVEILRVPSE 
DFAGVGILRVPSE 
DF LR P
DFGNISVLRLPAD 
DFGNITVLRLPPD 
EFGGVDVLRLLPE 
TYNNIDILRVPPD 
EYSDISILRLPPE 

LR

5 1 ----------------- 1 6 1 --------------- 1 7 1 ----------------- 1 8 1 -----------------1 9 1 ---------------------
KIRTPDTFFHNGKKSVAHNMTMPNKLLRITEDGTLLYTMRLTVRAECPMH
KIWTPDTFFHNGKKSVAHNMTMPNKLLRITEDGTLLYTMRLTVRAECPMH
KIWTPDTFFHNGKKSVAHNMTMPNKLLRITEDGTLLYTMRLTVRAECPMH
KIWTPDTFFHNGKKSVAHNMTMPNKLLRITEDGTLLYTMRLTVRAECPMH
KIWTPDTFFHNGKKSVAHNMTMPNKLLRIQDDGTLLYTMRLTVQAECPMH
KIWTPDTFFHNGKKSVAHNMTTPNKLLRLVDNGTLLYTMRLTIHAECPMH
KIWTPDTFFHNGKKSVAHNMTTPNKLLRLVDNGTLLYTMRLTIHAECPMH
KVWTPDTFFRNGKKSVSHNMTAPNKLFRIMRNGTILYTMRLTISAECPMR
KIWTPDTFFHNGKKSIAHNMTTPNKLLRLEDDGTLLYTMRLTISAECPMQ
KIWTPDTFFRNGKKSIAHNMTTPNKLFRLMQNGTILYTMRLTINADCPMR
K TPDTFF NGKKS HNMT PNKL R GT LYTMRLT A CPM
QLWVPDTYFLNDKKSFVHGVTVKNRMIRLHPDGTVLYGLRITTTAACMMD
QLWVPDTYFLNDKKSFVHGVTVKNRMIRLHPDGTVLYGLRITTTAACMMD
QLWVPDTYFLNDKKSFVHGVTVKNRMIRLHPDGTVLYGLRITTTAACMMD
QLWVPDTYFLNDKKSFVHGVTVKNRMIRLHPDGTVLYGLRITTTAACMMD
QLWVPDTYFLNDKKSFVHGVTVKNRMIRLHPDGTVLYGLRITTTAACMMD
QL WVPDT YF LNDKKS F VHGVT VKNRMIRLH PDGTVL YGL RITTT AACMMD
QLWVPDTYFLNDKKSFVHGVTVKNRMIRLHPDGTVLYGLRITTTAACMMD
KIWIPDTFFRNSKKADAHWITTPNRMLRIWNDGRVLYSLRLTIDAECQLQ
KIWIPDTFFRNSKKADAHWITTPNRMLRIWNDGRVLYTLRLTIDAECQLQ
KIWIPDTFFRNSKKADAHWITTPNRMLRIWNDGRVLYTLRLTIDAECQLQ
KIWIPDTFFRNSKKADAHWITTPNRMLRIWNDGRVLY LRLTIDAECQLQ
KLWLPDTFIVNAKSAWFHDVTVENKLIRLQPDGVILYSIRITSTVACDMD
KLWLPDTFIVNAKSAWFHDVTVENKLIRLQPDGVILYSIRITSTVACDMD
KLWLPDTFIVNAKVCLVHDVTVENKLIRLQPDGVILYSIRITSTVACDMD
KLWLPDTFIVNAK HDVTVENKLIRLQPDGVILYSIRITSTVACDMD
SIWKPDLFFANEKGAHFHEITTDNKLLRISRNGNVLYSIRITLTLACPMD
SIWKPDLFFANEKGANFHDVTTDNKLLRISKNGKVLYSIRLTLTLSCPMD
CLWKPDLFFANEKSANFHDVTQENILLFIFRDGDVLVSMRLSITLSCPLD
NIWVPDTFFVNEKQSYFHIATTSNEFIRVHHSGSITRSIRLTITASCPNM



30 GLY
31 ANION
32 ACHhAl
33 ACHbAl
34 ACHmAI
35 ACHcAl
36 ACHxAl
37 ACHsIA
38 ACHtAl
39 ACtmAl
40 ALPHA
41 ACHrA2
42 ACHcA2
43 ACHrA3
44 ACHcA3
45 ACHgA3
46 ACHrA4
47 ACHcA4
48 ACHrA5
49 ACHcA7
50 ACHdAL
51 ACHdA2
52 ACH1A2
53 N ALPHA
54 ACHrB2
55 ACHcB2
56 ACHgB2
57 ACHrB3
58 ACHgN3
59 ACHgNA
60 ACHrB4
61 ACHdNA
62 N BETA
63 ACHhBl
64 ACHbBl
65 ACHmBI
66 ACHtBl
67 BETA
68 ACHhGI
69 ACHbGI
70 ACHmGI
71 ACHcGI
72 ACHxGI
73 ACHtGI
74 GAMMA
75 ACHbEl
76 ACHrEI
77 AChmEI
78 EPSILON
79 ACHbDl
80 ACHmD1
81 ACHcDI
82 ACHxDI
83 ACHtDI
84 DELTA

WKPDLFFANEK A FH T N LL I 
PD N K H T N 

KIWRPDLVLYNNADGDFAIVKFTKVLLQY 
KIWRPDLVLYNNADGDFAIVKFTKVLLDY 
KIWRPDWLYNNADGDFAIVKFTKVLLDY 
DIWRPDLVLYNNADGDFAIVKYTKVLLEH 
DVWSPDLVLYNNADGDFAISKDTKILLEY
DVWLPDLVLYNNADGDFAIVHMTKLLLDY 
DVWLPDLVLYNNADGDFAIVHMTKLLLDY 

W PD VLYNNADGDFAI TK LL 
MIWIPDIVLYNNADGEFAVTHMTKAHLFF 
MIWIPDIVLYNNADGEFAVTHMTKAHLFS 
KIWKPDIVLYNNADGDFQVDDKTKALLKY 
QIWKPDIVLYNNAVGDFQVDDKTKALLKY 
KIWRPDIVLYNNAVGDFLVEDKTKALLKY 
LIWRPDIVLYNNADGDFAVTHLTKAHLFY 
LIWRPDIVLYNNADGDFAVTHLTKAHLFY 
SLWIPDIVLFDNADGRFEGAS TKTWRY 
LIWKPDILLYNSADERFDATFHTNVLVNS 
HIWHPDIVLYNNADGNYEVTIMTKAILHH 
HIWLPDIVLYNNADGEYWTTMTKAILHY 
HIWLPDIVLYNNADGEYWTTMTKAVLHH 

W PDI L A  T
HIWLPDWLYNNADGMYEVSFYSNAWSY 
HIWLPDVVLYNNADGMYEVSFYSNAVISY 
HIWLPDIVLYNNADGVYEVSFYCNAWSN 
SLWLPDIVLFENADGRFEGSLMTKAIVKS 
TIWLPDIVLYENADGRFEGSLMTKAIVRF 
SIWLPDIVLYENADGRFEGSLMTKAIVRY 
RVWLPDIVLYNNADGTYEVSVYTNVIVRS 
KVWKPDIVLFNNADGNYEVRYKSNVLIYP 

W PD VL NADG E 
SVWLPDWLLNNNDGNFDVALDISWVSS 
SVWLPDWLLNNNDGNFDVALDINVWSS 
SVWLPDWLLNNNDGNFDVALDINVWSF 
DVWQPDIVLMNNNDGSFEITLHVNVLVQH 
VW PD VL NNNDG F L V V 

MVWRPDIVLENNVDGVFEVALYCNVLVSP 
MVWRPDIVLENNVDGVFEVALYCNVLVSP 
MVWRPDIVLENNVDGVPEVALYCNVLVSP 
MVWLPDIVLENNIDGTFEITLYTNVLVYP 
SVWLPDVGLENNVDGTFDIALYTNTLVSS 
LLWLPDWLENNVDGQFEVAYYANVLVYN 

W PD LENN DG Y N LV
LVWLPEIVLENNIDGQFGVAYEANVLVSE 
HVWLPEIVLENNIDGQFGVAYDCNVLVYE 
HVWLPEIVLENNIDGQFGVAYDSNVLVYE 
VWLPEIVLENN DG F Y NVL Y

MVWLPEIVLENNNDGSFQISYSCNVLIYP 
MVWLPEIVLENNNDGSFQISYACNVLVYD 
MLWLPEIVLENNNDGLFEVAYYCNVLVYN 
MVWQPQLILENNNNGVFEVAYYSNVLISS 
LVWIPDIVLQNNNDGQYHVAYFCNVLVRP 

W P L NNN G Y NVL

G VL S R TL CP D
G L R C

TGHITWTPPAIFKSYCEII 
TGHITWTPPAIFKSYCEII 
TGHITWTPPAIFKSYCEII 
TGKITWTPPAIFKSYCEII 
TGKITWTPPAIFKSYCEII 

NPPAIFKSYCEII 
TGKIMWTPPAIFKSYCEII 
TGKIMWTPPAIFKSYCEII 
TG I WTPPAIFKSYCEII 
TGTVHWVPPAIYKSSCSID 
NGKVKWVPPAIYKSSCSID 
TGEVTWIPPAIFKSSCKID 
TGDVTWIPPAIFKSSCKID 
DGTITWVPPAIFKSSCPMD 
DGRVQWTPPAIYKSSCSID 
DGRIKWMPPAIYKSSCSID 
N GTVTWTQ PANYK S S CTID 
SGHCQYLPPGIFKSSCYID 
TGKWWKPPAIYKSFCEID 
TGKWWTPPAIFKSSCEID 
TGKWWTPPAIFKSSCEID 
G P KS C D

DGSIFWLPPAIYKSACKIE 
DGSIFWLPPAIYKSACKIE 
TGDIFWLPPAIYKSACAIE 
SGTVSWTPPASYKSSCTMD 
NGTIMWTPPASYKSSCTMD 
NGMITWTPPASYKSACTMD 
NGSIQWLPPAIYKSACKIE 
TGEVLWVPPAIYQSSCTID 
G W PPA Y S C 

DGSVRWQPPGIYRSSCSIQ 
DGSMRWQPPGIYRSSCSIQ 
EGSVRWQPPGLYRSSCSIQ 
TGAVSWQPSAIYRSSCTIK 
G WQP YRSSC I 

DGCIYWLPPAIFRSACSIS 
DGCVYWLPPAIFRSSCPVS 
DGCIYWLPPAIFRSSCSIS 
DGSIYWLPPAIYRSSCSIH 
DGSMYWLPPAIYRSSCPW 
DGSMYWLPPAIYRSTCPIA 
DG YWLPPAI RS C 
GGYLSWLPPAIYRSTCAVE 
GGSVSWLPPAIYRSTCAVE 
GGYVSWLPPAIYRSTCAVE 
G V WLPPAI RS C 

SGSVYWLPPAIFRSSCPIS 
SGYVTWLPPAIFRSSCPIS 
TGYVYWLPPAIFRSACPIN 
DGFMYWLPPAIFQTSCSIN 
NGYVTWLPPAIFRSSCPIN 
G WLPPAIF C I



85)CATION
Consensus
Block 5.
(201-250)
01 GABhAI
02 GABbAI
03 GABrAI
04 GABCA1
05 GABbA2
06 GABbA3
07 <3ABrA3
08 GABbA4
09 GABrA5
10 GABmA6
11 ALPHA
12 GABhBI
13 GABbBl
1 4 GABrBI
15 GABrB2
16 GABrB3
17 GABCB3
18 BETA
19 GABhG2
20 GABrG2
21 GABmG2
22 GAMMA
23 GABrDI
24 GABmDI
25 GABrD2
26 DELTA
27 GLYrAI
28 GLYrA2
29 GLYrBl
86 GLYdB
30 GLY
31 ANION
32 ACHhAl
33 ACHbAl
34 ACHmAI
35 ACHcAl
36 ACHxAl
37 ACHsIA
38 ACHtAl
39 ACtmAI
40 ALPHA
41 ACHrA2
42 ACHcA2
43 ACHrA3
44 ACHcA3
45 ACHgA3
46 ACHrA4
47 ACHcA4
48 ACHrA5
49 ACHcA7
50 ACHdAL

w

201-------211-------221-------231------- 241
<LEDFPMDAHACPLKFGSYAYTRAEWYEWTREPAR
<LEDFPMDAHACPLKFGSYAYTRAEWYEWTREPAR
<LEDFPMDAHACPLKFGSYAYTRAEWYEWTREPAR
<LEDFPMDVHACPLKFGSYAYTRAEWYEWTREPAR
<LEDFPMDAHSCPLKFGSYAYTTSEVTYIWTYNASD
<LEDFPMDVHACPLKFGSYAYTTAEWYSWTLGKNK
<LEDFPMDVHACPLKFGSYAYTKAEVIYSWTLGKNK
<LVDFPMDGHACPLKFGSYAYPKSEMIYTWTKGPEK
<LEDFPMDAHACPLKFGSYAYPNSEWYVWTNGSTK
< LVNFPMDGHACPLKFGSYAYPKTEIIYTWKKGPLY 
<L FPMD H CPLKFGSYAY E Y W 
<LRRYPLDEQNCTLEIESYGYTTDDIEFYWNGGEGA 
<LRRYPLDEQNCTLEIESYGYTTDDIEFYWNGGEGA 
<LRRYPLDEQNCTLEIESYGYTTDDIEFYWNGGEGA 
<LRRYPLDEQNCTLEIESYGYTTDDIEFYWRGDDNA 
<LRRYPLDEQNCTLEIESYGYTTDDIEFYWRGGDKA 
<LRRYPLDEQNCTLEIESYGYTTDDIEFYWRGGDNA 
<LRRYPLDEQNCTLEIESYGYTTDDIEFYW G A 
<LHNFPMDEHSCPLEFSSYGYPREEIVYQWKRSSVE 
<LHNFPMDEHSCPLEFSSYGYPREEIVYQWKRSSVE 
<LHNFPMDEHSCPLEFSSYGYPREEIVYQWKRSSVE 
<LHNFPMDEHSCPLEFSSYGYPREEIVYQWKRSSVE 
<LAKYPMDEQECMLDLESYGYSSEDIVYYWSENQEQ 
<LAKYPLDEQECMLDLESYGYSSEDIVYYWSENQEQ 
<LAKYPMDEQECMLDLESYGYSSEDIVYYWSENQEQ 
<LAKYP DEQECMLDLESYGYSSEDIVYYWSENQEQ 
<LKNFPMDVQTCIMQLESFGYTMNDLIFEWQEQGA 
<LKNFPMDVQTCTMQLESFEYTMNDLIFEWLSDGP 
<LTLFPMDTQRCKMQLESFGYTTDDLRFIWQSGDP 
<LQYFPMDRQLCHIEIESFGYTMRDIRYFWRDGLS 
<L FPMD Q C MQLESF YT DL F W
<L P D C S Y W
<VTHFPFDEQNCSMKLGTWTYDGSWAINPESDQPD
<VTHFPFDEQNCSMKLGTWTYDGSVWINPESDQPD
< VTHFPFDEQNCSMKLGTWTYDGSWAINPESDQPD
< VTYFPFDQQNCSMKLGTWTYDGTMWINPESDRPD 
<VTYFPFDQQNCSMKFGTWTYDGSLLVINQERDRPD 
<VTYFPFDEQNCSMKLGTRTYDGTWAIYPEGPRPD 
<VTHFPFDQQNCTMKLGIWTYDGTKVSISPESDRPD 
<VTHFPFDQQNCTMKLGIWTYDGTKVSISPESDRPD 
<VT FPFD QNC MK G WTYDG I E D PD 
<VTFFPFDQQNCKMKFGSWTYDKAKIDLEQMERTVD 
<VTYFPFDQQNCKMKFGSWTYDKAKIDLENMEHHVD 
<VTYFPFDYQNCTMKFGSWSYDKAKIDLVLIGSSMN 
<VTYFPFDYQNCTMKFGSWSYDKAKIDLVLIGSTMN 
<ITYFPFDYQNCSMKFGSWTYDKAKIDLVLIGSKVN 
<VTFFPFDQQNCTMKFGSWTYDKAKIDLVSIHSRVD 
<VTFFPFDQQNCKMKFGSWTYDKAKIDLVSMHSHVD 
<VTFFPFDLQNCSMKFGSWTYDGSQVDIILEDQDVD 
<VRWFPFDVQKCNLKFGSWTYGGWSLDLQMQEADIS
<VEYFPFDEQTCFMKFGSWTYDGYMVDLRHLKQTADSDN IE

C
C

VGIDL



)ACHdA2 
)ACH1A2 
)N_ALPHA 
)ACHrB2 
)ACHcB2 
)ACHgB2 
)ACHrB3 
)ACHgN3 
)ACHgNA 
)ACHrB4 
)ACHdNA 
)N_BETA 
)ACHhBl 
)ACHbBl 
)ACHmBI 
)ACHtBl 
) BETA 
)ACHhGI 
)ACHbGI 
)ACHmGI 
)ACHcGI 
)ACHxGI 
)ACHtGI 
)GAMMA 
)ACHbEl 
)ACHrEI 
)AChmE1 
)EPSILON 
)ACHbDI 
)ACHmDl 
)ACHcDl 
)ACHxDl 
)ACHtDl 
)DELTA 
)CATION 

Consensus 
Block 6. 
(251-300)
01)GABhA1
02)GABbAI
03)GABrAl
04)GABcAl
05)GABbA2
06)GABbA3
07)GABrA3
08)GABbA4
09)GABrA5
10)GABmA6
11)ALPHA
12)GABhB1
13)GABbB1
14)GABrB1
15)GABrB2
16)GABrB3
17)GABcB3

51
52
53
54
55
56
57
58
59
60 
61 
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80 
81 
82
83
84
85

VRYFPFDQQTCFMKFGSWTYDGDQIDLKHISQKNDKDNKVE 
VRYFPFDQQTCFMKFGSWTYDGDQIDLKHINQKYD DNKVK 

FPFD Q C KFGSW Y D
VKHFPFDQQNCTMKFRSWTYDRTEIDLVLKSDVAS 
VKHF PFDQQNCTMKFRSWTYDRTEIDLVLKSEVAS 
VRNFPFDQQNCTLKFRSWTYDRTELDLVLTSDFAS 
VTFFPFDRQNCSMKFGSWTYDGTMVDLILINENVD 
VTFFPFDRQNCSMKFGSWTYDGTMVDLTLLDAYVD 
VTFFPFDRQNCSMKFGSWTYDGNMVKLVLINQQVD 
VKHFPFDQQNCTLKFRSWTYDHTEIDMVLKSPTAI 
VTYFPFDQQTCIMKFGSWTFNGDQVSLALYNNKNF
V FPFD Q C KF SWT L 
VTYFPFDWQNCTMVFSSYSYDSSEVTLQTGLGPDG QGTQE 
VTYFPFDWQNCTMVFSSYSYDSSEVSLQTGLSPEG QERQE 
VTYFPFDWQNCTMVFSSYSYDSSEVSLKTGLDPEG EERQE 
VMYFPFDWQNCTMVFKSYTYDTSEVTLQHALDAKGEREVKE
V YFPFDWQNCTMVF SY YD SEV L L G E
VTYFPFDWQNCSLIFQSQTYSTNEIDLQLSQEDGQTIEW 
VTFFPFDWQNCSLIFQSQTYSTNEINLQLSQEDGQTIEW 
VTYFPFDWQNCSLIFQSQTYSTSEINLQLSQEDGQAIEW 
VTYFPFDWQNCTMVFQSQTYSANEINLLLTVEEGQTIEW 
VTYFPFDWQNCSIVFQSQTYSANEIELLLTVDE QTIEW 
VTYFPFDWQNCSLVFRSQTYNAHEVNLQLSAEEGEAVEW 
VT FPFDWQNC F SQTY E L L  EW
VTYFPFDWQNCSLVFRSQTYNAEEVEFVFAVDDEGKTISK 
VTYFPFDWQNCSLIFRSQTYNAEEVELIFAVDDDGNAINK 
VTYFPFDWQNCSLIFRSQTYNAEEVEFIFAVDDDGNTINK 
VTYFPFDWQNCSL F S Y E
VTYFPFDWQNCSLKFSSLKYTTKEITLSLKQAEEDGRSYPV

IGIDL 
VGIDL

L 
L 
R 
R 
R 
R 
M 

VDL
IHIHE 
VYIHE 
VYIHE 
IVINK 

I
IFIDP 
IFIDP 
IFIDP 
IFIDP 
IEIDP 
IHIDP 
I IDP 
IDIDT 
IDIDT 
IDIDT 
I ID 

EWIIIDP
VTYFPFDWQNCSLKFSSLKYTAKEITLSLKQEEENNRSYPI EWIIIDP 
VNFFPFDWQNCTLKFSSLAYNAQEINMHLKEESDPETEKNYRVEWIIIDP 
VNYFPFDWQNCSLKFSSLTYNAKEINLQLRQDLDEASQRYYPVEWIIIDP 
VLYFPFDWQNCSLKFTALNYDANEITMDLMTDTIDGKDYPI EWIIIDP 
V FPFDWQNC LKF L Y El L EWIIIDP

FPFD Q C 
P D C

2 5 1 ---------------- 2 6 1 ---------------- 2 7 1 ----------------
SWVAEDGSRLNQYDLLGQTVDSGIVQS 
SVWAEDGSRLNQYDLLGQTVDSGIVQS 
SWVAEDGSRLNQYDLLGQTVDSGIVQS 
SVWAEDGSRLNQYDLLGQTVDSGIVQS 
SVQVAPDGSRLNQYDLPGQSIGKETIKS 
SVEVAQDGS RLNQYDLLGHWGTE11 RS 
SVEVAQDGSRLNQYDLLGHWGTEI IRS 
SVEVPKESSSLVQYDLIGQTVSSETIKS 
S VWAEDGSRLNQYHLMGQTVGTENI ST 
SVEVPEESSSLLQYDLIGQTVSSETIKS 
SV V S L QY L G

VTGVNKIELPQFSIVDYKMVSKKVEF 
VTGVNKIELPQFSIVDYKMVSKKVEF 
VTGVNKIELPQFSIVDYKMVSKKVEF 
VTGVTKIELPQFSIVDYKLITKKWF 
VTGVERIELPQFSIVEHRLVSRNWF 
VTGVERIELPQFSIVEYRLVSKNWF

2 8 1 ---------------- 2 9 1 ---------------------
STGEYWMTTHFHLKRKIG 
STGEYWMTTHFHLKRKIG 
STGEYWMTTHFHLKRKIG 
STGEYWMTTHFHLKRKIG 
STGEYTVMTAHFHLKRKIG 
STGEYWMTTHFHLKRKIG 
STGEYWMTTHFHLKRKIG 
ITGEYIVMTVYFHLRRKMG 
STGEYTIMTAHFHLKRKIG 
NTGEYVIMTVYFHLQRKMG 
TGEY MT FHL RK G 

TTGAYPRLSLSFRLKRNIG 
TTGAYPRLSLSFRLKRNIG 
TTGAYPRLSLSFRLKRNIG 
STGSYPRLSLSFKLKRNIG 
ATGAYPRLSLSFRLKRNIG 
ATGAY PRL S L S F RLKRNIG



18 BETA
19 GABhG2
20 GABrG2
21 GABmG2
22 GAMMA
23 GABrDl
24 GABmDl
25 GABrD2
25 DELTA
27 GLYrAI
28 GLYrA2
29 GLYrBl
86 GLYdB
30 GLY
31 ANION
32 ACHhAl
33 ACHbAl
34 ACHmAI
35 ACHcAl
36 ACHxAl
37 ACHsIA
38 ACHtAl
39 ACtmAI
40 ALPHA
41 ACHrA2
42 ACHcA2
43 ACHrA3
44 ACHcA3
45 ACHgA3
46 ACHrA4
47 ACHCA4
48 ACHrA5
49 ACHcA7
50 ACHdAL
51 ACHdA2
52 ACH1A2
53 N ALPHA
54 ACHrB2
55 ACHcB2
56 ACHgB2
57 ACHrB3
58 ACHgN3
59 ACHgNA
60 ACHrB4
61 ACHdNA
62 N BETA
63 ACHhBI
64 ACHbBI
65 ACHmBI
66 ACHtBI
67 BETA
68 ACHhGI
69 ACHbGI
70 ACHmGI
71 ACHcGI

VTGV IELPQFSIV V FVGDTRSWRLYQFSFVGLRNTTEWKT 
VGDTRSWRLYQFSFVGLRNTTEWKT 
VGDTRSWRLYQFSFVGLRNTTEWKT 
VGDTRSWRLYQFSFVGLRNTTEWKT 
IHGLDRLQLAQFTITSYRFTTELMNF 
IHGLDRLQLAQFTITSYRFTTELMNF 
IHGLDRLQLAQFTITSYRFTTELMNF 
IHGLDRLQLAQFTITSYRFTTELMNF 
VQVADGLTLPQFILKEEKDLRYCTKHY 
VQVAEGLTLPQFILKEEKELGYCTKHY 
VQLEKIALPQFDIKKEDIEYGNCTKYY 

S VGMSSEVELPQFRVLGHRQRATEINL 
LPQF K E Y
L QSNFMESGEWVIKESRGWKHSVTYSCC 

SNFMESGEWVIKESRGWKHWVFYACC 
SNFMESGEWVIKEARGWKHWVFYSCC 
SNFMESGEWVMKDYRGWKHWVYYACC 
SNFMASGEWMMKDYRCWKHWVYYTCC 
SNYMQSGEWALKDYRGFWHSVNYSCC 
STFMESGEWVMKDYRGWKHWVYYTCC 
STFMESGEWVMKDYRGWKHWVYYTCC 
S FM SGEW K R WKH V Y CC 
KDYWESGEWAIINATGTYNSKKYDCC 
KDYWESGEWAIINAIGRYNSKKYDCC 
KDYWES GEWA11KAPGYKHEIKYNCC 
KDYWESGEWAI IKAPGYKHDIKYNCC 
KDFWESGEWEIIDAPGYKHDIKYNCC 
LDFWESGEWVIVDAVGTYNTRKYECC 
LDYWESGEWVIINAVGNYNSKKYECC 
TDFFDNGEWEIMSAMGSKGNRTDSCC 
GYISNGEWDLVGIPGKRTESFYECC 
QDYYISVEWDIMRVPAVRNEKFYSCC 
REYYPSVEWDILGVPAERHEKYYPCC 
REYYPSVEWDILGVPAERHEKYYPCC 

EW CC
DDFTPSGEWDIIALPGRRNENPDDST 
DDFTPSGEWDIVALPGRRNENPDDST 
DDYTPSGEWDIVSLPGRKNEDPNDLT 
KDFFDNGEWEILNAKGMKGNRREGFY 
KDFFDNGEWEILNATGQRGSRRDGIY 
SDFFDNGEWEILSATGVKGSRQDSHL 
DDFTPSGEWDIVALPGRRTVNPQDPS 
S DYWKSGTWD11EVPAYLNVYEGDS 
D G W I 

GTFIENGQWENIHKPSRLIQPPGDPRGG 
GTFIENGQWEIIHKPSRLIQPSVDPRGG 
GTFIENGEWEIIHKPSRLIQLPGDQRGG 
DAFTENGQWSIEHKPSRKNWRSDD 

F ENG W HKPSR D
EAFTENGEWAIQHRPAKMLLDPAAPA 
E AFTENGE WAIRHRPAKMLLDE AAPA 
EAFTENGEWAIRHRPAKMLLDSVAPA 
E AFTEN GE W AIKHRP ARK IINSGRFTP

TG YPRLSLSF LKRNIG TSGDYWMSVYFDLSRRMG 
TSGDYWMSVYFDLSRRMG 
TSGDYWMSVYFDLSRRMG 
TSGDYWMSVYFDLSRRMG 
KSAGQFPRLSLHFQLRRNRG 
KSAGQFPRLSLHFQLRRNRG 
KSAGQFPRLSLHFQLRRNRG 
KSAGQFPRLSLHFQLRRNRG 
NTGKFTCIEARFHLERQMG 
NTGKFTCIEVKFHLERQMG 

KGTGYYTCVEVIFTLRRQVG 
TTGNYSRLACEIQFVRSMG 
TG TC E F L RQ G 
G F L R G

PDTPYLDITYHFVMQRLPL 
PSTPYLDITYHFVMQRLPL 
PTTPYLDITYHFVMQRLPL 
PDTPYLDITYHFLMQRLPL 
PDKPYLDITYHFVLQRLPL 
LDTPYLDITYHFILLRLPL 
PDTPYLDITYHFIMQRIPL 
PDTPYLDITYHFIMQRIPL 
P PYLDITYHF QR PL 
AEIYPDVTYYFVIRRLPL 
TEIYPDITFYFVIRRLPL 
EEIYQDITYSLYIRRLPL 
EEIYTDITYSLYIRRLPL 
EEIYPDITYSFYIRRLPL 
AEIYPDITYAFIIRRLPL 
TEIYPDITYSFIIRRLPL 

WYPYITYSFVIKRLPL 
KEPYPDITFTVTMRRRTL 
EEPYLDIVFNLTLRRKTL 
AEPYPDIFFNITLRRKTL 
AEPYPDIFFNITLRRKTL 

Y R L
YVDITYDFIIRRKPL 
YVDITYDFIIRRKPL 
YLDITYDFVIKRKPL 
SYPFVTYSFVLRRLPL 
SYPYVTYSFILKRLPL 
SYPYITYSFILKRLPL 
YVDVTYDFIIKRKPL 

NHPTETDITFYIIIRRKTL 
T R L

REGQRQEVIFYLIIRRKPL 
GEGRREEVTFYLIIRRKPL 
KEGHHEEVIFYLIIRRKPL 

PSYEDVTFYLIIQRKPL 
V FYLII RKPL 

QEAGHQKWFYLLIQRKPL 
EEAGHQKWFYLLIQRKPL 
EEAGHQKGVPYLLIQRKPL 
DDIQYQQVIFYLIIQRKPL



72)ACHxGl < EAFTENGEWAIKHMPAKRIINHRLPR 
7 3)ACHtG1 < EDFTENGEWTIRHRPAKKNYNWQLTK
74)GAMMA <E FTENGEW I H PA
75)ACHbEl < EAYTENGEWAIDFCPGVIRRHDGDSA 
7 6)ACHrEI < AAFTENGEWAIDYCPGIIRHYEGGST
77)AChmEl < AAFTENGEWAIDYCPGMIRRYEGGST
78)EPSILON< FTENGEW I P
79)ACHbDI < EGFTENGEWEIVHRPARVNVDPSVPL

< EGFTENGEWEIVHRAAKLNVDPSVPM
< EGFTENGEWEIIHRPARKNIHPSYPT 
<EGFTENGEWEIVHIPAKKNIDRSLSP
< EAFTENGEWE11HKPAKKNIYPDKFP 
<E FTENGEWEI H A N
< W

80)ACHmDI
81)ACHcDI
82)ACHxDI
83)ACHtDI
84)DELTA
85)CATION 
Consensus 
Block 7. 
(301-350)

DDVNYQQIVFYLIIQRKPL 
DDTDFQEIIFFLIIQRKPL 

Q L IQRKPL
GGPGETDVIYSLIIRRKPL 
EDPGETDVIYTLIIRRKPL 
EGPGETDVIYTLIIRRKPL 

P DV LIIRRKPL
D S PNRQDVTFYL11RRKPL 
DSTNHQDVTFYLIIRRKPL 
ESSEHQDITFYLIIKRKPL 
ESTKYQDITFYLIIERKPL 
NGTNYQDVTFYLIIRRKPL 

QD TFYLII RKPL 
R L 
R

01 GABhAI
02 GABbAI
03 GABrAl
04 GABcAl
05 GABbA2
06 GABbA3
07 GABrA3
08 GABbA4
09 GABrA5
10 GABmA6
11 ALPHA
1 2 GABhBl
13 GABbBl
14 GABrBI
15 GABrB2
16 GABrB3
1 7 GABCB3
18 BETA
19 GABhG2
20 GABrG2
21 GABmG2
22 GAMMA
23 GABrDl
24 GABmDI
25 GABrD2
26 DELTA
27 GLYrAI
28 GLYrA2
29 GLYrBI
86 GLYdB
30 GLY
31 ANION
32 ACHhAI
33 ACHbAl
34 ACHmAI
35 ACHcAl
36 ACHxAl
37 ACHsIA

301-------311-------321-------331------- 341--------
YFVIQTYLPCIMTVILSQVSFWLNRESVPARTVFGVTTVLTMTTLSISAR 
YFVIQTYLPCIMTVILSQVS FWLNRESVPARTVFGVTTVLTMTTLSISAR 
YFVIQTYLPCIMTVILSQVSFWLNRESVPARTVFGVTTVLTMTTLSISAR 
YFVIQTYLPCIMTVILSQVSFWLNRESVPARTVFGVTTVLTMTTLSISAR 
YFVIQTYLPCIMTVILSQVSFWLNRESVPARTVFGVTTVLTMTTLSISAR 
YFVIQTYLPCIMTVILSQVSFWLNRESVPARTVFGVTTVLTMTTLSISAR 
YFVIQTYLPCIMTVILSQVSFWLNRESVPARTVFGVTTVLTMTTLSISAR 
YFMIQTYIPCIMTVILSQVS FWINKESVPARTVFGITTVLTMTTLSIS AR 
YFVIQTYLPCIMTVILSQVSFWLNRESVPARTVFGVTTVLTMTTLSISAR 
YFMIQIYTPCIMTVILSQVSFWINKESVPARTVFGITTVLTMTTLSISAR 
YF IQ Y PCIMTVILSQVSFW N ESVPARTVFG TTVLTMTTL SIS AR 
YFILQTYMPSTLITILSWVSFWINYDASAARVALGITTVLTMTTISTHLR 
YFILQTYMPSTLITILSWVSFWINYDASAARVALGITTVLTMTTISTHLR 
YFILQTYMPSTLITILSWVSFWINYDASAARVALGITTVLTMTTISTHLR 
YFILQTYMPSILITILSWVSFWINYDASAARVALGITTVLTMTTINTHLR 
YFILQTYMPSIMITILSWVSFWINYDASAARVALGITTVLTMTTINTHLR 
YFILQTYMPSILITILSWVSFWINYDASAARVALGITTVLTMTTINTHLR 
YFILQTYMPS ITILSWVSFWINYDASAARVALGITTVLTMTTI THLR 
YFTIQTYIPCTLIWLSWVSFWINKDAVPARTSLGITTVLTMTTLSTIAR 
YFTIQTYIPCTLIWLSWVSFWINKDAVPARTSLGITTVLTMTTLSTIAR 
YFTIQTYIPCTLIWLSWVSFWINKDAVPARTSLGITTVLTMTTLSTIAR 
YFTIQTYIPCTLIWLSWVSFWINKDAVPARTSLGITTVLTMTTL STIAR 
VYIIQSYMPSVLLVAMSWVSFWISQAAVPARVSLGITTVLTMTTLMVSAR 
VYIIQSYMPSVLLVAMSWVSFWISQAAVPARVSLGITTVLTMTTLMVSAR 
VYIIQSYMPSVLLVAMSWVSFWISQAAVPARVSLGITTVLTMTTLMVSAR 
VYIIQSYMPSVLLVAMSWVSFWISQAAVPARVSLGITTVLTMTTLMVSAR 
YYLIQMYIPSLLIVILSWISFWINMDAAPARVGLGITTVLTMTTQSSGSR 
YYLIQMYIPSLLIVILSWVSFWINMDAAPARVALGITTVLTMTTQSSGSR 
FYMMGVYAPTLLIWLSWLSFWINPDASAARVPLGIFSVLSLASECTTLA 
YYLIQIYIPSGLIWISWVSFLAQSQCNAGACALGVTTVLTMTTLMSSTN 
Y Y P LLIV LSW SFWIN DA ARV LGI VL 

Y P S SFW AR G VL
YFIVNVIIPCLLFSFLTGLVFYLPTDSG EKMTLSISVLLSLTVFLLVI 
YFIVNVIIPCLLFSFLTGLVFYLPTDSG EKMTLSISVLLSLTVFLLVI 
YFIVNVIIPCLLFSFLTSLVFYLPTDSG EKMTLSISVLLSLTVFLLVI 
YFIVNVIIPCLLFSFLTGFVFYLPTDSG EKMTLSISVLLSLTVFLLVI 
YFIVNVIIPCLLFSFLTGLVFYLPTDSG EKMTLSISVLLSLTVFLLVI 
YFIVNVIIPC



38 ACHtAI
39 ACtmAI
40 ALPHA
41 ACHrA2
42 ACHcA2
43 ACHrA3
44 ACHcA3
45 ACHgA3
46 ACHrA4
47 ACHcA4
48 ACHrA5
49 ACHcA7
50 ACHdAL
51 ACHdA2
52 ACH1A2
53 N ALPHA
54 ACHrB2
55 ACHCB2
56 ACHgB2
57 ACHrB3
58 ACHgN3
59 ACHgNA
60 ACHrB4
61 ACHdNA
62 N BETA
63 ACHhBl
64 ACHbBl
65 ACHmBI
66 ACHtBl
67 BETA
68 ACHhGI
69 ACHbGl
70 ACHmGI
71 ACHcGI
72 ACHxGI
73 ACHtGI
74 GAMMA
75 ACHbEl
76 ACHrEl
77 AChmEI
78 EPSILON
79 ACHbDl
80 ACHmDI
81 ACHcDI
82 ACHxDI
83 ACHtDl
84 DELTA
85 CATION
Consensus
Block 8.
(351-400)
01)GABhA1
02)GABbA1
03)GABrA1
04)GABcA1

YFWNVIIPCLLFSFLTGLVFYLPTDSG 
YFWNVIIPCLLFSFLTVLVFYLPTDSG 
YF VNVIIPCLLFSFLT VFYLPTDSG 
FYTINLIIPCLLISCLTVLVFYLPSECG 
FYTINLIIPCLLISCLTVLVFYLPSDCG 
FYTINLIIPCLLISFLTVLVFYLPSDCG 
FYTINMIIPCLLISFLTVLVFYLPSDCG 
FYTINLIIPCLLISFLTILVFYLPSDCG 
FYTINLIIPCLLISCLTVLVFYLPSECG 
FYTINLIIPCLLISCLTVLVFYLPSECG 
FYTLFLIIPCIGLSFLTVWFYLPSNEG 
YYGLNLLIPCVLISALALLVFLLPADSG 
FYTVNLIIPCVGISFLSVLVFYLPSDSG 
FYTVNLIIPCVGISYLSVLVFYLPADSG 
FYTVNLIVPCVGISYLSVLVFYLPADSG 
Y PC S L VF LP G

FYTINLIIPCVLITSLAILVFYLPSDCG 
FYTINLIIPCILITSLAILVFYLPSDCG 
FYTINLIIPCVLITSLAILVFYLPSDCG 
FYTLFLIIPCLGLSFLTVLVFYLPSDEG 
FYTLFLIIPCLGLSFLTVLVFYLPSDEG 
FYTLFLIIPCLGLSFLTVLVFYLPSDEG 
FYTINLIIPCVLITSLAILVFYLPSDCG 
FYTVNLILPTVLISFLCVLVFYLPAEAG 
FYT LI P L LVFYLP G
FYLVNVIAPCILITLLAIFVFYLPPDAG 
FYLVNVIAPCILITLLAIFVFYLPPDAG 
FYLVNVIAPCILITLLAIFVFYLPPDAG 
FYIVYTIIPCILISILAILVFYLPPDAG 
FY V I PCILI LAI VFYLPPDAG

EKMTLSISVLLSLTVFLLVI 
EKMTLSISVLLSLTVFLLVI 
EKMTLSISVLLSLTVFLLVI 
EKITLCISVLLSLTVFLLLI 
EKITLCISVLLSLTVFLLLI 
EKVTLCISVLLSLTVFLLVI 
EKVTLCISVLLSLTVFLLVI 
EKVTLCISVLLSLTVFLLVI 
EKVTLCISVLLSLTVFLLLI 
EKITLCISVLLSLTVFLLLI 
EKISLCTSVLVSLTVFLLVI 
EKISLGITVLLSLTVFMLLV 
EKISLCISILLSLTVFFLLL 
EKIALCISILLSQTMFFLLI 
EKIALCISILLSQTMFFLLI 
EK L L S T F L
EKMTLCISVLLALTVFLLLI 
EKMTLCISVLLALTVFLLLI 
EKVTLCMSVLLALTVFLLLI 
EKLSLSTSVLVSLTVFLLVI 
EKLLLSTSVLVSLTVFLLVI 
EKVSLSTSVLVSLTVFLLVI 
EKMTLCISVLLALTFFLLLI 
EKVTLGISILLSLWFLLLV 
EK L L L FLL
EKMGLSIFALLTLTVFLLLL 
EKMGLSIFALLTLTVFLLLL 
EKMGLSIFALLTLTVFLLLL 
EKMSLSISALLAVTVFLLLL 
EKM LSI ALL TVFLLLL

FYVINIIAPCVLISSVAILIHFLPAKAG GQKCTVAINVLLAQTVFLFLL 
FYVINIIAPCVLISSVAILIYFLPAKAG GQKCTVAINVLLAQTVFLFLV 
FYVINIIAPCVLISSVAILIYFLPAKAG GQKCTVATNVLLAQTVFLFLV 
FYIINIIVPCVLISSMAVLVYFLPAKAG GQKCTVSINVLLAQTVFLFLI 
FYIINIIVPCVLISFVSILVYFLPAKAG GQKCTVSINILLAQTVFLFLV 
FYIINIIAPCVLISSLVVLVYFLPAQAG GQKCTLSISVLLAQTIFLFLI 
FY INII PCVLIS L FLPA AG GQKCT LLAQT FLFL
FYVINIIVPCVLISGLVLLAYFLPAQAG GQKCTVSINVLLAQTVFLFLI 
FYVINIIVPCVLISGLVLLAYFLPAQAG GQKCTVSINVLLAQTVFLFLI 
FYVINIIVPCVLISGLVLLAYFLPAQAG GQKCTVSINVLLAQTVFLFLI 
FYVINI VPCVLIS L LPA G K I VLLAQ VFL LI 
FYVINILVPCVLISFMINLVFYLPADCG EKTSMAISVLLAQSVFLLLI 
FYIINILVPCVLISFMINLVFYLPGDCG 
FYVINIVTPCVLIAFMAILVFYLPADSG 
FYIINILAPCVLIALMANLVFYLPADSG 
FYVINFITPCVLISFLASLAFYLPAES G
FY IN PCVLI

P
P

351------ 361---
<N SLPKVAYATAMDW 
<N SLPKVAYATAMDW 
<N SLPKVAYATAMDW 
<N SLPKVAYATAMDW

FYLP
LP

•371

G
G

EKTSVAISVLLAQSVFLLLI 
EKMTLVISVLLAQSVFLLLV 
EKMTLAISVLLAQSVFLLLI 
EKMSTAISVLLAQAVFLLLT 
EK ISVLLAQ VFLLL
K L F

L
 381-------391---------

FIAVCYAFVFSALIEFATVNY FTKRGYAWD GK 
FIAVCYAFVFSALIEFATVNY FTKRGYAWD GK 
FIAVCYAFVFSALIEFATVNY FTKRGYAWD GK 
FIAVCYAFVFSALIEFATVNY FTKRGYAWD GK



)GABbA2 
)GABbA3 
)GABrA3 
)GABbA4 
)GABrA5 
)GABmA6 
)ALPHA 
)GABhBl 
)GABbBl 
)GABrBl 
)GABrB2 
)GABrB3 
)GABcB3 
) BETA 
)GABhG2 
)GABrG2 
)GABmG2 
)GAMMA 
)GABrD1 
)GABmDI 
)GABrD2 
)DELTA 
)GLYrAl 
)GLYrA2 
)GLYrBl 
)GLYdB 
) GLY 
)ANION 
)ACHhAl 
)ACHbAl 
)ACHmAl 
)ACHcAl 
)ACHxAl 
)ACHsIA 
)ACHtAl 
)ACtmAI 
)ALPHA 
)ACHrA2 
)ACHcA2 
)ACHrA3 
)ACHcA3 
)ACHgA3 
)ACHrA4 
)ACHcA4 
)ACHrA5 
)ACHcA7 
)ACHdAL 
)ACHdA2 
)ACH1A2 
)N_ALPHA 
)ACHrB2 
)ACHcB2 
)ACHgB2 
)ACHrB3 
)ACHgN3

N SLPKVAYATAMDW FIAVCYAFVFSALIEFATVNY FTKRGWAWD GK 
N SLPKVAYATAMDW FMAVCYAFVFSALIEFATVNY FTKRSWAWE GK 
N SLPKVAYATAMDW FMAVCYAFVFSALIEFATVNY FTKRSWAWE GK 
PISLPKVSYATAMDW FIAVCFAFVFSALIEFAAVNY FTNVQMEKA KR 
N SLPKVAYATAMDW FIAVCYAFVFSALIEFATVNY FTKRGWAWD GK 
H SLPKVSYATAMDW FIAVCFAFVFSALIEFAAVNY FTNLQSQKA ER 

SLPKV YATAMDW F AVC AFVFSALIEFA VNY FT 
E TLPKIPYVKAIDI YLMGCFVFVFLALLEYAFVNYIFFGKGPQKK GA 
E TLPKIPYVKAIDI YLMGCFVFVFLALLEYAFVNYIFFGKGPQKK GA 
E TLPKIPYVKAIDI YLMGCFVFVFLALLEYAFVNYIFFGKGPQKK GA 
E TLPKIPYVKAIDM YLMGCFVFVFMALLEYALVNYIFFGRGPQRQ KK 
E TLPKIPYVKAIDM YLMGCFVFVFLALLEYAFVNYIFFGRGPQRQ KK 
E TLPKIPYVKAIDM YLMGCFVFVFLALLEYAFVNYIFFGKGPQRQ KK 
E TLPKIPYVKAID YLMGCFVFVF ALLEYA VNYIFFG GPQ 
K SLPKVSYVTAMDL FVSVCFIFVFSALVEYGTLHY FVSNRKPSK DK 
K SLPKVSYVTAMDL FVSVCFIFVFSALVEYGTLHY FVSNRKPSK DK 
K SLPKVSYVTAMDL FVSVCFIFVFSALVEYGTLHY FVSNRKPSK DK 
K SLPKVSYVTAMDL FVSVCFIFVFSALVEYGTLHY FVSNRKPSK DK 
S SLPRASAIKALDV YFWICYVFVFAALVEYAFAHFNADYRKKRKA KV 
S SLPRASAIKALDV YFWICYVFVFAALVEYAFAHFNADYRKKRKA KV 
S SLPRASAIKALDV YFWICYVFVFAALVEYAFAHFNADYRKKRKA KV 
S SLPRASAIKALDV YFWICYVFVFAALVEYAFAHFNADYRKKRKA KV 
A SLPKVSYVKAIDI WMAVCLLFVFSALLEYAAVNF VSRQHKELL RF 
A SLPKVSYVKAIDI WMAVCLLFVFAALLEYAAVNF VSRQHKEFL RL 
A ELPKVSYVKALDV WLIACLLFGFASLVEYAWQV MLNNPKRVE AE 
A ALPKISYVKSIDV YLGTCFVMVFASLLEYATVGY MAKRIQMRQKRF 
A LPKVSYVKA D W CLLF F L EYA V K

LP A D  C F F L E
VELIPSTSSAVPLIGKYMLFTMVFVIASIIITVIVINTHHRSPSTHV MP 
VELIPSTSSAVPLIGKYMLFTMVFVIASIIITVIVINTHHRSPSTHV MP 
VELIPSTSSAVPLIGKYMLFTMVFVIASIIITVIVINTHHRSPSTHI MP 
VELIPSTSSAVPLIGKYMLFTMVFVIASIIITVIVINTHHRSPSTHT MP 
VELIPSTSSAVPLIGKYMLFTMVFVIASIIITVIVINTHHRSPSTHT MP
VELIPSTSSAVPLIGKYMLFTMIFVISSIIITVWINTHHRSPSTHT MP 
VELIPSTSSAVPLIGKYMLFTMIFVISSIIVTVWINTHHRSPSTHT MP 
VELIPSTSSAVPLIGKYMLFTM FVI SII TV VINTHHRSPSTH MP 
TEIIPSTSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHHRSPSTHN MP 
TEIIPSTSLVIPLIGEYLLFTMIFVTLSIIITVFVLNVHHRSPSTHT MP 
TETIPSTSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHYRTPTTHT MP 
TETIPSTSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHYRTPKTHT MP 
TETIPSTSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHYRTPMTHT MP 
TEIIPSTSLVIPLIGEYLLFTMIFVTLSIVITVFVLNVHHRSPRTHT MP 
TEIIPSTSLVIPLIGEYLLFTMIFVTLS11ITVFVLNVHHRSPRTHT MP 
EEIIPSSSKVIPLIGEYLVFTMIFVTLSIMVTVFAINIHHRSSSTHNAMA 
AEIMPATSDSVPLIAQYFASTMIIVGLSVWTVIVLQYHHHDPDGGK MP 
AEIIPPTSLTVPLLGKYLLFTMMLVTLSWVTIAVLNVNFRSPVTHR MA 
SEIIPSTSLALPLLGKYLLFTMLLVGLSWITIIILNIHYRKPSTHK MR 
SEIIPSTSLALPLLGKYLLFTMVLVGLSWITIMVLNVHYRKPSTHK MA 
E P S PL Y TM V LS T M

SKIVPPTSLDVPLVGKYLMFTMVLVTFSIVTSVCVLNVHHRSPTTHT MA 
SKIVPPTSLDVPLVGKYLMFTMVLVTFSIVTSVCVLNVHHRSPTTHT MP 
SKIVPPTSLAVPLIGKYLMFTMVLVTFSIVTSVCVLNVHHRSPSTHY MP 
EEIIPSSSKVIPLIGEYLLFIMIFVTLSIIVTVFVINVHHRSSSTYHPMA 
EEIIPSSSKVIPLIGEYLLFIMIFVTFSIIVTLFVINVHHRSSATYHPMA



59
60 
61 
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80 
81 
82
83
84
85

)ACHgNA 
)ACHrB4 
)ACHdNA 
) N_BETA 
)ACHhBI 
)ACHbBl 
)ACHmBI 
)ACHtBl 
) BETA 
)ACHhGI 
)ACHbGI 
)ACHmGI 
)ACHcGI 
)ACHxGI 
)ACHtGI 
)GAMMA 
)ACHbEl 
)ACHrEl 
)AChmEI 
)EPSILON 
)ACHbDl 
)ACHmDI 
)ACHcDI 
)ACHxDI 
)ACHtDl 
)DELTA 
)CATION 

Consensus 
Block 9. 
(401-450)
01)GABhAl
02)GABbAl
03)GABrA1
04)GABcA1
05)GABbA2
06)GABbA3
07)GABrA3
08)GABbA4
09)GABrA5
10)GABmA6
11)ALPHA
12)GABhB1
13)GABbBl
14)GABrBI
15)GABrB2
16)GABrB3
17)GABcB3
18)BETA
19)GABhG2
20)-GABrG2
21)GABmG2
22)GAMMA
23)GABrD1
24)GABmD1
25)GABrD2

EEIIPSSSKVIPLIGEYLLFIMIFVTLSIIVTIFVINVHHRSSATYHPMS 
SKIVPPTSLDIPLIGKYLLFTMVLVTFSIVTTVCVLNVHHRSPSTHT MA 
SKILPPTSLVLPLIAKYLLFTFIMNTVSILVTVIIINWNFRGPRTHR MP 

P S P  YL F T S  N R T M
ADKVPETSLSVPIIIKYLMFTMVLVTFSVILSVWLNLHHRSPHTHQ MP 
ADKVPETSLSVPIIIKYLMFTMVLVTFSVILSVWLNLHHRSPHTHQ MP 
ADKVPETSLAVPIIIKTLMFTMVLVTFSVILSVWLNLHHRSPHTHQ MP 
ADKVPETSLSVPIIIRYLMFIMILVAFSVILSVWLNLHHRSPNTHT MP 
ADKVPETSL VPIII LMF M LV FSVILSVWLNLHHRSP TH MP 
AKKVPETSQAVPLISKYLTFLLWTILIWNAVWLNVSLRSPHTHS MA 
AKKVPETSQAVPLISKYLTFLLWTILIWNAVWLNVSLRSPHTHS MA 
AKKVPETSQAVPLISKYLTFLMWTILIWNSVWLNVSLRSPHTHS MA 
AQKVPETSQAVPLIGKYLTFLMWTWIWNAVIVLNVSLRTPNTHS MS 
AQKIPETSTSVPLIVKYLTFLMWTITIVANAVIVLNISLRTPNTHS MS 
AQKVPETSLNVPLIGKYLIFVMFVSMLIVMNCVIVLNVSLRTPNTHS LS 
A K PETS VPLI KYL F V IV N V VLN SLR P THS 
AQKTPETSLSVPLLGRYLIFVMWATLIVMNCVIVLNVSLRTPTTHA MS 
AQKIPETSLSVPLLGRYLIFVMWATLIVMNCVIVLNVSLRTPTTHA TS 
AQKIPETSLSVPLLGRYLIFVMWATLI VMNCVI VLNVSLRTPTTHA TS 

P TS PL G L F MV T V CVIVLN RTP TH S 
SKRLPATSMAIPLIGKFLLFGMVLVTMVWICVIVLNIHFRTPSTHV LS 
SKRLPATSMAIPLVGKFLLFGMVLVTMWVICVIVLNIHFRTPSTHV LS 
SQRLPATSHAIPLIGKYLLFIMLLVTAVWICVWLNFHFRTPSTHV MS 
SQRLPETSFAIPLISKYLMFIMVLVTIVWSCVIVLNLHFRTPSTHA IS 
SQRLPETALAVPLIGKYLMFIMSLVTGVIVNCGIVLNFHFRTPSTHV LS 
S RLP T A PL K L F M LVT V V C VLN HFRTPSTH S 

P P
P

401------ 411------- 421
SVV PEKPKKVKDPLI K K
S W  PEKPKKVKDPLI K K
S W  PEKPKKVKDPLI K K
S W  PEKPKKVKDPLI K K
S W  NDKKKEKASVMI Q 
KVPEALEMKKKTPAVPTKK T 
KVPEALEMKKKTPAAPTKK T 
KTSKAPQEISAAPVLREKH P 
KALEAAKIKKKERELI L N 
QAQTAATPPVAKSKASESL E
SKQDQSANEKNKLEMNKVQ V 
GKQDQSANEKNKLEMNKVQ V 
SKQDQSANEKNKLEMNKVQ V 
AAEKAANANNEKMRLDVNK M 
LAEKTAKAKNDRSKSEINR V 
LAEKSAKANNDRSRFEGSR V
DKK KKNPAPTIDIRP R S 
DKK KKNPAPTIDIRP R S 
DKK KKNPAPTIDIRP R S 
DKK KKNPAPTIDIRP R S 
KVTKPRAEMDVRNAIVLFS L 
KVTKPRAEMDVRNAIVLFS L 
KVTKPRAEMDVRNAIVLFS L

431 ■441



26 DELTA KVTKPRAEMDVRNAIVLFS L
27 GLYrAl RRKRRHHKDDEGGEGR F N
28 GLYrA2 RR RQKRQNKEEDVT R
29 GLYrBI KARIAKAEQADGKGGNAAK K
86
30
31

GLYdB
<3LY
ANION

MAIQKIAEQKKQQLDGANQQQANPNPNANVGGPGGVGVGPGGPGGPGGGV

32 ACHhAI NWVRKVFIDTIPNIMFFST M
33 ACHbAI EWVRKVFIDTIPNIMFFST M
34 ACHmAI EWVRKVFIDTIPNIMFFST M
35 ACHcAl PWVRKIFIDTIPNIMFFST M
36
37

ACHxAl 
ACHsIA

PWVRKIFIETIPNIMFFST M
38 ACHtAl QWVRKIFIDTIPNVMFFST M
39 ACtmAI QWVRKIFINTIPNVMFFST M
40 ALPHA WVRK FI TIPN MFFST M
41 ACHrA2 NWVRVALLGRVPRWLMMNRPLP
42 ACHcA2 HWVRSFFLGFIPRWLFMKRPPLL
43 ACHrA3 TWVKAVFLNLLPRVMFMTRPT
44 ACHCA3 VWVRTIFLNLLPRIMFMTRPT
45 ACHgA3 SWVRTVFLRALPRVMLMRRPI
46 ACHrA4 AWVRRVFLDIVPRLLFMKRPSVVKDNCRRLIESMHKMANAPRFWPEPVGE
47 ACHCA4 DWVRRVFLDIVPRLLFMKRPSTVKDNCKKLIESMHKLTNSPRLWSETDME
48 ACHrA5 PWVRKIFLHKLPKLLCMRSHA
49 ACHcA7 KWTRVILLNWCAWFLRMKRPG
50 ACHdAL PWVQRLFIQILPKLLCIERPKK
51 ACHdA2 PWIRSFFIKRLPKLLLMRVPKDL
52 ACH1A2 PWVRKVFIRRLPKLLLMRVPE
53 N ALPHA W
54 ACHrB2 PWVKWFLEKLPTLLFLQQPR
55 ACHCB2 PWVRTLFLRKLPALLFMKQPQ
56 ACHgB2 EWVKCVFLHKLPAFLLMRRPG
57 ACHrB3 PWVKRLFLQRLPRWLCMKDPM
58 ACHgN3 PWVKSLFLQRLPRLLCMRGH
59 ACHgNA PWVRSLFLQRLPHLLCMR
60 ACHrB4 SWVKECFLHKLPTFLFMKRPGL
61 ACHdNA MYIRSIFLHYLPAFLFMKRPRK
62 N BETA F LP L
63 ACHhBl LWVRQIFIHKLPLYLRLKRPK
64 ACHbBl LWVRQIFIHKLPLYLGLKRPK
65 ACHmBI FWVRQIFIHKLPPYLGLKRPK
66 ACHtBl NWIRQIFIETLPPFLWIQRPV
67 BETA W RQIFI LP L RP
68 ACHhGI RGVRKVFLRLLPQLLRMHVRPL
69 ACHbGI RGVRKVFLRLLPQLLRMHVRPL
70 ACHmGI RGVRKVFLRLLPQLLRMHVRP
71 ACHcGI QRVRQVWLHLLPRYLGMHMPE
72 ACHxGI STVRELCLRTVPRLLRMHLRP
73 ACHtGI EKIKHLFLGFLPKYLC^IQLEPS
74 GAMMA L P L M
75 ACHbEl PRLRYVLLELLPQLLGSGAPP
76 ACHrEl PRLRQILLELLPRLLGLSPPP
77 AChmEI PRLRQILLELLPRLLGSSPPP
78 EPSILON LE LP L S P
79 ACHbDI EPVKKLFLETLPEILHMSRPAE



80)ACHmDI
81)ACHcDI
82)ACHxDI
83)ACHtDI
84)DELTA
85)CATION
Consensus
Block 10.
(451-500)
01 GABhAI
02 GABbAl
03 GABrAl
04 GABcAl
05 GABbA2
06 GABbA3
07 GABrA3
08 GABbA4
09 GABrA5
10 GABmA6
11 ALPHA
12 GABhBl
13 GABbBI
14 GABrBl
15 GABrB2
16 GABrB3
17 GABCB3
18 BETA
19 GABhG2
20 GABrG2
21 GABmG2
22 GAMMA
23 <SABrD1
24 GABmDl
25 GABrD2
26 DELTA
27 GLYrAl
28 GLYrA2
29 GLYrBl
86 GLYdB
30 GLY
31 ANION
32 ACHhAI
33 ACHbAl
34 ACHmAI
35 ACHcAl
36 ACHxAl
37 ACHsIA
38 ACHtAI
39 ACtmAI
40 ALPHA
41 ACHrA2
42 ACHCA2
43 ACHrA3
44 ACHcA3
45 ACHgA3

< EGVKKFFLETLPKLLHMSRPAE
< DWVPGVFLEILPRLLHMSHPA
< ERMKEIFLNKLPRILHMSQPAE 
<TRVKQIFLEKLPRILHMSRADE
< FL LP LHMS

5 1 ---------------- 4 6 1 -----------------4 7 1 -----------------4 8 1 -----------------4 9 1 ---------------------
NNTYAPTAT S YT PN LA
NNTYAPTATSYTPN LA
NNTYAPTATSYTPN LA
NNTYTAAATSYTPN IA
NNAYAVAVANYAPN LS
STTFNIVGTTYPIN LA
STTFNIVGTTYPIN LA
ETPLQNTNANLSMRKRANALV 
KSTNAFTTGKLTHP PN
AEIWHSDSKYHLK KR
DAHGNILLSTLEIRNET SG 
DAHGNILLSTLEIRNET SG 
DAHGNILLSTLEIRNET SG 
DPHENILLSTLEIKNEM AT 
DAHGNILLAPMDVHN EM 
DTHGNILLTSLEIHNEV AS 
D H NILL N
ATIQMNNATHLQER DE
ATIQMNNATHLQER DE
ATIQMNNATHLQER DE
ATIQMNNATHLQER DE
SAAGVSQELAISRR QG
SAAGVSQELAISRR QG
SAAGVSQELAISRR QG
SAAGVSQELAISRR QG
FSAYGMGPACLQAK 
ESRFNFSGYGMGH 
NTVNGTGTPVHISTLQ VG 

NVGVGMGMGPEHGHGHGHHAHSHGHPHAPKQTVSNRPIGFSNIQQNVGTR

KRPSREKQDKKIFT ED
KRPSREKQDKKIFT ED
KRPSRDKQEKRIF TED 
KRPSRDKPDKKIFA ED
KRPSQEKQPQKTFA EE
KRASKEKQENKIFA DD
KRASKEKQENKIFA DD
KR S K F

PMELHGSPDLKLS PSYHWLETNMDAGEREETE 
LPAEGTTGQYDPPGTRLSTSRCWLETDVDDKWEEEE 

SGEGDTPKTRTFYGAELSNLNCFSRADSKSC 
SDEENNQKPKPFYTS E F S NLNCFNSSEIKCC 
DLSESSGKGGGEIAGSSGTGG



4 6)ACHrA4 < PGILSDICNQGLSPAPTFCNPTDTAVETQPTCRSPPLEVPDLKTSEVEKA
47)ACHcA4 < PNFTT SSSPSPQSNEPSPTSSFCAHLEEPAKPMCKSPSGQYS
48)ACHrA5 < DRYFTQREEAESGA
49)ACHcA7 < EDKVRPACQHKQRRCSLS SME
5 0)ACHdAL < EEPEEDQPPEVLTDVYHLPPDVDKFVNYDSKRFSGD
51)ACHdA2 < LRDLAANKINYGLKFSKTKFGQALMDE
52)ACH1A2 < QLLADLASKRLLRHAHNSKLSA
53)N ALPHA<
54)ACHrB2 < HRCARQRLRLRRRQREREGEAVF
55)ACHcB2 < QNCARQRLRQRRQTQERAAAATL
56)ACHgB2 < RSNVRERFRRKHQRKSF5SHQ
57)ACHrB3 < DRFSFPDGKESDT
58)ACHgN3 < TDRYQYPDIELRS PELKRGMK
59)ACHgNA < GNTDRYHYPELEPH
60)ACHrB4 < EVSLVRVPHPSQLHLATADTA
61)ACHdNA < TRLRWMMEMPQ-ISMPAHPHPSYGSP
62)N BETA <
63)ACHhBI < PERDLMPEPPHCSSPGSGWGR
64)ACHbBI < PERDQMQEPPSIAPRDSPGSG
65)ACHmBI < PERDQLPEPHHSLSPRSGWGR
66)ACHtBI < TTPSPDSKPTIISRANDEYFI
67)BETA < P
68)ACHhGI < APAAVQDTQSRLQNGSSGWSIT
69)ACHbGI < APVAVQDAHPRLQNGSSSGWPI
70)ACHmGI < LAPAAVQDARFRLQNGS S S GWP
71)ACHcGI < EAPGPPQATRRRSSLGLMVKA
72)ACHxGI < TDAAPPLAPLMRRSS SLGLMM
73)ACHtGI < EETPEKPQPRRRSSFGIMIKA
74)GAMMA <
7 5)ACHbEl < EIPRAASPPRRASSLGLLLRA
76)ACHrEI < EDPGAASPARRASSVGILLRA
77)AChmEI < EDPRTASPARRASSVGILLRA
78)EPSILON< P RR SS G A
79)ACHbDl < DGPS PGTLIRRS S SLGYIS KA
80)ACHmDl < EDPGPRALIRRSSSLGYICKA
81)ACHcD1 < E S PAGAPCIRRCS S AGYIAKA
82)ACHxDI < PEPEPWSGVLLRRSSSVGYIV
83)ACHtDI < SEQPDWQNDLKLRRSSSVGYIS
84)DELTA < P S85)CATION <
Consensus
Block 11.
(501-550) 501--- -- 511------- 521-------531-------541---------
01)GABhA1 < RG DPGLAT IAKSAT IEPKE
02)GABbA1 < RG DPGLAT IAKSAT IEPKE
03)GABrA1 < RG DPGLAT IAKSAT IEPKE
04)GABcAl < R DPGLAT IAKSAT IEPKE
05)GABbA2 < K DPVLST ISKSAT TPEPN
06)GABbA3 < KDTEFSAISKGAAPST SSTPTI IASPK
07)GABrA3 < LDTEFSTISKAAAAPS ASSTPTVIASPK
08)GABbA4 < HSESDVGSRTDVGNHS SKSSTWQGSSE
09)GABrA5 < IP KEQLPG GTGNAV GTASI
10)GABmA6 < ISS LTLPIVPSS EASKALSRTPIL
11)ALPHA <
12)GABhBl < SEVLTSVSDPKATMYS YDSASIQYRKPL



13 GABbBl SEVLTGVGDPKTTMYS YDSASIQYRKPM
14 GABrBl SEVLTGVSDPKATMYS YDSASIQYRKPL
15 GABrB2 SEAVMGLGDPRSTMLA YDASSIQYRKAG
16 GABrB3 NEVAGSVGDTRNSAIS FDNSGIQYRKQS
17 GABcB3 NEVTTSVTDARNSTIS FDNSGIQYRKQS
18 BETA E D D IQYRK
19 GABhG2 EY GYECLD GKDCAS FFCCF
20 GABrG2 EY GYECLD GKDCAS FFCCF
21 GABmG2 EY GYECLD GKDCAS FFCCF
22 GAMMA EY GYECLD GKDCAS FFCCF
23 GABrDl RV PGNLMGS YRSVEVEAKKEG
24 GABmD1 RV PGNLMGS YRSVEVEAKKEG
25 GABrD2 RV PGNLMGS YRSVEVEAKKEG
26 DELTA RV PGNLMGS YRSVEVEAKKEG
27 GLYrAl DGISVK GANNNNTTNPAP
28 GLYrA2 CLQVKD GTAVKATPANPL
29 GLYrBl ETRCKKVCTSKSDLRS NDFSIVGSLPRD
86 GLYdB GCSIVGPLFQEARFKVHDPKAHSKGGTLENTANGGRGGPQSHGPGPGQGG
30 GLY
31 ANION
32 ACHhAI IDISDISGKPGPPPMG FHSPLIKHPEVK
33 ACHbAI IDISDISGKPGPPPMG FHSPLIKHPEVK
34 ACHmAI IDISDISGKPGPPPMG FHSPLIKHPEVK
35 ACHcAl IDIS EISGKQGPVPVN FYSPLTKNPDVK
36 ACHxAl MDISHIS GKLGPRAVT YQSPALKNPDVK
37 ACHsIA
38 ACHtAl IDISDISGKQVTGEVI FQTPLIKNPDVK
39 ACtmAI IDISDISGKQVTGEVI FQTPLIKNPDVK
40 ALPHA DIS ISGK P K P VK
41 ACHrA2 EEEEEEDENICVCAGLPDSSMGVLYGHGGLHLRAMEPE
42 ACHcA2 EEEEEEEEEEEEEKAYPSRVPSGGSQGTQCHYSCERQAGKASG
43 ACHrA3 KEGYPCQDGTCGYCHHRRVKISN FSANLTRSSSSE
44 ACHcA3 KDGFVCQDMACSCCQYQRMKFSD FSGNLTRSSSSE
45 ACHgA3 GRGAEGKKMKSSASQQ GAMNSLEFGEGK
46 ACHrA4 SPCPSPGSCPPPKSSSGAPMLIK ARSLSVQHVPSSQEAAEDGIRCRSRS
47 ACHcA4 MLHPEPPQVTCSSPKPSCHPLSD TQTTSISKGRSLSVQQMYSPNKTEEG
48 ACHrA5 GP
49 ACHcA7 MNTVSGQQCSNGNMLYIGFRGLDGVHCTPTTDSGV
50 ACHdAL YGIPALPASHRFDLAAAGGISAHCFAEPPLPSSLPLPGADDDLFSPSGLN
51 ACHdA2 MQMN S GGS S PD S LRRMQGRVGAGGCNGMH VTT ATNRF S GL VGAL GGGL S T
52 ACH1A2 AAAAAVAAAASSSAASSPDSLRHHHLHQHQHQHHLQLHHLQRPGGC
53 N ALPHA
54 ACHrB2 FREGPAADPCTCFVNPASVQGLAGAFRAEPTAA
55 ACHcB2 FLRAGARACACYANPGAAKAEGLNGYRERQGQGP
56 ACHgB2 DGDSFFLTDDPGRVCGAWRVGDLPEGSEF
57 ACHrB3 AVRGKVSGKRKQTPASDGERVLVAFLEKA
58 ACHgN3 KGQQKSAGGGRGGLKEDENQAWIALLEKA
59 ACHgNA SPDLKPRNKKGPPGPEGEGQALINLLEQA
60 ACHrB4 ATSALGPTSPSNLYGSSMYFVNPVPAAPKSA
61 ACHdNA AELPKHISAIGGKQSKMEVMELSDLHHPNCKINRK
62 N BETA
63 ACHhBI GTDEYFIRKPPSDFLFPKPNRFQPELSAPD
64 ACHbBI WGRGTDEYFIRKPPNDFLFPKPNRFQPELSAPD
65 ACHmBI GTDEYFIRKPPSDFLFPKLNRFQPESSAPD
66 ACHtBI RKPAGDFVCPVDNARVAVQPERLFSEMKWHL



6 7 ) B ETA  <
6 8 ) ACHhGI  <
6 9 ) ACH bGI  <
7 0 ) ACHmGI <
7 1 )ACHcG1 <
7 2 ) AC H xG I  <
7 3 ) A C H t G I  <
7 4 )GAMMA <
7 5 ) A C H bE I  <
7 6 ) AC H rE 1  <
7 7 ) AChmEI  <
7 8 ) E P S I L O N <
7 9 ) A C H bD I  <
8 0 ) ACHmDl <
8 1 ) A C H c D I  <
8 2 ) A C H x D I  <
8 3 ) A C H t D I  <
8 4 ) D EL TA  <
8 5 ) C A T I O N  < 
C o n s e n s u s  
B l o c k  1 2 .  
( 5 5 1 - 6 0 0 )  551
01 GABhAl
02 GABbAI
03 GABrAl
04 GABcAl
05 GABbA2
06 GABbA3
07 GABrA3
08 GABbA4
09 GABrA5
10 GABmA6
11 ALPHA
12 GABhBl
13 GABbBl
14 GABrBI
15 GABrB2
16 GABrB3
17 GABcB3
18 BETA
19 GABhG2
20 GABrG2
21 GABmG2
22 GAMMA
23 GABrDI
24 GABmDI
25 GABrD2
26 DELTA
27 GLYrAI
28 GLYrA2
29 GLYrBI
86 GLYdB
30 GLY
31 ANION
32 ACHhAI

P
TGEEVALCLPRSELLFQQWQRQGLVAAALEK 

TAGEEVALCLPRSELLFRQRQRNGLVRAALEK 
IMAREEGDLCLPRSELLFRQRQRNGLVQAVLEK 

DEYMLWKARTELLFEKQKERDGLMKTVLEK 
KADEYMLRKPRSQLMFEKQKERDGLMKWLDK 

EEYILKKPRSELMFEEQKDRHGLKRVNKM 
E Q R GL

EELILKKPRSELVFEQQRHRHGTWTATLC 
EELILKKPRRLVFEGQRHRHGTWTAAAL 

EELILKKPRSELVFEGQRHRHGTWTAALC 
E K L FE Q RHG 

EEYFSLKSRSDLMFEKQSERHGLARRLTT 
EEYFSLKSRSDLMFEKQSERHGLARRLTT 
EEYYSVKSRSELMFEKQSERHGLASRVTP 

KAEEYYSVKSRSELMFEKQSERHGLTSRATPAR 
KAQEYFNIKSRSELMFEKQSERHGLVPRVTPRIG 

EY KSRS LMFEKQSERHGL R T

-----561-------571-------581-------591--------
VKP E
VKP E
VKP E
VKP E
KKP E
TTC V
TTY V
ATP QSYLASSPNPFSRANAAETISAARAIPSALPSTPSR
RAS E
KST P
SSR EAYGRA
SSR EGYGRA
SSR EGFGRG
LPR HSFGRNA
MPK EGHGRYM
SHR ESLGRRS

GR
EDC R
EDC R
EDC R
EDC R
GSR PG
GSR PG
GVP PG
G PG
APS K
PQP P
FEL SNYDCYG

SAI EG



33 ACHbAI SAI EG
34 ACHmAI SAI EG
35 ACHcAl NAI EG
36 ACHxAl SAI EG
37 ACHs1A
38 ACHtAI SAI EG
39 ACtmAI SAI EG
40 ALPHA AI EG
41 ACHrA2 TKT PSQASEI
42 ACHcA2 GPAPQVPLKGEEVGSDQG
43 ACHrA3 SVN AVLSLSA
44 ACHcA3 SVD PLFSFSV
45 ACHgA3 AAL EGKKGGCP CHPIK
46 ACHrA4 IQYCVSQ DGAASLADSKPTSSPTSLKARPSQLPVSDQASPCKC
47 ACHcA4 SIRCRSRSIQYCYLQEDSSQTNGHSSASPASQRCHLNEEQPQHKPHQCKC
48 ACHrA5
49 ACHCA7 ICGRMTCSPTEEENLLHSGH
50 ACHdAL GDISPGCCPAAAAAAAADLSPT
51 ACHdA2 LSGYNGLPSVLSGLDDSLSDVA
52 ACH1A2 NGLHSATNRFGGSAGAFGGLPS
53 N ALPHA
54 ACHrB2 GPG RSVGPC
55 ACHcB2 DPP APCGC
56 ACHgB2 RQR VKVRH
57 ACHrB3 SES
58 ACHgN3 THS
59 ACHgNA TNS
60 ACHrB4 VSSHTAGLPRDARLRSSG
61 ACHdNA VNSGGELGLGDGCRRESE
62 N BETA
63 ACHhBl LRR FIDGPNRAVA
64 ACHbBI LRR FIDGPNRAVG
65 ACHmBI LRR FIDGPTRAVG
66 ACHtBI NGLT QPVT
67 BETA
68 ACHhGI LEKGPELGLSQFCGSLKQ
69 ACHbGI LEKGPESGQSPEWCGSLK
70 ACHmGI LENGPEVRQSQEFCGSLK
71 ACHcGI IGRGLESNRAQDFCQSLE
72 ACHxGI IGRGMENNTSDDLVHSLN
73 ACHtGI TSDIDIGTTVDLYKDLAN
74 GAMMA
75 ACHbEI QNLGAA
76 ACHrEl CQNLGAA
77 AChmEI QNLGAA
78 EPSILON A
79 ACHbDI ARRP PAGSEQAQQ
80 ACHmDl ARR PPASSEQVQ
81 ACHcDI ARF APAATSEEQ
82 ACHxDI VNP LNANNSQDQ
83 ACHtDI FGNN NENIAASDQ
84 DELTA Q85 CATION
Consensus
Block 13.



(601-650) 601-- --- 611----- 621------ 631-------641---------
01 GABhAI TKPPEPKK
02 GABbAl TKPPEPKK
03 GABrAI TKPPEPKK
04 GABcAl TKPAEPKK
05 GABbA2 NKPAEAKK
06 GABbA3 QDIPTETK
07 GABrA3 QDSPAETK
08 GABbA4 <TGYVPRQVPVGSASTQHVFGSRLQRIKTTVNSIGTSGKLSATTTPSAPPP
09 GABrAS EKTSESKK
10 GABmA6 VSPPLLLP
11 ALPHA
12 GABhBI LDRHGVPSKGRIRRRASQLKVKI
13 GABbBl LDRHGAHSKGRIRRRASQLKVKI
14 GABrBl LDRHGVPGKGRIRRRASQLKVKI
15 GABrB2 LERHVAQKKSRLRRRASQLKITI
16 GABrB3 GDRSIPHKKTHLRRRSSQLKIKI
17 GABcB3 SDRTGSHSKRGHLRRRSSQLKIKI
18 BETA RRR SQLK I
19 GABhG2 TGAWRHGR
20 GABrG2 TGAWRHGR
21 GABmG2 TGAWRHGR
22 GAMMA TGAWRHGR
23 GABrDI GPGGIRSR
24 GABmDl GPGGIRSR
25 GABrD2 GPGGIRSR
26 DELTA GPGGIRSR
27 GLYrAl SPEEMRK
28 GLYrA2 KDADAIKK
29 GLYrBl KPIEVNNGLGKPQAKNKKPPPAKP
86 GLYdB GPPGGGGGGGGGGGPPEGGGDPEAAVPAHLLHPGKVKKDINK
30 GLY
31 ANION
32 ACHhAl IKYIAETMKSDQ
33 ACHbAI IKYIAETMKSDQ
34 ACHmAI VKYIAETMKS DQ
35 ACHcAl IKYIAETMKSDQ
36 ACHxAl IKYIAETMKSDQ
37 ACHsIA
38 ACHtAl VKYIAEHMKSDE
39 ACtmAI VKYIAEHMKSDE
40 ALPHA KYIAE MKSD
41 ACHrA2 LLSPQIQKALEGVHYIADRLRSED
42 ACHcA2 LTLSPSILRALEGVQYIADHLRAED
43 ACHrA3 LSPEIKEAIQSVKYIAENMKAQN
44 ACHcA3 LSPEMRDAIESVKYIAENMKMQN
45 ACHgA3 < E AIE GDCGK V S RQLTPQ AINTWTFSWS PE IKQ AIE S VKYIAENMRS RN
46 ACHrA4 <TCKEPSPVSPVTVLKAGGTKAPPQHLPLSPALTRAVEGVQYIADHLKAED
47 ACHcA4 <KCRKGEAAGTPTQGSKSHSNKGEHLVLMSPALKLAVEGVHYIADHLRAED
48 ACHrA5 KS RNTLE AALDCIR YITRHWKEN
49 ACHcA7 PSEGDPDLAKILEEVRYIANRFRDQD
50 ACHdAL FEKPYAREMEKTIEGSRFIAQHVKNKD
51 ACHdA2 ARKKYPFELEKAIHNVMFIQHHMQRQD
52 ACH1A2 WGLDGSLSDVATRKKYPFELEKAIHNVLFIQNHMQRQD
53 N ALPHA I



54 ACHrB2 < SCGLREAVDGVRFIADHMRSED
55 ACHcB2 < GLEEAVEGVRFIADHMRSED
56 ACHgB2 < DQDVDEAIDGVRFIAEHMKIED
57 ACHrB3 < IRYIS RHVKKEH
58 ACHgN3 < VHYISRHIKKEH
59 ACHgNA < VRYISRHIKKEH
60 ACHrB4 < RFREDLQEALEGVSFIAQHLESDD
61 ACHdNA < SSDSILLSPEASKATEAVEFIAEHLRNED
62 N BETA < I H
63 ACHhBl < LLPELREWSSISYIARQLQEQE
64 ACHbBl < LPPELREWSSISYIARQLQEQE
65 ACHmBl < LPQELREVISSISYMARQLQEQE
66 ACHtBl < LPQDLKEAVEAIKYIAEQLESAS
67 BETA < L L E I Y A QL
68 ACHhGI < AAPAIQACVEACNLIACARHQQS
69 ACHbGI < QAAPAIQACVEACNLIARARHQQT
70 ACHmGI < QAS PAIQACVDACNLMARAGRQQ S
71 ACHcGI < EAS PEIRACVEACNHIANATREQN
72 ACHxGI < HAAPEIRTCVEACCHIASATREKN
73 ACHtGI < FAPEIKSCVEACNFIAKSTKEQN
74 GAMMA < P I CV AC A
75 ACHbEI < APEIRCCVDAVNFVASSTRDQE
76 ACHrEI < APEVRCCVDAVNFVAESTRDQE
77 AChmE1 < APEIRCCVDAVNFVAESTRDQE
78 EPSILON< E VD NF DQ
79 ACHbDl < ELF SELKPAVDGANFIVNHMKDQN
80 ACHmDl < QELFNEMKPAVDGANFIVNHMRDQN
81 ACHcDl < LYDHLKPTLDEANFIVKHMPEKN
82 ACHxDl < LYGEIKPAIDGANFIVKHIRDKN
83 ACHtDl < LHDEIKSGIDSTNYIVKQIKEKN
84
85

DELTA < 
CATION <

L K D N IV N
Consensus
Block 14.
(651-700) 651------ 661----- —  671------ 681-------691---------
01)GABhAl < TFN SVSKIDRLSRIAFPLLFGIFNLVYWATYLNRE
02)GABbAl < TFN SVSKIDRLSRIAFPLLFGIFNLVYWATYLNRE
03)GABrAl < TFN SVSKIDRLSRIAFPLLFGIFNIVYWATYLNRE
04)GABcA1 < TFN SVSKIDRLSRIAFPLLFGIFNLVYWATYLNRE
05)GABbA2 < TFN SVSKIDRMSRIVFPVLFGTFNLVYWATYLNRE
06)GABbA3 < TYN SVSKVDKISRIIFPVLFAIFNLVYWATYVNRE
07)GABrA3 < TYN SVSKVDKISRIIFPVLFAIFNLVYWATYVNRE
08)GABbA4 < SGS GTSKIDKYARILFPVTFGAFNMVYWWYLSKD
09)GABrA5 < TYN SISKIDKMSRIVFPILFGTFNLVYWATYLNRE
10)GABmA6 < ATG GTSKIDQYSRILFPVAFAGFNLVYWIVYLSKD
11)ALPHA < SK D RIFP F FN VYW Y
12)GABhBI < PDLTDVNSIDKWSRMFFPITFSLFNWYWLYYVH
13)GABbBl < PDLTDVNSIDKWSRMFFPITFSLFNWYWLYYVH
14)GABrB1 < PDLTDVNSIDKWSRMFFPITFSLFNWYWLYYVH
15)GABrB2 < PDLTDVNAIDRWSRIFFPWFSFFNIVYWLYYVN
16)GABrB3 < PDLTDVNAIDRWSRIVFPFTFSLFNLVYWLYYVN
17)GABcB3 < PDLTDVNAIDRWSRMVFPFTFSLFNLIYWLYYVN
18)BETA < PDLTDVN ID WSR FP FS FN YWLYYV
19)GABhG2 < IHI RIAKMDSYARIFFPTAFCLFNLVYWVSYLYL
20)GABrG2 < IHI RIAKMDSYARIFFPTAFCLFNLVYWVSYLYL



21 GABmG2
22 GAMMA
23 GABrDI
24 GABmDl
25 GABrD2
26 DELTA
27 GLYrAl
28 GLYrA2
29 GLYrBI
86 GLYdB
30 GLY
31 ANION
32 ACHhAI
33 ACHbAI
34 ACHmAI
35 ACHcAl
36 ACHxAl
37 ACHsIA
38 ACHtAI
39 ACtmAl
40 ALPHA
41 ACHrA2
42 ACHCA2
43 ACHrA3
44 ACHcA3
45 ACHgA3
46 ACHrA4
47 ACHcA4
48 ACHrA5
49 ACHCA7
50 ACHdAL
51 ACHdA2
52 ACH1A2
53 N ALPHA
54 ACHrB2
55 ACHcB2
56 ACHgB2
57 ACHrB3
58 ACHgN3
59 ACHgNA
60 ACHrB4
61 ACHdNA
62 N BETA
63 ACHhBI
64 ACHbBI
65 ACHmBI
66 ACHtBI
67 BETA
68 ACHhGI
69 ACHbGI
70 ACHmGI
71 ACHcGI
72 ACHxGI
73 ACHtGI
74 GAMMA

IHI RIAKMDSYARIFFPTAFCLFNLVYWVSYLYL 
IHI RIAKMDSYARIFFPTAFCLFNLVYWVSYLYL 
LKPIDADTIDIYARAVFPAAFAAVNIIYWAAYTM 
LKPIDADTIDIYARAVF PAAFAAVN11 YWAAYTM 
LKPIDADTIDI YARAVFPAAFAAVNI I YWAAYTM 
LKP IDADTIDIY ARAVFP AAF AAVN11 YWAAYTM 
LFIQRAKKIDKISRIGFPMAFLIFNMFYWIIYKIVR 
KFVDRAKRIDTISRAAFPLAFLIFNIFYWITYKIIR 
VIPTAAKRIDLYARALFPFCFLFFNVIYWSIYL 
LLGITPSDIDKYSRIVFPVCFVCFNLMYWIIYLHVS 

AK ID R FP FL FN YW Y
D R FP F N YW Y

ESNNAAAEWKYVAMVMDHILLGVFMLVCIIGTLAVFAGRLIEL 
E SNNAAEEWKYVAMVMDH ILL AVFML VC 11GTLAVFAGRLI EL 
ESNNAAEEWKYVAMVMDHILLGVFMLVCLIGTLAVFAGRLIEL 
E SSNAADEWKFVAMVLDHLLLVIFMLVC11 GTLAVFAGRL I EL 
ESNKASEEWKFVRMVLDHILLAVFMTVCVIGTLAVFAGRIIEM
E S SNAAEEWKYVAMVIDHILLCVFMLIC11GTVSVFAGRLI EL 
ESSNAAEEWKYVAMVIDHILLCVFMLICIIGTVSVFAGRLIEL 

A EWK V MV DH LL FM C IGT VFAGR IE
ADSSVKEDWKYVAMWDRIFLWLFIIVCFLGTIGLFLPPFLAG 
ADFSVKEDWKYVAMVIDRIFLWMFIIVCLLGTVGLFLPPYLAG 
VAKEIQDDWKYVAMVIDRIFLWVFILVCILGTAGLFLQPLMAR 
EAKEIQDDWKYVAMVIDRIFLWVFILVCILGTAGLFLQPLMTG 
KAKEVEDDWKYVAMVIDRIFLWVFVLVCVLGTLGLFLQPLIGF 
TDFSVKEDWKYVAMVIDRIFLWMFIIVCLLGTVGLFLPPWLAA 
ADFSVKEDWKYVAMVIDRIFLWMFIIVCLLGTVGLFLPPWLAG 
DVREWEDWKFIAQVLDRMFLWTFLLVSIIGTLGLFVPVIYKW 
EEEAICNEWKFAASWDRLCLMAFSVFTIICTIGILMSAPNFV 
KFESVEEDWKYVAMVLDRMFLWIFAIACWGTALIILQAPSLH 
EFNAEDQDWGFVAMVMDRLFLWLFMIASLVGTFVILGEAPSLY 
EFDAEDQDWGFVAMVMDRLFLWIFTIASIVGTFAILCEAPALY 

W A V DR L F T
DDQSVREDWKYVAMVIDRLFLWIFVFVCVFGTVGMFLQPLFQN 
DDQSVSEDWKYVAMVIDRLFLWIFVFVCVFGTVGMFLQPLFQN 
DDEGIIEDWKYVAMVIDRLFLWIFILVCWGTLGLFVQPLFQS 
FISQWQDWKFVAQVLDRIFLWLFLIASVLGSILIFIPALKMW 
FI RE WQDWKF VAQVLDRIFLWVFLTAS VLGTILIFTPALHMY 
FIREWQDWKFVAQVLDRIFLWTFLTVSVLGTILIFTPALKMF 
RDQSVIEDWKFVAMWDRLFLWVFVFVCILGTMGLFLPPLFQI 

LYIQGATVIHETREDWKYVAMVIDRLQLYIFFIVTTAGTVGILMDAPHIF 
DW VA V D L F G

DHDALKEDWQFVAMWDALFLWTFIIFTSVGTLVIFLDATYHL 
DHDVLKEDWQFVAMWDRLFLWTFIIFTSVGTLVIFLDATYHL 
DHDALKEDWQFVAMWDRLFLWTFIVFTSVGTLVIFLDATYHL 
EFDDLKKDWQYVAMVADRLFLYVFFVICSIGTFSIFLDASHNV 

D LK DWQ VAMV D LFL F S GT IFLDA 
HFDNGNEEWFLVGRVLDRVCFLAMLSLFICGTAGIFLMAHYNR 
HFDSGNKEWFLVGRVLDRVCFLAMLSLFVCGTAGIFLMAHYNR 
HFDSGNEEWLLVGRVLDRVCFLAMLSLFICGTAGIFLMAHYNQ 
DFSSENEEWILVGRVIDRVCFFIMASLFVCGTIGIFLMAHFNQ 
DFKSENEEWILMGRVIDRVCFLVMCFVFFLGTIGTFLAGHFNQ 
DSGSENENWVLIGKVIDKACFWIALLLFSIGTLAIFLTGHFNQ 

N W L G V D C F  F GT FL H N



EE

75)ACHbEI
76)ACHrE1
77)AChmEl
78)EPSILON
79)ACHbDI
80)ACHmDI
81)ACHcDI
82)ACHxDI
83)ACHtDI
84)DELTA
85)CATION 
Consensus 
Block 15.
(701-750) 701------- 711

ATGEEVSDWVRMGKALDSICFWAALVLFLVGSSLIFLGAYFNR
ATGEELSDWVRMGKALDNVCFWAALVLFSVGSTLIFLGGYFNQ
ATGEELSDWVRMGKALDNVCFWAALVLFSVGSTLIFLGGYFNQ

W R D C  VG IFL G NQ
NYNEEKDCWNRVARTVDRLCLFWTPIMWGTAWIFLQGAYNQ 
SYNEEKDNWNQVARTVDRLCLFWTPVMWGTAWIFLQGVYNQ 
SYNEEKDNWNPVARTLDRLCLFLITPMLWGTLWIFLMGIYNH 
DYNEEKDNWYRIARTVDRLCLFLVTPVMIIGTLWIFLGGAYNL 
AYDEEVGNWNLVGQTIDRLSMFIITPVMVLGTIFIFVMGNFNH 

T DRL F TP GT IF G NY EE W 
W

•721 •731 •741
01 GABhAI < PQLKAPTPHQ
02 GABbAl < PQLKAPTPHQ
03 GABrAI <PQLKAPTPHQ
04 GABCA1 <PQLKAPTPHQ
05 GABbA2 <PVLGVSP
06 GABbA3 < SAIKGMIRKQ
07 GABrA3 < SAIKGMIRKQ
08 GABbA4 <TMEKSESLM
09 GABrA5 < PVIKGATSPK
10 GABmA6 <TMEVSSTVE
11 ALPHA
12 GABhBl
13 GABbBI
14 GABrBI
15 GABrB2
16 GABrB3
17 GABcB3
18 BETA
19 GABhG2
20 GABrG2
21 GABmG2
22 GAMMA
23 GABrDI
24 GABmDl
25 GABrD2
26 DELTA
27 GLYrAI < REDVHNK
28 GLYrA2 <HEDVHKK
29 GLYrBI
86 GLYdB < D WADDL VLL(
30 GLY
31 ANION
32 ACHhAI <NQQG
33 ACHbAl <NQQG
34 ACHmAl <HQQG
35 ACHcAl <NQQG
36 ACHxAl <NMQE
37 ACHsIA
38 ACHtAI <SQEG
39 ACtmAI <SQEG
40 ALPHA



41 ACHrA2 MI
42 ACHcA2 MI
43 ACHrA3 DDT
44 ACHcA3 DDM
45 ACHgA3 FS
46 ACHrA4 C
47 ACHcA4 MI
48 ACHrA5 ANIIVPVHIGNTIK
49 ACHCA7 EAVSKDFA
50 ACHdAL DQSQPIDILYSKIAKKKFELLKMGSENTL
51 ACHdA2 DDTKAIDVQLSDVAXQIYNLTEKKN
52
53

ACH1A2 
N ALPHA

DDTKPIDMELSSVAQQFLPDIDF
54 ACHrB2 YTATTFLHPDHSAPSSK
55 ACHcB2 YATNSLLQLGQGTPTSK
56 ACHgB2 YNTPVAEEVYGDF
57 ACHrB3 IHRFH
58 ACHgN3 LST
59 ACHgNA LRTPPPPSP
60 ACHrB4 HAPSKDS
61
62

ACHdNA 
N BETA

EYVDQDRIIEIYRGK
63 ACHhBI PPPDPFP
64 ACHbBl PPADPFP
65 ACHmBI PPPEPFP
66 ACHtBl PPDNPFA
67 BETA PP PF
68 ACHhGI VPALPFPGDPRPYLPSPD
69 ACHbGI VPALPFPGDPRSYLPSSD
70 ACHmGI VPDLPFPGDPRPYLPLPD
71 ACHcGI APALPFPGDPKTYLPP
72 ACHxGI APAHPFPGDSKLYQPST
73 ACHtGl VPEFPFPGDPRKYVP
74 GAMMA P PFPGD Y P
75 ACHbEI VPQLPYM
76 ACHrEI VPDLPYPPCIQP
77 AChmEl VPDLPYPPCIQP
78 EPSILON P P P
79 ACHbDI PPPQPFPGDPFSYLEKDKRFI
80 ACHmDI PPLQPFPGDPFSYSEQDKRFI
81 ACHcDI PPPLPFSGDPFDYREENKRYI
82 ACHxDI PPSLPFPGDPFIYTKEHRRLI
83 ACHtDI PPAKPFEGDPFDYSSDHPRCA
84)DELTA
85)CATION 
Consensus

PP PF GDPF Y R



APPENDIX III. Glossary of Ligand Structures.

Ligand structures that are referred to in the text are included in this appendix.
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