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A bstract

Molecular Modelling of Antibody Combining Sites

Jan T. Pedersen Ph.D Thesis
April 1993

Two of the main problems in protein engineering today are the understanding of 

protein folding and molecular recognition. Both of these problems are embodied 

in the molecular structure of antibodies. The prediction of antibody variable 

region structures and the understanding of their function is the aim of this thesis.

A fully automated antibody modelling protocol which includes the automatic gen

eration of framework regions, using a light chain and heavy chain variable variable 

region docking algorithm based on known variable region /7-barrel structures is 

presented. This framework generation protocol gives good correlation with crystal 

structures (root mean square deviation values between 0 .3-0.8 A). A new method 

of sidechain generation has been developed, using a Monte Carlo simulated an

nealing protocol which includes a screening procedure based on hydrophobicity 

and accessibility for selection of the final conformation. With this sidechain gen

eration algorithm sidechain conformations of surface located residues have a good 

correspondence with those of crystal structures. The complete modelling protocol 

has been implemented in the program A6M.

The usage of both sequence and structural data from antibodies within A 6M is 

demonstrated by the development of a new method for reshaping (humanising) 

murine Fv sequences, resulting from an analysis of surface located residues in



the framework regions of all known Fv crystal structures. An antibody has been 

reshaped using this protocol, termed resurfacing, which retains binding with a 

dissociation constant of 10- 10M -1.

Finally a method for the ab-initio design of antibody combining sites is presented. 

The design process is based on the hypothesis that, for small molecules, antigen 

binding is accounted for by sidechains of the antibody interacting with the anti

gen, thus being independent of the backbone conformation. For a given residue 

position all the possible conformations of 19 different residue types are gener

ated. The sidechain generation algorithm uses a recursive torsional grid search, 

evaluating each of the generated sidechain conformations with a simple potential 

energy function. Each of the conformations generated is screened for exclusion 

of antigen surface area. This protocol results in a antibody combining site where 

electrostatic interactions and packing of the antigen are satisfied. Subsequent 

minimisation using a full potential energy function does not change the confor

mation of the combining site construct. A specific design, using morphine as the 

antigen, has been generated and is currently undergoing experimental test.
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G lossary

A 6M  Anti&ody Modelling algorithm.

ACS Antibody Combining Site.

A ntigen Antibody binding species.

A PC  Antigen Presenting Cell.

C dom ain Constant domain.

CAM AL Combined Algorithm for Modelling Antibody Loops 

C D R  Complementarity Determining Region.

D segm ent Immunoglobulin gene Diversity segment. 

dA b Single domain Antibody.

Fab Antibody sub fraction consisting of V  domain and C domain. 

FACS Fluorescence Activated Cell Sorter

Fv Variable region of antibody, consisting of Vi and Vjr domains. 

Fc Constant or effector region of antibodies.

H M C Hybrid Monte Carlo simulation.

H ap ten  Small antigen (M# < 5000).

H FR1,2,3 and  4 Heavy chain framework regions. 

IgA ,IgD ,IgE ,IgG ,IgM  Immunoglobulin classes.

J  segm ent Immunoglobulin gene Joining segment.

LFR1,2,3 and  4 Light chain framework regions.

M AC Membrane Attack Complex.

M C Monte Carlo simulation.

M D Molecular Dynamics.

M H C -I,M H C -II Major Histocompatibility Complex I and II. 

M M  Molecular Mechanics.



M O P Maximum Overlap Procedure 

M R U  Minimal recognition unit 

N K  Natural Killer Cell

Q SA R Quantitative Structure Activity Relationship

scFv Single chain Fv

SD R  Structurally Determining Residue

T C R  T-cell receptor

V dom ain Variable domain.
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C hapter 1

Introduction

The prediction of protein three dimensional structure from sequence is one of 

the holy grails of biology. During the last twenty years it has become possible 

to predict the conformations of small parts of proteins when the surrounding 

structure is known, particularly if there already exists a family of homologous 

proteins where structures have been solved experimentally. This field is termed 

M olecular M odelling. The aim of this thesis is to investigate the possibilities 

for design and prediction of antibody structures, using the methods of molecular 

modelling.

This introduction will give the reader a setting for the objectives of this thesis. 

It will contain a basic overview of immunology, the structure of immunoglobulin 

superfamily proteins and an introduction to homology modelling and molecular 

mechanics methods that are fundamental to some of the work in the thesis. 

The background to antibody design is introduced separately at the beginning 

of Chapter 4.

1
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1.1 T he im m une system

A healthy animal has several ways of defending itself against infections. First 

there are physicochemical barriers such as skin and mucous membranes. Second, 

there is a system of phagocytic cells, macrophages, natural killer cells (NK) and 

lymphocytes. Third, there exists an extensive range of blood borne molecules 

such as antibodies, complement, cytokines and interferons.

Some defense mechanisms are present prior to infection and are not influenced 

or regulated by such infections. These factors constitute what is called n a tu ra l 

im m unity  (also called native or innate immunity). Other defense mechanisms 

are activated when exposure to infection occurs, and are controlled by the amount 

of foreign substance present. These factors constitute what is called specific or 

acquired  im m unity.

The basis of n a tu ra l im m unity can be defined by three processes. The first is 

the inclusion of foreign particles in neutrophils and macrophages, by a process of 

phagocytosis in which the particles are enclosed in a phagosome. The phagosomes 

then fuse inside the cell with granules containing harsh reagents such as super

oxide anions, hydroxyl radicals, halide ions, and a range of proteolytic enzymes 

such as Cathepsin G, lysozyme, defensin etc., which will degrade any biological 

material. Second, the com plem ent system, which is a cascade of two converging 

pathways of serum and membrane bound enzymes, is activated. All the compo

nents of the pathway interact in a highly regulated manner. One branch of the 

cascade is activated by antibody-antigen complexes and the other by direct con

tact with surfaces of foreign material. Both pathways lead to the activation of a 

final pathway which generates the m em brane a ttack  com plex (MAC). MAC 

is capable of breaking down cell membranes by self insertion. Third, NK cells
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capable of recognising foreign cells bind to the cell surface and release the pro

tein perforin into the inter-cell space. Perforin is then inserted into the foreign 

membrane, and pores are generated leading to cell death. This action is similar 

to the mechanism of MAC in the complement pathway.

Specific immunity is a type of immunity found predominantly in higher animals. 

It is a type of immunity which arises as the result of exposure to a foreign com

pound (antigen). This process is called im m unisation. There are two classes 

of specific immunity. First, H um oral im m unity which can be transferred to 

other individuals via cell free portions of blood (serum or plasma). This type of 

immunity is mediated by molecules in the blood which are specific to antigens, 

called antibodies or imm unoglobulins. Antibodies are produced by a type of 

blood cells called B-lym phocytes (or B-cells). Second, there is Cell-m ediated 

im m unity, which can be transferred to other animals with cells from immunised 

individuals, but not with plasma or serum. This type of immunity is mediated 

by a second class of lymphocytes known as T -lym phocytes (or T-cells) that 

recognise specific antigens on the surface of foreign cells.

There are three phases in the immune response: 1) C ognitive phase, in which 

recognition of the antigen takes place, 2) A ctivation phase, in which specific 

lymphocytes are triggered and 3) Effector phase, in which the antigen is elim

inated. The processes of the immune response are outlined in detail in Figure 

1.1.
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C 1 q
C o m p le m e n t

activation

Effec tor  p h a s e

MAC

^ Ant i ge n  ^  MHC-II T IL-2 R e c e p t o r

A Ant i body  T-ce l l  r e c e p t o r  IL-1 R e c p t o r

Co g n i t i v e  p h a s e

Auto crin e  growth  

stimulation

Act i vat i on p h a s e  

Q  T h y m o c y t e

L-1 + IL-2 th y m o c y te  

activation

Figure 1.1: Outline of the immune response. The intruding antigen is recognised by antigen 
presenting cells (A P C ’s) (macrophages etc), degraded and presented on the cell surface via 
class II major histocompatibility complex (MHC II). The presented antigen is recognised by 
CD4+T cells (T helper cells), which start the production of lymphokine interleukin-1 (IL- 
1). IL-1 stimulates thymocytes to produce both IL-1 and IL-2. IL-1 and IL-2 simulate the 
proliferation of CD4+T-helper cells, other T-cells, thymocytes, and B-cells. The proliferation 
of B-cells producing antigen specific antibodies is enhanced. This membrane bound antibody 
in turn activates the first protein in the complement cascade, leading to neutralisation of the 
antigen.
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1.2 The im m unoglobulin protein superfam ily

The Immunoglobulin superfamily of proteins is one of the best described and 

characterised families of proteins to date. There are approximately 50 (Abbas 

et al., 1991) different sub-families within the superfamily all which are encoded 

by independent gene complexes. Common to all these proteins is the structural 

motif, the f3-sheet sandwich which, when present in this superfamily is also known 

as the Im m unoglobulin fold or dom ain, see Figure 1.2. The structure of Ig 

domains has been reviewed by (Amzel and Poljak, 1979), and are classified as 

either variable (V-type), constant (C-type) or primitive (P-type) domains. All 

the proteins of the family are constructed by one or several units of this motif 

linked together. Figure 1.3 shows examples of some of these structures.

1.3 Im m unoglobulin structure

Clues to the antibody or immunoglobulin structure were first discovered by Porter 

by performing proteolytic digestion of antibody isolates (Porter, 1958; Porter, 

1959). It was determined that all antibody structures have the same overall struc

ture, consisting of four chains: two identical light chains, of molecular weight 24 

kilodaltons (kD), and two identical heavy chains of about 55 or 70 kD depend

ing on the antibody class. The fragments isolated by proteolytic digestion were 

called Fc (crystallisable fraction), and Fab (antigen binding). Later Fv (variable 

domain) was obtained by cleavage of Fab- The structural significance of these 

fragments is outlined in Figure 1.2.

Although all antibodies are similar they can be subdivided into classes called
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ab

CDR 1

C DR 3

CDR 2

Figure 1.2: Outline of antibody structure (IgG). A) The overall domain composition of the 
antibody. B) the /?-sheet sandwich, the building block of the immunoglobulin superfamily. 
Each of the two halfs of the antibody are identical, consisting of one light and one heavy chain. 
Each loop in Figure A) is equivalent to an Ig-domain /?-sheet shown in Figure B (indicated by 
an arrow). The naming of the strands is shown on the figure. Strands C ’ and C” are found 
in the V domain but not the C domain of an antibody. The boxes enclosing different paxts of 
the antibody show the fragments obtained by proteolytic digestion (explained in text). Grey 
bonds in A indicate disulphide links.
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c c

C D 4 T C R MHC -I MHC- C D 2 C D 3

p

p

C D 8 FcRII p- l gR NCAM igG

Figure 1.3: Some immunoglobulin superfamily proteins - all presented on the cell surface. 
The basic domain building block is the /3-sheet sandwich. V: Variable type domain, C: 
Constant domain, P: Distantly related Ig-Domain. Broken bonds indicate disulphide bonds. 
The direction of the protein chain is indicated on CD4. The proteins axe: CD2,3,4,8: Cell 
Differentiation antigen 4, TR C: T-cell receptor, M H C -I,II: Major Hisocompatibility complex, 
FcR II: Fc receptor, p-IgR: poly-Ig recptor, NCAM : Neural Cell Adhesion Molecule, IgG: 
Immunoglobulin G.
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Immunoglobulin type Heavy chains Light chains
IgA a l,a 2

/c, A
IgD S
IgE e
IgG 7 1 ,7 2 , 7 3 ,7 4
IgM

Table 1.1: Ig subtypes and chain classes, showing that the H  chains are much more diverse 
than the L chains

IgA , IgD, IgE, IgG and IgM. The basis of this classification is historical, 

structural and physiological at the same time. IgA’s form a primary defense 

barrier, as they are secreted through the mucus membrane. IgD is structurally 

identical to IgG in humans, is expressed on the B-cell surface and is thought to 

have a role in tolerance. IgE, which has an extra constant Ig-domain, is involved 

in allergy reactions, and binds to specialised cells (mast cells) that express Fc- 

receptors specific to IgE. The binding of IgE-allergen complexes to these Fc- 

receptors promotes histamine release. IgM is the first antibody to be synthesised 

in an immune response. Both IgM and IgG are blood borne. IgG is probably the 

most important of the immunoglobulins, and has the highest blood concentration. 

The classes IgA and IgG are further subdivided into subclasses: Ig A l, IgA2, 

Ig G l, IgG2, IgG3 and IgG4. The heavy chains axe classified as a(A), 7 (G), 

<5(D), e(E), or /i(M). There are two classes of light chains, k, and A. Table 1.1 

outlines the classes of antibodies and the chain denomination.

All the antibody types have the same basic Y  or better T (Figure 1.2) shape, but 

members of the IgA class are dimers and IgMs are pentamers. In both instances 

the multimeric form is stabilised by an extra chain, the J  chain (or joining chain).

The basic structure is outlined in Figure 1.2. The heavy and light chains pair, 

using both covalent (disulphide bonds) and non-covalent interactions (hydropho
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bic domain packing). The pairing of the light and heavy chain will be discussed 

further in Chapter 2 . The ChI and Cl domains pair as do the VH and VL do

mains. Sequence alignments show that the C l/C hI domain (C dom ain) and the 

Fc portion of the antibody are highly conserved, whereas the VL/VH (V dom ain) 

contains hypervariable (Wu and Kabat, 1970) regions. There are three hyper- 

variable regions in each of the chains. Each region is between 3 to 20 residues 

long and is called a Complememmunentarity Determining Region or CDR. The 

CDR’s are numbered C D R  L I, C D R  L 2 and C D R  L3 in the light chain and 

C D R  H I, C D R  H 2 and C D R  H3 in the heavy chain. The CDR’s are exposed 

loop regions situated in three-dimensionally contiguous regions of the antibody, 

and constitute the antibody combining site (or ACS) of the antibody. The ACS 

is responsible for the recognition of antigens.

The core of the Fv domain is conserved and is termed the fram ework, and 

consists of a /^-barrel formed by contributions from the VL and VH chain. The 

framework is described in more detail in Section 2.3.

1.4 Im m unoglobulin diversity and gene organ
isation

One of the most intriguing question in molecular immunology today is the precise 

size of the im m unoglobulin reperto ire . Since each antibody is specific to a 

single, or very few, antigenic determinants there should exist a large number of 

different antibodies in an organism in order for the immune system to be able 

to recognise any new antigen, although the antibodies may be generated partly 

according to need (The Instructive Hypothesis of (Jeme, 1973)).
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Figure 1.4: The sequence of events which lead to the generation of a mature «-chain. Only 
one round of somatic recombination occurs (V-J joining), to form the rearranged light chain 
gene. □ indicates glycosylation site
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Figure 1.5: Events which lead to the generation of mature heavy chains. Two rounds of 
somatic recombination occurs, 1) D-J joining and 2) V-D-J joining. In the final step the leader 
(L) is cleaved off and the protein is glycosylated (□ indicates glycosylation site), to give the 
mature heavy chain.
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Diversity occurs as a result of disorder in the recombination of immunoglobulin 

genes, and is obtained by a combination of som atic recom bination of many 

germ-line genes and som atic mutation(Figure 1.4 and 1.5). A light chain is gen

erated from three gene fragments V -J-C , and a heavy chain from four fragments 

V -D -J-C . This means (assuming approximately equal numbers of segments) that 

there exists a larger number of heavy chains than light chains. Figure 1.4 and 1.5 

shows how heavy and light chains are generated. The murine immunoglobulin 

gene complex has been mapped and much of it has been sequenced. As a result 

of this work it is possible to estimate that the size of the antibody repertoire is 

of order 109 — 1011 different antibodies (Abbas et al., 1991). Table 1.2 outlines 

the basis of this estimate. This is only an estimate of possible sequences and not 

of possible complementary shapes.

CDR’s L3 and H3 are the most variable in length and sequence. This “extra” 

variability is obtained because these CDR gene sequences are situated right at 

the position where joining of either the J-segment (light chain) or J and D seg

ments (heavy chain) occurs. The implications of this variability for modelling of 

antibody combining sites are addressed in Chapter 2.

1.5 A ntigen recognition

The interaction of an antibody with its cognate antigen is a widely accepted 

paradigm of molecular recognition. To understand the antibody-antigen inter

action in atomic detail requires knowledge of the three-dimensional structure of 

antibodies and of their antigen complexes.

The thermodynamic process of antigen binding is the result of changes in both
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Diversity Factor H chain K A
Germline Gene segments 

V 250-1000 250 2
J 4 4 3
D 12 0 0

Combinatorial joining 
V-D-(J) 104-4-104 103 6

H-L chain association 
H-k 
H-A

1 -4 -1 0 7 
5 - 10-104

Total potential repertoire 109 - 1 0 11

Table 1.2: Simple calculation of the size of the immunoglobulin repertoire. Note that there 
are approximately ten times more possible heavy chains than light chains. Table reproduced 
after (Abbas et a i ,  1991)

enthalpy and entropy of the system. The entropic changes arise from changes 

in entropy of water on exclusion from the binding site, and loss of motional en

tropy of both antibody and antigen on binding. The enthalpic changes involve 

complex exchange of H-bonds, charge-charge interactions and van der Waals in

teractions. The binding of antigen is believed to be a diffusion controlled pro

cess, characterised by second-order rate constants, with &2 values in the range 

0.6 — 1.0*106M - 1s-1. These rate constants are slow when compared to enzy

matic reactions which have values in the order 107 — 108M - 15_1 (Northrup 

and Erickson, 1992).

1.5.1 T he antigen

An antigen is defined as a substance which may be specifically bound to an 

antibody. Antigens which are capable of eliciting an immune response are called 

immunogens.

Small molecules (M# < 5000 kDa) are generally unable to generate an immune
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response unless bound to a larger carrier molecule or unless they can react 

as superantigens (independent of MHC processing). Small antigens are called 

hap tens. Where the antigen is macromolecular and larger than the ACS, the 

antibody only binds to a part of the macromolecule called a de te rm inan t or 

epitope.

There is some controversy about the origin of antigenicity. Early work by Atassi 

et al indicated that the antigenic profile of a molecule is defined by very few, well 

defined epitopes (Atassi, 1975; Atassi, 1978). A later review of a larger body of 

work by Benjamin et al showed that any region of the surface of a macromolecule 

can be a potential antigenic epitope (Benjamin et al., 1984). However, the ca

pacity of a given individual to respond to any particular epitope is determined 

by the regulatory processes of the immune system operating in that individual. 

Despite numerous debates (Tainer et al., 1985) it is still not clear what influence 

the flexibility of the antigen has on the capacity to trigger an immune response.

1.5.2 A n tib ody types

Antibodies can be classified according to the topology of the antigens which they 

recognise (Wang et al., 1991) (Figure 1.6). There are three groups which in 

this thesis will be called : 1) cavity antibodies, 2 ) groove antibodies, and 

3) p lanar antibodies. This classification describes the overall topography of 

the ACS. The classification is based on 20 x-ray crystallographic structures of 

antibody ^AB fragments some of which have an antigen bound (Wang et al., 

1991).

It is not clear whether any of these combining site types are preferred by particular
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Figure 1.6: The three antibody binding site types, exemplified by: a) Planar: Hy-Hel-10 
(Padlan et al., 1989) b) Cavity: 4-4-20 (Herron et al., 1989), c) Groove: B13I2 (Stanfield et 
al., 1990). Classification as is outlined by Wang et al (Wang et al., 1991) In this picture the Fy 
framework is shown as a magenta ribbon, and the antigen is shown in CPK representation.

types of antigens. There are however some indications (Rini et al, 1992; Novotny, 

1991; Herron et al., 1989) that smaller antigens bind best when they are almost 

buried in the surface of of the combining site, usually in a hydrophobic hole. 

Larger protein antigens prefer less curved surfaces and appear to bind over a 

larger surface area (Amit et al., 1986; Sheriff et al., 1987), often with many 

charge-charge interactions.

1.5.3 CDR sidechains

The recognition of an antigen is largely mediated by the exposed sidechains in 

the CDR loops. Several studies (Padlan, 1990; Mian et al, 1991; Kabat and 

Wu, 1971) of the amino acid distribution and the accessibility of sidechains in
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Residue group Residues Specificity
(H-bonding)

Binding
(Hydrophobic effect)

Aliphatic lie Leu Val Ala +
0  and S functional Cys Ser Met Thr + +
Acidic Asp Glu + + +
Basic Lys Arg + + + +
Bifunctional Asn T yr Gin His "F+ + +
Aromatic P he  Trp + + +
Structural Gly Pro

Table 1.3: The function of various sidechain groups in the ACS, (-f) signs indicate the 
influence of a residue on a particular effect. The most abundant residues occurring in CDRs as 
determined from the database of Kabat et al (Kabat et al., 1992), are outlined in bold.

the CDRs has shown that, overall, sidechains are more exposed than those in the 

framework. Furthermore, it has been shown that there exists (Mian et al., 1991) 

a higher frequency of bifunctional residues such as Tyr, His, and Asn which are 

capable of engaging in hydrogen bonding and of contributing to the hydrophobic 

effect in the binding loops. The usage of bifunctional residues is yet another way 

of broadening specificity of the antibody. Table 1.3 outlines the function of amino 

acid types as compiled by Padlan and Mian (Padlan, 1990; Mian et al., 1991).

There is also an unusually high frequency of exposed hydrophobic residues. It can 

therefore be speculated (Colman, 1988) that the hydrophobic sidechains account 

for b inding, and the charged sidechains for specificity in the process of antigen 

recognition. Frequency tables of various residue types within the framework and 

CDR’s can be found in Appendix A.

1.6 H om ology m odelling

When the first x-ray crystallographic structures of homologous proteins emerged 

it was discovered that proteins which have homologous sequences also have similar
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folds. This provided the basis for performing Homology M odeling (Browne et 

al., 1969) or folding of a sequence over a known three dimensional structure. Since 

these first modeling experiments this method of generating three-dimensional 

structures has been used on a large variety of protein families (for some of the 

latest examples see (Bank et a l, 1990; Dalgleish et al., 1992; Greer, 1990; James 

et al., 1991; Mas et al., 1992; Mosimann et al., 1992; Weber, 1990)).

When modeling homologous families of proteins the first step is to align the known 

sequences of the family. This will usually result in an optimised alignment, con

taining gaps in the sequences (Needleman and Wunsch, 1970). Similarly, if there 

are more three-dimensional structures known within the family these have to be 

superimposed (McLachlan, 1979). Prom the alignment and the superimposition 

S truc tu ra lly  Conserved Regions (SCR’s) and Variable Regions (VR’s) can 

be assigned. SCR’s are usually located in the protein core, whereas VR’s are sur

face located. This distribution of SCR’s and VR’s also reflects the accuracy with 

which a new sequence can be modelled (Greer, 1991). The protein core can be 

predicted with high confidence and the conformation of VR’s are predicted with 

lower confidence. The reason for this lower confidence when modelling VR’s is 

that these are usually located in regions with less well defined secondary structure 

(loops) on the protein surface. This confidence problem has also been the main 

obstacle when attempting to model antibody Fv structures.

Many algorithms have been developed to automate and improve the accuracy of 

models obtained from homology modelling. The difference between these meth

ods lies largely in the way they model VR’s. The VR modelling methods fall 

into two groups : Database methods (Sutcliffe et al., 1987b; Sutcliffe et al., 

1987a; Jones and Thirup, 1986; Martin et al, 1989; Martin et al, 1991a) and ab 

initio methods (Palmer and Sheraga, 1991; Bruccoleri and Kaxplus, 1987; Moult
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and James, 1986; Havel and Snow, 1991).
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The application of these methods to antibody Fv structures is reviewed in Chapter 

2. For other reviews of these methods see (Greer, 1991; Maggiora et al., 1991).

1.7 M olecular mechanics calculations

The objective of any modelling study is to obtain insight into molecular structure 

and function. Almost any modelling procedure does contain a stage of objective 

evaluation of the model produced, and this is most frequently done using potential 

energy functions. In this thesis several of these Molecular Mechanics (MM) 

packages are made use of, such as VFF (Valence Force Field) (Lifson et al., 1979), 

DISCOVER (b), CHARMM (Brooks et al., 1983), and a Monte Carlo/Metropolis 

(Metropolis et al., 1953) package written by the author.

A prerequisite for any MM calculation is a potential function defining the energy 

of a molecular system as a function of atomic position. In principle an exact 

solution to this problem can be obtained by solving the quantum mechanical 

equations which describe the ground state energy of the electrons and nuclei at 

each possible nuclear position. The resulting energies form a continuous Born- 

O ppenheim er surface (McCammon and Harvey, 1987) as a function of nuclear 

position. The surface describes the energy of virtually any type of atomic motion 

in molecular systems (McCammon and Harvey, 1987). Unfortunately quantum 

mechanical descriptions of systems the size of proteins (thousands of atoms) is 

not yet possible. Therefore there is a need to derive simple empirical energy 

functions of the atomic positions.
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The global energy functions used are functions which are a sum of several terms, 

each describing a single atomic or molecular force. The model used in VFF 

(Dauber-Osguthorpe et al., 1991) is outlined in equation 1.1.

v  =  E[A (1 -  exp- ^ 6- 6”))2 -  A]+

-  M 2 +

j X ^ V 1 -  scos(n^)) +

\ Y . h xx2 +

-  bo)(b' -  b'0) + 

Y . E F^ ( e ~ eo W - K )  + 

Y.Ftee’cos4>(9 -  9a){6' -  6'0) +

E X ^xx-X x ' +

Ee[(^)12 -  2(^)6] + Trf (1-1)

Here, b is bond length, $ is valence angle, </> is torsion angle and x out of plane

angles, r is the distance between atoms, q partial atomic charges and e is the

energy of interaction at the most favorable interaction distance r*. H ,F  and D

are force constants.

In this force field the first four terms describe the energy required to distort 

internal bonds, valence angles, torsion angles, and out of plane angles. The next 

five terms describe relations between the first four terms, and are called cross 

terms. The last term describe the relation between non-bonded atoms. The 

physical meaning of these terms is illustrated in Figure 1.7.
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2 )  V a le n c e  a n g le  term
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6)  V a le n c e -v a le n c e  

cross term

8) V a le n ce - to rs io n  

cross term

10) V d W  and  electrostatic  

term

Figure 1.7: Pictorial description of the force field outlined in Equation 1.1, the ten terms 
correspond to the ten terms in the equation. Reproduced after INSIGHT manual (TM Biosym 
Inc., San Diego, CA)
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The constants in the system are then derived by fitting the function to experimen

tal data, or quantum mechanical calculations on small molecules. Forcefields are 

frequently refined by adding terms which better describe specific phenomena ob

served in molecular structures, such as hydrogen bonds etc (Dauber-Osguthorpe 

et al., 1991).

Three main molecular mechanics methods are used in this work: m olecular 

dynam ics (MD), m inim isation, and M onte Carlo sim ulation (MC). The 

MC simulation method is discussed in further detail in Section 2.5.

1.7.1 M olecular dynam ics

The aim of MD is to simulate the motions of molecules, using the basic Newtonian 

equations of motion (Newton, 1729 (I960)). In this description the atom i is 

assumed to be a singular point, with the mass mt-. If the position of the particle 

is called rt-, the velocity is given by the first derivative of position with respect to 

time (dt):

dri
dt

Pi_
rrii (1.2)

Where pi is the momentum of the particle. The net force exerted on the particle
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and James, 1986; Havel and Snow, 1991).

The application of these methods to antibody Fv structures is reviewed in Chapter 

2. For other reviews of these methods see (Greer, 1991; Maggiora et al., 1991).

1.7 M olecular mechanics calculations

The objective of any modelling study is to obtain insight into molecular structure 

and function. Almost any modelling procedure does contain a stage of objective 

evaluation of the model produced, and this is most frequently done using potential 

energy functions. In this thesis several of these Molecular Mechanics (MM) 

packages are made use of, such as VFF (Valence Force Field) (Lifson et al., 1979), 

DISCOVER (b), CHARMM (Brooks et al., 1983), and a Monte Carlo/Metropolis 

(Metropolis et al., 1953) package written by the author.

A prerequisite for any MM calculation is a potential function defining the energy 

of a molecular system as a function of atomic position. In principle an exact 

solution to this problem can be obtained by solving the quantum mechanical 

equations which describe the ground state energy of the electrons and nuclei at 

each possible nuclear position. The resulting energies form a continuous Born- 

O ppenheim er surface (McCammon and Harvey, 1987) as a function of nuclear 

position. The surface describes the energy of virtually any type of atomic motion 

in molecular systems (McCammon and Harvey, 1987). Unfortunately quantum 

mechanical descriptions of systems the size of proteins (thousands of atoms) is 

not yet possible. Therefore there is a need to derive simple empirical energy 

functions of the atomic positions.
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The global energy functions used are functions which are a sum of several terms, 

each describing a single atomic or molecular force. The model used in VFF 

(Dauber-Osguthorpe et al., 1991) is outlined in equation 1.1.

v  = £ [ 0 t ( l  -  exp- 0*4"*"))2 -  Dt] +

-  e0f  +
— scos(n<f))) +

\Y .H XX2 +

EEF*(‘- W - 14) +

EEW-M(«-«o) +
Y F m >cos<t>(6 — 6o)(9r — 0'o) +

Z X X x -x x ' +

D e K ^ ) 1* -  2 ( ^ ) 6] +  Y r f -  (1-1)

Here, b is bond length, 0 is valence angle, </> is torsion angle and x  °f plane 

angles, r is the distance between atoms, q partial atomic charges and e is the 

energy of interaction at the most favorable interaction distance r*. H,F and D 

are force constants.

In this force field the first four terms describe the energy required to distort 

internal bonds, valence angles, torsion angles, and out of plane angles. The next 

five terms describe relations between the first four terms, and are called cross 

terms. The last term describe the relation between non-bonded atoms. The 

physical meaning of these terms is illustrated in Figure 1.7.
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Figure 1.7: Pictorial description of the force field outlined in Equation 1.1, the ten terms 
correspond to the ten terms in the equation. Reproduced after INSIGHT manual (TM Biosym 
Inc., San Diego, CA)
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The constants in the system are then derived by fitting the function to experimen

tal data, or quantum mechanical calculations on small molecules. Forcefields are

et al., 1991).

Three main molecular mechanics methods are used in this work: m olecular 

dynam ics (MD), m inim isation, and M onte Carlo sim ulation (MC). The 

MC simulation method is discussed in further detail in Section 2.5.

1.7.1 M olecular dynam ics

The aim of MD is to simulate the motions of molecules, using the basic Newtonian 

equations of motion (Newton, 1729 (I960)). In this description the atom i is 

assumed to be a singular point, with the mass mt-. If the position of the particle 

is called rt-, the velocity is given by the first derivative of position with respect to

Where pt- is the momentum of the particle. The net force exerted on the particle 

is given by:

frequently refined by adding terms which better describe specific phenomena ob

served in molecular structures, such as hydrogen bonds etc (Dauber-Osguthorpe

time (dt):

(1.2)

F = dpL = _ 9 V  
' dt dn

(1.3)
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Where V  is the energy calculated in the potential function 1.1. The force is 

thus the negative gradient of potential energy in point i with respect to position 

of point i. The final equation needed to describe the motion of the system is 

Newtons second law, describing the acceleration of particle i:

d2r • F-u 1 * ft /«\
~  “  rm ( )

In MD a system of atoms is set in motion by assigning a random set of velocities, 

usually drawn from a Boltzman distribution of velocities at a given temperature 

(energy). The new position of atom i (X)  after a short time interval At can be 

described by the Taylor series:

X( t  + A t ) =  X ( t ) +  At +  i  A t2 . . .  (1.5)

Producing a numerical solution to this equation involves the calculation of veloc

ity (first derivative) and acceleration (second derivative). It is however necessary 

to make approximations to the higher derivatives in the infinite series. The dif

ference between various molecular mechanics algorithms basically lies in the way 

these higher derivatives are handled. A review of various MD algorithms is given 

in McCammon and Harvey (McCammon and Harvey, 1987).

1.7.2 M inim isation

The second molecular mechanics methodology which is used in this thesis is 

minimisation. The aim of minimisation is to find positions for atoms in a molecule
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such that the global potential energy function has a minimum. It is easy to 

find the minimum of a function with few (one to five) degrees of freedom, using 

analytical methods. Minimising structure coordinates for large molecular systems 

is a many body problem with 3N  degrees of freedom, where N  is the number of 

atoms in the system, and requires nonlinear optimisation. All methods involve the 

Taylor expansion of the potential energy function V  as a function of coordinate 

position x :

V(x) = V(x0) +  (x -  x0)d^ Ax  +  (x -  x o f ^ ^ A x 2 . . .  (1.6)

Where x  is the change of one degree of freedom

Minimisation methods are classified in order of the highest derivative involved 

in the method. The most frequently used methods are: Steepest decent (first 

order), Conjugate gradients (first order), Newton-Raphson (second order). All 

these methods are described in detail by Jacoby et al (Jacoby et al., 1972). Since 

minimisation is a very difficult problem to solve, because the large systems get 

trapped in local minima, only a very small part of the phase space is searched 

in a minimisation. There are many minimisation methods which seek to remedy 

this but the description of these are not within the scope of this thesis (Jacoby 

et a/., 1972).

1.7.3 M onte Carlo m ethods

J. von Neumann and S.M. Ulam introduced, around 1945, the Monte Carlo 

method of solving problems which have a large solution space. They showed
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that a solution could be computed by performing a random walk through the so

lution space, and a practical approach was outlined by (Metropolis et al., 1953). 

Instead of computing the analytical solution, a solution is generated by random 

sampling of the solution space. Metropolis developed the method further by in

troducing a probability density function and an objective evaluation function E, 

in a process of simulated annealing or simulation of a cooling process. The result 

becomes a biased random walk, having an initial state where all moves are al

lowed. By slowly lowering the probability for accepting an unfavorable move the 

system is moved towards a global minimum.

In terms of molecular structure determination the objective evaluation function 

is an energy function, and the probability function is derived from the Bolzman 

distribution. Assuming that a given molecular structure will adopt a conforma

tion which represents a global minimum and a well ” packed” (no space between 

the atoms) conformation, a simple energy function can be used for evaluation:

E  =  e » E ((7 ) 6 -  2 (-j)12) +  kc-cos(3ui) (1.7)
<=1 r  r

Where the first term is a simple Lennard-Jones potential which evaluates the 

non-bonded contacts between the atoms in a given molecule and the second term 

is a simple torsional term which only applies to C-C bonds. The torsional term 

biases the function towards 60° rotamers. eQ and k0 are constants. The Metropolis 

function:
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is used to evaluate the energy function. Any move which results in a decrease 

in energy is accepted, and any move which results in a positive AE  is only 

accepted with the probability P. This method can be used to search the large 

conformational space defined by a set of torsion angles and find or define the 

global minimum which exist for a molecule. It is necessary to emphasise that the 

Metropolis method of simulated annealing is not a minimisation, but merely a 

biased random walk. The value T  is the simulation parameter which determines 

how fast the function should approach a minimum. In the case of thermic motion 

this is temperature, thus the denotation T. In the following chapters this will be 

termed the simulation temperature.

1.8 The aim  of this thesis

The scope of this thesis is two-fold. First, to improve upon existing methods 

and algorithms that will enable the user to model antibody combining sites from 

amino acid sequence alone. Second, to use these algorithms in the de novo design 

of of an antibody combining site specific for a known antigen. The methods are 

based on the earlier work of the previous members of the group (Martin, 1990), 

which led to a combined modelling algorithm, CAMAL developed by Martin et 

al (1989;1991a).

The requirement for antibody modelling and design originates from the slow 

speed at which structure elucidation progresses, compared to the rate at which 

mutagenesis experiments can be performed. The present rate is such that only 

four to six new crystal structures of antibodies are published each year. The 

time it takes to solve the structure of an antibody can be in the range of one to 

three years since the work includes many stages of biochemical characterisation,
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purification and crystallisation etc. In order to get a reasonably fast turnover in 

the p ro te in  engineering cycle (Blundell and Sternberg, 1985; Rees and de la 

Paz, 1986) there is a requirement for fast access to structural data of mutant 

proteins. In some instances it might not be possible to crystallise the protein at 

all. Molecular modelling is one answer to this problem, although application of 

methods such as NMR (Rees et al., 1989) and Laue crystallography (Hajdu et 

al., 1987) show promise for the future.

The further development and testing of the combined algorithm is presented in 

Chapter 2. New methods for the construction of frameworks and sidechains have 

been developed and tested by modelling of three antibodies, which later had their 

structure solved by x-ray crystallography.

In Chapter 3 it is shown how the antibody modelling programs and databases 

can be used to make changes to Fv structures without changing the specificity of 

the antibody in a new method of antibody humanisation called “resurfacing” .

Finally in Chapter 4 a method for the ab-initio design of antibodies (changing 

specificity) is presented and tested by modelling an anti-morphine antibody from 

the crystal structure structure of the anti-peptide antibody Gloop-2 (Jeffrey et 

a l , 1991).



C hapter 2

M odelling antibody com bining  
sites

The modelling of antibody combining sites was first attempted by Padlan &: 

Davies at a time when very few antibody structures were known (Padlan et aZ., 

1976). Nonetheless, Padlan and colleagues recognized that the key lay in the 

high structural homology that existed within the /?-sheet framework regions of 

different antibody variable domains. The antigen combining site is formed by the 

juxtaposition of six inter-strand loops, or CDRs (Complementarity Determining 

Regions) (Kabat et a l , 1992), on this framework. If the framework could be 

modelled by homology then it might be possible to model the CDRs in the same 

way. Padlan and Davies reasoned that CDR length was the important determi

nant of backbone conformation though the number of antibody structures was 

insufficient to thoroughly test this maximum overlap procedure (M O P (Padlan 

et a l , 1976)).

In the MOP procedure a framework is chosen from one single structure on the 

basis of sequence similarity. Loops are then sampled from the Brookhaven (Bern

stein et a l , 1977) database, which fit the required length, these loops are then
27
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scored according to sequence identity and the most similar loop is chosen as the 

final conformation.

The MOP idea was not picked up again until the early 1980’s when a similar ap

proach to modelling antibody combining sites based on a more extensive analysis 

of antibody structures (Darsley et a l , 1985; de la Paz et a l , 1986), was proposed.

These knowledge-based procedures are further exemplified for antibodies by the 

work of Chothia & Lesk who, in 1986, extended and modified the MOP procedure 

by introducing the concept of “key” residues (Chothia et a l , 1986) (See Figure 

2.1). These residues allow the further subdivision of CDRs of the same length into 

“canonical” structures which differ in having residues at specified positions that, 

through packing, hydrogen bonding or the ability to assume unusual values of 

the torsion angles <̂ ,'0 and to, determine the precise CDR conformation. Similar 

knowledge-based methods have been proposed for predicting loop conformations 

in general (Thornton et a l , 1988; Tramontano et a l , 1989). These methods rely 

on the crystallographic database of protein structures. However, none of the 

above knowledge-based methods has been totally successful. In particular, the 

MOP or canonical structure approaches have succeeded in modelling at most five 

of the six CDRs. This stems from the fact that the third CDR of the heavy 

chain, H3, is more variable in sequence, length and structure than any of the 

other CDRs. This extra variability arises from V-D-J-C splicing (see Section 

1.4).

To deal with the CDR H3 problem several groups have attempted to use ab- 

initio methods to model the combining site (Bruccoleri and Karplus, 1987). The 

requirement of such methods is that the total accessible conformational space to a 

particular CDR is sampled. Typical of purely geometric approaches is that of Go
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e 29V a l  29

Leu 29
Leu 29

Figure 2.1: The canonical concept illustrated by the CDR LI groups as defined by (Chothia 
et al., 1989). The conformation of the loop is defined by the length of the loop and the existence 
of a small hydrophobic residue at position 29 in the light chain sequence. The small residue is 
packing to the framework of the Fv for short loops this leads to an “arch” like conformation. 
For longer loops the “arch” is retained, but with an additional “bulge” on the loop.
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Sheraga and more recently Palmer &; Sheraga, where the problem is reduced to 

one in which the central region of the polypeptide backbone, having characteristic 

bond length and bond angles (rigid geometry), is constructed between the end 

points of the loop (CDR if an antibody loop) by a “chain closure” algorithm 

(Go and Sheraga, 1970; Palmer and Sheraga, 1991). In a modification of this 

algorithm, Bruccoleri &; Karplus introduced an energy minimisation procedure 

which greatly expanded the domain of conformational space searched during the 

chain closure procedure (Bruccoleri and Karplus, 1987). This modification is 

incorporated into the conformational search program CONGEN (Bruccoleri and 

Karplus, 1987), which also allows the user to choose any set of standard bond 

length and bond angles such as the CHARMM (Brooks et al., 1983) standard 

geometry parameter sets. Other approaches such as minimisation (Moult and 

James, 1986), or molecular dynamics (Fine et al., 1986) either fail to saturate 

conformational space or are unable to deal with the problem of long CDRs. 

Whichever of the ab initio methods is employed, the consequence is one of defining 

the selection criteria in such a way as to allow the unambiguous identification 

of the correct structure (in this context correct is defined by reference to an 

appropriate X-ray structure) within the ensemble of candidates, for every CDR. 

To date this problem has not been solved.

In this thesis a more holistic approach has been applied when modelling CDRs 

which combines the advantages of knowledge-based and ab initio methods in a 

single algorithm known as A 6M (Antibody Modelling), which includes CAMAL 

(Combined Algorithm for Modelling Antibody Loops) (Martin et al., 1989; Mar

tin et al., 1991a; Gregory et al, 1990).
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2.1 A combined algorithm

31

The combined algorithm (CAMAL) developed by Martin et al (1989;1990;1991a) 

attempts to combine the advantages of both ab initio and knowledge based or 

database methods, and minimise the disadvantages at the same time. The con

formational search program CONGEN searches all of the conformational space 

for small fragments of proteins (three to seven residues). The computational time 

is short for small peptides of three to five residues, but increases exponentially 

with the number of residues searched (N complete problem (Press et al., 1990)). 

For database search methods involving loops this time is almost constant for any 

length of peptide since the same number of constraints is applied to short and 

longer loops. The major disadvantage of database methods is that they fail to 

saturate the conformational space available to long peptide fragments.

The whole procedure (A&M) is outlined in Figure 2.2. This flowchart also contains 

the modifications added during the course of the work presented in this thesis 

(Indicated by shaded boxes). The individual steps in the modelling procedure 

are described in the following sections.

2.2 Sequence analysis

The comparative analysis of protein sequences is the first step in the study of 

protein structure and function. When this is coupled to three-dimensional infor

mation for a given family of homologous proteins it becomes a powerful tool for 

determining residues which are important for a particular structural or functional 

role. The large number of sequences and structures available make antibodies an
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Figure 2.2: Flowchart of the antibody modelling algorithm A6M. The various stages of the 
modelling protocol are outlined in the text. The capitalised names refer to program names. 
Shaded boxes indicate algorithmic steps added during the course of this thesis
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Sequence species Chain
Heavy Light

Caiman 3 -

Chicken 4 26
Canine 3 1
Duck - 2
Frogs 15 -
Gold fish 8 -

Human 129 164
Mouse 490 369
Shark 3 -

Sheep - 1

Table 2.1: Current number of sequence entries in the A&M sequence database. Alignments of 
human sequences, and some statistics appear in Appendix A. Assigned descriptors to date are: 
Species, Canonical classification, Vji/V l Pairing, Pairing residues, Accessible surface residues, 
CDR-framework contacting residues. The database was compiled from: Swissprot Rel 17, 
GenBank Rel 67, NBRF Rel 28, PDS-Kyoto V.5, NEWAT, Brookhaven (may 92)

ideal family for this type of analysis.

A specific antibody sequence database has been set up using data from available 

DNA and protein databanks of aligned heavy and light chain antibody sequences 

(Figure 2.2). The sequence alignments axe performed on the L and H chains 

separately, and independently for each of the species for which sequence infor

mation is available. The specification of the database is outlined in Table 2.1. 

The sequences have been aligned using the sequence alignment program, AMPS 

(Barton and Sternberg, 1987; Barton and Sternberg, 1990; Barton, 1990). Align

ments were then inspected using the sequence handling program SR written by 

S.M.J. Searle (1992). Within any group of germline related somatically mutated 

sequences only one was retained in order to obtain a database of unique sequences 

for use in statistical analysis. Also, all incomplete variable region sequences were 

eliminated, such that the database only contained sequences covering the com

plete VH or VL region.
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The database entries conform to NBRF format (Bleasby, 1990) which is the cur

rent standard for protein sequences, and supported by most sequence databanks. 

This format enables the assignment of any descrip tor to a sequence, allowing 

the sequence database to become a “knowledge database” . In this database a 

descriptor is a set of numbers or a string of descriptive text. An example of a se

quence entry is given in Appendix A.I. These descriptors can be used for sorting 

the data in the database after any required combination of properties, such as 

the combination of canonical loops present within a particular chain. The legend 

to Table 2.1 contains a list of currently assigned descriptors.

This database was tabulated before the sequence database of Kabat et al (1992) 

became available on computers. This database, although it contains more se

quences, does not have all the property descriptors available in the A6M database.

The construction of a three dimensional model for a given sequence is preceded 

by consultation of the sequence database in order to determine any variation of 

CDR length from the statistical consensus (see Figure 2.3).

For example if a 7 residue loop is to be modelled for L2 , then this can be done 

with high confidence since 95 percent of all the CDR L2’s are of this length, and 

conformational space can be saturated adequately or a canonical loop can be 

selected. In contrast if an H3 loop of length 14 residues is to be built, confidence 

will be lower. The distribution of loop length in the sequence database reflects 

the distribution in the structural database, and the average loop length for CDR 

H3 loops in the sequence database is 9-12. The conseqence is that conformational 

space will not be saturated adequately by a database search alone.

The sequence comparison is a step in the direction of validating a given model,
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Figure 2.3: CDR length distribution for sequences in the Rabat sequence database (Rabat et 
al., 1992). Number of sequences used are: human light chains 239, human heavy chains: 155, 
mouse light chains: 585, mouse heavy chains: 836. Distributions for human and mouse chains 
are shown
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and to pinpoint any weaknesses in the modelling. The length distribution of each 

of the six CDR’s has been tabulated and is the major descriptor for abnormality 

when comparing a sequence. These distributions are found in Figure 2.3.

2.3 T he framework region

Antibody framework regions consist of conserved sequences that form a /2-barrel 

structure (see Figure 1 .2 ).

In the original method developed by Martin et al (1989) the framework of the 

antibody was generated using a simple interactive homology modelling proto

col. In this protocol the light and heavy chain structures were selected on the 

basis of sequence similarity, where similarity was defined as the number of iden

tical residues in an optimal sequence alignment between the crystal structure 

sequences and the sequence to be built. If the light and heavy chains came 

from different parent crystal structures the light and heavy chains were paired 

by superimposing the heavy chain selected onto the heavy chain of the structure 

from which the light chain was derived. Subsequently the redundant light and 

heavy chains were removed. The amino acids were then corrected to match the 

sidechains of the required sequence using the sidechain replacement algorithm of 

Jones and Thirup (1986), which is implemented in the molecular graphics pro

gram FRODO. No further refinement of the framework was performed before the 

CDR’s were constructed. This method has several disadvantages: it does not 

take variations in the VH/VL interface residues into account, and it relies to a 

large extent on interactive, intuitive model building which generates results that 

cannot be consistently reproduced.
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Brookhaven entry name resolution (A) chain types reference
2hfl(*) HyHel-5 2.54 * /7II (Sheriff et a l ,  1987)
3hfm(*) HyHel-10 3.0 « /7I (Padlan et a l ,  1989)
lb j l/2 bjl LOC 2 .8 k / k (Schiffer et a l ,  1989)
2 fbj(*) j539 1.95 /c/7 1 1 1 (Mainhart et a l ,  1984)
3fab/7fab(*) NEW 2 .0 AI/7 II (Saul et a l ,  1978)
4fab(*) 4-4-20 2.7 K/7 II (Herron et a l ,  1989)
5fab/6fab(*) 36-71 1.9 k / 7'I (Rose et a l ,  1990)
lm cp /2 mcp(*) McPC603 3.0 k / 7 III (Segal et a l ,  1974)
3mcg MCG 2 .0 AI/AI (Ely et a l ,  1989)
lmcw WEIR/MCG 3.5 AI/AI (Ely et a l ,  1985)
2 rhe RHE 1 .6 AI/AI (Furey-Junior et a l ,  1983)
lrei REI 2 .0 k / k (Palm and Hilschmann, 1975)
2fb4/2ig2(*) KOL 1.9 AI/7 III (Marquart et a l ,  1980)
lfl9 (*) R19.9 2 .8 k / 7 Kb (Lascombe et a l ,  1989)
lfdl(*) D1.3 2.5 k / 7II (Amit et a l ,  1986)
Imam YS*T9.1 2.5 / 7IIb (Rose et a l ,  1992)
8 fab HIL 1 .8 1—

1 (Saul and Poljak, 1992)
lbaf AN 02 2.9 (Brunger et a l ,  1991)
lh il/lh in /lh im 17/9 2 .0 « / 7IIa (Rini et a l ,  1992)
(*) Gloop-2 2 .8 (Jeffrey et a l ,  1991)
lig f /2 igf B13I2 2 .8 k/71 (Stanfield et a l ,  1990)
ldfb(*) 3D6 2.7 « /7I (He et a l ,  1992)

Table 2.2: List of antibodies used in the antibody modelling program A5M. Structures which 
do not have a brookhaven entry axe not yet deposited. Antibodies used for /2-barrel analysis 
are marked with a (*).

In this study the frameworks are built from a database of known antibody struc

tures (see Table 2.2), using sequence homology for selection of the light (L) and 

heavy (H) chain V-domains, and are then paired by least squares fitting on the 

most conserved strands of the antibody. These /2-barrel strands differ from the 

strands constituting the domain interface as defined by Chothia et al (1985), as 

they are selected on the basis of secondary structure and sequence conservation 

and not excluded surface area.

The most conserved strands were determined by analysing the barrels of known 

antibody crystal structures. Twelve antibodies (in Table 2.2 twenty two struc

tures are listed; at the time of the analysis only twelve were available) were fitted 

using a multiple structure fitting program (Pedersen, 1992). Eleven structures 

were fitted onto one of the set selected at random and mean coordinates were
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calculated. Twelve structures were then fitted onto these mean coordinates and 

new mean coordinates determined. This procedure was iterated until the mean 

coordinate set converged (5-10 cycles). The variance for the mean coordinates 

at each barrel point (N,Ca,C) was then calculated. The conjugated axis of the 

/3-barrel is here calculated from the fitting of the mean /3-barrel to the surface of 

a hyperboloid:

x 2 y2 z2 _  
A* + IP “  C2 - (2 .1)

The parameters for A, B  and C are taken from (Novotny et al., 1984; Novotny et 

al., 1983). This fit is shown in Figure 2.4.
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Y

Figure 2.4: Plot of the average /?-barrel strands derived form the multiple fitting procedure. 
The conjugate axis is here equivalent to the z-axis, shown on the figure. The RMS deviation 
of the fit to a hyperboloid is 2.01 A . The light chain strands are shown in white, and the heavy 
chain strands have black bonds and atoms.
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Figure 2.5: Plot of RMS deviation from the mean of the eight /?-sheet strands comprising 
the framework. The RMS was calculated from structures R19.9, 4-4-20, NEW, FBJ, KOL, 
HyHEL-5, HyHEL-10, D1.3, Gloop-2 and McPC603. N,Cq!,C atoms are included in the plot. 
The residues used are listed in Appendix B.3.4). The most disordered residues are ail the 
residues of strand HFR4, the last residue of LFR1, and the first and last residue of HFR2.
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In Figure 2.5 the variance is plotted against the sequence position. Strand 8 and 

all but two residues of strand 7 in both light and heavy chains were eliminated 

as they showed deviations greater than 3a (standard deviation units) from the 

mean coordinates. These two strands comprise the takeoff points of CDR H3, 

and suggests that any knowledge-based prediction of CDR H3 would have to take 

into account sequence and length variation in the CDR itself, and the position 

of the participating strands. The remaining mean coordinates were used as a 

scaffold onto which the L and H chains were fitted. Strands 7 and 8 in the final 

framework were obtained from the database heavy chain structure used in the 

construction. It is also apparent from Figure 2.5 that strands 1 and 5 have a high 

variability. However, those variations were not considered to be important since 

the variability is at the end of the strands and in the Fv/Fc interface, and thus 

not likely to influence CDR position and conformation.

The distribution of residues in the framework strands for the human and the 

murine sequences is shown in Tables 2.3 & 2.4.
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Position Human Mouse
41 W 99 W 98
42 Y 88 F 8 Y 74 F12
43 Q 93 L 4 Q 74 L 22
44 Q 98 Q 88 E 5
45 K 58 H 13 L 10 K 81 R 13
46 P 89 A 5 P 80 S 13
51 K 52 R 27 K 73 Q 12
52 L 72 V 10 L 70 R 9
53 L 75 I 8 V 11 L 81 W 15
54 L 92 191 V 4
55 V 86 F 6 V 83
91 E 42 F 37 V 9 A 21 I 13 L 26 F 9 V 13
90 A 90 G 8 A 67 E 28
91 D 38 T 22 V 28 D 7 I 11 T 36 V 30
92 Y 99 Y 99
93 Y 90 F 9 Y 67 F 30
94 C 99 C 99
106 F 93 Y 5 F 91
107 G 94 G 92
108 G 44 Q 34 T 10 G 56 A 21 S 12
109 G 95 G 95
110 T 95 T 92

Table 2.3: This table contains the distribution of residues in the sequence database, of human 
and mouse light chain sequences, that make up the /2-barrel Vl /V ji interface. The numbering 
used is the same as described at the end of the program documentation for the fra m eb u ild  
program in Appendix B.3.4. Distributions are in percent occurrence at this position of the 
alignment, and only occurrences higher than 5 % axe included.
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Position Human Mouse
155 W 96 W 98
156 V 70 I 23 V 86 I 10
157 R 90 R 53 K 44
158 Q 93 Q 90 K 5
164 G 83 A 6 S 6 G 58 R 20  K 8 S 7
165 L 95 L 98
166 E 88 E 96
167 W 98 W 92
168 V 46 I 22 M 17 L 13 I 61 V 18 L ll M 9
169 G 58 A 22 S 15 G 68  A 29
215 Y 98 Y 96
216 V 90 F 9 Y 80 F 18
217 C 97 C 98
218 A 82 T 10 A 80
219 R 66 K 12 P 6 R 83
237 W 91 W 95
238 G 94 G 96

Table 2.4: This table contains the distribution of residues in the sequence database, of human 
and mouse heavy chain sequences, that make up the /^-barrel V l/Vh interface. The numbering 
used is the same as described at the end of the program documentation for the fram ebu ild  
program in Appendix B.3.4. Distributions axe in percent occurrence at this position of the 
alignment, and only occurrences higher than 5 % are included.
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The residues at equivalent framework positions in human and murine sequences 

are virtually identical, indicating that the Vh/Vl pairing is extremely well con

served in different species. It is surprising that the sequences of strands 7 and 8 

in the /^-barrel are some of the most conserved in the sequence database and the 

most variable in terms of structure (see Figure 2.5).

When the framework strands have been positioned the sidechains are replaced 

using a ‘maximum overlap’ method where sidechain templates were fitted on 

backbone atoms with the sidechain torsion angles being adjusted to match those 

of equivalent torsions in the parent sidechain. Various other methods, as imple

mented in available molecular modelling packages, were tested but found inferior 

to the maximum overlap method (see Appendix B.3.4 for results of comparison).

2.4 C D R  main-chain construction

The procedure for predicting the structure of combining sites combines a database 

search with a conformational search procedure. The architecture of the program 

suite to perform this task is outlined in Figure 2.2.

Using CAMAL, conformations for short loops (I < 5 residues) are determined 

using either a database search or CONGEN. Both succeed in saturating confor

mational space. For medium length peptides (5 < I < 8 ) the conformation is de

termined by saturating the conformational space with conformations sampled in 

a database generated from the complete Brookhaven Crystallographic Database 

(Bernstein et al, 1977). For long loops (I > 8 residues) the conformational space 

is saturated using both database search, and CONGEN conformation genera

tion in combination. Since the takeoff positions of the CDR’s are conserved in
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the antibody structure (see later), the base of each loop has less conformational 

freedom than the central part. It is therefore assumed, that the conformational 

space of the loop base can be saturated adequately by a structural database. 

The conformational ensemble of the central sections of the longer CDR’s is then 

expanded by generating conformations ab initio from each of the database loops 

using CONGEN.

The database search utilises distance constraints for each of the six CDR loops 

determined from known antibody structures. These constraints are determined 

by calculating C a-C a distances within known loops and using a search range 

of x ±  3 .5(7 (the mean ±  3.5 standard deviation units). A specialised database 

containing all the proteins in the Brookhaven Protein Databank (Bernstein et 

al., 1977) is then searched for fragments which satisfy the constraints for a loop 

of the required length. The selected loop fragments are then filtered using three 

different screens (ELIMINATE, CLUST and SDR sorting in Figure 2.2).

ELIM IN A TE In the database search method by Martin (1990) the redun

dancy check was performed solely on the basis of structure name and position of 

loop in structure (ELIMINATE), and not on the basis of the actual loop conforma

tion. This was found to be inaccurate and was modified. Removing redundancies 

using structure names and positions in structures alone, as performed originally 

in ELIMINATE, will fail to identify an ensemble of unique conformations as the 

structural database gets larger. There are many homologous/identical structures 

in the database, which have different entry ID-codes (Brookhaven name). The 

torsional clustering will usually remove approximately 1/3 of the database loops 

found in a search. Without the torsional clustering the final SDR screen of the 

database loops would fail, since in many cases it would rank 50-100 identical
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loops from different structures as the best and thus fail to saturate conforma

tional space.

CLUST CLUST is a torsional cluster algorithm which uses a standard euclidian 

distance clustering (Lazio, 1975):

D i j  =  (Xji -  X j i f  +  (xi2 -  X j 2 ) 2 +  ... +  (x in -  X j n f  (2.2)

Where D tJ- is the square of the euclidian distance between the two conforma

tions i and j in the n dimensional phase space. In this case n is the number 

of backbone torsions in a given loop. The clustering is performed as a nearest 

neighbor clustering. A search distance (d) is determined as the mean distance 

between the two closest neighbors in the complete set of loops. The classification 

is done iteratively and for each step the search distance to neighbors is increased 

by the distance d. The clustering is terminated when no neighbors are found 

within ±3.551) units of the mean of all the euclidian distances. The clustering 

is able to eliminate any similar or closely related loops, with respect to backbone 

conformation.

SD R Finally, the database loop are sorted using a Structurally Determining 

Residue (SDR) protocol. In SDR (Sutcliffe et a/., 1987a) each residue in each 

database fragment is assigned as being structurally determining if it causes the 

next Cot  to be moved relative to the position of that Cot  in any of the other 

database loops and the structurally determining residues are scored against the 

sequence being modelled using the Dayhoff mutation matrix (Sutcliffe et al., 

1987a; Dayhoff et a l , 1983). Only the best 200 loops are used in the further
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construction, in order to reduce the computational task.

In the combined algorithm (CAMAL in Figure 2.2)the middle section of the loop 

is deleted and reconstructed using the conformational search program CONGEN 

(Bruccoleri and Karplus, 1987) (CONGEN in Figure 2.2). For loops of six or 

seven residues, the structural database appears to saturate the conformational 

space available to the backbone adequately and only sidechains are built by 

conformational search (see below for a further analysis and description of the 

sidechain reconstruction). Loops shorter than six residues are built by conforma

tional search alone since this is computationally feasible and because the number 

of loops selected from the database becomes unacceptably large as loop length 

decreases.

When modelling a complete combining site, loops of 6 or more residues are mod

elled individually with the other loops absent. If the loops are built consecutively, 

small errors can accumulate leading to a poor result (Martin, 1990). However, 

recent work by S.M.J. Searle suggests that, where canonical loops are identified, 

their presence as backbone structures during the modelling of non-canonical loops 

gives greater accuracy of the final model (Searle, 1992).

2.5 Sidechain reconstruction

A number of different methods of sidechain reconstruction have been evaluated. 

The methods currently available fall into two main groups:

• Knowledge based - using statistical information of x  angle distributions 

in different types of secondary structure, in the crystallographic database.
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• ab-initio based - using different types of conformation generation methods, 

and evaluating generated conformations using an objective function.

D atabase m ethods There are several studies in the literature which indicate 

that the conformational preference of amino acid sidechains depends upon which 

secondary structure they are in (Mcgregor et al., 1987; Summers et al., 1987; 

Sutcliffe et al, 1987a). Unfortunately, there is only limited documentation of 

preferences in loop structures (Sutcliffe et al, 1987a). The information which is 

available is for all types of loops or turns collectively, thus giving a low confidence 

when trying to assign the sidechain conformation to particular types of loop 

such as antibody CDR’s. The loop or turn structure is not a random coil, but 

falls into many different, and some still unclassified, sub-groups. Ponder and 

Richards have shown that the occurrence of sidechain conformations in proteins 

is limited to a set of rotamers for each of the amino acid sidechains, and have 

constructed a library of these conformations (Ponder and Richards, 1987b; Ponder 

and Richards, 1987a). Unfortunately these rules only apply to internal (core) 

residues of the protein. For exposed, surface residues (most CDR residues) this 

rotamer library can not be used.

The main disadvantage of database methods is that they do not take local envi

ronment conditions into consideration, except for the geometric contribution of 

the backbone conformation (secondary structure).

Again, the methods are limited to the knowledge present in the database though 

when the loop type being modeled is a canonical CDR, these methods usually 

have a higher confidence (Sutcliffe et al, 1987a; Chothia et al, 1989) than ab 

initio methods. Thus, it seems obvious that one should use a combination of
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knowledge based and ab initio methods in order to obtain the best from both.

A b initio  m ethods The conformational search program CONGEN has an 

interesting treatment of the sidechain problem. The program has implemented 

a set of different side chain reconstruction algorithms, all using the CHARMM 

(Brooks et aZ., 1983) potential for the evaluation of conformations. CONGEN 

uses a torsional grid search for the generation of conformations, and extensive 

tree pruning during the recursive generation, in order to avoid combinatorial 

explosions (when few sidechains are reconstructed). The different generation 

options available are outlined in Table 2.5. The major disadvantage of CONGEN 

is that reconstruction of sidechains of more than five to six residues results in 

combinatorial explosion. This problem could be overcome by using a coarser 

(30-60 °) grid. Unfortunately the algorithm is then not able to saturate the 

conformational space and other methods have to be considered. In Table 2.5 a 

test is shown of these CONGEN methods on the antibody 3D6 and the cpu time 

spent on the calculation.

An alternative approach is to search sidechain conformations using Monte Carlo 

simulated annealing. When the the evaluation function outlined in equation 1.7 

is applied, the system usually gets trapped in an energetic minima well before the 

global minimum is encountered, at a high temperature and without the solution 

space having been searched sufficiently. This problem can be solved by truncat

ing the Lennard-Jones potential in equation 1.7, thereby allowing atoms to pass 

through each other. In reality this function would converge towards infinity when 

the distance r  between the atoms goes towards zero.

The torsional potential is pre-calculated and only updated every 10 steps and,
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since the average movement over 10 random steps is no more than 1 0 - \ /l0 (when 

using 10° grid) the precision of the energy calculation is maintained. The tor

sional potential term has only little influence when trying to determine internal 

side chain conformations, but becomes significant for surface sidechains. The 

above method of generating sidechain conformations has been successfully used 

to determine sidechain conformations for core residues (Lee and Levitt, 1991; Lee 

and Subbiah, 1991).

Evaluation of side chain conformations generated by simulated annealing is done 

solely on the basis of energy for internal (core) residues, since good van der Waal’s 

interactions are considered to be equivalent to a good packing of the residues. 

The situation becomes more complicated when trying to predict the conformation 

of surface residues.

The lowest van der Waal’s interaction is obtained by a combination of side chain 

conformations which minimise the overlap of atoms. There is however nothing 

in the simple potential (Equation 1.7) which takes the surface environment into 

account. The sidechains can adopt many well packed conformations on the sur

face, all equally favorable. The implication of this is that the method described 

by Lee (Lee and Levitt, 1991; Lee and Subbiah, 1991) cannot be applied directly 

when predicting surface sidechain conformations.

A dap ted  M onte Carlo m ethod  Using the fact that hydrophobic, bulky 

residues will be shielded by the hydrophilic sidechains, and will be buried in 

the surface, it is possible to generate simple functions which will evaluate these 

macroscopic observations. These functions can either be implemented in the ob

jective evaluation function of the Monte Carlo simulation, or as is done here,
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added as a post processing step. Including an accessibility/hydrophobicity term 

in the evaluation function would slow down the calculation considerably, hence 

the term has been added as a screening function.

In the functions used here the accessibilities and the hydrophobicities have been 

scaled appropriately. All residual accessibilities are relative to the accessibility of 

of a given amino acid in isolation in the conformation in which it is found in the 

protein structure. The accessibilities are therefore in the range [0; 1]. Residue 

hydrophobicities are taken from Comette et al (1987), but have been scaled in 

the range [—1; 1]. The simplest type of function can be either of two:

/« =  -  £  /a 6  ] -  oo; oo[, i W O  (2.3)

or

/« =  - £ A rerHrei L  € [ - 1 ; l] (2-4)

In these equations Arei denotes the relative accessibility of a given amino acid 

sidechain. Hrei denotes the relative hydrophobicity a given amino acid. The 

main difference between the two functions above is the ranges in which they are 

defined. In Equation 2.3 the score for a favorable conformation is exponential, 

whereas in Equation 2.4 the score is linear for the relative exposed area of a 

given group. f a in Equation 2.3 is not defined for Hrei or A re\ equal to zero. f a 

in Equation 2.4 is a continuous function in the range [—1; 1]. The surface area 

is calculated using the tessellated icosahedron approach (Chau and Dean, 1987), 

which is not very precise (0.1 percent), but is able to evaluate a large number of
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conformations in a short time.

52

Similar semianalytical expressions have been suggested by Still et al (1990). These 

have been included in energy calculations and have been shown to be able to 

generate conformations of sidechains which are similar in conformation to crystal 

structure conformations. The traditional (Still et a l , 1990) treatment of solvation 

free energy (Gsoi), is a function consisting of three terms:

Gaol = GcaV + CvdW + Gpoi (2*5)

Gcav is a solvent cavity term, Gvdw is a solute van der Waals term, and Gpoi is 

a solute solvent electrostatic term. For saturated hydrocarbons in water Gsoi is 

linearly related to the solvent-accessible surface area Aa.

Vila and Sheraga use an even simpler expression for the free energy of hydration:

G{ =  j ^ PkAk (2.6)
k=i

Here, Ak is the solvent accessible surface area of atom k and pk is the atomic 

solvation parameter for atom k. The solvation parameters used were determined 

by NMR (Vila et al., 1991). This simple term was included directly in a forcefield 

to describe solvation (Vila et al., 1991).

When generating sidechains using the MC approach it is possible to integrate 

over a large phase space with many degrees of freedom, and get a complete 

sampling of the phase space. The generation and evaluation of sidechains using
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RMS deviation
Method LI L2 L3 HI H2 H3 time (m in)
CONGEN methods 
-all
-independent
-combination
-first 2.36 1.16 1.72 1.28 1.92 2.40 0.023
-itera -I- seq 2.40 1.01 0.88 1.23 1.82 1.98 221 .0
-itera +  order 2.31 0.83 0.92 1.06 1.39 1.62 220 .0
Monte Carlo 
+HpH function 1.74 0.98 1.20 1.16 1.16 1.91 16000.0

Emin 1.56 1.10 0.93 1.15 1.16 1.76 16000.0
Random 2.82 1.76 2.46 1.76 2.30 2.39

Table 2.5: Evaluation of possible sidechain reconstruction schemes, reconstructing 49
sidechains of the CDR’s of antibody 3D6. The first three CONGEN methods have not been 
tested since they axe unsuitable. All tries to generate all the possible conformations, using 
nested loops, thus for 49 residues this would be in the order of 349 conformations, and the 
cpu time needed in the same order of magnitude. Independent  generates all the sidechains 
independently of each other, only taking backbone into consideration, the CHARMM energy 
evaluation function can not be used for the evaluation in this case since many large repulsive 
van der Waals clashes are generated. Combination  generates a small number of energetically 
favorable conformations for each sidechain, and then evaluates all the possible combinations 
of these, unfortunately if just the two lowest energy conformations are chosen for each of the 
sidechains in this case 2 49 conformations would have to be evaluated, this renders only the 
two final methods possible for this type of problem. F ir s t  uses the same algorithm as all, but 
just retains the first acceptable energy conformation, thus selecting a more or less random low 
energy conformation, which is detected in the RMS values. The last two methods are variations 
on the I te r a t iv e  method of CONGEN. In the Itera t ive  method the sidechains which are to 
be constructed are twisted around their x  angles in a specified order. For each sidechain the 
lowest energy conformation is retained and the next sidechain is searched, this procedure is 
repeated until the total energy of the system converges. In the first of the two methods the 
sidechains are generated sequentially and in the second they are generated as a function of CP 
distance from center of gravity of the Fy fragment. The philosophy behind the last method is 
to generate the sidechains first which have least conformational freedom, thus higher confidence 
in the construction. These new sidechains will then add more conformational constraints when 
constructing the more exposed sidechains. The last method (Monte Carlo) which performs a 
complete search of the conformational space is described in the text. The final set of RMS 
values is for a conformation of the 49 residues which is generated using a pseudo random num
ber generator to generate the sidechain torsions. The sidechains in the Monte Carlo simulated 
annealing represent the average conformation of the 1 0 0 0  lowest energy conformations. E min 
refers to lowest energy conformation, and H p H  refers to best conformation with respect to 
hydrophobicity/ accessibility score.
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this approach has been implemented in the program MC (Monte Carlo). The 

method of simulated annealing is described further in the documentation to the 

MC program in Appendix B.

The CDR sidechains of antibody 3D6 were reconstructed using the MC method 

and were compared to the results obtained with CONGEN using the iterative 

method (Table 2.5). The Monte Carlo/Metropolis method has a better perfor

mance than CONGEN which is evident from the RMS values, and Figure 2.6. 

The major performance difference is seen in the hydrophobic sidechains where 

CONGEN consistently fails to find the right conformation. Using the MC algo

rithm the conformation is selected which gives the best shielding of hydrophobic 

sidechains. Since the Monte Carlo reconstruction is not a minimisation the final 

conformations have also been minimised and the results are also shown in Table 

2.5.

2.6 Selection o f C D R  conform ation

All the loop conformations for which sidechains have been constructed, using 

CONGEN, are evaluated using a solvent modified potential, which excludes the 

attractive van der Waals and electrostatic terms of the non-bonded energy func

tion contained within an appropriate potential energy function. Both the GRO- 

MOS (Aqvist et al., 1985) and EUREKA (Lifson et al., 1979; OML, 1992) have 

been shown to give identical results. All the generated conformation are then 

passed through the cluster algorithm again and the lowest five different energy 

conformations are selected and filtered using an SDR algorithm (FILTER), based 

on backbone torsion angles observed in the original database loops. Since the 

database search is not used for the shortest loops (5 residues or fewer) the FILTER
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Figure 2.6: Sidechain reconstruction of the six CDR’s of antibody 3D6(He et al., 1992). Top: 
L1,L2,L3. Bottom: H1,H2,H3. White: crystal structure. Grey: sidechains reconstructed with 
CONGEN (iterative). Black: sidechains reconstructed using MC. The Trp in LI and H2 are 
predicted correctly using MC (Black), CONGEN fails to determine this conformation.
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algorithm cannot be used. Energy is thus the only available selection criterion 

and the short loops are built last, in the presence of the longer loops.

2.7 M odelling o f three antibodies

The A6M algorithm has been blind tested on four Fv structures which have had 

their structures determined independently (Pedersen et al., 1991).

In the following section the analysis of three model structures is presented. The 

fourth structure (Gloop-2) was modelled earlier by Martin et al (1989), and is 

included here for comparison and completeness. The three new models are:

• D1.3 (Amit et a l , 1986), an anti-lysozyme antibody.

• 36-71 (Rose et al, 1990), an anti-phenylarsonate antibody.

• 3D6 (He et al, 1992), an anti-protein (GP41 of HIV) antibody.

For all of these three antibodies the crystal structure coordinates were obtained 

only after the model coordinates had been deposited with the authors.

All three models were subjected to both restrained and unrestrained energy min

imisation using the DISCOVER (TM Biosym Technology) potential with 300 

cycles of steepest descents, followed by conjugate gradient minimisation until 

convergence to within 0.01 Kcal/mol between steps occurred.

The resolution and R-factors of the x-ray structures are given in Table 2.2 together 

with the parent frameworks selected in building the models. The structures and
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models were compared by global fits of the loops. The /7-barrel strands 1-6, 

as described above, were least squares fitted and the RMS deviation was then 

calculated over the loops. The backbone (N,Ca,C) RMS values for fitting model 

and crystal structure frameworks were between 0.4 and 0.9A, illustrating the 

conservation of the core /7-baxrel. Using all eight strands RMS deviations between 

0.6  and 1.2A were observed.

Global fits (Table 2.6) give a more realistic measure of the accuracy of the model 

than a local least-squares fit over the loops since they account for the overall 

positioning of the loops in the context of the Fv structure. Local fits, which 

give lower RMS deviations, are also shown in Table 2.6. Differences between 

local and global RMS deviations arise from differences in Vh/Vl domain packing 

and differences in loop ‘take off’ angles and positions. The antibody Gloop-2 is 

included in some of the comparisons, since it was the first antibody to be modelled 

solely using the CAMAL method (Martin et al., 1989; Martin, 1990).

Table 2.7 shows the canonical loops selected for modelling 3D6. Backbone struc

tures of the modelled CDRs, superimposed on the x-ray structures after global 

fitting are shown in Figure 2.7. General features and points of interest for each 

of the six CDRs are discussed below.
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Antibody CDR sequence
RMS local (A) RMS global (A)

Co N,Co,C All Ca N,Ca,C All

Gloop-2 LI RAS[Q(EIS)G]YLS 0.73 0.71 2.05 0.86 0.87 2.09
D1.3 RAS[G(NIH)N]YLA 2.29 1.93 4.34 2.72 2.43 4.59
36-71 RAS[Q(DIN)N]FLN 2.71 2.43 4.80 3.51 3.31 5.19
3D6 RAS[Q(SIG)N]NLH 0.51 0.54 2.48 0.81 0.78 2.88

Gloop-2 L2 AASTLDS 0.25 0.23 0.80 0.66 0.68 1.10
D1.3 Y[T(TTL)A]D 0.67 0.73 1.80 0.99 1.02 2.01
36-71 F[T(SRS)Q]S 0.64 0.66 2.34 0.73 0.72 2.43
3D6 KASSLES 0.41 0.42 1.37 0.83 0.86 1.73

Gloop-2 L3 LQ[Y(LSY)P]LT 0.58 0.52 1.73 0.75 0.74 2.00
D1.3 QH[F(WST)P]RT 1,41 1.35 2.89 1.76 1.79 3.46
36-71 QQ[G(NAL)P]RT 1.09 1.00 2.26 1.48 1.36 2.37
3D6 Q[Q(YNS)Y]S 1.48 1.88 3.84 2.31 1.97 3.96

Gloop-2 HI [T(FGI)T] 0.60 0.70 2.00 1.03 1.01 2.04
D1.3 [G(YGV)N] 0.44 0.62 2.33 0.85 0.90 3.24
36-71 [S(NGI)N] 0.90 0.83 2.22 1.04 0.97 2.51
3D6 DYAMH 0.67 0.77 1.52 0.81 0.72 1.59

Gloop-2 H2 EI[F(PGN)S]KTY 0.63 0.64 1.63 1.20 0.94 2.23
D1.3 MI[W(GDG)N]TD 0.42 0.42 1.55 0.87 0.85 1.88
36-71 YNN[P(GNG)Y]IA 0.84 0.78 2.01 1.47 1.41 1.79
3D6 ISWDSSSIG 0.45 0.52 2.35 0.95 0.89 2.85

Gloop-2 H3 [R(EIR)Y] 0.66 0.89 3.44 0.87 1.07 3.68
D1.3 ER[D(YRL)D]Y 0.38 0.53 1.68 1.25 0.81 1.96
36-71 SEYY[G(GSY)K]FDY 1.95 1.75 4.40 2.65 2.53 4.60
3D6 GRDYY[D(SGG)YF]TVAFDI 3.66 3.42 5.93 4.01 3.95 6.30

Table 2.6: Sequence and conformational search construction scheme for each of the 24 CDRs, 
[ ]=construction area, ( )=  Chain closure, all sidechains are constructed. RMS (Root Mean 
Square) difference between model and crystal structure loop coordinates. The RMS values are 
a global fit calculated by least-squaxes fitting the conserved core of the two structures upon each 
other and calculating the RMS over the loops. The total RMS of the frameworks (N,Cq:,C) is 
0.81, 0.60, 0.86 and 0.56 respectively. Gloop-2  is modelled solely by the CAMAL method.
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Loop Canonical Sequence
LI HyHEL-10 RA  S Q S I G N N L H

(3D6) RA  S Q S I S RW L A
L2 REI E A  S ND LA

(3D6) KA S S L E S
HI McPC603 D F YM E

(3D6) D Y A M H
H2 KOL I I W D D G S D Q

(3D6) I SWD S S S I G

Table 2.7: Canonical loops selected for the model of 3D6.

2.7.1 A nalysis o f th e C D R  regions

During the comparison of CDR conformations in the V-region models and the 

x-ray Fab structures it was observed that at certain positions in a CDR, the pep

tide backbone may adopt either of two conformations by undergoing a “peptide 

flip” (1,4 shift). This phenomenon is also seen in type 2 /?-turns (Paul et al., 

1990). Dynamics simulations of /?-tums show that the transformation energy 

between <j>\ =  —60, ipl = —30, <j>2 = —90, ip2 = 0 and <j>l =  —60, 'iftl =  120, 

<j>2 =  90, >̂2 =  0 has a maximum value of 5 kcal (Paul et a l, 1990). This is low 

enough to populate both both conformations at physiological temperature (310 

°K) The peptide flip is observed within several canonical classes (as described by 

(Chothia et a l , 1989)) and the hydrogen bonding pattern used to determine the 

conformation of a canonical class does not disallow the peptide flip. Thus, while 

selection of a canonical class may describe the overall conformational status of the 

loop, local deviations of this type will not be defined. Any modelling procedure 

should therefore take these, or any other multiple conformations, into considera

tion where the transformation energies are sufficiently low to permit population of 

the different conformational forms. Table 2.8 shows an example of the “peptide- 

flip” phenomenon from two antibody structures in the crystallographic database
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Figure 2.7: Plot of loop backbones for all the models and x-ray structures. The loops axe 
positioned after global framework fit. This does not represent the best local least squares fit, 
but shows how the loops are positioned globally onto the framework. White: crystal structure. 
Grey: Structures modelled with A6M. Major deviations axe only seen in H3 of 3D6 - this loop 
is also the longest in the set. The loops axe from top to bottom L1,L2,L3,H1,H2 and H3. The 
structures are from left to right 3D6, 36-71, D1.3, and Gloop-2.
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10 20

glb2: 
dl_3: 
3671: 
3d_6:
2hfl: 
3hfm: 
2fbj : 
2fb4: 
lfb4: 
2mcp:
3 fab: 
lrei: 
2rhe:
4 fab: 
If 19: 
lmcw: 
3mcg: 
bl3i: 
2b j 1:

glb2
dl_3
3671
3d_6

I..... I.......I---DIQMTQSPSSLSASLGERVSLTC
DIVLTQSPASLSASVGETVTITC
DIQMTQIPSSLSASLGDRVSISC
DIQMTQSPSTLSASVGDRVTITC
DIVLTQSPAIMSASPGEKVTMTC 
DIVLTQSPATLSVTPGNSVSLSC 
EIVLTQSPAITAASLGQKVTITC 
QSVLTQPPSASG-TPGQRVTISC 
ESVLTQPPSASG-TPGQRVTISC 
DIVMTQSPSSLSVSAGERVTMSC 
-SVLTQPPSVSG-APGQRVTISC 
DIQMTQSPSSLSASVGDRVTITC 
ESVLTQPPSASG-TPGQRVTISC 
DWMTQTPLSLPVSLGDQASISC 
DIQMTQTTSSLSASLGDRVTISC 
-SALTQPASVSG-SPGQSITVSC 
-SALTQPPSASG-SLGQSVTISC 
DVLMTQTPL SLPVS LGDQASISC 
-SVLTQPPSASG-TPGQRVTISC

30 40
RASQEISG......YLS
RASGNIHN......YLA
RASQDINN......FLN
RASQSISR......WLA
SASSSVN.......YMY
RASQSIGN......NLH
SASSSVSS.......LH
SGTSSNIG----SSTVN
TGTSSNIG----SITVN
KSSQSLLNSGNQKNFLA 
TGSSSNIG-- -AGNHVK
QASQDII......KYLN
TGSATDIG----SNSVI
RSSQSLVHS-QGNTYLR
RASQDISN......YLN
AGHTSDVA---DSNSIS 
TGTSSDVG---GYNYVS 
RSNQTILLS-DGDTYLE 
SGSSSNIG-- -ETNSVS *****************

CDR Ll

50

WLQQKPDGTIKRLIY
WYQQKQGKSPQLLVY
WYQQKPDGTIKLLIY
WYQQKPGKVPKLLIY
WYQQKSGTSPKRWIY 
WYQQKSHESPRLLIK 
WYQQKSGTSPKPWIY 
WYQQLPGMAPKLLIY 
WYQQLPGMAPKLLIY 
WYQQKPGQPPKLLIY 
WYQQLPGTAPKLLIF 
WYQQTPGKAPKLLIY 
WYQQVPGKAPKLLIY 
WYLQKPGQSPKVLIY 
WYQQKPDGTVKLLVY 
WFQQHPDKAPKLLIY 
WYQQHAGKAPKVIIY 
WYLQKPGQSPKLLIY 
WYQHLPGTAPKLLIY

60
* * * * *

AASTL
YTTTL
FTSRS
KASSL
DTSKL
YASQS
EISKL
RDAMR
RDAMR
GASTR
HNNA-
EASNL
YNDLL
KVSNR
YTSRL
AVTFR
EVNKR
KVSNR
EDNSR
* * * * *

CDR
70 80 90

 I ............... I .................I - - - -GVPKRFSGRRSGSDYSLTISSLESEDFADYYC 
GVPSRFSGSGSGTQYSLKINSLQPEDFGSYYC 
GVP SRFSGSGSGTDYSLTIS NLEQEDIATYFC 
GVPSRFSGSGSGTEFTLTISSLQPDDFATYYC
GVPVRFSGSGSGTSYSLTISSMETEDAAEYYC 
GIPSRFSGSGSGTDFTLSINSVETEDFGMYFC 
GVPARFSGSGSGTSYSLTINTMEAEDAAIYYC 
GVPDRFSGSKSGASASLAIGGLQSEDETDYYC 
GVPTRFSGSKSGTSASLAISGLEAEDESDYYC 
GVPDRFTGSGSGTDFTLTISSVQAEDLAVYYC
 RFSVSKSGSSATLAITGLQAEDEADYYC
GVPSRFSGSGSGTDYTFTISSLQPEDIATYYC 
GVSDRFSASKSGTSASLAISGLESEDEADYYC 
GVPDRFSGSGSGTDFTLKISRVEAEDLGVYFC 
GVPSRFSGSGSGTDYSLTISNLEHEDIATYFC 
GIPLRFSGSKSGNTASLTISGLLPDDEADYFC 
GVPDRFSGS KS GNTAS LTVS GLQAEDEADYYC 
GVPDRF S GS GSGTDFTLKIS RVEAEDLGVYYC 
GVSDRFSASKSGTSASLAISGLQPEDETDYYC

100***********
LQYLS-- YPLT
QHFWS- -TPRT
QQGNA- -LPRT
QQYNS-- - -YS
QQWGR--NP-T
QQSNS-- WPYT
QQWTY--PLIT
AAWDVS LNAYV
ASWNS SDNSYV
QNDHS--YPLT
QSYDR- - SLRV
QQYQS--LPYT
AAWNDSLDEPG
SQSTH- - VPWT
QQGST- -TPRT
MSYLS-DASFV
SSYEGSD-NFV
FQGSH- - VPPT
AAWDDSLDVAV***********

CDR L3

110 120

FGAGTKLELKRA 
FGGGTKLEIKR- 
FGGGTKLEIKRA 
FGPGTKVDIKRT
FGGGTKLEIKRA 
FGGGTKLEIKRA 
FGAGTKLELKRA 
FGTGTKVTVLGQ 
FGTGTKVTVLGQ 
FGAGTKLEIKRA 
FGGGTKLTVLRQ 
FGQGTKLQIT- - 
FGGGTKLTVLGQ 
FGGGTKLEIKRA 
FGGGTKLEIKRR 
FGSGTKVTVLRQ 
FGTGTKVTVLGQ 
FGGGTKLEIKRA 
FGTGTKVTVLGQ

Figure 2.8: Sequence alignment for antibody crystal structures (light chains only) used in 
the A 6M algorithm. The CDR’s are indicated with stars. The four sequences separated at the 
top are the antibodies which have been modelled during the development of A 6M. Gloop-2 was 
modelled by (Martin et al., 1989)
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10 20 30
glb2: QVQLQQSGTELARPGASVRLSCKASGYTFT 
dl_3: QVQLQESGPGLVAPSQSLSITCTVSGFSLT 
3671: EVQLQQSGVELVRAGSSVKMSCKASGYTFT 
3d_6: EVQLVESGGGLVQPGRSLRLSCAASGFTFN
2hf1: -VQLQQSGAELMKPGASVKISCKASGYTFS 
3hfm: DVQLQESGPSLVKPSQTLSLTCSVTGDSIT 
2fbj: EVKLLESGGGLVQPGGSLKLSCAASGFDFS 
2fb4 : EVQLVQSGGGWQPGRSLRLSCSSSGFIFS 
lfb4 : EVQLVQSGGGWQPGRSLRLSCSSSGFIFS 
2mcp: EVKLVESGGGLVQPGGSLRLSCATSGFTFS
3 fab: -VQLEQSGPGLVRPSQTLSLTCTVSGTSFD
4 fab: EVKLDETGGGLVQPGRPMKLSCVASGFTFS 
If19: QVQLKESGAELVAASSSVKMSCKASGYTFT 
bl3i: EVQLVESGGDLVKPGGSLKLSCAASGFTFS

* * * * * * * 1 i 
£»

— 
O

i i i i i i i i i 
<J1

— 
o 6 0

* * * * * * * * *
T F G I T - - WVKQRTGQGLEWIG E IF P G N S - -
G YGVN-- WVRQPPGKGLEWLG MIWGDG- - -
S N G I N -- WVKQRPGQGLEWIG YNNPGNG--
DYAMH-- WVRQAPGKGLEWVS G IS W D S S --

D Y W IE -- WVKQRPGHGLEWIG E IL P G S G --
SDYWS - - WIRKFPGNRLEYMG Y V S Y S G -- -
KYWMS-- WVRQAPGKGLEWIG E IH P D S G --
SYAM Y-- WVRQAPGKGLEWVA IIW D D G S --
SYAM Y-- WVRQAPGKGLEWVA IIW DD G S- -
D FY M E -- WVRQPPGKRLEWIA ASRNKGNKY
D Y Y S T -- WVRQPPGRGLEWIG YVFYHG- - -
DYWMN-- WVRQSPEKGLEWVA QIRNKPYNY
SY G V N -- WVKQRPGQGLEWIG YINPGKG- -
RCAMS- - WVRQT P EKRLEWVA G I S S G G S --
* * * * * * * - - I ..................................| - * * * * * * * * *

CDR H i CDR H2

70 80 90 100 110* * *
glb2: KTY
dl 3: NTD
3671: Y IA
3d_6: SIG

2hf 1: STN
3hfia: STY
2fbj : T IN
2fb4: DQH
lfb4: DQH
2mcp: TTE
3 fab: TSD
4 fab: ETY
If 19: YLS
bl3i: YTF * * *

YAERFKGKATLTADKSSTTAYMGLSSLTSEDSAVYFCAR 
YNSALKS RL SIS KDNS KS QVFLKMNS LHTDDTARYYCAR 
YNEKFKGKTTLTVDKS S STAYMQLRSLTSEDSAVYFCAR 
YADSVKGRFTIS RDNAKNS LYLQMNSLRAEDMALYYCVK
YHERFKGKATFTADT S S S TAYMQLNS LT S ED S GVYY CLH 
YNPSLKSRISITRDTSKNQYYLDLNSVTTEDTATYYCAN 
YTPSLKDKFIISRDNAKNSLYLQMSKVRSEDTALYYCAR 
YAD S VKGRFTIS RND S KNTLFLQMD S LRPEDTGVYFCAR 
YADSVKGRFTISRNDSKNTLFLQMDSLRPEDTGVYFCAR 
YSASVKGRFIVS RDTS Q SILYLQMNALRAEDTAIYYCAR 
TDTPLRSRVTMLVNTSKNQFSLRLSSVTAADTAVYYCAR 
YSDSVKGRFTISRDDSKS SVYLQMNNLRVEDMGIYYCTG 
YNEKFKGKTTLTVDRSSSTAYMQLRSLTSEDSAVYFCAR 
YPDTVKGRFIISRNNARNTLSLQMS SLRSEDTAIYYCTR

E I R ....................................Y
ERDYRL.........DY
SEYYGGSYKF DY
GRDYYD S GGYFTVAFDI
GNYDF..........DG
WDG............ DY
LHYYGYN........AY
DGGHGFCSSAS CFGPDY 
DGGHGFCSSAS CFGPDY
NYYGSTWYF......DV
NLIAGCI........DV
SYYGM..........DY
SFYGGSDLAVYYF--DS
YSSDPFYF.......DY
* * * * * * * * * * * * * * * * *

CDR H3

[L20
I-WG
WG
WG
WG
WG
WG
WG
WG
WG
WG
WG
WG
WG
WG

Figure 2.9: Sequence alignment for antibody crystal structures (heavy chains only) used 
in the AfcM algorithm. The CDR’s are indicated with stars. The four sequences separated at 
the top are the antibodies which have been modelled during the development of A 6M. Gloop-2 
was modelled by A.Martin (Martin, 1990)
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Residue Number 24 25 26 27 28* 29*
REI Sequence Q A S Q S I

<f>/i —/138 -103/157 -96 /7 -158/142 -40/108 -112/9
HyHEL-10 Sequence R A S Q S I

—/108 -85/135 -88 /64 172/160 -64/-38 9 /63
Residue Number 30* 31* 32 33 32

REI Sequence I K Y L N
<t>1 $ 79/-77 -146/21 -104/89 -143/133 -1 4 4 /-

HyHEL-10 Sequence G N N L H
-63/107 85/-15 -105/72 -129/118 -1 2 6 /-

Table 2.8: Backbone <j> and -ip angles of residues in CDR-L1 from HyHEL-10 and REI classified 
in the same canonical group by (Chothia et a l , 1989). The residues exhibiting a peptide flip 
are indicated by a

of antibody structures. It should be noted that a single crystal structure will 

not show multiple conformations since the crystallisation will ‘freeze out’ one of 

the conformations. During the modelling procedure the two populations of con- 

formers are easily extracted from a set of ab initio generated loops, by using a 

torsional clustering algorithm (see documentation in Appendix B.3).

2.7.2 CDR-L1

In D1.3, all five low energy conformations selected by the EUREKA step (Figure 

2 .2 ) were very similar with RMS deviations differing by less than 0.25A (back

bone) and 0.35A (all atoms). The FILTER algorithm was unable to distinguish 

between the conformations and the lowest energy structure was selected.

Although CDR-L1 of 3D6 was originally built using the canonical loop from 

HyHEL-10, the mid-section was rebuilt by conformational search, for the follow

ing reason. HyHEL-10 and REI CDR-L1 loops are placed in the same canonical 

ensemble (Chothia et al., 1989) although they contain a 1-4 shift (peptide flip) 

relative to one another between the fifth and eighth residues of the loop (residues
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28-31) (see Table 2.8).

36-71 shows the same 1-4 shift between the model and crystal structure CDRs. 

Both crystal structure and model were compared with other loops of the same 

canonical class as defined by (Chothia et al, 1989). It was found that the hydro

gen bonding pattern which determines the conformation was conserved. Thus, 

the canonical loop method does not discriminate between conformations of this 

type.

2.7.3 CDR-L2

CDR-L2 of D1.3 has two adjacent threonines (sequence positions 49 and 50) 

which in the x-ray structure are packed against the Tyr at the fourth position 

of CDR-H3, thus minimising the exposed hydrophobic sidechains. In the un

minimised model the Thr sidechains axe exposed to the solvent, but after energy 

minimisation the correct packing is observed. This CDR is correctly modelled in 

3D6 and 36-71.

2.7.4 CDR-L3

In D1.3 and 36-71 the Pro at the seventh position in the loop is correctly predicted 

in the cis conformation. It has previously been suggested that the conformation 

of CDR-L3 is dictated by the presence of a Pro in position 8 or 9 (Chothia et al, 

1989) within the loop. 3D6 does not have a Pro in either position. Only 7 out 

of 290 CDR-L3 sequences (Kabat et al, 1992) lack a Pro at both positions and 

in all of the published x-ray structures this Pro is present. This is an example of 

a situation where either a new canonical class may need to be defined or where
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the canonical rule breaks down altogether, and an alternative method must be 

employed.

The 3D6 L3 loop is 7 residues in length and was built using database loops 

alone where conformational space is saturated by means of fragments selected 

from the crystallographic database (Global RMS: 2.01 A, N,Ca,C), and by using 

CAMAL (Construction: Q[Q(YNS)Y]S, Global RMS: 1.97A, N,Ca,C). The sim

ilarity of the structures generated by the two procedures illustrates the utility of 

the database search and suggests that for shorter loops it is capable of saturating 

the available conformational space.

2.7.5 CD R -H 1

The Kabat and Wu definition of CDR-H1 places this loop as an extension of the 

p-sheet. The extended nature of this stretch of peptide limits its conformational 

flexibility and CDR-H1 is generally modelled accurately (Martin et al., 1989; 

Chothia et a l , 1989).

In D1.3, the Phe or Tyr sidechain at the second position in the loop is poorly 

placed and packs against Leu at the penultimate position in HFR1 (see Figure 

2.9). 36-71 has a well-placed Asn at this position, rather than the more common 

bulky hydrophobic sidechain.

2.7.6 CD R -H 2

CDR-H2 of 36-71 is similar in sequence to R19.9 (Strong et a l , 1991), (36-71: 

YNNPGNGYIA; R19.9: YINPGKGYLS). While the structurally determining



CHAPTER 2. MODELLING ANTIBODY COMBINING SITES  66

residues specified by (Chothia et al, 1989) are conserved, the backbone confor

mations are different: R19.9 has a bulge at the -PG N - Gly, compared with 36-71, 

giving the loop a ‘kink’ in the middle. The model of 36-71 shows a 1-4 shift, 

though the sidechains are still well placed.

2.7.7 CDR -H 3

Problem s and  analysis CDR-H3 is the most variable of the six CDR’s with 

all lengths up to 21 residues being represented in the database of (Kabat et al., 

1992). This extreme variability results from V-D -J splicing (Schilling et al., 1980) 

and has always been a problem when attempting to model antibodies. Such loops 

may be divided into short (up to 7 residues), medium (up to 14 residues) and 

long (15 or more residues). Using the CAMAL procedure, we are now confident 

that short and medium CDR-H3’s can be modelled as accurately as other CDR’s 

of similar lengths. Although long CDR-H3’s are more difficult and cannot, at 

present, be built to the same accuracy, the chain trace is still essentially correct.

It is unlikely that the longer loops consist of ‘pure’ loops (i.e. all random coil or 

turn). In crystal structures of antibodies with medium to long CDR-H3 loops 

(McPC603 (Rudikoff et al., 1981): 11 amino acids (aa); KOL (Marquart et al., 

1980): 17 aa; R19.9 (Lascombe et al., 1989): 15 aa) the loops consist of a disor

dered /?-sheet extension from the /2-barrel core and a 5-8 residue random coil/turn 

connecting these two strands.

To determine the nature of medium to long loops (> 8 residues) which satisfy 

the CDR-H3 constraints, a complete search of the Protein Databank for loops 

of length 8 -2 0  residues, was performed using the inter-Ca distance constraints
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Figure 2.10: Relative distribution of secondary structure in CDR H3 loop ensemble obtained 
using constraints calculated from known Fy structures. The secondary structure is calculated 
using the DSSP (Kabsch and Sander, 1983) program. Calculations were not done for loops 
shorter than eight residues, due to loss of information caused by chain termini (No assignment 
possible).

determined from known antibody crystal structures for CDR-H3. The resulting 

loops were then analysed using the DSSP (Kabsch and Sander, 1983) program, 

which is able to assign secondary structure to polypeptide structures. The amount 

of secondary structure for each length of loop was calculated (Figure 2 .10 ), and 

it was observed that for loops longer than 12 residues the amount of secondary 

structure within each of the classes described in DSSP was constant. The number 

of loops selected is also constant (approx 150 loops) for loops longer than 12 

residues. A closer inspection of each of the length ensembles shows indeed that 

the loop are the same between the groups.

This analysis shows (Figure 2 .10) that, like the long CDR-H3 crystal structures, 

the selected fragments consist of /^-strands connected by 5-8 residue loops. We 

find that for loops above 1 2 -1 3  residues in length, the same loops are selected,
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but with extensions to the /^-strands. This is termed the “sliding-ladder” effect. 

In addition, the maximum size of a random coil or turn fragment in any of the 

structures contained in the Protein Databank tends not to exceed 8 residues, as 

determined by DSSP. This implies that the conformational space of longer loops 

is not saturated by the database and, although it is unlikely that long loops in 

antibodies will differ significantly from long loops in other structures, confidence 

in the prediction must be correspondingly lower.

By how much is the usefulness of the CAMAL algorithm reduced by this obser

vation ?

The frequency of occurrence of different CDR-H3 lengths in antibody sequences 

described by Kabat et al. (Kabat et al., 1992) was analysed. The distribution 

plot in Figure 2.3 shows that more than 85% of H3 loops have lengths between 4 

and 14 residues which can be modelled accurately by the CAMAL algorithm.

M odelling resu lts  CDR-H3 of D1.3 is of average length (8 residues), though 

no loops of this length are seen in the available antibody structures. The crystal 

structure coordinate set showed an RMS of 1.9A compared with the model.

The 36-71 loop is 12 residues long. The conformation is correctly predicted as a 

short loop connecting an extension of the /?-sheet.

The 3D6 H3 loop is 17 residues long. While KOL (Marquart et al., 1980) has the 

same length it has only one residue in common with 3D6 and only one conservative 

mutation. There is thus no reason to believe that the conformations would be 

similar. The final predicted conformation of 3D6 is an extended /?-sheet, as in the
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crystal structure. The difference between the predicted and the crystal structure 

of 3D6-H3 is due to a twist of 5-7° in the extended /?-sheet loop (see Figures 2.11 

& 2 .12). Such a twist has also been observed for complexed and uncomplexed 

antibodies by Him et al (1992). This suggests that long CDR-H3 loops may be 

flexible and actively involved in antigen binding. Thus, attempting to assign a 

single conformation to such loops may be meaningless

2.7.8 The com plete variable region - Sum m ary o f results

Prediction of the strand positions and V l/Y h  orientation in the framework (5- 

barrel was exact for all the three antibodies. The backbone (N,Ca:,C) RMS 

deviations from the crystal structures were between 0.56 and 0.86 A, despite 

the fact that in all cases the Vl and Vr regions of a particular model were 

derived from different antibody structures. This suggests that this method will 

do well in procedures such as humanisation (Gorman et al., 1991), where correct 

framework positioning is important. The backbones of all six CDRs in all three 

antibodies are essentially correctly predicted, as shown in Figure 2.7. There are 

two important points to make about these predictions. First, the position of 

each CDR on its framework barrel is correct. Thus, CDR-framework interactions 

can be confidently monitored. The only deviation from the x-ray structure is 

CDR-H3 of antibody 3D6 which has been discussed above. Second, the all atom 

RMS deviation between models and x-ray structures is dominated by sidechain 

positions. In most instances this deviation is due to a small number of incorrectly 

positioned, exposed sidechains (for example in D1.3 the only sidechains which are 

incorrectly predicted are Tyr 9 of LI, Trp 4 of L3, Tyr 2 of HI and Tyr 4 of H3). 

Since each CDR is constructed in the absence of other CDRs, the forcefield may 

choose a rotamer which is 120° away from that found in the crystal structure.
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Figure 2.11: Stereo (N,C-Q!,C,0) representation of crystal structures and models of D 1.3 and 
3671 variable domain and ^-barrel strands . Crystal structure are shown with open bonds, 
model with solid bonds. Top: D1.3, Bottom: 36-71
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V

Figure 2.12: Stereo (N,C-o:,C,0) representation of crystal structures and models of 3D6 
and G loop-2 variable domain and /?-barrel strands . Crystal structures are shown with open 
bonds, model with solid bonds. The difference between the 3D6-H3 in the model and the crystal 
structure is due to a 5-7° twist in the extended /? sheet conformation of this loop. Top: 3D6, 
Bottom: Gloop-2
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This effect has also been observed by (Lee and Levitt, 1991).

A present limitation of the A&M algorithm is the assumption that all CDR’s 

can be predicted independently of any of the other loops. Modelling all the 

loops independently works well when the antibody being modelled (e.g. Gloop- 

2) has short CDR loops. When modelling antibodies with longer CDR loops 

(e.g. 36-71) the effects of other CDR’s should ideally be taken into account. In 

the antibody 36-71 a number of clashes are observed as a result of modelling the 

loops independently. CDR LI is modelled such that it overlaps with L2. Since 

canonical loops can usually be defined for at least five of the six CDRs these could 

placed in the combining site before the remaining loops are modelled. Using this 

protocol conformational space will be appropriately limited during the ab-initio 

search and progression of error through the model will be minimised.

When predicting sidechain conformations using the Monte Carlo method it is 

necessary to have a model where the backbone has been predicted with high 

confidence. If the backbone is not well defined the position of all the sidechains 

can be wrong as they are generated all at once. This problem is avoided when 

generating sidechains in CONGEN/CAMAL since the CDR’s are modelled inde

pendently. Thus, the choice of sidechain construction method will be dictated by 

the confidence level for the backbone construction.

2.8 A ntibody modelling: further developm ents

Recently (October 1992), a commercially available version (OML, 1992) of the 

A 6M program has become available. In order to get a wider view of how the algo

rithms in the program suite perform, all the antibody crystal structures available
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in the crystallographic database (Bernstein et al., 1977) were modelled (Results 

shown in Table 2.9 and in the complete Table of RMSD values in Appendix A.3). 

The data presented here is the result of a joint effort between S.M.J.Searle and 

the author.

The main problem when modelling complete combining sites using AbM is the 

determination of the takeoff angles for the loops. As shown in the Tables in 

Appendix A .2 there is up to 90° variation between the takeoff angles of CDR H3 

in different crystal structures. The overlap and framework selection algorithm 

has therefore been modified in A6M. Three structural classes of CDR H3 loops 

have been defined, using the table for CDR H3 takeoff angles in Appendix A.2. 

The structures 2hfl and lfl9 are different with respect to takeoff angles to the 

remaining structures. The difference appears to be due to a structural residue 

position at the C-terminal end of the H3 loop. Most structures have a conserved 

Tyr or Val at the C-terminal position of the loop. However, 2hfl and lfl9  have 

a Gly and Ser respectively at this position, resulting in a kink in the loop, and 

a resulting change in takeoff angle. The result of this observation and the fact 

that there appears to be two populations of loop takeoff angles, depending on the 

CDR length, lead to the definition of three classes of H3 loops (see also Figure 

2.13:

• Loops shorter than seven residues.

• Loops equal to or longer than seven residues.

• Loops which do not have a structural Val or Tyr at the penultimate position 

of the loop sequence.

The framework of the heavy chain is therefore selected, in A 6M, on the basis
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Structure CDR CDR Global RMSD
Length (N,Ca,C,0)

glb2 LI 11 1.161
L2 7 0.647
L3 9 1.031
HI 5 1.785
H2 10 1.609
H3 4 1.273

Total 1.251
2hfl LI 10 1.150

L2 7 0.712
L3 8 2.524
HI 5 1.261
H2 10 2.155
H3 7 2.310

Total 1.685
2mcp LI 17 0.784

L2 7 0.538
L3 9 0.739
HI 5 1.004
H2 12 2.014
H3 11 2.306

Total 1.231
4fab LI 16 2.470

L2 7 0.792
L3 9 1.255
HI 5 0.721
H2 12 2.028
H3 7 2.132

Total 1.566
3bfm LI 11 0.775

L2 7 1.021
L3 9 0.394
HI 5 2.012
H2 9 0.942
H3 5 1.683

Total 1.138
Imam LI 11 1.302

L2 7 1.362
L3 9 1.289
HI 5 1.845
H2 12 2.976
H3 8 2.524

Total 1.883
bl3i LI 16 2.667

L2 7 0.763
L3 9 0.877
HI 5 1.310
H2 10 1.202
H3 10 2.970

Total 1.632
dl.3 LI 11 0.799

L2 7 0.928
L3 9 1.138
HI 5 0.846
H2 9 1.413
H3 8 2.188

Total 1.219

Table 2.9: Modelling for some of the crystal structures with CDR H3 length less than twelve 
residues. The complete data set for all sixteen antibodies in the crystallographic database can 
be found in Appendix A.3.
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A) B) C)

Figure 2.13: Structural classes of CDR H3 as defined in the text. Here they are illustrated 
by the three structures A) 3hfm B) 8fab C) 2hfl. The structural Tyr at at the penultimate 
position is shown, the structure 2hfl (C) has a Gly at this position.

of the most homologous CDR H3 with respect to the above classes, and not on 

the basis of the complete heavy chain sequence. This dramatically improves the 

quality of the final conformation of longer ( >1 0  residues) CDR H3s (data using 

the original framework selection method are not shown).



C hapter 3

A  new m ethod  o f hum anisation: 
resurfacing

3.1 A ntibody fragments and their properties

Recently a large interest has been shown in the reshaping (hum anisation) of 

non-human antibodies (Winter and Milstein, 1991; Lewis and Crowe, 1991) in 

order to make these non-immunogenic in man. These reshaped antibodies are 

then used as therapeutic drugs in the treatment of diseases (Reichman et al.,

1988). The main theme in the development of antibodies as drugs has been 

the reduction of the size of the antibody to obtain a minimal recognition unit 

(M RU). Smaller compounds are more easily transported across cell membranes 

and tissue barriers. Figure 3.1 shows how these fragments are derived from the 

native antibody.

Chim eric antibodies are antibodies with variable domains from a rodent (usually 

mice) antibody, and constant domains from a human antibody. In these chimeric 

antibodies the presence of the murine variable region framework often leads to

76
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Figure 3.1: Various antibody fragments and engineered antibodies which have been reported 
in the literature. Each box or circle represents a protein domain. The various fragments axe 
described in the text. (Reproduced after (Winter and Milstein, 1991))
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immunogenicity (Lobuglio and Saleh, 1992). This can be overcome by grafting 

only the CDR loops from the original mouse antibody onto the human antibody 

(see later) (Hale et aL, 1991; Verhoeyen et aL, 1991; Verhoeyen et al., 1988; Kyle 

et al., 1991; Crowe et al., 1992).

Fc domains from mice have been linked to receptor specific molecules such as 

CD4. This conjugate binds to protein g p l 2 0  of the human immunodeficency 

virus H IV  on the surface of infected cells and kills the infected cells by antibody 

dependent cell-mediated cytolysis (Byrn et al., 1990).

Fab fragments have been used in many ways both as therapeutic agents and as 

diagnostics. The smaller fragments are more attractive to use in vivo since they 

have a higher capability to penetrate tissue boundaries, and are cleared faster 

from the blood stream. Fab fragments and other small antibody fragments con

jugated to cell toxins are frequently called “magic bullets” , since these can be used 

to specifically target disease areas in the living organism, such as cancer tumors 

(Reichman et a l , 1988). FAB fragments are also used for clearing toxic drugs, such 

as digoxin (Wenger et al., 1985), from the blood stream. In vitro, Fab fragments 

are conjugated to enzymes and used in ELISA (enzyme linked immuno sorbent 

assay) (Engvall and Pesce, 1978). In these assays the FAB-enzyme conjugate is 

bound to immobilised antigen and the amount of antigen is then determined 

by performing an enzyme specific reaction (usually colourimetric) with the Fab 

bound enzyme. The extent of this reaction is related to the amount of antigen 

initially bound (Engvall and Pesce, 1978).

The smallest fragment of an antibody which still contains the complete binding 

domain is the Fv fragment. Fv fragments have been used in the same way as 

Fab fragments as conjugates. Single domain antibodies (dAb) and even single
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CDR’s have been shown to bind to antigens to which the original antibody was 

raised (Ward et al., 1989; Taub et al., 1989). In order to make dAb’s useful 

it may be necessary to make large alterations to the surface of the domain in 

order to gain solubility, since these fragments have the VL/VH interface exposed 

to the aqueous surroundings. Tramontano has engineered a 60 amino acid sub- 

fragment (m inibody) of the heavy chain to produce a more soluble recognition 

unit (Tramontano, 1992). More promising are single chain Fv fragments (scFv). 

In scFv’s the C-terminus of the light chain is linked to the N-terminus of the heavy 

chain, usually through a hydrophilic poly-Ser-Gly linker (Bird et al., 1988b). 

Single chain Fv fragments have been bound to cell toxins such as ricin (See (Pimm, 

1988; Bagshawe, 1987) for review). These antibody-fragment conjugates are in 

development in many Biothecnology companies for cancer treatment.

Im m unom im etics are compounds which are derived from a known antibody 

structure and which resembles the action of of the antibody. The scope of im

munomimetics is to avoid the inherent disadvantage of proteins. Proteins are 

degraded fast and rapidly cleared from the blood stream. This is not desir

able in a clinical situation where it is necessary to have longer retention times 

although this may be a useful property for imaging of tissue targets where back

ground signals from bound antibody needs to be as low as possible. The first 

immunomimetics were peptides derived directly from CDR sequences in antibod

ies, and were cyclised MRU’s (Taub et al., 1989; Bruck et al., 1986; Kang et al., 

1988; Williams et al., 1991; Novotny et al., 1986; Williams et al., 1989b; Williams 

et al., 1989a). Since then more advanced cyclical peptide compounds have been 

derived from antibody structures. Sargovi et al synthesised a /3-turn peptide, 

which was derived from the model of an antibody combining site of an anti-retro 

virus type 3 cellular receptor (Reo3R). They used accessibility as the selection 

criteria, and rationalised that the most exposed CDR was the most likely inter



CHAPTER 3. A NEW  METHOD OF HUMANISATION: RESURFACING 80

action site of the antibody with its antigen. These smaller more rigid peptides, 

frequently contain modified amino-acids (D- amino acids, etc), which make them 

less prone to proteolytic degradation.

Several studies are concerned with the change of single residues in order to in

crease specificity or affinity of a given antibody or antibody fragment (Roberts 

et al., 1987; Winter and Milstein, 1991). Metal binding sites, and catalytic triads 

of proteases have been engineered into antibodies (Tainer et al, 1985; Gregory et 

al., 1990). C ataly tic  antibodies have also been produced which are antibodies 

induced by immunisation with transition state analogues. Numerous examples 

have been reported where diverse reactions have been catalysed (see (Baum, 

1991; Benkovic et al., 1991; Gibbs et al., 1991; Ikeda et al., 1991; Jaekson et 

al., 1991; Khalaf et al., 1992; Lerner et al., 1991; Martin et al., 1991c; Martin et 

al., 1991b; Sastry et al, 1991; Shokat and Schultz, 1991; Suckling et al., 1992). 

However, it is not within the scope of this thesis to further describe these.

3.2 H um anisation o f variable regions

The large interest in reshaping murine antibodies has been spawned by the large 

therapeutic potential of humanised antibodies (Hale et al., 1991; Verhoeyen et 

al, 1991; Verhoeyen et al, 1988; Kyle et al, 1991; Crowe et al, 1992).

The first attempt to humanise a murine antibody was performed by Reichmann 

et al (1988). The CDRs from a rat antibody directed against human lymphocytes 

were grafted onto the framework of the human heavy chain of NEW (Saul et al, 

1978) and the light chain of REI (Palm and Hilschmann, 1975). These antibodies 

were capable of activating complement and thus mediating cell lysis (Reichman
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et al., 1988). In order to regain the activity of the original antibody additional 

single residue changes had to be made in the human framework in order to restore 

the correct environment for the murine CDRs.

This process of “back mutations” has been necessary in virtually all the reported 

cases of reshaping (Hale et al., 1991; Verhoeyen et al., 1991; Verhoeyen et al, 

1988; Kyle et al., 1991; Crowe et al., 1992; Kettleborough et al., 1991; Reichman 

et al., 1988). Kettleborough identified important CDR interacting residues in 

the framework of the Fv region, using a molecular model of the murine antibody. 

In order to test the importance of these residues nine versions of the humanised 

antibody were produced. In this case the best construct only retained 60 % the 

avidity of the original antibody (Kettleborough et al., 1991).

This loss of binding justifies the need for finding new ways of reshaping murine 

antibodies which avoid extensive changes to the framework region adjacent to 

the CDRs.

In this chapter it is shown how an Fv surface can be changed, retaining the 

specificity of the combining site, proving that major changes can be made to the 

Fv structure without changing its binding functionality.

3.3 Variable region surfaces

Several attempts have been made to rationalise, and explain the differences be

tween human and murine antibody Fv domains (Arnold et al., 1991; Strohal et 

al., 1989; Zachau, 1990).
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Recently Schroeder and colleagues have performed a thorough analysis of VH 

mammalian germline sequences (Schroeder et a/., 1989) in order to determine 

regions of conservation. They identified a set of conserved regions in the sequences 

which are located on a solvent exposed face of the VH chain. A similar analysis 

was performed by Kroemer et al for light chain VL region sequences (Kroemer 

et al., 1991). These phylogenetic studies pinpoint the divergent evolution of the 

human and murine immunoglobulin sequences, but do not clearly identify the 

different conserved regions in the two families.

An attempt to locate the conserved, exposed regions in human and murine anti

bodies has been presented by Padlan. He calculated the accessibility of the crystal 

structure of one human and one murine antibody (Padlan, 1991). Using an ac

cessibility criteria the exposure of surface positions was determined. Although 

this study did not present a general algorithm there appeared to be differences 

in the presentation of surface residues of murine and human germline antibodies.

In order to more exhaustively characterise the surface of different V-regions a 

statistical analysis of antibody surface residues was carried out which has lead to 

a novel method for the reshaping of murine antibodies. The method is termed 

Resurfacing.

3.3.1 Fy surface analysis

In order to determine the amino acid positions which are usually accessible on 

the surface of the Fv domain, the accessibility was calculated for twelve FAB x-ray 

crystallographic structures obtained from the Brookhaven database (Bernstein 

et al., 1977). The relative accessibility was calculated using the program MC
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(Appendix B.l), which implements a modified version of the DSSP (Kabsch and 

Sander, 1983) accessibility calculation routine in which explicit atomic radii are 

employed. Here the relative surface accessibility is defined as the accessibility of 

a given residue in the protein divided by the accessibility of the same residue in 

the same conformation but in a free blocked amino acid. A residue was defined 

as being surface accessible when the relative accessibility was greater than 30 %. 

Surface accessible positions of framework amino acids constitute 40 % of the Fv 

surface area. The remaining surface accessible residues are in the CDRs and in 

the interdomain C-terminal region. The Figures 3.3 and 3.4 show a sequence 

alignment of the twelve crystal structures, the average relative accessibility, and 

the 30 % accessibility cut-off.

The surface accessible framework positions were mapped onto a database of 

unique human and mouse Fv sequences . The frequency of particular residues 

in each of these positions is shown in Table 3.1 Sz 3.2. Only residue frequencies 

higher than 5 % are listed.

The justification for using a 30 % cut-off was tested by calculating the solvent 

accessibility of all the residues in hen egg lysozyme (Figure 3.2). The epitopes 

for four antibodies, HyHEL5 (Sheriff et aZ., 1987), HyHELlO (Padlan et al.,

1989), D1.3 (Amit et al., 1986), and Gloop2 (Rees et al., 1989), all of which were 

determined by either x-ray crystallography or NMR, are indicated. The 30 % 

cut-off position is also shown. The data show that the epitope residues in all four 

antibodies are included in the 30 % surface residue set and that residues below 

30 % are largely inaccessible to the antibodies.

There are three major points to be made from the frequency data i Table 3.1 and 

3.2.
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Position Human Mouse
1 D 54 E 33 D 76 Q 9 E 7
3 V 39 Q 25 S 22 V 62 Q 22
5 T 66 L 33 T 87
9 S 31 P 23 G 15 A 15 S 37 A 28 L 17
15 P 59 V 24 L 15 L 46 P 33 V 9
18 R 57 S 18 T 12 R 38 K 22 S 14 Q 12 T 10
26 S 71 T 12 S 93
27 Q 57 S 24 Q 52 S 16 K 12 E 10
28 S 64 D 8 G 7 S 59 D 19 G 9
46 P 92 P 82 S 9
47 G 87 G 72 D 18
51 K 49 R 28 K 71 Q 13 R 8
62 S 58 T 23 S 71 P 7 D 7
63 G 91 G 96
66 D 41 S 27 A 9 D 37 S 27 A 26
73 S 97 S 91
76 D 44 S 18 T 18 E 14 D 65 S 16
86 P 42 A 29 S 17 A 49 P 12 S 9 T 8
87 E 73 D 12 E 91
108 G 44 Q 37 T 7 G 57 A 20  S 12
111 K 78 R 11 K 92
115 K 55 L 40 K 84
116 R 63 G 32 R 85 G 10
117 Q 48 A 21 T 18 A 68  Q 20

Table 3.1: Table of residue frequencies in surface positions of sequence alignment of Kabat 
(Kabat et a l 1992) database of light chain sequences. Only residue types which occur with a 
higher frequency than 5 % are listed. Sequence numbering is the same as in Figure 3.10
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Position Human Mouse
118 E 48 Q 45 E 59 Q 29 D 10
120 Q 8 1 T 6 Q 68 K 25
122 V 54 Q 15 L 14 Q 57 V 27
126 G 53 A 23 P 19 G 35 P 30 A 28
127 G 54 E 24 A 12 E 45 G 43
128 L 65 V 27 F 7 L 95
131 P 93 P 90
132 G 71 S 18 T 7 G 81 S 17
133 G 38 E 16 Q 14 R 12 A 10 A 34 G 29 Q 16 S 9
136 R 49 K 25 S 18 T 7 K 64 S 17 R 14
143 G 95 G 98
145 T 47 S 32 N 8 T 62 S 19 N 7
159 A 54 P 21 R 36 S 15 T 12 P 12 F 11 A 8
160 P 84 S 10 P 89 H 6
161 G 93 G 72 E 23
173 S 27 K 15 G 13 D 11 G 36 K 14 S 13 N 11 D 10 Y 7
174 G 48 D 14 S 13 G 31 N 23 S 19 A 9
183 D 25 P 24 A 16 Q 9 T 7 E 31 P 21 D 17 Q 11 A 11
184 S 68  K 10 K 42 S 37
186 K 57 Q 19 R 7 K 82 Q 6
187 G 65 S 22 G 61 S 18 D 10
195 T 32 D 24 N 19 K 8 T 35 K 29 N 26
196 S 89 S 75 A 16
197 K 63 T 7 I 7 S 46 K 34 Q 10
208 R 44 T 22 K 15 T 55 R 26 K 8
209 A 48 P 19 S 16 T 9 S 66 A 15 T 11
210 E 49 A 18 D 12 S 8 E 8 7 D 7
212 T 85 T 53 S 43
222 G 1 7 D 1 1 P 1 0 Y 9 V 8 N 8 D 67 A 18

Table 3.2: Table of residue frequencies in surface positions of sequence alignment of Kabat 
(Kabat et al., 1992) database of heavy chain sequences. Only residue types which occur with 
a higher frequency than 5 % are listed. Sequence numbering is the same as in Figure 3.10
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A ccesibility of lyzosyme epitopes
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Figure 3.2: Accessibility plot of hen egg lysozyme (Moult et al., 1976). The accessibility was 
calculated as described in the text. The epitopes of the four antibodies HyHEL5, HyHELlO, 
D1.3 and Gloop2 are shown with bars. The 30 % cut-off is also shown.

1. The residue frequencies at particular positions of the sequence are largely 

conserved.

2. At the amino acid positions identified by the above analysis, none of 

the entire combinations of surface residues in the human sequences are 

found in the murine sequences and vice versa.

3. Only at two of the surface positions are different distributions of amino 

acids found. At position 5 of the light chain Leu is found in 33 % of the 

sequences while only Thr is found in the mouse sequences. At position 

159 of the heavy chain Arg is found in 36 % of the mouse sequences, 

but in none of the human sequences where it is an Ala or a Ser residue.

In order to determine whether the mouse sequences are more distantly related to 

human Fv sequences than to other mouse Fv sequences, the identity was calculated 

between all the sequences in a pool of both human and mouse sequence patches
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Average residue accessibilities for 12 Ig/Pv structures* L- chain1

B
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0
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Residue position.

L F R  1  C D R  L I  L P R  2  C D R  L 2  L P R  3  C D R  L 3  L P R  4

I I I  | | |  «*•*«**«*«**•«**• | |  | | | | |  | |  •»*««**•*** | ((I

glb2 DIQMTQSPSSLSASLGERVSLTCRASQEISG.................YLSWLQQRPDGTIKALIYAASTLDSGVPRRFSGRRSGSDYSLTISSLESEDFADYYCLQYLS--YPLTFGAGTRLELRRA

If dl DIQWTQSPASLSASVGETVTITCRASGNIHN.................YLAWYQQRQGRS PQLLVYYTTTLADGVP8RFSGSGSGTQYSLRINS LQ PE DFGSYYCQHFWS- -TPRTFGGGTKLEIKRR

2hf1 DIVLTQSPAIMSASPGEKVTMTCSASSSVN....................YMYWYQQKSGTSPKRWIYDTSKLASGVPVRFSGSGSGTSYSLTISSMETEDAAEYYCQQWGR-- NP-TFGGGTRLEIRRA

3hfm DIVLTQSPATLSVTPGNSVSLSCRASQSIGN..................NLHVfYQQKSHESPRLLIKYASQSISGIPSRFSGSGSGTDFTLSINSVETEDFGMYFCQQSNS - -WPYTFGGGTKLEIRRA

2fbj ErVLTQSPAITAASLGQRVTITCSASSSVSS.....................LHWYQQRSGTSPKPWIYEISRLASGVPARFSGSGSGTSYSLTINTMEAEDAAIYYCQQWTY - -PLITFGAGTRLELRRA

2fb4 ESVLTQPPSASG-TPGQRVTISCTGTSSNIG- - -•SITVNWYQQLPGMAPRLLIYRDAMRPSGVPTRFSGSRSGTSASLAISGLEAEDESDYYCASWNSSDNSYVFGTGTRVTVLGQ 

2mcp DIVMTQSPSSLSVSAGERVTMSCKSSQSLLNSGNQKNFLAWYQQRPGQPPRLLIYGASTRESGVPDRFTGSGSGTDFTLTISSVQAEDLAVYYCQNDHS- * YPLTFGAGTRLEIRRA

3fab - SVLTQPPSV8G - APGQR VTISCTGS SSNIG - - - AGNHV KW YQQLPGTAPRLLIFHNNA RFSVSRSGSSATLAITGLQAEDEADYYCQ8YDR- - SLRVFGGGTRLTVLRQ

4fab DWWTQTPLSLPVSLGDQASISCRSSQSLVHS-QGNTYLRWYLQRPGQSPRVLIYRVSNRFSGVPNRFSGSGSGTDFTLRISRVEAEDLGVYFCSQSTH- -VPWTFGGGTKLEIRRA

If 19 DIQMTQTTSSLSASLGDRVTISCRASQDISN.................YLNWYQQRPDGTVKLLVYYTSRLHSGVPSRFSGSGSGTDYSLTISNLEHEDIATYFCQQGST- -TPRTFGGGTRLEIRRR

5fab DIQMTQIPSSLSASLGDRVSISCRASQDINN.................FLNWYQQRPDGTIKLLIYFTSRSQSGVPSRFSGSGSGTDYSLTISNLEQEDIATYFCQQGNA- -LPRTFGGGTRLEIRRA

ldfb DIQMTQSPSTLSASVGDRVTITCRASQSISR.................WLAWYQQRPGRVPRLLIYKASSLESGVPSRFSGSGSGTEFTLTISSLQPDDFATYYCQQYNS YSFGPGTKVDIRRT

Figure 3.3: Average relative accessibility of Fy light chain structures plotted along sequence 
alignment. The numbering used here is described in Figure 3.10. Sequences are referenced by 
their Brookhaven entry code (For references see Table 2.2)
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Average residue accessibilities for 12 Ig/Fv structures* H-chain

o . e

0 . 2
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Residue position.
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glb2 QVQLQQSGTELARPGASVRLSCKASGYTFTTFGIT - - WVKQRTGQGLEWIGEIFPGNS - - KTYYAERFKGKATLTADKSSTTAYMQLSSLTSEDSAVYFCAREIR....................................YWG

lfdl QVQLKESGPGLVAPSQSLSITCTVSGFSLTGYGVN- -WVRQPPGKGLEWLGMIWGDG - NTDYNSALKSRLSISKDNSKSQVFLKMNSLHTDDTARYYCARERDYRL........................DYWG

2hf 1 • VQLQQSGAELMKPGASVKISCKASGYTFSDYWIE - - WVKQRPGHGLEWIGEILPGSG* - STNYHERFKGKATFTADTSSSTAYMQLNSLTSEDSGVYYCLHGNYDF...........................DGWG

3hfm DVQLQESGPSLVKPSQTLSLTCSVTGDSITSDYWS- • WIRKFPGNRLEYMGYVSYSG- • - STYYNPSLKSRISITRDTSKNQYYLDLNSVTTEDTATYYCANWDG.................................DYWG

2fbj EVKLLESGGGLVQPGGSLKLSCAASGFDFSKYWMS - -WVRQAPGKGLEWIGEIHPDSG- -TINYTPSLKDKFIISRDNAKNSLYLQMSKVRSEDTALYYCARLHYYGYN.......................AYWG

2fb4 EVQLVQSGGGWQPGRSLRLSCSSSGFIFSSYAMY- WVRQAPGKGLEWVAIIWDDGS- * DQKYADSVKGRFTISRNDSICNTLFLQMDSLRPEDTGVYFCARDGGHGFCSSASCFGPDYWG

2mcp EVKLVESGGGLVQPGGSLRLSCATSGFTFSDFYME - - WVRQPPGKRLEWIAASRNKGNKYTTEYSASVKGRFIVSRDTSQSILYLQMNALRAEDTAIYYCARNYYGSTWYF.................DVWG

3fab - VQLEQSGPGLVRPSQTLSLTCTVSGTSFDDYYST- -WVRQPPGRGLEWIGYVFYHG- - -TSDTDTPLRSRVTMLVNTSKNQFSLRLSSVTAADTAVYYCARNLIAGCI.......................DVWG

ifab EVKLDETGGGLVQPGRPMKLSCVASGFTFSDYWMN- - WVRQSPEKGLEWVAQIRNKPYNYETYYSDSVKGRFTISRDDSKSSVYLQMNNLRVEDMGIYYCTGSYYGM..............................DYWG

If 19 QVQLKESGAELVAASSSVKMSCKASGYTFTSYGVN- - WVKQRPGQGLEWIGYINPGKG - - YLSYNEKFKGKTTLTVDRSSSTAYMQLRSLTSEDSAVYFCARSFYGGSDLAVYYF- -DSWG

5fab EVQLQQSGVELVRAGSSVKMSCKASGYTFTSNGIN- - WVKQRPGQGLEWIGYNNPGNG- - YIAYNEKFKGKTTLTVDKSSSTAYMQLRSLTSEDSAVYFCARSEYYGG8YKF..............DYWG

ldfb EVQLVESGGGLVQPGRSLRLSCAASGFTFNDYAMH WVRQAPGKGLEWVSGISWDSS - - SIGYADSVKGRFTISRDNAKNSLYLQMNSLRAEDMALYYCVKGRDYYDSGGYFTVAFDIWG

Figure 3.4: Average relative accessibility of Fy heavy chain structures plotted along sequence 
alignment. The numbering used here is described in Figure 3.10. Sequences are referenced by 
their Brookhaven entry code (For references see Table 2.2)
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Figure 3.5: Key showing how the density maps in Figures 3.C-3.8 are assembled. The density 
plot is symmetric about the diagonal axis. Fy sequences are sorted according to species and 
sub-group along the x and y axis. This gives a clear separation of inter- and intra-species 
identities. The relative identity is shown by a grey scale. Each point in the plot shows the 
identity between two sequences in the Fy sequence database. Plots for different residue sets are 
shown.

made up of the surface accessible residues. The sequences are plotted against 

each other and are represented as density maps in Figures 3.6-3.8. Figure 3.5 

shows how to interpret the maps.

The intensity of the colour indicates the homology between two sequences. The 

sequences within any of the groups are sorted according to sub-group classification 

as defined by (Kabat et a l , 1992), so that sequence families appear consecutively. 

The same plots are generated for the whole Fv framework sequences and for a set 

of human heavy chain germ-line sequences for comparison.

The identity plots shown in Figures 3.6-3.8 clearly demonstrate that the chain
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F igure 3.6: Homology plots of all the surface motifs extracted from sequence database, com
pared to whole sequence. The two plots shown are a) Light chain sequences surface residues 
only, and b) whole framework. For plots a, b, c and d the sub-group classification of (Kabat et 
al., 1992) is used, for plots e and /  the classification of (Tomlinson et al., 1992) is used. Where 
whole framework sequence is shown, the CDR’s and surface residues have been excluded from 
the identity calculation.
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Figure 3.7: Homology plots of all the surface motifs extracted from sequence database, com
pared to whole sequence. The two plots shown are c) Heavy chain sequences surface residues 
only, and d) whole framework. For plots a, b, c and d the sub-group classification of (Kabat et 
al., 1992) is used, for plots e and /  the classification of (Tomlinson et al., 1992) is used. Where 
whole framework sequence is shown, the CDR’s and surface residues have been excluded from 
the identity calculation.
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Figure 3.6: Homology plots of all the surface motifs extracted from sequence database, com
pared to whole sequence. The two plots shown axe a) Light chain sequences surface residues 
only, and b) whole framework. For plots a, 6, c and d the sub-group classification of (Kabat et 
al., 1992) is used, for plots e and /  the classification of (Tomlinson et al., 1992) is used. Where 
whole framework sequence is shown, the CDR’s and surface residues have been excluded from 
the identity calculation.
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Figure 3.7: Homology plots of all the surface motifs extracted from sequence database, com
pared to whole sequence. The two plots shown are c) Heavy chain sequences surface residues 
only, and d) whole framework. For plots a, b, c and d the sub-group classification of (Kabat et 
al., 1992) is used, for plots e and /  the classification of (Tomlinson et al., 1992) is used. Where 
whole framework sequence is shown, the CDR’s and surface residues have been excluded from 
the identity calculation.
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Figure 3.8: Homology plots of all the surface motifs extracted from sequence database, com
pared to whole sequence. The two plots shown are e) Heavy chain sequences surface residues 
only for germline sequences, and / )  whole framework for germline sequences. For plots a, 6, c 
and d the sub-group classification of (Kabat et al., 1992) is used, for plots e and /  the clas
sification of (Tomlinson et al., 1992) is used. Where whole framework sequence is shown, the 
CDR’s and surface residues have been excluded from the identity calculation.
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classification traditionally used to segregate families can be replaced by consid

ering the surface residues alone.

Figure 3.6 a and b reveal that sub-group k,4 and «6  murine sequences are very 

similar, and may belong to the same family.

In (Figure 3.7 c and d) it can be seen that that heavy chain sub-groups V H 2 and 

V H 5 are so similar as to warrant classification in the same group. Again, the 

human V H 4 and VH6  families have considerable identity and may justifiably be 

clustered together.

Between species the V H  classification on the basis of surface profile confirms 

that the mouse V H  1 and human VH2  families are closely related as are the 

mouse V H 2 and human V H  1 families. For the V H 3 family the classification is 

consistent between the two species.

In order to determine whether the surface patterns are conserved in the germline 

the same homology plots were produced for a set of human germline (Tomlinson 

et a l , 1992) and somatic mutant sequences (Figure 3.8 e and /) . The somatic 

mutants do not show any significant difference in the chain classification when 

compared to the germline, suggesting that the surface residue positions are con

served during maturation of the immune response.

Table 3.3 shows the variability of all the residue positions on the surface compared 

to the variability of framework residues. There is no significant difference in the 

conservation of surface residues in the framework, compared to core framework 

residues, although the surface residues in the VH sequences appear to be slightly 

more variable than any of the other surface residues.
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Framework Surface
L chains H chains L chains H chains

Number of 
sequences 841 627 539 836
Number of 
residues/sequence 68 70 20 26
Variability 18.70±13.70 14.68±8.82 17.56±8.90 24.36±16.44

T a b le  3.3: Average variability of residues in surface positions compared to framework. Frame
work is here defined as all residues in an Fy sequence which are not on the surface and not in 
any of the CDR’s. The variability is calculated according to Kabat (Kabat et al., 1992)

3.3.2 R esurfacing o f variable dom ains

The analysis in the above section suggests an interesting approach to the reshap

ing of Fv fragments. Solely by changing the surface, and thus leaving the CDR 

interacting residues of the antibody framework untouched, it should be possible 

to make a hybrid Fv fragment which has the core and CDR’s of a murine antibody 

and the surface of a human antibody (Figure 3.9).

The number of mutations required to make a human sequence from a particular 

sub-group sequence, using the suggested resurfacing protocol, are listed in table 

3.4. For mouse k ,2 light chains an average of only four mutations are required 

to make a human surface, whereas 7 to 8 mutations is required to transform a A 

chain surface into a human surface, showing that the selection of the initial murine 

sequence is a critical determinant of how many residues have to be changed in 

order to obtain a human Fv surface.

To test the resurfacing hypothesis three humanisation experiments were set up 

in collaboration with ImmunoGen Inc (Cambridge, Mass. USA): 1) Traditional 

CDR grafting (Verhoeyen et al., 1991) onto a human Fv framework of known 

structure; 2 ) Surface humanisation using the most similar human heavy and
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Muri ne  F y I H u m a n  Fy

*

Figure 3.9: Diagram showing the resurfacing approach to humanisation described in the text. 
It can be divided into two stages. In the first, the mouse framework (white) is retained and 
only the surface residues changed from mouse (dark grey circles) to the closest human pattern 
(light grey circles). This should remove the antigenicity of the mouse antibody. In the second 
stage surface residues within 5 Aof the CDRs axe replaced with the mouse equivalents in an 
attempt to retain antigen binding, and CDR conformation.
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Chain type Number of 
mutations

Standard
Deviation

Number of 
sequences

M IA 5.5 1.12 55
M IB 8.0 1.41 65
M2A 10.5 2.29 139
M 2B 10.0 2.00 103
M2C 9.0 1.41 28
M3A 7.0 1.41 85
MSB 7.0 1.41 31
M3C 7.0 0.82 33
M3D 8.5 2.29 56
M5A 10.0 1.41 40
til 5.5 1.12 27
a2 4.0 1.41 112
k3 5.0 1.41 36
k4 7.0 1.41 18
k 5 5.0 2.00 115
/c6 7.0 1.41 60
A 7.0 1.41 21

Table 3.4: Table showing the number of mutations required to change a Vl or Vg chain 
surface to that of the closest human counter part. Sub-groups of heavy chains are as defined 
by (Kabat et a l , 1992)
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light chains; 3) Surface humanisation using human heavy and light chains with 

most similar surface residues.

The antibody used for the test was a murine anti-NCAM (CD-56) antibody (anti- 

N901 here called N901 (Griffin et a l , 1983)) of class IgGl, k. N901 binds to 

natural killer cells (NK) and is highly specific to large granular lymphocytes 

(LGL). The antibody is being developed as an antibody-toxin conjugated for the 

treatment of various malignant tumors.

The alignment in Figure 3.10 shows the original N-901 antibody and the sequences 

used in each of the three approaches outlined here.

H um anisation  by C D R  grafting In traditional humanisation the CDR’s 

of the rodent antibody are grafted onto a framework of known structure and 

CDR-framework interactions are monitored by a homology modelling procedure. 

Models of N901 and the initial humanised construct were made. The model of the 

humanised antibody was compared to that of the original rodent antibody, and 

possible CDR interacting framework residues were changed back to the murine 

sequence (marked with ’*’ in alignment) in order to retain the three-dimensional 

shape of the CDR’s. For N901 antibody KOL was used, this resulted in a low 

identity score of only 59 % and 46 % in the heavy and light chains respectively. 

These low identities are likely responsible for the poor success rate of antibodies 

humanised in this way (Kettleborough et al, 1991).

M ost sim ilar chain hum anisation A total of 164 human heavy and 129 

human light chains were sampled from the sequence database. Each of the rodent 

chains, L and H, were then matched and the most identical human heavy and light



CHAPTER 3. A  N E W  METHOD OF HUMANISATION: RESURFACING  98

Light Chain Sequences

1 N9 01L
2 KOL
3 N9OIL/KOL
4 KV2F$HUMAN
5 N9 01L/KV2F
6 KV4B$HUMAN
7 N901L/KV4B

1 N901L
2 KOL
3 N9 01L/KOL
4 KV2F$HUMAN
5 N901L/KV2F
6 KV4BJHUMAN
7 N901L/KV4B

Heavy Chain Sequences

1 N901H
2 KOL
3 N9 01H/KOL
4 G36005
5 N901H/G36005
6 PL0123
7 N901H/PL0123

1 N901H
2 KOL
3 N9 01H/KOL
4 G36005
5 N901H/G36005
6 PL0123
7 N901H/PL0123

10 20 30 40 50 60
:DVLMTQTPLSLPVSLGDQASISC RSSQIIIHSDGNTY-LE WFLQKPGQSPKLLIY KVSNRFS 
:QSVLTQPPSASG-TPGQRVTISC SGTSSNIGS STVN WYQQLPGMAPKLLIY RDAMRPSI * I I I
:QVLMTQTPSSLPVTLGQQASISC RSSQIIIHSDGNTY-LE WFLQKPGQSPKLLIY KVSNRFS 
:DVVMTQSPLSLPVTLGQPASISC RSSQSLVYSDGNTY-LN WFQQRPGQSPRRLIY KVSNRDS

* ! I II
:DVLMTQSPLSLPVTLGQPASISC RSSQIIIHSDGNTY-LE WFQQRPGQSPRLLIY KVSNRFS 
sDIVMTQSPDSLAVSLGERATINC KSSQSVLYSSNNKNYLA WYQQKPGQPPKLLIY WASTRES

I I
:DVLMTQTPDSLPVSLGDRASISC RSSQIIIHSDGNTY-LE WFLQKPGQSPKLLIY KVSNRFS

70

GVPDRFSG
GVPDRFSG
GVPDRFSG
GVPDRFSG
GVPDRFSG
GVPDRFSG
GVPDRFSG

t 1*1 ]
80 90 100 110

:SGSGTDFTLMISRVEAEDLGVYYC FQGSH- -VPHT FGGGTKLEI 
:SKSGASASLAIGGLQSEDETDYYC AAWDVSLNAYV FGTGTKVTV

I I I
:SGSGTSFTLAISRVEAEDEGVYYC FQGSH--VPHT FGGGTKLEI 
:SGSGTDFTLKISRVEAEDVGVYYC MQGTH- -WSWT FGQGTKVEI

I I
•SGSGTDFTLKISRVEAEDVGVYYC FQGSH--VPHT FGGGTKVEI
:SGSGTDFTLTISSLQAEDVAVYYC QQYDT-- -IPT FGGGTKVEI
:SGSGTDFTLMISRVEAEDLGVYYC FQGSH--VPHT FGGGTKLEI 

[ L3 ]

[ L2 ]

{ 44) 
(104) 

( 87) 
( 1 0 1 ) 

( 71) 
(109)

10 20 30  4 0  50 6 0  70

:DVQLVESGGGLVQPGGSRKLSCAASGFTFS SFGMH- - WVRQAPEKGLEWVA YISSGSF--TIY HADTVKG
:EVQLVQSGGGWQPGRSLRLSCSSSGFIFS SYAMY-- WVRQAPGKGLEWVA IIWDDGS- -DQH YADSVKG

I I I I  I I I II I
:EVQLVESGGGWQPGRSLRLSCAASGFIFS SFGMH-- WVRQAPGKGLEWVA YISSDGF--TIY HADSVKG 
:QVQLVESGGGWQPGRSLRLSCAASGFTFS SYAMH- WVRQAPGKGLEWVA VISYDGS- NKY YADSVKG

I I I II I I I
:QVQLVESGGGWQPGRSLRLSCAASGFTFS SFGMH- WVRQAPGKGLEWVA YISSGSF--TIY YADSVKG
s EVQLVESGGGLVQPGGSLRLSCAASGFTFS SYWMS- - WVRQAPGKGLEWVA NIKQDGS--EKY YVDSVKG

I II I I:EVQLVESGGGLVQPGGSLRLSCAASGFTFS SFGMH- - WVRQAPGKGLEWVA YISSGSF--TIY HADSVKG
[ HI ] [ H2 ]

80 90 1 0 0  1 1 0  1 2 0  13 0

sRFTISRDNPKNTLFLQMTSLRSEDTAMYYCAR MRKGYAM- - -  DY WGQGTTVTVSS
:RFTISRNDSKNTLFLQMDSLRPEDTGVYFCAR DGGHGFCSSASCFGPDY WGQGTPVTVSS ( 78 )

I * *
sRFTISRDDPKNTLFLQMTSLRSEDTAMYYCAR MRKGYAM................DY WGQGTTVTVSS (1 0 7 )

:RFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR DRKDWGWALF DY WGQGTLVTVS- ( 89 )
I I I I I

: RFTI SRDNSKNTLYLQMNSLRAEDTAVYYCAR MRKGYAM................DY WGQGTLVTVSS (1 0 4 )

: RFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR - - - ...................................................................... ( 74 )
I I: RFTI SRDNAKNTLFLQMTSLRAEDTAMYYCAR MRKGYAM................DY WGQGTTVTVSS (1 1 1 )

[ H3 ]

F i g u r e  3 . 1 0 1 Alignments of sequences generated using the three methods of humanisation outlined in the 
text. Sequences are: 1) Original rodent N901. 2+3) KOL (M arquart et al., 1980) and reshaped N901 using 
KOL surface. 4+5) Most homologous sequences, L (KV2F) (Klobeck et al., 1985b) and H (G36005) (Schroeder 
and Wang, 1990), and reshaped N901 using these sequences. 6+7) Most homologous with respect to surface 
residues, L (KV4B) (Klobeck et al., 1985a) and H (PL0123) (Bird et al., 1988a), and reshaped N901 using these 
sequences. The numbering is the same as used in the antibody modelling program ABM (OML, 1992), which is 
based on structural conservation and not sequence homology as used by Padlan et al (K abat et al., 1992). The 
sequence changes which have to be introduced in order to reshape N901 with a  given sequence are marked with 
bars, back-mutations as determined from Fv models are marked with stars. The sequence homology of a  given 
sequences to N901 are shown in brackets after each sequence. Names of database sequences are cited using the 
OWL (Bleasby and Wouton, 1990) database entry names. The common names for the four sequences used are: 
K V2F/RPM I6410, K V 4B /JI, G36005/M74, PL0123/TD-Vr
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chain independently. For N901 these were G36005 (Schroeder and Wang, 1990) 

and KV2F (Klobeck et al., 1985b) respectively. The identities for the selected 

sequences are 76 % for the light chain and 68 % for the heavy chain. Surface 

residues, as indicated in Tables 3.1 & 3.2, were then changed in the murine 

sequences to match those of the human sequences. Subsequently a model was 

built of the resurfaced antibody and compared to the model of the original murine 

antibody. The framework-CDR interface was then inspected and any framework 

residue within 5 A of a CDR residue and whose conformation was affected by 

the changed surface was back mutation to the mouse sequence. In Figure 3.10 

sequences 4 and 5 indicate that residues 3 and 52 of the light chain influenced 

adjacent CDR residues and required restoration of the murine sequence. In the 

heavy chain no back mutations were necessary. The resurfaced sequences showed 

a final identity to the selected human sequences of 80 % and 89 % for the heavy 

and the light chains respectively. These identities include CDR residues.

M ost sim ilar surface hum anisation In this approach the human heavy and 

light chains are selected on the basis of their closest identity to the N901 sequences 

for the surface residues only. The selected sequences were PL0123 (Bird et al., 

1988a) and KV4B (Klobeck et al., 1985a) for heavy and light chains respectively. 

These sequence have 57 % and 62 % identity (not including CDR residues) with 

the murine heavy and light chain sequences respectively. After construction of 

the resurfaced model and comparison with the native murine model the only 

back mutation found to be necessary was at position 3 of the light chain (as in 

the similar chain method above. The identity of the final sequences (Figure 3.10 

sequence 7) are 85 % and 96 % for heavy and light chains respectively (including 

CDR residues).
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Figure 3.11: A) Binding to SW-2 cells as measured by indirect immunofluorescence. B) 
Binding to an SW-2 cell membrane preparation in an ELISA assay. These data are produced in 
collaboration with M. Roguska of ImmunoGen Inc., Cambridge, Mass, USA. A: binding curves 
for resurfaced antibody; •: binding curves for original murine antibody

3.4 Experim ental testing o f humanised N901

The two latter gene sequences have been synthesised and antibodies expressed. 

The two humanised antibodies have both been shown to retain binding to the 

original antigen. In a competitive binding assay, the resurfaced N901 was equal 

to murine N901 in its ability to inhibit the binding of fluorescein-labeled murine 

N901 to antigen positive SW-2 cells (FACS assay (Parks et al, 1979)). The 

apparent Kp  values for the resurfaced and grafted antibodies are 9.0a;10-11 M 

and l.OxlO-10. The K q for the murine antibody in the same assay is 1.6arlO-10  M 

(see Figure 3.11). The result of the binding studies makes it possible to conclude 

that the framework-CDR interactions in the resurfaced and grafted N901 preserve 

the native conformation of the CDRs.
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3.5 Sum m ary 8 z  conclusions

Resurfacing murine Fv’s is likely to minimise CDR-framework incompatibilities 

because a large number of murine surface residues are retained. The total number 

of differences between the surface residue patterns of the murine N901 V-region 

and the most identical human V-region was remarkably low so that only a small 

number of amino acid changes needed to be made to humanise the antibody. This 

strong conservation of surface accessible amino acid residues and their localisa

tion in the Fv’s of murine and human antibodies, together with the fact that the 

sidechains of surface accessible residues are in general not critical to the struc

tural integrity of the Fv’s, may hint at a biological significance for the selective 

conservation of surface patterns in antibodies.



C hapter 4

Towards antibody design

4.1 Drug - pocket interactions (ligand design)

In drug design a pharmacophore is sought which fits into a binding site (cleft, 

hole or cavity) of a protein. In traditional drug design an iterative process is used, 

where series of drug molecule analogs are synthesised and tested. The structural 

and physiological data obtained from these experiments is then correlated using 

Qantitative Structure Activity Relationship (QSAR) analysis. In this type of 

analysis the data is correlated using the Hansch equation (Hansch, 1969) or Free- 

Wilson method (Free and Wilson, 1964). The correlation can then be used to 

build a model of the receptor.

Molecular modelling methods provide an alternative method for the generation of 

complementary shapes. These methods combine various types of shape descrip

tion with database searches. Kuntz has developed an ingenious sphere generation 

algorithm (implemented by the author in the program INT see Appendix B.2). 

The algorithm is able to identify cavities on the surface of proteins and fill these

with spheres which have the approximate size of atoms. The “cast” is then used
102
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to search a database of small molecule structures which have been determined 

experimentally. This method has been used to identify possible inhibitor lead 

molecules which bind to the Human Immunodefeciency Virus protease (Desjarlais 

et al., 1988), although in this instance the docking orientation was not correctly 

predicted.

Another method, based purely on distance geometry uses a distance matrix to 

describe the shape of the receptor binding site. This method of identifying com

plementary shapes has been applied to dihydrofolate reductase (Crippen, 1981), 

and enzyme binding compounds were identified from a structural database.

Both of the above methods are based on geometry as the primary criterion for 

complementarity. However, geometric constraints alone frequently fail to identify 

the molecules from a structural database which are known to bind to a given pro

tein. Potential energy functions, free energy functions and hydrophobic potentials 

(Desjarlais, 1988) have been included in order to get sufficient discrimination be

tween true and false positives when screening a structural database in the design 

process.

The above drug design principles are the basis for the receptor design process 

described in this Chapter. However, the process here attempts to address the 

reverse question: Which receptor (antibody) will fit a specified ligand (antigen) 

molecule.
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4.2 A n approach to  d e  n o v o  antibody design

The aim of de novo antibody design is to model a complete antibody combining 

site knowing only the three dimensional structure of the antigen, and obtain an 

antibody which will bind to the antigen. The process is almost the opposite to 

that of the antibody modelling presented in Chapter 2 where the aim is to be 

able to suggest a three dimensional model corresponding to a given sequence. In 

the de novo design the goal is to suggest a sequence of amino acids which is able 

to bind to a pre-defined antigen, using three dimensional information.

Three different approaches to the design problem are outlined:

1 . Surface m atching Define shape parameters from known three dimen

sional structure of antigen and search database of molecular surfaces 

in order to find complementary shapes. Use the complementary shapes 

(fragments) to build up the antibody CDR loops. This can be tested in 

the laboratory as cross-reactivity.

2 . M inim al change In this method a known antibody-antigen complex 

structure is taken as the starting point for the design. A homologous 

antigen structure is then docked in the same orientation and the changes 

which have to be made in the antibody in order to retain binding are 

determined.

3. P ep tid e  ab initio This method is related to (2) above, but uses small 

peptide/hapten antigens. In this process no prior knowledge of paratope 

shape and orientation of antigen are assumed. Using peptides allows for 

the easy testing of a large range of homologous compounds, and thus 

mapping of the individual interactions.
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The third method was chosen as the most viable method for testing a given design 

algorithm. The choice of a small antigen limits the number of interactions and a 

much larger database of structures is available. Also, using peptides keeps open 

the possibility of using proteins at a later stage. Furthermore, the synthesis of 

many different analogs to test a designed antibody binding site is made easier.

4.3 T he design process

4.3.1 A n tib ody selection

The shape of a protein is determined by its backbone fold, and the functionality 

and physiological properties are mainly determined by the distribution of amino 

acid sidechains (Padlan, 1990). If this assumption is applied to complementarity 

of antibodies and antigens, it is deducible that any antigenic site ( of a particular 

size ) can be complemented by many different complementary shapes (if not all 

!). For the design process it is assumed that specificity of the antibody will not 

be dependent on particular combinations of CDR length. The basis or platform  

of the antibody could be a tight groove accommodating the binding of a small 

hapten or a small loop on a large multisubunit protein (see Figure 1.6). Here 

the p latfo rm  is defined as residues in the CDR’s which axe not structural, e.g. 

canonical residues.

One argument for the validity of the assumption that backbone conformation and 

CDR length is largely independent of the size of the antigen is that the immune 

system would be vulnerable if there is only one, or very few, complementary 

shapes to any unknown antigen shape. In order to explore the CDR length 

dependency on antigen size the CDR length of a number of sequences for which
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the antigen is known were plotted (see Figures 4.1-4.3). In these plots the molar 

weight is used as a descriptor of antigen shape, although this is a poor measure 

it is possible to see that any CDR length is allowed for small antigens. For larger 

antigens (Mr > 10000) it is not possible to deduce anything from these data 

as molar weight does not accurately describe the shape of the binding epitope. 

This is substantiated by crystal structure data that show the formation of similar 

grooves in binding sites by both long and short CDRs. In McPC603 (Rudikoff et 

at, 1981), which is an anti-phosphocholine antibody, the binding site is a tight 

hole and the length of the CDR H3 is eleven residues. In Gloop-2 (Jeffrey et at, 

1991), which binds to a nine residue peptide fragment of hen egg lysozyme, a 

groove exists in the center of the binding site although the length of CDR H3 is 

only four residues. This means that the length independency hypothesis can be 

applied at least to anti-hapten antibodies. Some antibodies have been reported 

recently (Rossmann, 1993) which require a special type of CDR in order to be 

able to bind to a concave (a hole) shaped epitope. These are CDRs which bind 

by insertion into a hole on the surface of human rhinovirus via a long CDR H3. 

In these unusual instances the independence hypothesis will clearly break down.

If the backbone conformations of the CDR’s of a typical antibody are to be 

conserved, there are approximately 25 residues out of 50 in an average antibody 

which can be changed without changing the shape of the CDR’s. There are 19 

(Pro excluded, and only 18 if Gly is also excluded) different residues which can 

be substituted at each of these positions. This gives 1925 possible combinations 

of sidechains, which is far more than the 107 — 109 antibodies which are thought 

to be necessary to account for any molecular shape (Perelson, 1989).

The design process derived from these considerations is shown in Figure 4.4
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Figure 4.1: CDR length as a function of antigen size, The molar weight is used as the shape 
descriptor. Plots are for CDR LI and CDR L2. Data was extracted from the sequence database 
of (Kabat et al., 1992)
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Figure 4.2:
CDR length as a function of antigen size, The molar weight is used as the shape 
descriptor. Plots are for CDR L3 and CDR HI. Data was extracted from the 
sequence database of (Kabat et al., 1992)



CHAPTER 4. TOWARDS 109

CDR H2

15

10

100 1000 1 0 0 0 0
Antigen molar weight

100000 le+06

20
CDR H3

15

10

oo

100 1000 10000
Antigen molar weight

100000 le+06

Figure 4.3:
CDR length as a function of antigen size, The molar weight is used as the shape descriptor. 
Plots are for CDR H2 and CDR H3. Data was extracted from the sequence database of (Kabat 
et a/., 1992)
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A. S e le c t  an t ibody  an d  ant igen

B. G e n e r a t e  g en e r ic  binding site (Ala site)

—
C. D o ck in g  o f  an t igen  into g en e r ic  site

D. R e c o n s tru c t  s idech ain s

E. S e le c t  con form atio ns

Figure 4.4: In the design process (outlined in detail in the text) an antibody of known 
structure is chosen by random. A generic (alanine) binding site is generated by replacing all 
non-structural residues by alanine with an extended VdW radius (R =  average length of all 20 
amino acids). A tentative docking is performed, and sidechains reconstructed. Using various 
objective scoring functions the sidechain conformations axe evaluated, and a final conformation 
is selected.
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4.3.2 G eneration  o f a generic binding site

111

From an arbitrarily chosen antibody, the sidechains that do not influence the 

backbone structure or are not buried by the CDR backbone and framework, are 

truncated to alanine residues. The resulting structure is termed “the alanine 

cushion” . Alanines are choosen for the generic binding side to allow for pseudo 

properties to be assigned to the sidechain. The C/3 atoms of the alanines are 

assigned an extended VdW radius of 4.2 A which allows for other sidechains to 

be constructed at each of the alanine positions. The extended radius of 4.2 A is 

the average sidechain length for the 20 most abundant amino acids.

4.3.3 A ntigen  docking

The next step is to dock the antigen in a reasonable initial orientation in the 

combining site in order to obtain the maximum interaction surface area and the 

maximum satisfaction of electrostatic interactions. Several different strategies 

have been tested in this work:

1 . Functionality  m apping of all the known functional groups in one or 

more analogs of the antigen is attempted. Then distance constraints for 

optimal liganding geometry are determined. All possible sidechain com

binations are then searched using this distance geometry information 

(Crippen, 1981).

2 . Functionality  m apping, m inim um  p e rtu rb a tio n  As (1) above but 

where only functional groups which are present in the binding site are 

searched. The search is biased by use of the statistical distribution of 

amino acids in particular positions, determined from aligned antibody 

sequences.
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3. M onte  Carlo docking where docking is attempted using the A utodock 

program on an empty (Ala) combining site (Goodsell and Olson, 1990).

4. R esidue-residue in teraction  preferences determined with the pro

gram SIRIUS (Singh and Thornton, 1990). This procedure is similar to 

(2)-

4.3.4 Sidechain construction

After the antigen has been docked in the binding site all residue positions which 

can potentially interact with the antigen are reconstructed. A distance cutoff 

(equal to the length of an extended Arg residue, which is the longest possible 

residue) is used to determine which residues are to be constructed, and which 

of the original residues are to be retained. The crude distance criteria is used 

first in order to reduce the time needed to compute the sidechain conformations. 

This gives the initial residue location to be constructed. When all sidechain 

conformations for these positions have been constructed a further reduction of 

residue positions is obtained by selecting only those residue positions for which 

a sidechain conformation exists which is capable of interacting with the antigen. 

If a position does not generate any conformations which can contact the antigen, 

the original sidechain is retained.

For the residue positions where sidechains pass the above criterion all possible 

conformations of the 19 amino acids (Pro excluded) are then constructed, where 

a simple energy function (Equation 4.1) eliminates unfavorable conformations:

^sidechain =  E ^ ) ' 2 “  +  E ^  +  E « » 'C0S(3w) (4 1 )



CHAPTER 4. TOWARDS ANTIBODY DESIGN 113

e is a constant describing the steepness of the Lennaxd-Jones potential; r  is the 

distance between two atoms; r* is the minimum energy distance between two 

atoms; g,-, q j  is the partial charge of atoms i  and j ;  k ,q is a constant describing the 

size of the torsional potential; uj is the angle of a given sidechain torsion.

The sidechains are constructed recursively in a torsional grid (10°-30°), using 

tree pruning to avoid combinatorial explosions. This sidechain reconstruction 

algorithm has been implemented by the author in the program MC (see doc

umentation in Appendix B.l). All sidechain conformations for each position 

are then ranked using the above energy function on the sidechain conformers 

and the antigen alone. By this procedure the sidechains that interact best with 

the antigen, that is have the lowest electrostatic interactions, are scored highest. 

Standard forcefield parameters as contained in the DISCOVER (TM Biosym Inc. 

San Diego, CA) molecular mechanics program are used. As a second measure of 

how well the antigen was buried in the surface of the antibody combining site, 

an accessibility calculation was carried out.

4.3.5 Selection  o f conform ations

Simple free energy equations have been used by (Novotny, 1991) to estimate the 

binding energy of antibody-antigen complexes. Novotny’s free energy of binding, 

A Gtot is a function of five terms:

AG tot = AG+ + A Gel ~  T A S CF ~ T A S Tr -  T A S Cr (4.2)

A G<f, is the free energy contribution from the hydrophobic effect and is prop or-
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tional to the excluded surface area upon antigen binding; AG e l  accounts for 

electrostatic interactions; T A S c f  describes the loss of sidechain conformational 

entropy upon antigen binding; T A S t r  is a term which describes the loss of overall 

rotational and translational entropy; T A S c r  is a correction term which accounts 

for dilute concentrations of proteins encountered in biological systems.

Unfortunately Equation 4.1 does not contain any terms which describe the exclu

sion of hydrophobic surface area from the antigen species. In order to be able to 

select and rank sidechain types and conformations the following ranking scheme 

was used. First all possible sidechains satisfying Equation 4.1 to within a given 

energetic cutoff were constructed. For all of these conformations the solvent ac

cessible surface area lost by the antigen was calculated. The lists of energies and 

accessibilities are then sorted independently. From the accessibility list the pos

sible residue types for a given position in the sequence are determined and lowest 

energy conformation of each sidechain type is extracted. The residue types and 

order obtained from the two lists is then combined to give a final residue rank 

for each sequence position.

4.4 T he design o f an opioid antibody (GlaM or)

In order to test the design process outlined above, Gloop-2  was chosen as the 

antibody scaffold and the enkephalins/ morphins as the antigen.
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Class Type of secondary structure Examples
Caffein Non-peptide Caffein, Theophyllin
Small neuro Turn Enkephalins
peptides
Cyclical peptides Turn Cyclosporins
Linear peptide Turn or none MSH, FSH, ACTH
hormones
AIB peptides Helix Alimethicin

Table 4.1: Possible antigen target groups selected on the basis of abundance of structural 
information and of prior knowledge of antigenicity.

4.4.1 A ntigen  selection

The selection of the antigen target was limited by the available structures in 

the Cambridge Crystallographic database (Kennard, 1991). Possible candidate 

molecular classes sampled from the database, are outlined in Table 4.1. It is 

important that there exists both crystallographic and NMR structures for the 

selected groups, to ensure that the conformation of the antigen is not flexible in 

solution. This avoids the complications introduced by induced fit. From this list 

three groups of antigens were considered.

The first selected group are the non-peptide antigens caffein and theophyllin 

(Sutor, 1958b; Sutor, 1958a). The second selected group contains the enkephalin 

neuropeptides (opioids) (Aubry et al., 1988), which consist of 5 to 7 residues, 

and the non-peptide opioid morphine (Bye, 1976). The third selected group are 

the helical peptides containing the sterically constrained amino acid a-amino- 

isobutyric-acid. Structures of many peptides of this type are known (Karle et al., 

1990; Karle et a l , 1991).

The rationale behind these selections is to provide a spectrum of antigen types, 

namely, a small non-peptide hapten, a small peptide hapten and a large peptide
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antigen. The structures and the structural information for each of these are 

outlined in Figure 4.5.

To begin the process, the opioids, where most structural information is available 

were chosen as the primary target for the first design project.

The reason for choosing the enkephalins is that there exists a wide range of struc

tural information on a large number of opiates and many QSAR (Quantitative 

Structure Activity Relationship) analyses are available. Antibodies which have a 

cross reactivity between different opiates have also been produced (Kussie et a/., 

1991).

The opiate receptor binding site has been extensively mapped by many different 

methods (see (Casy and Robert, 1986) for a review). The main features of the 

binding site are outlined in Figure 4.6. The opiate structures of Leu-Enkephaline, 

Morphine, Naloxone, Methadone and Nalorphine were overlapped in order to be 

able to establish distance constraints for strategies 1 and 2 outlined in Section 

4.2.

All the opiate structures have been determined by x-ray crystallography of crys

tals from aqueous solution, and refined to a resolution of < 0.5 A. All the 

structures obtained from the crystallographic database were minimised by the 

author, using the DISCOVER (TM Biosym Technologies) forcefield, without sol

vent molecules present.

The inter-atomic distances between the seven points defined in Figure 4.6 were 

calculated for each of the structures. The average distances were then used to 

search the binding site of the target antibody. During the search, an upper devia-
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Caffeine

Morphine

A)

Leu Enkephaline 

B)

Aib peptide 

C)

F igure  4.5: MC (Appendix B.l) plots of the three groups of compounds chosen for the design 
of an antibody.A) Caffein (Sutor, 1958b) B) Morphine (Bye, 1976) and /?-turn conformation of 
Leu-enkephalin (Aubry et al., 1988). C) BOC-Trp-Ile-Ala-Aib-Ile-Val-Leu-Aib-Pro-OMe helical 
peptide (Karle et al., 1991).
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Anionic site
S e c o n d a r y  phenol ic  site

HO

Cavity

Primary hydrophob ic  site S e c o n d a r y  hydrophob ic  site

HO

Phenol ic  site

S e c o n d a r y  hydrophob ic  site

Figure 4.6: Schematic representation of the opioid receptor binding site (Casy and Robert, 
1986). The data are obtained from QSAR analysis of the binding properties of a large number of 
antagonists and agonists. This mapping is the basis for the calculation of distance constraints. 
Numbered boxes indicates the position of liganding groups in the receptor.
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Loop Canonical Class Sequence
LI 2 { R [A] S Q E [I] S G Y [L] S }
L2 1 [I] Y { A A S T L D S } [G]
L3 1 { L [Q] Y L S Y [P] L T }
HI 1 { T F G [I] T }
H2 none { [E] [I] [F] [P] [G] [N] [S] [K] [T] [Y] }
H3 none { [E] [I] [R] [Y] }

Table 4.2: Canonical classification of Gloop-2 . Canonical residues axe in [ ] brackets. The 
loop region is marked with { } brackets. There are 26 amino acid positions which can be 
changed in order to accommodate the complementarity, and still retain the original backbone 
conformation.

tion corresponding to the diameter of a non-hydrogen atom (2-3 A) was specified, 

for each of the search distances. This upper deviation is allowed since the con

straints obtained from a complementary shape must be larger than constraints 

obtained from the ligands.

4.4.2 A n tib od y  selection

The antibody platform chosen was the anti-lysozyme antibody Gloop-2 (Darsley 

and Rees, 1985). The CDR sequences are outlined in Table 4.2.

In the case of Gloop-2 there are three glycines in the CDRs (LI,HI and H2), but 

none of these are in positions where a possible sidechain would be able to interact 

with the antigen. Although the glycines are not classified as canonical residues 

they should probably be excluded from the set of modifiable sidechains because 

of their possible structural role.
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4 .4 .3  S earch  m eth o d s
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The antibody combining site was searched in three different ways in order to find 

an initial orientation of the ligand.

First, all the 26 ( see Table 4.2 ) residues are removed and replaced by alanine. 

A distance map of the Cp positions is generated. This distance matrix is then 

searched against the distance constraints determined for the antigen. The con

straints are sorted after length, and the longest are searched first. If a hit is 

found within the allowed variation of the distance constraint, the next constraint 

is searched for, and so on. If all the constraints are satisfied a hit is found. The 

hits are ranked according to deviation from mean constraints.

In the second search all the residue types in the 26 positions which can paticipate 

in specific ligand interactions are retained. For example, Asp and Glu sidechains 

can participate in charge-charge interactions which are often important for ligand- 

receptor interactions. These residue positions are then searched with the distance 

searching procedure described above. Identifying an initial orientation by this 

procedure reduces the number of residues that have to be changed. This method 

is attractive because it determines the maximum number of ligand requirements 

that can be satisfied by the original antibody sidechains (minimum perturbation).

The third method for orientation achieves direct docking using simulated an

nealing (Goodsell and Olson, 1990). The principle of the docking is simple, and 

consists of “throwing” the ligand, inside a pre-calculated potential grid (field), 

into the combining site a large number of times. An average orientation is derived 

from the lowest energy conformations. This method has been used successfully for 

the docking of phosphocholine into the combining site of the McPC-603 antibody
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(Goodsell and Olson, 1990). The potential grid used in Goodsell’s AUTODOCK 

program is calculated using parameters from the AMBER (Weiner et al., 1984) 

forcefield.

The last method of orientation, mentioned in Section 4.3.3, was not applied to 

this problem. The procedure is a knowledge based method which uses the fact 

that there appears to be a preference for particular residue-residue pairing when 

proteins interact with each other (Singh and Thornton, 1990). This preference 

has been exploited previously to design antagonists and agonists (Singh et al., 

1991). In the present case the orientation would have to rely solely upon the 

Leu-enkephaline structure since this is the only peptide structure in the set of 

analogs. Since there are several different crystal structures of Leu-enkephaline 

available which all have different conformations (Aubry et al., 1988), this method 

of initial orientation was considered unsuitable for the design of this antibody.

Distance geometry searching resulted in many (>10000) possible conformations. 

It was not possible to evaluate all these conformations properly within a rea

sonable time frame. Sorting the geometric hits using a simple RMS deviation 

between the search constraints and the geometric hit resulted in 3 main clusters 

of orientations, two large on the outside of the combining site, and one smaller in 

the center pocket of the binding site. The center pocket was uniquely identified 

by the AUTODOCK program. This orientation in the center pocket was there

fore selected as the initial orientation (Figure 4.7). This orientation is similar to 

the orientation of flourescein in the 4-4-20 antibody (Herron et al., 1989).

After the initial orientation has been obtained all the original residues of the set 

of 26 which are not in contact (d > 8.0 A) with the antigen are restored. All 

residues ( 13 positions ) which are in contact with or overlapping the antigen are
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reconstructed, using the MC sidechain replacement program described previously. 

The sidechain conformations are selected using the scoring function in Equation 

4.3:

Si — Ai'Wfyurried -f" Ei'Wenergy (4.3)

Where A{ is the surface area of the antigen burned by sidechain conformation 

i; Ei is the energy of the conformation according to Equation 4.1; wWrted and 

wenergy represent a relative weighting of the two terms. This results in the ranked 

list of residues to be constructed as listed in Table 4.3.

From Table 4.3 the lowest energy conformations of the two most probable sidechain 

types, at each sequence position, are extracted (Table 4.4). From Table 4.4 the 

ten lowest energy residue combinations for all the residues in the construct are 

selected (Table 4.5).

4.5 The final GlaMor antibody m odel

The final ten best models were subjected to energy minimisation (100 cycles 

of steepest descents followed by 300 cycles of conjugate gradients) in order to 

validate the conformations. Little change in sidechain conformation was observed 

(Figure 4.8). Table 4.6 summarises the results of the minimisation and the ten 

best models.

The RMS deviation of the sidechains of the ten best constructs follow the same 

trend. The largest RMS deviation (0.4 A) was observed for residue 203 (His).
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Table 4.3: Residue positions which can possibly interact with the antigen in its initial orien
tation after sidechain reconstruction. The residue numbers used axe the same as used in A 6M 
(OML, 1992). The sidechain positions are ranked after number of possible interacting residue 
types. This order roughly corresponds to distance ordering.
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Residue Type Energy Type Energy
32 F 2663.54 W 3813.32
89 Y 1443.21 W 1386.82
91 I 2776.02 D 1756.31
94 F 1099.97 Y 1209.06
96 D 940.79 N 940.31
136 W 1949.30 K 1864.97
139 L 2607.09 F 1219.11
154 H 1279.43 Y 1356.96
156 F 946.01 Y 1106.48
161 Y 1592.40 W 1354.70
203 I 3523.71 H 2718.69
204 D 1188.85 N 1208.85
205 F 1248.81 Y 1249.98

Table 4.4: The two lowest energy residue types for each of the 13 reconstructed residue 
positions in the GlaMor Fy The total energy of the sidechain is Kcal. The enegies axe relative 
within the model.

Residue position 32 89 91 94 96 136 139 154 156 161 203 204 205
Number

1 F W D F N K F H F W H D F
2 F W D F D K F H F W H D F
3 F W D F N K F H F W H D Y
4 F W D F D K F H F W H D Y
5 F W D F N K F H F W H N F
6 F W D F D K F H F W H N F
7 F w D F N K F H F W H N Y
8 F w D F D K F H F W H N Y
9 F Y D F N K F H F W H D F
10 F Y D F D K F H F W H D F

Original Y L Y Y L F T E F K E I R

Table 4.5: The ten lowest energy conformations of the complete construct. Residues which 
differ from the best (lowest energy) conformation are outlined in bold type. The original 
residues are also shown.
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A  C T y

^ - m Q L r ^

Figure 4.7: Pictures showing the initial (Ala) and final binding site of the GlaMor antibody 
(Best construct). A). Ala site. B). After sidechain reconstruction, side view. C). After sidechain 
reconstruction, front view.
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Construct 1 2 3 4 5 6 7 8 9 10
Residue
32 0.254 0.275 0.277 0.271 0.279 0.278 0.274 0.274 0.275 0.280
89 0.160 0.155 0.152 0.153 0.162 0.159 0.160 0.157 0.192 0.181
91 0.287 0.305 0.293 0.305 0.309 0.324 0.309 0.325 0.220 0.301
94 0.357 0.315 0.356 0.312 0.361 0.312 0.358 0.309 0.442 0.423
96 0.215 0.152 0.193 0.152 0.195 0.136 0.194 0.136 0.363 0.265
136 0.274 0.287 0.295 0.294 0.294 0.288 0.297 0.293 0.288 0.313
139 0.194 0.268 0.228 0.266 0.206 0.237 0.210 0.242 0.191 0.207
154 0.129 0.140 0.141 0.144 0.134 0.138 0.140 0.143 0.110 0.138
156 0.128 0.106 0.111 0.105 0.110 0.105 0.109 0.105 0.102 0.110
161 0.116 0.112 0.113 0.107 0.109 0.108 0.106 0.105 0.107 0.111
203 0.416 0.417 0.391 0.400 0.447 0.447 0.431 0.429 0.369 0.445
204 0.275 0.295 0.294 0.317 0.342 0.339 0.365 0.361 0.353 0.345
205 0.173 0.204 0.242 0.254 0.233 0.214 0.279 0.260 0.149 0.226
Average 0.229 0.265 0.237 0.237 0.245 0.237 0.249 0.241 0.243 0.257
Etot+ag 1804.6 1873.4 1850.7 1863.1 1848.5 1861.6 1837.6 1851.1 1807.5 1852.8
Etot-ag 1809.5 1878.1 1846.8 1867.2 1857.5 1873.4 1848.4 1863.7 1819.0 1858.3
Aver, deriv. 0.08 0.511 0.488 0.543 0.513 0.503 0.500 0.517 0.474 0.472
Max. deriv. -13.400 -9.556 9.652 8.862 14.278 -16.449 -13.065 -16.662 -8.623 10.902

Table 4.6: Summary Table of results from minimisation of ten best constructs. RMS deviation 
refers to difference between minimised structure with and without antigen. In minimisations 
where antigen was present the antigen molecule was fixed. All structures were minimised with 
the same protocol (see text). The total energy of each of the constructs is approximately the 
same, as is the numerically largest derivative. Aver.deriv .  is average largest derivative of any 
atom in the construct after minimisation; M ax.der iv .  is the largest derivative on any of the 
atoms after the minimisation.

Before the energy minimisation one hydrogen bond between the antibody and the 

antigen was observed (His 203 ND1 —► Morphine 0). After the minimisation two 

other hydrogen bonds were observed (Asp 204 OD1 —> Morphine OH1, and His 

203 NE1 —> Morphine OH1). The largest derivatives indicate that the minimi

sation has not converged. The best conformation was therefore subjected to an 

additional 3000 steps of conjugate gradients minimisation which only changed the 

RMS deviation of residue Phe 32 by 0.2 A. The largest derivative was also found 

on an atom of the Phe 32 sidechain. The largest derivative of the Phe sidechain 

after the 3000 steps of minimisation was 0.03 Kcal and was not decreased by a 

further 2000 steps of minimisation. The average derivative after the minimisation 

performed in Table 4.6 is less than 0.6 Kcal.

In Figure 4.9 all the opioid ligands extracted from the crystallographic database 

have been overlapped in the GlaMor combining site. All the ligands have the 

same orientation as the docked morphine. None of the non-peptide ligands clash
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with the backbone of the model, but Leu-enkephaline is overlapping sidechains 

with the terminal residues of the peptide.

4.6 Experim ental test o f the design

In order to determine how the design process performs two different experimental 

systems have been devised and implemented in this laboratory (Elliott, 1992). 

First, the ten Fv constructs described are now being synthesised as single chain Fv 

constructs. Second, restricted mutagenesis experiment has been set up, in which 

all the residue positions which are within range of the morphine molecule (the ten 

closest positions identified) are randomly changed and the resulting antibodies 

screened, using a phage display library (Clackson et aZ., 1991). These two systems 

will allow for the revison of the design process by providing binding data for a 

set of mutants.
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Trp 161

Morphine

Figure 4.8: The GlaMor binding site before and after energy minimisation, the largest RMS 
deviation is observed on the sidechain of residue 203 (0.4 A)
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F igure  4.9: Overlap of opioid receptor ligands extracted from the crystallographic database. 
White: Leu-enkephaline, Blue: Morphine, Red: Methadone, Yellow: Nalorphine, Pink: Nalox
one. None of the ligands overlap the Fy backbone, some clashes are observed between sidechains 
of Leu-enkephaline, and the constructed sidechains of GlaMor.
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C onclusions &: D iscussion

5.1 A ntibody m odelling - A  retrospective view

The rising number of antibody Fv crystal structures and the use of new ab ini

tio methods enables the prediction of Fv structures for which only the primary 

amino acid sequence is known. Using a combined algorithm, which generates Fv 

frameworks from a crystallographic database, and predicts CDR conformations 

by a number of methods, models can be generated which are within the accuracy 

of medium resolution x-ray crystallography.

From the data in Chapter 2 and data presented in Appendix A.3, several conclu

sions can be drawn:

1). In the original CAMAL (Martin et al., 1989) algorithm which was developed 

on the basis of a single antibody structure (Gloop-2), all the CDR’s were built 

using the combined algorithm. This sometimes results in higher RMS deviation 

values for CDRs where canonical families exist. In A6M, loops for which canonical 

families exist are built using the most^homologous ( canonical ) loop from a
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database of antibody crystal structures. In Gloop-2 CDR H3 is a four residue 

loop. As shown by the CDR length distributions (Figure 2.3), this is an unusually 

short CDR length. As seen from the data in Chapter 2 and Appendix A.3 the 

accuracy of the prediction is related to the length of the loop. The shorter the 

loop the better the prediction.

2). For longer CDR H3 loops the RMS deviation varies considerably and for 

loops longer than 12 residues most accuracy is lost ! The fact that Gloop-2 CDR 

loops are shorter than the average for most of the six CDR’s also explains why the 

assumption that loops can be modeled independently into an empty combining 

site is successful. In Gloop-2 there are very few CDR-CDR interactions, and 

the above assumption that loops can be modelled independently is valid. For 

models which have longer CDR H2 and H3 loops the independence assumption is 

invalid, as shown by the model of lhil (Section 2.8 and Appendix A.3) were CDR 

H3 and CDR H2 are intertwined in the final model if the CDRs are modelled 

independently.

3). The emphasis of the heavy chain selection on CDR H3 (see Section 2.8) 

results in a deterioration of the RMS deviations for CDR’s HI and H2. There 

is therefore scope for making the loop overlap independent from the selection 

of a particular framework. This could be achieved defining a set of fixed loop 

classes in the standard framework orientation used in A6M, defined by cartesian 

fix-points for the centres of mass and takeoff positions of loops. This is currently 

being investigated by the author.

4). For long CDR H3 loops the confidence in the model loop is low. The poor 

correlation between models and crystal structures indicates either that confor

mational space was not saturated during the conformational search, or that the
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initial orientation of the loop in the Fv model was incorrect or that multiple, 

low energy conformations of long loops are possible. The second of the three 

possibilities is substantiated by the variation of takeoff angles described above, 

and by the fact that when a crystal structure is modelled, the original antibody 

loops are rarely selected from the structural database. Because of the many 

selection and ranking criteria used in CAMAL there is a chance of losing con

formations during each of the many processing steps. Therefore new algorithms 

which are capable of saturating conformational space in a rational way for the 

complete combining site simultaneously are required. Methods such as minimi

sation (Moult and James, 1986), Monte Carlo (Garel et al., 1991; Covell, 1992) 

or Genetic Algorithms (Legrand and Merz, 1992) are promising for the future. 

Furthermore, distance geometric methods used for solving NMR structures can 

be used to saturate conformational space for a complete combining site, using 

database constraints (Havel and Snow, 1991).

5). If the main chain is predicted correctly, the sidechain conformations can be 

predicted with high confidence as shown for the model of 3D6 in Chapter 2. In 

order to predict the sidechain conformations correctly terms which describe the 

accessibility of aromatic residue types in solvent conditions need to be included, 

as used in the MC program (see Section 2.5 and Appendix B.l). The various 

annealing parameters for this algorithm have to be optimised in order to reduce 

the run time for the sidechain generation, which currently is the limiting factor 

in using this method.

The core of the antibody appears to be well conserved structurally, which is shown 

by the RMS deviation values in Table 2.9 and Appendix A.3. An accurate pre

diction of the framework is important for the humanisation procedure presented 

in Section 3.3.
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5.2 A ntibody resurfacing

It was shown that there are distinct differences between human and murine Fv 

surfaces, and that this information can successfully be used for the resurfacing 

of antibodies. In the case of the N-901 antibody the original functionality of the 

antibody is retained, but the surface has been changed to that of a human anti

body. It remains for the clinical trials to show that a reduction of immunogenicity 

results from resurfacing the Fv fragment. The homology data also indicate that 

the current method of chain classification of immunoglobulins may have to be re

vised, merging some of the classes defined by (Kabat et a l , 1992). The homology 

data also suggest that the surfaces of Fv sequences are conserved during the affin

ity maturation (somatic mutation) of antibodies, since no difference in surface 

residues were observed between a set of germline sequences and somatic mutant 

sequences. The conservation of the immunoglobulin surface may be important 

for the recognition of self, preventing the generation of auto-antibodies.

5.3 A ntibody design

A method for the ab-initio design of antibodies has been developed, yielding a the

oretical antibody which utilises sidechain interactions observed in crystal struc

tures of antibody complexes (bifunctional residue types). Bifunctional residue 

types are here defined as residues which have two physical properties, eg. Tyr 

which is both hydrophobic and has an active -OH group. These residue types 

are mainly selected because the average distance between antibody and antigen is 

approximately the same as the sidechain length (4.2-4.3 A) of the selected residue 

types (His, Phe, Trp, Tyr, Gin, Asn).
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Figure 5.1: Dependence of antibody (Ab) sidechain sidechain interaction on antigen (Ag) 
size. A) If the antigen is small the interacting sidechains are distributed radially out from 
the antigen. B) For a large antigen with less curved surface the interacting sidechains are 
distributed on a planer surface and there is a possibility for sidechain-sidechain interactions.

Energy minimisation of the final ten best constructs of the (GlaMor) Fv model 

showed that the molecular structure is stable and that no backbone movement 

is observed. Only small perturbations in sidechain position are seen when the 

antigen is removed. Surprisingly very few sidechain-sidechain clashes are observed 

before minimisation. This is probably due to the fact that the antigen is small, 

that all the sidechain positions are distributed radially from the center of the 

antigen, and that the sidechain conformations are selected on the basis of antigen 

burial. Sidechain-sidechain interactions will probably occur as the size of the 

antigen increases and the antigen-antibody interaction surface area increases and 

becomes less curved (see Figure 5.1).

The ten Fv constructs described are now being synthesised as single chain Fv 

constructs (Elliott, 1992). In parallel with this experiment a restricted mutage

nesis experiment has been set up, in which all the residue positions which are 

within range of the morphine molecule are randomly changed and the resulting 

antibodies screened, using a phage display library.



CHAPTER 5. CONCLUSIONS k  DISCUSSION 135

The main weakness of the design algorithm is the assumption that CDR length 

is independent of the antigen size. Figures 4.1 to 4.3 show plots of CDR length 

as a function of antigen molar weight, and indicate that all CDR length are 

allowed for small antigens but long CDR’s are not allowed for large antigens, if 

good interactions are required. The molar weight is however likely to be a poor 

indicator of the actual shape of the antigenic epitope which could be an exposed 

loop, a fiat surface or an exposed helix on a large protein. Other structural shape 

descriptors have to be used in this correlation in order to get a better assessment 

of the CDR-length/antigen independence hypothesis.

5.3.1 M odel quality

The quality of a given antibody (protein) model required depends on the purpose 

of the model. If the aim of the model is to reshape or resurface an Fv fragment 

only low resolution data (2-3 A) is required since only the relative positioning 

of CDR’s and the surface residues is required. The identification of residues 

which can possibly interact with the CDR’s can be obtained from low resolution 

data. For structural studies, such as protein-protein interactions or Fv design etc, 

where exact information about sidechain positions is required more accurate and 

confident models are needed. In the last case structural data of a resolution less 

than 2 A is required. Thus, a design should begin with an x-ray structure as the 

starting scaffold.
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A .l  Sequence database entry

This is an example of a sequnce database entry containing assigned and unas

signed descriptors. The format is NBRF (Bleasby, 1990), and descriptors are 

added as comments.

>P1;HHC106
Heavy chains subgroup I V region -• Human
- Q I Q L V Q S G G E V K K P G A S V R V S C K A S G Y T F
H S Y G I T - - W V R Q A P G Q G L E W M G w I S G - - Y N
G N T N Y A Q K L Q D R V T M T T D T S T N T V Y M E V R S
L R S D D T A V Y Y C A R D D C S G D N C Y M S
------------ A Y W G Q G T L V T V S S - - -

accession:
alternate name:
antibody-specificity:
canon: 1 1 0
cdrlength: 5 10 13
contains:
domain: VH
gene name:
host:
includes:
initiation codon:
intron:
keywords:
map position:
opttemp:
pair_code:
pir-name:
protein:
region:
segment number: 
species: Human
superfamily: Immunoglobulin
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A .2 Takeoff angles for C D R ’s o f 17 antibody  
Fy structures

The next six tables contain the tables of takeoff angles of 17 Fv crystal structures.

The angles are calculated as the angle between the planes defined by N-terminus 

and C-terminus and the center of geometry of the backbone of a given loop.

The structures have previously been fitted using the multiple fitting program 

MULFIT which is described in Section 2.
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A .3 M odelling o f 16 Fy structures

This appendix contains the results from the comparison of 16 crystal structures 

to the model generated using A 6M (OML, 1992) v 1.0.
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| Struct Loop CDR
Leri.

Run Times Global RMS Local RMS
Csearch | Eureka.................. I.................... Ca |Backbone Backbone | All

I glb2 LI 11 1CANONICAL 1.103
................
1.161 0.801 2.898 |

L2 7 CANONICAL 0.631 | 0.647 0.228 | 0.654 |
|H - lbaf L3 9 CANONICAL 1.003 | 1.031 0.297 | 1.104 j
j L - 3671 HI 5 CANONICAL 1.884 | 1.785 0.204 | 1.664 |

H2 10 CANONICAL 1.543 | 1.609 0.624 | 2.997 j
H3 4 3.6 | 7.2 1.172 | 1.273 0.652 3.478 |
Total 3.6 | 7.2

..................I....................
1.222

.......
1.251

................
0.467 2.132 |

| 2hf 1 LI 10 1CANONICAL 1.140 1.150 0.479 0.812 |
L2 7 CANONICAL 0.709 I 0.712 0.320 | 1.237 |

|H - If19 L3 8 272.7 | 516.1 2.462 j 2.524 0.880 | 2.341 |
|L - lbaf HI 5 CANONICAL 1.176 | 1.261 0.696 | 2.301 |

H2 10 CANONICAL 2.202 | 2.155 0.624 j 2.455 j
H3 7 1.1 | 10.3.................. j .................... 2.315 | 2.310 1.195 2.349 |
Total 273.8 | 526.4 1.667

................
1.685 0.699 1.915 |

| 2mcp LI 17 ........1........CANONICAL 0.720
.......
0.784 0.546 1.303 |

L2 7 CANONICAL 0.613 j 0.538 0.436 | 0.955 |
|H - Imam L3 9 CANONICAL 0.718 | 0.739 0.242 | 1.052 j
|L - lhil HI 5 CANONICAL 0.968 j 1.004 0.275 j 1.492 |

H2 12 CANONICAL 2.022 j 2.014 0.787 | 1.623 |
H3 11 258.8 | 824.6........j........ 2.238 | 2.306 0.544 2.520 |
Total 258.8 | 824.6 1.213

.......
| 1.231 0.471 1.490 |

|4fab LI 16 39.8 | 35.3 2.317
.......
2.470 1.694 2.923 |

L2 7 CANONICAL 0.768 | 0.792 0.279 | 1.144 |
j H - Imam L3 9 CANONICAL 1.231 | 1.255 0.625 | 1.900 |
|L - bl3i HI 5 CANONICAL 0.672 | 0.721 0.378 | 1.867 j

H2 12 CANONICAL 1.922 j 2.028 0.787 j 3.465 |
H3 7 1.5 | 7.6........j........ 2.140 j 2.132............. 0.519 2.889 |

Total 40.3 | 42.9 1.508 1.566............. 0.714 2.364 |
| 2fbj LI 10

........ ........1
CANONICAL 1.681 1.733 0.615 1.052 |

L2 7 CANONICAL 0.893 | 0.867 0.320 | 2.812 |
|H - lhil L3 9 238.7 | 735.3 1.581 | 1.724 0.585 | 2.414 |
|L - 2hf1 HI 5 CANONICAL 0.502 | 0.515 0.142 | 1.520 |

H2 10 CANONICAL 0.767 | 0.779 0.455 | 3.076 |
H3 9 986.7 | 3888.3 4.017 | 4.171 1.839 4.437 |
Total 1225.4 | 4623.6............... I................. 1.574

.............
1.632 0.659 2.551 |

|3671 LI 11 CANONICAL 0.848
.............
0.788 0.631 | 2.429 |

L2 7 CANONICAL 0.293 | 0.304 0.252 | 1.031 |
|H - lhil L3 9 CANONICAL 1.160 I 1.131 0.930 | 2.047 j
|L - Imam HI 5 CANONICAL 1.358 | 1.341 0.434 | 2.002 j

H2 10 88.1 | 583.8 4.198 | 4.099 1.086 | 3.398 |
H3 12 2072.8 | 1136.7 4.363 | 4.192 2.794 | 5.078 |
Total 2160.9 | 1720.6............... I................. 2.036

..............
1.752 1.021 2.664 |

|3c*_6 LI 10 1CANONICAL 0.871 0.834 0.508 3.256 |
L2 7 CANONICAL 0.738 | 0.750 0.228 | 1.166 |

jH - 8fab L3 7 0.5 | 1.2 1.894 | 1.878 0.994 | 3.311 |
|L - lrei HI 5 CANONICAL 0.736 | 0.736 0.206 | 0.935 |

H2 10 CANONICAL 1.180 | 1.202 0.455 | 2.980 |
H3 17 452.0 | 357.0 5.420 | 6.163 3.256 5.047 j

Total 452.5 | 358.2............... I................. 1.807
.............
1.927 0.941 2.782 |

| 3hfm LI 11 1CANONICAL 0.801 1| 0.775 0.508 2.880 |
L2 7 CANONICAL 0.978 | 1.021 0.437 | 2.064 |

|H - lbaf L3 9 CANONICAL 0.426 j 0.394 0.234 | 1.463 |
|L - 3671 HI 5 CANONICAL 2.037 | 2.012 0.937 | 2.098 |

H2 9 CANONICAL 0.914 | 0.942 0.561 | 1.406 |
H3 5 0.7 | 5.5.................. j .................... 1.501 | 1.683.............. 0.845 2.542 |

Total 0.7 | 5.5 1.110 | 1.138i 0.587 2.075 |
l I I I I I I I I I

Table A.l:
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| Struct Loop CDR
Len.

Run Times
.................

Global RMS .......Local RMS
Csearch | Eureka Ca |Backbone Backbone | All

j Imam LI 11
........ ........1CANONICAL 1.251

.......
1.302 0.742 2.812

L2 7 CANONICAL 1.361 | 1.362 0.252 | 0.966
|H - 2mcp L3 9 CANONICAL 1.270 | 1.289 0.260 | 0.704
j L - If19 HI 5 CANONICAL 1.849 | 1.845 0.275 | 1.218

H2 12 76.1 | 189.5 2.852 | 2.976 1.566 j 4.016
H3 8 7.3 | 61.8........j........ 2.448 | 2.524j........ 1.322 2.499

Total 83.4 | 251.3 1.839 1.883 0.736 2.035
| bl3i LI 16 31.1 | 71.5 2.585 2.667 1.478 3.066

L2 7 CANONICAL 0.749 j 0.763 0.279 | 1.144
|H - lhil L3 9 CANONICAL 0.888 | 0.877 0.416 | 1.081
j L - 4f ab HI 5 CANONICAL 1.335 | 1.310 0.266 | 1.664

H2 10 CANONICAL 1.185 j 1.202 0.284 | 2.695
H3 10 144.9 | 400.6........j........ 2.894 | 2.970 1.997 | 3.201
Total 176.0 | 472.1 1.606

................
1.632 0.787 2.142

|2fb4 LI 13
..................  ........1CANONICAL 0.755 0.780 0.235 2.088

L2 7 CANONICAL 1.172 | 1.247 0.966 | 2.308
|H - 8fab L3 11 165.7 | 1062.8 1.612 | 1.730 0.920 j 2.368
j L - 2rhe HI 5 CANONICAL 0.626 | 0.621 0.096 | 0.352

H2 10 CANONICAL 0.708 I 0.726 0.200 | 3.352
H3 17 172.2 | 967.8........j........ 4.024 | 4.224 3.107 4.137

Total 337.9 | 2030.6 1.483
..........
1.555 0.921 2.434

| dl_3 LI 11 ........1........CANONICAL 0.799
..............
0.799 0.267 3.107

L2 7 CANONICAL 0.944 | 0.928 0.502 | 1.611
|H - 8fab L3 9 CANONICAL 1.126 I 1.138 0.652 | 2.243
|L - If19 HI 5 CANONICAL 0.869 | 0.846 0.448 | 0.794

H2 9 CANONICAL 1.369 | 1.413 0.634 j 3.336
H3 8 1501.8 | 860.6 2.069 | 2.188 0.627 2.925

Total 1501.8 | 860.6.................. I.................... 1.196 1.219 0.521 2.336
| 8fab LI 11 12.7 j 18.7 4.022 4.021 2.733 | 4.925

L2 7 733.4 | 4410.2 0.581 j 0.592 0.347 | 1.213
|H - 2fb4 L3 9 4.7 j 7.9 1.215 | 1.218 0.745 j 4.215
|L - 2fb4 HI 5 CANONICAL 1.103 | 1.106 0.096 | 0.330

H2 10 CANONICAL 1.183 | 1.195 0.200 | 2.848
H3 12 218.5 | 1386.5........j......... 5.978 | 5.974 2.753 4.857

Total 959.5 | 5823.4........i......... 2.347 2.351 1.145 3.065
| lhil LI 17 1CANONICAL 1.148

................
1.151 0.546 1.467

L2 7 CANONICAL 0.917 | 0.922 0.436 | 1.634
|H - bl3i L3 9 CANONICAL 1.278 | 1.288 0.242 | 1.035
j L - 2mcp HI 5 CANONICAL 0.565 | 0.563 0.266 j 1.083

H2 10 CANONICAL 0.845 | 0.829 0.284 j 2.711
H3 11 9460.9 | 2742.9_________j _______ _ 4.621 | 4.623 2.779 5.652

Total 9460.9 | 2742.9
_____ . . . i ________ 1.562

................
1.562 0.758 2.263

| lbaf LI 10 1CANONICAL 0.889
................
0.883 0.000 0.000

L2 7 CANONICAL 1.296 | 1.266 0.000 | 0.000
|H - 3hfm L3 10 66.5 | 259.6 3.519 j 3.397 1.689 j 2.973
j L - 2hf1 HI 6 CANONICAL 2.040 | 2.136 1.487 | 1.373

H2 9 CANONICAL 1.975 | 1.952 0.000 | 0.000
H3 6 0.9 | 0.0........j........ 3.031 | 2.794 1.994 3.803

Total 67.4 | 259.6...............  ............... 2.125
..............
2.125.............. 0.862 1.358

| If 19 LI 11 CANONICAL 1.161 1.226 0.801 2.885
L2 7 CANONICAL 0.915 | 0.966 0.502 | 1.725

|H - 2hf1 L3 9 CANONICAL 1.382 j 1.389 0.931 | 2.055
|L - Imam HI 5 CANONICAL 4.444 | 4.601 0.696 j 1.280

H2 10 499.2 | 1872.7 5.120 | 5.336 1.056 | 2.911
H3 15 188.0 | 735.5.................. j .................... 8.907 j 9.095 4.075 5.401

Total 687.2 | 2608.2 3.655 3.769 1.343 2.710

Table A.2:



A ppendix  B

A ppendix: Program  
docum entation

This appendix contains the program documentation for three of the programs 

used in the antibody design process:

1. M C  A complete Monte Carlo simmulate annealing program, used for 

the reconstruction of sidechain conformations. This package has several 

other features such as a complete molecular drawing package.

2. IN T  A menu driven protein-protein interaction and protein surface in

vestigation program.

3. C L U ST E R  A menu driven torsional clustering program for the evalu

ation of large loop ensembles.

4. FR A M EB U ILD  Antibody framework construction program.

148
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B .l  Sim ulated annealing package for side chain  
reconstruction

B . l . l  Introduction

This Section contains the documentation to the MC (Monte Carlo) program 

developed during the course of this PhD thesis. The program has developed into 

a general tool for molecular modelling. The program is the platform into which 

most of the programs which I have written have been implemented.

The primary target for the program is in the prediction of sidechain conformations 

in proteins. The program currently contains three algorithms for sidechain con

formation generation, 1) Monte Carlo simulated annealing method. 2) Torsional 

grid searching, and 3) A Torsional grid searching, with all possible sidechain 

types. The various methods are outlined in detail in the sections below, and in 

the main body of the thesis.

B . l .2 Sim ulated annealing

Simulated annealing is a method which is frequently used for solving the traveling 

salesman problem, with the mississippi river twist: How does a salesman visit N 

towns taking the shortest possible route, and only visiting each town once, and 

giving a penalty for crossing the river. This type of problem is called an NP- 

complete problem. The time taken to compute the exact solution to this problem 

is K-eN where N is the number of unknowns in the problem, and K is a machine 

dependent constant. Even with a small number of variables a combinatorial 

explosion is observed in the number of possible solutions.
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J. von Neumann and S.M. Ulam introduced around 1945 the Monte Carlo method 

of solving problems which have a large solution space, they showed that a solu

tion could be computed by using a random walk through the solution space, a 

practical approach was outlined by Metropolis (Metropolis et a/., 1953). Instead 

of computing the analytical solution, a solution is generated by random sampling 

of the solution space. Metropolis developed the method further by introducing a 

probability density function, and an objective evaluation function E, introducing 

the method of simulated annealing or a simulation of a cooling process. The 

result becomes a biased random walk, having an initial state where all moves are 

allowed. By slowly lowering the probability for accepting an unfavorable move 

the system is moved towards a global minimum.

In terms of molecular structure determination the objective evaluation function 

is an energy function, and the probability function is derived from the Bolzman 

distribution. Assuming that a given molecular structure is will adopt a con

formation which is a global minima and well ’’packed” (no space between the 

atoms), a simple energy function can be used for the evaluation of the Metropolis 

probability:

E  =  « o E ( (7 )6 -  2( ~ ) 12) +  K0-cos(3u>)
t e l  r  r

Where the first term is a simple Lennard-Jones potential which evaluates the 

non-bonded contacts between the atoms in a given molecule, the second term 

is a simple torsional term which only applies to C-C bonds. The torsional term 

biases the function towards 60° rotamers. e0 and kq are constants. The Metropolis 

function:
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is then used to evaluate the energy function. This simple method can be used to 

search the large conformational space defined by a set of torsion angles in amino- 

acid sidechains, and find or define the global minima which exist for a given set of 

sidechains. It is necessary to emphasise that the Metropolis method of simulated 

annealing not is a minimisation, it is merely a biased random walk. The value 

T  is the simulation parameter which determines how fast the function should 

approach a minimum. In the case of thermic motion this is a temperature, thus 

the denotation T. In the following we will call this the simulation temperature.

When searching sidechain conformations using this method the simulation sys

tem usually get trapped in an energetic minima well before the global minimum 

is encountered, at a high temperature, without the solution space having been 

searched sufficiently. This can be overcome by truncating the Lennard-Jones 

potential, in order to allow atoms to pass through each other. In reality this 

function would converge towards infinity when the distance r between the atoms 

goes towards zero.

The torsional potential is precalculated and only updated every 10 steps since the 

average movement over 10 random steps is no more than 10-\/T0 the precision of 

the energy calculation is maintained. Why is it necessary to have the torsional 

potential at all ? The potential does only have little influence on internal side 

chain conformations, but becomes significant for surface sidechains.

B .1 .3  Evaluation o f conform ations

Evaluation of side chain conformations is done purely on an energetic basis for 

internal (core) residues, good van der Waals interactions are considered to be
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equal to a good packing of the residues. The situation gets more complicated 

when trying to predict the conformation of surface residues. Many low energy 

conformations are possible on the molecular surface, all which have a good pack

ing.

Using the fact that hydrophobic, bulky residues will be shielded by the hydrophilic 

sidechains, and be buried in the surface, it is possible to generate simple functions 

which will take these rules into account. These functions can either be imple

mented in the objective evaluation function of the MC simulation, or as is done 

here, added as a post processing step. Including a accessibility/hydrophobicity 

term in the evaluation function would slow down the calculations to much, this 

is why this term has been added as a post processing step.

In the functions used here the accessibilities and the hydrophobicities have been 

scaled appropriately. All accessibilities are relative to the accessibility of an ex

tended conformation of the amino acids, and thus in the range [0;1]. Hydropho

bicities are taken from ref (Comette et al., 1987), but have been normalised to 

be in the range [-1;1]. The simplest type of function can be either of two:

1- f a  = -1  • f a  € ] -  oo; Oo[
■“ re/

or

2- f a = “  T A rer H rei f a € [—1; l]

The main difference between the two functions above is the ranges in which 

they are defined. In the first case the score for an favorable conformation is
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exponential, where as in the other case the score is linear to the relative exposed 

area of a given group. The first function is not defined for Hrei or A re\ equal to 

zero. The second function is a continuous function in the range [—1; 1]. The two 

functions have been implemented in the H PH A C C ESSIB IL ITY  option in the 

calculation option. Both values will be calculated if this option is chosen. The 

surface area is calculated using the tessellated icosahedron approach, which is not 

too exact, but it is quick.

Similar semi-analytical expressions have been suggested by Still et al (Still et al., 

1990). These have been included in energy calculations and have been shown to 

be able to generate conformations of sidechains which are close in conformation 

to what is observed in crystal structures. The traditional (Still et al., 1990) 

perception of solvation free energy (C?ao/), as consisting of the term:

Gaoi =  Gcav + Gv<flV + Gpol

Gcav is a solvent cavity term, Gvdw is a solute van der Waals term, and Gpoi is 

a solute solvent electrostatic term. For saturated hydrocarbons in water Gsoi is 

linearly related to the solvent-accessible surface area As.

B .1 .4  Program  docum entation

The program has been written such as to be as flexible a possible since I had 

several ideas with the basic program, and the program is developing all the time.

The program is also an attempt to write a good parser - in this case I have used 

a three dimensional command space defined by the array com in the include file



APPENDIX B. APPENDIX: PROGRAM DOCUMENTATION 154

“Par.h” . There are three arrays the first com contains the command mask passed 

to the parser, the second (defaults) contains a static mask defining any defaults, 

this is not used a lot at the moment - but is necessary in order to avoid any 

syntactical mistakes. The third array command contains the actual commands 

which the program understands.

The first word is the key command, and any subsequent commands are children 

of this command. There are no required sub-commands, for example has the 

AN N EA L command at the moment twelve sub-commands any of these sub

commands are optional. The only requirement is that, if multiple sub-commands 

are given they have to be given in the order stated in the documentation or the 

builtin H E L P command. All file names have to be in quotes. The reason for this 

is that the program is not case sensitive, all passed words are capitalised ( except 

for arguments which are lowercased). All the sub-commands in the ANNEAL 

command are independent commands and can all be stated at the same time. 

Each level of sub-commands can have several different optional modifiers, e.g. 

R E A D  can have PD B , VDW , etc as the format modifier, but only one of these 

can be stated at the time.

The following section contains a summary of all the currently supported com

mands.

B .1.5  Com m and sum m ary

B Y E ,Q U IT ,E X IT  Any of these commands will halt the program and exit;
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HELP This help is a hard-wired help which dumps the current command array - 

so this is where to look if you are in doubt about any given command is supported 

on the machine you are actually on. Any new commands will also occur here. 

This help will also give the order of sub commands.

M ALLINFO This facility will dump the mips supported mallinfo structure 

which gives information about the current program arena, this facility is at the 

moment only supported for the ESV workstation and the SGI machines. The 

NeXT and HP700 does unfortunately not have this facility - but you can use 

MallocDebug on the NeXT which is much better.

R E A D  READ is the command to read data into the program. Following 

types of data can be loaded:

The valid sub commands are:

• P D B  This is the default, expects the file name to be a valid brookhaven file, 

which exists in the search path. The name of the structure object generated 

by this command is by default the name of the file specified, if an other 

name is required the modifier O B JE C T  < objectname > may be used to 

set the name of the object.

• O R D E R  Reads an atom order file, specifying the order of the atoms re

quired by the program, his order is C,0,N,Ca,-Sidechain. This order makes 

the programming more easy.

• C H I Reads chi angle definition file, which defines the number of chi angles 

in each of the 20 amino-acids.
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• VDW  Reads atom van der Waal radii and the atom pair constant e0.

• CONFORMATIONS Reads a set of conformations generated by the pro

gram. The conformations are read into a dynamically allocated structure 

list - and there is no check whether you actually have the required space - so 

with a lot of conformations you might be swapped out. the command takes 

two file type modifiers.

-  COORDINATES Expects the conformations to be in ascii coordinate 

form. I have never tried this so I do not know how well it works. The 

problem is that it takes up a lot of space to store conformations this way. 

If the modifier NUM BER n is added only conformation n is extracted.

-  TORSION Expects the conformations file to contain the torsions of 

each of the conformations, the residue numbers and the total energy of 

this conformation. This is the default.

• RADII Reads the single atom radii used for the generation neighbor lists.

t ACCESS Expects a file containing the residues and the accessibility of an 

extended conformation of each of the 20 amino acids. This is used for the cal

culation of the relative exposed surface area. Although this is should not be 

used for exact calculations. The CALCULATE RELATIVE ACCES

SIBILITY command will not use this data, but will calculate the actual 

accessibility of a blocked amino acid in a given conformation.

• HPH Contains the scaled hydrophobicities for each of the 20 amino-acids. 

The hydrophobicities have been scaled such that they lie in the range [0,1].

• ATOMICHPH A file containing atomic charge or hydrophobicity param

eters.

• FRAGLIB A set of rigid sidechain fragments used for searching and build

ing sidechain conformations.
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• DAYHOFF A Dayhoff mutation matrix.

• CSSR Coordinate file from the Cambridge Crystallographic database, in 

ASCII format.

• PSDAT PostScript plot data file. This file contains all the information 

relevant for a plot, this is only data relevant for the layout of the plot.

• PLDAT Plot data file. Data relevant for the presentation of the plotted 

molecule, such as bond width atomic radii and colours.

• SEARCHITS Reads a file of distance geometry search hits. This file is 

generated by the SEARCH command.

Syntax :

READ [subcommand] < filename > [file type] [object] < objectname >

W RITE This is the main output command and has the following sub-commands:

• COORDINATES Specifies that the following type of file will be in coordi

nate format. OBJECT < objectname > specifies the object from which the 

coordinates should be written. PDB specifies that the object is written to 

a Brookhaven Database format file. PDBACCESS will write an extended 

Brookhaven format file which has potential parameters and accessibility data 

added in extra columns.

• TORSIONS Specifies that the coordinate format is torsions. Selecting this 

option will write or initiate the writing of conformations as torsions only, in 

the range [0 , 2 -7t].
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• D ISTM A T C H  The name of a file to which hits should be written during 

a distance geometry search.

• P O S T S C R IP T  A file to which a specified plot object should be written. 

Each of these format specifiers can be applied to the two output types :

• PD B  Write a brookhaven file

• CO N FO RM A TIO N S This will not write anything, but will allocate a 

file pointer to a conformations file, which will be used for the dumping of 

conformations in an annealing run.

Syntax:

W R IT E  [format] [file type] < filename >

O R D E R  O R D E R  will order the atoms in each residue according to the atom 

order specified in the order file. If the atom order is unknown, or you are unsure 

of the order always use this command after having read in the coordinates of a 

structure. At the moment the only supported format is brookhaven. order can 

also be used to order a file of distance geometry search hits. The hits are ordered 

after RMS deviation between the search constraints and the atoms in the hit, 

this is done with the TRA N SFO R M A TIO N  modifier.

Syntax:

O R D E R  [format]
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SE T U P SE T U P will initialise various data structures and set them up ap

propriately for the calculation routines to handle them. The possible SE T U P 

modifiers are :

• TO R SIO N  Will setup the torsional potential with a pre-defined grid, the 

default is 10° and the energy constant A is 1.5 kcal. These two parameters 

can be modified with the modifiers:

-  AN GLE New angle.

-  E N E R T O R  New torsional energy constant.

• NAYBLIST Sets up a neighbor list with a given cutoff, specified by the 

modifier C U TO FF, the default cutoff is 5 A.

• SELNAYB Setup of neighbor list for the selected residues - this is used 

when processing many conformations, the routine should be called each time 

a new conformation is generated. The list cutoff is specified by adding the 

C U T O FF modifier.

• IC O SA H ED R O N  Setup the unit icosahedron, and use this in the following 

surface and accessibility calculations. The precision of following calculations 

depends on the tessellation frequency 7 . There are two modifiers to this 

setup command:

-  C U T O FF This is a generation parameter which is used to eliminate 

overlapping vertices generated by the algorithm, the default value is 0.1 

A- it should not be necessary to fiddle around with this parameter.

-  TESSELA TIO N This is the specification of precision. The number is 

a value in the range [l,oo], normally this value is 4 and will generate an 

icosahedron with 162 vertices.
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• RADII Assigns vdw radii to the current atom list - this always has to be 

done before an annealing run.

• DISTANCEM ATRIX Generates a distance matrix from a molecular ob

ject. The matrix can the be used to search another distance matrix.

• CSSR Generates a molecular object in Cambridge database format. This 

format is required for the PLOT command to work.

Syntax:

SETUP [setup item] [setup param 1] < value 1 > [setup param 2] < value2 >....

SELECT The select command is used to select the atoms which are to be used 

in any calculation or annealing run. At the moment the the second modifier is 

sort of redundant, the selection of residues and not be replaced by anything else, 

the reason for this peculiarity is that I had the intention of implementing some 

sort of selection stack, but it did not get further than to the thinking stage. The 

residues can be selected in three different ways:

• FILE A file containing the numbers of the residues to be selected the. The 

format of the file is free, the numbers just have to be separated by spaces or 

control characters such as newlines or tabs.

• ALL Selects all the atoms currently in the list.

• RESIDUE Selects all the residues which have have a sidechain within a 

certain distance cutoff of the specified sidechain. This is probably the most 

useful of the selection commands.
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The command can also be used for the colour assignment of atoms used in the 

PLOT command.

Syntax :

SELECT [RESIDUE] < method, rgbcolours > <  c u to ff  >

SELECT [COLOUR] < rgbcolours > ATOM < atno > TO < atno > 

OBJECT < objectname >

ANNEAL ANNEAL is the actual annealing command, which initialises the 

annealing run, no command specifiers are necessary, but any of the parameters in 

the simulation can be changed, ANNEAL takes any of the following commands. 

Several, commands or all can be specified at the same time. The only requirement 

is that the commands should be given in the order they are mentioned in the list 

below.

• RESTART is a restart flag - this is set to ‘1’ in order to restart the program 

after system crash or other stops of the program. You have to extract the 

last written conformation from the conformations file, and set RESTART 

to ‘1 ’. Default is ‘O’.

• E TR U N C  VdW potential truncation energy, the default value is 7 kcal.

• NMOV Number of move steps per T step the default is 10.000

• N U PD  Number of steps between each update of the torsion potential.

• DT Temperature gradient in percent, default is 2 percent.
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• AM OV Move angle per step, default is 10°.

• PA C C I Initial acceptance probability, default is 75 percent.

• PA C C F Final acceptance probability, default is 50 percent.

• D C U T T  Distance cutoff for neighbor list updating, 5 Ais default.

• N EQ  Number of random steps per T step in equilibration, default is 100. 

Higher number of steps might be desirable, it seems that the actual annealing 

starts at a to high temperature, this can be remedied by using a higher 

number of steps in the equilibration.

• T IN IT  Initial temperature, this is just a high temperature, which by default 

is 10.000 K°, this temperature does not really have any significance, except 

that the program will spend a lot of time in the equilibration, in stead of in 

the annealing.

Syntax :

A N NEAL [modifier 1] < modifiervalue > [modifier 2] < m odifier value >

CALCULATE This command supplies a analysis interface which is probably 

going to develop quite a lot, since this is where the actual selection of conforma

tions is happening. At the moment two types of calculations are possible:

• A CCESSIBILITY  Calculate the accessibility of a given conformation, ei

ther the exact accessibility in A2 or as a relative fraction compared to the 

accessibility of an extended conformation.
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• H PH A C C ESSIB IL ITY  This is an attempt to develop a function which 

will honor the fact that hydrophobic residues will be buried, and hydrophilic 

are exposed. Both of the previously defined functions are calculated. The 

function will be calculated for each of the individual residues involved, but 

also for the conformation as a whole.

Each of the evaluation functions can be evaluated as either EX A CT or RELA 

TIV E, followed by the number of the conformation.

If the ALL specifier is used both of the functions will be evaluated for all of the 

conformation. In this case the TESSELA TIO N frequency of the icosahedron 

used and the distance C U T O FF must be specified.

Syntax for single conformation:

CALCULATE [function] [exact/relative] < conformationnumber >

Syntax when using ALL option.

CALCULATE [function] ALL TESSELA TIO N < tesselation > C U T O FF 

< c u to ff >

E X T R A C T  Conformation extraction routine. This routine will take a spe

cific conformation from the current ensemble and regenerate it in the molecular 

structure. This is currently only supported for the torsion type of conformations. 

Implementation for the coordinate type of conformations is simple its just to 

patch the bits of lists into the main list, and free up the old bits. But since we
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are working in torsion space, I do not want to do it in cartesian space.

Syntax :

E X T R A C T  C O N FO RM A TIO N  < conformationnumber >

C O N D EN SE This is a redundant command which can be used to condense 

the list of atoms to one which only includes atoms which are actually involved in 

the molten zone. A much better routine is implemented in the Anneal function.

The modifier C U T O FF can be used here.

D E L ET E  This command is used to delete an object from the index list of the 

program. The objects which can be deleted are: PD B ,C O N FO R M A TIO N ,SELR ES 

and SID ECO NF.

Syntax:

D ELETE < objecttype >

SID EC O N STR U C T With this command sidechains can be reconstructed in 

a torsional grid. The following modifiers can be used:

• ETR U N C  Truncation energy for VdW repulsion.

• M A X CO N F The maximum number of conformations to generate. The 

search will terminate after M A X CO N F is reached.
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• AM OV The angular grid to searched.

• D C U T O FF Distance cutoff to be used in the update of neighbor lists.

• E C U T O F F  Energetic cutoff to be used for the rejection of conformations 

and termination of search tree.

• BON D L E N G T H  the length of a bond in an aliphatic sidechain branch.

• V D W RA D IU S The radius of carbon atoms in the aliphatic sidechain 

branch.

Syntax:

SID EC O N STR U C T  [modifier 1] < modifier value > [modifier 2] < modifier value >

D U M P D U M P  Is used to inquire the program about I’ts state with respect 

to held objects and their contents.

• IN D EX  Dumps the current index list.

• FR A G LIB  Lists the contents of the currently held fragment library.

Syntax:

D U M P [list]
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SEA RCH  A general command for the searching of distance geometry. There 

are two searches which can be done at the moment. P E P T ID E  will search 

a distance matrix for matching amino acids in 3D space. The use of this is 

in design of peptide mimetics, which are similar to patches of protein surfaces. 

ST R U C T U R E  will search two distance matrices against each other.

The following specifiers are available:

• D C U T  Distance cutoff for acceptance of hit.

• M IN L E N G T H  The minimum length of a given peptide to match a peptide 

specified in a P E P T ID E  search.

• SCU T Score cutoff for acceptance of a hit.

• ACCESS Specifies whether accessibility should be included in the scoring 

scheme of a P E P T ID E  type of search.

Syntax:

SEA RCH  [PEPTID E,STR U C TU R E] [modifier 1] < modifiervalue > [mod

ifier 2] < modifiervalue > ...

PL O T  The molecular plotting routines implemented in MC are accessed through 

this command. Three types of objects can be plotted with this command. OB

JE C T  plots a specified molecular object, LABEL a label, and H BO N D  a 

hydrogen bond. The basic plots can then be modified using the following modi

fiers:
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• PSD  AT Specifies which PostScript data is to be associated with a given 

plot.

• PLDA T Specifies which plot data is to be associated with a given plot.

• R ESID U E Specifies which residue a label or a hydrogen bond is associated 

to.

• ATOM  Is the atom to which the above label or hydrogen bond is associated.

• A R R A N G E  Specifies whether a given plot should be used for scaling of 

the global plot.

• BSC ALE Specifies that temperature factors should be used for the scaling 

of atomic radii.

• X O FFSE T,Y O FFSE T  Is used to offset a label.

• C PK  Makes nice CPK presentation type of plots.

Syntax:

PL O T  [OBJECT,LABEL,HBOND] [modifier 1] < modifiervalue > [mod

ifier 2] < modifiervalue > ...

M E R G E  Merge is used to merge two plot objects. The purpose of this com

mand is to enable superimposition of plotted structures. The plots are sorted 

according to depth such that real superimposition is obtained.

Syntax:

M E R G E  PL O T  < plotl > AND < plot2 >
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T R A N SFO R M  TR A N SFO R M  is used to transform a molecular object 

with one or a list of transformation matrices. The transformed objects are then 

written to a set of numbered files. The format of these files is Brookhaven format.

Syntax:

T R A N SFO R M  T Y P E  O B JE C T  < objectname > F IL E P R E F IX  < pre fix  >
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Several data files are needed in order to run the program they are listed below 

and the format of each type is described.

• acces.dat A file of containing the accessibility for a set of amino acids the 

format is free, each line consists of the three letter code of an amino acid 

and a value.

• chi.dat A file containing the number of chi-angles in a given amino acid. 

The format is the same as above.

• p d b .d a t Residue atom order file. This file contains the reference order 

required for the program to run. The order is C,0,N,Ca, sidechain. The 

format is a header followed by a star and then the atom order for for each 

of the residues in A5 type of format.

• rad ii.da t File of real van der Waal radii, the format is described in the 

file, and consists of : atom, radius, charge in A5 type of format. The atom 

information is preceded by a header terminated by a star.

• vdw .dat Extended radii data file - containing the information which is used 

to evaluate the Lennert-Jones potential. The squared values of R 0 are kept 

in this file. The format is an atom pair followed by R0 and E0 for this atom 

pair. The format is free.

• p ld a t.d a t Plotting data file containing information about how to plot a 

specific structure. The two first parameters in the file are a radius scaling 

factor, and a bond scaling factor. The next line contains atom radii and 

atom types. After this follows the RGB colours for these atoms and finally 

the colour of the bonds.
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• p sd a t.d a t PostScript data file containing information used to position the 

figure on the paper, resolution scale etc..

• m dm 78.dat Dayhoff mutation data matrix used for the distance searching 

of protein surfaces.
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B.2 D ocum entation for protein interaction in
vestigation program

B .2.1 Introduction

The basic idea of the program is to create a platform for different surface and 

protein analysis programs and algorithms described in the literature.

The program runs with a scrolling menu, and should be very portable and it 

should be easy to append new routines to the main, but this statement will 

always remain subjective to the programmer who wrote the code.

The program uses an index list which handles any generic pointer list, when 

used the pointer is CAST to the right type. Any new object which is read in 

or generated will be added to the main list. The main list can have any length. 

The working set list is an array of NSET generic pointers. The program will 

only allow the user to have one list of each type in the list at any time. This 

can however be overridden when using the handling routines in the selection and 

display menu. There will also at any time be two lists of the type VECTOR, one 

which handles surface points, and one which holds the unit icosahedron. Se also 

section on the Selection menu.

B .2 .2 H ole filling

The program implements an algorithm for filling of holes on a molecular surface, 

described by Kuntz et al (Kuntz et al., 1982)



APPENDIX B. APPENDIX: PROGRAM DOCUMENTATION 172

The algorithm uses surface normals generated by a surfacing program, in this case 

a normal hard sphere surface generated using a tessellated icosahedron with user 

specified tessellation frequency (default 4). This method of generating surfaces 

was first used by C.Sander et.al. in the DSSP program (Kabsch and Sander, 

1983), who used the method for determination of sidechain accessibilities.

The rules currently implemented are:

1. Only pairs of surface points are considered for which the dot product of 

normal i and the vector ij is larger than or equal to zero.

2. Only spheres obeying Rmin and Rmax criteria are included.

3. For a given point only the smallest sphere generated is kept.

4. For a given atom only the largest of the above spheres is kept.

5. Only spheres touching residues farther apart than ’’sepres” residues 

apart will be considered.

The Cutoff’s are usually set to Rmin = probe radius, and Rmax = 5 .0  Angstr0m.

B .2 .3 C lustering

The program uses a method of clustering described by Oriochi (Lazio, 1975). 

The idea behind the clustering is to connect datapoints which are close in the N- 

dimensional space, using the square of the euclidian distance as the expression for 

’’closeness” of conformations. It should be pointed out that the euclidian distance 

does not have any physical meaning in this case it is purely an expression which 

relates N x M parameters. The implication of this is that if the distance between 

conformation A and B is equal to the distance between A and C then it is not
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possible to say that B and C are equally close in ’’conformation” .The difference 

between A and C might arise from the difference in one torsion angle, whereas the 

difference between A and B may come from the small difference between more 

torsion angles.

The automated procedure (default value) assumes that the clusters are well re

solved !! - so be careful when using this way of clustering. Initially datapoints 

are excluded when they are more the 3.5 SD units away from the mean shortest 

distance. The mean distance between the closest and next closest datapoint is 

used as the step size. The initial distance is set to the shortest distance within 

the dataset, and the clustering is stopped when the distance reaches p-f 3.5- SD.

After version 2 the automatic clustering should be all right I have spend some 

time optimising the code and parameters. The program no longer writes a file of 

clusters in the Jancy classification routine. This routine has been optimised. Its 

running quite a bit faster.

Use the display of the cluster-matrix to determine how well resolved the clusters 

are. It will also give some impression of the deviation of the datasets.

B .2 .4 Surface generation

The surface generation uses a tessellated icosahedron as an approximation to the 

sphere, this makes the program very fast.

This is an approximated solution to the the “golf ball” problem. How do you 

distribute N points on a sphere , such that the position of each point represents
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an equal surface area ?.

In this program we assume that the area represented by each vertice in the 

tessellated icosahedron is equal. This is however not true - but the approximation 

is close. See Kabsch and Sander (1983) for description of algorithm and source 

code to DSSP. The algorithm can actually be improved quite a lot by using 

a recursive generation of the surface points, this way the two edges spanning a 

triangle will be known as vectors, the area of a given triangle will then be half the 

length of the cross product vector. This way the area of any individual triangle 

becomes known. The precision of this method should be around 0.995.

If you want to read more about tessellated icosahedra and other of the beautiful 

polyhedra - I recommend that you read Pugh (Anthony, 1976), and Chau et al 

(Chau and Dean, 1987)

There is the freedom to choose the frequency with which you want to fragment 

the faces of the icosahedron. The number of faces, vertices and edges is given by:

Nfac = 20 ■ 72

Nver =  2 +  10 • 72

N edge  —  3 ■ '"f
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The triangulation used is a tricky one, and unfortunately a bit slow. The problem 

is that the points generated above, on the surface are not equally distributed 

on the surface. This means that a normal nurb surface or nearest neighbor 

triangulation would fail, by generating holes in the surface.

The scheme i use is to generate a list of MEANNAYB nearest neighbors, of a 

slightly overlapping surface. A surface with a tolerance in the VdW radius when 

generating the list of exposed surface points.

For each vertice in the surface the vectors to the nearest neighbors are calculated 

and sorted according to relative angle between the i’th nearest neighbor. This 

means that a sorted list is made for each of the surface points. Then the triangle 

to the nearest neighbor of a given edge is generated. The problem with this 

is that a given triangle will be generated a maximum of three times. This can 

however be remedied by a cleanup routine which checks all the triangles. This 

check routine has been left out at the moment since it is quite slow.

B .2.6  T he graphics interface

In the current version it is possible to display the hydrophobic or electrostatic 

potential on a triangulated surface, and to display a set of spheres on it. This is 

currently being developed such that it will be possible to display a given cluster.

You can also display generated spheres, if there are any spheres in the list you 

will be prompted whether you want to display or not.
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The idea to these programs comes from the paper by Vellarkad Viswanadhan 

(Viswanadhan, 1987), investigating crystal structure packing in a long range of 

proteins. And from the fact that there seems to be a connection between the 

excluded surface area of an interface and the binding constant. The calculation 

of the excluded surface is done as a simple subtraction :

(Aifree H" Aj f ree ) -  — Aexci

A probe radius of approx 0.1 Angstr0m is appropriate.

Excluded volume is calculated in the same fashion, using the volumes in stead of 

areas, thus :

(Yu ree Vjfree) " (Vibound Vjbound) — ^exc/

The volume calculation is grid search which does an integration over the grid in 

order to determine grid cubes which are included in the molecule, and which are 

not. The precision of this method is naturally dependent on the grid size.

B .2.8  Selection,display and list handling

This menu is the control menu for the program.

The colour map assignment is only used when displaying things with INSIGHT 

(b) - it assigns colours to dots.
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Sphere selection is an option to select only spheres which are generated from a 

specified range of atoms, or to select spheres which are within a certain distance 

from a specified atom, specified by its atomnumber.

Debug level is described below.

Allocation information display is a dump of the mallinf structure supported by 

M IP S  and can be excluded if the program is ported to other machines. Note 

that the total space in the Arena always corresponds to the maximum number of 

blocks used - even if old lists have been freed up - this shows how useless unix is.

List handling is a dangerous - but a very useful option. As described above all 

information is kept as lists of a certain type (an object). You can free the space 

occupied by any list. You always have a working set of pointers. This list will 

always attempt to have only one list of each type in it at the time in order to avoid 

confusion. But remember ! - None of the objects are linked, thus a given PDB 

list does not know which VECTOR list it belongs to. Unfortunately I have not 

been able to find a good way to add the Brookhaven file name to the descriptor 

of lists derived from this (eg. neighbour lists etc.). This type of object handling 

will probably be confusing in the beginning. However if you are confused - only 

handle one set of molecules at the time.

When a Brookhaven file containing several different chains, is read into the pro

gram each of the chains will be added to the index list as individual objects. The 

list in the working set will always be the whole structure. If you want to work 

on any of the subchains as individual objects use this menu entry to change it.

If you want to use the Protein investigation module you should add all the struc
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tures you want to look at to the working set, although this will give a warning. 

E.g. if you want to calculate the excluded surface area or excluded volume of 

a protein-protein complex you should have each of the unbound molecules as 

separate objects and the complex in the working set list.

The final option of this menu is an option to keep track of the time spend in 

different parts of the program. The timer keeps two values, the first is the time 

used since the program was initialised and the second holds the time spend doing 

the last command.

B .2.9  Installation

There comes two makefiles with the program one which generates an optimised 

version, and one which does not.

To install normal version type:

make -f Intnormal.make

To install optimised version type:

make -f Intopt.make

To run the program type : Int
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The datafiles used are :

• VDW.dat File of VDW radii for elements , There is an example of this file 

in the directory. [JP90VDWRADII]

• data.dat Data file containing information for the generation of surface and 

spheres.

The number of data parameter required changes from version to version, the 

list below is updated after each version, and contains the right number of 

parameters for current version.

— Rmax maximum radius of spheres generated 5.0

— Rm in  minimum radius of spheres generated 1.4 - 1.8

— Rprobe probe radius 1.4 - 1.8

— T f  Tesselation frequency 4

— c u to ff  cutoff for generation of icosahedrons 0.1

— sepres residue separation 3 - 4

— collcol2colS charge colours for insight display 20 100 180

— R cu to ff  Distance cutoff for hydrophobic potential calculations. 10.0

— SC A LE  Scaling factor for Hydrophobic potential 100

— M E A N N  A Y B  Mean number of neighbors from which number of neigh

bors should be calculated in triangulation routine. 7 - 1 0

— Rtolerance Radius tolerance for surface generation, This is zero for cal

culations, but is set to 0.05-0.1 Angstr0m when generating triangulated 

surface.
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The datafiles used are :
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— Rtolerance Radius tolerance for surface generation, This is zero for cal

culations, but is set to 0.05-0.1 Angstr0m when generating triangulated 

surface.
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The default file is data.dat,and an example is present in the directory. The 

file contains max 30 elements.

• cvffa.rlb VFF residue library. This is used for the assignment of charges 

to atoms and charges to spheres. Spheres are assigned opposite charges an 

colors. Currently it is not possible to assign other colors than one for each 

of the three charge possibilities: coll = positive charge col2 =  zero charge 

col3 =  negative charge This will hopefully be changed in the future, such 

that gradient colouring becomes possible.

• hph.rlb Atomic hydrophobicities library values are calculated after (Fauchere 

et a/., 1988)

hydrogen is set to zero. The format is the same as cvffa.rlb.

B .2.11 Io

This section describes the coordinate files generated and read by the program, 

except for datafiles which are described above.

• Brookhaven file Standard PDB file. Does a file contain more than one chain ID 
then these will be treated as individual structures.

• surface file File containing the dots on the generated surface in simple XYZ ASCII 
format 3F10.

• surface normal file File containing the same information as the above file, but 
additionally contains the surface normal to each point format 6F10.

• sphere file File of generated spheres containing XYZ coordinates to sphere center, 
radius, and the number of the atom to which the sphere is associated; format 
4F10,I5.

• insight surface normal file File which contains all the surface normals used in the 
generation of hole spheres. The format is as a Biosym user (LINE) file. The 
normals can be displayed using the command: ’’get user <insight normal file> as 
<name> using <mol-object>” This will display the vectors with respect to the 
molecular object. (Remember to associate !)
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• insight sphere file File of dotted spheres for Insight this has the Biosym user 
(DOT) format. Display this in the same manner as the above type of file.

• insight surface file File of surface dots. The format is the same as the sphere file 
for insight.

• triangle file File containing coordinates for triangulated surface as three sets of X 
Y Z coordinates and a fourth parameter - eg hydrophobic potential.

The program contains both routines for reading and writing. These have not yet 

been tested properly.

B .2 .12  Exam ples

Install the program and type Int.

E xam ple 1 A typical run of the program would look something like This :

generate a set of spheres.

1. Read the VDW datafile

2. Read your pdb file

3. Read your data file

4. Set the debug level- optional

5. Generate the surface

6. Generate the spheres

7. write sphere file or any other file you might fancy.
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E xam ple 2 Select a set of spheres, and colour according to charge.

1. Read the sphere file.

2. Read the data file.

3. ” Generate surface” - this will setup the icosahedron such that all the 

spheres can be regenerated.

4. Read pdb coordinate file.

5. Read charge file (Discover cvffa.rlb)

6. Assign charges to atoms

7. Assign charges to spheres

8. select spheres

9. write new sphere file

The normal values for data are outlined in the file data.dat.

E xam ple 3 How to display water channel in subtilisin (lcse).

The trick is to allow for rather small spheres to be generated, which however 

makes the run rather longer to run. The other trick is to use something close 

to the VdW surface for the generation of the spheres, in order to make cavities 

more visible.

use a datafile which look like this:

5.00

0.50

<R max> 

<R min>
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0.50 <Probe radius>

4 <Tesselation>

0.05 <Cutoff>

3 <Residue separation>

0 120 240 <Colours for spheres>

10.0 <Potential calculation cutoff distance>

100 <HPH Potential scaling factor>

10.0 <Mean number of neighbors in triangulation>

0.1 <VdW radius tolerance>

1. Generate the surface and the spheres.

2. Select all the spheres which are within a radius of 10 Angstr0m of atom 

234 (OD2,ASP 32). This removes all the redundant spheres on the 

surface.

3. Display the spheres in insight.

Note the nice line of spheres from water 410 and out of the channel.

B .2.13 D ebug and other useful hints

A debug option is incorporated in the program If you wish to speed up the 

program you can take out all the debug stuff from the code.

The level can be set between 0 and 5. 0 gives no information and 5 fills up your 

disk i no time. The debug level is approx an indication of routine level from main 

routine, although this is not always true.
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The timer option is quite useful when running a lot of stuff, the unix time com

mand is used, thus the time is system time.
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B .3 Program  for cluster analysis o f loop con
formations

B .3.1  Introduction

The cluster program is a small menu driven tool for the analysis of a set of loop 

conformations.

The current version can read a CONGEN .cga file and a cluster datafile. The 

cluster datafile is a free format type of file which contains a N x M matrix. N 

is the number of variables to be used in the clustering, and M is the number of 

datasets.

The program is now also able to handle any type of data for clustering - just use 

the cluster data type of file for your data.

B .3 .2 C lustering

Since the number of variables that have to be handled usually is very large, as is 

the number of datasets, the normal clustering routines can not be used.

The program uses a method of clustering described by L. Orioci (Lazio, 1975). 

The idea behind the clustering is to connect datapoints which are close in the N- 

dimensional space, using the square of the Euclidian distance as the expression for 

’’closeness” of conformations. It should be pointed out that the Euclidian distance 

does not have any physical meaning in this case it is purely an expression which 

relates N x M parameters. The implication of this is that if the distance between
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conformation A and B is equal to the distance between A and C then it is not 

possible to say that B and C are equally close in ’’conformation”.The difference 

between A and C might arise from the difference in one torsion angle, whereas the 

difference between A and B may come from the small difference between more 

torsion angles.

The automated procedure (default value) assumes that the clusters are well re

solved !! - so be careful when using this way of clustering. Initially datapoints 

are excluded when they axe more the 3.5 SD units away from the mean shortest 

distance. The mean distance between the closest and next closest datapoint is 

used as the step size. The initial distance is set to the shortest distance within the 

dataset, and the clustering is stopped when the distance reaches mean ±3.5 • SD.

After version 2 the automatic clustering should be all right I have spend some 

time optimising the code. The program no longer writes a file of clusters in the 

Jancy classification routine. This routine has been optimised. Its running quite 

a bit faster.

Use the display of the cluster-matrix to determine how well resolved the clusters 

are. It will also give some impression of the deviation of the datasets.

In version 2.2 and onwards its possible to cluster a set of brookhaven files (e.g. 

loops), You have to have an ffile and all the brookhaven files have to be ordered ac

cording to order of atoms in the datafile [jan/progs/framebuild/data/order.dat].
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B .3 .3 H o w  to  u se  th e  p rogram
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Initial clustering of database loops:

1. Read in all the conformations (pdb files).

2. Determine the bounds of the data-set.

3. Do the clustering.

Processing of conformational ensemble (CONGEN conformations)

1. Read in you data - either as CONGEN conformation file or as cluster 

datafile.

2. Read in your Gromscan energy file - this is the free format X Y file con

taining a column with conformation number and a column with energies, 

(eg the output file from tabc)

3. Determine the bounds of the dataset. Read in the Gromscan energies.

4. Use the automatic clustering to start with - 1 have done a couple of tests 

on the routine now and it seems to do the clustering in a satisfactory way. 

The automated routine is also quicker. If you want better discrimination 

of you data use the old protocol. Use a step size of 0.2 and 100 to 

200 iterations, this value is dependent of the size of the dataset and 

deviation within the dataset. Large datasets with long loops from many 

different parent loops require fewer cycles of clustering since the clusters 

are better resolved than large datasets with short loops. You will have 

to experiment a little bit here - there is no clear answer to this problem 

at the moment.

5. Write out the newly sorted conformations and use these for filtering.
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B .3 .4 D ocum entation  for antibody framework building
program . Version 3

Introduction

The purpose of this package is to provide an easy building tool for the antibody 

modelling programs developed by A.Martin. The objective is to fully automate 

the building of antibody CRD’s.

The frambuild program consists of approx 30 subroutines contained in the C 

library framework.a. The routines can be used in any program by including the 

library in the top of your source file. The subroutines are commented and an 

explanation of how to use individual routines is given in the beginning of each of 

the routines.

The framebuild program will build a suitable framework for modelling of an

tibody combining sites by choosing frameworks from a database of X-ray crys- 

tallographic structures of antibody fragments(FAB’s and complexes, and dimers). 

The program chooses the framework structures from a sequence homology score. 

The program then compares the sequence of the database structure with the se

quence of the required structure. The sidechains of the database structures are 

then replaced using a maximum overlap approach. The sidechains are replaced 

by standard conformations, adjusting equivalent chi-angles in the new sidechain 

to the same as the chi-angles of the database structure sidechain.

The package also provides programs to setup the database of structures used for 

the building.
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V.2.0 This version contains the subunit placer. All the beta-barrels of 8 antibodies 

have been fitted onto each other by a multiple fit. First fitting all the structures 

to the barrel of Gloop2. A mean set of coordinates have been derived and all 

the structures are then fitted onto this one. This is repeated, until the sum RMS 

converges. This fit is the considered being the best overall fit. The orientation of 

the barrel is such that the conjugate axis of the best hyperboloide is the X-axis 

and the focus of the hyperboloide is (0.0.0).

Quick guide to  use th e  fram ework builder

The building of the framework is done in 4 steps:

Type package

1. R eading sequence:

This small sequence editor will give the sequences of equivalent se

quences in the framework database. This list of sequences has to be 

updated if new framework structures are added to the database, 

type: readseq , and type in your sequence, additional information is 

given when you run the program.

Remember to match the sequence alignment for each fragment, using 

as deletion and as end of fragment.

2. Choosing frameworks:

This program calculates the sequences alignment score between each of 

the framework structures and the sequence you have typed in. 

type: chooser , and give the base name of your sequence files.

3. Building fram ework:
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This program reads the scoring files generated by CHOOSER and builds 

the framework structure,by replacing sidechains,using a maximum over

lap approach.

The program can either be run interactively or be submitted as a back

ground job.

type : framebuild, <file.inp> <file.out>

If no file names are stated on the command line the program runs in

teractive. If only input file is given on the command line the input is

read from input file. If both files are stated the output is written to

<file.out>.

The input file looks like this:

-  JP90COOR ! Coordinate library

-  JP90RES ! Residue nomenclature library

-  JP90CHILINK ! Link table of chi angles

-  UDB: ! Framework library

-  <base name of sequence files>

-  <CHOOSER output file for L-chain>

-  < CHOOSER output file for H-chain>

-  <prefix for output files>

-  JP90FVFITL ! Fitting coordinates 1-chain

-  JP90FVFITH ! Fitting coordinates h-chain

When you run interactive -just hit return for the first four files, since 

they have been set up as symbolic links.

4. Fitting of L and H Chains.

The last step is to fit the L and H chains onto a suitable framework. 

This is done using the LSQ option of a graphics system such as FRODO 

or HYDRA.
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V.3.1.0 : This is now done automatically , using conserved positions in 

the framework regions for the fitting h and 1 subunit. But watch out 

for exceptions - some Fv’s are not very well represented by this dataset.

So run the CLASH program to check for clashes between 1 and h chain,

and have a look on a picture system.

The framework database

The framework database can be found in the udb directory. The directory con

tains the framework structures in PDB format. The structures have been sepa

rated in L and H chains. To add a new structure to the database you have to

read in the sequence of the new structure,using readseq. The .PDB file then has

to be truncated to match the sequence which you have typed in. The next step 

is to run the program prepare,which matches the sequence to the .PDB file and 

adds DEL entries in the .PDB file where these occur in the sequence. The last 

step is to separate the .PDB file in two .UDB file - one which contains the L 

chain and one which contains the H chain.

Remember to add the sequence and the name of the new framework structure to 

the sequence files:

• FRAMEL.DAT

• FRAMEH.DAT

• DB_V*.DAT < 14 files >
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P rob ing  a  new s tru c tu re
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When a new structure is added to the database it is necessary to check the 

structure for any possible misplacements. This is done in two possible ways:

1. Plotting the B-values of the backbone together with other structures. 

This gives a qualitative impression of how good the new structure is com

pared to other structures in the database. The program PDB2CURVY 

in Tools converts a .PDB file into a free format file of two columns con

taining the residue number and the B-value of CA of the given residue. 

This free format file can be plotted with suitable graph plotting pro

grams JPLOT (Pedersen, 1992),MATLAB (TM Stardent).

2. Comparing the B-values of the structure, flagging any residue which has 

a B-value higher than mean ±3 • SD  units.

3. If no B-values are present the framework has to be compared with other 

framework structures by least squares fitting, and flagging any non-CDR 

residue which has a deviation of ±3 • SD  units.

C om parison of m uta tion  procedures

The different versions of the framebuild program have been tested and compared 

to other existing methods available. These methods are:

• H Y D RA  mutate option in build menu. Uses maximum overlap replace

ment.

• FR O D O  Replace option, followed by Refi. This method uses a maximum 

overlap approach, married to a method which optimizes the position of the
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remaining atoms to be placed, such that bond angles and length are opti

mized. The method also checks for VdW clashes.

• C O M PO SE R  M.Sutcliffe’s (Sutcliffe et al., 1987a) sidechain replacement 

program which uses a database of homologous structures for the placing of 

sidechains.

• BUILD VI.0 replaces residues with standard conformation. VI. 1 replaces 

sidechains with standard conformation, but retains backbone. This method 

also includes equivalent chi-angles. VI.2 same as VI. 1 but does true over

lapping, using side chain for fitting if equivalent chi-angles are present.

The framework of Gloop2 light chain was build using the 1 chain from the database 

structure with the highest sequence homology (1REI61 %) and from the database 

structure with lowest sequence homology (1FB4 41 %). The results are comprised 

in table B.l.

The upper value in each box is the mean RMS deviation and the lower value is 

the Max deviation.

It is evident that the crude replacement of residue, simply taking standard con

formations never is going to give satisfactory results, no matter how large the 

statistical material is which has been used for establishing the standard confor

mation.

Build V I.1 simply gets the backbone right, but there must still be some mis

placed sidechains, as the max deviation is larger then the difference between the 

backbones alone(8.59 for 1REI and GLOOP2).
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Method Compared to Gloop-2 Compared to 1FB4
1FB4 1REI 1FB4
6.23 6.12 1.53

BUILD VI.0 17.11 10.23 5.23
5.00 5.23 0.90

BUILD VI. 1 14.29 8.93 2.49
4.56 4.26 0.33

BUILD VI.2 11.10 8.59 1.65
3.58 4.06 0.28

FRODO 10.73 8.59 1.58
5.20 4.53 0.45

HYDRA 10.91 8.59 1.78
3.20 3.34 0.41

COMPOSER 10.84 8.59 1.20

Table B.l: Comparison of several traditional Molecular Modelling Packages 
sidechain replacement methods. RMS Values are backbone and all atoms re
spectively for the complete construction of an Fv fragment.

Build V2.0 gives a proper overlap and matches very well the values obtained by 

FRODO and HYDRA. The method is slightly better than HYDRA. The method 

could probably be improved by driving the sidechain about the terminal chi-angel 

and testing for clashes, and minimising nonbonded energies.

The COMPOSER method is the superior method, specially when it comes to 

placing sidechains which have no equivalent chi-angles.

The placement of subunits - with regard to each other(Pairing)

To determine the best pairing, all the beta barrels of 8 antibody structures were 

fitted by a multiple fit. By this fit all the structures are fitted iteratively, deriving 

a mean framework for each iteration, which is used for the fitting in the next cycle.
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The regions fitted are the conserved regions determined by Chothia et al(Chothia 

et al., 1985). The best fitting hyperboloide is derived by the method described 

by Chothia (Chothia et al., 1985). The mean deviation (MD) was then plotted 

from the bottom of the barrel and up. The residues in each strand of the barrel 

which are closest to the antibody combining site (AC) are denoted as residue 1 

an so on. As an expression of the disorder the sum of the squared inter atom 

distances, for each atomic position in the multiple fit, is plotted. The strands 2,7 

and 8 seem to be significantly more disordered than the remaining strands. The 

most disordered strand (MD = 3 A) is strand 7. This strand is excluded in the 

framework fitting. Strand 2 and 8 have been kept. A more thorough analysis is 

required to determine whether exclusion of these strands is justified. The same 

plots have been made - but by plotting the MD and disorder as function of 

distance between the projection onto the conjugate axis and the focus.

Loop numbering

In order to facilitate the construction of Fv domains a standard numbering of 

loop regions has been adopted, table B.2

There are obvious disadvantages by using this method. The numbering has to be 

changed if new antibody crystal structures contain longer CDRs than any other 

known structure. This disadvantage can be remedied by allowing for huge(50 

AA’s) in the middle of the CDRs.

Note that the latest change is the insertion of two DEL entries in CDR HI to 

accommodate for 7 residue loops.
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CDR residues First residue Last residue
LI 24 40
L2 56 62
L3 95 105
HI 148 154
H2 170 180
H3 220 236
Framework residues First residue Last residue
LFR1 41 64
LFR2 51 55
LFR3 91 92
LFR4 106 110
HFR1 155 158
HFR2 164 169
HFR3 215 219
HFR4 237 238

Table B.2: Standard CDR loop numbering, and numbering of framework f3- 
strands (UDB numbering)
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