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Summary

The neuromodulatory effects of nicotine and the degenerative disorder of Parkinson’s disease 

have been the subject of experimental study worldwide. As yet there has been no mathe­

matical modelling of the effects of nicotine and Parkinson’s disease at the cellular level, a 

process that is capable of providing great insight and a much better understanding of the 

mechanisms involved.

We present a variety of models that attempt to describe various aspects of nicotinic effects and 

of Parkinson’s Disease. We first model the nicotinic-agonist induced release of transmitter 

from the experimental preparation of synaptosomes, the results of which we can describe 

well with our quantitative model which suggests that nicotinic agonists induce release from 

synaptosomes by prompting the repetitive firing of action potentials.

We consider the apparently pleasurable effects of tobacco smoking by modelling the burst fir­

ing pattern of mesolimbic dopamine neurons. This pattern, which is physiologically relevant 

to the rewarding effects of addictive drugs, can be caused by the calcium-dependent inac­

tivation of an otherwise voltage-dependent potassium channel. Furthermore we show that 

for this inactivation to take place, calcium levels must be elevated by the forcing of action 

potentials by an external excitatory input, that nicotine can potentiate.

The modelling of the long-term effects of nicotine addresses how persistent exposure to nico­

tine can lead to both a functional tolerance to its effects, by a downregulation in functional 

receptor numbers, and a sensitisation, by the induction of a long-term potentiation-like up- 

regulation of synaptic strength. We demonstrate that this sensitisation, once induced, can 

be self-sustaining and as such can be maintained indefinitely.

By modelling the neuronal network affected by Parkinson’s Disease we study how the onset 

of this disease leads to changes in neuronal function and how this may explain some of the 

clinical symptoms of sufferers. In particular we can demonstrate that the model is robust 

to large losses of dopaminergic input before there are any changes in the dynamics, when 

oscillations analogous to the resting tremor in patients emerge.
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Chapter 1

Introduction

1.1 M athem atical M odelling

1.1.1 W hat is a m athem atical model?

A model can be considered to be any theoretical description of another system, which may be 

complex real life physical systems through to other models. Mathematics provides a language 

that is highly suited to describing such a theoretical model formally and rigorous techniques 

that may be used to analyse this description and tell us how our model (and by implication 

the original system) behaves. We can then define a mathematical model to be a formal 

description of a theoretical model.

1.1.2 M odels are in use everywhere

Before advancing reasons as to why modelling can be a useful process it is worth stressing 

that models are already in use in everyday life. This is to address the point that is often 

made to me (and often by experimentalists) that models are not real, implying that as such 

they have no use. However we all use models; simple cases being such things as estimating 

car journey times based on average speeds, or where to put our hand to catch a ball.

We can also counter that so-called ‘real’ experiments are often based on artificially created 

‘model’ preparations and the results gleaned involve measurements of parameters that are 

themselves based on models, such as reading from an oscilloscope. Of course such models 

have been extensively tested and are generally accepted to be accurate to within certain limits 

and so are as ‘real’ as we can expect. This is a process that must be done with any of our 

modelling; testing and discussing where its conclusions are valid.

13
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Probably mathematical-biology’s greatest success in neuroscience has been Hodgkin and Hux­

ley’s description of current in excitable cell membranes [41] (described in section 1.2.2). This 

is certainly a mathematical model but has proved to be so accurate that it is used today by 

neuroscientists as a description of how ion channels are thought to work. The parameters 

necessary for the model are readily measured by experiment. It has long since ceased to be 

considered a model and has become part of the subject it was intended to describe.

1.1.3 The Advantages of M odelling

It may not be apparent how a model can be of use. Since it represents a theoretical descrip­

tion it will generally be deficient in some way and is therefore wrong. So how can such a 

simplified model be useful? It is often the case that the preparation of study (populations of 

insects, bits of brain, or the motion of the planets) is terrifyingly complicated. If we wish to 

understand how the system functions, or to make predictions of future behaviour, we must 

make simplifications. This forces us to create a theoretical model and mathematics allows us 

to write this down in a formal way.

A simplified description will then identify the major components that cause the system to 

behave the way it does, minor components having been discarded (subject to justification). 

The act of writing down a model forces the modeller to consider the system in a very proper 

way, which can itself be instructive and show up any flaws in a theoretical model.

Where such a model describes the system well we can be confident that we have an accurate 

picture of how it computes. Conversely there may be areas in which the model is deficient, in 

which case we know that we may have missed a process, or have been unjustified in removing 

a known one. Hence the development of a model can help here; it can act to confirm the 

theories we propose and also reveal any holes that may exist. A good model may also be able 

to suggest what process is missing that plugs this hole. This makes the interesting point that 

even when wrong, a model may be very useful, depending on the reasons why it is wrong.

Once developed it may be possible to observe the behaviour of the model in the study 

of the system, rather than performing the wet experiments. The running of the model, 

typically by computer simulation, can be quicker, easier, less prone to experimental error 

and cheaper than laboratory based experiments. It may be the case that the model has a 

higher resolution in space or time than the wet experiments and it can therefore give results 

outside the experimental range. Attempts to fit the model quantitatively to experimental 

preparations can allow the estimation of parameters that may be otherwise unknown.
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Either by some mathematical analysis, or simulation runs, the model may display some novel 

aspects that are not apparent in the original system. The model may then be of use in 

designing a suitable wet experiment that will determine whether this is a true result of the 

system or a false result from the modelling. Hence it may also be used to discover new 

features of experimentally characterised systems.

Mathematical models therefore have many advantages over wet experiments and, in descrip­

tive terms, over the original system. However it is generally true that the development and 

testing of models requires results from wet experiments. Hence modelling can never totally 

replace experiments, but ideally the two will enjoy a synergistic relationship; experiments 

will enable the development and testing of models which can then refine current, or suggest 

new, experiments.

The advantages that modelling can bring necessarily require that the model is developed in a 

sensible and accountable way. These processes are detailed in the following couple of sections 

where we shall first describe some relevant modelling that has been performed thus far in the 

neurosciences. We shall then detail some of the additional techniques that we have had cause 

to use in our own modelling efforts.

1.2 M odelling in the Neurosciences

1.2.1 M ichaelis-M enten Theory

This section will detail three important ideas that are used in our modelling; the first concerns 

chemical reaction rates between two reactants. The other two are the pseudo-steady state 

hypothesis, where fast effects may be considered to be at equilibrium; and the conditions 

when slow effects may be regarded as constant. These have important implications when 

considering effects that happen on very different timescales. This description is taken largely 

from a dealing with enzyme reactions found in Murray [66], which has the best example and 

explanation that we have seen.

Consider the following basic enzyme reaction, proposed by Michaelis and Menten in 1913 

[62]. A substrate S  reacts with an enzyme E  and the compound object S E  is converted to 

a product P  and the enzyme. This is given schematically by

S  + E  ^  S E H P  + E. (1.1)
k-i
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Denoting the concentrations [S'], [E], [SE] and [P] by s, e, c and p we may write down a 

system of reaction equations describing (1.1) using the law of mass action. This states that 

the rate of a reaction is proportional to the product of the reactants. If the k's in (1.1) are 

the appropriate constants of proportionality we may write

ds
dt
de
dt
dc
dt
dp
dt

= -k ie s  +  k - ic , (1.2)

=  —kies +  (fc_i +  k2 )c, (1.3)

=  kies -  (k-i  +  k2 )c, (1.4)

=  k2 c, (1.5)

with initial conditions

s(0) =  s0, e(0) =  e0, c(0) =  0, p(0) =  0. (1.6)

Equation (1.5) is uncoupled from the rest and has solution, once c(t) has been found

p(t) = k2 f  c(t')dt' . (1.7)
Jo

Furthermore E  is a catalyst and so its total concentration is a constant, eo =  e(t) +  c(t), 

enabling us to reduce our system to just two equations

ds
—  =  - k i e 0s +  (kis +  fc-ijc, (1.8)

dc— = kieos -  (kis +  k - i  = k2 )c. (1.9)
dt

Using the non-dimensionalisation

r =  fcie0t, u {t ) =  v (t ) =  — ,
co

k  = ^ ’ e = 70 ^

we obtain

=  —u + (u + K  — A)u, (1-11)dr
dt)

£ ■ =  U ~ {u  + K)v, (1.12)
dr

w(0) =  1 (1.13)

u(0) =  0. (1.14)

It is noted in biological reactions that the catalytic effects of enzymes is reflected in the low 

concentrations needed to react with the substrate and so 0 < £ <  1. Hence v changes very
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rapidly compared to u. If we look for a solution of the form

w(r ; e) = J 2  £n^ ( T)’ V(T’>£) = ^ 2  £n^n(r), (1.15)
n —0 n = 0

substituting into (1.11)-(1.14) and comparing powers of e we obtain the 0(1) terms
duo
—j— = —u o +  (uo +  K  — A)uo, (1-16)dr

0 =  u0 -  (u0 +  K )v0, (1.17)

u(0) =  1 (1.18)

u(0) =  0, (1.19)

which we may solve to obtain

uq(t ) + K  \iiuo(t ) = 1 — \ t (1.20)

( 1 ' 2 1 )

which clearly does not satisfy i>(0) =  0. This is because we have reduced the order of our 

system in setting e =  0 , hence we have only one constant of integration with which to attempt

to satisfy both initial conditions. We need to retain the order of our system near e = 0. The

solution (1.20)-(1.21) is the outer or non-singular solution, valid for r  away from 0 .

Changing variables to

°  =  e ’ u (r ;£ ) =  v (T'i£) =  (L22)

which serves to magnify the region close to 0 , we obtain

^  =  - eu  + e{U + K -  A)V, (1.23)
da

= U - ( U  + K)V, (1.24)
aa

U{ 0) =  1 (1.25)

F (0) =  0 . (1.26)

Repeating as before for

U(a-,e) = J 2 e nUn(<r), V(a;e) = Y , e nVn(a), (1.27)
n = 0  n = 0

we retain the order of the system for the 0 (1) equations given by

^  =  o, (1.28)
da
dV
—  = Uq - ( U o + K)V0, (1.29)
aa

£7(0) =  1 (1.30)

V(0) =  0, (1.31)
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with solution

U0 (a) =  1 (1.32)

V0 (<r) = (1 +  K )~ l (1 -  exp(—(1 +  K )a ) ) . (1.33)

This is the inner or singular solution and is valid for 0 < r  1. Note that for e -» 0 (i.e. 

t  ->  0 , <7 —» oo) the solutions match; l im ^ o o  Uo =  1 =  limT=o uo and l i m ^ o o  Vo =  —

limT=0 vo.

We have shown that the change in the substrate-enzyme complex is very fast, taking place

as r  =  0 (e) in dimensionless time. In dimensional time this is 0 (~kr^)* If this is also very

fast, then the inner solution is effectively never seen (experimentally immeasurable) and the 

system is described by the outer solution (1.20)-(1.21) and the variable v is essentially at 

steady state since ~  0. Hence v changes so fast that it is more or less at its steady state 

for all time and is called the pseudo-steady state hypothesis.

Conversely when considering the fast timescales close to r  =  0 our solution is given by the 

inner solution (1.32)-(1.33) and hence at such timescales we can consider the slow component 

(in this case Uo) to be constant.

1.2.2 H odgkin and H uxley

The work of Hodgkin and Huxley [41], for which they were awarded the 1963 Nobel Prize 

in Physiology and Medicine, underpins much of the modelling that we perform. Chapters

2,3 and 4 all feature ion channels that are modelled using the approach of these two, first 

identified in their studies on the conduction of action potentials in the squid giant axon.

As one might expect, experimental neuroscience in the early part of this century was limited 

by the lack of equipment and techniques to study preparations with the small scale and fast 

kinetics of neurons. At 1mm in diameter the squid giant axon (not to be confused with the 

giant squid of nautical mythology) represented the most amenable preparation and by the 

time of the Second World Wax it was possible to measure the membrane potential of the axon 

by inserting an electrode along the inside of it.

Hodgkin and Huxley regarded the axon membrane to be acting as an electrical capacitor 

separating the imbalance of ions, where the membrane potential is given by
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where Cm is the electrical capacitance, measurable by plotting the time course of voltage for 

injected currents in the absence (blocking) of ionic currents [47] [66]. It was proposed that the 

ionic currents could be separated into three; one for potassium {Ik), sodium {Ina) and the 

other to describe the remaining currents in the axon {II), called the leakage. Experimentally 

noting that the instantaneous current-voltage relationship of the squid axon appeared to be 

linear they could propose that

I\on{V,t) = I r  + Ino, + I l  = 9K{V,t){V - V k )  + gNa{V,t){V — Vno) +  9 l { V - V l ) +  / app

(1.35)

where 7app is the applied current and the g terms describe the conductance of the other 

currents. Each current is proportional to the voltage gradient given by the difference between 

membrane potential and the Nernst potential of the ion species, such a dependence having 

been experimentally observed. The Nernst potential is the potential difference due to two 

phases of differing ionic concentration (and is derived in section 1.2.3).

W ith further refinement of the techniques involved, Hodgkin and Huxley were able to begin 

their formulation. This largely involved the use of a voltage clamp, a technique that fixes 

the membrane potential and then can measure the transmembrane current by recording the 

current necessary to maintain the clamp. The ability to fix the voltage meant that the 

otherwise time and voltage dependent currents measured were functions of time only. By 

stepping the voltage up to a fixed higher level it was observed that an initially inward current 

was followed by a slower developing outward current, which they considered to be mediated 

by sodium and potassium ions respectively.

By measuring the current in this initial inward phase they considered that they were measur­

ing the changing sodium current. Replacing portions of the extracellular sodium ions with 

the relatively inert choline they were able to measure the ratio of the sodium currents and the 

potassium current. Hence they solved for the conductances gNa and gK for steady voltages 

as functions of time.

Observing that the potassium conductance had a sigmoidal increase and exponential decrease 

they supposed that

9 K{V,t) = g~KnA, (1.36)

for a constant g~K. The fourth power was chosen since it was the smallest power that fitted 

with the experimental data, where n obeys
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(1.38)

for time constant function rn{V) and steady state activation curve n ^ fF ) . n(t) is then known 

as the potassium activation. Supposing that at t = 0 the voltage is stepped from 0 to vq and 

then held constant, solving (1.37) gives

n(t) = nQo(0) +  (rioofvo) -  n^fO)) 1 -  exp ^

which is sigmoidal in appearance when taken to the fourth power. Similarly a step decrease, 

from vo to 0 say, has solution

n(t) = noo(0) +  (noo(vo) -  n^fO)) exp > C1-39)

which has n4 exponentially decaying.

The discrete values and tn could then be found by fitting (1.38) and (1.39) to the exper­

imental data characterising p#. Curve fitting then yielded continuous functions n oc(V') and 

T n ( V ) .

The sodium conductance was described in a similar way, except that it was observed that 

the current seemed to have two effects, one that switched on the current and the other that 

switched it off. This lead to the formulation

9 N a ( V , t )  = gNam 3 h, (1.40)

where m(t) is called the sodium activation and h(t) is the sodium inactivation. These are 

defined analogously to n(t) and the appropriate functions derived from curve fitting as before.

The conductance of the leakage current gi,, assumed constant, is easily derived from measuring 

the ionic current when both the sodium and potassium currents are blocked.

The equations derived produce a mathematical model of the production of action potential 

generation in the squid axon. Numerical solution of these equations, some of which were 

produced by Huxley on a hand-cranked calculator, produced accurate traces of action poten­

tials. Figure 1.1 shows the numerical solution of the so-called Hodgkin and Huxley equations 

for an applied current of O.lnA. A key characteristic of the model is that it is excitable; for 

small current injections the resting potential is a stable steady state but a sufficiently large 

perturbation, past a threshold, can send the membrane potential off on a large deviation (an 

action potential) before it returns to rest. Prolonged current injection can cause the resting 

potential to shift above the threshold and so lead to periodic firing.

The work of Hodgkin and Huxley lays down a procedure for the experimental protocol and 

parameter and function derivation required to produce accurate mathematical models of
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Figure 1.1: A plot of membrane potential in mV against time in ms for the numerical solution 

of the Hodgkin and Huxley equations in the squid giant axon, for an applied current of O.lnA. 

This produces the periodic firing of action potentials. Resting potential was defined to be 

OmV.

currents in excitable cells and is still used today. Many mammalian channels can be fitted to 

a Hodgkin and Huxley scheme by measuring for the steady state activation and time constant 

functions and it may also be extended to take account of dependencies on ion concentrations 

as well as voltage.

These can be used to describe the dynamics of membrane potential in many varied prepara­

tions; all of the ion channels explicitly modelled in this thesis are consistent with the Hodgkin 

and Huxley formulation. Many of the channels that we have used are taken from a 19 com­

partment model of a CA3 hippocampal pyramidal neuron in the rat [98]. This model by 

Traub and co-workers features six different types of ion channel which are either consistent 

with, or extensions of the Hodgkin and Huxley scheme and is capable of reproducing the 

complex periodic and bursting firing patterns seen in these neurons.

Not all channels can be fitted to this scheme [47], notably currents in which the instantaneous 

current-voltage relationship is non-linear (one of the original assumptions of the formulation 

was this linearity). Moreover by being quantitatively accurate, the equations are largely 

intractable to mathematical analysis and so any study of such systems necessarily leads to 

extensive numerical solving.

1.2.3 A lternative M odels of Ion Channels

Whilst Hodgkin and Huxley channels are sufficiently accurate for the modelling we shall do, we 

should mention the other ways in which ion channels may be modelled. In particular Hodgkin
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and Huxley assumed that the instantaneous current-voltage relationship of open channel was

linear. Here we shall consider an alternative formulation that leads to the Goldman-Hodgkin-

Katz equation that can be a better approximation to ion channels in vertebrate axons [47].

First let us consider an ion species of concentration c, then its flux is given by Fick’s Law

J  =  - D V c  (1.41)

where the scalar D is the diffusion coefficient. Similarly the flux due to an electric potential 

4> is given by Planck’s equation

J = _ wJ L cV </> (1.42)
\z\

where u = D \z\F /R T  is the mobility of the ion. z is the valency of the ion species, F  Faraday’s 

constant, R  the universal gas constant and T the absolute temperature. Combining these

and assuming that all flow is across a membrane of length L  in the direction of the r-axis we

can write down the one-dimensional Nernst-Planck relation

T ŷ  f  dc zF  d6 \
J  = —D ( —----b r=r=c-f- . (1.43)\ d x  R T  dxJ

By setting V  =  </>(0) — </>(L), that is the potential difference across the membrane due to the 

ion species, then integrating (1.43) for zero flux we obtain the Nernst equation

V =  f l n ( | )  (1.44)

where ca and c* are the concentrations of the ion species inside {x = 0) and outside (x = L ) 

the membrane respectively.

If we assume that the electric field in the membrane is constant (the so-called constant field

approximation) then dV/dx =  — V/L. At steady state, with no ion production, the flux J  is

constant and we obtain an ODE for the concentration c

dc zF V  J
TX ~ R T L C + D = ° ■ (1'45)

Integrating and satisfying c(0) =  Cj and c(L) =  cQ we get

D z F V C i - c ee x p (= $ £ )
J ~  L R T  i - eXp ( ^ £ )  ' 1 J

The flux density J  becomes a current density I  when multiplied by zF  and so we obtain

j  =  p ( = g F )  ( 1 47)
p  R T V  l - e x p ( = ^ E )  ’ ( ’

where P  = D /L  is the permeability of the ion species, analogous to the conductance g in the 

Hodgkin and Huxley formulation. (1.47) is called the Goldman-Hodgkin-Katz equation.
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1.2.4 The Fitzhugh-N agum o M odel

The Fitzhugh-Nagumo model [24] [66] [20] is an attempt to simplify the Hodgkin and Huxley 

equations into a model that allows mathematical analysis. Fitzhugh had already produced 

some elegant qualitative analysis of the original equations by considering the fast and slow 

phases of the Hodgkin and Huxley equations and it is by considering these different speeds 

that some progress can be made.

The m  variable is much faster than n or h and so is assumed to be at steady state (the 

pseudo-steady state hypothesis introduced in section 1.2.1). The system still retains many of 

its features if h = ho, a constant. The resulting two variable model can then be qualitatively 

approximated by the nondimensionalised system

dv— =  v (a -  v){v -  1) -  w +  Ja, (1-48)
at

dw
—— = bv — 7  w, (1-49)dt

where 0 < a < 1 and 6 ,7  > 0 . v acts like the membrane potential and w acts rather like a 

combined potassium activation and sodium inactivation. The dynamics of the system can be 

illustrated with phase plane analysis.

For certain values of a, b and 7  it is possible for the system to have three steady states, two

stable and one unstable. The model then displays bistability, with ‘potential’ resting at one

of the stable steady states and suitably perturbing current injections shifting it from one to 

the other. For its particular relevance to the Hodgkin and Huxley model of the squid giant 

axon, we shall consider variable values for which there is only a single steady state.

For Ia =  0 the phase plane is then as in Figure 1.2 with a single stable steady state at zero. 

The excitability is clear, since any perturbation that pushes v > a must pass through the 

right branch of the v =  0 nullcline before it can return to 0 .

For I a > 0 the steady state can lie on the middle branch of the v = 0 nullcline, as in Figure 

1.3. For such current injections the steady state may be unstable and periodic oscillations 

are possible. For even greater values of Ia the steady state stabilises on the right branch.

The Fitzhugh-Nagumo is an example of a model of a model. Whilst it does not have the 

quantitatively accurate predictions of the original Hodgkin-Huxley equations it is open to 

mathematical analysis. With this simplified model we can explain important features like 

excitability. This is a technique we shall often use, where we take a complicated model that
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v < 0

V =

v — 0

Figure 1.2: The phase plane for the Fitzhugh-Nagumo model for no applied current. The 

steady state at 0 is stable but excitable.

may only be solved numerically and produce a simplified model of this that we are able to 

analyse.

This model also shows how simplified a model may be, yet still retain many of the features of 

more complex systems. The Fitzhugh-Nagumo is only one of many 2-variable models of action 

potential firing in excitable membranes; others include the Morris-Lecar model [65] which may 

be considered to be a Hodgkin and Huxley /  Fitzhugh-Nagumo hybrid. This model is based 

in the context of the electrical activity of the barnacle muscle fibre and incorporates a voltage- 

dependent calcium channel and a delayed-rectifying potassium channel. The equations are 

given by

dv
37  =  -gcamoo(v)(v -  1) -g~Kw(v - v K ) ~ 9 ~l ( v  - v l ) +  2app (1-50)dt 
dw
dt ^ rw(v)
dw = ^ v j - w

where

mooM = ^ ^1 4- tanh ^  > t1'52)

WooM =  ^ ^1 +  tanh v ’ (1.53)

These equations are also amenable to phase plane analysis and provide explanations for such 

features as excitability and bifurcation to periodic solutions. For a full treatment see [49], 

[20] or [65].
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w

v =

v = 0

Figure 1.3: The phase plane for the Fitzhugh-Nagumo model for values of applied current 

that put the steady state on the middle branch. In this situation the steady state may become 

unstable and periodic oscillations are possible.

1.2.5 M odels of Firing for Sim ulations

Whilst Hodgkin and Huxley provides a quantitatively accurate model of action potential 

firing its computational complexity makes it undesirable to use in models of coupled neurons, 

where we may only wish to know when a spike arrives rather than all the details of its 

shape and magnitude. Fitzhugh-Nagumo and Morris-Lecar, though much simpler, are largely 

engineered as qualitative models and may be difficult to fit to specific neurons. It is convenient 

in simulations to use the integrate and fire model.

The integrate and fire model [10] is perhaps the simplest model that generates discrete spikes. 

It depends on only two parameters; the spike threshold and the refractory period, both 

of which may be easily determined from experimental data. The model states that if the 

membrane potential is above the threshold and there has not been a spike in the previous 

refractory period, then one is generated. The output is then the time of the spike. This is 

clearly a simple and efficient procedure to implement in computer simulations.

When considering networks of coupled neurons it is then necessary to be able to interpret 

the effect on membrane potential of a train of spikes causing input to a neuron. A single 

stimulation of postsynaptic receptors causes a wave of depolarisation due to a time-dependent 

variation in the conductance. This variation can be approximated by a smooth function of
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the form

*"»(*) = (exp (= f) -  exp ( ^ ) ) - (l54)

where A  is a normalisation constant chosen such that gsyn reaches a maximum value of gmax 

[10]. T\ and T2 axe of ‘off’ and ‘on’ times of the conductance respectively. For a sequence 

of spikes with arrival times given by {tk} incident on a synaptic connection with reversal 

potential Esyn the current input to the neuron, IQ, is given by

I 0 -  (Esyn -  Vm) Y ^ H ( t  -  tk)^ 9™^ ^exp ~ exP ’ t1'55)

where H(t ) is the Heaviside step function, which again lends itself to computer simulation. 

The current input will serve to alter the membrane potential via a typical membrane as 

capacitor equation such as

r7T/
= R(Vm,t) + I 0 (t) (1.56)

where R(Vm,t) is an appropriate term that describes the currents due to the intrinsic ion 

channels of the cell.

1.2.6 Cable Theory

Thus far we have been regarding membrane potential to be a function of time only, considering 

that the preparation of study is a single electrical compartment and thus all points have the 

same potential. For an entire neuron, or even for parts, this cannot be expected to hold and 

we must consider how membrane potential changes over spatial scales.

The idealised picture of a neuron is of a central soma which is responsible for generating the 

action potentials, which it sends down excitable processes called axons (like the squid giant 

axon of section 1.2.2) which make chemical synapses with other neurons. The neuron receives 

signals on a series of branching processes called dendrites which are assumed to be passive 

(independent of membrane potential - no voltage dependent ion channels). The summation of 

all of these inputs at the soma is then considered to be the variable that determines whether 

an action potential is fired or not.

Of course this is not generally true; dendrites may be excitable; processes may act as both 

axons and dendrites; and there may be many areas of spike generation to name but three 

[45], but this description will be sufficient for our purposes. Neurons can be generally pieced 

together as thin tubes wrapped in membrane. This membrane is a good electrical insulator
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compared to the intracellular fluid and so electrical current within the core tends to flow 

parallel to the cylinder axis. The spread of membrane potential may then be given by 

applying the one-dimensional cable equation [10] [49]:

Let us assume that the cylinder lies along the a>axis and that membrane potential V  is a 

function of x  and t only. We shall also assume that in this treatment that the membrane 

is passive. Then for longitudinal current I  and cytoplasmic resistivity (resistance per unit 

length) Ti, Ohm’s Law gives us

m

taking current to be positive in the positive x  direction.

Membrane current either crosses the membrane through passive pores, with resistance r m, 

or charges the membrane, with capacitance per unit length cm. Then the current change per 

unit length (d l /d x ) is the density of this membrane current and hence

d l  ( V  d V \  .
d x ~  ( rm + C m d t ) ■ ( 1 ' 5 8 )

Combining (1.57) and (1.58) we obtain the cable equation, a second order PDE in x  and t

1 d2V  V  dV
o 2 — Cm ph. " (1.59)ri ox1 rm ot

For a complete derivation of the cable equation, see Rail [80].

In practical models with spatial components the neuron is normally divided into many smaller 

compartments each of which is considered to be isopotential [98]. We then spatially discretise 

the membrane potential. If the potential of the fcth compartment is Vk, which is connected 

to the (k — l)th  and (k +  l)th  compartments then we may write

i -  vk) + -^—(vk+1 -  vk) -  iion,k(vk,t), (i.60)
d t  r k—l,k r k+l ,k

where ri}j is the resistance between the zth and j th  compartments.

The cable equation (1.59) may be explicitly solved for various cases, particularly for assuming 

the steady state (dV /d t) = 0 and the variation of membrane potential with spatial distance 

derived. Note that in the case of a very small cylinder, dV/dx  w 0 and (1.59) reduces to the 

isopotential case, as in (1.34).

It is this latter case that we are interested in; clearly any description of membrane potential 

in an excitable cell will become incredibly complicated and analytically intractable if we are 

required to consider spatial variation, whether this means evaluating (1.59) or (1.60). We 

can take a major step towards producing a simpler model with dynamics we can analyse if 

we can find good reason to neglect the spatial components.
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1.2.7 Coupled Oscillators

Here we will introduce some of the work done on models that mimic the behaviour of two 

coupled oscillators, intended to study the ways in which biological oscillators may influence 

each other. For example the sinoatrial node in the heart has many oscillators of differing 

frequencies coupled together and their collective behaviour is largely responsible for the ini­

tiation of the cardiac action potential. We will be considering a model due to Rand et al [81] 

[10] where each component is taken to be a simple oscillator, ignoring any structure of the 

oscillation and the mechanisms that provoke it.

The behaviour of an oscillator will in reality be determined by a multitude of parameters. 

If we consider for a moment that the trajectory drawn in parameter space is a closed loop, 

then we may be able to describe our position around this loop by an angle 0, relative to some 

fixed angle 6 q. If we suppose as time progresses, 6  moves uniformly around the closed loop 

with frequency to then

0  = u  (1.61)

which implies, using modular arithmetic that

6 { t )  =  (wt +  0o)(uiod27r) (1.62)

though for convenience we shall omit the (mod27r) from now on.

Suppose that we have two oscillators described by 0\  and 62 and they are coupled (have an

effect on each other). We will suppose that the coupling is as proposed by Rand et al [81]

and given by a -̂ sin( 8 j  — 0i ) ,  which is known as diffusive coupling. Hence

0i(t) =  uji +  au  sin(02 -  0i) (1.63)

02M =  ^2 +  0.21 sin(0i -  02). (1-64)

Defining the phase difference (f> = 0\ — 6 2  we obtain

4>(t) =  (wi -  W2) -  (012 +  a2i) sin(<p(t)) (1.65)

which has steady states given by

0 * =  sin-1 (  — — — ^ . (1.66)
\ a i 2 +  021 /  '

For small <212 +  <221 there are no solutions and the oscillators drift with respect to one another

(the coupling is too weak). For steady state solutions the motion is phase-locked and one
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oscillator will lead the other by an amount (f>*. Note that in the special case of the intrinsic

frequencies being close together, ui — U2 ~  0 and the oscillators synchronise, either in phase

or in anti-phase.

This model is not sufficient to describe all possible types of oscillatory behaviour, in particular 

the choice of diffusive coupling is restrictive. In Chapter 5 we adapt this phase equation idea 

to produce a specialised quantitatively accurate model of oscillating neurons coupled by gap 

junctions. Other workers, in particular Ermentrout and Kopell [22] [49] have extended the 

modelling of Rand with more realistic coupling. They prescribe

6i{t) =  uq +p(62)r{0i), (1.67)

02 M =  ^2 + p ( 0 iM 0 i ) .  (1.68)

Here p is a periodic smooth pulse function, supposed to be a measure of the coupling effect 

from the incident oscillator. Strictly the arrival of a pulse should be modelled with a Dirac 

delta function but Ermentrout considered that since real stimuli are not instantaneous it is 

reasonable to replace the J function with a smooth function p. r takes the form of a phase 

response curve. A phase response curve can be found experimentally by stimulating the 

oscillator and measuring the phase change when it settles back to periodic oscillations.

Ermentrout and Kopell show that for this type of coupling the phase equations display 

qualitative behaviour similar to more complex modelling efforts. Of particular interest is that 

for sufficiently strong coupling the system may exhibit oscillator death where the oscillator 

remains at a constant point in state space.

1.3 M odelling Techniques

This thesis contains a variety of attempts to mathematically model neuronal systems, with 

an emphasis on problems concerned with the purportedly addictive drug nicotine and Parkin­

son’s disease. In this section we shall detail how we approach the task of developing, testing 

and analysing such a model.

1.3.1 M odelling Philosophy

We may first ask what it is we wish our modelling to achieve. Mathematical-biology is 

considered to be one of the fastest growing fields of interest in contemporary mathematics 

as both a source for new and interesting mathematical problems and for the insight that
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mathematical analysis can bring to biology. For what may be considered the best approach

to modelling biological systems I can do no better than quote from J.D. Murray, author of

the seminal work Mathematical Biology [66]:
“The art of good modelling relies on: (i) a sound understanding and appreciation

of the biological problem; (ii) a realistic mathematical representation of the impor­

tant biological phenomena; (Hi) finding useful solutions, preferably quantitative; and 

what is crucially important (iv) a biological interpretation of the results in terms of

insights and predictions. ”
This makes the important distinction that it is the biology that is the driving force. The

modelling is designed to address biological problems and not to try and solve mathematical

ones that have a tenuous link to something in biology.

A model will typically be based on a well defined biological system that will have, hopefully, 

been the subject of extensive experimental investigation. The processes built into this model 

will be (sub-)models of cellular functions that are known or believed to be present in this or 

similar preparations. It is natural to require that all experimental observations (qualitative 

and quantitative) are reproduced in the model; those that axe not featured should be detailed, 

along with hypotheses on how the condition could be met and how this model fault affects 

its use as a viable representation of the biological system.

We accept that there will be occasions when too little is known of the mechanisms underlying 

a biological system to be able to model it correctly, to the extent we would wish. In such 

cases we shall propose our own processes, which shall be clearly stated with the reasons why 

we consider this to be a valid mechanism. This will typically be that a similar mechanism 

produces a similar response in other, relevant, systems. Where possible we should then use 

our model to design experiments that will test the viability of our proposal. This does not 

mean that we are going to include mechanisms purely on the grounds that they solve our 

problem.

In what may seem to be a conflicting aim, we also wish to produce models that describe cell 

function while being as simple as they can. In the course of this we may well produce a model 

that does not contain some cellular components we know to be present, typically because we 

can reproduce the system behaviour without it. Such omissions must be justified.

Producing a simple model has many advantages; we are often modelling to try to understand 

an otherwise horrendously complicated biological system and so a simpler model is easier to 

understand. Simplification also speeds model development and any quantitative fitting. In 

particular it eases model analysis; the mathematical procedures we wish to apply are often
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limited in the systems that they may be applied to, for example the Poincare-Bendixson 

Theorem is only applicable to two-dimensional systems.

The simplification of the model in terms of including fewer, or simpler processes will be 

extended to the mathematics we shall use. There is no point in using complex mathematics 

in a model in an attempt to produce more accurate results if a simpler representation is 

sufficient, easier to understand and more amenable to analysis; to do so is to fly in the face 

of what we hope to achieve by modelling.

1.3.2 From Biological System  to M odel

Throughout our modelling we have used a fairly standard approach in deriving our models 

from the biological system of study. The model can be regarded initially as a black box with 

a series of inputs and outputs, which it is our first job to identify. The inputs are the set of 

experiments (wet, or suitably sound theoretical ideas in the absence of wet data) performed 

on the preparation and any other influences that we may wish the model to be subject to, 

which will often be stimulation with chemicals such as nicotine or changes in extracellular 

ion concentrations.

The outputs are any experimental observables combined with the results from the model 

with which we are primarily concerned. This may be anything from monitoring transmitter 

release and firing patterns to the abundance and location of nicotinic receptors.

With these so-called inputs and outputs determined, we then begin a process of identifying 

the mechanisms and processes that link the two together. This may require us to go to 

finer levels of detail until we can clearly define the steps that cause input to lead to output. 

Naturally the extent of detail that we feel is necessary is open to different interpretations 

and revisions. This should represent the model at its most complex, excepting any errors 

in the model results that lead to revisions. It may be possible at this time to discard some 

mechanisms that, although they help in development, may be superfluous for the uses we will 

put our model to.

Once such a theoretical model has been defined we will take each process or mechanism in 

turn and describe each in mathematical terms; either drawn from previous models of similar 

mechanisms or designing our own. The combination of all this process of course creates 

the mathematical model, which should then be amenable to any quantitative fitting that is 

required and to the analysis we wish to perform.
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This approach may seem obvious, but is very useful in that we are immediately concerned 

with the inputs to and results of the system; that is what we know already and what we wish 

to. Only considering the links between the two means that we should never be dealing with 

cellular processes that are unnecessary and only serve to over-complicate our modelling.

1.3.3 Steady States and Periodic Orbits

For many of our models their behaviour may be characterised by the study of any steady 

states or periodic solutions they may possess. Our ODE models are generally non-autonomous 

and may be written as

u (t;u 0) =  F (u  (t),t), u(0) =  uo, (1.69)

for state variable u E Mn .

D efin ition  1.3.1 u* is a steady state for the system (1.69) ifF (u* ,t) = 0 Vt > 0.

Hence u* represents a point in state space where the state remains constant.

D efin ition  1.3.2 A steady state u* of (1.69) is said to be stable if for a given e > 0 there is 

6 > 0 such that for each uo satisfying ||uo — u*|| < S then ||u(£; uo) — u*|| < e for all t > 0.

A steady state is unstable if it is not stable. Stability implies that for small perturbations of 

the steady system, the solution for all future time remains close (in a mathematical sense) to 

the steady state. For an unstable steady state any small perturbation will cause the solution 

to diverge from the steady state.

This is important for biological models considering that such systems are generally subject to 

noise. Firstly for any solution of (1.69) at a steady state, the solution will effectively remain 

there for all time since the system is robust to the small perturbations caused by the noise. 

Conversely steady solutions at unstable steady states are generally not seen in biology, since 

the noise shifts the solution away from the steady state and it subsequently diverges.

D efin ition  1.3.3 A steady state u* of (1.69)is attractive (in a radius R  > 0) if for any 

initial condition Uo such that ||uo — u*|| < R  then u(i;uo) —> u* as t —> oo. I f  R  =  oo then 

u* is globally attractive. The set of all points uo such that u(t; uo) —» u* as t —>• oo is called 

the basin of attraction (of u * ) .
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Note that the attractivity of a steady state does not imply stability. However:

Definition 1.3.4 A steady state u* of (1.69) is (globally) asymptotically stable if it is both 

(globally) attractive and stable.

The asymptotic stability of a steady state implies that any solution within the basin attraction 

will tend to the steady state and remain there.

We now turn to period solutions.

Definition 1.3.5 u(£;uo) is a T-periodic solution of (1.69) if u(t;uo) = u(t + T;uo) for all 

t > 0. T  is the minimum period if u(£; uo) 7̂  u(t +  r; Uo) for 0 < r  < T.

Hence the solution repeats every T time units. We can similarly define stability and attrac­

tivity.

Definition 1.3.6 A T-periodic solution u (£; uo) of (1.69) is stable if for a given e > 0 there is 

6 > 0 such that for all initial conditions yo with | |yo — uo 11 < & then ||u(t,; yo) — u(£; Uo)|| < e 

for all t > 0.

Definition 1.3.7 A T-periodic solution u(£;uo) of (1.69) is attractive (within a radius R  > 

0; if for an initial condition yo such that ||yo — no 11 < R then u(t,byo) —> \i(t, uo) as t —> 00.

Global attractivity and (global) asymptotic stability may be defined analogously.

Although it is straightforward to find steady states, by solving F(u*, t) = 0 , t > 0 for u*, it is 

not so easy to find periodic solutions. For this we will try to appeal to the Poincare-Bendixson 

Theorem. First we define a positively invariant set:

Definition 1.3.8 Consider the system (1.69) for F continuous. Then B  C W 1 is a positively 

invariant set of (1.69) if for all initial conditions uo 6 5  then u(£, uo) G B  for t>  0.

Theorem 1.3.9 The Poincare-Bendixson Theorem Consider the system (1.69) in R2. 

If B  C l 2 is a positively invariant set that contains no steady states then B  possesses a stable 

periodic orbit.

For a proof of this see, for example [38]. A corollary to this allows the set B  to contain 

unstable steady states (not saddle points), since the set obtained from B  by removing small
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neighbourhoods of the steady states satisfies the conditions of the theorem. This can be very 

simple to apply; if our system only has one unstable steady state and the solution is bounded 

then we immediately know we have a periodic solution. In the case where we wish to show 

that a periodic solution does not exist we may apply Dulac’s Criterion

Theorem 1.3.10 Dulac’s Criterion Consider the autonomous system x = f(x) in R2, let 

D C R2 be simply connected open set and B (x  1,^ 2) be a real valued continuously differentiable 

function in D, where x = (x\,X 2 ). Then if

H P

is of constant sign and not identically zero in D, then x = f(x) has no periodic orbits lying 

entirely within D.

Much of our modelling involves the use of difference equations in which the determination of 

steady states and periodic orbits is particularly relevant. We will only have cause to consider 

autonomous systems and so will define such a general difference equation system by

Nt+! = G( N t) (1.71)

and proceed as before.

Definition 1.3.11 N* is a steady state of (1.71) i/N* = G(N*).

Definition 1.3.12 A steady state N* of (1.71) is stable if, given e > 0 there is 6 > 0 such 

that for ||No — N*|| < 5 with N* defined by Nf+i = G (N t), ||N t — N*|| < e for t > 0.

Definition 1.3.13 A steady state N* of (1.71) is attractive (in a radius R ) if for all N such 

that ||N0 -  N*|| < R then Nt -»• N* as t -* 00.

The definitions for globally attractive and then (globally) asymptotically stable follow anal­

ogously to ODEs.

Definition 1.3.14 N* is a p-periodic solution of (1.71) z/Nt+p = Nt for all t > 0.

Here Nt is a steady state of the system N t+P = Gp(Nt) and it is then convenient, rather 

than in a form analogous to ODEs, to define the stability of a periodic solution by
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D efinition 1.3.15 A p-periodic solution N* is stable if all the p points of the periodic orbit 

are stable as steady states ofNt+p — GP(Nt).

There are no analogues of Poincare-Bendixson or Dulac’s Criterion for difference equations.

The presence of globally (or over a sufficiently large set) asymptotically stable solutions 

(steady or periodic) is particularly important since they represent the actual behaviour of 

the model given a sufficiently long amount of time. The biological systems that we will be 

modelling can often be assumed to have been running for arbitrary long periods of time and 

so are displaying their ultimate behaviour. Hence to characterise the behaviour of our model 

and its relevance to the biological system it may only be necessary to study its asymptotic 

behaviour, which is often much simpler.

1.3.4 D ealing w ith  Tim escales

The modelling can be simplified greatly and the analysis and interpretation of results made 

much easier by considering the different timescales that are present in the model. We have 

already indicated that any transient behaviour may be ignored if the model has well charac­

terised asymptotic behaviour.

Section 1.2.1 gives a rigorous basis for taking the fast processes to be at equilibrium. This 

is particular useful for reducing the order of a system. We can use this trick to simplify 

a model of the electrical properties of a cell membrane by assuming that the fast channels 

activate instantaneously. This is also used implicitly in many situations, such as assuming 

that nicotinic receptor activation and ion channel opening is fast (and so instantaneous) 

compared to the rate at which nicotine binds to the receptor in Chapter 2.

We also use the converse, that particularly slow timescales can be regarded as constants, 

such as considering the number of functional nicotinic receptors to be fixed when simulating 

experimental runs of 40 seconds when receptor inactivation takes days of chronic nicotine 

stimulation. This is again useful at reducing the number of differential equations in a system.

There is one other way in which the modelling may be simplified when we are considering a 

system where there are much faster timescales in operation. There may be situations where 

it is impractical to assume the pseudo-steady state, for example in the study of neuronal 

networks over longer periods of time where the firing pattern is generated by Hodgkin and 

Huxley ion channels. The timescales of the channel activation and inactivations are much



CHAPTER 1. INTRODUCTION 36

faster (ms) than the timescale of study (many seconds), but setting the activations to steady 

state destroys the ability of the model to fire action potentials.

In such cases it may be appropriate to reformulate the model so that instead of considering all 

of the fast mechanisms an appropriate average response is calculated and used. This would 

mean writing the model in our example in terms of average firing rates, rather than getting it 

to generate discrete spikes. Care should be taken with this technique since using an average 

necessarily destroys information.

1.3.5 Com puter Sim ulations - GENESIS

It is very useful to be able to display the solutions of models in a numerical or graphical form. 

This can be an aid in interpreting results, or for getting a flavour of how the model behaves. 

One may be able to ‘see’ solutions tending to steady states, or tracing periodic orbits and 

provides illustrations that confirm the analytical results of the model. In some cases the visual 

identification of certain trajectories may be the most viable way of establishing a modelling 

result. This can arise in models where the equations do not give an adequate interpretation 

of some transient behaviour, such as in certain models of neuronal firing patterns. Certainly 

many models will give quantitative results and numerical simulation may be the easiest way 

that these may be obtained.

There are also many occasions where the complexity of the model precludes a lot of mathe­

matical analysis and so numerical solution may be the only way that we can make any analysis 

of the model and its results. This is particularly true where we have developed models which 

make extensive use of Hodgkin and Huxley ion channels. The equations that describe the 

action of these channels are largely intractable to mathematical analysis and often the only 

way (and in many more cases the easiest way) that we can attempt to quantitatively fit such 

a model to experimental data, or determine the models output is by numerical solution. This 

is not an ideal situation but is our only option where the modelling necessitates the inclusion 

of such mathematically complicated equations.

The numerical solution of models involving ion channels is particularly important for the 

results of Chapters 2 and 3, and provides useful insights into the modelling of Chapter 4. 

These models were implemented and numerically solved using the General Neural Simulation 

System, or GENESIS, software designed and written at the California Institute of Technology 

[10]. As would be expected from the name, GENESIS is specifically designed for the numerical 

solution of models of neuronal systems and has specific routines dedicated to solving for;
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membrane potential in compartments (equations of the form (1.34)); Hodgkin and Huxley 

ion channels (such as the solution of equations (1.36)-(1.37)); and synaptic input (1.54) with 

all the necessary links to combine them.

The code has been extensively tested, both in development and its use worldwide. This 

helps enormously since it means that our implementations are essentially bug free; there are 

no coding errors and the numerical schemes are stable. We are only required to input the 

appropriate parameters, such as the dimensions, membrane resistance resting potential for an 

implementation of an electrical compartment. We can therefore be confident that the results 

obtained are accurate approximations to the true solutions of our models.

GENESIS also provides a graphical interface (called Xodus) which allows interaction between 

the user and a running simulation. Graphs may be plotted as the simulation is running and 

‘dialog’ boxes allow the user to arbitrarily change parameter values which makes for easy 

parameter searching. The graphical output from GENESIS is widely used in this thesis; all 

figures of the numerical solutions of models (even Figure 1.1) are produced by GENESIS.

We encountered one problem with GENESIS; there appear to be bugs with the allocation 

and freeing of computer memory that leave long simulation runs are prone to crashing. This 

was apparent with the long runs attempted in Chapter 4, but since they were only serving 

to illustrate a result that may be derived analytically we did not consider it a big problem.

1.4 Overview

This thesis is concerned with modelling some of the neuromodulatory effects of nicotine in 

Chapter 2 to 4, and the effects of the neurological disorder of Parkinson’s disease on neuronal 

function in Chapter 5.

Nicotine is the major psychoactive ingredient in tobacco smoke [50] and is thought to underlie 

the apparent addictive effects of cigarette smoking in humans. Strong links have been estab­

lished between smoking, heart disease and cancer, and have recently been acknowledged by 

the tobacco company Philip Morris Inc, makers of Marlboro and Benson & Hedges [1]. The 

study of nicotine and its analogs is therefore rightly the subject of intense study, although 

the causal links between smoking and disease do not themselves involve nicotine. We believe 

that this is, to date, the only attempt at mathematically modelling how nicotine may affect 

neuronal function in mammals.
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Similarly we present the first mathematical modelling of the effects of Parkinson’s disease. 

Parkinson’s is a degenerative disease that affects 0.5% of the over-60s (with an interestingly 

much lower incidence in tobacco smokers) [96]. Symptoms of the disease, which is expressed 

in the progressive death of certain brain pathways, include various disorders of movement. 

Despite also being the subject of much medical investigation there is no cure and the cause 

of the disease remains unknown.

In Chapter 2 we study the effect of nicotine on nerve terminals by modelling the experimental 

preparation of synaptosomes, requiring us to consider not only the cellular functions but also 

how these are affected by the artificial nature of the experimental preparation. The quantita­

tive nature of the experimental results leads to a very numerically orientated approach. The 

model is capable of explaining many of the experimental findings and the fitting to experi­

mental data leads to sound hypotheses on the distribution and potency of nicotinic receptors 

within the synaptosomes.

The modelling of Chapter 3 produces a theory on the cellular functions underlying a particular 

type of firing pattern in a neuronal pathway, a pathway that is believed to mediate the 

rewarding effects of addictive drugs. We describe how stimulation by nicotine (and also by 

opiates) can lead to an increase in the incidence of this firing pattern which our model can 

reproduce. The conclusions of our hypothesis are supported by numerical results and from 

the analytical results of a simplified difference equation model. This demonstrates at a more 

fundamental level why smoking may be perceived as pleasurable.

The perceived addictive effects of nicotine are addressed in Chapter 4. We demonstrate how 

a sensitisation of nicotine may be induced in.synaptic connections with mechanisms known 

to be present is similar cells. A probabilistic model is presented of how the memory of this 

sensitisation may last indefinitely, which has important implications for nicotine addiction. 

The results are also relevant to opiate abuse.

We change to modelling a neuronal network that is attacked in Parkinson’s disease in Chapter 

5. We consider the change in the output of this network as the disease progresses and 

can demonstrate neuron-level substrates for many of the clinical symptoms of the disease, 

including how the standard treatments can reverse these effects. The modelling itself provides 

some interesting mathematical results on network dynamics and coupled oscillators.



Chapter 2

N icotinic Agonist-Induced Release 

of Dopam ine

2.1 Chapter Overview

The nicotinic agonist anatoxin-a (AnTx) has been shown to elicit the release of radio-labelled 

dopamine from rat striatal synaptosomes by acting on presynaptic nicotinic-acetylcholine re­

ceptors (nAChR) and hence present a potential target for therapeutic drugs. Regarding each 

synaptosome to be a single electrical compartment that has Hodgkin and Huxley descriptions 

of potassium, sodium and calcium ion channels, we build models that describe the membrane 

potential of individual synaptosomes on millisecond timescales. We calculate the transmitter 

release from a function of intracellular calcium concentration and the number of open calcium 

channels, allowing for the delay whilst these activate.

We find that AnTx prompts release by causing the cell to repetitively fire action potentials, as 

distinct from the release caused by a single step depolarisation caused by raised extracellular 

potassium concentrations. Combining our models in the appropriate proportions to represent 

the entire preparation and fitting this to the experimental data we deduce the existence of 

three major sub-types of synaptosome in that they are separated as to whether they have 

N- or P-type calcium channels and that a subset of those with N-type channels also have 

nAChR. This model of the preparation as a whole fits well to the experimental results for 

release prompted by KC1 and the higher (1/iM and above) doses of AnTx, but less well for 

the lower concentrations which we hypothesise can be remedied by taking into account the 

heterogeneity of nAChR in the preparation, to which the model may be easily extended.

39
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2.2 The Presynaptic Actions of N icotine

40

2.2.1 The Presynaptic M odulation of Transm itter Release

We are familiar with the classical picture of a neuron causing signal propagation by the 

generation and transmission of electrical impulses down the nerve axon to its terminals and 

the subsequent release of a chemical signal. The strength of the signal depends on many 

factors, not least the amount of chemical neurotransmitter released by the nerve terminal[45]. 

The amount of transmitter released in response to the arrival of an action potential is not 

constant, but is subject to modulation by the extracellular environment in the vicinity of the 

terminal. Terminals are affected not only by the variations in ion concentrations but also by 

the possible interaction of neurotransmitters and their agonists with presynaptic receptors.

The experimental stimulation of transmitter release by presynaptic nicotinic acetylcholine 

receptors (nAChR) in the brain has been widely documented and is considered to constitute 

a significant physiological role for ligand gated ion channels [85] [104]. In particular the nico­

tinic stimulation of dopamine release from rat striatal synaptosomes has been the subject of 

extensive examination [21] [32] [83] [84]. The dopamine releasing neurons of the mesolimbic 

and nigrostriatal pathways terminate in the striatum, the former of which is widely impli­

cated in the reinforcing effects of addictive drugs [50]. Therefore the nicotinic stimulation of 

presynaptic nAChR located on the terminals of these neurons could be a significant source of 

the reinforcing properties of nicotine. If we wish to investigate the neuromodulatory effects 

of nicotine we are certainly required to model these presynaptic effects.

2.2.2 A im s o f the M odel

Our primary aim is to understand how doses of nicotine may be able to enhance or prompt 

the release of dopamine from the terminals of the nigrostriatal pathway. As such we will be 

restricting our model to looking at terminal acting effects only, in which case the experimen­

tation on rat striatal synaptosomes mentioned above provides a wealth of quantitative data. 

They are the data on which our model is created, quantitatively fitted to and tested against. 

Therefore our model will be essentially a model of the experimental preparation rather than 

a true nerve terminal. It will also be quantitative in flavour since we are forming and testing 

our model against quantitative data.

Our interest is in the effect of the presynaptic nAChR, an effect that is likely to be mediated 

by the activation of its ion channel that allows the influx of sodium and calcium ions[104].
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Therefore our modelling efforts will be centred on the interaction of this ionic current with the 

other intrinsic currents of the terminal /  synaptosome. This stipulates two major features 

of our model; firstly that it will be based on the millisecond timescale interactions of ion 

channels and membrane potential, which is starkly in contrast to the experimental preparation 

which has a time resolution of minutes[94]. This means that our model, if it describes the 

experimental results well, can provide a millisecond view of synaptosome action from which 

sound hypotheses on true nerve terminal action at physiologically relevant timescales can be 

derived. This could be considered a bonus, as well els being able to determine the effect of 

nicotine on dopamine release we may also be able to discover particulars about the terminals 

themselves.

Modelling the interaction of intrinsic ion channels and membrane potential leads us to our 

second major feature; accurate models of ion channel function (we will be using Hodgkin and 

Huxley-type models [41]) are notoriously intractable and hence our major tool for analysis 

of the system is likely to be the numerical solution of the model.

2.2.3 Synaptosom es and Terminals

The size of nerve terminals (1-2/im across) [45] currently precludes detailed examination of 

their individual release characteristics at physiologically relevant time scales. In its place we 

have the artificial preparation of synaptosomes which are used in many laboratories for the 

investigation of terminal effects. Detailed descriptions of the methodology in preparing and 

performing experiments upon synaptosomes can be found in [79] and papers such as [94] [95] 

[31] [60] [87] and so have no place here, but we shall present a short description of the parts 

of the procedures that are relevant to our modelling.

The experimental preparation is normally the rat (although we have taken some data from 

mouse synaptosomes), the relevant brain area (striatum) is dissected and then homogenised. 

The clearance of the homogeniser is such that the nerve terminals are ‘snipped’ off from 

the rest of the cell and will then reseal retaining their contents forming metabolically active 

packets, synaptosomes. These may be separated from the remainder of the homogenate by 

subcellular fractionation. The resulting preparation is therefore a composite of the dopamine 

releasing terminals with other terminals or bits of cell that have survived the process.

Prior to the experimental step, known as superfusion, the synaptosomes are loaded with 

[3H]-labelled dopamine which will be released along with the unlabelled dopamine. The 

experimental observable is then the amount of labelled dopamine released, as counted by a
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scintillation counter, in counts per minute (cpm). This is also quoted as release above baseline 

(unstimulated synaptosome experimental results have a total release curve that decays in an 

exponential fashion with time, this is taken to be the baseline). We therefore fit our model 

to this output parameter rather than an experimentally immeasurable true release. After 

the synaptosomes have been loaded, the uptake transporter is disabled by nomifensine, this 

prevents misleading results from released dopamine being taken back up before it can be 

counted. It also means that our model of a terminal is deprived of the fastest means of 

recycling transmitter which proves to be very important. We will be assuming that all other 

pumps and transporters, whether ion exchange or ATP (adenosine tri-phosphate) driven, are 

working as they would in the undisturbed brain.

The superfusion process consists of passing a buffer continuously over the synaptosome prepa­

ration and collecting the results in fractions (of two minute intervals typically [94]), which 

are then assessed for labelled dopamine by the scintillation counter. This means that the 

experimental results are of release collected over a two minute period. The buffer acts as 

the extracellular fluid for the preparations and will typically be of a similar composition to 

that of the brain. However this can easily be changed during superfusion to provide chemical 

pulses to the preparation. Of particular interest are the 40 second pulses of KC1 and the 

nicotinic agonist anatoxin-a [94] [95] and the sustained application of nicotine [31].

2.2.4 The Experim ental R esults

The modelling is largely based on results using the nicotinic agonist anatoxin-a (AnTx) by 

virtue of its potency, stability and specificity [94] [95]. It is pertinent to summarise these 

results before we attempt to describe the model. The other results we have used will be 

introduced as we need them.

AnTx evoked the release of [3H]dopamine from striatal synaptosomes in a concentration 

dependent manner with an EC50 of 0 .11/iM. Maximum release was achieved with concen­

trations of 1/iM AnTx and above, but this response was only 20% of the maximum that 

could be produced by KC1 depolarisation. KC1 depolarisation also releases [3H]dopamine in 

a dose dependent manner with an EC50 of 21/iM. There was no additivity between AnTx 

and submaximal concentrations of KC1.

Both KC1 and AnTx evoked release is Ca2+ dependent. The stimulatory effect of AnTx 

was dependent on external Na+ , partially blocked by tetrodotoxin, and totally blocked by 

Cd2+, consistent with depolarisation and the consequent opening of voltage-dependent Na+
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and Ca2+ channels. Further analysis implicated N-type calcium channels in AnTx-evoked 

responses since such release is blocked by the specific N-type blocker u;—Conotoxin GVIA.

KC1 evoked release was found to be increased under low external Na+ but independent of 

tetrodotoxin which suggests conflicting results regarding voltage-activated sodium channels. 

KC1 evoked release was blocked equally and additively by a;—Conotoxin GVIA and the P- 

type calcium channel blocker u —Agatoxin IVA. The lack of significant release in the presence 

of both toxins indicates that these are the only calcium channels involved in release and also 

that there is no contribution from calcium influx through nAChR.

2.3 The M odel Cell

2.3.1 R eduction to  an Electric Circuit

We model the synaptosomes by considering the interaction of membrane potential and intrin­

sic ion channels. The experimental results tell us that the release is dependent on calcium 

which flows in through voltage-activated calcium channels and so we wish to know such 

quantities as the membrane potential [94]. This immediately leads us to consider the mem­

brane potential resulting from the interaction of all the other channels present. We therefore 

decided to follow the formulation of Hodgkin and Huxley [41], where the membrane of the 

synaptosomes is assumed to act as an electrical capacitor with capacitance Cm. If we denote 

the membrane potential relative to the cell exterior by Vm and the total electrical current 

due to the ion channels of the cell by I(Vm, t), then by Kirchoff’s conservation of current law

Cm^ + I ( V m, t )=0.  (2.1)

which we may solve to obtain the calcium influx and, by an appropriate model of this process, 

obtain the transmitter release. We therefore need formulations for the electrical properties 

of the membrane of a synaptosome and models of their ion channels.

2.3.2 N ernst or Reversal Potentials

The cell membrane of the synaptosomes serves to separate the differing ion concentrations 

of the interior and exterior of the cell and typically the opening of ion channels, that are 

selective for an ion species, will allow a flow of ions from one side to the other. There is a 

membrane potential that will prevent this flow and is capable of maintaining this imbalance
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of ions, this is known as the Nernst or reversal potential of the ion species [45]. The difference 

between the reversal potential and the membrane potential is therefore the potential gradient 

(electro-motive force) that drives the ionic current.

For an ion species z with extracellular and intracellular concentrations [z]0 and [z]̂  respectively 

and valency the Nernst potential is given by the Nernst equation [45]:

R  is the universal gas constant, T  is the temperature in Kelvin and F  is Faraday’s constant.

2.3.3 The Basic Cell

Our experimental preparation is a collection of many individual synaptosomes, but to be 

able to study nerve terminal action and to be consistent with the formulation outlined above 

we will take the approach of producing models of single synaptosomes. A model of the total 

preparation may then be obtained by combining these models in the appropriate proportions.

Implicit in this is our realisation that the synaptosomes in the preparation are not identical. 

We are only going to consider the existence of dopaminergic cells in the preparation but 

accept that there are likely to be variations between these individuals too. However we will 

be assuming a large amount of homology between the cells and that they may only differ in 

such aspects as whether they have N-type or P-type calcium channels and such like. Not 

only is this simpler but we shall only impose different attributes on synaptosomes only when 

the combination of experimental data and modelling calls for it rather than in an attempt 

to obtain a better quantitative fit. With possibly thousands of independent synaptosomes 

we could fit to any release results we wished but such a model would be meaningless and no 

more informative than a curve fit.

We will regard each synaptosome to be a single electrical compartment 1 micron in diameter 

and length. Since this compartment is physiologically small we can consider it to be isopoten­

tial, that is the membrane potential is the voltage potential of the whole cell and hence there 

are no effects from the spatial distribution of ion channels or receptors. The compartment 

has a specific membrane resistance Rm and capacitance Cm which we will take to be those 

values used by Traub et al [98] in their model of rat hippocampal neurons, adjusted for cell 

size. Each cell can therefore be modelled by equation (2.1).

We have used four types of voltage-activated ion channels in the model, two selective for 

calcium (N-type and P-type) and one each for potassium or sodium. The ion flux (I) through
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Figure 2.1: Schematic diagram of the model cell with the interactions between the compo­

nents. The potassium, sodium, leakage and nicotinic receptor currents dictate the membrane 

potential of the cell, which then controls transmitter release via the activation of the calcium 

channels.

a set of channels is regarded as an electrical current and hence obeys Ohm’s Law

HVm,t)=g(Vmit ) ( E - V m )  (2.3)

where g is the conductance of the channels (a function of total number of channels, channel 

activation and inactivation due to voltage and time) and will generally be a Hodgkin and 

Huxley model. (E — Vm) is the difference between the membrane potential, Vm, and the rever­

sal potential of the ion species, E , and represents the voltage gradient across the membrane. 

All values are given in SI units. Our conservation of current law (2.1) then becomes

dVm
^ m~dt—  ̂ ^Na Ĉa l̂eak = (2-4)

with

Cm = 1.57 x 1(T12, (2.5)

Ik  and I^a  are the potassium and sodium currents respectively and Ic a is the calcium current 

we prescribe for the terminal, we shall deduce later that the presence of the two types is 

mutually exclusive. I r  is the current due to the nicotinic receptor, not all synaptosomes will 

have this as we shall discuss later. Jieak is the leakage current described below.
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2.3.4 Leakage Current and Ion Pum ps

The membrane of a cell is not a perfect insulator and so there will be some leakage of current 

across it. Moreover there will be many forms of ion pumps, used to maintain the balance of 

ion concentrations across the cell membrane, that we do not explicitly model.

Due to this natural permeability of the cell membrane and the action of these ion pumps, 

there will be some ion flux across it aside from the ion channels we have explicitly included[10] 

[49]. We model this by assuming a leakage current given by

/lea k  =    ( 2 .6 )
rim

Em = -0.010 (2.7)

Rm = 1.59 x 1012 (2.8)

where Em is the reversal potential of this current, typically about lOmV [10], Vm the mem­

brane potential and Rm the membrane electrical resistance. Rm is already fixed due to the 

cell dimensions and the specific resistance of [98]. We have used the estimation of the reversal

potential for this current from a typical cell as used in other simulations [10].

2.3.5 Calcium  Ion Channels

We implement models of N-type and P-type voltage-activated calcium channels, it having 

been shown that KCl-evoked release of [3H]dopamine from striatal synaptosomes is blocked by 

the selective antagonists of N- and P-types, u —Conotoxin GVIA (u;-CgTx) and oj—Agatoxin 

IVA (cu-Aga IVA) respectively [95]. This does not discriminate whether N- and P-types co­

exist on terminals (and by some mechanism AnTx only causes the activation of N-types, 

although such a mechanism is not consistent with each cell being a single, isopotential elec­

trical compartment) or terminals possess one type exclusively. We use the latter, simpler, 

hypothesis that a terminal contains either N- or P-type channels, but not both.

Voltage-dependent activation XooiVm) and inactivation yoo{Vm) curves for N-type channels 

were taken from McNaughton et al [61]. The time dependence of activation rx is taken from 

[82] and the inactivation ry then chosen to be consistent with the experimental data [61].
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The current from N-type channels is then given by:

In =  9Nxy{Ec& -  Vm) (2.9)
dx Xoo(Vm) -  x
dt rx
dy_ _  yoo{Vm) - y  
dt

(2 .10)

(2 . 11)
'y

X o o ( V m ) -  Kn.+0-0045 \ (2'12)
i -r e*PV 0.0052 >

TX =  0.001 (2.13)

Voo {Vm) =  (vm+0.074V (2-14)
l -r e-X-PV 0.0065 )

Ty = 0.150. (2.15)

The P-type calcium channel voltage-dependent activation curve Poo(Vm ) is taken from [101] 

and time constant of activation rp from [82]. P-type channels do not inactivate with voltage. 

The current due to P-type channels is then given by:

I p  =  9~p p { E c & ~  V m )  (2.16)
dp _  P o o j V m )  ~ P  , v

dt rp [ ’

Poo(Vm) =  Vm+0 072. (2.18)
x i 0.0027 /

Tp = 0.0012. (2.19)

We must then calculate the conductances of the channels, g]̂  and gp. Such data is not 

available for the rat striatum and so we have calculated values from the conductance densities 

used in another computer simulation for a general nerve terminal [93] and adjusted for cell size. 

This implies total conductances in our case of the order of 10_9Siemens. This conductance 

leads to calcium currents which are much smaller (1000 times so) than the other currents 

used in our model and hence their contribution to the membrane potential is negligible as 

far as we are concerned. Hence for computational efficiency we do not include either of these 

channels in computing the membrane potential (solving equation (2.4)), however both axe 

very important in calculating transmitter release, as we shall see later. Although it is not 

used; in such preparations E ca ~  0.095V.

2.3.6 Potassium  Ion Channels

In a classical view of neurotransmitter release from nerve terminals the cell is kept at a 

resting, hyperpolarised membrane potential by potassium channels. This seems to hold true 

in synaptosomes since they may be depolarised by increasing extracellular potassium levels.
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There appear to be (at least) two types of potassium channel in synaptosomes. Stimulating 

synaptosomes with the A-type potassium channel blocker 4-aminopyridine (4-AP) produces 

oscillations in the membrane potential [14], this not only indicates that A-type potassium 

channels are present but also that another type, activated on depolarisation is present and 

responsible for the repolarising parts of the oscillation. This behaviour is consistent with the 

so-called delayed rectifying potassium channel.

We do not know the conductance of either the type of potassium channel in this preparation 

and hence, and for simplicity, it would be preferable to only include one type of channel, 

which would then have an increased conductance to compensate. We are interested in the 

release characteristics of the cell, which will occur when the cell is depolarised. In this 

range the delayed rectifier is dominant, since the A-type potassium channel inactivates if 

held at depolarised potentials [98] [49], as is typical for depolarisation induced by increased 

extracellular KC1. This is particularly relevant for later when we consider the action potential 

firing induced by AnTx. This requires the inclusion of the potassium channel to repolarise 

the cell in response to a spike and this is again the delayed rectifier.

We therefore include a potassium channel of the delayed-rectifying type only. The voltage 

dependent kinetics a(Vm) and (3{Vm) are taken from electrophysiological measurements on 

the rat hippocampus [89] [98]. At rest, only the potassium channels will be significantly 

activated and hence the resting potential is determined by the conductance of the delayed 

rectifying channel and the leakage current. The resting potential of rat nerve terminals has 

been measured at -78mV [88] and so we set the conductance g~K such that the cell rests here. 

The current is therefore given by:

Ik =  gkmiEK — Vm) (2.20)

^  =  a m(Vm)(l -  m) -  pm(Vm)m (2.21)

g~K =  1.0 x 10"7 (2.22)

E k  =  -0.08 (2.23)

16000(km + 0.0249)
O tm \V m ) ~  /  Vm +0.Q249 \  V2 -24)I  ex p   ̂ 0 Q05 j

M V m) = 250exp ( - \ ; ; - ° 4) .  (2.25)

We model stimulation by elevated extracellular potassium simply by changing the extracellu­

lar concentration of potassium in our model appropriately. This shifts the reversal potential 

E k which results in potassium influx and so depolarises the cell [67].
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2.3.7 Sodium  Ion Channels

It has been observed that AnTx-evoked release is nearly halved if the synaptosomes are 

poisoned with the potent fast sodium channel blocker tetrodotoxin (TTX), indicating that 

these channels are present and in significant numbers.

We take fast sodium channel kinetics from the rat hippocampus as described by [88] [98]. 

Again we do not know the channel conductance pNa but can suppose that the conductance will 

be powerful enough to cause a sizeable action potential, that is one that forces the membrane

potential to positive values. A cursory look at the AnTx-evoked release profile and the power

of hindsight from the model results, suggests that AnTx doses of lfiM  and above rapidly 

produce sodium channel-induced action potentials. We therefore set the conductance of the 

sodium channel such that, by numerical simulation, doses of 1/iM initiate such an action 

potential. Since TTX is such a potent blocker of these sodium channels, we model the effect 

of its application by resetting the conductance of the channels to zero. Otherwise the current 

is given by:

Ina = 9Na.‘f'2s(E ^a — Vm) (2.26)
dr
^  =  aT(Vm) ( l - r ) - p r(Vm)r (2.27)
ds

= a a(Vm)(l -  8) -  pa(ym)8 (2.28)

gNa = 1.0 x lO "9 (2.29)

ENa =  0.085 (2.30)
-3 .2  x 105 (0.0469 +  Vm)

( Vm+0.0469 \  _  l  
V 0.004 ) 1

“rOW = • ,1+0.04^ (2-31)

2.8 x 105(0.0169 +  Fm)
Pr(Vm)  -  / ym+Q.Q199\  -i

V 0.005 )  L

( \ r  \  100  (  "b 0 - 0 2 8 ^  m  o o \ois{Vm) = 128exp ( ------— 1 (2.33)

4 x 1 03
= 1 ! cxp( ^+0-005y  (2-34)i -r e^p  ̂ 0_005 j

2.3.8 The N icotin ic A cetylcholine Receptor  

Neuronal presynaptic nicotinic receptors

Nicotinic acetylcholine receptors are membrane bound pentameric structures around a central 

ion channel [104] [79]. Ten receptor subunits have been identified so far (a2 — a8, /32 — /34).
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The a  subunits may be viewed as the ‘functional’ subunits and agonist binding to the a- 

(3 junctions (of which there are two per nAChR) causes the ion channel to open. The 

subunits axe therefore often designated to be structural, but in fact all subunits contribute 

to determining the binding properties and efficacies of nicotinic agonists.

The idealised construction of an nAChR is from two a  subunits and three (3 subunits. Al­

though we will assume this to be the case, and is so concerning nAChR on striatal dopamine 

terminals, it is not true in general. Indeed nAChR consist of a diverse array of subunits 

and present a range of pharmacological properties that is the study of many laboratories 

worldwide, see [104] for a review.

We have assumed only a single subtype of nAChR to be present in the synaptosome prepa­

ration. During the creation of this model and since its completion in this form significant 

evidence has accumulated that there are at least two subtypes, each with separate pharma­

cologies and efficacies to, amongst other things, AnTx [44] [53]. Our model is still based on 

the assumption that there is only one type, with full efficacy for AnTx. The implications of 

this will be discussed later.

An important functional feature of nAChR is that receptors desensitise when exposed to 

agonist for prolonged periods of time (tens of seconds to minutes), recovery on removal of 

the agonist takes minutes [31]. While this is not of particular relevance to this model, since 

our results suggest that desensitisation during the 40 seconds for which we apply AnTx does 

not significantly affect our model, the phenomenon is present in the modelling of the receptor 

that we present and is of relevance in subsequent chapters.

Modelling a nicotinic receptor

The AnTx-evoked release of dopamine from synaptosomes is well established [94] [95] [44]. 

Such release is blocked by the nicotinic receptor antagonist mecamylamine, indicating that 

AnTx does act through nAChR. We do not model any non-specific (non-nAChR mediated) 

release. For simplicity we take the nACh receptors to be homogeneous.

Our model of the nicotinic receptor is taken to be consistent with the description given 

in Lippiello et al [57], who analysed the binding of [3H]nicotine (which binds to the a4/32 

subtype of nAChR) to rat brain sites. Two binding rates are observed; an initial low affinity 

rate that is proposed to reflect binding to the active (sensitive) conformation of the receptor 

and a later, high affinity rate corresponding to binding to the desensitised conformation. Each
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Figure 2.2: Receptor binding site state transition model [57]. For the receptor pore to open, 

both binding sites must be in the bound and sensitive state (X). The constants ki are 

determined from experimentation.

binding site therefore has four states; unbound and sensitive; bound and sensitive (permissible 

for pore opening); bound and desensitized; unbound and desensitized. Consistent with our 

treatment of nAChR thus far each receptor has two such binding sites.

We let X , Y, Z  G [0,1] be the proportion of binding sites that are bound and sensitive; bound 

and desensitized; and unbound and desensitized respectively; as detailed in Figure 2.2. We 

will assume that the binding to one site is independent of the state of the other, in which 

case X 2 is the proportion of receptors that are gating ion flux. Noting that the proportion 

of sites in the unbound and sensitive state is then given by (1 — X  — Y  — Z), the binding site 

state transition equations axe: 

dX = k1[ n ] { l - X - Y - Z )  + k4Y - k 2X - k 3X  

= k3X  -  k4Y  +  k5[n]Z -  k6Y

dt 
dY
dt

—  = k7( l - X - Y - Z ) - k g Z  + k6Y - h 5[n]Z 
dt

(2.35)

(2.36)

(2.37)

where [n] is the concentration of nicotine and the ki s are experimentally derived constants 

[57] given by:

k\ =  500 k2 = 0.075 k3 = 0.00367 

fc4 =  0.00005 k5 = 500 k6 = 0.00067 

k7 =  0.0001 k8 = 0.00015.

(2.38)

Hence the channel conductance g is a function of agonist concentration instead of membrane 

potential as in equation (2.3). Explicitly g = ghX 2, where g~R is the total channel conduc-
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tance. As detailed before, the conductance is set in combination with the conductance of 

the sodium channels g ^a such that AnTx doses of 1/iM and above rapidly trigger action 

potentials in the model. The current from the receptor is therefore given by

I r  =  9~r X 2 ( E r  -  Vm) (2.39)

E r  = 0.09 (2.40)

g-R =  1.5 x HT9. (2.41)

This contains three important assumptions that we shall now address. We have already as­

sumed that we have only the single subtype of nAChR and have used the model described 

by Lippiello et al [57] and then taken these to be descriptive of the nAChR activation char­

acteristics that we require. These measurements are taken from the entire rat brain using 

labelled nicotine and hence contain results from the a4/32 subtype of nAChR and so may not 

be entirely representative of the subtype that we are including in our model, not that our 

inclusion of only one subtype is representative of the experimental preparation.

Moreover the figures quoted are for the binding of [3H]nicotine and we will be modelling the 

application of AnTx for which the figures will almost certainly be different, if rather similar. 

However these are the best (only) figures available for the rates of transition between the 

states of the binding sites.

We do not consider this to be too much of a problem since the results of our model are largely 

dependent on the conductance levels, which we have effectively set ourselves by our condition 

on g~R and g jq a . The experimentally determined rates then effectively set the ‘on’ and ‘off’ 

times of channel activation and desensitisation, which we will show do not affect the results 

from our model unduly.

The ion channels associated with nAChR are selective for sodium and calcium ions and the 

calcium component is thought to be very important given the ions capacity for producing 

intracellular signalling, such as via calcium-calmodulin kinase activation [104]. There is no 

experimental evidence that suggests that we should include such processes (so we do not), nor 

does the calcium influx seem able to cause transmitter release directly [94], this is probably 

due to the slow diffusion of calcium meaning that it is removed by pumps before it can interact 

with any transmitter release mechanisms. This has the bonus of making our treatment of 

transmitter release simpler. Therefore for our purposes the ion flux through the channel can 

be regarded as a simple electrical current. If the channel has (relative) permeabilities to 

sodium and calcium of g'Na and g'Ca respectively, then the combination of ions has reversal
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potential E r  given by:

tp   9 N a - ^ N a  + 9 c a ^ C a

E r ~  ar ~+ a' ' (2’42)9Na +  9ca

Calcium can make up 10-50% of the ionic flow and so E r  G [0.086,0.09]. We take E r  = 0.09.

2.3.9 Ion C oncentrations

Table 2.1 contains the normal concentrations of ion species used for the model when the cell 

is resting. The extracellular concentrations are simply those concentrations present in the 

superfusion buffer, typically close to levels found in the mammalian brain. They are held 

constant since the superfusion process provides a constant stream of fresh buffer [94],[79].

The intracellular concentrations of potassium and sodium are taken to be typical mammalian 

([45]), which is valid as we would expect a mammalian cell that has typical mammalian 

extracellular concentrations to have typical intracellular concentrations. These values are 

also held constant throughout the simulations. The intracellular potassium concentration 

is so high that changes are insignificant. The fast, powerful sodium influx does cause a 

noticeable increase in the intracellular concentration (l-2mM), such that repetitive firing 

could cause a sufficient intracellular build up and affect the current. We assume that the ion 

pumps (such as the K+-Na+ pump) present in the cell quickly remove these increases[45], 

this is precisely what they are there to do.

During the superfusion experiments the buffer will be modified to provide the chemical pulses 

that stimulate release from the synaptosomes. The concentration are then changed as follows:

• KC1 stimulation: Potassium concentration set to the value of the KC1 concentration. 

The osmolarity of the buffer is maintained by reducing the NaCl concentration and so 

we also reset the sodium concentration to the same amount. The reversal potentials 

E r  and E ^ a are recalculated accordingly.

• Low Na+ (lOmM) buffer: Extracellular sodium is set to lOmM and E ^ a recalculated 

(ENa ~  0.017). The osmolarity must be maintained and the ‘missing’ sodium is replaced 

by iV-methyl-D-glucamine (NMDG).

• Calcium free buffer: Extracellular calcium set to lpM, a small, non-zero value which is 

used simply to prevent a ‘division by zero’ error in our numerical computations.
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Intracellular (mM) Extracellular (mM)

Potassium 120 5

Sodium 5 150

Calcium 0.001 2

Table 2.1: Default extra- and intracellular ion concentrations for the resting cell.

2.3.10 M em brane Potential Dynam ics

Although we have yet to describe our model for transmitter release, we have been able to 

finalise the make-up of the ionic currents present in the cell and it is useful at this stage 

to review the behaviour of the cell when stimulated with KC1 or AnTx. The model thus 

far is a system of seven coupled non-linear ordinary differential equations, a complexity that 

immediately leads us to a numerical solution. Computations have been performed using 

the neural simulator GENESIS [10]. We do not seek an analytical solution, however the 

qualitative features of the model solutions are quite simple.

The behaviour in the absence of any stimulation is particularly simple since the model rests 

at a steady voltage of -78mV. Small current injections will depolarise the cell and currents of 

2pA or more will produce sodium mediated action potentials, as shown in Figure 2.3. This 

is a very small current to be able to produce such a depolarisation, intracellular currents of 

the order of O.lnA being needed to prompt this response in whole neurons [41] [28], This is 

due to the small size of the synaptosome being an electric compartment of large resistance 

meaning that current input has a large effect.

Increasing the extracellular potassium concentration increases the potassium reversal poten­

tial, causing a influx of current through the potassium channels. This depolarises the cell 

which will then settle to a new, steady, resting potential which is typically close to the revised 

potassium reversal potential. The depolarising dose of KC1 is normally big enough to cause 

an action potential to occur before the cell rests at the new steady state, as in Figure 2.4. 

The cell does not fire repetitively since the raised potassium reversal potential prevents the 

cell hyperpolarising sufficiently to de-inactivate the sodium channels. If the synaptosomes 

have been treated with TTX, we get a simple step in current as shown in Figure 2.5. The 

experimental results [94] have shown that KCl-evoked release is independent of TTX, so from 

a release point of view these pictures are equivalent.

Stimulating the model with typical concentrations of AnTx does not create the instant re-
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Figure 2.3: Plot of membrane potential in milli-volts against time in seconds for the simulation 

subject to an injection pulse of 2 picoamps applied at 0.01 seconds. This small current 

depolarises the cell past spike threshold, producing an action potential.
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Figure 2.4: Plot of membrane potential in milli-volts against time in seconds for the simulation 

when the extracellular potassium concentration is stepped to 25mM at 0.02 seconds. The 

trace clearly shows the transient action potential and depolarized steady voltage typical of 

this form of stimulation [67],
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Figure 2.5: Plot of membrane potential in milli-volts against time in seconds for the simulation 

when the extracellular potassium concentration is stepped to 25mM at 0.02 seconds and the 

cell has also been treated with TTX. The trace shows the step change in membrane potential 

typical of this form of stimulation [67].
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Figure 2.6: Plot of membrane potential in milli-volts against time in seconds for the simulation 

when 1/iM AnTx is introduced at 0 seconds for the 1.2 seconds of this frame. The membrane 

potential rises slowly as the nAChR are activated, eventually causing repetitive firing.
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Figure 2.7: Plot of membrane potential in milli-volts against time in seconds for the simulation 

for the same cell as in Figure 2.6. The AnTx concentration is set to zero at 1.2 seconds, but 

the current takes a further 15.5 seconds to decay away sufficiently to stop the firing.

sponse that current injection or elevated potassium does since the nAChR require about a 

second to build up a level of activation, as may be seen in Figure 2.6. This illustrates also 

that the depolarisations achievable by some of the larger concentrations (here we have used 

1/iM) are capable of generating the repetitive firing of action potentials. Since the potassium 

reversal potential has not been shifted the depolarisation-activated potassium channels en­

able the de-inactivation of the sodium channels allowing them to fire again. Given that the 

nAChR axe slow to activate, they are even slower to release the AnTx and de-activate when 

we reduce the concentration to OmM. We remove the AnTx from the same cell in Figure 

2.6 at 1.2 seconds and the cell is still firing some 15.5 seconds (Figure 2.7)later until the 

nAChR-mediated current has eventually decayed enough to stop it.

This ‘off’ time for the nicotinic current and repetitive firing is surprisingly long. This may 

simply be the result of the large membrane resistance allowing the small currents to still be 

effective since we would expect the (effective, or measurable) current from a receptor, such 

as fast nAChR, to decay quickly (< 1 second) after the removal of an efficacious agonist.

A striking feature of the repetitive firing that has been induced is the phenomenal firing rate 

of nearly 100Hz that is achieved, with typical nigrostriatal dopamine neurons firing at little 

over 9Hz, even in the presence of nicotine [28][33]. The small size of the cell means that is 

has a small electrical resistance and capacitance, giving it a small time constant. We would
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Figure 2.8: Plot of membrane potential in milli-volts against time in seconds for the simulation 

when O.lmM AnTx is introduced at 0 seconds. The membrane potential rises quickly with 

such a high concentration of AnTx activating the nAChR. This depolarising current causes 

repetitive firing before it becomes to strong to allow the cell to hyperpolarise and de-inactivate 

the sodium channels between spikes.

expect that the extra capacitance of the whole cell membrane, the leakage of current through 

the axon and other potassium currents located elsewhere in the cell would slow this rate in 

the complete cell.

Receptor desensitisation is slower than the ‘off’ time of the current and therefore is not 

significant for the length of time we shall be required to apply AnTx for. So, within the 

range of the model, doses of around 1/iM and above will cause the repetitive firing of action 

potentials for the entire length of time they are applied plus the further 15 seconds for the 

AnTx to wash out and the current to decay. Not all high concentrations do cause this though, 

concentrations of about O.lmM and above produce nAChR mediated currents so large that 

they do not allow sufficient hyperpolarisation of the model cell after an action potential. This 

causes the firing to stall as the sodium channels remain inactivated in a similar way to elevated 

KC1, this process is illustrated in Figure 2.8 for a dose of O.lmM. One can see the progressive 

inactivation of the sodium channels reducing the amplitude of the action potentials.

We may already be able to explain why stimulation with sub-maximal concentrations of 

KC1 and AnTx are not additive. It seems that the two stimulants will prompt release in 

different ways; KC1 producing a single step depolarisation and nicotinic agonists producing
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repeated action potentials. The elevated potassium prevents action potentials by the progress 

inactivation of the sodium channels and so the AnTx will have little effect.

This covers the essential dynamics of the membrane potential with respect to chemical and 

electrical stimulation. KC1 stimulation causes a step change in voltage to close to the revised 

potassium reversal potential, possibly with a transient action potential. AnTx causes a build 

up of depolarising current that can build up to cause the repetitive firing of action potentials.

2.4 M odelling the Transmitter Release

2.4.1 The Calcium  H ypothesis of Transm itter R elease

Given that the membrane potential dynamics have now been fixed we now present our model 

of transmitter release. Neurotransmitter is released slowly in small amounts by terminals 

all the time. The synaptosomes do this and this transmitter release is likely to make up a 

significant part of the baseline observed from synaptosomes superfused by a buffer without 

any stimulation from KC1 or AnTx (the remainder is considered to be release from such 

things as damaged synaptosomes [79]). This baseline of release is subtracted from the results 

for when stimulatory pulses are applied and so does not feature in the experimental results.

We shall be studying that release which is calcium mediated. It has been observed that in such 

experimental preparations as the study of the neuromuscular junction in-vitro the omission of 

calcium from the bathing medium (analogous to a calcium-free buffer) blocks the transmission 

of the signal [19]. Supporting the role of calcium as a messenger rather than its influx acting 

as a depolarising current was the observation that the presynaptic cell’s membrane potential 

was not changed by this omission. This also supports the exclusion of the calcium channels 

in our model from our calculations of membrane potential. A key observation was that the 

post-synaptic membrane potential, and hence the amount of neurotransmitter release, was 

proportional to the fourth power of the extracellular calcium concentration.

This has lead to the so-called calcium hypothesis of transmitter release, where the influx of 

calcium ions through voltage-sensitive calcium channels (such as the N- and P-types featured 

in our model) interacts with a putative release mechanism. This mechanism, that has not as 

yet been fully characterised, prompts the fusion of a vesicle with the cell membrane emptying 

its contents of transmitter into the synaptic cleft, known as exocytosis [45].

Once the calcium channels have opened there is a short (<lm s) gap before the transmitter 

is released[9], indicating that the site of interaction with the release mechanism is very close
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to the cytoplasmic end of the channel. This supports the notion that calcium influx through 

the nAChR ion channel does not cause transmitter release directly. It also gives us a feature 

to study around which we build our model of transmitter release.

2.4.2 The Internal Calcium  Concentration due to  an Open Channel

Assuming that the release mechanism is close to the cytoplasmic end of the calcium channel 

we will regard transmitter release to be a function of (amongst other things) the concentration 

of calcium that is obtained at the end of such a channel when it opens.

In the model calcium flows in under a voltage potential difference Igrad given by:

Igrad  = {Eca ~ Vm), (2.43)

where

£-  = f ln( § )  (2'44)

is the reversal potential for calcium as detailed in section 2.3.2, Vm is the membrane potential. 

Influx will continue until this gradient is reduced to zero. As we have regarded the terminal 

to be isopotential there are no local changes in membrane potential and so Vm is not altered. 

Instead the calcium influx will serve to increase the internal calcium concentration local to 

the channel end until it solves Fgrad =  0, that is

[Ca]j =  c([Ca]0, Vm) := [Ca]Q exp =  [Ca]o exp (-801^) (2.45)

where [Ca]Q is the extracellular concentration of calcium.

2.4.3 Transm itter R elease due to Change o f M embrane P otential

We will be separating our model of transmitter release into two parts; one will be a simple 

model designed to reflect the calcium-dependent release of transmitter while the cell is resting 

at a steady membrane potential and will be described later; the other, which we describe 

now, is a more complicated design to take account of the release during fluctuations in 

membrane potential. The motivation for this comes from superfusion experimental set-ups 

with subsecond time resolution demonstrating that the majority of KCl-induced transmitter 

release occurs directly after the application of the stimulation [100]. This suggests that it is a 

step in membrane potential that causes the large amount of release rather than a prolonged,
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steady release. This does make sense considering that release is normally prompted by action 

potential induced spikes in the membrane potential of the terminal.

We therefore make the following assumptions about our model,

1. The change in membrane potential causes the simultaneous opening of many chan­

nels around vesicle release sites, thus providing sufficient influx to cause significantly 

large amounts of transmitter release. This is the essential difference between this and 

the model for steady membrane potential release where we assume that the disparate 

opening leads to less release.

2. There is a delay between the change in potential and the opening of the channels, which 

we take to be the average time to open for a single channel. For a channel modelled 

using the formulation of Hodgkin and Huxley [41] with time constant of activation r , the 

average time to open is ln(2)r. This gives times to open for N- and P-type channels of 

about 0.7ms and 0.8ms respectively, which are consistent with experimentally observed 

delays between membrane depolarisation and calcium influx [9].

As a consequence of this, should the depolarising influence behind a channel opening 

be removed before this delay has lapsed then we deem that the channel does not open. 

Hence for the depolarisation to be effective it must last for the period of the time lag.

The motivation for this lag is the result that the application of the voltage-activated 

sodium channel antagonist TTX does not affect release evoked by 20mM KC1[94]. We 

hypothesise that this is because the action potential depolarisation is over too quickly to 

open significantly more calcium channels than will be opened without action potential 

(KC1 dose with TTX). Hence the only part of the action potential depolarisation that 

is effective in terms of transmitter release is that which is maintained for the prescribed 

time lag and that, in these cases, this is little more than will be opened by the elevated 

potassium level without any sodium channel activation.

3. That channel inactivation is negligible for N-type calcium channels, since we are nor­

mally depolarising from largely negative potentials near rest where inactivation is small. 

We further assume that the rate of depolarisation to be fast in comparison to channel 

inactivation rate. This is valid since the time constant of N-type calcium channel in­

activation is 150ms and the steps in membrane potential occur on the order of single 

milli-seconds. P-type calcium channels do not inactivate.
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4. There is a finite pool of transmitter available for release. This pool is replenished at a 

constant rate, however we will show that this rate is slow in the sense that repetitive 

firing of action potentials cannot be supported for more than a few seconds. This is 

consistent with experimental observations [31] [94] and may be explained by the use 

of nomifensine in the superfusion experiments to disable the reuptake and recycling of 

transmitter by transporter. This is the fastest means of recycling transmitter and so 

the pool replenishment will slow.

5. We then assume that release is proportional to the number of channels that are opened 

by the depolarisation multiplied by (some power of) the internal calcium concentration 

achieved, provided of course that sufficient transmitter is available.

The proportion of the calcium channels that are open for a membrane potential V (£) is given 

by the activation curve Xoo ( V( t ) )  (for N-type channels, we use the notation P o o { V ( t ) )  for 

P-type channels). Hence the change in open channels for a small change in voltage is given 

^  3 7 *oo(V,W). We then have the expected release rate ^ ( t )  from a terminal with channels 

that have a time lag of T  to be:

0 if Vm(t - T ) >

inf-fV^T) : t — T  < r  < t}, 

K f t V(t -T )^ X o o (V m(t -  T))c([Ca]0, Vm(t))n otherwise.

(2.46)

where n is the dependency of release on internal calcium concentration, which is to be deter­

mined by fitting the model to the experimental data. K  is a suitable scaling constant chosen 

as to give the results in cpm for the entire experimental preparation (our modelled results of 

release are then the weighted sums of all the various types of terminal that we define). Note 

that the index to the number of channels opened is evaluated at time (t — T), although the 

current would then flow under the voltage gradient at time t.

2 .4 .4  S te a d y -s ta te  T ra n s m it te r  R e lease

We present a very simple model of this form of release and assume that is proportional to the 

number of open channels multiplied by (some power of) the internal calcium concentration 

achieved due to an open channel. Since we are dealing with the steady state we include 

the inactivation of the N-type calcium channels. We use the same power dependence on
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intracellular calcium as for the transmitter release from a membrane depolarisation. Then 

for calcium influx through N-type channels

=  iiLAr^oo(Vrm )?/o0 (Vrm )c([C a]o , V m ) n  (2 .4 7 )

where K n  is a constant, Xqq and yoo the voltage dependent activation and inactivation curves

for N-type channels and c([Ca]Q, V) the internal calcium concentration. For P-type channels

^ p ( i )  =  tfpPoo(Vy e([Ca]„, Vm)n (2.48)

where Kp  is a constant to be determined by fitting to experimental data and Pcc is the voltage 

dependent activation of P-type channels (which have no voltage dependent inactivation). 

Again the quantitative fitting for this model of release is described in section 2.5.3.

2.4.5 R elease from a Single Terminal

The total release from a single type of terminal is therefore the sum of the release due to 

changing membrane potential and that released at a steady state. If v represents the amount 

of transmitter available from this terminal type then the release is given by

d f if ^ > 0,
-^ te rm (* )= <  ‘ * (2-49)
dt [ 0 if i/ =  0. '

2.4.6 The N eurotransm itter Pool

We are required to keep account of the amount of readily-releasable transmitter [31]. We 

assume that this has a fixed limit and rate of replenishment when it is depleted, and that this 

is the same for each terminal. For each type of terminal let v be the amount of transmitter 

available in counts per minute (cpm) and R te r m { t )  as defined above, then for a constant rate 

of pool replenishment we have:

dv f  “ aS-RtermW if ^ >32000, (2.50)
  R, I-f l n f  Vmrun cndt'

The quantitative fitting for this will be described in sections 2.5.3 and 2.5.4.

* 533 — 4iRteTm(t) otherwise.

2.5 F itting and Results

2.5.1 E stim ation  of R elease from a V oltage Clamp

Fitting the model to the KCl-evoked release data is made easier by an approximation to the 

release evoked. This comes from the observation that applying elevated potassium with TTX
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to block the sodium channels results in slow rise in potential from rest to close to the new 

potassium reversal potential, like the cell has been subject to a experimental voltage clamp.

Since this clamp produces a sustained depolarisation all the calcium channels will have suf­

ficient time to open. Moreover, since the rate of depolarisation is slow in comparison to the 

time lag T , V(t — T) «  V (t ) and we may dispense with the time lag altogether.

Hence, the total release R  for such a clamp from v\ to V2 is given by

/v2 d
— x(V(t))c([ Ca]0, V(t))ndV  (2.51)

where x(V) is the activation curve of the appropriate calcium channel. A change of variables 

to x, where x{V) is given by

x(V) = ---------- )  v  v \  (2-52)1 -1- exp y-----

for some constants Vh and s, yields

R  = K[Ca]0n J X{V2\x p ( ^ - 8 0 n ( ^ - V h - s \ n ( ^ - l J ^ d x

rx{v2) /  1 \  80sra
=  Jf[Ca]on exp(80nV),) /  ( ----- 1) dx. (2.53)

Jx(vi )  \ X J

We are interested in elevated potassium doses of less than 35mM for the fitting which implies 

that the potassium reversal potential is never greater than -30mV. Up to this value we note 

that for both types of calcium channel the activation variable x  is small and so

*x{v2) /  1 \  80sn 

c(ui)
3.(1—80sn)

rx[V2) /  1 \  ousn
R  «  K[C*]on exp(80nVh) ( -  dx (2.54)

J x ( v l) \ x  /

«  K[Ca]0n exp (SOnVh) (1 — 80sn)

X{V2)
(2.55)

x(vi)

from which we may then estimate the release.

2.5.2 H eterogeneity of Terminals

We expect there to be many types of terminal in the conglomerate of synaptosomes and 

that we have deduced the existence of three major sub-types. These follow from fitting the 

model to the experimental observations [94] [95] [31] and principally concern the distribution 

of the different calcium channels and the abundance of nicotinic receptors. While we shall 

be endowing all terminals with the same electrical properties and conductance of potassium
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and sodium channels we shall only be allowing one type (N or P) of calcium channel on a 

terminal and furthermore that only some subset of those with N-types also have nAChR.

This is because the pharmacological blocking of N- and P-type channels has an approximately 

equal and additive effect on KCl-evoked release (at two different concentrations of KC1, 15 

and 25mM). This implies that each set of channels activates discrete release mechanisms, 

but this is itself not a problem since these are supposed to be close to the cytoplasmic end 

of the channels. However AnTx-evokes release through N-type channels only, a result that 

is largely consistent with the co-existence of nAChR with N-types but not P-types. It is 

therefore simpler to assume that each terminal only has one type of calcium channel and that 

nAChR are only to be found co-existing with N-type channels.

2.5.3 F itting  to  the KC1 release data

The equal and additive inhibition of KCl-evoked release by N- and P-type blockers suggests 

that the release profiles are similar for the two types of channel; if they were different we would 

expect the blockers to have different efficacies at the two concentrations. We therefore assume 

that the release profile is identical for N- and P-types and so we can fit each independently.

The fitting is very simple, we calculate the expected release to a voltage clamp (equation

(2.55) corresponding to a rest of v\ =  — 78mV and V2 =  E k ,  the revised potassium reversal 

potential, for the two non-maximal doses of 15 and 25mM and set them equal to the observed 

release. Dividing one by the other removes the scaling constant K  and we then solve for the 

power dependence of calcium concentration n. Because of the supposed correlation between 

n and the number of interaction sites needed for release [63] we will round n to the nearest 

integer. We obtain n =  2 for N-type calcium channels mediated release and n =  4 for P- 

type mediated. We note that these are typical values for n obtained experimentally for the 

cerebellum [63].

We impose this n  on the model for steady state release. Summing the steady state and 

changing potential release for both concentrations then yields two simultaneous equations for 

the two unknown scaling constants, whose values we then obtain and are given in equations
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Condition [3H]dopamine release (cpm)

Theoretical Experimental Data from [94]

Control (25mM KC1) 18214 15558 ±  1247

25mM KC1 -t- Low Na (lOmM) 16281 25780 ±  607

25mM KC1 +  Ca-free 0 856 ±  31

Control (20mM KC1) 11532 7449 ±  1534

20mM KCl+1.5/iM TTX 10398 7821 ±  156

Table 2.2: The effects of different buffer conditions on [3H]dopamine release evoked by KC1, 

comparison between the experimental results [94] and those predicted by the model.

(2.56)-(2.61) below. For N-type mediated release

di?Np
dt (*) =

0 if Vm(t — Tjv) > 

i n f jy m ( t )  : t  -  Tn  < t <  t],

2.16xl054^a:Oo{Vm(t -T/v))c([Ca]0, Vm{t))2 otherwise.

(2.56)

Tn  = 0.7

and for P-type calcium channel mediated release

0

(2.57)

dRpp _
dt i t )  =

if Vm(t — TP) > 

inflV ^M  : t -  TP < t  <t ] ,  

7650^poo(Fm(t -  Tp))c([Ca]0, Vm(t))A otherwise.

(2.58)

TP = 0.8 (2.59)

And for steady state release; for N-type calcium channels we have

^ - ( t )  = 101 ^ (V ^yoc^m M IC alo , Vmf  (2.60)
a t

and for P-type calcium channels

^ p ( f )  =  0.5Poo(Vm)c([Ca]0,Fro)4. (2.61)

A match to the maximum release is obtained by setting the upper limit of readily-releasable 

transmitter to be the maximum observed release, rounded to a convenient 32000cpm. As­

suming the equal contributions of N- and P-types we may reproduce the KCl-evoked release
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Figure 2.9: Dose-dependent KCl-evoked release of [3H]dopamine from striatal synaptosomes: 

comparison of experimental (□) and the model (■) results. Experimental data points are 

taken from Soliakov et al [94], it is clear that a good fit is achieved.

profile and compare it to the experimental data [94] in Figure 2.9. The fit can be seen to be 

very good, but then it is the data we have specifically fitted to, with the slight over-estimation 

of the model largely due to numerical rounding of the scaling constants. The ‘kink’ in the 

experimental curve at 20mM KCI may as well be experimental error than error in our fit. 

The majority (approximately 90%) of the release is caused by the depolarisation as required.

Table 2.2 also shows the release figures for the model and the experimental results for the 

differing buffer conditions. We find a fault with regard to the buffer having a reduced con­

centration of sodium, with our model registering a slight decrease in release due to a weaker 

sodium current causing slightly less depolarisation, in contrast to the large increase observed 

experimentally.

Release for a calcium-free buffer is abolished, the trace level of extracellular calcium we used 

failing to register any significant release. We can also see that our model is largely independent 

of TTX when stimulated with KCI. The reason is simply that the most depolarised part of 

the action potential is ignored by the time-lag we built into the model.
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Figure 2.10: Dose-dependent AnTx-evoked release of [3H]dopamine from striatal synapto­

somes: comparison of experimental (o)  and the model (•) results. Experimental data points 

and fitted curve are taken from Soliakov et al [94]. The model predicts the release for the 

higher concentrations well, but underestimates release for the lower doses where the nicotinic 

current does not causes action potential firing.

2.5.4 F ittin g  to  th e A nT x release data

We now regard the parameter values derived in the previous section as fixed and then study 

the effect of AnTx stimulation on the model. What we immediately notice with concentrations 

of 1 /iM  AnTx, or above, is that the repetitive action potentials soon releases all of the readily- 

releasable transmitter. For a 40 second pulse of AnTx, as used experimentally [94], the model 

cell fires action potentials for a total of 55 seconds due to the slow ‘off’ time of the nAChR 

(section 2.3.10). Given that the pool replenishment is slow, the model cell will be releasing 

transmitter as soon as it is replaced. Hence the AnTx-evoked release is limited at such high 

doses by this rate of replenishment rather than the amplitude of membrane depolarisation.

We need to estimate the rate of readily-releasable transmitter replacement, for which we refer 

to the superfusion work of Grady et al [31] on mouse synaptosomes. Although this data does 

come from the mouse, we will assume that the same rate applies to our modelling.

Grady et al stimulated mouse synaptosomes with nicotine for periods of twenty minutes or 

more and collected fractions every minute to analyse for labelled dopamine content. Our 

model would suggest that the cell would still be firing action potentials at a pool-exhausting
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Condition [3H] dopamine release (cpm)

Theoretical Experimental Data from [94]

Control (1/iM AnTx) 5165 5134 ±  654

1/iM AnTx +  1.5/jM TTX 1881 4213 ±  490

1/iM AnTx +  Low Na (lOmM) 680 523 ±  93

1/iM AnTx +  Ca2+-free 0 444 db 199

Control (15mM KCI) 8080 6536 ±  568

15mM KCI +  1/iM AnTx 8176 9273 ±  2068

Table 2.3: The effects of differing buffer conditions on [3H]dopamine release evoked by AnTx, 

comparison between the experimental results [94] and those predicted by the model.

rate for the first few of these collected fractions. The first fraction would therefore represent 

the entire contents of the pool, assuming it was full to start with, and the amount replaced 

during one minute, assuming that the firing starts soon after the start of the fraction. The 

release in the second therefore is the amount replaced in one minute. This is approximately 

half the amount of release found in the first fraction, indicating that the entire pool is being 

refilled in about one minute. This corresponds to a replenishment rate of 32000/60 =  533cpm 

per second in our model, we are assuming it is a constant rate.

Imposing this rate of replenishment in our model we may estimate the release from a terminal 

endowed with nAChR for a 40 second pulse of 1.5 /iM AnTx. This is over twice the pool limit 

of a terminal and to fit to the experimental data we are therefore required to assume that 

only 8% of the population of synaptosomes have nAChR. This fitting to the experimental 

data has given us a methodology for estimating this proportion of terminals bearing nAChR.

We may now plot the modelled release of [H3]dopamine release against the experimentally 

observed release for the various applied concentrations, this plot may be seen in Figure 2.10. 

The fit for the higher concentrations is very good, since we have fitted this release to the 

proportion of terminals. There is a consistent underestimation of the release for the lower 

concentrations of AnTx, and for AnTx with TTX (Table 2.3). However the model does 

predict the down turn in release for very large (O.lmM) concentrations of AnTx where the 

strong nAChR-mediated current soon inactivates the sodium channels. The lack of additivity 

is also reflected in the model of release, as is the calcium dependence of AnTx-evoked release.
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The release for the total preparation is the weighted sum of the release from the three types of 

terminal that we shall now define. Type 1 are those terminals with P-type calcium channels 

that we take to make up 50% of the synaptosome population; Type 2 terminals have N- 

type calcium channels and axe 42% of the population; Type 3 terminals have N-type calcium 

channels and nAChR. Note that then there is a 50:50 split of N-type and P-type calcium 

channel bearing terminals. The total release is then simply given by

# TotalM =  0.5 x Ri(t) +  0.42 x R 2{t) +  0.08 x R 3{t). (2.62)

2.6 Review

We have derived a model that aims to represent the behaviour of rat striatal synaptosomes 

with respect to the evoked release of [3H]dopamine in superfusion experiments [31] [94] [95]. 

This model fits much of the quantitative data well, with few qualitative faults, but the 

implications of the model and the nature of some of the modelling is worth discussion.

2.6.1 The M em brane Potential Dynam ics

We have approached the modelling from the view of a single terminal subject to the buffer 

conditions found in synaptosome experiments. This causes us to study the electrical proper­

ties of the cell, with particular reference to the complement of ion channels present.

The inclusion of potassium and sodium channels are simple deductions from the effectiveness 

of elevated extracellular potassium and TTX on the cell, respectively [94]. Since the calcium 

channels present have an insignificant effect on membrane potential it is these two channels 

that decide how the model cell will behave, which is very typical for such a set up with 

depolarising current triggering action potentials. Although we think the choice of ion channel 

kinetics (from the rat hippocampus [88] [89] [98]) to be fair, the ability of small currents to 

produce the rapid firing of action potentials is concerning. This follows as a direct result 

of the high resistance and low capacitance of the cell from its small size, so this behaviour 

is to be expected. However these electrical properties would be expected to be significantly 

different in the intact cell; firing rates would be slower and it is likely that larger currents 

would be needed to evoke them. So while we can be confident that the behaviour of our
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model cell is a good representation of the experimental behaviour, the results will not be 

directly applicable (quantitatively) to the intact whole-brain cell.

2.6.2 The M odel o f Transm itter Release

Firstly we have split release into two forms; steady state, where there is a general leakage of 

transmitter whilst the cell is at rest; and for a changing membrane potential. We consider 

that they are due to very slightly different mechanisms; whereas release is normally prompted 

by the coordinated opening of many calcium channels, the disparate flickering open and closed 

of channels whilst the cell is resting would also be capable of causing release, if somewhat 

less potently. It would therefore seem sensible to separate these ideas into two models.

Once we have done this, modelling release to be proportional to some power of the internal 

calcium concentration (a measure of the probability of calcium influx causing release from 

a site) and the number of open channels (number of sites) is sensible. We must consider is 

whether we are justified in including the time-lag which effectively ignores part of the action 

potential. We have used the average time to open for such channels, although some will open 

faster, some will of course open slower and so this seems to be the obvious value to take, 

moreover such a delay is consistent with experimentally observed delays [9]. A question that 

we may be prompted to ask is, why generate such an action potential if much of it is to be 

ignored? However we can hypothesise that the slower membrane time constant of the intact 

cell would produce wider action potentials that may negate the effect of this delay.

2.6.3 The F it to  the KCl-evoked Release D ata

Fitting the model to KCl-evoked release data has required us to assume that release mediated 

by P-type calcium channels is proportional to the fourth power of intracellular calcium, 

whereas for N-type channel mediated release we have assumed a second power dependence. 

While the fourth power dependence is often quoted [19], different values for different calcium 

channels have also been reported in other preparations [63], here a fourth power dependence 

on N-type mediated release and a second to third power on P-types was reported.

It is hypothesized that the dependency on extracellular calcium reflected the number of sites 

for calcium binding needed to trigger release [63]. However this aspect is not present in 

the model, which only considers the concentration of calcium arising from the proportion of 

open channels. Indeed we can see where this power dependence arises in our model from
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our approximation of release from a voltage clamp, equation 2.55. The relevant term is the 

product sn, s is the term that describes the slope of the transition from zero to full activation 

in the activation curves Xqq and , appropriately this parameter is about twice the size for 

Xqq as it is for Pqq. Hence these parameters ensure that release always depends on the 

same power (approximately 1/6) of the proportion of channels opened. Such similarities are 

expected when for a fixed concentration of calcium our estimate of release is purely a function 

of membrane potential and we are effectively fitting to the same voltage-release curve.

In our analysis, the n-th power of extracellular calcium appears as a scaling constant and 

so cancels in the quantitative fitting of the model. This means we cannot tell whether this 

dependence is actually correct with the experimental data we have. This dependence could be 

found experimentally by using superfusion buffers with a selective calcium channel blocker, 

two different concentrations of calcium and a depolarising source such as 25mM KCI.

This asks what does this mean for our model if we observe different dependencies experi­

mentally? Our model is based on reasonable hypotheses on the dependence of release on the 

number of opened calcium channels and the internal calcium concentration and then gives 

sensible values for the dependencies. It is very difficult to predict on biological grounds why 

such differences in dependence on extracellular calcium could arise from the channel kinetics.

However the calcium channels are classified by their pharmacologies and it is therefore possible 

that the channels present in the synaptosomes may have slightly different kinetics (different 

s ’s) than those used in the model. Calcium channel parameters were taken from a human 

N-type channel expressed in HEK293 cells and claimed to resemble a presynaptic channel [61] 

and P-type channels in a rat motor-neuron [101]. Channel parameters from other preparations 

may yield different dependencies if used in the model, but we consider the channels chosen 

[61] [101] provide the most representative data available for nerve terminals.

The fits do match the experimental results well, as we should expect them to. Moreover 

our model does have the TTX independence of KCl-evoked release, simply by our use of 

the time lag whilst the calcium channels open. In fact the model has only one qualitative 

anomaly as KCl-evoked release is concerned; namely that it predicts little change in release 

for a concentration of 25mM KCI under conditions of low extracellular NaCl (lOmM), when a 

large increase was reported [94]. Experimentally NaCl was replaced by iV-methyl-D-glucamine 

(NMDG) to maintain the osmolarity, whereas the model only takes account of changes in 

the principal ions. NMDG has been shown to render the resting membrane potential of 

synaptosomes more negative [40], in which case depolarisation close to the potassium reversal



CHAPTER 2. NICOTINIC AGONIST-INDUCED RELEASE OF DOPAMINE 73

potential (achieved by the application of 25mM KCI) would represent a larger depolarisation 

and hence be expected to open more calcium channels than from the normal resting potential. 

This would then cause more transmitter release and so explain the experimental observation.

2.6.4 H eterogeneity o f the Terminals

The distinction of three major sub-types of nerve terminal is the logical conclusion from the 

transmitter release data for synaptosomes stimulated in conjunction with various calcium 

channel blockers [95]. The blocking of N- and P-type calcium channels causing the equal and 

additive block of KCl-evoked release is consistent with there being distinct populations of 

terminals with exclusively N- or P-type channels and that there are roughly equal numbers 

of each. As AnTx-evoked release is significantly affected by N-type channel blockers only we 

deduce that nAChR only co-exist with N-type calcium channels in this preparation.

2.6.5 The Fit to  the A nTx-evoked R elease D ata

Our fitting to the AnTx-evoked release data [94] [31] has enabled us to estimate the proportion 

of synaptosomes that bear nicotinic receptors. This estimate is derived from experimental 

studies of mouse synaptosomes under chronic exposure to nicotine. This assumes that the 

nicotine and anatoxin-a data is comparable and in our model we find that, for the higher 

concentrations of stimulating dose, release is largely dependent on whether or not the cell is 

firing action potentials and not so on specific dose and receptor activation times. We can be 

less sure how well data from the mouse can be applied directly to the rat, but we assume 

that the rate derived is comparable.

The figure of 8% so derived provides a good fit for the higher concentrations of anatoxin-a 

applied and the model has followed the down turn in release for doses of O.lmM which we 

suppose is due to the inactivation of the sodium channels. The fit for the lower concentrations 

is not as good; we consistently underestimate release for these (values which do not produce 

action potentials) and for AnTx+TTX.

This suggests that we have too much emphasis on the ability of the AnTx to produce action 

potentials and our fit could be better if we had fewer sodium channels and more nAChR. 

However we have found that this is not the case since the difference in release for spike 

producing and non-spike producing concentrations is too great to be due to simple conditions 

such as nAChR conductance. The same result applies to the state transition rates (equations 

(2.35)-(2.38)) so is not a problem with the model of a nicotinic receptor that we have chosen.
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Instead we consider that a better fit can be found if we assume a further type of terminal. This 

would have a different sub-type nAChR for which stimulation with AnTx does not activate 

sodium channels (either due to the numbers of receptors or agonist efficacy, or indeed the 

absence of sodium channels). Since this form of release would saturate at lower concentrations 

of agonist we would expect this sub-type of receptor to then have a higher affinity to AnTx 

than the sub-type we have used. Indeed the heterogeneity of nAChR in the synaptosome 

population has already been established [104] [44] [53],

Regarding the experimental data [94] it was originally hypothesised that the lower maximum 

release elicited by AnTx compared with KC1 may be due to low numbers of nAChR uniformly 

distributed throughout the population, or sufficient receptors to have the same efficacy as 

KC1 in releasing [3H]dopamine but localized to a sub-population of terminals. The modelling 

suggests an alternative; that nAChR are restricted to a smaller proportion of terminals (8%) 

from which they are capable of releasing a greater amount of [3H]dopamine than KC1 acting 

on the same terminals. Preliminary electron microscopy results by the same laboratory in­

tended to ascertain this abundance of nAChR in the synaptosome population suggest values 

of around 10% [personal communication from Ian Jones, Department of Biology and Bio­

chemistry, University of Bath]. In particular our modelling has shown that the amount of 

AnTx-evoked release is largely dependent on the length of time the stimulus is applied for. 

In some preparations, such as adrenal chromaffin cells [64], AnTx has been shown to be more 

efficacious in releasing neurotransmitter than KC1 and this property would explain why.

2.6.6 H eterogeneity o f N icotin ic R eceptors

The model assumes a homogeneous population of nAChR. However more recent studies than 

those on which our modelling was based provide evidence for the heterogeneity of nAChR 

on dopamine synaptosomes [44] [53]. The a3/32-selective antagonist a-conotoxin Mil par­

tially blocks [3H]dopamine release elicited by AnTx [44] or nicotine [53], consistent with the 

involvement of two or more subtypes of nAChR, one of which has an a3/32 interface.

It is not known from this experimental data whether different nAChR reside on the same 

terminals or if they are segregated to separate terminals. It is notable that although it 

is straightforward to extend the model to accommodate these results by including further 

terminal types with appropriate sub-types of nAChR, any such description would require 

the different sub-types of nAChR to be segregated to separate terminals. This is because at 

the higher concentrations of nicotinic agonists used release has been shown to be dependent
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on the transmitter availability following the activation of sodium channels. In the case of 

coexistence, large scale blocking of one sub-type of nAChR would either not effect release 

significantly as the others would be sufficient to generate action potentials, or release would 

be largely abolished if action potentials are not generated. Here our model may be a useful 

tool in discerning the segregation and abundance of these sub-types and terminal types.

2.6.7 O ther N icotin ic A gonists

The model has been based on studies using AnTx as an agonist. The estimate of 8% of 

dopamine terminals having nAChR assumes that all these receptors are fully sensitive to 

AnTx. Other nicotinic agonists elicit [3H]dopamine release from striatal synaptosomes with 

varying efficacies [42] [44]. To include these results we require the binding kinetics of the 

agonist to the receptor sub-type and the ensuing efficacy of the agonist on the ion channel 

conductance (relative to AnTx). Such parameters could be radically different between ago­

nists and would indeed lead to the different release profiles observed experimentally. Inverting 

the problem, we may use the release data and the model to estimate these parameters.

2.6.8 Sum m ary

We have produced a sub-cellular and sub-second time resolution mathematical model of the 

nicotinic stimulation of [3H]dopamine release from striatal synaptosomes that reproduces the 

experimental data well. It provides sound reasons for some of the experimental observations 

made, such as the lack of additivity between submaximal concentrations of KC1 and AnTx. 

This arises from the clamped depolarisation achieved with KC1 causing the persistent inacti­

vation of sodium channels, whose activation is necessary for significant AnTx-evoked release. 

The description of elevated KCl-evoked release is quantitatively accurate with the exception 

of failing to predict an increase in release for low extracellular sodium concentrations, the 

increase is likely to be caused by the membrane potential shift caused by its replacement in 

the buffer, NMDG, which we do not take account of.

Where the description from the model is inaccurate, such as for the smaller concentrations 

of AnTx, we are able to use our model as a qualitative or quantitative tool to provide sound 

suggestions for what is wrong. It suggests that a better fit could be achieved with at least 

two types of terminal possessing different sub-types of nAChR. Where it is insufficient, in this 

heterogeneity of nAChR, the model provides a basis for the subsequent addition and fitting
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of these experimental results. The model therefore provides a solid theoretical basis for the 

description of synaptosome preparations. It also provides a foundation for investigation of 

more holistic preparations, such as slices.



Chapter 3

Bursting in M esolimbic Dopam ine 

Neurons

3.1 Chapter Overview

The firing pattern known as bursting found in mesolimbic dopamine neurons has been shown 

to significantly potentiate the release of transmitter from nerve terminals, a burst consisting of 

a period of faster firing of action potentials, each (on average) progressively shorter and wider 

and occurring after an increasing interspike interval. Since nicotine increases the amount of 

bursting in these cells, which are implicated in the rewarding effects of addictive drugs, the 

mechanism underlying this firing pattern may be of great importance.

Given the hypothesis, based on extensive experimental results, that a burst is caused by the 

calcium-dependent inactivation of a potassium channel we build a model of the electrical 

properties of a dopamine neuron incorporating this mechanism. The cell contains; a fast 

sodium /  calcium channel responsible for the action potential; a GABAergic current from 

neurons of the substantia-nigra pars reticula; a slow depolarisation that brings the cell from a 

hyperpolarised state to spike threshold; a slow after-hyperpolarisation current that suppresses 

action potential firing; and a delayed rectifying potassium channel that repolarises the cell 

following an action potential, and by our hypothesis partially inactivates in the presence of 

calcium. We demonstrate that the numerical solution of this model can reproduce the burst 

firing pattern observed in-vivo if we allow an external (glutamatergic) stimulus to cause an 

action potential, thus raising the calcium levels and inactivating the potassium channel.

A mathematical analysis of a generalisation of this model, that is independent of parameter
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choices and the form of the calcium-dependent inactivation, proves that the external stimulus 

is a necessary component and that in its absence the neuron fires in a rigid pacemaker fashion. 

We also highlight that bursting may also be caused by the relief of the GABAergic current 

and so the opiates may promote bursting in a similar way.

3.2 The M esolimbic Pathway

3.2.1 The Reward Pathway

The mesolimbic dopamine pathway is widely believed to be involved in the reinforcing effects 

of addictive drugs, which have been shown to potentiate the release of dopamine from these 

neurons [18] [50]. Cocaine has been shown to block the dopamine re-uptake transporter and 

so increase the concentration of dopamine in the synaptic cleft. Amphetamine has been 

shown to evoke dopamine release from nerve terminals. Nicotine and the opiates, acting on 

nicotinic or opioid receptors respectively, have been shown to increase excitatory influences 

on the mesolimbic neurons, which one would then expect to increase dopamine release.

Our particular interest lies in the effects of nicotine on this pathway. It has already been 

shown experimentally that challenging mesolimbic dopamine neurons in the rat with doses 

of nicotine (0.5 mg/kg) causes significant increases in the phenomenon of ‘bursting’ [33] [70]. 

This is a firing pattern that can strongly facilitate dopamine release and will be described 

below. This is of particular relevance for smoking in humans since this increased release 

of dopamine from mesolimbic neurons may underlie the reinforcing effects of nicotine as 

an addictive drug. Therefore the mechanism of bursting and how nicotine potentiates this 

represents an important subject of study.

3.2.2 Firing Patterns

There have been three distinctive firing patterns observed in mesolimbic dopamine neurons. 

For in-vitro preparations, such as slices, the neurons fire in a regular pacemaker pattern [30] 

only, that is the cell fires identical action potentials at equal intervals in time. The pattern 

is not changed by the injection of depolarising current injection, this merely increases the 

firing rate of the cell by increasing the rate of rise of the membrane potential in between 

spikes. Sufficiently strong hyperpolarising intracellular current injection can cause firing to 

cease altogether.
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Figure 3.1: Trace from an intracellular recording of a mesolimbic dopamine neuron, repro­

duced from Grace and Bunney [28], This neuron was firing in an irregular pattern and so the 

action potentials can be seen to be identical, in contrast to those in a burst as seen in Figure 

3.2.

Instead in-vivo we can observe two patterns, which have been termed irregular firing and 

bursting. The neurons typically fire in the irregular firing pattern, but under excitatory 

influences the pattern can become interspersed with occasional bursts [27] [33] [35]. The 

irregular firing pattern is one in which the cell fires action potentials of variable heights and 

inter-spike intervals. A histogram of these inter-spike intervals for a cell firing in such an 

irregular pattern has the appearance of a normal distribution.

A burst consists of a period of faster firing of progressively shorter, wider action potentials 

with longer interspike intervals followed by a long afterhyperpolarisation. A histogram of 

interspike intervals for bursting cells has a bi- or tri- modal appearance, with the peaks cor­

responding to the intervals between spikes in a burst, those between spikes during irregular 

firing and a smaller, less distinct peak for the intervals corresponding to the long afterhyper- 

polarisation following the end of a burst.

This burst pattern is physiologically relevant; a bursting neuron releases many times more 

dopamine (measured in terms of DOPAC turnover) than a non-bursting neuron with a similar 

firing rate [70]. This facilitation in release is probably due to the summation of the action 

potentials in the nerve terminal [27].

The naming of this facilitatory pattern as bursting was coined by the many experimentalists 

involved in the study of this firing pattern [27] [35]. It is not to be confused with the firing 

pattern of cells which alternate between periods of activity and quiet. This is generally
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Figure 3.2: Another trace from the intracellular recording of a mesolimbic dopamine neuron, 

reproduced from Grace and Bunney [27]. In this case the neuron is firing a burst. The faster 

firing rate and progressive shortening of action potentials are apparent. The tendency for 

interspike intervals to increase can be seen from the third spike on.
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termed ‘bursting’ and cells of this class are the subject of much study by other mathematical 

modellers such as Bertram et al [56] and Miura and de Vries [17]. There are many similarities 

between the two phenomena, as we shall see later on, but they are essentially separate patterns 

that arise from different actions. Our pattern of interest is indeed never quiet, but varies in 

the rate of firing and shape of action potentials. Throughout this chapter we shall persist 

with the term bursting.

3.2.3 A im s o f the M odel

These are rather simple, by appropriate modelling of mesolimbic dopamine neurons (or other­

wise) we wish to find out how nicotine can cause these neurons to fire, or increase their firing, 

in bursts. This does reduce to two more fundamental questions, the foremost being what 

cellular mechanisms cause bursting? Then, why is this mechanism potentiated by nicotine?

Modelling provides an ideal platform for the addressing this problem. There have been 

quite intensive experimental investigations into the phenomenon of bursting in mesolimbic 

dopamine neurons, which we shall detail below, that also produces a hypothesis on bursting. 

This splits our modelling into two parts; we shall first build a computer model based on the 

hypotheses on bursting derived both experimentally and from our own ideas, which will be 

solved numerically to try and find a burst-like pattern. Analysis of this model will then allow 

us to make more general conclusions for the mechanisms involved in bursting.

3.2.4 The Experim ental D ata

We are fortunate in that the bursting of mesolimbic dopamine neurons (in rats) has been 

extensively studied. Grace and Bunney investigated the burst firing in-vivo [27] [28]. Addi­

tional data, such as the effect of nicotine, comes from Svensson and co-workers [15] [33] [34]. 

The neurons and their ion channels have been studied in-vitro by Grace and Onn [30].

Bursting was first classified by Grace and Bunney in an in-vivo study of the rat brain. A 

burst was defined to start when the interval between two spikes drops to < 80ms and end 

when the interval grows to > 160ms. Although this quantitative measure may seem a rather 

haphazard method of counting bursts it proves to be effective since for a cell firing in what is 

viewed to be an irregular pattern the average firing rate is rarely higher than 8Hz and bursts 

tend to finish (with the after hyperpolarisation) if they do not fire again within 160ms.
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It was observed that the two modes of firing; irregular and irregular with bursts; seem 

to be quite separate. The two modes could be distinguished by the cells’ response to 100- 

200ms pulses of depolarising current (0.5-1.5nA); non-bursting cells showed a typical increase 

in firing rate of identical spikes with accommodation, whereas those in burst-firing mode 

consistently responded with a burst. Shorter (25ms) pulses could not elicit bursts in any 

cells. However it was found that non-bursting cells would become burst firing by the longer 

term (order of minutes) depolarising current injection of 0.3-0.5nA.

It was discovered that the production of an action potential was caused by the decay of a 

so-called after hyperpolarisation current and the rise of a slow depolarisation current. The 

afterhyperpolarisation current is considered to be a slowly activating calcium-activated potas­

sium channel and hence will become activated by the influx of calcium during an action po­

tential and will suppress further spiking until it decays away. As this current decayed the 

membrane potential was also caused to rise by a slow influx of sodium and calcium which 

activates when the cell is hyperpolarised and depolarises it to spike threshold, the so-called 

slow depolarisation.

In the light of this one might expect that the intracellular injection of calcium would suppress 

the firing of cells. Instead this was found to be the most potent inducement to bursting 

found [27]. Other powerful incentives for a cell to burst were a combination of glutamate 

and intracellular current and the injection of barium and TEA (tetraethylammonium). The 

latter two treatments are potassium channel blockers.

These results of calcium-induction and potassium channel blocking enabled Grace and Bun­

ney [27] to advance a hypothesis; that a burst was initiated by a calcium induced inactivation 

of the delayed-rectifier potassium channels of the cell (the channels responsible for the repo­

larisation of the cell following an action potential). The input resistance of the cell was seen 

to increase prior to the onset of a burst and this suggests that the relevant action involves 

the inactivation of outward currents, rather than the activation of an inward current such as 

the I-CAN [75].

Such an injection of calcium will cause the (slower) rise of the after hyperpolarisation potas­

sium channel and the activation of this channel may then lead to the ending of the burst. 

This would suggest that it is the level and time course of intracellular calcium that underlies 

the ability of mesolimbic dopamine cells to burst. Whether the delayed-rectifying channels 

do inactivate with calcium has not been established.

This calcium-mediated hypothesis is lent further support by the eradication of bursting by the
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progressive injection of the calcium buffer EGTA (ethylene glycol bis(/3-aminoethylether)- 

iVjiV'-tetraacetic acid). As EGTA is injected the cells cease to burst and then tend to fire in 

a more rigid pacemaker fashion, more typical of the firing pattern seen in slice preparations. 

An investigation of mesolimbic neurons in-vitro found that bursting could not be elicited 

in these cells with any of the treatments that were effective in-vivo. These investigations 

did reveal that the currents responsible for the slow depolarisation and the fast spiking are 

mediated by both sodium and calcium and hence the firing of action potentials is likely to 

be a potent source of calcium influx.

The reason for our investigation is the observation by Grenhoff and Svensson that the systemic 

injection of nicotine (0.5mg/kg) caused a significant 165% increase of bursting in mesolimbic 

neurons [33]. However it was also demonstrated [15] [34] that the naturally occurring bursting 

of these neurons was eradicated if the neurons were bathed in kynurenate, the excitatory 

amino-acid (i.e. glutamate) antagonist. While one may expect that this simply removes 

an excitatory input that is needed to keep calcium levels high, it would also be expected 

to reduce the firing rate of the cell, which it did not. The unchanged firing rate would be 

expected to maintain the calcium levels and so the apparently necessary external input does 

not seem to have a calcium component; while this is essentially true, there is a hole in this 

argument which will be closed later, in section 3.4.2.

This requirement for the afferent input has particular relevance for the treatment of the neu­

rons with nicotine. Typically nicotine acts through nicotinic acetylcholine receptors (nAChR) 

which are thought to be located on the cell bodies and terminals (Chapter 2). However more 

recent evidence [26] [69] suggests that nicotine acts preferentially by acting on nAChR in 

the ventral tegmental area located presynaptically on the glutamatergic terminals that in­

nervate the dopamine neurons. Therefore nicotinic challenge will potentiate the (necessary) 

excitatory input to these cells.

3.3 The Irregular Firing Pattern

EGTA injection switched the cells from bursting, to irregularity to pacemaker firing, and 

excitatory current input could shift the cell from irregularity back to bursting [27]. This 

observation caused us to suspect that the irregular firing pattern represents an intermediate 

state between pacemaker and bursting and so characterising the irregularity could give a 

useful insight into true bursting. This suspicion is not entirely correct but has led us to some
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interesting conclusions on what may cause bursting.

It was our initial opinion that some form of external input would be needed, an opinion 

supported by the results with kynurenate. The irregularity of the firing pattern, the amount 

of bursting and the occurrence of a burst appears to be quite random [35], which is behaviour 

we would not associate with characteristics that are intrinsic. We would consider it to be 

more reminiscent of interference by some essentially independent external stimulus.

We considered that while the induction of bursting by the calcium-dependent inactivation 

of the rectifying channel seems a reasonable hypothesis, that this would require a quick rise 

in calcium to cause sufficient inactivation before the rise of the calcium-activated potassium 

channel could counteract it. It is not clear from where within the cell such a rise could come 

from; although there is the well known process of calcium-activated calcium release from 

internal stores this still needs an initial rise from somewhere. The influx of calcium through 

external input forcing an action potential, for example, could provide such a mechanism.

It has been observed that in-vitro cells fire in a purely pacemaker fashion. If we consider 

the in-vivo cell, then following an action potential when will the next spike occur? We have 

every reason to suspect that it to will fire like the in-vitro pacemaker unless it experiences 

some outside interference.

Suppose that there is an externally driven excitatory stimulus that forces an action potential 

slightly earlier than one would arise allowing for the intrinsic properties of the cell. This 

action potential will cause an influx of calcium. If we suppose that the afterhyperpolarisation 

current / ahp is already activated and therefore capable of suppressing further action potentials 

then the cell will not burst according to any hypothesis of ours. Instead the elevated calcium 

level will further increase the activation of the Jahp and slow its decay, hence delaying the 

rise of the next, intrinsically prompted, action potential.

Let us suppose that the neuron would have a pacemaker firing pattern period of T  in-vivo 

in the absence of the excitatory stimulus. When this excitatory stimulus arrives we suppose 

that it prompts an action potential immediately at a time t < T  after a ‘normal’ spike 

(we shall refer to action potentials arising from the intrinsic behaviour of the cell and those 

prompted by external stimuli as ‘normal’ and ‘forced’ respectively). An action potential has 

thus appeared T  — t earlier than expected.

Assuming a simple calcium extrusion pump, the elevated calcium levels will decay exponen­

tially and we will assume a similarly exponential decay, with decay rate A, in the / ahp- The
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Figure 3.3: Comparison of histograms of interspike intervals. Top: recordings taken from 

a mesolimbic dopamine neuron firing in an irregular fashion, reproduced from Grace and 

Bunney [27]. Bottom: the irregular firing model (3.5), for an excitatory stimulus of 1.5Hz 

incident on a cell firing at 4Hz and allowing for 5% Gaussian noise, is similar in appearance.
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Figure 3.4: Comparison of histograms of interspike intervals. Top: recordings taken from 

a mesolimbic dopamine neuron firing in bursts, reproduced from Grace and Bunney [27], 

displaying the bi-modal nature of this mode of firing. Bottom: the irregular firing model 

(3.5), for an excitatory stimulus of 2.5Hz incident on a cell firing at 4Hz and allowing for 

5% Gaussian noise. This would have a similar appearance if the left hand spike were bigger 

(including the interspike intervals from within the generated bursts) and the righthand one 

smaller and more spread out (the resulting afterhyperpolarisations).
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delay caused by an early, forced, action potential can then be qualitatively approximated by

/W  =  i l n ( 1 +  ^ )  =  i l n ( 2 - i ) .  (3.!)

This has the essential qualities; limt_̂ 0+ f( t )  = ^ln2,  i.e. a near ‘double’ action potential 

doubles the calcium level and so it takes ^ ln2 longer to decay to the same level. f (T)  = 0 

and so a forced action potential that coincides with a normal one will not cause any delay, 

since the firing pattern has not essentially been interfered with.

The ‘phase’ of the firing cycle has been shifted an amount T  — t — f (t )  by this forced spike.

Let us suppose for the moment that the external stimulus is periodic, with period S  and 

that the arrival of this stimulus forces an action potential instantly (and furthermore that, 

as regards calcium influx, this spike is identical to normal spikes). To prevent this stimulus 

simply driving the firing of the cell we will assume that

M T  < S  < { M  + 1 )T  (3.2)

for some M e  N and hence define the period difference (modulo T), k , to be

k := (M +  1)T -  5, (3.3)

note that k e [0,T). If we define tn to be the interspike interval between a normal spike and 

the n th  forced spike, then the next such interval, tn+i is given by

tn+i =  j T - k -  f ( t n). (3.4)

Here j  € N is the lowest integer such that tn+\ > 0. It is possible that for appropriate 

k (obviously larger values) that k +  f { t n) > T, which merely implies that the forced spike 

appears after the M  — 1th normal spike or earlier.

For simplicity and the illustration of our idea we shall restrict k G [0, ^(1 — In2)) and then 

our system is given explicitly by

tn+i = T -  k - f ( t n). (3.5)

The difference equation (3.4) has some interesting dynamics in its own right. It can be 

shown that for various ranges of k there are steady states and n-periodic orbits where n e N, 

aperiodic solutions are also possible for larger values of k. Before we consider that the 

irregularity of the pattern is solved by reference to these solutions (particularly the aperiodic 

ones), there are many reasons why this is not a valid description of the firing in the cell.
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Firstly we have assumed the external stimulus is periodic and instantly produces an action 

potential. The function we have used to approximate the delay is not necessarily accurate, 

while it may describe the delayed decay of the elevated calcium well, one may consider that 

the activation (whatever function of calcium this may be) of the J ahp is better approximated 

by a double exponential decay. We also know that such cells are capable of bursting and we 

have made no provision for the shift in phase associated with such a firing pattern.

We persist with this description because of the idea that it will be shown to illustrate. For 

each k G [0, j ( l  — In2)) there exists a steady state t* G (0,T), the solution of the equation

t* — T  — k — (3.6)

By writing tn+1 =  g(tn) we observe that ^ g(t) =  2 - t / T  e (0,1) for all t G (0,T) if we

assume XT > 1. This then gives stability. In our modelling of the Jahp in the later sections 

we took A =  1/150 (ms)-1 .

Consider the histogram of interspike intervals for such a cell where the interaction between 

the intrinsic firing and the external stimulus is given by equation (3.5) at steady state. Then 

the distribution has three peaks, at t*, T  and T +  /(£*). For T  =  250ms (a typical firing rate 

of 4Hz), A =  1/150 (ms)-1 , S  = 740ms, then k — 10ms is comparatively small and the three 

peaks axe close together. As illustrated in Figure 3.3, allowing for 5% gaussian noise the 

histogram has a rather uni-modal appearance very similar to the distribution of interspike 

intervals for the real irregular firing.

[As an aside it is worth observing that this model has the correct response to EGTA. This 

would be expected to buffer most intracellular calcium and thereby prevent activation of the 

7ahp . This has the effect of setting f (t )  = 0  and so our three peaks would appear at T  — k, 

T  and T  again, respectively, giving a histogram resembling that of a pacemaker.]

For the not too dissimilar T  =  200ms, S  = 550ms and hence k = 50ms we have a clear 

separation between the peaks as in Figure 3.4. This is reminiscent of the histogram for a 

bursting neuron if the first peak where higher, and strictly if the third peak were flatter. 

Now consider the following idea; the irregular firing neuron does not burst because the / ahp 

is already activated and suppressing any subsequent spiking until it decays (an assumption 

of our flawed model). For this latter cell the forced spike comes much earlier, and we may 

suppose that in this case the 7ahp has not had time to activate (sufficiently). If we allow the 

calcium influx caused by the action potential to cause an inactivation of the delayed-rectifying 

potassium channels sufficient to prompt another action potential we have created a burst.
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Prom the point of view of the histogram, this flurry of spikes will add to the frequency of 

short interspike intervals and the subsequent afterhyperpolarisation will create a flatter, wider 

third (delay) peak and turn it into one that looks precisely like that of a recording bursting 

neuron. While a match of histograms is not conclusive it has proposed the following idea; the 

forcing of action potentials by an external stimulus and the subsequent delaying of normal 

firing seems to fit with the irregular firing pattern. If the same external stimulus forces two 

action potentials close together, the sharp rise in calcium above normal levels could produce 

an inactivation of one form of calcium channel before the Jahp can activate to compensate. 

This imbalance may be sufficient to cause additional action potentials, i.e. a burst.

This proposed additional mechanism involved in bursting can explain certain aspects well, 

as well as standard irregular firing. The cessation of bursting when the cells are bathed in 

kynurenate, blocking this external stimulus, is a case in point. It also solves our problem of 

where an initial rise in calcium can come from.

3.4 The Theoretical H ypothesis

3.4.1 The Com bined Calcium and Forced-Spike H ypothesis

We propose our own hypothesis for the cause of bursting in mesolimbic dopamine neurons, 

that is essentially the combination of Grace and Bunney’s [27] and what the need for input 

[15] [34] we have considered so far. We will suppose that bursting is caused by the calcium- 

induced inactivation of the delayed-rectifying potassium channels (Idr) present in the cell 

increasing cell excitability, but that this initial rise is prompted by the forcing of an action 

potential by an external excitatory stimulus.

The hypothesis can be described as follows:

1. at ‘low’ intracellular calcium levels, the neuron fires in a pacemaker fashion, the spike 

threshold is reached due to the rise of a slow depolarisation. The spike is generated by 

a fast calcium channel and repolarised by a rectifying potassium channel. The incident 

external stimulus may (or may not if the lack of inactivation of the /dr makes this 

current sufficiently strong) prompt additional action potentials. Where these spikes are 

generated, they will cause a simple shift in the phase of the cell, the Jahp will fail to 

activate at such low calcium levels.



CHAPTER 3. BURSTING IN  MESOLIMBIC DOPAMINE NEURONS 90

2. sufficiently ‘high’ calcium levels can cause an inactivation of the /dr (which we assume to 

be fast). The (comparatively late) forcing of action potentials may cause over-activation 

of / ahp to compensate, inducing a delay in the onset of the next normal spike and hence 

give an irregular firing pattern.

3. at ‘high’ calcium levels, if an action potential is forced soon after a normal spike then 

the inactivation of the /dr may be sufficiently greater than the activation of the / ahp to 

induce a period of faster firing in the cell. This will then be attenuated by the slow rise 

of the / ahp. This is ‘bursting’.

4. the increasing inter-spike intervals found in bursts will be due to the progressive rise of 

the / a hp, which will also be responsible for the long after hyperpolarisation following a 

burst.

5. the decreasing spike height in a burst will be caused by a combination of the higher 

levels of calcium reducing the calcium gradient across the cell membrane (and hence 

the strength of the fast calcium channel component of the action potential) and the 

voltage-dependent inactivation of the fast, spiking channels at the higher firing rates.

6. the increasing spike width will be caused by the reduced rectification of spikes by the 

/dr (caused by the increasingly high calcium levels). Less rectification will slow the 

repolaxising of the cell and hence increase the width of the action potential.

7. excitatory intracellular current input (or persistent excitatory input caused by pro­

longed exposure to glutamate) may act to increase firing rate and hence increase cal­

cium levels. This will increase the probability of inactivating the /dr sufficiently and 

thereby promote bursting. Similarly injection of the calcium buffer EGTA would re­

duce calcium levels so that the cell fires as a pacemaker. Calcium injection will promote 

bursting for the obvious reasons.

The hypothesis can provide an explanation for the observed weak correlation between the 

amount of bursting in a cell and its average firing rate [27]. Here bursting arises from the 

locally short time interval following of a normal spike by a forced one and so is disassociated 

from the global firing rate. A weak correlation does arise since one would expect a faster 

firing cell to maintain higher average calcium concentrations which would then increase the 

probability of the cell bursting.
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We can be less sure why short current injections (pulses of 25ms) cannot produce bursts but 

can suppose that the injections used axe not sufficiently strong to force action potentials early 

enough. Recall that bursts are recognised by an interspike interval of < 80ms and we may 

expect that such a time period still lies in the relative refractory period of the cell, from which 

we would expect larger current inputs to be needed. In contrast the longer injection times of 

100-200ms may be sufficient and would also enhance the effect of the inactivation of the /dr 

and so increase the probability of a burst. For a non-bursting cell the calcium concentration 

is unlikely to be able to rise to a burst-friendly level in this time.

Our hypothesis therefore provides a sound theoretical explanation of all aspects of bursting 

in mesolimbic dopamine neurons.

3.4.2 A  D irect Calcium  Influx H ypothesis

The need for a forced action potential is the only consistent hypothesis that we have been 

able to come up with. Whilst it is able to explain this firing pattern in the cells one may 

be tempted to reject this notion of a forced action potential for the following idea; could the 

external stimulus simply be a calcium influx that causes the inactivation. That is rather than 

affecting the cell by raising membrane potential to spike threshold, could the calcium influx 

directly inactivate the Jdr?

This has the advantage of being a slightly more direct method of inactivating the /dr and 

there is experimental evidence for the presence of NMDA receptors (a form of glutamate 

receptor that gates a high proportion of calcium) on dopamine neuron dendrites. However 

this explanation cannot explain the ability of a 100-200ms pulse of current to reliably produce 

bursts unless this also works by producing action potentials, an action which therefore favours 

our original hypothesis.

3.4.3 The Effect o f N icotine

Our hypothesis on bursting ties in very neatly with the observed ability of nicotine to increase 

bursting significantly in mesolimbic dopamine neurons [33]. It relies on the ability of the 

excitatory input to force action potentials in the cell. Nicotine potentiates the glutamatergic 

input and naturally a more potent input will have a better ability to do this. As we suggested 

earlier the ability of nicotine to enhance bursting is much easier to explain than the reasons 

for bursting. This explanation also means that we will not need to model any nicotinic input 

explicitly, but simply take account of more powerful excitatory input as we desire.
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3.5 The Computer M odel
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3.5.1 A im s o f the Com puter M odel

It is our intention to build a simplified computer model of the membrane properties, ion 

channels and calcium dynamics of a mesolimbic dopamine neuron. We shall then use this 

model to investigate whether this is capable of producing bursts. This provides a way to test 

whether our theoretically sound hypothesis a c tu a lly  works.

Mesolimbic dopamine neurons have been shown to contain the following types of ion channel 

[30]; fast sodium and fast calcium for spike generation; sodium and calcium dependent slow 

depolarisation for the depolarisation of the cell to threshold; rectifying potassium; calcium- 

activated potassium channel and an anomalous rectifier has also been identified. The kinetics 

for these intrinsic channels have not been explicitly measured and so we have taken activa­

tion and inactivation curves from other preparations, or in the case of no available analogs, 

assumed a form ourselves. This immediately leaves us the problem that we cannot claim that 

our model is an accurate quantitative description of the neuron, however it is only intended to 

test the viability of our calcium-dependent and forced action potential bursting hypothesis.

There are many parameters of the model that we do not know. In particular we do not 

know the intracellular calcium concentration, or how this varies with the influx through fast 

calcium channels and then what inactivation of the delayed-rectifying channels this may have, 

an action that has not been established experimentally in this preparation. The voltage 

dependencies of ion channels are taken from other experimental preparations and so are 

specified in millivolts. Similarly we take the values of the ion reversal potentials to be the 

numerical values of the true reversal potentials expressed in milli-volts. The model is then 

fitted, in milli-volts, to the membrane potential characteristics of dopamine neurons as regards 

resting potential, spike threshold and spike height; this aids the fitting of parameters to the 

model since we know what behaviour we can expect and so judge whether the results we 

obtain are sensible. For similar reasons time is expressed in milliseconds, all other units are 

in SI unless otherwise stated.

3.5.2 E lectrical Com partm ents

It is not clear from our model whether there are any effects from the spatial arrangement 

of the neuron and its ion channels. For example our hypothesis does rely on what comes
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out as a temporal difference between the calcium inactivation of one sort of channel and the 

compensatory calcium activation of another; it is likely that this may involve, significantly or 

not, the diffusion of calcium ions throughout the cell and therefore we would have a spatial 

component. As this appears as a temporal characteristic, we may as well assume it is purely 

this. By neglecting spatial components we also reduce the complexity of our model from a 

system of partial to one of ordinary differential equations.

The neuron is therefore regarded to be a single electrical and spatial compartment. We will 

use Hodgkin and Huxley models for the ion channels [41] and a standard calculation for 

the internal calcium concentration. Hence the ion channels are considered to be electrical 

currents in parallel with an electrical capacitance representing the cell membrane and we can 

solve for membrane potential by solving Kirchoff’s Law for this system, that is

C m  ^  =  /leak  “k /d r  ~k / s d  "k /s p  "k /a h p  “k /g a  ~k / e x t 5 (3*7)

Cm =  1.0 x 10"8, (3.8)

where Cm is the capacitance of the membrane in F, Vm is the membrane potential in mV,

/leak is the leakage conductance (which is then in mA). / ext is the excitatory input from the

external source that we propose is a requirement in bursting and the other /_ are the currents 

due to the ion channels, which will be discussed in the following sections.

3.5.3 Leakage Current

The cell will typically have a leakage of current through the membrane due to its natural 

permeability and the action of other ion channels or ion pumps that we do not explicitly 

model [41]. However we have the problem that we do not know the conductance of this 

current; while the true membrane resistance could be estimated to perhaps within an order 

of magnitude by reference to values obtained for other preparations or model we do not know 

how this value may compare to the conductances of the other ion channels in the model. We

may only estimate the comparative conductance if we can find a specific use for this type of

current. We therefore assume that it has an effect similar to the GABAergic input to the cell 

(section 3.5.11) in keeping the membrane potential low and obtain

/leak =  (3.9)

Bm =  -75, (3.10)

iU  = 1.0 x 1013, (3.11)
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where Em is the reversal potential of this current and R m is the membrane resistance in Q. 

The value of R m is chosen such that removal of the powerful GABAergic current will increase 

the firing without causing a depolarisation block.

3.5.4 Calcium  A ccum ulation

We calculate the intracellular calcium level, which is then used to calculate the activation 

and inactivation of the calcium-activated potassium channels and calcium-inactivation of the 

rectifying channels respectively. For simplicity we assume that only the spike generating 

channel gates calcium and that the ion is removed by a simple pump. The concentration of 

calcium is then described by the equation [10]:

^  =  -B(JSp +  / sd) - C~ < W , (3.12)
Cbu T"c

B  = 1.0 x 104 (3.13)

cbase = 290, (3.14)

TC = 300, (3.15)

where c is the intracellular calcium concentration expressed in fj,M, 7sp and 7Sd are the currents 

due to the spiking and slow depolarisation channels and rc is the time constant of the extrusion 

pump. In practice it turns out that the 7sd is small in comparison to the 7sp.

Strictly the currents 7sp and 7sd gate both calcium and sodium and we should take account of 

this. The calcium influx will not be a fixed proportion of these currents due to the fluctuations 

in the individual reversal potentials of the two ions, but these variations are typically small 

(we estimate it to be of the order of 5%) and we consider this extra complication unnecessary.

3.5.5 The Calcium  Reversal Potential

The changes in the calcium reversal potential plays an important role in our hypothesis where 

it is supposed to restrict the height of the burst spikes. The reversal potential is given by

Eca =  12.5 In (3-16)

where c is the intracellular calcium concentration given by equation (3.12) and [Ca]G is the 

extracellular calcium concentration which we assume is fixed at

[Ca]0 =  1.5 x 105. (3.17)
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This value is derived from the fitting of the model as described later (section 3.6.1). The 

factor of 12.5 is the numerical value derived from the physical constants, see Chapter 2, 

section 2.3.2 and [45] [47] for an explanation of what these are.

3.5.6 The General Form of Ion Channels

All ion channels are assumed to gate current (7) according to Ohm’s Law, I  — gV, where 

g is the conductance of the channel and generally a function of time, membrane potential 

and calcium concentration and V  is the voltage gradient. Of all the ion channels that have 

been identified in the preparation thus far the only one we do not include any model of is the 

anomalous rectifier current. This current only arises as a weak hyperpolarising influence when 

the cell is clamped at hyperpolarised membrane potentials and may even be a slow voltage- 

dependent inactivation of the delayed-rectifying potassium channels. Its weak actions do not 

seem to be particularly relevant to the cell function within our range of interest given the 

current data.

3.5.7 The R ectifying Potassium  Channel

We have taken the voltage activation curve from a guinea-pig potassium channel [89] [98] and 

assumed for simplicity and computational efficiency that it activates instantaneously. The 

current is given by

Idr =  fl'dr ,̂oo(^m)^,oo(c)(F'(jr Lm) (3.18)

m oo{V m ) ~  7 v  _ v  (3.19)
l  +  e x p ( -  mvm,ml‘)

Vmh =  - 5  (3.20)

Vms =  14.2 (3.21)

ffdr =  3.85 x 10“ 7 (3.22)

E i r  =  - 7 5  (3.23)

where pdr is the total conductance of the channels, m ^ V m )  is the steady state (instantaneous) 

voltage-dependent activation curve. E^r is the reversal potential of this current, taken to be 

the reversal potential for a potassium current.

hoo(c) is the calcium-dependent inactivation of the channel. No form is known for this since 

the effect has not been established, but it will typically be a decreasing function of intracellular
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calcium, c. We have assumed a partial inactivation involving a Boltzmann curve because such 

a form saturates at low and high values allowing us to tweak the function for sensitivity to 

calcium easily without having to worry about causing negative conductance values. We used 

the explicit form:

hx (c) = 0.6 +  r  (3.24)
l  +  e x p ( c ^ )

ch =  920 (3.25)

cs =  1 (3.26)

where the half inactivation, Ch, and slope, cs, constants are estimated from typical calcium 

concentrations observed when running the simulation for hQO(c) = 1. We will be assum­

ing that the inactivation is fast in comparison to the calcium-dependent activation of the 

afterhyperpolarisation current and therefore take it to be instantaneous for simplicity.

3.5.8 The Slow Depolarisation Current

The rise in membrane potential from the hyperpolarised state following an action potential 

to spike threshold is mediated by a slow depolarisation current [30]. The membrane potential 

rises at a fairly constant rate, which gives the appearance of a leakage conductance if it were 

not for the inactivation of the current if it does cause an action potential. Although it is 

described as a slow current, because of the slow rise in membrane potential it causes, it is 

not apparent whether this slowness arises from the time taken for the current to activate to a 

perhaps strong conductance level, or whether the current activates quickly but is weak. For 

our purposes it does not particularly matter which (or what combination of the two) since we

only require its effect, rather than a true model of the current (for which there is insufficient

experimental data). We use the latter description since it omits the need to bring in extra 

parameters to describe the time dependence.

We therefore assume that the current is fairly constant at hyperpolarised potentials and that
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it inactivates quickly at above threshold potentials. We take it to have the form

Isd =  9sduoo{Vm){Esd I'm) (3.27)

uoo (Ym) — ~ (3.28)
l  +  e x p ( i i ^ )

Vuh = -4 0  (3.29)

Vut = 1 (3.30)

gli =  4.0 x lO "10 (3.31)

Es d =  ECa (3.32)

where is a voltage-dependent inactivation curve of our own design that acts to switch 

off the current at above threshold potentials (hence the sharpness of the slope Vus). While 

this form is for an ionic current is non-standard, it fits with the experimental observations on 

the channels behaviour and in practice works well. The current is mediated by sodium and 

calcium ion flow and hence has a high reversal potential (of around about 100). This will be 

a combination of the sodium and calcium reversal potentials, Epja and E c a respectively and 

would be given by

E  d _ 9NaENa + gCqEca ^ ^
9Na +  9Ca

where g ^ a and gca are the relative conductances of the channel for sodium and calcium. 

Since we do not know what these figures are and observing that the sodium and calcium 

reversal potentials are typically close together we take Esd =  E c a- In practice the variation 

in Eca for calcium influx makes little impact on this current, representing a change of 10-20 

in a voltage gradient of 160.

3.5.9 The Spiking Channel

This is a fast activating channel that generates the action potential. Dopamine neurons have 

been observed to have two types of such a fast channel, selective for calcium and sodium. 

Since both forms of channel perform similar functions and cannot be differentiated by there 

observed voltage dependencies we only include a single form of fast channel which we assume 

gates both calcium and sodium. For the same reasons as for the slow depolarisation channel 

discussed above (section 3.5.8) we use the calcium reversal potential only.

The voltage-dependent activation and inactivation curves are taken from a fast sodium chan­

nel in the guinea pig hippocampus [88] [98]. For the sake of simplicity and a little com­

putational efficiency we assume that activation is so fast as to be instantaneous. The time
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constant of channel inactivation is put in this form to reflect the fast inactivation at depo­

larised potentials and a slower action at resting and hyperpolarised potentials. The chosen 

values are fairly typical [88] [98] [49], if a little slow for the more polarised potentials, with 

the specific ones chosen simply because they worked well. The channel current is then given 

by

(3.34)

(3.35)

(3.36)

Isp

ds
dt =

9spr oo{V m ) s(Esp Vm ) 

ôo {V m ) S
rs

r oo(V m )
1

l + e x p (

•̂ oo (I'm)
1

1 4-exp

Vrh = -29

Vrs = 5.7

Vsh = -67.6

Vss = 7.4

9sp = 1.05 x 10~5

E sp = Eca

Ts —
j  50 for Vm  < —40

1 for Vm > —40

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

where and Sqo are the steady-state voltage-dependent activation and inactivation curves 

respectively.

3.5.10 A fterhyperpolarisation Current

It has been observed in mesolimbic dopamine neurons that trains of action potentials give 

rise to a slowly activating, after hyperpolarisation current (Jahp) [30]. This is putatively a 

calcium-activated potassium channel, that is its activation is a function of the intracellular 

calcium concentration c rather than membrane potential. It was experimentally estimated 

that the activation of this Jahp was proportional to the number of action potentials elicited 

by a depolarising intracellular injection. Since each action potential will gate slightly less 

calcium than the one before, and from a non-zero base, it suggests that in this range the 

dependence is supra-linear. This calcium influx through action potentials activation of the 

Jahp also supports our modelling result that the Jsp is the main source of intracellular calcium
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over the I sd-

We have therefore assumed that the steady state activation of the channel is equal to the 

internal calcium concentration squared (c2). It was found that this value gave a suitably 

strong afterhyperpolarisation and it is consistent with the calcium-dependent potassium cur­

rents found and used in other preparations and models [49]. In accordance with experimental 

observations we take the time constant of activation to be slow. This potassium current is 

then given by

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

This description is non-standard in that the activation of the channel is typically greater than 

1 and we have included the correction factor in gahp- Strictly we should write the activation 

in a scalar Michaelis-Menten form, but for the ease of fitting have left it as above. Writing it 

in the form where a calcium level equal to the extracellular concentration (150mM) has an 

activation of 1 (which would seem reasonable) corresponds to a sensible maximum channel 

conductance of 8.0 x 10- 6S.

lahp — 9&hpa (-^ahp ^m)
da c — a
dt JTa

9ahp = 8.0 x 10" 16,

E&hp = -75

Ta = 150.

3.5.11 G A BA ergic Input

Mesolimbic dopamine neurons in-vivo are observed to be under intense external stimulation 

from GABAergic neurons [29] which serves to keep the cell hyperpolarised. Since removal 

of this input can cause significant changes in firing rate an approximation to this input was 

included. The stimulation is of such a high frequency (about 20Hz [29]) that it can be well 

approximated by a simple channel of constant conductance rather than many temporally- 

discrete inputs. The current is a flux of chloride ions and therefore has a typical reversal 

potential of around -75(mV). Hence it may be written

Ig a  = 9ga(Ega, — V ^ ) ,  (3.50)

0-a =  5.0 x 10-8 , (3.51)

£ ga =  -75. (3.52)
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3.6 R esults of the Computer M odel

100

3.6.1 The Q uantitative F itting  of the M odel

We have already quoted the numerical values of the parameters used in the model in the 

sections above. The derivation of these values comes from fitting the model together to 

produce a description of a mesolimbic dopamine neuron. However combining all the models 

of ion channels and calcium accumulation together into such a model is not going to be 

straightforward. We must first consider what sort of fit we would wish to achieve, our 

ultimate aim is to demonstrate bursting in these cells but this may not be practical given the 

many different mechanisms that we propose are involved.

Our first step will be to create a model of a cell that fires periodically, the so-called pacemaker 

firing, since this represents a slightly simpler system, being devoid of the external excitatory 

input. Given that we are then only interested in a regular firing pattern we do not (for 

the moment) need to consider the calcium-dependent inactivation of the /dr and so can 

temporarily set hoo(c) =  1. For similar reasons we temporarily ignore the calcium-activated 

current, the / ahp, and set the calcium reversal potential to a constant value of 100.

We first choose typical time constants for inactivation for the / sp, fast at 1ms for depolarised 

values and slow (50ms) at resting and lower potentials. We take a conductance of 1/iS for 

the Isp [88]. The conductance of the /dr is then set so that induced action potentials have 

a height of more than 90mV and a duration of around 2ms, as observed in [28]. We then 

add in the Isd with the conductance set so that the cell fires at about the observed rate of 

4Hz. To avoid interference in this fitting from the leakage current the membrane resistance 

is set to a large value so that it has a very low (negligibly so) conductance. This results in a 

combination of three channels that produces pacemaker firing at a rate of 4Hz and running 

this model simulation allows us to monitor the variations in intracellular calcium levels from 

its nadir just before an action potential, to its peak just after one.

Based on these observed calcium levels we then add in the / ahp current such that it hyper- 

polarises the cell and suppresses further action potentials for approximately another 250ms 

(the current natural period of the cell) when two action potentials are induced close together 

(< 10ms apart). The longer interspike intervals that are thus possible meant that intracellular 

calcium levels could decay to close to zero. Identifying that this could cause unwanted inter­

ference regarding the calcium reversal potential we raised the base calcium level (effectively 

the reversal concentration of the calcium pump) to prevent this.
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The activation of the Jahp at the lower calcium levels hence produces an additional hyperpo- 

larising influence on the cell and so we reset the conductances of the Isp, and / Sfi as above 

to return the cell to a firing rate of 4Hz. We then perform a similar action when adding in the 

7ga, assuming that subsequent removal of this current can cause the cell to reach threshold 

in 10-20ms (as observed in [29]). The restriction of a constant calcium reversal potential was 

then lifted.

The most difficult part of the model to fit is the calcium-dependent inactivation of the /dr 

since we have no indication of form or the results of this mechanism, save for our hypothesis 

that it could prompt bursting. Firstly we note that the increased firing rate found during a 

burst, typically 2-3 times the normal firing rate, can be produced in the model by reducing the 

conductance of the /dr by a factor of about 0.85. This gives the range of calcium-inactivation 

that we require and we can keep within these limits by assuming the inactivation is described 

by a Boltzmann curve.

We are then required to fit the two parameters for this Boltzmann function. It will be easier 

to attempt to reproduce a significant level of calcium inactivation for an action potentials 

worth of calcium influx if the slope of the curve is steep, giving it a step like appearance. For 

that reason we set the slope parameter to be 1, small (implying steep) when compared to 

typical calcium ranges of around ImM. The half-inactivation parameter is therefore a marker 

for where the channel inactivates. If we are investigating the possibility of the cell bursting 

without the need for an external excitatory input then we will set this parameter to cause 

inactivation in the upper range of intracellular calcium concentrations reached during the 

fitted pacemaker firing. Alternatively when we look into the possibility of the input forcing 

action potentials that lead to bursts it is set in the higher range of concentrations reached 

when two action potentials are forced close together, as in the fitting of the calcium-activation 

of the / ahp*

This method; of starting with a few channels that have simple, independent actions and 

building the rest of the model from there; was thought to be the most sound and easiest way 

of producing a system involving all the channels that fired in the observed way.

3.6.2 Pacem aker Firing

Our fit of the computational model fired in a pacemaker fashion of about 4Hz as we designed 

it to. The cell fires action potentials of 90mV in height, but from a more hyperpolarised spike 

threshold of -55mV, hyperpolarising to a comparatively depolarised -65mV, in comparison to
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Figure 3.5: The pacemaker firing, at a rate of 5Hz, of the computer simulation that is left 

unperturbed. The slight variation at the beginning is due to the simulations initial conditions, 

but from the third spike on the interspike interval is regular.

experimental observations [28], The firing rate could easily be altered by shifts in the model 

parameters. Typically this involved changing the conductance of the slow depolarisation, 

reductions in this parameter reducing the firing rate to a minimum of about 2Hz. For slow 

depolarisation conductance values below this minimum the membrane potential remained at 

a steady, hyperpolarised potential. It is notable that mesolimbic dopamine neurons do have 

an observed minimum firing rate of about 2Hz.

Conversely, increases in slow depolarisation conductance produces a faster firing cell and 

rates of over 10Hz can be generated. The pacemaker firing pattern of the cell firing at a 

rate of about 5Hz can be seen in Figure 3.5. Altering the other conductances of the ion 

channels affects the cell as one would expect; reducing the conductance of the I^r makes 

the cell fire faster with less hyperpolarisation (2-3mV less) in between spikes, although the 

spike threshold is relatively unchanged due to a slight inactivation of the Isp. Increasing the 

conductance of the / sp increases the firing rate by reducing the spike threshold by 2-3mV but 

retains the original level of hyperpolarisation.

Increasing the conductance of the Jga slows the firing of the cell, increasing both the hyper­

polarisation and spike threshold. A similar effect can be obtained by increasing the strength 

of the / ahp) although the activation of this channel can cause an initial oscillation in the firing 

rate when the simulation is started as the calcium concentration is not synchronised. This 

soon (within three or four spikes) settles down to pacemaker firing.
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Figure 3.6: The initial conditions of the simulation can cause transient behaviour before 

settling down to pacemaker firing. Here a cell follows an initial spike with a burst-like pattern 

of four spikes and a putative afterhyperpolarisation which cuts off a possible fifth.

Significantly, excitatory influence such as increases in the Isd or 7sp conductance, continuous

injection of depolarising current, or decreasing in Jdr> Jga or -fahp conductance cannot in-
*

duce sustained bursting, or any burst-like pattern. Small, or slowly building currents purely 

increase the firing rate; larger, or quickly arising, currents produce faster firing with some 

accommodation (and a possible small oscillation in firing rate due to the activation of the

-̂ ahp)*

The key word here is sustained. All the simulations run eventually settle down to pacemaker 

firing, within what is observed to be no more than six spikes. Typically the initial conditions 

of the simulation will not correspond to the ultimate periodic solution and so there is some 

transient behaviour. This can be a slight oscillation in the interspike interval, which is due 

to the membrane potential and calcium concentration being out of synchronisation leading 

to alternate over- or under-activation of the / ahp-

Where there is a large imbalance in the initial conditions, as regards the ultimate pacemaker 

firing of the cell, the model can display transient behaviour that does appear to contain a 

burst. Figure 3.6 is a prime example of this; after an initial spike there follows another in 

the comparatively short (regarding the period of the pacemaker firing of the cell) interval of 

150ms, which creates three further spikes very quickly. Each successive spike has a slightly 

greater interspike interval and is slightly shorter in height. There then follows a long (500ms)
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Figure 3.7: For the same cell as in Figure 3.6, the injection of a depolarising current (from 

3050ms) can cause a burst-like pattern but the cell soon settles to a higher frequency of 

pacemaker firing. When the depolarising current is removed (at 5000ms) the cell returns to 

firing at the original 3Hz.

interval without firing, although the cell does appear to nearly break threshold at 700ms 

absolute it is prevented by the activation of the Jahp which then hyperpolarises the cell. Once 

this is over the cell fires with a steady period at 3Hz.

As one would then expect, sufficiently large step changes in depolarising current can trigger 

some burst like phenomena if the change in firing rate causes the intracellular calcium levels 

to rise from a region of low inactivation of the rectifying current to one of high inactivation. 

The increase in depolarising current causes a period of rapid firing which can raise calcium 

levels sufficiently high and the cell may then produce a similar burst firing pattern. This 

‘burst’ is also attenuated by the rise of the Jahp, whereupon the cell fires once more as a 

pacemaker, although at a higher firing rate due to the increased depolarising influence.

Figure 3.7 shows how a cell that is firing as a pacemaker responds to a prolonged depolarisa­

tion. The pattern is not a typical burst, but the cell does fire faster with increasing interspike 

intervals. There is no apparent long after hyperpolarisation due to continued presence the 

depolarising current which then makes the cell fire at a pacemaker 7Hz. Removing the depo­

larising current causes the cell to return to its original firing rate of 3Hz, the long interspike 

interval is caused by the high calcium concentration sustained by the high firing rate strongly 

activating the / ahP-
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Figure 3.8: For a cell injected with EGTA, thereby mopping up the intracellular free calcium 

that would activate the 7ahp) the injection of depolarising current between 500 and 1000ms 

simply increases the firing rate.

In contrast we may simulate the effect of injection of the calcium buffer EGTA into the cell 

by reducing the time constant of the calcium pump, reflecting a quick removal of intracellular 

free calcium. For such a cell, the injection of depolarising current causes a switch between 

two rates of pacemaker firing with no noticeable transients, see Figure 3.8. This is consistent 

with the experimentally observed response to depolarising current in EGTA-treated cells [27].

3.6.3 Induced Burst Firing

The computer model has supported our hypothesis thus far. The undisturbed cell merely fires 

as a pacemaker and it will not be perturbed from this, simply because there is no mechanism 

that would cause this. However we can see that sufficient disturbance of the cell, either by 

an imbalance of initial conditions for the simulation or injections of depolarised current, can 

create burst-like phenomena although these are only transient occurrences.

It is apparent that regular discrete stimulation of the cell may then create the combination 

of irregular firing and bursting that we seek. We therefore examined the response of the 

simulation to discrete depolarising stimuli. Using a depolarising current to force an action 

potential at some point in a simulation run produced two different responses depending on 

the levels of intracellular calcium reached by the forced influx. A forced spike that produced 

little calcium-induced inactivation of the rectifying channel responded with a longer following
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Figure 3.9: The irregular firing that the simulation is capable of, the third and seventh spikes 

have been forced by depolarising current. This does not change to firing rate of the cell since 

the shortening of an interspike interval produced by forcing a spike is compensated for by the 

ensuing delay caused by increased activation of the I&hp.

interspike interval, simply caused by the elevated calcium concentrations activation of the 

/ ahp. The cell then returns to pacemaker firing. However, the shortened interspike interval 

caused by forcing a spike followed by a longer one is similar to the irregular firing that is 

seen in cells in-vivo [35] and one can produce such a pattern consistently by forcing spikes at 

arbitrary times in the simulation run. This is illustrated in Figure 3.9 where the third and 

seventh spikes were forced by the application of depolarising current. We also note that the 

forcing of spikes occasionally in this manner does not significantly affect the firing rate of 

the cell as the increased interspike interval following a forced spike approximately makes up 

for the shortened interval caused by prematurely generating an action potential. The cell in 

Figure 3.9 fires at a rate of about 2.33Hz for the irregular firing pictured and for undisturbed 

pacemaker firing.

A different effect may be produced if the forced spike causes a large amount of inactivation 

of the rectifying channel. In such circumstances, the cell can produce a startlingly good rep­

resentation of a burst [27]. Examples may be seen in Figures 3.10 and 3.11, where the forcing 

of a spike causes a further three or four to be generated before a long afterhyperpolarisation. 

Interspike intervals do increase as the burst progresses and as hypothesised this is due to 

an increasing level of activation of the Jahp- Spike width also increases from about 3.0 to 

3.2ms in the burst in Figure 3.10 and the spike height does progressively decrease by a few
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Figure 3.10: The simulation can generate a realistic burst of five spikes when an action 

potential is forced 200ms after a normal spike. The burst has the increasing interspike 

interval, spike width and decreasing spike height of experimentally observed burst. The 

burst is followed by an afterhyperpolarisation of about 400ms duration.
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Figure 3.11: The simulation can generate a realistic burst of six spikes when an action 

potential is forced about 50ms after a normal spike. The burst has the increasing interspike 

interval, spike width and decreasing spike height of experimentally observed burst. The burst 

is followed by a long (500ms) afterhyperpolarisation.
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millivolts. After the after hyperpolarisation, the cell returns to pacemaker firing. However, 

one can see from this that a regular forcing of spikes could cause a realistic and sustained 

burst /  irregular firing pattern.

The distance between a normal, unforced spike and the forced spike provides an index to the 

number of spikes in a burst as illustrated by Figures 3.10 and 3.11 where a gap of 200ms 

produces a 5-burst and a gap of 50ms produces a 6-burst respectively. This is quite reasonable 

since the closer together the spikes, the higher the level of calcium and the lower the Jahp 

activation at the start of the burst, thus giving the burst more opportunity to fire many 

spikes. This would support the consideration of irregular firing to be a burst of one spike. 

Such a mechanism provides a neat explanation of how a single cell may produce a mixture 

of irregular firing and bursts of varying numbers of spikes, it merely depends on the interval 

between a normal spike and a forced one.

Imposing a fast calcium pump, which reflects the fast (in comparison to the period of the cell) 

buffering of free intracellular calcium wipes out the ability of the cell to burst. The reason 

is simple, the calcium level is never at a sufficiently high concentration to cause inactivation 

of the /(jr. Similarly the Jahp is maintained at a low level of activation by the small calcium 

concentration and so the cell fires like a pacemaker, as is observed experimentally [27]. Forcing 

an action potential does not cause any change in pattern save for the shortened interspike 

interval that immediately precedes it.

3.6.4 Conclusions

The computer simulation has demonstrated that the hypothesis of a calcium-inactivation 

rectifying channel can lead to very realistic bursting effects if the cell is suitably perturbed 

by an excitatory stimulus. We can produce bursts consisting of varying numbers of spikes 

which is dictated by the length of the interval between the normal and forced spikes. The 

burst spikes get shorter and fatter as the burst progresses, with increasing interspike intervals 

and a following after hyperpolarisation caused by the activation of the 7a hp-

In this sense we can see that the elevated calcium hypothesis is a robust one. However it is 

also clear that in this simulation sustained bursting or irregular firing needs the excitatory 

stimulus. Even by slight variations in the parameters we have used for the simulation we have 

not been able to sustain burst firing with any level of depolarising current injection. The 

requirement for external stimuli does agree with our initial opinion and the experimental 

observations under the blocking of EAA input with kynurenate [15] [34]. One can see from
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the computer simulation that our reasoning behind this is also correct; for a burst to occur 

we need the calcium concentration to be elevated way above the activation of the Jahp and 

there is no other mechanism present that could cause this perturbation.

In the simulation of an unperturbed system the 7ahp activation always rises to match the 

calcium level and so prevent any attempt at an intrinsically generated ‘early’ spike that 

could produce a burst. We could suppose that whatever combination of calcium-dependent 

inactivation or activation we used, that such a system would always find a ‘happy medium’ 

between the calcium activation and inactivation mechanisms and so pacemaker fire. Of course 

the computer model only produces a realisation of one set of parameters that happen to give 

qualitatively (and to some extent quantitatively) similar firing patterns.

3.7 Difference Equation M odel of Bursting

3.7.1 Sim plification o f the Com puter M odel

The system of non-linear ordinary differential equations that forms the computer model 

requires numerical solution and hence is restricted to the quantitative results for a specific 

set of parameters. Although we may freely change these parameters to any values we wish, 

we still require a simplification of this model that enables us to analyse the results for a class 

of parameters.

Our major simplification comes from the observation that we do not need to follow the change 

of membrane potential with respect to time, it is the tracing of the potential through action 

potentials and other non-linear phenomena that makes the model analytically intractable. 

Instead we can deduce the firing pattern of a cell entirely by knowing the interspike intervals. 

If we assume that there are no (discrete) external stimuli, then given the state of the system 

immediately after an action potential and that we know all the influences on the cell, we may 

be able to estimate the time taken for the membrane potential to rise to spike threshold. 

Continuing this we may then be able to calculate the state after this action potential and so 

iteratively derive the entire firing pattern of the cell.

Hence we wish to solve for the time taken for the cell to rise from the hyperpolarised membrane 

potential following an action potential (vl) to the threshold voltage (vjj). For a cell with 

membrane capacitance Cm, the total charge transfer required is given by

Q = Cm( v v - v L). (3.53)
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Hence by integrating equation (3.7), we wish to solve

'T

'o

for T, where 7tGt is the sum of all the channel currents in the cell.

Q = [  h o M t) ,V m (t),t)dt (3.54)
Jo

This is still a non-linear problem, with the currents being non-linear functions of membrane 

potential and calcium concentration, each a function of time themselves. The calcium con­

centration is easily obtainable if we assume that there is only significant calcium influx during 

a spike, with the implication that during the interspike interval there is negligible influx from 

the 7sd and 7sp. Hence the calcium will decay exponentially. Realising that due to the base 

firing rate of the cell, there may be some base level of calcium c&, we are then just required 

to solve

§  = ££ £ c(°) =  =0 (3-55)

which has the simple solution

c{t) = Cb + (c0 -  cb) exp ( ) . (3.56)

Using this solution we can then solve for the 7ahp activation, a

da c(t) — a
o(0) =  a0 (3.57)

d t  Tn

which has the solution

(3.58)a(t) =  cj +  a 0exp ( - - ^ - )  +  (ao -  ao -  cj)exp ( - ^ - )

«o =  ( c o -c t ) . Tc ■ (3.59)
\Tc Ta )

Hence we may substitute these into equation (3.54). In this situation we need to use a

simpler function for calcium-induced inactivation of the rectifying current, h(c). We may

use a piecewise linear approximation of the Boltzmann curve used (equation (3.24)) in the 

computer simulation.

The dependencies of the channels on membrane potential are not so straightforward, in 

particular the time course of membrane potential is not known a-priori. However we can 

approximate these as follows. We are only examining a small voltage range (see, for example, 

Figure 3.5 where the interspike interval covers only a small range of membrane potentials) 

and so we may approximate the non-linear steady state voltage dependencies of the channels 

with a linear function of voltage. Many of the channels, such as the 7ahp and 7ga are linear
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function of membrane potential anyway, the other voltage dependencies are approximately 

linear over the small potential range, although if desired we could use a piecewise linear 

description.

We then assume that the voltage may be approximated by a piecewise linear function with 

n pieces, where between voltages vl . and VLi+l it has the form

v(t) = vL i+ rit  (3.60)

n  = V̂Li+' ~ VLi} (3.61)

noting that
n

VLo = vl ,  V L n+1 — v u ,  ^ T i  = T . (3.62)
i=0

Assuming this form for the path of the membrane potential and the linear approximation of 

<s<x>(Kn) allows us solve for the / sp inactivation parameter s(t) (given an initial value so, the 

inactivation of the channels immediately following an action potential). We may then write 

the channel currents purely as integrable functions of t. Hence on any interval (vLi tVLi+J  

we can perform the integration on the RHS of equation (3.54) and given the initial values 

for calcium (co), /ahp activation (ao) and the hyperpolarised and threshold voltages (vl and 

vu), with an appropriate mesh of v l^ s  we may solve for each T* and hence for T. It follows 

that if our estimation of the function v(t) and associated mesh accurately models the time 

dependent change in voltage, then the estimate of T  will be accurate to the interval calculated 

by the simulation.

Suppose we take the voltage mesh to be the same for each interval, this merely assumes it is 

fine enough to give a good approximation of any of the voltage paths we could encounter. If 

our cell is pacemaker firing, then each spike is identical and the inactivation of the / sp, s{t) 

is identical at each of the first points in the mesh (each vi). If the cell is bursting then the 

spikes are by definition different and this will not hold, although the amount of variation is 

quite small according to our model.

Let us assume for the moment that the cell is firing as a pacemaker, in which case so is 

identical for each interspike interval. Then T may be regarded solely as a function of the 

initial calcium concentration co and / ahp activation ao since all other variables are now fixed. 

Once T  is calculated for a given co and ao, we may then calculate the next interval given the 

‘next initial’ conditions, c\ and a\ say. We know how these amounts vary with time and so
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we may calculate what these values will be, namely:

c i  =  c ( T ) + C s P (3.63)

ai = a(T) (3.64)

that is the new calcium concentration is the amount that was present as the cell reached spike 

threshold (clearly c(T)) and the amount the calcium concentration is increased by a single 

action potential, CgP, which we will assume to be constant. Since the action potential is very 

fast compared to the time constant of activation of the / ahp the activation will be unchanged 

by the action potential.

It is therefore clear that given a starting calcium concentration co and / ahp activation ao we 

may calculate the corresponding interspike interval To and thus ci and ai. Hence we may 

iteratively calculate all of the subsequent interspike intervals and so derive the entire firing 

pattern of the neuron.

We compared the predictions of this model to the results from the simulation, using a sim­

ple mesh in which the voltage was approximated by two linear functions. This model did 

accurately predict the interspike intervals of the simulation for a range of parameter choices. 

Inaccuracies would occur at parameter choices fax from those that have previously been used

in the simulation. At such parameter choices it was apparent that the membrane potential

was not well approximated by the mesh used. Improving the mesh consistently improved 

the accuracy of the results. This is not surprising, since equation (3.54) is exact and so the 

better we may approximate /tot (t) (by better piecewise linear approximation) the better our 

predictions of T.

Hence we have reduced the system of non-linear ordinary differential equations requiring 

numerical solution to a system of algebraic equations that can calculate the interspike intervals 

and therefore the firing pattern of the cell to any desired accuracy.

3.7.2 G enerality o f the Algebraic M odel

It may not be particularly clear why this algebraic model is an improvement on the computer 

model since we cannot write down an explicit form for T, the comparisons briefly described 

above still required a computer to solve for it. However, the computer model is highly depen­

dent on the specification of the ion channels and their non-linear dependence on voltage. Here 

we are only considering a small range of voltage where these currents can be approximated
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by linear functions of the form I j  =  g j { e j  — v(t)) and for those channels that are functions of 

membrane potential only (all those apart from the I^r and / ahp) 9j and ej are constant.

For a collection of N  such channels, they can be expressed in the form of a single channel IQ, 

where

Io = G { E -v ( t ) ) ,  (3.65)
N

G =  (3-66)
3= 1 

1 N
E  = -Q^2,9jej' (3.67)

j =i

Hence in our algebraic model we may combine all channels that do not involve calcium into 

this channel IQ and we then wish to solve

Q = [  Iahp{t) +  Idr{t) +  Io(t)dt (3.68)
Jo

The only restriction we place on G and E  is that they give a solution for T, that is that 

the cell will fire at sometime in the future. As long as this is true then our analysis below 

will hold. Therefore any combination of (voltage-dependent) channels that we may wish to 

endow our model of a dopamine neuron with can be combined to form this single channel 

without any difference to the analytical results of our model.

Such a class of channels naturally includes the actual combination that a dopamine neuron

will have, with regard to both the types of channels present and the parameters used. Hence,

with correct assumptions on the behaviour of the 7dr and 7ahp which shall be covered later, 

our results are directly applicable to the firing pattern behaviour of mesolimbic dopamine 

neurons.

3 .7 .3  D ifferen ce  M o d e l an d  A n a ly s is

Firstly we shall express our algebraic model (3.68) as a system of difference equations. That 

is for calcium concentration cn and 7ahp activation an after a spike and previous interspike 

interval Tn;

an+ 1  — A ( a n , cn , T ^ -i- i) ,

cn+1 =  C(cn,Tn+i), (3.69)

Tn+i ~  T(an,cn),
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for appropriate functions A , C and T. The functions A  and C are known; A(an, cn,T) = a(T) 

with the initial condition a =  an and C(cn,T) =  c(T) +  CsP with the initial condition c =  cn, 

equations (3.64) and (3.63) respectively. The function T  cannot be written down explicitly 

but a solution exists and may be numerically solved for if required. The surface T  = T(a, c) 

defines a surface in R 3, which we will call the T-surface.

Despite the inability to write down T explicitly we may make two assumptions:

1. ^ -(a , c) < 0, that is that elevations in initial calcium concentration will shorten the 

interspike interval. This is precisely the condition that we hypothesise initiates a burst 

and hence is a perfectly valid assumption within the range we are interested in. It 

is possible that for very high levels of calcium (big c) the inactivation of the I^T may 

have saturated and so the unboundedness of the activation of the Jahp may lead to a 

contradictory lengthening of the interspike interval. For such a range of c and a bursting 

is clearly not possible and so this possibility need not concern us.

2. fj^(a, c) > 0, that is that a raised activation level for the /ahp will tend to lengthen 

the interspike interval. This is quite apparent since it causes an increased amount of 

hyperpolarising current.

Existence of a Steady State

We claim that there is a steady state of the system (3.69) on the T-surface. We first observe 

that for every initial calcium concentration c* G (q, +  CsP, o o ) ,  there exists a time T* such 

that C(c*,T*) = c*. This merely states that for any (above baseline) initial concentration 

of calcium, the calcium level will decay to c* — CsP within a finite amount of time T  and be 

returned to initial levels by an instantaneous action potential.

Moreover for a combination of c* and T*, there then exists a* G (q,, oo) s.t. A(a*,c*,T*) = a*. 

That is there is an initial level of activation of the / ahp that, when combined with the calcium 

concentration of initial value c* has the same activation after time T*. Note that we can 

refine the legitimate range of a* to a* G (c* — CsP,c * ) .  If this point (a*,c*,T*) lies on the 

T-surface, then it represents a steady state of the system of non-linear difference equations

(3.69).

Let T be the line in R3 defined by (a*,c*,T) where for a chosen c*, there is a corresponding 

T* and hence an a*, but T is then chosen to ensure that the point lies on the T-surface.
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Figure 3.12: Projection onto the (a, c)-plane of the T-surface for the system of equations 

3.69. This diagram shows that assuming the existence of two steady states S  and S' leads to 

a contradictory crossing of A by the same time line, iso-T'.

Similarly define the line A (a variable). Then any crossing of these two lines identifies a 

steady state on the T-surface and therefore a steady state for the system (3.69).

Note that the ‘graph’ function for T; T(c*) i->- (a*,c*,T) is continuous by the continuity of 

A(-), C(-) and T(-) and hence the line T  has no discontinuities. And moreover that T(c*) 

defines a unique point on the T-surface. Similar conclusions apply to the line A.

Consider a steady value for the initial calcium concentration c* and corresponding steady 

time T*. Then C(c*,T) G (c* — CsP,c*) for all T  G (0,T*). Hence for any corresponding a*, 

a* G (c* — csp,c*). Hence T  is bounded in the (a, c)-plane and on the T-surface by the lines 

a = c and a — c — Csp.

The smallest theoretical value for c* is clearly Q,+csp with corresponding steady time T* = oo. 

Noting that c) > 0 we see that for small c* values the line A must lie at high a values 

on the T-surface. In fact we can assume that there exists c* sufficiently small such that 

(a, c*,T*) G A and a >  c*.

We now claim that A also lies arbitrarily close to the line a = c&. Suppose not and that 

the point (ao,c*,T*) is the point of A closest to a = c&. Then the point on the T-surface 

(eft, c*,To) has the property that To < T* because ^ ( a , c )  > 0. Hence there exists c\ =  c* +  e, 

for some e > 0 and T\ G (To,T*) such that there exists ai with (a i,c i,T i) G A and ai < ao. 

This establishes the contradiction.
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This then establishes that the line A extends arbitrarily close to the line a =  q, for values of 

c greater than c& +  csp. Therefore there is a point of A on the T-surface for all a G (q,, oo) 

and so it crosses the lines a = c and a = c — CsP. Hence it must also cross T at some point, 

establishing the existence of at least one steady state.

Uniqueness of the Steady State

We claim furthermore that the steady state is unique. Take a steady state of the system

(3.69), letting it be denoted by the point S* = (a*,c*,T*). By definition the lines A and T 

go through this point.

At the steady state; let us assume that A crosses T from right (positive a) to left (negative 

a). For the existence of another steady state (denoted S') A must ‘curve back round’ to meet 

T again, as in Figure 3.12. This will have steady time T' < T*. The line of equal times, 

iso-T' must then exit the closed loop of A and T through A since T' < T*, that is it must 

cross A twice. This is a contradiction since the combination of steady c and T is unique by 

equation (3.63).

If A and T cross in the opposite direction then the same argument applies by observing that 

the iso-T* line must cross A. We have therefore shown that the lines A and T can cross at 

most once. Hence the steady state is unique.

Attractivity and Stability of the Steady State

Our proof of attractivity and stability of the unique steady state can be summarised as 

follows, with reference to Figure 3.13. The line W  on the T-surface extends from low a and 

c values, through the steady state and on to high values of a and c. If W  presents a wall to 

the trajectory, in the sense that initial points above W  in the upper-right quadrant from the 

steady state cannot cross it and those below W  in the lower-left cannot cross into the upper- 

left, then all trajectories must (ultimately) tend to the steady state. Since perturbations 

from the steady state are bounded this attractivity also implies stability. We shall make one 

simplification, that without loss of generality we take q, =  0 since is merely a translational 

shift in the calcium and Jahp activation values.

We shall first consider a point (ao,co,To) in the upper-right quadrant from (a*,c*,T*) in the 

(a, c)-plane that is on this W  and gives rise to the next point (a i,c i,T i). We will suppose 

for the moment that this point also lies in the upper-right quadrant. If W  is such that for
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Figure 3.13: Projection onto the (a, c)-plane of the T-surface for the system of equations 

3.69, showing the presence of the wall W  that forces all trajectories to the steady state S.

all points c > c* it lies to the right of A, then the interspike interval To is too large to be 

steady with ao and cq, by an over shoot of t a and t c respectively. Hence we may ignore the 

first To — t a and To — t c of their respective trajectories as these leave a and c at their original 

values. Hence c\ and a\ may be given by

ci =  c0 exp (3.70)

ai =  a0 exp +  a o ^exp -  exp • (3.71)

If we denote the equation of the line W  in the (a, c)-plane by

a =  W(c) (3.72)

then ao =  W(c$) and the new point (a i,c i,T i) lies above W  if

W(ci) — W (cq) exp - c *o ^exP -  exp > 0 (3.73)

which may be written purely in terms of cq as
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If, in the upper-right (a,c) quadrant, W  lies to the left of T, then

tc < ta (3.75)

(3.76)

and so we may write

w { c° e x p { - £ ) )  - ^ )exp( - | )  -< *  ̂  ( « * > ( - £ )  - « p ( ~

>  - W ( c 0) e x p ^ - ^  ~ C° T ( exp( - ^ )  - e x p ( - "T

eliminating the two different times ta and tc and giving us a sufficient condition for (ai, ci, T\) 

to lie above W  of

w { Coexp{ J t ) ) ( e x p ( “ l )  _ e x p ( “ S ) ) > 0
(3.77)

Noting that this has zeros at ta = 0 and ta = oo, the sign of the expression (3.77) is 

determined by the sign of the derivative with respect to time evaluated at ta = 0. That is, 

for the positivity of (3.77) we require

dW r fj. \\ c{ta) (  ta\  W(c(ta)) (  ta(c(ta)) e x p  + ------------ exp -dc Tr I 7c/ Tr \  T(

Tc ( 1  (  ta\  1 (  (3'78)c0  —e x p   e x p  > 0,
Ta - T C \ T C \  TCJ  Ta \  Ta J )

which, with c(ta) = cq at ta = 0, fortunately reduces to

W(c) >  c ( ^  +  ^ ( c )  ) . (3.79)
J a  dc

This gives a condition on the wall W. If we solve (3.79) for equality and add a small amount 

e > 0 to force the correct inequality, along with the condition a* =  W  (c*) we obtain

^ ( c) =  c +  1 - t - +  fc(e) exp(—c) (3.80)

k(e) = exp(c*) ( a *  - c — 1 — e ] . (3.81)
\  r a /

We observe that W(c) is an increasing function of c with maximum gradient ( r c / T a ) <  1 

and the projection of T onto the (a, c)-plane has minimum gradient 1, so W  does indeed lie 

between A (which with respect to the (a, c)-plane has a negative gradient) and T as required. 

Moreover, by the definition of W (and W(c)), the point (a i,c i,T i) does indeed lie in the 

upper-right quadrant.

We now consider any point above W in the upper-right quadrant (a, c, T). Consider the 

point obtained by projecting (a, c,T) along the a-axis onto (a w J ,T w )  £ W. Since Tw > T



CHAPTER 3. BURSTING IN  MESOLIMBIC DOPAMINE NEURONS 119

and a w  > cl the next point in the trajectory with initial conditions (a, c, T) lies at a smaller 

a and larger c than that with initial conditions (aw,c,Tw), by equations (3.63)-(3.64), and 

hence stays above W .

Hence we have shown that there exists a line, denoted W , in the quadrant a > a* and c>  c* 

that prevents trajectories crossing it. All trajectories that pass through this region must 

therefore tend to the steady state.

We must now establish the existence of a similar wall in the lower-left quadrant of the (a, c)- 

plane that prevents trajectories passing through the region below to cross it. We may follow 

a similar analysis to the above to establish the presence of this line, it is not surprising to 

discover it is also described by a =  W(c), for c < c*. This necessarily requires the establishing 

of conditions similar to (3.77), (3.78) and (3.79) but with the inequality reversed. This follows 

simply from observing that in this region tc < t a < 0 , since the interspike interval is too small 

to be steady for the initial conditions.

This line W  cannot guarantee a complete block of trajectories at low a values where the 

interspike interval can be small. This is because our analysis has assumed that

BA
— (a ,c ,T )<  0 (3.82)

as regards steady values of a. This is on the basis that bigger values of T  than are required to 

be steady will cause further decay of the activation, a. This is not true for sufficiently small 

values of T, where a can be on its initial climb towards the calcium level c. In this case the 

sign is reversed and our analysis no longer applies.

This possible problem need not concern us, since this situation cannot arise for points suffi­

ciently close to the steady state. This is all we need to establish the attractivity and stability 

of the steady state, any trajectories that can escape W  in the lower left quadrant by having 

sufficiently small interspike intervals T  are still bounded and will then be ‘caught’ by the 

portion of W  in the upper-right quadrant.

We have mentioned that perturbations from the steady state are bounded but have not 

indicated why. This can be seen by considering the initial point (ao,co,To) in the lower-right 

quadrant of the (a, c)-plane, as Figure 3.14. The interspike interval To is too small for a 

steady a and c and hence both of these values increase. Consider the point obtained by the 

projection of this along the c-axis to (o^cajT a) £ A. This point has a higher initial c since 

ca > co and a smaller interspike interval, Ta < To and so it must lead to a higher subsequent 

c value. However, by the definition of A, c is steady on this line and so ca represents an
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w

w

Figure 3.14: Projection onto the (a, c)-plane of the T-surface for the system of equations 

3.69, showing how the trajectory for an initial point (ao,co,To) is bounded by its projection 

to the line A, ( c l o , c a , T a )  and the line W .

upper bound for c. The trajectory for the point (ao, co, To) is then bounded within the region 

c < ca and W .

This boundedness of trajectories gives us the asymptotic stability of the steady state when 

combined with the attractivity. Therefore, whatever the initial conditions, all trajectories will 

tend to the steady state and stay there unless the system is regularly perturbed. Hence the 

only possible firing pattern for an undisturbed cell is one with a constant interspike interval, 

that is pacemaker firing.

3.8 Review

We have been able to produce a mathematical model of a dopamine neuron that displays 

a burst-like pattern in accordance with the experimental observations. This modelling was 

based both on experimentally derived hypotheses and ideas of our own, principally a require­

ment for an external stimulus. We have shown further that this perturbation to the model is 

necessary for any pattern other than a regular one to be obtained. The results that we have 

thus derived are based on many assumptions that we should now discuss.
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3.8.1 The Irregular Firing Pattern

We have been fortunate with the extent of the experiments performed by Grace and Bunney 

[28] [27]. This has provided a wealth of (largely qualitative) information on the nature of 

bursting in mesolimbic dopamine neurons and they have even advanced their own hypothesis 

on what causes bursting. We can use this as a starting point for our own investigation.

We have shown that the calcium-inactivation of the /dr hypothesis that Grace and Bunney 

propose leads to good bursting patterns when combined with a suitable perturbation. This 

idea for a perturbation is largely based on our model of the irregular firing (section 3 .3); a 

model in which we consider the pattern obtained by the interaction of a periodically firing cell 

with a calcium-dependent potassium channel and an external stimulus. We first considered 

the inclusion of an external driving force because we could not see any particular reason 

why the irregular firing cell may generate action potentials unexpectedly early and so this 

model was developed. This is backed up by the experimental evidence of Charlety et al 

[15] and Grenhoff et al [34], demonstrating that bursting is attenuated by the blocking of 

glutamatergic input to the cells, without significantly affecting the overall firing rate.

The model is interesting because, despite its simplicity it provides many of the ideas that 

we use later in the computer simulation. It assumes a periodic external stimulus that causes 

an immediate action potential with nice exponential decay of calcium and a fixed amount of 

delay, an oversimplification of the true system. However, the model does provide the following 

fundamental idea; that a burst can be caused by a normal action potential and a forced one 

occurring sufficiently close together.

Such an idea can be consistent with the hypothesis of Grace and Bunney; if a burst is caused 

by a calcium-inactivation of the /dr (assumed fast), then any mechanism that quickly causes 

increased calcium levels will enhance the ability of a cell to burst. We then continue our 

modelling with the realisation of how a burst may, truly, be caused.

3.8.2 The Com puter M odel

We have now been able to derive what appears to be a fully working hypothesis on the ability 

of dopamine neurons to burst. The details are given in section 3.4.1 and we consider that we 

can address every aspect of the firing patterns of mesolimbic dopamine neurons.

We are then required to test this hypothesis and see whether it is genuinely capable of 

generating bursts and the most straightforward approach is to implement this in a computer
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model. This necessarily means modelling the electrical potential of the cell membrane and its 

constituent ion channels. We do not know the correct voltage-dependencies of the channels, 

nor the spatial and electrical characteristics of the cell and so clearly cannot attempt a 

quantitatively accurate model. Instead we must draw from models of ion channels similar to 

those identified in the experimental preparation and make assumptions on the nature of such 

mechanisms as the calcium-dependent inactivation of the /dr-

The calcium-dependent inactivation of the 7dr is fundamental to the hypothesis on bursting 

but we do not know what form it may take, the existence of this mechanism has never 

actually been demonstrated. We have had to assume this and the action of such currents as 

the slow-depolarisation. The ion channels that we have drawn together are fitted in what 

we consider to be the most methodical way, endowing us with a simulation in which all the 

channels influence the qualitative behaviour of the cell as we would expect.

We have thus produced a model consistent with our hypothesis on bursting that produces 

quantitatively accurate bursting patterns. In the absence of an external stimulus the cell 

fires in a regular pattern; in its presence the cell can fire irregularly or irregularly in bursts 

depending on the calcium concentration and the activation of the 7ahp- The burst is caused 

by the calcium inactivating the 7dr, progressive activation of the 7ahp widens the interspike 

intervals and causes the afterhyperpolarisation. The reduction in the calcium gradient across 

the cell membrane does cause a slight shortening of the spike heights and the spikes do get 

moderately wider.

It is noticeable from our simulation that the closer the forced spike is to the normal one, the 

more spikes occur in a burst. This is because a sooner spike will lead to a higher level of 

calcium and hence prompt a faster rate of firing within the burst. This correlation between a 

shorter initial interspike interval and increasing numbers in a burst is observed experimentally 

[27]. Indeed our computer model is qualitatively consistent with all of the experimental 

observations made by Grace and Bunney, we have not found any faults with it at all save 

for slight quantitative errors. This even extends to the ability of depolarising intracellular 

current injections of >100ms producing bursts, but not those of around 25ms for intracellular 

current injections of around InA.

3.8.3 The Difference Equation M odel

The only problem with the computer model is that we have been forced to use specific 

parameters and forms for the activation of the 7ahp and inactivation of I  dr and so we cannot
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be sure that some variation of the parameters may lead to a spontaneously bursting model 

cell. We have therefore derived the more general difference equation model.

This model has little dependence on the non-calcium dependent ion channels in the cell, we 

only require that this combination ensures that there is another action potential at some later 

time. Our analysis from there on is the same, so the exact make up of the channels used, or 

that we may have missed some channels out altogether does not actually matter. Moreover 

we only stipulate that the interspike interval increases with initial calcium concentration 

and decrease with initial Jahp activation level. This means that we are not making any 

unsubstantiated claims on the form of these mechanisms.

We write the system as a set of difference equations describing the interspike intervals and 

initial calcium and 7ahp activation levels. We then present a proof that this system has a 

unique, asymptotically stable steady state. This demonstrates that our computer model is, 

in general, correct and that the undisturbed cell will only fire in a pacemaker like fashion. 

Hence the bursting or irregular firing must be generated by a perturbation to the system, 

such as by a forced action potential.

This rather general result may seem to contradict the ability of cells to produce the other 

type of ‘bursting’ described in section 3.2.2 and [56] [17] . Here cells fire a series of spikes 

followed by a period of quiet and then repeat. This alternating between firing and non-firing 

states is typically caused by the slow cycle of activation of a calcium dependent potassium 

channel. This does not seem consistent with our description, which includes a slow activating 

calcium-dependent potassium channel and one might think suggests that this pattern could 

not arise. Fortunately it does not suggest this; one of the assumptions of our difference 

equation model was that the cell is firing repetitively, hence the assumption on the other 

channels IQ in equation (3.68) that they give a solution for T. Our proof states that when 

such a cell is firing repetitively, that it will tend to pacemaker fire and says nothing on the 

behaviour of the cell at levels of excitation that leave it in a non-firing state. We may note 

that for such ‘quiet-active’ bursting cells the active phase has a tendency to pacemaker fire, 

as seen in the models of Miura and de Vries [17] and Bertram et al [56].

3.8.4 Consequences for N icotine

Although we have covered the ability of a dopamine cell to burst in great detail, we have 

neglected one of our original aims in examining how nicotine may potentiate bursting (as 

has been experimentally observed [33]). We have no specific to model the action of nicotine
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explicitly as we have clearly established the requirement for the external stimulus forcing an 

action potential in the dopamine neuron. It is such a stimulus that nicotine potentiates.

Our modelling illustrates that the chance of a cell producing a burst depends on the ability 

of the stimulus to produce an action potential sufficiently close to a preceding normal spike. 

A more powerful stimulus (nicotine-enhanced) will lead to more forced, and closer, action 

potentials which will then lead to more bursts with more spikes in each. Hence nicotine may 

increase bursting in these cells.

It is an interesting aside to consider the action of opiates on mesolimbic dopamine cells. 

The opiates (such as heroin) are rewarding drugs that have also been shown to potentiate 

the release of dopamine [50] [18]. Opiates act pre-synaptically to inhibit the release of the 

inhibitory neurotransmitter GABA and therefore have an excitatory effect on the dopamine 

neurons [58]. This poses the question of whether the opiates may potentiate dopamine release 

from mesolimbic cells by also promoting bursting with their excitatory influence.

The computer model does feature the GABAergic current and the relief from this current 

can cause action potentials (as it was designed to do) and hence may cause bursting. In fact 

the bursts seen in Figures 3.10 and 3.11 were actually caused by action potentials produced 

from a temporary cessation of this current. We can therefore propose that opiates increase 

bursting in mesolimbic dopamine neurons by a similar method to nicotine.

3.8.5 Summ ary

Based on one already proposed from extensive experimental observations we have derived a 

hypothesis for the cause of bursting in mesolimbic dopamine cells. This is that an external 

excitatory influence forces action potentials within the cell, raising calcium levels sufficiently 

to partially inactivate a potassium conductance.

A computer model built according to this hypothesis demonstrates bursting patterns that 

satisfy all of the experimentally observed phenomena qualitatively and is in general quanti­

tatively accurate. The need for an external stimulus is verified by a more general difference 

equation model.



Chapter 4

Sensitisation and Tolerance to  

N icotine

4.1 Chapter Overview

Under differing experimental conditions nicotine has been shown to induce both a tolerance 

and a sensitisation to its effects in laboratory animals. We first consider a model describing 

the turnover of nicotinic acetylcholine receptors (nAChR) and their transformations, when 

exposed to nicotine, from active to desensitised and then a slower shift to an inactivated 

state. By assuming that degradation of the inactivated conformation is reduced, perhaps due 

to an internalisation of the receptor, we demonstrate that the chronic application of nicotine 

increases nAChR numbers. However functionality is always reduced and hence a tolerance 

to the effects of nicotine is developed.

Identifying that the pharmacological aspects of the observed sensitisation to daily injections of 

acute nicotine have much in common with the phenomenon of long-term-potentiation (LTP), 

we build a model of a synaptic connection. The glutamate-releasing presynaptic terminal 

has nAChR, fast sodium and rectifying potassium channels for action potential production 

and subsequent cell repolarisation and a simple integrate and fire model of transmitter re­

lease. The post-synaptic process has both receptors of the NMDA and non-NMDA (AMPA) 

type. Nicotinic stimulation potentiates the glutamate release causing sufficient post-synaptic 

depolarisation to release the magnesium block of the NMDAR. The resultant calcium influx 

leads on to upregulate the AMPAR numbers, potentiating the post-synaptic response. We 

find that this potentiation can be self-sustaining since the enhanced post-synaptic response

125
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can cause NMDAR activation in the absence of nicotine. We introduce a probabilistic model 

that aims to quantify the persistence of this sensitised response and demonstrate that it may 

be maintained indefinitely, which has important implications for nicotine and other addictive 

drug seeking behaviour.

4.2 Sensitisation and Tolerance

Many researchers have observed that the repeated exposure of laboratory animals to nicotine 

can produce two conflicting effects. Some experiments demonstrate the development of a 

tolerance in rats to doses of nicotine [16] [60] [86], whilst others report a sensitisation to its 

effects [3] [5].

Given the observed desensitisation of nicotinic-acetylcholine receptors (nAChR) in response 

to prolonged exposure to nicotine [31], the development of a tolerance to its effects may not 

be that surprising. However the chronic exposure of rats to nicotine leads to a paradoxical 

upregulation in the number of nicotinic receptors [16] [60] [102], yet it is suspected that these 

increased numbers of nAChR are not functional. Although it is not clear, it would appear 

that such mechanisms would lead to an overall downregulation of nicotinic function and hence 

lead to a tolerance to nicotine and its effects.

Against these processes that may cause a tolerance to nicotine, there are reports of a con­

tradictory sensitisation to nicotine developing under certain experimental conditions. In 

particular, daily injections of nicotine have been shown to sensitise mesolimbic dopamine 

neurons to future challenges [3]. This may be particularly important since the mesolimbic 

dopamine pathway is supposed to mediate basic drives such as food or sex in mammals and 

has been widely implicated in drug reinforcement [50]. Drugs of abuse such as nicotine, co­

caine, amphetamine and heroin have all been shown to increase the release of dopamine from 

these neurons [18] and nicotine has been shown to mediate this effect by increasing the firing 

of bursts by the neurons (as modelled in Chapter 3 with reference to [33]). Therefore the 

development of a sensitisation to nicotine expressed through the mesolimbic pathway may 

partially underlie its perceived addictive effects.

The possible importance of tolerance and particularly sensitisation to the neuromodulatory 

effects of nicotine mean that this is a phenomenon that would be of great interest to model. 

We shall first investigate the upregulation of nAChR reported in some experimental prepara­

tions which we propose may underlie the tolerance to nicotine. We then turn our attention to
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modelling a mechanism that may cause a sensitisation to nicotine and this model’s relevance 

to nicotine’s apparent addictive effects.

4.3 The Upregulation of N icotine Receptors

4.3.1 The Experim ental Background

In Chapter 2 we modelled the comparatively short-term (10s of seconds) effects of the nicotinic 

agonist anatoxin-a (AnTx) on rat striatal synaptosomes. Other laboratories have also studied 

the effects of the prolonged exposure of similar preparations to nicotine. In particular Marks 

et al [60] exposed mice chronically to nicotine over periods of 3-6 days and observed that, 

using [H3]-nicotine to label the a4(32 sub-type of nAChR, the receptor numbers increased.

This increase may seem to be a paradox, since it is largely thought that the over-exposure 

of a receptor to an agonist will lead to a compensatory decrease in receptor numbers [45]. 

Marks and others have proposed that the observed upregulation was indeed a compensatory 

mechanism, but to the shorter-term desensitisation of nAChR [60] [86]. nAChR have been 

observed to desensitise when exposed to nicotine over timescales as short as seconds, and 

recovery takes place over 10s of seconds to minutes on removal of the agonist. This leads to 

a temporary downregulation of normal receptor function and it would appear that receptor 

numbers increase to compensate for this downregulation.

Once the agonist is removed, the nAChR would be expected to re-sensitise faster than the 

receptor numbers downregulate, which may be expected to lead to an overall increase in 

the numbers of active a4/32 nAChR. This would lead to a sensitisation of nicotine, however 

further investigation suggests that these ‘new’ receptors are not functional, but appear to 

be in an inactivated form [60] [86]. This is since the overall effect of nicotine appears to be 

downregulated, indicating that, whatever the individual actions of all these mechanisms and 

the participation of other nAChR sub-types, they summate to less nicotinic effect.

4.3.2 M odelling the States of N icotin ic Receptors

We have already featured a model of a nicotinic receptor in Chapter 2 (from Lippiello et al 

[57]). This model allowed each agonist binding site of nAChR to be in one of four states 

depending on whether it was bound to nicotine or not; and whether the site was in a low- 

affinity (active) or high-affinity (desensitised) conformation. This model is illustrated in
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Figure 4.1: Receptor binding site state transition model els proposed by [57]. The sensitised 

state, unbound and bound is designated by X \  and X 2 and the desensitised, unbound and 

bound by Y\ and I 2 respectively. For the receptor pore to open, both binding sites must be in 

the bound and sensitive state (X 2 ). The constants k{ are determined from experimentation.

Figure 4.1 where, with a view to the modelling we shall be performing, we re-designate the 

active conformation, unbound or bound, by X \  and X 2 respectively. Similarly we denote the 

desensitised conformation, unbound and bound, by Y\ and >2 respectively.

The experimental results of Rowell and Duggan [86] suggest that there is another form of the 

nAChR, the inactivated form that becomes apparent under chronic exposure to nicotine. This 

conformation of the receptor does not appear to de-inactivate, or so slowly it is negligible 

when compared to receptor turnover rates. We therefore propose to extend the model of 

Lippiello et al [57]to include this possible new state of binding site. We will denote this 

inactivated conformation, unbound or bound, as Z\ and Z2, as illustrated in Figure 4.2.

Since the inactivated state arises from chronic exposure to nicotine we have made the assump­

tion that this form can be obtained from the desensitised conformation only. Clearly there are 

no experimentally derived values for the additional state transition rates {ki : 9 < i < 14} but 

it would seem fair to assume (similar to Lippiello et al did [57]) that k$ = k u  and k$ = k\2 - 

This should not particularly concern us since neither of these states is active.

Our interest lies in the rates of change between the desensitised conformation and the inacti­

vated one. The inactivated form is identified because it does not appear to return to an active 

conformation during timescales (hours) that would be expected to re-activate those in the 

desensitised conformations. This suggests that the transition rates k\o and &14 are very small 

in comparison to the others, indeed we shall assume that kio =  k u  = 0. Since the inactivated 

form is only noticeable after a few days of chronic nicotine it is apparent that the transition
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Figure 4.2: Our proposed extension of the Lippiello model from Figure 4.1, the additional 

inactivated form is denoted by Z\ (unbound) and Z 2 (bound). The additional kiS are defined 

in section 4.3.2.

rates from the desensitised to the inactivated conformations are small in comparison to the 

forward rates and k-?, but they are significant over timescales of days.

For our purposes we axe not particularly interested in whether a receptor binding site is 

bound or not, but what the total number of binding sites (hence the number of receptors) is. 

We can therefore define the total number of binding sites in the active conformation X  by

and similarly we define

X =  Xi +  X2

Y  = Y1 + I 2, 

Z  = Z\ +  Z2-

(4.1)

(4.2)

(4.3)

We now consider transitions purely between these conformations. As this will mean studying 

the proportions of these over timescales of several days we must also consider the produc­

tion and degradation of receptors, actions that have previously been considered too slow to 

significantly affect the function of a collection of nAChR.

The binding of nicotine to the binding sites is fast {k\ , k$ large) in comparison to the tran­

sitions to the inactivated form (and to a lesser extent transitions to the desensitised form).
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Figure 4.3: Our proposed model for the shifts between binding site forms, combining the 

unbound and bound states and including receptor production and degradation.

Hence we will assume that the nicotine binding reaches steady state instantaneously, for all 

conformations, this is the pseudo-steady state hypothesis discussed in Chapter 1. We will 

further assume that the transitions from X  to Y  to Z  axe from the bound states of each con­

formation at fixed rates q\ and q3 and that there is a fixed rate transition q2 from Y  back to 

X  is from the unbound state. We are assuming that transitions out of the Z  are impossible, 

save for receptor degradation. From the above assumptions it can be implied that q\ = k3 

and q2 = kg.

We suppose that receptors axe produced at a rate p \  from an abundant substrate S r  and that 

this produces receptors in an active conformation. We assume that the active and desensitised 

receptors decay with rate p2 and the inactivated receptors decay with rate p3. The system is 

shown schematically in Figure 4.3 and the state transitions are then described by

=  P1 S R - P 2 X - q i f ( [ n ] ) X + p 2( l ~  g([n]))Y, (4.4)

dY
—  =  - p2Y +  qif ( [ n ] ) X - p 2{ l - g { [ n ] ) ) Y - q 3g{[n])Y, (4.5)

~  =  - p 3Z q 3g([n])Y. (4.6)

where [n] is the concentration of nicotine. The functions /(•) and g(-) are the steady state 

fractions of the active and desensitised conformations (respectively) bound with nicotine. For 

the formulation of Lippiello et al described in Chapter 2 and Figure 4.1 these are given by

« M >  ‘  E H T S '  < < 7 >

» « ” »  -  5 H T 5 '  <4 S >

For the synaptosome experiments of Marks et al [60], where a fixed nicotine dose is applied
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chronically for days, the steady states of these are relevant. These are given by

**  =  P lf n  n + Y*’ (4-9)9l/(N ) + 92

y * =   7T T \— ---------* * ’ (4 -10)930(H) + q2( 1 -  0(H)) +P2
Z* =  - 9 ([n])r*. (4.11)

P3

These may be solved to give X*, Y* and Z* explicitly in terms of the rate constants and 

nicotine concentration, but the resulting expressions are complicated and we consider that 

those above give a better picture of the behaviour of the system.

The introduction of a dose of nicotine causes a shift from X  to Y  and then a slower shift from 

Y  to Z  and hence both Y  and Z  increase with [n]. Of particular relevance are the quantities 

(X  +  Y)  and (X  4- Y  +  Z). (X  +  Y)  is the total number of binding sites that are potentially 

in an activatable state, they are either active or desensitised, in which case they may return 

to an active state given a sufficient amount of time in the absence of agonist. (X + Y  + Z) is 

the total number of binding sites (and hence \ { X  +  Y  +  Z)  is the total number of receptors). 

We may write

j t ( X  + Y)  = PlSR - p 2 ( X  + Y ) - p z Z ,  (4.12)

j t ( X  + Y  + Z) = p lS R - p 2(X + Y  + Z) + (p2 - p 3)Z , (4.13)

with steady states (partial solutions again) given by

,X  + Y ) .  = P i S R - q i g ( l n ] ) Y ‘ '
P2

(X + Y  + Z Y  = +  (4.15)
P2

The inactivated conformation (Z) has been hypothesised to be inactive because it may have 

undergone a structural change or become internalised [86], quite why this may occur is be­

yond the scope of our model. However if this is so, suppose that the agent that causes the 

degradation of the X  and Y  forms is, as a consequence, less effective at degrading the inacti­

vated form. This would seem reasonable if this proposed internalisation causes a separation 

of degradant from its normal site of action on the cell membrane.

This would imply that X  and Y  degrade faster than Z  and hence p2 > P3 - This in turn implies 

the following two results; firstly that the total number of binding sites (hence receptors) 

increases with nicotine concentration [n]. This implies that the chronic application of nicotine
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will lead to the upregulation of binding site numbers, and on a timescale of around P2 — P3 , 

less than the decay rate of active receptors and hence taking days to be apparent.

This demonstrates that the simple hypothesis of the inactivated receptor conformation leads 

to a slow upregulation of receptor numbers, consistent with the experimental observations. 

We have already assumed that the inactivated variant is not functional. This leads to our 

second observation; that the number of potentially activatable binding sites (X +T ), hence the 

number of potentially functional receptors, is a decreasing function of nicotine concentration 

[n]. This follows from Y  being an increasing function of [n].

This means that the system displays a functional tolerance to nicotine; not only does the 

inactivated conformation provide dummy binding sites for nicotine (though we would expect 

this effect to be small), but the number of functioning receptors is reduced. This suggests 

that nAChR do display a downregulation in response to chronic agonist after all.

Since the numbers of functional nAChR is monotonic decreasing as a function of nicotine, 

any concentration will serve to decrease the number of functional receptors and only complete 

abstinence can restore pre-dosing functionality. This demonstrates that any sensitisation to 

nicotine that arises does not come from an upregulation in receptor numbers and so the cause 

of such a phenomenon must lie elsewhere.

4.4 The Experim ental Background to Sensitisation

4 .4 .1  Id e n tify in g  th e  S ite  o f  A c t io n

Our work thus far has demonstrated that whatever may be the cause of the experimentally 

observed sensitisation to nicotine it does not appear to be from an upregulation of nAChR 

numbers, indeed there is evidently a development of a tolerance to nicotinic effects. This 

rules out a direct upregulation of nicotinic function and so we must look downstream, at the 

effects that the activation of nAChR have on the cell.

As identified in Chapter 3 and the experimental support referenced therein, the rewarding 

effect of nicotine is speculated to act through potentiating the release of glutamate, an exci­

tatory neurotransmitter, from terminals making synapses with mesolimbic dopamine neurons 

[69]. These neurons have been observed to become sensitised to nicotine [3] [5] and hence we 

can expect to find the sensitising mechanism by studying the effect of nicotine here.
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The nicotinic sensitisation results after a protocol of pre-exposure. Pre-exposure to opi­

ates has also been shown to cause a smaller, but significant sensitisation (called a cross- 

sensitisation) [39]. Opiates have been shown to act pre-synaptically too, activating opiate 

receptors that inhibit the release of GAB A on to the mesolimbic neurons [58]. However pre­

exposure to other rewarding drugs such as cocaine and amphetamine does not induce this 

sensitivity to nicotine [7].

Cocaine and amphetamine act in the terminal field of the dopamine neurons [50], whilst 

nicotine and opiates act mainly through increasing the firing of bursts (c.f. Chapter 3 and the 

references therein) in these neurons. This would suggest that the sensitisation induced may 

be comparatively local to its site of action. In particular, with reference to the phenomenon 

of long-term potentiation (LTP) in cells, we consider that it may be the synaptic connection 

itself that mediates the sensitivity.

4 .4 .2  L on g-T erm  P o te n t ia t io n

The phenomenon of long-term potentiation [45] [67] [48], or LTP, has been subject of extensive 

investigation with the typical preparation being glutamatergic synaptic connections in the 

(rat) hippocampus. In these preparations it has been observed that the strength of the 

connection may be potentiated experimentally by applying a high frequency stimulus to the 

pre-synaptic cell local to the connection for a few seconds. After this stimulus the excitatory 

post-synaptic potentials (EPSPs) in response to the normal signalling of the cell are observed 

to be significantly larger. This effect has been observed to last from minutes and hours to 

weeks and months under experimental conditions.

This sensitises the connection to future stimuli and so provides a memory of the potentiating 

stimulus. LTP has been proposed as a model of memory in the mammalian brain. The 

induction, but not expression, of LTP is blocked by the iV-methyl-D-aspartate (NMDA) 

receptor antagonist dizocilpine (MK801) [90] [36]. NMDA receptors (NMDAR) are ligand- 

gated ion channels with glutamate as their endogenous agonist [45]. The channels are blocked 

at resting membrane potentials by magnesium ions but depolarisation of the cell membrane 

frees them from this magnesium block and allows the influx of sodium and calcium ions. Hence 

they serve to detect the coincidence of glutamate release and postsynaptic depolarisation.

Although this means that the receptors are excitatory in nature, the calcium ions are also 

thought to act as a second messenger. In the post-synaptic cell free calcium can bind to 

the buffer calmodulin and the compound can then activate calcium /  calmodulin kinase
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(CaM kinase) [45] [59], This enzyme can then promote phosphorylation of such things as 

AMPA receptors [36]. AMPA (a-amino-3-hydroxy-5-niethyl-4-isoxazolepropionate) receptors 

are activated by glutamate and open an ion channel selective for sodium and calcium. This 

excitatory effect is proposed to mediate the EPSPs and phosphorylation is thought to increase 

the efficacy of the AMPA receptors (AMPAR).

Hence the LTP is proposed to be caused in the post-synaptic cell by the high frequency stim­

ulus relieving the magnesium block of the NMDA receptors by depolarisation via AMPAR, 

the resulting calcium influx ultimately leading to phosphorylation and an increase in AMPAR 

mediated EPSPs. Hence the blocking of NMDAR will prevent the induction of LTP, but the 

expression is unaffected since it is AMPAR mediated. The LTP will decay as endogenous 

phosphotases break down the phosphate bonds. However, a longer lasting LTP can be caused 

by the kinase. It has been proposed that the CaM kinase may be able to alter gene expression 

and by this means cause the upregulation of AMPAR numbers, a change that occurs on a 

timescale of days rather than the fractions of seconds associated with phosphorylation. Hence 

a repeated exposure to the stimulus could lead to a semi-permanent memory.

LTP may also be expressed pre-synaptically, by releasing more glutamate for the same stim­

ulus [45] [48]. It is thought that the post-synaptic calcium influx can induce the production 

of a retrograde messenger (putatively NO) which diffuses to the pre-synaptic cell and then, 

by some mechanism, upregulates glutamate release.

This suggests that a potentiation of the synaptic connection can be achieved if the pre- and 

post-synaptic cells are sufficiently excited. Such a stimulation may come from exposing the 

terminal to sufficiently high doses of nicotine and thus creating the sensitisation we seek. This 

is supported by the experimental observation that like LTP the induction, but not expression, 

of the sensitisation to nicotine is blocked by MK801 [90],

4.5 The Sensitisation M odel

4 .5 .1  G en era l L ayou t an d  A im s  o f  th e  M o d e l

It would be expected that one of the major aims of our modelling would be to see if nicotine 

is capable of inducing a sensitisation through the proposed mechanism of NMDAR activation 

and so on. Unfortunately there is a lack of quantitative data at a cellular level for our 

preparation of study. To make a reasonable attempt at answer this question we would need to
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know, amongst other things; the conductance of the nAChR with their locations; conductance 

of NMDA and AMPA receptors and their binding kinetics to glutamate; the action of calcium 

pumps; the amount of calmodulin; the rate of conversion of free calcium and calmodulin to 

active kinase and then how this affects AMPAR action and expression. Very little of this is 

known or can be accurately estimated.

We shall assume that the presynaptic nicotinic receptor stimulated release of glutamate is 

sufficient to cause significant activation of post-synaptic NMDAR, then that the resulting cal­

cium influx causes (ultimately) significant activation of the appropriate kinases. We suppose 

that these active kinases may lead to an upregulation of AMPAR function in the post-synaptic 

cell but we will not include the possibility of a retrograde NO messenger to the presynaptic 

terminal. The mechanisms involved have not been well characterised and there is little help 

our modelling may be, given that we have already assumed the presence of upregulating 

mechanisms in the post-synaptic cell. Assuming a presynaptic mechanism in a similar way 

to the processes in the post-synaptic cell would then represent an unnecessary complication.

It is apparent that we do not need to model the entire dopamine neuron, but just a single 

synaptic connection. We will assume that only a single glutamate releasing terminal forms a 

connection with a single post-synaptic structure. Our model is therefore a relatively simple 

one of nicotine potentiating the release of glutamate which can cause sensitising effects in the 

post-synaptic structure.

A requirement of any such model is that it agrees with the observed experimental data which, 

as we have already said, there is very little of. Indeed the main observation is that MK801 

blocks the induction of the sensitisation to nicotine and this is already built directly into the 

model. We shall therefore be addressing the nature of this sensitisation; what protocols of 

stimulation (nicotinic or otherwise) are necessary to induce it and then, more importantly, 

the ability of the sensitisation to decay away. Since such a sensitisation may be implicated 

as one substrate of addiction it would be interesting to describe how, if it can be, it may be 

lost and how long this will take. SI units are used with the exception of time, which is scaled 

in milliseconds.

4 .5 .2  T h e  P r e -S y n a p tic  C ell

The presynaptic cell should be a model of a (glutamate releasing) terminal that can be 

potentiated by doses of nicotine. Naturally our model is based largely on the model of
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a dopaminergic terminal derived in Chapter 2. The parameter values are taken from this 

chapter.

Hence we consider the spatially small terminal to be a single electrical compartment of mem­

brane resistance R a, capacitance C a and potential Va described by a conservation of current 

law given by

=  -fleak +  ^Na + TkDR +  ?R +  Io (4.16)

Ca =  1.57 x i(T 9 (4.17)

where

^leak =  (# leak  -  Va) / R a (4.18)

£ leak  =  -0.010 (4.19)

Ra = 1.59 x 1012 (4.20)

is the membrane leakage.

We have only included a (spike-generating) fast sodium channel and a delayed rectifying 

potassium channel. We regard each action potential as identical and shall not be concerned 

with the calcium influx as we were in Chapter 2. The membrane leakage is then set such that

the cell rests at -70mV and the capacitance is set so that time appears in milliseconds.

The /Na is the current due to a Hodgkin-Huxley model of a fast sodium channel taken from 

measurements on the guinea-pig hippocampus [88] given by

iNa =  9Naf'2s(ENa ~  Vm) (4-21)

E Na =  0.085 (4.22)

gF,a = 1.0x10-® (4.23)
dv

=  a r (Vm) ( l - r ) - M V m ) r  (4.24)

-3.2 x 105(0.0469 4- Vm)
exp (^+0-0469) _  i 

V 0.004 / 1

(\r \ _  P .2S A 1U - r  V m )  / „  9 r \
OH^m) — ,ym+0.0469 \ (4.25)

m v . )  -  ( . *
exP ( m0 005 -) -  1

ds
dt

<Xs(Vm) ( l - s ) - p s (Vm )s  (4.27)

a , (V m ) =  128exp (4.28)

4 x 103
=  1 +  e x p  ( _  V̂ + 0 .0 0 5 \ -  (429)1 -t- e x p   ̂ 0_0Q5 )



CHAPTER 4. SENSITISATION AND TOLERANCE TO NICOTINE 137

The I k d r  is the current due to a delayed-rectifying potassium channel from data also from 

the guinea-pig [88] given by

I k  — 9~Krn(EK -  Vm) (4.30)

E k  = -0.079 (4.31)

g-K =  1.0 x 10~7 (4.32)

=  «m(t/m)(l - m )  -  /3m(Vm)m (4.33)

16000(^ + 0.0249)
OCmKVm) , Vm+0.Q249 \j. exp  ̂ 0 0Q5 )

Pm(Vm) = 250exp ( ~ ^ mQ+Q4 °4 )  • (4-35)

The represents the current from the nAChR (Chapter 2) given by

I r  = g~RX2{ER ~ Vm) (4.36)

E r = E Na (4.37)

g-R = 1.5 x lO "9. (4.38)

where

dX2 = k\ [n](l -  X2 -  yi -  Y2) +  k^Yi -  k2X 2 -  k3X 2 (4.39)
dt 
dY
dt 
JY]
dt

With the parameters given as in Lippiello et al [57]

^  =  k3X 2 -  k4Y! + fc5[n]y2 -  k6Y! (4.40)
at

^  =  k7( l - X 2 - Y 1 - Y 2) - k 8Y2 + k6Y1 - k 5[n]Y2. (4.41)

jfci =  0.5 k2 =  7.5 x 10"5 k3 = 3.67 x 10"6

k± = 5.0 x 10~8 k5 = 0.5 k6 = 6.7 x 10"7 (4.42)

k7 = 1.0 x 10"7 k8 =  1.5 x 10"7

This is the original model of Lippiello et al [57] that we have included. However in an earlier 

section (4.3) we proposed an extension to this model featuring an inactivated form of the 

nicotinic receptor that led to a functional downregulation. This form arose over a timescale of 

days, a similar timescale over which the sensitisation has been observed to develop and hence

is relevant. Although we are unable to estimate the parameters involved in this model the

experimental results of Rowell and Duggan [86] suggest that this downregulation is significant. 

However we have already assumed that nicotinic stimulation causes sufficient (additional) 

excitation to cause the relief from magnesium block of the post-synaptic NMDAR and so
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shall consider that this extends to the downregulated nicotinic effect that may be induced 

by chronic nicotine. We shall still take into account the temporary desensitisation produced 

by prolonged (seconds to minutes) exposure to nicotine, but assume that the total number 

of activatable (active+desensitised) receptors remains high.

The additional current, denoted To, represents the arrival of pre-terminally generated action 

potentials. The spatial separation of the terminal from the site of generation of the action 

potential will mean that this wave of depolarisation has a much flatter appearance than a 

sharp spike. We will approximate this wave with an equation of the form

H ( t - 1 ' )  (exp ) )  (4-43)

for a wave that arrives at time t' with a rise time of 72 and decay time of t\ [10] [49]. H(-) 

is the Heaviside step function.

If these spikes arrive in a sequence of times given by {tk : k =  1. . .  oo} then Io  is given by

oo

Io = ( E a - V a) Y , G k (4.44)
fc=l

Ea =  ENa (4.45)

assuming that the wave acts against the sodium reversal potential. The Gk is then given by

Gk = H(t -  t k ) ^ r 2 (exp ( - ^ )  -  exp ( - ~ ) )  (4-46)

with

ffmax = 1 .0x10-11 , (4.47)

T\ =  5, (4.48)

Ti =  0.67, (4.49)

where <7max describes the conductance of this axonal current. t\ and T2 are the off and on 

time constants respectively. We use this mechanism to convert the time-discrete arrival of an 

action potential into a change in membrane potential. We will assume that the transmission 

of an action potential to the nerve terminal always causes an action potential (and hence 

transmitter release) in the terminal and so we shall set gmax such that a temporally isolated 

action potential causes the membrane potential to break spike threshold.

For the computer simulations the sequence of input spikes to the terminal {tk} is generated 

from a Poisson process, typically with an average firing rate of 4Hz.
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For simplicity and computational efficiency we use an integrate and fire model for transmitter 

release [10], in that our model releases a fixed amount of transmitter at a fixed firing rate 

whenever the membrane potential Va is above a set threshold. This means that the output

from the presynaptic cell is essentially a sequence of spikes (of glutamate) with times of

generation t'k, k =  1. . .  oo hence

t k t if Va(t) > Vthoid and t 1 ^  r̂efrac (4.50)

t̂hoid =  -0.02 (4.51)

r̂efrac =  15 (4.52)

where t is time, Vthoid is the action potential threshold, chosen to be a depolarised value that 

is normally only reached by an action potential. t refrac is the absolute refractory period and 

corresponds to the maximum firing rate of the terminal, large current inputs to our model 

of Chapter 2 could generate rates of over 50Hz. The sequence then serves as an input to 

the model of the post-synaptic cell. In the absence of nicotinic stimulation the terminal 

transmits the sequence of spikes input to it, except at high rates of incident spikes where 

the membrane potential can remain above threshold for long enough to generate additional 

action potentials. Nicotinic stimulation leads to a depolarising current that increases the 

firing rate of the terminal.

4.5.3 The Post-Synaptic Cell

LTP in experimental preparations is observed to be an increase in the height of the excitatory 

post-synaptic potentials produced in the cell [45]. Therefore we again need to consider the 

electrical properties of the cell, which is in this case a post-synaptic structure. We denote 

the membrane potential in the postsynaptic cell by V&, with membrane resistance Rb and 

capacitance Cb, is governed by

dVb
Cb—rr — -̂ leak +  -^NMDA + I  A M P A  (4.53)dt

where the membrane leakage and electrical constants are given by

-fleak =  { E l e a k  ~ Vb)/ Rb (4.54)

£ieak =  -0.07 (4.55)

R b = 1.0 x IO10 (4.56)

Cb = 1.57 x IO"9. (4.57)
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We have assumed that since synaptic structures are so small (we estimate them to be similar in 

size to a terminal, that is 1/rni across [45]) that it constitutes a single electrical compartment. 

We further assume that this (electrical) compartment of the cell does not generate action 

potentials and so we do not include voltage-activated sodium or rectifying potassium channels. 

This is consistent with the classical view of post-synaptic potentials propagating to a central 

point (such els the axon hillock) were they summate and produce an action potential if a 

particular threshold is reached. As might be expected, this is not generally true, with calcium 

and potassium channels having been identified in what are then called ‘active’ dendrites [49].

We shall make the assumption that any such channels are located sufficiently downstream

from the structure and that any of their effects do not propagate back and affect the structure 

significantly.

Excitatory input to the cell is provided by the two types of glutamate receptors, NMDA 

and non-NMDA, which we assume to be the AMPA type. The current due to the AMPA 

receptors, I a m p a  is given by

Ia m p a  = (£ampa — V^GampaW (4.58)

H a m p a  =  E Na =  0.085 (4.59)

where GampaW is given by

g a m p a w = £ * ( * -  ( exp ( _ i r r )  ~ exp (4-60)

with

fl'AMPA = 2.0 x 10~13 (4-61)

n  = 80 (4.62)

f2 =  0.67 (4.63)

where H(-) is the Heaviside step function [10]. A is a measure of the ‘number’ of AMPAR and 

<7ampa their associated individual conductance. With an non-upregulated value of A = 100, 

this gives an AMPAR conductance of 2.0 x 10~n S, which gives typical postsynaptic potentials 

of 30-40mV [19].

ti and T2 are the off and on time constants of the current respectively. The input to the 

AMPAR is the spike train sequence {t'k : k = 1 . . .  oo} from the pre-synaptic terminal. We 

assume that the receptors only allow the flow of sodium ions, hence the reversal potential for 

the current .Eampa — ^Na-
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NMDAR are blocked at low membrane potentials by magnesium ions, hence for them to gate 

current, the cell must also be depolarised (such as by activation of AMPAR, as in our model) 

[45]. The current / n m d a  is given by

-fNMDA =  (^NMDA — Vb)G^MDA(t) (4.64)

#NMDA =  E c &  = 0.120 (4.65)

where G n m d a W  is given by

00 /  exp ( — — exp ( —
G n m u a W  =  g  ■H ( t  -  iiJflNM D A  ( i  +  ^ [M g 2 + ] e x p ( _ 7 n 2) (4.66)

with

Pnmda =  2.0 x IO-10. (4.67)

We assume the same on and off time constants f \  = t\ and — r2 as for the AMPAR. 

Typically, [Mg2+] =  2mM, rj = 0.33/mM, 7  =  0.06/mV and the conductance is 0.2nS [10]. 

For simplicity we assume that the NMDAR only gate calcium, so £?nmda =  -̂ Ca- This is not 

considered to be a problem given that our only use of the NMDAR is to provide a voltage 

dependent calcium influx. Again the input is the spike train sequence from the pre-synaptic 

channel.

Calcium influx through NMDAR serves to increase intracellular calcium levels. We assume 

that NMDAR are the only source of calcium influx and that calcium is removed by a simple 

pump with a slow time constant rc =  150ms (which will assume represents the binding to 

other proteins or sequestration by mitochondria). The intracellular calcium concentration c 

in mM is then given by

^  = 5Jnmda(*) -  — + B{kp2p -  kpic^M), (4.68)dt tc

B  = 5.0 x 105, (4.69)

tc = 150, (4.70)

B  = 5.0 x 104, (4.71)

where the B  term adjusts for the calcium lost to calmodulin binding. The calcium interacts 

with the buffer calmodulin and thence activate a CaM kinase (and we are assuming that there 

is sufficient influx through NMDAR when they are activated by membrane depolarisation)
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[36] [59] [68]. We will assume that whatever the changes in calcium concentration, they are 

too small to significantly affect Eca..

Calmodulin binds free intracellular calcium at a rate comparative to the calcium pump (oth­

erwise the calcium would be removed before it had chance to bind) [49]. Hence B  is adjusted 

so that the removal by calmodulin binding is comparable to extrusion by pump at the typical 

intracellular free calcium concentrations that arise in the computer simulations.

Intracellular calcium can bind with the protein calmodulin (with a stoichiometry of four), 

a compound that can activate a substrate to form a protein kinase (CaM kinase) [36][68]. 

Such kinases have been shown to be able to alter gene expression and therefore cause long 

lasting changes in cells and we assume that in our case it increases the rate of production 

of AMPAR. If c is the intracellular calcium concentration and M  is the concentration of 

unbound calmodulin, the concentration of the compound protein p is given by

^  =  kpic4M  -  k p2p  -  k a i p S a  + k a2CL, (4.72)

where the production rate and rate of conversion to the active kinase is given by the law of 

mass action. Prom results on the bullfrog sympathetic ganglion cells [49] we obtain that the 

on rate of calcium /  calmodulin binding is 105mM-1s-1 and the off rate is 100s-1 . Hence 

kpi = 100 and kP 2 =  0.1 as we are working in milliseconds. The change in calmodulin 

concentration is then simply given by

^  =  —kv\c4M  + kp2p. (4.73)

The active kinase concentration a is then given by

^  = kalPSa - k a2a, (4.74)

where we assume there is an abundance of substrate S a for the active kinase which is produced 

according to the law of mass action. We will arbitrarily assume that S a =  ImM. The total 

concentration of calmodulin, C, is then

C = M  + p + a (4.75)

and we observe that ^  =  0, hence C is a constant and the total concentration of calmodulin 

is conserved.

We have been unable to find any experimental data for the timescales of production and

decay of the kinase a, although the binding of calcium to calmodulin rate ( k p i) is fast and
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disassociation (kp2) slow [49] and the calcium pump (time constant of 150ms) will quickly 

remove any free calcium. Active kinase levels have been shown to be significant up to two 

hours after being activated by calcium influx [12] [74]. We do not know the rates ka 1 and ka2, 

however, setting

ka 1 =  1.0 x 10“5, (4.76)

ka2 =  1.0 x 1(T6. (4.77)

This gives a resting concentration of <  10-4mM (suitably small) and a significant level of 

presence two hours after it has been activated.

Our model of sensitisation assumes that the presence of active kinase upregulates the pro­

duction of AMPAR, A [12] [91]. We suppose that this takes place by the kinase altering gene

expression, although we have little idea how such a complex mechanism may be modelled [45]

[68]. Given that we only require the active kinase to (ultimately) cause the upregulation of 

AMPAR we will suppose that we can model this as a simple production and decay process, 

with the production augmented by a reaction between the kinase and a supposed AMPAR 

substrate. Hence upregulation can only take place whilst the kinase is activated. We take

dA
—  = kAlSA{l +  h(a)) -  kA2A  (4.78)

where SA is the concentration of AMPAR substrate (in abundance, and taking the value 

SA = 1 for the computer simulations) and kA\ and kA2 are the regular rates of production 

and decay. Assuming that upregulation takes place over a time scale of days we take

kA 1 =  5.0 x IO"7 (4.79)

which follows this timescale in the computer simulations. Taking receptor degradation to 

also be a slow process we set

kA 1 =  5.0 x 10-9 (4.80)

which then gives a steady state measure of AMPAR numbers in the absence of active kinase 

of 100.

The function h(a) describes the increase in production rate in the presence of active kinase, 

which we assume is achieved instantaneously and we consider a reasonable assumption when 

considering the upregulation process takes place over a timescale of days. We set u = 1.5 

to be the maximum upregulation rate. This value is chosen such that at full upregulation
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the depolarisation achieved by an EPSP (according to our computer simulations) is compa­

rable to that seen in studies of LTP. In the absence of experimental data on the qualitative 

nature of this upregulation, we have used a Michaelis-Menten form for h , assuming that the 

upregulation will be linear for small a but saturate at high values. We set

H a) = u K a, „  (4-81)J \ g  +  a

where K g is a suitably chosen constant. To make future analysis simpler, we assumed that 

K g was small in comparison to the levels of active kinase we achieved and so typical calcium 

influx and kinase activation essentially caused a switch to a higher AMPAR production rate. 

We set

K g =  0.01. (4.82)

The value of A  then provides a quantitative measure of the sensitivity of the model. For 

the computer simulation the post-synaptic membrane depolarisation achieved by a single 

pre-synaptic spike provides a good visual cue of sensitisation analogous to that observed 

experimentally for LTP.

4.6 Sensitisation M odel Results

4.6.1 The Com puter Sim ulation

The millisecond resolution of portions of the model with real time processing of individual 

spikes lends itself to computer simulation. The model described in the previous few sections 

was implemented on the neural simulator GENESIS [10]. Indeed many of the numerical 

values of the parameters are drawn from searches made by running this simulation.

The input train of spikes for the pre-synaptic cell {tk} is generated by a Poisson process that 

gives an average firing rate of 4Hz. The threshold for transmitter release is set to be -20mV, 

a depolarised voltage normally reached only by an action potential, we then use our integrate 

and fire model (equation (4.50)) to detect this spike. Figure 4.4 illustrates the membrane 

potential of the pre- and post-synaptic cells when subject to such a train of spikes.

Introducing a concentration of 1 /iM  nicotine to the pre-synaptic terminal causes the cell to 

start firing at a much faster rate (see Figure 4.5), in this simulation at over 50Hz. Over the 

time course of tens of seconds, the receptors will begin to desensitise. This effect is difficult
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Figure 4.4: Plots of the membrane potential in millivolts of the presynaptic (upper) and 

postsynaptic (lower) cells against time in milliseconds when the presynaptic cell has an aver­

age firing rate of 4Hz. One can see that the presynaptic action potentials cause transmitter 

release, giving rise to the post-synaptic potentials.
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Figure 4.5: Plot of the presynaptic cell membrane potential against time when subject to a 

firing rate of 4Hz with 1//M nicotine applied at 2000ms. It is clear that the extra excitatory 

current input causes a large increase in the firing rate of the cell.
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Figure 4.6: Membrane potential against time of the post-synaptic cell when the presynaptic 

cell is subject to an intrinsic stimulus of 4Hz and 1/iM nicotine is applied at 2 seconds and 

removed at 92 seconds. Note the decay in potential as the nAChR desensitise. The slow 

‘on’ and ‘off’ times of nicotinic stimulation are apparent, with an initial pause of 10 seconds 

before there is a noticeable effect, which then continues for another 60s after the nicotine is 

removed.

to see in the pre-synaptic cell where it is masked by the high firing rate, but is well illustrated 

in the post-synaptic cell as seen in Figure 4.6. This shows the membrane potential for the 

post-synaptic cell when 1/iM nicotine is applied for ninety seconds, from two seconds in. 

Within a matter of seconds of its introduction the postsynaptic cell is at its most depolarised 

and it then decays slowly until at 92 seconds (absolute) the nicotine is removed and the 

postsynaptic potential returns to base levels of stimulation.

The extra stimulus provided by the nicotine-induced current causes the activation of the 

NMDAR, signified by calcium influx, which then goes on to cause the production of the active 

kinase. This can be in Figure 4.7, where the brief pulses of calcium lead to a maintained active 

kinase level (concentration in Molar). Note that prior to the build up of the nicotine-induced 

current (nicotine is only introduced after 2000 milli-seconds) there is insignificant calcium 

influx and hence kinase activation. We assume that kinase activation to such concentrations 

is sufficient to promote significant upregulation of the AMPAR, note that this calcium influx 

has produced kinase concentrations from close to 0 (compared to the scale of the graph) to 

above the half-upregulation concentration K g = 0.001.

Since the upregulation of the AMPAR is a slow process compared to the other biological 

mechanisms, the simulation needs to be run for large amounts of simulated time, days when
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Figure 4.7: The calcium concentration (red) and active kinase level (blue) in Molar in the 

postsynaptic cell from Figure 4.6. When 1/dM nicotine is applied (at 2000ms), the nicotine- 

mediated stimulation is sufficient to open NMDA channels and allow the influx of calcium. 

The binding of calcium and calmodulin ultimately leads to kinase activation.

the model covers milli-second time-scale phenomena. This necessarily demands a lot of com­

puting power and we have made attempts to run a simulation where the cells are given a 

protocol of 40 doses of nicotine over 16 hours (‘daytime’) followed by an 8 hour gap (‘night 

time’), intended to model the habit of a 40-a-day smoker. These have been unsuccessful due 

to computer memory problems and the unreliability of the computers and software.

As a result of this we have only been able to run the simulation for two hours of simulated 

time, during which the four doses of nicotine applied led to an upregulation of about 4% 

out of a maximum of 250% we allow, an upregulation that tends to double the height of 

excitatory postsynaptic potentials, typical of observations of LTP [48]. This sensitisation is 

largely independent of the number of doses applied since active kinase levels can persist for 

over an hour (hence across a number of doses) and therefore active kinase levels are typically 

maintained throughout the day. As detailed in the section on model analysis (section 4.7) 

we can estimate from this that regular smoking could approach maximum sensitisation in 

fourteen days.

4.6.2 Dem onstration Simulations

It is inconvenient that we have been unable to generate upregulation with the computer 

simulation from unsensitised states. We would like to be able to use the simulation to 

investigate, in particular, the loss of sensitisation in the absence of nicotinic simulation. What 

we decide to do is tweak our computer simulation so that the upregulation of AMPA receptors 

is set immediately to its steady state value with the concentration of active kinase. Thus 

the upregulation is then given by the instantaneous value of the active kinase concentration
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Figure 4.8: Plot of membrane potential (black trace) against time for a demonstration of 

the induction of sensitisation in the postsynaptic cell. So that we may see the effect of 

the sensitisation on this timescale we have applied the steady state level of upregulation 

appropriate to the active kinase concentration. The cell is initially subject to a stimulus of 

4Hz, but a 1 second pulse of 65Hz causes activation of the NMDAR on a large scale, causing 

a large membrane depolarisation and a correspondingly large calcium influx (red) and kinase 

activation (blue), whose values have been scaled to appear on this graph. The calcium leads 

ultimately to AMPAR upregulation and so the cell gives a bigger response per spike when 

we return to a 4Hz stimulus.

and so the sensitisation develops in a matter of seconds. To enable us to examine the loss 

of sensitisation we have also increased the decay rate of the active kinase, such that it has 

an effective span of about 10 seconds. We accept that this is then obviously not a model of 

sensitisation on the timescales that have been experimentally observed, but it does serve to 

illustrate the sensitisation principles.

Figure 4.8 is an example of this ‘speeded-up’ sensitisation. The pre-synaptic cell is initially 

firing according to a Poisson process with an average firing rate of 4Hz. We then give a 

pulse of 65Hz for one second, causing massive NMDAR activation. Returning to 4Hz the 

sensitisation is plain to see, with individual excitatory post-synaptic potentials doubling in 

height. This also demonstrates that the model does fit the experimental observation of MK801 

blocking the induction but not the expression of the sensitisation; our sensitisation is caused 

by calcium influx through NMDAR, but mediated by increased AMPAR numbers.

It is also clear that the base firing rate of the cell when in a sensitised state is capable 

of activating the NMDAR and hence reinforcing the levels of active kinase, the effect is 

maintained way past the 10 seconds in which it would have otherwise inactivated, providing 

a semi-permanent memory of the event. The trace of membrane potential for the same cell is
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Figure 4.9: Plot of membrane potential against time for the same cell as in Figure 4.8, but 

for a longer period of time. This demonstrates that the sensitisation continues past the time 

(about 10 seconds) when the kinase should have been inactivated. The stimulus is reduced 

to 2.5Hz at 60 seconds and takes a further 30 seconds to forget the sensitisation and the 

post-synaptic response to return to the original level.

illustrated in Figure 4.9. The sensitisation is present up until 60 seconds (although we notice 

that it nearly “forgets” near 27 and 47 seconds). At 60 seconds we reduce the firing rate to 

2.5Hz, but this lower rate is still able to retain the sensitisation for a further 30 seconds until 

the active kinase has decayed away to a sufficiently low concentration.

Clearly these must be significant levels of active kinase present in the cell after it is supposed 

to have decayed. The cell has been returned to its normal stimulation rate of 4Hz and so 

it must be that this low firing rate is capable of activating NMDAR when the cell is in a 

sensitised state. The sensitisation only decays at close to the rate it is supposed to when we 

take the applied stimulus down to an average rate of 2.5Hz.

This demonstration has highlighted an important aspect of these synaptic connection level 

memories, in that the time taken to forget can be much greater than the normal decay time 

of the sensitised component. For example, in the absence of active kinases our sensitised 

post-synaptic terminal would be expected to have desensitised to pre-stimulus EPSP spike 

heights in about four days. However, the base firing rate of the cell can, in the sensitised 

state, cause calcium influx and activate the kinase and so prolong the memory. This suggests 

that the memory of nicotine provided by the sensitisation may last indefinitely.

10000 20000 30000 40000 50000 60000 70000 80000 90000
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4.7.1 Induction of Sensitisation

It is reasonable to assume that the induction of sensitisation will be subject to two opposing 

effects; firstly a period of prolonged kinase activation while the subject is dosed with nicotine 

(either a daily injection protocol or daytime smoking in humans) which will tend to increase 

AMPAR production. This will be followed by a rest period (night, sleeping) when we will 

assume there is no kinase activation and the AMPAR production is at a minimum, leading 

to downregulation from any sensitised state. We are aware that kinase may remain activated 

way into the night if initial levels are high and we have already seen that for a sensitised cell, 

the base firing rate can cause calcium influx by itself, but as we wish to look at induction 

from an unsensitised state we will assume that neither of these happen.

For simplicity, let us assume that the day lasts for time t\, during which levels of active kinase 

are sufficient to induce full upregulation of AMPAR production. (Alternatively we could 

consider t\ to be the period over which there is full upregulation of AMPAR production.) 

Then the number of AMPAR, A(t) is described by

dA(t)
dt

= kA1SA(l + h ) ~  kA2 A(t), A(0) =  Aq (4.83)

where h =  sup{/i(a) : a > 0}. In the computer simulations h has a supremum of u. Hence 

at the end of the day the AMPAR number, A(ti), is given by

A(t i) =  ( a 0 -  ^ S A ( 1  + ft)) exp ( - k A2ii) +  % ^ S A(1 + h). (4.84)

For a night (period of no upregulated production) of length t 2 the receptor numbers at the 

end of the night (in the morning), A(t\ + 12), is given by

A{h  + 12) = (^A(ti) -  exp (kA2 t2) +

= I1 +  ̂exp(—&A2*2))

+  -  J ^ S A( 1 4- h) j exp (—̂ 2(^1 +  h))  • (4.85)

Naturally at the end of the night, the daytime upregulation of AMPAR production starts 

again and we may this determine A(t) for all time.

It is clear that A(t) tends to a stable periodic orbit, by virtue of the globally stable steady 

states for the separate day and night-cycle equations (4.84)-(4.85). We may then use these
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to write down a difference equation for the number of AMPAR first thing in the morning 

(this is clearly the lowest value of A(t) during the periodic orbit). Assuming t\ and £2 to be 

constants, this is simply

A n+ 1 =  (l +  h e x p ( -k A2 t2))
k A 2  (4.86)

+  ^4(n) -  j ^ S a { 1  + h)^j exp (~kA2(ti +  *2)),

which has a stable steady state given by

A*
l - e x p ( - k A2(ti + t2)) (4 .87)

x { l +  h e x p ( - k A2 t2) -  exp (~kA2(ti + t 2)) -  h e x p ( - k A2(ti +  £2))} •

This is an increasing function of SA, t\, kA 1 and h and a decreasing function of t 2 and kA2. 

The minimum value of A* is =  jĵ S A, the steady value in the complete absence of

active kinase. Hence for any regular dosing of nicotine, each of which ultimately leads to 

kinase activation, A* > A ^in. Hence the nicotine induces a sensitisation.

4.7.2 Persistence o f Sensitisation

The results from our computer simulation have demonstrated that the base firing rate of a 

pre-synaptic terminal may be sufficient to maintain the sensitised state of the post-synaptic 

cell. It is apparent that this arises from a period of faster firing locally in time which provides 

sufficient excitation to activate NMDAR. The interval, x , between presynaptic spikes is not 

fixed but subject to a probability distribution p(x), which will have zero probability for 

intervals less than the absolute refractory period of the cell, endowing it with a theoretical 

maximum firing rate of P. In this model the persistence of the sensitisation depends on the 

finite probability that the cell can, locally in time, fire at a sufficiently high rate to activate 

the NMDAR; conversely, the cell will “forget” the sensitisation if the rate is not achieved. 

Naturally we wish to estimate the time until the cell forgets the sensitisation.

The problem is complicated by many factors; firstly the firing rate may be encoded over 

many spikes, for example the excitation produced by two spikes very close together could be 

equivalent to three slightly further apart. We choose to concentrate solely on the interval 

between two spikes, which would tend for us to underestimate the time to forgetting although 

we expect any such difference to be small. Secondly the stimulus required to activate the 

NMDAR is increasing with time, since in the absence of a reinforcing stimulus the number 

of AMPAR is decaying. Thirdly, activation of NMDAR leading on to the re-activation of the
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kinase may not necessarily produce complete re-sensitisation. We will assume that it does, 

this is valid for small amounts of desensitisation but may not be when the cell has nearly 

forgotten. We must also come up with a definition of what this ‘forgotten’ means, as the 

receptor numbers are decaying exponentially the value will never return to the minimum.

It turns out to be quite easy to give a definition for forgotten; we shall say that a cell has 

forgotten its sensitisation when the local firing rate required for reinforcement is greater than 

the maximum firing rate of the cell, in which case the necessary local firing rate cannot be 

achieved. The sensitisation cannot then be reinforced and will simply decay away.

If the post-synaptic cell is at its resting membrane potential (we assume it is), then we 

suppose it needs a finite charge transfer Q to depolarise the cell to a potential sufficient to 

cause sizable calcium influx. We suppose that this corresponds to a local firing rate of v, that 

is an interspike interval of i/-1 . If we further assume that the repolarising leakage current is 

small in comparison to the influx through AMPAR and that the influx through the receptors 

is the same for each spike, valid for membrane potentials close to resting, then the influx 

is proportional to the number of AMPAR A. In the absence of active kinases, A  decays 

exponentially with time constant kA2 > hence a time t later, the flux through AMPAR will 

have decreased by a factor exp(—kA2 t)-

For membrane potentials away from the sodium reversal potential we can assume that any two 

spikes cause equal excitatory current influx and so the decrease in flux through the receptors 

can be compensated for by an increase in the local firing rate by a factor of exp(kA2 t )• Hence 

the required firing rate increases exponentially, or the required interspike interval decreases 

exponentially, with time. Since kA2 is typically a very long time-scale (days) in comparison 

to inter-spike intervals (order of 500ms), we can assume that this required firing rate changes 

little over the interval.

We will normalise the initial required firing rate to be 1, hence the firing rate required at 

time t is exp(At) for suitable time constant A. We may now calculate a finite time in which 

the sensitisation must be reinforced otherwise the cell will have forgotten. This will be the 

time T at which the required firing rate is equal to the maximum firing rate, that is

exp(AT) — v => T  =  i  ln(P) (4.88)
A

recalling that v is the maximum firing rate of the cell. We are therefore required to find the 

probability that the cell fires fast enough during this time. If the effect is reinforced, we reset 

the cell to full sensitisation and start again, otherwise the cell has forgotten.
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The input to the post-synaptic cell is a sequence of spikes {£&}? where £& is the time of arrival 

of the kth. spike. The probability that the next inter-spike interval is sufficiently short is 

therefore
p e x p ( - X t k )

/ p(x)dx  (4.89)
Jo

where p{x)  is the probability distribution of the interspike intervals for the firing pattern of 

the cell. Hence the probability that the sensitisation is reinforced on the Ith. spike (and not 

on any of the previous ones) is given by

l~ 1 /  r e x p ( - X t k ) \  r e x p ( - X t i )

I I  ^  p ( x ) d x \  J  ̂ p(y)dy  (4.90)

from which we may calculate the actual probability that the sensitisation is reinforced, which 

we denote by P.  The finite time to forget T is typically large, since A is small, and so the 

total number of spikes N  is an integer such that N  «  Tv,  where v is the average firing rate. 

Hence
JL  ( /  rexp(-At*) \  /*exp(-At/) I

p  =  | n y  ~  J 0 p{ x ) dx j  yo p { y ) d y j  . (4.91)

We may use this to calculate two expectation values, E{Tr),  the expected time into the 

interval T  that the sensitisation is reinforced, and E(Nr),  the expected number of times the 

effect is reinforced. The expected time to forget the sensitisation, E, is then

E = E{Tr ) x E{Nr ) +  T. (4.92)

We have
JL  ( L I  (  r e x p ( - X t k ) \  r e x p ( - X t i )  'j

E{Tr ) =  EMn p{x)dx j  p ( y ) d y \  (4.93)

oo p
E(N r ) = Y ^ n P n = ^ — ^  (4.94)

We can then observe the following:

1. P  > 0 for v > l; there is a non-zero probability of reinforcement if the cell can theo­

retically fire faster than the initial required rate. If v < 1 then P = 0.

2. for P  = 0 the time to forget is 0; the sensitisation cannot be reinforced.

3. E > T  for P  > 0; for such situations the expected time to forget is greater than T and 

so the memory of the sensitisation is expected to be extended by the base firing rate of 

the cell.
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4. E  is finite for P < 1; the cell will forget given enough time.

5. E  is an increasing function of mean firing rate u, the maximum firing rate D and the 

time window for reinforcement T; the faster a cell does or can fire and the longer the 

period of time in which a sufficient rate may be produced, the more the memory will 

persist.

6. E  is a decreasing function of the AMPAR decay rate A; this will reduce T  and require 

higher reinforcement firing rates during a shorter time.

This demonstrates that the base spike firing of the cell can sustain a sensitisation induced in 

it. This may have important implications for the proposed addictive qualities of nicotine.

4.8 Review

In this chapter we have addressed two of the longer term effects of nicotine, the apparently 

conflicting developments of a tolerance and a sensitisation to its effects. The modelling of 

these phenomena at the sub-cellular level has forced us to make many simplifications and to 

propose our own mechanisms that cause their development. We must now review our model 

with a particular view to justifying the mechanisms we introduce and how our hypotheses 

may be tested experimentally.

4.8.1 The U pregulation o f R eceptors

The upregulation in a4/32 nicotinic binding sites in mouse striatal synaptosomes chronically 

exposed to nicotine has been well established by Marks et al [60] and others [102]. In particular 

Rowell and Duggan [86] provides the observation that chronic nicotine treatment seems to 

give rise to an inactivated conformation of nAChR.

We have extended the model of Lippiello et al [57] in the obvious way, assuming that this 

inactivated form presents another state that the receptor may shift to once it has desensi­

tised. We have assumed that this inactivation is permanent, since nicotinic function was not 

fully restored after 5 hours relief from the nicotine, which would be expected to re-sensitise 

receptors in the desensitised conformation [86], It is possible that the inactivated form can 

return to a functional conformation, but at a much longer timescale. We consider that at 

such timescales it may be indistinguishable from normal receptor turnover.
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The inactivated form in the model leads to an overall downregulation of nicotinic function 

when nicotine is applied by shifting active conformations into desensitised or inactive states. 

This means that a functional downregulation, or tolerance, develops. This is of course consis­

tent with the experimental results of Marks et al [60], and of Rowell and Duggan [86] whose 

observation of an increase in binding and decrease in function led them to the hypothesise 

the existence of an inactivated form of nAChR. This overall reduction in nicotinic function 

also suggests that, while our model relates primarily to the a4(32 sub-type of nAChR, any 

sensitisation is not produced by an increase in the numbers of other sub-types of nAChR.

Our key hypothesis is that the inactive conformation is degraded at a slower rate than either 

the active or desensitised forms. It is this condition that causes chronic nicotine to bring 

about an increase in binding site numbers by shifting the nAChR into this slower decaying 

form. It is not apparent why this inactivated conformation may degrade at a slower rate. 

However it has been proposed that the apparently ‘new’ binding sites are located internally, 

suggesting that this inactivated form may correspond to an internalisation of the nAChR 

which could be considered a natural reaction to an over exposure to agonist. It would seem 

reasonable that such an internal pool may be segregated from the receptor degrading agents 

and thus reduce their degradation.

The proposed existence of an internal pool can suggest a slightly different model; that rather 

than degrading, the receptors in the internal pool axe simply slow at returning to the cell 

membrane. This would mean a direct rate of transition between the inactive and (say) active 

forms instead of going via a process of decay and production from a substrate as we do 

already. It is apparent that this would make little difference to the results.

It may be possible to determine turnover rates if two different labels could be used; one 

applied chronically that would bind and cause a shift to the inactivated state and a second 

applied acutely to bind to the non-inactivated forms; and then monitoring the progress of 

each. We do not know whether such an experiment would be feasible.

4.8.2 The Sensitisation M odel

Our initial aim was to produce a model that described the sensitisation effects on prolonged 

nicotine exposure. We have done this by hypothesising that the sites of induction are the 

nicotine-potentiated synaptic connections incident to the mesolimbic dopamine neurons. The 

proposed mechanism then follows from drawing analogies with the phenomena of long term
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potentiation and noting that NMDAR are implicated in the establishment of both nicotine 

sensitisation and LTP [90] [92],

We have not included the fast acting upregulation of AMPAR function by phosphorylation 

[45]. There is no evidence that, if present, this mechanism of upregulation is significant 

since no sensitisation is reported soon after a single injection of nicotine, it may be that 

any sensitisation induced may be masked by the desensitised nAChR producing a temporary 

functional downregulation. It is also undesirable to include phosphorylation as we do not 

know the parameters involved in such a mechanism, particularly its interaction with the 

longer term increase in AMPAR numbers which is our primary interest.

It has been proposed that nicotinic receptors may also be present on the cell bodies of mesolim- 

bic dopamine neurons, though we have assumed there are none. Balfour and Fagerstrom [4] 

propose that the sensitising effects of nicotine are mediated by more than one sub-type of 

nicotinic receptor (and hence nicotine, by activating both potently, may be uniquely addictive 

amongst nicotinic drugs). Our work in Chapter 2 suggests that any heterogeneity of nAChR 

should be segregated to separate terminals. Assuming that the same holds here raises the 

possibility of sufficient postsynaptic depolarisation being caused by two terminals incident 

on the same structure, or one sub-type being located on the structure directly depolarising 

the postsynaptic cell.

This suggests that we have over-simplified the model. It is apparent that we have already 

had to express many variables of the system in arbitrary units and therefore had to assume 

that nicotine can cause sufficient excitation that leads (via potentiated glutamate release 

and AMPAR activation) to the activation of the NMDAR. In turn we have assumed that 

this calcium influx ultimately activates a CaM kinase which goes on to cause upregulation of 

AMPAR. Although we are justified in choosing this mechanism for upregulation ([36] [91]) we 

do not know the numbers involved and so have no choice but to assume that all components 

have the potency that we desire. There is then no point in further complicating the system 

by specifying different nAChR in varying locations and such like.

We have experienced many hardware and software problems associated with running the 

computer simulation for long periods of time. An alternative would be to write our own 

numerical scheme but we have already been able to show that the model does start an 

upregulation of the AMPAR. It is then much simpler, and robust, to introduce the difference 

equation that approximates the AMPAR numbers (the true measure of upregulation) at the 

lowest point in their ‘daily’ cycle. This set the upregulation of production to be h , the
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supremum of equation (4.81), yet it is clear we need not be so precise and h may be an 

appropriate average of upregulation over the daytime, h > 0 ensures that the model does 

develop a sensitisation to the excitatory effects of nicotine.

We have, more interestingly in our opinion, also shown that the sensitisation can remain in 

the absence of nicotinic stimulation for a longer period of time than the AMPAR would be 

expected to decay in. The reason for this is clear, that the upregulated AMPAR response can 

be sufficient to activate the NMDAR and thus set in motion the chain of events that leads to 

kinase activation. We have been able to provide a robust definition of the time to forget the 

sensitisation as the period of time in which it can be reinforced without the need to present 

the sensitising (nicotinic) stimulus.

We have estimated the time for which the sensitisation persists and have shown that this does 

extend past the time in which the AMPAR would be otherwise expected to decay. It would 

be highly desirable to calculate the expected length of time explicitly but unfortunately we 

do not know the firing pattern of the incident neuron (hence p(x)), nor the firing rate needed 

from a state of full sensitisation. Each of these is likely to be different for each different 

synaptic connection too.

The development of a sensitisation to nicotine may be expected to form one substrate of 

its perceived addictive qualities [3]. The sensitisation means that even the non-nicotinic 

base firing rate produces an enhanced response. This persistent increase in excitation may 

lead to a downregulation in dopamine function downstream from the connection, such as 

the desensitisation of postsynaptic dopamine receptors, whilst retaining a potent response to 

nicotine. The possible persistence of the sensitisation long after the sensitising stimulus has 

been removed could have serious implications for such an addiction relapse.

It would seem that the human smoker /  laboratory animal will be free of this substrate of 

addiction once they have forgotten the sensitisation. Our analysis has shown that this is 

no simple matter of ceasing nicotine doses and allowing for the decay of the AMPAR, for 

memories of the drug can be kept for many times longer. This provides an interesting slant 

on the known tendency for ex-addicts (to smoking and also to opiates such as heroin, given 

the parallels discussed below) to lapse back into use even after months of abstinence.

Our model also suggests a cure for this; the anti-addiction qualities of NMDAR antagonists 

such as ibogaine have already been reported [6] [78][77] and dosing the subject with it for the 

‘time to forget’ period immediately following addictive drug abstinence will prevent sensiti­

sation reinforcement. This would allow the upregulation of AMPAR to decay away sooner
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and free the subject from this substrate of addiction. Interestingly this would also suggest 

that any (acute) exposure to a like sensitising stimulus, such as the replacement therapy of 

using methadone on heroin addicts, is counterproductive.

The dependence on NMDAR activation and the speculated site of action of nicotine pre- 

synaptic to the dopamine neurons (on glutamate terminals) has led us to this sensitisation 

of a synaptic connection picture. There may be many thousands of such connections, each 

may sensitise to different degrees and persist to different extents. This would be consistent 

with the experimental observations that there is no cross-sensitisation to amphetamine or 

cocaine, which act in the dopamine terminal field inducing dopamine release and blocking 

or reversing dopamine transporters. However a cross-sensitisation with opiates has been 

reported and we can suggest a reason for this. Opiates act on dopamine neurons by pre- 

synaptically blocking (inhibitory) GABAergic input, excitation by the block of inhibition. 

If such an input is local to the nicotine /  glutamate connection it may be able to produce 

the extra post-synaptic depolarisation required to activate the NMDAR (the expression of 

sensitisation to the opiates can be blocked by AMPAR antagonists [13] and the induction 

prevented by NMDAR antagonists [39]). This could then lead to the sensitisation of the cell 

much like it would if the excitation where nicotine mediated. The limitations of the cross­

sensitisation would arise from the lack of local co-incidence of both types of terminal at the 

same structure. This suggests that opiate sensitisation may act in a similar way to nicotinic, 

indeed the induction of opiate sensitisation is blocked by NMDAR antagonists [99] and the 

expression features an upregulation of AMPAR [23].

4.8.3 Summary

We have produced two essentially separate models. The first is a fairly simple model that 

demonstrates how chronic nicotine can prompt the co-development of a contradictory upreg­

ulation in nicotinic binding sites and a functional downregulation. This model is based on 

the experimentally proposed existence of an inactivated form of nAChR.

The second model is much more complex and describes a mechanism whereby a sensitisation 

to stimulation may be induced. The mechanism is probably over-simplified but is a result 

of the lack of subcellular level quantitative data available on the phenomenon. This model 

demonstrates that the sensitisation can persist indefinitely, which draws parallels with, and 

has serious implications for, addiction to nicotine and the opiates.



Chapter 5

M odelling Parkinson’s D isease

5.1 Chapter Overview

The clinical symptoms of Parkinson’s disease are mainly disorders of movement such as a 

tremor in limbs at rest and a slowness or rigidity of movement. The disease may be traced to 

the degeneration of the dopamine cells of the nigrostriatal pathway. We consider this pathway 

and, using a formulation in terms of averaged neuron firing rates and responses, model the 

feedback loop of dopamine neurons and striatal GABAergic neurons such that we reduce this 

network of thousands of neurons to a system that essentially describes a simple loop of two 

neurons. The inputs from other neurons are assumed to be proportional to the firing rates 

of the incident neurons, which are in turn proportional to their membrane potentials. We 

assume that the dopamine neurons have a simple linear current-voltage relationship whereas 

the striatal neurons have a relationship described by a cubic, which gives rise to the interesting 

dynamics of the system.

We demonstrate that the model output can be robust to large losses in dopamine input 

reflecting that seen in Parkinson’s disease where there can be a 50% loss of neurons before 

the sufferer becomes symptomatic. Moreover the model develops an oscillatory component 

analogous to the resting tremor when the dopamine loss becomes too great. This also allows 

us to advance hypotheses on the causes of the rigidity and bradykinesia complaints. The 

symptomatic output of the model may be reversed when the modelled effects of common 

Parkinson’s treatments are imposed. Interestingly the D2 receptor agonist ropinirole removes 

the oscillatory component, leading us to suggest that this may be involved with the known 

side effect of dyskinesia in high dose L-DOPA patients.
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5.2.1 The Sym ptom s and Causes o f Parkinson’s D isease

Named after James Parkinson who first described the disease in detail in 1817 in his Essay 

on the shaking palsy, Parkinson’s disease affects 0.5% of the over 50’s. The underlying cause 

is unknown but it is generally assumed that is does have a clearly defined cause. There is no 

evidence for dietary or infectious influences. In a minority of cases the disease is inherited. 

Whilst increased incidence has been linked at various times to both industrialised and rural 

areas, decreased incidence has been observed in cigarette smokers (this is probably due to 

nicotine’s neuroprotective effects) [96].

The classical symptoms are disturbances in movement[45] [96]. There is a resting tremor 

in limbs that disappears on movement or sleep; a muscle rigidity that offers a resistance to 

movement and often makes such movement jerky or have a cogwheel feel. There is a difficulty 

in initiating movement, which is generally slow. This typically results in the shuffling gait of 

sufferers and they often grind to a halt, unable to move. Making them step over an obstacle 

frees them from this paralysis. There axe other symptoms typical of sufferers; stooped posture, 

speech problems, excessive sweating and micrographia (small writing). Dementia has also 

been recorded, though infrequently, in Parkinson’s sufferers.

Post-mortem examination of the brains of Parkinson’s disease sufferers reveals a specific 

degeneration of the substantia nigra pars compacta region, a dense projection of principally 

dopaminergic neurons to the striatum. Indeed a greater than 50% depletion in dopamine and 

its metabolite homovanillic acid has been observed in the striatum of Parkinson’s patients. It 

is this loss of dopaminergic function in the striatum, with its involvement in motor control, 

that is thought to account for many of the symptoms of the disease. There is less pronounced 

cell loss in the locus coeruleus and the nucleus basalis of Meynert [96].

The remaining neurons of the nigrostriatal pathway increase dopamine metabolism and there 

is also a postsynaptic upregulation in dopamine receptors. Such compensatory mechanisms 

will, in part, be responsible for the absence of clinical signs for the disease until there is some 

80% depletion of dopamine cells [45] [96].

Since the symptoms of Parkinson’s are thought to be largely due to the depletion of striatal 

dopamine, treatments for it have centred on dopamine replacement. Dopamine taken orally 

is not useful since it does not pass the blood-brain barrier, however its precursor, L-3,4- 

dihydroxyphenylalanine (L-DOPA) does. L-DOPA then is metabolised to dopamine in the
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brain and has been shown to alleviate symptoms if given in a high enough dose. When given 

with benserazide or carbidopa, to prevent peripheral metabolism to dopamine, L-DOPA is a 

successful therapy for the symptoms of Parkinson’s. The treatment does have side effects such 

as a decreased efficacy with time; dyskinesia (involuntary, jerky movements) and psychiatric 

disturbances, probably by over-activation of the neighbouring mesolimbic pathway.

A lower incidence of dyskinesia has been seen in the treatment of Parkinson’s patients with 

dopamine D2 receptor agonists such as apomorphine, bromocriptine, or more recently, ropini- 

role. These tend to be less potent than L-DOPA, but a combination of dopamine agonist 

and low doses of L-DOPA has been shown to be effective. The efficacy of dopamine agonists, 

which will provide a constant stimulation of dopamine receptors, supports the idea that the 

striatonigral neurons provide a tonic level of synaptic dopamine.

Monoamine oxidase B (MAO-B) inhibitors, such as selegiline, have been used in treatment 

therapies to reduce the breakdown of synaptic dopamine. Whilst it does not appear to have 

an effect on its own, it does seem to potentiate L-DOPA treatment. A more advanced attempt 

at treatment has been the transplanting of dopaminergic cells into the diseased brain. Results 

have been mixed and the technique is still experimental.

Whatever the causes of the disease, it is generally expressed by the progressive death of the 

sufferer’s dopaminergic neurons, principally in the nigrostriatal pathway. There is a reciprocal 

(striatonigral) GABAergic pathway and so the two units form a feedback loop. It would seem 

to be that the symptoms of Parkinson’s arise as a result of the changes that the degeneration 

of dopamine cells induces on this loop.

5.2.2 The M icrocircuitry o f the Striatum

All communication between the striatum and other cell nuclei is associated with one type of 

striatal neuron, the so-called medium spiny neuron [8] [37] [76]. With a soma some 15-20/mi 

in diameter and a profusion of dendrites with many dendritic spines (hence the name), they 

release the neurotransmitter GABA and are hence inhibitory in action. A large amount of 

dye-coupling has been observed between these spiny neurons, indicating the cells are linked 

by gap junctions [73].

Major projections are sent to the substantia-nigra pars reticula, which we shall cover in the 

next section, and to the thalamus. It is through this connection that the spiny neurons exert 

an excitatory (by inhibiting other inhibitory inputs) influence on the motor cortex and hence
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Figure 5.1: Schematic diagram of the connections between the striatum (black) and the 

substantia-nigra pars reticula (blue) and pars compacta (red). The parts are: (a) cortical 

input to the (b) striatal projection neuron; (c) gap junction connections between projec­

tion neurons; (d) dopaminergic input from the substantia-nigra pars compacta; (e) arborisa­

tion of the GABAergic striatal projection to the substantia-nigra neurons; (f) dopaminergic 

substantia-nigra neuron; (g) GABAergic input from the pars reticula; (h) and (i) cortical 

excitation (glutamate) to the substantia-nigra. (j) and (k) are the neighbouring neurons.

the firing of the medium spiny neurons (which we shall refer to as striatal projection neurons) 

is positively correlated with movement. This correlation allows us to model our output as 

the firing of the striatal projection neurons and removes the need to model the propagation 

of signals through other nuclei such as the thalamus, this would be immensely complicated.

The spiny neurons receive excitatory (glutamatergic) input from the cortex. This input to the 

cells has been observed to be an extremely powerful and coordinated current that if it were 

not for strong potassium channels intrinsic to the cells would drive them to over-excitation. 

The coordination of the input endows the neuron with a switch-like on/off quality, either 

resting at a low membrane potential or depolarised to a action potential firing state [103].

The other major input that the striatum receives is the dopamine input from the substantia- 

nigra. This input is inhibitory in overall effect but has both excitatory and inhibitory com­

ponents [52][54]. Dopamine receptors of the D1 type mediate the excitatory component by 

activating the second messenger adenylyl cyclase. The inhibitory component is mediated by 

receptors of the D2 variety which open ion channels selective for potassium. A dopamine 

D2 receptor supersensitivity has been observed in animal models of Parkinson’s disease, the
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lower levels of synaptic dopamine cause the upregulation in the number of D2 receptors and 

a downregulation in D l’s [96].

Projections to the substantia-nigra and the reciprocal connections are topographically organ­

ised in that closely originating projections from the striatum terminate close together in the 

substantia-nigra and the returning fibres terminate close to the source of the striatal output 

[76]. The circuitry of the striatum and the substantia-nigra is summarised in Figure 5.1

There are other (less abundant) types of neuron within the striatum; these include large 

aspiny GABA releasing neurons, Substance-P releasing neurons [8] and small cholinergic 

neurons [46]. Little work has been done on the arrangement of the connections for these 

neurons, but what has been done can be neatly summarised in the following statement; each 

type of neuron makes connections with all other types in the striatum. Naturally this will 

lead to problems in modelling this region, but the anatomical work does reveal that these 

inter-neurons make only local connections even within the striatum and so their effects are 

likely to involve the modulation of only small numbers of discrete projection neurons.

5.2.3 The M icrocircuitry of the Substantia-N igra

The substantia-nigra, divided into pars compacta and pars reticula regions, is much sim­

pler in that there are only two abundant types of neurons [71]. The major neuron is the 

dopaminergic, the cells that are killed off in Parkinson’s disease. These cells arise in the pars 

compacta and are arranged in a sheet 4-6 neurons thick. They project predominantly to the 

striatum and to the cortex, although it is the nigrostriatal projection that is most affected 

by Parkinson’s. Labelling both pathways has revealed a small number of noradrenergic cells.

The dopaminergic cells receive an excitatory input from the cortex, an inhibitory input from 

the striatum and an inhibitory GABAergic input from the other major type of neuron in the 

substantia-nigra, the GABAergic interneuron. Located in the pars reticula, these fast firing 

neurons receive a GABAergic input from the striatal projection neurons. The interneurons are 

much more sensitive to GABA than the dopamine neurons and so, despite the direct striatal 

connection, striatal excitation has an overall excitatory effect on the dopamine neurons by 

preferentially inhibiting the inhibitory input from the interneurons [29].

The dopamine cells also have a self and near neighbour inhibition since they release dopamine 

from their dendrites which are also endowed with D2-type receptors [54] [71].
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5.2.4 A im s o f the M odel

It is clear from the above descriptions of the circuits involved that we can, at best, model 

the striatonigral feedback loop and so study how the output from the striatum changes as 

dopamine cells are killed off. There are certain aspects of Parkinson’s disease that we would 

hope to model. The first of these is the apparent redundancy involved in the system, the 

classical symptoms (tremor, etc) are not observed until there has been about an 50% depletion 

of dopamine cells. It implies that either large parts of the system are redundant, or that it 

has a large array of compensatory mechanisms.

Implicit in this is a more fundamental question, what is it that goes wrong? The death of 

the dopaminergic cells undoubtably has an effect, the effective treatment of Parkinson’s by 

dopamine replacement and fetal transplants [96] indicates that it is the degeneration of these 

cells that is responsible for the symptoms. Since the major target of these cells is the striatum 

the symptoms must be traceable to changes in these neurons. What change is this?

If we are then able to identify what changes are induced by the onset of Parkinson’s then 

we may be able to identify the roots of sufferer’s symptoms. We would aim to define under 

what conditions, or at least advance hypotheses, as to how such things as a tremor at rest 

arise and why advanced Parkinson’s may induce muscle rigidity. Moreover, by knowing how 

the onset of Parkinson’s disease causes disruptions in the striatum we may also be able to 

characterise the action of Parkinson’s treatments, specifically the widely used L-DOPA.

With the complex nature of the system under study, possibly thousands of neurons with 

thousands of connections, means that an accurate quantitative model is unlikely to be pos­

sible. We must therefore concentrate our efforts on producing a model that provides a good 

qualitative description of the action of the striatal output.

5.3 The M odel

5.3.1 The R educed Circuit

The massively complicated microcircuitries of the striatum [8] and, to a less complicated 

extent, the substantia-nigra [71] described above essentially preclude detailed modelling of 

all the neuron types and connections involved. Since the precise internal and external circuit 

connections cannot be known in their entirety any modelling attempt is clearly doomed to
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failure. We must therefore make assumptions on the nature of the circuits involved and hence 

reduce the system to a more manageable size that we can model.

We are going to include both the sheet of striatal projection neurons and the dopaminergic 

neurons of the substantia-nigra since our principal aim is to study the effect of the former 

due to the degradation of the control imposed by the latter. Since these two types of neuron 

form the majority of connections between the striatum and substantia-nigra, we make the 

assumption that these are the only connections between the two and then may function as 

discrete units.

Dopamine neurons directly innervate the striatal projection neurons and have a principally 

inhibitory effect mediated by D2-like receptors and hence we include this in our model. 

We do not include the excitatory influence of the less abundant D 1-like receptors. This 

is particularly valid for the latter stages of Parkinson’s disease, where the lower levels of 

extracellular dopamine leads to the upregulation of D2 receptors and the downregulation of 

D l’s [96]. We prescribe an external, excitatory input to the striatal projection neurons to 

model the dense glutamatergic innervation from the cortex. We are then able to describe the 

main features of the striatal innervation; excitation by glutamate and inhibition by dopamine. 

We assume that the contribution from the complex internal microcircuitry of the striatum 

is negligible and only include the coupling of the projection neurons via gap junctions, and 

then only nearest neighbour coupling. Hence the only efferent output of the striatum comes 

from the projection neurons.

Since the GABAergic input to the substantia-nigra has an (ultimately) excitatory influence 

on the dopamine neurons we actually suppose that the striatal neurons make direct exci­

tatory connections with these neurons. This precludes the need to model the GABAergic 

interneurons responsible for this excitation by relief of inhibition and therefore greatly sim­

plifies the circuitry. Indeed this reduces the substantia-nigra circuitry to excitatory inputs to 

the dopamine neurons from the striatum and the cortex.

We make further assumptions on the connections between the striatum and substantia-nigra, 

principally that many dopamine neurons project to a selection of striatal neurons and only 

this selection. Each striatal neuron is known to receive inputs from many dopamine neurons 

[8], moreover single dopamine neurons send many afferent fibres into the striatum with many 

destinations [71]. It is likely that the same dopamine neuron will innervate many striatal 

neurons but we make the assumption that it only innervates, significantly, the neurons that 

it receives inputs from. This simplifies our circuitry again. In turn each of these striatal
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neurons sends afferent fibres to these dopamine neurons and as the output (to the thalamus).

Our circuit has then been reduced to individual “packets” of striatal neurons exciting an­

other collection of dopamine neurons, which produce inhibitory feedback. The packets are 

connected to their neighbours via the gap junctions between adjacent striatal neurons.

5.3.2 M odelling the Dopam ine Neurons

Since we are interested in the longer term implications of the death of dopamine neurons we 

have no need for complex integrate and fire models of single neurons. We are not interested 

in individual spikes, but more the changes in average firing rate. The firing rate of a cell 

is typically proportional to the current input to that cell, which over long timescales is 

proportional to average membrane potential (measured from a resting potential defined to be 

OmV) of that cell, except at high levels of excitation where the firing rate tends to saturate 

[49]. We shall assume that this level of excitation is not reached in the range of our model 

and therefore, for a dopamine neuron with (average) membrane potential u relative to rest, 

its average firing rate is (3u for some /3 > 0. We will ensure that the reversal potentials for 

all currents will be > 0, so that u > 0. This averaging out of current input and membrane 

potential will also be used to take account of the spatial variations in the cells and allow us 

to regard each cell as a single electrical compartment.

Typically the firing pattern of cells, as well as the pure firing rate, has a significant effect 

on the terminal release of neurotransmitter. This is true for striatonigral dopamine cells 

which, like the neighbouring mesolimbic dopamine cells modelled in Chapter 4, can display a 

bursting pattern that augments dopamine release [35]. However, we are considering dopamine 

action averaged over minutes and hours and so the variation between the release caused by 

individual spikes is averaged out in the parameter /3.

For a dopamine neuron, we define the membrane potential u by

n i l
CD— = R D(u) + I D(u,v), (5.1)

where Co is the capacitance of the cell membrane [49]. R d (’) represents the current flow 

in the cell due to the intrinsic ion channels and pumps and the external input from regions 

other than the striatum. The external input is modelled as a simple fixed conductance, 

representing the average synaptic conductance, with a fixed reversal potential derived from 

the weighted average of the afferent input reversal potentials, that is an equation of the form 

gi(E[ — u ). Since this is mainly the excitatory glutamate input then Ej  ~  E Naj c a ~  90mV,
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the reversal potential of the current of sodium, potassium and calcium ions gated by glutamate 

receptors [45], The membrane of dopamine cells shows an approximately linear current- 

voltage relationship [28] and so may be similarly modelled as gm(Em — u ), where gm and 

E m are the conductance and reversal potential of this current respectively. These may be 

combined to form the single term

R d M  = goiEo — u). (5.2)

We model the input from the striatum in a similar way. We suppose that the striatal neurons 

activate a synaptic connection with the dopamine neurons that has reversal potential Ev\ 

since this will relieve inhibition of the excitatory glutamatergic neuron it could be regarded 

as having an additional glutamatergic input (hence Ev is typically around 90mV). The current 

gated by each connection is (approximately) proportional to the firing rate of the incident 

neuron and so the current gated by all striatal connections will be proportional to the average 

firing rates of the incident neurons v. For constant of proportionality gv , the conductance of 

all striatal synaptic connections per spike in unit time, the input term is given by

I d {u , v ) = gvv{Ev - u ) .  (5.3)

We assume the proportionality of firing rate and membrane potential for the striatal neu­

rons. If v is the average membrane potential, then v =  yv  is the average firing rate for an 

appropriate 7  > 0. Hence the membrane potential u for a dopamine neuron is given by

du
Cd - tt = gD{ED -  u) +  gulv {E u -  u), (5.4)

a t

5.3.3 M odelling the Striatal Projections Neurons

We model the striatal neurons in a similar way, deriving equations for the average membrane 

potential v. This is of a similar form to the dopamine neurons, described by

dv
=  Rs(v)  +  A s (v, u) + Is (v, Pu). (5.5)

Again Cs is the capacitance of the membrane, Rs  is the regulatory term that describes the 

combination of currents intrinsic to the cell and the other external inputs, and Is  is the input 

from the dopamine neurons. We have a new term, A s , that describes the coupling between 

striatal neurons through gap junctions.

The simplest of these to describe is the coupling via gap junctions. Gap junctions consist 

of large macromolecules that extend through the membranes of the coupled cells [45]. Pores
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in these molecules allow the exchange of ions and hence the flow of ionic currents between 

them. The lower resistance of the gap junction compared to the surrounding membrane 

and extracellular space allows inter-cellular communication leads it to be modelled as a low 

conductance ‘short-circuit’ between the cells. We assume there is no leakage from the gap 

junctions and hence for two coupled neurons of with membrane potentials v\ and the 

current input to the first due to the gap junction is given by

I i = 9 a(v2 - v i )  (5.6)

where ga is the electrical conductance of the gap junction [10]. The current input to the 

second is naturally given by

h  -  9 a(vi -  v2). (5.7)

Note that I 1 + I2 =  0, as no leakage implies conservation of current. This essentially describes 

the coupling between cells in our model. If the components of the vector u, U{ hold the 

membrane potentials of the coupling neurons, then the coupling term is given by

4s(v ,u ) =  ga ^2(u i  - v ) ,  (5.8)
i

assuming that all gap junction connections have the same conductance.

The input from the dopamine neurons is modelled like the reciprocal connection from the 

striatum and is given by

I s (v,l3u) = gu(c){m -  I) pu (Eu -  w), (5.9)

where Eu is the reversal potential of the current and we put in the explicit term )3u for

the (averaged) dopamine neuron firing rate. Here we state the conductance as conductance

per synaptic connection per spike in unit time, gu(c), multiplied by the explicit number of 

connections (ra — /), where m  is the original number of connections and I represents those 

lost due to the onset of Parkinson’s disease.

Here the conductance of the each synaptic connection (g(c)) is not constant, but instead 

depends on the synaptic concentration of dopamine c. This comes from the observation by 

Fornaguera et al [25], amongst others (for example [51]), of dopamine receptor supersensitivity 

in 6-OHDA-lesioned rats, that is the receptors upregulate in response to low concentrations 

of synaptic dopamine. The conductance is given simply by the number of receptors (R(c)) 

multiplied by the single receptor channel conductance gR

9u{c) = gRR(c). (5.10)
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We lack a good characterisation of the processes underlying this dopamine receptor super­

sensitivity. However we only require a model that behaves correctly qualitatively, i.e. it 

has increased receptor numbers in response to lower averages of synaptic dopamine and so 

we use the simplest model with this property. We assume that the dopamine receptors are 

produced at a constant rate k\ from an abundant substrate S r , but that their rate of decay, 

proportional to the number of receptors, increases with the concentration of dopamine. We

assume a decay term of the form (&2 +  ksc)R. The number of receptors is then given by

=  *1 Sr -  (*2 +  hc)R .  (5.11)

Of particular relevance is the steady state number of receptors R *, given by

=  k^rtc <5-12>
The rates of production and decay of receptors will be fast (hours to days) in comparison to 

that of cell death due to Parkinson’s (years) [67] [96], and so when studying the dynamics of 

the model with respect to the progressive death of cells we assume that the receptor numbers 

are at an averaged steady state. These rates are still slower than any dynamic changes in 

the firing rates of the dopamine neurons which we would expect to be more of the order of 

seconds, such that the receptor number can be regarded as constant. In this case the receptor 

number is taken to be R* (c) = R*(c), where c is the dopamine concentration averaged over 

a sufficiently long period of time. Note that in our formulation c oc (3u and hence

c = kc/3u (5.13)

for an appropriate choice of kc. Regarding R  as a constant makes our analysis much simpler.

We must now derive the regulatory term for the striatal neurons, Rs{v ), which is considerably 

more complex than the corresponding term for the dopamine neurons. This complexity lies 

in the nonlinearity of the cell membranes own current-voltage relationship, as observed by 

Wilson and Kawaguchi [103].

Wilson and Kawaguchi observed that the spontaneous membrane potential of striatal pro­

jection neurons tends to oscillate between two levels, from a Down state (-61 to -94 mV) to 

an Up state (-71 to -40 mV), with little time spent inbetween. This reveals what one may be 

tempted to refer to as a bistability in the current-voltage relationship, although this is not 

quite true, since the Up state only exists in the presence of the enormous synaptic excitation 

that these cells receive. Although they found they could not abolish these fluctuations by 

alteration of the membrane potential, intracellular injection of current did alter the time
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spent in each state. As one would expect, the injection of depolarising current increased the 

tendency of the neuron to be in the Up state.

Experimentation involving the pharmacological blocking of intrinsic ion channels, particu­

larly the results regarding the caesium-poisoning of potassium channels, led to the following 

explanation. The experimental results suggest that the Up and Down states are determined 

by the interaction of intrinsic potassium channels with the synaptic excitation. There are 

two types of potassium channel (of significance), one is activated at hyperpolarised membrane 

potentials and is responsible for the maintenance of the Down state, attained in the absence 

of the synaptic excitation. This channel inactivates if held at depolarised membrane poten­

tials and hence has steady-state current characteristics that resemble the A-type potassium 

channel. In the presence of the synaptic excitation, a powerful and coordinated input, the cell 

depolarises. This inactivates the A-type-like channels and the cell is then constrained from 

hyper-excitation in the Up state by the repolarising influence of another form of (caesium- 

sensitive) potassium channels. This depolarisation-induced activation would suggest that 

these channels are similar to the so-called delayed-rectifying potassium channels.

Traub et al [98] used Hodgkin and Huxley-type models of A-type and rectifying potassium 

channels in their model of hippocampal pyramidal neurons. The steady state current in the 

soma for these channels can be seen in Figure 5.2. From this it is quite clear how such a two- 

state membrane potential could arise; with the absence or presence of the synaptic excitation 

shifting the steady-state voltage to the left or right branch of the steady state current curve 

respectively. The middle (unstable) branch would serve to separate these two stable branches 

and ‘flick’ the potential from one to the other as the synaptic current dictates.

Wilson and Kawaguchi’s experimental findings [103] suggest that the striatal projection neu­

rons have a steady-state current-voltage relationship like that found in Traub’s model. Ob­

viously we do not wish to model to the depth of ion channel kinetics and so, noting the 

cubic-like appearance of the steady state current curve, we choose

Rs{v) = g s{ a -  v){v2 +  b) +  Isyn(t) (5.14)

for gs,a,b > 0 , the simplest representation of a cubic with a single real zero (at v = a). 

Taking a large and b small gives us the correct cubic appearance, as we shall see later on 

(strictly b < a2/27). The Isyn{t) term is simply the synaptic excitation current which we 

take to be either 0 or Imax , a positive constant.

Our modelling of the striatal projection neurons is essentially complete, for such a neuron,
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Figure 5.2: The steady-state current in milli-amps against clamped membrane potential for 

the somatic A-type and delayed-rectifying potassium channels, for the channel parameters 

taken from Traub et al [98]. The curve has a cubic appearance, reflecting the alternation 

between the inactivation of the A-type channels and activation of the delayed-rectifier (and 

hence we use a cubic form for our model). The cell rests at around -70mV where the steady 

current is zero, however powerful excitatory current input would shift the curve upwards and 

the steady state would lie at more depolarised potentials, possibly such that it lies on the 

right branch of the I  — V  curve.
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the membrane potential v is given by

dv 
dt

5 .3 .4  T h e  M o d e l P a ck et N etw o rk

Cs~j7 = 9 s { a - v ) ( v 2 +  6) + I 8yn(t) + ga Y 2 (Ui~ v) +  9 u{c){m -  I) /3u (Eu -  v). (5.15)

Sections 5.3.2 and 5.3.3 describe how we have chosen to model the two types of neuron that 

our model features. Our analysis can be simplified further by a few observations on the nature 

of this modelling. One such simplification has already been mentioned in that, by analysis 

of the timescales, we regard the number of dopamine receptors as constant, i.e. gu(c) = gu is 

constant. Also, since the inhibitory dopaminergic input to the striatum will tend to prevent 

the cell from firing, it is sensible to take Eu «  0. As the striatal input to the dopamine 

neurons is supposed to be excitatory, we shall also assume that E d < E v.

Whilst the gap junctions modelled allow communication directly between striatal neurons, the 

conductance of gap junctions (which we called ga) is small in comparison to the conductance 

of the intrinsic channels of cells and their (chemical) synaptic connections [45] [48]. Hence 

we shall regard the influence of these gap junctions to be negligible in comparison to the 

regulatory (Rs) and synaptic (Is) currents. We shall only have cause to consider them when 

we study coupling between packets in section 5.3.7.

A simple observation of the model reveals the following; we have regarded each striatal neuron 

and each dopamine neuron to be identical. Moreover each receives exactly the same input 

and hence each striatal neuron and each dopamine neuron behaves exactly the same. Hence 

the averaged firing rates v and u are the actual firing rates v and u of these neurons and so, 

when considering a single packet, we can regard it as a simple loop of one striatal neuron and 

one dopamine neuron. This reduces our system to being able to study isolated packets that 

have only two independent variables v and u. Then a packet is described by:

dv
dt
du

C5 — =  gs(a -  v)(v2 +  b) 4- Isyn(t) -  gu(m -  l)fiuv, (5.16)

C°~dt = 9d Êd  “  n) +  9 v lv(Eu -  u). (5.17)

For notational convenience we substitute C's = Cs/gs,  Isyn(t) = I'syn(t) and g'u =  ^u(m — 

l)/3/gs  into equation (5.16) and G'u — CD/gD and g’v =  gv^/gD into equation (5.17) to obtain 

the slightly simpler

C's ~̂ t = (a ~ v)(v2 + b) ~ 9uuv + (5>18)
du.

Ci,—  =  (BD - u ) + s f M E v - n ) .  (5.19)
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Before we lose sight of it altogether, we should reiterate that the onset of Parkinson’s will, 

by killing off dopamine neurons, gradually decrease the parameter g'u.

5.3.5 Projection  Neuron Dynam ics

We have made many assumptions on the circuitry involved in the striatum and substantia- 

nigra and then again in attempting to model the behaviour of individual neurons. Before 

studying the effect that the onset of Parkinson’s disease has on our system (5-18)-(5.19) we 

shall take a moment to demonstrate that the striatal neurons do have the two-state membrane 

potential that is observed experimentally [103]. As we have managed to reduce our model to 

a two variable system this is most easily done by phase plane analysis.

For the v = 0 nullcline we obtain

u = ((« ~ v)(v2 +  b) +  rsyn(t)) (5.20)

and for the u = 0 nullcline

u = E D +E„g'„v
1 +&V

The Jacobian for the system (5.18)-(5.19) is given by

j  _  ( ~ 3v2 + 2 a v ~ b ~  9uu 9 liE v ~  ^  22^
\  -9 u v - ( i  + s M /

from which we may write the trace of the Jacobian as

tr J  =  —3v2 +  2 av — b — g'uu — (1 +  g'uv) (5.23)

which is negative except for a sub-interval of — | \ / a 2 — 36, |  +  ^ \/a 2 — if a is suffi­

ciently large and b sufficiently small. The determinant is given by

| J\ = (3v2 -  2av +  6)(1 +  g'vv) +  g'u(u +  g'vvEv) (5.24)

which is large and positive for Ev sufficiently large.

For P (t) =  0 a typical phase plane could look like Figure 5.3, which corresponds to the

Down state of the neuron. The left branch of the v = 0 nullcline grows like {g'uv)~l and so

for this state to exist, g’u must be large (the dopaminergic input is strong) and the gradient

of the it = 0 nullcline must be steep for small v. We therefore assume that E^gl  is large, we

shall show later with some parameter estimation that g'u is ‘not particularly big’ and so we
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v = 0

Figure 5.3: The phase plane diagram for I'syn{t) =  0 corresponds to the Down state of the 

neuron, with the point A marking a stable node or focus.

take our condition to be that Ev is large; which section 5.3.2 suggests and we shall assume 

this is large enough.

This also ensures that the point A is a globally stable node or focus, the steady membrane 

potential in this hyperpolarised state. However the system is excitable, in the sense that 

any deviation of v past the middle branch of the v = 0 nullcline causes the system to go 

on a large deviation along the curve C before it can return to the steady state A. Hence 

a sufficiently large current input can cause the striatal membrane potential to ‘flip’ up to a 

more depolarised membrane potential and, if the current is too small or not maintained, drop 

back to the hyperpolarised state. This illustrates the quick transitions between the Up and 

Down states seen by Wilson and Kawaguchi [103].

If the current I'syn(t) = I ’max is sufficiently big, the steady state will shift from the left to the 

right branch and the membrane potential will stay at this more depolarised state. Naturally 

this corresponds to the Up state, as illustrated in Figure 5.4. The steady state B is also 

excitable in that hyperpolarisations in the striatal membrane potential cause a similar large 

deviation before returning.

The effective separation of the Up and Down membrane potentials is caused by the v = 0 

nullcline having two positive (in terms of v ) turning points. This is ensured by the condition
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v = 0

u = 0

Figure 5.4: The phase plane diagram for I'syn{t) =  / ^ ai corresponds to the Up state of the 

neuron, the point B is a stable node or focus.

b < a2/ 27 and may be obtained by differentiating the v = 0 nullcline equation (5.20) with 

respect to v and considering the zeros and turning points of this function.

We have so far considered I'syn(t) for sufficiently small and large values, such that the phase 

plane has stable spirals corresponding to the Down and Up states respectively. From the 

work of Wilson and Kawaguchi it is clear that the synaptic input is extremely powerful and 

has a switch-like on and off capability that may well preclude intermediate currents where 

there is a steady state on the middle branch (where instability can occur). However, we 

need to study this possibility as it not only serves to reinforce our modelling, but also has 

very important implications later on when we consider the effects of the onset of Parkinson’s 

disease.

There are two possibilities when our model has a steady state on the unstable branch. Figure 

5.5 shows the case where we have three steady states, C, D and E, of which C and E and 

stable and D is unstable. Hence for this range of parameters the Down (C) and Up (E) states 

co-exist and perturbations in the striatal membrane potential can cause shifts between them.

The other, which proves to be more interesting, possibility is illustrated in Figure 5.6, that 

of a single unstable steady state, labelled F. The steady state is unstable if tr J  > 0 which 

can occur around v* = a/3 if a is sufficiently big. Taking b and 1 -f g'u to be negligibly small
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u = 0

Figure 5.5: A possible phase plane diagram for intermediate values of I'syn{t) that produces 

two stable (C and E) and one stable (D) steady states and therefore exhibits bistability.

(0(1)) in comparison, a = 0(10), then we have instability at v* — a/3 for

^ - > g ' uu* = ^ ( m - l ) f 3 u \  (5.25)
o gs

It is difficult to accurately estimate these parameters, but we can indicate whether these 

conditions could be met. Since a marks the upper limit of the membrane potential for the 

Up state we can estimate it, from Wilson and Kawaguchi [103], to be equivalent to 30-40mV 

(relative to the hyperpolarised rest potential of OmV).

Hence we expect there is instability for g'uu* < 300, indicating that the dopaminergic conduc­

tance needs to be 100 times more powerful than the intrinsic current of the striatal neuron 

for stability. It seems fair to assume that even though the dopamine does have a potent effect 

this is not the case, especially when this input is decimated by Parkinson’s disease.

Sufficient conditions for the uniqueness of the steady state are

a < (s!/)-1 , a < Eug'u (5.26)

The latter is met by both Ev and g'u being large. The former condition corresponds to 

a < gD/(gvl)- Wilson and Kawaguchi allow us to estimate 7 , with an increase in striatal 

membrane potential from OmV to 40mv (relative) only increasing firing to about 5Hz, sug­

gesting 7  «  0.125mV_1. Additional, the work of Grace and Bunney in studying the effects of
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v = 0

Figure 5.6: A possible phase plane diagram for intermediate values of I'syn{t) that a single, 

unstable steady state, F. Periodic orbits are possible.

striatal firing on the firing rate of dopamine neurons [29]always to estimate the ratio 9d /9u 

and we obtain 9d /9u ~  10. Since this implies that we require a < 80mV,  we can demonstrate 

that the conditions can be, indeed are likely to be, met.

We suppose that these conditions are met and that we have a single, unstable steady state 

located on the middle branch of the v = 0 nullcline. Then we have a stable periodic orbit; 

since this is the only positive steady state, and the set (v ,u ) G [0, a] x [0, Eu] is positively 

invariant, a straightforward application of the Poincare-Bendixson theorem gives us the result.

We are then forced to ask that, if such periodic orbits exist, why they were not observed by 

Wilson and Kawaguchi [103]. This is purely the rate of rise of the synaptic current, which 

goes from (effectively) 0 to full inside 100ms, the approximate time taken for the membrane 

potential to go from Down to Up. This is much faster than the period of oscillation, which 

is initially very long and so the Up state is established before any oscillations are apparent.

The time spent in the Up and Down states could be altered by the injection of intracellular 

current, a feature which our model retains. Intracellular current injection will serve to move 

the Down steady state along the left hand branch and accordingly alter the amount of current 

required to cause the jump to the Up state. This will cause the jump to be sooner or later, 

depending on the current injection, as the synaptic current builds up. A similar argument
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applies for the transition from Up to Down.

5.3.6 The O nset o f Parkinson’s

Whatever may be the root cause of Parkinson’s disease, it is clearly expressed in the pro­

gressive death of nigrostriatal dopamine neurons, as found in post-mortem examination and 

modelled in the 6-OHDA lesioning of rat brains[96][45] or as found in MPTP (l-methyl-4- 

phenyl-l,2,3,6-tetrahydropyridine)-poisoned humans. Our primary objective now is to study 

the effects that this progressive cell death will have on our model.

For no cell death, the phase plane (for I syn(t) =  0) is the same as Figure 5.3, the phase plane 

for the Down state of the neuron and so the steady state corresponds to a low membrane 

potential and hence a low firing rate on average. The cell can still easily be controlled by the 

synaptic current, with this input causing the cell to switch between the Up and Down states 

as before.

We now suppose that some of the dopamine neurons die. We assume that this does not affect 

the nigrostriatal connection at all, only the dopaminergic innervation of the striatal neurons. 

We model this by reducing the strength of this synaptic connection, directly implemented 

by the (m — I) term, describing m  original connections of which I have been lost. While 

this will tend to reduce the synaptic strength, this shall be partially compensated for by the 

subsequent upregulation of dopamine receptors, i.e. an increase in R*(c). However the overall 

effect will be a gradual reduction in the model parameter g'u, an effect that would take place 

over a timescale of years.

The reduction of g'u causes an appropriate scaling up of the v = 0 nullcline. This will cause 

the stable steady state (A) to move down the left branch as shown in Figure 5.7, until it loses 

stability somewhere on the middle branch after B. Up until the steady state reaches this it 

retains its stability. Moreover the cell is still controllable in the sense that the presence or 

absence of the synaptic excitation causes the selection of the Down or Up states respectively.

The above situation describes the model state in the early stages of Parkinson’s disease. 

Although the cells are dying off, the cell is still controllable as long as the steady state 

stays on the left branch and under these conditions the model shows little change. For an 

initial steady state far up the left branch and allowing for the appropriate upregulation of 

dopamine receptors, many cells may have to die before the steady state reaches B. One of the 

characteristics of Parkinson’s disease is that the symptoms do not appear until the disease is
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v = 0

u = 0

Figure 5.7: The phase plane diagram for the early stages of Parkinson’s disease. The steady 

state A moves down the left branch until it loses stability at the point B.

well progressed, in the sense that up to 50% of the nigrostriatal pathway cells can die before 

the patient is aware of any problems such as tremors or rigidity [96]. This characteristic of 

our model provides an interesting hypothesis as to why this is so, with the length of the left 

branch combined with the compensating upregulation of dopamine receptors [51] allowing 

the neuron to still function properly as the dopamine input decays.

This situation does change as the steady state passes B and becomes unstable. As illustrated 

in Figure 5.8, for the steady state between B and C it may be unstable in which case we 

have a periodic orbit by an application of the Poincare-Bendixson Theorem. We have lost 

the Down state of the neuron completely; whilst the synaptic excitation can again propel us 

to the stability of the Up state, in its absence the neuron oscillates between Up and Down. 

This suggests that at rest, the striatum will still be sending a periodic input to the thalamus, 

which one would expect to be present in the thalamic output such as motor control. Again 

we can relate this to the symptoms of Parkinson’s disease as one of the earliest signs of its 

progression is a physical tremor at rest [96].

For more advanced stages of Parkinson’s disease the parameter g'u will become so small that 

the steady state will move over to the right branch of the v = 0 nullcline, as illustrated in 

Figure 5.9. The steady state regains stability here and our neuron is clamped in the Up state,
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Figure 5.8: The phase plane diagram for later stages of Parkinson’s disease. The steady state 

A is now on the unstable branch and the model admits a periodic solution in the curve C.

u = 0

Figure 5.9: The phase plane diagram for the advanced stages of Parkinson’s disease. The 

steady state A has regained stability on the right branch.
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even in the absence of the synaptic current. The rise of the synaptic current serves only to 

shift the steady state further along the right branch and we have effectively lost control of 

the neuron. Since the neuron is clamped in the Up state, it will be persistently firing at a 

high rate even in the absence of the synaptic current, in the presence of this powerful current 

the neuron will be firing at an abnormally high rate. This will cause persistent activation of 

the thalamus, which may lead to the persistent activation of the motor control output. This 

may in turn lead to a paralysis of the sufferer as their muscles lock up and is analogous to 

the rigidity that more advanced Parkinson’s sufferers experience.

Our model can also provide some theoretical backing for another problem and solution of 

Parkinson’s disease sufferers. Advanced Parkinson’s disease sufferers walk with a shuffling 

gait and often come to a complete halt, no longer able to move [96]. They can be freed from 

this paralysis by placing an object in front of them which they need to step over. They are 

still able to perform this action and find that then they are free to walk again.

To perform the action of walking, the synaptic current to the striatal neurons which maps, via 

the thalamus, to the muscles associated with walking, will be activated. In advanced sufferers 

this will cause the striatal neurons, already clamped in their Up state, to fire at abnormally 

high rates and possibly bring the sufferer to a stop if this over-activates the pathway and 

forces the muscles to lock. They will not be able to carry on, since such a desire to keeps 

the synaptic current activated that is causing this rigidity. Distracting the sufferer, such as 

by making them perform a different action, will switch this off, free the pathway from its 

over-excitation and thus enable it again.

5.3.7 Network Dynam ics

The previous two sections have detailed how individual packets of striatal and dopaminergic 

neurons behave, both in terms of parameter values and then viewed as the subject of pro­

gressive Parkinson’s disease. We may now address the question of what happens to the entire 

collection of packets as a whole. This has a fairly straightforward answer; as the coupling 

between the packets is weak each behaves independently. However as dopaminergic cells are 

killed off by Parkinson’s disease we would expect that the death of cells is uniformly dis­

tributed and therefore that each packet is depleted equally. This in turn implies that each 

packet (synaptic excitation of the striatal neurons aside) is doing the same thing, they are 

either all still controllable in the Down state; suffering from oscillations; or clamped in the 

Up state.
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v = 0

Figure 5.10: For an oscillating neuron the membrane potential can be uniquely determined 

by the phase angle, 6 , see section 5.3.7

If packets are resting in the Down state or clamped in the Up state then the coupling between 

the packets is zero and each packet is behaving in exactly the same way. We may then deduce 

the striatal neurons action by reference to sections 5.3.5 and 5.3.6. This is not quite so true if 

the packets are oscillating. In particular two adjacent packets could be oscillating but whilst 

one is in the Up state, the other could be in the Down state and vice-versa and in this case 

the coupling between the cells via the gap junctions is non-zero. We have already considered 

the case of an oscillatory output from the striatum, but if the oscillating packets are not 

synchronised (suppose they are uniformly distributed around their cycles) then one would 

expect the output to actually be approximately constant. We are therefore required to study 

the cycles of these oscillators with regard to the weak coupling between them.

First, consider an oscillating neuron as in Figure 5.10. The membrane potential v follows a 

complex course but we can makes things much simpler by thinking of the phase, 6 , of the 

oscillation. 6  can simply be regarded as the angle, from some fixed reference (here we choose 

it to with respect to the line from the steady state, straight down), around the closed curve 

of the periodic orbit. We can completely characterise the oscillation in terms of 6  as for 

appropriate functions v = a(0 ) and u = r}{6 ) it uniquely determines the membrane potentials 

of the striatal and dopaminergic neurons. Note that a possible a(6 ) would be of the form
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a(0 ) =  Vd +  r(6 ) sin0, where Vd is the membrane potential of the steady state and r(6 ) is the 

radial distance of the steady state from the position of the orbit that makes the angle 6 .

Now consider two striatal neurons of membrane potentials v\ and v2 which we shall assume 

for the moment are uncoupled. For notational convenience we shall normalise C's  and C'D to 

1. Then for a suitably chosen a(6 ),

vi (t) = a(0i(t)), (5.27)

v2 (i) =  a(02 (t)), (5.28)

where 0\ and 02 are the appropriate phases. Since we have assumed the uniform distribution 

of cell deaths, each striatal neuron, whether in the same packet or a different one, is oscillating 

with identical periodic orbits and hence may be described by the same a(-).

Differentiating with respect to time we obtain

dv\ da .dO, . .
1  =  d»(fll)dtw > (5'29)
dvo d a . ^d0 , , ,
d f =  (5'30>

We may choose a(0) such that v = a(ujt) for a constant uj > 0, hence (0) =  and obtain

t  <5'31>

5  = §<*>"• (5'32>
The periodic orbit of the striatal neurons has a unique minimum and maximum membrane 

potential, located where the orbit crosses the v = 0 nullcline. Hence define 0m and 0m  by

=  =  a(em)<a(eM). (5.33)

Let us now consider our striatal neurons to be coupled through gap junctions, as detailed in 

section 5.3.3. Then we may write

l i t  =  ^ 9 l^UJ + 9A^V2 ~ Vl^  (5-34)

l i t  = ^ ^ UJ + 9A^Vl ~ V2^  (5'35)

Substituting 0\ and 02 for v\ and v2, away from 0m and 0m, we obtain

d01 _  ( w + g’A(0i){a{02) -  a(0i)), 0i G (0m, 0] U [0,0M),

dt \  w +  ^ ( 0 i ) ( a ( 0 i ) - a ( 0 2)), 0i e{0M,0m)-

d0 2 f W + 9a(9 2 ){a{0 l) — a{0 2 )), 0 2  *= {9 m, 0] U [0, 0 m),

\  W + g'A(02 ){a{0 2 ) — a{0l)), 02 €{0M,0m)-

(5.36)

(5.37)
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Where we have written

9'a W  = 9A /^j(6)- (5.38)

The asymmetry arises from describing the oscillations of v with the increasing (modulo 2ir) 

variable 6 . At the singularities 0m and 6 m the phase is increasing in a purely u direction, 

perpendicular to the v component, hence the coupling has no effect and

dOj
dt = u  fo ri =  1,2. (5.39)

We are interested in the possible synchronisation of oscillations and so define the phase 

difference, </> by

4> := 6i- 02. (5.40)

By writing, where a dot denotes differentiation with respect to time, <f> =  0\ — 6 2 , we may

write down a single differential equation for </> in terms of 0\ and 6 2 . We notice immediately 

that such a system has a steady state at (f) =  0, that is 0 \ = 6 2  and the oscillators are 

synchronised (in phase).

We claim that this is the only steady state of the system. If the periodic orbit describes a 

perfect ellipse in phase space with axes parallel to the v and u axes and 6  traces the phase with 

a constant angular speed then there is a steady state for the oscillators being in anti-phase 

{(f) =  ±7r). We assume our periodic orbit is not of this form.

We are then only required to study the dynamics of this system for 6 \ close to 6 2  and we 

shall only deal with the case 61,62  £  {6m,  0] U [0 , 6m ) .  The calculations are identical for the 

case 0 \ , 0 2  £ { 6  m ,  6 m) since the change of sign is cancelled out by the change of sign of (0 ).

The case when either 6 \ or 6 2  = 6 m or 6 m can be calculated in a similar fashion and the same
■2 *2 

result follows since %p(6 ) > 0 close to 6 m and ^ { 6 ) < 0 close to 0 m, by the definitions of

0 m and &m -

If, for notational convenience, we set b{6 ) — %{6 ) we then have

i  = 9A(a(d2) -  0(00) =: m , 0 2). (5.41)

The steady state at 0 =  0 is apparent. Its stability is determined by the sign of
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Observing that 4z = -51 we obtaind0\ 302

=  —4<m , (5.43)
4>-o

which is negative and hence the steady state is stable.

This shows that an isolated pair of coupled packets will synchronise their oscillations. We 

must now extend this result to any number of packets coupled to their nearest neighbours. 

Suppose we have n +  1 such packets with associated phases 0j then we have

0! =  w +  +  (5.44)

»i =  w +  S 4 ( a ( % - i) - a ( 0 ,) ) (Sy T -y  +  ^ )  (5.45)

+  gA(a(9j+ l) -  o(»,-)) (^y^yyyy +  j T j )  forg =  2 . . . „ .  (5.46)

0„+l =  W +  g ^ (a (0 „ )-a (e„+1) ) ( ^ - y  +  ^ - y ) .  (5.47)

Analogously we define fa := Qj — 0j+1 for j  = 1. . .  n and obtain

=  - 2S 4(a(02 )-a(01) ) ( ^  +  ^ )  (5.48)

+9A(a(e2) -  a ( 0 3))  ( j T y  +  j^ y y ) , (5.49)

= 0A(a(̂ -l)“ a(^))( 6 ( ^ ) + i ) )  (5'50)

- 2 ^ ( ^ ) - ° ( ^ ) ) ( 4 ) + ^ b )  ( 5 -5 1 )

+ fl„(a(«,+1) -  a(fli+2)) ( j y ^ y y  +  ^ y y y ) , for j  =  2 . . . »  -  1, (5.52)

K  =  9 A (a (6 „ - i ) - o (9 „ ) )^ ^ —yy +  ^ - y j  (5.53)

- 2 gA(a(en) -  a(0n+1)) ( ^ - y  +  jy ^yyy) ■ (5.54)

Again we assume that the only steady state is fa = 0, j  = 1. . .  n. Define (j) to be the vector 

whose components are the cf)j’s, the steady state is <f> = 0. For a small perturbation rj from 

this steady state the dynamics are defined locally by

*7 =  ^W>)l0=O (5-55)

where J{fa) is the matrix with components Jki =  k ,l =  1. . .  n where fa  = fk , i.e. the
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Jacobian matrix. Given -A- = -§q—  ^ —  we may calculate this matrix and we obtain that7i+1

1

4

1

0

0

0

0

1

V

=: ~9a A. (5.56)

The stability of the steady state <f> = 0 is determined by the eigenvalues of J(<t>) I ^ Q ’ ^  

they are all negative then they are stable. This is true if and only if the eigenvalues of the 

matrix A  are positive. Since every principal minor of A  has a positive determinant then A  is 

a positive definite matrix, in the sense that xTAx > 0 for all x G l " .  It then follows that A  

has positive eigenvalues and so the steady state <f> — 0 is stable [55].

We have therefore shown that when neighbouring packets are displaying oscillatory behaviour 

the gap junctions between them causes the oscillations to synchronise. Therefore this coordi­

nated action would be expected to create a strong oscillatory output from the striatum and 

possibly cause such Parkinson’s symptoms as tremors at rest, hypothesised previously.

5 .3 .8  M o d e llin g  th e  E ffects  o f  P a r k in so n ’s T rea tm en ts

Although there is no known cure for Parkinson’s disease, it is not known what the root 

cause of it is, the symptoms are treatable [45] [96]. Up to the time of writing, patients 

have been treated with the dopamine precursor L-DOPA. Recently the effective treatment 

of Parkinson’s patients with Requip (ropinirole, a dopamine D2-type receptor agonist) has 

been demonstrated [2]. It would be interesting to incorporate the effects of these drugs into 

our model and see if they counteract the changes the onset of Parkinson’s disease induces.

There is a contrast in the treatments of L-DOPA and ropinirole as regards dyskinesia. Dyski­

nesia are unwanted jerky movements often found in long-term high-dosage L-DOPA recipients. 

It has been hypothesised that this is due to a resulting disturbed control of the dopamine 

signal that leads to the preferential activation of indirect pathways to the subthalamic nucleus 

and then on to the thalamus. Rather than damping movement, the indirect pathway would 

prompt it and result in jerked movements [96]. Recent studies have shown that treating 

patients with ropinirole greatly reduces the incidence of dyskinesia, only 5% of the ropinirole
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test group developed it compared with 90% of the L-DOPA treated group (a combination of 

ropinirole and L-DOPA produced a 20% dyskinesia rate) [2].

If large doses of L-DOPA can create such an imbalance in the dopamine system it is not 

immediately clear why another drug that boosts the dopamine input (ropinirole) does not. 

This may be the result of drug potency, or the different sites of action of the two. It would 

be interesting to see if our model responds to the two differently also.

L-DOPA

L-3-4-dihydroxyphenylalanine (L-DOPA) has been used in the treatment of Parkinson’s dis­

ease patients since the 1960’s. The basis behind the treatment is quite simple, if the patient 

is lacking dopamine releasing cells then they can be treated by replacing the lost transmitter. 

Dopamine will not cross the blood-brain barrier and so cannot be used, but L-DOPA does

[96]. It is a dopamine precursor that may be used to synthesise new neurotransmitter. The 

dopamine neurons of the nigrostriatal pathway will therefore produce more dopamine, and 

hence release more, than normal. This upregulated release of dopamine will then counteract 

the reduced release caused by cell death.

Although treatment with L-DOPA is effective it does have drawbacks, such as dyskinesia. 

Patients also develop a tolerance to L-DOPA’s effects. There may be a straightforward 

reason for this, since the treatment compensates for the lack of dopamine cells by getting 

the remainder to produce more transmitter and this may partially reverse the compensatory 

upregulation of dopamine synthesis. Moreover the treatment partly relies on the survival of 

some dopamine cells and so its effectiveness is decreased as more die.

One can see from this, that although L-DOPA compensates for the cell death by causing the 

remaining cells to release more dopamine, it could be capable of changing the dopamine signal 

in another way. Before the onset of Parkinson’s, the striatal cells are subjected to input from 

many dopamine cells firing at similar rates that one would expect to lead to a fairly constant 

level of dopamine input (this is one of the assumptions on which our modelling is based and 

is supported experimentally [72]). However this will cease to hold as the large numbers of 

cells die (a stage at which large doses of L-DOPA will be required). It is possible that for very 

few remaining cells the signal would look more like temporally discrete peaks of dopamine at 

the points where these cells fire. This would create a pulsing input to the striatal neurons 

which could propagate on to create motor problems.
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It is the author’s opinion that this state is unlikely to be reached until the remaining cells can 

be numbered in, say, the tens rather than the hundreds and thousands, which would imply 

99% depletion. Current opinion also supports the idea that the cells generally provide a steady 

level of synaptic dopaminergic input, based on the slow action of dopamine receptors [96], 

It would be interesting to model this phenomenon and to examine whether such a gradual 

discretisation would make a difference to the post-synaptic signal. This would require a model 

with detailed temporal resolution, of our current model which tells us nothing.

So what does our model tell us about the action of L-DOPA? We must first consider how 

the effect of L-DOPA can be incorporated into our model. We have already stated that it 

increases the amount of dopamine released by the nigrostriatal neurons, but we have not 

explicitly included such a term. Instead we note that the cell firing at the same rate with 

increased dopamine release is equivalent (in our model) to the cell firing at an increased rate 

with the same dopamine release. Hence the application of L-DOPA can be best modelled by 

an increase in the parameter that converts the membrane potential into the firing rate, that 

is (3. The model will then behave correctly, since this increased dopamine flow will also serve 

to cause a slight downregulation in the dopamine receptors, as detailed in section 5.3.5. In 

terms of our network model (5.18)-(5.19) this will cause an increase in g'u, precisely the same 

parameter that is decreased by the onset of Parkinson’s.

It is clear from this why L-DOPA is an effective treatment in terms of our model, as it reverses 

the change that the disease causes. Sufficiently large doses will cause the system to the base 

state described in section 5.3.5 and by Figure 5.7. The system is once more controllable by 

the synaptic input. Implicit in this is a reason why larger doses will be needed as the disease 

progresses, since L-DOPA will need to shift g'u back from where Parkinson’s has pushed it.

Since L-DOPA merely reverses the change that Parkinson’s causes there is no obvious reason, 

in our model, as to why it can cause dyskinesia. However there is one facet of the model 

that we have not considered as yet that could give rise to a theoretical instability under high 

L-DOPA conditions. If we consider Figure 5.7, particularly high doses would be capable of 

shifting the steady state past its original position and further up the left branch of the i) = 0 

nullcline. If this shift leftwards is sufficiently big, the presence of the synaptic current Isyn{t) 

may not be big enough to establish the Up state, instead the steady state may lie in the 

unstable part of the middle branch and oscillations could ensue.

It is not apparent whether oscillations in this pseudo-Up state would cause dyskinesia. How­

ever it was observed experimentally strong hyperpolarising currents could turn the Up state
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into a period of noisy and irregular depolarisation [103]. By our previous hypotheses on 

how tremors and rigidity come about it would instead suppose that movements the patient 

attempts to make are jerky, rather than causing involuntary movements. It is far from clear 

whether these are merely ‘two sides of the same coin’. Whilst this possible reason (or contri­

bution) towards the inducement of dyskinesia may seem rather ‘wooly’, it should be viewed 

in the light of the effects of ropinirole on our model, which we detail next.

Ropinirole

Ropinirole is very different in action to L-DOPA, although both seek to increase the dopamin­

ergic input to the striatal neurons. Ropinirole is a dopamine D2 receptor agonist and hence 

its presence in the synaptic cleft will activate these receptors and inhibit the striatal neurons

[11]. It should be noted that this action is independent of the firing of the dopaminergic 

neurons although one would imagine the two are likely to interfere; ropinirole may compete 

with released dopamine for receptor occupancy and ropinirole activation of the receptors may 

prompt their downregulation, recent studies with combined doses of L-DOPA and ropinirole

suggest that their effects are additive and therefore they do not interfere significantly[2] [97].

We shall assume the concentration of ropinirole is constant and furthermore that the sub­

sequent activation of dopamine receptors is at steady state. The conductance per synaptic 

connection induced by the concentration r of ropinirole is then given by

0Rop(r) =  9 RoPR(c)m  . (5.57)

Here <7rop is the conductance per receptor per connection, with R{c) and m  being the number 

of receptors and connections. r /(r  +  K r ) is the proportion of receptors that are activated by 

ropinirole, derived from the steady state of the Michaelis-Menten equations, with disassocia- 

tivity constant K r. We have assumed that the number of receptors is still dictated by the 

concentration of dopamine. Since ropinirole action is independent of the number of dopamine 

cells (excepting induced variations in R(c)), this will act on the original m  connections. This 

will serve to conduct an ionic current across the voltage gradient between the membrane 

potential of the striatal neuron v and the reversal potential of dopamine receptor-mediated 

current Eu = 0. Therefore, with the addition of the ropinirole term, (5.18)-(5.19) becomes

C's lti  =  { a -v ){ v 2 + b) -g 'Ropv -  g'uuv +  I'8yn(t), (5.58)
U/LL

C'd ^  =  (ED - u ) + g lv ( E „ - u ) ,  (5.59)
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v = 0

Figure 5.11: The phase plane diagram for strong ropinirole action. The steady state A 

remains globally stable throughout the v = 0 nullcline and there are no periodic orbits.

setting g'Rop(r) = gR0p(r) /gs  as before.

If we recalculate the Jacobian for this revised system we obtain

t r J  =  -3 v 2 4- 2 a v - b -  gRop{r) -  g'uu -  (1 +  g'vv) (5.60)

for the trace and

|J\ = {3v2 - 2 av + b + 0RoP(r))(l +  g'uv) +  g'u{u +  g'vvEv) (5.61)

for the determinant.

The trace remains negative for all v if gRop (r) is sufficient big, that is if the effect of ropinirole is 

sufficiently strong in comparison to the regulatory conductance gs■ This is certainly possible 

given that the original dopaminergic input is strong and the drug will act on all of the m  

connections. This means that our system (5.58)-(5.59) does not destabilise and the phase 

plane looks like Figure 5.11. In particular, there are no periodic orbits for this system.

The steady state still traverses the v — 0 nullcline, shifting leftwards for higher gRop(r) and 

so ropinirole does act to depress the striatal neurons and allow the recovery of control by 

the synaptic current. Moreover the situation described above, where large doses of L-DOPA 

could lead to oscillations in a pseudo-Up state does not occur since the steady state is always 

stable. While the synaptic current no longer switches between discrete Up and Down states, 

it will still cause large shifts in membrane potential and hence in firing rate.
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We have shown that both L-DOPA and ropinirole help regain control of the striatal neurons. 

The only significant difference between them in terms of the model output is that ropinirole 

could remove the ability of the system to oscillate. Hence if the oscillatory Up state possible 

in high L-DOPA protocols is implicated in dyskinesia, our model shows precisely why it may 

not be a problem for users of ropinirole. Conversely, the presence of this oscillatory action in 

high L-DOPA but not ropinirole regimes suggests that this is implicated in dyskinesia.

5.3.9 A  N ote on Bradykinesia

We have barely mentioned one of the major symptoms of Parkinson’s disease; bradykinesia, 

the difficulty of initiating movement and subsequent slowness of action, such as the shuffling 

walk seen in many sufferers. Our model has been able to suggest a reason (section 5.3.6) how 

the cessation of movement may come about (and why the cure works), as the abnormally 

high firing rate of the striatal neurons clamps the muscles into rigidity.

It has been hypothesised that degradation of the nigrostriatal pathway may slow the dopamin­

ergic signals involved in movement and so lead to a slowing of movement [96]. However the 

degradation does not slow the propagation of a signal, it merely weakens it.

Whilst none of the following can be deduced directly from our model, if we suppose that 

our hypotheses on tremors and rigidity are correct we can then extend them to the study of 

bradykinesia. If we are in an advanced stage of Parkinson’s then our striatal neurons will be 

clamped in the Up state even at rest. This high base firing rate will have the muscles tensed. 

One could then expect that this uncontrolled activation of opposing muscles would act as a 

resistor and lead to problems initiating movement and a slowness of motion. Such muscle 

action may also lead to the observed resistance to passive movement.

5.3.10 A nti-Psychotic Treatm ents

Aspects of the disorder schizophrenia are thought to arise from dysfunctions in the neighbour­

ing mesolimbic dopamine pathway and sufferers are often treated with dopamine antagonists 

such as haloperidol or clozapine [43]. Haloperidol, a dopamine D2 antagonist, can have the 

side effect of inducing Parkinson-like symptoms on its users and these are thought to occur 

by its action on the nigrostriatal pathway. Clozapine does not have this side effect and is 

thought to not act on the nigrostriatal pathway, quite why is a different problem that we are 

not going to concern ourselves with here.
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Since haloperidol blocks dopamine D2 receptors, it will serve to reduce the receptors available 

for activation by released dopamine. In terms of our model this will reduce gu and hence 

g'u, the same change that Parkinson’s induces. Hence we would expect haloperidol to induce 

Parkinson-like effects in our model too.

5.4 Review

We have taken the neuronal network that is supposed to be involved in the action and 

symptomatic effects of Parkinson’s disease and reduced this to a mathematical model that 

is essentially described in two variables. We have then considered this model in regard to 

the onset of Parkinson’s and claim explanations for many disease symptoms in terms of this 

model’s dynamics. This massive reduction in complexity that still retains what may be the 

essential features of the disease quite rightly raises questions about our approach.

5.4.1 The M odel Circuitry

Firstly we must consider whether we are justified in taking a neuronal system that features 

thousands of neurons of at least six different types and hundreds of thousands of connections 

and transforming this into what amounts to a simple loop of two neurons. One of the foremost 

reasons is that we cannot possibly know the amount of information that would be required to 

model the entire circuit and even if we did (and managed to create such a model) the result 

would be as complex and therefore incomprehensible as the true system; we must make 

simplifications. The inclusion of the dopamine neurons and the striatal projection (medium 

spiny) neurons is essential since the former is the ‘target’ of Parkinson’s disease and they 

solely innervate the latter, which also acts as the output of the system, an output which acts 

as our measure of the onset of the disease’s effects [8] [71]. The major external (to either 

nuclei) inputs also connect to these neurons and so we may then ask whether we need to 

include any other types of neuron if these two already capture the behaviour of the system.

Although the striatal projection neurons do connect directly to the dopamine neurons, and 

so would be thought to have an inhibitory effect, the indirect connection via the GABAergic 

interneurons of the substantia-nigra pars reticula is more sensitive [29]. Our approach to 

modelling a neuron allows us to model this as a simple excitatory input without a separate 

GABAergic neuron and reduces our model of the substantia nigra to this simple connection.
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The striatum has a complicated circuitry and the precise nature of the connections is unknown

[8]. Since the input of the dopamine neurons is inhibitory and the net effect of dopaminergic 

input on the striatal projection neurons is inhibitory ([52]) it is unclear what effect the other 

types of neurons have besides a likely weak and local modulation. Prom this viewpoint 

there is no need to model these local neurons at all. Any effects of such neurons allowing 

communication between projection neurons locally in the striatum is covered by the inclusion 

of the gap junction coupling directly between them.

We can therefore capture the essential features of the true neuronal network in this simple 

loop. Detailed dye-tracing would be needed to know how many dopamine neurons a sin­

gle striatal neuron may innervate, and vice-versa. We do know that there is likely to be 

connections to many neurons from single projections and so we have formulated our idea of 

discrete packets within which each striatal neurons projects to, and receives inputs from, each 

dopamine neuron. The only inter-packet communication we allow is by gap junctions. This 

should cover most realities; from the entire system consisting of just one packet to hundreds 

or thousands of packets of two real neurons.

5.4.2 N euron M odelling

Much of this simple loop model is enabled by our approach to modelling a single neuron, 

looking at in terms of average membrane potential and firing rate rather than discrete spikes. 

Modelling the neurons so that we can deal with individual spikes represents a layer of com­

plication that is unnecessary since we are concerned with the long term (months to years) 

changes in firing as dopamine cells die. Under these long term conditions the firing rate of a 

cell is approximately proportional to membrane potential.

In a similar way the synaptic current input to a cell is (approximately) proportional to the 

number of times it is activated, which is of course proportional to the firing rate of the incident 

cell. This leads us to model the synaptic inputs as we do.

The model of the dopamine neuron is simple enough, with the membrane’s linear current- 

voltage relationship being well described by a model of leakage current. However the equiv­

alent term for the striatal neuron is more complicated and it is clear from the phase plane 

diagrams that this term’s cubic appearance is the cause of the packet dynamics. The work 

of Wilson and Kawaguchi [103] reveals that striatal neurons have a combination of two types 

of voltage-activated potassium channels that typically lead to steady state current graphs 

with a cubic appearance [98]. We have explicitly used a cubic polynomial that gives this
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appearance and our model fits the qualitative behaviour of striatal neurons well; we have 

discrete Up and Down states with a fast transition between the two and intracellular current 

injection will shift the time spent in each accordingly.

5.4.3 M odel Dynam ics

The packet dynamics follow from simple steady state and phase plane analysis. Our only 

problem is whether our system is likely to have a range of synaptic current inputs when it 

is bistable, or has a periodic orbit. The condition for a periodic orbit is simple enough but 

involves quantities that are intrinsic to the model rather than being biological recognisable 

and capable of estimation. This is not so much a fault, it is a result of the ‘averaging’ 

modelling approach that we have needed to take, but a weakness as regards allowing good 

quantitative estimates of the parameters involved. However we have been able to suggest 

that the condition for a periodic orbit is met and we have taken this to be so from thereon.

5.4.4 Parkinson’s D isease

We then compare the packet dynamics with the changes in parameters that reflect the onset 

of Parkinson’s, which will be to reduce the synaptic strength of the dopaminergic input to 

the striatal neurons. The cell still responds to the synaptic current input from the cortex 

correctly, selecting the Up or Down states appropriately, up until the Down steady state 

loses stability. We hypothesise that this control of the cell reflects normal, unsymptomatic 

behaviour and that the effects of the disease are only evident after the loss of stability. This 

gives the system the remaining length of the left branch of the v =  0 nullcline to decay along 

before it becomes symptomatic.

We advance the hypothesis that this is why the symptoms of Parkinson’s disease are only 

observable after such massive depletion of the dopamine neurons. The cell can combat the 

onset of Parkinson’s with such compensatory mechanisms as the upregulation of dopamine 

production and dopamine receptors and the increased excitatory input from the striatal 

neurons (the latter two of which are featured in our model), all of which will serve to slow 

its advance into instability. The loss of inhibitory input can be seen to need be to big; the 

striatal neuron needs the massive excitatory input to the cells to break clear of the Down 

state, Wilson and Kawaguchi [103] could not with intracellular current injections.

Again we have problems with the quantitative nature of this problem. We provide a sound 

explanation as to why the system may remain unsymptomatic but cannot attempt to quantify
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this. However by comparison to the current injections of Wilson and Kawaguchi we can 

demonstrate that such instability requires the loss of large amounts of inhibitory input.

Once the Down state loses stability we would expect to see the symptoms of Parkinson’s 

appear. The early clinical signs are a tremor at rest, which is precisely what we get; activation 

of the striatal neurons to gain movement will still function correctly by selecting the Up state, 

although during rest the Down steady state is replaced with oscillations.

This raises two questions; do these oscillations exist in striatal neurons? And, can the pres­

ence of oscillations really explain tremors? For the first we claim that our oscillations arise 

naturally from what has so far been a good descriptive model of striatal neuron behaviour 

and Parkinson’s disease. We do not know whether these oscillations have been observed 

experimentally in-vivo; in any case they would be difficult to distinguish from the normal 

oscillation between Down and Up caused by the synaptic excitation. The apparent absence 

of an Up state in-vitro suggests that this preparation may be unsuitable also.

Given that the oscillations axe present in our model, can we really expect them to cause 

tremors? This is roughly suggesting that the appearance of oscillations and the early symptom 

of tremors may just be a coincidence. However, Parkinson’s disease symptoms arise as a result 

of the death of dopamine cells whose major innervation is their link to the motor circuits; 

the striatal neurons. Therefore, whatever the effect the progressive lack of dopamine has, the 

effects must be carried by the striatal projection neurons and so we deduce the appearance 

of oscillations is likely to be much more than coincidence, instead we suggest it is the root 

cause of tremors in early stage Parkinson’s disease.

We have explicitly covered the possible problem with the above; that the oscillating packets 

may not be synchronised and so the resulting output may appear, on the whole, more constant 

than oscillatory. We considered each neuron to be oscillating and so described by a single 

phase parameter. Then by considering the difference in phase between them, we have shown 

that any packets coupled together by gap junctions will indeed synchronise.

We have demonstrated that in what would correspond to late stage Parkinson’s disease our 

model is clamped in the Up state, essentially leaving the striatal neuron permanently on. This 

would correspond to the transmitting of persistent attempts at movement which one would 

then expect to clamp muscles into rigidity and produce resistance to any movement. Whether 

the effect would be this dramatic is arguable, but we shall refer to our statement above that 

the symptoms must be transmitted through the striatal neurons. Detailed modelling of the 

post-striatum circuits and muscle activity would be needed to be able to answer this properly,
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however we can advance this as a hypothesis for bradykinesia knowing that it is consistent, 

not only with the symptoms, but also with the earlier results of our model. Some preliminary 

feel for the viability of this hypothesis could be obtained from intracellular recording from 

the appropriate neurons (sufficiently accurate mapping is therefore required) and seeing if a 

clamp in the Up state corresponds to the sufferer’s rigidity. We also feel that it provides a 

more adequate explanation than the degradation of the pathway slowing signals down.

Given that the model’s Parkinson-like symptoms arise as a result of dopamine depletion it 

is not at all surprising that modelling the effect dopaminergic input-boosting drugs causes a 

reversal of the symptoms. It is interesting however that the different drugs do have slightly 

different effects and that in particular a strong ropinirole action can remove the oscillatory 

component of our model. It is this that prompts our investigation of dyskinesia and our 

subsequent hypothesis on its cause (an oscillatory pseudo-Up state).

It may seem as though we are creating this purely to fit the result of our model and so we 

should be careful, especially since an oscillatory (jerky?) response in movement may not be 

the same as a jerky (oscillatory?) unwanted movement. However these may be essentially 

the same thing and our hypothesis does provide a rather neat explanation for its appearance 

under high doses of L-DOPA and then why it may not appear for ropinirole users. Indeed 

motor oscillations have been seen in patients chronically treated with L-DOPA [96]. More 

detailed modelling of the effect of L-DOPA, featuring treatment protocols and wearing off 

times would be needed to examine whether over-dosing to such a likely extent is likely. 

Moreover, any experimental set up that could be used to observe any oscillations in the 

Down state, regarding tremors, could also be used here.

We have not advanced on hypotheses for some of the other symptoms of Parkinson’s disease. 

These are such things as the stooping posture, excessive sweating and micrographia (small 

writing) that our model can offer no particular explanations for. Patients often suffer a loss 

of cognitive ability in the advanced stages of the disease and it would seem likely that this 

is due to the degeneration of the dopamine pathway to the cortex, rather than through the 

motor circuit links of the striatum, the effects of which are not addressed by our model.

5.4.5 Sum m ary

We have produced a model of the striatonigral loop involved in the symptomatic expression 

of Parkinson’s disease. This describes well, in a qualitative way, the average firing rates of
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the output of the system, namely the striatal medium spiny neurons. Although, by its nature 

as a measure of averaged responses, it does not permit accurate parameter estimation.

The model allows us to advance sound and consistent hypotheses on many features of Parkin­

son’s disease such as the robustness of the system to the large amounts of dopaminergic deple­

tion; the causes of resting tremor; muscle rigidity in advanced-stage Parkinson’s patients and 

the efficacy of standard treatments. By a consistent extension of these we can suggest possi­

ble causes for bradykinesia and dyskinesia, though additional experimentation and modelling 

is needed to further validate these hypotheses.
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