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ABSTRACT

Bearings only tracking using the Extended Kalman Filter (EKF) configured in 
Cartesian and modified polar coordinate systems is reviewed. A new tracking 
approach is proposed which consists of a set of weighted EKFs each with a different 
initial range estimate and this is referred to as the Range Parameterised (RP) tracker. 
This new approach overcomes the problems exhibited with existing EKF trackers 
when the bearing rate is very high or near zero. In addition, it allows a more natural 
implementation for the prior knowledge of the target velocity, which can allow the 
range to be inferred even before the first observer manoeuvre.

Results are presented for a typical tracking scenario, involving a manoeuvring 
observer and a constant velocity target. The results show that the RP tracker gives 
stable, consistent and unbiased estimates in all the cases considered, whereas the 
same is not true for the Cartesian and Modified Polar EKF trackers.

The RP tracker has been extended to allow for manoeuvring targets by adding a 
manoeuvre detection and correction procedure based on a Generalised Likelihood 
Ratio (GLR) test The GLR threshold has been set to 3.0 as this gives a good 
compromise between a reasonably low false alarm rate (3.7 x 10“3 per update) and a 
short detection delay for typical target manoeuvres. However, the selection of a 
particular threshold is not critical as the proposed procedure is robust to false alarms, 
since it only results in increased computation without long term loss in tracking 
accuracy.

The tracking performance of the GLR procedure has been compared with the standard 
technique of adding plant noise to allow for unmodelled target dynamics. This 
comparison has illustrated that the GLR procedure provides better tracking 
performance before and after a target manoeuvre and, in particular, the track estimates 
for the GLR procedure are consistent with the estimated covariance matrix.

The tracking performance of the RP tracker has been shown to approach the Cramer 
Rao Lower Bound (CRLB) for the special case of symmetric observer manoeuvres. 
A range error lower limit associated with a manoeuvre has been derived for more 
general scenarios, and this has been shown to give a good prediction of the RP 
tracker RMS range error. The simplicity of the expression for the range error lower 
limit allows it to be used to specify criteria for the time and magnitude of observer 
manoeuvres to give optimum range observability.
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is the state vector at update k

is the estimate of Xk given all measurements up to update k 

is the forecast of Xk given all measurements up to update k - 1
A w

are the covariance matrices of Xk, Xk, Xk 

is the measurement vector 

is the covariance matrix of Yk

is the Jacobian matrix of the transition function f k_x from Xk_̂  to Xk 

is the Jacobian matrix of the measurement function mk relating Yk to Xk 

is the covariance matrix of the unmodelled target motion (plant noise) 

y)T is the Cartesian state vector

is the modified polar state vectore
R y

is the update interval

is the plant noise manoeuvre factor

is the GLR procedure threshold

is the innovation vector at update i when a manoeuvre occurs at update j  

is the covariance matrix of IiU 

signifies matrix transpose 

signifies matrix inversion
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1 . INTRODUCTION

Hassab (1987, 1989) [12, 39] presented a perspective on Target Motion Analysis 
(TMA) in the ocean environment. He defined various classes of problem ranging 
from Class A (linear problem with the target state observable at each observation), to 
Class F (non-linear problem with the target state observable only after multiple 
observations, and only with motion constraints placed on the target and observer). 
Bearings only tracking from a single observer is a class F problem and is one of the 
most difficult tracking problems encountered.

Bearings only tracking is inherently non-linear since the target motion is assumed 
linear in Cartesian co-ordinates (straight line motion) and the measurements are in 
polar co-ordinates. Only three of the states are observable directly from the 
measurements prior to an observer manoeuvre. The range state only becomes 
observable through synthetic triangulation between the current observer position and 
where the observer would have been had it not manoeuvred, as shown in Section 5.2 
of this thesis.

There have been many previous techniques proposed for bearings only tracking, as 
identified in the literature review in Section 2.1. However, many of these techniques 
are heuristic and are sensitive to the initialisation assumptions for the state and 
covariance matrix and can yield erratic results. The aim of this research has been to 
develop an efficient solution to the bearings only tracking problem, which produces 
stable, consistent and unbiased estimates in the general case of a manoeuvring target 
and a manoeuvring observer, without unrealistic limitations on the initialisation 
assumptions.

1 .1  Description of the Problem

The aim of bearings only tracking is to determine the trajectory of the target based on 
a time series of bearing measurements from a single observer. In this thesis it is 
assumed that the motion of the target is constrained to straight line, constant speed 
segments separated infrequently by manoeuvres in course and speed. The geometry 
of a typical straight line segment is illustrated in Figure 1.1:
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Observer

Target

Figure 1.1: Typical Tracking Geometry

The examples in this thesis are drawn from the sonar environment, where the bearing 
update rate is typically every 20 seconds and the target speed is typically 10 m/s. 
However, the results are also applicable to the radar environment where a faster 
update rate compensates for the higher target speeds.

1.2  The Extended Kalman Filter

The Kalman filter, developed by Kalman (1960) [40], provided a framework for the 
formal specification of many filtering and tracking problems in terms of a state 
transition equation and a measurement equation. The Kalman filter recursively 
extrapolates the current estimate of the system state vector to the next update time and 
then combines the resulting forecast with the measurement to generate a Least 
Squares estimate of the state vector. For a linear system with Gaussian errors, the 
Kalman filter is optimal in the sense that it is equivalent to Bayesian estimation and 
generates the maximum likelihood estimate, as proved mathematically by Ho and Lee 
(1964) [57]. However, in order to apply the Kalman filter to non-linear problems, 
such as bearings only tracking, it is necessary to linearise the model about the state 
vector using a first-order Taylor expansion, see Jazwinski (1970) [41]. The resulting 
Extended Kalman Filter (EKF) is then sub-optimal and its performance depends on 
the degree of non-linearity of the model.

Application of the Extended Kalman Filter requires that the system is specified in 
terms of the following multi-variate state equations:
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- State Transition Equation

Yk -  mk (X* ) + Nk - Measurement Equation

where Xk is the state vector at update k
f k_x( ) is a state transition function which transforms Xk_x to Xk
Uk_x is the stochastic element of the target dynamics, not included

within f k_x, with zero mean and covariance matrix Qk_x 
Yk is the measurement vector at update k
mk( ) is the measurement function which relates Xk to Yk
Nk is the measurement noise with zero mean and covariance

matrix Sk

Linearisation of the state transition function around the state estimate, and 
linearisation of the measurement function around the state forecast, allows the system 
to be approximated by the following piecewise linear state transition and measurement 
equations.

Xk = f k_x J + Fk_x -  Xk_x j + Uk_x - State Transition Equation

Yk -  mk(x* j + Mk (xk - X k  ̂+ Nk - Measurement Equation

or Z*= Yl+  Mk Xk - m t (x t ) = Mk Xl+  Nk

where Xk_x is the estimate of the state vector at update k — 1
Xk is the forecast of the state vector at update k

a

Fk_x is the Jacobian matrix of f k_x evaluated at Xk- 1

Mk is the Jacobian matrix of mk evaluated at Xk

The system state veaor and associated covariance matrix can be estimated recursively 
using the following state transition and updating equations, which form the extended 
Kalman filter

Xk = f t. i ( i M )

=  1 ^*-1 ^ t- i  Qk-1
State Transition Equations
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where Pk_: is the covariance matrix for the estimate at update k — 1 
Pk is the covariance matrix for the forecast at update k

Xt = Xk+Kt (zk- M kXk) 
h  = h ~ K t MkPk 
Kk = Pt M Tk {Mk Pk M Tk +Sk)‘

Updating Equations

where Kk is the smoothing parameter at update k.

The only requirement is that the Kalman Filter is seeded with a prior estimate of the 
state X Q, with associated covariance Po .

1 .3  System Observability

A system is defined as observable if all the states can be estimated directly from the 
measurements. The system defining the bearings only tracking problem is only 
partially observable, since the range state only becomes observable after an observer 
manoeuvre. Prior to this manoeuvre the estimate of the range state is highly 
dependent on the initialisation assumptions for the other states, as shown in Appendix 
A.

For a linear system an observability criterion can be defined by recasting the 
estimation problem in terms of the estimation of the initial state vector X0, since this

is linearly related to the current state by the state transition equation. The set of 
measurement equations for the initial state vector are given by:

Zq = Mq X q + Nq

Z l =Ml Xl +Nl = Ml F l0 X0 + Nl

2* ~ X k + Nk = Mk Fq X0 + Nk 

where F0* is the matrix describing the state transition from update 0 to update k .

These equations can be combined into the single composite measurement equation: 

Z(k) = M(k)X0 + N(k)
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where Z(k), M{k) and N(k) have the form:

Z(fc) = [Z0>Zp- , Z i f

N(k) = [N0,N t, - , N t]T

Rearranging the measurement equation gives the initial state as:

X0 = M'(k) Z(k)-M*(k) N(k) 

where M*(k) is the pseudo inverse of M(k) given by:

Af'(fc) = [MT(k) M{k)\ lM r(k)

MT(k) M(k) is defined as the information matrix and if this is full rank the system is 
defined as observable, since the initial state can be estimated as:

X0= M \ k )  Z(k)

This requirement for full rank is satisfied if there are at least as many measurements 
as states and, in addition, for bearings only tracking Nardone and Aidala (1981) [11] 
proved mathematically that there has to be an observer manoeuvre.

1.4  Review of Bearings only Tracking using an EKF

Bearings only tracking is a highly non-linear problem and the performance of an EKF 
is heavily dependent on the choice of coordinate system. The two most popular 
coordinate systems are Cartesian, due to the ease of application, and modified polar, 
due to the improved stability of the tracker, as demonstrated by Hoelzer, Johnson and 
Cohen (1978) [49]. This section reviews the implementation of an EKF in Cartesian 
and modified polar coordinate systems, based on the tracking geometry shown in 
Figure 1.2. The EKF in modified polar coordinates is fundamental to this research, 
since it forms the basis of the Range Parameterised tracker derived in Section 3.
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Observer Target
Yob

x

Figure 1.2: Tracking Geometry in Cartesian Coordinates 

1 .4 .1  Cartesian Coordinates

In a Cartesian coordinate system the state vector is given by:

'x '
y
X

{y.

- State Vector

For constant velocity target motion the state transition equation is linear and is given 
by:

= + u „ - State Transition Equation

where Fk_x =

' I  0 T 0^ 
0 1 0 T 
0 0 1 0  
0 0 0 1

T is the time between updates k - 1 and k 

The measurement equation is non-linear and is given by:

Yk = mk (Xk ) + Nk - Measurement Equation
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where mk(Xk) = tan-1
r \  
x  xob

\ ? ~ yob)

xob9 yob 316 ^ artes ân coordinates of the observer

Linearising the measurement equation around the forecast Xk gives:

Zk ~ Y k + Mk Xk -  tan-i ' h - xoh
I h - yob)

= Mk Xk + N k

where Mk is the Jacobian matrix of mk evaluated at Xk given by:

Mk =
yic-yob (xk xob)

[h-xob?+{h-yobY {h-xobt+{h-y0b)
, 0 , 0

1 .4 .2  Modified Polar Coordinates

In a modified polar coordinate system the state vector is given by:

(&\
x
R

e

\ R J k

- State Vector

The measurement equation is linear and is given by:

Zt =Yt = Mk Xk+ Nk - Measurement Equation

where Mk = (1 , 0 , 0 , 0)

The state transition equation is non-linear and is given by:

- State Transition Equation

where the non-linear function / jk_1 is defined by:
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fk-l {%k ) “  S3 {Si (#1 fak-l)))

where gl is the transformation function from modified polar to Cartesian coordinates, 
given by:

sin 6 
cosd 

6 cos0 + j  sin# 
- 0  sin 0 + 4  cos 0j

+ Bk-\

where X'k_x is an equivalent state vector in Cartesian coordinates 
Bk_x is an observer state vector in Cartesian coordinates

and g2 is the linear Cartesian state transition equation, given by:

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

Y'k-l

and g3 is the transformation function from Cartesian to modified polar coordinates, 
given by:

* » =  & (* ;)= tan"1 — - xy  + yx xx+yy

y ’
2 2 x  +y

where y
X

= X'k - B k

\T

2 2 x r + y L

The Jacobian matrix of f h_x evaluated at X ^ i s  given by:

Ft_ 1 = 0 , 0 , 0 ,  

where Gl is the Jacobian matrix of gl evaluated at Xk_x, given by:
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'  cos # sin# 0 0  ' f  1 0 0 0 "
-s in # cos# 0 0 0 -ar 0 0

0 0 cos# sin# A
R -ar* 1 0

, 0 0 -s in # cos#. k - l [ - # 0
4

A

and G2 is the Jacobian matrix of g2 evaluated at given by:

'1 0 T O'
0 1 0  T

Go =2 0 0 1 0
^0 0 0 1,

and G3 is the Jacobian matrix of g3 evaluated at X'k given by:

' 1 0 0 O' 'cos# -s in # 0 0 '
1 0 1

R 0 0 sin# cos# 0 0
R R

R - # 1 0 0 0 cos# —sin#

I d
R
R 0 h k , 0 0 sin# cos# ,

The modified polar state transition equation defined above is equivalent to that derived 
by Hassab (1989) [39]. The simpler algebraic expression given in this thesis is 
achieved by decomposition of the transformation and by writing G3 in modified polar
notation, since Xk and Xk are equivalent states in Cartesian and modified polar 

coordinates respectively.
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2 . LITERATURE REVIEW

Sections 2.1 and 2.2 review the relevant papers from the extensive literature on the 
subjects of bearings only tracking and the tracking of manoeuvring targets. Section
2.3 summarises those considered to be the most important papers from the literature 
review and identifies how this thesis builds upon the previously published work.

2 .1  Review of Bearings Only Tracking

2.1.1 Early Bearings Only Tracking

Initial solutions to the bearings only tracking problem relied on geometric 
constructions to obtain an estimate of the target range by triangulation. This technique 
works reasonably well provided that the bearing errors are small and that there is a 
significant speed advantage for the observer, such that there is a long triangulation 
baseline before the target has moved significantly.

With the introduction of the computer, it became possible for an operator to batch test 
various estimates of the range, speed and course of the target against the observed 
bearings until there was approximate agreement, using a Least Squares Error test. 
This method relies on the skill of the operator to select the state estimates, since there 
may not be a unique solution. It also does not give an estimate of the likely errors in 
the state estimates.

The development of the Kalman filter by Kalman (1960) [40], provided a framework 
for the formal specification of the tracking problem in terms of a system dynamics 
model and the track update equation. The Kalman filter has found widespread 
application, since it generates the Least Squares Estimate and accommodates non- 
stationary process noise and more general types of target and observer motion. In 
addition, for a linear system with Gaussian errors, it is optimal in the sense that it 
equivalent to Bayesian estimation and generates the maximum likelihood estimate, as 
proved mathematically by Ho and Lee (1964) [57].

However, in order to apply the Kalman filter to the bearings only problem it is 
necessary to linearise the model about the forecast state using a first order Taylor 
expansion, see Jazwinski (1970) [41]. The resulting Extended Kalman filter is then 
sub-optimal and its performance will depend on the degree of non-linearity of the 
system.
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2.1.2 Cartesian EKF Instability and Adhoc Solutions

Initially, the bearings only tracking problem was formulated as an EKF in a Cartesian 
state space, since this leads to relatively simple expressions for the state transition and 
measurement equations. However, unlike for linear filters, an appropriate choice of 
coordinate system and initial state estimate is fundamental to the good performance of 
non-linear filters. Kolb and Hollister (1967) [43] found experimentally that in a 
Cartesian coordinate system the state estimates become severely biased, leading to 
premature covariance collapse and tracker divergence.

Remedies for the divergence problem were initially heuristic and called for rotation of 
the covariance matrix to align with the estimated bearing, or gating of the range 
estimate, see Muiphy (1969) [42]. Such techniques are sensitive to the initialisation 
assumptions for the state vector and covariance matrix and yield erratic results.

Lingren and Gong (1978) [21] developed the ‘Pseudo linear’ filter which is an EKF 
configured in relative Cartesian coordinates with linearisation around the measured 
bearing. The initial relative velocity estimate is initialised to zero so that the range 
estimate during the first unobservable leg is scaled by the initial range estimate, which 
can be set to zero. The covariance matrix is initialised to the identity matrix scaled by 
a constant multiplier, in order to keep the range estimates stable during the first leg. 
The drawback with this approach is that stable estimates require a small constant, but 
this in turn leads to bias in these estimates. A method of reducing the bias associated 
with linearisation around the noisy measured bearings is proposed, based on the 
instrumented variable method of Wong and Polak (1967) [44].

Aidala (1979) [9] gave a detailed analysis of the behaviour of the EKF in a bearings 
only tracking application. It is proved mathematically that the instability problem, 
characterised by large range changes, premature covariance collapse and divergence, 
is a result of the normal initialisation procedures. In particular, the initialisation of the 
covariance matrix with a large range variance and a small velocity variance leads to a 
covariance matrix which is ill conditioned. In addition, it leads to the initial range 
estimate being discarded after two updates, and subsequently being replaced by an 
estimate based on the initial velocity estimate and the measured bearings. Since the 
Kalman weighting is dependent on the range estimate, the weighting between the 
forecast and the measured bearings is inappropriate. If the range estimate is small, the 
measured bearing will appear to be ‘error free’ and the tracker will match this bearing 
at the expense of all previous measurements. After a number of ‘error free’ updates 
the covariance matrix will have collapsed and tracker divergence will result. Aidala
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advocated overcoming these problems by use of the ‘Pseudo linear* filter, initialised 
with the covariance matrix set to the identity multiplied by the range variance and with 
the relative Cartesian state set to the null vector. He states that in all the tests 
conducted this algorithm behaved in a predictable manner.

Weiss and Moore (1980) [45] generated an indirect stability measure based on the 
decay rate of a Lyapunov function. Bearings only tracking using a Cartesian EKF 
yields the worst possible value for the stability criterion.

Petridis (1981) [18] developed a bearings only tracking method which is shown to 
give better performance than the ‘Pseudo linear’ filter in the adverse conditions of a 
low speed target at long range with noisy bearing measurements. The technique 
involves partitioning the x component of the initial target position and velocity 
estimates into a number of sub-areas. An independent Cartesian EKF is applied to 
each sub-area to generate estimates of the y component of the initial target position 
and velocity estimate. The likelihood of each sub-area is calculated based on a 
Gaussian assumption for the residuals, and the mean position and velocity estimates 
are generated by calculating the weighted sum over all the sub-areas. It is stated that a 
large number of observations are required for the convergence to a single sub-area, 
particularly if there is a small mesh size. It is not clear in the Petridis paper how 
convergence is specified. The drawbacks with this method are there is no premature 
estimate prior to convergence and that the accuracy is dependent on having a large 
number of sub-areas, which makes the level of numerical computation daunting. The 
underlying philosophy of this method has similarities with the Range Parameterised 
(RP) tracker proposed in section 3, however, there are a number of important 
differences. The RP tracker only partitions the initial range estimate, which greatly 
reduces the number of sub-areas required, the subsequent estimates of range are not 
constrained by the initial partitioning, which improves the tracking accuracy, and 
estimates of the states are available at all times, not just after convergence.

Aidala and Nardone (1982) [13] derived approximate expressions for the range bias 
associated with the ‘Pseudo linear* filter. They show experimentally that the bias is 
dependent on the tracking geometry, in terms of the number and angular deviation of 
observer manoeuvres, and the bearing error variance. The results presented show 
that for a typical tracking scenario with a 1.34 degree RMS bearing error, the range 
bias is negligible for a range of 2700 yd and is approximately 12.5% for a range of 
27000 yd. The other states are shown to be unbiased.

Page 20



Song and Speyer (1985) [26] developed a Modified Gain Extended Kalman Filter 
(MGEKF) for bearings only tracking. It is derived using a similar approach to the 
pseudo linear filter, or pseudo measurement filter (PMF), but unlike the PMF the 
gain is only a function of the past measurements. It is stated that dependence of the 
gain on the current measurement is a cause of bias in the PMF. The performance of 
the MGEKF is presented in a three dimensional bearings only tracking scenario. 
Comparison with that for the PMF and the Cartesian EKF shows that the MGEKF 
produces stable and unbiased estimates, where as the PMF produces biased estimates 
and the Cartesian EKF only produces stable estimates when the initial errors in the 
estimates are small. The application of the MGEKF to the more general problem of 
non-linear dynamics as well as non-linear measurement are discussed in Song and 
Speyer (1986) [29]. The 'Universal Linearisation' concept of this paper is 
generalised in Pachter and Chandler (1993) [1].

Balakrishman and Speyer (1986) [28] proposed a different polar coordinate system 
for the update equation in the EKF, based on the cube of range for a three 
dimensional tracking scenario and the square of range for tracking scenarios in a 
single plane. The approach utilises the linear transition of the state vector in Cartesian 
coordinates and the linear update in polar coordinates, which had been used 
previously by Mehra (1971) [47], Sammons, Balakrishman, Speyer and Hull (1979) 
[48] and Aidala and Hammel (1983) [10]. It is shown experimentally in a two 
dimensional scenario, that the use of a range squared state leads to less range bias 
than the use of the range state, as used in Sammons, Balakrishman, Speyer and Hull 
(1979) [48], which in turn is less biased than the standard Cartesian EKF. The range 
squared state was selected since the maximum likelihood estimates are preserved by 
the non-linear transformation from Cartesian to the polar coordinates and the 
conditional probability density function (CPDF) remains Gaussian. No comparison 
is made with the modified polar coordinate system, proposed in Aidala and Hammel 
(1983) [10], which uses a reciprocal of range state.

Spingam (1987) [23] compared the performance of the EKF, the iterated EKF (local 
iteration around the current estimate) and the method of non-linear least squares 
(Gauss-Newton batch method) for determining the location of a stationary target by 
triangulation of bearing measurements from a moving observer. All three methods 
are shown to be equivalent after sufficient updates have been received such that the 
effects of the prior covariance matrix for the EKF methods have diminished. The 
number of updates to reach equivalence is small if the prior variance is large. Poirot 
and McWilliams (1974) [50] stated that, against a stationary target, measurement bias 
can be handled by adding an additional state to the state vector to allow the unknown
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bias to be estimated. Gavish and Fogel (1990) [15] developed observability criteria 
for this case and showed that observability is achieved if the observer trajectory is not 
on a circle passing through the target. This criteria degenerates into a requirement that 
the trajectory is not on the Line of Sight (LOS) to the target in the zero bias case. 
Gavish and Fogel also established the Cramer-Rao lower bound (CRLB) for the case 
of biased measurements, and approximate expressions for the circular error probable 
(CEP). However, it should be noted that the problem of triangulation of a stationary 
target is very much more observable than the more general case of a moving target 
and observer, where the target velocity is unknown and non-zero.

Gray (1993) [5] developed a pure Cartesian formulation for angle only and angle plus 
range tracking filters in three dimensions. This approach implements a Cartesian 
EKF in a Cartesian coordinate system that is rotated to the expected LOS of the target 
This ensures that the components of the sensor measurements are statistically 
uncoupled, leading to a diagonal covariance matrix. It is claimed that the filter is 
simple, efficient, flexible, and it avoids the polar singularity associated with bearing 
and elevation measurements, however, no absolute or comparative performance 
figures are presented for the filter. In addition, it is unclear how the formulation is 
different from that proposed by Murphy (1969) [42].

2.1.3 Modified Polar EKF

A significant contribution to bearings only tracking was the development of an EKF 
using a Modified Polar (MP) coordinates system, by Hoelzer, Johnson and Cohen 
(1978) [49], since it yields stable and unbiased estimates. The state vector consists of 
bearing, the reciprocal of range, bearing rate and range rate divided by range. 
Decoupling the three observable states from the reciprocal of range, which remains 
unobservable until an observer manoeuvre, prevents covariance matrix becoming ill 
conditioned and the associated filter instability.

Aidala and Hammel (1983) [10] compared the performance of the MP filter with the 
Cartesian filter, the Pseudo linear filter and an idealised MP filter based on 
linearisation about the true state vector. The latter provides a measure of optimal 
performance since the error covariance matrix coincides with the Cramer-Rao lower 
bound, as specified by Taylor (1979) [46]. The MP filter gave similar performance to 
the idealised filter. The pseudo linear filter performed well in scenarios with high 
bearing rates and low measurement noise, but generated biased range estimates in 
long range scenarios. The Cartesian filter was poor and erratic at best. In the long 
range scenario the Cartesian filter converged on the wrong solution after erratic
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transient behaviour. It is concluded that MP coordinates are ideally suited for 
bearings only TMA. It should be noted that Kerr (1989) [22] questioned the validity 
of generating the Cramer-Rao lower bound using the Taylor method, since the 
parameters are not constant.

Stallard (1987) [6, 52] extended the use of the modified polar coordinate system to 
the problem of bearings only tracking in a three dimensional scenario. The modified 
spherical coordinate (MSC) system used has the additional states of elevation and 
elevation rate.

Balakrishman (1989) [17] extended the use of modified polar coordinates to the 
tracking of target acceleration. The acceleration is introduced in two dimensions as 
two additional states of bearing acceleration and range acceleration divided by range. 
In three dimensions elevation acceleration is also included as a state. The 
performance of the Modified Polar EKF is shown experimentally to be superior to the 
Cartesian EKF for tracking an accelerating target.

Allen and Blackman (1991) [31] presented the results of an implementation of an 
angle and angle rate tracker in Modified Spherical Coordinates (MSC), based on the 
approach of Stallard (1987) [6, 52]. The Kalman filter extrapolation equations are 
formulated by transformation from MSC to Cartesian coordinates and back to MSC, 
since this allows straightforward compensation for observer and target accelerations.

Peach (1995) [30] developed the Range Parameterised (RP) tracker, which consisted 
of running in parallel a number of independent EKF configured in modified polar 
coordinates, as described in section 3 of this thesis. This approach is similar to the 
Gaussian sum filter of Sorenson and Alspach (1971) [54] and Alspach (1974) [60], 
which approximated a non-Gaussian prior region by the weighted sum of a mixture of 
Gaussians, each centred on a different point in the state space. Peach showed that the 
number of Gaussians to adequately cover the state space in the bearings only tracking 
application need not be prohibitively large e.g. 8 filters. In addition, after a number 
of updates the likelihood of some of the filters will fall below a threshold and these 
will no longer be processed.

Aderson and litis (1996) [32] developed a distributed bearings only tracking 
algorithm, to combine local estimates from two spatially separated sensors into a 
single global estimate, for the cases of unidirectional transmission (independent local 
estimates) and bi-directional transmission (estimates are transferred between sensors). 
The algorithm is based on the Reduced Sufficient Statistic (RSS) method for
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representing the local sensor densities, introduced by Kulhavy (1990) [55, 56], 
which corresponds to fitting the true posterior density by a parameterised density e.g. 
point mass, Gaussian sum or piecewise constant densities. This leads to a simple 
fusion rule for the local estimates requiring only the addition of the RSS vectors. In 
the distributed bearings only tracking application the posterior density is approximated 
by a Gaussian sum, with fixed mean and covariance matrices, judiciously distributed 
over the four dimensional parameter space. The performance of the RSS method is 
compared with an alternative algorithm, based on an EKF implemented in modified 
polar coordinates, for the cases of unidirectional and bi-directional transmission. It is 
shown experimentally that the RSS algorithm out performs the EKF in both cases 
and, in addition, the EKF estimates diverge when unidirectional transmission is used. 
The reported divergence is probably due to the method of linearisation of the EKF for 
the second sensor which is not located at the origin. A better method would have 
been to generate an alternative modified polar coordinate system for this sensor, 
which would ensure linear measurement equations for both sensors. For bi­
directional transmission, it is not clear whether the additional complexity of the RSS 
method is justified.

2.1.4 Non-Kalman Techniques

Broman and Shensa (1986) [8] developed the 'polygon' tracker for bearings only 
tracking with unobservable states. It is based on a geometric construction of the 
containment regions using a sub-optimal Bayesian approach. The containment region 
for a single measurement is defined by a uniform distribution over bearing and range 
limits, based on prior knowledge of the bearing accuracy and detection range of the 
sensor. As additional measurements are received the containment region for a 
stationary target is revised to the intersection of the containment regions for each 
measurement. Two approaches are proposed for dealing with moving targets. The 
first uses a pessimistic assumption that the containment region should be enlarged 
between updates based on the maximum speed of the target. The second uses the 
assumption that the target velocity is constant between the first and latest containment 
regions, which allows a new polygon prior containment region to be generated. The 
first method allows for unlimited target manoeuvres within the model at the expense 
of poor convergence, whereas the second may result in a sharp decrease in the size of 
the containment region if the target manoeuvres. The main drawbacks with the 
'polygon' tracker are that it makes very little use of the cross correlation between 
position and velocity errors, the assumption of uniform bearing errors between 
arbitrary limits is inappropriate and the method is intolerant to outliers.
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Custance-Baker (1989) [38] developed a Bayesian method of combining bearing and 
doppler velocity information from at least two sonobuoys into estimates of the 
position and velocity, based on numerical integration over many sub-areas. Unlike a 
normal Bayesian implementation, the posterior distribution is not propagated forward 
to form the next prior based on a model of the target dynamics. Instead, the prior is 
defined by a uniform distribution over the region enclosed by 4 standard deviation 
limits either side of the bearing measurements. This improves the manoeuvre 
following capability of the tracker, but results in very noisy estimates. An adhoc 
method of smoothing these estimates is proposed. Tracking performance for the 
Bayesian method is presented in terms of the predicted and achieved containment 
percentages, however no comparison is made with an EKF. An EKF operating in 
this constrained scenario, with combined bearing and doppler information, could be 
expected to give good performance.

Gordon, Salmond and Smith (1993) [7] developed a Bootstrap filter for bearings only 
tracking, based on the result of Smith and Gelfand (1992) [61], which proved 
mathematically that Bayes' theorem can be implemented as a weighted Bootstrap. 
This is a sampling technique for performing numerical integration similar to the Monte 
Carlo method proposed by Muller (1991) [62]. The prior is defined in terms of a 
large number of samples of the prior pdf, where the samples are naturally 
concentrated in the regions of high probability. On receipt of a measurement the 
posterior probability of each sample is evaluated. Re-sampling, based on the 
posterior probabilities, generates a new sample set with a pdf that asymptotically 
tends to the posterior pdf as the number of samples tends to infinity. The samples are 
finally propagated forward using the transition equation (which may be non-linear) to 
generate the next prior. In order to reduce the number of samples required for 
acceptable performance the prior samples are initially clustered in the vicinity of the 
likelihood. In addition, the posterior samples are 'roughened' by adding independent 
jitter, based on a Gaussian distribution with a diagonal covariance matrix, so that the 
distribution does not collapse to a single sample. The Bootstrap filter is shown 
experimentally to give superior performance to a Cartesian EKF in a bearings only 
tracking application, based on a sample size of 4000. However, no performance 
comparison is made with the Modified Polar EKF.

Re-sampling methods, where the samples are naturally clustered in the high 
probability regions, will in general be more efficient than the point mass techniques of 
Bucy (1969) [58] and Bucy and Senne (1971) [59], which used a fixed grid. In the 
latter, the choice of an efficient grid is non-trivial, and a large number of grid points 
are required to cover the multi-dimensional state space. An alternative approach is to
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divide the distributions into piecewise constant regions to make the convolution 
integral tractable, and this is the approach used by Kitagawa (1987) [25] and Kramer 
and Sorenson (1988) [33]. Kramer and Sorenson showed experimentally that the 
estimation accuracy of the piecewise constant method is superior to the point mass 
technique, and for moderately dense grids the computation is also faster. Kitagawa 
considered the use of third order splines to approximate the distributions, and states 
that in one dimension the number of nodes can be reduced by a factor of 1 0 . 
However, the use of third order splines leads to numerical stability problems with 
higher order dimensions.

2.1.5 Range Observability

Lingren and Gong (1978) [90] examined the observability of the bearings only 
tracking problem where the observer motion is constrained to constant velocity 
segments. Under such conditions it was demonstrated that the state covariance varies 
inversely proportional to the number of observer manoeuvres.

Nardone and Aidala (1981) [11] derived an expression for the required observer 
manoeuvre to achieve range observability in bearings only target motion analysis 
(TMA), based on consideration of the observability criteria for the system 
measurement equation. The expression equates to a requirement to ensure that the 
observer manoeuvre results in a change in the bearing rate, so that the bearing 
measurements associated with the manoeuvre are distinguishable from those had the 
manoeuvre not occurred. An example of a manoeuvre not leading to range 
observability is acceleration of the observer in a radial direction, directly towards the 
target. Hammel and Aidala (1985) [27] extended the observability criteria to the three 
dimensional tracking problem based on the angle measurements of bearing and 
elevation. This problem has the interesting special cases that range observability can 
be achieved if the observer maintains a non-zero depth velocity, or if the target depth 
is a known non-zero constant, without the requirement for an observer manoeuvre.

Nardone, Lindgren and Gong (1984) [16] analysed the performance of filters based 
on the maximum likelihood estimate (MLE), the modified instrumental variable 
estimate (MIV), the pseudo linear estimate (PLE) and the Cramer-Rao lower bound 
(CRLB). The properties of the Eigen values of the CRLB filter are analysed for the 
special case of a long range target and a symmetric manoeuvre strategy. In the long 
range scenarios expressions are given for the variances of each of the states. Monte 
Carlo runs produce results which are consistent with the analysis. In particular, at 
low measurement error variance all three filters provide nearly identical performance
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to that of the CRLB. As the measurement error variance increases beyond a specified 
breakpoint the bias of the PLE deteriorates significantly. The non-linear processing 
of the MLE and MTV provides a more gradual departure from the CRLB as the 
measurement error variance is increased. Finally, the effect of adding a speed 
constraint is analysed. It is shown experimentally that a speed constraint is of most 
benefit in long range scenarios where it helps to filter the very large position errors.

Balakrishman (1989) [17] derived the observability criteria for the case of an 
accelerating target.

Payne (1989) [14] used an alternative approach to that used by Nardone and Aidala
(1981) [11] for the derivation of the observability criteria in two dimensional bearings 
only tracking. This approach establishes conditions for the elements of the 
measurement matrix to be independent, so that the gramian is positive definite, which 
is a necessary and sufficient condition for observability. The conditions on the 
position changes required by the observer manoeuvre are as found previously, 
however, it also establishes conditions in terms of the acceleration direcdy. It is 
proved mathematically that the observability criteria is not very restrictive on the type 
of observer manoeuvres to achieve range observability, but no attempt is made to 
specify manoeuvres which give optimum observability.

Allen and Blackman (1991) [31] discussed the effect of sampling rate, measurement 
accuracy, and observer and target manoeuvres on the range estimation accuracy. It is 
stated that optimum passive ranging is achieved if the observer manoeuvres to give 
maximum displacement perpendicular to the line of sight, since this improves the 
triangulation baseline. The dependence of the ranging accuracy on the sampling rate 
is not as heavy as anticipated, since the accuracy is dominated by the dependence on 
geometry.

2.2 Review of Tracking Manoeuvring Targets

2.2.1 Multiple Model Techniques

Magill (1965) [64] was one of the first to address the problem of manoeuvring 
targets, and proposed running N parallel Kalman filters, each with a different target 
trajectory. The ‘correct1 filter is identified by a Bayesian approach to evaluate the 
posterior weights for each filter. Alternatively, Magill proposed taking a weighted 
average over all N filters as the estimate. Harrison and Stevens (1976) [36] referred 
to this as a Class I problem, since it is assumed that a single trajectory is appropriate
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for all times, and the problem is to determine which trajectory is ’correct’ from a set 
of discrete alternatives. This technique was used by Ricker and Williams (1978) [71] 
to generate the state estimate of a manoeuvring target, as the weighted sum of Kalman 
filters, each conditioned on a particular manoeuvre value. Tenney, Herbert and 
Sandell (1977) [19] and Peach (1995) [30] used related techniques to determine a 
target trajectory, which have been parameterised in terms of target heading and range, 
respectively.

Ackerson and Fu (1970) [6 6 ] produced the first treatment of estimation in a switching 
environment, where the mean and covariance of the process and measurement noise 
experience jumps. Their solution to this problem was to merge the Gaussian mixture 
generated by forecasting using multiple models, into a single Gaussian prior with 
identical first and second moments. This is equivalent to a Generalised Pseudo Bayes 
algorithm of order one, which is generally shortened to GPB(l).

Jaffer and Gupta (1971) [67] introduced the idea of fixed depth hypothesis merging 
for estimation in a switching environment, known as the Generalised Pseudo Bayes 
approach. A GPB filter of order k processes Kalman filters simultaneously, 
where N is the number of models, in order to cater for all the possible permutations of 
model switching over the last k updates. A merge operation is carried out to prune the 
branching process to a fixed history of k updates. Harrison and Stevens (1976) [34] 
referred to this as a Class II problem, since it is assumed that no single model 
adequately describes the trajectory, and the problem is to determine which model from 
a set of discrete alternatives is operating at each update.

Moose (1973, 1975) [6 8 , 69] developed a method of modelling major changes in 
target trajectories by a semi-Markov process. The general approach is to discretise the 
range of possible vehicle accelerations or velocities. The estimation algorithm then 
views the manoeuvring vehicle as input commands which are modelled by a semi- 
Markov process, i.e. a random process with a finite number of states. The duration 
of time in one state prior to switching to another state is a random process, based on 
the transition probabilities, which were assumed fixed by Moose. Moose, 
VanLandingham and McCabe (1979) [70] implemented the semi-Markov concept and 
the Singer model of auto correlated acceleration into a Bayesian estimator for the 
tracking of manoeuvring targets.

Chang and Athans (1978) [81] indicated that the optimum state estimation in a multi­
model environment is obtained by estimators tuned to all possible model histories. 
However, this optimum is unachievable in practical tracking scenarios, since it
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requires an exponentially increasing number of model histories to be retained. Chang 
and Athans overcame this problem by merging the Gaussian mixture into an 
equivalent Gaussian at each update, in a similar manner to the GPB(2) algorithm. 
This is equivalent to the method proposed by Harrison and Stevens (1976) [34] to 
collapse the posterior distributions, produced by the N models of a class II multi­
model process, down to N priors for the next update.

Tugnait et al (1979 - 1983) [72 - 75] solved the problem of exponential growth in 
hypotheses by retaining only the N most likely hypotheses, based on residual testing, 
and by merging hypotheses where the states are close together, based on the 
Bhattacharya distance.

Blom (1984) [76] developed the interacting multiple model (IMM) algorithm, which 
yields similar performance to the GPB(2) algorithm, but at the complexity of the 
GPB(l) algorithm. The main saving of the IMM algorithm is a reduction in the 
number of Kalman filters required to retain the various track hypotheses, and a 
reorganisation of the processing steps of the GPB(2) algorithm, for greater 
computational efficiency. Blom (1986) [77] extended the IMM algorithm so that the 
model dynamics is a function of the Markov switching level at the previous time step, 
in addition to being a function of the current level. Blom and Bar-Shalom (1988) [78] 
compared the performance of the IMM algorithm with the GPB(l) and GPB(2) 
algorithms in 19 scenarios. The IMM algorithm is shown to be one of the most 
computationally effective schemes for the estimation of hybrid systems.

Campo, Mookeijee and Bar-Shalom (1991) [79] applied the IMM algorithm to a 
system which has discrete models that randomly vary with time and experience 
switching between models after a random sojourn time. In a system where the 
switching probabilities depend on the sojourn time, knowledge of the sojourn time is 
needed for the computation of the conditional transition probabilities. Campo et al 
show how to infer the transition probabilities via the evaluation of the conditional 
distribution of the sojourn time.

Rong Li and Bar-Shalom (1993) [80] developed an analytic performance prediction 
method for the IMM algorithm. The performance measure is the conditional 
expectation of the error covariance, which is determined without recourse to Monte 
Carlo simulation.
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2.2.2 Manoeuvre Estimation and Correction Techniques

The methods for dealing with manoeuvring targets so far described have characterised 
various manoeuvres by a set of discrete models, and the problem has been to choose 
the correct model for a particular update. The disadvantages with the multi-model 
approach are that they require a detailed prior knowledge on the types of target 
manoeuvres and they have a high computational requirement An alternative method 
is based on the assumption that the target motion is adequately described by a single 
non-manoeuvring model for the majority of the time separated by infrequent 
manoeuvres. This is particularly the case with passive bearings only tracking in a 
sonar environment, where the number of updates during a target manoeuvre is small, 
and the target motion can then be viewed as a series of straight legs, separated by step 
changes in velocity.

Willsky and Jones (1976) [87] developed a generalised likelihood ratio approach for 
the detection and estimation of jumps (manoeuvres) in a linear system, in a completely 
recursive form. The algorithm proposes the use of a hypothesis test, to test a 
manoeuvre hypothesis against the null hypothesis of no manoeuvre. When the log 
likelihood ratio of this test is above a threshold, a manoeuvre is detected and the states 
of the system are corrected. The algorithm needs a bank of matched correlators in 
order to detect the manoeuvre onset time. Kom, Gully and Willsky (1982) [35] 
extended the approach to incorporate system model non-linearities, which yields the 
'extended* GLR. The performance of the extended GLR is presented in a 
missile/target engagement scenario. Caglayan and Lancroft (1983) [91] investigated 
alternative updating schemes after manoeuvre detection. Further discussion of the 
application of the GLR approach to change detection problems is given in Basseville 
and Nikiforov (1993) [37] and Lai (1994) [36].

Chan, Hu and Plant (1979) [83] used a generalised least squares approach to estimate 
the acceleration inputs for a standard Kalman filter to maintain the innovation 
sequence as a zero mean white sequence. The state estimates are updated, based on 
the derived acceleration values if a manoeuvre is deemed to have occurred. A 
manoeuvre is detected, based on a chi-squared test of the innovation sequence. 
Bogler (1987) [84] extended the work of Chan, Hu and Plant (1979) [83] so that the 
acceleration correction is not applied immediately after a detection, but is delayed for a 
period to wait for the manoeuvre estimate to converge. An advantage of this 
technique is that it is less likely to trigger a second erroneous detection, due to 
transient filter response, or when the manoeuvre is of long duration.
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Bar-Shalom and Birmiwai (1982) [85] developed a variable dimension (VD) filter, 
consisting of a standard four state Kalman filter, for the non-manoeuvring periods, 
and a filter with the addition of an acceleration state during manoeuvres. The onset of 
a manoeuvre is detected based on a 'fading memory' average (exponential smoothing) 
of the innovations for the lower order system model. When the manoeuvre ends the 
Kalman filter returns to the lower order system model.

Spall (1984,1985) [8 6 ,20] presented a method for testing whether a dynamic model 
in a linear state space accurately describes the system under consideration. Three test 
statistics for the normalised residuals are proposed depending on the type of 
misspecification of the model and the degree of prior knowledge. The proposed test 
statistics do not require that all the random terms in the system and measurement 
models are Gaussian.

Cloutier, Lin and Yang (1993) [3] extended the work of Bar-Shalom and Birmiwai
(1982) [85], and developed an enhanced variable dimension (EVD) filter. The EVD 
filter introduces double decision logic (DDL) to improve the switching between non­
manoeuvring and manoeuvring models. The first decision uses the input estimation 
manoeuvre detection scheme of Chan, Hu and Plant (1979) [83], based on a sliding 
window of 5 updates, to determine that a manoeuvre has occurred and that a 
manoeuvre filter should be initialised to run in parallel with the existing non­
manoeuvring filter. The second decision is a likelihood ratio test of these two filters 
until either the manoeuvre or non-manoeuvre hypothesis is accepted. The advantage 
of this DDL is that the first decision threshold can be set relatively low to increase the 
probability of detection, since the second decision threshold will reduce the 
probability of false alarm. A similar DDL approach is applied to the detection of the 
end of a manoeuvre and the switch from a manoeuvring to a non-manoeuvring filter. 
Cloutier, Lin and Yang also developed a measurement concatenation technique for 
tracking applications where the measurement sampling rate is much higher than can 
handled by the estimation processing. This technique enables the measurements to be 
batch processed prior to the filter update. In a sonar environment, this technique is 
not applicable since the actual measurement rate is relatively low.

Wang and Varshney (1993) [2] developed a manoeuvre detection and estimation 
method for tracking a manoeuvring target. It is based on a Neyman-Pearson test of 
the summation of the innovation sequence over a finite window, which is optimised 
to give minimum detection delay for a given manoeuvre magnitude. Wang and 
Varshney also developed a recursive method for estimating the manoeuvre magnitude,
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which is shown to lead to a smaller RMS errors than the recursive method of Chan, 
Hu and Plant (1979) [83].

2.2.3 Manoeuvre Following Techniques

Jazwinski (1968) [63] developed a limited memory filter where the filter gains were 
prevented from decaying to zero, so that the filter could adapt to a new target 
trajectory, by filtering over a finite track history. A similar result can be achieved by 
adding plant noise to the state transition equation so that the posterior estimate is 
weighted more heavily towards the measurement than the prior forecast, see 
Jazwinski (1970) [41]. The plant noise models the unknown acceleration as a Weiner 
process, with zero mean and fixed covariance. Singer (1970) [65] assumed that the 
target acceleration is modelled as a random process with known exponential 
autocorrelation. McAulay and Denlinger (1973) [82] extended this approach by using 
two filters based on different levels of target acceleration autocorrelation. The 
’correct’ filter is chosen by monitoring the innovation sequence. All these techniques 
work by reducing the smoothing time constant of the Kalman filter, such that they 
adapt to a target manoeuvre. However, the estimation is degraded when tracking a 
non-manoeuvring target.

Thorp (1972) [8 8 ] modelled a manoeuvre as an increase in the driving noise, assumed 
to be a white Gaussian sequence. In the absence of a manoeuvre the standard non- 
manoeuvring Kalman filter is used. If it is decided that a manoeuvre exists, the best 
state estimate is a weighted sum of the results of several Kalman filters with different 
levels of driving noise. The manoeuvre decision is triggered by the likelihood ratio 
for the hypotheses corresponding to the presence or absence of a manoeuvre. 
Hampton and Cooke (1973) [89] developed a similar adaptive technique for tracking 
manoeuvring targets.

Kitagawa (1987) [25] and Meinhold and Singpurwalla (1989) [24] proposed the use 
of heavy tailed distributions for the system noise in order to cater for unknown jumps 
in the system states. In addition, the use of heavy tailed distributions for the 
observation noise helps to make the filter robust to observation outliers. Kitagawa 
proposed the use of the Pearson family of distributions, which naturally links the 
Gaussian and Cauchy distributions. However, his approach was to perform the 
Bayesian update by numerical integration, which requires considerable computation. 
Meinhold and Singpurwalla (1989) [24] used the Student-t distribution, with the 
weight of the tails dependent on the number of degrees of freedom. Their approach 
was to generate an approximate closed form solution for the Bayesian update, based
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on the approximation of the posterior distribution by the sum of two Student-t 
distributions. Where there is a large discrepancy between the prior and the 
measurement, the use of heavy tailed prior and likelihood distributions results in a 
multi-modal posterior distribution. A Kalman filter, based on Gaussian assumptions, 
would generate an unrealistic compromise estimate for the same situation.

Allen and Blackman (1991) [31] handled target manoeuvres by adding process noise 
to the state transition equations, based on the manoeuvre capabilities of the target. 
The target manoeuvre model assumes that the acceleration is exponentially correlated 
with a given time constant, using the approach of Singer (1970) [51]. Two levels of 
process noise are used (xlO and xO.l) depending on a statistical test of the variance 
normalised sum of squared (SOS) of residuals, to determine the likelihood that the 
target is manoeuvring. The first test is a conventional manoeuvre detection method, 
which performs a chi-squared test of the residuals at a single update or exponentially 
smoothed over several updates. The second is a batch process over 10 updates, 
based on the approach of Beard (1984) [53], which is also a chi-squared test of the 
SOS of residuals. The latter method also generates estimates of the state following 
detection of an observer manoeuvre and these replace the Kalman state estimates. It is 
shown experimentally that the batch process is effective even when the target and 
observer manoeuvre simultaneously.

2 .3  Summary

This section identifies the key references from the literature review and summarises 
their relevance to this particular research. In addition, it identifies the contribution of 
this research to the previously published literature.

2.3.1 Bearings Only Tracking

Initially, the bearings only tracking problem was formulated as an EKF in a Cartesian 
state space, since this leads to relatively simple expressions for the state transition and 
measurement equations. However, Kolb and Hollister (1967) [43] and many other 
authors since, found that in a Cartesian coordinate system the state estimates can 
become severely biased leading to premature covariance collapse and filter 
divergence. Various adhoc solutions have been proposed including the ’Pseudo 
linear1 filter developed by Lingren and Gong (1978) [21], with varying degrees of 
success. The major contribution to the bearings only tracking problem was the 
development of an EKF using a modified polar coordinate system, by Hoelzer, 
Johnson and Cohen (1978) [49]. The state vector consists of bearing, the reciprocal
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of range, bearing rate and range rate divided by range. Aidala and Hammel (1983) 
[ 1 0 ] stated that this naturally decouples the three observable states from the 
unobservable range, which prevents covariance matrix becoming ill conditioned and 
the associated filter instability.

Section 3 of this thesis, previously published as Peach (1995) [30], shows 
experimentally that the performance of the Modified Polar tracker degrades when 
there is a significant difference between the true range and the initial range estimate, 
which can lead to filter instability and inconsistent estimates. The Range 
Parameterised (RP) tracker has been developed to overcome this problem, by running 
a number of Modified Polar EKFs in parallel, each with a different initial range 
estimate. The resulting tracker gives stable, consistent and unbiased estimates for all 
initial range values. In addition, if low likelihood filters are removed, the tracker is 
no more computationally intensive that the original MP tracker.

Several authors have proposed non-Kalman techniques for bearings only tracking. 
The techniques use various numerical methods to calculate the convolution integral 
between the measurement and the prior in a Bayesian framework. These methods 
include using piecewise constant sub-areas, using a fixed grid point mass technique 
and sampling of the distributions. The most efficient is the sampling method, since 
the samples are naturally clustered in the high probability regions. However, even for 
the sampling method there is a high computational requirement, particularly when 
applied to all four dimensions and, therefore, these techniques have not been 
considered in this thesis.

2.3.2 Manoeuvring Targets

The three primary techniques for tracking manoeuvring targets are:

a) Multiple Model Process

The multiple model process assumes that the trajectory of the target can be 
described by a set of models and the problem is to determine which model is 
operating at each update. Chang and Athans (1978) [81] indicated that the 
optimum state estimation in a multi-model environment is obtained by 
estimators tuned to all possible model histories. However, this optimum is 
unachievable in practical tracking scenarios, since it requires an exponentially 
growing number of model histories to be retained. Various hypotheses 
pruning and merging techniques have been proposed, the most
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computationally efficient is the IMM algorithm developed by Blom (1984) 
[76].

b) Manoeuvre Detection /  Correction Techniques

The manoeuvre detection /  correction technique assumes that the target motion 
is adequately described by a single non-manoeuvring model, with the 
infrequent manoeuvres characterised by step changes to the velocity state. 
The aim of the technique is to detect and subsequently correct for the changes 
in velocity. Willsky and Jones (1976) [87] developed a generalised likelihood 
ratio approach for the detection and estimation of jumps in a linear system, 
which has been extended by Korn, Gully and Willsky (1982) [35] to non­
linear systems.

c) Manoeuvre Following Techniques

The manoeuvre following techniques allow a filter to adapt to a change in the 
target trajectory by increasing the weighting applied to the latest measurements 
compared with the track history, thereby reducing the smoothing period of the 
tracker. Jazwinski (1968) [63] proposed the limited memory filter and 
Jazwinski (1970) [41] detailed how the same effect could be achieved by 
adding plant noise to the covariance matrix in order to weight the posterior 
more heavily towards the measurement than the prior. Singer (1970) [65] 
based the plant noise on the known acceleration autocorrelation of the target 
manoeuvre and McAulay and Denlinger (1973) [82] proposed using multiple 
filters with different levels of acceleration autocorrelation. Allen and 
Blackman (1991) [31] have more recently used a single filter, but switch 
between plant noise levels depending on a statistical test of the residuals. 
Kitagawa (1987) [25] and Meinhold and Singpurwalla (1989) [24] achieved 
the same effect in a Bayesian framework by using heavy tailed distributions.

Section 4 of this thesis applies the GLR manoeuvre detection /  correction procedure of 
Korn, Gully and Willsky (1982) [35] to the bearings only tracking problem. A new 
method is proposed for correcting the state estimate, which allows for the uncertainty 
in the manoeuvre time. The results for the GLR procedure are compared with a 
manoeuvre following technique based on a fixed plant noise level. A multiple model 
process has not been considered, since in a sonar environment the number of updates 
during a target manoeuvre is small, and the target motion can then be viewed as a 
series of straight legs separated by step changes in velocity.
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2.3.3 Range Observability

The observability of the bearings only tracking problem has been previously 
examined by many authors. Lingren and Gong (1978) [90] demonstrated that, if the 
observer motion is constrained to constant velocity segments, the state covariance 
varies inversely proportional to the number of observer manoeuvres. Nardone, 
Lingren and Gong (1984) [16] derived expressions for the CRLB in the special case 
of a long range target and a symmetric manoeuvre strategy. Nardone and Aidala 
(1981) [11] established an observability criteria for the two dimensional bearings only 
problem based on the solution of a third order non-linear differential equation. The 
criteria equates to a requirement that the bearing measurements associated with the 
manoeuvre are distinguishable from those which would have existed had the 
manoeuvre not occurred. Hammel and Aidala (1985) [27] extended the observability 
criteria to the three dimensional problem and Balakrishman (1989) [17] derived the 
observability criteria for an accelerating target Payne (1989) [14] used an alternative 
approach to establish the observability criteria for the two dimensional problem in 
terms of a requirement on the observer acceleration. Payne proved mathematically 
that the observability criteria is satisfied for a wide range of observer manoeuvres, 
although he made no attempt to specify the time and magnitude of manoeuvres to give 
optimum observability. Allen and Blackman (1991) [31] stated that optimum passive 
ranging is achieved if the observer manoeuvre gives maximum displacement 
perpendicular to the line of sight, however, this is not quantified.

Section 5 of this thesis shows that the RP tracker approaches the CRLB derived by 
Nardone, Lingren and Gong (1984) [16] for the special case of a long range scenario 
and symmetric observer manoeuvres. However, it is not possible to use the CRLB to 
derive the expected tracker performance for more general scenarios, or to investigate 
the time and magnitude of observer manoeuvres to give optimum observability. 
Section 5 derives expressions for the lower limit on the RMS range error resulting 
from an observer manoeuvre in an arbitrary scenario, and provides an estimate of the 
time taken to approach this limit. This enables the specification of a criterion for the 
time and magnitude of an observer manoeuvre to give optimum range observability. 
The criterion states that the observer should manoeuvre to achieve the maximum 
change in the bearing rate, which requires it to turn perpendicular to the line of sight 
to the target. After a given time the range error will reach a lower limit and further 
manoeuvres are required if the range error is to be reduced. Thus, this criterion is an 
extension of the general statement by Allen and Blackman (1991) [31] that the 
observer manoeuvre should give maximum displacement perpendicular to the line of 
sight.
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3 . BEARINGS ONLY TRACKING USING A RANGE 
PARAMETERISED TRACKER

The new tracking approach proposed in this thesis is to commence tracking with a 
number of independent EKFs, each with a different initial range estimate. At each 
update the filters are weighted for their consistency with the measured bearing. After 
a number of updates the likelihood of some of the filters will fall below a threshold 
and will no longer be processed. How quickly this happens depends on the scenario 
geometry, the observer and target trajectories and the number and type of observer 
manoeuvres. In good tracking conditions, the correct filter will dominate very 
quickly and within a short time it will be the only filter being processed. In these 
circumstances the RP tracker becomes no more computationally intensive than a 
single EKF tracker.

3 .1  Derivation of the RP Tracker

3 .1 .1  Choice of Coordinate System

The RP tracker detailed in this thesis is configured in a modified polar coordinate 
system as described in Section 1.4.2. This coordinate system has been selected since 
it has been previously demonstrated by Aidala and Hammel (1983) [10] to give stable 
tracking performance in the majority of conditions. In principle the methodology of 
the RP tracker could be applied to any coordinate system (Cartesian, polar and 
variants of modified polar). However, the number of filters into which the range has 
to be parameterised in order to give acceptable tracking performance varies according 
to the coordinate system in which it is implemented. Alternative coordinate systems 
are not considered in this thesis.

3 .1 .2  Motivation for Range Parameterisation

The tracking performance of an EKF in a modified polar coordinate system is highly 
dependent on the stability of the i  state. The stability is defined as the relative
change in the j  state, between forecast and estimate, for a given change in the 
bearing state. The change in the ^ state (A-^) for a given change in the bearing state 

(Ad) is given by the following correlation equation:



where <Ĵ l is the forecast covariance of the reciprocal of range and bearing errors 

o j is the forecast variance of the bearing errors

Therefore, the relative change in the reciprocal of range state is given by:

=  Afl ° 4
~R ~R G'q <7,K

is the forecast coefficient of variation of the reciprocal of range 

is the ratio of the change in the bearing state to the forecast s.d.

is the forecast correlation coefficient of the reciprocal of range and 

bearing errors

Since the magnitude of the correlation coefficient will be less than unity and the ratio 
of the change in the bearing estimate to the standard deviation will be a small, the 
relative change in the 1 state, and therefore the stability of the EKF tracker, is 
dependent on the coefficient of variation of the \  state.

Ideally the coefficient of variation should be as small as possible in order to minimise 
the relative change in the -J- state, since large changes will cause significant

linearisation errors in the state transition equation. These linearisation errors can lead 
to premature covariance collapse and divergence as previously reported by Aidala 
(1979) [9]. If the coefficient of variation is very large the relative change in the ^

state can be sufficient to give a negative estimate, which is usually fatal for the 
tracker. A 20% coefficient of variation has been selected in this thesis since it results 
in a tracker which is relatively stable and the relative change in the range estimate is 
small even when there is a large change in the bearing estimate and high correlation of 
range and bearing errors.

At tracker initialisation, however, the range of the target is not usually known very 
accurately. In the example in this thesis the best estimate is that the true range lies

where -p-
R

Ad
° 9

Ge
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between 0.5 km and 128 km. A single EKF initialised with the appropriate 
coefficient of variation would be very unstable and there would be large linearisation 
errors in the state transition and measurement equations. If the coefficient of variation 
is set artificially small, the filter will be over confident in the estimate of the range 
uncertainty region, and this will result in a biased range estimate.

The approach adopted for the RP tracker is to cover the large range uncertainty region 
using a number of filters, where each filter is an independent Modified Polar EKF . 
The coefficient of variation of each filter can then be maintained at a low value, whilst 
covering the entire range uncertainty region by a number of filters. Figure 3.1 shows 
diagramatically the eight filters which are required to cover the region 0.5 km to 128 
km, in order to achieve a 20% coefficient of variation. The ellipses represent constant 
probability contours for each of the filters.

128.0

0.75
1.5 3.0 6.0 12.0

24.0
48.0

96.0

Figure 3.1: Range Filter Initialisation Diagram

Each independent filter is initialised with a weighting (prior probability). The 
weighting can either be set in an arbitrary manner, such as setting all the filter weights 
equally as employed in this thesis, or alternatively could be based on the detection 
statistics of the sensor performing the tracking. A single tracking estimate can be 
determined by calculating the weighted average of the eight independent filters.

3 .1 .3  Updating the Weights

The state and covariance estimates of each independent filter are updated as described 
for the Modified Polar EKF in Section 1.4.2. In addition, the filter weightings are 
updated using Bayes' Theorem, based on the assumption that the forecast and
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measured bearing errors are Gaussian with a zero mean. The posterior weighting for 
a filter is given by:

W,
1

‘ ^2*r(of+of~j
exp ■ ( g - o .) 2] 

0

W:
‘ ^ 2 rc (o f+ o |)

exp , ( M l  
0 0 ,

where Wi is the prior weighting of filter i
w; is the posterior weighting of filter i
6 is the measured bearing

is the measured bearing error variance

$ is the forecast bearing of filter i
< is the forecast bearing error variance of filter i

If there is a large discrepancy between the measured and forecast bearing compared 
with the estimates of the standard deviation, then the exponential term ensures that the 
filter receives a low weighting. Conversely, a small difference implies much better 
tracking and the filter receives a higher weighting. The speed with which the filter 
containing the true target position approaches a weighting of unity depends on the 
degree of range observability in the tracking scenario being considered. In a good 
tracking scenario the correct filter will dominate very quickly.

3 .1 .4  Thresholding

The improved tracking performance of the RP tracker is achieved by tracking eight 
independent EKFs each with a much smaller range coefficient of variation than would 
be needed for a single EKF. This improvement is achieved at the expense of an eight 
fold increase in processing power if all the filters are processed throughout. 
However, in the majority of scenarios and in particular for high bearing rate scenarios 
which are highly observable, the weighting of some of the filters rapidly reduces to 
near zero. When this occurs, these filters can be removed from the tracking process 
without loss of accuracy, thereby reducing the processing requirement. The setting of 
the weighting threshold at which filters are removed is a compromise between the 
rapid removal of low likelihood filters and tracker robustness against rogue bearing 
measurements. In this thesis a weighting threshold of 10"^ has been used.
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In addition to removing low likelihood filters it is necessary to remove those filters 
which have become unstable since initialisation. Instability usually affects the short 
range filters in low bearing rate scenarios where the (4) state has low observability.

In these circumstances the uncertainty in the initial range rate gradually increases the 
range coefficient of variation from its low initial value to a point where the track has 
become unstable. This can result in a filter where the range estimate becomes 
negative or where the range is larger than an adjacent filter which was initialised with 
a longer range estimate. Both of these circumstances are clear indications that the 
filter has become divergent and that it should be removed from the tracking process 
by setting the weighting to zero. It has been found that in the majority of scenarios, 
the low likelihood filters reduce below the weighting threshold long before they 
become unstable.

When filters are removed, either because they are divergent or of low likelihood, the 
weightings of the remaining filters are renormalised to unity. It has not been found 
necessary to develop a mechanism to restart filters after removal, since it has been 
observed that adjacent stable filters quickly lock on to the correct track when range 
observability improves, such as following an observer manoeuvre.

3 .2  Initialisation Assumptions

In order to commence tracking with an EKF it is necessary to provide initial estimates 
of the states and the associated covariance matrix. In addition, for the RP tracker it is 
necessary to weight the initial range estimates. This section describes the initialisation 
assumptions which have been used in this thesis for each of the filters.

3 .2 .1  Cartesian EKF

Aidala and Hammel (1983) [10] set the initial state estimate and covariance 

matrix to the following values, assuming that the origin of the Cartesian 

coordinate system is defined to be the initial observer position.

( x )
rRsin9' foi 0 0 0̂

y RcosO A 0 ° R 0 0
X 0 Po = 0 0 of 0

0 , 0 , ,0 0 0

where 9 is the initial measured bearing

Page 41



R is the initial range estimate (10km)
<jR is the initial range error standard deviation (1 0 km)
crv is in the initial velocity error standard deviation ( 2 0  m/s)

Unfortunately, initialisation of a Cartesian EKF in this manner, with a zero velocity 
estimate, can give rise to highly divergent behaviour, as shown in Appendix A.l. In 
particular, if the perceived bearing rate is large and of opposite sign to the bearing rate 
implied by the initial velocity estimate, then the resulting range estimate can become 
negative. A negative range estimate usually precipitates failure of the tracker.

The approach adopted in this thesis is to set the initial velocity estimate equal to that of 
the observer velocity. This avoids the divergent behaviour, since the implied bearing 
rate is zero. In addition, the covariance matrix has been rotated to allow for the
reduction in the uncertainty in the tangential direction compared with the radial 
direction (typically R2ol «  a j). The equations used are:

(X) 'AsinG^
A

* 0  =
y RcosO

=
X

0 < j

f cos0 sin 0 0 0> rR2c?e 0 0 o ' 'cos0 -sin  0 0 0>
-sin 0 cos 0 0 0 0 o i 0 0 sin0 COS0 0 0

0 0 1 0 0 0 0 0 0 1 0

, 0 0 0 1> , 0 0 0 , 0 0 0 K

where <J9 is the measured bearing error standard deviation
xob, yob are the Cartesian components of the observer velocity
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3 .2 .2  Modified Polar EKF

Aidala and Hammel (1983) [10] set the initial state estimate and covariance matrix for 
the Modified Polar EKF to the following values:

(0>i
R
e
i  

o

(0}
R
0

vOy

P« =

oi 0 0 0

0 0 0

0

Jt
0 0

0 0 0 o]
* /

where 0 is the initial measured bearing
is the measured bearing error standard deviation

iR is the reciprocal of the initial range estimate (iotr

is the standard deviation of the 4 estimate (' 10 ' 
JO2 fen;

is the standard deviation of the 0 estimate ('20 m/i' 
k 10 fen t

o ,T is the standard deviation of the 4 estimate (' 20 m/sy 
t 10 fen t

Setting the initial bearing rate estimate to zero avoids the divergent behaviour which 
can occur when the perceived bearing rate is large and of opposite sign to the initial 
bearing rate estimate, as shown in Appendix A.2. Therefore, the initialisation 
procedure proposed by Aidala and Hammel (1983) [10] has been adopted for the 
Modified Polar filters in this thesis.

3 .2 .3  Range Parameterised Tracker

The RP tracker consists of a number of independent Modified Polar EKFs each set to 
a different initial range estimate as detailed in section 3.1.2. In the examples in this 
thesis, there are 8  filters and these are initialised with the following values:

1 iR *.
e 0
a

where 0  is the initial measured bearing 
is the centre of the n^ 1 filter

0 0 0
0 °i 0 0
0 0 < 0
0 0 0
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o e is the measured bearing error standard deviation

is the standard deviation of the 4  estimate ^-jrj 

<7  ̂ is the standard deviation of the 9 estimate

(Tj is the standard deviation of the 4  estimate ( n ^ )

Rh = (0.75,1.5,3.0,6.0,12.0, 24.0,48.0,96.0 km)
re —  ( 0 5 10  2 0 4 0 8.0 16.0 32.0 64.0

“  (>/l2» -m* Vl2’ Vl2» Vl2» Vl2» V l2 ’ Vl2 Km)

By choosing a constant value of velocity error standard deviation (20 m/s) for each 
range filter, the standard deviation of the bearing rate reduces at longer range. This is 
a useful feature for identifying the target range prior to observer manoeuvres, as will 
be shown in Section 3.3.3.

In this thesis, each filter is equally weighted at initialisation. However, in practice the 
weightings could be set based on the detection statistics of the sensor performing the 
tracking.

3 .3  Monte Carlo Performance of RP Tracker

The scenario defined in Section 3.3.1 has been Monte Carlo run for the Cartesian 
(C), Modified Polar (MP) and Range Parameterised (RP) trackers. The runs consist 
of 100 replications with identical pseudo random number seeds. The bearing errors 
have been drawn from a Gaussian distribution with a fixed standard deviation and 
zero mean.

The mean and RMS of the range errors averaged across the 100 replications have 
been calculated for each update. Outliers exceeding 3 standard deviations from the 
mean have been monitored, however, neither the number nor magnitude of the 
outliers have influenced these statistical measures.

Only the range error statistics are presented in this thesis as the other states (bearing, 
bearing rate and range rate/range) are well behaved except when the filters become 
divergent. Also, the range error following an observer manoeuvre is highly 
dependent on the accuracy of the other states and, thus, the size of the range error is 
indicative of the overall tracking performance.
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3 .3 .1  Scenario Definition

The performance of the Cartesian, Modified Polar and Range Parameterised trackers 
has been compared in the typical tracking scenario illustrated in Figure 3.2.

Target

ObserverNorth

Figure 3.2: Geometry of Tracking Scenario

The scenario consists of a target heading directly away from an observer at a speed of
10 m/s (20 knots) on a course of 045°. The observer is initially travelling North at
10V2 m/s. The scenario commences at update 0 and continues for 48 updates. At
updates 12 and 36 the observer executes instantaneous manoeuvres to headings of
090° and 000° respectively, in order to zig-zag across the direction of the target The
bearing of the target is recorded every 20 seconds with a bearing error standard 
deviation of ^  = 0.45°. The speeds have been selected so that the observer does not

close range on the target. The scenario has been run for initial target ranges of 1,2.2, 
10, 22 and 100km. The 2.2 and 22km scenarios correspond to those considered by 
Aidala and Hammel (1983) [10].

3 .3 .2  RMS Range Errors

Figures 1 to 5 show the RMS range error for each tracker with initial target ranges of 
1, 2.2, 10, 22 and 100km. The figures illustrate that the tracking performance of the 
RP tracker is significantly better than for the MP or C trackers. The tracking 
performance of the MP tracker is comparable with that of the RP tracker only when 
the target range matches its initial range estimate, as in Figure 3. In the other cases, 
where there is a significant difference between the target range and the initial range
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estimate, the RMS range error for the MP tracker is typically a factor of 5 to 10 times 
worse than for the RP tracker in the equivalent conditions. The tracking performance 
of the MP tracker is generally better than that for the C tracker, and this is particularly 
apparent in Figure 3 and 4. However, it should be noted that in order to prevent the 
MP tracker becoming divergent when the target is at long range, the x  state had to be 
limited to above 3 ^ .  Without this limit the x  state became negative, which usually 

resulted in failure of the tracker.

It was not found necessary to place artificial limits on the state estimates for the RP or 
C trackers. This is due mainly to the small range variance in each filter for the RP 
tracker and to the new initialisation criteria proposed in Section 3.2.1 for the C 
tracker. Experimentation using the previous initialisation recommendations for the C 
tracker as used by Aidala and Hammel (1983) [10], required a limit on the range state 
in order to prevent negative values and the resultant tracker failure.

3 .3 .3  Typical Track Output

The track output (range estimate only) for a typical replication with the target at an 
initial range of 2.2km is tabulated in Table 3.1 below.
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Update Para­

meter

True

Range

C

Est.

MP

Est.

R P Estimate

Mean 1 2 3 4 5 6 7 8

0 Range
S.D.

Weight

2.20 10.00
10.00
1.000

10.00
10.00
1.000

3.01
4.03
1.000

0.75
0.14

0.125

1.50
0.29
0.125

3.00
0.58
0.125

6.00
1.15
0.125

12.00
2.31
0.125

24.0
4.62
0.125

48.00
9.24

0.125

96.00
18.48
0.125

1 Range
S.D.

Weight

2.21 10.04

9.97
1.000

10.00
10.01
1.000

2.23
2.25
1.000

0.75
0.43

0.108

1.50
0.49
0.205

3.00
0.70
0.337

6.00
1.22

0.313

12.00
2.34

0.039 0.000 0.000 0.000

6 Range

S.D.

Weight

2.51 11.21

1.26

1.000

11.19

10.98
1.000

4.46
3.84

1.000

0.86

0.16
0.019

1.71

0.32

0.073

3.42

0.65
0.247

6.80
1.32

0.513

13.33

2.65
0.148 0.000 0.000 0.000

12 Range
S.D.

Weight

3.26 14.52
1.41

1.000

14.62
14.71

1.000

5.80
4.99
1.000

1.09

0.19
0.018

2.18
0.39
0.07

4.36
0.79
0.241

8.76

1.66
0.528

17.53
3.48
0.143 0.000 0.000 0.000

13 Range
S.D.

Weight

3.11 13.47
1.46
1.000

3.84

0.5
1.000

3.46
0.43
1.000 0.000

2.94

0.33
0.093

3.52
0.38
0.907 0.000 0.000 0.000 0.000 0.000

18 Range
S.D.

Weight

2.51 4.11

0.26
1.000

2.28
0.07
1.000

2.45
0.08
1.000 0.000

2.42
0.08
0.135

2.46
0.08
0.865 0.000 0.000 0.000 0.000 0.000

24 Range
S.D.

Weight

2.20 2.42

0.06
1.000

2.02

0.03
1.000

2.15
0.04
1.000 0.000

2.13
0.04
0.084

2.15
0.03
0.916 0.000 0.000 0.000 0.000 0.000

30 Range
S.D.

Weight

2.51 2.69

0.03

1.000

2.44

0.02

1.000

2.53
0.02

1.000 0.000

2.52

0.02

0.045

2.53
0.02

0.955 0.000 0.000 0.000 0.000 0.000

36 Range

S.D.

Weight

3.26 3.46

0.03

1.000

3.19
0.02

1.000

3.27

0.02

1.000 0.000

3.25
0.02

0.050

3.27

0.02

0.950 0.000 0.000 0.000 0.000 0.000

48 Range
S.D.

Weight

2.20 2.15
0.03
1.000

2.12

0.02

1.000

2.19
0.02

1.000 0.000

2.18
0.02

0.156

2.19
0.02
0.844 0.000 0.000 0.000 0.000 0.000

Table 3.1 : Range Estimate Track Output
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The table compares the true target range with the range estimates for the MP, C and 
RP trackers. It also gives the weightings and range estimates for the individual filters 
(1-8) within the RP tracker at each update.

The table illustrates that the RP tracker can improve on its initial range uncertainty 
even during the non-observable period prior to the first observer manoeuvre at update 
12. The improved range estimate is based on the perceived bearing rate and initial 
velocity variance. Simplistically, the tracker is making the statement that the relatively 
high bearing rate is inconsistent with the target being at long range, since the implied 
velocity is a very unlikely tracking solution. This is apparent from update 1 when 
the weightings for the long range filters 6 ,7  and 8  drop below the 0 . 0 0 1  threshold. 
There is no similar mechanism for the MP or the C trackers and, therefore, they 
maintain range estimates based on the prior range.

The tracking performance of all the trackers improves significantly following the 
observer manoeuvre at update 12. However, it should be noted that the range 
estimate for the C tracker converges on to the true value more slowly than the MP and 
RP trackers, and that only the RP tracker produces a range estimate which is 
consistent with the estimated standard deviation.

By update 13, the number of filters being processed by the RP tracker has reduced to 
two, greatly reducing the computational requirement. These two filters remain 
throughout the engagement, since the initial range of 2 .2 km lies midway between 
filters 2 and 3 and, therefore, neither filter dominates. However, it is apparent that 
both of these filters have collapsed on to nearly identical range estimates, and that the 
state estimates could be merged into a single filter without loss of accuracy. Merging 
the filters would lead to an RP tracker which is much more accurate than the C or MP 
trackers, but which is no more computationally intensive.

3 .3 .4  RMS Normalised Range Errors

The RMS normalised range errors averaged across updates 36 to 48 are tabulated in 
Table 3.2 below. The normalised range errors have been generated by dividing the 
absolute error by the standard deviation estimate from the covariance matrix. These 
normalised errors indicate whether the absolute range error is in keeping with the 
estimated standard deviation, since the normalised error should be consistent with a 
N[0,1] Normal distribution. The 95% confidence limits for the normalised RMS 
values are 0.86 and 1.14, given by the chi squared distribution.
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1 km 2 .2 km 1 0 km 2 2 km 1 0 0 km
c 18.2 4.0 7.9 4.2 13.4
MP 120.7 5.2 1 . 2 1 . 6 2.3
RP 4.3 1 . 2 1 . 1 1 . 0 0 . 8

Table 3.2 - RMS Normalised Range Errors

The table illustrates that the range errors for the RP tracker with 8  filters are consistent 
with the estimated standard deviation, for target ranges of 2 .2 , 1 0 , 2 2  and 1 0 0 km. 
More consistent estimates can also be generated for a target range of 1 km by 
increasing the number of filters operating in the RP tracker from 8  to 32, resulting in 
a RMS normalised range error of 1.5. The improved normalised range error with 32 
filters is accompanied by a factor of 3 reduction in the RMS range error from, 
typically, 0.03km to 0.01km. Therefore, increasing the number of filters not only 
makes the RP tracker more consistent, but also leads to smaller range error as well.

In contrast, the absolute range errors for the MP tracker are only consistent with the 
standard deviation estimate when the target range is close to the initial range estimate. 
The C tracker never produces consistent range estimates.
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4 . TRA CK IN G  TARGET M ANOEUVRES USING A GLR 
PROCEDURE

The manoeuvre detection procedure proposed in this thesis uses the Generalised 
Likelihood Ratio (GLR) test to detect a change in the innovation sequence associated 
with a manoeuvre. The innovation is defined as the difference between the measured 
and forecast bearings (Basseville and Nikiforov (1993) [37]), and in the case of no 
manoeuvre this will have zero mean and covariance Vi given by:

V| = M i Pi M j  + S,

where Mi is the measurement matrix
Pi is the covariance matrix for the forecast
Si is the covariance matrix for the measurement

After a target manoeuvre the mean of the innovation sequence will be non-zero, with a 
dynamic profile, or signature, characteristic of a particular manoeuvre. The purpose 
of the GLR procedure is to detect this manoeuvre signature and to correct the system 
states, such that the innovation sequence is restored to zero mean. In the bearings 
only tracking application a manoeuvre is characterised by a step change in the target 
velocity, which approximates to a ramp change in the observed bearings. This results 
in a non-linear signature for the innovation as the Kalman filter attempts to adapt to 
this change using a non-manoeuvring model.

The manoeuvre is detected by a GLR test, which is applied at each update over a 
history of up to 16 updates. A large manoeuvre will be detected with a small track 
history, whereas a small manoeuvre will be detected only after many updates. After 
detection, a new independent Kalman filter is initialised based on the corrected state 
estimates using the estimates of the time and magnitude of the manoeuvre derived 
from the GLR test. The original filter is retained to cater for the possibility of a false 
alarm. The likelihoods of the new filter and the original non-manoeuvring filter are 
reset according to the likelihood ratio for the manoeuvre. The GLR procedure 
therefore represents the multi-modal posterior distribution, associated with a 
manoeuvring and non-manoeuvring target, as a mixture of Gaussians using 
independent Kalman filters. After a short time one of these filters will dominate and 
the other will no longer be processed, depending on whether the detected manoeuvre 
actually occurred or was only a false alarm.
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4 .1  Derivation of the GLR Procedure

4 .1 .1  Manoeuvre Detection

The GLR procedure proposed in this thesis performs a correlation analysis between 
the measured innovations and the expected innovation for a target manoeuvre. A set 
of h correlators is used for each filter of the RP tracker, to cater for all possible 
manoeuvre times up to a track history of h updates, where in this thesis h has been 
set to 16. Manoeuvre detection is based on the following GLR test statistic (Gk),

which is a maximisation of the correlation function over all manoeuvre times 
( k - h <  j  < k - l ) ,  and a minimisation over all the filters of the RP tracker 
(1 < c< N ).

/-»   min max /9  o
Uk “  IZcZN \  Sk/j\C)

where gk/j (c) is a correlation function at update k for a manoeuvre at update j  
Gk is the test statistic at update k

N  is the number of RP filters being processed
h is the maximum history length for the test

The minimisation over all filters prevents the manoeuvre detection process being 
triggered shortly after initialisation by filters where the initial range error is large. The 
assumption is being made in the early stages that priority should be given to the most 
likely non-manoeuvring filter, since filters with large range errors will generate large 
innovations just prior to being removed from the tracking process. In the majority of 
tracking scenarios the RP tracker reduces to a single range filter after a few updates 
and the minimisation over all filters is no longer appropriate.

The correlation function gk/j, which is derived in Appendix B, is given by the 

following expression:

t  Phi V? /,] 

E Pin v-1 Pi,j
«= ;+ i

where pUj is the expected innovation at update i for a unit magnitude manoeuvre 

at update j

 ̂8klj —
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is the innovation at update i

Vi is the covariance matrix of the innovation at update i

It should be noted that in this expression, and subsequent expressions in this section, 
the dependency of all the terms on the filter number (c) has been omitted to improve 
clarity. In addition, in the bearings only tracking application the innovation is a scalar 
quantity and the matrix multiplication and inversion shown in this expression reduces 
to scalar multiplication and division.

Appendix B shows that the expected innovation at update i for a unit magnitude 
manoeuvre at update j  is given by the following recursions:

Pit j = M  \cCnj -  Fw A-l/y]

V i l , 0 , 0 , 0 /

Avj — A-l A-l/y + Kl Pin

with the initial conditions

pm = ( 0  , 0 , 0 , 0 /

where M is the measurement matrix (1 , 0 , 0 , 0)

aiU is the change in the true state vector at update i due to a unit

magnitude manoeuvre at update j

PUj is the change in the state vector estimate at update i due to a unit 

magnitude manoeuvre at update j

Fm is the Jacobian matrix of the non-linear transition from X k_: to Xk, as

given in Section 1.4.2.

Ki is the Kalman gain at update i 

Alternatively, Appendix B shows that the correlation function can be written as:
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2  8k i j  “
U2k / j

a iutl!Uj J

where Uk/J is the maximum likelihood estimate of the magnitude of the 

manoeuvre, given by:

I  pin ̂ r11,
U =U kl j  -  *

I  Pin V? Pm
•=y+1

and is the variance of the estimate of the magnitude of the manoeuvre,Ukis
given by:

i

X  pin vr‘ p,/
‘ = 7+1

Therefore, the GLR test statistic (Gk) becomes the ratio of the maximum likelihood 

estimate of the magnitude of the manoeuvre to the standard deviation of the estimate:

/-i   max
* ~ ' k-hZiZk-1

k/ j

If the bearing errors are Gaussian then the estimate of the magnitude of the manoeuvre
A

Uklj will be Gaussian. In addition, the test statistic Gk will also be approximately 

Gaussian, since the magnitude estimates for different manoeuvre times j  are highly 
correlated. Thus, the test statistic will have a N[0,1] Normal distribution when there 
is no manoeuvre, which has been verified in Table 4.1 of the results.

4 .1 .2  Manoeuvre Correction

The philosophy of the manoeuvre correction procedure is that when a manoeuvre is 
detected an additional ‘manoeuvre’ filter is added to the RP tracker for each existing 
‘non-manoeuvre’ filter. The existing filter, which may be one of the original Range 
Parameterised filters or may be a subsequent addition associated with a previous 
manoeuvre detection, are retained in order to be robust to false alarms. The new
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filters are initialised as independent Kalman filters with state and covariance estimates, 
based on the likelihood weighted mean over all manoeuvre times within the track 
history, as given by:

k-i

^ M a n
  j=k—h

k- 1

j=k—h

P — 
Man

j=k-h
k- 1

J=k—k

A A T’

Y Y 1Man Man

A

where X'klJ is the corrected state vector for a manoeuvre at update j  given by:

Xk/J  =  %k/ j  +  U k l j  [ a k/ j  — P k f j )

A

and P'k/j is the corrected covariance matrix for a manoeuvre at update j  given by:

—  \T
^ k / j  ~  H , J  +  ° 0 kj. ( a k/j P k / j )  { a k/ j  P k l j )

and Lj is the likelihood ratio for a manoeuvre at update j  given by:

Lj = txp{gklj}

The weightings of the ‘manoeuvre* and corresponding ‘non-manoeuvre* filters are 
based on the likelihood ratio for the manoeuvre. The updated filter weightings are 
given by:

1 + L

1   ̂
V 1  + L j

where W is the original filter weighting
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WMan is the weighting for the ‘manoeuvre* filter 
WNon_Mm is the weighting for the ‘non-manoeuvre’ filter

and L  is the likelihood ratio for the manoeuvre given by:

^  =  {  k-htjzk-i (gk/j) }  “
WVV Man

^ Non—Man

If the threshold for the likelihood ratio test statistic (t) is high the weighting of the 
‘manoeuvre’ filter will be very much greater than the corresponding ‘non-manoeuvre’ 
filter.

4 .2  Derivation of Plant Noise

The tracking performance of the GLR manoeuvre detection/correction procedure 
defined in Section 4.1 has been compared with the standard technique of adding plant 
noise to the covariance matrix to allow for the unknown target dynamics. This 
section describes the method of implementing plant noise that has been used in this 
thesis.

Adding plant noise to the covariance matrix has the effect of increasing the weighting 
applied to the latest measurements compared with the track history, thus reducing the 
smoothing period of the filter and allowing it to follow a target manoeuvre. It is 
assumed that a target manoeuvre results in complete uncertainty in the target’s 
velocity, so that the velocity elements of the covariance matrix are restored to the 
initialisation values. The position information is not initially corrupted by the target 
manoeuvre and, therefore, the position elements of the covariance matrix are retained. 
Thus, the covariance matrix associated with a target manoeuvre in Cartesian 
coordinates is given by:

2  = o
o

0  0  

0  0  

0 of 0 
0  0

where Q is the covariance matrix for a target manoeuvre.
are the variance and covariance elements for the position prior to

the manoeuvre.
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o] is the velocity variance after the manoeuvre, which have been set 

to the value at filter initialisation.

As it is assumed that the target is not manoeuvring continuously, the covariance 
matrix for an occasionally manoeuvring target becomes the weighted sum of the 
covariance matrix assuming no manoeuvre and the covariance matrix assuming that 
there has been a manoeuvre:

p'= a- y ) P +  rQ

where P' is the covariance matrix for occasional manoeuvres
P is the covariance matrix assuming no manoeuvre
Q is the covariance matrix for a manoeuvre
y  is the manoeuvre factor ( 0  < y  < 1 )

The manoeuvre factor (y) is set based on a trade-off between the degree of

smoothing required during the periods between manoeuvres and the ability of the 
filter to respond quickly to large target manoeuvres. If y  is set to zero then the filter 
will not adapt to a manoeuvre, whereas if it is set to unity then there is no smoothing. 
Section 4.3.4.1 of this thesis shows that a value of 0.005 gives a good compromise 
between these conflicting requirements.

4 .3  Monte Carlo Performance of GLR Procedure

The target manoeuvre scenarios defined in Section 4.3.1 have been Monte Carlo run 
for the GLR procedure defined in Section 4.1 and for various levels of plant noise as 
defined in Section 4.2. The runs consist of 1000 replications with identical pseudo 
random number seeds. The bearing errors have been drawn from a Gaussian 
distribution with a fixed standard deviation and zero mean.

4 .3 .1  Scenario Definition

The tracking performance of the RP tracker with the GLR manoeuvre 
detection/correction procedure and with various levels of plant noise has been 
compared in the typical tracking scenario illustrated in Figure 4.1. In all cases the RP 
tracker has been initialised as specified in Section 3.2.3.
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Observer

10 km
8

Figure 4.1 Geometry of Tracking Scenario

The scenario consists of target initially at a range of 10km, heading directly away 
from the observer at a speed of 10 m/s on a course of 045°. The observer is initially 
travelling North at 10^2 m/s. The scenario commences at update 0 and continues for 
64 updates. At updates 8, 24, 40 and 56 the observer cyclically executes 
instantaneous manoeuvres to headings of 090° and 000°, in order to zig-zag across the 
direction of the target The bearing of the target is recorded every 20 seconds with a 
bearing error standard deviation of ^  = 0.45°. The majority of the results are

presented for the case where the target executes a single manoeuvre corresponding to 
heading changes of 5°, 15° and 45° at various times during the engagement (updates 8, 
16, 24, 32, 40 and 48). The case of a multiple target manoeuvre is also considered, 
with heading changes of +15° and -15° at updates 32 and 48 respectively.

4 .3 .2  Operating Characteristics

Figure 6 shows the Operating Characteristics (OC) of the GLR procedure for target 
heading changes of 5°, 15° and 45° at update 32. The OC is a graphical presentation 
of the probability of false alarm, when there is no manoeuvre, against the median
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detection delay when a manoeuvre has occurred. The OC is parameterised by the 
GLR threshold, which in this thesis has been varied from 2.5 to 5.0 in steps of 0.5. 
Figure 6  illustrates, as would be expected, that larger target manoeuvres (45°) are 
detected after a shorter delay than smaller manoeuvres (5°) and, in particular, the 
smaller manoeuvres are only detected after subsequent observer manoeuvres. If the 
observer makes no further manoeuvres after update 32 then the smallest target 
manoeuvre (5°) is only detected with the lowest GLR threshold (2.5). With higher 
thresholds the bearing state of the Kalman Filter adapts to the observations prior to the 
detection procedure being triggered. The target manoeuvre is detected by subsequent 
observer manoeuvres, since this allows observability of the range bias induced by the 
target manoeuvre. The degree of range observability is dependent on the change in 
the bearing rate of the observer manoeuvre, as detailed in Section 5.

The false alarm rate with no target manoeuvre is tabulated in Table 4.1 for each of the 
thresholds considered. The false alarm rate is specified for each update, so that for 
1000 replications consisting of 64 updates there are 64000 false alarm opportunities. 
For a threshold of 5.0 there were no false alarms during the 1000 replications and, 
therefore, the false alarm rate assuming a Gaussian distribution has been used on the 
OC. This is a reasonable assumption, since Section 4.1.1 predicts that for zero mean 
Gaussian bearing errors the GLR detection statistic will have a Gaussian distribution. 
The false alarm rate for a Gaussian process with the corresponding threshold are 
tabulated in Table 4.1 for comparison.

Threshold Probability of False Alarm
Gaussian Process GLR Procedure

2.5 1.24 x lO- 2 2 . 0  x lO" 2

3.0 2.70 x 10-3 3.7 x 10-3

3.5 4.65 x 10- 4 4.1 x 10- 4

4.0 6.33 x 10-5 4.7 x 10-5

4.5 6.80 x 1 0 - 6 1.6x10-5

5.0 5.74 x 10-7 < 1 . 6  x 10-5

Table 4.1 : Probability of False Alarm with no Target Manoeuvre

Figure 7 shows the effect on the OC of different target manoeuvre times. Target 
manoeuvres at updates 8,24 and 40 are coincident with an observer manoeuvre and 
target manoeuvres at updates 16, 32 and 48 occur halfway between observer 
manoeuvres. It is apparent that if a target manoeuvre occurs at the same time as the
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first observer manoeuvre (update 8 ), there is a very long detection delay. After the 
first observer manoeuvre the detection delay becomes less sensitive to the time of the 
target manoeuvre, however, it should be noted that the detection delay is significandy 
smaller when the target manoeuvre is coincident with the observer manoeuvre. The 
detection delay is dependent on the degree of adaptation of the Kalman filter to the 
manoeuvre, which is related to the bearing rate error variance at the time of the 
manoeuvre. In addition, there is a lower limit on the magnitude of target manoeuvre 
that can be detected, since the manoeuvre must result in a change in the bearing rate 
which is greater than the GLR threshold multiplied by the bearing rate standard 
deviation.

Analysis of the OC for the various target manoeuvres has lead to the selection of a 
threshold of 3.0 for the GLR procedure. This value was chosen as a compromise 
between the conflicting requirements of a low probability of false alarm and a short 
detection delay. The probability of false alarm of 3.7 x 1 0 '3  ( 1  in 270 updates) was 
judged to be acceptable, since the occurrence of a false alarm is not critical, as will be 
shown in Section 4.3.6. The threshold value of t=3 has been used in all subsequent 
runs analysed in this thesis.

4 .3 .3  Contingency Tables

Table 4.2 shows the contingency table for the GLR procedure for a target heading 
change of 15° at update 32.
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Update Detection Delay Estimate 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Row

Sum

Total c.d.f.

32 1 1 1 3 104 0.0

33 81 1 1 3 14 118 1.6

34 19 8 2 1 2 2 34 152 5.4

35 17 18 13 5 1 1 55 207 11.5

36 17 22 13 25 5 4 1 1 88 295 21.3

37 12 10 12 27 161! 5 4 3 89 384 31.3

38 7 11 10 8 171! 15 3 1 72 456 39.3

39 4 5 1 5 3 12 4 7 2 43 499 44.1

40 3 5 4 3 8 10 6 2 41 540 48.7

41 11 6 1 4 1 5 7 14 20 8 6 2 85 625 58.1

42 15 10 6 7 3 9 9 15 16 43 21 8 4 1 167 792 76.8

42 11 13 12 15 3 2 2 5 15 15 32 15 12 4 1 157 949 94.3

43 6 2 5 8 2 1 2 2 7 7 4 1 3 50 999 99.9

44 1 | 1 1000 100.0

Table 4.2 : Contingency Table for a 15 Degree Heading 
Change at Update 32

The contingency table details the number of detections for each update out of the 1000 
replications. It should be noted that there are 104 detections prior to the target 
manoeuvre, which correspond to false alarms. This number is consistent with the 
expected number of 112 for a probability of false alarm of 3.7 x 10"3. The 
cumulative distribution function (cdf) excludes the false alarms and is therefore based 
on 896 replications.

The detections have been subdivided by the maximum likelihood estimate (MLE) of 
the delay. Ideally, the estimate for the detection delay would form a diagonal line 
with increasing update, so that all detections would point back to a common 
manoeuvre time. However, in Table 4.2 there is considerable scatter on the MLE of 
the delay, since the likelihood function is flat.

Table 4.3 shows the contingency table for an identical target manoeuvre but with no 
further observer manoeuvres after update 32.
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Update Detection Delay Estimate Row Total c.d.f.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Sum

32 1 1 1 3 104 0.0

33 8 1 1 1 3 14 118 1.6

34 19 8 2 1 2 2 34 152 5.4

35 17 18 13 5 1 1 55 207 11.5

36 17 22 13 25 5 4 1 1 88 295 21.3

37 12 10 12 27 16 5 4 3 89 384 31.3

38 7 11 10 8 17 15 3 1 72 456 39.3

39 4 5 1 5 3 12 4 7 2 43 499 44.1

40 3 5 4 3 8 10 6 2 41 540 48.7

41 4 2 2 1 1 3 5 18 558 50.7

42 2 1 1 3 3 10 568 51.8

43 1 1 3 3 1 1 10 578 52.9

44 1 2 1 4 582 53.3

45 1 1 2 584 53.6

46 1 1 1 1 1 2 1 8 592 54.5

47 1 2 1 2 2 8 600 55.4

48 1 2 9 12 612 56.7

49 4 1 4 2 1 1 13 625 58.1

50 1 2 1 4 4 1 1 1 15 640 59.8

51 1 3 7 2 1 4 1 3 3 25 665 62.6

52 2 1 4 5 2 6 2 2 7 31 696 66.1

53 1 2 1 4 1 1 3 2 2 3 20 716 68.3

54 2 4 5 3 2 4 1 3 3 3 30 746 71.7

55 4 1 2 2 1 8 6 1 6 1 1 1 34 780 75.4

56 4 2 3 1 7 4 6 1 4 3 6 3 1 1 46 826 80.6

57 3 2 1 2 2 5 2 2 2 1 3 1 26 852 83.5

58 3 9 1 7 4 1 1 1 2 29 881 86.7

59 2 4 1 4 1 3 1 1 17 898 88.6

Table 4.3 : Contingency Table for a 15 Degree Heading Change at 
Update 32 with No Subsequent Manoeuvres by Observer

The table illustrates that the cluster of detections after update 40 in Table 4.2 is 
induced by the observer manoeuvre. It also shows that without this manoeuvre, the 
detection delay is significantly increased and the MLE of the detection delay is poor.
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In particular, there are a significant number of replications where no detection is 
achieved.

4 .3 .4  RMS Range Errors

The RMS range error has been used as the primary measure of tracking effectiveness 
as the range error is highly dependent on the accuracy of the other states (bearing, 
bearing rate and range rate/range) and, therefore, the RMS range error is indicative of 
the overall tracking performance.

The mean and RMS of the range errors averaged across the 1000 replications have 
been calculated for each update. Outliers exceeding 3 standard deviations from the 
mean have been monitored, however, neither the number nor magnitude of the 
outliers have influenced these statistical measures.

4.3.4.1 Choice of plant noise manoeuvre factor (y)

Figure 8  compares the RMS range eiror for the GLR procedure with that for various 
levels of plant noise, when the target is non-manoeuvring. The optimum performance 
in this scenario is given by a plant noise manoeuvre factor (y) of 0.0. Increasing the y 
up to 0.05, significantly increases the RMS range error, particularly after observer 
manoeuvres. The plant noise places a limit of the steady state RMS range error that 
will be achieved after an observer manoeuvre. In contrast, the RMS range error for 
the GLR procedure is not significantly worse than for y=0.0. The slightly higher 
RMS range error is associated with a small number of false alarm which start new 
filters, since this inflates the RMS range error when calculated over all filters. It 
should be noted that the original non-manoeuvre filter will remain even after a false 
alarm, and the RMS range enror for this filter will be identical to that for y=0.0.

Figures 9 to 11 compare the RMS range error for the GLR procedure with that for 
various values of y, when the target undertakes heading changes of 5°, 15° and 45°. 
Figure 9 shows that even for a very small heading change (5°), a non-zero plant noise 
is required if the RMS range error is not to be divergent after the target manoeuvre at 
update 32. In this scenario the best RMS range error is given by a y of 0.0005. The 
RMS range error for the GLR procedure initially diverges after the target manoeuvre, 
however, after a median delay of 13 updates the manoeuvre detection procedure is 
triggered and the RMS range error reduces to the level for a y of 0.0005. The RMS 
range error for y of 0.005 and 0.05 are unaffected by such a small heading change.
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Figure 10 shows that for a 15° heading change the RMS range error for the GLR 
procedure reduces rapidly when the manoeuvre detection procedure is triggered 
approximately 9 updates after the target manoeuvre. Although the RMS range error 
for a y of 0.05 is less divergent than for the GLR procedure or for a y of 0.005, the 
steady state range error is significantly greater than these two.

Figure 11 shows that for a large target manoeuvre (45° heading change) the RMS 
range error for the GLR procedure is very much less than for any of the plant noise 
values. A y of 0.05 is the least divergent of the plant noise values, however, the 
steady state RMS range error for this value is very much greater than for the GLR 
procedure. It should be noted that, although the RMS range errors for y of 0.005 and 
0.05 are highly divergent immediately after the target manoeuvre, the steady state 
values are recovered when the observer makes a subsequent manoeuvre at update 56.

Analysis of the RMS range errors for the various target manoeuvres ranging from a 
small 5° heading change to a very large 45° heading change, and also the non­
manoeuvring target case, has lead to the selection of a y of 0.005 for undertaking 
further comparison with the GLR procedure. This value was chosen as a 
compromise between the conflicting requirements of a rapid response to a target 
manoeuvre, which requires a high plant noise value, and a low steady state RMS 
range error, which requires the plant noise value to be small.

One option which has not been assessed in this thesis is to run different levels of plant 
noise in parallel with independent filters, as proposed by McAulay and Denlinger 
(1973) [115] and several others since. A weighted mean could then be generated 
from these independent filters using a similar method to that used to compress the 
multiple filters of the RP tracker. The remaining comparisons in this paper are based 
on a single level of y=0.005 and the analysis of running multiple plant noise levels in 
parallel is left for further work.

4.3.4.2 Effect of target manoeuvre time

Figures 12 to 17 compare the RMS range error for the GLR procedure (t=3) with that 
for a plant noise manoeuvre factor (y) of 0.005, when the target undertakes at 15° 
heading change at various times. Figures 12 and 13, which correspond to target 
manoeuvres at updates 8  and 16, show that the GLR procedure is less effective than 
the addition of plant noise when the detection delay is long. For these two figures the 
corresponding median detection delays are 19.5 and 10.2 updates respectively.
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When the detection delay is long the likelihood function for the manoeuvre delay 
becomes flat and estimate of the magnitude of the manoeuvre is poor. Under these 
conditions the accuracy of the manoeuvre correction is poor and the RMS range error 
is enlarged.

Figures 16 and 17, which correspond to target manoeuvres at updates 40 and 48 with 
median detection delays of 3.6 and 5.6, show that the GLR procedure is much more 
effective where the manoeuvre is detected quickly. This is characterised by a low 
RMS range error after manoeuvre correction, due to the better estimate of the time and 
magnitude of the manoeuvre.

4.3.4.3 Multiple Target Manoeuvres

Figure 18 compares the RMS range error of the GLR procedure (t=3) with that for a 
plant noise manoeuvre factor (y) of 0.005, when a target heading change of 15° at 
update 32 is followed by a further -15° heading change at update 48 to restore the 
original course. After update 48 the RMS range error for the GLR procedure is only 
slightly larger than if no further manoeuvre is undertaken, whereas the RMS range 
error for a y of 0.005 is gready increased. This figure is an indication that the GLR 
procedure is robust to multiple target manoeuvres. Extensive testing of the GLR 
procedure for a range of multiple target manoeuvre scenarios is an area of further 
work.

4.3 .5  Normalised Range Errors

The RMS normalised range errors for a non-manoeuvring target and for target 
heading changes of 5°, 15° and 45° are shown in Figures 19 to 22, for the GLR 
procedure and for various levels of plant noise. The normalised range errors have 
been generated by dividing the absolute error by the standard deviation (s.d.) estimate 
from the covariance matrix. These normalised errors indicate whether the absolute 
range error is in keeping with the estimated standard deviation, since the normalised 
error should be consistent with the N[0,1] Normal distribution. The 2 s.d. error 
limits on the normalised RMS values based on 1000 replications is given by the chi 
squared distribution as 0.05.

The figures illustrate that the range errors for the GLR procedure are consistent with 
the standard deviation estimate, except during the interval between the target 
manoeuvring and the manoeuvre being detected. After the manoeuvre has been 
detected the range errors become consistent with the standard deviation estimate once

Page 64



again. In contrast the range errors for the various levels of plant noise are generally 
inconsistent with the standard deviation estimate. During non-manoeuvring periods 
the covariance matrix is being artificially inflated to allow the filter to response to a 
manoeuvring target, resulting in a RMS normalised range error which is considerably 
less than 1.0. However, when the target makes a large manoeuvre the RMS 
normalised range error may become considerably greater than 1 .0 .

Thus, the standard deviation estimate for the GLR procedure provides reliable 
information for defining a confidence region for the target The same is not true when 
plant noise is added, since the standard deviation estimate may be over or under 
confident depending on the relative magnitude of a target manoeuvre.

4 .3 .6  Typical Track Output

Table 4.4 shows a typical track output for the GLR procedure when the target makes 
a 15° heading change at update 32.
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Update Parameter True Estimate

Mean 1 2 3 4 5 6 7 8 9

0 Range (km) 

s.d.(km) 

Weighting

10.00 3.01

4.03

0.75
0.14

0.125

1.50

0.29

0.125

3.00

0.58
0.125

6.00

1.15
0.125

12.00

2.31

0.125

24.00
4.62

0.125

48.00
9.24

0.125

96.00
18.48

0.125

9 Range (km) 

s.d. (km) 
Weighting

10.10 10.50
2.42

7.75
1.71

0.059

10.52

1.93
0.902

21.15
3.73

0.038

32 Range (km) 
s.d. (km) 

Weighting

10.00 9.59
0.53

9.59
0.53
1.000

35 Range (km) 

s.d. (km) 
Weighting

10.01 9.64

0.46

9.64

0.46
1.000

36 Range (km) 

s.d. (km) 
Weighting

10.02 9.77
0.59

9.02
0.37

0.009

9.78
0.58

0.991

41 Range (km) 

s.d. (km) 
Weighting

10.11 9.98

0.73

8.12
0.24

0.001

9.98
0.72

0.999

42 Range (km) 

s.d. (km) 
Weighting

10.08 9.83
0.69

9.83
0.69
1.000

48 Range (km) 
s.d. (km) 

Weighting

9.93 9.88
0.58

9.88
0.58
1.000

Table 4.4 : Range Estimate Track Output for a 15 Degree 
Heading Change at Update 32 (Typical)

The table shows that the RP tracker is initialised with 8  independent filters 
corresponding to ranges of 0.75km to 96km. After the observer manoeuvre at update 
8  the likelihood of filter 5, which is closest to the true range value, quickly dominates, 
and by update 32 it is the only filter above the RP threshold. In this example the 
target manoeuvre at update 32 is detected by the GLR procedure at update 36 and a 
new filter (9) is initialised. The likelihood of the new filter is dependent on the
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likelihood ratio of the GLR test. By update 42 the likelihood of the original “non- 
manoeuvre* filter (5) has fallen below the RP threshold and is removed.

Table 4.5 shows an example of a manoeuvre detection where there has been a false 
alarm at update 24 prior to the target manoeuvre at update 32.

Update Parameter Tme Estimate

Mean 1 2 3 4 5 6 7 8 9 10 11

0 Range (km) 

s.d. (km) 
Weighting

10.00 3.01
4.03

0.75
0.14

0.125

1.50
0.29

0.125

3.00
0.58

0.125

6.00
1.15

0.125

12.00
2.31

0.125

24.00
4.62

0.125

48.00
9.24

0.125

96.00

18.48
0.125

9 Range (km) 
s.d. (km) 

Weighting

10.10 10.58
2.58

8.17
1.87

0.135

10.92
2.06
0.838

21.20
3.73

0.027

23 Range (km) 

s.d. (km) 
Weighting

10.10 9.88
0.45

9.88
0.45
1.000

24 Range (km) 
s.d. (km) 

Weighting

10.13 9.97
0.83

10.77
0.50

0.004

9.97
0.83

0.996

32 Range (km) 
s.d. (km) 

Weighting

10.00 9.40
0.63

9.44

0.50
0.528

9.35
0.73
0.473

41 Range (km) 

s.d. (km) 
Weighting

10.11 7.92

0.40
7.98
0.24

0.441

7.87
0.49

0.559

42 Range (km) 

s.d. (km) 
Weighting

10.08 9.81

1.75

8.93
1.09

0.249

10.14

1.88

0.751

48 Range (km) 

s.d. (km) 
Weighting

9.93 10.36

2.46

9.00

1.39
0.165

10.68

2.61
0.835

64 Range (km) 
s.d. (km) 

Weighting

9.92 9.87
0.34

9.89
0.34

0.185

9.86
0.34

0.815

Table 4.5 : Range Estimate Track Output for a 15 Degree 
Heading Change at Update 32 (with False Alarm at Update 24)
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The likelihood of the false alarm filter (9) does not quickly dominate the original filter 
(5), but instead the likelihood of the original filter is restored. The effect of the false 
alarm is to delay the correct detection of the target manoeuvre until update 42. At this 
time, two further ‘manoeuvre* filters ( 1 0  and 1 1 ) are added, with likelihoods 
sufficiently large that the original filters fall below the RP threshold and are removed. 
Both of these filters converge on the true range value and either could be removed 
without loss of accuracy. The rationalisation of multiple similar filters was proposed 
in Peach (1995) [30] and remains an area of future work. However, this is not an 
urgent problem since it only results in an increase in the processing requirement

Figure 23 shows the normalised bearing error for a single replication with a 15° target 
heading change at update 32. The bearing error is normalised by the bearing 
measurement standard deviation (0.45°). In this replication the manoeuvre is detected 
at update 36 and the bearing estimate is corrected so that it is close to the measured 
bearing. It should be noted that the detection delay in this replication is significantly 
less than the median for this scenario ( 8  updates).
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5 . OPTIMUM OBSERVER MANOEUVRES

The aim of this section is to derive recommendations for the time and magnitude of an 
observer manoeuvre, in order to produce optimum (minimum variance) range 
estimates. One method of quantifying this optimum is by evaluation of the Cramer 
Rao Lower Bound (CRLB). Unfortunately, the CRLB can only be evaluated 
analytically for relatively simple tracking scenarios, such as the special case of 
symmetric own ship manoeuvres as reviewed in Section 5.1.

An alternative method of predicting the tracking performance for a general observer 
manoeuvre is developed in Section 5.2. A simple analytic expression is derived for 
the range error lower limit associated with a manoeuvre, which can be used to specify 
the manoeuvre time to give optimum range observability.

5 .1  Cramer Rao Lower Bound for Bearings Only Tracking

Nardone, Lingren and Gong (1984) [16] developed the Cramer-Rao Lower Bound 
(CRLB) for the bearings only TMA problem, based on inversion of the information 
matrix for an ideal filter. They generated analytic expressions for the variance of the 
Cartesian state estimates for the special case of symmetric own ship manoeuvres 
against a target moving away in a radial direction, as shown in Figure 5.1.

Target

Observer.

Figure 5.1: Geometry of Symmetric Own Ship Manoeuvres
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The variance of the Cartesian state estimates at update k are given by the following 
equations, where the axes have been rotated so that the y-axis aligns with the radial 
direction.

of 4 a 2  

R2 ”  k

°y _
R2 , Ad2k -----

12

o i o 2

"  p H  
12

<7?y _
e T- ^ P{L)

12 12 v '

where a 2  is the variance of the bearing measurement
R is the range
T  is the time between updates
k is the number of updates
L is the number of legs
A 9 is the angular baseline associated with observer manoeuvres, as

shown in Figure 5.1, given by:

A0 = iL
R

and b is the manoeuvre baseline also shown in Figure 5.1

It is assumed in the deviation that observations are equally spaced in time and that the 
range to baseline ratio is large so that A6 is small. The function P(L) is given by the 
following expression, which is approximately unity when the number of legs is 
greater than two.

P(L) = 1+ - I S 2 -  12 IT*
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The CRLB for a modified polar co-ordinate system can be calculated from those for a 
Cartesian co-ordinate system as follows:

It should be noted in these equations that the bearing and bearing rate variances are 
independent of the angular baseline (AO).

These equations indicate that the optimum manoeuvre strategy, in order to minimise 

the range variance, is to maximise the angular baseline (AO) and to maximise the 
number of updates (k). This result is in agreement with Allen and Blackman (1991) 
[31] who stated that optimum passive ranging is achieved if the observer manoeuvres 
to maximise the displacement perpendicular to the line of sight, with the highest 
measurement sampling rate. They also stated that the ranging accuracy is more 
dependent on the baseline geometry than on the sampling rate, which is confirmed by 
these equations.

It should be noted, however, that these expressions for the CRLB only relate to the 
special case of symmetric observer manoeuvres against a target moving in a radial 
direction. In more general scenarios the CRLB does not take a simple analytic form 
and, therefore, provides little insight into the range observability problem, or what 
constitutes an optimum manoeuvre strategy. The next section uses a geometric 
approach to investigate the range observability for a general observer manoeuvre.

R2 R2
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5.2  Geometric Derivation of the Range E rror Lower Limit

Range observability can be considered geometrically as synthetic triangulation of the 
bearing from the current observer position (02) and the bearing from the virtual 
observer position had it not manoeuvred (02), as shown in Figure 5.2.

0 2

Virtual
Observer

Taiget *

Observer

Figure 5.2 : Observer Manoeuvre Geometry

Assuming that the target range is long compared with the manoeuvre baseline, which 
is usually the case, then the angle 62 -  02 is small and the target range can be 
estimated by:

R  = ----------e' -  e2

where b is the manoeuvre baseline

The variance of the range estimate is approximately given by:
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where it is assumed that the bearing estimates are independent with zero mean error. 
The assumption of independence is valid provided that there are sufficient updates 
after the observer manoeuvre.

For a long range target the bearing rate during the observer straight legs before and 
after a manoeuvre can be considered constant, such that:

e'2 =  0,+Te,
@2 = + ^  2̂

and

where T  is the time since the manoeuvre
is the bearing at the time of the manoeuvre 

0 j is the bearing rate prior to the manoeuvre 
G2 is the bearing rate after the manoeuvre

The variance of the range estimate is then given by:

It is apparent in this equation that as the time since the manoeuvre (T)  increases the 
range variance will initially reduce. However, eventually a plateau is reached, for 
(t 2g 2 »  Ggt + g\2 j , when the variance of the range estimate is given by:

This expression provides a lower limit on the range variance for a given change in the 
bearing rate. To reduce the range variance below this limit the observer must perform
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additional manoeuvres. The time taken for the range standard deviation to reduce to 
within 1 0 % of this limit is given by:

where it has been assumed that the bearing variance before and after the manoeuvre 
are approximately equal.

The expressions for the range error lower limit and the time to approach this limit 
allow the observer to develop optimum manoeuvre strategies. An optimum 
manoeuvre strategy would require the observer to manoeuvre after a time T10qb in a

direction which maximises the change in the bearing rate (perpendicular to the line of 
sight). It has been found that the optimum period between manoeuvres is initially 
small, but increases as the range variance reduces.

It is important to note that the expressions derived in this section for the range error 
lower limit and the optimum time between manoeuvres are not dependent on the 
geometry being the special case of symmetric own ship manoeuvres with the target 
moving in a radial direction. Therefore, they are more general than the CRLB given 
in Section 5.1.

5 .3  Monte Carlo Analysis

The scenario defined in Section 5.3.1 has been Monte Carlo run for various observer 
manoeuvres, using the RP tracker as defined in Section 3.2.3. The runs consist of 
1000 replications with identical pseudo random number seeds. The bearing errors 
have been drawn from a Gaussian distribution with a fixed standard deviation and 
zero mean.

The mean and RMS of the range errors averaged across the 1000 replications have 
been calculated for each update. Outliers exceeding 3 standard deviations from the 
mean have been monitored, however, neither the number nor magnitude of the 
outliers have influenced these statistical measures.
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5 .3 .1  Scenario Definition

The effect of observer manoeuvres has been investigated in the typical tracking 
scenario shown in Figure 5.3.

Target

Observer

Figure 5.3: Geometry of Tracking Scenario

The scenario consists of a target at a range of 10km heading directly away from an 
observer at a speed of 10 m/s on a course of 045°. The observer is initially travelling 
at angle <j> to the target bearing. At updates 8, 24, 40 and 56 the observer executes 
instantaneous manoeuvres in order to zig-zag across the direction of the target. The 
bearing of the target is recorded every 20 seconds with a bearing error standard 
deviation of = 0.45°. The speed of the observer has been chosen so that the

observer does not close range on the target.

5 .3 .2  Comparison with CRLB

Figures 24 to 27 compare the RMS bearing, range, bearing rate and range rate divided 
by range error with the CRLB derived in Section 5.1, for various observer heading 
offsets (<{>), with the target at an initial range of 10km. The figures show that the
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RMS error for the RP tracker approaches the CRLB in all the scenarios considered. 
The oscillations in the RMS levels are due to cross-correlation effects between the 
states, associated with the target being at finite range. The reference curve for the 
CRLB does not contain these oscillations, since it has been derived assuming that the 
target is at long range (A0 is small) such that these cross-correlation effects are 
minimised.

Figures 24 and 26 illustrate that the bearing and bearing rate error are independent of 
the magnitude of the observer manoeuvre and are only a function of the number of 
updates, as predicted by the CRLB. The range and range rate divided by range error 
(Figures 25 and 27) are sensitive to the magnitude of the observer manoeuvre, also as 
predicted by the CRLB.

Figures 28 and 29 compare the RMS range error with the CRLB for initial target 
ranges of 22 km and 2.2 km, and show that the RMS range error asymptotically 
approaches the CRLB in both scenarios. The oscillations in RMS levels noted above 
are even more apparent for the 2 . 2  km scenario, due to the violation of the long range 
assumption.

5.3.3. Comparison with Range Error Lower Limit

Figures 30 to 33 compare the RMS range error with the range error lower limit, 
derived in Section 5.2, for various observer manoeuvres and with various initial 
target ranges. The results show that the range error lower limit provides a good 
prediction of the range accuracy that will be achieved during an observer leg. It is 
apparent that the range accuracy improves for larger magnitude observer manoeuvres 
and with the target at close range. The improvement is dependent solely on the 
change in the bearing rate associated with the observer manoeuvre, since the bearing 
rate variance is independent of the magnitude of the observer manoeuvre, and is only 
a function of the number of updates, as shown in Section 5.3.2.

The RMS range error is below the range error lower limit for the second leg (updates 
8  to 24), since the initial range rate estimate for the tracker is equal to the true value of 
zero. Thus, the range error is artificially low during the second leg, since this would 
be inflated by the initial range rate error. During subsequent legs the range rate 
becomes independent of the initial estimate and the range error approaches the lower 
limit
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Table 5.1 tabulates the predicted number of updates for the range error to fall to 
within 1 0 % of the lower limit.

Manoeuvre
Time

2 . 2  km 1 0  km 2 2  km

15° 30P 45° eop 15° 30P 45° 6 (P 15° 30° 45° 60P
8 5 6 6 8 13 8 5 5 14 13 9 6

24 1 2 13 17 25 14 1 2 1 2 13 31 19 15 13
40 18 2 1 27 41 18 18 18 19 28 2 1 19 18
56 25 30 42 60 2 2 24 25 26 27 25 24 24

Table 5.1 : Time for Range Error to Fall to Within 
10% of Lower Limit (Updates)

The table illustrates that the observer manoeuvre strategy in these scenarios is not 
optimum, since the manoeuvre interval should vary between legs. In particular, the 
interval should be short during the early legs and should lengthen in subsequent legs, 
as the range error decreases. The table also shows that for a target range of 2.2 km 
the fifth leg, after update 56, provides insufficient time for the range error to reduce to 
the lower limit.

The range error lower limit and the time to approach this limit provide useful tools in 
developing optimum manoeuvre strategies. An optimum manoeuvre, to minimise the 
range variance, consists of manoeuvring perpendicular to the line of sight, in order to 
maximise the change in the bearing rate. After a period defined by r 10* no further

benefit will result from the manoeuvre and another manoeuvre is required if the range 
variance is to be reduced. The time between these manoeuvres will initially be short, 
but this increases as the range variance reduces. If no further manoeuvres are 
undertaken then the range variance will increase gradually due to uncertainty in the 
range rate.

The range error lower limit also provides an indication when a desired range variance 
is unrealistic, due to the target being at too great a range. Under these circumstances 
the observer will have to close range on the target if the desired range variance is to be 
achieved.

Scenarios consisting of optimum manoeuvre strategies have not been investigated in 
this thesis and remains an area of further work.
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6 CONCLUSIONS

6 .1  Range Parameterised Tracker

The new tracking approach, referred to in this paper as the Range Parameterised (RP) 
tracker, has been shown to give considerably better tracking performance in a typical 
scenario than the Modified Polar (MP) or Cartesian (C) trackers. In particular, the 
RP tracker gives significandy lower range errors than the other trackers, and the 
range errors are consistent with the standard deviation estimate derived from the 
covariance matrix. The RP tracker is stable even under adverse tracking conditions, 
such as when the bearing rate is very high or near zero, and there is no requirement 
for limits on the state estimates in order to prevent divergent behaviour. In addition, 
if the low likelihood filters are removed, the tracker is no more computationally 
intensive than the MP tracker.

The major advantage of the RP tracker over the MP or C trackers is that it divides the 
large prior range uncertainty region into a small number of filters, each with a low 
coefficient of variation. This allows a more natural implementation for the prior 
knowledge of the target velocity, which prevents filter instability and can allow the 
range to be inferred even before the first observer manoeuvre. It should be noted, 
however, that much of the instability previously reported for the C tracker can be 
prevented by setting appropriate initialisation conditions as proposed in Appendix A.

6.2 GLR Manoeuvre Detection / Correction Procedure

The RP tracker has been extended to allow for manoeuvring targets by adding a 
manoeuvre detection and correction procedure based on a Generalised Likelihood 
Ratio (GLR) test. The tracking performance of the GLR procedure has been 
compared with the standard technique of adding plant noise to allow for unmodelled 
target dynamics. This comparison has illustrated that the GLR procedure provides 
better tracking performance before and after a target manoeuvre and, in particular, the 
track estimates for the GLR procedure are consistent with the estimated covariance 
matrix. The GLR procedure also generates a Maximum Likelihood estimate of the 
time and magnitude of the manoeuvre.

A GLR threshold of 3.0 has been found to give a good compromise between a 
reasonably low false alarm rate (3.7 x 10"4 per update) and a short detection delay for 
typical target manoeuvres. The selection of a particular threshold is not critical as the 
GLR procedure is robust to false alarms, since the weighting for an additional filter
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representing an erroneous target manoeuvre will be rapidly reduced to close to zero 
and the filter will be discarded. Therefore, the penalty of a false alarm is only an 
increase in computation and not a long term reduction in tracking performance.

6.3 Optimum Observer Manoeuvres

The tracking performance of the RP tracker has been shown to approach the Cramer 
Rao Lower Bound (CRLB) for the special case of symmetric observer manoeuvres. 
A range error lower limit associated with a manoeuvre has been derived for more 
general scenarios, and this has been shown to give a good prediction of the RP 
tracker RMS range error. The simplicity of the expression for the range error lower 
limit allows it to the used to specify criteria for the time and magnitude of observer 
manoeuvres to give optimum range observability.
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Figure 1: RMS Range Error for an Initial Target Range of 1km
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Figure 2 : RMS Range Error for an Initial Target Range of 2.2km
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Figure 3 : RMS Range Error for an Initial Target Range of 10 km
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Figure 4 : RMS Range Error for an Initial Target Range of 22 km
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Figure 5 : RMS Range Error for an Initial Target Range of 100 km
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Figure 6 : Operating Characteristics for Various Target Manoeuvres at Update 32 
(b = No Further Observer Manoeuvres)
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Figure 7 : Operating Characteristics for a 15 Degree Target Manoeuvre at Various Updates
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Figure 8 : RMS Range Error for a Non-Manoeuvring Target
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Figure 9 : RMS Range Error for a 5 Degree Target Manoeuvre at Update 32
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Figure 10 : RMS Range Error for a 15 Degree Target Manoeuvre at Update 32
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Figure 11: RMS Range Error for a 45 Degree Target Manoeuvre at Update 32
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Figure 12 : RMS Range Error for a 15 Degree Target Manoeuvre at Update 8
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Figure 13 : RMS Range Error for a 15 Degree Target Manoeuvre at Update 16
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Figure 14 : RMS Range Error for a 15 Degree Target Manoeuvre at Update 24
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Figure 15 : RMS Range Error for a 15 Degree Target Manoeuvre at Update 32
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Figure 16 : RMS Range Error for a 15 Degree Target Manoeuvre at Update 40
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Figure 17 : RMS Range Error for a 15 Degree Target Manoeuvre at Update 48
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Figure 18 : RMS Range Error for 15 Degree Target Manoeuvres at Updates 32 and 48
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Figure 19 : RMS Normalised Range Error for a Non-Manoeuvring Target

0.5

6448 5632 40248 160

------ ■— T = 3

— o — ii o o

------ ♦— 7=0.0005

------ 0 — 7=0.005

------ A— 7=0.05

- 1.0

Update



Figure 20 : RMS Normalised Range Error for a 5 Degree Manoeuvre at Update 32
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Figure 21: RMS Normalised Range Error for a 15 Degree Manoeuvre at Update 32
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Figure 22 : RMS Normalised Range Error for a 45 Degree Manoeuvre at Update 32
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Figure 23 : Normalised Bearing Error for a 15 Degree Manoeuvre at Update 32
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Figure 24 : RMS Bearing Error for an Initial Target Range of 10 km
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Figure 26 : RMS Bearing Rate Error for an Initial Target Range of 10 km
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Figure 27 : RMS Range Rate / Range Error for an Initial Target Range of 10 km
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Figure 28 : RMS Range Error for an Initial Target Range of 22 km
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Figure 29 : RMS Range Error for an Initial Target Range of 2.2 km
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Figure 30 : RMS Range Error for a 15 Degree Heading Offset
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Figure 31: RMS Range Error for a 30 Degree Heading Offset
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Figure 32 : RMS Range Error for a 45 Degree Heading Offset
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Figure 33 : RMS Range Error for a 60 Degree Heading Offset
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A . IMPROVED INITIALISATION PROCEDURE

This appendix shows that the Kalman filter range estimate in a bearings only tracking 
application is highly dependent on the initialisation assumptions for the velocity 
estimate and, in particular, that the range estimate is different when the filter is 
configured in Cartesian and modified polar coordinates. In addition, it demonstrates 
that the adverse filter behaviour previously reported for the Cartesian Kalman filter 
(Aidala and Hammel (1983) [10]) can be minimised by initialising the filter so that 
the velocity estimate is equivalent to a zero bearing rate, as used by lingren and Gong 
(1978) [21] for the Pseudo Linear filter.

A . l  Cartesian Coordinates

Nardone and Aidala (1981) [11] proved mathematically that prior to an observer 
manoeuvre the range state of the Kalman filter is not observable directly from the 
bearing observations. However, the range state may be inferred from observations 
based on the target velocity estimate at initialisation. This pseudo measurement of the 
range state is given by:

where V0 is the tangential component of the relative target velocity estimate at 
initialisation, with variance cj}g 

0  is the observed bearing rate

The variance of the pseudo measurement is given by:

where the variance of the observed bearing rate is assumed to be small.

Therefore, the initial range estimate (Rq) will be updated even during the non- 

observable period prior to the first observer manoeuvre, based on the pseudo range 
measurement. In addition, the range estimate (R)  will change due to the estimated 
range rate (R)  which can be inferred from the observed bearing rate (0 ) and rate of 
change of bearing rate ( 0 ) as:
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However, in this section it is assumed that the range rate is zero, in order to simplify 
the analysis. Thus the range estimate generated by the Kalman filter is only a 
combination of the initial range estimate ( R q )  and the pseudo range measurement.

Ho and Lee (1964) [57] proved mathematically that the Kalman filter, with 
independent Gaussian noise, generates a Least Squares Estimate (LSE) as the 
variance weighted sum of the prior estimate and observation, such that:

—  = * 0  +
0 *

i _ i i
<4 ~ <  + < 4

where Rq is the initial range estimate with variance cr̂ o

Substituting for Rm and <7 ^  leads to the following expressions for the range estimate 

and variance of a Cartesian Kalman filter:

R = *o Gy0 + <
6 2 a t  + o i

c 2 = —
6 2 o i  + a t

In order to give satisfactory operation of the Kalman filter during the non-observable 
period prior to the first observer manoeuvre, the range estimate should remain 
positive and should be of the same order of magnitude as the initial range estimate. It 
is apparent in the above expression that if the tangential velocity estimate at 
initialisation (V0) is large and is of opposite sign to the observed bearing rate, such

that:



then the range estimate will become negative, and this usually precipitates failure of 
the tracker.

The approach adopted in this thesis is to set the initial velocity estimate equal to the 
observer velocity, such that V0 is zero, since this prevents the range estimate

becoming negative regardless of the sign or magnitude of the observed bearing rate. 
The range estimate is then given by:

R  =  -------& -------
□2 *01 + & —  

a t

2 Ojla i  = -------^
i  + e > * L  

%

The reduction in the range estimate from the initialisation value will be small 
provided that the coefficient of variation for the range estimate is small compared with 
the coefficient of variation for the tangential velocity estimate:

O’,«
R |fl0|

A .2 Modified Polar Coordinates

Applying the analysis of the previous section to a Kalman filter configured in 
modified polar coordinates leads to pseudo measurement of the j  state as:

-L = A
V,

where V0 is the tangential component of the relative target velocity estimate at 
initialisation, with variance o jo

6 is the observed bearing rate 

The variance of this pseudo measurement is given by:

Page 122



where again it is assumed that the variance of the observed bearing rate is small.

The Kalman filter estimate is given by the variance weighted sum of the prior estimate 
and pseudo measurement derived from the observations, such that:

j_ _L  _ L
... ft , — R° , 4. ..

R Rq Rm

° i  ~  ° 1  + ° 1
R Rq Rm

where is the initial estimate with variance

Substituting for and <j \_ leads to the following expressions for the j  estimate and 

variance of a Modified Polar Kalman filter

As in the case of the Cartesian Kalman filter, if the tangential velocity estimate at 
initialisation ( V0) is large and is of opposite sign to the observed bearing rate, such

that:

V 3yo
e

- 1

Rn
Rn

then the range estimate for the Modified Polar Kalman filter will become negative, 
and again this usually precipitates failure of the tracker.

The approach adopted in this thesis is to set the initial velocity estimate equal to the 
observer velocity, such that V0 is zero, since this prevents the range estimate
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becoming negative regardless of the sign or magnitude of the observed bearing rate. 
The range estimate for the Modified Polar Kalman filter is then given by:

R ~ R o

° i  =
g  r0

This initialisation procedure for the Modified Polar Kalman filter is the same as used 
by Aidala andHammel (1983) [10].
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B . DERIVATION OF GLR PROCEDURE

This appendix derives the Generalised Likelihood Ratio (GLR) procedure which has 
been used in Section 4 of this thesis to detect a target manoeuvre and, subsequently, 
to correct the state vector for the manoeuvre. The derivation uses a similar approach 
to Korn, Gully and Willsky (1982) [35] for the detection statistic. However, the 
method of correction proposed in this thesis is slightly different, and has proved to be 
more robust for the detection of small manoeuvres where the peak in the likelihood 
function for the estimate of the time of the manoeuvre is small.

B . l  Effect of Manoeuvre on System Model

A target manoeuvre at update j  is characterised by an additive change a klj to the 

state vector at time k given by:

where Xk/0 is the true state vector at update k when there is no manoeuvre 
Xu,  is the true state vector at update k for a manoeuvre at update j  
a klj is the additive change at update k for a manoeuvre at update j

The measurement vector associated with the manoeuvre is given by:

where Xu, is the measurement vector at update k for a manoeuvre at update j  
Mk is the measurement matrix
Nk is the measurement noise with zero mean and covariance matrix S* k

The innovation vector (Ik/j) associated with the manoeuvre is defined by:

where Xk/j is the forecast state vector at update k for a manoeuvre at update j

%-k/j — Xm  + ocklj (* > j )

Xu, = Xkl! +
Equation B.l

Equation B.2

The Kalman filter update equations will adapt the estimated state vector (Xklj) to the 

manoeuvre so that, at update k , it is given by:
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^ k / j  ~  * k,0 "*■ P kf j

A
where X*,o is the estimated state vector at update k for no manoeuvre

pklJ is the change in the state vector estimate, as defined by this equation

The state vector forecast is related to the previous state vector estimate by the 
following non-linear state transition equation:

Xk/j — fk-l (- k̂-l/j) =  /* -l(* * -l/0 +  Pk-llj)

where f k_: is the non-linear state transition function.

The state transition function can be linearised around the estimated state using a first 
order Taylor expansion, since it is assumed that the change in the state vector estimate 
prior to manoeuvre detection is small. The linearised state transition equation is given 
by:

X ku ~  fk-i(Xk-w) Fk-i Pk-ifj = Xk,o+ Fk-\ Pk-iij EquationB.3

where Fk_x is the Jacobian matrix of f k_x.

Combining Equations B.l, B.2 and B.3 gives the innovation vector associated with 
the manoeuvre as:

^ktj =  M k (Xk/0 +  cck/j) +  N k — M k (Xk/0 +  Fk_x Pk_uj)

=  M k X k/0 +  N k — M k X k/0 +  M k ( cck/j — Fk_x P k-u j)

=  ^k/0 +  ( & k/ j  ~  F k_! P t - l f j )

where Ik/0 is the innovation vector for no manoeuvre.

The difference between the innovation vectors when there has been a manoeuvre and 
when there has been no manoeuvre is given by:

Pk/j = ^kij ~Ik/o = (cckfj — Fk_i py-uj) Equation B.4

This parameter is also the expected innovation for a target manoeuvre, since the 
expected innovation for no manoeuvre is zero.
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The parameter Pklj» which is the difference between the state vector estimates with 

and without a manoeuvre, can be calculated recursively using the Kalman updating 
equations, given in Section 1.2:

where Kk is the Kalman smoothing parameter

At the time of the manoeuvre the recursion is initialised with Pj/j -  o and pJ+l/J is set 
using Equation B.4.

B .2  Likelihood Ratio Test

The likelihood ratio test, performs a test of the hypothesis that a manoeuvre occurred 
at update j  (Y,. = YUJ} against the null hypothesis that no manoeuvre occurred at
update j  (Yi = Yi/0). The log-likelihood ratio (sk) associated with this test being 

earned out at update k is given by:-

where Yi is the measurement vector at update i

It is assumed in the log-likelihood ratio that the measurements are independent If, in 
addition, it is assumed that the process is Gaussian, then the log-likelihood ratio can 
be recast in terms of the likelihood of the innovation sequence:

The Gaussian assumption is a reasonable provided that the bearing measurement 
errors are Gaussian and that the EKF linearisation errors are small.

where /, is the innovation vector at update i
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The probability density function for the innovation sequence is given by:

when there is no manoeuvre and by:

P^ ‘ = ̂  = 1/(2 ^d e t(V j) eXPl “ ^ ̂  ~ Pu')  V‘ ' ̂

when a manoeuvre occurs at update j .

where r  is the dimension of the innovation vector
Vt- is the covariance matrix for the innovation vector given by:

V, = M. P: M j  + S:

Thus, the log-likelihood ratio becomes:

* =  - \ i  [b-pujfvfb-puj)-*!v-'i,2 i=j+1

s>= i  p I , v-1 /, -  \  t  p !,j vr1 pi/j
i- j+ l «=j+1

Equation B.5

B .3  Generalised Likelihood Ratio Test

The Generalised Likelihood Ratio (GLR) test extends the applicability of the 
likelihood ratio test, by replacing unknown parameters with their Maximum 
Likelihood Estimates (MLE). In the case of a manoeuvring target the unknown 
parameters are the manoeuvre magnitude and the time of the manoeuvre. The MLE 
for the manoeuvre time is determined by calculating the log-likelihood ratio for all 
manoeuvre times (k -  h < j  < k - 1 ) and choosing the maximising value.

The MLE for the manoeuvring magnitude is determined by expressing the log- 
likelihood ratio in terms of the known dynamic profile for a unit manoeuvre ( ocUj)

scaled by the unknown manoeuvre magnitude (U ). In the case of the bearings only 
tracking problem this corresponds to stating the dynamic profile of the manoeuvre is a
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ramp change in the bearing observations, which is caused by a step change in the 
bearing rate of unknown magnitude U .

Decomposing the change parameters into unitised parameters scaled by the unknown 
magnitude U , allows the log-likelihood ratio in Equation B.5 to be rewritten as:

2  *
= -  - ^ r l  PZj VT'Pvj

i=y+l ^  i=/'+l
Equation B . 6

where the unitised parameters a ilJ9 PUj and pUJ are given by:

«/« = u  a ui A  It ~ U A /;Hi Pi/j ~  U Pilj

The MLE of the manoeuvre magnitude (Uklj) can be determined by differentiation of 

the log-likelihood ratio and equating to zero:

-  u £  phj V,- piU = 0

i-y+i

I  Pin h
u = ,‘=-y+1

X PuiV?PiU
i=y+1

Substitution of into Equation B. 6  leads to the generalised log-likelihood ratio 

given by:

max sup r l
6 k k-hZj&k-l U \ r k l j \

8k =
X Pin vr11.
*=;+i

X  A/; A' 1 A,
Equation B.7

B .4  Alternative Derivation of Decision Statistic

The variance of MLE of manoeuvre magnitude (Uklj) is given by:
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= £K ] -  (4 M J

where E is the expectation operator

Since it has been assumed that the innovation vector is Gaussian then Ukfj will also
A

be Gaussian with mean U . Substituting for Uklj in this expression and replacing I. 
by hlQ + U pUJ gives:

r ±  K v i ' i u + u p J  

2  Puj Pm
\  *=;+i

-  U7

c I  = E
' t  Puj V71 A/o + ^  2  P u j V P u '
i=j+ 1________________ i=;+l_________

t  PSj V- 1 puj
»=y+i

Since the innovation for no manoeuvre Iil0 is independent with zero mean then

4 /</o]=° E  [/.VO = 0 £  [/.vo 4 ]  =  V,

and hence:

2  A« v r 1 V,. V-' pm
a t = !=& ---------------------

2  Puj *7* Puj
»•=;+!

_2 _   1______
^k,j —7 T/_i —

X  Puj v i Puji=j+ 1

The decision statistic for the GLR test given by Equation B.7 can therefore be written 
as:
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2  Sk/j “
‘•=7+1

i/0

I  AL V f piU
*=7+1

2  Sk/j —
u 2

*/y j

The decision statistic which has been used in this thesis is:

Gt = [ 2  gt ]Vi

Since this will have approximately a N  [0,1] Normal distribution in the case of no

Umanoeuvre, and a N * , 1 Normal distribution in the case of manoeuvre.

B . 5 Manoeuvre Correction

Following manoeuvre detection the state vector estimate is corrected based on the 
estimate of the time and the magnitude of the manoeuvre.

k/j  ~  Jfc/0 +  U k / j  a k/ j

-  % k i j +  & ki j  ( a k/ j  P k / j )

Hu -  Pk/j + gqu. {ak/j Pk/j) (ak/j Pk/j)

where XklJ and Pklj are the state vector and covariance matrix prior to manoeuvre 

correction.

Since the time of the manoeuvre is described by a discrete distribution for the 
likelihood of all possible manoeuvre times over a track history of h, then the 
corrected state vector is then given by:
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% lj K j
Y  — j - k-h  

Man ~~ k- 1

I L,
j=k—h

I h [hr, + Kj *5)
D   j - k-h__________________________ _  y-  y i
r  Man ~  k- 1 ^Man

Z L j
j - k-h

where L} is the likelihood ratio for a manoeuvre at update j  given by:

Lj = exp{ gtlj }

This is different to the approach used by Korn, Gully and Willsky (1982) [35], since 
they use only the single MLE of the manoeuvre time to update the state and covariance 
matrix instead of using the likelihood weighted sum over all manoeuvre times. The 
later approach used in this thesis has proved to be more robust for the detection of 
small manoeuvres where the peak in the likelihood function for the estimate of the 
manoeuvre time is small. The updated state and covariance matrix is sensitive to 
errors in the estimate of the manoeuvre time and this can lead to significant bias, 
which may result in multiple triggers of the manoeuvre detection procedure.
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