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ABSTRACT

This thesis describes the investigation and development of an improved and novel 

approach for the analysis and interpretation of the condition assessment data of 

power transformers with the ultimate aim of enhancing the condition assessment 

process; this is achieved by placing the main emphasis on the dissolved gas analysis 

(DGA) data of power transformers and their bushings. In addition, the proposed 

approach is also applied on a limited scale for the analysis of a set of on-line 

monitoring data comprising of various sensor measurements collected from a power 

transformer.

Through application of the proposed approach on the DGA data of power 

transformers and their bushings, it is clearly demonstrated that the self-organising 

map (SOM) is able to unearth the inherent characteristics of the DGA data and these 

revealed features can be presented in a discernible and comprehensible format. 

Importantly, it has also been verified that these revealed features can be associated 

with some conditions of power transformers and their bushings. The foregoing 

findings are advantageous due to the fact that the interpretation of the DGA data can 

be produced in a more accurate and convincing manner because it is based on the 

actual characteristics of the DGA data. More importantly, the approach developed 

could provide an improved means of monitoring the condition of power transformers 

and their bushings based on the “visualisation” of the movement of DGA trajectory.

Finally, it is shown that the application of SOM for analysis of the multiple sensor 

data collected from a power transformer also produces interesting results, in which 

the revealed features can be utilised for hourly on-line monitoring of the operating 

condition of power transformer. The foregoing means of on-line monitoring could 

potentially benefit the operator since more information can be obtained in this 

manner when compared to the conventional means of displaying the variation of 

sensor variables in time-sequence plots.
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CHAPTER 1

INTRODUCTION

1.1 Power Transformers and Their Reliability

Power transformers are among the most expensive and critical components of the 

electrical power system. Essentially, the power transformer converts a system of 

alternating voltage and current into another system of voltage and current of different 

values and at the same frequency for the purpose o f transmitting electrical power 

throughout various points in the generation, transmission and distribution network.

The reliability o f power transformers is of paramount importance to the profitable 

operation o f power utilities, not least because the expenses of acquisition, 

transportation and installation of transformers are very substantial. In addition, their 

failures and subsequent unavailability may lead to loss of revenues and possible 

system constraint costs. These failures, when catastrophic, will further incur 

significant consequences in terms of peripheral equipment destruction, 

environmental damages and unplanned emergency utilisation of human resources 

and alternating power sources [1]. These are further reinforced by the fact that power 

utilities throughout the world are facing mounting challenges to supply uninterrupted 

power and efficient services to customers in today’s increasingly competitive and 

deregulating energy market.

Fortunately, power transformers are reliable and durable items of electrical 

equipment. According to an international survey by CIGRE [2], typical failure rates
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for large power transformers with windings for voltages up to 300 kV are in the 

range of 1% to 2% per annum. Nevertheless, power transformers are on middle 

ground of reliability when compared with other devices. Magnetic devices such as 

power transformers normally have a rate of 2.46 severe failures per 106 hours with 

insulation operating at 105 °C. This compares with a rate of 0.16 failures per 106 

hours for composition resistors operating with rated power at 70 °C and a rate of 4 

failures per 106 hours for paper capacitors operating with rated voltage at 85 °C [3].

Fundamentally, power transformers may fail in a variety of ways and for a variety of 

reasons. Generally, it is believed that power transformers conform to the “bathtub” 

failure-rate curve [3], as illustrated in Figure 1.1. It is characterised by a relatively 

high initial failure rate, sometimes referred to as infant mortality. This is due to 

design and manufacturing defects that tend to reveal themselves much earlier during 

operation. The failure rate decreases rapidly with time, approaching a low and 

constant value during most of the life of power transformers. This is the stress- 

related region in which transformers failed due to thermal, electrical and mechanical 

stresses in daily operation. As transformers approach the end-of-life (EOL), e.g. after 

30 to 40 years, the failure rate rises and is attributed to the ageing o f insulation 

materials within the power transformers. Some failure causes o f power transformers 

that would initiate the foregoing failure modes are explained in Chapter 2.

Q)
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£
3

(Ou.

>► A ge

Infant Stress-related W ear-out
failures failures failures

Figure 1.1: Failure rate versus age of the power transformers
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1.2 Condition Assessment of Power Transformers

Power utilities throughout the world are increasingly focusing their attention on 

developments in condition assessment of power transformers, which includes fault 

diagnosis and condition monitoring on main units of power transformers and 

peripheral devices attached to them such as bushings and tap changers. The real 

driving forces behind all these interests are the increasing age of the transformer 

population and the deregulating and competitive environment o f the energy market. 

Therefore, power utilities are prompted to economise on the operating and 

maintenance costs by utilising their assets fully and effectively. One of the means to 

attain substantial economic benefits is to switch from time-based maintenance 

(TBM) to condition-based maintenance (CBM) [4]. Nonetheless, the foregoing 

maintenance strategy requires the availability of reliable diagnostic methods and 

modem on-line monitoring approaches.

Diagnostic methods for power transformers have been well developed over the last 

20 years. Improvements in analytical procedures and test equipments have allowed 

engineers to inspect the status of transformers in service by making routine and 

special checks on some key parameters that are associated with the health and 

conditions of power transformers. Diagnostic methods are developed as a result of 

theoretical, experimental and empirical knowledge about the transformer ageing and 

failure mechanisms.

O f all the established methods, dissolved gas analysis (DGA) is perhaps the best- 

known technique for diagnosing the incipient faults and monitoring the health of 

power transformers. This is accomplished by relating several ratios of key dissolved 

gases to some predefined conditions of power transformers according to several 

DGA interpretation schemes. Nevertheless, the DGA technique is not able to identify 

the location of faults once detected. Other diagnostic methods are capable of locating 

the faults, if there are any. Examples o f such techniques are acoustic emission, 

infrared emission and radio frequency interference (RFI). The foregoing diagnostic
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methods can be performed on-line, i.e. disconnection of transformers is not required. 

Apart from that, there is also a host of other methods being adopted by engineers that 

necessitate the disconnection of transformers from service, such as the frequency 

response analysis (FRA), power factor measurement, magnetising current 

measurement and polarisation spectrum. Both on-line and off-line diagnostic 

methods will be briefly discussed in the next chapter.

Recently, electronic sensors have been developed with an aim to continuously 

monitoring the operating conditions of power transformers; one can find commercial 

products to measure temperatures, gas-in-oil, moisture content, vibration and partial 

discharges (PD). These electronic equipments can be mounted onto the external part 

of power transformers, e.g. transformer tanks, with ease; sensor data can be 

downloaded to computers through direct cable-linkages or remote dial-ups via 

modems.

Major goals to be achieved by implementing the foregoing on-line monitoring 

approaches are to supervise the real-time operating condition and to detect the onset 

of abnormal circumstances or faults. There are various ways in which sensor 

measurements could be utilised; a classical way o f analysing the sensor data is to 

define one or several thresholds for each measurement in order to set alarms. If a 

high-level alarm sets off, the operator concerned is alerted and diagnostic tests 

should then be performed so as to identify and locate faults. Alarm-based monitoring 

approaches are commonly used because they are non-intrusive and simple to install. 

However, the setting of thresholds is critical; they may be set too high and early fault 

detection may fail. On the other hand, when an alarm occurs too often (i.e. false 

alarm), its relevance might be altered. In case of a real fault, the transformer might be 

switched off too late and is subjected to damages with severe financial consequences. 

Thus, on-line monitoring approaches have to fulfil numerous requirements in order 

to justify the financial investments of power utilities. Basic pre-requisites are their 

suitability and reliability for real-time operation, reasonable installation and 

operating costs and good quality and stability of recorded measurements [5]. Various 

on-line monitoring approaches will be briefly discussed in the next chapter.
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Artificial intelligence (AI) techniques have been employed extensively for enhancing 

the condition assessment practices of power transformers. In 2001, Kang et. al. [6, 7] 

reported the development of an automatic condition assessment technique for on

load tap changers (OLTCs) of power transformers based on the application of self- 

organising map (SOM). The SOM was used for classification and extraction of 

essential features from vibration signatures detected from an accelerometer that is 

mounted on the tap-changer tank. The foregoing technique has been developed into 

an on-line diagnostic system capable of indicating current status of condition and 

estimating the remaining lives of OLTCs.

In 2001, De et. al. [8] reported the application of SOM for extracting hidden features 

from frequency response patterns of windings of power transformers; a learning 

vector quantisation technique was also used to classify visually indistinguishable 

response patterns. This method has exhibited high diagnosis accuracy by successful 

detection and discrimination o f impulse faults, o f a different nature and site of 

occurrence, in windings o f power transformers. In addition, the SOM was also 

applied for pattern recognition of fault patterns during the impulse testing of 

transformers, as reported by the same authors [9] in 2002. This technique can be 

applied for detection and diagnosis of the nature and location of fault in oil-filled 

power transformers during the impulse testing. Besides, the SOM can also be 

employed for short-term prediction of oil temperature change of an indoor 

transformer, as reported by Hong et. al. [10] in 2002.

Furthermore, a partial discharge (PD) localisation technique has been established by 

Werle et. al. [11] in 2001, which is based on neural-network (NN) classifiers trained 

by sectional winding transfer functions of transformer coils. This technique can be 

employed for determining apparent charges and location of the PD origin. Besides, 

the application of an adaptive neuro-fuzzy system has been reported by Roizman et. 

al. [12] in 1999, which was employed to predict the moisture content of solid 

insulation of power transformers based on on-line measurements of moisture 

characteristics of oil. Therefore, the insulation condition of power transformers can 

be monitored based on this technique. In 1998, Booth et. al. [13] provided an
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assessment of generic capabilities of NNs, in both estimation and classification 

mode, for condition monitoring of electrical plant. Lastly, Wang et. al. [14] 

demonstrated an incipient fault diagnosis system based on the DGA data of 

transformers in 2000. The method utilised NNs and expert system (ES) for detecting 

and discriminating incipient faults o f various nature and severity.

1.3 Challenges in Interpretation of Transformer Condition 

Assessment Data

As briefly discussed in the preceding section, power utilities are actively looking at 

diagnostic and on-line monitoring methods to assess the health and operating 

condition of power transformers. Even though equipments and procedures are well 

established for engineers to attain a reasonably accurate and reliable recording of 

data, there are further challenges with regard to confident interpretation of 

transformer condition based on this data. In essence, the data interpretation process is 

regarded as the most important aspect of any condition assessment practice since the 

prime motive of power utilities to invest substantially in these technologies is to 

reliably diagnose faults and to accurately monitor the condition of power 

transformers.

DGA is the most common diagnostic method used by various power utilities. 

Although well established procedures and equipments are in place for the extraction, 

quantification and recording o f dissolved gases, not many progresses have been 

reported with regard to the interpretation of the DGA data of power transformers. 

Currently employed approaches are fundamentally based on ratios and 

concentrations of key dissolved gases, such as interpretation schemes introduced by 

Domenburg [15] and Rogers [16], and later by Duval [17, 18], IEC [19, 20] and 

CIGRE [21]. Although some o f these interpretation schemes were since adapted by 

various power utilities in order to suit their own circumstances, basically the 

fundamental principles of these modified methods still do not deviate very much 

from foregoing interpretation schemes.
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There are several challenges pertaining to the foregoing interpretation schemes. 

Firstly, uncertainty and ambiguity still exist as to which key-gas ratios should be 

calculated and on the credibility of the suggested limits of gas ratios; power utilities 

may have to decide and adjust these values heuristically and based on their own 

experiences until satisfactory diagnoses are achieved. Secondly, the heuristic and 

empirical nature of some of the foregoing interpretation schemes have brought about 

discrepancies in interpretation; application of different interpretation schemes on 

identical set o f DGA data may produce diverse diagnosis o f transformer condition, 

thereby causing confusion among power utilities. Thirdly, interpretation of 

transformer condition is sometimes impossible to achieve owing to the inability of 

some of these schemes to provide interpretation for every possible combination of 

ratio limits. Consequently, the interpretation of a DGA record may have to depend on 

expert judgement, which may instigate even more confusion since each expert may 

have his/her own idea on what is happening inside the transformer unit based on the 

dissolved-gas information. Finally, even if an interpretation of transformer condition 

is easily accomplished via the application of foregoing schemes, the information 

obtained is mainly text-based; there is no software tool for engineers to “visualise” 

the evolution of an incipient fault once detected. Therefore, further research into 

novel analysis and interpretation techniques is clearly needed in order to improve the 

confidence level in the diagnosis of transformer health and condition based on the 

dissolved-gas information.

Hitherto, the current practice o f interpretation of sensor measurements, which are 

generated by the on-line monitoring approaches, is fundamentally based on the 

setting o f threshold values. However, the problem is further compounded by the fact 

that each transformer is unique and a set of threshold limits cannot be equally applied 

to even identically configured transformers. Besides, there does not exist a single 

algorithm that could simultaneously analyse several sensor parameters and generate a 

summary with regard to the operating condition of power transformer. Therefore, it 

is cumbersome for engineers to visualise parallel time-sequences of several sensor 

parameters and subsequently deduce the operating condition of the power 

transformer. Consequently, a new approach that performs the foregoing monitoring
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and summarisation task is clearly beneficial to those power utilities that have 

invested significantly in on-line monitoring technologies.

1.4 Objectives of the Project

This research project focuses on the investigation and development of an improved 

approach for the analysis and interpretation of the condition assessment data o f 

power transformers with the ultimate aim of enhancing the condition assessment 

process. Main objectives o f the project are:

• To perform detail investigation on conventional DGA interpretation schemes 

and new Al-based fault diagnosis approaches so as to ascertain the strengths 

and weaknesses of currently available solutions. These will be served as 

literature survey towards researching on an improved approach for the 

analysis and interpretation of the DGA data of power transformers.

• To perform a detailed investigation on the data mining (DM) approach and

particularly on a DM method known as the SOM so as to ascertain its 

feasibility for an improved analysis and interpretation of the DGA data and 

on-line monitoring measurements. The investigation will focus on addressing 

some vital issues concerning the practical implementation of the SOM.

• To investigate the feasibility of the proposed approach for the analysis and 

interpretation of the DGA data of power transformers. Various aspects of the 

investigation will be carefully examined. Outcome of the investigation will be 

compared and validated against several well-established DGA interpretation 

schemes and some real fault-cases.

• To further apply the proposed approach for the analysis and interpretation of

the DGA data of bushings of power transformers. The outcome of the
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investigation will be analysed so as to ascertain the feasibility of the proposed 

approach for an improved condition assessment of transformer bushings.

• To extend the proposed approach based on the SOM for the analysis of sensor 

measurements as collected from an on-line monitoring system of the National 

Grid Company (NGC), UK. The study will focus on investigating the 

feasibility and effectiveness of the proposed approach for determining and 

summarising the hourly operating condition of a power transformer based on 

multiple sensor measurements.

1.5 Scope of the Thesis 

Chapter 2

An overview of causes of failure and condition assessment practices for power 

transformers is presented in this chapter. Firstly, several common causes of 

transformer failures are presented. Secondly, some well-established diagnostic 

methods and recent on-line monitoring approaches are briefly described.

Chapter 3

This chapter presents a thorough review on various aspects of the DGA method. 

Firstly, some basic concepts of DGA are explained; these include introduction to the 

background theory and some related procedures for performing the DGA test. 

Secondly, a comprehensive literature survey on conventional DGA interpretation 

schemes and new Al-based fault diagnosis approaches, which are based on the DGA 

data of power transformers, is reported.
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Chapter 4

This chapter discusses the implementation of several well-established DGA 

interpretation schemes for the DGA data of power transformers, such as Domenburg 

Ratios, Rogers Ratios, IEC Ratios, Duval Triangle and CIGRE Methods. In addition, 

comparative studies carried out on these schemes are reported with emphasis on their 

relative strengths and weaknesses.

Chapter 5

This chapter introduces a novel methodology known as the knowledge discovery in 

databases (KDD), in which DM is an important constituent of the KDD process. 

Specifically, this chapter focuses on a DM method known as the SOM algorithm. 

Various issues for the practical implementation o f SOM are discussed and an 

illustrative example, which demonstrates the capability of the SOM, is presented. 

Besides, the suitability and potential benefits of the SOM for the analysis and 

interpretation of the condition assessment data of power transformers are also 

discussed.

Chapter 6

This chapter presents the outcome of some simple statistical analyses that were 

conducted on the DGA data of power transformers. The obtained DGA database 

courtesy o f the NGC, UK was analysed using several simple statistical approaches. 

The aim of performing the foregoing analyses is to obtain a rough understanding on 

the statistical characteristics of the DGA data before it is subjected to a high-level 

analysis by the proposed approach.

10
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Chapter 7

This chapter presents a detail investigation on the feasibility of the proposed 

approach for an improved analysis and interpretation of the DGA data of power 

transformers. Firstly, a preliminary study on some selected subsets of DGA data is 

reported. Secondly, a further analysis on the entire DGA database is presented. Based 

on these investigations, an improved interpretation of the DGA data in relation to the 

transformer health and condition is suggested, which was then validated by utilising 

several well-established DGA interpretation schemes and some actual fault-cases. 

Finally, the advantages of the proposed approach are presented and discussed.

Chapter 8

A study is reported in this chapter in which the proposed approach was further 

applied for the analysis and interpretation of the DGA data of transformer bushings. 

Firstly, the general design of a transformer bushing is illustrated. Secondly, a detail 

discussion on some challenges concerning the interpretation of the DGA data of 

transformer bushings is presented. Thirdly, the outcome of the analysis is presented, 

which was subsequently validated using a conventional approach and two actual 

fault-cases. Finally, the advantages of the proposed approach are presented and 

discussed.

Chapter 9

This chapter explores the potential of the proposed approach for the analysis of 

multiple sensor measurements as gathered from an on-line monitoring system of the 

NGC, UK. Essentially, similar procedures of analysis were applied and the outcome 

is reported and interpreted. A discussion is then presented that centred on the 

feasibility of the proposed approach for monitoring and summarising the hourly 

operating condition of power transformers.
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Chapter 10

The work conducted in this research project is summarised and concluded in this 

chapter, which emphases on some major achievements and progress that have been 

attained. In addition, possible future work with regard to the current research is 

suggested.

1.6 Contributions from this Research Project

The main contributions from this research project are stated below:

• A comparative study of existing dissolved gas analysis (DGA) methods and

their codification for transformer gas ratio analysis.

• The production of a structured method for the use of data mining (DM)

methods in general, and self-organising maps (SOMs) in particular, in

transformer condition monitoring data classification applications.

• The development o f a robust analytical tool-set capable of processing large, 

heterogeneous transformer data sets and specific transformer type monitoring 

data in order to identify incipient fault developments.

• A detailed comparative analysis of conventional DGA interpretation methods 

with the proposed SOM technique.

• A visualisation approach used to track transformer condition and fault 

evolution.

•  All of the proposed methods have been validated and tested on actual data 

supplied by the National Grid Company (NGC), UK.
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CHAPTER 2

CAUSES OF FAILURE AND CONDITION ASSESSMENT 

OF POWER TRANSFORMERS

2.1 Introduction

Power transformers are critical components of the electrical power system. Their 

failures and subsequent unavailability can cause significant consequences both 

financially and environmentally. Hence, it is important to understand the causes of 

these failures. In addition, these failures can be prevented effectively via the adoption 

of condition assessment practices such as diagnostic methods and on-line monitoring 

approaches. An overview o f causes o f failure and condition assessment practices is 

presented in this chapter.

2.2 Causes of Failure of Power Transformers

While the power transformer is undoubtedly one item of electrical equipment that is 

least subjected to breakdown when compared with other electrical devices within the 

substation, failures do occur from time to time due to various reasons. By definition 

of the IEC, failure means the termination of the ability o f an item to perform a 

required function [20]. In case of power transformers, failures that most commonly 

arise in practice can be broadly classified into three categories, i.e. infant failures, 

stress-related failures and wear-out failures. Some common causes for these failures 

are described in following sections.
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2.2.1 Infant Failures

Infant failures can be initiated by deficiency in either design or manufacturing 

process. It has been known that a common reason for early failure is the lack of 

compatibility between the design and usage of the transformer. This can be due to the 

failure of the designer and user to communicate effectively or as a result of some 

unforeseen stresses that the transformer is incapable o f withstanding. Furthermore, 

the designer may fail to provide for specified or implied condition that the designer 

would normally be expected to consider. Thus, when reliability problems develop in 

a new design, the relationship between the design and usage must be investigated. 

Although neither the designer nor the user may want to accept responsibility, if  the 

problem is to be resolved then the facts must be established since it should not be 

very surprising that reliability problems do arise in newly installed transformer. 

Apart from the design process, improper manufacturing and handling of components 

such as windings and oil-tanks during the manufacturing process could also lead to 

failures of power transformers.

2.2.2 Stress-Related Failures

Power transformers may fail due to electrical, thermal or mechanical stresses in 

normal operation. While the failure-rate associated with stress-related failures is 

relatively low and constant during most of the life o f power transformers, they 

should not be ignored because the causes of such failures can actually be detected 

well before any failure occurs. Some of the common causes'are listed below.

2.2.2.1 Discharge

Discharges within the power transformer can occur between conductors at different 

potentials, resulting in the destruction o f insulation and electrical failure. It is often 

described as arcing, breakdown or short circuits. The potential can be induced by the 

transformer or it can be externally applied, for example, voltage spikes caused by 

lightning strikes. Induced voltage can lead to discharges between portions of the

14
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winding in which the voltage is induced, or it can cause discharges from a portion of 

the winding to ground or other windings. Externally applied voltage other than 

induced voltage can also cause discharges between the windings to which the voltage 

is applied and other windings or ground. Discharge is usually accompanied by a high 

current, causing overheating and carbonisation along the passage, permanently 

reducing the electrical resistance. Furthermore, openings can develop in windings in 

the discharge region owing to the concentrated heat. Discharge is a highly localised 

condition and the carbon path can usually be seen if the device is carefully dissected. 

Identification of the discharge passage is important for determining corrective action.

2.2.2.2 Partial discharge

Partial discharge (PD) is a phenomenon that only partially bridges the insulation 

between conductors. Specifically, corona is referred to as a form of PD that usually 

occurs in the gaseous medium around conductors that are away from solid or liquid 

insulation. The ionisation associated with PD is insufficient to establish a low 

resistance path between conductors allowing a high current to flow as in the 

foregoing disruptive discharges. A power transformer will still function with the 

presence of PD. In fact, the PD may go undetected until a failure occurs. PD is not 

usually a problem until the potential between conductors reaches several thousand 

volts. It is sometimes a problem in sensitive devices because it raises the noise level. 

Approaches have been developed that detect PD. As qualitative determiners they 

work well, but they do not provide much useful information for determining 

acceptable limits. The problem is very complex. The point where PD occurs and the 

type of insulation presents will alter the effect of PD on insulation life.

2.2.2.3 Thermal fault

Thermal fault (TF) is a general term for overheating and hotspots. It is due to 

excessive temperature rise in insulation, which leads to a decrease in resistance and 

hence allows the circulation of leakage currents that further increases the insulation 

temperature. Insulation damage develops, culminating in a dielectric breakdown. TF
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is a diffused condition in which internal examination of overheated coils will show 

discolouration over a large region. Discharges will occur in this region at a point that 

subjected to particularly high electrical stress. Careful analysis is sometimes 

necessary to determine whether the fault is a discharge or a TF when specimens 

show evidence o f both problems. TF will accelerate the ageing rate of the insulation.

2.2.2.4 Open windings

Openings develop in windings wound with very fine wire. This problem is distinct 

from openings resulting from the melting of conductors associated with discharges. 

Winding conductors are fragile and becomes increasingly so during handling because 

of the tendency for copper to work-harden. The assembly processes of winding and 

lead dressing severely stress the wire. Subsequent thermal changes and vibration can 

fracture the wire previously weakened by handling during manufacture, a common 

cause of failure.

2.2.2.5 Overstressing

Power transformers are frequently subjected to overstress conditions. The effect of 

overstressing is not determinable. Common examples of overstressing are 

overloading or shorting o f secondary windings (pending the operation o f primary 

circuit protection), electrical overstressing as an acceptance test procedure, and high- 

voltage transients occurring during operation. These overstress conditions do not 

result in immediate failure, but the damage they cause may result in subsequent 

failure during normal operations. This situation is difficult to deal with because the 

complete operating history of the devices is seldom known. Failure analysis and 

corrective action may have to rely on statistical data.

2.2.2.6 Shorted turns

Electrical stress exists between turns as a result of induced voltages. The only 

insulation between adjacent turns is the insulating film on the magnet wire. Normally
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the voltage between adjacent turns is low, and the insulating film is adequate to 

withstand the voltage. Shorts develop under temporary over-voltage condition in 

regions where insulation is weak. A particularly serious condition is a crossover in 

which a turn in the winding crosses over a previous turn instead of remaining in an 

even helix. The area of contact between turns in a crossover is subjected to excessive 

pressure and electrical stress. Shorted turns can also occur between adjacent layers of 

layer-wound coils by puncture of layer insulation. The electrical stress between 

layers exceeds the stress between adjacent turns. Under steady state condition the 

induced voltage across a winding distributes itself uniformly across the turns of the 

winding. Under transient condition, the voltage will tend to develop across the end 

turns of the winding, resulting in an electrical stress many times greater than normal.

2.2.3 Wear-Out Failures

Wear-out failures in power transformers occur as a result o f the combination of 

ageing effects of time, temperatures, and electrical stresses on insulation. Additional 

factors contributing to wear-out are mechanical stresses from repeated thermal 

cycling and vibration of conductors due to the varying currents they carry and their 

presence in the magnetic field.

2.3 The Need for Condition Assessment

Failures of power transformers are problematic for two reasons. Firstly, transformer 

failures lead to operational and financial difficulties owihg to the interconnected 

nature of a power system and the significant cost of repairing or replacing the failed 

transformers. Secondly, power transformers are encased in tanks of flammable and 

environmentally hazardous fluid; catastrophic failures are often accompanied by fire 

and spillage o f this fluid, thus presenting high risks to human, other peripheral 

equipments, surrounding properties and the local environment. Therefore, there are 

clear incentives for power utilities to embrace condition assessment practices for 

their transformer population.
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Generally, the practice of condition assessment on power transformers include fault 

diagnosis and condition monitoring on main units o f power transformers and 

peripheral devices attached to them such as bushings and tap changers. These 

practices are advantageous based on several grounds. Firstly, the adoption of 

condition assessment enables better and more efficient utilisation of resources. Some 

failures in power transformers are not detectable owing to their sudden nature. 

However, some slowly evolving faults, which are generally referred to as incipient 

faults, can be detected and diagnosed such that remedial actions can be taken at the 

most commercially opportune moment [22]. In fact, it is possible to continue 

operating the power transformer even when an incipient fault has been detected since 

the condition assessment practice will provide a means o f tracking vital parameters 

of the transformer so that further abnormal or problematic behaviour can be detected 

and corrective action taken.

Secondly, condition assessment also allows the prediction o f remaining useful life of 

power transformers. Data from the assessment process can be associated with actual 

condition of various vital components inside power transformers such as windings 

and insulation. Finally, condition assessment allows the effective deployment of 

condition-based maintenance (CBM), in which greater financial savings can be 

expected if compared to time-based maintenance (TBM).

2.4 Diagnostic Methods

Generally, diagnostic methods are applied for fault diagnosis o f power transformers. 

However, some of these methods can also be used for condition monitoring 

purposes, such as the dissolved gas analysis (DGA) and furfural analysis. These 

methods are developed as a result of theoretical, experimental and heuristic 

knowledge about the transformer ageing and failure mechanisms.

Diagnostic methods can be broadly classified into two categories: on-line and off

line approaches. The on-line diagnostic approaches do not require the disconnection
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of transformers from service while the off-line approaches necessitate the 

disconnection of transformers and are generally more costly to implement. Besides, 

these methods can also be identified as either “routine tests” or “special tests” [23].

“Routine tests” are normally carried out on all transformers on a periodic basis for

screening purposes in order to detect incipient faults and to ascertain general 

condition. In contrast, “special tests” are applied only as required for fault diagnosis 

and detailed investigation in response to one of a set o f triggering circumstances 

which include the following:

• To investigate a poor routine test result.

• Following a protection operation indicating an internal fault.

• Following a system event that might have caused damage.

• As part o f a commercial asset review.

• To decide whether a redundant asset is worth retaining.

• Before and after oil reclamation in order to determine the effectiveness o f the 

treatment.

• Before scrapping so as to correlate test results with the observed condition.

• To establish the results as expected from a “normal” transformer unit.

Some of the common diagnostic methods are listed in Table 2.1 [23] and are briefly 

explained in following sections.

2.4.1 Dissolved Gas Analysis

DGA is one of the most common diagnostic tools adopted by power utilities. This 

approach is based on the mechanism of formation of gases from the degradation of 

mineral oil and cellulose insulation during the onset and evolution of faults, which 

are signified by the increase in either localised or diffused temperatures. IEC 

recommends the extraction and quantification of nine dissolved gases from the oil 

sample, and these are: oxygen (O2), nitrogen (N2), carbon dioxide (CO2), carbon 

monoxide (CO), hydrogen (H2), methane (CH4), ethane (C2H6), ethylene (C2H4) and
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Table 2.1: Diagnostic methods for power transformers

Test Diagnosis Location of 
Fault

Cost and 
Convenience Usage

Dissolved gas 
analysis

Discharges
Overheating

None, integrates 
over time

Cheap and easy 
on-line Routine test

Furfural
analysis

Paper ageing 
Hotspots

None, integrates 
over time

Cheap and easy 
on-line Routine test

Radio
frequency

interference
Discharges None or partial Cheap and easy 

on-line Routine test

Acoustic
emission Discharges

Good if  
discharges not in 

winding

Moderate cost on
line

Special test

Infrared
emission

Tank currents 
Cooler blockages Good Moderate cost on

line
Routine test 
Special test

Frequency
response
analysis

Mechanical
condition

Good, can 
identify phase 

and winding of 
fault

Expensive,
disconnection

required
Special test

Polarisation
spectrum

Paper
moisture/ageing

None, although 
may indicate 
presence of 

wetspots

Expensive, limited 
disconnection 

required

Special test 
Routine test at 

major 
maintenance

Power factor
Oil/paper
insulation
condition

Partial, depends 
on how windings 
can be separated 

for test

Expensive,
disconnection

required
Special test

Magnetising
currents

Shorted turns and 
some core faults

Partial, can 
indicate phase of  

faults

Expensive,
disconnection

required
Special tests

Turns ratio Shorted turns

Partial, can 
indicate phase 
and winding of  

fault

Expensive,
disconnection

required
Special test

Winding
resistance

Winding joint and 
tap-changer 

selector contact 
problems

Partial
Expensive,

disconnection
required

Special test
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acetylene (C2H2) [24]. Two types o f incipient faults are detectable: electrical fault 

(EF) (such as discharges and PD), and TF (such as hotspots and overheating). The 

association between dissolved gases and the foregoing incipient faults is established 

by referring to several well-established DGA interpretation schemes, such as the IEC 

Ratios [19, 20], Rogers Ratios [16], Domenburg Ratios [15], CIGRE Methods [21] 

and the Duval Triangle [17, 18]. The interpretation is normally accomplished via the 

computation of several ratios of key dissolved-gases. An overview of the DGA 

approach will be presented in Chapter 3.

2.4.2 Furfural Analysis

Furfural analysis by high performance liquid chromatography (HPLC) has gained 

increasing preference as a means o f estimating the degradation process o f paper 

insulation in power transformers. Generally, degradation of cellulose insulation such 

as paper will produce a range of furans, which will dissolve in mineral oil. The 

advantage of using furans instead of concentration o f CO2 and CO is that the former 

are specific to paper degradation only; degradation of oil will not produce furans. 

The concentration and rate of change of furanic compounds indicate the condition 

and the rate o f ageing of paper insulation. In addition, the benefit o f using furfural 

analysis is that it is non-intrusive, and hence disconnection of power transformers are 

not required as the concentration of furans is simply determined through HPLC on 

oil samples.

2.4.3 Radio Frequency Interferences

The electromagnetic radiation generated by internal discharges occurring in 

transformers can be measured via the radio frequency interferences (RFI) technique. 

This can be accomplished by using a radio frequency (RF) spectrum analyser that is 

equipped with different kinds of antennas [25]. A computer is then used to control 

measurements and to store the measured data. The RFI technique is a useful tool for 

detecting discharges and is especially advantageous for measurements on-site since it 

is not necessary for the disconnection of power transformers.
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2.4.4 Acoustic Emission

Acoustic emission refers to the generation of transient waves during the rapid release 

o f energy from localised sources within a material. The sources o f acoustic emission 

in power transformers are mainly due to discharges and PD. This technique is based 

on the detection and conversion of these high frequency waves into electrical signals. 

This is accomplished by directly coupling the piezoelectronic transducers onto the 

surface of the structure under test. The output of each sensor is then amplified 

through a low-noise pre-amplifier, filtered to remove any extraneous noise and 

further processed by using suitable electronic equipment. If more than one sensor is 

used, the acoustic emission source and thus the fault location can be located through 

the application of triangulation method. Advantages o f the acoustic technique are 

high sensitivity, rapid detection of faults and minor disturbances in power 

transformers on-site.

2.4.5 In frared  Emission

The infrared emission technique is applied for locating abnormal heating within the 

power transformers. It is accomplished through the use of thermal imaging cameras. 

Essentially, a thermal scan on transformer main-tank and associated peripheral 

equipments such as load tap-changer (LTC) and bushings can reveal LTC heating 

problems, radiator blockage, hotspots and overheating in tanks. The infrared 

emission technique will detect and translate the heat emission into electronic signals, 

which can then be imaged, measured and analysed. The inspection of heating 

problems using this technique is fast and can be performed on-site easily without the 

disconnection of power transformers.

2.4.6 Frequency Response Analysis

During its lifetime, a transformer can be subjected to several short circuits, either 

internal or external, with high fault currents. The forces o f these short-circuit currents 

may cause deformation or displacement of the winding assemblies. As deformation
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results in minor changes to the internal inductance and capacitance o f the winding 

structure, a change in the characteristic frequency response can be detected at the 

terminals of the transformer by frequency response analysis (FRA) [4]. It can be 

accomplished by using a commercially available network analyser. The frequency 

response of a transformer can be analysed off-line by connecting cables from the 

analyser to one terminal of the winding and the other cable connecting from ground 

via current transformer (CT) to another terminal of the winding. Winding 

deformation can be detected by analysis and comparison of frequency response 

characteristics. The FRA method has been proven to be sensitive in detecting typical 

winding faults and it is immune to electromagnetic interference.

2.4.7 Polarisation Spectrum

The presence o f moisture in the insulation system will accelerate the ageing rate of 

the insulation. Since water molecules are polar in nature, a test method has been 

developed to assess the relationship between ageing, moisture content and 

polarisation response [26]. Essentially, an insulation system is polarised by applying 

a DC voltage. When the terminals are subsequently short-circuited, a residual 

polarisation may remain when the short-circuit is removed. This residual polarisation 

results in a recovery voltage. The interpolated curve formed from the measured 

recovery voltages versus charging period is known as the polarisation spectrum. 

Since the recovery voltage will change according to the insulation condition, there is 

a good correspondence between measured characteristics and the state of ageing or 

the moisture content of the insulation. The condition of a particular insulation system 

can be characterised by comparing its polarisation spectrum with other insulation 

systems of different quality.

2.4.8 Power Factor

The power factor of the insulation is the measure of its dielectric loss. This 

diagnostic method can be used for indicating the overall condition of the insulation, 

i.e. the degree of degradation. The power factor method is particularly suitable for
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detecting the presence o f moisture and other contaminants inside the transformer 

windings. It is well known that the presence o f these materials will reduce the 

dielectric strength of insulation, making them more susceptible to electrical stresses.

2.4.9 M agnetising C urrents

The magnetising current in a normal transformer is about ten percent of the full load 

current. During internal winding faults, depending on the location of the fault, the 

magnetising current increases rapidly. The distribution of transformer current 

subsequent to an internal electrical fault thus differs totally from the distribution of 

normal load or no-load currents and is governed mainly by the internal reactance o f 

the windings. Therefore, winding faults such as shorted turns can be identified 

through the measurement of magnetising currents.

2.4.10 Turns Ratio

Test is conducted on power transformers to ensure the tums-ratio of windings is 

correct; shorted turns may have occurred if an incorrect tums-ratio is obtained. This 

test is performed using a ratiometer, which itself consists o f a single-phase, double

wound transformer, having a constant primary winding and a variable secondary 

winding [27]. The tums-ratio is measured via a special configuration of connection 

between windings of the test transformer and windings of the transformer in the 

ratiometer.

2.4.11 W inding Resistance

The DC resistances o f both HV and LV windings can be measured simply by the 

voltmeter/ammeter method. This information provides the data necessary to permit 

the separation o f power and eddy-current losses in the windings. This is necessary in 

order that transformer performance may be calculated at any specified temperature.
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2.5 On-Line Monitoring Approaches

On-line monitoring approaches are used for real-time supervision o f power 

transformers. As distinct from diagnostic methods, these on-line monitoring 

approaches are only capable of detecting the onset of faults or abnormal 

circumstances within power transformers; diagnostic methods must be used to 

identify the nature and location of faults once they are detected. Essentially, analogue 

and electronic sensors are fitted onto transformers; recorded data can be transmitted 

to computers and software packages are available to present the recorded information 

to users. There are two motives for implementing on-line monitoring approaches, i.e. 

to detect the onset of faults through the monitoring o f important parameters, and to 

allow the effective deployment of condition-based maintenance (CBM).

In essence, key parameters have to be determined which can effectively characterise 

and reflect the various stresses that could affect the rate of ageing and the operating 

condition of power transformers. Nonetheless, the selection o f these parameters must 

be based on failure statistics of power utilities and expected consequences of failures

[28]. Table 2.2 illustrates a typical failure distribution for large substation 

transformers equipped with on-load tap changers (OLTCs) [2]. As observed from the 

table, it can be concluded that vital parts to be monitored are windings, which 

include the oil/paper insulation, and OLTCs.

Table 2.2: Typical failure distribution for substation transformers with OLTCs

Part Failure Distribution

OLTC 41%

Windings 19%

Core 3%

Terminals 12%

Tank/Fluid 13%

Accessories 12%
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In essence, key parameters that are related to windings and the insulation system are 

gas-in-oil, moisture content and PD. As for the OLTCs, several alternatives are 

possible; however, vibration monitoring seems to be the most suitable candidate [28]. 

In addition, monitoring of the top and bottom oil temperatures and the winding 

temperatures are regarded as base information and should also be included as part o f 

the key parameters. Several on-line monitoring approaches that offer the 

measurement and monitoring of foregoing parameters are briefly explained in 

following sections.

2.5.1 Gas-in-Oil Monitors

Generally, two developments can be distinguished for the on-line gas-in-oil 

monitors: sensors for monitoring mainly hydrogen as the most important gas 

generated during onset of faults, and sensors that are capable of monitoring several 

gases simultaneously [5]. Basically, the hydrogen sensor allows only a basic trend 

analysis, in which thresholds can be set for various alarm levels. One such monitor is 

the Hydran 201R developed by GE-Syprotec [29], in which fuel-cell technology is 

used. Other more advanced sensors are capable o f monitoring several gases 

simultaneously, which open up the possibility for on-line diagnosis. Examples of 

such development are presented by ABB (metal-oxide technology) and by Serveron 

(semiconductor technology).

2.5.2 Measurement of Moisture Content

A continuous measurement of relative saturation of moisture in oil can provide 

valuable information to a transformer engineer. For instance, a transformer that is 

heavily loaded during the day, but which cools down rapidly at night, will exhibit 

very high relative saturation of moisture in oil. Instruments to measure moisture 

content of transformer oil are made by Doble Engineering and Panametrics.
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2.5.3 Measurement of Partial Discharges

Acoustic sensors have been used for monitoring the occurrence of PD. The benefit o f 

using acoustic monitoring is its ability to identify the PD location. This is 

accomplished by fitting sensors at many points around the tank; signals received 

from the sensors can be used for locating the fault through the triangulation process

[29].

2.5.4 Measurement of Temperatures

The top and bottom oil temperatures can be measured on-line using currently 

available sensors. Although this method provides no direct information about the 

hotspot temperature of windings, it can be calculated according to the IEC guide on 

the loading of power transformers. A more direct measurement of hotspots can be 

accomplished via the fibre optic sensors, which can be installed in new transformers. 

In general, two main types o f sensors are used: fibres that measure the temperature at 

one point, and distributed fibres that measure the temperature along the length o f the 

winding.

2.5.5 On-line Monitoring of Bushings and OLTCs

Transformer bushings consist of multiple alternating layers o f foil and oil- 

impregnated paper. A very small charging current flows continuously when the 

system is energised. Changes in the charging current are an indication of the 

degradation of the insulation system. The charging current can be monitored on-line 

by a device that plugs into an existing capacitor tap o f the bushing. An example of 

such device is the InsAlert monitoring probe by Square D Co. [29]. On the other 

hand, vibration sensors can be used for monitoring of OLTCs. It has been shown that 

both mechanical and electrical faults can be detected, as well as wear of contacts and 

changes in transition times.
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2.5.6 On-line Monitoring System: An Integrated Package

On-line monitoring systems are now available for continuously monitoring various 

vital parameters of power transformers in a neat and unified package. Examples of 

such systems are the ABB’s T-Monitor [30] and the GE-Syprotec’s Transformer 

Monitoring/Management System (TMMS) [1]. Generally, an on-line monitoring 

system comprises of three main elements: sensors, analogue-to-digital conversion of 

the measuring quantities and a computer for data processing, analysis and 

presentation. Transformer parameters that can be monitored include currents, 

voltages, tap-changer position, temperatures, gas-in-oil, moisture content, operating 

condition of pumps and fans, velocity of oil flow and oil levels. Apart from direct 

measurement and presentation of parameters, these on-line monitoring systems are 

also capable of determining the operating condition of transformers through the use 

of models [1]. A simplified diagram of an on-line monitoring system is illustrated in 

Figure 2.1 [1].

Ambient temperature +

Leakage current

Load current

Top oil temperature

Fans
On-line monitoring 

systemCurrents

Pumps -

Moisture

Relative humidity

On-load tap changer position

On-load tap changer temperature differential

Figure 2.1: A simplified diagram of an on-line monitoring system
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2.6 Summary

An overview of common causes of failures and condition assessment approaches has 

been presented in this chapter. Essentially, power transformers may fail under three 

common causes: infant mortality, operating stresses and ageing. Diagnostic methods 

are mainly used for fault diagnosis o f power transformers, i.e. to identify the type 

and/or location of faults. In contrast, on-line monitoring approaches are used for real

time supervision of power transformers, in which abnormal circumstances or faults 

detected must be followed up by diagnostic tests. Nonetheless, effective deployment 

o f the foregoing condition assessment practices can prevent transformer failures and 

hence present significant financial savings for power utilities.
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CHAPTER 3

DISSOLVED GAS ANALYSIS

3.1 Introduction

Various aspects o f the dissolved gas analysis (DGA) are presented in this chapter, 

which comprise o f the related theory, procedures of the DGA test and a literature 

survey on conventional DGA interpretation schemes and new artificial intelligence 

(AI) based fault diagnosis approaches that are based on the DGA data o f power 

transformers. These foregoing aspects will serve as an introduction to DGA and to 

the recent developments of its application for fault diagnosis o f power transformers.

3.2 Background Theory

Insulation oil o f power transformers is a mixture of many different hydrocarbon 

molecules containing CH3, CH2 and CH chemical groups, which are linked together 

by carbon-carbon molecular bonds. The onset of either an electrical or a thermal fault 

will cause the scission of some of the carbon-carbon and carbon-hydrogen bonds 

with the formation of small unstable fragments. These fragments, either in radical or 

ionic form, will recombine rapidly through complex reactions into gases. When the 

fault concerned is not severe, the gases formed will dissolve in oil, with a small 

proportion diffusing from the oil into any gas phase above it. In case of a severe 

fault, the generation of gases is so rapid that they rise to the gas phase immediately 

without dissolving much in the oil. Gas relay will be activated in the latter case to 

disconnect the faulted transformer in order to prevent it from further damage.
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In 1970, Halstead performed a theoretical thermodynamic assessment of the 

formation of hydrocarbon gases in the insulation oil [31]. It was suggested that on the 

basis of equilibrium pressures at various temperatures, the proportion of each 

hydrocarbon gas in comparison with each of the other hydrocarbon gases varied with 

the temperature at the point of degradation. This has led to the assumption that the 

rate of evolution of any particular hydrocarbon gas varied with temperature, and that 

at a particular temperature there would be a maximum rate of evolution of that gas, 

and that each gas would attain its maximum rate at a different temperature. Study of 

the Halstead thermodynamic equilibria has suggested that with increasing 

temperature, the maxima would be in turn methane (CH4), ethane (C2H6), ethylene 

(C2H4) and acetylene (C2H2). In addition, the rate of evolution of hydrogen (H2) will 

continue to rise with temperature. Figure 3.1 illustrates a simplified representation of 

this hypothesis [16].
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Figure 3. 1: Comparative rates of gases evolution from oil
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Therefore, close correlation can be established between the relative composition o f 

dissolved gases and the type and severity of fault Generally, two distinct incipient 

faults can be identified through DGA: electrical fault (EF) and thermal fault (TF); EF 

can be further categorised into discharges and partial discharges (PD) and TF is often 

referred to as overheating or hotspots.

Generally, the onset of low-energy fault such as PD of the cold plasma type (i.e. 

corona) will produce H2 as the major dissolved gas. In other cases, degradation o f 

insulation oil is mainly caused by heat, with variation in the type o f hydrocarbon 

gases produced as temperature rises. A little degradation o f oil at normal operating 

temperature produces mainly H2 and CH4 . Higher temperatures and higher energies 

are caused by TF such as overheating or hotspots. Thus, temperature from little 

above normal operating temperature (say, 150 °C) will produce mainly CH4. As fault 

temperature rises, both C2H6 and C2H4 will be produced in increasing quantities. In 

case much higher temperatures (say, 800 °C to 1200 °C), occurring at discharges such 

as flashover or sparking, the production o f C2H2 becomes significant. Note that the 

production o f H2 will also increase continuously with fault temperatures. If the 

foregoing faults also involve cellulose insulation such as paper, large quantities of 

carbon monoxide (CO) and carbon dioxide (CO2) will also be generated.

Nevertheless, although the formation of some gases is favoured depending on the 

foregoing descriptions, mixtures of dissolved gases are always obtained in practice. 

However, the ensued gaseous composition essentially matches the foregoing 

descriptions on mechanisms of gaseous formation in insulation oil.

3.3 Procedures of DGA Test

Detailed procedures for performing the DGA test are outlined in the IEC 567 

Standard [24]. Generally, a DGA test comprises of three stages: sampling of oil, 

extraction o f dissolved gases from oil and identification of dissolved gases. These 

procedures are briefly described as follows.
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3.3.1 Sampling of Oil

The DGA test on power transformers requires sampling of a small volume of oil 

from transformer tanks. The sampling o f oil can be done by using syringe, glass or 

stainless steel tube, and glass bottles. The choice o f a suitable method depends on the 

apparatus available and on the quantity of oil needed for analysis. Oil sampling by 

syringe, as illustrated in Figure 3.2 (a), is the most convenient method and is suitable 

irrespective of the mode of transport of samples. On the other hand, sampling into a 

glass or stainless steel tube is also suitable, as illustrated in Figure 3.2 (b). However, 

the glass tube must be fitted with sufficient length of rubber tubing to act as an 

expansion chamber. Lastly, the sampling can performed using the glass bottle, as 

illustrated in Figure 3.2 (c), provided that the bottle is fitted with a suitable cap that 

allows oil expansion. Oil sampling using glass bottle is adequate for many purposes 

such as routine sampling on a large-scale basis from power transformers on-site.

The selection of points at which oil samples are drawn should be decided with care. 

Normally, oil samples should be extracted from a point where it is representative o f 

the bulk of oil in the transformer, and this is normally located at the bottom of the 

transformer tank. However, it will sometimes be necessary to draw samples 

deliberately where they are not expected to be representative in order to identify the 

location o f a suspected fault.

3.3.2 Extraction of Dissolved Gases from Oil

The extraction of dissolved gases is performed in the oil laboratory. Removal of 

dissolved gases can be done either by stripping or by vacuum extraction, as 

illustrated in Figures 3.3 (a) and 3.3 (b). The vacuum extraction method can be 

further identified into that of multi-cycle and single-cycle. The former method can 

remove about 97% and above of the dissolved gases and the latter about 90% to 

99.8%. Conversely, the stripping technique is the simplest extraction method, where 

a carrier gas such as helium is bubbled directly through the oil.
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Figure 3.3: Dissolved-gas extraction methods

3.3.3 Identification of Dissolved Gases

The dissolved gases, after being removed from transformer oil via the foregoing 

extraction methods, are transferred to gas chromatograph (GC) for identification and 

quantification. According to the IEC 567 Standard [24], gases that need to be 

determined are: H2 , O2 , N2 , CH4, C2 H6 , C2 H4 , C2H2 , CO and CO2 .

A GC normally comprises of several components, as illustrated in Figure 3.4. The 

identification process is started with two separate runs; the extracted dissolved gases 

are first passed through the Porapak column and in the second run are passed through 

the molecular sieve column. Since a single detector having acceptable accuracy for 

detecting all gases is not available, gases eluted from foregoing columns are 

channelled through a thermal conductivity detector and a flame ionisation detector. 

The thermal conductivity detector can detect N2 , O2 , CO, CO2 and H2 while the 

flame ionisation detector can detect the presence of hydrocarbons such as CH4, C2 H6 , 

C2H4 and C2 H2 .
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Figure 3.4: Simplified diagram of a gas chromatograph (GC)

Moreover, in order to improve the sensitivity towards CO and CO2, a methanator is 

fitted at the inlet o f the flame ionisation detector to convert CO and CO2 to methane, 

which is then detected by the flame ionisation detector. The electrical output from 

both detectors is fed to an integrator with a chart recorder. The type and quantity of 

dissolved gases are recorded in part-per-million (PPM), in which 1 PPM means one 

micro-litre (pi) of a particular dissolved gas in 1 litre (1) o f oil.

3.4 DGA Interpretation Schemes

The DGA data of power transformers as gathered from DGA tests is submitted for 

interpretation by oil experts or transformer engineers, who will infer the condition of 

a particular power transformer from the composition o f dissolved gases based on 

several DGA interpretation schemes. Amongst these schemes, five most well-known 

and established methods are: Domenburg Ratios [15], Rogers Ratios [16], IEC 

Ratios [19, 20], Duval Triangle [17, 18] and CIGRE Methods [21].

Some other DGA interpretation schemes also exist that are utilised by power utilities 

in various countries. However, fundamental principles of these schemes are very 

similar to the interpretation schemes as mentioned above.
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Before elaborating on foregoing DGA interpretation schemes, it is best to clarify 

several commonly encountered terminologies in these schemes. Definitions as listed 

in Table 3.1 are extracted from the IEC 60599 Standard [20]:

Table 3.1: Definitions for commonly encountered terminologies in DGA
interpretation schemes

Term Definition

Fault
An unplanned occurrence or defect in an item that may result in one or 
more failures o f the item itself or o f other associated equipment.

Non-damage fault A fault that does not involve repair or replacement action at the point of 
the fault.

Damage fault A fault that involves repair or replacement action at the point o f the fault.

Failure The termination of the ability o f an item to perform a required function.

Electrical fault A partial or disruptive discharge through the insulation

Partial discharge

A discharge that only partially bridges the insulation between conductors. 
It may occur inside the insulation or adjacent to a conductor.
Note: Corona is a partial discharge that occurs in gaseous media around 
conductors that are remote from solid or liquid insulation. This term is not 
to be used as a general term for all forms o f partial discharges.

Discharge
(disruptive)

The passage o f  an arc following the breakdown o f  the insulation.
Note: Discharges are often described as arcing, breakdown or short 
circuits. More specific terms are sparkover (discharge through oil), 
puncture (discharge through solid insulation), flashover (discharge at the 
surface o f solid insulation), tracking (progressive degradation o f solid 
insulation by local discharges to form conducting or partially conducting 
paths) and sparking (local dielectric breakdowns o f high ionisation 
density or small arcs).

Thermal fault Excessive temperature rise in the insulation.
Note: More specific terms are overheating and hotspots.

Typical values of 
gas concentrations

Gas concentrations normally found in equipments in service which have 
no symptom o f failures, typically refer to values o f which 90% or 95% of  
gas concentrations fall below.
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3.4.1 Dornenburg Ratios

In 1970, Dornenburg differentiated between faults of thermal or electrical origin by 

plotting successively the ratio of CH4/H 2 against C2H2/C2H4 , C2H6/C2 H2 and 

C2H2/CH4 . It was found that all resulting plots can be partitioned into three sections, 

which correspond to three kinds of fault: local overheating, weak discharges in gas 

pockets and other discharges. Limits of foregoing ratios for these faults were 

summarised and tabled by Dornenburg, as shown in Table 3.2 [15]. Dornenburg also 

recommended typical values of gas concentrations below of which power 

transformers may be regarded as healthy or operating normally, as shown in Table

3.3 [15].

Table 3.2: Fault diagnosis based on Dornenburg Ratios

Ratio
CH4

h 2

c 2h 2

c 2h 4
c 2h 6
c 2h 2

C 2H 2

c h 4

Fault

Local overheating > 1 < 0 .7 > 0 .4 <0.3

Weak discharges in <0.1 * >0 .4 <0.3gas pockets

All other types of < 1 > 0 .7 <0.4 >0.3
discharges >0.1

* Not indicative o f this type o f fault, generally not applicable. If this gas ratio is applicable and > 1 
this indicates that the discharge is increasing.

Table 3.3: Typical values of gas concentrations

Key Dissolved Gas Concentration (PPM)
h 2 200

c h 4 50
c 2h6 15

c 2h 4 60
c 2h 2 15
CO 1000
co2 11000
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The applicability of Dornenburg Ratios are dictated by the following guidelines [15]:

• A single ratio can be used in the diagnosis only if the concentration o f one of 

the two gases is twice as high as the limiting value quoted in Table 3.3.

• Several ratios can be used together in the diagnosis if  at least one o f the first 

and second ratios can be used alone according to the first rule above and at 

least one of these gases which concentrations are formed by the other ratio, 

exceeds the limiting value quoted in Table 3.3.

• The additional mixture ratios C2H6/C2H2 and C2H2/CH4 are acceptable as 

additional confirmation of the diagnosis if  at least one o f each pair o f gases in 

the ratio exceeds the concentration quoted in Table 3.3.

• This method of diagnosis may be used only with extreme caution if the gases 

dissolved in the oil originate from a fault which has no longer been present 

for some considerable time; various gases o f degradation travel at various 

speeds towards the surface of the oil in the expansion tank and escape into the 

atmosphere. When the generation of gases stops this distorts the gas ratio.

• CO and CO2 are found typically as a result o f degradation of the solid 

insulation and are not used in the ratios. In the case o f gradual faults, it is 

generally not possible to decide whether and to what degree the solid 

insulation has been attacked.

• In the case of transformers with a gas cushion (e.g. nitrogen cushion) above 

the oil level, limiting values quoted in Table 3.3 for the ratios can be applied 

only to a limited extent. If volumes of oil and gas cushion are known 

quantities, the applicable limiting values can be calculated.

3.4.2 Rogers Ratios

This interpretation method was introduced to the Central Electricity Generation 

Board (CEGB), England and Wales in the 1970’s as a method based on Halstead’s 

hypothesis on the generation of hydrocarbon gases in insulation oil [31]. It is based 

on four gas ratios: CH4/H2, C2 H6/CH4 , C2 H4/C2H6 and C2 H2/C2H4 ; codes are
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assigned to gas ratios according to their limits, as shown in Table 3.4. The diagnosis 

of a fault is accomplished based on various combinations o f codes, as shown in Table 

3.5.

Table 3.4: Assignment of codes based on limits of ratios

Ratio Limit Code

c h 4
Not greater than 0.1 (<0.1) 5
Between 0.1 and 1.0 (> 0 .1 ,< 1 ) 0

h 2 Between 1.0 and 3.0 
Not less than 3.0

£  1 , <3 )  
(>3)

1
2

C2H 6 Less than 1.0 (< 1) 0
c h a Not less than 1.0 £ 1 ) 1

c ?h a Less than 1.0 (<1) 0'-'2 4
C2H 6

Between 1.0 and 3.0 (> 1 ,< 3 ) 1
Not less than 3.0 (>3) 2

Less than 0.5 (< 0.5) 0

C2H a
Between 0.5 and 3.0 (> 0.5, < 3) 1
Not less than 3.0 ( -  3) 2

Table 3.5: Fault diagnosis based on combinations of codes

c h a

h 2
Code 1

c 2h 6
c h a

Code 2

C 2H a 
C2H 6 
Code 3

C2H 2 
C 2H a 
Code 4

Diagnosis

0 0 0 0 Normal deterioration (no fault)

5 0 0 0 Partial discharges

1/2 * 0 0 0 Slight overheating (below 150 °C)

1/2 * 1 0 0 Overheating (150 -  200 *C)

0 1 0 0 Overheating (200 -  300 °C)

0 0 1 0 General conductor overheating

1 0 1 0 Winding circulating currents

1 0 2 0 Core and tank circulating currents, overheated joints

0 0 0 1 Flashover without power follow through

0 0 1/2 * 1/2 * Arc with power follow through

0 0 2 2 Continuous sparking to floating potential

5 0 0 1/2 * Partial discharges with tracking

* Gas ratio o f I or 2.
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3.4.3 IEC Ratios

This interpretation approach is introduced by the IEC 60599 Standard [19,20], which 

was published in 1978 [19] and was revised in 1999 [20]. For simplicity, the former 

approach is referred to as the IEC-1978 Ratios and the latter as the IEC-1999 Ratios. 

Generally, the interpretation approach as employed by the IEC-1978 Ratios is similar 

to that of Rogers Ratios. However, only three gas ratios are considered, i.e. 

C2H2/C2H4, CH4/H2 and C2H4/C2H6 ; C2H6/CH4 is omitted since it only indicates 

limited temperature range of degradation and does not assist in further identifying the 

fault [19]. This method of DGA interpretation is illustrated in Table 3.6. The 

detection of cellulose degradation due to the fault, which is based on CO2 and CO, is 

also recommended by the standard, as outlined in Table 3.7.

Table 3.6: Fault diagnosis based on IEC-1978 Ratios

Ratio of Characteristic Gases
Code of Ratio

C2H2/C2H4 CH4/H2 C2H4/C2H6

<0.1 
0.1 -  1 
1 - 3
> 3

0
1
1
2

1
0
2
2

0
0
1
2

Case Diagnosis

1 No fault 0 0 0

2 Partial discharges o f low energy density
Not

significant 1 0

3 Partial discharges o f high energy density 1 1 0

4 Discharges o f low energy 1 —» 2 * ' 0 1 2 *

5 Discharges o f high energy 1 0 2

6 Thermal fault o f temperature (< 150 °C) 0 0 1

7
Thermal fault o f low temperature range 
(150 °C to 300 °C)

0 2 0

8
Thermal fault o f medium temperature 
range (300 °C to 700 °C)

0 2 1

9 Thermal fault o f high temperature range 
(> 700 °C)

0 2 2

* Gas ratio increases from I to 2.
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Table 3.7: Detection of cellulose degradation in IEC-1978 Ratios

Detection of Cellulose Degradation due to Fault

1. Any case in which CO2 /CO is below about 3 or above about 11 should be regarded as 
perhaps indicating a fault involving cellulose, if  other key gases also indicating excessive 
oil deterioration.

2. When there is suspicion that a fault might have involved cellulose, the significance o f these 
gases must be considered against the possibility o f both gases may have present in 
moderately high concentration before fault occurred.

The revision of IEC 60599 Standard was accomplished in 1999, resulting in a new 

approach for interpretation of dissolved gases [20]. The approach of interpretation 

has been changed from code-assignment to dealing directly with limits o f ratios, as 

shown in Table 3.8. In addition, a method for the detection o f cellulose degradation 

due to a fault is also included, as outlined in Table 3.9. Lastly, recommended 

procedures for implementation o f IEC-1999 Ratios are also outlined in the standard, 

as illustrated in Figure 3.5.

Table 3.8: Fault diagnosis based on IEC-1999 Ratios

Case Characteristic Fault
C 2H 2

c 2h 4
c h a

h 2

c 2h 4
c 2h 6

PD Partial discharges N S a <0.1 < 0 .2

D1 Discharges o f low energy > 1 0.1 -0 .5 > 1

D2 Discharges o f high energy 0 .6 -2 .5 0 .1 - 1 > 2

T1 Thermal fault (T < 300 °C) N S a > 1 but NS a < 1

T2 Thermal fault (300 °C < T < 700 °C) <0.1 > 1 1 - 4

T3 Thermal fault (T > 700 °C) <0.2 b > 1 > 4

a. Not significant whatever the value.
b. An increasing value o f C2H2 may indicate that the hotspot temperature is higher than 1000 °C.
c. The above ratios are significant and should be calculated only if  at least one of the gases is at a

concentration and at a rate o f gas increase above typical values.
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Table 3.9: Detection of cellulose degradation in IEC-1999 Ratios

Detection of Cellulose Degradation due to Fault

Incremental (corrected) CO2 /CO ratios less than 3 are generally considered as an indication o f  
probable paper involvement in a fault, with some degree o f  carbonisation

Fault identified by Table 3.8

A LE R T condition

Take immediate action 
Consider on-line monitoring 

Inspection or repair
ALARM condition

Store data

Report as typical 
DGA/healthy 
equipment

Institute more frequent 
sampling 

Consider on-line monitoring

All gases below typical 
values of gas 

concentrations and rates of 
gas increase

Examination of DGA results 
Compare with DGA of 

previous sample and with 
typical values

At least one gas above 
typical values of gas 

concentrations and rates of 
gas increase 

Calculate gas ratios

Gas concentration above 
alarm values of gas 

concentrations and rates of 
gas increase, or change in 

fault-type D2

Figure 3.5: Recommended procedures for implementation of IEC-1999 Ratios
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3.4.4 Duval Triangle

Duval’s method of DGA interpretation was founded on his experience on Hydro- 

Quebec’s power transformers [17], in which a triangular diagram has been invented 

for fault diagnosis based on the concentration o f CH4 , C2H4 and C2H2 . Duval’s 

triangular diagram comprises of six fault regions, which include corona discharges, 

low and high energy arcing, and hotspots of various temperatures, as illustrated in 

Figure 3.6. These fault regions were identified by plotting individual points onto the 

diagram [17]; each of these points represents the percentage-concentration o f CH4 , 

C2H4 and C2H2 . The type of fault corresponding to each point has been identified by 

the kind of damage observed afterwards during the inspection of the faulted 

equipment.

100

CH(

0 /
100

100
0

| With x = [C2H2]; y = [C2H4]; z  = [CH4]

a: High-energy arcing ! 0/ n  u  100x
b: Low-energy arcing, tracking I x + y + z
c: Corona discharges
d: Hotspots (T  < 200 °C) I %Ci Ha -  100y
e: Hotspots (200 °C < T  < 400 °C) i x'+y + z
f: Hotspots (T  > 400 °C)

| %CH4 — 10° Z 
j x + y + z

Figure 3.6: Duval Triangle (1980 edition)

Duval revised the triangular diagram in 1993 [18], with improvements such as the 

ability to detect simultaneous occurrence of discharges and thermal fault (TF), as 

illustrated in Figure 3.7. Besides, the location of TF regions has also been amended.
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Figure 3.7: Duval Triangle (1993 edition)

3.4.5 CIGRE Methods

CIGRE methods for the interpretation of DGA data were recommended by the 

CIGRE Task Force 15.01.01 in 1999 in order to fulfil the following aims [21]:

• Proposal of typical values for normal concentrations of key gases as 

mentioned in the IEC 60599 Standard (1999 edition).

• Reduction of the number of faults listed in the interpretation table of IEC 

60599 Standard (1999 edition).

• Precise information at which level of gases, the method of interpretation is 

applicable.

• Definition o f realistic values for CO2/CO ratio to improve the diagnoses on 

cellulose insulation.

PD: Partial discharges 
D 1: Discharges of low energy 
D2: Discharges of high energy 
T 1 : Thermal fault (T < 300 °C)
T2: Thermal fault (300 °C < T  < 700 °C) 
T3: Thermal fault (T > 700 °C)
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• Choice of different ratios for the discrimination of faults and determination of 

the limits for different types of equipment

• Application of the method to equipment other than power transformers.

Consequently, two DGA interpretation approaches were recommended, which are 

based on key-gas ratios and key-gas concentrations, respectively. The former 

approach is based on five key-gas ratios: C2H2/C2H6 , H2/CH4 , C2H4/C2H6 , CO2/CO 

and C2H2/H2 , as illustrated in Table 3.10. On the other hand, the latter approach is 

based on four categories of dissolved gases: C2H2 , H2 , sum of hydrocarbon gases and 

sum of carbon oxides, as illustrated in Table 3.11.

Table 3.10: Fault diagnosis based on CIGRE’s key-gas ratios

Key-gas Ratio Associated Fault and Limit of Ratio

C2H 2

C2H 6
Discharges if  ratio > 1

h 2
c h a

Partial discharges i f  ratio > 10

C 2H a
Thermal fault if  ratio > 1

C2H 6

c o 2 Cellulose degradation due to overheating if  ratio > 10
CO Cellulose degradation due to electrical fault if  ratio < 3

c 2h 2

h 2
Discharges in in-tank tap-changer if  C2H2 > 30 and ratio > 2

Table 3.11: Fault diagnosis based on CIGRE’s key-gas concentrations

Key Gases Key-gas Concentration (PPM) Suspect of Indication

c 2h 2 > 20 Power discharges

h 2 > 100 Partial discharges

Thermal fault
I C xHy > 1000 if up to £  C|, C2, C3 -  Hydrocarbons

>500 if up to X Ci, C2 -  Hydrocarbons

IC O x 
x =  1,2

> 10000 Cellulose degradation
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3.5 AI-Based Fault Diagnosis Approaches

Attempts have been made to utilise AI techniques for fault diagnosis o f power 

transformers based on the DGA data of power transformers. The main aim of these 

approaches is to resolve some identified weaknesses of conventional DGA 

interpretation schemes and to improve the accuracy of diagnosis. Earlier AI 

techniques used are, for example, expert systems (ESs) [43-47], which are capable of 

replicating the expert judgement for fault diagnosis. On the other hand, fuzzy logic 

(FL) [43-46] was also utilised in order to resolve the ambiguity in the diagnosis 

process.

Another breakthrough is the application of supervised neural-networks (NNs) [32- 

37], which have the ability o f learning the inherent correlation between the 

composition of dissolved gases and faults in transformers. In addition, unsupervised- 

NN was also suggested for analysis o f dissolved-gas information so as to unearth 

useful knowledge from the data [38-41]. On the other hand, application o f some new 

algorithms such as evolutionary programming (EP) [45] and self-organising 

polynomial network (SOPN) [42] were also reported.

Generally, the foregoing AI techniques can be categorised into single-AI approaches 

and hybrid-AI approaches. The former approaches involve the utilisation o f one AI 

techniques while the latter approaches involve the combinatory application o f two or 

more AI techniques.

3.5.1 Single-AI Approaches

The most common AI technique within this category is the supervised-NN. A set of 

input-output samples is required for the supervised training process. The inputs are, 

for example, key gases (e.g. Fh, CH4 , C2H6 , C2H4 and C2H2) and the outputs are, for 

example, fault conditions (e.g. discharges, PD and TF) that have been identified
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either through the application of conventional DGA interpretation schemes or 

through actual inspection on faulted transformers.

In 1993, Bhattacharyya et. al. [32] applied a simple feed-forward NN trained with 

back-propagation algorithm for detecting thermal and arcing faults. The inputs used 

are H2 , CH4 , C2H6 , C2H4 , C2H2 , CO, CO2, O2 , N2 , sum of all gases and total 

combustible gases (TCG). Training samples were taken from post mortem data and 

were carefully selected so that various operating conditions were well represented. It 

was reported that more accurate diagnoses can be obtained if compared to Rogers 

Ratios and Dornenburg Ratios.

In 1996, Zhang et. al. [33] developed a two-step NN approach, where two NNs were 

trained for fault diagnosis and detection of cellulose degradation respectively, as 

illustrated in Figure 3.8. It was found that CO2 and CO are not needed as inputs for 

fault diagnosis, and a single output that indicates whether cellulose was involved in a 

fault is sufficient for the detection of cellulose degradation. In addition, Zhang et. al. 

also indicated in latter publication [34] that higher diagnosis accuracy could be 

achieved if gas generation rates were included as inputs to the NN.

Normal Overheating Corona Arcing Cellulose Involved

H2 c h 4 c 2h 2 c 2h 4 c 2h 6 h 2 c h 4 c 2h 2 C2H4 C2H6 CO co2

Figure 3.8: Two-step supervised-NN approach
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In 1997, Tu et. al. [35] utilised an approach of subdivided NNs. Three NNs that 

correspond to key gas concentrations, IEC-1978 Ratios and Rogers Ratios were 

trained independently; fault diagnoses as given by these NNs were combined through 

a process known as “synthetic analysis” to arrive at a final decision on fault 

diagnosis. However, Tu et. al. pointed out that the selection o f suitable training cases 

and their quantities would affect the diagnosis capability o f supervised-NNs.

Supervised-NN was also used by Venegas et. al. [36] in 1997 for fault diagnosis 

based on the Japanese ECRA method. Thirteen characteristic patterns o f gaseous 

composition were used as inputs to the NN, which was trained to detect different 

types of fault as specified in the method. It was reported that 92% of diagnosis 

accuracy could be achieved through the use of this approach. Finally, a multi

resolution approach was developed by Gao et. al. [37] in 1998, where different 

supervised-NNs were connected to form a decision tree. Fault diagnosis was 

accomplished from top to bottom, where a more detailed fault type was detected in 

the lower layer of the decision tree.

Besides, an unsupervised-NN known as the self-organising map (SOM) was applied 

by Esp et. al. [38-41] for explorative analysis on selected set o f DGA records. It was 

reported that some interesting patterns were revealed that can be associated with 

certain incipient faults of power transformers. This unsupervised-NN approach will 

be further explored in a systematic and detailed manner in the next few chapters of 

this thesis. In fact, the research project as reported in this thesis is a result o f 

collaboration with Esp et. al. in order to further investigate the foregoing approach.

In 1998, Yang et. al. [42] applied a novel data-driven approach, which is known as 

the self-organising polynomial network (SOPN), for fault diagnosis o f power 

transformers, as shown in Figure 3.9. The SOPN is similar to supervised-NN 

topologically but the number of layers, number of nodes, connection weights and the 

transfer function for each node must be determined through iterative training. 

Therefore, the non-linear nature of the data is learned through a cascaded architecture 

of simple low-order polynomial functions. In addition, it was reported that the
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training of SOPN is seven times faster than supervised NNs and more accurate 

diagnoses were also obtained.

Layer 1

Layer 2

Layer 3

Figure 3.9: Self-organising polynomial network 

3.5.2 Hybrid-AI Approaches

Other AI techniques applied for fault diagnosis of power transformers are o f hybrid 

nature, such as the fuzzy expert system (FES) [43, 44], fuzzy evolutionary 

programming (FEP) [45], fuzzy neural network (FNN) [46] and combined 

application of ES and NN [47]. The advantage of employing hybrid approaches is 

that the strength o f each individual technique can be effectively combined and hence 

more accurate fault diagnoses can be achieved.

A FES, as illustrated in Figure 3.10, was developed by Lin et. al. in 1993 [43]. The 

FES was implemented using if-then rules and fuzzy logic (FL) was introduced to 

resolve the inherent uncertainties in normality thresholds, gas ratios and key gas 

concentrations. The knowledge-base of the FES incorporates not only popular DGA 

interpretation schemes such as the Domenburg Ratios, key gas concentrations and 

IEC-1978 Ratios, but also synthetic expertise and heuristic maintenance rules based 

on expert experiences.
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Rule-based expert system

Transform er historical 
gas data

Fuzzy
set

Facts

Knowledge
relationship

Working memory

Global database

Knowledge base

Inference engine

Explanation tracing

Reasoning and searching strategy Diagnosis flow 
chart

I
Interactive interface

User requirements Proper suggestions Knowledge acquisition

Expert systems 
user

Consult with 
domain expert

Figure 3.10: Fuzzy expert system

However, only a fairly simple form of fuzzy concepts was implemented by Lin et. al. 

and the more general framework associated with fuzzy measures and bodies of 

evidence were not pursued [44]. Consequently, a more general approach, known as 

the fuzzy information theory, was proposed by Tomsovic et. al. [44] in 1993 in order 

to systematically manage uncertainties that arise from different DGA interpretation 

schemes. In the FES developed by Tomsovic et. al., each DGA interpretation scheme 

was represented by several fuzzy rules; conflicts that arise between rules were 

resolved using fuzzy information theory to find the most consistent solution. Lastly, 

diagnoses as given by various schemes were combined to arrive at a final decision, in 

which higher weights were attached to more certain diagnoses.
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Although the introduction of fuzzy concepts greatly improves the diagnosis accuracy 

of expert system, membership functions o f fuzzy subsets are either determined 

empirically or basically in a trial-and-error manner, where the conventional DGA 

interpretation schemes are to be implicitly followed. Huang et. al. [45] proposed a 

novel approach known as the fuzzy evolutionary programming (FEP) in 1997, 

whereby conventional DGA interpretation schemes were used to construct the 

preliminary framework of the fuzzy system, and an evolutionary programming (EP) 

based optimisation algorithm was employed to further modify the fuzzy IF-THEN 

rules and simultaneously adjusting the membership function o f the fuzzy subsets. 

The overall FEP approach is illustrated in Figure 3.11. Consequently, the 

cumbersome process o f manually adjusting the fuzzy rules and membership 

functions, as experienced by Lin et. al. [43] and Tomsovic et. al. [44] can be avoided 

altogether.

Evolutionary Database of
programming dissolved gas test

optimiser records

Set up membership ■—  
functions and fuzzy 

rule tables 1

Transform er fault 
diagnosis system

________________________

IE C /IE EE  transformer
DGA criteria Diagnosis results

Figure 3.11: Fuzzy evolutionary programming

In 1997, Tomsovic et. al. [46] attempted to compare the diagnosis accuracy of three 

Al approaches: fuzzy information approach as reported in [44], supervised-NN, and a 

hybrid approach known as the fuzzy neural network (FNN). For the FNN approach, 

developed fuzzy relations in the fuzzy information approach were used for
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generating inputs to the supervised-NN. However it was reported that the FNN 

produces similar diagnosis accuracy to that o f supervised-NN; it also failed to 

achieve more accurate results when compared with the fuzzy information approach 

[44].

A combined NN and ES approach was developed and reported by Wang e t  al. [47] 

in 1998, as illustrated in Figure 3.12. The knowledge-base o f the expert system 

integrates IEEE Standard [48], IEC Standard [19] and human expertise to ensure that 

the additional knowledge was not abandoned when insufficient data was available for 

the supervised-NN training. On the other hand, the supervised-NN could acquire new 

experiences through incremental training from newly obtained data samples. An 

optimisation mechanism was applied to combine respective outputs from ES and 

supervised-NN to arrive at the final diagnosis, accompanied by maintenance 

recommendations. This approach was reported to have better performance when 

compared with supervised-NN and ES utilised individually.

Data
input

yes

Both indicate "normal”?

no

Combined fault diagnosis

Maintenance action recommendation

Results

NN-based individual 
fault detectors

NN-based
normal/abnormal

classifier

Knowledge-based
normal/abnormal

classifier

Knowledge-based 
individual fault 

detectors

Figure 3.12: Combined expert system and supervised NN approach
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3.6 Effectiveness of Current Fault Diagnosis Approaches

As briefly explained in Sections 3.4 and 3.5, current fault diagnosis approaches can 

be classified into conventional DGA interpretation schemes [15-21] and new AI- 

based approaches [32-47]. The former approaches are based on the key-gas ratios 

and key-gas concentrations while the latter approaches are dependent on the 

application of Al techniques for enhancing the accuracy and consistency of the fault 

diagnosis.

The conventional DGA interpretation schemes have been known to contain several 

weaknesses. Firstly, ambiguity still exists on the types o f key-gas ratios to be 

considered and on the credibility of the suggested ratio limits; power utilities may 

have to select or adapt any of the well-established schemes heuristically. Even so, 

there is no guarantee that the chosen or adapted DGA interpretation scheme is best 

suited for accomplishing the task of fault diagnosis.

Secondly, the empirical nature of conventional DGA interpretation schemes has led 

to discrepancies in interpretation; application of various interpretation schemes on a 

set o f DGA records may result in diverse interpretation of transformer condition, 

thereby causing confusion among power utilities.

Thirdly, interpretation of transformer condition is sometimes impossible to achieve 

owing to the inability of some interpretation schemes to cover all possible 

combinations o f gas ratios or codes. Consequently, the interpretation of a DGA 

record may have to depend on human expert, who may instigate even more 

confusion since each expert may have his/her own opinion on what is happening 

inside the transformer.

Finally, no systematic attempt has been made in these schemes to actually “learn” 

from the hidden information contained within the historical DGA database, which
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may contain a lot of useful information regarding series of events or incidences that 

have occurred inside the power transformers.

On the other hand, several Al-based approaches have been applied for resolving 

some identified weaknesses of conventional DGA interpretation schemes, such as the 

ambiguity o f ratio limits and discrepancies in DGA interpretation. Subsequently, 

improvements in fault diagnosis were reported. Despite the advantages o f utilising 

these Al-based approaches, they are not entirely ideal and do suffered from several 

weaknesses.

To begin with, the application o f supervised-NNs requires either actual fault cases or 

conventional DGA interpretation schemes for their modelling. However, the 

acquisition of actual fault cases is difficult since it is too costly to disconnect and 

dismantle a particular power transformer for the purpose o f investigating a suspected 

fault since the transformer concerned may seem to be operating normally despite the 

increase in certain key gases. Consequently, there might not have a lot o f “good” 

fault cases for the training o f supervised-NNs. Therefore, the trained NNs might not 

be able to learn well and subsequently incapable o f generalising towards some new 

cases that are presented to them.

Furthermore, as for those supervised-NNs that are utilising conventional DGA 

schemes for generating targets for the training inputs, they will inevitably inherit 

some of the inherent weaknesses of these schemes such as the ambiguity of 

suggested ratio limits and gas-ratios. Therefore, the trained NNs in this case would 

only provide limited generalisation capability owing to their dependency on 

conventional schemes.

Besides, hybrid-AI approaches such as FNN, FES and combined ES and NN are 

more effective due to the fact that FL or NN is used to tackle the ambiguity of 

conventional DGA interpretation schemes, which are integrated into foregoing 

approaches, and expert experiences are incorporated to improve the credibility of 

diagnosis. However, owing to the incorporation of conventional schemes and expert
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experiences, too many uncertainties are introduced to these approaches and would 

lead to the lack of confidence on final diagnoses if these uncertainties were not 

managed appropriately.

It is apparent from the foregoing that there is a need for research into new 

approaches, which ideally do not depend on actual fault cases or conventional DGA 

interpretation schemes for development and modelling processes while offering 

improved accuracy and confidence in fault diagnosis. With this background, a novel 

approach is introduced in this thesis that is based on the application of an 

unsupervised-NN known as the SOM. The feasibility and ability o f this proposed 

approach for addressing the afore-mentioned issues and achieving foregoing aims 

will be investigated in subsequent chapters of this thesis.

3.7 Summary

Various aspects of DGA have been presented in this chapter, which include the 

related theory, procedures of the DGA test and a literature survey on conventional 

DGA interpretation schemes and new Al-based fault diagnosis approaches. It has 

been pointed out that the DGA approach is based on the mechanisms of formation of 

gases in insulation oil during the onset o f faults. Besides, various procedures o f the 

DGA test have been briefly illustrated. In addition, a discussion on the effectiveness 

of currently available fault diagnosis approaches have been presented and it is 

concluded that a new approach is clearly needed for improved fault diagnosis in a 

more systematic and confident manner.
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CHAPTER 4

IMPLEMENTATION OF CONVENTIONAL DGA 

INTERPRETATION SCHEMES

4.1 Introduction

Conventional DGA interpretation schemes as described in Section 3.4 were 

implemented using the Matlab programming language. Modifications and 

improvements were made so as to maintain the overall uniformity and to mimic, as 

close as possible, actual circumstances to which these schemes are applied. In 

addition, a comparative study on the implemented schemes is also presented in this 

chapter, with the aim of investigating the effectiveness o f these schemes for the 

interpretation of the DGA data of power transformers.

4.2 Important Aspects of the Implementation

Various aspects have to be considered before these DGA interpretation schemes are 

implemented. Firstly, a distinction must be established between the diagnosis of 

incipient faults and detection of cellulose degradation due to these faults. In fact, 

DGA is very efficient for detecting incipient faults but not very useful when it comes 

to determining the degree of cellulose degradation due to these faults. Therefore, 

main emphasis is placed herein on the ability of the implemented schemes to detect 

electrical faults (EF), i.e. discharges and partial discharges (PD), and thermal faults 

(TF), e.g. hotspots and overheating.
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Secondly, the terminology o f incipient faults has to be standardised so as to avoid 

confusion in the later stages. EF is thus used as a general term for discharges and PD. 

Specifically, the term “discharges” is used for referring to sparkover, puncture, 

flashover, tracking and sparking; PD is used as a general term for partial dielectric 

breakdown that includes corona, which is a specific form of PD in a gaseous 

medium, and finally, TF is used for referring to hotspots and other overheating 

problems. Definitions for the foregoing terms have been presented in Table 3.1.

Thirdly, typical concentrations of several key dissolved gases have to be determined, 

which represent concentrations of these gases which are usually found in insulation 

oil of power transformers that are operating normally. Since typical concentrations 

are explicitly stated in Domenburg Ratios and CIGRE key-gas concentrations 

method, they will be used as typical values for these approaches. As for the other 

DGA interpretation schemes, typical concentrations have to be calculated from a 

historical DGA database, which contains a total of 14943 DGA records from around 

600 power transformers of the National Grid Company (NGC), UK. The 

determination o f typical concentrations is based on the assumption that 90% of 

recorded dissolved-gas concentrations correspond to power transformers that are 

operating normally and the remaining 1 0 % indicate the possibility of faults or 

abnormal circumstances within the power transformers. Typical concentrations based 

on the 90% limit can be determined via the plotting o f cumulative histograms. 

Essentially, cumulative histogram for each key dissolved-gas is plotted and a line is 

then drawn from the 90% cumulative-percentage to arrive at the typical 

concentration for each gas. The typical concentration for each key dissolved gas was 

thus calculated via the foregoing approach and is shown in Table 4.1.

Table 4.1: Typical dissolved-gas concentrations based on the 90% limit

Key Dissolved Gas 90% Typical Concentration (PPM)
co 2 4260
CO 520
h 2 85

c h 4 47
c 2h6 31
C2H4 53
c 2h 2 13
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4.3 Implementation of Dornenburg Ratios

Generally, the applicability of Dornenburg Ratios is dictated by several constraints, 

as summarised in Table 4.2. Besides, Table 4.3 illustrates the fault-diagnosis table 

for Dornenburg Ratios. In addition, the flow-chart for the implementation of 

Dornenburg Ratios is illustrated in Figure 4.1. Note that typical dissolved-gas 

concentrations as suggested by Dornenburg (see Table 3.3) were used for the 

implementation of this method.

Table 4.2: Constraints of Dornenburg Ratios

Dornenburg Ratios is Applicable if  At Least One of the Following Conditions is Satisfied:

Condition 1: (CH4 > 100) AND (C2H2 > 15 OR QH4 > 60) AND (C2H6> 15 OR C2H2 > 15)
AND (C2H2 > 15 OR CH4 > 50)

Condition 2: (H2 > 400) AND (C2H2 > 15 OR C2H4 > 60) AND (C2H6> 15 OR C2H2 > 15)
AND (C2H2 > 15 OR CH4 > 50)

Condition 3: (C2H2 > 30) AND (CH4 > 50 OR H2 > 200) AND (C2H6> 15 OR C2H2 > 15)
AND (C2H2 > 15 OR CH4 > 50)

Condition 4: (Q IL  > 120) AND (CH4 > 50 OR H2 > 200) AND (C2H6> 15 OR C2H2 > 15)
AND (C2H2 > 15 OR CH4 > 50)

Table 4.3: Fault-diagnosis table for Dornenburg Ratios

^ ^ '' '^ -^ ^ R a t io
D ia g n o s is ' ' ' \^ ^

c h 4

h 2

c 2h 2

c 2h 4
c 2h 6
c 2h 2

C 2H 2

' c h 4
Type

Local overheating > 1 <0.7 > 0 .4 <0.3 TF

Weak discharges in 
gas pockets

<0.1 Not
applicable >0 .4 <0.3 PD

All other types o f  
discharges

< 1 
>0.1 > 0.7 <0.4 >0.3 Discharges

Other combinations o f ratios not covered by Dornenburg Ratios No
interpretation

One or more ratios are NaNs * (i.e. no record in either one or both gases o f a 
ratio) Undefined

* NaN: Not-a-Number.
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Read data

Normality diagnosis

Yes “Normal
operation"

7 key dissolved 
gases below typical 

concentrations?

No

Fault suspected
Test for applicability of 

Dornenburg Ratios
No “Dornenburg 

Ratios not 
applicable”

Dornenburg's 
constrains satisfied 

(Table 4.2)?

Yes

Fault diagnosis
Compute gas ratios

Fault diagnosis based on Table 4 .3

Figure 4.1: Flow-chart for the implementation of Dornenburg Ratios

4.4 Implementation of Rogers Ratios

The Rogers’ method was developed in such a way that at some instances, several 

combinations of codes could yield identical diagnoses. For example, two 

combinations of codes are possible for the diagnoses of “slight overheating at below 

150 °C”, “slight overheating between 150 °C to 200 °C” and “partial discharges with 

tracking”. The implementation of the code-assignment process is illustrated in Table

4.4 and the fault-diagnosis table is shown in Table 4.5. In addition, although the 

requirement for “normality” test is not explicitly stated in Rogers Ratios, it was 

implemented so as to mimic actual circumstances in which the method is used. 

Therefore, the code-combination of [0 0 0 0] in Rogers Ratios was eliminated and 

typical concentrations of key dissolved gases as listed in Table 4.1 were adopted to 

cater for such purpose. Finally, the flow-chart for the implementation of Rogers 

Ratios is illustrated in Figure 4.2.
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Table 4.4: Assignment of codes for Rogers Ratios

Code Ratio Limit Assignment 
of Code

c h 4

Not greater than 0.1 
Between 0.1 and 1.0

© 
v

vi,© 5
0

1 Between 1.0 and 3.0 1 ,< 3 ) 1
Not less than 3.0
No record in either one or both gases

(> 3) 2
NaN *

2
C2H 6
c h 4

Less than 1.0 
Not less than 1.0

(< 1)
(^ 1)

0
1

No record in either one or both gases NaN *
Less than 1.0 ( < 0 0

C2H a Between 1.0 and 3.0

COVA
l 1

J
C2H6 Not less than 3.0

No record in either one or both gases
(> 3) 2

NaN *
Less than 0.5 (< 0.5) 0

A c 2h 2 Between 0.5 and 3.0 (> 0.5, < 3) 1
C2H 4 Not less than 3.0

No record in either one or both gases
(^ 3) 2

NaN*
* NaN: Not-a-Number.

Table 4.5: Fault-diagnosis table for Rogers Ratios

Case Code
1

Code
2

Code
3

Code
4 Diagnosis Type

1 5 0 0 0 Partial discharges PD

2
1 0 0 0 Slight overheating (< 150 °C) -  1 TF

2 0 0 0 Slight overheating (< 150 °C) -  2 IF

3
1 1 0 0 Overheating (150 °C -  200 °C) -  1 TF
2 1 0 0 Overheating (150 °C -  200 °C) -  2 TF

4 0 1 0 0 Overheating (200 °C -  300 °C) TF
5 0 0 1 0 General conductor overheating TF

6 1 0 1 0 Winding circulating current TF

7 1 0 2 0 Core and tank circulating current TF

8 0 0 0 1 Flash over without power follow 
through Discharges

9
0 0 1 1 Arc with power follow through -  1 Discharges
0 0 1 2 Arc with power follow through -  2 Discharges
0 0 2 1 Arc with power follow through -  3 Discharges

10 0 0 2 2 Continuous sparking to floating 
potential Discharges

11
5 0 0 1 Partial discharge with tracking -  1 PD
5 0 0 2 Partial discharge with tracking -  2 PD

12 Other combinations o f codes not covered by Rogers Ratios No
interpretation

13 One or more codes are NaNs * Undefined
* NaN: Not-a-Number.
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Read data

Normality diagnosis

5 key dissolved-gases 
below typical 

concentrations? 
(Exclude C 0 2 and CO)

Yes
“Normal

operation”

No

Fault diagnosis Compute gas ratios

Assign code to each ratio based on Table 4 .4

Fault diagnosis based on Table 4 .5

Figure 4.2: Flow-chart for the implementation of Rogers Ratios

4.5 Implementation of IEC-1978 Ratios

In IEC-1978 Ratios, codes are assigned based on respective limits o f ratios and fault 

diagnosis is performed based on various combinations of codes. In addition, there are 

also instances in which several combinations o f codes can lead to identical fault 

diagnosis. The implementation of the code-assignment process is illustrated in Table

4.6 and the fault-diagnosis table is shown in Table 4.7. Lastly, the flow-chart for the 

implementation of IEC-1978 Ratios is illustrated in Figure 4.3. Note that typical 

concentrations as listed in Table 4.1 were used for the “normality” test and the code

combination of [0 0 0] was eliminated to cater for such purpose.

Table 4.6: Assignment of codes for IEC-1978 Ratios

Ratio c 2h 2/c 2h 4 CH4/H2 c 2h 4/c 2ii6

<0.1 0 1 0
0.1 -  1 1 0 0

1 - 3 1 2 1
> 3 2 2 2

No record in either one or both gases NaN * NaN * NaN *
* NaN: Not-a-Number.
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Table 4.7: Fault-diagnosis table for IEC-1978 Ratios

C 2H 2 CH4 C 2H 4
Case Diagnosis c 2h 4 h 2 C 2H 6

Code 1 Code 2 Code 3

1 Partial discharges o f low energy density 0 1 0

2 Partial discharges o f high energy density 1 1 0

3
Discharges o f  low energy -  1 
Discharges o f low energy -  2 a 
Discharges o f low energy -  3 a

1
2
2

0
0
0

1
1
2

4 Discharges o f high energy 1 0 2

5 Thermal fault o f low temperature (< 150 °C) 0 0 1

6 Thermal fault o f low temperature (150 °C -  300 °C) 0 2 0

7
Thermal fault o f medium temperature 
(300 °C -  700 °C)

0 2 1

8 Thermal fault o f high temperature (> 700 °C) 0 2 2

9 No Interpretation Other combinations o f codes not 
covered by EEC-1978 Ratios

10 Undefined One or more codes are NaNs b
a. Unconvincing combinations o f codes, but will be implemented in accordance with the method.
b. NaN: Not-a-Number.

Read data

Normality diagnosis

5 key dissolved-gases 
below typical 

concentrations? 
(Exclude C 0 2 and CO)

Yes “Normal
operation”

No
Fault diagnosis

Compute gas ratios

Assign code to each ratio based on Table 4 .6

Fault diagnosis based on Table 4.7

Figure 4.3: Flow-chart for the implementation of IEC-1978 Ratios
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4.6 Implementation of IEC-1999 Ratios

The IEC-1999 Ratios is the revised version of the IEC-1978 Ratios. The fault- 

diagnosis approach has been changed from the assignment of codes to dealing 

directly with ratios of dissolved gases. In addition, all DGA records are subjected to 

the “normality” test before being diagnosed for faults. This was done so as to follow 

the IEC’s recommendation on the implementation of this method (see Figure 3.5). 

Therefore, typical concentrations of dissolved gases that are listed in Table 4.1 were 

used for that purpose. However, the rates of gas increase are not considered herein 

owing to the lack of information on the volume of oil in various transformer tanks; 

this information is needed for the calculation of gas rates. The fault-diagnosis table 

for IEC-1999 Ratios is illustrated in Table 4.8 and the flow-chart for the 

implementation of this method is depicted in Figure 4.4.

Table 4.8: Fault-diagnosis table for IEC-1999 Ratios

Case Diagnosis
C 2H 2 

C 2H 4

c h 4

h 2

c 2h a

c 2h 6

1 Partial discharges Not applicable <0.1 <0.2

2 Discharges o f  low energy > 1 >0.1 - < 0 .5 > 1

3 Discharges o f  high energy > 0 .6  - < 2 .5 >0.1 -  < 1 > 2

4
Thermal fault (T < 300 °C) -  1 Not applicable > 1 < 1

Thermal fault (T < 300 °C) -  2 Not applicable Not applicable < 1

5 Thermal fault (300 °C < T < 700 °C) <0.1 > 1 > 1 - < 4

6 Thermal fault (T > 700 °C) <0.2 > 1 > 4

7 No interpretation Other combinations o f codes not covered by IEC- 
1999 Ratios

8 Undefined One or more ratios are NaNs * (i.e. no record in 
either one or both gases o f a ratio)

* NaN: Not-a-Number.
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Read data

Normality diagnosis

Yes5 key dissolved-gases 
below typical 

concentrations? 
(Exclude C 0 2 and CO)

“Normal
operation"

No

Fault diagnosis Compute gas ratios

Fault diagnosis based on Table 4 .8

Figure 4.4: Flow-chart for the implementation of IEC-1999 Ratios

4.7 Implementation of Duval Triangle

Although it was not stated that the “normality” test is required before the application 

of Duval Triangle, this was implemented so as to simulate the actual circumstances 

in which the method is used; typical concentrations as listed in Table 4.1 were used 

for that purpose. Two versions of Duval Triangle were implemented, as shown in 

Tables 4.9 and 4.10 respectively. The flow-chart for the implementation of Duval 

Triangle is illustrated in Figure 4.5.

Table 4.9: Fault-diagnosis table for Duval Triangle (1980-edition)

Diagnosis Boundaries for %C2 H2, %C2H4, %CH4 Type

a: High-energy arcing • %C2H2 > 26  •  26 > %C2H2 > 14
• %C2H4 >25 •  40 > %C2H4 > 25

Discharges

b: Low-energy arcing, tracking • %C2H2 > 14 • %C2H4 < 25 Discharges
c: Corona discharges • %C2H4 > 95 PD

d: Hot-spots (T < 200 °C) I % c • %CH< £ 9 5
TF

e: Hot-spots (200 °C < T <400 °C) • %C2H2 < 14 • %C2H4 > 48 TF
f: Hot-spots (T > 400 °C) • 26 > %C2H2 > 14  • %C2H4 > 40 TF
One or more %gases is NaN * (i.e. no record in one or more gases o f a%gas) Undefined

* NaN: Not-a-Number.
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Table 4.10: Fault-diagnosis table for Duval Triangle (1993-edition)

Diagnosis Boundaries for %C2H2, %C2H4 > %CH 4

PD: Partial discharges • %CH4 > 98
D1: Discharges o f low energy • %C2H2 > 1 3  • %C2H 4<23

D2: Discharges o f high energy • 29 > %C2H2 > 13 • %C2H2 > 2 9
• 38>% C 2H4>23 ♦ %C2H 4>23

Tl: Thermal fault (T < 300 °C)
• %C2H2 < 4
•  %C2H 4<10 /.C H 4 < 9 8

T2: Thermal fault (300 °C < T < 700 °C) • 50 > %C2H4 > 10 • %C2H2 < 4
T3: Thermal fault (T > 700 °C) • %C2H2 <15 • %C2H 4>50
D+T: Discharges and thermal fault Except all ranges above
Undefined: One or more %gases is NaN * (i.e. no record in one or more gases o f a %gas)

* NaN: Not-a-Number.

Read data

JNormality diagnosis

Yes5 key dissolved-gases 
below typical 

concentrations? 
(Exclude C 0 2 and CO)

“Normal
operation”

No

Fault diagnosis
Compute % C2H2, % C2H4i % C H 4

 T ---------------

Fault diagnosis based on Table 4 .9 /4 .10

Figure 4.5: Flow-chart for the implementation of Duval Triangle

4.8 Implementation of CIGRE Methods

CIGRE has recommended the application o f key-gas ratios and key-gas 

concentrations for fault diagnosis of power transformers. Again, the “normality” test 

was implemented for the key-gas ratios in order to simulate the actual situation in
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which the method is used. Fault-diagnosis tables for CIGRE’s key-gas concentrations 

and key-gas ratios are shown in Tables 4.11 and 4.12 respectively. In addition, the 

flow-chart for the implementation of CIGRE’s key-gas ratios is shown in Figure 4.6.

Table 4.11: Fault-diagnosis table for CIGRE’s key-gas concentrations

Case Key gases Concentration (PPM) Diagnosis Label

1 c 2h 2
> 2 0 Discharges 1

< 20 No Discharges 0
No record Undefined NaN *

2 h 2

> 100 Partial discharges 1

< 100 No partial discharges 0
No record Undefined NaN *

3 I C xHy
(Ci,C2)

> 500 Thermal fault 1
<500 No thermal fault 0

No record in any gas Undefined NaN *

Diagnosis:
[Case 1 | Case 2 | Case 3]

(Diagnosis is in vector form, label is 1 if  a fault is indicated and 0 if  no fault is indicated)
Normal condition for key-gas concentrations:

0 10 | 0
* NaN: Not-a-Number.

Table 4.12: Fault-diagnosis table for CIGRE’s key-gas ratios

Case Key gases Limit Diagnosis Label

1
C 2H 2

C 2H 6

> 1 Discharges 1
< 1 No Discharges 0

No record in one or both gases Undefined NaN *

2
h 2

c h 4

> 10 Partial discharges 1
< 10 No partial discharges 0

No record in one or both gases Undefined NaN *

3
c 2h 4
C 2H 6

> 1 Thermal fault 1
< 1 No thermal fault 0

No record in one or both gases Undefined NaN *
Diagnosis:

[Case 1 | Case 2 | Case 3]
(Diagnosis is in vector form, label is 1 if  a fault is indicated and 0 if  no fault is indicated)

No interpretation for key-gas ratios: 
0 10 10

* NaN: Not-a-Number.
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Figure 4.6: Flow-chart for the implementation of C IG R E’s key-gas ratios

4.9 Comparative Study on Implemented DGA Schemes

The capability of the foregoing implemented schemes for the interpretation o f DGA 

data was compared based on a set o f 755 actual DGA records, as shown in Table 

4.13. This set o f DGA data was constructed from six subsets of actual DGA records 

from power transformers of three manufacturers, two voltage levels and one power 

rating.

Table 4.13: DGA data for com parative study on the implemented DGA schemes

Subset Manufacturer * Voltage Level 
(kV)

Power Rating 
(MVA)

Number of 
Records

1 I 400/132 240 72

2 I 275/132 240 91

3 II 275/132 240 187

4 II 400/132 240 94

5 III 400/132 240 108

6 III 275/132 240 203

* Roman numerals are used to represent different manufacturers.
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Since each DGA interpretation scheme has its own interpretation of transformer 

condition, it is difficult to conduct the comparison unless only general conditions are 

considered, i.e. normal operation, discharges, PD and TF. Hence, the implemented 

DGA schemes were employed for the interpretation of actual DGA data (see Table 

4.13) with the aim of detecting four general conditions as mentioned above. Table 

4.14 illustrates the outcome of the comparison. Note that the number within each cell 

of Table 4.14 represents the amount of actual DGA records that were diagnosed to 

indicate a certain condition by using each of the implemented DGA schemes.

Table 4.14: Interpretation of actual DGA data using implemented DGA schemes

^ \D ia g n o s is
d g a \ ^
Schemes

N a D b PD c TF d E F e 
(D+PD)

D
+

TF

PD
+

TF

EF
+

TF
N/A f N/I g

Dornenburg
Ratios

446 89 0 45 151 24

Rogers
Ratios

484 156 0 47 68

IEC-1978
Ratios 484 167 0 71 33

IEC-1999
Ratios

484 157 0 75 39

Duval Triangle 
(1980 edition)

484 180 0 91

Duval Triangle 
(1993 edition)

484 180 0 82 9

CIGRE
Key-Gas

Concentrations
522 53 3 21 84 2 15 55

CIGRE
Key-Gas

Ratios
484 2 0 68 0 193 1 0 7

a. N: Normal operation
b. D: Discharges
c. PD: Partial discharges
d. TF: Thermal fault
e. EF: Electrical fault
f. N/A: Not applicable (for Dornenburg Ratios only)
g. N/I: No Interpretation
h. Areas marked by grey colour are not applicable to respective DGA interpretation schem es.
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As can be observed from Table 4.14, the application o f different DGA interpretation 

schemes on an identical set o f DGA data have resulted in diverse interpretations of 

transformer condition, which could be potentially disrupting for those power utilities 

who wish to utilise these schemes for the condition assessment of their transformer 

population. In addition, some of the DGA schemes are not capable of interpreting 

some DGA records, as evident by the amount of DGA records in the “no 

interpretation” column of Table 4.14. Moreover, the application of CIGRE’s key-gas 

concentrations and key-gas ratios could be confusing since a number of conditions 

were identified, which included simultaneous occurrences o f two or three incipient 

faults.

It is apparent from the foregoing that an improved approach o f DGA interpretation, 

which potentially does not give rise to the confusing circumstances as described 

previously, is needed in order to improve the confidence level and accuracy of the 

DGA interpretation. The proposed approach for achieving the foregoing objective 

will be described in subsequent chapters of the thesis.

4.10 Summary

The implementation of various DGA interpretation schemes has been presented in 

this chapter. The objective for implementing these schemes is to compare the 

strengths and weaknesses of various established schemes. In fact, it has been verified 

in Section 4.9 that interpretations as provided by these schemes are not compatible 

with one another, which could be potentially confusing for those power utilities who 

wish to apply these schemes for condition assessment of their power transformers. 

Thus, it is important to develop a novel approach that can significantly minimise the 

foregoing confusing situation, thereby improving the confidence level and accuracy 

of the DGA interpretation.
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CHAPTER 5

KNOWLEDGE DISCOVERY METHODOLOGY FOR 

EXPLORATORY DATA ANALYSIS

5.1 Introduction

This chapter introduces a novel methodology for exploratory data analysis known as 

the knowledge discovery in databases (KDD), in which data mining (DM) is a vital 

component within the KDD methodology. This chapter will emphasis on a class of 

DM methods that are capable of performing clustering and classification functions 

while also able to present the “learned” information in an unambiguous and 

discernible manner.

Two relevant DM methods have been investigated in the research project, i.e. 

Sammon mapping [49] and the self-organising map (SOM) [50]. However, it was 

found that Sammon mapping offers a limited visualisation capability and it requires a 

very intensive computing resource; thus it is deemed not practical for analysing 

usually large and complex practical databases. Therefore, the SOM has been chosen 

as the suitable DM method worthy of further investigation in this research project 

due to its powerful visualisation capability, fast and efficient learning process, and 

comparatively light requirement on computing resource. Various issues for practical 

application of SOM will be presented in this chapter. The chapter concludes with a 

discussion on the feasibility of the SOM algorithm for exploratory data analysis on 

the condition assessment data of power transformers.
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5.2 The Need for Novel Methodology of Data Analysis

The technology of computing and storage has enabled people to collect and store 

information from a wide range of sources at rates that were, only a few years ago, 

considered unimaginable. Although modem database technology enables economical 

storage o f this data, we still do not have the technology to fully assist us analyse, 

understand or even visualise this stored data [51]. Consequently, the huge research 

interests in the afore-mentioned requirements have prompted the establishment of a 

new methodology known as the KDD, in which DM represents a key component of 

the KDD methodology.

Why are today’s database and automated match and retrieval technologies not 

adequate for addressing these requirements? The answer lies in the fact that the 

patterns to be searched for, and the models to be extracted are typically subtle and 

require significant domain knowledge. In the past, we could rely on human analysts 

to perform the necessary analysis. Essentially, this meant transforming the problem 

into one o f simply retrieving data, displaying it to an analyst, and relying on expert 

knowledge to reach a decision. However, with large databases, a simple query can 

simply return hundreds or thousands of matches; presenting the data, letting the 

analyst digest it, and enabling a quick and correct decision becomes unfeasible. 

Although data visualisation techniques can significantly assist this process, 

ultimately the reliance on humans in the loop becomes a major bottleneck.

Furthermore, there are also situations where one would like to search for patterns that 

humans are not well suited to find. Typically, this involves statistical modelling, 

followed by outlier detection, pattern recognition over large data sets, classification 

or clustering. Most database management systems do not allow the type of access 

and data manipulation that these tasks require; there are also serious computational 

and theoretical problems attached to performing data modelling in high-dimensional 

spaces and with large amounts of data.
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The foregoing challenges are central to KDD and need urgent attention. Without 

heavily emphasising the development and research of KDD, we run the risk of 

forfeiting the value of most of the data that we collect and store. We would 

eventually drown in an ocean of massive (but valuable) data sets that are rendered 

useless because we cannot distil the essence from the bulk. To draw on the data- 

mining analogy, the precious nuggets of knowledge need to be extracted and the 

massive raw material needs to be managed appropriately and preferably recycled 

effectively [51].

5.3 Knowledge Discovery in Databases

The KDD can be defined as the non-trivial process of identifying valid, novel, 

potentially useful, and ultimately understandable patterns in data [51]. More 

specifically, KDD is a process of using DM methods or algorithms to extract or 

identify what is deemed knowledge according to the specifications of measures and 

thresholds, using the database along with any required pre-processing, sampling and 

transformation of the database [52]. Essentially, KDD is a process that is constituted 

of various interactive and iterative stages, as illustrated in Figure 5.1.

Interpretation

Data mining

Transformation

Pre-processing
Knowledge

Selection

Pre-
processed

data

Patterns

Transformed
data

Data
Target
data

Figure 5. 1: The KDD process
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In essence, the KDD process can be expanded into the following stages with 

reference to Figure 5.1:

• Stage 1: Developing an understanding of the application domain, the relevant 

prior knowledge, and the goals o f the end user.

• Stage 2: Creating a target data set, selecting a data set, or focusing on a subset 

of variables or data samples, on which discovery is to be performed.

• Stage 3: Data cleaning and pre-processing.

• Stage 4: Data reduction and transformation.

• Stage 5: Choosing the DM task.

• Stage 6: Choosing the DM algorithm(s).

• Stage 7: Performing DM based on chosen task and algorithm(s).

• Stage 8: Interpreting “mined” patterns, possible to return to any of Stage 1 to

7 for further iteration.

• Stage 9: Consolidating discovered knowledge.

The KDD process can involve a significant number of iterations and may contain 

loops between any two stages. Small changes at one stage can dramatically affect the 

rest, and consequently can make the difference between success and failure of the 

KDD process.

5.4 Data Mining: A Key Component of the KDD Process

DM is defined as a step in the KDD process consisting of particular algorithm(s) that, 

under some acceptable limitations o f computational efficiencies, produces a 

particular enumeration of patterns over the database [52]. The DM process involves 

fitting models to, or determining patterns from, observed data. The fitted models play 

the role of inferred knowledge; whether or not the models reflect useful or interesting 

knowledge is part of the overall, interactive KDD process where subjective human 

judgement is usually required. Most DM methods are based on the statistical 

approach whereby uncertainties about the exact nature o f real-world data generating
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processes are taken into consideration throughout the modelling process. 

Specifically, most DM methods are based on concepts from various fields such as 

machine learning, pattern recognition and statistics. Various aspects of DM are 

briefly discussed in the following sections:

5.4.1 Prim ary Tasks of D ata Mining

In practice, the two high-level primary goals of DM tend to be prediction and 

description. Prediction involves using some variables or fields in the database to 

predict unknown or future values of other variables o f interest. On the other hand, 

description focuses on finding human-interpretable patterns describing the data. The 

relative importance o f prediction and description for particular DM applications can 

vary considerably. However, in the context of KDD, description tends to be more 

important than prediction. The goals of prediction and description are achieved by 

using the following primary DM tasks [52]:

• Classification, in which a function is learned which maps or classifies a data 

item into one of several pre-defined classes.

• Regression, in which a function is learned which maps a real-valued 

prediction variable.

• Clustering, in which a common descriptive task is used to identify a finite set 

of categories or clusters to describe the data.

• Summarisation, in which a compact description is found for a subset of data.

• Dependency modelling, in which a model is found which describes 

significant dependency between variables.

• Change and deviation detection, in which significant changes in data are 

discovered from previously measured values.
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5.4.2 Components of Data Mining Algorithms

Three primary components can be identified in any DM algorithm: model 

representation, model evaluation, and search [52]. This reductionist view is not 

necessarily complete or fully encompassing; rather it is a convenient way to express 

the key concepts of DM algorithms in a relatively unified and compact manner.

The model representation is the language for describing discoverable patterns. If the 

representation is too limited, then no amount of training time or examples will 

produce an accurate model for the data. Thus it is important to fully comprehend the 

representational assumptions that may be inherent to a particular method. It is also 

equally important that an algorithm designer clearly states which representation 

assumptions are being made by a particular algorithm. Note that more powerful 

representational power for models increases the danger of over-fitting the training 

data, which results in reduced prediction accuracy on unseen data. In addition, the 

search becomes much more complex and interpretation of the model is typically 

more difficult.

The model evaluation estimates how well a particular pattern meets the criteria of the 

KDD process. The evaluation of predictive accuracy is based on cross-validation 

while the evaluation of descriptive quality involves predictive accuracy, novelty, 

utility and understandability o f the fitted model. Both logical and statistical criteria 

can be used for model evaluation.

The search method consists of two components: parameter search and model search. 

In parameter search, the algorithm must search for the parameters that optimise the 

model evaluation criteria, given observed data and a fixed model representation. For 

relatively simple problems there is no search; the optimal parameter estimates can be 

obtained in closed form. Typically, for more general models, a closed form solution 

is not available; “greedy” iterative methods are commonly used. On the other hand, 

model search occurs as a loop over the parameter search method; the model 

representation is changed so that a family of models are considered. For each specific
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model representation, the parameter search method is utilised to evaluate the quality 

o f that particular model. The implementation of model search methods tends to use 

heuristic search techniques since the size of the space o f possible models often 

prohibits exhaustive search and closed form solutions are not easily obtainable.

5.4.3 Data Mining Methods

There exist a wide variety of DM methods, for example statistical-based methods, 

neural networks (NNs), evolutionary programming, memory-based reasoning, 

decision trees, genetic algorithms (GAs) and non-linear regression methods. The DM 

method explored in this chapter, i.e. the SOM, belongs to the unsupervised-NNs 

category.

5.4.4 Commercial Data Mining Software

Commercial DM software tools are available to assist commercial and public sectors 

to better manage and utilise their data. A prime example o f DM software is 

Clementine [53], which is a leading toolkit that employs various modelling 

algorithms such as NNs, SOMs and regression-based techniques for data mining 

applications. It has been utilised for customer segmentation/profiling for marketing 

companies, fraud detection, credit scoring, load forecasting for utility companies and 

profit prediction for retailers. Another well-known DM software is DataEngine [54], 

which is a collection of tools for intelligent data analysis utilising fuzzy technologies, 

neural networks and conventional statistics. It has been successfully applied to the 

field o f forecasting, database marketing, quality control, process analysis and 

diagnosis. Other example of DM software is DataScope [55], which comprises of 

Explorer, Predictor, Clusterer and Decision Support modules capable o f creating a 

powerful knowledge discovery and mining environment suitable for wide range of 

industries and applications. Lastly, IRIS Explorer [56] is a DM software that 

employs a broad range of visualisation techniques, from simple graphs to 

multidimensional animation, in order to assist user to discern trend and relationships 

in the data. Other examples of commercial DM tools are well documented in [57],
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5.5 Self-Organising Map: A Data Mining Method

The SOM [50] is a neural network (NN) algorithm based on unsupervised learning in 

a data-driven manner. It is essentially a non-linear mapping algorithm which projects 

a higher dimensional input space onto a lower dimensional output space while 

preserving the topological relations o f the input space. This is accomplished via the 

self-organising process of the reference vectors of SOM, which is principally based 

on the Euclidean distances between reference vectors and input vectors. If sufficient 

training is performed on the SOM, an optimum approximation of the probability 

density function (PDF) o f the input space can be achieved via a set o f reference 

vectors that are arranged in a lower dimensional space.

The SOM can thus be applied for “unearthing” the hidden structure or inherent 

characteristics o f a highly complex or multi-dimensional data and displaying them in 

a discernible and comprehensible manner. Owing to the foregoing capability o f 

SOM, it has been applied successfully to various fields such as knowledge extraction 

[58, 59], classification [60], monitoring and modelling of complex processes [61], 

analysis o f pulp and paper industries [62] and correlation hunting [57].

5.5.1 The SOM Algorithm

The SOM is formed by neurons located on a regular one- or two-dimensional grid. 

Although a higher dimensional grid can also be utilised, it is best avoided due to the 

difficulty in visualisation. The neurons can be arranged in hexagonal or rectangular 

configuration; the former is preferred owing to its effectiveness in visualisation. 

Figure 5.2 illustrates a two-dimensional SOM whose neurons are arranged in a 

hexagonal lattice.

The SOM essentially defines a mapping from the input space, onto a two- 

dimensional array o f neurons. Every neuron, i, is associated with an ^-dimensional 

reference vector, where m, = [///i, ///2,/^/3 , ■ ■ A«]T £ 9T, where n is the dimension

78



Chapter 5 Knowledge Discovery Methodology for Exploratory Data Analysis

of the input space (i.e. number of components within an input vector). Hence, an 

input vector, x, where x = [§ , £2, £3, •••, $i]T e 9T, is connected to all neurons in 

parallel via scalar values f i t j j  = 1, ...,«, which are different for every neuron.

t t u i  vv

I B

Figure 5.2: Two-dimensional SOM with neurons arranged  in a hexagonal lattice

In addition, each neuron is associated with adjacent neurons of the SOM by a 

neighbourhood relation, which dictates the “area of influence” in the grid. Therefore, 

the immediate neighbours of neuron /, which are closest to neuron /, are associated 

with the first-neighbourhood, N,-1, o f neuron /. The neighbourhood relations of 

different sizes in rectangular and hexagonal lattices are illustrated in Figure 5.3 [64].
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(a) Hexagonal lattice
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(b) Rectangular lattice

Figure 5.3: The neighbourhood relation of SOM
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The training process o f SOM comprises o f three stages, as explained in the following 

sections.

5.5.1.1 Initialisation of reference vectors

Reference vectors of SOM are initialised before the commencement of the training. 

This can be accomplished using three distinct approaches [50]. Generally, a random 

approach can be adopted, in which the reference vectors are initialised using arbitrary 

values; all initially unordered reference vectors will become organised after a few 

hundred training time-steps. An alternative strategy is to initialise the reference 

vectors based on randomly selected vectors from the input space, which is known as 

the sample initialisation. This is done so as to have a rough approximation o f the 

density function o f the input space before the start of the training process. Lastly, 

another approach of initialisation is to first determine the two principal eigenvectors 

of the autocorrelation matrix of the input data; reference vectors are initialised in an 

orderly fashion along the linear subspace spanned by the two principal eigenvectors. 

The foregoing approach is known as the linear initialisation. The important point to 

note is that the SOM is robust with regard to any initialisation approach. If the 

initialisation process is properly conducted, using one o f three foregoing approaches, 

the SOM will converge faster to an optimum solution.

5.5.1.2 The training process

Once reference vectors of SOM have been initialised, the training o f SOM 

commences by first choosing an input vector, x, randomly from the input data at 

time-step t. Comparison is then performed, with the computation of similarity 

measures, between x and all reference vectors of SOM. The best match o f x on the 

SOM grid is known as the best matching unit (BMU), denoted as c, which has the 

maximum similarity (or nearest distance) with respect to x. The neuron c is thereby 

the location of the “response” of SOM towards the input vector, x. In simple terms, 

the input vector, x, is “mapped” onto the SOM at location c. The similarity is usually
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defined by a distance measure, usually Euclidean distance. The foregoing process is 

defined by Equation (5.1):

Once the BMU, c, has been determined, ail reference vectors of SOM are updated. 

The updating process is performed in such a way that those neurons that are 

topologically close to the BMU, c, up to a certain geometrical distance will also be 

activated and “learned” from the same input vector, x. This updating process will 

“stretch” the BMU and its topological neighbours towards the input vector, jc, as 

illustrated in Figure 5.4 [64].

Figure 5.4: Influence of input vector towards its BMU and neighbours

A continuous random presentation of input vector, x, at each subsequent time-step, /, 

will result in a local “relaxation” or “smoothing” effects on the reference vectors of 

neurons in the neighbourhood. If viewed from the input space, these reference 

vectors will eventually form an “elastic” network that twists and folds onto the 

“cloud” of points in the input space that are formed by input vectors. The foregoing 

description will be graphically illustrated in Section 5.5.3.

c = arg min|;c -  w|} or ||x -  mc\\ = min||jc -  w|} (5.1)
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The updating process of reference vectors is defined by Equation (5.2), as shown 

below.

rm(t + l)=   (5.2)

Where, hc/\t) is the neighbourhood kerne! around the BMU, c, at time-step, t. It plays 

a very important role in the self-organising process of reference vectors. Essentially, 

it acts as a smoothing kernel that is defined over the BMU, c, and its neighbours, at 

time-step, /. The neighbourhood kernel, hCj(t), is defined as:

hci{t) = a(t) • h^rc -  r |,  / ) ................................................................................................ (5.3)

Where, «(/) (0 < oit) < 1) is the learning-rate function and h(\\rc -  n ||, /) is known as 

the neighbourhood function. rc e  9? and r, e  9? are the location vectors o f neurons 

c and i respectively. For convergence, it is necessary that ha{t) —> 0 when t —» oo, 

and, with increasing ||rc -  n\\, hci = 0.

There are two common choices for the neighbourhood function: rectangular function 

and gaussian function, as illustrated in Figure 5.5 [64],

(a) R ectangular function (b) G aussian function

Figure 5.5 : Neighbourhood functions of SOM
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For rectangular function, the neighbourhood kernel can be defined as:

hcl<t) {
a(t), if / g Nc(t)

0, if / £ Nc(t)

(5.4)

For gaussian function, the neighbourhood kernel can be defined as:

(5.5)

Where, o(f) defines the width of the neighbourhood kernel, which is analogous to Nc 

in Equation (5.4). Note that the leaming-rate function, «(/), neighbourhood, Nc(t), 

and width of the gaussian function, o(t), are all monotonically decreasing functions 

o f time-step, t; the exact form of these functions is found to have no significant 

impact towards the learning efficiency of SOM [50].

In summary, the training process of SOM comprises of following steps:

• Step 1: Initialise reference vectors o f all neurons at time-step, t -  0.

• Step 2: At each time-step, t, select one input vector, jc(t), randomly from the 

input data.

• Step 3: At each time-step, /, determine the BMU,. c, for input vector, *(/) 

according to Equation (5.1).

• Step 4: Update all reference vectors according to Equation (5.2).

• Step 5: Check if user-defined iterations and criteria have been reached. If 

YES, then stop training; if NO, increase time-step, /, by 1 and repeat the 

process from step 2.

Various issues have to be considered for practical application of SOM; these will be 

discussed in Section 5.5.2.
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5.5.1.3 Calibration of trained SOM

When a sufficient number of input vectors, x(t), have been presented and all 

reference vectors, have converged to reasonably satisfactory values in

accordance with user-defined iterations and criteria, the next possible step is the 

calibration of the trained SOM. However, this calibration process can only be 

performed if the characteristics of input data or the inherent process of the generation 

o f data is of a known entity. This task is accomplished by inputting a number of input 

vectors, which are associated with some known characteristics or features, to the 

trained SOM and looking at where the best matches actually lie; the SOM neurons 

can therefore be labelled correspondently. In the event that the characteristics o f the 

input data are of unknown or ambiguous entity, the interpretation o f trained SOM 

may have to be conducted via other means, for example through comparison or 

validation with other analogous approaches.

5.5.2 Practical Advices for Effective Application of SOM

Although the SOM algorithm is theoretically well defined, there are several issues 

that need to be addressed for the practical application o f SOM to solve some real- 

world problems such as the analysis of highly complex data or processes. In fact, 

some of the settings for the SOM training have to be determined empirically or based 

on experiences owing to the lack o f mathematically well-defined solutions for 

determining these settings. Various issues for the application o f SOM are discussed 

in the following sections.

5.5.2.1 The configuration of SOM

There are three aspects that need to be considered in order to obtain a good 

configuration of SOM before the commencement of training: shape and dimension, 

total number of neurons, and the number of neurons in each dimension of SOM.
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Firstly, a two-dimensional SOM in a rectangular shape is generally adequate for most 

problems. In addition, the neurons are arranged in hexagonal configuration for ease 

o f visualisation.

Secondly, the total number of neurons required can be determined empirically via the 

following formula [65]:

numneuron  = 5 x  4 d le n .............................................................................................. (5.6)

Where, num_neuron is the total number of neurons and dlen is the total number of 

input vectors. However, it was found that 4 x num neuron is generally more 

appropriate due to the following consideration on the size o f SOM for effective 

visualisation of the training outcome.

Thirdly, given a fixed total number of neurons in a two-dimensional, rectangular 

SOM, the number of neurons in the jc-  and y-dimension of the SOM (i.e. map-sizes) 

can be determined by calculating the two principal eigenvalues of the covariance 

matrix of input data [65]. The covariance matrix, C, o f the input data, Z), is calculated 

according to Equation (5.7).

of the input data. If, for example, the first and second eigenvalues of the covariance 

matrix, C, are denoted as a  and respectively, the ratio of map-sizes for both x- and 

y-dimension can be determined according to the following equation [65]:

C = COV(D, D) = e [(D (5.7)

Where, D, is the i input vector and /Id is the vector of mean-values for components

(5.8)
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Where, x-dim and y-dim are the respective map-sizes (i.e. the number of neurons) for 

x- and ^-dimension of the SOM. Actual values for x-dim and y-dim are then 

determined in such a way that the product o f x-dim and y-dim is equal to 

num_neuron, while complying with the ratio as calculated from Equation (5.8). 

Hence:

(jc - dim)x (y  - dim) = num neuron .............................................................................. (5.9)

Nevertheless, it is well established empirically that better visualisation of the training 

outcome can be obtained if x-dim and y-dim are increased by two-fold. 

Consequently, the calculated num_neuron from Equation (5.6) is increased by four

fold in order to cater for the increase in map-sizes.

Hence, the relationship between map-sizes and the total number of neurons are as 

shown in Equation (5.10). Note that the ratio of x-dim to y-dim , as calculated from 

Equation (5.8), must always be complied.

2(x - dim)x 2(y - dim) = 4x  num_neuron ..................................................................(5.10)

In general, the mapping efficiency of SOM does not suffer considerably in larger 

map-sizes. However, as the size of SOM increases, longer training intervals may be 

required so as to obtain a satisfactory outcome.

5.5.2.2 Determination of training parameters

Once a good configuration o f SOM has been determined according to Section 

5.5.2.1, the next-step is to consider some vital issues for the training of SOM:

•  Selection o f neighbourhood function.

•  Selection o f training method: sequential or batch?

•  Determination o f training phases.
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• Selection of radius for each phase of training.

•  Selection of leaming-rate function for each phase o f training.

Firstly, the two commonly used neighbourhood functions are the rectangular function 

and the gaussian function; other functions can also be employed. In essence, the 

choice of neighbourhood function depends on the objective o f the end-user. If the 

SOM is used for “mining” high-dimensional or complex data, the rectangular 

function is found to be more suitable through experience due to the clear 

“separation” o f inherent characteristics resulting from the trained SOM. Nonetheless, 

the gaussian function can also be applied, but the “separation” of inherent 

characteristics is found to be less apparent when compared with that of rectangular 

function. Thus, the rectangular function is chosen as the suitable neighbourhood 

function for the research project as reported in this thesis.

Secondly, there are two main variants of SOM with regard to the training approach: 

sequential training and batch training. The sequential mode is a traditional and 

original way o f training, in which reference vectors are updated at each presentation 

o f input vector. On the contrary, the batch mode of training is a faster option since all 

reference vectors are only updated after the presentation o f all input vectors (i.e. after 

each epoch). Again, the choice o f sequential or batch mode of training is dependent 

on the end-user. Nevertheless, the sequential training will take longer time when 

compared with the batch mode. The sequential mode of training is employed for the 

research project reported in this thesis.

Thirdly, the training o f SOM can be performed in two phases: “rough ordering” and 

“fine tuning” [64], However, the former phase is not needed if  linear initialisation is 

adopted for assigning preliminary values for the reference vectors. Generally, the 

“rough ordering” phase should be commenced with a high leaming-rate, large radius 

and relatively fewer training iterations. The objective o f performing the foregoing 

phase is to vaguely organise the SOM neurons and corresponding reference vectors 

into a structure which approximately displays the inherent characteristics of the input 

data. After that, the “fine-tuning” phase is commenced with low learning rate, small
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radius and higher number of training iterations. The foregoing phase is performed so 

as to fine-tune the vague “structure” or inherent characteristics of data into a clearer, 

more organised and comprehensible patterns.

Fourthly, the neighbourhood radii for “rough ordering” and “fine tuning” phases 

have to be determined before the commencement of training. Normally, a large 

radius is adopted for the “rough ordering” phase with the intention that all neurons 

can learn from the input vector, one way or other, at each training time-step, and 

their reference vectors are then adjusted accordingly. Heuristically, the 

neighbourhood radius for the “rough ordering” phase is taken from the maximum 

between x-dim and y-dim. In the “fine tuning” phase, however, a smaller radius, 

usually at a fraction of the radius adopted in the “rough ordering” phase, is utilised 

due to the fact that activation of all neurons is not necessary for learning since a 

rough data “structure” or inherent characteristics have already been obtained from 

the previous phase. Again, it is practically found that a fraction of 1/8 is generally 

suitable. Note that all radii will decrease monotonically to one at the end of each 

phase of training [65], in accordance with a simple function o f training time-step, t.

Finally, the leaming-rate for the “rough ordering” phase is usually taken to be 

approximately ten times larger than that o f “fine-tuning” phase. In fact, initial 

leaming-rates of 0.05 and 0.001 are actually adopted in this research project for the 

“rough ordering” phase and the “fine tuning” phase, respectively. In practice, other 

values can also be adopted since the leaming-rates generally only impact on the 

speed of training. However, it is beneficial to opt for smaller leaming-rates since the 

updating process of reference vectors can be performed more efficiently in this way, 

and hence the inherent characteristics of input data can be learned more effectively. 

The leaming-rate is normally a monotonically decreasing function of training time- 

step, /; leaming-rates for both training phases will decrease from the foregoing initial 

values to about 1/100 of initial values at the end of both training phases [65].
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5.5.2.3 Visualisation of the trained SOM

In essence, the trained SOM is represented by a collection o f reference vectors, 

which have been adjusted in accordance with a set of input vectors. If the input data 

is o f a simple two-dimensional or three-dimensional format (i.e. two or three 

components in an input vector), then the trained SOM can be easily “visualised” via 

the illustration o f two- or three-dimensional plots o f the reference vectors, since the 

dimension of reference vectors is the same as the dimension of input data (sec 

Section 5.5.1). Nonetheless, if the input data is more than three-dimensional by 

nature, it is virtually impossible or mathematically very complex to “visualise” the 

trained SOM using the foregoing approach.

An excellent approach of visualisation has been proposed by Ultsch [58-60], which is 

known as the “unified-matrix” (u-matrix) method. The u-matrix method is essentially 

based on the Euclidean distances between SOM neurons that are located on the SOM 

grid. Essentially, it allows the visualisation of multi-dimensional reference vectors in 

a two-dimensional format, which is discernible and comprehensible to the end user. 

It effectively allows the visualisation of hidden “structure” or inherent characteristics 

o f the input data, which have been “learned” or “mapped” by the trained SOM. 

Fundamental principles of the u-matrix method are presented as follow.

For a SOM that comprises of 5 neurons, in which each neuron is represented by a 

reference vector, m(i):

m (l); m(2); m(3); m(4); m(5)

the u-matrix is a 9 x 1 vector which consists of the following components: 

u( 1); u(\,2);u(2); u(2,3); u(3); u{3,4); u(4); u(4,5); w(5)

Where, u(i,j) is the Euclidean distance between the reference vector m(i) and m(j).
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The u{k) is calculated from w(z, k) and u(k, j)  based on a user-defined function, such 

as the mean, maximum, minimum or median function, as defined in Equation (5.11).

u(k) = f(u ( i9k ),u (k ,j)) .................................................................................................(5.11)

Thus, if the Euclidean distances, «(/, /), among a group o f SOM neurons are small, 

the resulting u(k) will be small as well. Consequently, if  these Euclidean distances 

are colour-coded by using a colour or grey-scale, the resulting similarity or 

dissimilarity among SOM neurons can thereby be identified via the means o f a 

colour or grey border around a group of neurons of similar characteristics. Hence, the 

u-matrix can be employed for visualisation and summarisation of the hidden 

structure or inherent characteristics of the input data. In addition, inherent 

characteristics can also be displayed via the visualisation of component-planes in 

which trained values for each component of the input data are displayed, again via 

colour-coding by utilising either colour- or grey-scale. Examples on the visualisation 

of SOM will be demonstrated in Section 5.5.3.

5.5.2.4 The selection of optimum SOM

Given a SOM with a pre-determined configuration and pre-defined training 

parameters, how do we identify the number of training iterations needed in order to 

produce an optimum SOM for a set of input data? The answer is not so straight

forward due to the fact that no “targets” are available for the validation o f SOM 

during the training process, similar to other types o f unsupeirvised-NNs. Therefore, a 

combination of mathematical and heuristic approaches must be adopted so as to 

identify the optimum SOM for a given set o f input data in a systematic and 

unambiguous manner.

Generally, there are two contradictory objectives that are involved in the training of 

SOM [64]. The first objective of applying SOM is for the purpose of “vector 

quantisation”, i.e. to approximate a multi-dimensional input data using a set o f
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reference vectors which are arranged in a two-dimensional format (i.e. the SOM 

grid). For such a case, the Euclidean distance between each input vector and its BMU 

should be as close as possible so as to ensure that the trained SOM is the “best” 

approximation of the input data. On the contrary, it is also the objective o f applying 

SOM for the visualisation of hidden structure or inherent characteristics o f the input 

data. Thus, the trained SOM should also have the ability to generalise and not over

fit the training data.

Unfortunately, there is no single parameter which seamlessly measures the 

effectiveness o f SOM for meeting the foregoing objectives. However, two SOM 

quality measures are available to calculate the ability o f SOM for vector quantisation 

and generalisation respectively [65]. The ability of SOM to approximate a given set 

o f multi-dimensional input data is measured by the “average quantisation error” 

(AQE). It is defined as the average Euclidean distance between input vectors and 

their BMUs. The AQE will tend to decrease with the increase in training iterations, 

since a longer training interval may lead to a gradual over-fitting of the training data.

The ability of SOM to generalise and preserve its topology is measured by the 

“topographic error” (TE). It is defined as the proportion o f all input vectors for which 

their first and second BMUs are not adjacent to each other. The TE will tend to rise 

and fall at several stages throughout the training process, which are observed to be 

corresponding to the clarity of the hidden “structure” of the input data. However, a 

low TE does not necessarily means an optimum SOM since the corresponding AQE 

might be still quite high.

In view of the foregoing, a heuristic approach has been devised herein which apply 

the aforementioned SOM quality measures for selecting an optimum SOM for a 

particular set o f input data. Firstly, a group of identically configured SOMs are 

trained using the same training parameters but only differ in the number of training 

iterations, which are increased gradually by a fixed amount. The training process is 

restarted for every SOM, i.e. after the initialisation of reference vectors for the 

“rough ordering” phase and after the “rough ordering” phase for the “fine tuning”
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phase. Secondly, both AQE and TE are calculated after the training is completed for 

every SOM; a likely scenario for the magnitude o f these measures is illustrated in 

Figure 5.6. Thirdly, several suitable candidates for the optimum SOM are selected 

from several “valleys” o f the TE curve, as pointed out in Figure 5.6. Finally, the 

optimum SOM is selected from these candidates based on human visual inspection.

AQE

TE

 ■ Training
iterations

Suitable
candidates

Figure 5.6: Selection of optimum SOMs based on several suitable candidates 

5.5.3 Software Tools of SOM

Various software tools are available for those who are interested in using the SOM 

for data analysis. Among the SOM software tools are SO M PA K  [66] and its 

MATLAB implementation, the SOM Toolbox [67], which are developed by the 

Neural Network Research Centre (NNRC) at the Helsinki University o f Technology, 

Finland. Since the NNRC is established by Prof. Teuvo Kohonen, the founder of the 

SOM algorithm, the above-mentioned software tools are the most faithful 

implementation of the SOM theories. Therefore, these software tools have been 

employed for conducting the research of data mining on transformer condition 

assessment data, as reported in subsequent chapters of this thesis. Particularly, the 

MS-DOS based SOM PAK has been used for the SOM initialisation and training 

purposes and the MATLAB-based SOM Toolbox has been used for visualisation of 

trained SOM and post-processing on chosen optimum SOMs.
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5.5.4 An Illustrative Example

The application of SOM for a simple data analysis is demonstrated. The input data 

contains 300 input vectors; there are 3 components in each input vector. The input 

data is generated by mixing three subsets, with each subset being constructed from 

100 randomly generated vectors that are centred at [0 0 0], [2 1 1] and [ 1 2  1] 

respectively. Figure 5.7 illustrates the composition of the input data. The input data is 

plotted in Figure 5.8, with the centre of each subset being labelled as “+”.

A SOM is configured in accordance with Section 5.5.2.1, which results in a 

hexagonal lattice of 24-by-14 neurons, as illustrated in Figure 5.9. In addition, 

training parameters are determined with reference to Section 5.5.2.2. Before the 

commencement of training, reference vectors of SOM are randomly initialised, 

resulting in the initial arrangement o f SOM neurons being still “messy”, as illustrated 

in Figure 5.10.

Subset 1 Subset 2 Subset 3
100 vectors 100 vectors 100 vectors

centre: [0 0  0] centre: [2 1 1 ] centre: [1 2  1]

Input Data 
300 Vectors

Figure 5.7: The composition of input data
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Figure 5.9: A SOM consists of 24-by-14 neurons arranged in hexagonal lattice
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x-dim

Figure 5.10: Arrangem ent of SOM neurons after the random initialisation

The training of SOM commences by first performing the “rough ordering” phase; an 

initial radius of 24 and an initial leaming-rate of 0.05 are used for this phase. Figure

5.11 illustrates the arrangement of SOM neurons after the “rough ordering” phase, 

which takes approximately 3000 training time-steps to complete. The AQE is 0.3235 

and the TE is 0.3067.

The reference vectors are further adjusted in the “fine tuning” phase, in which an 

initial radius of 3 and an initial leaming-rate of 0.001 are used for this phase. Figure

5.12 illustrates the arrangement of SOM neurons in the input space after the “fine 

tuning” phase, which takes approximately 6300 training time-steps. The final AQE 

and TE are reduced to 0.3027 and 0.1600 respectively. As seen from Figure 5.12, the 

SOM now organises the input data in an excellent manner, in which shorter 

Euclidean distances between SOM neurons are found at the location of three subsets 

of input data.
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Figure 5.11: Arrangement of SOM neurons after the “ rough ordering” phase

Component 2
Component 1

Figure 5.12: Arrangem ent of SOM neurons after the “fine tuning” phase

As described in Section 5.5.2.4, another approach of visualising the trained SOM is 

the visualisation of u-matrix and component planes, as illustrated in Figure 5.13. 

Colour bars on the right-hand-side of the u-matrix and component planes represent 

the magnitude, in which the colour bar on the u-matrix represents Euclidean 

distances between neurons and colour bars on component planes represent the 

magnitude of each component of the reference vectors.
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Figure 5.13: The u-matrix and component-planes of the optimum SOM

As observed from the u-matrix in Figure 5.13, the map is clearly divided into three 

regions of smaller Euclidean distances, in which each region actually corresponds to 

a subset of the input data. Therefore, the hidden “structure” or inherent 

characteristics of data can be observed through the use of the u-matrix visualisation.

In essence, the u-matrix and component-plane visualisation have to be employed for 

visualising the reference vectors of the trained SOM that are higher than three- 

dimensional by nature.

5.6 Feasibility of the DM Approach and the SOM for Exploratory 

Analysis on Condition Assessment Data

Dissolved gas analysis (DGA) is often performed on main units and peripheral 

devices (e.g. bushings and tap changers) of power transformers as part of the 

condition assessment procedures. Eventually, an enormous amount of DGA records
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is gathered and stored in the database. These records actually contain lots o f valuable 

information regarding the series of “events” or “incidences” (e.g. incipient faults) 

that have taken place in power transformers. If this information can be extracted, 

comprehended and visualised, our understanding o f the health and condition of 

power transformers can be enhanced. The DM approach, particularly the SOM, can 

be employed to “mine” or “unearth” the hidden information or “knowledge” from the 

DGA data and display it in a user-understandable format. The feasibility o f the SOM 

for the analysis and interpretation of DGA data will be investigated in subsequent 

chapters of the thesis.

Furthermore, the SOM can also be used for the analysis o f sensor measurements so 

as to assess the inherent relationship between various sensor parameters and to 

summarise the operating condition of the power transformer. The feasibility o f the 

SOM algorithm for performing these tasks will also be investigated in the thesis.

5.7 Summary

A novel methodology known as the KDD has been introduced in this chapter, in 

which the DM approach represents a vital component of the KDD process. A 

particular DM method known as the SOM has been described in detail. More 

importantly, various issues for the practical implementation o f SOM have been 

thoroughly discussed and an illustrative example has been presented so as to 

demonstrate the capability o f SOM for data analysis. Finally, the feasibility o f the 

DM approach and the SOM in particular for the analysis o f power transformer 

condition assessment data has been briefly discussed at the end of this chapter.



CHAPTER 6

STATISTICAL ANALYSES OF THE DGA DATA OF 

POWER TRANSFORMERS

6.1 Introduction

Statistical analyses were conducted on the dissolved gas analysis (DGA) data o f 

power transformers, which was obtained courtesy o f the National Grid Company 

(NGC), UK. The major aim of performing these statistical analyses is to gain an 

approximate insight into the statistical characteristics of the DGA data before it is 

subjected to a high-level and more sophisticated analysis by the proposed approach. 

Interesting features and characteristics were discovered throughout the analyses, 

which will be reported in subsequent sections of this chapter.

6.2 Format of DGA Data

The acquired DGA database comprises o f 14943 DGA records dated from 1968 to 

1998, which correspond to approximately 589 power transformers o f the NGC pic., 

UK. The original format of the DGA data is illustrated in Table 6.1.

As shown in Table 6.1, nine dissolved gases and moisture (i.e. H2O) are recorded in a 

single DGA record, accompanied by some background information of the 

corresponding power transformer from which the oil sample was drawn, such as its 

location (Plant ID), identity (AMIS), manufacturer (Mane), date o f commissioning 

(Comm), voltage level (KV), power rating (MVA), family (Fam), year of
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manufacturing (Yrmd), date of sampling (Sampdate) and the percentage composition 

of the dissolved gases in an oil sample (Gas). Note that the unit o f dissolved gases 

are in part-per-million (PPM), which represents a certain quantity of a dissolved gas, 

which is measured in micro-litre, in 1 litre of an oil sample. In addition, all oil 

samples were drawn from the bottom of transformer tanks, as indicated by the 

number “01” in the “P lan tJD ”.

Table 6.1: Format of the DGA records

A B C D E F G H I J
Plant

ID AMIS Mane Comm KV MVA Fam Yrmd Samp
date Gas

ABHA4 
SGT1 01 66 EEC 1971 400/

132 240 E07 1971 29/01/
88 7.25

ABHA4 
SGT1 01

66 EEC 1971 400/
132 240 E07 1971 20/07/

88
7.21

ABHA4 
SGT1 01 66 EEC 1971 400/

132 240 E07 1971 18/10/
88 7.75

K L M N O p Q R s T

CO CH4 C02 C2H4 C2Vk c2h2 h2 o2 n2 h2o

226 3 1460 2 1 1 15 0 0 9

252 3 2095 1 1 1 19 0 0 13

181 2 2340 1 1 1 18 0 0 9

6.3 Processing of DGA Data

The obtained DGA database was processed in order to eliminate several identified 

imperfections in the data, such as the presence of “blanks” (i.e. no data entries or 

records) and the ambiguity in the implication of “0 PPM” records for some dissolved 

gases. In addition, the format of which dissolved gases were recorded has to be 

standardised so as to ensure that similar statistical analyses can be applied to all 

dissolved gases.
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Firstly, each “blank” was replaced by a common representation known as the “NaN” 

(i.e. Not-a-Number). The reason for keeping these blank entries is to preserve the 

valuable information contained within the original DGA data without interfering 

with its characteristics.

Secondly, some gases are always present in large quantities in the insulation oil if  

real-world circumstances are taken into consideration. Specifically, power 

transformers are not sealed-off completely from the surrounding environment and 

hence it is possible to have some atmospheric gases such as nitrogen (N2), oxygen 

(O2) and carbon dioxide (CO2) dissolved in the insulation oil within the transformer 

tank. Moreover, the natural decomposition o f cellulose insulation also produces CO2 

and carbon monoxide (CO); thus they are likely to present in large quantities in the 

insulation oil as well. In fact, records o f “0 PPM” in these dissolved-gases could 

either be due to no measurement being taken for these gases or human errors. For 

that reason, the “0 PPM” records for the foregoing dissolved gases were replaced by 

“NaNs” in order to prevent confusion in the subsequent analyses.

Finally, a lot of measurements are recorded in the format o f “< x”, in which “x” is the 

“analytical detection limit” of each dissolved gas. This is due to the inability o f the 

gas chromatograph (GC) to measure extremely low concentrations of some dissolved 

gases in the oil sample. Hence, these “< x” entries were converted to reasonably 

small values in a systematic manner in order to facilitate later statistical analyses, as 

shown in Table 6.2.

6.4 Categorisation of DGA Data

The processed DGA data was partitioned into the following data sets:

• DGA KV: Partition of DGA data according to various voltage levels.

• DGA MVA: Partition of DGA data according to various power ratings.
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Table 6.2: Conversion of “< jc ”  entries into assigned values

No. Dissolved Gas Original Format 
(PPM)

Assigned
(PPM)

1 n2 < 50 49

2 o2 < 50 49

3 co2 < 50 49

4 CO <10 9

5 h 2 < 1 0.9

6 CH4 < 1 0.9

7 c 2h 6 < 1 0.9

8 C2H4 < 1 0.9

9 c 2h 2 <0.2 0.19

The percentage composition of the DGA data according to various voltage levels and 

power ratings are illustrated in the form of pie charts, as illustrated in Figures 6.1 (a) 

and 6.3 (a). In addition, the number of corresponding power transformers were 

partitioned accordingly, as shown in Figures 6.1 (b) and 6.3 (b). Note that the 

notation o f “N/A” in the foregoing pie charts signifies either unknown voltage levels 

or power ratings.

Some interesting characteristics can also be discovered when the amount of DGA 

data is plotted against the number of power transformers of the same voltage levels 

or power ratings, as shown in Figures 6.2 and 6.4 respectively.

First o f all, it can be concluded that the relationship between the amount of DGA 

data and the number of power transformers is quite straightforward if data were to be 

divided according to various voltage levels, in which a larger number of power 

transformers of a certain voltage level, say 275/132 kV actually corresponds to the 

larger amount of DGA data. Moreover, a similar relationship is also observed if the 

amount of DGA data is plotted against the total age o f power transformers for 

various voltage levels, as shown in Figure 6.5.
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(b) Partition of DGA data according (a) Partition of power transform ers 
to various voltage levels of power according to various voltage levels
transform ers

Figure 6.1: Partition of DGA data and power transform ers according to various
voltage levels
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Figure 6.2: The amount of DGA data versus the num ber of power transform ers
according to various voltage levels
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(a) Partition of DGA data according (b) Partition of power transform ers 
to various power ratings of power according to various power ratings
transform ers

Figure 6.3: Partition of DGA data and power transform ers according to various
power ratings
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Figure 6.4: The amount of DGA data versus the number of power transform ers
according to various power ratings
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Figure 6.5: The amount of DGA data versus the total age of power transform ers
according to various voltage levels

Nevertheless, the relationship between the amount of DGA data and the number of 

power transformers is not so straightforward if data were to be divided according to 

various power ratings. As observed from Figure 6.4, although the number of power 

transformers that correspond to the power rating of 120 MVA and 180 MVA are 

quite similar, there is a significant difference in the respective amounts of DGA data. 

The reason for the foregoing becomes apparent when the amount of DGA data is 

plotted against the total age of power transformers for various power ratings, as 

illustrated in Figure 6.6. It is found that those power transformers within the category 

of 120 MVA are generally “older” if compared to those of 180 MVA, thereby 

forming a larger proportion of the DGA data.

In essence, there are various factors which determine the amount of DGA data 

contributed by a power transformer, such as its age, operating condition and 

frequency of sampling etc. The effect of age towards the amount of DGA data has 

been illustrated in Figures 6.5 and 6.6. Again, the notation of “N/A” in the foregoing 

figures means either unknown voltage levels or power ratings.
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Figure 6.6: The amount of DGA data versus the total age of power transform ers
according to various power ratings

6.5 Frequency and Percentage Distribution of Dissolved Gases

The frequency distribution plot is also known as the histogram, which provides an 

excellent visualisation of the statistical distribution of dissolved gases. Basically, it 

shows the amount of data (i.e. frequency) that falls within a particular range of 

magnitudes. Besides, the percentage distribution was computed for each dissolved 

gas, by calculating the proportion of data that fall within a particular range of 

magnitudes out of the total amount of data. Finally, the frequency of “blanks” (i.e. no 

data entries) is shown in the negative-half of the x-axis; this is done without affecting 

the original characteristic of each dissolved gas.

Figures 6.7 to 6.15 illustrate the frequency and percentage distribution of dissolved 

gases; these plots have been zoomed-in so that only those regions of which the 

distribution of dissolved gases are mostly concentrated, are illustrated. As can be 

observed from these figures, at least 84% and above of the dissolved-gases are 

observed to be located within the lower range of concentrations relative to their 

maximum concentrations. There are only a few cases of which extremely high 

concentrations are observed for the dissolved gases.
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Figure 6.10: Frequency and 
percentage distribution of CO
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percentage distribution of H2
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percentage distribution of C2H2
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6.6 Percentage Distribution of Dissolved Gases According to 

Various Voltage Levels and Power Ratings

As described in Section 6.4, the acquired DGA database was divided into several 

subsets according to various voltage levels and power ratings. It is the objective of 

this section to conduct a meaningful comparison of the percentage distribution o f 

various dissolved gases in these subsets of DGA data.

Since all subsets are of different sizes, it needs to be decided as to how comparison 

can be performed effectively. Some of the subsets, which are categorised under the 

voltage levels of 275/66 kV and 400/66 kV, and power ratings o f 18 MVA, 210 

MVA and 460 MVA, are simply too small in number for their percentage 

distributions to be displayed and compared effectively. Hence, the foregoing subsets 

were omitted from the comparison.

Some examples of the percentage distribution of dissolved gases according to various 

voltage levels and power ratings are illustrated in Figures 6.16 to 6.23. As can be 

observed from these figures, it can be concluded that the characteristic o f the 

distribution is generally similar for the dissolved gases in power transformers of 

various voltage levels and power ratings, i.e. the dissolved gases are found to be 

normally concentrated in areas o f low concentrations when compared with their 

maximum concentrations. Note that some discrepancies in distribution patterns may 

be observed due to the differences in the size o f data and the designated range o f the 

histogram.

In conclusion, the foregoing observations as reported in Section 6.5 and Section 6.6 

correspond very well to the real-life circumstances in which the majority o f DGA 

data being collected is from power transformers which are operating in a normal or 

faultless manner. In addition, the few cases of which high concentrations are found 

correspond to the situation in which some fault incidences have occurred inside the 

power transformers.
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Figure 6.16: Percentage distribution of N2 according to various voltage levels
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Figure 6.18: Percentage distribution of CO 2 according to various voltage levels
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Figure 6.19: Percentage distribution of CO 2 according to various power ratings
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Figure 6.20: Percentage distribution of CH4 according to various voltage ratios
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Figure 6.21: Percentage distribution of CH4 according to various power ratings
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Figure 6.22: Percentage distribution of C2H2 according to various voltage levels

40 (
1000 MVA

30  L 100 MVA
120 MVA

„  , 155 MVA
h 180 MVA

240 MVA
28 f- 500 MVA

750 MVA
£  24 |- ------  75 MVA
uUi
i 20
$ 16 Q.

12

.A . . A . .. a  .. a
3 4

Concentration (PPM)

Figure 6.23: Percentage distribution of C2 H2 according to various power ratings
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6.7 Other Statistical Analyses Performed on DGA Data of Power 

Transformers

Apart from examining the partition of DGA records according to power ratings and 

voltage levels o f power transformers, and the frequency and percentage distributions 

of each dissolved gas, other statistical measures and plots were also considered. 

Firstly, the measures of data range (i.e. the difference between maximum and 

minimum values), average and standard deviation were calculated for each dissolved 

gas. It was observed that sometimes large data range was obtained owing to the 

inclusion of abnormally high concentration values o f certain dissolved gases; the 

presence of these “suspicious” DGA records might be due to human errors in data 

inputting. Moreover, the average and standard deviation may also be affected by the 

presence of these “suspicious” values. Therefore, appropriate measures must be 

taken to eliminate these values in subsequent higher-level o f analysis on the DGA 

data.

Secondly, scatter diagrams were also plotted based on concentration o f dissolved 

gases and their ratios. The reason for doing so is to determine the presence o f 

clustering characteristics and to detect outliers within these scatter diagrams. It was 

subsequently observed that the majority of the data points would concentrate on 

certain region within the diagram, while other data points are located further away 

from the foregoing group of points and scattered around in either x- or y-axis. The 

former was thought to correspond to “normal” circumstances while the latter 

corresponds to more “rare” or unusual circumstances. Higher-level of analysis is 

necessary in order to establish the reasons for above observations.

6.8 Summary

Various statistical analyses have been conducted on the DGA data of power 

transformers. The DGA data was processed in order to remove several imperfections 

in the data. Besides, the processed DGA data was divided according to various
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voltage levels and power ratings; analyses were conducted relating the amount of 

DGA data to the number and the total age of power transformers within each 

category of voltage levels and power ratings. Moreover, the frequency and 

percentage distribution of dissolved gases were also examined, which shows that the 

majority of dissolved gases are of low concentrations and there are only a few cases 

of which extremely high concentrations are found. The foregoing findings actually 

correspond well with the real-world circumstances in which power transformers are 

normally operating faultlessly and hence the recorded dissolved gases are usually of 

low concentrations. Hence, high concentrations of dissolved gases can usually be 

associated with abnormal or fault incidences that have occurred within the power 

transformers.
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CHAPTER 7

DATA MINING ON THE DGA DATA OF POWER 

TRANSFORMERS USING THE SOM

7.1 Introduction

The proposed approach based on the self-organising map (SOM) was applied for the 

analysis and interpretation of the dissolved gas analysis (DGA) data o f power 

transformers. Firstly, this chapter presents a feasibility study of the proposed 

approach, which was conducted on six selected subsets o f the DGA data. Secondly, a 

further application of the proposed approach to the entire DGA database o f power 

transformers is presented. Based on these investigations, an improved approach for 

interpretation of the DGA data is recommended, and it has been validated using 

conventional DGA interpretation schemes and actual fault cases.

7.2 The Proposed Approach

The proposed approach is fundamentally based on a data mining (DM) method 

known as the SOM, which has been introduced in Chapter 5. Basically, the proposed 

approach comprises of various stages, as illustrated in Figure 7.1. Note that there is a 

close resemblance between Figures 7.1 and 5.1 and this stems from the fact that the 

stage of DM using the SOM is an important constituent of the entire knowledge 

discovery in databases (KDD) process. However, all preceding and following stages 

of DM are also vital and careful consideration must thus be given to each of these 

stages so as to ensure the successful application of the proposed approach.
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Figure 7.1: Various stages of the proposed approach

7.3 Justification for Collective Analysis of the DGA Data

It is well established that various parameters concerning the type and functionality of 

transformers actually influence the analysis and interpretation o f the DGA data. 

Since the DGA database as obtained from the National Grid Company (NGC), UK,
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corresponds to only substation power transformers in the NGC’s transmission 

system, which according to [21] all belong to the same type o f open system, core

type construction and with separate on-load tap changer (OLTC), the DGA data of 

the acquired database can thus be analysed and interpreted collectively.

It shall be mentioned that the foregoing means of analysing and interpreting the DGA 

data, i.e. according to the type and functionality o f transformers, is also identical to 

the approach adopted by various international bodies such as the IEC [20]. Apart 

from the IEC Ratios, all other well-known conventional DGA schemes such as 

Domenburg Ratios [15], Rogers Ratios [16], Duval Triangle [17, 18] and CIGRE 

Methods [21] are also recommended to be implemented on power transformers 

without reference to certain voltage levels and power ratings.

In addition, it has been shown that the characteristic o f statistical distribution of 

dissolved gases for the acquired DGA database is generally similar for various 

subsets of the DGA data, as explained in Section 6.6. Thus, it is justifiable to analyse 

the DGA data of power transformers of various voltage levels and power ratings in a 

collective manner, on condition that all power transformers are from the same type 

and performing an identical function.

Finally, since the effect of the volume of oil towards the volume of dissolved gases 

has been eliminated through the adoption of “part-per-million” (PPM) measurement 

of the concentration level (i.e. 1 PPM means 1 micro-litre of a dissolved gas in 1 litre 

of an oil sample), it is acceptable to analyse the DGA data from various power 

transformers in a collective manner regardless o f the volume of transformer tanks; 

this is based on the fact that a fix amount of oil sample is always taken from the tank 

and assuming that dissolved gases have already been distributed evenly in the 

insulation oil when the sample was extracted from the bottom of the tank.
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7.4 A Feasibility Study of the Proposed Approach

The feasibility study is based on six selected subsets of a total of 755 DGA records, 

which correspond to power transformers from three different manufacturers, of two 

different voltage levels and of one power rating, as illustrated in Table 7.1. Herein, 

these subsets of DGA data are collectively referred to as the “Sixsets” DGA data.

Table 7.1: The “Sixsets” DGA data

Subset Manufacturer * Voltage Level 
(kV)

Power Rating 
(MVA) Number of Data

1 I 400/132 240 72

2 I 275/132 240 91

3 II 275/132 240 187

4 II 400/132 240 94

5 III 400/132 240 108

6 III 275/132 240 203

* Roman numerals are used to represent different manufacturers.

7.4.1 Pre-Processing of the “Sixsets” DGA Data

The “Sixsets” DGA data has to be pre-processed before being submitted for analysis 

using the SOM. Firstly, each “blank” (i.e. no data entry or record) in the “Sixsets” 

DGA data was replaced by the notation “NaN” (i.e. Not-a-Number) for reasons 

explained in Section 6.3. Likewise, each “0 PPM” record o f N2 , O2, CO2 and CO was 

also replaced by the “NaN” again for reasons explained in Section 6.3. The SOM 

algorithm is capable o f dealing with the “NaN” by ignoring those components of 

reference vectors which contain “NaNs” during the calculation o f Euclidean 

distances throughout the training process. This is accomplished without affecting the 

ability of SOM to learn the inherent characteristics of the DGA data. Finally, those 

“< x” entries in the “Sixsets” DGA data were converted systematically to reasonably 

small values according to Table 6.2.

120



Chapter 7 Data Mining on the DGA Data o f  Power Transformers Using the SOM

7.4.2 D ata Mining on the “Sixsets” DGA Data

The pre-processed DGA data was submitted for analysis using the SOM. As 

mentioned in Section 6 .2 , each DGA data contains information on concentration o f 

moisture (H2O) and nine dissolved gases, i.e. N2, O2, CO2, CO, H2, CH4, C2H6, C2H4 

and C2H2. Therefore, four sets o f DGA data were constructed from the foregoing 

components and three scaling or transformation methods were applied to these data 

sets; sixteen distinct configurations o f training data are thus resulted as a 

consequence o f the foregoing, as illustrated in Table 7.2 .

The basis for adopting various sensible combinations o f  input components and 

scaling methods is to search for interesting features or patterns in the optimum SOM 

for each configuration o f the training data. Moreover, it is also the aim to determine 

those key or important dissolved gases that have actually contributed to the observed 

features or patterns in these optimum SOMs. B rief description on the “range”, 

“variance” and “logarithm” scaling methods are given in the Appendix o f  this thesis.

Table 7.2: The “ Sixsets” training data  of SOM

Set Input Components Configuration of Training Data

A a h 2o ,  n 2, o 2, c o 2, CO, h 2, 
CH4, C2H6, C2H4, c 2h 2

1:
Not

scaled

2:
Range
scaling

3:
Variance
scaling

4:
Logarithm

scaling

B b c o 2, CO, h 2, c h 4, c 2h 6, 
c 2h 4, c 2h 2

5:
Not

scaled

6:
Range • 
scaling

7:
Variance
scaling

8:
Logarithm

scaling

C c CO, h 2, c h 4, c 2h 6, c 2h 4, 
c 2h 2

9:
Not

scaled

10:
Range
scaling

11:
Variance
scaling

12:
Logarithm

scaling

D d h 2, c h 4, c 2h 6, c 2h 4, c 2h 2
13:
Not

scaled

14:
Range
scaling

15:
Variance
scaling

16:
Logarithm

scaling

a. All dissolved gases including moisture.
b. Key dissolved gases from the degradation of cellulose and insulation oil.
c. Dissolved gases that are combustible by nature.
d. Key dissolved gases from the degradation of insulation oil.
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In addition, suitable configuration and parameters for the training of SOM were 

selected according to the guidance for practical application of SOM outlined in 

Section 5.5.2, as summarised in Table 7.3. Thus, a total o f sixteen SOMs were 

trained based on the “Sixsets” DGA data that was configured according to Table 7.2. 

Finally, the optimum SOM for each configuration o f training data was selected 

according to the procedures outlined in Section 5.5.2.4.

7.4.3 Chosen Optim um  SOMs of the “ Sixsets” DGA D ata

Optimum SOMs of the “Sixsets” DGA data can be visualised using u-matrix and 

component-plane illustrations. Through observation o f the features or patterns as 

displayed by these optimum SOMs, it was discovered that the application of different 

scaling methods has lead to huge differences in the visualisation quality of the 

trained SOMs.

Firstly, “masking” or “shadowing” of higher-valued dissolved gases, e.g. N2 and O2, 

over those lower-valued dissolved gases, e.g. C2H6 and C2H2, was apparent if no 

scaling was applied to the data set. Secondly, the use of “variance” scaling has 

resulted in “messy” maps, in which the inherent data characteristics were not very 

perceptible. Thirdly, the optimum SOMs for those data that were scaled using 

“logarithm” method were found to be very “messy” and ambiguous, where it is not 

possible to establish a clear picture on the inherent relationship among dissolved 

gases and their hidden structure. On the contrary, interesting and comprehensible 

features can be discerned for those SOMs that were trained using the DGA data that 

had been scaled by the “range” method, i.e. Configurations 2, 6, 10 and 14 of the 

training data. Thus, these optimum SOMs were chosen for further investigation.
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Table 7.3: Configuration, training and visualisation parameters of SOM

No. Phase 1 
Rough Ordering

Phase 2 
Fine Tuning

Configuration of SOM

1 Shape Rectangular

2 Arrangement o f neurons Hexagonal configuration

3 Number o f neurons 20 x Jdlena

4 [x-dim, y-dim] b
x -  dim _ ja~ c 
y  -  dim y P

Training Parameters

5 Neighbourhood function Rectangular

6 Training method Sequential

7 Radius Max([x-<7/m, y-dim]) 1/8 x Radius Phase 1

8 Learning rate 0.05 0.001

9 Learning rate function Linear

10 Training iterations According to Section 5.5.2.4

Visualisation Parameter

11 Function for u-matrix 
calculation Mean (see Section 5.5.2.3)

a. dlen: Total number o f input vectors.
b. x-dim, y-dim : Number o f neurons in the x- and ̂ -dimension o f SOM.
c. a, ft. First and second eigenvalues of the covariance matrix o f input data.

In essence, the “range” method effectively transforms the minimum and maximum 

values of every input component into 0 and 1 respectively; all values in between are 

scaled according to Equation (1) as illustrated in the Appendix. The reason for using 

the “range” method is to limit the learning ranges of the SOM owing to the huge 

differences in concentration of various dissolved gases. Therefore, it is not surprising 

that excellent visualisation of features or patterns are observed since the 

concentration of all gases will only vary from 0 to 1, thereby imposing equal 

influences during the training process of SOM. Optimum SOMs for Configurations 

2, 6, 10 and 14 of the training data are illustrated in Figures 7.2 to 7.9. Note that a 

64-level colour scale was utilised for the illustration o f component planes while a 64- 

level grey scale was utilised for the illustration of u-matrices for ease of 

visualisation. The map sizes, number of training iterations and SOM quality 

measures for each optimum SOM are presented in Table 7.4.
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Figure 7.2: Component planes of the optimum SOM for Configuration 2 of the 
training data (i.e. Set A with “ range” scaling)
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Figure 7.3: U-matrices of the optimum SOM for Configuration 2 of the training 
data (i.e. Set A with “ range” scaling)

Table 7.4: The map sizes, number of training iterations and SOM quality 
measures for optimum SOMs of the “Sixsets” DGA data

No. Training Data Map Size a 
\x-dim, y-dim]

Number of 
Training 
Iterations

SOM Quality
Measures d

AQE b TE 0

1 Configuration 2 [28 20]
22650  

(30 passes o f  all 
training vectors)

0.1647 0.0570

2 Configuration 6 [34 16]
30200  

(40 passes o f  all 
training vectors)

0.0885 0.0291

3 Configuration 10 [34 16]
22650  

(30 passes o f  all 
training vectors)

0.0734 0.0636

4 Configuration 14 [30 18]
30200  

(40 passes o f  all 
training vectors)

0.0454 0.0623

a. x-dim,y-dim: Number o f  neurons in the x- and v-dimension o f  SOM.
b. AQE: Average quantisation error
c. TE: Topographic error
d. AQE and TE at the specified number o f  training iterations during the fine-tuning phase.
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Figure 7.4: Component planes of the optimum SOM for Configuration 6 of the 
training data (i.e. Set B with “ range” scaling)
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Figure 7.5: U-matrices of the optimum SOM for Configuration 6 of the training 
data (i.e. Set B with “ range” scaling)
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Figure 7.6: Component planes of the optimum SOM for Configuration 10 of the 
training data (i.e. Set C with “ range” scaling)
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Figure 7.7: U-matrices of the optimum SOM for Configuration 10 of the 
training data (i.e. Set C with “ range” scaling)
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Figure 7.8: Component planes of the optimum SOM for Configuration 14 of the 
training data (i.e. Set D with “ range” scaling)
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Figure 7.9: U-matrix of the optimum SOM for Configuration 14 of the training 
data (i.e. Set D with “range” scaling)
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As explained in Section 5.5.1, every neuron of SOM is represented by an n- 

dimensional reference vector, where n is the dimension of the input space (i.e. 

number of components within an input vector). For this reason, there is a one-to-one 

correspondence between components of reference vectors and input components of 

training vectors. For example, the first component o f all reference vectors of the 

optimum SOM for Set A actually corresponds to H2O, the second component 

corresponds to N2 and so on. Therefore, if  reference vectors o f the optimum SOM are 

“sliced” and viewed component-by-component, as shown by the illustration of 

component planes, then the inherent characteristics of input components can be 

effectively visualised.

Component planes for various chosen optimum SOMs are illustrated in Figures 7.2, 

7.4, 7.6 and 7.8. Notice that the colourbar on the right-hand-side o f every component 

plane illustrates the magnitude of scaled values that are learned by the SOM; the 

actual magnitude of values, which is measured in PPM, can be obtained by reversing 

the “range” scaling process. Although scaled values of the training data vary from 0 

to 1, the SOM is found to be capable of learning about 90% of the training data in 

general, due to the fact that there is only a few training cases with extremely high 

concentration of dissolved gases. Therefore, the maximum magnitude, as shown in 

the colourbar, typically will not reach the value of 1. Nevertheless, the SOM has 

impeccably performed its function of “mining” or unearthing the inherent 

characteristics of the DGA data, which are intrinsically represented by the majority 

(over 90% in this case) of the training data.

As observed from Figures 7.2, 7.4, 7.6 and 7.8, close correlation is observed for two 

categories of dissolved gases, and this is signified by the similarity in the shape and 

location o f revealed patterns on the component planes. The first category of 

correlated dissolved gases comprises o f H2 and C2H2 while the second category 

comprises of CH4 , C2H6 and C2H4 . Besides, no apparent correlation is observed for 

all other dissolved gases. Nonetheless, it is observed that [H2 C2 H2] and [CH4 C2H6 

C2H4] patterns do correspond to significant concentrations o f CO2 and CO.
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Furthermore, the “spread” or distribution o f dissolved gases with various levels o f 

concentration can also be discerned from the component planes. It can be observed 

from the latter that the moisture, atmospheric gases (i.e. N2 , O2 and CO2), and 

products of cellulose degradation (i.e. CO2 and CO) have a larger “spread” or 

distribution of concentration when compared with those “fault” gases, i.e. H2 , CH4 , 

C2H6, C2H4 and C2H2.

In actual fact, the foregoing observations are comprehensible since the concentration 

of “fault” gases is usually very low in power transformers that are operating 

faultlessly during most of their lifetime. Meanwhile, it is not uncommon to find 

higher and more distributed concentration in atmospheric gases and products of 

cellulose degradation for the reasons explained in Section 6.3. Therefore, it can be 

assumed that the half- and quarter-circular patterns o f “fault” gases as discerned from 

the component planes actually resemble those circumstances where some problems 

or incipient faults are likely to have occurred within the power transformers, thereby 

giving rise to the high concentration o f these gases.

In addition, the u-matrix illustration can be utilised for summarising the inherent 

characteristics of the DGA data, as shown in Figures 7.3, 7.5, 7.7 and 7.9. Notice that 

the Euclidean distances between SOM neurons are indicated by the grey colorbar on 

the right-hand-side of each u-matrix. As can be seen from these figures, the u-matrix 

can be calculated based on all components or selected components of the reference 

vectors. Nevertheless, at all instances, two groups of apparent co-centre clusters are 

always observed on every u-matrix illustration, which actually correspond to the two 

categories of correlated dissolved gases, i.e. [H2 C2H2] and [CH4 C2H6 C2H4]. In 

addition, these two groups of clusters also intersect with one another, forming 

another interesting cluster on the u-matrix illustrations.

Judging from the foregoing observations on component planes and u-matrices of 

chosen optimum SOMs for the “Sixsets” DGA data, it can be concluded that the 

“key” dissolved gases of power transformers, which have contributed to the observed 

features or patterns, are the five “fault” gases, i.e. H2, CH4 , C2 H6 , C2H4 and C2H2 .
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7.4.4 Analysis on Revealed Features of the “Sixsets” DGA Data

As reported in Section 7.4.3, the SOM has successfully learned the inherent 

characteristics o f the “Sixsets” DGA data and presented them in a comprehensible 

and discernible format. Hitherto, it is known that both H2 and C2H2 are correlated to 

each other; the same also applies to CH4, C2H6 and C2H4. But, what do the foregoing 

observations actually mean in the context of real-world circumstances?

Generally, a large quantity of C2H2 will be generated and dissolved in the insulation 

oil during the onset and evolution of discharges such as arcing, sparking etc. In 

addition, H2 will also be generated in abundance as a direct consequence of the 

nature of high heat and high temperature of this incipient fault. Therefore, the 

observed correlation between H2 and C2H2 is easily comprehensible. In the case o f 

thermal fault (TF), such as overheating or hotspots, it is known that large quantities 

of CH4, C2H6 and C2H4 will be generated, the amount o f which depends on the 

intensity o f the fault, and this is signified by the fault temperature. Thus, the 

observed correlation among CH4 , C2H6 and C2H4 is also understandable. Besides, if 

the aforementioned faults also involve the cellulose insulation, both CO2 and CO will 

also be produced along side the foregoing “fault” gases. Nevertheless, although the 

concentration of CO2 and CO is quite high in regions of high concentration of “fault” 

gases, no apparent correlation is revealed. The main emphasis of subsequent analyses 

will thus be based on the five “fault” gases.

Further statistical analysis was conducted on chosen optimum SOMs of the “Sixsets” 

DGA data so as to determine the following:

• Whether the observed correlation in two categories of dissolved gases can be 

proven through statistical means?

• Whether those clusters in each group of co-centre clusters, as observed on the 

u-matrices of the optimum SOMs, are actually similar in characteristics?

Essentially, the analysis is comprised of the following steps:
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• Step 1: Identification of clusters through colour coding on u-matrices of 

chosen optimum SOMs.

• Step 2: Identification o f those training vectors that regard the SOM neurons 

in each colour-coded cluster as their best matching units (BMUs).

• Step 3: Calculation of average concentration (measured in PPM) of key 

dissolved gases, i.e. H2 , CH4 , C2H6 , C2H4 and C2H2, for each colour-coded 

cluster from the training vectors gathered in Step 2.

Apart from the analysis on identified clusters, regions which are formed with no 

apparent clusters by the key dissolved gases were also examined and similar steps of 

analysis were performed on these regions so as to determine the average 

concentration of key dissolved gases in these regions. Results o f the foregoing 

analyses are illustrated in Figures 7.10 to 7.13. Several important characteristics can 

be summarised from these figures:

• Two distinct distribution patterns of key dissolved gases can be identified, 

which correspond to those of [H2 C2H2] and [CH4 C2H6 C2H4], respectively.

• Among key dissolved gases, H2 and C2H2 are dominant dissolved gases in the 

co-centre clusters formed by these two gases while CH4 , C2H6 and C2H4 are 

dominant dissolved gases in the co-centre clusters formed by these three 

gases.

• Average concentration o f dominant dissolved gases in the respective group of 

co-centre clusters is also found to increase from the outer cluster to inner 

cluster.

• Those clusters in each group of co-centre clusters are found to have similar 

patterns of the composition of key dissolved gases.

• Interception clusters are found to have lower average concentration of C2H2 

but higher average concentration of CH4 , C2H6 and C2 H4 when compared 

with the [H2 C2H2] clusters of the same levels. For example in Figure 7.11, 

Region 7 contains lower average concentration of C2 H2 and higher average 

concentration of CH4 , C2H6 and C2 H4 if compared to Region 2.
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Several conclusions can thus be drawn from foregoing observations. Firstly, the 

observed correlation in [H2 C2H2] and [CH4 C2H6 C2H4] has been validated owing to 

the similarity in the distribution pattern o f average concentration across various 

clusters. Secondly, those clusters in each group of co-centre clusters are similar in 

characteristics, with gradual increase of the average concentration o f dominant 

dissolved gases from the outer clusters to inner clusters. Thirdly, interception clusters 

are found to contain the characteristics of both [H2 C2H2] and [CH4 C2H6 C2H4 ] 

clusters. Finally, those regions of which no apparent clusters are formed by key 

dissolved gases are assumed to be associated with the normal operating condition of 

power transformers, owing to the consistently low average concentration of key 

dissolved gases.

7.4.5 Hypothetical Association of Revealed Features

Owing to the a priori knowledge on the formation o f dissolved gases during the onset 

and evolution of incipient faults and the outcome of the detailed statistical analysis 

on chosen optimum SOMs reported in Section 7.4.4, association can hence be 

hypothetically established between revealed features or patterns reported in Section 

7.4.3 and several conditions of power transformers.

Two examples of the hypothesis, which are based on optimum SOMs of 

Configurations 6  and 10 of the training data, are illustrated in Figures 7.14 and 7.15. 

As can be observed from these figures, the “discharges” region corresponds to the 

group of co-centre clusters o f which H2 and C2H2 are found to be the dominant 

dissolved gases. In contrast, the “thermal fault” (TF) region corresponds to the group 

of co-centre clusters o f which CH4 , C2H6 and C2H4 are found to be the dominant 

dissolved gases. These aforementioned groups of co-centre clusters also intercept 

with one another, forming another region that is assumed to be associated with the 

simultaneous occurrence of discharges and TF. Finally, the region in which no 

apparent clusters are formed by key dissolved gases is assumed to be associated with 

normal operating condition of power transformers, due to the consistently low 

average concentrations o f all key dissolved gases.
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7.4.6 Validation of the Hypothesis

The hypothetical association of revealed features with conditions of power 

transformers, as presented in the previous section, has been validated using following 

approaches:
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• Comparison with the interpretation as provided by several established 

conventional DGA interpretation schemes.

• Validation by using several actual fault cases.

7.4.6.1 Comparison with conventional DGA interpretation schemes

Training vectors that correspond to each numbered region illustrated in Figures 7.14 

and 7.15 were gathered via the best-matching means and subsequently interpreted by 

conventional DGA schemes after being scaled back to original values. It shall be 

emphasised that these training vectors are actual DGA records of power 

transformers. Results o f the foregoing are then compared with the interpretation as 

provided by the hypothesis illustrated in Figures 7.14 and 7.15. Since the type and 

severity of incipient faults detectable by conventional DGA interpretation schemes 

vary from one scheme to another, it is desirable to simply identify four main 

conditions o f power transformers, i.e. normal operation, discharges, partial 

discharges (PD) and thermal fault (TF). Following conventional DGA interpretation 

schemes were utilised for the comparison:

• Domenburg Ratios

• Rogers Ratios

• IEC-1999 Ratios

• Duval Triangle (1993-edition)

Note that only the latest version of IEC Ratios and Duval Triangle are considered for 

comparison purposes. In addition, CIGRE methods are not considered due to the 

complexity of the interpretation associated with this scheme.

Results of the comparison are shown in Tables 7.5 to 7.8 for the optimum SOM of 

Configuration 6 of the training data (hypothesis illustrated in Figure 7.14), and in 

Tables 7.9 to 7.12 for the optimum SOM of Configuration 10 of the training data 

(hypothesis illustrated in Figure 7.15).
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Table 7.5: Comparison of hypothesis with Dornenburg Ratios 
(correspond to Figure 7.14)

Interpretation by Dornenburg Ratios

Region 
[Number 

of Training
Vectors]

Hypothesis Normal D PD TF N /Ia N/A b

1 T53] Discharges (D) 53

2 [25] Discharges (D) 18 7

3 [20] Discharges (D) 11 9

4 [62] Discharges (D) 4 4 6 48

5 [32] Thermal fault (TF) 32

6 [34] Thermal fault (TF) 13 17 4

7 [4]
Discharges/TF

(D/TF)
1 3

8 [2]
Discharges/TF

(D/TF)
2

9 [523] Normal 442 1 80

a. N/I: No interpretation.
b. N/A: Not applicable.

Table 7.6: Comparison of hypothesis with Rogers Ratios 
(correspond to Figure 7.14)

Interpretation by Rogers Ratios

Region 
[Number 

of Training 
Vectors)

Hypothesis Normal D PD TF N/I *

1 [53] Discharges (D) 53

2 [25] Discharges (D) 25

3 [20] Discharges (D) 19 1

4 [62] Discharges (D) 3 44 1 14

5 [32] Thermal fault (TF) 6 26

6 [34] Thermal fault (TF) 1 20 13

7 [4]
Discharges/TF

(D/TF)
2 2

8 [2]
Discharges/TF

(D/TF)
2

9 [523] Normal 481 10 20 12

* N/I: No interpretation.
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Table 7.7: Comparison of hypothesis with IEC-1999 Ratios 
(correspond to Figure 7.14)

Interpretation by IEC-1999 Ratios

Region 
[Number 

of Training 
Vectors]

Hypothesis Normal D PD TF N/I *

1 [53] Discharges (D) 53

2 [25] Discharges (D) 25

3 [2 0 ] Discharges (D) 18 2

4 [62] Discharges (D) 3 45 1 13

5 [32] Thermal fault (TF) 32

6  [34] Thermal fault (TF) 2 16 16

7 [4] Discharges/TF
(D/TF) 4

• .

8  [2 ] Discharges/TF
(D/TF) 2

9 [523] Normal 481 8 26 8

* N/I: No interpretation.

Table 7.8: Comparison of hypothesis with Duval Triangle (1993-edition)
(correspond to Figure 7.14)

Interpretation by Duval Triangle (1993-edition)

Region 
[Number 

of Training 
Vectors]

Hypothesis Normal D PD TF D/TF

1 [53] Discharges (D) 53

2 [25] Discharges (D) 25

3 [2 0 ] Discharges (D) 2 0

4 [62] Discharges (D) 3 56 9 3

5 [32] Thermal fault (TF) 32

6  [34] Thermal fault (TF) 6 19 9

7 [4] Discharges/TF
(D/TF) 4

8  [2 ] Discharges/TF
(D/TF) 2

9 [523] Normal 481 14 28
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Table 7.9: Comparison of hypothesis with Dornenburg Ratios 
(correspond to Figure 7.15)

Interpretation by Dornenburg Ratios

Region 
[Number of 

Training 
Vectors!

Hypothesis Normal I) PD TF N /Ia N/A b

1 [52] Discharges (D ) 52
2 [19] Discharges (D) 17 2

3 [26] Discharges (D) 1 2 14
4 [36] Discharges (D) 5 31
5 [19] Discharges (D) 1 5 13
6  [29] Thermal fault (TF) 29
7 [22] Thermal fault (TF) 15 5 2

8  [31] Thermal fault (TF) 4 1 13 13

9 [3] Discharges/TF
(D/TF)

1 2

1 0  [2 ] Discharges/TF
(D/TF)

1 1

11 [516] Normal 442 74
a. N/I: No interpretation.
b. N/A: Not applicable.

Table 7.10: Comparison of hypothesis with Rogers Ratios 
(correspond to Figure 7.15)

Interpretation by Rogers Ratios

Region 
[Number of 

Training 
Vectors!

Hypothesis Normal D PD TF N/I *

1 [52] Discharges (D) 52
2 [19] Discharges (D ) 19
3 [26] Discharges (D) 23 3

4 [36] Discharges (D) 33 3
5 [19] Discharges (D) 12 7
6 [29] Thermal fault (TF) 3 26
7 [22] Thermal fault (TF) 14 8
8 [31] Thermal fault (TF) 4 1 14 12

9 [3]
Discharges/TF

(D/TF)
3

10 [2]
Discharges/TF

(D/TF)
2

11 [516] Normal 480 13 16 7

* N/I: No interpretation.
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Table 7.11: Comparison of hypothesis with IEC-1999 Ratios 
(correspond to Figure 7.15)

Interpretation by IEC Ratios (1999-edition)

Region 
[Number of 

Training 
Vectors]

Hypothesis Normal D PD TF N/I *

1 [52] Discharges (D) 52

2 [19] Discharges (D) 19

3 [26] Discharges (D) 26

4 [36] Discharges (D) 32 4

5 [19] Discharges (D) 11 8

6 [29] Thermal fault (TF) 29

7 [22] Thermal fault (TF) 18 4

8 [31] Thermal fault (TF) 4 2 8 17

9 [3]
Discharges/TF

(D/TF) 3

10 [2]
D ischargesTF

(D T F )
1 1

11 [516] Normal 480 11 20 5

* N/I: No interpretation.

Table 7.12: Comparison of hypothesis with Duval Triangle (1993-edition)
(correspond to Figure 7.15)

Interpretation by Duval Triangle (1993-edition)

Region 
[Number of 

Training 
Vectors]

Hypothesis Normal D PD TF D/TF

1 [52] Discharges (D) 52

2 [19] Discharges (D) 19

3 [26] Discharges (D) 26

4 [36] Discharges (D) 36 -

5 [19] Discharges (D) 19

6 [29] Thermal fault (TF) 29

7 [22] Thermal fault (TF) 1 19 2

8 [31] Thermal fault (TF) 4 9 12 6

9 [3]
D ischargesTF

(D T F )
3

10 [2]
D ischargesTF

(D T F )
1 1

11 [516] Normal 480 14 22
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As can be observed from these tables, the hypothesis illustrated in Figures 7.14 and 

7.15 compares quite well with the interpretation provided by conventional DGA 

schemes. In fact, the non-existence of the “partial discharge” (PD) region in the 

hypothesis has also been confirmed since none of the conventional schemes actually 

detected it. Nevertheless, several discrepancies o f interpretation are identified:

• Most conventional DGA schemes are unable to interpret the outer “fault” 

regions, even though the occurrence of incipient faults is suspected by these 

schemes. In contrast, the hypothesis illustrated in Figures 7.14 and 7.15 is 

able to interpret these outer fault regions, which are based on the outcome of 

detailed statistical analyses on these regions and due to the fact that these 

regions form a part of the co-centre clusters that are similar in characteristics.

• Even though the Duval Triangle (1993-edition) is capable o f detecting the 

occurrence o f duo-faults (i.e. discharges and thermal fault), only one such 

case is detected, as shown in Table 7.12. In contrast, the hypothesis illustrated 

in Figures 7.14 and 7.15 has a region dedicated to the duo-fault situation, 

which is based on the interception between two major incipient fault regions.

• Most o f the conventional DGA interpretation schemes, with the exception of 

Duval Triangle, are unable to interpret all training vectors, which are in fact 

actual DGA records from oil samples o f power transformers. Consequently, 

the diagnosis of “no interpretation” (N/I) is provided for some of the training 

vectors even though the presence o f incipient fault is suspected by these 

schemes. In contrast, the hypothesis illustrated in Figures 7.14 and 7.15 is 

able to provide interpretation for every possible DGA record, based on the 

best-matching o f the DGA record within the identified incipient fault regions.

In conclusion, the hypothesis illustrated in Figures 7.14 and 7.15 is clearly more 

beneficial since classification of the health and operating condition o f power 

transformers is always guaranteed and is much more convincing.
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7.4.6.2 Validation by using actual fault cases

The hypothetical association o f revealed features of optimum SOMs with conditions 

of power transformers has been validated in the context o f conventional DGA 

interpretation schemes. The main objective of this section is to further investigate the 

validity o f the hypothesis through actual, confirmed circumstances.

Herein, the hypothesis is further validated using two actual fault cases, which are the 

real DGA histories of two power transformers, as confirmed by transformer experts 

of the National Grid Company (NGC), UK, to indicate some problems or show faults 

during their operation. In addition, the DGA history o f a power transformer that has 

been observed to be operating normally was also examined for the validation of the 

“normal operation” region.

DGA trajectories of the abovementioned power transformers are plotted onto the u- 

matrix via the best-matching means of each DGA history, which contains a time- 

sequence of DGA records, with neurons of the optimum SOM; the complete 

operating history of each power transformer is thereby visible via the trajectory plot. 

The proposed condition of each power transformer, as discerned from its DGA 

trajectory plot, is then compared with the actual observation o f NGC experts. Herein, 

the optimum SOM for Configuration 10 of the training data was used for the 

illustration purposes; similar results are also obtained for other chosen optimum 

SOMs.

Firstly, the DGA trajectory o f Transformer A (with voltage level o f 275/132 kV and 

power rating of 240 MVA) is illustrated in Figure 7.16. As seen from Figure 7.16, 

the trajectory is observed to be gradually moving deeper into the inner clusters o f the 

“discharges” region. This has been confirmed by experts at the NGC, who attributed 

this phenomenon to the observed arcing/sparking at the clamping plates of this 

transformer.
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Figure 7.16: The DGA trajectory of Transform er A

Secondly, the DGA trajectory of Transformer B (with voltage level of 275/132 kV 

and power rating of 240 MVA) is illustrated in Figure 7.17. As seen from Figure 

7.17, the trajectory is observed to be gradually moving into inner clusters of the 

“thermal fault” (TF) region and stays in the inner most cluster from 23/7/89 to 

19/5/1993. This has again been confirmed by experts at the NGC, who have 

attributed the observed phenomenon to a known thermal problem that was peaking in 

1991 to 1992.
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10/1/85

23/7j69

23/T/39 -136/93

Figure 7.17: The DGA trajectory of Transform er B

Finally, the DGA trajectory of Transformer C (with voltage level of 275/132 kV and 

power rating of 240 MVA), is illustrated in Figure 7.18. As can be observed from 

Figure 7.18, the DGA trajectory of this transformer do not venture into any of the 

identified fault regions, thereby matching the observation of transformer experts at 

the NGC, who have attributed the variation in the concentrations of key dissolved 

gases to the normal degradation of insulation oil during normal operating condition.

The foregoing interpretations of the health and operating condition of power 

transformers, which are based on the hypothesis illustrated in Figure 7.15, 

correspond very well to the actual observations of transformer experts at NGC. The 

hypothesis has thus been effectively validated by using actual fault cases. In addition,
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the proposed approach has an added advantage of allowing the visualisation of the 

evolution of operating condition of a power transformer, based on the plotting of its 

DGA history onto the u-matrix illustration in which various fault regions have been 

identified.

* *

Figure 7.18: The DGA trajectory of Transform er C

7.5 A nalysis on the Entire DGA Database of Power Transform ers

As reported in the feasibility study, the proposed approach based on the application 

of SOM has successfully “mined” or unearthed the inherent characteristics of the 

“Sixsets” DGA data and has presented them in a discernible format. Moreover, the 

suggested hypothesis based on these revealed features, has been demonstrated to be 

capable of providing an improved interpretation of the DGA data and an 

unambiguous visualisation of the DGA history with regard to the health and 

condition of power transformers.

Herein, the proposed approach is further tested for the analysis of the entire DGA 

database of 14943 DGA data of power transformers, which is referred to as the 

“Fullsets” DGA data. The aim of this exercise is to further investigate the capability 

of the proposed approach for “mining” or unearthing the inherent characteristics of 

the DGA data that involves a significantly larger amount and variety of samples.
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7.5.1 Pre-Processing of the “ Fullsets” DGA D ata

Similar to the foregoing analysis on the “Sixsets” DGA data, the “Fullsets” DGA 

data has to be pre-processed before submitting for analysis using the SOM. Similar 

procedures of pre-processing were applied, as reported in Section 7.3.1.

7.5.2 D ata Mining on the “ Fullsets” DGA Data

Four sets of DGA data were constructed from the “Fullsets” DGA data. In addition, 

the “range” scaling method was then applied to these data sets due to its proven 

usefulness for the effective learning of SOM. Four distinct configurations of training 

data thus resulted, as shown in Table 7.13.

Table 7.13: The “ Fullsets” train ing data  of SOM

Set Input Components Configuration of Training Data

A a H2 O, N2 , O2 , CO2 , CO, H2 , CH4 , C2 H6 , 
C2 H4 ,C 2 H2

1:
Range scaling

B b C 0 2, CO, H2, CH4 , C2 H6, C2 H4 , C2 H2
2 :

Range scaling

C c CO, H2, CH4 , C2 H6, C2 H4 , C2 H2
3:

Range scaling

D d H2, CH4 , C2 H6, C2 H4 , C2 H2
4:

Range scaling

a. All dissolved gases including moisture.
b. Key dissolved gases from the degradation of cellulose and insulation oil.
c. Dissolved gases that are combustible by nature.
d. Key dissolved gases from the degradation of insulation oil.

Finally, similar configuration and training parameters of SOM were adopted, as 

previously summarised in Table 7.3. Consequently, four SOMs were trained based 

on the “Fullsets” DGA data that was configured according to Table 7.13. The
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optimum SOM for each configuration of training data was selected according to the 

procedures outlined in Section 5.5.2.4. However, longer period o f training has to be 

taken due to the size o f the “Fullsets” DGA data, which is approximately twenty 

times that of “Sixsets” DGA data. Besides, significantly less iterations are needed for 

the training due to the significantly larger size o f the “Fullsets” DGA data.

7.5.3 Chosen Optimum SOMs of the “Fullsets” DGA D ata

The optimum SOMs of the “Fullsets” DGA data for all configurations of training 

data can be visualised using the u-matrix and component-plane illustrations. Through 

observation of the features or patterns as displayed by these optimum SOMs, it is 

discovered that excellent visualisation of inherent characteristics can be obtained 

from the optimum SOMs of Configurations 2 and 3 of the training data, and as a 

consequence, the foregoing optimum SOMs were chosen for further investigation.

The map sizes, number of training iterations and the SOM quality measures for the 

chosen optimum SOMs are presented in Table 7.14. In addition, Figures 7.19 to 7.22 

illustrates the component planes and u-matrices of these optimum SOMs.

Table 7.14: The map sizes, num ber of training iterations and SOM quality 
measures for optimum SOMs of the “ Fullsets” DGA data

No. Training Data Map Sizea 
[x-dim, y-dim]

Number of 
Training 
Iterations

SOM Quality 
M easuresd

AQE b TE 0

1 Configuration 2 [58 42]
52301 

(3 XA passes o f all 
training vectors)

0.0289 0.0827

2 Configuration 3 [58 42]
52301 

(3'A passes o f  all 
training vectors)

0.0237 0.1866

a. x-dim, y-dim: Number o f neurons in the x- and y-dimension o f SOM.
b. AQE: Average quantisation error
c. TE: Topographic error
d. AQE and TE at the specified number o f training iterations during the fine-tuning phase.
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Com ponent 1: C 0 2 C om ponent 2: CO

Com ponent 3: H2 Com ponent 4: CH4

Com ponent 5: C2H6 Com ponent 6: C2H4

U

Com ponent 7: C2H2

Figure 7.19: Component planes of the optimum SOM for Configuration 2 of the 
training data (i.e. Set B with ‘‘range” scaling)
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U-matrix: [All gases] U-m atrix: [H2 to C2H2]

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Figure 7.20: U-matrices of the optimum SOM for Configuration 2 of the 
training data (i.e. Set B with “ range” scaling)

Com ponent 1: CO C om ponent 2: H2

C om ponent 3: CH4 Com ponent 4: C2H6

C om ponent 5: C2H4 C om ponent 6: C 2H2

Figure 7.21: Component planes of the optimum SOM for Configuration 3 of the 
training data (i.e. Set C with “ range” scaling”)
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U-matrix: [Ail gases] U-m atrix: [H2 to C 2 H2]

Figure 7.22: U-matrices of the optimum SOM for Configuration 3 of the 
training data (i.e. Set C with “ range” scaling)

Several conclusions can be drawn regarding the foregoing figures of component 

planes. Firstly, a good correlation can be observed among CH4 , C2 H6 and C2 H4 , 

similar to the revealed features of the “Sixsets” DGA data, although, the observed 

patterns may not look as organised as the “Sixsets” DGA data owing to the larger 

amount and variety of DGA samples. Secondly, H2 is only partially correlated with 

C2 H2 due to the dissimilarity in the location of revealed patterns. Nevertheless, since 

the patterns of H2 and C2 H2 are very close to each other and the shape of the patterns 

are similar, it can be concluded that both H2 and C2 H2 are related but the relationship 

may not be as apparent as that of “Sixsets” DGA data.

The observed correlation among CH4 , C2 H6 and C2 H4 thus forms a group of apparent 

co-centre clusters, as observed in u-matrix illustrations of Figure 7.20 and 7.22. 

Besides, the “partial” correlation of H2 and C2 H2 has also led to the formation of a 

group of clusters (though not co-centre) in the upper-left comer of u-matrix 

illustrations; interception between H2 and C2 H2 clusters is also noticed.

Generally, these two major groups of clusters, i.e. the [CH4 C2 H6 C2 H4 ] clusters and 

the [H2 C2 H2 ] clusters, do not overlap or intercept with one another. Notice that a 

slight interception between these major groups of clusters might be perceived in 

Figure 7.22. However, on closer examination, this perceived interception or 

overlapping is actually due to the short proximity between these two groups of
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clusters. Furthermore, the fact that no interception is revealed on u-matrices of 

optimum SOMs for other configurations of training data also confirms this finding. 

However, in the case of the “Sixsets” DGA data, actual interception between two 

major groups of co-centre clusters is confirmed due to the fact that identical 

observation was found for all configurations of the training data.

7.5.4 Analysis on Revealed Features of the “Fullsets” DGA Data

Further statistical analysis has been conducted on the optimum SOMs of 

Configurations 2 and 3 of the training data. The objective of the foregoing is to 

examine the distribution and composition of key dissolved gases, i.e. H2 , CH4, C2H6, 

C2H4 and C2H2 , across various regions. Essentially, similar steps of analysis were 

adopted, as previously explained in Section 7.4.4. Results of the analyses are 

illustrated in Figures 7.23 and 7.24.

Notice that a different approach of presentation was adopted, in which the average 

concentration of key dissolved gases is shown according to various colour-coded 

regions, instead of according to each dissolved gas as in the case of “Sixsets” DGA 

data. The rationale behind this approach is to illustrate the composition of key 

dissolved gases and to identify dominant dissolved gases for each region. In addition, 

detail differentiation of clusters for the co-centre clusters o f [CH4 C2H6 C2H4] was 

not carried out since it has been proven, as presented in Section 7.4.4, that such 

clusters in a group of co-centre clusters are indeed similar in characteristics and the 

average concentration o f dominant dissolved gases in these clusters actually

increases from the outer clusters to the inner clusters.

Several important conclusions can be drawn from Figures 7.23 and 7.24. Firstly, a

similar distribution pattern of average concentration o f key dissolved gases is

observed for Regions 1 and 3, in which H2 is the dominant dissolved gas. However, 

on more detail inspection on those training vectors which correspond to Regions 1 

and 3, it is found that there are approximately 75% of training vectors of which the 

concentration o f H2 is extremely high while other key dissolved gases are low in

154



ion
 

(P
PM

) 
A

ve
ra

ge
 

co
nc

en
tr

at
io

n 
(P

PM
) 

A
ve

ra
ge

 
co

nc
en

tr
at

io
n 

(P
P

M
)

Chapter 7 Data M ining on the DGA Data o f  Power Transformers Using the SOM

..............'iSSKg
■■ ■ '  ‘ • •

Or,r,c,or,pooOOOOO

orcae

Colour coding:

1. 1, 2, 3, 4, 5: [H2 C2 H 2] clusters
2. 6: [CH4 C2H6 C2H4] clusters
3. 7: Apparent cluster not identified

Region 1 Region 2 Region 3

2- 450 -1200  -

1000  -

5 250

o 150 -400 -

o o 
Dissolved gases

Region 4

Dissolved gases 

Region 5
i  70-, 
~  60 
I  50 -f0
r  40 -

200 
180 - 
160 - 
140 - 
120 - 

100 - 

80 - 
60 - 
40 - 
20 -

<? 10 -

CM

CMoo CMO CMo O CMo CMo

Dissolved gases 

Region 6

^  350
300

2 250

Dissolved gases

Region 7

Dissolved gases Dissolved gases

20 -

15 -
c0)ocooQ)O)ru

co
X

M-
X

M-
X

Figure 7.23: Colour coding of the u-m atrix 
and average concentration of key dissolved 
gases in various identified clusters of the 
optim um  SOM (Configuration 2 of the 
train ing data)

0 0  

Dissolved gases

155



ion
 

(P
P

M
)

Chapter 7 Data Mining on the DGA Data o f  Power Transformers Using the SOM
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concentration (especially C2H2 o f which has a concentration close to 0 PPM). 

However, there are approximately 25% of training vectors o f which both H2 and 

C2H2 is found to be the dominant dissolved gases. Therefore, the two subsets 

described above actually lead to the dominance of H2 as seen in Regions 1 and 3.

Secondly, both H2 and C2H2 are found to be the dominant dissolved gases in Regions 

2, 4 and 5 of Figure 7.23 and Regions 2 and 4 o f Figure 7.24. Thirdly, CH4, C2H6 and 

C2H4 are found to be the dominant dissolved gases in R.egion 6  o f Figure 7.23 and 

Region 5 of Figure 7.24. Finally, Region 7 o f Figure 7.23 and Region 6  o f Figure 

7.24 are found to contain very low average concentrations o f key dissolved gases, 

since no apparent clusters were formed by the five key dissolved gases in these 

regions.

In conclusion, one extra feature has been unearthed when the entire DGA database of 

power transformers was analysed using the SOM, i.e. the discovery of “partial 

discharge” (PD) pattern due to the extremely high concentration of H2 in Regions 1 

and 3.

7.5.5 Hypothetical Association of Revealed Features

Similar to the “Sixsets” DGA data, an association can be actually established 

between revealed features of the “Fullsets” DGA data and several conditions of 

power transformers based on the a priori knowledge on the formation o f dissolved 

gases during the onset and evolution of incipient faults and the previous statistical 

analyses on chosen optimum SOMs of the “Fullsets” DGA data. An example of the 

hypothesis is illustrated in Figure 7.25, which is based on the optimum SOM of 

Configuration 2 of the training data.

As can be observed from Figure 7.25, the majority o f the area is dominated by the 

“normal operating condition” region due to the fact the majority o f the “Fullsets” 

DGA data actually resembles those circumstances of which power transformers are 

operating faultlessly. In addition, the “partial discharges” (PD) region is dominated
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with high concentration of H2 while the “discharges” region is dominated by high 

concentrations of H2 and C2H2; both discharges and PD regions can be categorised as 

being the electrical fault (EF) region. In contrast, the “thermal fault” (TF) region is 

dominated by high concentrations of CH4, C2H6 and C2H4.
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Figure 7.25: Association of revealed features with conditions of power 
transform ers (based on Configuration 2 of the training data)

7.5.6 Validation of the Hypothesis

Again, the hypothetical association o f revealed features illustrated in Figure 7.25 has 

been validated by comparing with several established conventional DGA 

interpretation schemes and observations by transformer experts at NGC on several 

actual fault cases, as explained in the following sections:
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7.5.6.1 Comparison with conventional DGA interpretation schemes

Those training vectors that correspond to each colour-coded region illustrated in 

Figure 7.23 were gathered via the best-matching means and subsequently submitted 

for interpretation by several conventional DGA interpretation schemes after being 

scaled back to original values. Results of these interpretations are then compared 

with interpretations as provided by the hypothesis illustrated in Figure 7.25.

Similar to the validation of the “Sixsets” DGA data, four conventional DGA 

interpretation schemes were utilised, i.e. Dornenburg Ratios, Rogers Ratios, IEC- 

1999 Ratios and Duval Triangle (1993-edition). In addition, four main operating 

conditions o f power transformers are to be identified, i.e. normal operation, 

discharges, partial discharges (PD) and thermal fault (TF). Results o f the comparison 

are shown in Tables 7.15 to 7.18.

Table 7.15: Comparison of hypothesis with Dornenburg Ratios 
(correspond to Figure 7.25)

Interpretation by Dornenburg Ratios
Region 

[Number 
of Training 

Vectors]

Hypothesis Normal D PD TF N/I a N/A b

1 [193]

1. Partial 
discharges (PD) 
~ majority

2. Discharges 
-minority

31 2 2 140

2 [372] Discharges (D) 262 ' ■ 19 91

3 [78]

1. Partial 
discharges (PD) 
~ majority

2. Discharges 
-minority

1 0 6 62

4 [250] Discharges (D) 2 2 33 195
5 [375] Discharges (D) 4 5 366
6  [821] Thermal fault (TF) 483 83 255
7 [12751] Normal 10703 16 3 2029

a. N/I: No interpretation.
b. N/A: Not applicable.
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Table 7.16: Comparison of hypothesis with Rogers Ratios 
(correspond to Figure 7.25)

Interpretation by Rogers Ratios
Region 

(Number 
of Training 

Vectors]

Hypothesis Normal I) PD TF N /Ia UDF b

1 [193]

1. Partial 
discharges (PD) 
~  majority

2. Discharges 
-m inority

29 1 0 2 62

2 [372] Discharges (D) 281 91

3 [78]

1. Partial 
discharges (PD) 
-  majority

2. Discharges 
-m inority

1 1 33 5 29

4 [250] Discharges (D) 163 87
5 [375] Discharges (D) 275 2 98
6  [821] Thermal fault (TF) 366 453 2

7 [12751] Normal 11619 203 53 470 402 4
a. N/I: No interpretation.
b. UDF: Undefined, due to the presence o f  “N aN (s)” in the code(s) (see Section 4.4).

Table 7.17: Comparison of hypothesis w ith IEC-1999 Ratios 
(correspond to Figure 7.25)

Interpretation by IEC-1999 Ratios
Region 

[Number 
of Training 

Vectors]

Hypothesis Normal D PD TF N /Ia UDF b

1 [193]

1. Partial 
discharges (PD) 
-  majority

2. Discharges 
-m inority

32 68 73 19 1

2 [372] Discharges (D) 325 28 19

3 [78]

1. Partial 
discharges (PD) 
-  majority

2. Discharges 
-m inority

11 5 41 21

4 [250] Discharges (D) 202 19 29
5 [375] Discharges (D) 291 29 55
6 [821] Thermal fault (TF) 1 759 61
7 [12751] Normal 1 1619 189 6 701 234 2

a. N/I: No interpretation.
b. UDF: Undefined, due to the presence o f  “N aN(s)” in the ratio(s) (see Section 4.6).
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Table 7.18: Comparison of hypothesis with Duval Triangle 
(correspond to Figure 7.25)

Interpretation by Duval Triangle (1993-edition)
Region 

(Number 
of Training 

Vectors]

Hypothesis Normal D PD TF D/TF UDF *

1 [193]

1. Partial 
discharges (PD) 
~  majority

2. Discharges 
~minority

52 45 94 1 1

2 [372] Discharges (D) 372

3 [78]

1. Partial 
discharges (PD) 
~  majority

2. Discharges 
-m inority

16 1 51 10

4 [250] Discharges (D) 250

5 [375] Discharges (D) 368 2 5

6 [821] Thermal fault (TF) 18 747 54 2

7 [12751] Normal 11619 308 6 753 65

* UDF: Undefined, due to the presence o f “N aN (s)” in the %gas(es) (see Section 4.7).

As can be observed from Tables 7.15 to 7.18, various discrepancies in the 

interpretation are identified, as described below:

• Dornenburg Ratios is not capable of identifying those training vectors that 

contain the PD pattern discovered in the foregoing statistical analysis. 

Nevertheless, it did correctly interpret some of the “discharges” and TF 

patterns. In addition, constrains imposed by Dornenburg for the applicability 

of his method also lead to a large amount of DGA data which is not possible 

to be interpreted (i.e. “not applicable”). Finally, Dornenburg Ratios is also not 

able to provide interpretation for some of the training vectors that satisfied his 

constrains but not covered by the combinations of ratios.

• Interpretations provided by Rogers Ratios correspond very closely to the 

hypothesis, in which it has identified PD patterns in Regions 1 and 3. 

Moreover, it has correctly identified the “discharges” and TF patterns.
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However, it is unable to provide interpretation for some of the training 

vectors due to its inability to cover every possible combination of ratios.

• Although the IEC-1999 Ratios technique has identified some PD patterns in 

Regions 1 and 3, it also incorrectly classified some o f the supposedly PD 

patterns as TF. Owing to the extremely high concentration of H2 (over 1000 

PPM) in Regions 1 and 3 and relatively low concentrations of other key 

dissolved gases, the majority of training vectors should therefore indicate the 

PD phenomenon rather than TF. Moreover, the identification of TF patterns 

in Regions 1 and 3 is also not convincing since CH4 , C2H6 and C2H4 are not 

the dominant dissolved gases in these regions. Nevertheless, the IEC-1999 

Ratios technique has correctly identified most of the “discharges” and TF 

patterns in Regions 2, 4, 5 and 6. Finally, the IEC-1999 is unable to provide 

interpretation for some of the training vectors owing to its inability to cover 

every possible combination o f ratios.

• Duval Triangle has correctly identified the “discharges” and TF patterns in 

Regions 2, 4, 5 and 6. However, it did suffer from the same weakness as the 

IEC-1999 Ratios technique since it has incorrectly interpreted some o f the PD 

patterns as TF.

When compared with conventional DGA interpretation schemes, interpretations 

provided by the hypothesis illustrated in Figure 7.25 are more convincing, due to the 

fact that the association o f regions with health and operating conditions o f power 

transformers is established based on the a priori knowledge on the formation of 

dissolved gases during the onset and evolution of incipient faults and detailed 

statistical analysis on identified clusters of key dissolved gases, as presented in 

Section 7.5.4.

In addition, the hypothesis illustrated in Figure 7.25 is able to provide plausible 

interpretation for every DGA data based on the best-matching of each DGA data 

with reference vectors of SOM neurons within each region.

162



Chapter 7 Data Mining on the DGA Data o f  Power Transformers Using the SOM

7.5.6.2 Validation by using actual fault cases

The performance of the hypothesis illustrated in Figure 7.25 compares quite 

favourably with several conventional DGA interpretation schemes, as presented in 

Section 7.5.6.1. Herein, the hypothesis is further validated using several actual, 

observed fault cases that have been confirmed by transformer experts at NGC. 

Similar procedures of validation to that of “Sixsets” DGA data were utilised. Results 

of the validation are described sequentially in this section.

Firstly, the DGA trajectory of Transformer A (with voltage level of 275/132 kV and 

power rating of 240 MVA) is illustrated in Figure 7.26. It appears as if  can be 

observed, the DGA trajectory gradually moving deeper into the “PD/discharges” 

region, arriving at the centre of this region on date 6/4/94. This observation has been 

confirmed by experts at NGC, who indicated that this particular transformer actually 

failed in 1994.

Secondly, the DGA trajectory o f Transformer B (with voltage level of 275/132 kV 

and power rating of 240 MVA) is illustrated in Figure 7.27. As can be observed from 

this figure, the DGA trajectory always fluctuates within the inner “discharges” region 

from 24/7/72 to 5/6/96. This has been confirmed by experts at the NGC, in which 

this phenomenon was attributed to the observed arcing/sparking at the clamping 

plates of this transformer.

Thirdly, the DGA trajectory of Transformer C (with voltage level of 275/132 kV and 

power rating of 240 MVA) is illustrated in Figure 7.28. As can be observed from this 

figure, the trajectory appears to be gradually moving into the inner clusters of the 

“thermal fault” (TF) region and stays in inner clusters from 23/7/89 to 19/5/1993. 

This has been confirmed by the experts at the NGC, who attributed this observed 

phenomenon to a known thermal problem that was peaking in 1991 to 1992.
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Figure 7.26: The DGA trajectory of Transform er A

24/7/72 -  5/6/96

Figure 7.27: The DGA trajectory of Transform er B
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19 5 93

Figure 7.28: The DGA trajectory of Transform er C

Finally, the DGA trajectory of a normal operating transformer, i.e. Transformer D 

(with voltage level of 275/132 kV and power rating of 240 MVA), is illustrated in 

Figure 7.29. As can be observed, the DGA trajectory of this transformer does not 

venture into any of the identified fault regions, thereby corresponding very well with 

the observation of transformer experts at the NGC.

In conclusion, the foregoing interpretations of the health and operating condition of 

power transformers, which are based on the hypothesis illustrated in Figure 7.25, 

correspond very well with actual observations of transformer experts at NGC. 

Furthermore, the proposed approach has an added advantage of allowing the
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visualisation of the evolution of operating condition of a power transformer, based on 

the plotting of its DGA history onto the u-matrix illustration.

Figure 7.29: The DGA trajectory of Transform er D 

7.6 A dvantages o f the Proposed A pproach

The proposed approach based on the SOM has the following advantages if compared 

to the conventional DGA interpretation schemes and other artificial intelligence (AI) 

approaches:

• The modelling process of the proposed approach does not depend on 

conventional DGA interpretation schemes or actual fault cases; the proposed 

approach is based entirely on routine DGA samples which exist in abundance 

and are easy to obtain from database. Conventional DGA schemes and actual 

fault cases are simply needed for the validation of the proposed approach 

once modelled.

• The interpretation as provided by the proposed approach is more convincing 

since it is based on common-sense knowledge about the formation of 

dissolved gases during the onset and evolution of incipient faults and more 

importantly, based on detailed statistical analyses on the revealed features of 

the optimum SOMs of the DGA data.
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• Interpretation on the health and operating condition o f a power transformer is 

always guaranteed since the proposed approach is able to provide reliable 

interpretation for every possible combination o f dissolved gases.

• The uncertainty and ambiguity in interpretation, as encountered in 

conventional DGA schemes, have been eliminated since the interpretation as 

provided by the proposed approach is founded on inherent characteristics of 

the actual DGA data.

• Visualisation on health and condition of any power transformer is now a 

reality via the powerful means of the trajectory plotting of its DGA history on 

the u-matrix illustration where various fault regions have been identified. 

Hence, the onset and evolution of incipient fault can be visualised effectively. 

Moreover, early detection of abnormality via this means could prevent 

catastrophic failure of the power transformer.

• The proposed approach is cost-effective to implement since it only based on 

routine DGA samples, once a software has been implemented to automate the 

process of SOM training and selection of optimum SOMs.

• The proposed approach, whilst not aiming to replace entirely the dependence 

on widely acknowledged conventional DGA interpretation schemes and 

valuable knowledge of human experts, can be used as a decision support tool 

for transformer engineers who wish to monitor the health and operating 

condition of power transformers.

7.7 Recommended Implementation of the Proposed Approach

The proposed approach, which is based on the application of a DM method known as 

the SOM, has been shown to be capable of providing an improved analysis and 

interpretation of the DGA data of power transformers. The advantages o f the 

proposed approach have been presented in the previous section.

The proposed approach is generic and can be applied to the DGA data of power 

transformers from other power utilities, on condition that a set o f DGA data, which
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consists o f DGA samples of power transformers of similar type and functionality, is 

collected. In essence, the DGA data can be from a family o f power transformers of 

identical manufacturers, voltage levels and power ratings, or a mixture of these. In all 

cases, the proposed approach has been shown to be capable o f learning the inherent 

characteristics of the DGA data, as previously demonstrated for the “Sixsets” and 

“Fullsets” DGA data.

Once the association of the revealed features with the health and operating condition 

of power transformers have been established, an individual power utility could 

visualise and monitor the evolution of the operating condition o f a particular power 

transformer based on the trajectory plotting of its DGA history. Therefore, the 

movement of the trajectory into any of the determined fault regions can be reported 

swiftly and corrective actions could be taken. The approach is flexible and it is up to 

an individual power utility to decide when an alarm should be generated based on the 

movement of the DGA trajectory.

Basically, the approach can be utilised in two different manners. Firstly, a DGA 

sample of a particular power transformer at a particular date o f sampling can be 

mapped onto the interpreted map; the region in which the best matching unit (BMU) 

of this DGA sample lies defines the condition or the state of health o f this particular 

power transformer, as illustrated in Figure 7.30.

Condition
BMU of DGA Sam ple A, which 

is diagnosed to portrait the 
correspondence power 

transformer is in Condition Y.

NORMAL

Condition

Figure 7.30: Fault diagnosis based on the proposed approach
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Secondly, the trajectory of DGA history for a particular transformer can be plotted 

onto the interpreted map again via the best-matching means; the evolution o f the 

state o f health or operating condition of the power transformer can be visualised. 

Essentially, the gradual movement of the trajectory deeper into any of determined 

fault region should warrant the attention of transformer engineers since it indicates 

that the concentrations of key dissolved gases are on the increase, and hence the 

suspected incipient fault may be persistent. This approach o f implementation is 

illustrated in Figure 7.31.

Normal
Region 7/10

1/101/9
15/10frOm

1/8 Fault
Region

Figure 7.31: Monitoring of the evolution of the operating condition of a power 
transformer based on the proposed approach

However, it should be noted that the proposed approach is only capable of indicating 

the health and condition of power transformers, similar to the conventional DGA 

interpretation schemes. It is able to detect the onset and to show the evolution o f any 

incipient fault but it is not capable of indicating the location of the fault once 

detected. The detection of the actual cause and location of the incipient fault is only 

possible through the utilisation of diagnostic tests.

7.8 Summary

The proposed approach, which is based on a DM method known as the SOM, has 

been applied for the analysis and interpretation of the DGA data of power
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transformers. In essence, two sets o f DGA data have been examined; the first set 

corresponds to a total of 755 DGA records extracted from power transformers of 

various manufacturers, voltage levels and power rating and the second set 

corresponds to the entire DGA database of 14943 DGA records. In all instances, the 

proposed approach has demonstrated its ability of providing improved interpretation 

on the health and condition of power transformers if compared to a number of 

commonly applied conventional DGA interpretation schemes. Importantly, its 

performance has been validated with real fault cases, albeit for a limited number of 

cases. Furthermore, it has been demonstrated that the proposed approach is capable 

o f providing the visualisation o f the state o f the health and operating condition o f 

power transformers, which is an additional, important advantage and of major benefit 

to transformer engineers.
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CHAPTER 8

DATA MINING ON THE DGA DATA OF 

TRANSFORMER BUSHINGS USING THE SOM

8.1 Introduction

As reported in Chapter 7, the proposed approach based on the self-organising map 

(SOM) has been successfully employed to “mine” or unearth the inherent 

characteristics of the dissolved gas analysis (DGA) data of power transformers; these 

characteristics have been subsequently associated with several conditions of power 

transformers. In this chapter, a further study is presented, in which the same 

developed approach was employed in an attempt for the analysis and interpretation 

of the DGA data of transformer bushings. Various aspects of the study are presented 

in the following sections of the chapter.

8.2 General Design of a Transformer Bushing

Essentially, transformer bushings provide a means of electrical connection between 

overhead line or bus bar to the main unit o f power transformer. A power transformer 

is typically equipped with three low-voltage (LV) and three high-voltage (HV) 

bushings, which are located on the top of the transformer tank.

The general design of a transformer bushing is illustrated in Figure 8.1, which is 

accompanied by a brief description of various constituent parts of a transformer 

bushing.
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Cut view 1- Term inal
general design Terminal (Aluminium or Copper) for connection of overhead lines or

bus bars and arcing horns.

2. Assem bly
The whole bushing is tightened together by the central tube or 
conductor.

3. Head
Aluminium-casted head with oil expansion chamber and oil level 
indicator.

4. Oil filling
Filled with dried, degassed insulation oil.

5. Insulator
Made of porcelain or composite insulator.

6. Active part
Made of oil-impregnated wide band paper with layers of aluminium 
foil. The paper and foil are wound on either a central tube or a solid 
conductor.

7. Flange
Mounting flange with integrated test tap made of corrosion free 
aluminium alloy.

8. C T pocket
If current transformer is required on the bushing, the ground sleeve 
can be extended.

9. O il-side end
The insulator on the oil side is made of an epoxy resin tube.

10. End-shielding
For voltages starting with 52 kV, a special aluminium electrode is 
cast into the end of the epoxy resin tube. This end-shielding controls 
the electrical field strength in this area to ground.

Figure 8.1: General design of a transform er bushing

As seen from Figure 8 .1, insulation oil of a transformer bushing is contained within a 

tightly enclosed environment between the porcelain insulator and the cellulose 

insulation. In addition, the volume of oil is considerably smaller if compared to that 

of transformer tanks. Consequently, it can be expected that the inherent 

characteristics of dissolved gases, which are formed either due to the normal 

degradation of the oil/paper insulation or due to the onset or evolution of faults, to be 

quite distinct from that of power transformers.
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8.3 Challenges in Interpretation of the DGA Data

Essentially, DGA test is only performed every 12 years on a normally operating 

transformer bushing owing to the difficulty and high cost o f performing oil sampling 

on bushings. Nevertheless, this sampling interval may be reduced to either three or 

six years if problems or faults are suspected based on pre-defined levels o f certain 

dissolved gases. Hence, the interval between subsequent DGA tests on transformer 

bushings is considerably longer when compared with the typically three-monthly 

interval on transformer tanks. The DGA data of transformer bushings might not thus 

be as informative and useful as the DGA data of power transformers for condition 

monitoring and fault diagnosis purposes, owing to the very limited amount of DGA 

data available.

According to engineers of the NGC, they tend not to be very interested in the 

identification of the “type” o f faults from the DGA data o f transformer bushings; the 

indication o f the “presence” of faults is regarded to be more important. In addition, 

since the cost of replacing a failed transformer bushing is significantly lower 

compared to the exorbitant cost o f repairing or even replacing a failed main unit of 

power transformer, once a test has been performed two options are generally 

available: replace the bushing or to leave it as it is. Moreover, engineers are very 

restricted in re-sampling of oil due to the small oil-volume and further investigation 

is virtually impossible due to the high cost and inconvenience of repeating the oil 

sampling. Owing to the foregoing reasons, DGA data of transformer bushings are 

typically used by engineers for the “indication” or “detection” of abnormalities or 

faults in transformer bushings rather than for the diagnosis o f a suspected fault and 

monitoring of its evolution.

Despite the limited usefulness and practicality o f the DGA data of transformer 

bushings, IEC 60599 Standard [20] has recommended a means of relating the DGA 

data of bushings (not specifically transformer bushings) with several common 

incipient faults of bushings, and this is remarkably similar to the interpretation for
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the DGA data of power transformers. However, this approach is not adopted by 

engineers o f the NGC for reasons described previously.

In spite o f all the foregoing challenges, an attempt was made to apply the proposed 

approach for the analysis o f the DGA data of transformer bushings. It was hoped that 

interesting features could be unearthed from the data and consequently association 

could possibly be established between revealed features and the health and 

conditions of transformer bushings. Therefore, the investigation as reported in this 

chapter aims at presenting a systematic analysis o f the DGA data of transformer 

bushings using the SOM so as to ascertain the possibility o f proposing a potentially 

useful and improved approach for the interpretation of the DGA data of transformer 

bushings.

8.4 DGA Data of Transformer Bushings

The DGA data of LV and HV bushings of power transformers was obtained courtesy 

of the NGC, UK. This set of DGA data, which comprises of 2008 samples, 

corresponds to transformer bushings of various phases (i.e. Red (A), Yellow (B) or 

Blue (C) phase), as illustrated in Table 8.1. The date of sampling of these DGA data 

ranges from 5/5/1984 to 13/3/2001.

Table 8.1: The DGA data of transform er bushings

Subset Description Number of Data

1 A/Red LV Bushings 172
2 B/Yellow LV Bushings 174
3 C/Blue LV Bushings 175
4 A/Red HV Bushings 516
5 B/Yellow HV Bushings 488
6 C/Blue HV Bushings 483

In addition, the format of the DGA data of transformer bushings is illustrated in 

Table 8.2 below:
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Table 8.2: Format of the DGA data of transformer bushings

A C D E F G H I

Plant_ID Point
Code

NGC
Number Amis Type Sampdate Gas CO

ABTH2SGT1 1 2 T3998 146 Bush_sgt 15/08/96 7.61 129

ABTH 2SG T 1 13 T3998 146 Bush_sgt 15/08/96 5.57 132

ABTH2SGT1 14 T3998 146 Bush_sgt 15/08/96 6 . 6 6 114

J K L M N O P Q R

CH4 C 0 2 Q H 4 c 2 h* c 2 h 2 h 2 o 2 n 2 h 2o

63 776 7 80 < 0 . 2 2 0 843 77292 50

38 604 3 53 < 0 . 2 14 977 57309 1 2

92 776 7 80 < 0 . 2 2 0 843 77292 50

As shown in the table, nine dissolved gases and moisture (i.e. H2O) are recorded in a 

single DGA data, accompanied by some background information such as the location 

(Plant ID) and identity (AMIS and NGC Number) of the corresponding power 

transformer of which the bushing is situated, reference o f sampling for each phase 

(Point Code), the type of bushing (Type), date of sampling (Sampdate) and the 

percentage composition of dissolved gases in an oil sample (Gas). Note that all 

dissolved gases and moisture are recorded in terms o f part-per-million (PPM), which 

represents a certain quantity of a dissolved gas, which is measured in micro-litre, in 1 

litre of an oil sample. The DGA data of transformer bushings will be referred to as 

the “bushings” DGA data in subsequent sections of this chapter.

8.5 Pre-Processing of the “Bushings” DGA Data

The “bushings” DGA data has to be pre-processed before submitted for analysis 

using the SOM. Firstly, each “blank” (no data entry or record) in the “bushings”
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DGA data was replaced with the notation “NaN” (i.e. Not-a-Number) so as to 

minimise the loss of valuable information even if the concentration of a particular 

dissolved gas is missing. The SOM is capable of handling these “NaNs” by ignoring 

those components of reference vectors that contain “NaNs” for the calculation of 

Euclidean distances during the SOM training process.

Secondly, there are doubts about the credibility of “0 PPM” in atmospheric dissolved 

gases (i.e. N2 , O2 and CO2) and products o f cellulose degradation (i.e. CO2 and CO), 

due to the fact that it is not possible for the transformer bushings to be completely 

sealed-off from the outside environment and also due to the significant presence of 

cellulose insulation within the units. Consequently, each “0 PPM” record was 

replaced by the notation “NaN” so as to avoid confusion in subsequent analyses. 

These “NaNs” are handled by SOM in a similar manner as described previously.

Finally, those entries o f dissolved gases that are in the format o f “< jc”, in which “< 

x” is the “analytical detection limit” of each dissolved gas, were converted to 

reasonably small values in a systematic manner, as shown in Table 8.3.

Table 8.3: Conversion of “< x ” entries into assigned values

No. Dissolved Gas Original Format 
(PPM)

Assigned
(PPM)

1 n 2 < 50 49

2 o2 < 50 49

3 co2 < 50 49

4 CO <10 9

5 h 2 < 1 0.9

6 c h 4 < 1 0.9

7 c 2h6 < 1 0.9

8 c 2h4 < 1 0.9

9 c 2h 2 <0.2 0.19
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8.6 Data Mining on the “Bushings” DGA Data

The pre-processed DGA data was analysed using the SOM. Four sets o f DGA data 

were constructed from nine dissolved gases and moisture; the “range” scaling 

method was then applied to each set of DGA data due to its proven usefulness for 

data analysis. The four configurations of training data are shown in Figure 8.4.

Table 8.4: The “Bushings” training data of SOM

Set Input Components Configuration of Training Data

A a H2 0 ,  N2, 0 2, C 0 2, CO, H2, CH4 , c 2 h 6, 
c 2 H4 , c 2 h 2

1 :
Range scaling

B b co2, CO, h 2, c h 4, c 2 h 6, c 2 h 4, c 2 h 2
2 :

Range scaling

C c CO, h 2, c h 4, c 2 h 6, c 2 h 4, c 2 h 2
3:

Range scaling

D d h 2, CH., C2 H6, C2 H4 , c 2 h 2
4:

Range scaling

Note:
a. All dissolved gases including moisture.
b. Key dissolved gases from the degradation o f cellulose and insulation oil.
c. Dissolved gases that are combustible by nature.
d. Key dissolved gases from the degradation of insulation oil.

The basis for adopting various combinations of input components is to search for 

interesting features in the optimum SOM for each configuration of the training data. 

Besides, it is also the aim to identify those key or important dissolved gases that 

actually contribute to the observed features or patterns in the optimum SOMs.

Besides, configuration and training parameters as presented in Table 7.3 were 

adopted for the training of SOM since the technique is generic and identical 

configuration and training parameters can be utilised. Consequently, four SOMs 

were trained based on the “bushings” DGA data that was configured according to 

Table 8.4. Finally, the optimum SOM for each configuration of the training data was 

selected according to the procedures outlined in Section 5.5.2.4.
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8.7 Optimum SOMs of the “Bushings” DGA Data

The optimum SOM for each configuration of the training data is first visualised using 

the component-plane illustration, as shown in Figures 8.2 to 8.5. In addition, the map 

sizes, number of training iterations and SOM quality measures for each optimum 

SOMs are illustrated in Table 8.5.

As can be observed from Figures 8.2 to 8.5, revealed features of the “bushings” DGA 

data are different from that of the DGA data of power transformers. In fact, the 

previously observed correlation in [H2 C2H2 ] and [CH4 C2 H6  C2 H4 ] for the DGA data 

o f power transformers is not observed in revealed features of the “bushings” DGA 

data. On the contrary, the locations and patterns of these gases are similar to one 

another.

Moreover, with the presence of the following dissolved gases: CO, H2 , CH4 , C2 H6 , 

C 2 H4 and C2 H2 , two apparent patterns are observed in the CH4 component-plane. The 

first pattern is correlated with H2 , C2 H6 , C2 H4 and C2 H2 while the second pattern 

corresponds to high concentration of CO. These features are not revealed when CO 

does not form one of the input components, as can be perceived from Figure 8.5, 

which shows the component planes of the optimum SOM that are based on key 

dissolved gases from the degradation of insulation oil only. It can thus be deduced 

that “key” dissolved gases of the “bushings” DGA data which have contributed to the 

observed features, are CO, H2 , CH4, C2H6 , C2 H4 and C2 H2 .

In addition, revealed features of the “bushings” DGA data can also be visualised 

using the u-matrix illustration. Two examples of the u-matrix are shown in Figures 

8 . 6  and 8.7, which correspond to the optimum SOMs of Configurations 1 and 2 of 

the training data. Although these u-matrices are formed using H2 , CH4 , C2 H6 , C2 H4 

and C2 H2 , the relevance of CO will be considered when it comes to performing the 

detailed statistical analysis on revealed features of the “bushings” DGA data, as will 

be presented in the next section of this chapter.
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Figure 8.2: Component planes of the optimum SOM for Configuration 1 of the 
training data (i.e. Set A with “ range” scaling)
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Figure 8.3: Component planes of the optimum SOM for Configuration 2 of the 
training data (i.e. Set B with “ range” scaling)
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Figure 8.4: Component planes of the optimum SOM for Configuration 3 of the 
training data (i.e. Set C with “ range” scaling)

Table 8.5: The map sizes, number of training iterations and SOM quality 
measures for optimum SOMs of the “bushings” DGA data

No. Training Data Map Sizea 
\x-dim, y-dim\

Number of 
Training 
Iterations

SOM Quality 
Measures d

AQE b TE 0

1 Configuration 1 [40 22]
38152  

(19 passes o f  all 
training vectors)

0.056 0.041

2 Configuration 2 [46 20]
40160  

(20 passes o f  all 
training vectors)

0.023 0.034

3 Configuration 3 [40 22]
40160  

(20 passes o f  all 
training vectors)

0.011 0.010

4 Configuration 4 [50 18]
40160  

(20 passes o f  all 
training vectors)

0.006 0.025

Note:
a. x-dim, y-dim: Number o f  neurons in the x- and>’-dim ension o f  SOM.
b. AQE: Average quantisation error
c. TE: Topographic error
d. AQE and TE at the specified number o f  training iterations during the fine-tuning phase.
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Com ponent 1: H 2 Com ponent 2: CH 4

Com ponent 3: C 2 H6 C om ponent 4: C 2 H4

C om ponent 5: C 2 H2

Figure 8.5: Component planes of the optimum SOM for Configuration 4 of the 
training data (i.e. Set D with “ range” scaling)

Figure 8.6: U-matrix of the optimum SOM for Configuration 1 of the training 
data (i.e. Set A with “ range” scaling)
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Figure 8.7: U-matrix of the optimum SOM for Configuration 2 of the training 
data (i.e. Set B with “ range” scaling)

8.8 Analysis on Revealed Features of the “Bushings” DGA Data

As reported in the previous section, two major revealed features o f the “bushings” 

DGA data are observed. The first revealed feature corresponds to [H2 CH4 C2H6 

C2H4 C2H2] patterns and the second revealed feature corresponds to [CO CH4] 

patterns. Further statistical analysis was subsequently conducted on these revealed 

features in order to comprehend their meaning and to possibly relate these features 

with the health and condition o f transformer bushings.

Similar to the statistical analysis on revealed features of the DGA data of power 

transformers, the following steps were adopted for the analysis:

• Step 1: Identification of clusters through colour coding on the u-matrix.

• Step 2 : Identification o f those training vectors that regard the SOM neurons 

in each colour-coded cluster as their best matching units (BMUs).

• Step 3 : Calculation of the average concentration (which are measured in 

PPM) of key dissolved gases, i.e. CO, H2, CH4, C2H6, C2H4 and C2H2, for 

each colour-coded cluster from training vectors that have been gathered in 

Step 2 .
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Apart from the analysis on identified clusters, the region in which no apparent cluster 

is formed by the key-dissolved gases was also investigated and similar procedures of 

analysis were performed on this region so as to determine the average concentration 

of key dissolved gases in this region as well.

Moreover, specific attention is brought to the setting of “mask”, which is the 

weighting factor for each component of reference vectors used during the calculation 

of Euclidean distances. This is due to the significantly higher scaled values o f CO 

(which is around “0.x”) when compared with the scaled values of other key dissolved 

gases (which are around “O.Ox”). Consequently, the weighting factor for CO was set 

lower in order to eliminate the dominance of CO in BMU searches, as shown in 

Table 8.6. Note that “masks” of 1 were used for key dissolved gases o f the DGA data 

of power transformers owing to the identical range o f scaled values observed from 

component planes of these dissolved gases.

Table 8.6: “Masks” for key dissolved gases in BMU searches

No. Dissolved Gas M ask 8

1 CO 0.01 b

2 H 2 1

3 c h 4 1

4 c 2h 6 1

5 c 2h4 1

6 c 2h 2 1

Note:
a. “Masks” for non-key dissolved gases are set to 0.
b. A “mask” o f 0.01 is used instead o f 0.1, so as to take into account the squaring effect o f  each

component during the calculation o f Euclidean distances.

For illustration purposes, the u-matrix of Configuration 2 of the training data (i.e. Set 

B with “range” scaling), as illustrated in Figure 8.7, was used for performing the 

detailed statistical analysis. The colour-coded u-matrix and the distribution of 

average concentration of key dissolved gases in various colour-coded regions are 

illustrated in Figure 8.8.
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Figure 8 .8 : Colour coding of the u-matrix and 
average concentration of key dissolved gases 
in various identified clusters of the optimum 
SOM (Configuration 2 of the training data)
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Several important characteristics can be derived from Figure 8.8:

• The average concentration of CO is low in Regions 1, 2, 3 and 4 if compared 

to that of Regions 5 and 6.

• The average concentration of H2, CH4, C2H6, C2H4 and C2H2 increases from 

Regions 4 to 1.

• The average concentration of CO is very high in Regions 5 and 6.

• A consistently low average concentration o f C2H2 is observed in Regions 5 

and 6.

• The average concentration o f H2, CH4, C2H6 , C2H4 and C2H2 is very low in 

Regions 7. In addition, the average concentration o f CO is closer to that of 

Regions 1, 2, 3 and 4 but is significantly lower than that of Regions 5 and 6.

Detailed investigation was performed on those training vectors that correspond to 

Regions 1 ,2 ,3  and 4, owing to the observed dissimilarity in the distribution pattern 

of average concentration of key dissolved gases in these regions. It was found that 

those training vectors actually contain various dissimilar compositions of key 

dissolved gases. However, those training vectors were found to contain relatively low 

concentration of CO, which is the only common characteristic among those training 

vectors. Further SOM analysis was subsequently conducted on those training vectors 

in an attempt to further unearth the inherent characteristics from those data, as will be 

presented in the next section of the chapter.

The distribution pattern of average concentration of key dissolved gases in Regions 5 

and 6 is identical to one another, in which the average concentration of CO is very 

high and the average concentration of C2H2 is consistently low when compared with 

the higher average concentration of H2 , CH4 , C2H6 and C2H4 .
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8.9 Further SOM Analysis on Regions 1, 2 ,3  and 4

The SOM was further applied for the analysis o f those training vectors that 

correspond to Regions 1, 2, 3 and 4 of Figure 8 . 8  for reasons described in the 

previous section.

The “mask” for CO was again set to 0.01 while “masks” for other key dissolved 

gases were set to 1 in the BMU searches during the training process o f SOM. This is 

so because the previous observation in Regions 1 ,2 ,3  and 4 was attained as a result 

o f the adoption of these “masks”. In addition, scaled values o f training vectors were 

applied directly for the training of SOM so as to ensure a consistent adoption of 

scaling factors from the first level (as reported in Section 8 .6 ) to the second level (as 

reported in this section) of the SOM analysis.

A SOM was thus trained using those training vectors that correspond to Regions 1, 2, 

3 and 4 of Figure 8 .8 , which have been collected via the means o f best-matching. 

The optimum SOM was chosen according to the procedures outlined in Section

5.5.2.4 and is illustrated in Figure 8.9. Finally, the map size, number o f training 

iterations and SOM quality measures of the optimum SOM are shown in Table 8.7 

below:

Table 8.7: The map size, number of training iterations and SOM quality 
measures of the optimum SOM

No. Training Data Map S izea 
[x-dim, y-dim]

Number of 
Training 
Iterations

SOM Quality 
M easuresd

AQE b TE c

1

Training vectors that 
correspond to 

Regions 1, 2, 3 and 4
[32 14]

48500 
( 1 0 0  passes o f  all 
training vectors)

0.015 0 . 0 2 1

Note:
a. x-dim, y-dim: Number o f neurons in the x- and y-dimension o f SOM.
b. AQE: Average quantisation error
c. TE: Topographic error
d. AQE and TE at the specified number o f training iterations during the fine-tuning phase.
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Com ponent 1: C 0 2 C om ponent 2: CO

Com ponent 3: H2 C om ponent 4: CH4

Com ponent 5: C2H6 C om ponent 6: C2H4

Com ponent 7: C2H2

Figure 8.9: Component planes of the optimum SOM for training vectors that 
correspond to Regions 1, 2, 3 and 4 illustrated in Figure 8 . 8

As observed from Figure 8.9, the component plane of C2 H2 actually contains two 

apparent patterns; the first pattern is correlated with H2 , CH4 , C2 H6 and C2 H4 while 

the second pattern corresponds to lower concentration of H2 . Furthermore, an 

interception is also observed between these two patterns. Finally, revealed features of 

those training vectors that correspond to Regions 1, 2, 3 and 4 are summarised in 

Figure 8.10 using the u-matrix illustration.
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Figure 8.10: U-matrix of the optimum SOM for training vectors that 
correspond to Regions 1, 2, 3 and 4 illustrated in Figure 8 . 8

Further statistical analysis was conducted on these revealed features so as to 

ascertain their meaning. Hence, the u-matrix as illustrated in Figure 8.10 was 

partitioned and colour-coded into four regions; those training vectors that regard the 

SOM neurons in each colour-coded region as their BMUs were gathered and the 

average concentration of every key dissolved gas was then calculated. Note that the 

“mask” of CO was set to 0.01 while the “masks” for other key dissolved gases were 

set to 1 in BMU searches. The outcome of the statistical analysis is illustrated in 

Figure 8.11.

Several important characteristics can be derived from Figure 8.11:

• Region 1 is found to contain extremely high average concentration of H2 , 

CH4 , C2 H6 , C2 H4 and C2 H2 . However, on more detail inspection on those 

training vectors that correspond to Region 1, it was found that these training 

vectors actually contain a mixture of extremely high concentration of H2 , 

CH4 , C2 H6 , C2 H4 and C2 H2 , in which the distribution patterns are not as easily 

distinguished as patterns of Regions 2 and 3.

• CH4 , C2 H6 and C2 H4 are the dominant dissolved gases in Region 2. However, 

the average concentration of these gases is lower than that of Region 1. 

Therefore, the pattern of distribution of the average concentration of key 

dissolved gases actually resembles that of the “thermal fault” phenomenon.
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Figure 8.11: Colour coding of the u-matrix and average concentration of key 
dissolved gases in various identified clusters of the optimum SOM for training 

vectors that correspond to Regions 1, 2, 3 and 4 illustrated in Figure 8 . 8
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• H2 and C2H2 are the dominant dissolved gases in Region 2. However, the 

average concentration of these gases is lower than that of Region 1 . 

Therefore, the distribution pattern of the average concentration o f key 

dissolved gases actually resembles that of the “discharges” phenomenon.

• In Region 4, a low average concentration of H2 , CH4 , C2H6 , C2H4 and C2H2 is 

observed if  compared to that o f Regions 1, 2 and 3. However, on more detail 

inspection on those training vectors that correspond to this region, it is found 

that the majority of these training vectors typically contain higher average 

concentration o f H2, CH4 , C2H6 and C2H4 if compared to that o f C2H2 . 

However, the distribution patterns of key dissolved gases in this region are 

not as easily distinguishable as patterns of Regions 2 and 3.

• All regions are found to contain a low average concentration of CO, which 

actually matches the previous observation in Section 8 .8 .

8.10 Hypothetical Association of Revealed Features

Although the revealed features o f the “bushings” DGA data are not as apparent and 

comprehensible as that of the DGA data o f power transformers, hypothetical 

association can still be established with several conditions o f transformer bushings, 

albeit in a less confident manner when compared with revealed features o f the DGA 

data of power transformers.

As reported in Section 8 .8 , the first level of SOM analysis has revealed two major 

features. The first feature resembles that of the “thermal fault” (TF) phenomenon 

with involvement of cellulose insulation, due to the high average concentration of 

CO and high average concentration o f CH4 , C2H6 and C2H4 if compared to that of 

C2H2 . On the contrary, the second feature corresponds to very low average 

concentration of CO and a mixture of distribution patterns o f other key dissolved 

gases. Besides, a region of low average concentration of all key dissolved gases was 

also discovered, which can be related to the normal operating condition of 

transformer bushings.
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As reported in Section 8.9, second level of SOM analysis was subsequently 

performed on those training vectors that correspond to the second feature as 

mentioned above. Consequently, four further features were unearthed. The first 

feature resembles that of severe “discharges” and/or severe TF phenomena, due to 

the extremely high average concentration of H2, CH4 , C2H6 , C2H4 and C2H2 or a 

mixture of these gases. In addition, the second feature resembles that o f the severe 

TF phenomenon due to the dominance of CH4 , C2H6 and C2H4 while the third feature 

resembles that of the severe “discharges” phenomenon due to the dominance of H2 

and C2H2 . Finally, the fourth feature resembles that of less severe TF and/or less 

severe “electrical fault” (i.e. EF, which includes discharges and partial discharges 

(PD)) phenomena, owing to the considerably lower average concentration of H2, 

CH4, C2H6 , C2H4 and C2H2 or a mixture of these gases. It is, however, certain that 

there is no involvement of cellulose insulation in the abovementioned faults owing to 

the consistently low average concentration of CO.

The hypothetical association of various revealed features is illustrated in Figure 8.12.

8.11 Validation of the Hypothesis

As discussed in Section 8.3, it is less critical to identify the “type” of a suspected 

fault in transformer bushings and monitor its evolution owing to the significantly 

lower cost o f replacing a failed bushing compared to the cost of repairing or 

replacing a failed main unit of power transformer. In fact, engineers are far more 

interested in the detection o f the “presence” of faults rather than in the identification 

of the “type” of a suspected fault.

Consequently, there is only one known approach, described herein, and as outlined in 

the IEC 60599 Standard [20], for relating the DGA data o f bushings (i.e. not 

specifically transformer bushings) with several common incipient faults of bushings.
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Figure 8.12: Association of revealed features with conditions of transform er
bushings

In addition, several fault cases are also available, which are the DGA data of 

transformer bushings that have actually failed and causes of such failures have been 

identified through post-mortem examinations. However, only one DGA data is 

available for each case as distinct from the entire DGA history of power 

transformers.

The hypothesis presented in Section 8.10 was thus compared with the IEC’s method 

and with actual findings of NGC’s engineers, as will be presented in following 

sections.
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8.11.1 Comparison with IEC’s Approach

IEC’s method for interpretation o f the DGA data of bushings is very similar to the 

interpretation for the DGA data o f power transformers, which has been presented in 

Section 3.4.3. However, for the case o f bushings, the value of CH4/H2 ratio is 

assigned as 0.07 rather than 0.1 as for the case o f power transformers for the 

detection of partial discharges (PD). The method of interpretation for bushings is 

summarised in Table 8 .8 .

Table 8.8: IEC’s method for interpretation of the DGA data of bushings

Case Characteristic Fault
C 2H 2
C 2H 4

c h 4

h 2

c 2h 4
c 2h 6

PD Partial discharges N S b < 0.07 < 0 . 2

D1 Discharges o f low energy > 1 © 1 0 > 1

D2 Discharges o f high energy 0 .6 -2 .5 0 .1 - 1 > 2

T1 Thermal fault (T < 300 °C) N S b > 1 but NS b < 1

T2 Thermal fault (300 °C < T < 700 °C) < 0 . 1 > 1 1 - 4

T3 Thermal fault (T > 700 °C) < 0 . 2  c > 1 > 4

Note:
a. The above ratios are significant and should be calculated only if  at least one o f the gases is at a

concentration and at a rate o f gas increase above typical values.
b. Not significant whatever the value.
c. An increasing value o f C2 H2 may indicate that the hotspot temperature is higher than 1000 °C.

This method was implemented in a manner similar to that for power transformers, as 

has been presented in Section 4.6. In addition, the “normality” test for the DGA data 

of transformer bushings is based on the typical concentrations adopted by engineers 

at the NGC, as shown in Table 8.9.

Table 8.9: Typical concentrations for dissolved gases of bushings

Dissolved Gas Typical Concentration (PPM)
h 2 140

c h 4 40
c 2 h 6 70
c 2 h 4 30
c 2 h 2 0.3
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Therefore, those training vectors that correspond to each numbered region as shown 

in Figure 8.12 were subjected to interpretation by the IEC’s method, of which the 

results are presented in Table 8.10. Note that only a general distinction of faults is 

considered since the severity of these faults can be observed easily from those 

training vectors that correspond to each region.

Table 8.10: Comparison of hypothesis with IEC’s method

Interpretation by IEC’s method

Region 
[Number 

of Training 
Vectors]

EF

Hypothesis Normal
D PD

TF N /Ia

1 [54]

Thermal fault (TF) 
with involvement 

o f  cellulose  
insulation

1 53

2 [1469] Normal 771 3 1 681 b 13

3 [8]

Severe thermal 
fault (TF) 

and/or severe 
discharges (D)

3 3 2

4 [3]
Severe 

thermal fault (TF)
3

5 [8]
Severe 

discharges (D)
7 1

6 [466]

Less severe 
thermal fault (TF) 

and/or less 
severe electrical 

fault (EF)

19 8 20 408 12

Note:
a. N/I: No interpretation.
b. The majority o f  DGA data that is interpreted as TF in the hypothetical “normal” region is actually 

belong to the low est TF category, i.e. case T1 o f  Table 8.8.

The comparison table as illustrated in Table 8.10 can be analysed in the following 

manner:
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• IEC’s method interprets 53 out of 54 DGA data in Region 1 as “TF”, and this 

matches very well with the hypothesis. Although not proven using IEC’s 

method, the involvement of cellulose insulation is clear owing to the 

considerably higher concentration of CO in Region 1.

• IEC’s method interprets 771 out o f 1469 DGA data in Region 2 as “normal” 

and 681 out of 1469 DGA data as “TF”. However, those DGA data that are 

interpreted as “TF” actually correspond to the lowest TF category, i.e. case 

T1 in Table 8.8. In addition, it was later informed by engineers of the NGC 

that typical concentrations as shown in Table 8.9 were actually taken from 

IEC’s recommendation with amendment to the typical value of C2H2 . It is 

thus possible that the use of different typical concentrations may alter the 

number of DGA data that is interpreted as “normal” in Region 2.

• IEC’s method interprets 6 out of 8 DGA data in Region 3 as either 

“discharges” or TF, and this matches well with hypothesis. In addition, IEC’s 

method cannot provide interpretation for two DGA data in this region. 

Although not proven using IEC’s method, the high severity o f these faults is 

certain owing to the extremely high concentration o f H2, CH4, C2H6 , C2H4 

and C2H2 or a mixture of these gases in this region.

• Interpretations provided by the IEC’s method for Regions 4 and 5 matches 

very well with the hypothesis. In addition, the high severity of faults is certain 

owing to the very high concentration of respective dominant dissolved gases 

in these regions.

• IEC’s method interpreted 408 out o f 466 DGA data in Region 6 as “TF”, 

which again matches the hypothesis. Although riot proven using IEC’s 

method, it is certain that the TF phenomenon is of a less severe characteristic, 

owing to the considerably lower concentration of CH4 , C2H6 and C2H4 if 

compared to that o f Regions 3 and 4.

Therefore, the suggested hypothesis in Section 8.10 compares quite well with IEC’s 

method. Although only a general comparison is performed, the severity of identified 

faults is easily proven through direct inspection on the training vectors.
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8.11.2 Validation by Using Actual Fault Cases

Since a transformer bushing is normally replaced once the presence of a fault is 

suspected based on the concentration of certain dissolved gases, the availability of 

actual fault cases is thus very rare. The two fault cases presented herein are real DGA 

data of transformer bushings that have actually failed and their causes of failures 

have been confirmed through post-mortem examinations. However, only one DGA 

data is available for each case, as shown in Table 8.11, which are the concentration 

of nine dissolved gases and moisture after the failure had occurred.

Table 8.11: The concentration of dissolved gases for two actual fault cases

Concentration (PPM) Case 1 Case 2

H20 4 4

n 2 53675 55566

0 2 5502 2105

co2 623 364

CO 349 520

h 2 9678 9354

CH4 376 1225

c 2 h 6 805 1177

c 2 h 4 978 1177

c 2 h 2 3322.7 4906.8

These two fault cases were “mapped” onto two levels of u-matrix as illustrated in 

Figures 8.7 and 8.10 via the means of best-matching. The proposed health and 

condition of each transformer bushing, as discerned from the “location” of the BMU 

of each DGA data on the u-matrices, is then compared with the actual findings of 

engineers at NGC.

Firstly, the location of the BMU of Case 1 on two levels of u-matrix is illustrated in 

Figure 8.13. As can be seen from the figure, the BMU is located within the “severe
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TF and/or severe discharges” region. This matches well with the actual cause of 

failure, which is discharges between the outer foil of bushing core and the flange as a 

result of a floating potential, and this was a direct consequence of a loose screw 

causing the rotation of bushing core that subsequently snapped the test-tap wire 

connection.

Figure 8.13: The location of BMU for Case 1 on two levels of u-matrix

Secondly, the location of the BMU for Case 2 on two levels of u-matrix is illustrated 

in Figure 8.14. As seen from the figure, the location of BMU is identical, which is on 

the “severe TF and/or severe discharges” region. Again, this matches well with the 

actual cause of failure, which is arcing in oil at the high voltage connection lead near 

the top of the bushing.

The hypothesis is thus capable of providing convincing diagnosis of a fault based on 

the location of the BMU of a DGA data onto two levels of u-matrix. It is able to 

provide an easy means of fault diagnosis once a post-mortem examination is carried 

out. Unfortunately, not enough fault cases are available for further validation of the 

hypothesis.
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Level 2

Figure 8.14: The location of BMU for Case 2 on two levels of u-matrix 

8.12 Advantages of the Proposed Approach

As mentioned in Section 8.3, engineers are more interested in detecting the presence 

of problems or faults in transformer bushings rather than diagnosing the type of 

suspected faults. Nevertheless, the hypothesis as presented in Section 8.10 is still 

useful and beneficial to engineers owing to the following reasons:

• The proposed approach is able to provide an easy means of fault diagnosis 

based on the location of the BMU of DGA data of a transformer bushing on 

the two levels of u-matrix illustrated in Figure 8.12.

• In a situation in which the diagnosis of faults is not needed, the proposed 

approach can be used solely for detecting the “presence” of faults, which can 

be accomplished if the BMU of the DGA data of a transformer bushing falls 

into any one of the identified fault regions in the first level of u-matrix 

illustrated in Figure 8.12.

• The interpretation as provided by the proposed approach is more convincing 

than the IEC’s method because it is more specialised and fundamentally
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based on the inherent characteristics of the DGA data o f transformer 

bushings. The IEC’s method is a more generic approach applicable to all 

types of bushings.

• If the interval between subsequent DGA tests can be increased, engineers can 

monitor the evolution of a fault if detected through plotting of the DGA 

history of a transformer bushing onto the two levels o f u-matrix illustrated in 

Figure 8.12.

8.13 Summary

The proposed approach, which is based on the application of SOM, has been applied 

for the analysis and interpretation of the DGA data o f transformer bushings. 

Essentially, revealed features o f the DGA data of transformer bushing are found to 

be very different from that of power transformers. However, these revealed features 

can be hypothetically associated with several conditions o f transformer bushings, 

which have been validated using IEC’s method and two actual fault cases. Although 

it is far less critical for determining the “type” o f faults in real-life, the proposed 

approach is still useful for engineers who would like to get an early means of fault 

detection or fault diagnosis before a suspected faulty bushing is replaced or a post

mortem examination is performed.
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CHAPTER 9

DATA MINING ON THE MULTIPLE SENSOR DATA OF 

A POWER TRANSFORMER USING THE SOM

9.1 Introduction

The data mining (DM) technique of self-organising map (SOM) was applied for the 

analysis of a set o f on-line monitoring data comprising of various measurements of 

sensor variables collected from a unit of power transformer. The main objective of 

performing this study is to investigate the performance of SOM for unearthing the 

inherent characteristics of a set of heterogeneous condition assessment data, which 

contains a diverse mix of various on-line monitoring data of a power transformer.

9.2 Multiple Sensor Data of Power Transformer

The National Grid Company (NGC), UK, has been carrying out an hourly on-line 

monitoring process on a unit of power transformer (with voltage level of 400/132 kV 

and power rating of 240 MVA) for almost a year. A total o f eleven variables are 

monitored hourly using various on-line sensors; these variables and their units are 

listed in Table 9.1. Consequently, 2447 hourly sensor measurements were acquired 

from the date of 31/8/00 to 20/8/01. These measurements are recorded in a format as 

illustrated in Table 9.2.
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Table 9.1: Sensor variables recorded from a power transformer

No. Sensor Variable Abbreviation Unit

1 Temperature -  Ambient TA °C

2 Relative Humidity -  Ambient RHA %

3 Temperature -  Top Oil TTO °c
4 Temperature -  Bottom Oil TBO °c
5 Temperature -  Load Tap Changer TLTC °c
6 Oil Relative Saturation ORS %

7 Oil Temp, at Moisture Sensor OTMS °c
8 Phase Current PC A

9 Hydrogen Content h 2 PPM

1 0 Cooling Circuit 1 -  Fans FAN ON (l)/OFF (0)

1 1 Cooling Circuit 2 -  Pumps PUMP ON (l)/OFF (0)

Table 9.2: Format of the multiple sensor data

A B C D E F

Recording Time Stamp 
(Date -  Time)

TA
(°C)

RHA TTO
(°C)

TBO
(°C)

TLTC
(°C)

07/12/2001 09:02 16.9778 61.2312 38.9 39.8 32.4

07/12/2001 10:02 18.5228 57.1304 39.6 40.4 32.6

07/12/2001 11:02 16.377 65.6181 40.2 40.9 33

G H I J K L

n n c OTMS PC h 2 FANS PUMPSUKj
(°C) (A) (PPM) (ON/OFF: 0/1) (ON/OFF: 0/1)

10.975 30.455 391 148.4 0 1

10.93 30.928 402 148 0 1

10.96 31.148 409 148 0 1
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However, the acquired data is not complete due to the previous failure of the data

logging equipment. Therefore, some portions of the sensor data are missing and 

various “blanks” (i.e. no data entries or records) are observed within the data. The 

breakdown of the acquired sensor measurements according to the date and amount of 

data is shown in Table 9.3. Despite the foregoing imperfections o f the data, it is not 

possible to collect more measurements from other power transformers since NGC 

has only carried out the on-line monitoring practice on one unit o f a power 

transformer. Ilence, results from subsequent analysis should be treated with caution 

due to the foregoing imperfections of the data.

Table 9.3: Breakdown of acquired sensor measurements according to
date and amount of data

No. Date Amount o f Data

1 31/9/00 to 19/10/00 1171

2 17/1/01 to 24/1/01 168

3 22/3/01 to 25/3/01 73

4 28/3/01 1

5 24/5/01 to 27/5/01 74

6 2/7/01 to 20/08/01 960

9.3 Pre-Processing of the Multiple Sensor Data

As mentioned previously, a lot o f “blanks” are present within the sensor data due to 

the previous failure of the data-logging equipment. Instead o f removing the entire 

line of measurements of sensor variables of which one o f the measurements is 

“blank”, the “blank” was replaced by the notation “NaN” (i.e. Not-a-Number). The 

SOM is capable of handling the “NaN” by ignoring those components of training 

vectors that contain “NaNs” for the calculation of Euclidean distances during the 

SOM training process. Hence, the original information contained within the multiple 

sensor data can be retained as much as possible since measurements of other sensor 

variables can still be used for the training of SOM.
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9.4 Data Mining on the Multiple Sensor Data

A total of eleven input components are available for the training o f SOM, which are 

from various sensor variables as illustrated in Table 9.1. In addition, the training data 

was transformed using the “range” method due to its proven usefulness for data 

analysis; the “range” scaling method is described in the Appendix of the thesis.

In addition, configuration and training parameters of SOM as shown in Table 7.3 

were adopted during the training process, based on the fact that the SOM technique is 

generic and identical configuration and training parameters can be utilised for any set 

of data. Finally, the optimum SOM was selected out of a number of trained SOMs 

according to procedures as described in Section 5.5.2.4.

9.5 Optimum SOM of the Multiple Sensor Data

The optimum SOM of the multiple sensor data is visualised using the component- 

plane illustration, as shown in Figure 9.1. In addition, the map size, number of 

training iterations and SOM quality measures for this optimum SOM are illustrated 

in Table 9.4 below.

Table 9.4: The map size, number of training iterations and SOM quality measures of
the optimum SOM

No. Training Data Map S izea 
[x-dim, y-dim\

Number of ' 
Training 
Iterations

SOM Quality 
M easuresd

AQE b TE 0

1 Multiple sensor data [46 22]
61175 

(25 passes o f all 
training vectors)

0.1599 0.0826

a. x-dim, y-dim: Number o f neurons in the x- andy-dimension o f SOM.
b. AQE: Average quantisation error
c. TE: Topographic error
d. AQE and TE at the specified number o f training iterations during the fine-tuning phase.
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Several conclusions can be drawn from Figure 9.1:

• All sensor variables that are based on the measurement of temperature, i.e. 

TA, TTO, TBO, TLTC and OTMS, are observed to have quite similar 

characteristics, judging from the fact that the magnitudes of revealed patterns 

for these variables actually increase from right to left.

• The ambient temperature (i.e. TA) is regarded as one of the key influential 

factors for the variation o f other temperature variables.

• The revealed pattern of RHA is in direct opposition to that o f TA, which is 

understandable since the ambient humidity is normally lower in the case of 

higher ambient temperature.

• The relationship of ORS with other sensor variables is unclear.

• Three regions of interest can be observed from the PC component-plane. The 

correspondence of other sensor variables with these regions of PC is found to 

be both interesting and comprehensible:

a. High-magnitude of PC in the lower-left part o f the component plane 

corresponds to high-magnitude of TA, TTO, TBO, TLTC and OTMS. In 

addition, RHA is of low-magnitude in that region and the concentration o f 

H2 is high. Finally, the FAN is OFF and the PUMP in ON.

b. High-magnitude of PC in the upper-right part o f the component plane 

corresponds to low-magnitude of TA, TTO, TBO, TLTC and OTMS. In 

addition, RHA is of high-magnitude in that region and the concentration 

of H2 is low. Finally, the FAN is OFF and the PUMP is ON.

c. Low-magnitude of PC in the lower-right part of the component plane 

corresponds to low-magnitude of TA and TLTC and the lowest- 

magnitude of TTO, TBO and OTMS. In addition, RHA is of high- 

magnitude in that region and the concentration of H2 is low. Finally, the 

FAN is OFF and the PUMP is OFF.

• The foregoing observations on three regions of the PC component-plane can 

be summarised based on Figure 9.2.
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Figure 9.2: Correspondence of various sensor variables with three regions of 
interest of the PC component-plane

As can be deduced from the foregoing findings on revealed patterns of the multiple 

sensor data, two key influential factors for the variation in magnitudes of other 

sensor variables are the ambient temperature (i.e. TA) and the phase current of power 

transformer (i.e. PC). Since the phase current is directly proportional to the loading 

of power transformer, its hourly variation couples with the hourly variation of 

ambient temperature could impact on the variation in magnitudes of other sensor 

variables.

The SOM has thus successfully unearthed the inherent characteristics of the multiple 

sensor data and presented these revealed features in a discernible and comprehensible 

format, as has been illustrated in Figure 9.1. In fact, these revealed features of the 

multiple sensor data can actually be applied for monitoring the hourly operating 

condition of power transformer, as will be explained in the next section.
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9.6 On-Line Monitoring of Power Transformer based on the 

Multiple Sensor Data

Since the hourly operating condition of the power transformer is implicitly signified 

by the variation in magnitudes of various sensor variables, it can hence be monitored 

via the means of visualising the movement of a trajectory on various component 

planes o f sensor variables.

To form the trajectory, the best-matching-unit (BMU) of all sensor measurements at 

a particular time is first determined, based on the minimum Euclidean distance of all 

sensor measurements at a particular time with reference vectors of the optimum 

SOM; all BMUs that correspond to the time of 00:00 (i.e. 12 am) to 23:00 (i.e. 11 

pm) are subsequently linked together to form the trajectory for a particular day. It 

should be noted that the location of this trajectory on various component planes of 

sensor variables is exactly identical since each BMU is determined based on the 

combined effect of all sensor measurements during the calculation o f Euclidean 

distance.

An example o f such application is demonstrated in Figure 9.3, which illustrates the 

movement of the trajectory on several chosen component planes of the optimum 

SOM for the day of 25/5/01 (time varies from 00:00 (i.e. 12 am) to 23:00 (i.e. 11 

pm)). As can be observed from the figure, the hourly variation in magnitudes of 

various sensor variables can be easily scrutinised from these component planes. 

Furthermore, the relative location of the trajectory with respect to the highest and 

lowest regions of each sensor variable can also be identified easily.

Hence, more information on the hourly operating condition of the power transformer 

can be obtained based on the foregoing means of on-line monitoring when compared 

to the conventional means of looking at several parallel time-sequences o f sensor 

variables. This is because magnitudes of various sensor variables for a particular day 

can be easily compared against the maximum and minimum recorded values.

208



Chapter 9 Data Mining on the Multiple Sensor Data o f  a Power Transformer Using the SOM

Tem perature -  Am bient (TA)

Tem perature -  Top Oil (TTO)

■ 0.8

0.7

0.6

0.5

0.4

0.3

Tem perature -  Bottom  Oil (TBO)

Phase Current (PC)

«
*

Figure 9.3: Hourly trajectory of sensor variables on the day of 25/5/01
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Furthermore, the foregoing means of on-line monitoring can also be utilised for the 

detection o f the onset o f problems or faults within the power transformer. For 

example, if the trajectory of a power transformer condition during an extremely cold 

day (hence very low TA) moves into the region of which high TA is observed, some 

problems or faults might have occurred within the power transformer that causes the 

changes in magnitudes of other sensor variables which subsequently lead to the 

“abnormal” movement o f trajectory. Unfortunately (or fortunately), this particular 

unit o f power transformer of which the multiple sensor data was collected has been 

operating faultlessly since the on-line monitoring facility was installed. Hence, no 

actual fault cases are available to investigate the foregoing claim.

9.7 Summary

The SOM has successfully unearthed the inherent characteristics of the multiple 

sensor data and presented them in a discernible and understandable format. More 

importantly, these revealed features can be utilised for performing hourly on-line 

monitoring of the operating condition of a power transformer, based on the 

movement of the trajectory on various component planes o f sensor variables. The 

foregoing means of on-line monitoring is more advantageous and informative when 

compared to the conventional means of looking at several parallel time-sequences o f 

sensor variables; this is so since the trajectory o f sensor variables on a particular day 

can be easily compared against the maximum and minimum recorded values and any 

unexpected movement of the trajectory can be regarded as a warning signal for the 

onset o f problems or faults within the power transformer.
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CHAPTER 10

CONCLUSIONS AND FUTURE WORK

10.1 Introduction

Power transformers are among the most expensive and critical components o f the 

electrical power system. Consequently, it is important to maintain the reliability o f 

power transformers while at the same time maximising their utilisation. These 

requirements are of paramount importance to power utilities, owing to the mounting 

challenges faced by the power utilities to supply uninterrupted power and efficient 

services to customers in today’s increasingly competitive and deregulating energy 

market. Owing to the crucial role of power transformers, various condition 

assessment approaches to essentially identify any potential problems have been 

proposed. However, although a reasonably accurate recording of the condition 

assessment data can be obtained, there are still weaknesses when it comes to 

providing accurate and convincing interpretation o f the condition assessment data.

In view of the foregoing, the work presented in this thesis has been devoted to the 

investigation and development of a novel and improved approach for the analysis 

and interpretation of the condition assessment data. More specifically, the major 

focus of the work presented herein has been placed on developing an improved 

approach for the analysis and interpretation of the dissolved gas analysis (DGA) data 

o f power transformers and their bushings. In addition, the proposed approach is also 

applied on a limited scale for the analysis of a set of on-line monitoring data
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comprising of various sensor measurements collected from a unit o f power 

transformer.

This chapter briefly reviews all major studies that have been performed in this 

research project and a number of significant achievements that have been attained. 

Finally, possible future work with regard to this research is also proposed at the end 

of this chapter.

10.2 Review of Major Studies and Achievements Attained in This 

Research Project

Throughout the three years of research on this project, various major studies have 

been performed, as reported in this thesis. More importantly, several important 

achievements have been attained as a result. The following sections will provide a 

brief review of these major studies and the achievements that have been attained.

10.2.1 Implementation and Comparison of Conventional DGA Interpretation 

Schemes

Several established conventional interpretation schemes for the DGA data of power 

transformers have been implemented in this research project. Based on these 

implemented schemes, a meaningful comparison has been conducted in order to 

assess the strengths and weaknesses of these conventional schemes. It has been 

subsequently demonstrated that the application of different DGA schemes on an 

identical set o f DGA data gives rise to the different interpretation on the health and 

condition of power transformers. In addition, there are also cases in which these 

conventional schemes are unable to provide any interpretation. Thus, the foregoing 

investigation clearly illustrates the inherent weaknesses of conventional schemes in 

analysing and interpreting the DGA data o f power transformers.
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10.2.2 Addressing Issues for the Practical Application of SOM

Although various theoretical aspects o f self-organising map (SOM) have been well- 

defined, further issues need to be considered for its application to solve some 

practical problems. These issues are, for example, the setting o f SOM configuration 

and its training parameters and procedures for the selection o f optimum SOM. 

Hence, detailed investigations and experiments have been conducted so as to produce 

a systematic and effective means for tackling the foregoing issues; this has 

culminated in the establishment of a set of procedures for the setting o f configuration 

and training parameters of SOM and the proper selection of optimum SOM. It has 

been subsequently demonstrated that these established procedures are very robust 

and generic, and can be applied to any set o f condition assessment data very 

effectively.

10.2.3 Statistical Analyses of the DGA Data of Power Transformers

Various statistical analyses have been conducted on the DGA data of power 

transformers. These were performed so as to gain a rudimentary insight into the 

characteristics of the data. Specifically, the DGA data has been examined in terms of 

its partition according to voltage levels, power ratings and the total age o f the 

corresponding power transformers from which oil samples were extracted. More 

importantly, statistical distributions of various dissolved gases have been 

investigated. It has been subsequently discovered that the majority o f dissolved gases 

is normally concentrated around regions of low concentration; there are only a few 

rare cases where the concentration of dissolved gases is very high. The foregoing 

discoveries are very important for the subsequent collective analysis of the DGA data 

o f power transformers, which forms the most important part of this research project.

10.2.4 Data Mining on the DGA Data of Power Transformers

The proposed approach, which is based on a data mining (DM) technique known as 

the SOM, has been applied for the analysis and interpretation o f the DGA data of
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power transformers. It has been demonstrated that the SOM is capable of unearthing 

the inherent characteristics of the DGA data and presenting these revealed features in 

a discernible and comprehensible format. In addition, it has been validated that these 

revealed features can be associated with several conditions o f power transformers. 

More importantly, through a comparison with conventional DGA interpretation 

schemes, it has been demonstrated that the interpretation as provided by the proposed 

approach is more accurate and convincing, thereby giving confidence in the 

technique developed. Furthermore, the proposed approach has an added advantage of 

allowing the “visualisation” of the evolution of health and condition o f a power 

transformer, based on the movement of its DGA trajectory on the u-matrix 

illustration where various fault regions have been previously identified. In essence, 

the study conducted on the DGA data of power transformers forms the largest 

proportion and importance in this research project; various approaches proposed in 

this part o f the study have also been applied for the analysis and interpretation of the 

DGA data of transformer bushings as described below.

10.2.5 Data Mining on the DGA data of Transformer Bushings

The proposed approach from the foregoing study on the DGA data of power 

transformers has also been applied for the DGA data of their bushings. Here again, 

the SOM has been found to be capable of unearthing the inherent characteristics of 

the DGA data and presenting these revealed features in a discernible and 

comprehensible format. In addition, it has been verified that these revealed features 

can be associated with several conditions of transformer bushings. More importantly, 

the proposed approach has been demonstrated to be capable of providing an easy 

means of fault diagnosis and fault detection in bushings of power transformers before 

any suspected faulty bushing is replaced.

10.2.6 Data Mining on the Multiple Sensor Data of Power Transformer

The proposed approach has also been applied for the analysis on a set o f on-line 

monitoring data comprising of hourly measurements of various sensor variables
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collected from a unit o f power transformer. In this respect, it has been demonstrated 

that the SOM is able to unearth the inherent characteristics of the multiple sensor 

data and present these revealed features in a discernible and comprehensible format. 

More importantly, it has been illustrated that these revealed features can be applied 

for hourly on-line monitoring of the operating condition of the power transformer.

10.3 Future Work

As mentioned before, the proposed approach is both generic and robust and can thus 

be applied for the analysis and interpretation of various condition assessment data. 

Some of the possible future work of this research project is listed below:

• Application of the proposed approach on the DGA data of other types of 

power transformers such as those in the field of generation and distribution.

• Application o f the proposed approach on the DGA data of other oil-filled

electrical devices such as current transformers, voltage transformers,

underground cables, selectors, switch-gears and circuit-breakers.

• Application of the proposed approach on the multiple sensor data of a power

transformer which has been monitored on-line for a considerably longer

period of time.

• Development of the proposed approach into a generic software package 

which can provide automatic training and selection of the optimum SOM 

based on a set of data.

• Assess the possibility of using correlation, regression and other statistical 

methods to extract useful features from the data in the pre-processing stages, 

so as to compress and reduce the size of the training data for SOM.

• Incorporation of AI techniques such as expert system in the post-processing 

stages for automatic reasoning of the extracted features or patterns from the 

data.
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APPENDIX

SCALING METHODS FOR TRAINING DATA

Three scaling methods were considered for the pre-processing of input data before 

submitted for the training of self-organising map (SOM), i.e. the “range”, “variance” 

and “logarithmic” methods. These scaling methods are briefly explained in the 

following sections.

1. The “Range” Scaling Method

The “range” method transforms the minimum and maximum values of each 

component of the input data into “0” and “ 1” respectively; all other values in each 

component of the input data are scaled according to Equation (1).

jc old — min
Xnew — .........................   ( 1)

m ax-m in

Where, xnew and x0id are the scaled and original values respectively. And, min and 

max are the minimum and maximum values of the un-scaled data.

2. The “Variance” Scaling Method

The “variance” method transforms the values in each component of the input data 

such that the mean and variance of each component of the scaled input data are “0” 

and “ 1” respectively, as shown in Equation (2).

225



Appendix_______________________Scaling Methods for Training Data_______________________________

xold -  mean
Xnew — ....................  ............................................................................................................(2)

stdev V '

Where, xnew and xQid are the scaled and original values respectively. And, mean and 

stdev are the mean and standard deviation of the un-scaled data.

3. The “Logarithm” Scaling Method

The “logarithm” method transforms the values in each component of the input data 

according to Equation (3). It shall be noted that natural logarithm has been used in 

this case and the offset of “ 1” has been added to the values in each component of the 

input data in order to prevent the occurrence of errors due to the presence of zeros in 

the data.

Xnew — ln(l + X old ) .............................................................................................................. (3)

Where, xnew and xQid are the scaled and original values respectively.

226



RELATED PUBLICATIONS

[1] THANG, K. F., AGGARWAL, R. K., ESP, D. G., MCGRAIL, A. J.:

“Statistical and Neural Network Analysis o f Dissolved Gases in Power 

Transformers”, Proceedings o f Eight International Conference on Dielectric 

Materials, Measurements and Applications, Sept. 2000, IEE Conference 

Publication No. 473, pp. 324-329.

[2] THANG, K. F., AGGARWAL, R. K., MCGRAIL, A. J., ESP, D. G.:

“Application of Self-Organising Map Algorithm for Analysis and

Interpretation o f Dissolved Gases in Power Transformers”, Proceedings o f  

2001 IEEE Power Engineering Society Summer Meeting, July 2001, Paper No. 

0-7803-7031-7/01.

[3] THANG, K. F., AGGARWAL, R. K., MCGRAIL, A. J., ESP, D. G.: “Data 

Mining Approach for Analysis o f Power Transformer Dissolved Gas Records 

Using the Self-Organising Map”, Submitted to IEEE Transactions on Power 

Delivery.

227



ft

STATISTICAL AND NEURAL NETWORK ANALYSIS OF DISSOLVED GASES IN POWER 
TRANSFORMERS

K F Thang*, R K Aggarwal*, D G Esp+, A J McGrail+

University of Bath*, UK, The National Grid Company plc+, UK

ABSTRACT

The onset of electrical discharges or thermal stresses in 
mineral oil or cellulose insulation of a power 
transformer can cause the degradation of these materials 
with the formation of various dissolved gases. These 
dissolved gases can be extracted and identified with the 
application of gas chromatography. The overall process, 
from oil sampling to gas identification, is known as 
dissolved gas analysis (DGA). In this paper, a 
comparison of conventional DGA interpretation 
schemes is briefly presented. Moreover, some new 
artificial intelligence (AI) techniques for transformer 
incipient fault diagnosis based on DGA data, are also 
discussed. The second part of the paper reports on the 
initial work performed for the proposed new approach. 
This includes simple statistical analysis on DGA records 
and is followed by high-level data-mining (DM) using 
self-organising map (SOM) algorithm. The inherent data 
'structure' revealed from the latter part of the analysis 
could hypothetically be associated with certain 
transformer faults, either electrical, thermal or cellulose 
decomposition. The proposed approach could provide a 
viable alternative for transformer incipient fault 
diagnosis and condition-monitoring applications.

INTRODUCTION

The use of DGA for transformer incipient fault 
diagnosis is verified by the fact that insulation materials 
within the transformer tank, such as mineral oil and 
paper pressboard etc, will disintegrate when subjected to 
a high degree of temperature as result of faults. The 
decomposed products are mainly in the form of gases, 
which will eventually dissolve in the tank oil or evolve 
to the gas-collecting relay. The types and quantity of 
dissolved gases depend fundamentally on the degree of 
decomposition temperature, or more particularly on the 
amount of energy available to decompose the insulation 
materials.

As discussed in IEC 60599, partial discharge occurs in 
the case of low-level energy, such as breakdown in gas- 
filled cavities resulting from incomplete oil- 
impregnation. In this case, the major gas produced is 
hydrogen (H2). In other types of faults, the 
decomposition of oil is mainly caused by heat. 
Decomposition occurs at normal operating temperature,

producing mainly hydrogen (H2) and methane (CH4). 
Higher decomposition temperature, resulting from hot 
spots or conductor overheating, produces mainly 
methane (CH4). With further increases in decomposition 
temperature, an increasing amount of ethane (C2H6) and 
ethylene (C2H4) will be liberated. In the case of a much 
higher temperature resulting from disruptive electrical 
faults, such as sparking or flashover, the production of 
acetylene (C2H2) becomes significant. On the other 
hand, carbon dioxide (C02) and carbon monoxide (CO) 
are produced as a result of decomposition of cellulose 
insulation, which may be initiated by either electrical or 
thermal faults.

Owing to the credible association of dissolved gases 
with types of faults occurring within a power 
transformer, various DGA interpretation schemes have 
been established, such as Domenburg's ratios, Rogers' 
ratios, IEC's ratios, CIGRE's method and Duval's 
Triangle. The application of these conventional schemes 
for fault diagnosis is less than perfect since quite often 
an interpretation is not possible and the use of different 
scheme will result in different fault diagnoses. 
Consequently, attempts have been made to employ 
artificial intelligence (AI) techniques to tackle these 
drawbacks. Although these new approaches are still 
dependent on conventional interpretation schemes for 
their development, significant improvement over 
conventional schemes have been reported.

A new approach for transformer fault diagnosis and 
condition monitoring is proposed in this paper. It is 
based on a type of unsupervised neural-network known 
as self-organising map (SOM) algorithm, as will be 
discussed in the following sections.

COMPARISON ON CONVENTIONAL DGA 
INTERPRETATION SCHEMES

Some commonly applied DGA interpretation schemes 
are compared as follows:

Dornenburg ratios. Domenburg's method is based on 
ratios CH4/H2, C2H2/C2H4, QHs/QHz and C2H2/CH4. 
Three types of faults are detectable, i.e. local 
overheating (thermal fault), partial discharge and other 
types of discharges (electrical fault). Dornenburg 
recommendation on the application of this method
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should commence with determining whether dissolved 
gases (including CO and C02) are below the quoted 
concentration limits; faults are suspected if one or more 
gases exceed the limits. Rules were also outlined to 
determine the applicability of these ratios. 
Implementation of Domenburg's method may result in a 
significant number of 'no-interpretation' cases arising 
from incompleteness in the ratio-ranges and non
applicability of the method.

Rogers' ratios. The Rogers' method utilises four ratios, 
viz. CH4/H2, QIVCH* C2H4/C2H6 and C2H2/C2H4. 
Diagnosis of faults is accomplished via a simple coding 
scheme based on ranges of ratios. Four conditions are 
detectable, i.e. normal ageing, partial discharge with or 
without tracking, thermal fault and electrical fault of 
various degrees of severity. It is better than 
Domenburg's method since a broader range of ratio- 
combinations is included and hence leads to a significant 
reduction of 'no-interpretation' cases. Nevertheless, no 
consideration is given for dissolved gases below 'normal' 
concentration values. Therefore, exact implementation 
of Rogers' method may lead to many mis-interpreted 
cases.

Duval's triangle. Duval's method is special since fault 
diagnosis is performed based on visualisation of the 
location of dissolved gases in the triangular map. Only 
three dissolved gases are needed, viz. CH4, C2H4 and 
C2H2. These gases must be transformed into triangular 
co-ordinates before being plotted onto the triangle. 
Generally, three types of faults are detectable, i.e. partial 
discharge, high and low energy arcing (electrical fault) 
and hot spots of various temperature ranges (thermal 
fault). Since no region is designated for normal ageing 
condition, careless implementation of Duval's triangle 
will result in the diagnosis of either one of the three 
faults. In view of this problem, dissolved gases should 
be assessed for their 'normality' before being interpreted 
using Duval's triangle.

IEC's Ratios (IEC 60599). Fault diagnosis scheme 
recommended by IEC originated from Rogers' method, 
except that the ratio C2FVCH4 was dropped since it only 
indicated a limited temperature range of decomposition. 
Four conditions are detectable, i.e. normal ageing, 
partial discharge of low and high energy density, 
thermal faults and electrical faults of various degrees of 
severity. However, no attempt is made to identify both 
thermal and electrical faults into more precise subtypes. 
The first edition of IEC's method (IEC 60599-1978) is 
based on simple coding scheme while the second edition 
(IEC 60599 -1999) utilises the revised ratio ranges 
directly. Assessment of dissolved gases for 'normality' 
limits is required before being interpreted using ratios. 
Other improvement in the second edition of IEC method 
is the use of 3D graphical representation for the ratio 
ranges. Those cases where diagnosis of fault is not

possible can be plotted onto the graph and its nearest 
distance to a certain fault region can then be observed.

CIGRE's method. CIGRli method utilises both key gas 
ratios and key gas concentrations for fault diagnosis. 
The key gas ratios are C2H2/C2H6, H2/CH4,
C2H2/H2 and C02/C0 and the key gas concentrations are 
C2H2, H2, sum of carbon hydrides, CO and C02. Ratio 
ranges and concentration limits are suggested for both 
key gas ratios and key gas concentrations; a fault is 
suspected if any one of the key gas ratio or key gas 
concentration exceeds the limit. Clear guidelines are not 
given concerning the combined application of both 
methods. Moreover, the suggested limit of 10000 for CO 
is less than convincing. However, a transformer is 
considered healthy if all ratios and concentrations are 
below the limits. Nevertheless, the use of CIGRE 
method is beneficial since it allows simultaneous 
detection of two or more faults.

Correct and 'practical' implementations of the above 
schemes require the availability of normal concentration 
values for dissolved gases. If a large DGA database is 
available, 90%-typical concentration values are 
suggested by IEC as the normality values. Other 
transformer information such as transformer type, age 
and operating condition must also be taken into 
consideration when making repair decision based on 
resultant fault diagnosis. In conclusion, currently 
available DGA interpretation schemes are far from 
satisfactory and comprehensive. Consequently, fault 
diagnosis based on DGA is still heavily dependent on 
experiences of human experts.

REVIEW OF NEW AI APPROACHES FOR 
TRANSFORMER FAULT DIAGNOSIS

The conventional DGA interpretation schemes have 
been known to suffer from the following drawbacks:
(1) Gas ratios or methods defined by these schemes are 

mainly developed based on human judgement. No 
systematic attempt has been make to actually 'learn' 
from the measured DGA data.

(2) There is still a high degree of inconsistency and 
ambiguity when applying these schemes, owing to 
incompleteness of the possible ratio-combinations 
and doubts on the validity of the defined ratio 
ranges.

(3) These schemes are still unable to detect with high 
confidence multiple faults that occur concurrently 
within the transformer.

(4) These schemes are unable to detect new or 
unknown faults owing to lack of expert knowledge 
in them.

Consequently, attempts have been made to utilise 
artificial intelligence (AI) techniques to tackle these 
drawbacks. There are two major categories of AI
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approaches. The first category attempts to learn the 
inherent correlation between actual transformer faults 
and its corresponding DGA records. An Example o f this 
category is the artificial neural network (ANN). The 
second category o f AI approaches is dependent on 
conventional schemes for its development, but the 
incompleteness o f the conventional schemes is 
addressed by incorporating a fuzzy logic (FL) algorithm. 
An example o f this category is fuzzy expert system 
(FES). Variants of these two categories exist as well.

Interest in applying ANN for transformer fault diagnosis 
based on DGA started with Bhattacharyya et al (1) in 
1993. A total of eleven gas inputs were applied to a 
supervised ANN, with the training data consisting of 
DGA records with actual observed faults. It has been 
reported that the use of this approach has resulted in 
higher diagnosis accuracy when compared with Rogers' 
and Domenburg's methods. However, only electrical and 
thermal faults are detectable. The application of ANN 
has been advanced further by Zhang et al (2), with the 
development o f two supervised ANNs were developed. 
The occurrences of normal condition, overheating, 
corona and arcing are detectable using one ANN and the 
involvement o f cellulose decomposition in fault is 
detectable using the other ANN.

By comparison, the use of FES is more acceptable by 
DGA experts, by virtue of the fact that this approach 
allows their experiences and knowledge to be 
incorporated. Although its development is still 
dependent on conventional DGA interpretation schemes, 
the uncertainties o f normality thresholds and ratio 
ranges have been tackled with the use of fuzzy logic. An 
example of such approach was reported by Lin et al (3) 
and. Latter in 1998, and an evolutionary-programming 
approach was introduced by Huang et al (4) to further 
adjust the rules and membership functions in the FES. 
The most promising AI approach to date is the 
combined ANN and expert system (ES) method 
developed by Wang et al (5). It has the advantage of 
utilising ANN to learn from actual DGA records. 
Furthermore, it is also able to incorporate expert 
knowledge and conventional DGA interpretation 
schemes. The final diagnosis is produced based on the 
combination of both ANN and ES methods.

Notice that all currently available AI approaches require 
either DGA records with actual observed faults or 
conventional interpretation schemes for their 
developments. Acquirement of DGA records with actual 
faults observed in transformers has been known to be 
difficult, since it is costly to disconnect a particular 
transformer just for the purposes o f confirming a 
suspected fault. Therefore, the supervised ANN 
approach will not be able to detect 'all' possible faults 
due to the lack of 'good' fault samples for its training. 
On the other hand, the dependency of FES on 
conventional DGA interpretation schemes has also lead 
to its inheritance of the inherent drawbacks of 
conventional schemes, as discussed previously.

STATISTICAL ANALYSIS ON DGA DATA

Large DGA database is available for analysis, courtesy 
of the National Grid Company pic, UK. Association has 
been made between the amount of DGA data and the 
number o f transformers and transformer-age for 
different voltage ratios and power ratings, as illustrated 
in Figures 1, 2, 3 and 4, respectively
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FIGURE 1: Amount of DGA data versus number of 
transformers for different voltage ratios.
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As observed from above figures, there is close 
agreement between the total number of transformers and 
transformer-ages for different voltage ratios and power 
ratings. It was also discovered that the largest number of 
transformers is associated with voltage ratio o f 275/132 
and power rating of 240 MVA.

The 90% typical concentration values for dissolved 
gases were also computed from the database, as shown 
in Table 1:

Dissolved gases 90% typical values (pl/1)
Moisture (H20 ) 19
Nitrogen (N2) 70000
Oxygen (0 2) 25200
Carbon dioxide (C 02) 4260
Carbon monoxide (CO) 520
Hydrogen (H2) 85
Methane (CH4) 47
Ethane (C2H6) 31
Ethylene (C2H4) 53
Acetylene (C2H2) 13

TABLE 1 - 90% typical concentration values for 
dissolved gases

In addition, other statistical analyses such as frequency 
distributions and scatter plots were also examined. 
Interesting features were obtained from the foregoing 
analysis.

NEURAL NETW ORK ANALYSIS ON DGA DATA

A new approach for transformer incipient fault diagnosis 
and condition monitoring has been proposed herein. It is 
essentially based on a type o f unsupervised neural 
network known as self-organising map (SOM) 
algorithm. The SOM is capable of learning from data 
and displaying the data 'structure' in a visually 
discernible format. The data 'structure' refers to inherent 
organisation o f data that can only be displayed

460 MVA, 210 MVA; 18 MVA; 155 MVA 
75MVA; 500MVA; 1000MVA; 240MVA

120 MVA 
100 MVA I
750 MVA J

4 » * *  180 MVA

effectively through a high-level data-analysis tool. The 
SOM is comprised o f a lattice o f neurons arranged in 
hexagonal configuration. Desired outputs are not needed 
since weight vectors o f neurons are updated through an 
iterative process o f associating each training data to each 
neuron. Hence, only 'raw' DGA records are needed for 
the training o f SOM.

A DGA dataset was compiled for the initial feasibility 
study o f the proposed approach, which consists of 755 
DGA records from transformers with power rating of 
240 MVA and voltage ratio of 275/132 and from three 
different manufacturers. A 20 units by 30 units SOM 
was used for the training. Training inputs were formed 
by 755 DGA records with each o f them consisting o f 7 
dissolved gases, viz. C 0 2, CO, H2, CH4, C2H6, C2H4 and 
C2H2. Each dissolved gas was normalised to the range of 
0 to 1 so as to prevent the masking of larger-valued 
gases such as C 0 2 and CO on smaller-valued gases such 
as C2H2. Training was performed in two phases: rough- 
ordering and fine-tuning.

The trained SOM was visualised using U-matrix 
representation, as shown in the first map of Figure 5. 
The organisation o f each dissolved gas can be displayed 
in the form of component plane, also illustrated in 
Figure 5. Essentially, the U-matrix representation is a 
summarised illustration of all the component planes.

U-matrix
% &

FIGURE 5 -  Visualisation of SOM.
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The U-matrix illustration essentially depicts the inherent 
'structure' of the DGA data. The colour-depth of a 64- 
level grey scale as displayed in the U-matrix map is used 
to represent the 'euclidean distance' between one neuron 
to the other. Therefore, the revealed data 'structure' can 
be easily identified by means o f the black-border around 
a lighter-coloured region. All corresponding data vectors 
located within a bordered region are said to be similar to 
one another in the vector space. In contrast, the colour- 
depth depicted in component plane of each dissolved gas 
represents the magnitude. The deeper the colour, the 
larger is the magnitude of each dissolved gas.

As observed from the U-matrix illustration in Figure 5, 
there are three part-circular clusters in the U-matrix 
map. The bottom-left cluster, which comprises o f three 
co-centre quarter-circulars, corresponds to regions 
where H2 and C2H2 have a significant presence. On the 
other hand, the bottom-middle cluster, which comprises 
of two co-centred half-circulars, coincides with regions 
where CH4, C2H6 and C2H4 have significant magnitudes. 
These two major clusters also intercept with each other, 
forming yet another two sub-clusters. In addition, a half
circular cluster is also observed in the upper-middle 
region and it corresponds to a region where CO has the 
largest magnitude.

Thus, the first-step in interpreting the map was to 
classify it into 9 regions, as illustrated in Figure 6 . 
DGA training data corresponding to each region was 
then obtained and analysed.

and 2 (EF_TF-1 and EF TF-2) respectively. On the 
other hand, region 5 was typified by the largest 
concentrations o f C2H2 and H2; it is therefore 
hypothetically designated as an electrical fault of degree 
of severity 3 (EF-3). Both regions 6 and 7 are the outer 
clusters of region 5, and have high quantities o f C2H2 
and H2. Since concentrations of these gases are still 
lower than that o f region 5, region 6 and 7 can be 
assumed to be indicating of electrical fault of lower 
severity. Therefore, regions 6 and 7 are labelled as 
electrical fault of degree o f severity 2 and 1 (EF-2 and 
EF-1) respectively. Region 8 was observed to be higher 
in CO only, and it can therefore be hypothetically 
designated as cellulose decomposition (CD). Finally, all 
dissolved gas levels in region 9 are very low; it is hence 
indicative of a normal ageing condition in a transformer 
and labelled as NORMAL hypothetically. However, no 
indication o f partial discharge was observed in the map. 
The U-matrix illustration with hypothetically assigned 
fault regions is shown in Figure 7.
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FIGURE 7 -  Hypothetical identification of fault regions
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FIGURE 6 -  Division of analytical regions

It was discovered that region 1 is noticeably higher only 
in C2H4, which is the key gas for indicating thermal 
abnormalities. Moreover, both CH4 and C2H6 are the 
highest among all regions as well. Therefore, region 1 is 
hypothetically designated as thermal fault of degree of 
severity 2 (TF-2). Relatively high concentrations of 
these three gases were observed in region 2 as well, but 
still lower than that of region 1. Thus, region 2 is 
hypothetically designated as thermal fault of degree of 
severity 1 (TF-1). Significant amount o f H2, CH4, 
C2H6, C2H4 and C2H2 were also found for both regions 3 
and 4. However, concentrations o f H2 and C2H2 are 
noticeably higher than that of region 1 and 2. Hence, 
regions 3 and 4 were hypothetically labelled as 
electrical fault and thermal fault o f degree of severity 1

In order to investigate the validity o f the hypothesis in 
the context o f conventional DGA interpretation 
schemes, the U-matrix illustration is overlaid with six 
previously described interpretation schemes, i.e. 
Ddmenburg’s ratios, Rogers' ratios, IEC's ratios (IEC 
60599: 1978 and 1999), Duval's triangle and CIGRE's 
method. No attempts have been made to divide the 
partial discharge (PD), electrical fault (EF), thermal 
fault (TF) and cellulose decomposition (CD) into more 
detail sub-types, since it is sufficient in the initial stage, 
for four major fault-types (EF, TF, PD and CD) to be 
determined. In addition, the data where conventional 
schemes are unable to provide interpretation were 
identified and labelled as 'NO INTERPRETATION'. 
Finally, dissolved gases were assessed for their 
'normality' before being interpreted for fault. This is 
done as to 'mimic', as close as possible, the practical 
implementation o f these schemes. The overlaid maps 
are illustrated in Figure 8.

DISCUSSIONS AND FUTURE WORK

As observed from Figure 8, fault regions as interpreted 
by various DGA schemes are fairly consistent with the 
hypothetical regions as illustrated in Figure 7. However, 
all but CIGRE's method were unable to identify simulta-
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IEC's ratios (IEC 60599: 1999) triangle

IEC's ratios (IEC 60599: 1978)Dornenburg ratios Rogers

Normal
No interpretation

Thermal fault 1
Electrical fault

Electrical fault

ratios

Duval's CIGRE method

FIGURE 8: Identification of fault region based on 
various DGA interpretation schemes.

-neous occurrence o f both electrical and thermal faults. 
In addition, the non-occurrence o f partial discharge as 
concluded from previous study are also 'confirmed' by 
various DGA interpretation schemes. However, these 
schemes were unable to identify the hypothetical 
cellulose decomposition, therefore 'new' fault pattern has 
been revealed by the SOM. The 'weakness' of 
Domenburg's method is also revealed as dictacted by a 
large 'no-interpretation' region. Roger's method was able 
to detect both electrical and thermal faults very 
satisfactorily. Both versions of IEC' ratios were unable 
to detect the hypothetical thermal fault region owing to 
the lack o f code '1 2 2' in the standard. On the other 
hand, Interpretation provided by Duval's method is good 
only if all DGA data are assessed for 'normality' before 
being interpretated for fault. However, diagnosis method 
recommended by CIGRE is less convincing since it 
labels the hypothetical less severe fault region (TF-1 in 
Figure 7) as electrical fault. If proven to be valid with 
high confidence, the hypothetical map shown in Figure 
7 is more beneficial since it has been developed based 
on inherent 'structure' of the DGA data; no DGA data 
with actual faults or conventional schemes were 
required. Future work will include investigating DGA 
data of greater quantity and variety, and also 
proposing a credible approach to verify the hypothesis 
on identified fault regions.

CONCLUSIONS

Comparison on various DGA interpretation schemes 
have been presented. A brief review on AI approaches 
are also given. Finally, a new approach for transformer 
fault diagnosis based on DGA is proposed in the paper
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Abstract: Onset of incipient faults in power transformers can 
degrade the mineral oil and cellulose insulation, leading to the 
formation of dissolved gases. The process from oil sampling to 
quantification of gases is known as dissolved gas analysis 
(DGA). Despite the availability of DGA interpretation schemes 
and artificial intelligence (AI) methods for transformer 
condition monitoring (CM) based on DGA data, it is pointed 
out in this paper that these approaches are less than ideal and 
practical in implementation. In view of that, this paper 
illustrates a novel approach for analysis and interpretation of 
DGA data, which leads to a more credible CM of power 
transformers. The proposed approach, which is based on the 
self-organising map (SOM) algorithm, has been validated 
using real fault-cases and thereby is proven to be more reliable 
in portraying the current condition of power transformers. 
Keywords'. Incipient faults; Power transformer; Dissolved gas 
analysis; Artificial intelligence; Condition monitoring; Self- 
organising map.

I. INTRODUCTION

Mineral oil in power transformers consists of many 
different hydrocarbon molecules. Electrical and thermal 
faults can break-up bonds linking these molecules, which 
lead to the formation o f gases. For a slowly developing or 
incipient fault, the gases formed will dissolve in oil, with 
only a small proportion diffusing from the oil into any gas 
phase above it. This kind o f fault can therefore be 
monitored using dissolved gas analysis (DGA).

DGA requires the sampling o f seven key gases as stated 
in IEC 599 Standard [1], viz. carbon dioxide (C 02), carbon 
monoxide (CO), hydrogen (H2), methane (CH4), ethane 
(C2H6), ethylene (C2H4) and acetylene (C2H2). As described 
in IEC 599 Standard, partial discharge (PD) occurs in the 
case of low-level energy, such as breakdown in gas-filled 
cavities resulting from incomplete oil-impregnation. In this 
case, the major gas produced is H2. In other types of fault, 
the decomposition of oil is mainly caused by heat. 
Decomposition occurs at normal operating temperature, 
producing mainly H2 and CH4. Higher decomposition 
temperature, resulting from thermal fault (TF) such as hot
spot and overheating, produces mainly CH4. With further 
increases in temperature, an increasing amount of C2H6 and 
C2H4 will be released. In the case of a much higher 
temperature resulting from disruptive faults such as 
electrical discharges (ED), the production of C2H2 becomes
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significant. On the other hand, if  cellulose materials such as 
paper, pressboard etc. are involved at the location of the 
fault, further gases, principally C 0 2 and CO will also be 
generated.

Owing to the credible relationship between the relative 
composition o f dissolved gases and the type and severity of 
faults, several DGA interpretation schemes have been 
established, such as the well-known Dornenburg Ratios [2], 
Rogers Ratios [3], IEC Ratios [1] and Duval Triangle [4]. 
The implementation o f these schemes, however, is less than 
ideal since different diagnosis o f fault is often resulted. 
Attempts have been made to employ AI methods [5-9] for 
improving fault diagnosis and condition monitoring (CM) 
of power transformers. Although some o f these approaches 
are still dependent on DGA schemes for their development, 
improvement over conventional schemes have been 
reported.

A novel approach for analysis and interpretation of DGA 
data is proposed in this paper. Unlike the above stated 
methods, the proposed approach does not depend on DGA 
interpretation schemes for its development; only measured 
DGA data is needed. A brief description and comparison of 
DGA interpretation schemes and currently available AI 
methods for CM of power transformers is presented in first 
part o f the paper. The second part o f the paper concentrates 
on introducing the self-organising map (SOM) algorithm, 
outlining the proposed approach, and presenting the 
performance and validation o f the proposed approach.

II. REVIEW OF DGA SCHEMES AND AI 
APPROACHES FOR CM OF POWER TRANSFORMERS

A. DGA Interpretation Schemes

Several well-known DGA schemes are, for example, 
Dornenburg Ratios [2], Rogers Ratios [3], IEC Ratios [1] 
and Duval Triangle [4], These schemes have been 
implemented, either in improvised or modified format, by 
various power utilities throughout the world. The use of 
these schemes requires the computation of several key-gas 
ratios, as listed in Table 1. Fault diagnosis is achieved by 
associating these ratios with a set of pre-defined faults or 
conditions.
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Table 1.

DGA Scheme K ey-Gas Ratios

D ornenburg
Ratios

CH4 . C 2H 2 . C2H 6 . C 2H 2 

H 2 ’ C 2H4 ’ C 2H 2 ’ CH4

Rogers Ratios
CH4 . C 2H 6 . C 2H 4 . C 2H 2 

H 2 ’ CH4 ’ C 2H6 ’ C2H4

IEC Ratios
C 2H 2 . CH4 . C2H4 

C2H4 ’ H 2 ’ C 2H6

Duval Triangle* % C2H2 ; % C2f i , ; %CH4

* Note: For Duval Triangle, %[Gas] is calculated by using [Gas] as 
numerator and the sum o f  all three gases as denominator, percentage is 
then com puted on the ratio.

Generally, three main types o f faults are detectable using 
these schemes, viz. PD, TF and ED. Before subjecting the 
DGA data for interpretation, a decision has to be made on 
whether a fault is suspected. This is done by referring to the 
typical values o f gas concentrations, which is supplied in 
Domenburg's method and suggested by the IEC 599 
Standard. If  all key-gases are below the typical values, no 
fault is suspected and the power transformer is regarded as 
operating normally. However, if  any one o f gases exceeds 
the stated typical values, a fault is suspected and hence it 
can be determined by calculating the key-gas ratios as 
shown in Table 1. In the event that a large DGA database is 
available, the typical values should be calculated from it 
based on a 90% or 95% limit [1] in order to achieve a more 
accurate and convincing diagnosis.

Although the aforementioned DGA interpretation 
schemes have been widely accepted by the power 
industries, they are known to have suffered from following 
drawbacks:

1) Gas ratios or approaches defined are mainly developed 
based on judgement and experience of human experts; 
no "systematic" attempt has been make to actually 
"learn" from the measured DGA records in the database.

2) There is still a high degree o f inconsistency and 
ambiguity when applying these schemes, owing to the 
incompleteness o f the possible ratio-combinations and 
uncertainty on the validity o f the defined ranges o f key- 
gas ratios.

3) The application of these schemes may sometimes result 
in the "no-interpretation" situations, whereby a decision 
on diagnosis has to be solely dependent on human 
expert.

4) These schemes are still unable to detect with high 
confidence multiple faults that occur concurrently 
within the power transformer.

5) These schemes are unable to detect "new" or "unknown" 
faults owing to a lack of expert knowledge within them.

B. A I  Approaches

Attempts have been made to utilise AI techniques to 
address the drawbacks of DGA interpretation schemes. 
These AI approaches can be broadly categorised into two 
groups, as illustrated below.

The first category o f utilises actual fault-cases in an 
attempt to learn the inherent relationship between the actual 
condition of power transformers and their corresponding 
DGA measurements. An example o f this category is the 
supervised artificial neural network (ANN), as reported by 
Bhattacharyya et al. [5] and Zhang et al. [6]. Generally, a 
set of input, target-output samples is required for the 
training of supervised ANN. The inputs are, for example, 
key gases, viz. H2, CH4, C2H6, C2R» and C2H2, and the 
outputs are transformer conditions, viz. PD, TF and ED, 
that have been identified through internal examination of 
faulty transformers. However, acquisition of DGA records 
with actual faults observed in transformers is difficult since 
it is costly and impractical to dismantle a transformer solely 
for the purposes o f confirming a suspected fault. 
Consequently, the supervised ANN approach will not be 
able to detect all possible faults owing to the lack o f many 
"genuine" fault-cases for its training.

The second category relies mainly on an expert system 
(ES) and fuzzy logic (FL), and the technique is commonly 
known as the fuzzy expert system (FES). This approach 
allows the incorporation o f expert experience into its 
knowledge base, whereas its core is mainly built on several 
DGA interpretation schemes. The incorporation of FL is 
beneficial since the uncertainty of normality thresholds and 
ratio ranges can be effectively dealt-with. Examples of such 
an approach were reported by Lin et al. [7] and Tomsovic et 
al. [8]. However, the dependency o f FES on conventional 
DGA schemes has led to its inheritance of some the 
drawbacks o f these schemes, as stated in the previous 
section.

III. APPLICATION OF SOM FOR ANALYSIS AND 
INTERPRETATION OF DGA DATA

A. The SO M  Algorithm

The SOM is constructed by neurons located on a regular 
two-dimensional grid, as illustrated in Fig. 1 [9]. Neurons 
are arranged in either hexagonal or rectangular
configuration; the former is preferred owing to its 
effectiveness in visualisation. The configuration of SOM is 
such that it defines a mapping from the input data space 9?71, 
where n is the dimension of input space onto a two- 
dimensional array of neurons. Every neurons i is associated 
with an n-dimensional reference v ec to rs , = [pn ,P a , •••»
/jin}T. An input vector x  -  [ £ ,  <*2,  , £„]T is connected
to all neurons in parallel via reference values py, where j  =
1, ..., n, which are different for every neuron.
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Fig 1. Neurons arranged in hexagonal lattice in a two-dimensional SOM

Once the reference vectors m, have been initialised, the 
training o f SOM commences by first choosing an input 
vector x, at time-step t, randomly from the input data set. 
The Euclidean distances between x  and all reference vectors 
mij are calculated. The reference vector that is closest to x  is 
known as the best-matching unit (BMU), denoted as c. 
Equation (1) illustrates the above stated relation:

c = argm in% x-m m 0 )

All reference vectors are then updated, according to (2). 
Note that hcl{f) is the neighbourhood kernel around the 
BMU c at time-step /. It can be defined as the function of 
the learning rate a(t) and the neighbourhood function h(\\rc 
-  r,||, t), as illustrated in (3). Some commonly used 
neighbourhood functions are, for example, the bubble 
function and the gaussian function [10].

nn{l + / )  = mi ( /)+  ha{t\x(t)-m ,(t)] 

hci{t) = a { t ) h \ r c - r \ , t )

(2)

( 3 )

If the SOM is sufficiently trained in accordance to some 
pre-set criterion, effective mapping from input data set to 
the two-dimensional reference vectors can be achieved. The 
inherent characteristic o f data can therefore be "learned" 
and visualised using some data visualisation tools [10].

B. The Proposed Approach

The SOM algorithm is employed herein for the analysis 
and interpretation of DGA data, with the benefit o f its non
dependency on actual fault-cases and DGA interpretation 
schemes for its modelling. In addition, the "knowledge" 
learned by SOM can be displayed in a comprehensible 
format, from which valuable information can be extracted 
and utilised for CM of power transformers.

A DGA data set was extracted from the full database for 
the feasibility study o f the proposed approach. This data set, 
which consists of 755 measured DGA records, corresponds 
to power transformers constructed by three different 
manufacturers, and o f two different voltage ratios and one 
power rating, as illustrated in Table 2. This data set can be

regarded as a "non-ideal" representation o f the entire DGA 
database, by virtue o f the fact the diversity is reflected by 
DGA records o f transformers from various substations, of 
different manufacturers, and o f voltage ratios and power 
rating that account for over 50% o f the entire transformer 
population.

Table 2.

M anufacturer* V oltage
Ratio

Power
Rating
(M VA)

Number o f  
Samples

I 400/132 240 72

I 275/132 240 91

II 400/132 240 94

II 275/132 240 187

III 400/132 240 108

III 275/132 240 203

♦ Note: Roman numerics are used for the representation o f  manufacturers

Four input-combi nations and pre-processing methods 
have been tested on the data set, resulting in a total of 
sixteen SOM configurations, as illustrated in Table 3. Note 
that those marked by grey shading are regarded as "optimal" 
m ap-configurati on s.

Table 3.

Input A 1
1:

No
Scaling

2 :
Range
Scaling

3:
Variance
Scaling

4:
Logio

Scaling

Input A2
5:

No
Scaling

6 :
Range
Scaling

7:
Variance
Scaling

8 :
Logio

Scaling

Input A3
9:
No

Scaling

10 :
Range
Scaling

11 :
Variance
Scaling

12 :
Logio

Scaling

Input A4
13:
No

Scaling

14:
Range
Scaling

15:
Variance
Scaling

16:
Logio

Scaling

Note:
1) A l H20 ,  N2j 0 2, C 0 2, CO , H2, CH4, CjHfi, C 2m , C2H2 (all gases 

including moisture).
A2: C 0 2, CO, H2, CH4, C 2H6, Q H 4, C2H2 (excluding atmospheric 
gases and moisture).

A3: H2, CH4, C2H6, C2H„, C2H2 (gases from oil degradation)
A4: CO , H2, CH4, C 2H6, C 2H4, C 2H2 (com bustible gases)

From Table 3, it can be seen that the "optimal" maps are 
mostly resulting from data set that has been pre-processed 
using the "range" method, which scales each component gas 
according to its maximum and minimum values. An 
example o f the "optimal" maps, the map-configuration 14, 
is illustrated in Fig. 2.

Note that the U-matrix illustration (Map 1) essentially 
depicts the inherent "structure" o f the DGA data [10]. The 
colour-depth o f a 64-level grey scale as displayed in the U- 
matrix map is used to represent the Euclidean distance
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between one neuron to the other. Therefore, the revealed 
data "structure" can be easily identified by means of black- 
border surrounding a lighter-coloured region. All n
corresponding data vectors located within a bordered region 
are in fact similar to one another in the vector space. On the 
other hand, the colour-depth depicted in the component 
planes (Map 2 to Map 7) of dissolved gases represents the 
magnitude; the deeper the colour, the larger is the 
magnitude of each dissolved gas component.

Fig. 3. Partition o f  hypothetical map into regions
Map 1: U-matrix

Map 2: CO

Map 4: CUt

Map 6: C2H4

Map 3: H2

Map 5: CjH*

Map 7: C2H2

Fig 2. U-matrix and component planes for SOM configuration 14

As can be seen from Fig. 2, correlation is apparent for 
two categories of dissolved gases, viz. [H2 C2H2] and [CH4 
CjFU C2H4]. Owing to the observed relationship, two main 
groups of clusters are revealed in the U-matrix map. The 
bottom-middle clusters are formed by [CH4 C2H6 C2H4] and 
the right-hand side clusters are formed by [H2 C2H2]. These 
two groups o f clusters also intercept with one another, 
forming a group of interception clusters between them.

C. Interpretation o f  Optimal SOM

The first step in interpreting the observed "structure" in 
the U-matrix map is to partition it into regions or clusters, 
as illustrated in Fig. 3. Detailed statistical analysis is then 
performed for each region, whereby the average 
concentration level (in part-per-million (PPM)) for each 
dissolved gas component is computed. The corresponding 
data subset for each region is obtained by performing BMU 
searches for weight-vectors in each region. The average 
concentration levels measured in PPM for dissolved gases 
are illustrated in Fig. 4.

—3505
3300  
1 250Ic200

Region

CH4

Region

C2H2
e s o o

0200

s 100
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c400

§200

glOO

1 2 3 4 5 6 7 8 9  1011
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C2H4

§600

400

Region

Fig. 4. Average concentration 
levels o f  dissolved gases in each 

region

Close correlation between the two categories of 
dissolved gases can also be observed from Fig. 4, as 
signified by the similarities in the distribution of average 
concentration levels. Both H2 and specifically C2H2 are the 
dominant gases in regions 1 to 5, as observed from Fig. 4. 
Conversely, the CH4, C2H6 and specifically C2H4, are found 
to be dominant in regions 6, 7 and 8.

As for the interception regions 9 and 10, although high 
levels of H2 and C2H2 are found, reasonably high levels of 
CH4, C2H6 and C2H4 are also observed. Interestingly, as 
compared with the [H2 C2H2] dominant region, the average
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levels of CH4, C2H6 and C2H4 in the interception regions are 
found to be higher. Conversely, if compared with the [CH4 
QH* C2H4] dominant regions, the levels of H2 and C2H2 are 
found to be higher in the interception regions.

As mentioned in the "Introduction", large amounts of H2 
and C2H2 are normally generated from electrical discharges 
(ED), and, high quantities of CfLi, C2H6 and Q R j are 
normally liberated during the onset of a thermal fault (TF). 
In view of these observations, coupled with discoveries in 
detailed statistical analysis of each region, the
"hypothetical" association of the type and severity of fault 
to each cluster can actually be established. Fig. 5 illustrates 
such an association. Note that the "ED_TF" indicates 
condition where there is simultaneous occurrence of ED 
and TF. The "dotted-arrows" indicate an increase in severity 
for a movement from outer to inner clusters.

Dornenburg Ratios

i B

’• i s f

Rogers Ratios

N orm al

Fig. 5. Hypothetical assignment o f  fault regions

D. Comparison and Validation o f  Hypothesis

The hypothetical map as shown in Fig. 5 is compared 
with four previously mentioned DGA interpretation 
schemes. This is done so as to investigate the benefits of 
such a map over the conventional schemes and to ensure 
that such hypothesis is "valid" in the context of 
conventional DGA schemes. Comparison is performed by 
"overlapping" the interpretation and diagnoses as provided 
by these schemes onto the U-matrix map (see Map 1 in Fig.
2). The data set submitted for interpretation is actually 
weight-vectors of the optimal map configuration. Colour 
labelling is used to differentiate various identified faults or 
conditions. The interpreted maps are illustrated in Fig. 6.

As can be observed from Fig. 6, the interpretation and 
diagnoses as provided by DGA interpretation schemes are 
fairly consistent with the hypothetical map illustrated in 
Fig. 5. The location and the shape of Normal, TF and ED 
fault regions correspond quite closely with the hypothetical 
fault regions. The Domenburg's method [2] is, however, 
unable to interpret a large TF region. In addition, if 
guidelines provided by Dornenburg are to be strictly 
followed, then no interpretation will result for a large ED 
region. On the other hand, although both Rogers Ratios [3] 
and Duval Triangle [4] are able to interpret correctly most

■ Thermal I----- 1 Non-
Normal g H i Fault j | applicable

No m u  Electrical
Interpretation B H  Discharges

Fig. 6. Interpretation by DGA interpretation schemes

of the fault regions, they are unable to detect the 
simultaneous occurrence of faults, and thus are less 
effective compared to the hypothetical map illustrated in 
Fig. 5. Lastly, the IEC's method [1] is found to be less 
sensitive towards the less severe TF region.

In comparison, the hypothetical map, as illustrated in 
Fig.5, is more advantageous since the locations o f fault 
regions are more realistically displayed and the 
simultaneous onset of faults can be detected. In addition, 
the severity of faults can be detected by observing the 
movement of DGA trajectories. If the DGA trajectory is 
moving from outer to inner clusters, then an increase in 
severity of a fault is suspected, and vice versa.

The hypothesis is validated by using real, observed fault 
cases. Fig. 7 illustrates some of these cases. As can be seen 
from Map 1 of Fig. 7, the DGA trajectory of that particular 
transformer does not venture into any of the fault region,

.S wM A V

IEC Ratios

$ * * * 0 0 9 0 0 0 0 0 •

W A V .' & 00

i n»***#»«**«

Duval Triangle
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hence no fault is suspected. This diagnosis is in fact 
consistent with the observation by the DGA expert in the 
company, who attributes the changes in gas levels to the 
normal ageing of oil. In Map 2, it is clearly shown that the 
DGA trajectory has moved into the most severe TF region. 
This observation has been confirmed by DGA expert in the 
company, where a known thermal problem, peaking in year 
1991 to 1992, actually happened in that transformer. Lastly, 
Map 3 illustrates a movement of DGA trajectory into the 
most severe ED region, as evident by the fact that arcing (or 
sparking) was known to have occurred at the clamping 
plates of that transformer.

( a )

( c )

Fig. 7. Validation using real fault-cases

IV. CONCLUSIONS

It can be concluded that the proposed approach has 
many important advantages over traditional methods for 
analysis and interpretation of DGA data for the following
reasons:

1) It does not depend on any actual fault cases and DGA 
schemes for its modelling, hence it is easy and cost- 
effective to implement.

2) It allows not only diagnosis of a fault based on 
visualisation of inherent data characteristics, but it also 
allows the CM of power transformers via the means of 
DGA trajectory plotting.

3) It offers a more consistent and convincing diagnosis as 
the revealed "structure" actually originates from within 
the real measured DGA records.
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Data Mining Approach for Analysis of Power 
Transformer Dissolved Gas Records Using the 

Self-Organising Map
K. F. Thang, Studen t M ember, IE EE , R. K. Aggarwal, S en ior M ember, IE E E ,

A. J. McGrail, M ember, IE E E , D. G. Esp

/Ifafracf—Incipient faults in power transformers can degrade 
the oil and cellulose insulation, leading to the formation of 
dissolved gases. Although interpretation schemes for dissolved 
gases are readily available, which relate dissolved gas records to 
condition of power transformers, it is pointed out in this paper 
that these methods contain some inherent weaknesses. In view of 
that, this paper introduces a novel approach for analysis of 
dissolved gas records, which can lead to a more convincing 
interpretation and accurate diagnosis. The proposed approach, 
which is based on data mining methodology and the application 
of self-organising map, has been validated using real fault-cases 
and thereby is proven to be capable of addressing the inherent 
weaknesses of the conventional interpretation methods.

Index Terms—Data mining, dissolved gases, incipient faults, 
power transformers, self-organising map.

I. In t r o d u c t io n

ICIPIENT faults in power transformers, either electrical or 
thermal in nature, can degrade the oil and cellulose 

insulation, leading to the formation of gases that dissolve in 
oil. Such faults can be detected and monitored using dissolved 
gas analysis (DGA).

DGA requires the identification and quantification of seven 
major dissolved gases, as stated in the IEC 60599 Standard 
[1]. These gases are carbon dioxide (C02), carbon monoxide 
(CO), hydrogen (H2), methane (CH4), ethane (C2H6), ethylene 
(C2H4) and acetylene (C2H2). Composition of dissolved gases 
is closely linked to the type and severity of a fault [2], For 
example, in the case of a fault with low-level energy such as 
partial discharges (PD), the main gas produced is H2. In other 
types of fault, degradation of oil is mainly caused by heat. 
Therefore, oil degradation at normal operating temperature 
produces mainly H2 and CH4. A higher fault temperature, 
resulting from hot-spots or overheating, produces mainly CH4.
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In addition, C2H6 and C2H4 will be produced in increasing 
quantity if the fault temperature continues to rise. In the case 
of much higher temperature resulting from disruptive fault 
such as electrical discharges (ED), the production of C2H2 
becomes significant. Furthermore, if  cellulose materials such 
as paper and pressboard etc., are involved in the immediate 
vicinity of faults, both C 02 and CO will also be generated.

Existing DGA interpretation methods relate the 
composition of dissolved gases to health and condition of 
power transformers. Although widely adopted by power 
utilities, these schemes are identified to be less than perfect. 
Even though attempts have been made to utilise AI techniques 
to enhance the capability of interpretation, as discussed in this 
paper, these approaches still contain some intrinsic limitations.

Comparative studies of conventional and AI approaches for 
DGA interpretation are presented in the first part of the paper. 
The second part of the paper concentrates on introducing the 
novel approach that is based on data mining (DM) 
methodology and the use of self-organising map (SOM) for 
analysis and interpretation of DGA data.

II. C o m p a r a t iv e  S t u d i e s  o f  C o n v e n t io n a l  a n d  AI 
A p p r o a c h e s  f o r  DGA I n t e r p r e t a t io n

Comparative studies of conventional and AI approaches for 
DGA interpretation have been conducted. The studies focus 
on evaluating the differences and similarities among various 
approaches and are presented as follow:

A. Conventional Approaches
Several renowned DGA interpretation methods are, for 

example, Dornenburg Ratios [3], Rogers Ratios [2], Duval’s 
Triangle [4] and the IEC Ratios [1]. These methods have been 
implemented, either in modified or improvised format, by 
various power utilities. The implementation of these methods 
requires the computation of several key gas-ratios, as shown 
in Table I. Fault diagnosis is accomplished by associating the 
values of these ratios with a set of pre-defined conditions of 
power transformers.

Generally, detection of two distinctive types of fault is 
possible, i.e. electrical fault (EF) and thermal fault (TF). EF 
can be further divided into partial discharges (PD) and 
electrical discharges (ED). Before subjecting DGA records to 
interpretation, a decision has to be made on whether fault
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diagnosis is necessary based on a comparison of dissolved gas 
concentrations with a set o f “benchmark” values, which are 
also known as the typical value o f gas concentrations. If all 
measured dissolved gas concentrations are below the typical 
values, then the corresponding transformer can be regarded as 
operating normally. If a large historical DGA database is 
available, the “benchmark” values should be calculated from 
it, based on the 90% or 95% limits [1].

TABLE I
K e y  G a s - R a t i o s  o f  C o n v e n t i o n a l  DGA I n t e r p r e t a t i o n  S c h e m e s

Interpretation Scheme Key Gas-Ratios

D8menburg Ratios
c h 4 c 2h 2 c 2h 6 c 2h 2 

h 2 ’ C2H4 ’ C2H 2 ’ c h 4

Rogers Ratios
c h 4 c 2h 6 c 2h 4 c 2h 2 

h 2 ’ c h 4 ’ c 2h 6 ’ c 2h 4

Duval’s Triangle * %C2H2; %C2H4; %CH4

IEC Ratios
c 2h 2 c h 4 c 2h 4
c 2h 4 h 2 c 2h 6

Note: For Duval’s Triangle, %[Gas] is calculated by using [Gas] as 
numerator and the sum o f three gases as denominator; percentage is then 
computed on the ratio.

Although well received by power utilities, the foregoing 
interpretation methods are known to have some weaknesses:

1) Key gas-ratios and their limits are mainly determined 
based on judgement and experience o f experts; there is 
no systematic attempt on high-level analysis o f real 
DGA data.

2) Interpretation is sometimes impossible due to the 
inability to cover all possible combinations o f ratio 
values, whereby the diagnosis has to be dependent on 
experts.

3) Inconsistency and ambiguity in implementation due to 
different interpretations by various schemes.

4) Inability to detect with high confidence faults that occur 
simultaneously within the transformer.

B. A I Approaches
Attempts have been made to utilise AI techniques to tackle 

the weaknesses of conventional interpretation methods. These 
Al approaches can be classified into two categories.

The first category o f AI approaches relies on the use of 
supervised artificial neural networks (ANNs) in an attempt to 
establish the intrinsic relationship between the actual DGA 
records and corresponding condition of transformers, as 
reported in [5]-[7], The condition o f transformers can be 
obtained either through inspection on suspected faulty 
transformers [5]-[6] or the use of conventional interpretation 
schemes [7]. A set o f input-target output samples is required 
for the training o f supervised ANN. The inputs are, for 
example, dissolved gases [5]-[6] or the values of the key gas- 
ratios [7]; the target-outputs are the corresponding condition 
of transformers.

The second category o f AI approaches integrates both 
fuzzy logic (FL) and expert system (ES), as reported in [8]- 
[9], This approach allows the incorporation o f expert 
experience into its knowledge-base, whereas the core is 
mainly built on several conventional interpretation schemes. 
The incorporation o f FL is beneficial since the uncertainty on 
normality thresholds and ratio values can be effectively dealt- 
with.

While improvement over conventional methods have been 
reported, drawbacks o f these AI approaches are identified as 
follows:

1) Acquisition o f DGA records with observed faults in 
corresponding transformers is difficult since it is costly 
and impractical to disconnect and dismantle a particular 
transformer for the purpose of confirming a suspected 
fault. Therefore, supervised ANNs would not be able to 
generalise due to a lack o f “good” fault-cases for the 
training.

2) The dependency o f fuzzy expert system (FES) on 
conventional interpretation schemes for its modelling 
has led to the inheritance o f some o f the inherent 
weaknesses o f these schemes.

III. T h e  D a t a  M in in g  A p p r o a c h

Data mining (DM) refers to a process whereby various 
techniques, either statistical or Al-based, are employed to 
unearth or “mine” valuable information from the data. It is 
known that DGA is always performed on power transformers 
as part o f  the condition monitoring (CM) procedures. 
Eventually, an enormous amount o f DGA records are gathered 
and stored in the database. These records actually contain 
valuable information regarding the series o f “events” or 
“incidence” (e.g. incipient faults) that have taken place within 
the transformers. If the hidden information can be extracted, 
comprehended and visualised, our understanding on the 
condition and health o f transformers can be improved. Thus, 
this paper explores the potential o f the DM approach for 
analysis and interpretation of DGA data.

A. Introduction to Self-Organising Map: A D M  Technique
The self-organising map (SOM) is constructed by neurons 

located on a regular two-dimensional grid, as illustrated in 
Fig. 1 [10]. The configuration o f SOM is such that it defines a 
mapping from the input space 9T, where n is the dimension of 
input space onto a two-dimensional array of neurons. Every 
neuron i is associated with an w-dimensional weight vector w, 
= [Mu,Mn, ■■•> Min?- An input vector x = [£,, £>, £,, ..., £,]T 
is connected to all neurons in parallel via weight values pj, 
where j  = 1, ..., n, which are different for every neuron.

Once the weight vectors mt have been initialised, the 
training o f SOM commences by first choosing an input vector 
x, at time-step t, randomly from the input data. The Euclidean 
distances between x  and all weight vectors mj are calculated. 
The weight vector that is closest to x  is known as the best- 
matching unit (BMU), which is denoted as c. Equation (1) 
illustrates the above stated relation. All weight vectors are

241



j

then updated according to (2). Note that hei(t) is the 
neighbourhood kernel around the BMU c, at time /. It can be 
defined as the function of the learning rate, a(t), and the 
neighbourhood function, h(\\rc -  r,||, /), as illustrated in (3). 
The rectangular function, which is illustrated in Fig. 2, is 
considered to be a suitable neighbourhood function for the 
analysis of DGA data.

6 5 S S 9cccccooooooo
Fig. 1. Neurons arranged in hexagonal lattice in a two-dimensional SOM.

c = arg mini\x -  m.

m< (t + 1) = mi

hd(t) = a (t)- /i(j|rr -  r |,  t)

( 1)

(2)

(3)

B. Analysis o f  DGA Data by Using SOM
A set of DGA data was compiled for the feasibility study of 

the proposed DM approach. This data set, which comprises 
755 actual DGA records, corresponds to 240MVA 
transmission transformers from three different manufacturers 
and of two distinct voltage ratios. The subsets of this DGA 
data are shown in Table II. Note that in all instances, the 
corresponding oil was sampled from the bottom of the 
transformer tanks.

TABLE II 
S u b s e t s  o f  D G A  D a t a

Manufacturer * Voltage Ratio Power Rating 
(MVA)

Number of 
Records

A 400/132 240 72

A 275/132 240 91

B 400/132 240 94

B 275/132 240 187

C 400/132 240 108

C 275/132 240 203

Note: Characters are used to represent manufacturers

The DGA data was pre-processed and arranged into four 
sets of inputs with different logical combination of the ten 
recorded dissolved gases, as shown in Table III. This is done 
so as to determine the key or important dissolved gases by 
visualising the optimal SOMs that have been trained based on 
these input sets.

TABLE ill 
F o u r  DGA I n p u t  S e t s

Fig. 2. The rectangular function.

If the SOM is sufficiently trained in accordance with some 
preset criterion, effective mapping from the input space to the 
two-dimensional SOM can thus be achieved. The hidden 
information of input data can then be visualised based on the 
trained SOM. There are two criteria in which a SOM mapping 
can be considered as effective:

1) The weight vectors of SOM must be similar to that of 
input vectors for effective approximation, i.e. short 
Euclidean distances between input vectors and their 
BMUs.

2) Optimal configuration of neurons on the SOM for 
effective visualisation of intrinsic data characteristics.

The optimal SOM is selected from many trials based on 
these two aspects. In fact, the selection process is founded on 
the calculation of quantisation error (QE), which measures the 
first criteria, and topographic error (TE), which measures the 
second criteria as described above.

Data Dissolved Gases Description

H20 ; N2; 0 2; C 0 2; CO; All recorded dissolved
Set A H2; CH4; C2H6; C2H4; gases including

c 2h 2 moisture

Set B C 0 2; CO; H2; CH4; C2H6; 
C2H4; C2H2

Dissolved gases from 
cellulose and oil 

degradation

SetC
CO; H2; CH4; C2H6; C2H4;

c 2h 2
Combustible dissolved 

gases

SetD
H2; CH4; C2H6; C2H4; Dissolved gases from

c 2h 2 oil degradation

Following the completion of training, an optimum SOM is 
selected for each set of inputs. It is found that regardless of the 
number of dissolved gases included in each set of inputs, two 
obvious characteristics that are contributed by H2, CH4, C2H6, 
C2H4 and C2H2 are always observed. Examples of the optimal 
SOM for Sets B and C are illustrated in Figs. 3 and 4 
respectively. Note that the optimal SOM is visualised based 
on the view of component-planes. A 64-level grey-scale is
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used to depict the concentration (measured in micro-litre per 
litre, fil/l) of each dissolved gas; the lighter the colour, the 
higher is the concentration of a particular dissolved gas.

Fig. 3. Component-planes o f optimal SOM for Set B.

For example, a large quantity of C2H2 will be formed 
during the onset and evolution of electrical discharges (ED). 
Moreover, H2 will also be generated in large amounts due to 
extremely high temperatures associated with the fault. Thus, 
the correlation between H2 and C2H2 is logical and is 
successfully unearthed by SOM. On the other hand, in case of 
thermal fault (TF), large amounts of CH4, C2H6 and C2R 1 will 
be produced. However, the concentration of C2H2 is not 
significant due to the lower fault temperature. Therefore, the 
SOM has also succeeded in learning and displaying this fact. 
In addition, if the afore-mentioned faults also involve 
cellulose insulation, the generation of C 02 and CO becomes 
significant. That is why areas of high concentration of H2, 
CH4, C2H6, C2H4 and C2H2 also correspond to quite high 
concentration of CO2 and CO.

C. Interpretation o f  Optimal SOM
A more effective way of visualising the overall inherent 

characteristics of DGA data is the view of “u-matrix” map; it 
is simply a matrix of Euclidean distances among all neurons of 
SOM. It is used to gain a global view of clusters resulting 
from the correlation among dissolved gases. As an example, 
the “u-matrix” of optimum SOM for Set C is illustrated in Fig.
5.

u

Fig. 5. The “u-matrix” of optimal SOM for Set C.

CH< C2H6

Fig. 4. Component-planes of optimal SOM for Set C.

As illustrated in Figs. 3 and 4, similarity in inherent 
characteristic is clearly observed between Il2 and C2H2, and 
among CH4, C2H6 and C2H4 as well. In fact, the observed 
correlation in these two groups of dissolved gases is 
comprehensible.

The first step in interpreting the observed inherent 
characteristics in the “u-matrix” map is to partition it into 11 
regions, as illustrated in Fig. 5. Detailed statistical analysis is 
then performed on each region, whereby the average 
concentration of dissolved gases is computed. The 
corresponding input vectors for each region are gathered by 
performing BMU searches for neurons. The average 
concentration for every key dissolved gas across various 
regions is as illustrated in Fig. 6.

Close correlation among two groups of dissolved gases is 
revealed in Fig. 6, as signified by the resemblance of the 
concentration curves. Moreover, it is proven that both H2 and 
C2H2 are the dominant gases in regions 1 to 5. In contrast, 
CH4, C2H6 and C2H4 are found to be dominant in regions 6 to 
8. Moreover, considerable concentration of all key dissolved 
gases is observed in regions 9 and 10, since they form the 
interception regions between the two main clusters.

It is thus obvious from the foregoing that the inherent 
characteristics of DGA data as illustrated in the “u-matrix” 
map can be associated with the condition and health of power
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transformers, as sufficiently proven by the common sense 
knowledge in dissolved gas formation in relation to faults and 
consistent revelations in statistical analysis. The interpretation 
of the “u-matrix” map in relation to faults is as shown in Fig. 
7, which illustrates that the diagnosis and monitoring of four 
conditions is possible, i.e. ED, TF, simultaneous occurrence of 
ED and TF, and the normal operating condition where no 
incipient fault is suspected.
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Fig. 6. Average concentration o f dissolved gases across various regions.
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Fig. 7. Interpretation o f “u-matrix” map in relation to faults.

D. Validation o f Extracted Knowledge
The “extracted” knowledge with regard to the association 

of inherent DGA characteristics with the health and condition 
of power transformers is further validated using real, 
confirmed fault cases. Fig. 8 depicts some examples of these 
cases.

As can be observed from Fig. 8(a), the DGA trajectory of 
that particular transformer does not venture into any of the 
identified fault regions, hence no incipient fault is suspected. 
This diagnosis is in fact consistent with the observation of an 
expert in NGC, who attributes the changes in gas levels to the 
normal ageing of oil. In Fig. 8(b), it is clearly depicted that the 
DGA trajectory has slowly moved into the identified TF 
region. This observation has also been confirmed by the 
NGC’s expert, and is directly attributed to a known 
transformer thermal problem, peaking in year 1991 to 1992. 
Lastly, Fig. 8(c) illustrates the movement of DGA trajectory 
into the identified ED region, as evident by the fact that arcing 
(or sparking) was known to have occurred at the clamping 
plate of that transformer.

Hence, the interpretation on transformer condition as given 
by the proposed approach matches the actual condition and 
fault incidence as observed by a transformer expert.

(a)

Fig. 8. DGA trajectories o f power transformers.

IV . C o n c l u s io n s

In conclusion, the proposed DM approach for analysis and 
interpretation of DGA data using the SOM has successfully 
resolved several inherent weaknesses of the conventional 
DGA interpretation schemes, as listed below:

1) Determination of gas-ratios and their limits is not 
necessary; the modelling process is based entirely on 
recorded dissolved gas records.
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2) Diagnosis and interpretation of the health and condition 
of power transformers are always guaranteed; only 
actual dissolved gas records are required for the 
interpretation.

3) Uncertainty and ambiguity in interpretation is avoided 
owing to the fact that the interpretation is founded on 
the inherent characteristics of DGA data.

4) Visualisation on transformer condition is now possible 
via the means of DGA trajectory; onset of an incipient 
fault can therefore be effectively detected and monitored 
“visually”.

5) It is relatively cost-effective to implement the proposed 
approach since only historical DGA database is required 
for its modelling.

Finally, the proposed approach can be used as a decision 
support tool by transformer engineers in addition to 
conventional approaches for the monitoring of health and 
incipient faults of power transformers.
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