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ABSTRACT

TRILOBITES have been cited in the scientific literature for nearly 200 years but 

their evolutionary relationships are contentious. Studies resolving this issue are 

necessary in order to assemble a stable trilobite classification and also to 

facilitate further macroevolutionary studies on the group. However, less than fifty 

papers have been published using modern cladistic methods.

This work investigated the phylogenies of four large trilobite groups: 
Lichoidea, Calymenina, Odontopleurinae and lllaenoidea. These four taxa have 

distinctive gross morphologies and present different challenges. Some taxa are 
well-known, others poorly; some are spiny and some exceptionally effaced. Fine 

resolution was attained in all resulting phylogenies. The systematic palaeontology 
of each group was reassessed accordingly and phylogenetically valuable 
character states were listed.

A Bayesian phylogenetic method was employed in Chapter 2 to analyse 

morphological data for the first time: lichoids were used as a case study. The 
trees obtained were similar to those inferred using parsimony, with the exception 
of relationships between the deeper branches.

Chapters 4 and 5 investigated the phylogeny of two large groups 

(odontopleurids and illaenoids respectively) and used the same character data to 
explore the disparity (morphological variety) of both groups. The disparity of 

odontopleurids decreased significantly through time, but that of illaenoids did not. 
The relative disparity of major clades within each group was also investigated.

In summary, the results of this study provide a platform for future trilobite 

workers: important morphological distinctions have been identified between 

clades, phylogenetically-important character states recognised and temporal 

patterns of disparity for two higher taxa have been investigated.
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Waloszek 1987); x 50.0; (e) Paralejurus dormitzeri, Czech Republic. Holochroal eye is 

coated with NH4CI to increase contrast; x 10.0; (f) Olenoides serratus (Rominger 1887, 

p. 51), with appendages from the Middle Cambrian of the Burgess Shale (Whittington
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1980, pi. 20, fig. 4); x 5.0; (g) four aspects of an enrolled calymenid (from Fortey 2000); x 

2.0; (h) Chotecops and the remarkable preservation of its appendages (Bartels, Briggs 

and Brassel 1998); x 2.0.

Parts (a), (c) and (e) were kindly provided by Professor E. N. K. Clarkson, Univ. of 

Edinburgh.

Plate 4.

Silificied trilobites (plate 12 of Whittington 1956); x 1.25.

Plate 5.

(a) Sinespinaspis markhami Edgecombe & Sherwin, 2001, Fig. 4(b); x 5.0; (b)
Dudleyaspis bowningensis (^p://vvww.austmus.qov.au/palaeQntoloqY/collections/trilobites.htm); y  5  Q ; ^

Acidaspis sp. x 2.o; (d) Kettnerasp. x 4 Q; (e)

Boedaspisens/fer(” f°5S"ma" I" ri1; x 4.0; (f) Sele x 0 75 

Plate 6.

(a) Cranidium and (b) pygidium of Eokosovopeltis grandicurvatus Edgecombe et al., 

1994; Fig 4 (A) and 5 (D) respectively; x 2.5; (c) Paralejurus tenuistriatus Schraut & 

Feist, 2004; Figure 7 (pts 6 and 7); x 2.0; (d) Thysanopeltis sp. ■°{Q); x 2.0; (e)

Kolihapeltis sp. (̂  tnloblt̂  info); x 2.0.
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1. Introduction

1.1 WHAT ARE TRILOBITES: WHY ARE THEY USEFUL

SUBJECTS?

\ . .[the] butterflies of the s e a L e v i - S e t t i  1995, p. 1

VERITABLE zoological time-capsules lie beneath our feet in the form of fossils. One 

such fossil group, the trilobites, were marine arthropods that teemed aplenty in 

Palaeozoic seas. As such, these extinct animals have provided us with a detailed insight 

into life half a billion years that passed before we came to be; with a history extending 

through some three hundred million years.

The first published mention of trilobites in scientific literature concerns a 

specimen of what is now known as Ogygiocarella (Asaphus) debuchii Brongniart, 1822 

(see Figure 1.1).

Figure 1.1: The Sceleton o f some Flat-Fish described by Dr. Lhwyd (1698).
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As is the case with all rigorous fields, our body of knowledge is in a continual 

state of flux as hypotheses are reassessed and readdressed. Scientific concepts 

regarding trilobites have duly developed since their first description. They were 

recognized as a formal animal group in 1771, by Walch, and then re- evaluated by 

Ramskold and Edgecombe (1991) and, later, by Edgecombe and Ramskold (1999).

There are many reasons why trilobites have been, and continue to be, interesting 

and useful subjects for study. They are: (1) among the earliest known arthropods found 

in the fossil record (Fortey & Owens 1997 in Kaesler 1997); (2) they were capable of 

rapid evolutionary change (Fortey & Chatterton 1988); (3) they showed highly disparate 

morphology within the class and some unusual and striking appearances; (4) they are 

found world-wide; (5) they are abundant and (6) can be exceptionally well-preserved.

Trilobites have been the subjects of a vast range of studies, ranging from those 

concerned with: microevolution (Sheldon 1987), macroevolution (Wills et al. 1994), 

heterochronic changes (McNamara 1978, 1981), to biogeography (Cocks & Fortey 

1988). The first phylogenetic study involving trilobites, however, was only published in 

1977 (Eldredge) and publications of trilobite cladistic analyses have only featured fairly 

abundantly over the past decade or less (see references within section 1.3.2).

This work investigates, and makes important steps towards resolving, the 

phylogenies of four major, contrasting groups of trilobites. It is hoped that the overall 

work will provide new morphological characters for future workers on similar groups and 

provide further resolution of general trilobite phylogeny.

The explanations for choosing the groups examined here are documented below:

1 Lichids -  This is a well-documented group, with much ground work done and clear 

morphological groups. Work on this group highlighted many of the common 

problems inherent in applying morphological phylogenetics to most arthropod 

groups.

2 Calvmenids -T h e  relationships between them and the homalonotids has long been 

discussed. Dr. D. J. Siveter’s expertise, comprehensive library and collection were 

invaluable.

3 Odontopleurids -  This is an exciting and challenging group. Very detailed work on 

some groups has been conducted by Ramskold but there remain many gaps. His 

work helped to develop a framework for this study. Being a very spinous group, it 

was thought an appropriate clade in which to investigate temporal patterns of 

disparity.
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4  lllaenids and stvainids -  This group is poorly understood with little documentation 

on their phylogeny. This proved to be the most challenging group to work on -  but it 

was hoped that it would prove valuable for workers of all effaced trilobites. This 

group is so effaced that it was thought interesting to test their disparity -  to see if 

they displayed a different pattern compared with the spinous groups.

1.1.1 General Morphology

Trilobites have long been known for their expression of exquisite shapes and 

sizes (see Plate 1 (a-g)). Indeed, in recent years, a lucrative trilobite-trade has emerged 

-  with trilobite collectors paying extremely large figures for some of the most 

exceptionally preserved and unusual morphologies. Trilobites have become a kind of 

geological Van Gogh: their ‘art’ appreciated long after their prime.

Naturally, the scientific community is interested in more than just the intrinsic 

beauty of these arthropods. And, indeed, much progress has been made in recent years 

in the details of trilobite morphology. This has created a rich field for functional 

morphological studies. Most investigators have been forced to focus on the calcified 

parts of the trilobite alone as the ventral and internal structures are not often preserved 

in enough detail. Calcification stops at the inner edge of the doublure, as it rolls ventrally, 

and, as the limbs are not calcified, often only the dorsal exoskeleton is preserved. In rare 

circumstances, however, conditions have been appropriate for good preservation of non­

calcified structures (at sites known as Konservat-Lagerstatten, such as the Burgess 

Shale of British Colombia, Canada). These sites of exquisite preservational status allow 

us windows into the structure of soft-bodied animals (Plate 2 (a-b)), microscopic 

embryonic stages of early Metazoa (Plate 2 (c-d)), the delicate internal structures of 

fossil organisms (Plate 3 (f-h)) and even behavioural characteristics (Plate 2 (e-f)).

A short description of the trilobite body follows (see Kaesler 1997, for a fuller 

explanation). The terminology of the Treatise on Invertebrate Paleontology (Kaesler 

1997) is followed throughout this thesis unless otherwise stated (see Figure 1.2).
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Figure 1.2: Terminology of the dorsal exoskeleton (adapted from Clarkson 1998).

Plate 1.
Various morphologies expressed by the class Trilobita: (a-b) the phacopoid, Erbenochile sp., with 
unusually high eyes (Fortey & Chatterton 2003, figs 1b and a, respectively; x 1.0); (c) spiny 
Lichas (Hoplolichas) tricuspidatus (www Pj3leoaft,p9m); x 1.0; (d) Cybele sp. |wŵ palgoartconi); x 1.0; (e) a 
highly effaced asaphid (wwwpaleoartcom); x 1.0; (f) a trinucleid displaying the possibly sensory pitted
f r jn g e  (http://www.lapworth.bham.ac.uk/collections/palaeontology/lowerpalaeozoic.htm). x  Q 5 .  ( g )  h i g h l y  t u b e r C U l a t e

cranidium of Phacops rana <httP://www Phac°p^ com); x q.5.
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Plate 1
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Plate 2.
(a-b) Opabinia regalis (from Briggs et al. 1994). (a) fossil; (b) reconstruction; x 0.5.
(c-d) Late-stage embryos of Markuelia hunanensis from the middle and late Cambrian Bitiao 
Formation of Wangcun, Hunan Province, south China (from Dong et al. 2005). (c) Embryos of M. 
secunda from the early Cambrian Pestrotsvet Formation at Dvortsy, Siberia. Fracture reveals 
serially-repeated internal organs in register with surface annuli; x 400.0; (d) anterior pole of 
embryo exhibiting multiple circumoral rows of spines; x 100.0.
(e-f) The oldest known fossil of an arthropod in the act of moulting: Marrella splendens, from the 
Middle Cambrian Burgess Shale of British Columbia, Canada, (e) Specimen of M. splendens 
emerging and pulling out the flexible lateral spines from the old exoskeleton (exuvia; scale bar 5 
mm); (f) Camera lucida drawing of the same specimen (both from Garcia-Bellido & Collins 2004).

Dorsal. The dorsal, exoskeletal cuticle of trilobites was calcified (as was the hypostome 

and doublure), composed of low magnesian calcite of considerable purity (Wilmot & 

Fallick 1989) and 100-150pm thick on average (Fortey & Wilmot 1991). Its primary

function may have been to provide musculature support: invaginations occurred in the

form of glabellar furrows, to which the musculature operating the cephalic appendages 

attached. Even those trilobite species that show effaced glabellar furrows display muscle 

insertion areas as dark patches (e.g. the Homalonotidae of Chapter 3).

This cuticle is often modified into spines: most species display genal spines but some 

species are extremely spinous all over the exoskeleton (e.g. the Odontopleurinae of 

Chapter 4). It has been suggested that these have many functions:

•  Genal spines providing a ‘lever’ to aid the moulting process;

•  Lateral spines to prohibit yawing in the water column and, hence, aid swimming 

(Fisher 1975);

•  Protection;

•  Camouflage; and

•  To possibly act as an aid to pelagic habits by inhibiting sinking (Hammann & 

Rabano 1987).

The cuticle is known to have perforations in the form of canals (Sturmer 1980): 

although the function cannot be ascertained, it is likely that there were sensory hairs, or 

similar, innervated from these canals (Fortey & Owens 1999). Some species possessed 

an organ in the form of pits on the occipital lobe (e.g. Bronteopsis, see chapter 5): the 

function of this is unknown but it may have been chemosensory (Whittington 1956, pi. 2, 

fig. 21).
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Ventral. The appendages of meraspid developmental stages (see section 1.1.2 below) of 

Agnostus pisiformis from the Upper Cambrian of Sweden are the best preserved (Plate 

3, part (d); Muller & Waloszek 1987). The cephalon bore four pairs of appendages, five 

pairs of trunk limbs (similar to the fourth cephalic limb) follow and reduce in size 

progressively. A reconstruction of Olenoides serratus from the Burgess Shale formation 

shows antennae and 16 pairs of biramous appendages (probably 3 on the cephalon, 1 

pair on each of the seven thoracic segments, and 6 on the pygidium; Whittington 1980; 

see Plate 3, parts (f) and (h)).

The biramous appendages consist of a walking leg (endopod) and a filamentous 

gill (exopod). Spines on the coxa bases (gnathobases) would have helped to break up 

food as it was passed up to the plate overlying the mouth (hypostome).

Plate 3.
(a) Peltura scarabaeoides protaspis, Rossanga, Sweden; x 25.0; (b) Schizochroal eye of 
Phacops latifrons (Bronn) from the Devonian of Germany (Levi-Setti 1995); x 5.0; (c) Phacops 
rana, Ohio, U.S.A. This shows a newly-moulted soft-bodied trilobite (left) that perhaps died close 
to the remains of its cast-off exoskeleton (right); x 3.0; (d) Reconstruction of the ventral anatomy 
of Agnostus pisiformis (Wahlenberg) (Muller & Waloszek 1987); x 50.0; (e) Paralejurus dormitzeri, 
Czech Republic. Holochroal eye is coated with NH4CI to increase contrast; x 10.0; (f) Olenoides 
serratus (Rominger 1887, p. 51), with appendages from the Middle Cambrian of the Burgess 
Shale (Whittington 1980, pi. 20, fig. 4); x 5.0; (g) four aspects of an enrolled calymenid (from 
Fortey 2000); x 2.0; (h) Chotecops and the remarkable preservation of its appendages (Bartels, 
Briggs and Brassel 1998); x 2.0.
Parts (a), (c) and (e) were kindly provided by Professor E. N. K. Clarkson, Univ. of Edinburgh.
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Plate 3
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Internal. The forms of muscle scars and of invaginations of the exoskeleton around the 

axial region have helped elucidate the pattern of limb and ligament musculature (Cisne 

1974; see Fig 1.3). Radiographs of pyritized specimens have also been important (see 

Sturmer & Bergstrom 1973). Soft parts are unknown so inferences have relied on 

comparison with biomechanically-similar extant arthropods.

Heart

MusclesAlimentary canal
Exopodite

Dorsal
exoskeleton

Gills

Limb

Nerve cord
Gnathobase

Figure 1.3: Sagittal section of trilobite displaying internal structures.

Behavioural and sensory. Trilobite eyes are the earliest to be preserved in the fossil 

record (Parker 2003). Eyes are present in the earliest trilobites and their absence is 

always secondary. The eyes of the later trilobites are better known: the earlier ones 

possessed a suture (= eye socle) that enabled the visual surface to fall out and are, 

therefore, rarely preserved in place (Clarkson 1975). They typically comprise an 

elongate lobe with a large number of lenses. They display two forms: schizochroal and 

holochroal (Plate 3, parts (b) and (e) respectively). The latter type is simpler and has 

numerous, hexagonal, small, closely-packed lenses. The former, in contrast, has 

comparatively few, large lenses that are separated by a sclera. Unusual eye forms are 

seen in some species, such as Erbenochile (Plate 1, parts (a-b)), and blindness is seen 

throughout the group Trilobita, e.g. Thomastus (see Chapter 5) and Conocoryphe (see 

Cotton 2001).
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The segmented and articulated trilobite thorax enabled considerable flexion in the 

dorsoventral plane and, therefore, many trilobites could enrol (Plate 3, part (g)). The 

commonest form involved the pleural tips of the thorax sliding over each other (in effect 

shortening the body laterally) while the axial region extends by way of exposing the axial 

half-rings until the cephalon and the pygidium were brought into close contact.

Trilobites increased their size by moulting. Increase in size occurred during the 

‘soft’ phase: recalcification occurred at the larger size. Individuals would have been most 

vulnerable at the ‘soft’ stage, immediately after moulting (see Plate 3, part (c)). Shedding 

the exoskeleton was a delicate procedure and would have sloughed the limbs, gill 

branches and antennae as well as the cuticle (Fortey & Owens 1999). Sutures of the 

exoskeleton would have expedited the process and allowed the trilobite to moult in 

stages rather than emerging from the exoskeleton in one phase.

Exoskeletal growth in arthropods occurs in a stepwise manner; post-embryonic 

development being paced by the moult cycle. Some trilobite species adhered to Dyar’s 

rule (which assumes a constancy of the postmouIt/premoult size ratio between moults), 

e.g. Aulacopleura konincki (see Fusco et al. 2004) and Leptoplastus salteri (see Pollitt 

2001).

1.1.2 Trilobite ontogeny and body patterning

Trilobites calcified their dorsal surfaces relatively early in ontogeny, and their 

moulting habit yielded sequential instars that can be arranged into ontogenetic series, 

now known for many species (Chatterton & Speyer 1997). The earliest instar -  a single, 

fused shield - is known as the protaspis (Plate 3, part (a)). This was composed of a 

cephalic region made up of serially-repeated segments (most visible in the axis). 

Cephalic segments remain stable in number with the appearance of the cephalon 

changed markedly during growth. The proto-pygidium was characterised by the 

appearance of additional segments that increased their relative proportions relatively 

rapidly through growth, but which resembled one another closely in overall form (Hughes 

2003). There appear to be two types of protaspid stage -  an adult-like and nonadult-like 

body plan. The latter are more globular and three dimensional in shape, rather than disc­

shaped. The transition between nonadult-like and the further adult-like stages of the 

same species has been interpreted as an example of metamorphosis (although this
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transition is not the radical reorganization of body patterning to which the term is 

commonly applied among extant arthropods; Williamson 1982).

The transition to the next major phase -  the meraspis -  was defined by the 

appearance of an articulation between the cephalon and the trunk region (yielding a 

hinge-like body structure) and release of segments in a ratchet-like manner. This stage 

is not developmentally homogenous among all taxa: in many species it occurs after the 

budding of 3 or 4 thoracic segments, but the cheirurid Ceraurinella typa did not seem to 

reach this stage until it had 14 trunk segments (Whittington & Evitt 1954).

The transfer of segments from the anterior transitory pygidium (a subterminal 

growth zone) to the thorax continued throughout meraspid ontogeny until the final phase 

was reached: this is generally considered to have begun at the point at which a stable 

number of thoracic segments was reached (Raw 1925) and is termed the holaspis 

phase.

1.2 PHYLOGENETICS: A (VERY) BRIEF HISTORY

‘The first step to wisdom, as the Chinese say, is getting things by their right names’ -

Wilson 1998, p. 2

The inventory of known living species currently stands at -1 .7  million (Tudge 2000, 

p. 6) but estimates of numbers of existing species are nearer 30 million (see Erwin 1982) 

or even 100 million (study by Erwin in Morell 1999)! The function of science is to uncover 

things that can help us understand the Universe more fully. A first step toward 

understanding is to provide a common frame of reference by naming surrounding 

objects.

Wilson suggested there exists two kinds of original thinkers: those who, upon 

viewing disorder, try to create order, and those who, upon encountering order, try to 

protest it by creating disorder: The tension between the two is what drives learning 

forward’ (Wilson 1998, p. 46). Indeed, he notes that ‘human beings are obsessed with 

building blocks, forever pulling them apart and putting them back together again’ (ibid, p. 

53). These inclinations may explain our need to look for a natural structure within our 

fellow creatures and, moreover, why it is constantly unstable.

The history of classification has passed through roughly four phases (see Tudge 

2000 for a comprehensive description):
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(1) Ancient taxonomy: best represented by Aristotle (384-322 B.C.)

(2) Classical taxonomy: Linnaeus proposed his formal rules of grouping and ranking 

that, with only minor modifications, should endure forever (1758).

(3) Darwinian taxonomy: Darwin (1859) realized that Linnaeus’ taxonomy and the 

relationships between species (i.e. a phylogenetic tree) are intrinsically linked. A 

chronologically equal method to that of cladisitics, but pre-cladistic in current 

methodological dominance, is phenetics or numerical taxonomy. It gained much 

attention from the 1960s onwards but has little following now. The method essentially 

relied on drawing-up lists of similarities and differences between taxa: the more the 

merrier. These data were then analysed statistically. Homologous and homoplastic 

characters were not identified, neither were characters polarized. The subjectivity of 

the phenetic method has meant that it has been abandoned for the more objective, 

hierarchical method of cladistics (see Ridley 1986, p. 83-85) that assumes common 

descent.

(4) Cladistics: Hennig proposed the method cladistics (from the Greek dados, 

meaning branch) in 1966. It seeks to group taxa according to their shared derived 

homologies (or synapomorphies). Other features, no matter how conspicuous, are 

ignored. This method is extremely thorough: vast quantities of morphological data can 

be collected. This data is analysed by computer in a parsimonious manner (in a way 

that makes the least assumptions and needs fewer explanations). The nestings 

produced by this method equate to clades (or groupings) within a phylogenetic tree. 

These can then be used to instruct the naming of the group in question. Important 

concepts here are: monophyletic (includes the most recent common ancestor plus all 

descendents), paraphyletic (as monophyletic plus only some descendents) and 

polyphyletic groups (does not include the most recent common ancestor).
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1.3 THE PHYLOGENY OF TRILOBITES: AS CURRENTLY KNOWN

. .naming is taming' -  Fortey 2004, p. 117

1.3.1 The Trilobita sensu stricto

Although trilobites are an abundant and well-studied group, a formal diagnosis 

of Trilobita has, until recently, remained elusive. Historical diagnoses were little more 

than general descriptions of a non-specific individual -  rather than rigorous appraisals of 

the distinguishing characters of the group. There have been three main areas of 

contention:

(1) Whether or not the naraoiids should be considered as trilobites has been disputed. 

These arthropods lacked a calcified cuticle, evidence of sutures and other important 

apomorphies of the group Trilobita. The view that they are closely related to the 

Chengjiang taxon Retifacies Hou et al. 1989 has been suggested (Hou & Bergstrom 

1997; although this view has been strongly contested, see Edgecombe & Ramskold 

1999). A more favoured view is that they are, indeed, closely related to the Trilobita 

(Briggs et al. 1992; Fortey & Theron 1994; Whittington 1977): they have a large 

pygidium, non-fulcrate thoracic segments, and a trilobite-like arrangement of cephalic 

limbs (Fortey in Kaesler 1997). Although this fairly small number of species are 

probably undeserving of the taxonomic status of a class, they probably constitute a 

sister group to the Trilobita (Fortey in Kaesler 1997; but see Edgecombe & Ramskold 

(1999) for a contrary view). However, the Naraoiidae must be excluded from the 

Trilobita sensu stricto, if the latter is to be formally-defined based upon characters of 

solely calcified forms (Edgecombe & Ramskold 1999; Hou & Bergstrom 1997).

(2) The suggestion that the olenellids, long regarded as trilobite taxa, are more 

closely-related to the Chelicerata by Lauterbach (1980, 1983) (thus making the 

Trilobita paraphyletic) generated a detailed study into the definition of Trilobita (Fortey 

& Whittington 1989). Lauterbach argued that the similarities between the olenellids 

and trilobites are due to symplesiomorphy (those characters inherited from a more 

distant ancestor than from the most-recent common ancestor of the group). This 

assertion has been strongly countered (Fortey & Whittington 1989; Ramskold &
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Edgecombe 1991; Edgecombe & Ramskold 1999) and the issue of trilobite 

monophyly is now well accepted.

(3) The status of the order Agnostida Salter, 1864 as trilobites has been questioned. 

Agnostids are minute, have only two or three thoracic segments, and have a pygidium 

that closely matches the cephalon in outline (Whittington et al. in Kaesler 1997). No 

protaspid stages have ever been found. However, the appendages of a member of 

the suborder Agnostina, are known in exquisite detail from immature phospatized 

material from the Upper Cambrian ‘Orsten’ faunas of Sweden (Muller & Waloszek

1987). The Agnostina share some apomorphies with the Eodiscina (Jell 1975; Fortey 

1990; Zhang et al. 1980), an undisputed trilobite suborder. However, due to the 

former taxon’s many autapomorphies, it has been argued that agnostids should not 

be placed within the Trilobita (Resser 1938) and that the similarities between the 

Agnostina and Eodiscina are merely convergences (Ramskold & Edgecombe 1991; 

Shergold 1991). One line of evidence that is cited in support of this view is the 

discovery of a calcified eodiscoid protaspis (Shergold 1991). As no calcified protaspid 

stages have been found for Agnostina, this discovery seemingly demonstrated a 

closer relationship of the Eodiscina to the more typical trilobites; implying that the 

Agnostina is independently derived. However, it is equally possible that the non­

calcification of the agnostid protaspis is secondarily derived, perhaps a consequence 

of progenesis, and the Eodiscoidea and Agnostina are sister groups within the 

Trilobita (Fortey & Theron 1994). Recent cladistic analyses have, indeed, placed the 

Agnostina firmly within the Trilobita (albeit in an uncertain position within the class; 

but see that of Edgecombe & Ramskold 1991, which places the agnostids as a sister 

group of restricted Trilobita). High-level phylogenetic studies have placed it as the 

basal sister group to the clade of other trilobite lineages (Wills et al. 1994, 1998) or as 

sister group to the Eodiscina, these clades then being the sister group to the other 

trilobite lineages (Fortey & Theron 1994, text-fig. 7). However, when one character in 

the latter study was re-coded (the rostral plate of agnostids being secondarily lost 

rather than absent) the Agnostina-Eodiscina clade was resolved as highly derived 

within the higher Trilobita (Fortey & Theron 1994, text-fig. 8; but see Smith (1994, p. 

37) for reasons why this method is undesirable). A lower level study resolved it as the 

sister group to the suborder Eodiscina, this clade being basal sister group to the non- 

olenelloid trilobites (Fortey 1990, text-fig. 14). It may seem strange that their
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phylogenetic position is so inconsistent within analyses, even though the limbs of 

Agnostina have been described in such detail. However, not all the fossil groups that 

are included in the conducted studies have full information available; for example, no 

limbs are known for Eodiscina. What new information may help to resolve the issue of 

the phylogenetic position of Agnostina? Detail of their ventral morphology would be 

invaluable. If olenellid-like rostral plates (i.e. with a perrostral suture) are discovered 

in agnostids or eodiscoids, then the inclusion of the Agnostida into the higher Trilobita 

would be further supported. The discovery of early ontogenetic stages of 

‘conventional’ trilobites with agnostid-like limbs would give support to the idea that the 

agnostids arose by progenesis (achieving sexual maturity at an ‘arrested’ stage of 

ontogenetic development) (Fortey 2001).

1.3.2 Who makes up the group and what other cladistic studies have there been?

Despite all the work on unifying the group, the number of constituent orders still 

remains unstable: Harpetida was recently split from the Ptychopariida (Ebach & 

McNamara 2002). The orders unequivocally placed within Trilobita are presently:

•  Redlichiida
•  Ptychopariida
•  Asaphida
•  Harpetida
•  Proetida
•  Phacopida
•  Lichida; and
•  Corynexochida

Even so, there is still great contention regarding interordinal and intraordinal 

relationships. Figure 1.4 offers a cautious portrayal of overall trilobite relationships.
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Figure 1.4: Putative trilobite ordinal relationships 

1.3.2.1 Order Redlichiida

Suborder Redlichiina Richter, 1932. This taxon has been reviewed in depth (Zhang et al. 

in Kaesler 1997) but the suborder has not been subjected to rigorous phylogenetic 

analyses. The suborder is characterised by an opisthoparian facial suture, and a rostral 

plate that is transversely narrower than in Olenellina and that is bounded by rostral and 

connective sutures, amongst other features (Zhang et al. in Kaesler 1997). However, it is 

difficult to diagnosis this suborder soundly because it is probably paraphyletic; 

ptychoparioid, corynexochid and possibly other trilobite taxa have sister groups that 

would be currently classified in the Redlichiina (Fortey 2001).

This suborder consists of three superfamilies: (1) the Emuelloidea Pocock, 

1970, (2) the Redlichoidea Poulsen, 1927, and (3) the Paradoxidoidea Hawle and 

Corda, 1847. These comprise one, twelve and two families respectively. It is likely that
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the Redlichiina occupies a most basal position within the non-olenelloid trilobites (Fortey 

1990,2001).

Suborder Olenellina Walcott, 1890. Representatives of this suborder include the first 

trilobites to appear in the fossil record (Lieberman 1998) and the Olenellina is widely 

thought to be the basal trilobite clade (Fortey 1990; Fortey & Owens in Kaesler 1997; 

Fortey & Whittington 1989; Ramskold & Edgecombe 1991). This taxon is a major, 

morphologically diverse group of trilobites that is characterised by the primary lack of 

facial sutures, a transversely wide rostral plate that extends between the genal angles, 

and a nonfulcrate thorax, among other features (Palmer & Repina in Kaesler 1997).

The possibility of a close phylogenetic relationship between some olenelloids 

and limuloids has been mentioned above. Although this hypothesis has been refuted, 

the possibility of Olenellina being paraphyletic with respect to the Redlichiina remains 

(Budd 1995; Fortey & Whittington 1989; Palmer & Repina 1993; Repina 1990).

This Olenellina has, until recently, been thought to comprise two superfamilies:

(1) the Olenelloidea Walcott, 1890, and (2) the Fallotaspidoidea Hupe, 1953 (Palmer & 

Repina in Kaesler 1997). However, recent phylogenetic analyses, on the suprafamilial, 

the generic and the species levels (Lieberman 2001, 1998 and 1999 respectively) have 

yielded a different taxonomic classification. The generic level analysis resulted in the 

division of the suborder into three superfamilies - the Olenelloidea Walcott, 1890, the 

Judomioidea Repina, 1979, and the Nevadioidea Hupe, 1953 - and the removal of the 

superfamily Fallotaspidoidea Hupe, 1953 in order to avoid making the suborder 

paraphyletic (Lieberman 1998).

The Fallotaspidoidea was removed because it may share a more recent 

common ancestry with the Redlichiina Richter, 1932 than it does with other members of 

the Olenellina (Lieberman 1998). It is also putatively paraphyletic and, therefore, should 

be referred to informally as the ‘fallotaspidoids’ (Lieberman 1998; see Wiley 1979 for the 

within-quotes convention for paraphyletic groups). A higher phylogenetic analysis based 

on the three superfamilies Olenelloidea, Judomioidea and Nevadioidea showed that the 

Olenelloidea, along with the genus Gabriellus Fritz 1992, are the sister group of the 

Judomioidea Repina, 1979 (Lieberman 2001). The ‘Nevadioidea’ Hupe, 1953 were 

shown to be paraphyletic (Leiberman 2001).
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1.3.2.2 Order ‘Ptychopariida’ Swinnerton, 1915, emend. Fortey 1990

This taxon is notoriously problematic. It contains two definite suborders: (1) the 

Ptychopariina Swinnerton, 1915 and (2) the Olenina Fortey, 1990. The Harpina 

Whittington, 1959 in Moore (1959) was assigned to this group prior to 2002 (when it was 

given ordinal status; see section 1.3.2.4).

The suborder Pychopariina is unequivocally paraphyletic, containing the 

primitive members of the subclass Libristoma that lack the synapomorphies of the more 

derived groups (Cotton 2001; Fortey 1990). Three ptychoparioid families have been 

subjected to cladistic analysis: (1) the Conocoryphidae Angelin, 1854 (Cotton 2001); (2) 

the Shumardiidae Lake, 1907 (Waisfield etal. 2001); and (3) the Alokistocaridae Resser, 

1939 (Sundberg 1999). The first was found to be polyphyletic, one of its constituent 

families having been referred to the Corynexochida (Cotton 2001), and the two others 

are monophyla (Sundberg 1999, Waisfield etal. 2001).

The Olenina comprise an accepted monophyletic order (Fortey 1990; 

Henningsmoen 1957) and their ontogenies are well understood (e.g. Clarkson & Ahlberg 

1997, 2002; Clarkson & Taylor 1995). Their phylogenetic relationships have been well 

described (e.g. Henningsmoen 1957; Westergard 1922). However, there has been no 

phylogenetic analyses conducted on this group; their phylogeny has been determined 

primarily from the direct ‘reading’ of the stratigraphic record because their record in the 

Upper Cambrian ‘olenidskiffer1 is unusually continuous (Fortey 1990; Clarkson et al. 

1998). The suborder Olenina consists of only one family, the Olenidae Burmeister, 1843. 

There have been some attempts to incorporate other families into the Olenina (e.g. 

Palmer 1965; Shergold 1980), but many of these shared characters emphasised are 

symplesiomorphic or homoplasious (Fortey 1990).

1.3.2.3 Order Asaphida Salter, 1864, emend. Fortey and Chatterton, 1988

This large clade has been thoroughly reviewed and subjected to a cladistic 

analysis (Fortey & Chatterton 1988). This was one of the first applications of cladistics to 

a entirely extinct group (Fortey 2001). Members of the group are united by presence of 

the ventral medial suture (Fortey 2001; Fortey & Chatterton 1988). This may have arisen 

by reduction and eventual loss of the rostral plate (Chatterton et al. 1994; Fortey in
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Kaesler 1997) and is secondarily lost by ankylosis (connection) in some groups, e.g. the 

Nileidae.

One group, the superfamily Anomocaroidea, is known to be paraphyletic with 

respect to the ‘higher’ asaphid taxa (Fortey in Kaesler 1997; Fortey & Chatterton 1988). 

This superfamily includes a number of primitive asaphid families that retain the natant 

hypostomal condition (Fortey 1990; Fortey & Chatterton 1988) but it may be possible to 

link these families with the more derived groups through further analysis (Fortey 1990). 

The derived groups are monophyletic (e.g. Nileidae, see Fortey & Chatterton 1988).

Another superfamily, the Trinucleoidea, has been particularly problematic to 

place. Whilst it almost certainly represents a monophyletic group (the convex and 

pyriform glabella being one uniting character) its relationship to other trilobite groups has 

been contentious. It has been previously classified with the ptychoparioids (Moore 

1959), based on the presence of opisthoparian sutures in the least derived forms, but 

has recently been regarded as a superfamily of the Asaphida (Fortey & Chatterton

1988). This latter proposal is supported by several synapomorphies: (1) the resemblance 

of trinucleoid protaspides to the asaphoid protaspis; (2) the presence of a pre-occipital 

glabellar tubercle; (3) the existence of forms close to the Cambrian-Ordovician boundary 

that are morphologically intergrading; and (4) the identification of a reasonable candidate 

for the Cambrian sister group (Liostracinidae) that has a ventral median suture (Fortey & 

Chatterton 1988).

A morphocline analysis, incorporating adult and larval morphological 

characters, resolved the Trinucleoidea as basal sister group to the polyphyletic 

‘Anomocaroidea’ and ‘higher’ Asaphida groups (Chatterton et al. 1994). There have, 

unfortunately, been few ontogenetic studies on this trilobite order and even fewer 

phylogenetic analyses on its constituent families.

1.3.2.4 Order Harpetida

This group has an unusual cephalic feature: the preglabellar area is long and 

there is often a characteristic brim surrounding the cephalon. Its similarity to the 

ptychoparioid family Norwoodiidae is convergent (Ebach & McNamara 2002). No 

cladistic analyses have been conducted on this group to date.
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1.3.2.5 Order Proetida Fortey and Owens, 1975

This order contains all the stratigraphically youngest trilobites (Fortey 2001). It 

contains three main superfamilies: the Proetoidea, Aulacopleuroidea and the 

Bathyuroidea (Fortey in Kaesler 1997).

Whether or not the order is monophyletic or polyphyletic has been much 

debated. Support for monophyly derives from similarity in the protaspid stages. Shared 

characters include the very early development of a preglabellar field and an ‘adult-like’ 

body plan (Chatterton & Speyer in Kaesler 1997). It has been thought that the group 

derived from the subfamily Hystricurinae (Fortey & Owens 1975; Fortey 2001).

However, hystricurid larvae appear to have two morphotypes. One has small 

growth stages with transglabellar furrows, a re-entrant posterior margin and smooth 

protaspid and early meraspid stages (‘Paraplethopeltis’ and Hyperbolochilus), the other 

has a distinct pattern of regularly distributed tubercles and spines (e.g. the larvae of 

Hystricurus, Parahystricurus and Amblycranium (Lee & Chatterton 1997a). The 

recognition of two informal groups of larval morphology has led some workers to suggest 

the existence of two hystricurid lineages, each of which is ancestral to a different 

proetide group (Bergstrom 1977; Lee & Chatterton 1997a). This renders the 

Hystricuridae as a basal paraphyletic group (Fortey 1989).

The close phylogenetic relationship between the hystricurids, dimeropygids, and 

the otarionines (aulacopleurids) is supported by the larval similarities of the two families 

(Adrain & Chatterton 1995; Chatterton 1994; Lee & Chatterton 1997a).

This order has been subject to a fair number of phylogenetic analyses. One 

cladistic analysis have been conducted on the superfamily Proetoidea: on the genus 

Stenoblepharum Owens, 1973 (Edgecombe et al. 1997). This genus is monophyletic 

and well resolved (Edgecombe etal. 1997).

Two cladistic analyses have been conducted on the superfamily 

Aulacopleuroidea:

(1) The genus Otarion Zenker, 1833 (Adrain & Chatterton 1994). Otarion was 

classified with other genera into a subfamily Otarioninae Richter & Richter, 1926. 

The morphological similarity between the type species of Otarion and that of 

Aulacopleura was found to be due to convergence. Whilst the tribe Otarionini 

Richter & Richter, 1926 was monophyletic, the Delorme Range species did not
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form a clade excluding all other species and, hence, there was no evidence of a 

phyletic lineage linking these species (Adrain & Chatterton 1994); and

(2) The brachymetopid trilobite Cordania Clarke, 1892. This monophyletic group 

probably originated in the northern part of the Appalachian Province (Ebach & 

Edgecombe 1999).

Three cladistic analyses have been conducted on the superfamily Bathyuroidea:

(1) The two genera Dimeropyge Opik, 1937, and the Ischyrotoma Raymond, 1925 

(Chatterton 1994). Both were found to be monophyletic, Ischyrotoma being the 

basal sister group to Dimeropyge (Chatterton 1994) as suggested by Fortey & 

Owens (1975, p. 228);

(2) The ‘Ischyrotoma group’ within the family Dimeropygidae (the genera 

Dimeropygiella, Ischyrotoma and Pseudohystricurus) (Adrain et al. 2001). 

Dimeropygiella and Ischyrotoma were considered synonymous (Whittington 

1963), but this analysis reveals that each is, in fact, a well supported clade 

(Adrain et al. 2001); and

(3) The families Dimeropygidae Hupe, 1953, and Toernquistiidae Hupe, 1953 

(Chatterton et al. 1998). These were both monophyletic, but it proved difficult to 

unite them into a monophyletic group that excluded other proetides, e.g. some 

hystricurids were more closely allied to the dimeropygids and some were more 

closely allied to the toemquistiids (Chatterton etal. 1998).

Many detailed ontogenetic studies of this order are also available, e.g. 

Telephinidae (Chatterton 1980; Chatterton et al. 1999; Lee & Chatterton 1997b), 

Dimeropygidae (Chatterton 1980; Speyer & Chatterton 1989; Tripp & Evitt 1983).

1.3.2.6 Order Phacopida Salter; 1864

This massive taxon comprises three sub-orders: Calymenina, Cheirurina, and 

Phacopina (Fortey in Kaesler 1997). They share many possible synapomorphies, e.g. 

their distinctive protaspis (see Fortey 1990; Henningsmoen in Moore 1959).

Several phylogenetic analyses have been conducted on the Calymenina:

(1) A comprehensive cladistic analysis on the whole of the Calymenina, using 

protaspid larvae morphology (Chatterton et al. 1990). At least one representative
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of the Calymenina, Cheirurina, Phacopida, Lichida, Odontopleurida, Proetida and 

Pychopariida trilobite orders was included. The ‘Cheirurina’ was shown to be 

paraphyletic, with some encrinurids sharing more similarities with members of the 

Phacopina than Cheiruridae, and the Calymenina was the basal phacopid sister 

group (Chatterton et al. 1990). This overall relationship within the Phacopida is 

supported by the cladistic analysis of Fortey (1990; figure 13).

(2) A cladistic analysis of the genus Alcymene n. gen. (Calymenidae; Ramskold et 

al. 1994); and

(3) A cladistic analysis of the Reedocalymeninae (Calymenidae) was undertaken in 

order to provide a basis for biogeographic analysis (Turvey 2002).

The sub-order Phacopina has not been subjected to many cladistic analyses. 

However, there has been:

(1) A comprehensive analysis on the subfamily Phacopinae (Phacopida; Ramskold 

& Werdelin 1991). Two major clades were found: one including species referred 

to Acemaspls and one including those referred to Ananaspis, Paciphacops, 

Viaphacops, and Phacops; and

(2) Two analyses on the family Calmoniidae Delo, 1935. The ‘Malvinella group’ and 

the ‘Metacryphaeus group’ were examined with cladistic analysis (Lieberman et 

al. 1991; Lieberman 1993 respectively). Both of these analyses were used to 

form a basis for classification of the constituent taxa.

The family Encrinuridae (Cheirurina) has been the focus of recent detailed 

morphological study (e.g. Edgecombe & Ramskold 1992; Gass et al. 1992; Tripp et al. 

1977). It has also been the subject of several cladistic analyses:

(1) The genus ‘Encrinuroides’ Reed, 1931 (Edgecombe & Chatterton 1992; 

Edgecombe et al. 1998). The former analysis showed that ‘Encrinuroides’ is 

paraphyletic with respect to the Curriella and Encrinurus plexi (Edgecombe & 

Chatterton 1992). The latter analysis demonstrated the ambiguity of the 

monophyly of the genera Platycalymene Shirley, 1936 and Frencrinuroides 

Lesperance & Desbiens, 1995 (Edgecombe etal. 1998);

(2) The genus Distyrax Lane, 1988 has been shown to be monophyletic 

(Edgecombe & Chatterton 1992);
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(3) The superfamily Cheiruroidea (Edgecombe et al. 1988). The relationships 

between this subfamily and allied taxa were investigated using protaspid larvae 

and early developmental characters. The Pliomeridae was the basal sister group 

to the Staurocephalidae and the Encrinurinae, the latter group being the most 

derived (Edgecombe et al. 1988); and

(4) The subfamily Acanthoparyphinae Whittington & Evitt, 1954 (Adrain 1998). Five 

of the included genera (Acanthoparypha Whittington & Evitt, 1954; Hyrokybe 

Lane, 1972; Pandaspinapyga Esker & Levin, 1964; Parayoungia Chatterton & 

Perry, 1984; and Youngia Lindstrom, 1885) form a monophyletic group and is 

supported by several synapomorphic character states (Adrain 1998). However, 

when the group was expanded to include Holia Bradley, 1930 an effective 

subfamilial diagnosis became more difficult (Adrian 1998).

Apart from the analysis by Edgecombe et al. (1988) very little, if any, ontogenetic 

data were incorporated into these studies.

1.3.2.7 OrderLichida (Fortey in Kaesler, 1997)

The order Lichida is considered to include three superfamilies: Lichoidea, 

Odontopleuroidea and Dameselloidea (Fortey in Kaesler 1997).

Whether the subfamilies Lichoidea and the Odontopleuroidea should be placed 

into the same order, Lichida, has been strongly debated. Fundamental similarities 

between the protaspides of the two groups, and the putative homology of their glabellar 

lobes, argue for their monophyly (Fortey 1990; Fortey in Kaesler 1997; Henningsmoen 

1957; Thomas & Holloway 1988). However, study of their ventral surfaces gives reason 

to doubt this close relationship (Whittington 2002).

In addition, there has been some suggestion of a close relationship between 

Lichidae and Styginidae (of the order Corynexochida) (an idea originating with Beecher 

1897 and supported by Thomas and Holloway (1988, p. 245) and Fortey (in Kaesler, 

1997, p. 299)) but other studies suggest that this is questionable (Whittington 1999, 

2002).

Only one phylogenetic analysis has been conducted on the family Lichidae. A 

subfamily of the lichids, Trochuriae Phleger, 1936, comprises two main clades (Adrain 

1994). One clade includes those trilobites that were fairly common in the Silurian and
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underwent a huge radiation in the Early Devonian. The Silurian members of this clade 

have been classified into a paraphyletic group, the subgenus Acanthopyge (Lobopyge) 

Pribyl & Erben, 1952 (Adrain 1994; Thomas & Holloway 1988). A cladistic analysis of 

this taxon has been undertaken (Ebach & Ahyong 2001).

There have been several phylogenetic analyses on the family Odontopleuridae 

Burmeister, 1843:

(1) A cladistic analysis of the subfamilies Selenopeltinae Hawle & Corda, 1847, and 

Ceratocelphalinae Richter & Richter, 1925, emended by Prantl & Pribyl (1949) 

(Ramskold 1991a);

(2) A cladistic analysis of the odontopleurid subfamily Koneprusiinae Vanek and 

Pek, 1987 (Ramskold 1991b). The genera Koneprusia and Laethoprusia are 

found to be monophyletic; the latter being the most derived genus of the 

subfamily (Ramskold 1991b);

(3) A phylogenetic analysis of the polyphyletic odontopleurid trilobite genus 

Leonaspis Richter & Richter, 1917 (Ramskold & Chatterton 1991). Three 

conclusions resulted: (1) A much-restricted monophyletic group including the 

type species is endemic to Siluro-Devonian Gondwanaland; (2) that several 

species traditionally assigned to Leonaspis actually belong to the subfamily 

Acidaspidinae, for which the new genus Exallaspis was proposed; and (3) that 

the majority of species traditionally assigned to Leonaspis should be assigned to 

Kettneraspis. Four groups of equal rank were discovered;

(4) A phylogenetic analysis of the genera Ceratocara Ramskold, 1991a, and 

Ceratocephala Warder, 1838 (Chatterton et al. 1997). Both are monophyletic and 

the relationships within Ceratocara are particularly stable (Chatterton et al. 

1997); and

(5) A cladistic analysis of the genus Odontopleura Emmrich, 1839 (Adrain & 

Chatterton 1990).

1.3.2.8 Order Corynexochida Kobayashi, 1935

Three suborders are included in this order: Corynexochina, lllaenina, and 

Leiostegiina (Fortey in Kaesler 1997). lllaenina and Leiostegiina have not always been 

included in the Corynexochida but are at present (Fortey 1990; Lane & Thomas 1983;
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Pribyl & Vanek 1971): this extends the stratigraphic range of the Cambrian 

Corynexochida into the Devonian (Fortey 1990). All three taxa show the conterminant 

hypostome condition and a distinctive pestle-shaped glabella with splayed glabellar 

furrows (Fortey 1990). The latter character is typical of the early life stages of other 

trilobite orders and there has been some suggestion that its presence in the adult 

corynexochids is neotenous (Fortey in Kaesler 1997; Robison 1967). However, if this is 

the case, it should be recognised that this heterochronic transformation may occur more 

than once and that the Corynexochida may, therefore, be polyphyletic (Fortey in Kaesler 

1997).

In addition, the family lllaenidae (suborder lllaenina) seems to differ from the 

Styginidae (of the same suborder; Whittington 1999) and, according to Whittington, 

shares some key characters with the asaphid trilobite family Nileidae (Whittington 2000).

There have been very few cladistic analyses of corynexochid taxa. None have 

focused on the inter-relationships between the suborders. One was conducted on the 

subfamily Oryctocephalinae Beecher, 1897 (Sundberg & McCollum 1997). Four groups 

of taxa were recovered: (1) the outgroup (Lancastria roddyi)’, (2) an Oryctocephalus 

group; (3) a stem group at the base of the Oryctocephalites’, and (4) an Oryctocephalites 

group (Sundberg & McCollum 1997). This grouping prompted emended diagnoses of the 

genera involved.

1.4 CHARACTERS AND THEIR SELECTION

Sister-groups are discovered by identifying apomorphic characters inferred to 

have originated in their most recent common ancestor and shared by its descendents. 

These shared apomorphies, or synapomorphies, can be thought of as evolutionary 

homologies: that is, structures inherited from the most recent common ancestor.

Cladistic analysis order synapomorphies into a nested hierarchy by choosing the 

arrangement of taxa that accounts for the greatest number of characters in the simplest 

way (or parsimonious way; parsimony is simply the most robust criterion for choosing 

between solutions: it is not a statement about how evolution may or may not have taken 

place). Thus, operations of cladistic analysis are strongly influenced by the selection and 

resolution of taxa and characters.

Computerized cladistic analysis renders variation into discrete codes and so 

often needs qualitative characters. Continuous and quantitative characters can be
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coded, if deemed useful, by measuring a character state in relation to another (Thiele 

1993).

Previous literature (phylogenetic analysis and careful taxonomic work) were 

searched thoroughly to elucidate important characters. Any perceived difference in 

characters was noted and all were initially selected to provide structure to the dataset; 

the old adage: rubbish-in, rubbish-out. Inconsistencies were discovered within character 

states over time: these were discarded and the dataset was condensed and purified. 

The work of previous workers was, needlesstosay, absolutely invaluable during this 

period and much of the character selection stage was built upon their knowledge. I 

added to this foundation with new characters found by careful and detailed 

morphological study of the literature and many specimens. The characters noted in this 

thesis are attributed to other workers, where needs be, but most represent previous 

knowledge consolidated with that gleaned through fresh eyes.
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SYNOPSIS The first cladistic and Bayesian analyses of the trilobite families Lichidae Hawle & Corda, 
1847 and Lichakepalidae Tripp, 1957 are presented. Thirty-one lichid genera and five lichakephalid 
outgroup taxa were coded for 48 characters using published descriptions. Two methods of phylo­
genetic inference were adopted: (1) a maximum-parsimony (MP) approach and, for the first time in a 
palaeontological context, (2) a Bayesian inference (Bl) approach. The consensus trees from the MP 
and Bl analyses were topologically similar, but differed principally in the deeper branches (i.e. the 
relationships between major clades). The Lichidae is monophyletic with respect to the Lichakeph­
alidae in both analyses. The Trochurinae (Thomas 81 Holloway, 1988) is well supported by both 
analyses. Other groups are also supported (i.e. Tetralichinae, Echinolichinae and Platylichinae); two, 
however, are not (i.e. Homolichinae and Lichinae). A classification is proposed that represents the 
main branching pattern of the MP tree and also incorporates many elements of the Bl tree, whilst 
applying least violence to the existing usage of the taxa. The Lichinae as defined here consists, there­
fore, of four main groups and these are given tribal status: Echinolichini, Tetralichini, Platytichini and 
Dicranopeltini. The last taxon is re-erected to contain those taxa formerly placed in the subfamily 
Lichinae. Lichas is assigned to a monogeneric tribe, the Lichini.
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In t r o d u c t io n

There are, at present, nearly 180 recognised families within 
the class Trilobita (see Jell &  Adrain 2003). Somewhat 
surprisingly, though, only some 50 cladistic analyses have 
been conducted on the group. Furthermore, out of these, 
only around 12 have aimed to resolve trilobite phylogenetic 
relationships at the familial-level or higher (i.e. Fortey &  
Chatterton 1988; Ramskold 1991; Babcock 1994; 
Sundberg &  McCollum 1997; Chatterton et al. 1998; 
Lieberman 1998, 2001; Sundberg 1999; Cotton 2001; 
Waisfield et al. 2001; Ebbestad &  Budd 2002).

It is recognised, then, that there remains much to be 
known about trilobite phylogenetic relationships at a high 
taxonomic level and, hence, this study focuses on the phylo­
genetic relationships of the superfamily Lichoidea sensu 
Fortey (Fortey in Kaesler 1997), as a basis for the revised 
Treatise on Invertebrate Paleontology, Trilobita.

The Lichoidea has been the subject of a detailed and 
comprehensive study by Thomas &  Holloway (1988) and 
this review has contributed greatly to the present work. Pos­
sible relationships within the Lichoidea (and also the re­
lationships of these taxa with other trilobite groups) were 
considered by Thomas &  Holloway (1988), but phylogenetic 
analyses of all genera have never been attempted. The lichid 
genera Acanthopyge (Lobopyge) Pribyl &  Erben, 1952 and 
Borealarges Adrain, 1994 have been the subject of species- 
level cladistic analyses (Ebach &  Ahyong 2001 and Adrain, 
2003, respectively), as has Hemiarges Giirich, 1901 (Rudkin 
etal. 1994).

The superfamily Lichoidea is considered to be a mono- 
phyletic group supported by the unique lobation of the gla­
bella. It comprises two families: the Lichidae Hawle &  
Corda, 1847 and the Lichakephalidae Tripp, 1957. Thomas &  
Holloway (1988) recognised five subfamilies within the 
Lichidae: Lichinae Hawle &  Corda, 1847, Echinolichinae 
Phleger, 1936, Homolichinae Phleger, 1936, Tetralichinae 
Phleger, 1936 and Trochurinae Phleger, 1936. A subsequent 
review, in the light of new data, by Holloway &  Thomas 
(2002), saw the re-assignment of the genus Metopolichas 
Giirich, 1901 to the Lichinae from the Homolichinae. 
Similarly, the genera Platylichas (Platylichas) Giirich, 
1901, Platylichas (Rontrippia) Thomas &  Holloway, 1988, 
Allolichas Krueger, 1992, Autoloxolichas Phleger, 1936 and 
the poorly-known Metalichas Reed, 1902 were all assigned

to the subfamily Platylichinae Phleger, 1936 (Holloway &  
Thomas 2002: see Table 1 for the previous lichoid classi­
fication after Thomas &  Holloway (1988) and Holloway &  
Thomas (2002)).

Several species of the lichid genera Borealarges Adrain, 
1994 and Dicranogmus Hawle &  Corda, 1847 have been 
described in detail using superbly preserved material from 
localities in the Canadian Arctic Archipelago (Adrain 1994, 
2003, respectively). A restricted definition of Richterarges 
Phleger, 1936 is given within the former paper; some species 
hitherto placed in Richterarges were assigned to the genus 
Borealarges.

Traditionally, the method of morphological character- 
based parsimony analysis has been used to investigate 
phylogenetic relationships between fossil taxa; other ap­
proaches, such as maximum likelihood and Bayesian infer­
ence (B l), dealt only with molecular data. However, recent 
new stochastic models have been developed to handle mor­
phological data (e.g. Bl: Huelsenbeck &  Ronquist 2001). The 
B l method may be particularly attractive to palaeontologists: 
it is extremely computationally efficient and allows large 
datasets, including those with large amounts of missing data, 
to be analysed quickly whilst sampling lots of trees (Ronquist 
2004). B l has been applied to a heterogeneous dataset (con­
sisting of morphological and nucleotide data; Nylander et al. 
2004). However, although it has previously been put into a 
palaeontological context (see Budd 2004), it has never before 
been applied explicitly to fossil taxa.

B l has a strong connection to the maximum likelihood 
method (Felsenstein 1981) and evaluates the B l posterior 
probability of a tree given the character matrix, a model 
of evolutionary change and a set of, so-called, ‘priors’. For 
morphological data, the prior assumes that character states 
are present in equal frequency in the dataset. The posterior 
probability for a hypothesis is proportional to the likelihood 
multiplied by the prior probability of that hypothesis (the 
probability of the hypothesis without reference to the avail­
able data). The optimal hypothesis is that which maximises 
the posterior probability (see Holder &  Lewis 2003).

B l combines the advantages of defining an explicit 
probability model of character evolution and of obtaining 
a rapid approximation of posterior probabilities of trees 
through the use of the Markov chain Monte Carlo (M CM C)
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Table 1 A list of lichoid taxa presented in the 
classification system of Thomas & Holloway (1988) 
and Holloway 81 Thomas (2002).

Family Lichidae Moore, 1959
Subfamily Lichinae Hawle 81 Corda, 1847 

Lichas Dalman, 1827 
Arctinurus Castelnau, 1843 
Dicranopeltis Hawle 81 Corda, 1847 
Oinochoe Thomas 81 Holloway, 1988 
Pseudotupolichas Phleger, 1936 
Uralichas Delgado, 1892 
Metopolichas Gurich, 1901

Subfamily Echinolichinae Phleger, 1936 
Echinolichas Gurich, 1901 
Terataspis Hall, 1863

Subfamily Homolichinae Phleger, 1936 
Conolichas Dames, 1877 
Hoplolichas Dames, 1877 
Hoplolichoides Phleger, 1936 
Leiolichas Schmidt, 1885 
Otarozoum Thomas 81 Holloway, 1988

Subfamily Tetralichinae Phleger, 1936 
Amphilichas Raymond, 1905 
Apatolichas, Whittington, 1963 
Lyralichas Weber, 1948

Subfamily Trochurinae Phleger, 1936 
Trochurus Beyrich, 1845 
Acanthopyge Hawle 81 Corda, 1847 
Akanthopyge Phleger, 1936 
Ceratarges Gurich, 1901 
Hemiarges Gurich, 1901 
Radiolichas Reed, 1923 
Richterarges Phleger, 1936 
Uripes Thomas 81 Holloway, 1988 
Borealarges Adrain, 1994

Subfamily Platylichinae Phleger, 1936 
Platylichas (Platylichas) Gurich, 1901 
Platylichas (Rontrippia) Thomas & Holloway, 1988 
Allolichas Krueger, 1992
Autoloxolichas Phleger, 1936__________________

approach (Metropolis et al. 1953; Hastings 1970). MCMC, 
or the Metropolis-Hastings algorithm (Hastings 1970), is a 
simulation technique that takes the form of a correlated ran­
dom ‘walk’ through the parameter space; this can then, after 
some point in the sequence, approximate probability distri­
bution by periodically sampling values (Lewis 2001).

M e t h o d s

Figures and systematic descriptions were derived mainly 
from Thomas &  Holloway (1988), Adrain (1994, 2003) and 
Holloway &  Thomas (2002). These were used to code lich­
oid genera into a dataset (see Appendix). Forty of the 50 taxa 
described in Thomas & Holloway (1988) and Holloway &  
Thomas (2002) were initially coded using these texts; 
the remaining 10 taxa were either unfigured or very badly 
preserved. Borealarges was coded from Adrain (1994) and 
Thomas &  Holloway (1988). Tripp (1957) was used to code 
some hypostomal characters and Whittington (2002) likewise 
for some thoracic characters.

I f  a character state was polymorphic for a given genus, 
this information was also included. There is no robust method 
for dealing with taxonomic polymorphism (where characters 
exhibit more than one state within a higher-level taxon while 
remaining fixed within species). One approach is to break 
polymorphic taxa down into monomorphic subunits repres­
enting lower-level taxa. However, this approach is undesir­
able because it increases the number of taxa in the analysis. 
Nixon &  Davis (1991) showed that coding polymorphies 
as missing data could lead to erroneous topologies. Simil­
arly, other methods can perform badly (Weins 1998). Poly­
morphic (or ambiguity) coding seems to perform moderately 
well (Weins 1998); this method was adopted as it allows us 
to be conservative with the number of taxa and, unlike other 
methods, avoids making assumptions about which charac­
ter states are primitive (Simmons 2001). Indeed, many other 
phylogenetic studies code polymorphisms as such at a higher 
taxonomic level than species (see Komet &  Turner 1999). 
Polymorphism affects only a comparatively small part of the 
dataset (2.4%) and it is thought that it w ill not greatly bias 
the resulting phylogeny, if  at all.

Datasets including taxa with large numbers of equivocal 
or missing codings often yield large numbers of most parsi­
monious trees (MPTs). Small numbers of taxa containing 
large amounts of missing codings can often frustrate resol­
ution by being highly mobile over large proportions of the 
topology. Although the proportion of missing entries in the 
matrix is 26%, some species had as many as 88% of their 
entries missing (i.e. Gaspelichas). However, any taxon that 
does not have a unique set of character states can be safely 
deleted without affecting the most parsimonious interpreta­
tion of the relationships between remaining taxa (Wilkinson 
1995). In doing so, the number of most parsimonious trees 
produced from an analysis is often reduced. Hence, the pro­
gram TAXEQ3 was run on the initial dataset in order to assess 
whether any taxa could safely be excluded from the analysis 
(Wilkinson 2001).

TAXEQ3 recognised Acanthopyge, Akantharges, 
Ceratarges and Borealarges as being potential equivalents 
to Craspedarges (asymmetric all one way), which would 
permit the deletion of the latter taxon from the analysis. 
However, it also recognised Richterarges (and Terranovia) 
as a potential equivalent to Craspedarges (asymmetric both 
ways); the latter, therefore, cannot be deleted from the ana­
lysis without the risk of the relationships between the remain­
ing taxa being affected. Nevertheless, it was necessary to ex­
clude the genera Ceratolichas, Gaspelichas, Craspedarges 
and Terranovia from the analysis: they vastly increased both 
the computing time of the analysis and the number of res­
ulting MPTs because of the huge amounts of missing data. 
Two methods of tree estimation were adopted: (1) the more 
traditional maximum-parsimony (MP) approach and (2) the 
newer method of Bayesian inference (B l).

Maximum-parsimony analysis
The dataset was tested for significant non-random structure 
using the permutation tail probability (PTP) test (100 replic­
ates with heuristic search via 100 random stepwise additions 
and TBR (tree bisection and reconnection) branch-swapping: 
Faith &  Cranston 1991). The null hypothesis of this test is 
that ‘the analysis of a comparable set of randomly covary- 
ing characters could produce a cladogram of equal, or even
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shorter, length’ (Kitching et al. 1998). The null hypothesis 
can be rejected if  the p-value is less than, or equal to, 0.05. 
The PTP test (P <  0.01) indicated that there was significant 
non-random structure in the dataset; further analyses could 
then be conducted confidently.

The dataset (see Appendix) was analysed using PAUP 
(version 4.0bl0*: Swofford 2002). A ll characters were un­
ordered and equally weighted. For all runs of PAUP, heuristic 
searches were employed (via 100 random stepwise additions 
and TBR branch-swapping). Character states were recon­
structed using the ‘accelerated transformation optimisation’ 
criterion (ACCTRAN). This option maximises homoplastic 
character changes that are represented as reversals rather than 
as parallelisms (Pinna 1991). Consequently, primary homo­
logies are preserved as long as possible within the constraints 
of parsimony.

Bootstrap proportions (100 replicates with heuristic 
search via 10 random stepwise additions and TBR branch- 
swapping; Felsenstein 1985) were calculated to measure the 
frequency of a branch’s occurrence in the resampling of 
pseudoreplicates from the dataset (and, thus, its strength of 
support). Branch support values (Bremer 1988, 1994) were 
calculated using TreeRot (Sorenson 1996). These provide a 
measure of relative support for each clade, i.e. the number of 
additional steps that are required before a clade is lost from 
the strict consensus tree of the minimum-length cladograms 
(Kitching et al. 1998).

Bayesian inference analysis
Phylogenetic analysis was also performed using B l 
(Larget &  Simon 1999; Huelsenbeck et al. 2001). A ll ana­
lyses were conducted using the program MrBayes 3.0B4 
(Huelsenbeck &  Ronquist 2001). A default random tree was 
used as a starting point.

The MCMC procedure requires that, in order for the 
Markov chains to reach stationarity, the simulation is run 
for long enough and that the initial portion of the sequence 
is discarded: only then w ill the sampled tree topologies be 
arbitrarily close to their posterior probabilities (Larget &  
Simon 1999).

Four independent Markov chains (one cold chain and 
three incrementally heated chains) were run for 500000 
M CM C generations, with tree sampling every 10 gener­
ations. Both the priors for the model parameters and the 
parameters of the likelihood model were left as default (see 
command reference file for details: Huelsenbeck &  Ronquist 
2001).

To establish whether the Markov chains had reached sta­
tionarity, the likelihood scores of sampled trees were plotted 
against generation time using Tracer (Rambaut &  Drummond 
2003). Stationarity was said to have been reached when 
the likelihoods of the sample points reached a stable equi­
librium (Huelsenbeck &  Ronquist 2001). Trees generated 
prior to stationarity were discarded as ‘burn-in’ samples. In 
this analysis, the first 5000 sampled trees were ignored. A  
50% majority-rule consensus tree (including other compat­
ible groupings) was constructed from the remaining trees 
using PAUP, in order to calculate the a posteriori probability 
of each bipartition.

Finally, the morphological dataset was entered into 
MacClade Version 4.06 (Maddison &  Maddison 2003) to 
investigate patterns of character evolution.

Outgroup
The Lichakephalidae Tripp, 1957 is used as the outgroup; it 
has been accepted as basal to the Lichidae by previous work­
ers (e.g. Thomas &  Holloway 1988: 247). The Lichakephal­
idae, as accepted by Thomas &  Holloway (1988), contains the 
following taxa: Lichakephalus Sdzuy, 1955; Acidaspidella 
Rozova, 1963; Eoacidaspis Poletaeva, 1956; Lichakephalina 
Antcygin in Varganov et al., 1973; Acidaspidina Lazarenko, 
1960 and Brutonia Thomas &  Holloway, 1988. The taxon 
Brutonia Thomas & Holloway, 1988 is not coded here be­
cause figures of the type species were not easily accessible.

Some workers accept the Lichakephalidae only when 
Eoacidaspis is excluded (the latter taxon being placed in the 
Eoacidaspididae: see Shergold et al. 2000). However, it has 
been proposed that the Lichakephalidae and Eoacidaspididae 
Poletaeva, 1957 are synonymous (Thomas &  Holloway 
1988). It was, therefore, decided to include Eoacidaspis (but 
see Systematic Palaeontology, below).

Characters
The terminology of Thomas &  Holloway (1988) is fol­
lowed throughout unless otherwise stated. Some lichid 
ontogenies are known: Acanthopyge (Whittington 1956; 
Chatterton 1971), Amphilichas (Hu 1974; Chatterton 1980; 
Tripp &  Evitt 1981) and Hemiarges (Hu 1974; Chatterton 
1980; Tripp &  Evitt 1981; Speyer &  Chatterton 1989). Char­
acters of small growth stages were not coded into the dataset 
as the ontogenies of most coded taxa are, as yet, unknown. 
This was in order to minimise the proportion of missing data 
within the dataset, an attribute that may be detrimental to 
phylogenetic analyses (e.g. Platnick et al. 1991; Wilkinson 
1995). However, known ontogenetic stages w ill be discussed 
later in the context of the resulting phylogeny (see Discus­
sion). The terminology adopted here and lichoid morpholo­
gical characters, are depicted in Figs 1 and 2. The character 
number in the following list corresponds directly to its num­
ber in the dataset (Table 2).

Cranidium
1. Sagittal length of the preglabellar field. States: 0, very 

narrow; 1, moderate; 2, accumulate, spatulate process. 
Outgroup: Lichakephalids have a moderate preglabellar 
field.

2. Posterior extent of longitudinal glabellar furrow. The 
longitudinal furrow, which arises from the posterior ex­
tension of the anterior lateral glabellar furrow, joins the 
adaxial ends of the posterior lateral glabellar furrows 
(see Fig. 3 for schematic illustrations of these character 
states). States: 0, joining only with S I or axial furrow, 
not continuous with SO (occipital furrow); 1, longitud­
inal glabellar furrow extends to SO (may be weak pos­
teriorly) and may conjoin with S I; 2, terminating at base 
of bullar lobe (hook-like); 3, extends only to SO, may be 
weak posteriorly; 4, effaced. Outgroup: In Lichakeph­
alus and Lichakephalina the longitudinal furrow meets 
S I; these furrows are effaced in Acidaspidella, Eoaci­
daspis and Acidaspidina.

3. Path of S I. The first lateral glabellar furrow anterior to 
the occipital furrow is termed S I. This furrow varies 
in depth and direction. In lichakephalids it conjoins to 
S2 to circumscribe the lobe L2 (except in Acidaspidina, 
where L2 is not circumscribed by a conjoined S I and S2
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Figure 1 The holotype of the Silurian lichid, Arctinurus boltoni Bigsby, 1825. Scale bar =  5 cm.

Figure 2 Labelled schematic illustration of a lichoid trilobite 
displaying the plesiomorphic condition (left half of the pygidium, right 
half of the cephalon). Lateral glabellar forrows are numbered from the 
posterior forward as S (sulcus), 0 (the occipital furrow) and then Si, 
S2 etc. Lateral glabellar lobes are numbered L (lobe), 0 (the lateral 
occipital lobe) and then Li, L2, etc.

(Thomas & Holloway 1988: 240). In some lichid taxa it 
is effaced, or almost so, whilst in other taxa it is deep 
and binds the bullar lobe posteriorly. In examples of the 
latter expression, SI can variously impress across the 
median glabellar lobe (see Fig. 4 for schematic illustra­
tions o f these character states). States: 0, conjoins with 
S2 (as in Lichakephalus); 1, conjoins axial furrow and 
longitudinal furrow, weakly developed or only present 
on internal molds (as in Hoplolichas)', 2, conjoins axial 
furrow and longitudinal furrow, deeply impressed (as in 
Autoloxolichas)', 3, conjoins axial furrow and longitud­

2(0) 2(2)

2(1) 2(3)

Figure 3 Schematic illustrations of the character states for 
character 2; character state ‘effaced’ is not shown.

inal furrow before posterolateral cranidial lobe; 4, con­
joins axial furrow and longitudinal furrow before pos­
terolateral cranidial lobe and continuous across width of 
glabella (as in Trochurus); 5, SI absent. Outgroup: SI 
o f lichakephalids is deep and conjoins with S2.
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3 (1)3 (0 )

3(2)

3 (4 )3 (3)

Figure 4  Schematic illustrations of the character states for 
character 3.

4. Path of axial furrow. The axial furrow outlines the axial 
region. In lichoids this is the furrow that bounds the L2, 
bullar or composite lateral lobes abaxially. The furrow 
that bounds the posterolateral lobe abaxially is not the 
axial furrow (Thomas &  Holloway 1988:189) (see Fig. 5

for schematic illustrations of these character states). 
States: 0, deep, running down to meet SO or abaxial 
side of L I a (as in Lichakephalus and Hoplolichas)’, 1, 
posteriorly effaced (as in Autoloxolichas); 2, merging 
with SI (as in Lichakephalina), sometimes expressed on 
the abaxial side of L la  (as in Platylichas (Platylichas))', 
3, expressed on the adaxial side of the posterolat­
eral cranidial lobe (as in Akantharges). Outgroup: A ll 
lichakephalids, except Lichakephalina, have the axial 
furrow running down to meet the abaxial side of L la . 
The axial furrow of Lichakephalina merges with S I.

5. Width of median glabellar lobe. Variation in the width 
of the median glabellar lobe is measured as the ratio 
of its width at the anterior limits of the lateral glabellar 
lobes to either (1) its width at the juncture of the longit­
udinal furrows with SI/axial furrow, or (2) the ends of 
longitudinal furrows. States: 0, width anteriorly at least 
twice the width posteriorly; 1, width anteriorly greater 
than, but less than twice, the width posteriorly; 2, equal 
width anteriorly and posteriorly. Outgroup: Lichakeph­
alus, Eoacidaspis and Lichakephalina have a large 
broad median lobe, whilst those of Acidaspidella and 
Acidaspidina are narrower.

6. Ornamentation of median glabella. States: 0, evenly 
scattered coarse tubercles; 1, a distinct single pair or 
row of paired larger tubercles (i.e. Borealarges)', 2, fine 
granules/non-tuberculate; 3, pair of spines. Outgroup: 
Lichakephalus and Acidaspidella have coarse tubercles 
on the median glabella. A ll other lichakephalids have a 
non-tuberculate median glabella.

7. Anterior extent of the median glabella. States: 0, does 
not overhang the anterior border; 1, does overhang 
the anterior border. Outgroup: The median glabella of 
lichakephalids does not overhang anterior border.

8. Definition of glabellar lobe L la . The most posterior lat­
eral lobe is considered to be part of L I and is subdivided 
into L la  and L ib  (Whittington in Kaesler 1997:7). Lobe 
L la  is the posterior lobe of the two and can be incor­
porated into a composite lateral lobe (e.g. Amphilichas',

4 (0)

4 (1) 4 (2)

Figure 5 Schematic illustrations of the character states for character 4. 
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Thomas &  Holloway 1988: fig. 246) or just simply lost 
(some members of Dicranopeltis scabra (Thomas &  
Holloway 1988: fig. 32)). States: 0, strongly; 1, weakly; 
2, absent. Outgroup: L la  is strongly expressed in 
Lichakephalus and Lichakephalina and weakly ex­
pressed in the other lichakephalids.

9. Posterolateral cranidial lobe. In Acanthopyge 
(Mephiarges) bifida, the posterolateral cranidial 
lobes (the swellings adjacent to the base of the glabella) 
incorporate prominent spine pairs of the fixigenae during 
ontogeny (Chatterton 1971: 36). It is thought, therefore, 
that the posterolateral cranidial lobes belong partly 
to the glabella and partly to the fixigena (Chatterton 
1971: 36). Therefore, it is coded as a separate character 
because it is thought to be non-homologous with other 
lateral glabellar lobes. States: 0, absent; 1, present (i.e. 
Trochurus). Outgroup: This swelling is absent in all 
lichakephalids.

10. L2/bullar lobe/composite lateral lobe. The homology of 
these lateral glabellar lobes has been much debated (For 
a review, see Thomas &  Holloway 1988, Section 4). 
They are now thought to be of glabellar origin in all 
lichids (Thomas &  Holloway 1988: 186) and are, there­
fore, coded as different states within the one charac­
ter so as not to weight them in the analysis. The bul- 
lar lobe (named by Temple 1972) of Lichakephalus 
is thought to be composed solely of L2 (Thomas &  
Holloway 1988: 189) and it is assumed that the same 
is true of other lichakephalids. The composite lateral 
lobe is thought to be derived from fusion of the bullar 
lobe with other lateral glabellar lobes (cf. Platylichas 
(Thomas &  Holloway 1988: fig. 174) with Amphilichas 
(Thomas &  Holloway 1988: fig. 246). States: 0, L2 
present; 1, bullar lobe present; 2, composite lateral lobe 
present. Outgroup: Lichakephalids have lobe L2 vari­
ously expressed.

11. Definition of L2. These character states are only asso­
ciated with character 10, state 0 (hereafter designated 
as character 10:0). States: 0, L2 strongly expressed; 
1, L2 weakly expressed. Outgroup: L2 is strongly 
defined in Lichakephalus and Lichakephalina and 
weakly expressed in all other lichakephalids.

12. Width (trans.) of palpebral lobe. States: 0, narrow; 
1, wide. Outgroup: Lichakephalids have a narrow (trans.) 
palpebral lobe.

13. Position of posterior edge of palpebral furrow in re­
lation to glabellar length. States: 0, lying well behind 
glabellar mid-length; 1, level with glabellar mid-length. 
Outgroup: The posterior edge of the palpebral furrow of 
Acidaspidella and Acidaspidina lies level with the gla­
bellar mid-length. In all other lichakephalids, the pos­
terior part of this furrow lies well behind the glabellar 
mid-length.

14. Shape of palpebral ridge. States: 0, gently-curving; 1, 
>-shaped (i.e. in Arctinurus and Oinochoe). Outgroup: 
Lichakephalids have a gently-curved palpebral ridge.

15. Size of eyes. States: 0, shorter (exsag.) than 35% of 
the length (sag.) of the median glabellar lobe; 1, larger 
than 35% of the length (sag.) of the median glabellar 
lobe. Outgroup: Where known the lichakephalids have 
exsagittally small eyes.

16. Tuberculation on preoccipital region. States: 0, distinct 
nodes absent; 1, distinct nodes present (e.g. Trochurus).

Outgroup: A ll lichakephalids have scattered tubercles 
on the preoccipital glabellar lobe.

17. Occipital structure. States: 0, absent; 1, present as a node, 
may be weak; 2, as a spine; 3, as a spine pair, 4, medial 
spine and a pair of lateral spines. Outgroup: Occipital 
nodes are absent in the lichakephalids.

18. Transverse width of the occipital ring (L0). States: 0, 
less than palpebral width of cranidium; 1, equal or 
greater than palpebral width of cranidium. Outgroup: 
A ll lichakephalids have a transversely narrow occipital 
ring.

19. Length of lateral edges of L0 relative to midline length 
(sag.). States: 0, lateral edges about half sagittal length, 
or more, of L0; 1, less than half sagittal length. Out­
group: Lateral edges sagittally long in Lichakephalus 
and Acidaspidina, sagittally short in all other lichakeph­
alids.

20. Sagittal convexity of cranidium. States: 0, weak; 1, mod­
erate; 2, strong. Outgroup: Lichakephalids show weak 
convexity.

21. Path of anterior section of facial suture. States: 
0, strongly divergent forward; 1, subparallel; 2, con­
vergent forward (there may be subparallel sections 
within overall convergence). Outgroup: A ll lichakephal­
ids show the anterior section diverging forward, except 
Acidaspidella, which has a subparallel anterior section.

22. Path of posterior section of facial suture. States: 
0, a blunt downwards-directed posterior section (as 
in Lichakephalina)', 1, laterally-directed posterior sec­
tion (as in Acidaspidella). Outgroup: Lichakephalina 
has a blunt downwards-directed posterior section, 
Acidaspidina has a longer laterally-directed posterior 
section. The state for other lichakephalids is unknown.

23. Sub-genal notch. States: 0, indistinct; 1, deep. Outgroup: 
I f  the librigenae were not preserved, this state was de­
duced by the angle of the fixigena. A laterally-directed 
fixigena implies an advanced genal spine and, hence, a 
sub-genal notch. Where able to infer, the lichakephalids 
have no sub-genal notch.

Hypostome
(The hypostomes are not found preserved in the Lichakeph­
alidae)

24. Pitting on middle body of hypostome. States: 0, middle 
body pitted; 1, middle body not pitted.

25. Hypostome tuberculation. States: 0, hypostome tuber- 
culate; 1, tuberculation on middle body only (e.g. 
Dicranopeltis), may be subdued tubercles on lateral bor­
ders (e.g. Dicranogmus)', 2, tuberculation absent.

26. Shape of anterior lobe of middle body. A subquadrate 
or trapezoidal middle body results from the position 
of intersection of the hypostomal middle furrow with 
the lateral border furrow lying well behind the level of 
the anterior wings. A rhomboid middle body results in 
Dicranopeltis and Pseudotupolichas from the inter­
section lying opposite the anterior wings (Thomas &  
Holloway 1988: 194). States: 0, subquadrate/trape­
zoidal; 1, subrhomboid/rhomboid; 2, subcircular.

27. Maculae. The areas lying laterally in, or on, the posterior 
side of the middle furrow of the hypostome are termed 
‘maculae’. They may be flat and indistinct, or elevated 
and prominent. States: 0, indistinct; 1, prominent.
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Thorax
28. Bands of the thoracic pleurae. The thoracic pleurae are 

not known in many genera but the posterior band of 
Acanthopyge, Hemiarges and Richterarges is highly in­
flated relative to the anterior band. States: 0, evenly in­
flated; 1, posterior band strongly convex, anterior band 
low. Outgroup: This state is unknown in the lichakeph­
alids.

Pygidium
(A ll of the following states are unknown for Acidaspidella)

29. Development of the pygidial posterior border. States:
0, border furrow absent; 1, border furrow distinct. 
Outgroup: There is no border furrow present in the 
lichakephalids.

30. Number of primary pleural spine pairs of pygidium. 
Secondary marginal spines are ignored. States: 0, none;
1, two; 2, three; 3, four. Outgroup: The pygidial margin 
is poorly-preserved and so this state is only known for 
Lichakephalina and Acidaspidina, both of which have 
no pleural spines.

31. Shape of pygidial pleural spines in cross-section. These 
character states are only associated with character 30:1-
3. States: 0, dorsoventrally flattened; 1, cylindrical (e.g. 
Echinolichas and Trochurus). Outgroup: This character 
is inapplicable to the lichakephalids, as they have no 
pleural spines.

32. Presence o f posteromedian spine. States: 0, absent; 
1, present. Outgroup: This state is only known for 
Eoacidaspis, Lichakephalina and Acidaspidina, all of 
which do not have a posteromedian spine.

33. Transverse distance between third pleural spine pair 
of pygidium. These character states are only associ­
ated with character 30:2 and character 32:0. States:
0, wide, equal, or more than half, width of pygidial axis;
1, narrow, less than half width of pygidial axis. Out­
group: This character is inapplicable to the lichakephal­
ids.

34. Development of interpleural furrows. States: 0, very 
weak or absent; 1, deep. Outgroup: The interpleural fur­
rows of lichakephalids are very shallow.

35. Number of interpleural furrow pairs. States: 0, none;
1, one; 2, two; 3, three. Outgroup: A ll lichakephalids 
have no interpleural furrows present.

36. Extent of pleural furrows. States: 0, deep, running to 
the pleural tip/pygidial border; 1, very weak, effaced; 2, 
deep, running only to the fulcrum. Outgroup: Pleural fur­
rows of all lichakephalids run close to the pygidial bor­
der. The pleural furrows of the pygidia of Amphilichas, 
Apatolichas and Lyralichas run only to the fulcrum. This 
expression pattern is also seen in the pleural furrows 
of the thorax of Amphilichas and Apatolichas, however 
these states were not coded here to avoid serial homo­
logy codings.

37. Number of pleural furrow pairs. States: 0, two; 1, three;
2, four; 3, five; 4, six; 5, seven. Outgroup: Lichakeph­
alus has four pairs of pygidial pleural furrows, Eoaci­
daspis has five or six pairs, Lichakephalina has five and 
Acidaspidina seven.

38. Path of third pygidial pleural furrow. These character 
states are only associated with character 37:1. States: 0, 
straight; 1, describing a loop posteriorly (e.g. Conolichas

and Platylichas (Rontrippia)). Outgroup: The character 
is inapplicable to the lichakephalids.

39. Number of complete pygidial inter-ring furrows. States:
0, one; 1, two; 2, three; 3, four; 4, more than four. 
Outgroup: Lichakephalus and Lichakephalina have two, 
Eoacidaspis has four and Acidaspidina has seven.

40. Number of medially effaced pygidial inter-ring furrows. 
States: 0, none; 1, one; 2, two; 3, three; 4, more than 
three. Outgroup: Lichakephalus has three, Lichakeph­
alina has one and Acidaspidina has none.

41. Shape of the bands of the first two pygidial pleurae 
in cross-section. States: 0, evenly inflated or flattened;
1, posterior band strongly convex, anterior band low. 
Outgroup: The pleural bands are evenly inflated in all 
lichakephalids.

42. Condition of the postaxial structure. States: 0, present 
as a band-like structure (e.g. Lichakephalus)', 1, ab­
sent; 2, modified into a postaxial ridge. Outgroup: The 
lichakephalids have a postaxial band.

43. Relative width of the postaxial band along antero­
posterior axis. These character states are only associ­
ated with character 42:0. States: 0, expanding distally; 
1, narrowing distally. Outgroup: The axial band of the 
lichakephalids expands distally.

44. Shape of the terminal axial piece of pygidium. States: 
0, tapering evenly back into a postaxial band/ridge; 1, 
rounded, blunt end; 2, poorly-defined posteriorly. Out­
group: The axial piece of the lichakephalids tapers gently 
into the postaxial band.

45. General sculpture of pygidium. States: 0, evenly 
scattered coarse tubercles; 1, fine granules/non- 
tuberculate. Outgroup: A ll lichakephalids, except 
Lichakephalus, have non-tuberculate pygidia. 
Lichakephalus possesses evenly scattered tubercles.

46. Depth of furrows delineating pygidial axis. States: 0, 
deep; 1, shallow. Outgroup: A ll lichakephalids, except 
Eoacidaspis, have deep furrows.

47. Shape of pygidium in dorsal aspect. States: 0, subsemi­
circular; 1, subtriangular, 2, subquadrate. Outgroup: A ll 
lichakephalids have subsemicircular pygidia.

48. Width of pygidial doublure. States: 0, wide; 1, nar­
row. Outgroup: A ll lichakephalids have a wide pygidial 
doublure.

R e s u l ts  

Maximum-parsimony analysis
The dataset consisted of 48 characters coded for 31 lichid 
terminal taxa (plus the five lichakephalid outgroup taxa). 
Ten most parsimonious trees (MPTs) were recovered, with 
a tree length (TL) of 268 and a consistency index (C l) 
of 0.4776 (homoplasy index (H I) =  0.6754, retention index 
(R I) =  0.6056, rescaled consistency index (RC) =  0.2893). 
The strict consensus tree shows the Lichakephalidae to be 
monophyletic (Fig. 6). Lichakephalus is basal to all other 
lichakephalids, with Acidaspidina and Acidaspidella resolv­
ing as sister-genera (see clade F; Fig. 7).

The discussion following w ill summarise the lichid re­
lationships recovered, using the MPT that has the same topo­
logy as the majority-rule consensus tree. Character states 
with ambiguous optimisation are indicated by asterisks
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Figure 6 Strict consensus tree recovered from the maximum parsimony analysis.
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Figure 7 The majority-rule tree (including other compatible groupings) from the maximum parsimony analysis. A low cut-off limit was applied 
to the bootstrap values figured (bipartitions found in >  50% of trees are shown). Although it is acknowledged that often a bootstrap value of 
<  50% is considered poor support for a node, it was felt important to convey the difference in support between, for example, the bootstrap 
support for Akantharges and Uripes (46%) and that for dades C and D (23%). Bootstrap values and branch support values (given in brackets 
where >  0) are shown above the branches. The percentage of trees that each group is retained in (where <  100%) is shown below the respective 
branches in larger font. Branch numbers are displayed within circles and dades A-F are indicated.
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Figure 8 Majority-rule tree (including other compatible groupings) from the Bayesian inference analysis. The percentage of times that a clade 
occurs among the sampled trees (with the ‘burn-in’ trees discarded) is displayed above the internal branches. Clades i-6  are indicated.

within the text, next to the character in question. The 
Lichidae is monophyletic with respect to the Lichakeph­
alidae. Nine apomorphies robustly support its monophyly 
(see Systematic Palaeontology, below). Five main clades 
are seen within the Lichidae: (1) the Trochurinae, Hoplo- 
lichas and Hoplolichoides (clade A), (2) the Platylichinae and 
Arctinurus (clade B), (3) a clade containing the Tetralichinae 
and Pseudotupolichas (clade C), (4) the Echinolichinae, 
Conolichas and Oinochoe (clade D) and (5) some Lichinae 
taxa (clade E: see Fig. 7).

There is support for the Trochurinae Phleger, 1936 
(node 28 in clade A: Fig. 7). The Platylichinae receives sup­
port, with Arctinurus  closely-related (node 22 in clade B: 
Fig. 7). Support is seen for the Tetralichinae Phleger, 1936 
(node 20 in clade C: Fig. 7); Amphilichas is basal to 
Lyralichas and Apatolichas. No support is seen for the 
Lichinae Hawle & Corda, 1847. However, four out of the 
seven genera assigned to it (Holloway & Thomas 2002) form 
a clade (clade E: Fig. 7). The Lichinae, as previously defined, 
is seen in this analysis as a polyphyletic group; Arctinurus, 
Pseudotupolichas and Lichas are not included in clade E. 
Lichas resolves basal to clades B, C and D (Fig. 7). Support 
is seen for the Echinolichinae Phleger, 1936; Echinolichas 
and Terataspis being sister groups (node 18 in clade D: 
Fig. 7). No support is seen for the Homolichinae Phleger, 
1936. It is seen here to be a polyphyletic group; Hoplolichas 
and Hoplolichoides are basal to the Trochurinae, Conolichas 
and Otarozoum are basal to the Echinolichinae, Leiolichas is 
basal to all other lichids (Fig. 7).

Bayesian inference analysis
A tree common to both the MP and Bl analysis was searched 
for, but was not recovered. The Bl analysis recognises 
five main clades within the Lichidae: (1) the Trochurinae, 
Hoplolichas, Hoplolichoides and Leiolichas (clade 1), (2)

some Lichinae taxa (clade 2), (3) a clade containing the Platy­
lichinae and Arctinurus (clade 3), (4) the Tetralichinae and 
Pseudotupolichas (clade 4) and (5) the Echinolichinae, Con­
olichas, Otarozoum (clade 5: see Fig. 8). The taxon Lichas 
appears basal to clades 1, 2 and 3. The topology of the Bl 
tree differs from that of the majority-rule tree from the MP 
analysis in: (1) the Platylichinae not forming a clade with 
those taxa comprising clades 4 and 5 and (2) the Lichinae 
taxa being closely related to the trochurines.

D i s c u s s i o n

The amount o f homoplasy found in the MP analysis presen­
ted here (Cl =  0.4776) is far lower than that expected from 
analyses of random data (Klassen et al. 1991) and is of sim­
ilar value for trilobite datasets of similar size (e.g. Ebach & 
Ahyong 2001 (Acanthopyge (Lobopyge), Cl =  0.33); Cotton 
2001 (Conocoryphidae, Cl =  0.442)). This indicates that the 
level o f homoplasy within the Lichoidea is not unusually 
high, relative to other derived trilobite groups. However, the 
absolute degree of homoplasy in the dataset is high. Values 
of Cl for individual character states were assessed and, in the 
MP analysis, only five have a Cl value of 1.0 (characters 10 
(0 -1 ,1 -2 ) , 11 (0-1), 13 (0-1) and 28 (0-1)).

This study was exhaustive, but yielded only a few more 
characters than taxa. This meant that full resolution of lichoid 
taxa was unlikely to be obtained by cladistic analysis. Some 
quantitative characters were erected and coded. However, 
these drastically decreased the resolution of the consensus 
trees and increased the number of MPTs obtained by MP 
analysis and, therefore, were omitted from the final analysis.

The consensus trees from both analyses are well re­
solved, suggesting that they form a good basis for fur­
ther research. Two of the ten MP trees do not support the 
close relationship between the taxa of clades C and D;
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rather Echinolichinae, Conolichas and Otarozoum are placed 
close to the Platylichinae and Arctinurus. The MP analysis, 
therefore, suggests that many characters do not define clades 
unambiguously and are also in conflict with each other. Char­
acters such as: (1) the proportions of the median glabellar 
lobe (character 5), (2) the sagittal convexity of the cranidium 
(character 20), (3) the tuberculation of the hypostome (char­
acter 25) and (4) the overall shape of the pygidium (char­
acter 48) are particularly homoplastic. Characters that are 
especially useful in resolving lichoid relationships are: (1) 
the paths of the cranidial furrows (characters 2 and 3), (2) 
whether, or not, the median glabella overhangs the anterior 
border (character 7), (3) the presence, or absence, of the pos- 
terocranidial lobe (character 9), (4) the extent of the pleural 
furrows of the thoracic segments (character 29) and (5) the 
number of pygidial spines, interpleural furrows and pleural 
furrows (characters 31, 36 and 38, respectively).

The MP and Bl methods produced phylogenetic hypo­
theses that are largely congruent. Relationships within many 
of the groups recovered from both analysis types seem stable 
and robust but the relationships between these groups are 
dissimilar. The congruence of MP with respect to B l was 
evaluated by assessing the number of shared nodes and also 
the congruence between the estimated measures of support 
(MP bootstrap values versus posterior probability values). 
However, without knowledge of the true phylogeny it is im­
possible to tell which tree is more accurate. Twenty-four of 
the 35 nodes from the MP tree were present in the Bl tree. 
This suggests fair congruence between the tree topologies.

The posterior probabilities of the clades in the Bl tree 
are generally moderately high, except for those branches sup­
porting the Lichinae taxa (Fig. 8). However, it is thought that 
posterior probability values are systematically higher than 
non-parametric bootstrap values, as inferred by neighbour 
joining and maximum likelihood (Leach6 &  Reader 2002; 
Cummings etal. 2003; Erixon etal. 2003; Suzuki etal. 2003) 
and that MP bootstrap scores are not thought be strongly cor­
related with posterior probabilities (Leachd &  Reader 2002). 
Moreover, it is recognised that bootstrap and posterior prob­
ability values are not statistically equal. The former measure 
is not the MP optimality criteria and the latter is such for BL 
However, because the vast majority of cladistic studies rely 
heavily on MP bootstrap proportions, a reference comparing 
these and posterior probabilities is considered defensible: 
Bayesian posterior probabilities provided moderate support 
(>  60% recovery) for 14 nodes of the phylogeny, whereas 
the MP analysis provided this level of support for only five 
nodes (cf. Fig. 8 with Fig. 7, respectively).

The support for individual clades recovered from the 
MP analysis is not particularly high (Fig. 7). Many clades 
of the majority-rule tree are supported by only a small num­
ber o f character state changes; such groups are rarely, if  
ever, recovered during bootstrap resampling (Kitching et al. 
1998). With analyses conducted at the generic-level, such 
as these, it is likely that at least one taxon w ill be re­
vealed that has undergone a simultaneous reversal in nearly 
all characters that are synapomorphic for the clade. Many 
bootstrap replicates would sample the numerous reversed 
characters over the few unambiguous synapomorphies that 
place the taxon within the group; the bootstrap support for 
the group would, hence, be disrupted (see Sanderson &  
Wojciechowski 2000). Indeed, many of the characters used 
in these analyses were homoplastic in nature. The result­

ing relationships of the majority-rule tree from the MP ana­
lysis are shown in Fig. 9 with the groupings being indicated 
as previously defined by Thomas &  Holloway (1988) and 
Holloway &  Thomas (2002).

It is recognised that this study consists of analyses of 
only one dataset. Moreover, since the resulting trees from 
each analysis disagree about the relationships between the 
deeper branches, it would be impossible to provide a taxo­
nomic system that agrees with the results of both analyses. 
However, the authors wish to provide a new classification 
that represents the branching patterns of the main aspects of 
the analyses.

These analyses suggest a shift in content within some of 
the existing named groups of lichid trilobites (see Systematic 
Palaeontology, below). Nearly all of these subfamilial group­
ings can be expanded to incorporate other closely-related 
taxa. The classification can, then, only loosely reflect the 
cladogram from the MP analysis: clades B, C, D , E and 
Lichas are given equivalent taxomonic rank (if the branching 
pattern of the cladogram was strictly adhered to, then only 
clades C and D should be given equal taxonomic rank). How­
ever, this classification represents the main branching pattern 
of the MP tree and also incorporates many elements from the 
Bl tree, whilst applying least violence to the existing usage 
of the taxa.

The two lichoid families Lichida and Lichakephalidae 
are retained, with the former being comprised of two subfam­
ilies: Trochurinae and Lichinae. It is recognised that the iden­
tification of parataxa should be avoided. However, it is desir­
able to distinguish those monophyletic radiations that arise 
within clades; especially as, in this case, these radiations re­
late to previous classifications. The Lichinae as defined here 
consists, therefore, of four main groups and these are given 
tribal status: Echinolichini, Tetralichini, Platylichini and D i- 
cranopeltini. However, in recognising these subgroups, those 
taxa that nest outside the groups of interest (in this case 
Leiolichas and Lichas) also merit acknowledgement. The 
latter taxon, then, is classed as a monogeneric tribe (Lichini). 
The status of Leiolichas is still ambiguous (see Systematic 
Palaeontology, below).

The relationships resulting from both the MP and Bl 
analyses suggest that the subfamily Trochurini should be ex­
panded to include Hoplolichas and Hoplolichoides. The rela­
tionships are also consistent with the suggestion that Richter­
arges is derived from Hemiarges (Thomas &  Holloway 
1988: 253), but not with the idea that Acanthopyge is also 
derived from Hemiarges (Thomas &  Holloway 1988: 253). 
In this analysis, Acanthopyge and Richterarges are both de­
rived taxa, each positioned robustly within two subclades 
of the trochurinae (nodes 33 and 31 of Fig. 7, respectively). 
Borealarges has been thought to be closely related to Richter­
arges (Adrain 1994:1083) and this relationship is supported 
here (Fig. 7).

The Platylichini can incorporate Arctinurus (Figs 7 &  
8). The Tetralichinae as defined by Thomas &  Holloway 
(1988) is nested within some basal genera (clades C (Fig. 7) 
and 4 (Fig. 8)). Apatolichas was previously thought to be 
ancestral to Amphilichas and Lyralichas (Whittington 1963; 
Thomas &  Holloway 1988). However, both analyses suggest 
that Amphilichas is basal to Lyralichas and Apatolichas. The 
Echinolichinae, as defined by Thomas & Holloway (1988), is 
also nested within a clade. The Echinolichini, then, includes 
Conolichas and Otarozoum, which are basal to Echinolichas
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Figure 9 Majority-rule tree (including other compatible groupings) from the maximum parsimony analysis. Schematic illustrations, such as 
that shown in Fig. 2, of a representative of each group are shown at the top. Taxa as previously defined by Thomas & Holloway (1988) and 
Holloway 81 Thomas (2002) are shown in numbered boxes: i, Trochurinae Phleger, 1936; 2, Platylichinae Phleger, 1936; 3, Tetralichinae Phleger, 
1936; 4, Echinolichinae Phleger, 1936; 5, Lichakephalidae Tripp, 1957.

and Terataspis in both the MP and Bl analyses (see System­
atic Palaeontology, below).

Ontogenies are well known for Acanthopyge, 
Hemiarges and Amphilichas. It would be expected from 
the phylogenies given here, therefore, that Acanthopgye and 
Hemiarges will share more similarities between their onto­
genetic stages than either will share with Amphilichas. This 
is, indeed, the case. Hemiarges and Acanthopyge share: (1) 
a gently rounded anterior border, (2) three tubercle pairs on 
the anterior border of late protaspides, (3) the absence of lib- 
rigenal spines, (4) two large tubercles on the fixigena o f early 
protaspides, (5) no, or one, tubercle on the palpebral lobe of 
early protaspides and (6) two weak pairs (and sometimes an 
incipient third pair) of glabellar tubercles (Chatterton 1971, 
1980; Tripp & Evitt 1981; Rudkin eta l. 1994). Amphilichas, 
however, possesses: (1) a concave or straight anterior bor­
der, (2) one pair of tubercles on the anterior border o f late 
protaspides, (3) librigenal spines, (4) four large tubercles 
on the fixigena o f late protaspides, (5) two tubercles on the 
palpebral lobe of late protaspides and (6) four strong pairs of 
glabellar tubercles (Chatterton 1980; Tripp & Evitt 1981).

S y s t e m a t i c  p a l a e o n t o l o g y  

Order LICHIDA M oore, 1959  

Family LICHIDAE Hawle & Corda, 1847

[nom. correct. Angelin 1854 ex  Lichades Hawle & 
Corda, 1847]

E m e n d e d  d ia g n o s is . Very narrow preglabellar field (ex­
cept where spatulate in Arctinurus  and P. (Platylichas) (char­

acter 1). Longitudinal furrows that extend to the occipital 
furrow, if only weakly, and that may also meet with SI (char­
acter 2). Weakly developed S 1 furrows that conjoin the lon­
gitudinal and axial furrows (except in the Trochurinae and 
Platylichinae, where they are deeply impressed, and also in 
most taxa within clades B and C as they do not express 
S 1: character 3). Median glabella does overhang the anterior 
border (character 7*). Possession of a bullar lobe (the bullar 
lobes are fused with other lobes to form composite lateral 
lobes in some taxa within clades B and C: character 10). 
Moderately convex cranidia (character 20). Subparallel an­
terior facial sutures (character 21 *). Two interpleural furrows 
(character 35*). One or more complete inter-ring furrow on 
the pygidial axis (character 39).

T a x a  in c l u d e d . Leiolichas Schmidt, 1885; Platylichas 
(Platylichas) Gurich, 1901; Platylichas (Rontrippia) 
Thomas & Holloway, 1988; Autoloxolichas Phleger, 1936; 
Allolichas Krueger, 1992; Arctinurus Castelnau, 1843; 
Apatolichas Whittington, 1963; Lyralichas Weber, 1948; 
Amphilichas Raymond, 1905; Pseudotupolichas Phleger, 
1936; Echinolichas Gurich, 1901; Terataspis Hall, 1863; 
Conolichas Dames 1877; Otarozoum Thomas & Hollo­
way, 1988; Lichas Dalman, 1827; Acanthopyge Hawle & 
Corda, 1847; Trochurus Beyrich, 1845; Ceratarges Gurich, 
1901; Radiolichas Reed, 1923; Borealarges Adrain, 1994; 
Richterarges Phleger, 1936; Hemiarges Gurich, 1901; 
Akantharges Phleger, 1936; Uripes Thomas & Holloway, 
1988; Hoplolichas Dames, 1877; Hoplolichoides Phleger, 
1936.

St r a t ig r a p h ic a l  RANGE. Early Ordovician to Middle 
Devonian.
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Genus LEIOLICHAS Schmidt, 1885 

[Subfamilia incertae sedis]
T y p e  species . Leiolichas illaenoides Schmidt, 1885.

St r a t ig r a p h ic a l  r a n g e . Caradoc.

Re m a r k s . This genus is monospecific (see Thomas &  
Holloway 1988: 209). Its phylogenetic position has been un­
certain: it was assigned to the Lichinae by Tripp (1957,1958) 
and to the Homolichinae by Phleger (1936) and Thomas &  
Holloway (1988). Here, it falls basal to the Lichidae in the MP 
analysis. Node 6 is supported by: (1) two pygidial spine pairs 
(.Leiolichas has no pygidial spines: character 30), (2) deep 
interpleural furrows (the interpleural furrows of Leiolichas 
are shallow: character 34) and (3) one medially-effaced py­
gidial inter-ring furrow (Leiolichas has no medially-effaced 
inter-ring furrows: character 40*). The B l analysis resolves 
Leiolichas as basal to clade 1 (the Trochurinae).

A  probable reason for this indeterminacy is that, unlike 
other lichids, it displays well-developed effacement. Better- 
preserved specimens that retain more surface sculpture char­
acters (and also the discovery of a hypostome) may place 
Leiolichas in a more derived phylogenetic position, as sug­
gested by the B l analysis. For the moment we leave it as 
‘subfamilia incertae sedis’.

Subfamily LICHINAE Hawle 81 Corda, 1847 

[nom. transl. Gurich 1901 ex Lichades Hawle 81 
Corda, 1847]

Em e n d e d  DIAGNOSIS. Median glabella does not overhang 
the anterior border (reverses in some taxa: character 7*). 
Hypostome tuberculation absent (tuberculate in Amphilichas 
and Apatolichas: character 25).

Ta x a  in c l u d e d . Platylichas (Platylichas) Gurich, 1901; 
Platylichas (Rontrippia) Thomas &  Holloway, 1988; 
Autoloxolichas Phleger, 1936; Allolichas Krueger, 1992; Arc- 
tinurus Castelnau, 1843; Apatolichas Whittington, 1963; 
Lyralichas Weber, 1948; Amphilichas Raymond, 1905; 
Pseudotupolichas Phleger, 1936; Echinolichas Gurich, 1901; 
Terataspis Hall, 1863; Conolichas Dames 1877; Otarozoum 
Thomas &  Holloway, 1988; Lichas Dalman, 1827.

St r a t ig r a p h ic a l  r a n g e . Early Ordovician to Middle 
Silurian.

Tribe PLATYLICHINI Phleger, 1936

[nom. transl. Holloway 81 Thomas 2002  ex 
Platylichinae Phleger, 1936]

Em e n d e d  d ia g n o s is . Large palpebral lobe (a homoplastic 
character: character 12). Weakly convex cranidium (charac­
ter 20). Subquadrate pygidium in dorsal view (character 47).

Ta x a  INCLUDED. Platylichas (Platylichas) Gurich, 1901; 
Platylichas (Rontrippia) Thomas & Holloway, 1988; 
Autoloxolichas Phleger, 1936; Allolichas Krueger, 1992; 
Arctinurus Castelnau, 1843.

St r a t ig r a p h ic a l  r a n g e . Middle Cambrian to Arenig.

Re m a r k s . Support for the taxon Platylichinae, as defined 
by Holloway &  Thomas (2002), is seen by: (1) the possession 
of deeply impressed S I furrows (seen also in the trochurines:

character 3), (2) posteriorly effaced axial furrows (that merge 
with S I in Platylichas: character 4 *) and (3) two medially- 
effaced inter-ring furrows on the pygidium (only one pair 
seen in Autoloxolichas and Allolichas: character 40*).

Tribe TETRALICHINI Phleger, 1936

[nom. transl. Tripp 1957 exTetralichadinae 
Phleger, 1936]

E m e n d e d  d ia g n o s is . Absence of L la  (character 8). 
Laterally-directed posteriorly directed posterior section of 
the facial suture (character 22). Middle body of the hypo­
stome is pitted (character 24).

Ta x a  INCLUDED. Apatolichas Whittington, 1963; Lyra­
lichas Weber, 1948; Amphilichas Raymond, 1905; Pseudotu­
polichas Phleger, 1936.

Str a tig r a p h ic a l  r a n g e . Arenig/Llanvim to Ashgill.

Re m a r k s . The supporting apomorphies for the Tetra­
lichinae as defined by Thomas &  Holloway (1988) are: (1) a 
median glabella that overhangs the anterior border (charac­
ter 7), (2) tuberculate hypostome (a reversal: character 25*), 
(3) a narrow distance between the third pygidial pleural spine 
(character 33), (4) pleural furrows of pygidium run only to 
the fulcrum (character 36), (5) the presence of two pairs of 
pleural furrows (also seen in the trochurines and Lyralichas 
has three pairs: character 37) and (6) a narrowing of the 
postaxial band (character 43). Apatolichas and Lyralichas 
both share: (1) one interpleural furrow pair (character 35*), 
(2) two medially effaced inter-ring furrows (character 40) 
and (3) a subtriangular pygidium (character 47).

Tribe ECHINOLICHINI Phleger, 1936

[nom. transl. Balashova in Chernysheva i 96 0  ex 
Echinolichadinae Phleger, 1936 ]

E m e n d e d  d ia g n o s is . Hypostome that is tuberculated only 
on the middle body (known only in Echinolichas: character 
25*). Prominent maculae (known only in Echinolichas: char­
acter 27*). Two complete pygidial inter-ring furrows (char­
acter 39).

Ta x a  in c l u d e d . Echinolichas Gurich, 1901; Terataspis 
Hall, 1863; Conolichas Dames, 1877; Otarozoum Thomas &  
Holloway, 1988.

Str a tig r a p h ic a l  r a n g e . Siegenian to Eifelian.

R e m a r k s . The supporting apomorphies for the 
Echinolichas and Terataspis are: (1) L I a is lost (homoplastic 
character: character 8), (2) a distinct pygidial posterior 
border (not known in Terataspis: character 29*), (3) four 
pygidial spine pairs (character 30), (4) cylindrical pygidial 
pleural spines (also seen in the trochurines: character 31), 
(5) the presence of a posteromedian spine (a homoplastic 
character: character 32), (6) two medially-effaced pygidial 
inter-ring furrows (not known in Echinolichas: character 
40*) and (7) a narrow pygidial doublure (not known in 
Terataspis: character 48*).

Tribe LICHINI Phleger, 1936  
Emended diagnosis. Small eyes (shorter than 35% of the 
length of the median glabellar lobe: character 15). Two pairs
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of primary pleural spine pairs on the pygidium (charac­
ter 30).

Ta x a  in c l u d e d . Lichas Dalman, 1827.

St r a tig r a p h ic a l  r a n g e . Ashgill to Wenlock.

Re m a r k s . Lichas shares the following characteristics with 
taxa in clades A , B and C: (1) median glabella does not over­
hang the anterior border (character 7 *) and (2) tuberculation 
absent on hypostome (character 25).

Tribe DICRANOPELTINI Phleger, 1936 

[nom. transl. Dicranopeltinae Phleger, 1936 ] 
Emended diagnosis . Strongly sagittally convex cranidium 
(a homoplastic character: character 20).

Ta x a  in c l u d e d . Dicranopeltis Hawle &  Corda, 1847; 
Uralichas Delgado, 1892; Dicranogmus Hawle &  Corda, 
1847; Oinochoe Thomas &  Holloway, 1988; Metopolichas 
Gurich, 1901.

St r a tig r a p h ic a l  r a n g e . Llanvim to Lochkovian.

REMARKS. The phylogenetic position of Dicranogmus has 
proved contentious. The pygidium bears a strong resemb­
lance to that of the lichine Dicranopeltis (but the pleural 
furrow on the third segment is absent) and to that of the 
tetralichine Amphilichas. The latter went extinct during the 
Ordovician (Adrain 2003) and so perhaps a lichine affinity is 
more likely. Indeed, this study supports this view: Dicranog­
mus is basal to Dicranopeltis and Uralichas. The presence 
or absence of a posterolateral cranidial lobe was coded as 
ambiguous in Dicranogmus as it lacks the prominent cran­
idial features of the trochurines. I f  the posterolateral cranidial 
lobe is coded as present, the topology of the consensus trees 
is identical to those produced when the character is coded as 
uncertain (13 MPTs; TL =  226; C l =  0.3673).

The assignment of Metopolichas to the Lichinae by 
Holloway &  Thomas (2002) was justified: it is more closely 
related to taxa previously assigned to the Lichinae than to 
those previously assigned to the Homolichinae.

Subfamily TROCHURINAE Phleger, 1936

[ =  Argetinae Gurich, 1901; Euarginae Phleger, 
1936 ; Acanthopyginae Erben, 1952; Ceratarginae 

Tripp, 1957]
Em e n d e d  DIAGNOSIS. Large eyes (reversed in Richterarges: 
character 15). Posterior band of thoracic pleurae highly in­
flated (unknown in Hoplolichas and Hoplolichoides: char­
acter 28*). Posterior border present on pygidium (character 
29). Postaxial structure absent in primitive taxa, modified 
into a postaxial band in more derived taxa (character 42*). 
Terminal axial piece of pygidium rounded and blunt ending 
(poorly-defined in Hoplolichas and Hoplolichoides: charac­
ter 44*). Narrow pygidial doublure (character 48).

Ta x a  in c l u d e d . Acanthopyge Hawle &  Corda, 1847; 
Trochurus Beyrich, 1845; Ceratarges Gurich, 1901; 
Radiolichas Reed, 1923; Borealarges Adrain, 1994; 
Richterarges Phleger, 1936; Hemiarges Giirich, 1901; 
Akantharges Phleger, 1936; Uripes Thomas &  Holloway,

1988; Hoplolichas Dames, 1877; Hoplolichoides Phleger, 
1936.

Str a tig r a p h ic a l  r a n g e . Llanvim to Givetian.

Re m a r k s . The Trochurinae as defined by Thomas &  
Holloway (1988) is supported by: S I furrows that conjoin 
the axial furrow and longitudinal furrow before posterolat­
eral cranidial lobe (character 3). Axial furrows that are ex­
pressed on the adaxial side of the posterolateral cranidial lobe 
(character 4). Median glabella does not overhang the anterior 
border (character 7*). Absence of glabellar L la  (character 8). 
Presence of a posterolateral cranidial lobe (character 9). Py­
gidial pleural spines that are circular in cross-section (char­
acter 31).

Family LICHAKEPHALIDAE Tripp, 1957  

[ =  Eoacidaspididae Poletaeva, 1957] 
Emended diagnosis. Moderately long preglabellar field 
(character 1). Longitudinal furrow can be effaced but, if  not, is 
not continuous with SO (character 2). S1 conjoins to S2 to cir­
cumscribe the lobe L2, may be effaced (character 3). Median 
glabella does not overhang the anterior border (character 7). 
Glabella lobe is L2 (character 10). Sagittal convexity of cran­
idium is weak (character 20). Path of anterior section of facial 
suture is strongly divergent (except in Acidaspidella, where 
it is subparallel: character 21). No interpleural furrows are 
present (character 35). A ll taxa have more than one complete 
pygidial inter-ring furrow (character 39).

Ta x a  in c l u d e d . Lichakephalus Sdzuy, 1955; Lichakeph­
alina Antcygin in Varganov et al., 1973; Eoacidaspis 
Poletaeva, 1956; Acidaspidina Lazarenko, 1960; 
Acidaspidella Rozova, 1963.

Str a tig r a p h ic a l  r a n g e . Middle Cambrian to Arenig.

Re m a r k s . See ‘Outgroup’ (p. 228, above) for comments 
on the debated monophyly of the lichakephalids. ( If  Eoaci­
daspis is excluded from the analysis, 45 trees are obtained 
(TL =  220; C l =  0.3773) and the consensus trees display 
identical topology to those attained when Eoacidaspis is in­
cluded.) The close relationship between Acidaspidina and 
Acidaspidella, within the Lichakephalidae, is supported by: 
(1) the anterior median glabella being wider, but less than 
twice as wide, as the posterior (character 5), (2) the posterior 
edge of the palpebral furrow lying level with the glabella 
mid-length (character 13), (3) seven pygidial pleural furrows 
(character 37*) and (4) having more than four complete py­
gidial inter-ring furrows (character 39*).
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See the main text for explanation. A question mark (?) indicates missing data. Where characters are polymorphic, the 
alternative states are listed beneath.

Taxa 0 OCM 0 0-3-

Lichakephalus 1000000000 0?0??00000 0?0?????0? ???0002?13 000000??
Acidaspidella 1400100100 1?1??00010 110??????? ?????????? ????????
Eoacidaspis 1400020100 1000000010 0?0?????0? ?0?0003?3?

/.
0000110?

Lichakephalina 1002000000 0?0??00010 00??????00
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?o?0003?11 00001000
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1 1
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2 2
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1 12
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3
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3. The phylogeny of the 

suborder Calymenina (Trilobita)

3.1 TAXONOMIC HISTORY OF THE CALYMENOIDEA

‘Another calymenid!...Shirley you jest!' - with kind acknowledgements to Dr. Edgecombe

(Australian Museum, Sydney)

THE order Phacopida Salter, 1864 is the largest group outside the Libristoma and 

currently consists of the suborders Calymenina Swinnerton, 1915, Cheirurina Harrington 

& Leanza, 1957 and Phacopina Struve in Moore, 1959. The relationships between these 

three suborders are contested; some consider the calymenines to be unrelated to the 

latter two groups. Eldredge (1977) placed them as sister group to ‘some Ptychopariina’ 

whilst others considered the suborders to comprise a monophyletic group that falls 

outside the Libristoma (e.g. Fortey 1990).

The genus Calymene Brongniart 1822, which gives the group its name, was 

founded as early as 1822 (Brongniart) and the family Calymenidae was erected in 1840 

(Milne-Edwards). The family was formally revised by Schmidt (1894) and Pompeckj 

(1898): the latter author recognized several groups of species within a restricted 

Calymene.

Shirley (1936) produced a seminal and comprehensive overview of all calymenid 

genera then recognized. He divided the genera into two groups: Group A, that consisted 

of taxa without papillate glabellar lobes or buttresses on the fixigena, and Group B, that 

consisted of those taxa with papillate glabellar lobes and corresponding buttresses 

(Shirley 1936, p. 394-5; see Plate 3 (g) for examples). This division has remained useful 

and is still adopted (e.g. Whittington 1971b).

The Calymeninae has been well studied from many angles (e.g. Chatterton et al. 

1990; Hammann 1977, 1983, 1985; Hammann & Leone 1997; Henry 1980; Siveter 

1977, 1979, 1980, 1983, 1985, 1996; Whittington 1971b) but very few groups (i.e.
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subfamily Reedocalymeninae Hupe, 1955 (see Turvey 2002b) and genus Alcymene 

Ramskold et al. 1994) have been subjected to rigorous cladistic methods.

The status of Colpocoryphe Novak in Perner, 1918 and Salterocoryphe 

Hammann, 1977 is contentious. They have been placed within both the Calymenidae 

(e.g. Hupe 1955; Henry 1970, 1980; Hammann 1983) and Homalonotidae (e.g. Sdzuy 

1957, 1959; Bergstrom 1973; Thomas 1977). Both Neseuretus Hicks, 1873 (Sdzuy 

1957; Whittard 1960; Thomas 1977) and Plaesiacomia Hawle & Corda, 1847 (Hughes 

1969; Thomas 1977) have also been the subject of the same confusion. In addition, 

some workers consider them to constitute the Colpocoryphinae Hupe 1955, whereas 

other workers consider them to occupy different subfamilies (e.g. Henry (1980) 

considered Colpocoryphe to be within the Colpocoryphinae Hupe, 1955 and 

Salterocoryphe within the Flexicalymeninae Siveter, 1977).

The Homalonotidae are typically known from old, inadequate descriptions. 

However, there has been valuable recent work on some taxa (e.g. Tomczykowa 1975; 

Thomas 1977; Wenndorf 1990; Whittington 1993). A phylogeny of the whole suborder is 

long overdue.

3.2 DISTRIBUTION OF THE CALYMENOIDEA

Early forms are Pharostomina from the Tremadoc of Argentina and Germany, Bavarilla 

and the bathycheilines. Two stocks are seen in the southern province (South America- 

Mediterranean-Asia-Australia region) from Neseuretus and Pharostoma (Whittington 

1966). Neseuretus appears in the earliest Arenig in Britain and other calymenids are 

found in southern Europe a little later. In southeast Asia there was a considerable 

radiation and the genera Reedocalymene and Calymenesun appear.

In the Llanvirn and Caradoc, Flexicalymene and Diacalymene are seen in Britain 

and Vietnamia and Reedocalymene in S. E. Asia. Some genera are seen later in the 

northern province (North America and Balto-Scandia-Russia region), e.g. Pharostoma in 

the Llandeilo and Flexicalymene in the Caradoc of North America, with more genera 

reaching North America by the Ashgill (Hammann 1983).

Platycoryphe and Colpocoryphe appear in Britain in the Llanvirn-Llandeilo 

(Whittard 1955-1967), as did Calymenella in the Mediterranean: Brongniartella 

appearing in the Caradoc. Migrants into the northern region in the Caradoc and Ashgill 

are Platycoryphe and Brongniartella (Whittington 1966): the latter being widespread in
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northern Europe too. Homalonotines persist into the Middle Devonian (e.g. Dipleura) 

although they are rare in the Ashgill and even more so in the Llandovery (Thomas 1977).

3.3 PHYLOGENETIC ANALYSIS

3.3.1 TAXONOMIC SAMPLING

Given the broad scope of this study, character state assignments were determined 

primarily on the basis of published descriptions and illustrations. However, much 

unpublished literature and fossil material from the library and collections of DJS were 

used. In general, type species were coded. However if these were poorly known, better- 

preserved species (which could be established as congeneric) were coded instead 

(asterisks indicate these taxa in Table 3.1). All taxa included in the analysis are listed in 

Table 3.1 below.

Onnicalymene Dean, 1962, Reacalymene Shirley, 1936 and Apocalymene 

Chatterton & Campbell, 1980 were coded, as their taxonomic level is contentious (see 

Siveter 1977, p. 357 and p. 375 for discussion of the status of Onnicalymene and 

Reacalymene’, Holloway 1980 and Sandford 2000 for discussion of Apocalymene). 

Liocalymene Raymond 1916 is poorly-known and its phylogenetic position is uncertain; it 

is known only from two species (Liocalymene clintonii and L  cresapensis) and both of 

these were coded.

Limbocalymene Maximova, 1978, Paracalymene Pillet, 1968, Ptychometopus 

Schmidt, 1894, Scabrella Wenndorf, 1990 and Burmeisteria Salter, 1865 were excluded 

as they were either badly documented or tentatively assigned to the Calymenina. 

Leiostegina Kobayashi, 1937 was excluded from the analysis; the type material of the 

only known species is lost and illustrations are poor (see Thomas 1977, p. 160).
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Family Calymenidae
MILNE-EDWARDS
1840

Subfamily
Calymeninae
MILNE-EDWARDS
1840

Calymene BRONGNIART 1822
Diacalymene* KEGEL 1927
Dekalymene CURTIS & LANE 1998
Tapinocalymene SIVETER 1980
Arcticalymene ADRAIN & EDGECOMBE 

1997
Alcymene RAMSKOLD ETAL. 1994
Papillicalymene SHIRLEY 1936
Spathacalymene TILLMAN 1960
Nipponocalymene KANEKO 1985

Subfamily 
Flexicalymeninae 
SI VETER 1976

Gravicalymene* SHIRLEY 1936
Metacalymene KEGEL 1927
Sthenarocalymene SIVETER 1977
Platycalymene SHIRLEY 1936
Flexicalymene SHIRLEY 1936
Flexicalymene 
(Flexicalymene) *

SHIRLEY 1936

Flexicalymene 
(Onnicalymene)*

SHIRLEY 1936

Flexicalymene
(Reacalymene)

SHIRLEY 1936

Thelecalymene WHITTINGTON 1971a
Linguocalymene TOMCZYKOWA 1991
Apocalymene CHATTERTON & 

CAMPBELL 1980
?Liocalymene RAYMOND 1916

Subfamily 
Reedocalymeninae 
HUPIz 1955

?Calymenella BERGERON 1890
Calymenesun KOBAYASHI 1951
Neseuretinus DEAN 1967
Neseuretus 
(Synhomalonotus/*

HICKS 1873

?Pharostomina SDZUY 1955
Pradoella HAMMANN 19 77
Reedocalymene * KOBAYASHI 1951
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Sarrabesia HAMMANN & LEONE 1997
Vietnamia KOBAYASHI 1960
?Protocalymene ROSS 1967

?Subfamily 
Colpocoryphinae 
HUPE 1955

Colpocoryphe* NOVAK IN PERNER 1918
Salterocoryphe HAMMANN 1977

Family
Homalonotidae 
CHAPMAN 1890

Subfamily 
Homalonotinae 
CHAPMAN 1890

Homalonotus KONIG 1825
Brongniartella SALTER 1865
Burmeisteria SALTER 1865
Burmeisterella* REED 1918
Digonus GClRICH 1909
Dipleura* GREEN 1832
Parahomalonotus* REED 1918
Trimerus GREEN 1832
Arduennella WENNDORF 1990

Subfamily 
Kerfornellinae 
HENRY 1980

Kerfomella HENRY 1976
Plaesiacomia HAWLE & CORDA 1847

Subfamily 
Eohomalonotinae 
HUPIz 1953

Iberocoryphe HAMMANN 1977
Eohomalonotus* REED 1918
Huemacaspis* PftlBYL & VAN£K 1980
Platycoryphe* FOERSTE 1919

Subfamily
Bavarillinae SDZUY 
1957

Bavarilla SDZUY 1957
Family
Bathycheilidae 
PftlBYL 1953

Subfamily 
Bathycheilinae 
PftlBYL 1953

Calymenia KOLOBOVA in SOKOLOV& 
Elkin  1978

Bathycheilus* HOLUB 1908
Parabathycheilus* MERGL 1984
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Eulomina ROZiCKA 1931
Subfamily 
Pharostomatinae 
HUP£ 1953

Pharostoma
[Prionocheilus]

HAWLE & CORDA 1847

Thulincola TRIPP 1962
Holoubkocheilus MERGL 1994

Table 3.1: Authorship references for taxa included in the cladistic analysis. Type species of 
genera regarded as junior synonyms are indicated by the name of the synonymous genus in 
square brackets. Question marks precede taxa that are especially tentatively taxonomically- 
placed prior to this analysis. An asterisk indicates taxa where the type species was not coded. 
The scheme of Hammann (1983) is loosely followed.

3.3.2 METHODS

The dataset was tested for significant non-random structure using the permutation tail 

probability (PTP) test (1000 replicates with heuristic search via 100 random stepwise 

additions and TBR branch-swapping) (Faith & Cranston 1991). The most parsimonious 

tree (MPT) for the original dataset is calculated. The states of each character are then 

permuted among the taxa, whilst maintaining the proportions of each state, to produce a 

new dataset. This new dataset is then analysed and the length of its MPT is calculated. 

This permutation is repeated (1000 times in this study) and the PTP is defined as the 

proportion of all datasets that yield cladograms equal to or shorter than those produced 

from the original dataset The null hypothesis of no cladistic structure can be rejected if 

the p-value is less than, or equal to, 0.05 (i.e. no more than 5% of the sets of MPTs from 

the randomized data sets were as short as or shorter than the MPT(s) from the original 

dataset; Kitching et al. 1998). The PTP test (P<0.01) indicated that there was significant 

non-random structure in the dataset; further analyses could then be conducted 

confidently.

The dataset from Appendix I was analyzed using PAUP (version 4.0b10*, 

Swofford 2002). All characters were equally weighted, but characters 19 (adaxial 

structure of S1: no immediate lobe - barely perceptible lobe -  defined lobe present) and 

39 (preglabellar area: roll-like -  short with subtransverse ridge present -  long and gently 

sloping) were treated as additive (ordered) as their states are thought to represent clear 

transformation series. A heuristic search was employed (via 100 random stepwise 

additions and TBR branch-swapping). Character states were reconstructed using the
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‘accelerated transformation optimisation’ criterion (ACCTRAN). Some of the species 

exhibit different character states for certain characters and some characters had to be 

coded as uncertainties; hence, multistate taxa were coded as ‘variable with respect to 

the bracket type’.

Bootstrap proportions (10,000 replicates with starting tree(s) obtained via fast 

stepwise addition with random addition sequence, branch-swapping algorithm: none; 

Felsenstein 1985) were calculated to measure the frequency of a branch’s occurrence in 

the resampling of pseudoreplicates from the dataset (and, thus, its strength of support). 

Ideally, bootstrap searches should be calculated by a heuristic search (via random 

stepwise additions and TBR branch-swapping) as this is would be a more 

comprehensive exploration. However, this method was not computationally feasible with 

this dataset because the computer quickly ran out of memory (2.1 GHz PowerPC G5 

processor). The fast stepwise-addition analysis is expected to provide bootstrap support 

estimates of support that are less than those obtained when a more comprehensive 

method is used.

The trade-off between speed and accuracy was deemed reasonable, as the 

obtained figures are more likely to be an underestimation rather than an overestimation: 

both simulation studies and those on real datasets suggest as much (see DeBry & 

Olmstead 2000 and Mort et al. 2000 respectively).

Branch support indices (Bremer 1988, 1994) were calculated in TreeRot 

(Sorenson 1999). These values provide a measure of relative support for each clade, i.e. 

the number of additional steps that are required before a clade is lost from the strict 

consensus tree of the minimum-length cladograms (Kitching et al. 1998). TreeRot aids in 

the determination of these indices by generating a command file that can be run through 

the computer program PAUP* (Swofford 2002). The command file includes: (1) a 

constraint statement for each node in a given shortest tree; and (2) commands to search 

for trees inconsistent with each of these constraint statements in turn. Compared to the 

shortest tree, the number of additional steps required in the shortest tree that is 

inconsistent with a given node is the Bremer support index for that particular node. For 

nodes with decay indices of more than 3, the constraint statement approach is much 

more effective than simply finding all trees 1 , 2 , 3 ,  etc. steps longer than the shortest tree 

and then examining their strict consensus for which nodes are lost. The ensemble 

consistency index (Cl) (Kluge and Farris 1969) in PAUP was used to examine the 

relationship between the entire dataset and a particular tree topology and, hence,
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measures the level of homoplasy in the dataset. The ensemble retention index (Rl) 

(Farris 1989) measures support for the trees based on the similarity due to 

synapomorphy only. Uninformative characters were excluded from the analyses as these 

can affect both the Cl and Rl in a parsimony analysis (Smith 1994). The morphological 

dataset was entered into MacClade Version 4.06 (Maddison & Maddison 2003) to 

investigate patterns of character evolution.

3.3.2.1 Outgroup. Bavarilla hofensis (Barrande 1868) is used as the outgroup; it 

appears stratigraphically early (Sdzuy 1955, 1957; Whittington 1965; Thomas 1977) and 

is commonly thought to be a basal calymenid (Hammann 1983; Fortey 2001; Turvey 

2002b).

3.3.2.2 Characters. Some calymenoid ontogenies are known: Calymene sp. Brongniart, 

1822 (Chatterton et al. 1990, p. 270-271); Flexicalymene senaria (Conrad 1841) 

(Chatterton et al. 1990, p. 266-270); Brongniartella sp. Reed, 1918 (Chatterton et al. 

1990, p. 271-275); and Apocalymene coppinsensis Chatterton & Campbell, 1980 

(Chatterton & Campbell 1980, p. 93-97). Characters of small growth stages were coded 

into the dataset using the character list from Chatterton et al. 1990 (p. 271). However, 

only one character was informative at this relatively low-level analysis (Chatterton et al.’s 

character 18). The terminology adopted here is identical to that used in the Treatise, 

unless otherwise stated. The character number in the following list corresponds directly 

to its number in the dataset (Appendix I).

Whole exoskeletal characters

1. Ratio of entire exoskeletal shape (exclusive of anterior process):

0. Length/ Width = 1.7 or greater

1. Length/ Width = 1.7 or less

2. Cephalic length (sag.) greater or less than one third post-cephalic length:

0. Greater than

1. Equal to, or less than

3. Cephalic length (sag.) vs. pygidial length (sag.):
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0. Pygidial length markedly shorter than cephalic length

1. Pygidial length subequal to (90-110% times) cephalic length

2. Pygidial length easily exceeding cephalic length

4. Sculpture:

0. Variously tuberculate

1. Evenly granulate

2. Granulate, with enlarged tubercles on anterior adaxial part of fixed cheek, 

e.g. Tapinocalymene

3. Relatively smooth

4. Evenly granulate with various spines evenly displayed along the body, e.g. 

Burmeisterella

Cranidium

5. Facial sutures:

0. Opisthoparian

1. Gonatoparian

2. Proparian

6 . Anterior branch of facial sutures (from y to a):

0. Subparallel

1. Convergent

2. Convergent, anterior sections join each other axially to form a triangular

shape of the frontal area of the cranidium, e.g. Trimerus delphinocephalus

7. Postocular suture (posterior branch of facial suture):

0. Straight

1. Sigmoidal, posteriorly directed without outwards turn

2. Sigmoidal, posteriorly directed with outwards turn, e.g. Calymene

8 . Relative posterior fixigenal width:

0. Equal/or less than that of glabella at occipital ring

1. Greater than that of glabella at occipital ring
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9. Glabellar shape:

0. Parabolic/trapezoidal, e.g. Neseuretus, Flexicalymene

1. Convex outwards basally, tapering anteriorly (bell-shaped), e.g. Calymene

2. Little tapering, subrectanguiar, e.g. Calymenella

3. Concave inwards basally with severe tapering anteriorly, e.g. Eohomalonotus 

brongniarti

10. Anterior margin of glabella:

0. Transverse

1. Uniformly rounded

2. Weakly medially concave, e.g. Neseuretinus

11. Number of glabellar furrows:

0. 4

1. 3

2. 2, S3 indistinct

3. all absent or very weak, e.g. Plaesiacomia

4. S1 distinct, all others absent or weak, e.g. Eohomalomotus

5. S1 and S2 distinct, others absent, i.e. Platycorphe dyaulax

12. 1S:

0. Not shallowing abaxially

1. Shallowing abaxially

13. Length of L1 (sag.):

0. Equal to, or less than, L2 and L3 together

1. Greater than L2 plus L3

14. Furrow defining L1 (or posterior branch of S1):

0. Straight

1. Curved

2. Sigmoidal, i.e. Calymenella
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15. Separation of L1 from median lobe by furrow:

0. Not separated

1. Separated, even if only by a shallow depression

16. Separation of L2 from median lobe by furrow:

0. Not separated

1. Separated, even if only be a shallow depression

17. Shape of L2:

0. Subcircular

1 . Transversely elongate

18. S1:

0. Forked

1. Unforked

19. Adaxial structure of S1:

0. Forked adaxially, but not forming intermediate lobe, e.g. Alcymene, 

Diacalymene drummuckensis

1. Barely perceptible intermediate lobe between bifurcating S1, e.g. 

Reacalymene

2. Forked adaxially, forming intermediate lobe between bifurcating S1, e.g. 

Arcticalymene, Calymene

20. L2 with or without buttress (papillae and buttresses are only coded as present if they 

are seen as paired structures with contact at their extremities):

0. Without

1. With, e.g. Calymene, Alcymene

21. L3 with or without buttress (papillae and buttresses are only coded as present if they 

are seen as paired structures with contact at their extremities):

0. Without

1. With, i.e. Arcticalymene, Papillicalymene
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22. Convexity of L3:

0. Independent of glabella

1. Not independent of glabella

23. Length of occipital ring (sag.):

0. Subequal

1. Medially longer

24. Occipital tubercle:

0. Absent

1. Present

2. Present as a small spine, e.g. Burmeisterella armata

3. Present as a long spine, e.g. Arduennella maillieuxi

25. Occipital muscle pad:

0. Not impressed

1. Impressed, e.g. Neseuretinus

26. Paraglabellar areas (arcuate, slightly depressed area at inner, posterior corner of 

fixigena, near S1; coding only those that are flattened and dorsalised):

0. Absent, e.g. Liocalymene

1. Present -  faint, e.g. Calymenella

2. Present -  distinct, e.g. Pradoella

3. Contained in axial furrows, e.g. Calymenia

27. Palpebral lobe position (exsag.):

0. Mid-length (exsag.) opposite anterior part of 1L/1S

1. Mid-length opposite 2L

2. Mid-length opposite 2S/3L

3. Mid-length opposite 3S

28. Palpebral lobe position (trans.): ratio of width of preocular fixed cheek to that of 

glabella at L2:

0. Up to 0.4
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1. Over 0.4

29. Palpebral lobe length (exsag.) relative to length (sag.) of occipital ring:

0. Less than (<85%)

1. About equal (85-115%)

2. More than (>115%)

30. Eye ridge:

0. Present

1. Absent

31. Fossulae (depression near anterolateral edge of glabella):

0. Present

1. Absent

32. Anterior nodes (paired nodes that lie within the fossulae, close to the anterolateral 

corner):

0. Absent

1. Present, e.g. in Reedocalymene expansa and Calymenesun tingi

33. Posterior border furrow:

0. Constantly short (exsag.) (ptychoparyoid style), e.g. Platycalymene

1. Lens like, e.g. Metacalymene

34. Posterior border of fixigena:

0. Straight, e.g. Calymene

1. Distinct anteriorly-directed ‘curling-up’, e.g. Eohomalonotus

35. Articulation notch on posterior cephalic margin:

0. Marked by more weak, rounded deflection of margin, e.g. Neseuretus

1. Marked by distinct angular deflection of margin, e.g. Apocalymene

2. Absent, e.g. Pradoella
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36. Distance of articulating point, if present, from axial furrow relative to width of occipital 

ring:

0. Less than half transverse width of occipital ring

1. More than half transverse width of occipital ring

37. Preocular fixigena appearance:

0. Anterior adaxial margin rounded, and not greatly overhanging the anterior 

border furrow, e.g. Platycalymene

1. Anterior adaxial margin pointed, overhanging anterior border furrow, e.g. 

Alcymene alveus

2. Not or weakly defined by anterior border furrow (Diagonal-Furche of 

Hammann 1983), e.g. Calymenella

38. Preglabellar field:

0. Absent

1. Present

39. Preglabellar area:

0. Short (sag.) and roll-like, e.g. Calymene

1. Subtransverse ridge present, a noticeable break in the slope present, e.g. 

Diacalymene

2. Gently sloping, very long with no break in slope (note: longer than the 

preglabellar area of Calymene puellaris, which is very variable), e.g. 

Linguocalymene

40. Preglabellar field (if character 38:1):

0. Not inflated

1. Inflated, e.g. Neseuretus

41. Fixigenal spine:

0. Absent

1. Present

42. Anterior border of cranidium:
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0. Fairly straight or gently curved

1. Broad, dorso-ventrally flattened ‘point’ e.g. Calymenella

2. Distinct thin spine, e.g. Reedocalymene, Calymenesun

3. Tongue-like process, can be inflected towards glabella, e.g. Spathacalymene 

and Linguocalymene

4. Straight, with a small prominence that is the rostral prominence

43. Anterior border length (i.e. that part of preglabellar area underlain by doublure) cf. 

length (sag.) of occipital ring:

0. Less than

1. About equal to

2. More than

44. Inner anterior corner of fixigena:

0. Not pointed

1. Pointed, e.g. Spathacalymene

2. 4p defined, e.g. Papillicalymene

45. Preglabellar furrow:

0. Present, deep

1. Present, shallow/ not impressed

2. Shallow and broad

46. Glabella:

0. Low, fails to protrude anteriorly beyond the fixigenae, e.g. Metacalymene

1. More raised, forwardly-protruding glabella, e.g. Apocalymene

47. Occipital furrow:

0. Strongly imprinted right across, narrow

1. Shallow adaxially, may be broad (sag.), e.g. Eohomalonotus

Librigenae

48. Lateral border furrow:
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0. Very shallow

1. Moderately deep

2. Deep

3. Absent

49. Eye socle (i.e. the platform on the upper part of the librigenae that lies below the 

visual surface of the eye (Siveter 1980), defined by an ‘eye socle furrow’):

0. Present

1. Absent

50. Librigenal spine:

0. Absent

1. Present

51. Marginal spines on lateral border:

0. Absent

2. Present, e.g. Pharostoma pulchrum 

Rostral plate and hypostome

52. Hypostoma:

0. Anterior border long (sag.) and flange like, e.g. Platycalymene

1. Anterior border short

53. Hypostomal rhynchos:

0. Absent

1. Present, e.g. Alcymene

2. Present and doubled, e.g. Nippocalymene

54. Maculae:

0. Prominent

1. Subdued
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Thorax

55. Number of thoracic segments:

0. 13 segments

1 . 12 segments

56. Lateral lobes on axial rings:

0. Undeveloped, e.g. Alcymene

1. Developed, e.g. Reacalymene, Calymene

Pygidium

57. Pygidial border defined by furrow (may be poorly-defined), known as a 

‘pseudoborder’ (Fortey 1990):

0. Border present

1. Border absent

58. Pygidium:

0. Two-thirds or less as long as wide

1. Two-thirds or more as long as wide

59. Number of pygidial axial ring furrows:

0. 4 or less

1. 5 to 9

2 . 10 or more

60. Vincular region:

0. Absent, e.g. Dipleura

1. Present, defined by a break in the height and sculpture of the pleurae, e.g. 

Calymene

2. Present, defined clearly by a vincular furrow (the ‘cinctures’ of Dean and 

Zhou 1988), e.g. Colpocoryphe

61. Postaxial ridge:
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0. Absent

1. Present

62. Pygidial furrows:

0. Interpleural furrows present only abaxially, accompanied by flared pleural 

furrows, e.g. Arcticalymene

1. Complete interpleural furrows present (may be weak), complete pleural 

furrows present, e.g. Calymenella, Platycalymene

2. Complete interpleural furrows present, incomplete pleural furrows present, 

e.g. Protocalymene

3. Interpleural furrows present only abaxially, normal pleural furrows present, 

e.g. Neseuretinus

4. No interpleural furrows and normal pleural furrows present, e.g. 

Iberocoryphe

5. Both interpleural and pleural furrows absent; pygidial pleurae smooth, may 

have deeply incised first pleural furrow, e.g. Huemacaspis

63. Axial vs. pygidial width:

0. Axis greater than one-third pygidial width

1. Axis less than one-third pygidial width

64. Pygidial trilobation:

0. Distinct

1. Distinct, but shallow

2. Obsolete/ indistinct

65. Convexity of pygidial axis:

0. High

1. Low

Ontogeny

6 6 . Presence of three large marginal spines (anterior fixigenal spine, midfixigenal spine 

and posterior fixigenal spine) on the protocranidium:
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0. Absent

1. Present

3.3.3 RESULTS

The resulting dataset consists of sixty-six characters using fifty-five calymenoid genera. 

Two most parsimonious trees (MPTs; Figure 3.1) were recovered, with a tree length (TL) 

of 426 and a Cl of 0.25 (homoplasy index (HI) 0.75, Rl 0.63, rescaled consistency index 

(RC) 0.16). The majority-rule tree shows the following: (1) the Calymenidae Milne- 

Edwards, 1840 is paraphyletic with respect to the Bathycheilidae Pribyl, 1953; (2) the 

Reedocalymeninae Hupe, 1955 is basal to the Flexicalymeninae Siveter, 1977 and 

Calymeninae Milne-Edwards, 1840 and is paraphyletic with respect to the 

Colpocoryphinae; (3) the Flexicalymeninae is paraphyletic with respect to the 

Calymeninae and (4) the Homalonotidae Chapman, 1890 is monophyletic (see Figure 

3.2). The trees differ in the relationships of Dekalymene, Diacalymene and 

Spathacalymene. One shows Dekalymene as closely-related to Spathacalymene and 

the other shows the three taxa as an unresolved trichotomy.

Specific relationships are discussed in the Systematic Palaeontology (section 

3.5). Character states with ambiguous optimisation in this chapter are indicated by 

asterisks within the text below, next to the character in question.
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(a) (b)
Calymene blumenbachii 
Tapinocalymene nodulosa 
Alcymene neointermedia 

1 Arcticalymene viciousi
— Papillicalymene papillata 

Dekalymene crassa 
Spathacalymene nasuta 
Diacalymene drummuckensis 
Nipponocalymene hamadai 
Gravicalymene capitovata 
Thelecalymene mammillata 
Sthenarocalymene lirella 
Linguocalymene linguata 
Flexicalymene Reacalymene limba

\ Flexicalymene caractaci
— Flexicalymene senaria 

Flexicalymene (Onnicalymene) jemtlandica 
Apocalymene coppinsensis 
Liocalymene clintonii 
Liocalymene cresapensis 
Metacalymene baylei 
Platycaiymene duplicata 
Calymenesun tingi 
Reedocalymene expansa 
Colpocoryphe rouaulti 
Salterocoryphe salteri 
Neseuretus tristani 
Sarrabesia teichmuelleri 
Vietnamia douvillei 
Neseuretinus turcicus 
Pharostoma pulchrum 
Holoubkocheilus granulatus 
Thulincola barbarus 
Pharostomina oepiki 
Pradoella pradoi

Balymenia whittingtoni 
aiymenella boisseli 

Protocalymene mcallisteri 
Bathycheilus castilianus 
Eulomina mitrata 
Parabathycheilus vagans 
Kerfornella brevicauaatus 
Plaesiacomia rara 
Huemacaspis sp. 

r ~  Iberocorypne verneuili
—  Eohomalonotus sdzuyi 

Parahomalonoius forbesi 
Dipleura laevicauda 
Homalonotus knightii 
Platycoryphe dyaulax 
Brongniartella bisulcatus 
Digonus gigas gigas 
Burmeisterella armata 
Arduennella maxillieuxi 
Trimerus delphinocephalus 
Bavarilla hofensis

Figure 3.1: The two resulting MPTs from the analysis.
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Figure 3.2: The 50% majority-rule tree from the analysis. A low cut-off limit was applied to the 
bootstrap values figured. Although it is acknowledged that often a bootstrap value of <50% is 
considered poor support for a node, it was felt important to convey the difference in support 
between the bootstrap support for other groupings. Bootstrap values and branch support values 
(given in adjacent brackets where >0) are shown above the branches. Clades A-E are indicated. 
Purple nodes delineate suprafamilal, green nodes delineate familial and red, subfamilial 
groupings.

3.4 DISCUSSION

It is interesting that the Calymenidae, as previously described, is paraphyletic in this 

analysis (Fig. 3.2, clades A and B). However, this proposed phylogeny fits into Shirley’s 

model of division into two groups (1936, p. 392): (1) those species with an axial furrow 

that is not contracted and have no papillate lobes and (2 ) those with papillate lobes 

where the buttress develops from the sides of the fixigena over the axial furrows. It is 

possible that Linguocalymene has lost any buttresses, possibly having a paedomorphic 

origin as suggested for Metacalymene by Siveter (1979, p. 373). However, other 

characters of Linguocalymene are not reminiscent of the calymenines and constraining 

the tree so that it falls inside the clade of buttressed genera adds at least three steps to 

the tree length, making it a much less parsimonious proposal.

One of the MPTs is not fully resolved, which seems curious. But, it is 

acknowledged that polytomies can reflect actual phylogenetic patterns (the ‘hard’ 

polytomies of Maddison 1989) rather than reflecting only non-resolution. It is perhaps 

possible that an ancestral morphology survived a speciation event and then bifurcated 

again before acquiring any apomorphies (i.e. ‘firm’ polytomies; as suggested by Purvis & 

Garland 1993).
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3.5 SYSTEMATIC PALAEONTOLOGY

Order PHACOPIDA Salter, 1864 

Suborder CALYMENINA Swinnerton, 1915 

Family BAVARILLIDAE Sdzuy, 1957

TAXA INCLUDED. Bavarilla Barrande, 1868.

STRATIGRAPHICAL RANGE. Lower to Upper Ordovician.

Family HOMALONOTIDAE Chapman, 1890

EMENDED DIAGNOSIS. Proparian facial suture (this suture is gonatoparian in some 

homalonotids, while some reeedocalymenines also have a proparian facial suture) 

(character (ch.) 5). Occipital tubercle absent (ch. 24*; homoplastic character state). 

Palpebral lobe opposite 2L (also seen in many calymenines and flexicalymenines) (ch. 

27; homoplastic character state). Ratio of preocular fixed cheek to that of glabella at L2 

is smaller or equal to a proportion of 0.4 (homoplastic character state) (ch. 28; 

homoplastic character state). Eye ridges absent (ch. 30*; homoplastic character state 

and present in Iberocoryphe, Eohomalonotus and Brongniartella). Anterior border is 

gently curved (ch. 42*; straight in some homalonotids). Occipital furrow that is shallow 

adaxially (homoplastic character state and reversed in some homalonotids) (ch. 47). 

Very shallow lateral border furrow on the librigena (homoplastic character state) (ch. 48). 

Librigenal spine absent (ch. 50*). Prominent maculae (homoplastic character state) (ch. 

54). Pygidial border not defined by furrow (ch. 57*). Pygidium that is two-thirds or more 

as long as wide (homoplastic character state) (ch. 58). Five to nine pygidial axial ring 

furrows defined (ch. 59*).

TAXA INCLUDED. Arduennella Wenndorf, 1990; Brongniartella Reed, 1918; 

Burmeisterella Reed, 1918; Digonus Gurich, 1909; Dipleura Green, 1832; 

Eohomalonotus Reed, 1918; Homalonotus Konig, 1825; Huemacaspis Pribyl & Vanek, 

1980; Iberocoryphe Hammann, 1977; Kerfornella Henry, 1976; Parahomalonotus Reed, 

1918; Plaesiacomia Hawle & Corda, 1847; Platycorphe Foerste, 1919; Trimerus Green, 

1832.

STRATIGRAPHICAL RANGE. Middle Ordovician to Middle Devonian.
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REMARKS. The Homalonotidae is monophyletic. Reed (1918) suggested that the 

Devonian taxa ‘fall into two main groups’: (1) Parahomalonotus and (2) a group 

composed of Burmeisteria Salter, 1865 and Digonus Gurich, 1909. Burmeisteria is not 

coded here but - assuming that Burmeisteria and Burmeisterella Salter 1965 are closely- 

related, this analysis suggests there are, indeed, two main groups: the 

eohomalonotids+homalonotids (Parahomalonotus) and trimerines (Burmeisterella and 

Digonus) decribed below.

Sufamily EOHOMALONOTINAE Hupe 1953

EMENDED DIAGNOSIS. Gonatoparian facial suture (ch. 5*; proparian in Iberocoryphe). 

Glabella displays severe anterior taping (ch. 9; but parabolic in Huemacaspis). Uniformly 

rounded glabella anterior margin (ch. 10*). Posterior border of glabella ‘curls’ anteriorly 

at lateral points (ch. 34*; straight in Huemacaspis). Anterior margin is longer (sag.) than 

the occipital ring (ch. 43). Eye socle absent (ch. 49*; known only in Kerfornella).

TAXA INCLUDED. Eohomalonotus Reed, 1918; Huemacaspis Pribyl & Vanek, 1980; 

Iberocoryphe Hammann, 1977; Kerfornella Henry, 1976; Plaesiacomia Hawle & Corda, 

1847.

STRATIGRAPHICAL RANGE. Middle Ordovician (Llanvirn - Llandeilo)

REMARKS. The close relationship between Kerfornella Henry, 1976, Plaesiacomia 

Hawle & Corda, 1847 and Huemacaspis Pribyl & Vanek, 1980 is confirmed (the taxon 

‘Kerfornellinae’ of Henry 1980. It is, however, expanded here to include Eohomalonotus 

and Iberocoryphe and so the taxon name Eohomalonotinae Hupe, 1953 has priority). 

Supporting apomorphies of these three taxa are (all homoplastic): (1) relatively smooth 

tuberculation (ch. 4); (2) absence of paraglabellar areas (ch.26*); (3) a distinctive 

vincular region (ch. 60); and (4) a smooth pygidial pleural area (ch. 62).

The grouping of Colpocoryphe and Plaesiacomia into the Colpocoryphinae by 

Vanek (1965) seems to be based mainly on characters connected with enrollment (see 

Clarkson & Henry 1973). Indeed, those taxa are not shown to be closely-related here.

Sufamily HOMALONOTINAE Chapman, 1890

EMENDED DIAGNOSIS. Straight L1 furrow (ch. 14*; known only in Platycoryphe). 

Indistinct pygidial trilobation (ch. 64).
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TAXA INCLUDED. Dipleura Green, 1832; Homalonotus Konig, 1825; Parahomalonotus 

Reed, 1918; Platycorphe Foerste, 1919.

STRATIGRAPHICAL RANGE. Mid Ordovician (Llanvirn) to Early Devonian (Lochkovian). 

REMARKS. A close relationship between Brongniartella and Platycoryphe Foerste, 1919 

(Whittington 1965; Thomas 1977) and also between Trimerus and Dipleura (Sdzuy 

1959) is not supported; Brongniartella and Trimerus fall into one group (the Trimerinae 

below) and Platycoryphe and Dipleura into this grouping.

The Homalonotinae as defined by Thomas 1977 is paraphyletic: its taxa are 

divided here into two clades within clade E (the Homalonotinae and Trimerinae below).

Sufamily TRIMERINAE Hupe, 1953

EMENDED DIAGNOSIS. Pygidial length is subequal to the cephalon (ch. 3; exceeding 

cephalon length in Digonus). Triangular shaped frontal area of the cephalon as defined 

by anterior branches of facial suture (ch. 6 ; subparallel in Brongniartella). Distinct 

paraglabellar areas (ch. 26; absent in Brongniartella). Palpebral lobes shorter (sag.) than 

the occipital ring (ch. 29). Straight anterior border of cranidium (ch.42). Ten or more 

pygidial axial ring furrows (ch. 59). Postaxial ridge present on pygidium (ch. 61).

TAXA INCLUDED. Arduennella Wenndorf, 1990; Brongniartella Reed, 1918; 

Burmeisterella Reed, 1918; Digonus Gurich, 1909; Trimerus Green, 1832. 

STRATIGRAPHICAL RANGE. Upper Ordovician (Longvillian) to Middle Devonian 

(Givetian).

REMARKS. The very close relationship between Trimerus Green, 1832 and 

Brongniartella Salter, 1865 is unfounded (Tomczykowa 1975).

Family BATHYCHEILIDAE Pribyl, 1953

EMENDED DIAGNOSIS. Anterior branch of facial sutures subparallel (ch. 6 ). Parabolic 

glabella (ch. 9*). Uniformly rounded anterior margin of glabella (ch. 10*). Curved L1 

furrow (ch. 14*). Sagitally medially longer occipital ring (ch. 23*). Impressed occipital 

muscle pad (ch. 25). Palpebral lobe length is equal to that of the occipital ring (ch. 29). 

Fossulae present (ch. 31*). Preglabellar field present (ch. 38*). Fixigenal spine present 

(ch. 41). Low glabella (ch. 46*). 12 thoracic segments (ch. 55*; only known in
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Bathycheilus). Complete interpleural and pleural furrows (ch. 62*). Distinct trilobation of 

the pygidium (ch. 64*).

TAXA INCLUDED. Bathycheilus Holub, 1908; Eulomina Ruzicka, 1931; 

Parabathycheilus Mergl, 1984.

STRATIGRAPHICAL RANGE. Lower to Upper Ordovician.

REMARKS. While the constituent subfamilies are monophyletic the family Bathcheilidae 

is polyphyletic in this analysis -  the Pharostomatinae is closely-related to the 

Reedocalymeninae and the Bathycheilinae is basal to the Calymenidae. The placement 

of Eulomina within the Bathycheilidae seems sensible (see Mergl 1994).

Genus PROTOCALYMENE Ross, 1967 

[Subfamilia incertae sedis]

TYPE SPECIES. Protocalymene mcallisteri Ross, 1967.

STRATIGRAPHICAL RANGE. Middle Ordovician.

REMARKS. In Turvey’s study (2002a), Protocalymene is basal to Bavarilla. In the 

current study it is more derived, despite the latter taxon being selected as the outgroup 

in both studies. An explanation for this discrepancy could be that Turvey (2002a) coded 

Protocalymene mcallisteri as having a proparian facial suture and genal spines. 

However, these are immature characteristics: adult Protocalymene have a gonatoparian 

facial suture and no genal spines (see Ross 1967).

Superfamily CALYMENOIDEA Fortey in Kaesler, 1997

EMENDED DIAGNOSIS. Variously tuberculate ornamenation (ch. 4*). Gonatoparian 

facial suture (ch. 5*). Forked S1 (ch. 18). Articulation notch present (ch. 35). Anterior 

border length roughly equal to length (sag.) of occipital ring (ch. 43*). Pygidial border 

absent (ch. 57*).

TAXA INCLUDED. Calymenella Bergeron, 1890, Calymenia Kolobova in Sokolov & 

Elkin, 1978, families Reedocalymenidae Hupe, 1955 and Calymenidae Milne-Edwards, 

1840.

STRATIGRAPHICAL RANGE. Lower Ordovician to Middle Devonian.
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Genus CALYMENELLA  Bergeron, 1890 

[Subfamilia incertae sedis]

TAXA INCLUDED. Calymenella Bergeron, 1890.

STRATIGRAPHICAL RANGE. Lower to Upper Ordovician.

REMARKS. In this study, Calymenella Bergeron 1890 is basal to Pharostomina Sdzuy, 

1955 (which is contained within the subfamily Pharostominae below). Turvey (2002a) 

supposed the converse relationship. But he coded Calymenella preboisseli Beckly, 1989 

instead of the type species; this may account for the differences seen.

Calymenella Bergeron, 1890 has more affiliation with Neseuretus, as suggested 

by Hammann (1983), than with the Eohomalonotinae Hupe, 1953 (as supported by 

Hammann & Henry 1978).

The positions of Protocalymene (see above), Pradoella and Calymenella are 

dissimilar. Pradoella is basal to the bathycheilids here (see below) and Calymenella is 

basal to the bathycheilids and reedocalymines. In Turvey’s study (2002a) these taxa 

were sister group to the Neseuretus group.

Genus CALYMENIA Kolobova in Sokolov & Elkin, 1978 

[Subfamilia incertae sedis]

TAXA INCLUDED. Calymenia Kolobova in Sokolov & Elkin, 1978.

STRATIGRAPHICAL RANGE. Lower to Upper Ordovician.

REMARKS. Calymenia Kolobova in Sokolov & Elkin, 1978 was tentatively placed close 

to Bathycheilus by Hammann & Leone (1997) based on the shape of the glabella and 

the form of S1. This analysis suggests that Calymenia is actually more closely-related to 

the Pharostomatinae. Supporting apomorphies are: (1) two glabellar furrows, S3 

indistinct (ch. 11); (2) a straight furrow defining L1 (ch. 14*); (3) the presence of distinct 

paraglabellar areas (ch. 26*) and (4) a weak articulation notch on the posterior cephalic 

margin (ch. 35).
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Family REEDOCALYMENIDAE Hupe, 1955 

Subfamily PHAROSTOMINAE Hupe 1953

EMENDED DIAGNOSIS. S1 shallowing abaxially (ch. 12). Forked S1 (ch. 18*). Ratio of 

preocular fixed cheek to that of glabella at L2 is smaller or equal to a proportion of 0.4 

(ch. 28*). Presence of eye ridges (homoplastic character) (ch. 30). A broad point to the 

anterior border of the cranidium (reversed in some reedocalymenines) (ch. 42). An 

occipital furrow that is shallow adaxially (homoplastic character, seen in some 

homalonotids; ch. 47). A very shallow lateral border furrow on the librigena (homoplastic 

character, seen in some homalonotids; ch. 48). Absence of eye socle (ch. 49*). 

‘Pseudoborder’ present (ch. 57). A pygidium that is two-thirds or more as long as wide 

(ch. 58). High convexity of pygidial axis (ch. 65).

TAXA INCLUDED. Holoubkocheilus Mergl, 1994; Pharostomina Sdzuy, 1955; Pradoella 

Hammann, 1977; Pharostoma Hawle & Corda, 1847; Thulincola Tripp, 1962. 

STRATIGRAPHICAL RANGE. Early Ordovician (Tremadoc) to Middle Ordovician 

(Llandeilo).

REMARKS. Holoubkocheilus, Pharostomina, Pharostoma and Thulincola should be 

included in the subfamily Pharostomatinae Hupe 1953, as suggested by earlier workers 

(e.g. Tripp 1962; Mergl 1994). However, the subfamily should be expanded to 

incorporate Pradoella.

Subfamily REEDOCALYMENINAE Hupe, 1955

EMENDED DIAGNOSIS. Impressed occipital muscle pad (ch. 25*). A lens-like posterior 

border furrow (homoplastic character state) (ch. 33). An inflated preglabellar field 

(ch.40*). A post-axial ridge (homoplastic character state) (ch. 61).

TAXA INCLUDED. Calymenesun Kobayashi, 1951; Colpocoryphe Novak in Perner, 

1918; Neseuretinus Dean, 1967; Neseuretus Hicks, 1873; Reedocalymene Kobayashi, 

1951; Salterocoryphe Hammann, 1977; Sarrabesia Hammann & Leone, 1997; Vietnamia 

Kobayashi, 1960.

STRATIGRAPHICAL RANGE. Early Ordovician (Tremadoc) to Late Ordovician (Ashgill). 

REMARKS. The analysis confirms that Calymensun and Reedocalymene are sister- 

groups (see Lu 1975; Zhou etal. 1984; Peng etal. 2000).
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The results confirm the close relationship between Salterocoryphe and 

Colpocoryphe and places both among the reedocalymenines (as suggested by 

Hammann 1983, p. 79) rather than with the Kerfornellinae Henry, 1980 (as supposed by 

Hammann & Leone 1997) or the Flexicalymenine (Salterocoryphe; as supposed by 

Henry 1980). The former Colpocoryphinae are grouped specifically with Reedocalymene 

expansa Yi, 1957 and Calymensun tlngi (Sun 1931) because of the presence of: (1) 

paraglabellar areas present in furrows (ch. 26*); (2 ) preglabellar field that is not inflated 

(ch. 40*); (3) an eye socle (a reversal) (ch. 49); (2) vincular furrows on the pygidium 

(homoplastic character) (ch. 60). Colpocoryphe and Salterocoryphe are grouped 

together by: (1) the absence of fossulae (seen also in the Homalonotidae and Bavarilla) 

(ch. 31); (2) a marked angular deflection of the posterior cephalic margin (seen in the 

calymenines and flexicalymenines) (ch. 35); (3) the absence of a preglabellar field (seen 

in the calymenines, flexicalymenines and homalonotids) (ch. 38) and (4) normal pleural 

furrows present but no interpleural ones (ch. 62*); and (5) a highly convex pygidial axis 

(seen in some calymenines, flexicalymenines and bathychelines) (ch. 6 6 ).

Sarrabesia Kobayashi, 1960 and Vietnamia Kobayashi, 1960 are closely-related, 

but display many differences (see Hammann & Leone 1997, p. 118) so should not be 

thought of as congeneric as supposed by Turvey (2002a).

Resulting relationships between the reedocalymenines here are identical with 

those obtained by Turvey (2002b) using a different character list.

Family CALYMENIDAE Milne-Edwards, 1840

EMENDED DIAGNOSIS. L1 separated from median lobe by furrow (ch. 15). Curved L1 

(ch. 14*). Forked S1 (ch. 18*). Articulation notch is distinct (ch. 35). Anterior border 

margin present (ch. 37). Preglabellar field absent (ch. 38). Preglabellar not gently sloping 

(either roll-like or with ridge; ch. 39). Preglabellar furrow present and deep (ch. 45). 

Occipital furrow strongly imprinted across with no shallowing adaxially (ch. 47).

TAXA INCLUDED. ‘Grade’ Flexicalymeninae Siveter, 1976 and subfamily Calymeninae 

Milne-Edwards, 1840.

STRATIGRAPHICAL RANGE. Lower Ordovician to Middle Devonian.
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Grade’ FLEXICALYMENINAE Siveter, 1976

TAXA INCLUDED. Apocalymene Chatterton & Campbell, 1980; Flexicalymene Shirley, 

1936; Flexicalymene (Onnicalymene) Dean, 1962; Flexicalymene (Reacalymene) 

Shirley, 1936; Gravicalymene Shirley, 1936; Linguocalymene Tomczykova, 1991; 

Liocalymene Raymond, 1916; Metacalymene Kegel, 1927; Platycalymene Shirley, 1936; 

Sthenarocalymene Siveter, 1977; Thelecalymene Whittington, 1971b. 

STRATIGRAPHICAL RANGE. Middle Ordovician (Llanvirn) to Late Silurian (Ludlow). 

REMARKS. The group is explicitly paraphyletic and displays the following 

characteristics:

•  Thelecalymene Whittington 1971a is, indeed, closely-related to Gravicalymene 

Shirley 1936 (see Whittington 1971a): (1) three glabellar furrows (ch. 11*); (2) L1 

is greater in length (sag.) than L2 plus L3 (ch. 13); and (3) absence of fossula 

(ch.31).

• Sthenarocalymene Siveter, 1977 is more closely related to Gravicalymene, as 

thought by Siveter (1977, p. 386), than it is to Flexicalymene Shirley 1936.

•  Recalymene and Onnicalymene are both closely-related to Flexicalymene s.s. 

but neither should be included within the latter genus (see Siveter 1977).

•  Recalymene is more closely-related to other flexicalymenines than Flexicalymene 

s.s.

•  Metacalymene Kegel, 1927 is closely-related to Platycalymene Shirley, 1936 as 

suggested by previous workers (Barrande 1852; Shirley 1936; Whittard 1960; 

Siveter 1979). The argument that homeomorphy is responsible for the 

resemblance of Metacalymene to Platycalymene seems unfounded here (see 

Shirley 1936; Hughes 1969).

•  The relationship of Liocalymene Raymond, 1916 to other taxa is obscure 

(Whittington 1971b, p. 474) but it is seen here as closely-related to 

Metacalymene and Platycalymene. Supporting apomorphies for this relationship 

are: (1 ) the same body proportions (ch. 1); cephalic length to body ratio (ch. 2 ); 

(3) cephalic and pygidial length are roughly the same (ch. 3); (4) L1 separated 

from median lobe (ch. 15*); (5) no paraglabellar areas (ch. 26*); (6 ) weak 

deflection of posterior cephalic margin (ch. 35*); (7) this deflection is less than 

half the transverse width of the occipital ring (ch. 36*); (8 ) anterior adaxial margin 

is rounded (ch. 37*); (9) no preglabellar field (ch. 38*); (10) short preglabellar
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area (ch. 39*); (11) anterior border length is less than that of the occipital ring (ch. 

43) and (12) a deep preglabellar furrow (ch. 45*).

•  Things that group Liocalymene, Metacalymene and Platycalymene with taxa 

within the clades C, D, and E are: (1) transversely elongate L2 (ch. 17); (2) L3 not 

independent of glabella (ch. 22) and (3) low convexity of pygidial axis (ch. 65).

• Apocalymene is not synonymous with Sthenarocalymene as suggested by 

Holloway (1980). Several differences are apparent between the two genera: (1) 

Sthenarocalymene has a sigmoidal postocular suture without an outwards turn, 

that of Apocalymene has an outwards turn (ch. 7); (2) Sthenarocalymene has a 

transverse anterior cranidial margin, that of Apocalymene is gently rounded (ch. 

10); (3) Sthenarocalymene has a 4p furrow (albeit small but well-defined), 

Apocalymene has 2p furrow and an indistinct 3p (ch. 11); (4) the 2p lobe of 

Sthenarocalymene is not separated from the medial glabellar lobe, however that 

of Apocalymene is (Chatterton & Campbell (1980) state that ‘1 p and 2p [are] not 

tending to become isolated’ but a distinct furrow, as defined in this study, can be 

seen in, for example, their plate 8 , figure 18) (ch. 16); (5) some 

Sthenarocalymene sp. have a small occipital node, Apocalymene never do 

(ch.24); (6 ) the palpebral lobe of Sthenarocalymene is opposite 2L, that of 

Apocalymene are opposite 2S/3L (ch. 27); (7) Sthenarocalymene has an eye 

ridge, Apocalymene does not (ch. 30); (8 ) Sthenarocalymene has a weak 

articulation notch on posterior cephalic margin, that of Apocalymene is better 

defined (ch. 35); (9) the anterior adaxial margin of the preocular fixigena of 

Sthenarocalymene are pointed and overhanging anterior border furrow, 

Apocalymene preocular fixigena do not overhang the anterior border furrow (ch. 

37); (10) Sthenarocalymene has a subtransverse ridge on the preglabellar area, 

whereas that of Apocalymene is more roll-like (ch. 39) and (11) the anterior 

border length of Sthenarocalymene is less than that of the occipital ring, that of 

Apocalymene is about equal (ch. 43). It is recognized that the distinction made 

between these two genera are essentially small differences in the expression of 

only some characters. However, this is an instance of genera being distinct 

based on character combinations rather than a few characters states that are 

thought to be individually diagnostic (see Holloway 1980, p.58).

•  Gravicalymene, Thelecalymene, Sthenarocalymene, Linguocalymene and 

Reacalymene are grouped by: (1 ) sigmoidal postocular suture without outwards
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turn (ch. 7); (2) bell-shaped glabella (ch. 9*); (3) subtransverse ridge on 

preglabellar area (ch. 39); and (4) developed lateral lobes on axial rings (ch. 56*).

Subfamily CALYMENINAE Milne-Edwards, 1840

EMENDED DIAGNOSIS. Bell-shaped glabella (ch. 9). Buttressed L2 (ch. 20).

Hypostomal rhynchos present (doubled in Nippocalymene; ch. 53).

TAXA INCLUDED. Alcymene Ramskold et a l, 1994; Arcticalymene Adrain &

Edgecombe, 1997; Calymene Brongniart, 1822; Dekalymene Curtis & Lane, 1998;

Diacalymene Kegel, 1927; Nipponocalymene Kaneko, 1985; Papillicalymene Shirley,

1936; Spathacalymene Tillman, 1960; Tapinocalymene Siveter, 1980.

STRATIGRAPHICAL RANGE. Early Silurian (Llandovery) to Middle Devonian (Givetian).

REMARKS. This subfamily is monophyletic and shows the following relationships:

•  The close relationship between Tapinocalymene Siveter, 1980, Diacalymene 

Kegel, 1927 and Calymene Brongniart, 1822 is supported (see Siveter 1980).

•  Arcticalymene Adrain & Edgecombe, 1997 and Papillicalymene Shirley, 1936 are 

resolved here as sister-groups -  an argument that these taxa are unrelated and 

that common character states are homoplastic (see Siveter & Chatterton 1996) is 

not supported. They share: (1) four glabellar furrows (ch. 11*); (2) buttressed 

form of L3 (ch. 21); (3) an articulating point more than half width of occipital ring 

(ch. 36); (4) an anterior border shorter (sag.) than occipital ring (ch. 43*); (5) a 

pygidium that is two-thirds or more as long as wide (ch. 58) and (6 ) interpleural 

furrows that are present only abaxially, accompanied by flared pleural furrows 

(ch. 62).

•  Dekalymene is closely-related to Diacalymene (Siveter, pers. comm.) and 

perhaps should not have generic status. Dekalymene differs in the following 

characteristics from Diacalymene: (1) uniformly rounded anterior margin of 

glabella rather than transverse (ch. 10 ); (2 ) 1S not shallowing abaxially (ch. 12 ) 

and (3) L3 is independent of glabella (ch. 22).

•  There is a strong case for the suppression of Spathacalymene as it forms an 

unresolved trichotomy with Decalymene and Diacalymene (supported by recent 

unpublished fossil finds of calymenids that possess the subtransverse ridge of 

the preglabellar area of Diacalymene, with preglabellar fields longer than 

Diacalymene and not as long as Spathacalymene', Edgecombe, pers. comm.).
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• Alcymene is indeed closely-related to Calymene (Ramskold et al. 1994).
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4. The phylogeny and disparity 

of the Odontopleurida (Trilobita)

4.1 INTRODUCTION

THE Odontopleurida Whittington, 1959 is thought to have a close affinity with the Lichida 

(see Chapter 2 and Tripp & Evitt 1981); indeed, both of these groups are placed within 

the same order by some workers (see Fortey 2001; Thomas & Holloway 1988). The 

former is well-represented by a wealth of exquisitely preserved, silicified faunas (e.g. 

Whittington 1956a; Chatterton & Perry 1983) and, thus, is known in rich morphological 

detail. Being a character-rich group it is ideal for phylogenetic analysis. Furthermore, the 

group displays a wide range of apparently disparate morphologies. Is the disparity of 

odontopleurid clades consistent through their stratigraphic record? How does the 

disparity pattern compare to that of other trilobite families, for example, those of the 

lllaenoidea Hawle & Corda, 1847?

Well-preserved odontopleurid material was first described by Barrande around 

150 years ago (1852, 1872) and later re-described by Prantl and Pribyl (1949). 

Exceptionally silicified, well-preserved Middle Ordovician material from north Virginia, 

USA, was described in detail by Whittington (1956a; see Plate 4 overleaf).

At present, six odontopleurid families are accepted: Acidaspidinae Salter, 1864; 

Apianurinae Whittington, 1956a; Ceratocephalinae Richter & Richter, 1925; 

Koneprusiinae Vanek & Pek, 1987; Odontopleurinae Burmeister, 1843 and 

Selenopeltinae Hawle & Corda, 1847 (see Plate 5 (a-f) for examples).
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Plate 5
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Plate 4 .
Silificied trilobites (plate 12 of Whittington 1956); x 1.25.

Plate 5.
(a) Sinespinaspis markhami Edgecombe & Sherwin, 2001, Fig. 4(b); x 5.0; (b) Dudleyaspis 
bowningensis p ̂ www auslrnus qov aûDâaeontoloqv̂côect'onŝ r'̂ot3'les ̂1tm̂ x 5 O' (c) Acidaspis s ôssî en c*e'- ^
2 /"\ , .P .. .. www.thefossilmuseuin.neh . . .  www.fossilmali.cor™ . _.0, (d) Kettneraspis sp. '------------------------ , x. 4.0; (e) Boedaspis ensifer1 ;; x 4.0; (f)
Selenopeltis(www tnlQMta (re); x 0.75).

4.2 PHYLOGENETIC ANALYSIS

4.2.1 TAXONOMIC SAMPLING

Given the broad scope of this study, character state assignments were determined 

primarily on the basis of published descriptions and illustrations. In general, type species 

were coded. However if these were poorly known, better-preserved congeneric species 

were coded instead. All taxa included in the analysis are listed in Table 4.1 below; 

authorship and important subsequent references are also given.

Several taxa were excluded as they were extremely poorly-documented and/or 

poorly known, and obscured resolution among the remaining taxa. These taxa are; 

Archaeopleura Ramskold, 1991b; Brutonaspis Pek & Vanek, 1991; Eoleonaspis Sheng, 

1974; Meadowtownella Pribyl & Vanek, 1965; Ningnanaspis Sheng, 1974; Orphanaspis 

Prantl & Pribyl, 1949; Periallaspis Bruton, 1966b and Elbaspis Baldis & Blasco, 1973.

4.2.2 METHODS

See section 3.3.2 for full description of methods (i.e. PTP tests, bootstrapping, the use of 

ACCTRAN, TreeRot and MacClade). The dataset from Appendix II was analyzed using 

PAUP (version 4.0b10*, Swofford 2002). All characters were equally weighted and 

treated as unordered. The dataset includes no autapomorphies or phylogenetically- 

uninformative characters.

It is well known that different characters in a dataset can support different clades 

or nodes. This property can be useful: various sub-sets of characters can be used to 

construct different trees that, in turn, can each be used as a starting point in a tree
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Genus Coded Species Author & publication year
Acanthalomina minuta Prantl & Pribyl 1949
Acid asp is brightii Murchison 1839 (Chatterton & Perry 1983)
Anacaenaspis gotlandensis Bruton 1967 (Ramskold 1984)
Apianurus barbatus Whittington 1956a (Bruton 1966b)
Boedaspis ensifer Whittington & Bohlin 1958 (Bruton 1966b)
Borkopleura gorella Snajdr 1984a
Calipemurus insolitus Whittington 1956a
Ceratocara Ceratocephala rarispina 

Whittington, 1956a
Ramskold 1991b (Prantl & Pribyl 1949)

Ceratocephala goniata (supplemented with 
information from C.laciniata 
Whittington & Evitt, 1954)

Warder 1838 (Whittington & Evitt 1954; Chatterton & Perry 1983; Holloway 
1994)

Ceratocephalina tridens Whittington 1956 (Chatterton & Perry 1983)
Ceratonurus Acidaspis krejcii Prantl & Pribyl, 

1949
Novak 1883 (Prantl & Pribyl 1949)

Chlustinia Acidaspis keyserlingi Barrande, 
1846

Pribyl & Vanek 1965

Dalaspis Acidaspis (Dalaspis) drzymlai Chatterton & Perry 1983
Diacanthaspis cooperi Whittington 1941 (Prantl & Pribyl 1949; Chatterton & Perry 1983)
Dicranurus Acidaspis hamata Hall, 1859 Conrad 1841 (Prantl & Pribyl 1949)
Dudleyaspis Acidaspis quinquespinosa Lake, 

1896
Prantl & Pribyl 1949 (Chatterton & Perry 1983; Ramskold 1984)

Edgecombeaspis johansonae Adrain & Ramskold 1997
Exailaspis Leonaspis bufo Ramskold, 1984 Bruton 1967 (some Leonaspis sp. designated to Exailaspis by Ramskold & 

Chatterton 1991; Ramskold 1991b)
Gaotania ovata W. Zhang 1974 (Holloway 1994)
Globulaspis Acidaspis (Globulaspis) prominens Reed 1931
Gondwanaspis mrirtensis Feist 2002
Hispaniaspis Diacanthaspis morenaica 

Hammann, 1976
Hammann 1992

Isoprusia mydlakia Bruton 1966a (Ramskold 1991a)
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Ivanopleura Odontopleura dufrenoyi Barrande, 
1846

Snajdr 1984a (Adrain & Chatterton 1990)

Kettneraspis Acidaspis pigra Barrande, 1872 Prantl & Pribyl 1949 (Ramskold 1991b; Adrain & Ramskold 1997)
Koneprusia Acidaspis fuscina Novak, 1883 Prantl & Pribyl 1949 (Ormiston 1969)
Laethoprusia salax Ramskold 1991a
Leonaspis Odontopleura leonhardi Barrande, 

1846
Richter & Richter 1917 (Chatterton & Perry 1983; Ramskold 1984, 1991b; 
Siveter 1989)

Miraspis Odontopleura mira Barrande, 1846 Richter & Richter 1917 (Prantl & Pribyl 1949; Bruton 1966b)
Odontopleura ovata Emmrich 1839 (Chatterton & Perry 1983; Snajdr 1984b; Adrain & Chatterton 

1990)
Primaspis Odontopleura primordialis 

Barrande, 1846
Richter & Richter 1917 (Bruton 1966b; Romano 1982; Chatterton & Perry 
1983; Siveter 1989)

Proceratocephala Acidaspis terribilis Reed, 1914 Prantl & Pribyl 1949 (Ramskold 1991b)
Radiaspis Arges radiatus Goldfuss, 1843 Richter & Richter 1917 (Prantl & Pribyl 1949
Rinconaspis santiaguensis Baldis & Gonzalez 1918
Selenopeltis Odontopleura buchii Barrande, 

1846
Hawle & Corda 1847 (Prantl & Pribyl 1949; Dean 1966; Bruton & Henry 1978; 
Romano 1982; Hammann etal. 1986)

Selenopeltoides Acidaspis hawiei Barrande 1852 Prantl & Pribyl 1949
Sinespinaspis Odontopleura greenwoodi 

Chatterton & Perry, 1983
Adrain & Chatterton 1990 (Edgecombe & Sherwin 2001)

Snoderaspis krausi Ramskold 1984
Stelckaspis warreni Chatterton & Perry 1983
Taemasaspis Primaspis (Taemasaspis) campbelli Chatterton 1971
Uriarra kausi Chatterton & Campbell 1980
Whittingtonia Acidaspis bispinosus McCoy 1846 Prantl & Pribyl 1949 (Bruton 1966b; Price 1980)

Table 4.1: A list of all taxa included in the analysis. References are given for type species; other important literature is referenced in brackets.
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search. This prevents the search becoming over-concentrated on a limited set of trees 

during the process and increases the overall effectiveness of a search (i.e. prevents the 

computer search becoming ‘stuck’ in local optima of similar cladograms; see Maddison 

1991). Such a method is employed here: it is known as the parsimony ratchet (Nixon 

1999). The methodology of the ratchet is summarized below but full details are given in 

Nixon (1999).

A starting tree is built in the same way as when a heuristic search is employed. 

Then 5-25% of the characters in the given dataset are randomly selected and 

emphasised by increasing the weight of these characters (in this case, simply by 

duplicating the characters in the dataset). A second tree is constructed from the modified 

dataset. The second tree is used to search from the starting tree (by tree bisection and 

reconnection) using the original, unweighted complement of characters (see Felsenstein 

2004, p. 51-52). Each ratchet batch instructed 200 iterations; and 20 batches were 

executed. All 4000 trees were then read back into PAUP excluding any replicate trees. 

Finally, the trees were filtered to isolate only those with the shortest length.

4.2.2.1 Outgroup

The oldest known odontopleurid is arguably the Asian genus Eodontopleura Qian & Lin 

1974 in Zhang et al. 1980, which is known only from a poorly-preserved cranidium. This 

genus was originally coded into the analysis but provided such a low level of information 

as a key-taxon that it was deemed appropriate to exclude it in preference for another, 

better-preserved taxon.

Selenopeltis was selected because it is a well-preserved, stratigraphically-old 

taxon and displays several primitive features such as: (1 ) an anterior facial suture that is 

inclined to the axis (ch. 26); (2) sub-genal notch (ch. 31); (3) broad and shallow middle 

furrow on hypostome (ch. 34); (4) inflated antero-lateral part of the thoracic axial ring (ch. 

43) and (5) 6  pairs of exterior pygidial border spines (ch. 51).
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4.2.2.2 Characters

The terminology of the Treatise on Invertebrate Paleontology (Moore 1997) is followed 

throughout this study unless otherwise stated. Some odontopleurid ontogenies are 

known (Table 4.2):

Taxon Paper(s) that describe ontogenetic stages
Leonaspis (referred to Ketteraspis in 
Ramskold 1991a)

Whittington & Campbell 1967; Chatterton 
1971; Chatterton & Perry 1983

Taemasaspis campbelli Chatterton 1971
Ceratocephala vexilla Whittington & Evitt 1954; Chatterton 1971; 

Whittington 1956a
Radiaspis bispinosus* Chatterton 1971
Ceratocephalina* Chatterton 1980
Diacanthaspis Whittington 1956b; Hu 1974
Primaspis* Whittington 1956a
Acidaspis* Chatterton & Perry 1983
Dudleyaspis* Chatterton 1971
Exailaspis Schrank 1969; Schoning 1986
Apianurus Chatterton 1980
Ceratocara Chatterton et at. 1997

Table 4.2: Known odontopleurid ontogenies. Asterisked taxa did not provide informative codable 
information here.

The character number in the following list corresponds directly to its number in 

the dataset (Appendix II). References given after characters relate to relevant papers; 

character numbers given relate to those characters that are discussed in the given 

reference.

Cranidium

1. Anterior cranidial border (Ramskold 1991 b, character (ch.) 1):

0. Wide, granulated/tuberculated

1. Narrow/smooth

2. Anterior border tubercles (Ramskold & Chatterton 1991, ch. 1):

0. Absent, smooth
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1. Single row of 10-20 symmetrically-set tubercles

2. Numerous, irregular rows of tubercles

3. Expressed as spines, e.g. Gondwanaspis

3. Glabellar topology around spine pair three (Ramskold 1991 b, ch. 2):

0. Area around base of spines is not inflated

1. Area around base of spines is inflated and stands above adjacent 

areas, e.g. Ceratocephala

4. Definition of L3 by S2 and S3 (Ramskold 1991b, ch. 4):

0. L3 defined (S3 distinct)

1. L3 absent (S3 not impressed or rudimentary)

5. Tubercles A1, A2, A3 relative to other tubercles on the fixigena (Ramskold 

1991b, ch. 5). This terminology follows Whittington (1956a, p.161):

0. Of similar size

1. Much larger than other tubercles

6 . Glabellar tubercle pairs 2, 3 and 4 retained into adult stages:

0. Absent, indistinguishable from accessory glabellar spines and 

tubercles, e.g. Odontopleura

1. Present, e.g. Edgecombaspis

7. Posterior border furrow laterally (Ramskold 1991 b, ch. 5):

0. Furrow continues unbroken onto free cheek

1. Furrow curves anterolaterally and merges with palpebral furrow; strong 

sutural ridge runs from posterior border to eye, i.e. Ceratocara, 

Ceratocephala, Ceratonurus and Proceratocephala

8 . Median occipital tubercle (Ramskold 1991b, ch. 7; Chatterton etal. 1997):

0. Absent

1. Present as a rounded projection

2. Present as a spine, i.e. a projection that tapers outward, the length 

being greater than the width at the base
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9. Occipital tubercle bearing four pits arranged at the corners of a square (occipital 

organ):

0. Absent

1. Present, e.g. Kettneraspis caldwelli, Gondwanaspis

10. Paired occipital spine (Ramskold 1991b, ch. 8 ):

0. Present

1. Absent

11. Posterior margin of occipital ring produced backwards into form of stout median 

spine:

0. Absent

1. Present, e.g. Acidaspis

12. Condition of Oap spines (Adrain & Chatterton 1990, ch. 8 ):

0. Spines absent

1. Present and distinctly posterior to median occipital spine/tubercle

2. Present and approximately lateral to median occipital spine/tubercle

13. Height of eye (Ramskold 1991b, ch. 10):

0. Low

1. Eye lobe elevated, eye set on short, thick stalk, e.g. Acidaspis

2. Set on long stalk, e.g. Miraspis

14. Depth of longitudinal glabellar furrows (Chatterton etal. 1997, ch. 9):

0. Shallow

1. Deep

15. Posterior band on occipital ring (Chatterton etal. 1997, ch. 10):

0. Distinct

1. Absent or inconspicuous

16. Occipital lobes of occipital ring (Adrain & Chatterton 1990, ch. 4):

0. Absent
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1. Weakly defined

2. Strongly defined

17. Depth of occipital furrow (Chatterton et al. 1997, ch. 11; Adrain & Chatterton 

1990):

0. Sharp and deep

1. Shallow and broad

2. Shallow medially

18. Orientation of occipital spine pairs (Chatterton e ta l. 1997, ch. 12):

0. Curved inwards or backwards distally

1. Curved outwards distally

19. Width of fixigena (Chatterton etal. 1997, ch. 13):

0. Narrow (opposite eye width less than or equal to maximum width of L1)

1. Broad (wider opposite eye than maxiumum width of L1)

20. Anterior margin of crandium (Chatterton etal. 1997, ch. 16):

0. Straight/transverse

1. Curved into three convex forward lobes: anterior margin with median 

and lateral bulges, e.g. Acidaspis and Dudleyaspis

21. Glabellar ornament:

0. Slim, thorn-like spines and small tubercles

1. Large flattened tubercles

2. Granular

22. Antennular notch:

0. Deep

1. Shallow or indistinct

23. Glabella widest across:

0. Posterior part of L1

1. Anterior part of L1
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2. Subrectangular/parallel-sided, e.g. Gondwanaspis/Dudleyaspis

24. Position of eyes:

0. Opposite anterior part of L1

1. Opposite posterior part of L1

25. Functioning facial suture in the holaspid stage (Chatterton & Perry 1983, p. 32):

0. Present

1. Absent, e.g. Acidaspis, Stelckaspis, Anacaenaspis

26. Course of anterior facial suture (Reed 1925):

0. Parallel to axis

1. Inclined to axis

Librigena

27. Border spines of librigenae (Ramskold 1991b, ch. 12):

0. Prominent, elongate border spines present

1. Border spines tiny

2. Border spines absent

28. Orientation of genal spines:

0. Genal spines not downwards-directed in a vertical plane

1. A row of almost vertically downwards-directed spines, e.g. many 

acidaspines

29. Border spines (Ramskold & Chatterton 1991, ch. 16):

0. 10-11

1. 12-13

2. 14-15

3. 16 or more

30. Direction of librigenal spine:

0. Directed horizontally, backward and outward, e.g. Odontopleuridae
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1. Directed upwardly, e.g. Apianurinae and Miraspininae

31. Sub-genal notch:

0. Absent (librigenal spine low on cephalon)

1. Present (librigenal spine high on cephalon)

32. Posterior sutural ridge developed along posterior facial suture on librigena:

0. Absent, e.g. Anacaenaspis (see Bruton 1967, p. 235)

1. Present, e.g. Acidaspis, Sinespinaspis

Hypostome

33. Outline:

0. Slightly wider than long (e.g. odontopleurids and Selenopeltis)

1. Widest anteriorly, e.g. Apianurinae

2. Longer than wide, e.g. Sinespinaspis

34. Middle furrow:

0. Commences in front of the mid-length and runs inward at a low angle, 

e.g. Diacanthaspis

1. In form of triangular depression in anterolateral corner of the middle 

body, e.g. Apianurus

2. Arises at antero-lateral corner of middle body and runs inward and 

backward, e.g. Exallaspis

3. Broad, shallow, running in from antero-lateral corner of middle body, 

e.g. Selenopeltis

35. Shoulder:

0. Large, pointed, e.g. Diacanthaspis

1. Small, pointed, e.g. Apianurus

2. Broad , e.g. Sinespinaspis

36. Posterior lobe furrow:

0. Transverse, e.g. Primaspis
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1. Pointed, e.g. Apianurus

Thorax

37. Number of thoracic segments (Ramskold 1991b, ch. 14):

0. Nine, e.g. the odontopleurines

1. Ten

38. Differentation of thoracic segments (Ramskold 1991b, ch. 15):

0. Strong differentation, maximum length reached at segment four (give or 

take one segment)

1. Little or no differentation, at least in posterior part of thorax

2. Diacanthaspis condition

39. Disposition of posterior pleural spines in thorax (Ramskold 1991b, ch. 16):

0. Radiating

1. All directed subparallel posteriorly

40. Deep posterolateral furrows on thoracic axial rings defining posterior band:

0. Present

1. Absent

41. Horizontal pleurae of thorax:

0. Divided by pleural furrow

1. Unfurrowed, e.g. Apianurus and Ceratocephala

2. Ridge on pleurae, running in convex curve forward, that runs out into 

long posterior pleural spine, e.g. Selenopeltis

42. Pleural spines of most posterior thoracic segment:

0. Anterior pleural spine hook-like, posterior pleural spine long and 

backwardly directed, e.g. Acidaspis

1. Anterior pleural spine hook-like, posterior pleural spine long, 

backwardly directed with associated small spines, e.g. Calipernurus

2. Both laterally directed, no barbs e.g. Odontopleura ovata

128



Chapter 4: Phylogeny and disparity of the Odontopleurida

3. Anterior pleural spine laterally directed with small spines, posterior 

pleural spine long and backwardly directed with no associated spines, 

e.g. Isoprusia and Whittingtonia

4. Anterior pleural spine downwardly directed (not visible in dorsal view), 

posterior pleural spine backwardly directed, both with associated spines, 

e.g. Ceratocephala

5. Anterior pleural spine laterally directed with small spines, posterior 

pleural spine long and backwardly directed, slim additional pleural spine 

between anterior and posterior, i.e. Miraspis mira

6 . Anterior pleural spine laterally directly, posterior pleural spine long and 

backwardly directly, small spine projects from proximal end of latter, e.g. 

Dalaspis

43. Antero-lateral part of the axial ring of thorax:

0. Not inflated

1. Inflated, e.g. Selenopeltis, Miraspis and Proceratocephala

44. Inflation of the posterior pleural band of thoracic segment:

0. Absent

1. Present, e.g. Primaspis, Leonaspis and Acidaspis

45. Two nodes on axial ring of thorax:

0. Absent

1. Present

Pygidium

46. ‘True’ major border spines of pygidium (Ramskold 1991b, ch. 21):

0. Present

1. Absent (present on tenth thoracic segment)

47. True major border spines ‘supramarginal’, i.e. genal spine base inside the 

pygidial border (Ramskold 1991b, ch. 22):

0. Yes
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1. No

48. Axial furrow along first axial ring (Ramskold 1991a, ch. 9):

0. Distinct

1. Weak, ring confluent with pleural ridges, e.g. Koneprusia subterarmata 

adults (earlier stages may not display this state, see lectotype: see Bruton 

1966b (Ormiston 1969))

49. Posterior border (Ramskold 1991a, ch. 15):

0. Absent

1. Present abaxially to pleural ridge

50. Median border spine (Ramskold 1991a, ch. 16):

0. Shorter than axis (may only be a node)

1. As long as, or longer than, the axis

2. Absent

51. Number of pairs of exterior pygidial border spines (occur laterally to major border 

spines, those that run from the pleural ribs derived from the first axial ring; Adrain 

& Chatterton 1990, ch. 17):

0 . 1 pair

1 . 2  pairs

2. 3 pairs

3. 4 pairs, e.g. Koneprusia

4. 6  pairs, e.g. Boedaspis

5. 11 pairs, e.g. Isoprusia

6 . None

52. Number of interior pygidial border spines (those that occur between the major 

border spines; Adrain & Chatterton 1990, ch. 18):

0 . 1 pair

1 . 2  pairs

2. 3 pairs

3. >4 pairs
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4. None

53. Maximum width pygidium/sagittal length of pygidium (without spines) (Adrain & 

Chatterton 1990, ch. 20):

0. Less than 2.2

1 . 2 .3-2.5

2. >2.5

54. Pygidial outline:

0. Subsemicircular

1. Subtriangular

2. Subquadrate

55. Pleural ridge of pygidium:

0. Present

1. Absent

56. Two nodes on first axial ring of pygidium:

0. Absent

1. Present, e.g. Ceratocephala

57. Two nodes on second axial ring of pygidium:

0. Absent

1. Present, e.g. Whittingtonia

58. Two pairs of granules on pleural ridge:

0. Absent

1. Present, e.g. Kettneraspis

Ontogeny

59. Paired axial glabellar spines:

0. Present

1. Absent
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60. Antero-lateral corners of the occipital ring:

0. Highly inflated and merges into corners of fixigena: probably associated 

with the inflation of the posterior part of the cephalon during ontogeny e.g. 

Ceratocephala (without deepening of the axial furrows)

1. Does not merge into cheeks

61. Occipital and posterior border furrows:

0. Aligned

1. Not aligned, e.g. Ceratocephala

62. Pygidial axial ring:

0. Present displaying prominent spine pair, e.g. Kettneraspis (Chatterton 

1971)

1. Displaying tubercle pair, e.g. Taemasaspis

2. Tubercle/spine pair absent

63. Border spines displaying short lateral barbs:

0. Present, e.g. Ceratocephala

1. Absent, e.g. Kettneraspis

4.2.3 RESULTS

Matrix optimisation found 7 most parsimonious trees with a length of 313 (Cl 0.32, HI 

0.68). The trees vary only slightly in topology (see below): but, as some inconsistencies 

concern the relationships of basal taxa (and, therefore, between deep branches), the 

strict consensus is fairly unresolved. The strict consensus tree shows the following 

relationships:

•  the Acidaspidinae group together (clade A), derived from a paraphyletic

clade containing odontopleuridines (clades B & C; this clade is

paraphyletic but is preserved to avoid taxonomic violence to previous 

work);

•  a monophyletic Ceratocephalinae (clade D); and

• a basal clade of some selenopeltines (clade E; Figure 4.1).

Uncertainties in tree topology concern:
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•  the relationships between Edgecombaspis, Kettneraspis, Leonaspis and 

Laethoprusia (trees 1 , 2 , 5  and 6  all display various groupings; Figure 4.2 

(a));
•  Trees 3, 4 and 7 display a clade common to all three (a variation of clade 

3 from Figure 4.3) and associated groupings of the clade 

Edgecombeaspis, Kettneraspis and Leonaspis (Figure 4.2 (b)).

•  The relationships between the basal taxa of the tree vary (Figure 4.2 (c)).

Description and analysis of the phylogeny are based on the majority-rule tree 

(which is almost fully-resolved (Figure 4.3)). Character states with ambiguous 

optimisation are indicated by asterisks next to the character in question, within the 

Systematic Palaeontology (section 4.5).

Despite a large number of resolved nodes (25 out of 43), indices of consistency 

and retention were quite low: Cl=0.32, Rl=0.51, RC=0.16. Such values indicate high 

levels of homoplasy in the data (343 out of 373 apomorphies were homoplastic).

4.2.4 DISCUSSION

Characters that have phylogenetic importance (i.e. those with states that have a Cl of 

1 .0 ) are:

•  Glabella topology around spine pair three (ch. 3);

•  Presence/absence of occipital organ (ch. 9);

•  Shape of hypostomal shoulder (ch. 35);

•  Presence/absence of paired axial glabellar spines in ontogeny (ch. 59);

•  Occipital and posterior border furrow alignment during ontogeny (ch. 61);

•  Presence/absence of node/spine on pygidial axial ring during ontogeny (ch. 62); 

and

• Presence/absence of border spines with lateral barbs during ontogeny (ch. 63).
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Dudleyaspis
Taemasaspis
Snoderaspis
Exallaspis
Globulaspis
Acidaspis
Anacaenaspis
Urianra
Dalaspis
Stelckaspis
Gaotania
Whittingtonia
Gondwanaspis
Borkopleura
Ivanopleura
Odontopleura
Acanthalomina
Diacanthaspis
Chlustinia
Primaspis
Laethoprusia
Edgecombeaspis
Kettneraspis
Leonaspis
Radiaspis
Sinespinaspis
Ceratocara
Ceratocephala
Proceratocephala
Koneprusia
Ceratocephalina
Apianurus
Calipemurus
Boedaspis
Isoprusia
Rinconaspis
Miraspis
Ceratonurus
Dicranurus
Selenopeltoides
Hispaniaspis
Selenopeltis

Figure 4.1: Strict-consensus tree.
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(b)

(c)
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3, 4,7

Edgecombeaspis
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Leonaspis

1 , 2 , 3

Laethoprusia
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Sinespinaspis

3 , 7

Kettneraspis 
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_  r— Apianurus
___________________ Calipemurus

—  Boedaspis
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 i— Isoprusia
*— Rinconaspis

------------------------------------------------Selenopeltis

Figure 4.2: Differences between the seven resulting MPTs. The tree number is written to the left 
of the relationship displayed.
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Figure 4.3: Majority-rule tree. A low cut-off limit was applied to the bootstrap values figured. 
Although it is acknowledged that often a bootstrap value of <50% is considered poor support for a 
node, it was felt important to convey the difference in support between the bootstrap support for 
other groupings. Bootstrap values and branch support values (given in adjacent brackets where 
>0) are shown above the branches. The percentage of trees that each group is retained in (where 
<100%) is shown below the respective branches. Clades A-F are indicated. Green nodes 
delineate familial groupings, red nodes delineate subfamilial. (LJM ara”n9S Bl" 1 tem « *
positioning in the figure does not relate cfirectly to the clade they are in).

4.3 DISPARITY

The term disparity is used to express morphological diversity and variety within body 

plans (i.e. range of morphologies) as opposed to taxonomic diversity, or the number of 

species. Some uses of this information are: (1) to recognize evolutionary radiations; (2) 

to assess extinction selectivity; (3) to evaluate morphological responses to 

environmental or ecological factors (e.g. Wills 1998a) and (4) to test macroevolutionary 

hypotheses (see Villier & Eble 2004).

Measurements of disparity among extinct arthropods have contributed greatly to 

our understanding of the Cambrian explosion (e.g. Leiberman 1999). Indeed, in several 

cases, arthropods alone have served as a proxy for entire faunas (e.g. Briggs et al. 

1992a, b; Foote & Gould 1992; Gould 1991, 1993; Wills etal. 1994).

The interpretation of disparity patterns of Phanerozoic-ranging arthropods is 

contentious. Several workers have claimed that the Burgess Shale fauna alone 

(assuming this to be typical for all Cambrian faunas) contains at least twenty distinct 

arthropod taxa of class status or higher (e.g. Foote & Gould 1992; Gould 1989, 1993; 

Lee 1992). Others consider there to be little significant difference between the disparity 

of Cambrian and Recent faunas (e.g. Briggs et al. 1992a, b; Wills et al. 1994). The 

inflation of Cambrian disparity recognized by Gould (1989) was explained as an artefact 

of fossil problematica (i.e. Cambrian taxa that do not fit straightforwardly into any of the 

four recognized modern higher-arthropod groups being given an undeservedly-high 

taxonomic rank: see Waggoner 1996 for detailed discussion).
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4.3.1 METHODS

4.3.1.1 Taxon and character sampling

It is often assumed that the highest quality results can only be obtained with analyses of 

species (see Smith & Lieberman 1999). However, some studies suggest that sampling at 

specific- and generic-levels provide equivalent estimates of the global disparity signal 

(Foote 1995, 1999). Many disparity studies, therefore, focus on genera (e.g. Raup & 

Boyajian 1988; Villier & Eble 2004), as is commonly done with taxonomic diversity data.

However, two very significant assumptions are made when sampling genera: (1) 

that the differences between species of separate genera exceed differences between 

species within genera; and (2) that, on average, the morphology of a sampled species 

can be taken as representative of the morphology of its genus (see Villier & Eble 2004).

Each genus was exemplified by one species in this study, which was then treated 

as representative of the genus throughout its stratigraphic range.

Variable morphology between species within genera was coded into the primary 

dataset to be used in the phylogenetic analysis (some taxa contain species with two or 

more specific states). The multivariate methods used to quantify disparity, however, 

cannot incorporate uncertainties or multiple codings and this information was re-coded to 

be applicable (see section 4.3.1.3)).

Of course, the choice of characters is a fundamental and significant aspect of 

disparity studies, just as it is in phylogenetics. They must cover a wide range of 

morphological features, coded from characters that are likely to be well-preserved and 

cover each taxon globally (see Roy & Foote 1997).

4.3.1.2 Temporal sampling

GeoWhen (http://www.stratiQraphv.org/qeowhen; accessed summer 2005) was used to 

gather information on absolute temporal scales: time was resolved to geological stage 

(see Figure 4.4). Where few taxa (<2) share the same stage, the latter were 

amalgamated into larger temporal intervals (G1-G6; see Appendix V). These time 

intervals were defined to minimize variation of their average duration and to maximize 

the reliability of the stratigraphic ranges, whilst still remaining useful for examining 

macroevolutionary patterns.
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Figure 4.4: Temporal scale used in this study. Values indicate age of stage boundaries in Myr
(from http://w w w .stratiaraDhv.org/aeow hen/Q eolist.htm l ). Intervals made of amalgamated stages used here (G1-
G6) are shown on the top and geological stage in the centre.

Odontopleurids have been extensively studied and the stratigraphic ranges of 

most genera are reliable at the stage level. Stages seem to be the shortest operational 

time interval for Odontopleuroidea as a whole. Uncertainty and risk of erroneous 

stratigraphic attribution increase at finer resolution but sampling at the stage level would 

improve stratigraphic resolution.
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4.3.1.3 Euclidean distance analyses and Principal Coordinates Analysis (PCA)

Landmark and distance measurement methods were discarded in favour of disparity 

inferred from discrete characters. As phylogenetic analysis was also intended, the same 

dataset was used.

The volume of morphospace occupied by any group provides a proxy for its 

disparity. Univariate ranges or variances can be added or multiplied to obtain a single, 

multivariate index of the amount of ‘morphospace’ occupied (see Wills et al. 1994). 

Those clades that display high disparity will, therefore, occupy a large morphospace: and 

vice versa.

Euclidean distance analysis: The first analysis conducted was a Euclidean distance 

analysis on the raw dataset (Appendix IV) calculating the mean distance between all 

genera from a given time interval using MATRIX (Wills 1998b). No differential weighing 

among characters was assumed. Essentially, this test determines dissimilarity metrics 

between taxa, with like forms plotting more closely together than unlike. The more 

unique a taxon, the further away it falls from other taxa. This distance matrix summarizes 

what is considered to be the phenetic information (or numerical taxonomic information).

Phenetics is a school of taxonomy that classifies organisms on the basis of 

overall morphology: it involves observable similarities/differences irrespective of whether 

or not the organisms are related. No attempt is made to distinguish between 

plesiomorphic and derived characters: unlike cladistics, which uses character polarity. 

The matrix usually takes a complement for metrics scaled between 0.0 (where the 

compared states match) and 1.0 (where the compared states do not match). This 

expresses how phenetically proximate or distant each taxon is in relation to every other 

taxon assessed, in a numerical fashion.

Not all character states could be coded as they were not well-preserved. These 

missing entries affect how the data can be treated. Deleting all traits not coded by all 

characters would have eliminated a vast amount of the available data. Most programs 

that perform standard PCA (see below) will not accept missing data statements in a 

dataset.

The general approach advocated here for binary (two state) and ordered 

multistate (more than two states) characters is to replace missing data with the mean 

value for each character (sum of codes of all character states divided by the number of
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taxa coded for that character). This means that a taxon coded as '?’ for a given character 

will be placed at the centre of gravity for the character as a whole. The variance of the 

character will be very slightly reduced, but only in proportion to the number of originally 

uncoded taxa. As an extreme and hypothetical example, a taxon with all characters 

missing would be placed at the global centroid and located at coordinate 0 .00  on each 

PC axis. A simple example of the coding of one simple binary and one ordered multistate 

character is the following:

Character

Taxon A (binary) B (ordered)

A 0 2

B 1 3

C 0 1

D ? 0

E ? 9

gives:

Character

Taxon A (binary) B (ordered)

A 0 2

B 1 3

C 0 1

D 0.33 (1/3) 0

E 0.33 (1/3) 1.5 (6/4)

Unordered, multistate characters can be incorporated into PCA by rescaling a 

non-additive binary representation. Such characters may also be scored with missing 

data for certain taxa, and a procedure is needed for placing such points at the centre of 

gravity for the overall character-state distribution. This may be achieved in a manner 

analogous to that for binary or ordered characters. The first step is to recode the 

unordered character into non-additive binary, propagating missing values into all the 

binary columns.
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For example:

Taxon Character A (unordered)

A 0

B 0

C 1

D 2

E ?

gives:

Character

Taxon A (state 0) A (state 1) A (state 2)

A 1 0 0

B 1 0 0

C 0 1 0

D 0 0 1

E ? ? ?

Missing values are then replaced by their column means, similar to the treatment 

of binary characters:

Character

Taxon A (state 0) A (state 1) A (state 2)

A 1 0 0

B 1 0 0

C 0 1 0

D 0 0 1

E 0.5 (2/4) 0.25 (1/4) 0.25 (1/4)

All columns are then rescaled by multiplying by 0.707 (reciprocal of V2) -  in order 

to bring all interstate distances equal to one unit:

Character

Taxon A (state 0) A (state 1) A (state 2)

A 0.707 0 0

B 0.707 0 0

C 0 0.707 0

D 0 0 0.707

E 0.354 0.177 0.177
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When this last matrix is ordinated onto PC axes, taxa (A+B), C and D are related 

in an equilateral triangle (with all intertaxon distances equal to one unit) while taxon E is 

located at the centre of gravity for A to D, in the plane of the triangle.

The reason that columns are rescaled by 0.707, and the intertaxon distances 

thereby equalled to one unit, is to prevent multistate characters having increased 

influence on the analysis. Without rescaling, the intertaxon distance would be V(12+12) 

(1.414 units); all intertaxon distances are rendered to 1 unit if the dataset is rescaled by 

1/V2 (0.707; see Figure 4.5).

intertaxon distance 
= 1 unit

Intertaxon distance 
■ sqrt 2 units1

1/sqrt 2

1/sqrt 2

Taxa related on 20 plane

1/sqrt 2

A

Figure 4.5: Three taxa (blue circles) each have one of the three alternative recoded states of an 
three-state, unordered character. The character has been broken down into three dichotomous 
characters (three axes) each coding ‘1’ for a single taxon and ‘O’ for the other two (see tables 
above). A. The apparent distance between all pairs of taxa will be inflated from one ‘unit of 
character-state difference’ to V2; B. the rescaling of the non-additive dichotomous columns 
representing a multistate character so as to render all distances to one unit (redrawn from Wills et 
al. 1994, figure 2).

Principal Coordinates Analysis (PCA): In all but the simplest cases, the structure of the 

eigenvalues is not easily appreciated, and some method is required to reveal it. Where 

the aim is taxonomic, and where a hierarchical structure is sought, some clustering 

algorithm is appropriate. This is achieved by a second analysis: a data reduction 

analysis, such as principal component analysis (PCA) or principal coordinates analysis 

(PCO). This is calculated by way of a multivariate statistical package, e.g. MVSP 87
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(Kovach 1990). This program produces a near-Euclidean triangular distance matrices 

from large datasets.

The first principal component (PC or axis) represents those characters that 

contribute most to overall disparity (and is equivalent to the major axis line through the 

points). The second PC, orthogonal to the first, acts with the first to explain the best- 

fitting plane, with each additional axis added representing ever-decreasing fractions of 

the total variance. In the extreme situation where all characters are perfectly correlated, 

the PC analysis would present all variation on the first single axis.

The most common measures of dissimilarity on any given axis are variance and 

range (Foote 1991a). The former is most appropriate when looking at the average 

dissimilarity between forms -  and is therefore less sensitive to outliers -  but the range is 

best used when an indication of overall morphological variation is required. The MVSP 

data for these axes were read into a rarefaction program, RARE 1.1 (Wills 1998c): this 

was used to calculate the sums and products of both the variance and range with 

varying numbers of coordinate axes and allows comparison between samples of 

different sizes.

Rarefaction analyses operate by approximating empirically the expected 

morphological variation in sample sizes between 2  and the total number of taxa in the 

group in question (Foote 1992; Wills 1994). For each sample size, an appropriate 

number of taxa is pulled randomly from the group (sampling without replacement). Here, 

the first twenty-three principal coordinate axes (out of the 107 calculated in total) were 

utilized for the entire sample as these encompassed 90% of the total variance. Although, 

this figure of 90% is arbitrary -  a cut-off point is needed -  and the later components 

incorporate only trivial aspects of correlation individually and can be discarded. It should 

be remembered, however, that all the data used has contributed in some way toward the 

orientation of the component axes in the first place.

The morphological variety for this sample is calculated and noted and the 

sampled taxa replaced. The process is repeated a thousand times to give a mean value 

and confidence intervals. A plot of morphological variety against sample size can be 

used to compare the behaviour of all samples.

Statistical tests can be applied (as in the study by Stockmeyer Lofgren et al. 

2003) but there are several problems with conducting statistical tests on these data as 

they assume the taxa are independently distributed in morphospace. This assumption is 

violated because all trilobites share common ancestry (phylogenetic autocorrelation;
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Felsenstein 1985). Moreover, ANOVA tests on the Euclidean distance measure would 

give values only for the derivedness of groups of taxa (from the outgroup) rather than 

their true disparity (see Wills 1994, pp. 108-109 for discussion).

4.3.2 RESULTS

4.3.2.1 Analysis by age: Euclidean distance analyses of PCA data

A basic Euclidean distance analysis was performed on the PCA results of the entire 

dataset -  resulting in a 42-taxon dataset. Distances from the outgroup for all ages range 

from 4.243 (e.g. Leonaspis) to 5.916 (e.g. Gaotania). The arrangement of the organisms 

from the analysis can be found in Figure 4.6: the six groups appear interspersed. All taxa 

plot far from Selenopeltis as it is the outgroup and they have diverged away from this 

primitive morphology.

It is important to note that this test only deals with the distance from an outgroup, 

i.e. overall morphological differences from the outgroup, rather than overall 

morphospace per se. It gives no indication of the arrangement of the taxa in relative 

morphospace, i.e. two taxa located at a similar distance from the outgroup might be 

nearly on top of one another, or they might be endpoints of a straight line equidistant 

from the outgroup.
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□  Devonian 
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■  L Silurian
■  U Ordovician
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Distance from Selenopeltis
Figure 4.6: Results from Euclidean distance analysis of raw data. Each horizontal bar represents one taxon. Distance was calculated by using 
Selenopeltis as the outgroup. Taxon bars are coloured according to the time-slices specified.
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4.3.2.2 Analysis by age

Taxa from all time slices seem evenly distributed and interspersed. Mean disparity of 

each sample shows a decreasing trend through time, with an unexpected increase 

before extinction in the Devonian (Figure 4.7).

w
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Figure 4.7: Mean disparity of odontopleurid taxa through time (i.e. plotted mean end-point of 
curves from 4.8).

A test was conducted on the sum of ranges data for all time slices on all 

coordinate axes (see Appendix VI for raw data) to see if the disparity of taxa at any given 

time was significantly different from random from a similar-sized sample drawn from the 

universe of all realized body-plans (Figure 4.8).
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S am ple  s ize  (log scale)

Figure 4.8: Rarefaction curves of measures of morphological disparity for taxa in different time slices compared to that of entire dataset (sum of 
ranges data: 1000 random draws of taxa were made by randomising at each sample size, providing a mean value for the respective measure of 
morphological variety, along with upper and lower 90% confidence limits). Black = all taxa; pink = Lower Ordovician taxa; blue = Upper Ordovician 
taxa; green = Lower Silurian taxa ; red = Middle Silurian taxa; yellow = Upper Silurian; purple = Devonian.
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Values of species in time slices are not significantly different when compared to 

the entire dataset (all values lie within the 90% confidence limits for the whole dataset). 

But, although the rarefaction curves follow broadly similar trajectories, the Middle Silurian 

and the Devonian taxa occupy significantly less morphospace per unit of taxonomic 

richness than those from the Lower Ordovician, Upper Ordovician and Upper Silurian 

(Figure 4.8).

The Lower and Upper Ordovician taxa have significantly higher disparity to those 

from Middle Silurian and Devonian (their mean values lie outside the 90% confidence 

limits of the Middle Silurian and Devonian taxa).

4.3.2.3 Analysis by clade

The clades display differing levels of mean disparity, with Acidaspidinae and 

Odontopleurinae having higher mean disparity than other odontopleurid clades (Figure 

4.9).
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A c id a s p id in a e  A p ia n u r in a e  C e r a t o c e p h a l in a e  O d o n t o p le u r in a e  S e le n o p e l t in a e

Epoch

Figure 4.9: Mean disparity of clades of odontopleurid taxa as a histogram (i.e. plotted mean end­
point of curves from 4.10).

A test was conducted on the sum of ranges data for all clades (see Appendix VII for raw 

data; Figure 4.10).
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10
Sample size (log scale)

Figure 4.10: Rarefaction curves of measures of morphological disparity for different odontopleurid clades (sum of ranges data: 1000 random draws 
of taxa were made by randomising at each sample size, providing a mean value for the respective measure of morphological variety, along with 
upper and lower 90% confidence limits). Black = all taxa; pink = Apianurinae; green = Ceratocephalinae; blue = Acidaspidinae; yellow = 
Odontopleurinae; red = Selenopeltinae.
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Disparity values of the different clades are not significantly different when 

compared to the entire dataset (all values lie within the 90% confidence limits for the 

whole dataset): all rarefaction curves follow broadly similar trajectories.

However, the Odontopleurinae has statistically-significantly higher disparity 

compared to the Acidaspidinae (but neither show different disparity levels to the other 

groups; the mean values of Acidaspidinae lie outside the 90% confidence limits of the 

Odontopleurinae; Figure 4.10).

4.3.2.4 Principal Coordinates Analysis (PCA)

Plotting the first few PCA/PCO axes allows the data to be viewed from the angle that 

maximizes the amount of overall variance represented, given that one is restricted to 

graphically depicting a small number of orthogonal axes (Figure 4.11). It should be 

stressed, however, that one is limited to presenting only a proportion of the variance in 

the original data, while calculations derived from a PCA/PCO can be based on all 

components, and therefore encompass all of this variation.
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Figure 4.11: Mean disparity of odontopleurid taxa.
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Analysis by age: Results for the first three PCA axes are plotted in a graph (Figure 4.12). 

Time slices plot in overlapping areas of morphospace defined by the first three principal 

coordinate axes.
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Figure 4.12: Distribution on the 1st three principal coordinates axes of all genera divided into 
age categories. The 1st two PCA axes are shown as the axes of the graph and the third axis 
is indicated by size of the circles. (Middle Ordovician = light purple; Upper Ordovician = deep 
purple; Lower Silurian = red; Middle Silurian = yellow; Upper Silurian = blue; Devonian = 
green).
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Analysis by major taxonomic group: Results for the first three PCA axes are plotted in a 

graph (Figure 4.13). Major groups plot in distinct and generally non-overlapping areas of 

morphospace defined by the first three principal coordinate axes.

0.4
K E Y  T O  S C O R E  O N  3 r d  

P C O  A X IS

0.3
0.1 to 0.2

O O
OO

0.2 to 0.3

Odontoplei 0.3 to 0.40.2

Cat
Primaspis 

(^J la d ra jT S T ~

• AO
DudleyaspisAcanthalomina

0.1 Ceratocephala Gondwan 3; raemasaspisI Sinaspinaspis 

O  Chlustinia 

C  Whiftingtonia

Proceratocephal Snoderaspis

Cat

0.0 #  Slel\kaspis 
I cidaspisAnacaenaspis

#  UridrraCalipemi % Dalaspis

-0.1

#  kelenopeltoides

-0.2

ir.ranurus %

-0.3

-0.4

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

Figure 4.13: Distribution on the 1st three principal coordinates axes of all genera divided into 
clades. The 1st two PCA axes are shown as the axes of the graph and the third axis is indicated 
by size of the circles. Taxa are identified by coloured circles as to their major taxonomic grouping 
(clade A [Acidaspidinae] = purple; [Odontopleurinae] clade B = turquoise and clade C yellow; 
clade D [Ceratocephalinae] = navy blue; clade E [Selenopeltinae] = red; clade F [Apianurinae] = 
green).
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4.4 DISCUSSION

4.4.1 PHYLOGENETIC ANALYSIS (see Systematic Palaeontology, section 4.5)

4.4.2 DISPARITY

4.4.2.1 Disparity patterns overtime

The mean of the sum of ranges data from the rarefaction analysis suggests that mean 

disparity later in time was about equal to earlier in time (with a slight rise in the Upper 

Ordovician and a slump in the Upper Silurian; Figure 4.7).

However, the overall picture suggests that the Lower and Upper Ordovician taxa 

had significantly higher disparity to those from the Middle Silurian and Devonian (Figure 

4.8). In general, then, it can be said that morphological disparity is significantly lower in 

the stratigraphically younger taxa than the older taxa. In other words, odontopleurid 

groups that originated later had significantly lower disparity than those that originated 

earlier. In a previous study of trilobite disparity, the Ordovician is known to be a period of 

high morphological diversity (see Foote 1991b).

Why would there be a decline in disparity after an initially high level? If a group 

fails to colonize some regions of morphospace after the initial phases of its radiation, it is 

tempting to speculate that further exploration is stabilized and constrained. But, if this is 

indeed the case, the reasons remain elusive at present. It has also been suggested that 

the Ordovician-Permian reduction of trilobite disparity may be correlated with the 

corresponding rise of the Crustacea (particularly the Eumalacostraca, which, like the 

trilobites, were predominantly benthic scavengers and predators; see Wills 2003).

A broad study of trilobite disparity through time showed a peak in disparity later in 

their history than the peak in diversity (Foote 1993; but this may be just an exaggerated 

result caused by excessive taxonomic-splitting of Cambrian trilobite taxa). This seems to 

be exceptional: other groups show exploration of morphological extremes early in their 

history (Wagner 1995). This study suggests that odontopleurids display a different 

pattern to that of overall trilobite disparity as shown by Foote: they show a peak in 

disparity very close to their origin.
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The PCA analysis results show that the groupings are vastly overlapping. There 

seems to be a shift of occupied morphospace over time: a small rotation around the axes 

centre occurs (Figure 4.12).

4.4.2.2 Taxonomic disparity patterns

Although the clades display differing mean disparity values (Figure 4.9) most of these 

differences are not significantly different. The one exception being that the 

Odontopleurinae has significantly higher disparity to the Acidaspidinae (Figure 4.10).

Although not significantly different, the major clades from the resulting phylogeny 

do seem to occupy discrete areas of morphospace when plotted along the three first 

PCA axes (Figure 4.13) and some groups cluster more tightly than other groups (e.g. 

clade F cf. clade E).
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4.5 SYSTEMATIC PALAEONTOLOGY

Order ODONTOPLEURIDA Whittington, 1959 

Family ODONTOPLEURIDAE Burmeister, 1843

TAXA INCLUDED. Subfamilies Acidaspidinae Salter, 1864, Ceratocephalinae Richter & 

Richter, 1925, Selenopeltinae Hawle & Corda, 1847, Apianurinae Whittington, 1956a 

and ‘grade’ Odontopleurinae Burmeister, 1843, plus taxa Hispaniaspis Hammann, 1992, 

Rinconaspis Baldis & Gonzalez, 1981, Isoprusia Bruton, 1966a and Selenopeltis Hawle 

& Corda 1847.

STRATIGRAPHICAL RANGE. Lower Ordovician to Upper Devonian.

REMARKS. The subfamily Koneprusiinae Vanek & Pek, 1987 (i.e. Koneprusia, Isoprusia 

and Laethoprusia) is not robust. Diagnostic characters given in the work by Vanek & Pek 

(1987) were either pleisomorphic or erroneous (see Ramskold 1987, p. 133). The 

diagnosis given in Ramskold (1987) was preliminary. Indeed, most of the characters 

given by Ramskold apply to many other genera and the combination of those 

morphological traits is not enough to pull those three taxa into a group outside the 

Odontopleurinae. Full details of the diagnoses have never been published but some of 

the concepts previously generated are validated in this study, e.g. the resurrection of the 

Acidaspidinae Salter, 1864 by Ramskold & Chatterton (1991) is supported.

Subfamily ACIDASPIDINAE Salter, 1864

EMENDED DIAGNOSIS. Occipital node with occipital organ present (ch. 9*). Absence of 

paired occipital spines (ch. 10*; present in Whittingtonia). Granular ornament (ch. 21; 

large tubercles in more derived taxa). Absence of a functioning facial suture in holaspis 

(ch.25; reversed in Exallaspis and Globulaspis). Tiny border spines of librigena (ch. 27; 

elongate in Snoderaspis, Dudleyaspis and Taemasaspis). Ten thoracic segments (ch. 

37). Little/no differentation of thoracic segments (ch. 38*). Posterior pleural thoracic 

spines all directed subparallel posteriorly (ch. 39; but they are radiating in Acidaspis and 

Anacaenaspis). Deep posterolateral furrows defining posterior band (ch. 40; absent in 

Exallaspis). Paired axial glabellar spines absent in ontogeny (ch. 59*; where known). 

Tubercle pair on pygidial axial ring in ontogeny (ch. 62*; where known). Border spines 

absent in ontogeny (ch. 63*).
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TAXA INCLUDED. Acidaspis Murchison, 1839; Anacaenaspis Bruton, 1967; Dalaspis 

Chatterton & Perry, 1983; Dudleyaspis Prantl & Pribyl, 1949; Exallaspis Ramskold & 

Chatterton, 1991; Gaotania Zhang, 1974; Globulaspis Reed, 1931; Gondwanaspis Feist, 

2002; Snoderaspis Ramskold, 1984; Stelckaspis Chatterton & Perry, 1983; Uriarra 

Chatterton & Campbell, 1980; Whittingtonia Prantl & Pribyl, 1949.

STRATIGRAPHICAL RANGE. Upper Ordovician (Medinan) to Upper Devonian 

(Frasnian).

REMARKS. Taemasaspis proves to be very-closely related to Dudleyaspis, as 

suggested by Chatterton (1981), Thomas (1981) and Ramskold (1984). It is reasonable 

to assume these genera are synonymous: they are identical for all characters that it was 

possible to code. More specifically, Taemasaspis should be thought of as being a junior 

synonym of Dudleyaspis.

Snoderaspis is also closely related to Dudleyaspis but differs in the following 

characters. It has: weakly defined occipital lobes (ch. 16); anterior margin curved into 

three lobes (ch.20); pleural spines of thoracic segments are laterally directed (ch. 42); 

absence of 2 nodes on first and second axial pygidial rings (chs 56 and 57).

The relationship between Anacaenaspis, Acidaspis and Dalaspis has been the 

subject of debate and a formal phylogenetic analysis was needed (Chatterton & 

Ludvigsen 2004). This study identifies that Anacaenaspis and Acidaspis are sister- 

groups and closely-related to Dalaspis. Anacaenaspis differs from Acidaspis in not 

having the entire posterior margin of the occipital ring produced backwards as a stout 

median spine and does not have a posterior sutural ridge (see Bruton 1967, p. 235). 

Dalaspis is closely-related to Acidaspis (Chatterton & Perry 1983, p. 15) but is not 

thought to be synonymous here: it is separated phylogenetically by Uriarra and 

Anaceanaspis. Uriarra is not thought to be closely-related to Primaspis and Leonaspis 

here (cf. Chatterton & Campbell 1980, p.98) but is similar to Gaotonia (as suggested, 

ibid).

Small growth stages of Stelckaspis are similar to Acidaspis and Dudleyaspis 

(Chatterton & Perry 1983, p. 15) and here those taxa are shown to be fairly closely- 

related. The monophyletic ‘Stelckaspis group’ (as defined by Ramskold & Chatterton 

(1991; although no apomorphies were given): Stelckaspis, Gaotania, Globulaspis and 

Uriarra) is not monophyletic in the present analysis. Rather, Stelckaspis, Gaotania and 

Uriarra are closely-related and Globulaspis is closely-related to Exallaspis. Globulaspis
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and Exallaspis both have a functioning facial suture (ch. 25; cf. Gaotania and 

Stelckaspis).

Whittingtonia is proved to be an acidaspidine rather than an odontopleuridine 

(see Ramskold & Chatterton, 1991, p. 362 for discussion on contention). Gondwanaspis 

appears sister-group to Whittingtonia rather than to Dudleyaspis {cf. Feist 2002).

Globulaspis is closely-related to Acidaspis (as suggested by Reed 1931) and 

Acanthalomina and Diacanthaspis are also. The latter pair may be synonymous as 

suggested by Chatterton & Perry (1979) but Acanthalomina differs in the following ways: 

regular rows of tubercles on anterior border rather than irregular (ch. 2 ); tubercles on 

fixigena same size (ch. 5); absent Oap spines rather than posterior to median occipital 

node (ch. 12); low eye rather than elevated (ch. 13); strong differentation within the 

thorax (ch. 38); two nodes on 2nd axial ring of pygidium present (ch. 57).

Grade’ ODONTOPLEURINAE Burmeister, 1843

TAXA INCLUDED. Acanthalomina Prantl & Pribyl, 1949; Borkopleura Snajdr, 1984a; 

Chlustinia Pribyl & Vanek, 1965; Diacanthaspis Whittington, 1941; Edgecombeaspis 

Adrain & Ramskold, 1997; Ivanopleura Snajdr, 1984a; Kettneraspis Prantl & Pribyl, 

1949; Laethoprusia Ramskold, 1991a; Leonaspis Richter & Richter, 1917; Odontopleura 

Emmrich, 1839; Primaspis Richter & Richter, 1917; Radiaspis Richter & Richter, 1917; 

Sinespinaspis Adrain & Chatterton 1990.

STRATIGRAPHICAL RANGE. Middle Ordovician to Middle Devonian (Eifelian). 

REMARKS. This taxon is explicitly paraphyletic. Clade B shares the following 

characteristics with taxa in clade A: (1) paired occipital spine (ch. 10); (2) anterior facial 

suture is parallel to axis (ch. 26) and (3) 12-13 border spines (ch. 29).

Clades B and C both share the following characteristics with taxa in clade A: (1) 

anterior part of L1 is the widest point of glabella (ch. 23); (2) posterior sutural ridge along 

posterior facial suture (ch. 32) and (3) two nodes on the 2nd axial pygidial ring (ch.57).

It shows the following characteristics:

•  Leonaspis has descended from Diacanthaspis (as supported by Chatterton & 

Perry 1974, p. 15).

•  Radiaspis is closely-related to Diacanthaspis and Acanthalomina (Ramskold & 

Chatterton 1991, p.335).
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•  The Odontopleurinae as defined by Ramskold & Chatterton 1991 is similar to the 

result obtained here: the study suggests the inclusion of Chlustinia, 

Edgecombeaspis, Laethoprusia, Primaspis and Sinaspinaspis.

•  Chlustinia is shown here to have affinity with the odontopleurines rather than the 

acidaspines (cf. Ramskold & Chatterton 1991).

•  Ivanopleura and Borkopleura are closely-related to Odontopleura (as suggested 

by Snajdr 1984a).

Subfamily CERATOCEPHALINAE Richter & Richter, 1925

EMENDED DIAGNOSIS. Wide, granulated anterior cranidial border (ch.1). Large, 

flattened tubercles on glabella (ch. 21*; unknown in Ceratocephalina and Koneprusia). 

Median border spine on pygidium that is longer than the axis (ch. 50). Occipital and 

posterior border furrows are not aligned in ontogenetic stages (ch. 61).

TAXA INCLUDED. Ceratocara Ramskold, 1991b; Ceratocephala Warder, 1838; 

Ceratocephalina Whittington, 1956; Koneprusia Prantl & Pribyl, 1949; Proceratocephala 

Prantl & Pribyl, 1949.

STRATIGRAPHICAL RANGE. Lower Ordovician (Caradoc) to Middle Devonian 

(Eifelian).

REMARKS. Ceratocara and Ceratocephala are sister-taxa: this result is not unexpected: 

they have been thought to be synonymous previously (see Ramskold 1991b). They 

share: (1) occipital spine pairs are curved outwards distally (ch. 18); (2 ) unfurrowed 

thoracic pleurae (ch. 41) and (3) no ‘true’ major border spines on pygidium (ch. 46). 

Ceratocera displays character states that separate it from Ceratocephala are: (1) A1, A2, 

A3 tubercles are larger than other cranidial tubercles; (2) absent posterior band on 

occipital ring; (3) narrow fixigena; (4) deep antennular notch; (5) parallel anterior facial 

suture; and (6 ) >16 border spines on cranidium rather than 12-13. Proceratocephala 

shares a posterior border furrow merges with palpebral furrow with a strong sutural ridge 

(ch. 7) and slim thorn-like spines plus small tubercles (ch. 21).

Subfamily MIRASPINAE Pollitt et al.t 2006

EMENDED DIAGNOSIS. Weakly defined occipital lobes (ch. 16). Occipital furrow is 

shallow medially (ch. 17). Glabella is widest at anterior part of L1 (ch. 23). Genal spines 

not vertically downwards-directly (ch.28). Deep posterolateral furrows defining posterior
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band on thoracic axial rings (ch. 40). Antero-lateral part of the axial ring is inflated (ch. 

43).

TAXA INCLUDED. Ceratonurus Novak, 1883; Dicranurus Conrad 1841; Miraspis Richter 

& Richter, 1917; Selenopeltoides Prantl & Pribyl, 1949.

STRATIGRAPHICAL RANGE. Lower Ordovician (Arenig) to the Lower Devonian. 

REMARKS. This group is equivalent to the Selenopeltis group of Ramskold (1991b; 

here, Selenopeltis was used as the outgroup and so is excluded). The subfamilial name 

Selenopeltinae Hawle & Corda, 1847 cannot be used here as Selenopeltis falls outside 

the grouping: the subfamily Miraspinae Pollitt, 2006 is erected.

Subfamily APIANURINAE Whittington, 1956a

EMENDED DIAGNOSIS. L3 absent (ch. 4*; homoplastic character state). Eyes are 

positioned opposite posterior part of L1 (ch. 24; homoplastic character state). Prominent, 

elongate border spines present (ch. 27*; homoplastic and not known in Boedaspis). 

Hypostome widest anteriorly (ch. 33; seen also in Exallaspis and Taemaspis). Middle 

furrow of hypostome is triangular depression (ch. 34). Ten thoracic segments (ch. 37*; 

unknown in Calipernurus and Apianurus). Little/no differentation of thoracic segments 

(ch. 38*; unknown in Calipernurus and Apianurus). No posterolateral furrows defining 

posterior band in thorax (ch. 40*; homoplastic character state). Anterior pleural spine of 

thoracic segment is hook-like, posterior pleural spine long (ch. 47*; Not known in 

Apianurus. Boedaspis displays the homoplastic character state of having both pleural 

spines laterally-directed like Odontopleura). Antero-lateral part of axial thoracic ring is 

not inflated (ch. 43; many derived taxa display this state). Three pairs of internal border 

spines on pygidium (ch. 52; Calipernurus has 2 pairs). Width less than 2.2 times the 

length of the pygidium (ch. 53*; the pygidium of Calipernurus is over 2.5 wider than 

long).

TAXA INCLUDED. Apianurus Whittington, 1956a; Boedaspis Whittington & Bohlin, 1958; 

Calipernurus Whittington, 1956a.

STRATIGRAPHICAL RANGE. Lower Ordovician (Arenig) to Upper Ordovician (Ashgill). 

REMARKS. The subfamilial status of this grouping (see Whittington 1956a and 

Whittington & Bohlin 1958) is confirmed here.
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Genus HISPANIASPIS Hammann, 1992 

[Subfamilia incertae sedis]

EMENDED DIAGNOSIS. No median occipital tubercle (ch. 8 ). Librigenae border spines 

tiny (ch. 27; seen in the more derived acidaspines also). Posterior border of pygidium is 

present abaxially to pleural ridge (ch. 49).

TYPE SPECIES. Hispaniaspis morenaica Hammann, 1976.

STRATIGRAPHICAL RANGE. Upper Ordovician.

Genus ISOPRUSIA Bruton, 1966a 

[Subfamilia incertae sedis]

EMENDED DIAGNOSIS. Median occipital spine (ch. 8 ). Deep longitudinal glabella 

furrows (ch. 14). Three convex, forward lobes on anterior margin of cranidium (ch. 

20). 14-15 border spines on librigenae (ch. 29). Anterior pleural spine laterally directed 

with small spines, posterior pleural spine long and backwardly directed with no 

associated spines (ch. 42). Pygidial median border spine shorter than axis (ch. 50). 11 

pairs of exterior pygidial spines (ch. 51).

TYPE SPECIES, isoprusia mydiakia Bruton 1966a.

STRATIGRAPHICAL RANGE. Middle Devonian.

Genus RINCONASPIS Baldis & Gonzalez, 1981 

[Subfamilia incertae sedis]

EMENDED DIAGNOSIS. Strongly defined occipital lobes (ch. 16). Sharp and deep 

occipital furrow (ch. 17). Librigenal spine directed horizontally, backward and outward 

(ch. 30).

TYPE SPECIES. Rinconaspis santiaguensis Baldis & Gonzalez, 1981. 

STRATIGRAPHICAL RANGE. Lower Devonian.
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5. The phylogeny of the 

lllaenoidea (Trilobita)

5.1 INTRODUCTION AND TAXOMONIC HISTORY

THE phylogeny of this trilobite group has concerned many trilobite workers over the last 

fifty years or so. There is a large range of opinions about the systematic position of the 

group and its constituent groups. A comprehensive and valuable discussion highlighting 

the systematic problems surrounding this group was presented by Lane and Thomas 

(1983). More recent questions were raised by Whittington (2000). This chapter aims to 

examine differing opinions and to include a broad selection of scutelluid taxa into a 

phylogenetic analysis to see if a consensus can be obtained: this group is ‘in need of 

comprehensive phylogenetic analysis’ (Adrain etal. 1995).

Many early workers classified this group into only two genera with many sub­

genera (e.g. Barrande 1852, 1872; Billings 1859; Hall 1847, 1868; Holm 1882, 1886; 

Reed 1904, 1906, 1914, 1935). Later workers tended to split these taxa into varying 

number of genera (for a history of classification, see Lane and Thomas (1983; p. 143)).

The two main groups, the styginids and the illaenids, have been divided by the 

presences of glabellar furrows, radiating ribs in the pygidium and broad pygidial doublure 

in the former group. The latter group has commonly been divided into two groups: those 

that display a rostal prominence and those that do not.

Effacement is common within the illaenids and often as a complex character- 

state (Lane & Thomas 1983). The morphological manifestations are: reduced 

distinctness of axial and/or pleural furrows of the dorsal surface; increased exoskeletal 

convexity; and increase in the relative width of the axis. It is with these effaced genera 

that there is most taxonomic controversy.

Prantl and Pribyl (1947) were the first workers to consider the styginid taxonomic 

issues critically. They regarded the phylogeny of the group as a continuous evolutionary
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branch from the species Scutellum (ScuteUum) costatum: separating into various 

Scutellum (Scutellum) groups throughout the Silurian and Paralejurus at the 

Silurian/Devonian boundary and then finally differentiating into Kollhapeltis and 

Thysanopeltis (from Spinlscutellum).

Snajdr (1960) considered Planiscutellum to have given rise to Kosovopeltis and 

Decoroscutellum - Spiniscutellum. Platyscutellum and Poroscutellum both arose from 

Spinlscutellum as blind evolutionary branches.

Prantl and Pribyl (1947) considered Thysanopeltis to have arisen from 

Spiniscutellum whereas Richter and Richter (1956) thought Thysanopeltis was derived 

directly from Scabriscutellum (although all these taxa are considered closely-related; 

Richter & Richter 1956).

Due to an inability to ‘recognize phyletic lines of development’, Lane and Thomas 

(1983) did not identify subfamily divisions. Groupings have been alluded to (Ludvigsen & 

Tripp 1990; Adrain et al. 1995; Nielsen 1995): but few characters have been indicated to 

justify these groupings. This study hopes to provide some robust reasoning to any 

groupings and give future workers some indication of those character states that prove 

constructive.

5.2 PHYLOGENETIC ANALYSIS

5.2.1 TAXOMIC SAMPLING

Any highly-effaced group, such as this one, will supply considerably fewer obvious dorsal 

character states and, hence, will be harder to analyse with phylogenetic programs than 

other highly character-rich groups. Moreover, the ventral surfaces are not always 

exposed. Many taxa had to be excluded from the analysis in order to render it a feasible 

exercise. Any putative subspecies were coded as if they held species rank: the 

subspecies may not fall together closely when placed into context with all other taxa. 

Sixty-nine taxa were included in the final analysis (see Table 5.1 below; see Plate 6  for 

some sample taxa).
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Genus Coded species Genus author and publication date
Alceste latissima Hawle & Corda 1847 (Shaw 2000; Bruthansova 2003)
Ancyropyge Acidaspis romingeri Hall & Clarke, 

1888
Clarke 1892 ((Ormiston 1967; Whittington 2000)

Avascutellum (=Ctenoscutellum; 
=Rutoscutellum)

Bronteus edwardsi Barrande, 1852 Snajdr 1989

Bojoscutellum (=Holomeris; 
=Breviscutellum)

Bronteus paliferum (Beyrich, 1845) Snajdr 1958

Bronteopsis (=Homoglossa) scotica Etheridge & Nicholson in Nicholson & Etheridge 1879
Bumastoides lllaenus milleri Billings, 1859 Whittington 1954 (Lane & Thomas 1983)
Bumastus (Bumastella) Bumastus (Bumastella) spiculus Kobayashi & Hamada 1974
Bumastus (Bumastus) barriensis Murchison 1839
Calycoscutellum Bronteus flabellifer Goldfuss, 1839 Archinal 1994
Cavetia hoplites Feist 1974
Cekovia lllaenus transfuga Barrande, 1852 Snajdr 1956 (Bruthansova 2003)
Cornuscutellum Bronteus rhinoceros Barrande, 

1872
Snajdr 1960 (Holloway 1996)

Cybantyx anaglyptos Lane & Thomas in Thomas 1978 (Lane & Thomas 1983; 
Whittington 1997)

Decoroscutellum
(Decoroscutellum)

Bronteus haidingeri Barrande, 
1846a

Snajdr 1960 (Ormiston 1968)

Dentaloscutellum hudsoni Chatterton 1971
Dulanaspis levis Chugaeva 1956
Dysplanus Asaphus (lllaenus) centrotus 

Dalman, 1827
Burmeister 1843

Ectillaenus (=Wossekia) lllaenus? Perovalis Murchison, 
1839

Salter 1867 (Bruthansova 2003)

Eobronteus Entomostracites laticauda 
Wahlenberg, 1821

Reed 1928 (Whittington 1950, 2000)
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Eokosovopeltis Bronteus romanovskii Weber, 1948 Jaanusson 1953 (Edgecombe etal. 2004)
Exastipyx Weberopeltis maksimovae Feist, 

1974
Holloway 1996

Excetra iotops Holloway & Lane 1998
Failleana (=Opsypharus) calva Chatterton & Ludvigsen 1976 (Lane & Thomas 1983, 

Whittington 1997)
Harpillaenus lllaenus arcuatus Billings, 1865 Whittington 1963
lllaenus (/Cryptonymus; 
-Actinolobus; =Deucalion; 

=Svobodapeltis)

sarsl Dalman 1827 (Hu 1971; Whittington 1997)

Izarnia Bronteus gouzesi Bergeron, 1889 Feist 1974 (Vanek etal. 1992)
Kolihapeltis Bronteus parabolinus Barrande, 

1882
Prantl & Pribyl 1947

Kosovopeltis (=Eokosovopeltis; 
=Heptabronteus) (Scutelluinae)

svobodai Snajdr 1958 (Webby 1974; Ludvigsen & Tripp 1990; Kacha 
& Saric 1991)

Lamproscutellum guizhouense Yin 1980 (Edgecombe etal. 1994)
Ligiscus arcanus Lane & Owens 1982
Liolalax (/Lalax) Lalax olibros Holloway & Lane, 

1998
Holloway & Lane 1999

Litotix lllaenus armatus Hall, 1865 Lane & Thomas in Thomas 1978
Meridioscutellum Bronteus meridionalis Barrois, 

1886
Feist 1970 (Holloway 1996)

Meroperix ataphrus Lane 1972
Metascutellum Bronteus pustulatus Barrande, 

1846a
Snajdr 1960

Nanillaenus mackenslensis Chatterton 1980 (Whittington 1997)
Octillaenus lllaenus hisingeri Barrande, 1846b Salter 1867 (Bruton & Owens 1988; Bruthansova 2003)
Opoa adamsi Lane 1972
Ottenbyaspis lllaenus orlens Moberg & 

Segerberg, 1906
Bruton 1968
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Panderia (/Rhodope) parvula Volborth 1863 (Bruton 1968)
Paracybantyx occidental is Ad rain etal., 1995 Ludvigsen & Tripp 1990 (Adrain et al. 1995)

Paralejurus tenuistriatus Schraut & Feist, 2004 Hawle & Corda 1847 (Schraut & Feist 2004)
Parillaenus lllaenus fallax Holm, 1882 Jaanusson 1953 (Bruton & Owens 1988)
Perischoclonus capitalis Raymond 1925
Phillipsinella Phacops parabola Barrande, 1846b Novak 1885 (Bruton 1976)
Planiscutellum (=Protoscutellum) Bronteus (Holomeris) planus Hawle 

& Corda, 1847
Richter & Richter 1956

Platillaenus lllaenus ladogensis Holm in 
Schmidt, 1886b

Jaanusson 1953

Platyscutellum Bronteus formosus Barrande, 
1846a

Snajdr 1958

Poroscutellum Bronteus porosus Barrande, 1846a Snajdr 1958
Raymondaspis (/Warburgella 
Raymond)

reticulatus Whittington 1965 (Skjeseth 1955; Fortey 1980)

Rhaxeros (=Rhax) Rhax pollinctrix Lane & Thomas, 
1978

Lane & Thomas 1980 (Holloway & Lane 1998)

Scabriscutellum (=Dicranactis) Bronteus scaber Goldfuss, 1843 Richter & Richter 1956 (Archinal 1994)
Scutellum (=Bronteus/Brontes; 
=Goldfussia/Brontes; =Goldius)

costatum Pusch 1833 (Archinal 1994)

Snajdria foveolata Hammann 1992
Spiniscutellum Bronteus umbellifer Beyrich, 1845 Snajdr 1960
Stenopareia glaber Owen & Bruton 1980 (Whitttington 1997; Ludvigsen & Tripp 

1990; Bruthansova 2003)
Stygina Asaphus latifrons Portlock, 1843 Salter 1853 (Whittington 2000)
Thaleops ovata Conrad 1843 (Sinclair 1947)
Theamataspis illaenoides Opik 1937
Thomastus thomastus Opik 1953
Thysanopeltis speciosa Hawle & Corda 1847 (Prantl & Pribyl 1947)
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Turgicephalus falcatus Fortey 1980
Ulugtella turgida Petrunina in Repina etal. 1975 (Hammann 1992; 

Bruthansova 2003)
Waisfieldaspis beatrizae Vaccari 2001
Weberopeltis Bronteus (Thysanopeltis) aculeatus 

Weber, 1945
Maksimova In Moore 1959 (Ellermann 1992; Ormiston 
1967)

Xyoeax eponcus Holloway 1996
Zbirovia lllaenus aratus Barrande, 1872 Snajdr1956 (Hammann 1992; Bruthansova 2003)
Zdicella lllaenus zeidleri Barrande, 1872 §najdr1957 (Bruthansova 2003)
Zetillaenus lllaenus wahlenbergianus 

Barrande, 1952
Snajdr1957 (Bruthansova 2003)

Table 5.1: A list of all taxa included in the analysis. References are given for type species; other important literature is referenced in brackets.
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Plate 6
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Plate 6.
(a) Cranidium and (b) pygidium of Eokosovopeltis grandicurvatus Edgecombe et ai, 1994; Fig 4 
(A) and 5 (D) respectively; x 2.5; (c) Paralejurus tenuistriatus Schraut & Feist, 2004; Figure 7 (pts 
6 and 7); x 2.0; (d) Thysanopeltis sp. (www trilobites info>- x 2.0; (e) Kolihapeltis sp. (www tnlobites info); x 2.0).

5.2.2 METHODS

The dataset from Appendix III was analyzed using PAUP (version 4.0b10*, Swofford 

2002). See section 3.3.2 for full description of methods (i.e. PTP, bootstrap, ACCTRAN, 

TreeRot, MacClade and section 4.2.2 for Parsimony Ratchet). All ninety-nine characters 

were equally weighted. Characters 15, 56 and 78 were treated as ordered; all others 

were unordered (see Characters section below). The dataset includes no 

phylogenetically-uninformative characters.

5.2.2.1 Outgroup

Raymondaspis was used as the outgroup. This genus is stratigraphically-old and 

characterises several evolutionarily-primitive features: (1) the simple, flat exoskeleton 

and simply-formed doublure; (2 ) the moderately concave, wide preglabellar depression; 

(3) three pairs of single lateral glabellar impressions; (4) pygidial ribs are moderately 

vaulted; (5) very narrow inter-pleural furrows and (6 ) a long pygidial axis that persists 

along nearly the full length of the pygidium (see Snajdr 1960).

5.2.2.2 Character coding

Well-preserved rostral plates and hypostomata are known for relatively few taxa. 

However, rostral plates and hypostomata have long been considered important for 

illaenid classification (Jaanusson 1953; Snajdr 1960) and, in light of this, it was deemed 

important to include them in the analysis.

Extreme care has been taken to be consistent and determine the character state 

from either the dorsal or the ventral side of the exoskeleton, according to the character 

being coded (specified in the character list). Not all authors have made this distinction 

(e.g. Prantl & Pribyl (1947) has not; cf. Snajdr 1960). The terminology of Whittington 

(1999) is used: please refer to his figure 1 for diagrammatical clarification.
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Taxon Paper(s) that describe ontogenetic stages
Alceste Hammann 1992
Bumastella Holloway & Lane 1998
Bumastoides Chatterton 1980
Cekovia Hammann 1992
Dentaloscutellum Chatterton 1971
Failleana Chatterton & Ludvigsen 1976
lllaenus Hu 1971
Kosovopeltis Ludvigsen & Tripp 1990
Nanillaenus Chatterton 1980
Parillaenus Hammann 1992
Perischoclonus Whittington 1963; Lane & Thomas 1983
Scutellum Chatterton 1971

Table 5.2: Known illaenoid ontogenies.

5.2.2.3 Ontogeny

Several ontogenies are known -  most from the later meraspid stages rather than the 

earliest stages (see Table 5.2). Ten ontogenetic stages of Zdicella were described at a 

lecture by Novak in 1876 but are considered currently lost (see Bruthansova 2003, p. 

186).

5.2.2.4 Character list 

Whole exoskeleton

1. Ornamentation:

0. Scattered pits between terrace ridges, may be of two sizes, e.g. 

illaenids

1. Fine pitting/punctae over cranidium surface, e.g. lllaenus, Zbirovia

2. Prominent terrace ridges, e.g. Eobronteus

3. No discernible surface sculpture, e.g. Bumastus

4. Distinctive surface tubercles, e.g. Metascutellum
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Cranidium

2 . 1S glabellar furrows:

0. Absent (Early illaenid lllaenus sarsi)

1. Present (scutelluids)

2. Present as muscle scars e.g. Raymondaspsis, Bronteopsis,

Theamataspis

3. 2S glabellar furrows:

0. Absent (Early illaenid lllaenus sarsi)

1. Present (scutelluids)

2. Present as muscle scars e.g. Raymondaspsis, Bronteopsis,

Theamataspis

4. S2 glabellar furrow:

0. Subcircular

1. Transverse

5. 3S glabellar furrows:

0. Absent (Early illaenid lllaenus sarsi)

1. Present as a furrow (scutelluids)

2. Present as muscle scars e.g. Raymondaspsis, Bronteopsis,

Theamataspis

3. Pit-like, e.g. early scutelluid Perischoclonus

6 . Connection of the glabellar furrow 1S to the axial furrow:

0. Present (styginids and scutelluids)

1. Absent; isolation of the glabellar muscle areas from the axial furrow

(illaenids)

7. Connection of the glabellar furrow 2S to the axial furrow:

0. Present (styginids and scutelluids)

1. Absent; isolation of the glabellar muscle areas from the axial furrow

(illaenids)
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8 . Connection of the glabellar furrow 3S to the axial furrow:

0. Present, faint shallow connection (styginids and scutelluids)

1. Absent: isolation of the glabellar muscle areas from the axial furrow 

(illaenids)

9. Anteromedial node in S1 (Holloway 1996):

0. Absent

1. Present, e.g. Ancyropyge and Weberopeltis

10. S1 glabellar furrows:

0. Bifurcate, e.g. early scutelluid Perischoclonus

1. Not bifurcate

11. Small, deep anteromedial pit in L1, as an additional muscle attachment point 

(Snajdr 1960, fig. 4; Whittington 1999, fig. 2.7):

0. Absent

1. Present, e.g. Decoroscutellum and Theamataspis (Fortey 1980)

12. S1 bifurcate: centre occupied by a small median node (Whittington 1999):

0. Present and strong, e.g. the Devonian Scutellum

1. Present but faint, e.g. the stratigraphically old Ordovician Eobronteus 

and Silurian Planiscutellum

13. Median node, if present, is:

0. Small, low and smooth, e.g. Scabriscutellum

1. Larger and bears the external sculpture of the rest of the glabella, e.g. 

Bojoscutellum

14. L2-L3:

0. Not inflated

1. I nflated, e . g. Bojoscutellum

15. Longitudinal glabellar furrow (inner ends of S1 and S2 connected by an 

exsagittally-directed furrow; see Whittington 1999, p. 415):
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0. Absent

1. Present (e.g. Scabriscutellum, faint in Bojoscutellum)

2. Extends forwards to the adaxial end of S3 (i.e. the stratigraphically 

young Thysanopeltis)

16. Occipital furrow:

0. Present (Styginidae)

1. Absent or very weak (Early illaenid lllaenus sarsi and other illaenids)

17. Medial enlargement of the occipital ring:

0. Absent, e.g. Spiniscutellum

1. Present, may be slight, e.g. Decoroscutellum and Bojoscutellum, slight 

in Kosovopeltis

18. Lateral occipital lobe (Whittington 1999, p. 414):

0. Absent

1. Present (e.g. Poroscutellum, faint in Spiniscutellum and Kosovopeltis)

19. Posterior border furrow on librigena:

0. Absent (illaenids)

1. Present

20. Lateral border furrow on librigena:

0. Absent

1. Present

21. Strong inflation of the inner, posterior corner of the fixigena: posterior border 

furrow lies close to the margin proximally (see Whittington 1999):

0. Absent

1. Present, e.g. Avascutellum, Spiniscutellum and Decoroscutellum

22. Vincular fold in posterior edge of cheek doublure (see Whittington 1997, fig. 5.6):

0. Present (illaenids; Dentaloscutellum and Scutellum (see Whittington 

1999)
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1. Absent

23. Eye lobe:

0. Far back on cheek and close to axis (Styginidae)

1. Far out on cheek, near posterior border, e.g. Bumastus, lllaenus

24. Eye size:

0. Large (>40% of whole length of cranidium)

1. Medium (25-40%)

2. Small (<25%)

3. Absent, e.g. Thomastus

25. Palpebral lobes (e.g. Kaelser 1997, fig. 5.2):

0. Present, e.g. Calycoscutellum

1. Absent, e.g. Thomastus

26. Orientation of palpebral lobes (width of palpebral lobes difficult to measure and 

code discretely, but this character allows the coding of nature of the eyes without 

attempting to quantify width (Amati & Westrop 2004)):

0. Horizontal or slightly ventrally directed

1. Directed upward (‘stalk-like’, as in Thaleops ovata)

27. Palpebral spines:

0. Absent

1. Present as low nodes, e.g. Kosovopeltis (Whittington 1999)

2. Present, e.g. Bojoscutellum and Decoroscutellum (Whittington 1999)

28. Eye ridges:

0. Present, e.g. Bojoscutellum

1. Absent, e.g. Alceste

29. Glabella:

0. Entirely well-defined (Scutelluina)

1. Defined past eye-lobes, but weakly anteriorly, e.g. Scabriscutellum
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2. Not defined anteriorly to eye-lobes, e.g. Hapillaenus

3. Outlined by shallow, dorsal furrows that diverge outwards and forwards 

from posterior margin (i.e. Panderia; see Bruton 1968)

30. Glabella:

0. Anterior expansion slight; two parallel/slightly diverging rows of scars, 

e.g. Perischodonus, lllaenus, Bumastoides, Stenopareia, Thaleops + 

Ectillaeninae

1. Anterior expansion great - waisted glabella; more anterior pairs are 

increasingly farther from sagittal line -  therefore greater anterior 

expansion, e.g. Bronteopsis, Raymondaspis, Bumastus, Dysplanus and 

Failleana

31. Median glabellar node, present on glabella at the level of L2/palpebral lobes:

0. Present, e.g. Ottenbyaspis, Poroscutellum and Bojoscutellum

1. Weak, e.g. lllaenus consimills

2. Absent, e.g. Scutellum

32. Anterior pit/boss (the omphalus of Holloway & Lane 1998; dorsal reflection of a 

ventral process positioned at the anterolateral corner of the glabella close to 

where the 3S glabellar furrow meets the axial furrow. This character is very 

dependent on preservation condition but it was important to code it where 

known):

0. Present, e.g. Stygina, Raymondaspis, Bumastus, Dysplanus and 

Failleana

1. Absent, e.g. illaenids (Nanillaenus, Bumastoides, Panderia), lllaenus, 

Bumastoides, Stenopareia, Thaleops and Ectillaeninae

33. Anterior node (the ‘anterolateral internal pit’ of Holloway & Lane 1998; a small pit 

in the internal surface of the exoskeleton that is situated between the anterior 

pit/omphalus and cephalic margin. On internal molds this is a small node and on 

external molds this is a barely raised spot that interrupts the sculpture of the 

terrace ridges (Whittington 1997, p. 880)):

0. Present, e.g. Cybantyx
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1. Absent

34. Fixigenal impressions (lunettes) (Whittington 1999):

0. Present, e.g. Illaenids, styginids and Phillipsinella

1. Absent, e.g. Panderia sp.

35. Librigenal spines (after Amati & Westrop 2004):

0. Present, directed posteolaterally with subgenal notch, e.g. Thaleops 

ovata

1. Present, directed backwards without sub-genal notch, e.g. 

Raymondaspsis vespertina Fortey, 1980; pl.6 , fig. 6

2. Reduced to an elongated flap-like form, e.g. Paracybantyx

3. Reduced to a rounded genal angle, e.g. lllaenus

36. Anterior sutures (from y to a; general trend from anterior of eye lobes toward the 

anterior border - not where the suture bisects the anterior border itself):

0. Subparallel

1. Distinctly divergent, e.g. Illaenina

2. Distinctly convergent

37. Anterior border and furrow:

0. Present

1. Absent

38. Preglabellar area:

0. Present: flat, forward and slowly downwards sloping, e.g. Bronteus; 

may be tiny as in Bronteopsis and Kolihapeltis

1. Absent: spherical and suddenly downwards sloping, e.g. Scutellum

39. Occipital tubercle:

0. Absent, e.g. Alceste

1. Present, e.g. Bronteopsis

2. Present as a stout or short spine, e.g. Bojoscutellum and 

Decoroscutellum
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3. Present as a long spine, e.g. Cornuscutellum

40. Occipital tubercle bearing four pits arranged at the corners of a square (occipital 

organ):

0. Absent

1. Present, e.g. Paralejurus, Bronteopsis and Raymondaspis

41. Median glabellar node/spine opposite S3:

0. Absent

1. Present, e.g. Izarnia

2. Present as a spine, e.g. Weberopeltis (Feist 1974)

Hypostome and rostral plate

42. Rostral flange (a notched anterior margin of hypostome implies a median 

projection of the cranidial doublure, as the hypostome fitted against the inner 

margin of the cephalic doublure. This projection was probably formed by axe­

shaped rostral flange (Whittington 1965, p. 385): therefore the outline of the 

anterior margin of the hypostome can be used to argue for the presence of the 

rostral flange when the rostral plate is unknown. It is important to note that care 

must be exercised when using the presence/absence character state of the rostal 

flange to define higher (subfamilial and familial) taxa: its presence is almost 

certainly a convergent character state (Lane & Thomas 1983, p. 149):

0. Present (Panderia, Bumastus, Stenopareia and lllaenus)

1. Absent

43. Posterior points of the rostral plate:

0. Dorsally bent, e.g. Scutellum and Paralejurus

1. Not dorsally bent

44. Hypostome middle body:

0. Oval, e.g. lllaenus

1. Long and narrow, i.e. Phillipsinella

2. Extremely short posterior lobe, e.g. Scutellum
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3. Transversely elongate, e.g. Stenopareia, Zdicella

45. Anterior wings:

0. Large and quadrangular (illaenids)

1. Narrow, e.g. Stenopareia

46. Maculae:

0. Prominent (Styginidae; Scutellum-like)

1. Small, insignificant

47. Connective sutures:

0. Diverge at a high angle, e.g. Dysplanus and Platillaenus

1. Diverge at low angle

Thorax

48. Number of thoracic segments (this has been thought to be a poor character 

(Lane & Thomas 1983, p. 150) but it was judged important to include it 

nevertheless):

0. 6 , e.g. Phillipsinella

1. 7

2. 8 , e.g. Octillaenus, Panderia

3. 9

4. 10

5. 11

49. Axial ring on thorax:

0. Short (Late Ordovician styginids)

1. Long (Cybantyx anaglyptos)

50. Articulating furrow:

0. Present (scutelluids and Late Ordovician styginids)

1. Absent (C. anaglyptos)

51. Doublure of axial ring:
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0. Lies close to ring

1. Long and curves downward (C. anaglyptos)

52. Thoracic segments have a:

0. Raised axial ring, shorter in the midline than laterally (scutelluids)

1. Not like above (illaenids)

53. Half-ring:

0. Extending horizontally forward beneath the ring in front (scutelluids)

1. No discrete half-ring present, e.g. Rhaxeros, Bumastus and Cybantyx

54. Pleurae are:

0. Fulcrate process and socket (scutelluids)

1. Non-fulcrate (illaenids)

55. Thoracic pleurae:

0. Outer portion with facet and doublure extending in close to fulcrum 

(Kosovopeltinae)

1. Large fulcral process on first segment, smaller on successive 

segments, e.g. Planiscutellum

56. Pleural furrow:

0. Absent (Late Ordovician styginids, lllaenus, Nanillaenus, Thaleops, 

Ectillaenus and early illaenid lllaenus sarsi)

1. Present as a slight slope or on internal moulds only, e.g. Bronteopsis

2. Present as a distinct furrow, e.g. Thysanopeltis

57. Axial furrows of thorax:

0. Posteriorly divergent, e.g. Paralejurus

1. Roughly parallel, e.g. Thysanopeltis

2. Convergent, e.g. Thomastus

3. Not visible, e.g. Bumastus
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58. Depth of axial furrows:

0. Shallow, e.g. Cybantyx

1. Deep, e.g. Bronteopsis

59. Axis (or convexity representing axis) as a function of thoracic width:

0. <1/3, e.g. Silurian/Devonian scutelluids, Stygina and Spiniscutellum

1. £ 1/3 , e.g. illaenid genera, e.g. lllaenus, Nanillaenus, Thaleops, 

Ectillaenus

60. Pleural tips:

0. Spinose, e.g. Thysanopeltis

1. Rounded and blunt, e.g. Bumastus

2. Gently curved posteriorly, e.g. Planiscutellum

Pygidium

61. Maximum length (sag.) of pygidium (excluding spines) relative to maximum width 

(tr.) (the length/width ratio of the pygidium may be a poor character to use in a 

generic-level analysis as ratio changes substantially (increases) in the ontogeny 

of Failleana calva (Chatterton & Ludvigsen 2004) -  but the character states used 

here are loose and may, nevertheless, provide important information):

0. Pygidium wider (tr.) than long (sag.), e.g. Bronteopsis

1. As long as wide, or longer than wide, e.g. scutelluines, Parillaenus 

fallax, Kolihapeltis

62. Size of pygidium compared to the cranidium:

0. Smaller and less convex

1. Equal

2. Larger

63. Marginal spine expression of pygidium:

0. Lacks marginal spines, e.g. Scutelluina

1. Possesses marginal spines, not related to the pleural ribs, e.g. 

Thysanopeltis

189



Chapter 5: The phylogeny of the lllaenoidea

2. Possesses marginal spines that are continuations of the pleural ribs, 

e.g. Dentaloscutellum (Snajdr 1960, pi. 29, fig. 2; Chatterton 1971), 

Weberopeltis

64. Spine thickness:

0. Uniform, e.g. Dentaloscutellum

1. Non-uniform, e.g. Ancyropyge and Xyoeax (see Holloway 1996, p. 433)

65. Pygidial pleural field adaxial to border:

0. Long, i.e. Thysanopeltis

1. Narrow, i.e. Weberopeltis (see Holloway 1996, p. 433)

6 6 . Radiating ribs on pygidium:

0. Present (scutelluids)

1. Absent (illaenids)

67. Pygidial ribs:

0. Low and broad in profile

1. Appear as narrow prominent ridges, e.g. Thysanopeltis and 

Scabriscutellum

6 8 . Number of ribs:

0. <5 pairs, e.g. Phillipsinella

1. 6  pairs, e.g. Eobronteus

2. 7 pairs, e.g. Dentaloscutellum

3. 8  pairs, i.e. Ligiscus and Perischoclonus

69. Pygidial doublure:

0. Very extensive (<3/4 length of whole pygidium) (scutelluids)

1. Narrow (<1/3 total sagittal length) (illaenids)

70. Doublure:

0. Anterior margin subparallel to the posterior margin of the pygidium 

(many Silurian and Devonian scutelluids)
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1. Remote from this position, e.g. Bumastus, Cybantyx and Failleana

71. Anterior margin of doublure:

0. Medially bears a forward projection, simple, e.g. lllaenus, Bumastoides, 

Stenopareia, Thaleops and Ectillaeninae (typically)

1. Medially bears a forward projection, bifid, e.g. Bumastoides

2. Does not bear a forward projection, e.g. Bumastus, Dysplanus and 

Failleana (styginids and scutelluids)

72. Doublure with ridges:

0. Present, prominent, e.g. Scutelluina

1. Absent

73. Posterior border furrow of pygidium:

0. Present

1. Absent (early illaenid lllaenus sarsi)

74. Lateral borders:

0. Absent, e.g. Scutelluina

1. Present, e.g. Thomastus

75. Pleural furrow of pygidium:

0. Absent (early illaenid lllaenus sarsi, lllaeninae, and other illaenids)

1. Present

76. Inter-pleural furrows on pygidium:

0. Absent (illaenids)

1. Present

77. Inter-ring (axial) furrows on pygidium:

0. Present, e.g. Perischolconus

1. Absent or faint (illaenids)

78. Degree of definition of pygidial axis:

191



Chapter 5: The phylogeny of the lllaenoidea

0. Entirely well-defined, axial furrows are deeply incised and axis is highly 

vaulted, e.g. Thaleops ovata

1. Entirely weakly outlined by shallow furrows around the entire 

circumference of the axis, but not vaulted to a great degree above the 

pleural fields (as defined by Amati & Westrop 2004), e.g. Nanillaenus

2. Posterior portion of axial furrows effaced, posterior part of the axis 

obscurely marked off by a change in curvature, e.g. Eobronteus

3. Complete undifferentiated, possibly present on internal mold, e.g. 

Bumastus, Stenopareia

79. Axis:

0. Relatively long, persisting along nearly the full length, e.g. Phillipsinella, 

Raymondaspis

1. Relatively short, shorter than post-axial field, e.g. Planiscutellum, 

Eobronteus

80. Postaxial ridge:

0. Developed, e.g. Parillaenus

1. Short post-axial ridge on internal mould, e.g. Phillipsinella

2. Absent, e.g. Scutellum

81. Medial flattened rib behind axis, separating pairs of ribs:

0. Absent, e.g. Scutellum

1. Present, e.g. Poroscutellum

82. Median rib:

0. Not bifid or only marked with a obscure depression distally, e.g. an 

example of the latter expression is seen in Eobronteus

1. Bifid: distally displaying a sagittal division by a furrow, e.g. 

Dentaloscutellum

83. Posteromedial pygidial rib extended into a pair of spines (each border spine is a 

prolongation of one of the two halves of the distal end of the median rib: only 

applicable to those taxa that are coded (82:1)):
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0. Absent

1. Present, e.g. Exastipyx and Dentaloscutellum (Holloway 1996)

84. Axis as a function of anterior pygidial width:

0. <1/3, e.g. Phillipsinella

1. £1/3, e.g. illaenid genera, e.g. lllaenus, Nanillaenus, Thaleops, 

Ectillaenus

85. Anterior margin of pygidium:

0. Straight across

1. Straight medially, curves steeply downwards laterally, delimits the 

pygidium almost to a circle, e.g. Rhaxeros

8 6 . Holcos (see Helbert et at. 1982):

0. Absent

1. Present, e.g. Decoroscutellum

87. Pygidial axis divided exsagittally into three portions:

0. Absent

1. Present (divided into 3 lobes - in stratigraphically young Scutelluinae -  

see Whittington 1999, e.g. Bojoscutellum and Thysanopeltis)

8 8 . Node on pygidial axis (median portion of divided axis):

0. Absent

1. Present, e.g. Izarnia

89. Length and orientation of articulating facets (adopted from Amati & Westrop 

2004):

0. Distance from anterior margin of pygidium to point of maximum width 

(tr.) of pygidium 10-25%  of total length (sag.) of pygidium

1. Distance from anterior margin of pygidium to point of maximum width 

(tr.) of pygidium 25-50%  of total length (sag.) of pygidium

2. Distance from anterior margin of pygidium to point of maximum width 

(tr.) of pygidium >51% of total length (sag.) of pygidium
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Ontogeny

90. Pleural furrows of transitory pygidium:

0. Absent

1. Present, e.g. Failleana (Chatterton 1980, p. 28) and Perischoclonus 

(Lane & Thomas 1983, p. 150)

91. Median glabellar spine at meraspid stage:

0. Present, e.g. Kosovopeltis (see Kacha & Saric 1991)

1. Absent, e.g. Scutellum

92. Node on palpebral lobes:

0. Present, e.g. Kosovopeltis

1. Absent

93. Genal spine at meraspid stage:

0. Present, e.g. Bumastella (Holloway & Lane 1998)

1. Absent

94. Long occipital spine at meraspid stage that shortens throughout ontogeny:

0. Present, e.g. Dentaloscutellum and Kosovopeltis

1. Absent

95. Disappearance of the eye ridge throughout ontogeny:

0. Present

1. Absent, e.g. Cekovia

96. Border spines on transitory pygidium:

0. Present, e.g. Dentaloscutellum

1. Absent, e.g. Cekovia

97. Sub-transverse inter-ring furrows on axes of early pygidia:

0. Present, e.g. Dentaloscutellum

1. Absent, e.g. Bumastella

194



Chapter 5: The phylogeny of the lllaenoidea

98. Axial spines of pygidia:

0. Absent, e.g. Nanillaenus

1. Only present on certain segments, e.g. Dentaloscutellum

2. Present on all segments, e.g. Scutellum

99. Tuberculation pattern at early meraspid stage:

0. Like Dentaloscutellum, Scutellum (see Chatterton 1971, fig. 4c and 6 c)

1. Like the illaenid trilobite protaspis (of Shaw 1968) and Bumastoides 

(see Chatterton 1980, fig. 4B and 4H respectively)

2. No tubercles, as in Failleana and Nanillaenus (see Chatterton 1980, fig. 

4D and 41 respectively)

5.2.3 RESULTS

The tree search found 39 most parsimonious trees with a length of 663 (Cl 0.22, HI

0.79). They show the following relationships:

•  Two large monophyletic clades with Meroperix, Perischoclonus, 

Phillipsinella, Turgicephalus, Bronteopsis, Stygina and Raymondaspis 

basally;

•  One of the clades contains mostly styginids; and

•  The other contains mostly illaenid taxa (see Figure 5.1).

Description and analysis of the phylogeny are based on the majority-rule tree 

(Figure 5.2). The main clades are classified here as followed:

•  Clade A: Ectillaeninae;

•  Clade B: lllaeninae;

•  Clade C: Bumastellinae;

•  Clade D: Panderiinae;

•  Clade E: Kosovopeltinae; and

•  Clade F: Thysanopeltinae (see section 5.5).

Character states with ambiguous optimisation are indicated by asterisks next to 

the character in question, within the Systematic Palaeontology section.
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5.2.4 DISCUSSION

Characters that have phylogenetic importance (i.e. those with states that have a Cl of

1 .0 ) are:

•  Presence/absence of anteromedial node in S1 (ch. 9);

•  Presence/absence of lunettes (ch. 34);

•  Presence/absence of occipital tubercle bearing four pits arranged at the 

corners of a square (ch. 40);

•  Doublure of axial ring is close to ring or long and curves downward (ch. 51);

•  Presence/absence of marginal spines of pygidium (ch. 63);

•  Pygidial pleural field adaxial to border is long or narrow (ch. 65);

• Presence/absence of median glabellar node at meraspid stage (ch. 91);

•  Presence/absence of genal spine at meraspid stage (ch. 93);

•  Presence/absence of long occipital spine at meraspid stage that shortens

throughout ontogeny (ch. 94);

•  Disappearance of the eye ridge throughout ontogeny (ch. 95);

•  Presence/absence of sub-transverse inter-ring furrows on axes of early

pygidia (ch. 97);

•  Presence/absence of axial spines of pygidia (ch. 98); and

•  Tuberculation pattern at early meraspid stage (ch. 99).

The positions of Paralejurus and Planiscutellum may need further consideration. 

They have typical styginid pygidia albeit somewhat effaced: perhaps the taxa are 

grouped together by effacement and the resulting tree separates the effaced styginids 

and non-effaced styginids.
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Figure 5.1: The strict-consensus tree.
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Figure 5.2: The MPT from the analysis that has the same branching pattern as the majority-rule 
tree (including other compatible groupings). Bootstrap values and branch support values (given in 
adjacent brackets where >0) are shown above the branches. Clades A-F are indicated. Green 
nodes delineate familial groupings, red nodes delineate subfamilial. The positioning of the line 
drawings does not relate directly to the clade the taxon is found in.

5.3 DISPARITY

5.3.1 METHODS

5.3.1.1 Taxon and character sampling

Please see section 4.3.1.1 for details.

5.3.1.2 Temporal sampling

See Section 4.3.1.2 for details. Temporal divisions are depicted in Figure 5.3.
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Figure 5.3: Temporal scale used in this study. Values indicate age of stage boundaries in Myr 
(from -np:̂ www.stratiqraphy.prq/qeowhen/qeoiist.ihtml  ̂ ,nterva|s made of amalgamated stages used here (G1-
G7) are shown on the top and geological stage in the centre (see Appendix IX for details of taxa 
assigned to time slices).
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5.3.1.3 Euclidean distance analyses

The first analysis conducted was a Euclidean distance analysis on the raw dataset 

(Appendix VII) calculating the mean distance between all genera from a given time 

interval. See section 4.3.1.3 for coding method.

5.3.1.4 PCO

The MVSP data for these axes were read into RARE 1.1 (Wills 1998): this was used to 

calculate the sums and products of both the variance and range along the first 33 

coordinate axes and allows comparison between samples of different sizes. This number 

of axes was used because they encompass 90% of the total variance.

5.3.2 RESULTS

5.3.2.1 Analysis by age: Euclidean distance analyses of PCO data

Distance from the outgroup for all ages range from 2.92 (e.g. Turgicephalus) to 5.13 

(e.g. Dentaloscutellum). See Figure 5.4 for the arrangement of the organisms from the 

analysis.
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□□
□

□

Middle Devonian 
Lower Devonian 
Upper Silurian 
Lower Silurian 
Upper Ordovician 
Middle Ordovician 
Lower Ordovician

0 1 2 3 4 5 6

Distance from

Figure 5.4: Results from Euclidean distance analysis of raw data. Each horizontal bar represents one taxon. Distance was calculated by using 
Raymondaspis as the outgroup. Taxon bars are coloured according to the time-slices specified.
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5.3.1.2 Analysis by age

Taxa from all time slices seem evenly distributed and interspersed. Mean disparity 

shows a decreasing trend through time, with an unexpected increase before extinction in 

the Lower Devonian (see Figure 5.5).

LD ev

Epoch

Figure 5.5: Mean disparity of illaenoid taxa through time (i.e. plotted mean end-point of curves 
from 5.6).

A test was conducted on the sum of ranges data for all time slices on all coordinate 

axes (see Appendix VIII for raw data) to see if the disparity of taxa at any given time was 

significantly different from random from a similar-sized sample drawn from the universe 

of all realized body-plans (Figure 5.6).
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Figure 5.6: Rarefaction curves of measures of morphological disparity for illaenoid taxa in different time slices (sum of ranges data: 1000 random 
draws of taxa were made by randomising at each sample size, providing a mean value for the respective measure of morphological variety, along 
with upper and lower 90% confidence limits). Black = all taxa; pink = Lower Ordovician taxa; orange = Middle Ordovician; green = Upper 
Ordovician taxa; blue = Lower Silurian taxa ; yellow = Upper Silurian; red = Lower Devonian; purple = Upper Devonian.
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Disparity values of taxa in all time slices are not significantly different when 

compared to entire dataset or each other (the rarefaction curves follow very similar 

trajectories and all mean values lie within the 90% confidence limits for the whole 

dataset and all time slices).

5.3.2.3 Analysis by clade

The clades display differing levels of mean disparity, with clades A and E having 

higher mean disparity than other illaenoid clades (Figure 5.7).
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Figure 5.7: Mean disparity of clades of illaenoid taxa as a histogram (i.e. plotted mean end-point 
of curves from 5.8).

A test was conducted on the sum of ranges data for all clades on all coordinate 

axes (see Appendix VII for raw data) to see if the disparity of taxa for a clade was 

significantly different from random from a similar-sized sample drawn from the universe 

of all realized body-plans (Figure 5.8).
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10
Sample size (log scale)

Figure 5.8: Rarefaction curves of measures of morphological disparity for different illaenoid clades (sum of ranges data: 1000 random draws of 
taxa were made by randomising at each sample size, providing a mean value for the respective measure of morphological variety, along with 
upper and lower 90% confidence limits). Black = all taxa; aqua = clade A; green = clade B; blue = clade C; yellow = clade D; red = clade E; purple 
= clade F.
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Disparity values of different clades are significantly different when compared 

(Figure 5.8). Clade E (the Kosovopeltinae; see Section 5.5) has significantly higher 

disparity to all other clades (its mean values lie outside the 90% confidence limits of all 

other sampled clades; Figure 5.8).

5.3.2.4 Principal Coordinates Analysis (PCO)

Please see Section 4.3.2.4. Results for the first three PCO axes are plotted in a graph 

(Figure 5.9).
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Figure 5.9: Mean disparity of illaenoid taxa. The 1st two PCO axes are shown as the axes of the 
graph and the third axis is indicated by size of the circles.
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Analysis by age: Results for the first three PCO axes are plotted in a graph (Figure 5.10). 

Time slices plot in overlapping areas of morphospace defined by the first three principal 

coordinate axes. The time slices are indicated by coloured rings.
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Figure 5.10: Distribution on the 1st three principal coordinates axes of all genera divided into age 
categories. The 1st two PCO axes are shown as the axes of the graph and the third axis is 
indicated by size of the circles. (Lower Ordovician = aqua; Middle Ordovician = lilac; Upper 
Ordovician = blue; Lower Silurian = lime green; Upper Silurian = red; Lower Devonian = purple; 
Middle Devonian = black).
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Analyses by major taxonomic group-. Results for the first three PCO axes are plotted in a 

graph (Figure 5.11). Major groups plot in distinct and generally non-overlapping areas of 

morphospace defined by the first three principal coordinate axes. The clades are 

indicated by coloured rings.
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Figure 5.11: Distribution on the 1st three principal coordinates axes of all genera. The 1st two PCO 
axes are shown as the axes of the graph and the third axis is indicated by size of the circles. 
Taxa are identified by coloured circles as to their major taxonomic grouping. (Clade A = pink; 
clade B = aqua; clade C = lime green; clade D = blue; clade E = red; clade F = purple).
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5.4 DISCUSSION

5.4.1 PHYLOGENETIC ANALYSIS (see Systematic Palaeontology, section 5.5)

5.4.2 DISPARITY

5.4.2.1 Disparity patterns over time

The Euclidean distance analyses on the raw data suggest that the mean disparity of 

earlier taxa is generally higher than later taxa (with a slight rise in the Upper Ordovician, 

a steady decline until the Upper Silurian and then a rise in the Lower Devonian; Figure 

5.5). However, these differences are not statistically significant (Figure 5.6). Smith & 

Leiberman (1999) found a similar result with their study of the early Cambrian 

olenelloids.

The PCO analysis results show that the groupings are vastly overlapping. There 

does seem to be a shift of occupied morphospace over time: a clockwise rotation around 

the centre of the axes occurs (Figure 5.10).

5.4.2.2 Taxonomic disparity patterns

The clades display different measures of mean disparity (Figure 5.7). However, only the 

kosovopeltines have significantly different disparity to the other clades: the 

kosovopeltines display higher disparity than the other clades (Figure 5.8). This may be 

due to the Kosovopeltinae containing many highly spinose and unusual forms (e.g. 

Xyoeax and Exastipyx; see Holloway 1996).

Major clades from the resulting phylogeny seem to occupy discrete areas of 

morphospace when plotted along the three most important axes (but this is not 

statistically-significant; Figure 5.11) and some groups cluster more tightly than other 

groups (e.g. clade B cf. clade A).
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5.5 SYSTEMATIC PALAEONTOLOGY

Suborder ILLAENINA (sensu Jaanusson, 1959 in Moore, 1959)

Superfamily ILLAENOIDEA Hawle & Corda, 1847

TAXA INCLUDED. Families lllaenidae (sensu Hupe, 1953) and Styginidae (sensu 

Skjeseth, 1955) plus Meroperix Lane, 1972, Perischoclonus Raymond, 1925, 

Philiipsinella Novak, 1885, Turgicephalus Fortey, 1980, Bronteopsis Etheridge & 

Nicholson in Nicholson & Etheridge, 1879, Stygina Salter, 1853 and Raymondaspis 

Whittington, 1965.

REMARKS. Turgicephalus is closely-related to, but separate from, Raymondaspis (as 

suggested by Fortey 1980). Stygina, Bronteopsis, Perischoclonus and Raymondaspis 

are all considered basal styginid taxa (Skjeseth 1955, Whittington 1963). Here those 

taxa appear basal to the illaenid and styginid taxa. Philiipsinella is considered closely- 

related to Stygina and Bronteopsis (in agreement with Reed 1931).

Bronteopsis should be excluded from the Styginidae (in agreement with the views 

of Whittington (1950) and Warburg (1925): cf. Skjeseth (1955) and Thorslund (1940)).

Philiipsinella Novak, 1885 was thought to have affinities with early scutelluid 

genera (Whittington 1950, p. 561; Bruton 1976, p. 704). It shares the following features 

with early scutelluids: (1) S2 connects to axial furrow (ch. 7); (2) lateral border furrow 

present on librigena (ch. 20); (3) eye lobe far back on cheek and close to axis (ch. 23); 

(4) relatively long pygidial axis (ch. 79) and (5) absence of medial flattened pygidial rib 

(ch. 81).

Family ILLAENIDAE (sensu Hupe, 1953) = illaenid

EMENDED DIAGNOSIS. Longitudinal glabellar furrow present (ch. 15*). Lateral border 

furrow on librigena absent (ch. 20*). Vincular fold present (ch. 22*). Eye lobe near 

posterior border (ch.23*). Posterior points of rostral plate are not dorsally bent (ch. 43*). 

Ten thoracic segments (ch. 48*). Medial rib present (ch. 81*). Pygidial axis present (ch. 

87*).

TAXA INCLUDED. Subfamilies Ectillaeninae Jaanusson, 1959 in Moore 1959, lllaeninae 

Hawle & Corda, 1847, Bumastellinae Pollitt, 2006 and Panderiinae Bruton, 1968 plus 

Dulanaspis Chugaeva, 1956, Eobronteus Reed, 1928, Eokosovopeltis Jaanusson, 1953,
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Harpillaenus Whittington, 1963, Kolihapeltis Prantl & Pribyl, 1947, Lamproscutellum Yin, 

1980, Paralejurus Hawle & Corda, 1847, Planiscutellum Richter & Richter, 1956, 

Theamataspis Opik, 1937 and Waisfieldaspis Vaccari, 2001.

STRATIGRAPHICAL RANGE. Early Ordovician to Upper Devonian (Frasnian). 

REMARKS. Eobronteus and Planiscutellum share ‘several special evolutionary primitive 

features’ (Snajdr 1960, p. 240). Theamataspis should neither be assigned to its own 

subfamily (cf. Hupe 1953), nor to the Styginidae (cf. Lane 1972, p. 340) but should be 

considered to be more closely-related to the lllaenidae. It does display an amalgam of 

illaenid and styginid characters (see Fortey 1980, p. 57) but should be regarded as a 

basal illaenid. Dulanaspis is closely-related to Theamataspis (as suggested by Fortey 

1980) but the paraphyletic position of the former taxon within the lllaenidae suggests that 

the subfamily Dulanaspinae Pribyl & Vanek, 1971 is superfluous.

Waisfieldaspis is not a styginid (cf. Vaccari 2001) but is an illaenid and is closely- 

related to Ancyropyge (in concordance with Ormiston 1967). Eokosovopeitis and 

Lamproscutellum share a close phylogenetic relationship (as suggested by Edgecombe 

etal. 2004).

Effacement is commonplace in this group. Lane & Thomas (1983) suggested 

there are two groups: (1) lilaenus, Bumastoides, Stenopareia and Thaleops and taxa 

generally referred to the Ectillaeninae; and (2) ‘effaced styginids’ (see below). The 

former group does not cluster neatly in this study: although lilaenus, Bumastoides and 

the Ectillaeninae are closely-related.

The latter group was thought to comprise several genera (previously assigned to 

the lllaenidae) that should be re-assigned to the Scutelluidae as ‘effaced styginids’ or 

‘illaenomorph’ taxa (=Styginidae; Lane & Thomas 1978, 1983). These illaenomorph taxa 

were: Alceste, Bumastus, Cybantyx, Dysplanus, Failleana, Kosovopeltis, Liolalax, Litotix, 

Planiscutellum, Platillaenus and Rhaexeros. Proposed illaenomorph character states cf. 

with those of true illaenids are: (1) larger eyes (ch. 24); (2) glabella is more expanded 

(tr.) anteriorly (ch. 30); (3) presence of anterior pit (ch. 32); (4) cephalon is less convex 

(lower than long in lateral view; ch. 38); (5) axis and articulating free portions of thoracic 

pleurae are not demarcated (ch. 58); (6 ) pygidium is equal/longer in relation to cephalon 

(ch. 62); (7) lacks pygidial doublure projections (ch. 71); (8 ) weak pygidal axial furrows 

(ch. 78) and (9) pygidial post-axial ridge (ch. 80).
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I U /c e s fe Bumastus Cybantyx Dysplanus Failleana Kosovopeltis Liolalax Litotix Planiscutellum Platillaenus Rhaxeros Proportion

Ch. 24 - + + - + + + + - + - 7/11
Ch. 30 - + + + + + ? + + + - 8/11
Ch. 32 - - + + + - + + - + - 6/11
Ch. 38 - - - - + - - - + - - 2/11
Ch. 58 ? ? + - + - + ? - ? - 3/11
Ch. 62 - + + - - + + + + + + 8/11
Ch. 71 ? + + + + + + ? ? + ? 8/11
Ch. 78 - + + + + - + + - + + 8/11
Ch. 80 - + + - - - - + - - - 3/11

Proportion 0/9 6/9 8/9 4/9 7/9 4/9 6/9 6/9 3/9 6/9 2/9

Table 5.3: Correlations of illaenomorphic characters and proposed illaenomorph taxa 
from Lane & Thomas (1978, 1983). (+ve symbol = illaenomorph character state present; 
-ve symbol = illaenomorph character state absent.)

This study does not support the division between illaenids and effaced styginids 

and, instead, places all illaenomorph taxa, bar Kosovopeltis, within the lllaenidae. 

Alceste possesses none of the proposed illaenomorphic character states listed above 

(where known; coded from literature referenced in table 5.1), Rhaexeros possesses only 

two, and Planiscutellum only three (Table 5.3). Dysplanus and Kosovopeltis display four, 

Bumastus, Liolalax, Litotix and Platillaenus six and Failleana and Cybantyx seven and 

eight respectively.

These illaenomorph taxa do not form a monophyletic clade (in agreement with 

Lane & Thomas 1983). Kosovopeltis is a scutelluid, Planiscutellum is a basal illaenid but 

the other illaenomorphs are all distributed between the illaenid subfamilies Ectillaeninae, 

lllaeninae and Bumastellinae (see below).

Some of the characters are shared by more illaenomorph taxa than others (e.g. 

ch. 30 cf. ch. 38). Some of the character states are shared with styginids, e.g. character 

30 but some are shared with the illaenids as well (chs 58 and 78).

The illaenomorph character states may be influential (four of the illaenomorphs 

group together in the lllaeninae). However, the illaenomorphic character states shared 

by many illaenomorph taxa are not exclusive and many of them are homoplasious and 

shared with many styginid and illaenid taxa. Perhaps these character states should be 

viewed as states that seperate most of the illaenomorph taxa from the Ectillaeninae but 

do not add enough weight to cancel out those that group them with the lllaenidae.
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Subfamily ECTILLAENINAE Jaanusson, 1959 in Moore, 1959

EMENDED DIAGNOSIS. Small eyes or blind (ch. 24). Narrow anterior wings of 

hypostome (ch. 45). No discrete half-ring present (ch. 53*).

TAXA INCLUDED. Alceste Hawle & Corda, 1847; Cekovia Snajdr, 1956; Ectillaenus 

Salter, 1867; Excetra Holloway & Lane, 1998; Ligiscus Lane & Owens, 1982; Octillaenus 

Salter, 1867; Rhaxeros Lane & Thomas, 1980; Snajdria Hammann, 1992; Stenopareia 

Owen & Bruton, 1980; Thomastus Opik, 1953; Ulugtelia Petrunina in Repina etal., 1975; 

Zbirovia Snajdr, 1956; Zdicella Snajdr 1957.

STRATIGRAPHICAL RANGE. Middle Ordovician to Upper Silurian.

REMARKS. Cekovia differs from other illaenids in having: a strongly swollen cephalon 

and glabella, distinct and long axial furrows, eyes situated posteriorly, 10 thoracic 

segments and pygidium with semicircular posterior margin (Bruthansova 2002). 

According to this study, Cekovia is placed within the lllaenidae: the similarity of the 

juveniles to Raymondaspis is due to convergence (Hammann 1992, p. 49) and, hence, 

not reason alone to place them in Styginidae.

According to this study Octillaenus has not developed paedomorphically from 

Parillaenus (cf. Bruton & Owens 1988; Bruthansova 2003, p. 176).

It has been thought that Zbirovia, Alceste, Zdicella, Zbirovia and Ulugtelia can 

only be distinguished on the basis of their pygidia (Bruthansova 2003): this study 

disputes that. Zbirovia has no eyes, outwardly curved and short axial furrows, 

semicircular cephalic outline, 10  thoracic segments, trapezoidal outline and large 

doublure. It differs from Alceste by: shorter, less distinct and more outwardly curved axial 

furrows, trapezoidal outline of pygidium. It differs from Zdicella by its slightly downwardly- 

curved fixigena, rather than straight. Alceste is considered to belong to the lllaenidae 

rather than the Styginidae sensu Lane & Thomas (1983), in agreement with Hammann 

(1992, p. 72). Snajdria is closely-related to Zdicella in agreement with Hammann (1992, 

p. 78).

Blindness has evolved at least twice: Zbirovia+Zdicella and Ulugtella+Alceste 

have arisen from different stocks.

Ectillaenus has been thought to be closely-related to lilaenus (Salter 1867), 

Parillaenus Jaanusson, 1953 (Bruthansova 2003, p. 173) or Zbirovia (Bruthansova 2003, 

p. 175) but this analysis places it closely-related to Excetra.
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That Ulugtelia is a junior synonym of Stenopareia (Hammann 1992, Bruthansova 

2003) or Zbirovia (Hammann 1992, p. 75) is not supported here. Neither is it thought 

here to be very closely-related to Zdicella or Zbirovia (see Hammann 1992).

Excetra resembles Ligiscus (for discussion, see Holloway & Lane 1998, p. 873). 

Zetillaenus is closely-related to Dysplanus (in agreement with Hammann 1992, p.

52).

Subfamily ILLAENINAE Hawle & Corda, 1847

EMENDED DIAGNOSIS. Scattered pit between terrace ridges (ch. 1*). Weak median 

glabellar node (ch. 31). Rostral flange present (ch. 42*). Long axial thoracic ring (ch. 

49*). Long doublure of axial ring (ch. 51). No genal spine at meraspid stage (ch. 93*). 

TAXA INCLUDED. Bumastus Murchison, 1839; Bumastoides Whittington, 1954; 

Cybantyx Lane & Thomas in Thomas, 1978; Failleana Chatterton & Ludvigsen, 1976; 

lilaenus Dalman, 1827; Parillaenus Jaanusson, 1953; Platillaenus Jaanusson, 1953. 

STRATI GRAPHICAL RANGE. Early Ordovician to Lower Silurian.

REMARKS. This study suggests that Cybantx is an illaenid (in agreement with 

Whittington 1997, see above for fuller explanation). It is closely-related to Bumastus (as 

suggested by Lane & Thomas 1978).

Failleana is closely-related to Platillaenus (Lane & Thomas 1983). Here it is 

thought to be an illaenid (as suggested by Whittington 1997).

Parillaenus may be a subgenus with lilaenus (as suggested by many authors, 

e.g. Dean 1978; Owen & Bruton 1980) but they differ in various aspects. Parillaenus has 

an: anterior pit; a flap-like librigenal spine rather than the reduced spines of lilaenus; 7 

thoracic segments rather than the 10  of lilaenus’, posteriorly divergent thoracic axial 

furrows rather than convergent; wide pygidium; no forward projection on pygidial 

doublure rather than the simple one of lilaenus; an undifferentiated pygidial axis and a 

narrow pygidial axis relative to its entire width.

Bumastoides is regarded as an illaenine (see also Ludvigsen & Chatterton 1980). 

Bumastus and Bumastella have been given generic-status as they do not group within 

the same subfamily.
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Subfamily BUMASTELLINAE Pollitt etal., 2006

EMENDED DIAGNOSIS. Medium eye size (ch. 24*). Anterior pit present (ch. 32, 

excluding Bumastella). Anterior node present (ch. 33). Rounded genal librigena (ch. 

35*). Half-rings present (ch. 53*). Anterior margin of pygidium delimits pygidium almost 

to a circle (ch. 85*). Absence of spines of transitory pygidium (ch. 96*). Absence of inter­

ring furrows on early pygidia (ch. 97).

TAXA INCLUDED. Bumastella Kobayashi & Hamada, 1974; Liolalax Holloway & Lane 

1999; Litotix Lane & Thomas in Thomas, 1978; Paracybantyx Ludvigsen & Tripp, 1990. 

STRATIGRAPHICAL RANGE. Lower Silurian to Upper Silurian.

REMARKS. Bumastella was originally erected as a subgenus of Bumastus (Kobayashi & 

Hamada 1974, p. 50) but it is now considered to have little similarity to the latter genus 

(Holloway & Lane 1998, p. 8 6 6 ) -  a view that is supported here.

Litotix resembles Liolalax (Holloway & Lane 1998, p. 877): a view maintained in 

this study. The meraspid transitory pygidia of Liolalax and Bumastella are exceedingly 

similar (Holloway & Lane 1998, p. 883). These taxa are closely-related.

The new subfamily Bumastellinae Pollitt, 2006 is erected. Bumastinae Raymond, 

1916 has become a junior subjective synonym of lllaeninae Raymond, 1916 and cannot 

be used as a seperate subfamily.

Subfamily PANDERIINAE Bruton, 1968

EMENDED DIAGNOSIS. Thoracic articulating furrow absent (ch. 50*). Axial rings of 

thorax are flattened (ch. 52*). Convergent thoracic axial furrows (ch. 57). Deep thoracic 

axial furrows (ch. 58). Thoracic axis is £1/3 of entire thoracic width (ch. 59*). Pygidium 

smaller than cranidium (ch. 62). Pygidial axis is £1/3 of anterior pygidial width (ch. 84*). 

TAXA INCLUDED. Dysplanus Burmeister, 1843; Nanillaenus Chatterton, 1980; 

Ottenbyaspis Bruton, 1968; Panderia Volborth, 1863; Thaleops Conrad, 1843; 

Zetillaenus Snajdr, 1957.

STRATIGRAPHICAL RANGE. Lower Ordovician to Upper Ordovician.

REMARKS. Panderia and Ottenbyaspis are closely-related to the lllaenidae as 

suggested by Bruton (1968). Nanillaenus and Thaleops are closely related to them. They 

share a closer relationship with the Bumastellinae than the lllaeninae (the presence of 

the triangular rostal flange shared with Stenopareia is insignificant).
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Thaleops Conrad, 1843 is closely related to Nanillaenus Jaanusson, 1953 

(Chatterton & Ludvigsen 1976; Amati & Westrop 2004).

Dysplanus Burmeister, 1843 and Zetillaenus Snajdr, 1957 may be synonymous 

(but see Bruthansova 2003, p. 177). They appear as sister-groups here, but differ in the 

several aspects. Dysplanus has: scattered pits between terrace ridges on exoskeleton 

rather than fine pitting; a lateral border furrow on librigena; great anterior expansion 

rather than slight; an anterior pit; radiating ribs on the pygidium and an extensive pygidial 

doublure rather than a narrow one. Dysplanus is not a styginid (cf. Hammann 1992, p. 

52).

Family STYGINIDAE (sensu Skjeseth, 1955) = styginid

EMENDED DIAGNOSIS. Fine pitting over cranidium surface (ch. 1*). S1 bifurcate with 

strong, small median node (ch. 12*). L2-L3 inflated (ch. 14*). Longitudinal glabellar 

furrow present (ch.15*). Lateral border furrow absent (ch. 20*). Vincular fold present (ch. 

22*). Eye lobe near posterior border (ch. 23*). Eye ridges present (ch. 28). Occipital 

tubercle absent (ch. 40*). Posterior points of rostal plate dorsally bent (ch. 43*). Short 

posterior lobe of hypostome (ch. 44*). Large anterior wings of hypostome (ch. 45*). 10 

thoracic segments (ch. 48*). Pygidial axis divided into 3 portions (ch. 87*). Pleural furrow 

of transitory pygidium absent (ch. 90*). Node present on palpebral lobes (ch. 92*). Long 

occipital spine that shortens throughout ontogeny (ch. 94*). Axial spines present on all 

meraspid pygidial segments (ch. 98*). Distinctive tuberculation pattern at early meraspid 

stage (ch. 99*).

TAXA INCLUDED. Subfamilies Kosovopeltinae Pollitt, 2006 and Thysanopeltinae Hawle 

& Corda, 1847 plus Bojoscutellum Snajdr 1958, Cornuscutellum Snajdr 1960, 

Decoroscutellum Snajdr 1960, Platyscutellum Snajdr 1958, Poroscutellum Snajdr 1958, 

Scutellum Pusch 1833 and Spiniscutellum Snajdr 1960.

STRATIGRAPHICAL RANGE. Lower Silurian to Middle Devonian.

REMARKS. Snajdr (1960, p. 241) supposes that Bojoscutellum and Cornuscutellum are 

‘probably the last evolutional [sic] links of the line beginning with the genus 

Decoroscutellum Snajdr\ This work suggest the opposite -  that the last taxon arose from 

the stock containing first two, rather than them arising from Decoroscutellum.
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Bojoscutellum, Cornuscutellum, Decoroscutellum, Platyscutellum, Poroscutellum, 

Scutellum and Spiniscutellum are thought to be closely-related (Snajdr 1960, p. 241). 

Here they present as stem-group styginids.

The close relationship of thysanopeltids to the styginids (as supported by Lane & 

Thomas (1983)) is supported here.

Subfamily KOSOVOPELTINAE Pollitt et al., 2006

EMENDED DIAGNOSIS. L2-L3 not inflated (ch. 14*). Subparallel anterior sutures (ch. 

36). Median pygidial rib not bifid (ch. 82*).

TAXA INCLUDED. Ancyropyge Clarke, 1892; Avascutellum Snajdr, 1989; 

Calvcoscutellum Archinal, 1994; Dentaloscutellum Chatterton, 1971; Exastipyx 

Holloway, 1996; Kosovopeltis Snajdr, 1958; Opoa Lane, 1972; Weberopeltis Maksimova 

in Moore, 1959; Xyoeax Holloway, 1996.

STRATIGRAPHICAL RANGE. Lower Silurian to Middle Devonian.

REMARKS. Ancyropyge, Xyoeax and Weberopeltis are considered closely-related (in 

agreement with Holloway 1996, p. 433). Species of Exastipyx have commonly been 

assigned to Weberopeltis in the past (e.g. Feist 1974) and a close phylogenetic 

relationship is seen here (but Holloway considers the pygidial similarity to be 

convergently attained due to minor differences in cranidial morphology (1996, p. 437)).

The styginid connections of Opoa are confirmed (in agreement with Lane 1972). 

The subfamilial name Stygininae Vogdes, 1890 would not be appropriate here as the 

grouping does not contain Stygina Salter, 1853.

Subfamily THYSANOPELTINAE Hawle & Corda, 1847

EMENDED DIAGNOSIS. Median node is quite large and bears external sculpture (ch. 

13); occipital tubercle present as stout spine (ch. 39*).

TAXA INCLUDED. Cavetia Feist, 1974; Izarnia Feist, 1974; Meridioscutellum Feist, 

1970; Metascutellum Snajdr, 1960; Scabriscutellum Richter & Richter, 1956; 

Thysanopeltis Hawle & Corda, 1847.

STRATIGRAPHICAL RANGE. Lower Silurian to Middle Devonian.

REMARKS. A close relationship between Scabriscutellum R. & E. Richter and 

Thysanopeltis Hawle & Corda, 1947 is seen here, as suggested by Snajdr (1960). But,
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Kolihapeltis Prantl & Pribyl is not closely-related to this group and is, indeed, not even 

included within the scutelluid clade (cf. Snajdr 1960).
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6. Suggestions for further work

IN order to improve our knowledge of, and perhaps ultimately hold a definitive 

understanding of, trilobite phylogeny it is recommended that workers adopt certain 

additions or modifications when conducting similar studies in the future:

(1) Not all scorings by previous workers could be personally verified. A future analysis 

would try to check some of the more subtle character states from actual specimens 

rather than relying on the literature.

(2) Some states were constructed that measured the length/extent of structures. These 

structures were measured relative to another, but often required the conversion of 

continuous data into discrete states. These data could be further explored using 

morphometric techniques to see if there were ‘natural’ division in the expression of the 

state (e.g. Rae 19981).

(3) A superior study of disparity would measure the stratigraphic ranges of taxa rather 

than treat the taxa as points in time (as was done here). The adoption of the quicker 

latter approach was necessary here: but it prevented much being said about the 

origin/extinction of a group and how much any group in particular contributed to the 

changes in disparity level.

(4) Sampling issues aside, there appeared to be a consistent expression of disparity 

within the illaenoids over time. This may be a true phenomenon, but there may be other 

influencing factors: perhaps the taxa coded did not show a representative pattern, and a 

pattern is seen more clearly in higher levels within some taxa. If so, an expanded study 

may show variations in disparity through time.

(5) Whittington rejected the close relationship between the illaenids and styginids and 

suggested that Nileus and allied genera (Nileidae) should be grouped together with the 

Illaenidae (20002; cf. Fortey & Chatterton 19883 who placed the nileids in the Asaphidae). 

He based this proposal mainly on the absence of an articulating furrow in the thoracic 

rings of Nileus and the Illaenidae, and other characters that are associated mainly with 

effacement. Although it is thought here to be unlikely that Nileidae and Illaenidae are 

closely-related, it would be interesting to code some nileids into the dataset of Chapter 5 

and explore this idea.

1 Rae, T. C. 1998. The logical basis for the use of continuous characters in phylogenetic systematics. Cladistics 14: 
221-228 .
2 W hittington, H. B. 2000. Stygina, Eobronteus (Ordovician Styginidae, Trilobita): morphology, classification, and 
affinities of Illaenidae. Journal of Paleontology 74: 879-889.
3 Fortey, R. A. & Chatterton, B. D. E. 1988. Classification of the trilobite suborder Asaphida. Palaeontology 31 :165 - 
222.
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7. Conclusions

ALTHOUGH trilobites have been mentioned in the scientific literature for some 200 

years their evolutionary relationships are still contentious. Studies resolving this issue 

are necessary in order to assemble a stable trilobite classification and also to 

facilitate future macroevolutionary studies on the group.

This work investigated the phylogenies of four large trilobite groups: 

Lichoidea, Calymenina, Odontopleurinae and lllaenoidea. These four taxa have 

distinctive gross morphologies and present different challenges. Fine resolution was 

attained in all resulting phylogenies, the systematic palaeontology of each group was 

reassessed accordingly and phylogenetically valuable character states were noted.

A Bayesian phylogenetic method was employed on the lichoids. The trees 

obtained were similar to those inferred using parsimony, with the exception of 

relationships between the deeper branches and the groupings adhered well to those 

suggested in previous works.

Chapters 4 and 5 investigated the phylogeny of two large groups 

(odontopleurids and illaenoids respectively) and used the same character data to 

explore the disparity (morphological variety) of both groups. The disparity of 

odontopleurids decreased significantly through time, but that of illaenoids did not. 

The relative disparity of major clades within each group was also investigated. The 

Odontopleurinae has statistically significantly higher disparity compared to the 

Acidaspidinae (but equal to all others; see Chapter 4) and the particularly spiny 

Kosovopeltinae has significantly higher disparity to all other illaenoid clades (Chapter 

5).

New subfamilies were erected in Chapter 4 (Subfamily Miraspinae Pollitt et 

a i,  2006) and 5 (Subfamilies Bumastellinae Pollitt et al., 2006 and Kosovopeltinae 

Pollitt et al., 2006) to encompass new groupings of taxa.

It is hoped that this work provides a platform for future trilobite workers: as 

this work utilised the invaluable literature of previous workers. This work will provide 

types of pitfalls that it is necessary to avoid and examples of robust characters to be 

taken into account for study of other trilobite groups.
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Appendix 1: Phylogenetic dataset fo r C hapter 3.

Taxa 1 2 3 4 5 6 7 8 9
,

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 i

Apocalymene coppinsensis ? 0 0 1 1 2 0 1 ; 2 0 0 1 1 1 0 0 0 0 0 0 0 0 0 2 0 2
1
1 o ' 0 0 0 1 I 0 o 0 0 7 0 0 1 0 0 1 0 1

1
0 0 0 1 0

1 0
1 7 ? 1

Arcticalymene viciousi ? ? 0 1 1 ? 0 1 1 0 0 0 1 1 1 0 0 2 1 1 0 1 0 0 0 2 0 1 1 0 0 1 0 1 1 1 0 0 ? 0 0 0 0 0 1 0 0 0 0 1 1 1 7 2 1
Arduennella maxillieuxi ? ? 1 2 2 2 1 0 2 0 4 0 7 1 0 ? ? 1 7 0 0 2 1 3 0 2 1 0 0 1 1 0 0 7 2 ? 2 0 2 7 1 4 7 7 1 1 1 0 1 0 0 7 7 7 ; ? 7 1
Bathycheilus castilianus 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1 1 1 1 2 1 1 1 1 0 0 0 0 2 7 2 1 7 0 1 1 2 7 1 0 1 1

i
0 0 0 1 0 1 1 7 0

Brongniartella bisulcalus ? ? ? 1 (12) 0 1 0 2 1 3 ? ? ?
u
2 7 7 7 7 0 0 2 0 0 0 0 2 7 0 0 1 0 0 0 2 7 2 0 2 7 0 0 2 7 7 ? 0 0 0 0 0 1 0 1 0 0 0

Burmeisterella armata 0 1 1 4 1 2 1 0 2 1 1 0 0 1 0 0 1 1 7 0 0 1 1 2 0 2 1 0 0 1 1 0 0 0 2 ? 2 0 2 7 0 4 0 7 1 1 1 0 0 0 0 7 0 0 0 0 0
Calymene blumenbachii 0 0 0 0 1 1 2 0 1 1 0 0 0 1 1 1 0 0 2 1 0 0 1 0 0 0 1 0 2 1 0 0 1 0 1 0 1 0 0 ? 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1

Calymenella boissali 
Calymenesun lingi 1 0 0 1 2 0 0 0 1 1 2 0 0 1 1 0 1 0 0 0 0

1
1 1 0 1 3 2 0 1 0 0 1 1 0 2 7 2 ; 0

u
1 2 2 7 1 7 1 0 0 0 0 1 0 1 0 " H T

u aiymema wniwngioni ? 7 7 ? 0 1 1 0 0 0 2 0 0 0 0 0 1 0 0 0 0 1 1 0 0 3 2 0 2 0 0 0 0 0 0 0 2 1 7 0 0 1 1 7 0 7 1 7 7 7 0 7 7 7 1 2 2
Colpocoryphe rouaulti 0 0 0 1 1 1 1 0 0 0 2 0 0 0 0 0 1 0 0 0 0 1 1 0 1 3 2 0 1 0 1 0 1 0 1 0 2 0 2 7 0 0 0 7 1 7 1 2 0 0 0 0 o 1 0 1 1

Dekalymene crassa ? ? ? 1 1 1 2 0 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 7 1 0 0 1 0 7 7 1 0 1 7 0 7 7 1 0 1 0 7 7 ? 7 7 ? 7 7 7 7

Diacalymene drummuckensis 0 0 0 1 1 1 2 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 7 0 0 1 1 0 0 1 0 0 0 1 1 1 0 1 1

Digonus gigas 0 1 2 1 1 2 1 0 2 1 3 ? ? ? ? ? ? 7 7 0 0 7 0 0 0 2 2 7 0 1 1 0 0 0 1 0 2 0 2 7 0 4 2 7 2 1 0 0 7 0 0 1 0 0 0 0 1

Dipleura laevicauda 0 0 0 1 2 1 1 0 2 0 3 ? ? 7 2 7 7 7 0 0 7 0 0 0 1 7 ? 2 1 1 0 0 0 2 7 2 0 2 ? 0 0 7 7 1 1 0 0 7 0 0 7 7 7 0 0 1

Eohomalonolus sdzuyi ? ? 0 1 1 1 1 0 3 1 4 0 ? 2 0 ? 7 1 7 0 0 7 0 0 0 1 7 7 1 0 1 0 0 2 7 2 0 2 7 0 1 7 7 1 2 1 ? 7 7 7 7 7 7 7 7 1

Eulomina milrata ? ? ? 1 0 1 0 0 1 ,45} 1 ? 1 0 2 7 0 0 0 0 7 1 0 1 1 7 7 1 0 0 0 0 0 2 7 2 1 7 o 7 o 7 7 1 0 1 7 7 7 7 7 7 7 7 7 2
Flexicalymene caraclaci 0 0 0 0 1 1 2 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 1 0 0 0 1 1 2 1 0 0 1 0 7 0 0 0 0 7 0 0 1 0 0 1 0 0 o 0 0 1 0 1 0 0 1
Flexicalymene senaria ? ? 1 0 1 1 2 1 o 1 2 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 o 2 0 0 0 1 0 1 0 0 0 0 7 0 0 1 0 0 1 0 1 0 0 0 1 o 1 0 0 1

Gravicalymene capitovala ? ? 1 0 1 1 2 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 2 0 0 0 0 0 1 1 1 0 1 7 0 0 2 0 0 0 0 1 0 0 0 1 0 1 7 7 1

Holoubkocheilus granulatus ? ? ? 0 ? 1 1 0 0 1 2 1 1 2 0 0 1 0 0 0 0 1 0 0 1 2 1 1 7 0 0 0 0 0 7 7 2 1 7 0 0 0 7 7 1 7 7 1 7 7 7 7 ? ? 7 7 0
Homalonotus knightii 7 7 ? 1 2 1 1 0 2 0 3 7 ? ? ? ? 7 7 7 0 0 7 0 0 0 2 ? 7 2 1 1 0 0 0 2 7 2 0 2 7 0 4 2 7 1 1 0 0 7 0 0 0 0 0 0 0 1

Huemacaspis sp. 7 ? ? 3 1 1 1 0 0 2 2 0 ? 2 0 0 1 1 7 0 0 1 0 0 0 (01) 1 0 2 7 7 0 0 0 0 0 2 0 2 ? 0 7 7 7 1 7 1 0 7 0 0 7 7 7 7 7 1

Iberocoryphe vemeuili ? ? ? 1 2 1 1 0 3 1 4 0 ? 2 0 ? 7 1 7 0 0 7 0 0 0 1 7 7 1 0 1 0 0 1 2 7 2 1 7 0 0 0 0 7 1 7 1 7 ? 7 7 ? ? 7 7 7 1
Kerfomella brevicaudalus ? ? 0 3 1 1 1 0 3 0 3 7 ? ? ? ? 7 7 7 0 0 7 0 0 0 0 7 7 0 1 1 0 0 1 2 7 2 0 2 2 0 0 0 7 7 0 2 1 0 0 7 7 ? 7 7 1
L/nguocalymene linguata ? ? 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 2 1 2 1 7 0 1 0 1 0 0 0 2 7 0 3 2 0 0 1 0 1 0 0 0 7 ? ? 7 7 1
Liocalymene clintonii 1 1 1 3 1 1 1 0 1 1 1 0 1 2 1 0 1 0 7 0 0 1 1 0 0 0 2 0 2 1 0 0 0 0 7 7 0 0 0 7 0 0 0 0 0 1 0 7 7 7 7 7 7 7 0 0 1

Liocalymene cresapensis 1 1 1 3 1 1 1 0 1 1 1 0 1 1 1 0 1 0 7 0 0 1 1 0 0 1 2 0 2 1 0 0 0 0 7 7 0 0 0 7 0 0 0 0 0 1 0 7 7 7 7 7 7 ? 0 0 1

Metacalymene baylei 1 1 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 2 1 0 0 0 1 0 1 1 0 0 0 7 0 0 0 0 2 0 0 1 0 0 0 1 1 1 0 1 1 '
Neseuretinus turclcus ? ? 0 0 2 1 1 0 0 2 1 0 0 1 1 0 1 0 0 0 0 1 0 1 2 2 0 0 0 0 0 1 0 0 0 2 1 7 1 1 1 0 7 1 0 1 0 7 0 0 7 ? 7 7 7 I 1
Neseuretus Iristani 0 0 0 1 1 1 1 0 0 1 0 0 0 2 0 0 1 0 0 0 0 1 1 2 2 1 1 0 0 0 1 0 0 0 2 1 7 1 0 1 0 7 1 0 1 0 1 0 0 0 0 0 0 1 1

Nipponocalymene hamadai 1 0 0 0 1 1 2 0 1 1 1 0 1 1 1 1 1 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 0 0 0 7 0 0 7 0 0 1 0 1 0 0 0 7 2 0 0 7 1
F Onnicalymene jemllandica 7 ? 0 0 1 1 2 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0&1 0 0 2 1 2 1 0 0 1 0 1 0 0 0 o 7 0 0 0 0 0 1 0 0 0 0 0 1 0 1 7 0 1
Papillicalymene papillata ? ? 0 0 1 1 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 7 0 0 0 2 0 1 0 1 7 0 0 7 7 7 0 1 1
Parabathycheilus vagans ? ? 0 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 7 0 0 1 1 0 7 1 2 1 1 1 0 0 0 0 2 7 2 1 7 0 1 0 7 7 7 7 0 7 7 7 7 7 7 7 7 7 0
Parahomalonotus forbesi ? ? ? 3 ? 1 1 0 2 0 3 ? ? ? ? ? 7 7 7 0 0 ? 0 0 0 7 7 7 7 1 1 0 0 0 2 7 2 0 2 7 0 0 2 7 1 1 0 7 7 7 ? 7 7 7 7 7 7

Pharostomina oepiki ? ? 0 0 0 1 1 1 0 1 2 1 0 1 0 0 1 1 7 0 0 1 1 1 0 2 1 1 0 0 0 0 0 0 o 0 2 1 7 0 0 0 0 7 1 0 0 0 1 1 0 1 0 1 0 ? o
Plaesiacomia rara ? ? ? 7 1 1 1 0 3 1 3 ? ? ? 7 ? 7 7 7 0 0 2 0 0 0 0 7 7 7 1 1 0 0 1 2 7 2 0 2 7 7 0 0 7 1 7 0 7 7 7 7 7 7 7 7 ? 1
Platycalymene duplicala 1 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 2 1 0 0 0 0 0 0 0 1 0 0 0 7 0 0 0 0 2 0 0 1 o 0 0 0 0 0 0 0 1

Platycoryphe dyaulax ? ? 7 1 2 1 1 0 0 0 5 0 7 0 0 0 1 1 ? 0 0 7 0 0 0 1 1 0 2 1 7 0 0 0 2 7 2 0 2 ? 0 0 2 7 7 7 1 0 o 0 0 7 7 7 0 7 2
Pradoella pradoi 7 ? ? 0 1 1 1 0 0 1 0 1 0 2 0 0 1 0 o 0 0 1 1 0 0 2 2 0 1 0 0 0 0 0 2 7 2 1 ? 0 0 1 0 7 1 0 1 0 1 0 0 7 7 7 7 ? 0
Prionocheilus pulchrum ? ? ? 0 2 0 1 0 0 1 2 1 1 2 0 0 0 0 0 0 0 1 1 0 1 2 1 0 0 0 0 0 0 0 0 1 2 1 7 0 0 0 1 7 1 0 1 1 1 1 1 1 0 1 1 0 0
Protocalymene mcallisteri ? ? 0 0 1 1 1 0 0 1 5 0 0 0 0 0 1 1 7 0 0 7 1 1 0 {01} 2 1 2 1 0 0 0 0 7 7 2 1 7 0 0 0 1 7 1 0 0 1 0 0 0 7 ? 7 7 7 1
F. Reacalymene limba 0 0 0 1 1 1 1 0 1 1 1 0 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 2 1 0 0 1 0 1 0 0 0 1 2 0 0 1 0 0 1 0 1 7 0 0 7 ? 7 0 1 1

Reedocalymene expanse 1 0 0 0 2 0 0 1 0 1 2 0 0 0 0 0 1 1 7 0 0 1 1 1 0 3 1 0 2 0 0 1 1 0 0 0 2 1 7 o 1 2 2 9 1 7 1 0 0 0 0 7 ? 7 0 0 1
Salterocoryphe salteri 7 ? ? 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 3 7 7 0 1 1 0 1 0 1 0 2 0 2 7 0 1 1 7 0 0 1 0 0 0 0 1 0 1 0 1 1

Sarrabesia leichmuelleri 7 ? 0 3 2 1 1 0 0 2 1 0 0 1 0 0 1 1 7 0 0 1 1 0 0 3 3 0 0 1 0 0 1 0 0 0 2 1 7 1 0 1 1 ? 1 0 1 2 1 0 0 ? ? 7 0 0 1

Spathacalymene nasuta 0 0 0 1 1 1 2 0 1 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 1 7 0 3 2 1 0 1 0 7 7 0 0 7 7 7 0 0 1
Sthenarocalymene lirella ? ? ? 0 1 1 1 0 1 0 0 0 1 1 0 0 0 o 0 0 0 1 1 0 0 1 0 2 0 0 0 0 0 0 0 1 0 1 2 0 0 0 0 0 1 0 ? 7 7 7 7 0 7 0 1 1
Tapinocalymene nodulosa 0 0 0 2 1 1 1 0 1 1 0 0 1 1 1 0 0 2 1 0 0 1 0 0 0 1 1 2 1 0 0 1 0 1 1 1 0 0 7 0 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 1
Thelecalymene mammillata ? 7 0 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 7 0 0 2 0 2 1 0 1 0 0 0 1 0 1 7 7 1
Thulincola barbarus 9 ? ? 0 ? 1 1 0 0 1 1 1 1 1 0 1 0 0 0 0 1 1 7 1 0 2 0 2 0 0 0 0 0 7 ? 2 1 ? 0 0 0 1 ? 0 0 1 1 7 1 1 1 0 7 1 0 0
Trimerus delphinocephalus 0 0 1 1 2 2 1 0 2 0 1 0 0 2 0 0 1 0 0 0 0 1 0 0 1 2 1 0 0 1 1 0 0 0 2 7 2 0 2 7 0 4 2 7 1 1 1 0 7 0 0 1 ? 0 0 0 1
Vietnamia douvillei 7 ? ? 3 ? 1 1 0 0 2 1 0 0 1 0 0 1 0 2 0 0 1 1 0 0 3 3 0 0 0 0 0 1 0 0 0 2 1 ? 1 7 0 2 7 1 0 1 7 7 7 7 7 7 7 7 7 1
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Appendix II: Phylogenetic dataset for Chapter 4.
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Appendix IV: Intertaxon Euclidean distance analysis values for Chapter 4. Values are in units of character state differences.

Acidaspis Anacaenaspis Chlustinia Dalaspis Dudleyaspis Snoderaspis Exallaspis Gaotania Globulaspis Primaspis Stelckaspis Taemasaspis Uriarra Whittingtonia Gondwanaspis Apianurus Boedaspis Calipernurus Ceratocara Ceratocephala Isoprusia Koneprusia

Acidaspis 0.00
Anacaenaspis 4.12 0.00

Chlustinia 4.80 4.36 0.00
Dalaspis 4.12 4.47 3.61 0.00

Dudleyaspis 4.24 4.12 3.46 3.87 0.00
Snoderaspis 4.47 4.24 4.12 4.47 3.46 0.00
Exallaspis 4.24 4.00 4.36 4.36 4.47 4.47 0.00
Gaotania 5.48 5.39 5.00 5.00 5.29 5.74 5.83 0.00

Globulaspis 4.80 5.10 4.24 4.47 4.58 5.10 4.69 3.74 0.00
Primaspis 5.00 4.80 4.12 4.47 4.36 4.47 4.47 4.47 0.00

Stelckaspis 4.36 3.74 4.47 4.00 4.47 4.24 3.16 4.90 4.36 0.00
Taemasaspis 5.00 4.36 3.74 4.12 2.83 3.00 3.87 5.00 4.00 4.12 0.00

Uriarra 5.39 5.29 5.20 5.20 5.20 5.83 5.83 4.00 5.74 5.57 5.74 0.00
Whittingtonia 4.80 4.69 4.24 4.36 4.36 4.47 4.80 5.20 4.58 4.47 4.58 5.29 0.00

Gondwanaspis 4.80 5.29 4.24 4.24 4.12 4.47 5.29 3.74 4.58 4.80 4.58 4.80 4.47 0.00
Apianurvs 5.57 5.39 5.00 4.90 5.00 5.00 4.58 4.90 4.36 4.80 4.47 5.74 5.20 5.10 0.00
Boedaspis 5.20 4.90 5.10 5.29 5.29 5.29 4.00 4.90 5.00 4.24 5.00 5.66 5.20 5.20 3.74 0.00

Calipernurus 5.57 5.39 4.47 4.69 4.90 5.10 4.47 5.74 4.69 4.24 4.80 4.36 5.66 5.10 4.69 3.00 3.87 0.00
Ceratocara 5.48 5.39 5.00 5.29 5.00 5.29 5.39 4.69 4.80 5.57 5.20 5.39 5.00 4.58 4.47 5.29 4.58 0.00

Ceratocephala 5.48 5.10 5.39 5.66 5.39 5.29 5.20 5.83 4.90 5.10 5.39 5.83 5.20 5.74 5.10 4.80 5.10 4.47 0.00
Isoprvsia 5.00 4.58 4.24 4.58 4.90 4.69 4.24 4.80 4.90 4.24 4.69 5.29 4.47 4.80 4.58 4.24 4.80 5.00 4.90 0.00

Koneprusia 5.83 5.29 5.10 5.48 5.57 5.92 5.92 4.47 5.74 5.74 5.92 3.16 5.29 5.00 5.83 5.66 5.92 5.00 5.57 5.48 0.00
Laethoprusia 5.20 5.10 4.80 5.00 5.20 5.39 5.20 4.12 4.47 5.20 5.00 5.39 4.58 4.69 4.24 5.10 5.29 5.00 4.12 5.39 4.90 3.87

Acanthalomina 5.29 5.20 4.36 5.10 4.58 5.10 5.39 4.36 4.47 5.29 5.39 5.10 4.36 4.69 4.47 5.57 5.66 5.29 4.90 5.20 5.20 4.24
Borkopleura 5.57 5.48 4.69 5.20 5.00 5.66 5.57 4.12 4.12 5.10 5.74 5.48 3.74 5.00 4.69 5.57 5.66 5.20 4.90 5.48 4.90 4.47

Edgecombeaspis 5.20 4.80 4.12 4.47 4.58 4.80 4.80 5.74 5.10 4.58 4.36 4.47 5.66 5.10 4.80 5.10 5.20 4.69 4.90 ^ 2 9 4.69 5.48
Ivanopleura 4.47 4.58 4.36 4.58 4.47 5.20 4.69 4.24 4,80 4.90 5.20 5.00 4.58 4.47 5.10 4.90 5.00 5.20 6.00 4.90 5.39
Kettneraspis 4.69 4.69 4.24 4,69 4.69 4.80 4.24 4.80 5.20 4.47 4.90 5.57 4.69 4.90 5.20 5.00 5.20 5.48 5.57 4.58 5.39

Leon asp is 5.10 4.69 4.58 4.90 5.00 5.10 3.87 5.00 4.36 3.87 4.90 6.00 5.10 5.10 4.69 4.90 4.47 4.90 4.90 4.47 6.00
Miraspis 5.20 5.29 5.10 4.90 4.80 5.20 5.29 5.74 5.00 4.80 5.20 5.20 5.74 5.10 5.29 4.12 4.47 4.58 4.58 5.20 5.20 5.66

Odontopleura 4.90 4.90 4.90 5.20 4.90 5.00 4.90 5.39 5.10 5.20 5.20 5.83 4.69 5.10 5.10 4.90 5.10 4.69 5.48 5.20 5.57
Radiaspis 5.10 4.36 3.16 4.00 3.87 4.47 4.58 4.24 4.12 4.58 4.24 5.10 4.12 4.47 4.69 4.69 4.36 4.80 5.39 4.58 5.00

Ceratocephalina 5.29 5.29 4.24 4 69 4.80 5.10 5.39 4.47 4.80 5.20 5.10 4.90 4.36 4.47 4.58 4.90 4.58 4.36 5.20 4.80 4.69
Ceratonums 5.29 4.90 4.12 4.80 4.24 4.69 5.10 4.58 4.80 5.00 4.58 5.20 4.24 4.58 5.10 5.00 4.90 4.24 4.80 4.80 5.10
Dicranurus 5.48 5.20 4.80 5.10 5.10 5.00 5.39 4.47 4.90 5.29 4.90 5.20 4.58 4.36 4.90 5.00 5.00 5.57 4.90 5.20 4.58 4.12

Proceratocephala 5.10 5.29 4.80 5.29 5.00 5.39 5.48 4.80 5.39 5.00 5.39 4.90 4.80 4.58 5.00 4.80 4.90 4.47 5.39 5.29 5.00
Selenopeltis 5.29 4.90 4.47 4.90 4.80 5.00 4.47 5.00 4.58 4.24 4.69 5.92 5.00 5.10 4.90 4.36 4.80 5.48 5.57 4.58 5.83

Selenopeltoides 5.57 5.20 4.90 5.10 5.10 5.10 5.57 4.24 4.58 5.29 5.29 5.20 4.58 4.69 4.80 5.39 5.39 5.57 4.80 5.57 5.20 4.00
Sinespinaspis 5.10 5.00 4.36 4.90 4.47 4.69 4.80 5.29 4.69 4.58 4.24 5.83 4.69 4.90 5.39 5.39 5.10 5.48 5.74 5.00 5.83
Rinconaspis 5.39 5.00 4.24 4.80 4.80 5.10 5.29 4.90 5.39 5.29 5.00 4.90 4.80 4.69 5.57 5.29 5.39 4.80 5.48 4.58 4.47
Hispaniaspis 5.10 4.90 3.87 4.36 4.47 5.29 4.90 4.47 4.00 4.80 4.58 5.00 4.58 4.47 4.12 4.80 4.80 4.69 4.69 5.74 4.69 4.58
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Appendix IV: Intertaxon Euclidean distance analysis values (or Chapter 4. Values are in units of character state differences.

Laethoprusia Acanthalomina Borkopleura Diacanthaspis Edgecombeaspis Ivanopleura Kettneraspis Leonaspis Miraspis Odontopteura Radiaspis Ceratocephalina Ceralonurus Dicranurus Proceratocephala Selenopeltis Selenopeltoides Sinespinaspis Rinconaspis Hispaniaspis

0.00
3.74 0.00
4.90 4.47 0.00
5.20 5.10 5.39 0.00
5.00 4.90 5.10 4.24 0.00
4.80 4.80 4.47 5.10 4.90 0.00
4.80 4.47 4.80 4.47 4.24 4.12 0.00
4.90 4.90 5.29 3.87 3.74 5.00 4.00 0.00
5.29 5.10 5.48 4.90 5.00 4.58 4.90 5.00 0.00
4.80 5.00 4.90 4.24 4.80 4.12 4.00 4.58 4.36 0.00
4.80 4.47 4.36 4.69 4.58 3.74 4.36 4.69 4.58 4.24 0.00
4.24 4.00 4.90 5.20 4.47 4.47 4.69 5.00 4.24 4.58 4.36 0.00
4.80 4.12 4.24 4.90 4.58 4.24 4.69 5.00 4 36 4.69 3.61 4.24 0.00
3.61 3.61 5.00 5.39 5.48 4.90 4.69 5.39 4.58 5.00 4.47 4.24 4.12 0.00
4.47 4.12 5.10 5.20 4.69 4.47 4.69 5.00 4.00 4.12 4.47 3.61 3.87 4.24 0.00
5.10 5.20 5.74 4.80 4.69 4.80 4.36 4.24 4.69 5.00 4.36 4.90 4.58 4.69 4.69 0.00
3.74 3.74 4.90 5.20 5.29 5.00 5.00 5.66 4.58 4.90 4.58 4.47 3.87 2.65 4.36 4.90 0.00
5.10 5.10 5.20 4.90 4.12 4.58 4.00 4.36 5.66 4.58 4.58 5.00 5.10 5.29 5.20 4.47 5.48 0.00
4.24 4.47 5.00 5.57 4.80 5.00 4.90 5.29 5.48 4.90 4.47 4.58 4.80 4.69 4.90 5.20 4.80 4.69 0.00
4.24 4.00 4.80 5.29 4.58 3.87 4.80 4.80 4.69 4.69 3.74 3.32 4.24 4.24 3.61 4.24 4.24 4.80 4.47 0.00
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Appendix V: Odontopleurid taxa assigned to time slices.

Epoch Genus

Lower Ordovician

Boedaspis
Calipernurus
Ceratocara
Ceratocephalina
Chlustinia
Selenopeltis

Upper Ordovician

Apianurus
Dalaspis
Diacanthaspis
Hispaniaspis
Primaspis
Proceratocephaia
Whittingtonia

Lower Silurian

Anacaenaspis
Ceratocephala
Gaotania
Globulaspis
Ivanopleura
Sinespinaspis
Stelckaspis

Middle Silurian

Acidaspis
Borkopleura
Dudleyaspis
Edgecombeaspis
Exallaspis
Laethoprusia
Odontopleura
Selenopeltoides
Uriarra

Upper Silurian

Acanthalomina
Leonaspis
Miraspis
Snoderaspis

Devonian

Ceratonurus
Dicranurus
Gondwanaspis
Isoprusia
Kettneraspis
Koneprusia
Radiaspis
Rinconaspis
Taemasaspis



Appendix VI: Raw sum of ranges data for all time slices for Chapter 4.

Epoch Mean Upper interval Lower interval
L/M Ordovician 0 0 0
L/M Ordovician 2.479362 3.18343 1.712
L/M Ordovician 3.710796 4.21843 3.008
L/M Ordovician 4.512114 4.969 3.982
L/M Ordovician 5.130568 5.344 4.809
L/M Ordovician 5.59 5.59 5.59

Upper Ordovician 0 0 0
Upper Ordovician 2.538849 3.077 1.657
Upper Ordovician 3.833435 4.463 3.071
Upper Ordovician 4.703978 5.32104 3.891
Upper Ordovician 5.409096 5.952 4.842
Upper Ordovician 5.970167 6.308 5.581
Upper Ordovician 6.456 6.456 6.456

Lower Silurian 0 0 0
Lower Silurian 2.308954 3.108 1.62021
Lower Silurian 3.498229 4.17466 2.78821
Lower Silurian 4.293488 4.92866 3.79166
Lower Silurian 4.929194 5.45066 4.73866
Lower Silurian 5.49266 5.49266 5.49266
Middle Silurian 0 0 0
Middle Silurian 1.947644 2.85699 1.07654
Middle Silurian 2.934472 3.78699 2.001
Middle Silurian 3.581853 4.353 2.6719
Middle Silurian 4.070552 4.809 3.245
Middle Silurian 4.497286 5.116 3.843
Middle Silurian 4.815246 5.264 4.24
Middle Silurian 5.107871 5.365 4.788
Middle Silurian 5.365 5.365 5.365
Upper Silurian 0 0 0
Upper Silurian 2.241846 2.756 1.70454
Upper Silurian 3.371575 4.016743 3.096743
Upper Silurian 4.158743 4.158743 4.158743

Devonian 0 0 0
Devonian 2.086097 2.69742 1.482
Devonian 3.102601 3.704 2.543
Devonian 3.821014 4.413 3.264
Devonian 4.344387 4.875 3.785
Devonian 4.780328 5.236 4.149
Devonian 5.125106 5.562 4.59
Devonian 5.434802 5.678 5.04
Devonian 5.71 5.71 5.71
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Appendix VII: Raw sum of ranges data for all clades for Chapter 4.

Clade Mean Upper interval Lower interval
Acidaspidinae 0 0 0
Acidaspidinae 1.961082 2.691 0.841
Acidaspidinae 3.005455 3.789 2.084
Acidaspidinae 3.64364 4.445 2.745
Acidaspidinae 4.112867 4.86396 3.297
Acidaspidinae 4.496864 5.129 3.748
Acidaspidinae 4.785878 5.352 4.128
Acidaspidinae 5.047852 5.548 4.472
Acidaspidinae 5.27442 5.687 4.753
Acidaspidinae 5.449611 5.787 5.03
Acidaspidinae 5.62464 5.863 5.287
Acidaspidinae 5.769347 5.896 5.47
Acidaspidinae 5.896 5.896 5.896
Apianurinae 0 0 0
Apianurinae 2.167143 2.437 1.982
Apianurinae 3.24 3.24 3.24

Ceratocephalinae 0 0 0
Ceratocephalinae 2.027112 2.65366 1.31036
Ceratocephalinae 3.056609 3.42866 2.34336
Ceratocephalinae 3.670196 3.80648 3.27848
Ceratocephalinae 4.08348 4.08348 4.08348
Odontopleurinae 0 0 0
Odontopleurinae 2.260056 2.91258 1.47446
Odontopleurinae 3.362607 4.05801 2.663
Odontopleurinae 4.113462 4.88655 3.33254
Odontopleurinae 4.67848 5.396 3.983
Odontopleurinae 5.146421 5.817 4.5
Odontopleurinae 5.495958 6.11455 4.866
Odontopleurinae 5.82501 6.387 5.185
Odontopleurinae 6.138615 6.597 5.496
Odontopleurinae 6.367396 6.767 5.754
Odontopleurinae 6.615367 6.896 6.015
Odontopleurinae 6.813732 7.013 6.236
Odontopleurinae 7.013 7.013 7.013
Selenopeltinae 0 0 0
Selenopeltinae 1.958728 2.241257 1.034
Selenopeltinae 2.913608 3.265907 2.551
Selenopeltinae 3.59 3.59 3.59







I

ssss

24
2



Appendix IX: lllaenoidea taxa assigned to time slices.

Epoch Genus
Dysplanus

Lower Ordovician Ottenbyaspis
Panderia
Dulanaspis
Ectillaenus
Harpillaenus
lllaenus
Nanillaenus

Middle Ordovician Perischoclonus
Platillaenus
Theamataspis
Turgicephalus
Waisfie ldaspis
Zbirovia
Alceste
Bronleopsis
Bum astoides
Cekovia
Eobronteus
Eokosovopeltis
Failleana

Upper Ordovician

Lam proscutellum
O ctillaenus
Parillaenus
Phillipsinella
Snajdria
Stenopareia
Stygina
Thaleops
Ulugtella
Zdicella
Zetillaenus
Bumastus (Bumastella)
Bumastus (Bumastus)
Cybantyx
Ligiscus

Lower Silurian Litotix
Meroperix
Opoa
Planiscutellum
Rhaxeros
Thomastus
Avascutellum
Decoroscutellum

Upper Silurian
Excetra
Kosovopeltis
Liolalax
Paracybantyx
Bojoscutellum
Com uscutellum
Dentaloscutellum
Izamia
Kolihapeltis
Meridioscutellum

Lower Devonian M etascutellum
Paralejurus
Platyscutellum
Poroscutellum
Spiniscutellum
Xyoeax
Weberopeltis
Exastipyx
Raym ondaspis
Ancyropyge

Middle Devonian
Calycoscutellum
Cavetia
Scabriscutellum
Scutellum
Thysanopeltis
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Appendix X: Raw sum of ranges data for all time slices for Chapter 5.

Epoch Mean Upper interval Lower interval
LOrd 0 0 0
LOrd 12.070877 16.10754 3.632206
LOrd 17.844079 17.844079 17.844079
MOrd 0 0 0
MOrd 16.20241 20.551694 12.173475
MOrd 24.230263 28.282906 20.382012
MOrd 29.33791 32.866683 25.483118
MOrd 33.114896 36.428471 29.368334
MOrd 36.171009 39.117422 32.793018
MOrd 38.542531 41.277486 35.314513
MOrd 40.747579 42.93453 37.548245
MOrd 42.55375 44.32003 40.380653
MOrd 44.080908 45.350489 41.903941
M Ord 45.502876 45.502876 45.502876
UOrd 0 0 0
U Ord 16.878856 21.279008 11.353004
UOrd 25.396611 29.83691 20.663456
UOrd 30.767432 35.214634 25.66065
UOrd 34.599269 39.243665 29.657719
UOrd 37.534848 41.604754 33.016213
UOrd 40.157175 44.167088 35.992706
UOrd 42.328748 46.06203 38.275373
UOrd 43.889468 47.320138 40.269249
U Ord 45.469191 48.58466 41.780935
U Ord 46.823068 49.710759 43.421431
UOrd 48.032295 50.677498 45.085597
UOrd 49.135532 51.556402 46.298478
UOrd 50.29708 52.279043 47.589637
U Ord 51.210424 52.858536 48.962466
U Ord 52.066533 53.273099 50.264247
UOrd 52.844267 53.600499 50.991596
UOrd 53.600499 53.600499 53.600499
LSil 0 0 0
LSil 16.876415 20.866356 12.982971
LSil 25.178195 28.469515 21.212834
LSil 30.688305 33.79851 26.927201
LSil 34.435827 37.478447 31.208556
LSil 37.440695 40.104932 34.492241
LSil 40.019984 42.170079 36.918383
LSil 41.990975 43.622906 39.812106
LSil 43.877571 44.84987 41.905431
LSil 45.450265 45.450265 45.450265
USil 0 0 0
USil 16.831298 20.076355 13.982723
USil 25.224198 27.982126 22.598008
USil 30.373663 32.134647 28.930181
USil 33.946836 34.911298 33.216564
USil 36.756279 36.756279 36.756279
L Dev 0 0 0
L Dev 15.747479 20.14829 10.946766
L Dev 23.880792 28.455944 18.709998
L Dev 29.116893 33.528226 23.214348
L Dev 32.890668 36.882557 27.226912
L Dev 36.009752 39.854753 31.217586
L Dev 38.465055 41.808384 33.662665
L Dev 40.486711 43.62003 36.781192
L Dev 42.34021 44.992112 38.77754
L Dev 43.853777 46.0445 41.012128
L Dev 45.329266 47.040851 42.930173
L Dev 46.631501 47.51696 45.31988
L Dev 47.797264 47.797264 47.797264
U Dev 0 0 0
U Dev 16.264969 20.91483 12.550446
U Dev 24.580946 28.589973 20.761665
U Dev 29.943356 32.96424 26.400065
U Dev 33.755624 36.474315 30.356659
U Dev 37.120335 39.310229 35.235037
U Dev 39.738554 41.222432 38.245697
U Dev 42.001251 42.001251 42.001251
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Appendix XI: Raw sum of ranges data for all clades for Chapter 5.

C lade Mean Upper interval Lower interval
Clade A 0 0 0
Clade A 14.446099 19.819685 10.225522
Clade A 21.809574 26.621055 17.094237
Clade A 26.323328 30.992373 21.307894
Clade A 29.92982 33.973265 24.992919
Clade A 32.508386 35.954708 27.645265
Clade A 34.908356 38.031382 29.97265
Clade A 36.619345 39.279237 31.904674
Clade A 38.272797 40.446753 34.389951
Clade A 39.661125 41.51599 37.899942
Clade A 40.801564 42.429714 39.42745
Clade A 41.806091 42.69736 40.727653
Clade A 42.69736 42.69736 42.69736
Clade B 0 0 0
Clade B 14.556055 17.977804 10.740593
Clade B 22.139634 25.827756 19.6562
Clade B 26.699032 29.360109 24.270479
Clade B 29.965474 32.321497 28.419002
Clade B 32.254507 33.315287 31.04127
Clade B 33.978425 33.978425 33.978425
Clade C 0 0 0
Clade C 13.744594 15.904201 11.37738
Clade C 20.614547 22.017283 19.193246
Clade C 25.095408 25.095408 25.095408
Clade D 0 0 0
Clade D 14.188674 17.705095 3.632206
Clade D 21.35243 25.158896 17.550388
Clade D 25.60095 27.86059 20.894125
Clade D 28.384566 29.476523 27.134723
Clade D 30.26935 30.26935 30.26935
Clade E 0 0 0
Clade E 17.131804 20.562325 13.314448
Clade E 25.602363 28.749003 21.254825
Clade E 31.311328 34.515256 27.605857
Clade E 35.487105 38.699897 32.168095
Clade E 38.999376 41.128745 36.130917
Clade E 41.735747 43.607796 39.947793
Clade E 43.992356 45.310753 43.063703
Clade E 46.027916 46.027916 46.027916
Clade F 0 0 0
Clade F 12.924791 16.073727 7.267011
Clade F 19.525693 21.983034 16.279681
Clade F 23.765518 26.313072 21.443533
Clade F 26.905087 28.518066 25.037789
Clade F 29.37903 29.37903 29.37903
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