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Sum m ary

Computer simulation is a diverse field covering a wide range of models and applications 

encompassing many disciplines. As the complexity of simulation models have grown, there 

has been an increased demand for programming environments which help the application 

developer organize and modify his or her system while providing increased performance.

Highly complex simulations utilizing tens of thousands of objects need support for the 

analysis of these objects and their behaviour. Persistence supports this goal by providing 

an underlying layer which manages objects and their simulation histories transparently be

tween primary memory and secondary memory. These objects can then be analysed by the 

developer once the simulation has completed. On successive executions of the application, 

the persistent objects are then automatically loaded from secondary memory to primary 

memory by the persistent object system on a demand-driven basis without requiring the 

application programmer to implement any file-handling code.

The demand for improved performance is im portant with some modern simulations re

quiring weeks or even months of computing time to execute. While processors continue 

to get more powerful every year, there is alway a need to reduce the execution times of 

large simulations. Thus parallelism is merged with persistence to meet performance needs. 

F irst sequential algorithms for simulation and persistent object management are improved 

to provide efficient sequential codes. Then, as this thesis shows, these sequential codes can 

then be parallelized resulting in improved performance.

Since simulation models are so diverse, it is not possible to support all of them in one 

system. Nevertheless, some of the most widely used simulation models are supported by 

the Persistent Simulation Environment (PSE) as described in this thesis. They include 

discrete-event, process-based, connectionist, and Petri net models. The use of these models 

and the applications developed under them illustrate tha t the merging of persistence and 

parallelism has advantages across several simulation models by providing both improved 

performance and a seamless interface between the program and secondary memory.



Contents

1 Introduction  1

1.1 Background and D efin itions......................................................................................  2

1.2 Related W o rk ................................................................................................................  4

1.3 P S E ...............................................................................................................................  8

1.4 Thesis O rg a n iz a tio n ...................................................................................................  9

2 P ersistent O bjects in PSE 12

2.1 Objects and C la s s e s ................................................................................................... 12

2.2 Persistent Objects in G e n e ra l ................................................................................... 13

2.3 Persistent Objects and Database Management System s.....................................  15

2.4 Persistence in P S E ......................................................................................................  15

2.4.1 PSE System P aram eters ............................................................................... 19

2.5 Port of PSE to E u L isp ...............................................................................................  19

3 Perform ance A nalysis o f R eplacem ent A lgorithm s in a P ersistent O bject

C ache 22

3.1 Related W o rk ................................................................................................................ 22

3.2 Differences between this study and related w o rk ..................................................  24

3.3 PSE’s Caching M echanism .........................................................................................  24

3.4 Caching Techniques ................................................................................................... 26

3.5 Application T es t-b ed ................................................................................................... 27

3.6 R esu lts ............................................................................................................................. 28

3.7 D iscussion......................................................................................................................  35

3.8 C onclusions...................................................................................................................  35



4 O bject-O riented  Sim ulation 37

4.1 Simulation Capabilities in P S E ............................................................................... 38

4.1.1 Event-based simulation ................................................................................  39

4.1.2 Process-based simulation ............................................................................. 41

4.1.3 Recording simulation events and processes in P S E ...............................  47

5 C oncurrent P rocess-based  Sim ulation w ith  P ersistent O bjects 51

5.1 Persistent Objects and C o n c u rre n c y .....................................................................  52

5.1.1 S em aphores....................................................................................................... 53

5.1.2 Optimistic Concurrency C o n t r o l ................................................................  53

5.1.3 Conservative m e th o d s ...................................................................................  54

5.2 Persistent Objects as Concurrent Processes under Conservative Protocols . 56

5.3 Object C lo n in g ............................................................................................................  59

5.4 Cloning T e c h n iq u e ...................................................................................................... 60

5.5 Example C lo n e ............................................................................................................  61

5.6 Impact of Cloning on Simulation S e m a n tic s ........................................................  63

5.7 Future D ev e lo p m en t................................................................................................... 63

5.8 Conclusion ...................................................................................................................  63

6 C onnection ist Sim ulations 65

6.1 POCONS: A Persistent Object-based Connectionist S im ulator.......................  66

6.1.1 The Connectionist M o d e l ............................................................................. 67

6.1.2 Object-Oriented Connectionist M o d e l ......................................................  68

6.1.3 Building a Connectionist M odel...................................................................  68

6.1.4 Conversion of Objects to a Connectionist N e tw o rk ...............................  70

6.1.5 Example S im u la tio n ......................................................................................  74

6.2 Implication in a Connectionist M odel.....................................................................  76

6.2.1 Im p lic a tio n ....................................................................................................... 78

6.2.2 Implication E x am p le ......................................................................................  82

6.2.3 Use Of Neuron Rules in a Sim ulation.........................................................  84

6.3 S u m m a ry ......................................................................................................................  87

7 E xtended  C onnection ist Sim ulation 89

7.1 Language Supported Storage and Reuse of Persistent Neural Network Objects 90



7.1.1 Checkpointing and S to r a g e .......................................................................... 90

7.1.2 R e u s e .................................................................................................................  91

7.1.3 Performance Im provem en ts .......................................................................... 95

7.2 Parallel Execution on SIMD and MIMD machines ............................................  96

7.2.1 SIMD Environment ....................................................................................... 96

7.2.2 MIMD E n v iro n m en t....................................................................................... 99

7.2.3 Compilation technique for MIMD F u tu re s ...............................................  100

7.2.4 Comparison of arch itectu res.......................................................................... 101

7.2.5 Results .............................................................................................................. 101

7.2.6 L im ita tio n s .......................................................................................................  102

7.3 Using Chaos in Neural Networks to Model Commodity Market Price Fluctu

ations   103

7.4 Other Work on Chaotic Neural Networks ............................................................  104

7.5 The M echanism .................................................................................................  104

7.6 Example N etw ork ..............................................................................................  105

7.7 Real D ata vs Generated D a t a .......................................................................  106

7.8 C onclusions........................................................................................................  107

8 P etr i N et M odelling in P SE  112

8.1 Per-Trans: A Persistent Object-based Stochastic Petri Net Representation

L a n g u a g e ..........................................................................................................  112

8.1.1 Per-Trans C om ponents...................................................................................  113

8.1.2 Stochastic Petri N e ts ....................................................................................... 114

8.1.3 Petri Net S im u la tion ....................................................................................... 115

8.1.4 Defining Forms ............................................................................................  116

8.2 Techniques for Improving the Performance of an Object-Oriented Stochastic

Petri-net S im u la to r .......................................................................................... 120

8.3 Parallel Simulation of Stochastic and Colored Petri N e t s ......................  122

8.3.1 Stochastic Petri Net A p p lic a tio n ................................................................  124

8.3.2 Parallel Programming C o n s tru c t ................................................................  125

8.3.3 Parallel Replication ....................................................................................... 127

8.3.4 Dependency-based Parallelism ...................................................................  127

8.3.5 Selection-based P a ra lle lism ..........................................................................  130

iv



8.3.6 Colored P e tr i - n e ts ........................................................................................  130

8.4 C onclusions..................................................................................................................  132

9 C onclusion 135

A G lossary 139



List o f Figures

2-1 Components of P S E ..................................................................................................  17

2-2 Contents Of A Persistent Object H an d le ..............................................................  18

3-1 PSE Cache S tru c tu re ..................................................................................................  25

3-2 D ijkstra’s shortest path algorithm .......................................................................  29

3-3 D ijkstra’s shortest path algorithm with explicit object r e m o v a l ...................... 30

3-4 Kruskal’s traveling salesman a lg o rith m ................................................................  31

3-5 Kruskal’s traveling salesman alg. with explicit object rem o v a l.........................  32

3-6 Large Activity N e tw o rk ............................................................................................ 33

3-7 Medium Activity N etw o rk ........................................................................................  34

4-1 Results of two versions of teller s im ulation ........................................................... 50

5-1 A Logical P rocess........................................................................................................  56

5-2 Queue Structure and Station Object C o n ten ts ....................................................  58

5-3 Circular Assembly Line ...........................................................................................  60

5-4 Assembly Line Configuration with C lo n e ..............................................................  61

6-1 Inheritance in P O C O N S ...........................................................................................  72

6-2 Internal Representation of a Connectionist Network ......................................... 73

6-3 Neuron with P a rtitio n s ............................................................................................... 79

6-4 logic c i r c u i t ..................................................................................................................  82

7-1 Flip-flop used for circuit a n a ly s is ........................................................................... 92

7-2 Internal Representation for execution of POCONS network using plurals . . 99

7-3 Speedup From Connectionist Executions on MIMD A rc h ite c tu re .................. 102

7-4 Internal Network R ep resen ta tio n ...........................................................................  107

7-5 REAL D A T A ...............................................................................................................  108

7-6 GENERATED D A T A ..............................................................................................  109

8-1 Petri net for Multiprocessor System ....................................................................  115

vi



8-2 The User Interface and Simulator L ayers ..................................................... 121

8-3 Graphic interface for one page VSM s im u la tio n .......................................  124

8-4 Simulation Results from 10-page DVSM Petri Net ..........................................  126

8-5 Time taken for the Per-Trans simulator to execute the 10-page DVSM model

on multiple processors (using parallel replication) vs. a single processor (us

ing the sequential algorithm of section 8 .1 .3    128

8-6 Sets of dependent t r a n s i t io n s ........................................................................  129

8-7 Colored Petri N e t ...............................................................................................  133

vii



Acknowledgements

Many thanks to everyone who helped me. Thanks to SERC for three years of support 

and for providing a great amount of academic freedom. Thanks to Pete Broadberry, Keith 

Playford, and Simon Merrall for EuLisp support. Also, much thanks to Professor Fitch for 

constructive criticism and encouragement. Finally, thanks to Kay Marie Sutcliffe for being 

there.



Chapter 1

Introduction

Object-Oriented simulation began with Simula [Dah66] and has been extended in languages 

like ROSS [McA82], ModSim [Her92a] and PSE [Cam91]. PSE (the Persistent Simulation 

Environment) was the first simulation language tha t supported persistent objects [Atk89]. 

Persistence extends object-oriented programming such tha t objects reside in both primary 

and secondary memory. Persistent object systems provide a seamless integration between 

a database and a programming language through management of object creation, refer

ence, deletion, and modification. PSE was originally designed to augment a contemporary 

object-oriented language with discrete-event and process-based simulation facilities equaling 

those found in Simscript[Rus79] and Simula, and to couple an object-oriented simulation 

language tightly with a secondary storage facility to achieve the persistence of simulation 

objects. This thesis describes the merging of persistent object-oriented simulation with 

parallelism and applies it to several simulation paradigms to support more than one type 

of application and hybrid applications. Large-scale simulations modelling real-world be

haviour often require the use of more than one paradigm. Therefore, it is practical for a 

simulation programming environment to provide support for several models and allow them 

to be incorporated. The paradigms supported by PSE, upon the completion of this thesis, 

include discrete-event, process-based, connectionist, and Petri nets. These models can be 

combined by loading the separate libraries into a single image.

This thesis shows tha t general concepts like persistent objects and parallelism can be 

merged to support different simulation models through a set of utilities supplied to the 

simulation programmer. The advantage of having persistent objects in a simulation envi

ronment is th a t it supports the storage and reuse of simulation objects in a transparent
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manner which allows perusal of simulation behaviour after program execution. Parallelism 

is used to improve the performance of simulations.

1.1 Background and Definitions

This section provides background and definitions on object-oriented simulation, persistent 

object systems, and parallel discrete-event simulation which will be referred to later on in 

this thesis.

Three concepts characterize object-oriented languages:

1. Encapsulation: behaviours or generic functions form the only possible interface to 

communicate with objects.

2. Polymorphism: a behaviour or generic function can be defined to do different opera

tions for each class or set of classes it is defined for.

3. Inheritance: a class can inherit attributes and operations from another class.

Persistent object systems (POS) [Atk89], as stated previously, provide a seamless in

tegration between a programming language and a database. Persistent objects reside in 

secondary memory as well as primary memory and modifications made to them in primary 

memory are propagated to secondary memory by the persistent object system in a manner 

tha t is transparent to the application programmer.

Some of the advantages of persistent systems listed by Morrison and Atkinson [Mor90] 

include:

1. reduced complexity

2. reduced code size and time to execute

3. data  outlives the program

Firstly, complexity is reduced for the application builders, because with persistent sys

tems, there is no distraction for the programmer in dealing with the complexity of managing 

the database. He or she need only consider the complexities involved in the mapping be

tween the programming language and the problem to be solved. Secondly, persistent systems 

reduce code size, because the application program need not contain code concerned with 

the explicit movement of data  between primary and secondary memory. Also, the time
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to execute is reduced, because only objects required by the system get loaded into primary 

memory. Finally, the data outlives the program, because it resides in a database. According 

to Atkinson and Morrison these are the reasons why persistence is advantageous. It is due 

to the advantages provided by persistence tha t it was chosen to be one of the main focuses 

of this thesis.

Object-oriented simulation [Bou92] consists of first forming classes of objects with com

mon attributes and behaviours. Classes can refer to real object categories (workstation, 

waiting queue) or abstract object categories (operation, routing). The modelling governs 

the programming of the system, so it must be accurate, though it is usually updated during 

development using stepwise refinement. Object-oriented simulation assumes the represen

tation of system knowledge: objects’ characteristics, their behaviours, and interactions 

between them. In object-oriented simulation, methods or generic functions are used to 

program state transition logics. The state transition logic is the plan tha t the simulation 

is to follow throughout its execution. The state transition logic can be realized as events 

or processes which determine which objects’ states get affected. At each processing of an 

event or process, when a corresponding state transition logic is launched, associated events 

or processes are activated through associated generic function calls on them. Time stamps 

are associated with event and process invocation to allow the simulation programmer to 

specify the ordering of events over time. For example, the behaviour change-direction on 

class airplane needs to have a time associated with it, so the simulation can know when in 

time the airplane is to alter its direction.

Parallel discrete-event simulation has two main approaches: conservative and optimistic. 

Time Warp [Jef85a, Jef85b] is the most commonly used optimistic algorithm. The basic 

device used by Time Warp is to impose a virtual time order for every process. This ordering 

is achieved by having each process queue its incoming messages by time-stamp order rather 

than arrival order. In this way, a process can be thought of as working along its input 

queue, increasing its local virtual time (LVT) (the time-stamp of the message currently 

being handled by a process) to the time-stamp of each message as it gets to it. When a 

message arrives whose time-stamp is smaller than the process’s LVT, the message lands in 

tha t part of the queue already processed, thereby causing a rollback.

Time Warp solves the problem of ensuring the correct order of messages by unsending 

them. Each real message has a corresponding antimessage which, when sent to  the same 

destination as the original positive message, serves to annul it. It is crucial tha t the antimes
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sage carry the same time-stamp as its positive corresponding message, because the arrival 

of the antimessage must invalidate any work performed by the recipient from th a t time on, 

and cause the recipient to rollback to tha t point if necessary. Should the recipient roll back 

in response to the antimessage, it will send more antimessages to yet other processes. In 

this way, the rollback will propagate to the other affected parts of the system as desired. I 

worked on the development of a Time Warp system while at RAND corporation. My work 

involved the development of scheduling algorithms [Bur90] and static and dynamic load 

balancing [Bur93a].

Conservative techniques for parallel discrete-event simulation require th a t the events for 

each object execute in time-stamp order. This requirement restricts communicating objects 

from overtaking one another. Therefore, unlike optimistic methods, there is no rollback.

Conservative techniques can be summarized as follows [Cha81, Fuj90]: if a process con

tains an unprocessed event E l with time-stamp T1 and tha t process can determine th a t it 

is impossible for it to receive later another event with time-stamp smaller than T l, then 

the process can safely proceed with E l because it can guarantee tha t doing so will not later 

result in a violation of the local causality constraint. Processes containing no safe events 

must block; this can lead to deadlock situations if appropriate precautions are not taken. 

The sequence of messages on an input queue must be in nondecreasing order. Each queue 

has a clock associated with it th a t represents the time of either the first message on the 

queue or if there are no messages, the time of the last message processed. Each object 

repeatedly selects the queue with the smallest time-stamp and processes the message on it 

if there is one. Otherwise it blocks and waits for a message to arrive on tha t queue. The 

protocol guarantees th a t each process will only process events in time-stamp order.

The merging of persistent object-oriented simulation with parallel discrete-event simu

lation in support of several models and support for the hybridization of those models is 

the goal of this thesis. Large-scale models often require the merging of several models, and 

parallelism and persistent objects provide benefits, as described previously, in a simulation 

programming environment.

1.2 R elated Work

Persistent systems date back to the early 1980s [Atk83]. There is now a large number of 

commercial and research programming languages th a t support persistence. A model for
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persistent objects was described by Rowe [Row86] which formed the basis for the Picasso 

system and is the model tha t PSE’s persistent object system (the one used in this thesis) 

is based on.

The Time Warp operating system [Jef87] and the RAND Time Warp system [Bur89] both 

provided programming environments tha t supported parallel discrete-event simulation using 

the Time Warp method of optimistic concurrency control. It should be noted th a t these 

systems only support event-based simulation models.

Event and process-based simulation, provide fairly limited support on their own for 

complex modelling. As a result, there has been a trend towards the use of higher level rep

resentations and knowledge-bases in conjunction with discrete-event simulation to provide 

the kind of powerful tools needed to support complex models.

In the simulation world, there has been a trend towards the support of various models 

and the hybridization of those models. Large complex simulations often require expert 

knowledge at decisive points during execution. As a result, there have been a large number of 

systems recently th a t incorporate several models to support complex simulations. Intelligent 

agent systems use distributed knowledge bases to do planning for simulation activities. 

Norrie and Kwok apply an intelligent agent system to do the planning for a simulation of 

an automated guided vehicle [Nor92]. Likewise, Balducelli and Vicoli [Bal92] have used a 

knowledge base interface to predict faults in the simulation of an electrolytic cell.

Ali [Ali93] points out the large amount of computation required in symbolic processing- 

based expert systems. Ali argues in favor of using connectionist-based expert systems to 

interface with simulations, because they require far less computation to solve similar tasks. 

For this reason, a connectionist representation language was added to PSE as a part of the 

work for this thesis. The connectionist representation also has explicitly parallel properties 

which make it a good model to map onto a parallel machine which will also be shown in 

this thesis.

Petri nets were chosen to be added to PSE for this thesis, because they can be used 

to produce numerical estimations on the performance of parallel systems. Petri nets are a 

graphical and mathematical modelling tool applicable to many systems [Mur89]. They are 

a promising tool for describing and studying information processing systems th a t are char

acterized as being concurrent, asynchronous, distributed, parallel, nondeterministic and/or 

stochastic. As a graphical tool, Petri nets can be used as a visual communication aid similar 

to  flow charts, block diagrams, and networks. In addition, tokens are used in these nets
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to simulate the dynamic and concurrent activities of systems. As a mathematical tool, it 

is possible to set up state equations, algebraic equations, and other mathematical mod

els governing the behaviour of systems. Petri nets can be used by both practitioners and 

theoreticians.

Petri nets are a higher-level representation which are currently widely used for simula

tions involving performance evaluation. Marsan [Mar87, Mar86, Mar89] has used stochastic 

Petri nets extensively for the performance evaluation of parallel computing systems. Like

wise, Petri-net simulations are being combined with knowledge-based systems to  support 

transitions th a t require expert knowledge. A hybrid Petri-net and knowledge-based system 

has been used to  model the performance of on-line scheduling in a flexible manufacturing 

system (FMS) [Hat91]. The developers gave the following reasons for choosing Petri nets:

We can explicitly describe the causal relation of uncertain events by using 
places, transitions, and arcs. Therefore, using stochastic Petri nets, we can 
construct the model of an FMS more easily than using the other models.

The FMS Petri net simulation also uses an on-line rule-based scheduling system which 

selects a transition to be fired from a set of conflicting ones. Similarly, Lee [Lee91] has 

described a model which incorporates Fuzzy rule sets and Petri nets. Also, Abellard et 

al [Abe93] have developed a Petri net simulation tha t relies on a neural network interface 

to  make scheduling decisions. Since Petri nets are widely used and are combined with 

knowledge bases to form hybrid simulations, they have been chosen to be supported by 

PSE for this thesis.

In response to the increased use of higher-level representations, knowledge bases, and 

hybrids, there has been recent development of tools tha t support these kinds of models. 

Simpack and Simpack+-f- are simulation tools developed at the University of Florida. They 

both support continuous and discrete-event simulation as well as Petri nets, Markov mod

els, Network simulation, and Finite State Autom ata simulations. Simpack-)—(- is an object- 

oriented version of Simpack. Simpack’s Petri net package supports only simple Petri nets 

which are not as widely used as stochastic or Colored Petri net models which are supported 

under PSE as a result of the work done for this thesis. Likewise, Soubra et. al. [Sou93] 

describe the design of an intelligent simulation environment which supports the sharing of 

common data  and the incorporation of expert systems and diagnosis tools with utilities for 

various simulation models. While it is not proposed by Soubra, persistence is a means of
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sharing common data  between models, because the data  can be readily accessed from a 

database by different simulations. Also, Laret [Lar93] reviews some of the previous and 

ongoing projects involving the development of simulation tools th a t support model libraries 

which provide support for a vast range of simulation modelling. He describes several sys

tems which support qualitative, numerical, and experimental models as well as provide 

interfaces for knowledge-base consultation. Laret argues that large-scale simulations require 

the integration o f several models and knowledge bases.

Modsim [Her92a] is a simulation language which supports discrete-event and process- 

based simulation models. It also has an interface to Prolog called Modlog [Whi92b] which 

can be used to develop a knowledge base for consultation by a simulation. Modsim also 

has a facility for so-called persistent objects [Her92b], but inspection of its usage reveals 

tha t it really only allows for the inclusion of object-oriented database code. Modsim’s 

support for persistence is seriously lacking in a seamless interface in tha t persistent objects 

must be treated differently from non-persistent objects at all the stages of their usage. 

Modsim was designed to  be executed under the Time Warp operating system, and some 

Modsim applications have been ported and execute under Time Warp. However, according 

to Herring, Modsim programs need to be significantly altered to execute efficiently under 

the Time Warp operating system.

PSE, as developed for this thesis, has several advantages over Modsim. Firstly, PSE’s 

persistent object system provides a much more seamless interface between secondary and 

primary memory in th a t modifications get propagated to the database by the underlying 

persistent object system in a manner which is transparent to the applications programmer. 

For example, in PSE when a slot in a persistent object is modified by the program, PSE’s 

underlying persistent object system propagates the modification to the database without 

requiring any instruction from the programmer. Also in PSE, when a programmer makes 

a reference to to a persistent class or object th a t resides in the database but not in the 

virual image, the persistent object system loads and instantiates it without requiring any 

instructions from the programmer. However, in Modsim, the programmer must keep track 

of which objects and classes are in the database and not in the virtual image, because 

ModSim requires th a t one explictly load objects from the database before referencing them. 

Likewise in Modsim, the programmer write code which handles the propagation of object 

modifications to  the database. Also, PSE now has a connectionist representation for the 

development of knowledge bases which can be accessed from a simulation. The advantage
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of using a connectionist knowledge base over one developed using Modlog is th a t the con

nectionist model requires less computation and is less difficult to port to a parallel machine. 

Due to their explicitly parallel nature, connectionist models are easier to port parallel ma

chines than are symbolic pattern-directed inferencing mechanisms such as OPS-5 [Bro85]. 

Also, since connectionist systems do inferencing based on arithmetic operations, it seems 

likely th a t they have better performance than symbolic pattern-directed systems, because 

computers perform much better doing numerical calculations than they do for when per

forming symbolic pattern matching. PSE has support for the development of Petri-net 

models, but ModSim lacks any support for a higher-level representation like Petri nets. 

Finally, PSE supports parallel execution of Petri nets, connectionist knowledge bases, and 

process-based simulation. ModSim has no support for parallel Prolog. However, some 

Modsim simulations have been executed on the Time Warp operating system [Jef87] which 

supports parallel simulation, but it is not a part of the language itself.

1.3 PSE

I have been involved with the design and implementation of PSE from the beginning. The 

first two years of its development was undertaken when I was at RAND corporation and 

was done under the direction of Stephanie Cam m arata and was written in Allegro Common 

Lisp. The system developed at RAND consisted of the persistent object kernel, discrete- 

event, and process-based simulation utilities. Upon my arrival at Bath, I ported the code 

to EuLisp [Pad91] to take advantage of its support for parallel programming. The port was 

nontrivial and is described in Chapter 2.

Once the port, which took 4 months, was completed, I progressed onto merging it with 

parallelism to improve performance and extended it to support various models to broaden 

the types of applications it could support, to be consistent with developments in the field 

(as described in section 1.2), demonstrate its effectiveness, and most importantly, show 

th a t persistence and parallelism can be used in support of various simulation paradigms. 

As shown in section 1.2, simulations are written in a variety of paradigms which are often 

combined to  form hybrid models. Thus, a programming environment for simulation should 

be extended to support a wide range of modelling capabilities. Secondly, simulations tend 

to be large and require an immense amount of computation; therefore for the environment 

to be usable it must be optimized for performance by producing efficient sequential codes



and through parallelization as is shown in this thesis. Finally, to show the effectiveness of 

the system, it should be demonstrated tha t it can be used to develop large-scale models, 

produce results, and execute in a reasonable amount of time. In this thesis, large-scale 

simulations have been implemented and tested using PSE to show tha t these goals have 

been attained.

1.4 Thesis Organization

The specific activities undertaken to achieve these goals were numerous. Chapter 2 describes 

PSE’s persistent object system in detail and explains the difficulties encountered in the port 

from Common Lisp to  EuLisp. EuLisp’s thread facility provides a basic primitive for parallel 

programming th a t can be used for the development of higher level parallel programming 

constructs to be used by an application. The motivation being th a t parallel programming 

could improve PSE’s performance. Chapter 3 describes a set of algorithms for replacement of 

objects in the persistent object cache tha t were developed, and experiments were conducted 

to determine which one would best improve its performance, because it makes no sense to 

apply parallelism to inefficient sequential code. The algorithm which produced the best 

results was then incorporated into PSE. Chapter 4 describes the discrete-event and process- 

based simulation constructs tha t were ported from the Common Lisp version of PSE to 

EuLisp by the author while at Bath University.

Chapter 5 describes an extension tha t was then made to PSE to handle concurrent 

process-based simulation under conservative concurrency control. An example is presented 

which was implemented in the system for the cloning of objects under conservative proto

cols. One of the criticisms made for conservative mechanisms is th a t by definition it does 

not allow dynamic object creation. The cloning facility presented in chapter 5 is a solu

tion to  tha t problem and makes the conservative mechanism more flexible and extends its 

modelling capabilities to handle models like networking simulations where servers get added 

dynamically.

Chapters 6 and 7 describe another extension tha t was made by the author at Bath to 

support a connectionist representation language called POCONS (Persistent Object-based 

CONnectionist Simulator) which can be used on its own or can be interfaced with a simu

lation for consultation purposes as described in section 1.2. Connectionist models provide 

a mechanism for representing knowledge through connections between neurons. Those con

9



nections are weighted to represent the certainty factors between semantic relationships. The 

extension to handle connectionist systems was made to show th a t persistent objects and 

parallelism can be applied to support the widespread use of connectionist systems in the 

development of knowledge bases used for consultation by a simulation.

To improve its knowledge-representation abilities, POCONS was then further extended 

by the author to have a construct which supported implication to support rule-based pro

gramming. A circuit analysis program was implemented in POCONS and served as an ap

plication test bed for the system. Parallel techniques on SIMD and MIMD machines were 

implemented and improved its performance on the circuit analysis program. POCONS was 

then further extended to include a utility for storage and reuse of connectionist objects 

which improved the performance of the system, because information developed during the 

initialization of the system could be stored in persistent objects and when reloaded, it elim

inates the need for retraining. Then, a mechanism was introduced into POCONS which 

further extended it to support chaotic reasoning, because in certain systems (like financial 

markets) a user may want the model to exhibit chaotic behaviour. This facility for chaotic 

neural networks was then used in a simulation of commodity price fluctuations. Results 

from the simulation showed similar behaviour to that of the precious metals’ market it was 

modelling. These extensions to POCONS improved its capabilities for the development of 

knowledge-based systems which can be interfaced with a simulation. Also, the use of paral

lelism improved its performance so tha t it could be used for large-scale simulations without 

requiring an overwhelming amount of computing time as is the case for many symbolic-based 

knowledge representation systems.

Chapter 8 describes another module tha t was then added to the EuLisp version of PSE 

to include a representation language for the description of Petri nets called Per-Trans. The 

Per-Trans library was added to PSE to support the kinds of models described in section 1.2 

and to make PSE a system tha t could handle the wide range of models which are currently 

used by simulation developers.

A large-scale ten page distributed virtual shared memory system was developed and 

simulated using Per-trans which proved to be an exhaustive test. Results of the simulation 

as well as others are presented in this thesis. Techniques were then developed and tested 

which improved the performance of the object-oriented simulation produced by Per-trans. 

These techniques can be applied to object-oriented simulation in general. Also, utilities 

for parallel simulation of Petri nets were implemented and their utilization improved the
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performance of Per-trans simulations.

Thus, there are various paradigms and hybrids tha t are now supported in PSE, and the 

application of parallelism and persistent objects, as will be shown in the following chapters, 

has been effective.
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Chapter 2

Persistent O bjects in PSE

This chapter covers the persistent object system component of the Persistent Simulation 

Environment (PSE) and its port from Common Lisp to EuLisp. Later on it will be described 

how PSE’s persistent object system is merged with parallelism in utilities th a t support 

various simulation paradigms and hybrids. However, first the background will be laid; first 

by a description of the persistent object system in this chapter followed by a performance 

evaluation which determines which caching algorithm to use in the persistent object system 

as is described in the following chapter. The persistent object system manages the seamless 

integration between primary and secondary memory by initiating read and write requests 

as a result of slot accesses and modifications.

The discussion in this chapter will begin with general concepts of object-oriented pro

gramming and will lead into a discussion on persistent objects in general. The persistent 

object system in PSE will then be described in detail, and the chapter will be concluded 

after discussing problems encountered in porting PSE to EuLisp.

2.1 O bjects and Classes

Amongst the concepts of object-oriented languages, the one th a t is of the most fundamental 

importance is object classes. In object-oriented languages, object classes are abstract data 

types th a t organize both data structures and functions. Each class specifies its relation to 

existing classes by supplying a reference to the base class, or class from which it is derived. 

The object class is used in a similar manner as a conventional type allowing instances of its 

class to be instantiated at the runtime of the program.
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The notion of an object class hierarchy dates back to Simula [Dah67]. An object class 

hierarchy tree grows as new classes are added to the system. Since each new class is a 

superset of its base class, it inherits selected data and functions, meaning th a t the derived 

class, when given access by the inheritance rules, can call any of its base class functions, or 

modify any of the data.

2.2 Persistent Objects in General

Persistent object systems (POS) [Atk89] provide a seamless integration between a program

ming language and a database. The POS requires a cache to  hold objects th a t have been 

loaded into primary memory to avoid the need for reloading an object each time it is ac

cessed. The persistent object cache can be viewed as similar to the working set in a virtual 

memory system. The size of the cache has to be limited so as not to swamp the runtime 

system with more objects than can exist without exceeding the size of swap space. Also, 

since objects may be shared with other users, it is not desirable for any one user to have 

control over too many objects at a given time, and therefore, caches can also be useful to 

limit the number of objects owned by a user.

As mentioned in the introduction, some of the advantages of persistent systems as de

scribed by Morrison and Atkinson [Mor90] include:

1. reduced complexity

2. reduced code size and time to execute

3. da ta  outlives the program

Firstly, complexity is reduced for the application builders, because with persistent sys

tems, there is no distraction for the programmer in dealing with the complexity of managing 

the database. He or she need only consider the complexities involved in the mapping be

tween the programming language and the problem to be solved. Secondly, persistent systems 

reduce code size, because the application program need not contain code concerned with 

the explicit movement of data between primary and secondary memory. Also, the time 

to execute is reduced, because only objects required by the system get loaded into primary 

memory. Finally, the data outlives the program, because it resides in a database. According 

to Atkinson and Morrison, these are the reasons why persistence is advantageous.
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The persistent component of PSE does significantly reduce the complexity of the appli

cation program, because the underlying persistent object system handles all the database 

operations involved with the loading and instantiation of objects as well as the automatic 

propagation of slot modifications to the dataabase. As a result, the simulation programmer 

can focus solely on the problem to be solved and is insulated from database complexities. 

The logical result of the elimination of database complexities is the reduction of code size, 

because all th a t extra application code used to handle database operations is no longer 

necessary. However, as to Atkinson and Morrison’s claim of time to execute, the time to 

load objects from a database does considerably slow down a simulation. However, since in 

PSE they are loaded on demand, if there are a lot of objects, it can significantly reduce 

the amount of time to execute the simulation, because if only the objects tha t are needed 

get loaded it won’t swamp the virtual memory system and cause it to thrash. Evidence to 

support this claim was supported by an experiment I conducted using the Common Lisp 

version of PSE while a t RAND. I had a simulation tha t used 10,000 objects. Loading all of 

the objects made the virtual image too large and caused thrashing in the virtual memory 

system. By using persistence, objects were only loaded on demand, and garbage collections 

of objects th a t were no longer needed (to be discussed in the next chapter) kept the virtual 

image from becoming too large to thrash the virtual memory system.

Morrison and Atkinson also state tha t the goal of a persistent object system is to support 

four major functions: sharing, maintaining, inspecting, and reusing of objects. Sharing al

lows the concurrent use of persistent objects by more than one application program, similar 

to a database management system which supports access by multiple programs. Object 

maintenance (insertion, deletion, and updating of simulation objects) can be performed 

in virtual memory during simulation processing, or through maintenance routines applied 

directly to objects in the persistent object repository, external to any simulation program. 

Objects modified during simulation processing will be transparently updated in the persis

tent repository so th a t consistency is maintained between virtual objects in the simulation 

and secondary storage persistent objects. Likewise, objects can be retrieved and inspected 

during simulation processing and at any time before or after the simulation. Finally, with 

a persistent object repository, simulation objects can be reused without recreating and 

initializing objects for each simulation trial. Thus, reusability can result in improving 

performance of the system as will be shown in section 7.1.2 of this thesis.
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2.3 Persistent Objects and Database M anagement System s

Ullman [U1180] defines a database manangement system as the software tha t allows one or 

many persons to  use and/or modify data tha t is more or less stored permanently. Ullman 

also writes:

A major role of the DBMS is to allow the user to deal with the data  in 

abstract terms, rather than as the computer stores the data. In this sense, the 

DBMS acts as an interpreter for a (very) high-level language such as APL, ideally 

allowing the user to specify what must be done, with little or no attention on the 

user’s part to the detailed algorithms or data representation used by the system. 

However, in the case of a DBMS, there may be even less relationship between 

the data  as seen by the user and as stored in the computer, than between APL 

arrays and the representation of these arrays in memory.

Ullman’s description so far applies to persistent object systems as well as database sys

tems. However, he goes on to describe other functions which a database system should 

be expected to carry out like security, integrity, synchronization, and crash protection and 

recovery. These operations are not necessarily required for a persistent object system, but 

they are supported by Picasso’s shared object hierarchy [Row86] and other persistent ob

ject systems. Usually, as in Picasso, persistent object systems are interfaced to a database 

management system, so it can carry out those tasks.

Unlike a database management system, persistent object systems manage a seamless 

interface between a program and a database. As stated previously in this chapter, the 

persistent object system simplifies an application programmer’s task in tha t it handles all 

references to a database automatically. The persistent object system manages an interface 

between a programming language and a database such tha t classes, objects, and sometimes 

methods will be maintained between primary memory and secondary memory on demand 

and in a manner which is transparent to the application programmer.

2.4 Persistence in PSE

PSE’s persistent object system supports sharing, maintaining, and inspecting of objects. 

Objects can be shared between applications. However, PSE does not support the concurrent 

sharing of persistent objects, because it involves issues of transaction management which is
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not one of the primary goals of this work. Nevertheless, other persistent object languages like 

Gemstone [But91] and Picasso already support concurrent sharing of objects, because they 

are interfaced to database management systems which handle transaction synchronization 

for them. A database management system was not available on the Stardent at the time 

of development of this system, and there was no reason to reinvent the wheel. Thus, the 

author’s own object management system was used to handle the management of secondary 

storage, but no support of concurrent sharing of objects was implemented.

In general, an object which is declared to be persistent is retained in secondary stor

age after program execution terminates, in PSE, once a class has been declared to  be 

persistent, instances of tha t class will automatically be made persistent. However from 

the programmer’s perspective, persistent objects in PSE are referenced identically to non- 

persistent simulation objects. Furthermore, fetching and instantiating of a persistent object 

from secondary storage is performed transparently by the underlying PSE kernel. The ker

nel implementation of PSE is based on Rowe’s [Row86] SOH (shared object hierarchy) 

methodology.

PSE is composed of the following components pictured in Figure 2-1: persistent object 

and class files, object space, and object and class directories. The object and class (not 

pictured) files store an ascii representation of the objects and classes in secondary storage. 

Object space denotes the area in main memory where the object and class structures reside, 

and the object and class (not pictured) directories contains one handle per object. The 

directories store handles which can be retrieved through an identifier (integer value) which 

is assigned to them upon creation. The handle is a pseudo-object which is used as a reference 

point for a persistent object. The handle for an object contains the class wrapper for it, so 

th a t as far as the program and programmer are concerned, it is the object. However, upon 

slot access or modification, the persistent object system will use information stored in the 

handle concerning the object’s location on the disk to load the object from the database or 

propagate a modification to the database as is necessary.

The object and class handles contain meta-information about the objects and classes 

and always remain in primary memory. A handle (see figure 2-2) includes information such 

as a pointer to the object’s memory location (which is ’’nil” if the object is not in the 

object space), the object’s location in the object file, whether or not the object has been 

modified, and the object’s update mode. The update mode indicates how the object will 

be modified on disk. If the mode is direct-update the object will be updated immediately
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Figure 2-2: Contents Of A Persistent Object Handle

upon modification. If it is deferred-update, the object will be updated when the number 

of objects in the object space reaches capacity thereby triggering garbage collection of the 

object directory and updating of necessary objects. Local-copy objects only exist in main 

memory and therefore are not updated on disk, the local-slots field in a handle exits to  store 

pointers which can not be represented in the database in a persistent manner. Other fields 

include indb (flag indicating if the object is in the database, modified whether object has 

been modified by the current program, and in-memory -  indicates if the object is loaded 

into the Lisp system or not. These flags are stored in a bit vector in the handle to minimize 

their memory consumption.

Each object is stored as a fixed-sized record. If an object is modified to increase its size 

such th a t it exceeds the fixed size allocated, then the object is moved to the end of the file. 

Its size allocation is then increased to meet its new specification. The system also contains 

a routine th a t will do database garbage collection of the unreferenced objects residing in 

the database. Unreferenced database objects result when they get moved to the end of the 

file, because their updated size exceeds the fixed size allocated to each object.

During program execution, object handles are used as parameters to represent simulation 

objects. When a slot in an object is referenced, one of two actions is taken: if it is determined 

th a t the object is not in primary memory, then it is fetched and instantiated before the 

slot value is returned. Alternatively, if the object is already in primary memory, the value 

of the slot is simply returned. Also when a persistent slot value is modified in a program, 

the underlying persistent object system propagates the new value to secondary memory 

transparently. If the object whose slot value is being modified is not currently instantiated, 

then the persistent object system will fetch and instantiate the object before modifying the 

slot value.
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2 .4 .1  P S E  S y s te m  P a ra m eters

PSE’s persistent object system includes a set of parameters th a t either report on the state 

of the system or can be modified by the user to tune performance and to measure the 

system’s behaviour. The parameter *memory-full* is a global variable th a t indicates the 

the maximum number of objects tha t the system will allow in memory (or object space) 

before garbage collecting the object directory. Since the number of objects required to 

swamp a virtual memory system varies from system to system and is dependent on the 

size of the objects as well, *memory-full* is a variable th a t the user can set to tune the 

system to his or her configuration. Another useful parameter, *instance-count*, is set by 

the system and indicates how many persistent objects are currently in the system. The 

variable *object-faults* is also set by the persistent object system and records the number 

of times any object was requested by an application but was not in primary memory and 

therefore, needed to be read and instantiated by the system. Finally, * directory-size* is set 

by the user and is the size of the object directory. If a larger directory structure is needed 

due to the creation of persistent objects, the system will dynamically double the size of 

the object directory. The combination of these system parameters with the three choices 

of update modes, provides users with facilities for comparing performance under different 

PSE system constraints.

2.5 Port o f PSE to EuLisp

Concurrency provides the possibility of reducing the real execution time of a program 

through simultaneous execution of different code segments. PSE was ported to EuLisp 

as a part of the work for this thesis, because it provides a thread facility on the Stardent 

T itan multiprocessor which allows the implementation of concurrent programs. The com

ponents ported to EuLisp include the persistent object system (just described) and the 

discrete-event and process-based simulation utilities described in Chapter 4 of this the

sis. Those were the components implemented at RAND in Common Lisp. The port was 

necessary, so th a t the extensions described in this thesis could be undertaken.

The port of PSE to EuLisp required a significant amount of time, because the entire 

interface with the object system had to be rewritten, and EuLisp modules provided severe 

restrictions. In the Common Lisp version of PSE, the object system had been merged with 

the file system through low-level modifications. A new EuLisp metaclass was created for
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persistent classes and objects and methods were added at the low-level to handle access and 

modification of these objects.

Persistent classes were the greatest problem to overcome. In Common Lisp, when a class 

was input from the database, PSE would construct a call to defclass and eval to instantiate 

the class. This technique was not possible in EuLisp, because it does not allow evaVs. 

Another problem is th a t when a class is created, the accessors for the slot values need to 

be defined. In Common Lisp, defclass defines the accessors. However, in EuLisp, the lack 

of eval makes it impossible to construct and execute a call to defclass as in Common Lisp. 

Make-inslance on the metaclass can be used to create a class, but make-instance doesn’t 

create accessors. The accessors then need to be created manually. A problem arises when 

creating the accessors in EuLisp at run time, because the accessor functions must get bound 

to the accessor names, but EuLisp does not allow this kind of dynamic binding to take place. 

This problem was only partially solved by having the accessor names defined at system load 

time. This restriction made the EuLisp version of PSE less seamless or transparent to the 

programmer than the Common Lisp version. Also, it required more than twice as much 

code to implement persistent classes in EuLisp than it did in Common Lisp.

Likewise, module restrictions made it impossible to have applications reside in separate 

modules from the PSE module. Since EuLisp does not allow mutually referential modules, 

it was necessary to define all persistent classes in the PSE module, because local bindings 

can only be done in macro expansions and the functions to build the accessors are in the 

PSE module. Therefore, since the accessors were defined in the PSE module, the application 

must be a part of the PSE module if it wants to use the slot accessors.

There are some compromises tha t can be made to solve this problem. The first compro

mise would be to store classes in their own module, then all of the slot accessors would have 

to be declared in the export list of the module. This solution is quite unsatisfactory though, 

because when one imports a module of classes, it will load all of the classes in th a t module 

instead of loading classes as demanded by the program. Also, it requires the application 

programmer to structure his or her code differently from how he or she would if the classes 

were non-persistent. This requirement violates the definition of persistent systems having 

a seamless interface between the program and the database. Another solution, which was 

implemented, was to provide a construct called persistent-classes. This construct is used 

when loading classes from an already existing database. When persistent classes are de

fined, the system stores code in the database which when loaded into EuLisp and executed
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will create the accessors for a class and bind them to the slot-names listed in the call to 

persistent-classes. Thus, the use of the persistent-classes construct does create a seam of 

sorts between the program and database, but i t ’s less of a seam than would be required if 

the classes were required to be in a different module.

On a more positive note, EuLisp slot descriptions provided an elegant solution to the 

problem of access and modification of persistent slots. A macro called defdbclass was defined 

which spliced in the slot-class to be persistent-slot-class. Then, a slot access method was 

defined on persistent-slot-class to handle the specific mechanics of access and modification 

of a persistent slot as described previously.

The remaining elements of the port was spent dealing with technical differences between 

EuLisp and Common Lisp of which there are many but these are not of great interest, so 

they will not be discussed further.

In the next section, the results of a performance analysis of replacement strategies for 

objects in primary memory is presented. It was undertaken to determine which replacement 

algorithm would best improve the system’s performance. It is im portant to make the 

sequential code efficient to avoid defeating the purpose of parallelizations described in later 

chapters.
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C hapter 3

Perform ance Analysis of  

R eplacem ent Algorithm s in a 

Persistent Object Cache

Since the improvement of performance through parallelism is one of the goals of this thesis, 

it makes sense to be certain tha t the persistent object system component be as efficient 

as possible. Thus the motivation for this chapter is to improve the efficiency of PSE’s 

persistent object system which in later chapters will be merged with parallelism to support 

various simulation paradigms.

The problem of effective object replacement is im portant, because when using a system 

with tens of thousands of objects, loading all of them can cause the virtual image to reach 

a size where it thrashes the virtual memory system. Therefore it can be advantageous 

to have a mechanism tha t limits the number of objects in primary memory and manages 

their replacement. This performance analysis was done to  improve the efficiency of PSE by 

finding a sufficiently good object replacement strategy.

3.1 R elated Work

A lot of work has been done on page-replacement algorithms in virtual memory systems. 

These studies are similar in terms of determining which segments of code or data  to replace 

in real memory, but they are different in th a t they deal with fixed-size pages. The study in 

this chapter is concerned with objects which contain a semantically-determined amount of
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data  and no code.

A previous study was done to investigate the advantages of dynamic grouping of per

sistent objects using the virtual memory grouping mechanism in Smalltalk [Wil87]. Four 

models were examined:

1. Near-Optimal: a memory trace was used to determine the sequence of memory refer

ences and to assign groupings appropriately.

2. LRU: objects were grouped together based on their frequency of use.

3. Random: objects were assigned to groups randomly.

4. Static: objects assigned to groups before the application began execution, and they 

stayed in their assigned group throughout the execution.

The study found tha t under different grouping schemes and page sizes tested over 15 

different memory sizes th a t dynamic LRU provided the best results in reducing the number 

of page faults. While this related study does in no way prove what is the best technique 

to use under all circumstances, it does provide a point of reference which can be used for 

developers of persistent object systems.

Another related study was done which compares various types of caches [Wil90]. It 

compares various address translation techniques which can improve the performance of 

cache lookup. It simulates algorithms using an associative memory cache to be implemented 

in hardware. This approach is different from the study reported in this chapter, because 

it relies on special-purpose hardware (a hardware cache for objects), whereas the study in 

this chapter is geared for general-purpose hardware.

Another related work was a performance analysis on PS-Algol [Bai89]. It measured 

instruction execution speed, the number of instructions executed between jumps, and the 

number of instructions executed between object faults. The results of relevance to this 

paper were th a t programs began by initialising a working set of objects, they then used the 

working set during program execution, and finally created a fresh working set for program 

termination. This result provides a strong argument in favor of the caching of objects in 

primary memory, because the cache can store the objects in the working set, thus reducing 

object faults.

Finally, there is related work [Koc90] tha t covers how to maintain a consistent cache in a 

distributed environment. However, it is concerned with the integrity of caches rather than
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replacement algorithms.

3.2 Differences between this study and related work

The applications used in this chapter apply to terrain-based and activity network simulation 

models and therefore the results are of use to a more specialized community. However, there 

are fundamental differences with the related work of the previous section th a t make this 

study worthwhile:

1. The objects are different: in Smalltalk, nearly everything is an object. In this study, 

we use a system in which only significant data items are objects (ie. not a pure object- 

oriented system). Road and activity network objects are used. Road objects consist 

of roads, intersections, bridges, and deadends. Each road object has several attributes 

and has an average size of roughly 500 bytes. The activity network objects average 

64k bytes due to each one having a stack group to execute in.

2. PSE does not rely on the virtual memory system. Each individual object is treated 

as a segment and faults occur on objects not on groups of objects.

3. This study does experimentation with fetching of objects within applications.

4. This study tests extends the Smalltalk study mentioned in the previous section [Wil87] 

by testing new algorithms designed by the author.

5. The data  collected was generated using an actual working persistent object system 

(PSE) rather than a simulation of one as was done by Williams et. al. [Wil87],

3.3 P S E ’s Caching Mechanism

Figure 3-1 illustrates the object directory and the cache. Handles are used to store status 

information on the objects they refer to. Handles for all of the objects existing in the 

currently opened database reside in the object directory in primary memory, from the 

time when the database is opened until it is closed. The cache contains the handles of 

the objects th a t are currently in primary memory. The caching mechanism determines 

which objects to remove from primary memory when the loading of a new object results 

in cache overflow. The cleaning of the cache is the process of determining which object or
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objects to remove and then removing them. After the cache is cleaned, removed objects 

get garbage collected. The replacement algorithm scans the cache and determines which 

objects to  removing based on a maximum or minimum count depending on the algorithm. 

I conducted some experiments to determine how many objects to remove from the cache 

each time it was cleaned. I experimented with removing one, two, and three objects at a 

time, and found th a t removing two produced the best results. Thus, I decided to stick with 

removing two objects each time the cache gets cleaned.

PSE stores handles in a two-tiered structure (see Figure 3-1): it has a directory which 

contains all of the handles for the objects stored in the opened database, and it has a linked 

list, referred to as the cache, which contains all the handles whose corresponding objects 

currently reside in primary memory. The cache exists to shorten the search of handles when 

cleaning occurs. The cache has a fixed size which is set by the user or by system default. 

It should be set below the level where the number of objects swamp the virtual memory 

system. This value depends on the size of the objects and the amount of primary memory. 

In Figure 3-1, handles <456>, <789>, and <432> are listed in the cache and thus point 

to objects th a t reside in primary memory. The remaining handles in the handle table point 

to objects tha t exist only in secondary memory and not primary memory.

In a PSE application, the cache will be cleaned when it is full and a new object fault 

occurs. An object fault refers to the occurence of a slot access or modification by the
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application program to an object not currently residing in primary memory. The slot access 

or modification causes the persistent object system to input the object from secondary to 

primary memory.

3.4 Caching Techniques

The caching techniques examined consist of those used in virtual memory systems [Lis79] 

and some original techniques developed by the author. It should be noted th a t it is likely 

th a t the behavior of the persistent object system will differ from th a t of a virtual memory 

system, because objects are essentially data, and the working set in a virtual memory 

system corresponds to the combination of code and data  in a program. One can imagine 

pages in the code section of a program needing to be accessed more than data  throughout 

the course of execution due to loops and repeatedly called subroutines. This process may 

occur repeatedly. Data, on the other hand, is more likely to be used and discarded. Once 

a data  item has been referenced, it may not be needed again.

The following list describes the techniques investigated in this chapter.

1. Least Recently Used (LRU): replace the object th a t has been least recently used. LRU 

is widely considered to generally be the best page-replacement algorithm for virtual 

memory systems.

2. Least Frequently Used (LFU): replace the object which has been used least frequently 

since the last time the cache was cleaned.

3. First-In First-Out (FIFO): replace the object which has been resident the longest.

4. Programmer determined: have a construct tha t can be used by the application pro

grammer to throw out an object.

5. (Faults Out): replace objects tha t have faulted the most based on the heuristic tha t 

the more an object has been loaded into the cache, the less likely it will be needed 

again. The fault count is reset to zero for each object each time a new application is 

initialised. This algorithm differs from LFU and LRU in th a t the count is over the 

entire execution of the program. In LFU and LRU the count is base on accesses since 

the object was loaded and is reset to zero when the object is reloaded.
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6. (Faults +  Acc): add the number of faults and the number of times accessed. Replace 

the object with the highest combination of values. This algorithm assumes tha t the 

more an object has been faulted and accessed, the less it will be needed. As with 

Faults Out the fault count is set to zero for each object when a new application is 

initialised.

The reasoning behind the usage of the fault counting heuristics is related to the behavior 

of the algorithms used in this evaluation. It is thus im portant to terrain-based and activity 

network simulations. Kruskal’s and Dijkstra’s algorithms traverse the nodes in the network. 

Once these algorithms have calculated the distances to and from a node, it is less likely tha t 

the node will be accessed as much in the future. Thus, the heuristic states th a t the more 

an object has faulted the less likely it will be referenced.

An audit trail of the behavior of the cache was generated to look for patterns tha t 

might lead to the development of more algorithms. Careful examination of the audit trail 

information after many executions of different applications on varying data  sets failed to 

show any clear patterns. Thus, the algorithms are based on heuristics.

3.5 Application Test-bed

The following applications have been used as a test-bed for the different caching techniques:

• Dijkstra’s Shortest Path Algorithm[Gou88]: finds the shortest path from a given node 

to all the other nodes in the network. Executes on a data  set consisting of road, 

intersection, bridge, and deadend objects. Two versions are used:

1. Standard algorithm.

2. Object removal version tha t uses functions to remove objects explicitly from the 

cache when no longer needed by the algorithm -  if we could do this optimally, 

the rest wouldn’t be necessary.

• Kruskal’s Traveling Salesman Algorithm[Go\i88]: produces a sub-optimal solution of 

the shortest path tha t visits all the nodes in a connected network. It uses the same 

set of objects as does the shortest path algorithm. Its behavior is similar to Dijk

s tra ’s algorithm, except tha t it traverses the road network differently and produces a 

different number of object faults. The standard algorithm is used as is one th a t does 

explicit removal of objects from the cache.
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• Activity Network simulation: consists of two applications th a t simulate different process- 

based activity network simulation models. Activity network simulation models have 

two basic components: activities and resources. Each activity must have certain re

source^) available to begin execution. Thus, an activity must sometimes suspend 

execution while waiting for its required resource(s) to be freed by another activity. 

Once the required resources are available, the activity places a lock on them and pro

cesses for a given amount of simulation time. The activity network applications utilize 

PSE’s process-based simulation facilities [Cam91].

The result is six programs which make up the application test-bed. The test-bed is prac

tical for simulation applications: the shortest path and traveling salesman algorithms are 

commonly used on road network flow simulations, and the activity networks are commonly 

used to model the requirements for servicing and maintaining equipment.

3.6 R esults

The timings were executed on a Stardent Titan III with the EuLisp [Pad91] version of PSE. 

Figure 3-2 displays a graph of the number of object faults generated for D ijkstra’s shortest 

path algorithm. LRU works best for the medium and larger sized caches, but Faults Out 

gives the best results when the cache is small.

Figure 3-3 displays a graph of the number of object faults generated under D ijkstra’s 

algorithm under explicit object removal. It produces suprisingly similar results to  the 

version without explicit object removal.

Figure 3-4 covers the number of faults for Kruskal’s traveling salesman algorithm. Faults 

+  Acc and Faults Out produce significantly better results than the other techniques. Since 

the other techniques have similar results, they are represented as a single graph the points 

of which are denoted by Jft. Likewise Figure 3-5 illustrates the object faults for Kruskal’s 

algorithm with explicit object removal. The results are also quite similar to the non-explicit 

removal version. The only real difference is with the “others” which do a little better with 

explicit object removal.

Figures 3-6 and 3-7 display the results for the medium and large activity networks. The 

large activity network has several methods tha t produce similarly good results with the 

slight edge being given to LRU. The results for the medium activity network show Faults 

Out being best for larger caches and LRU being better for smaller ones.
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Figure 3-2: Dijkstra’s shortest path algorithm
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This is a plot for Dijkstra’s Alg. with Explict object removal
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Figure 3-3: Dijkstra’s shortest path algorithm with explicit object removal
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This is a plot for Kruskal’s TSP
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Figure 3-4: Kruskal’s traveling salesman algorithm
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This is a plot for Kruskal’s TSP with explicit object removal
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Figure 3-5: Kruskal’s traveling salesman alg. with explicit object removal
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3.7 Discussion

The results indicate tha t Faults Out and Faults +  Acc. (both developed by the author) 

perform better or comparable to the others. However these examples have only been shown 

to occur under the applications used in this study. There may be different results under other 

simulations. The results are contrary to those found under operating systems which point 

to  LRU as the best for reducing page faults. It is likely tha t the reason tha t performance is 

better for Faults Out and Faults +  Acc is due to the nature of the objects. Herein lies the 

most im portant result of this study, LRU can be improved upon by using techniques (such 

as Faults Out and Faults +  Acc) which are designed with knowledge of the domain. There 

is no code being swapped-only data, and as a result, the behavior of the persistent object 

system is different than tha t of operating systems.

LRU does, however, appear to be a good conservative choice, because it usually does 

quite well and in some cases performs best. One approach would be to do an experiment for 

a specific application to determine which technique works best in each particular situation.

The results also show that there is no real improvements gained by having programmed 

the explicit removal of objects from the cache in an application. The poor performance of 

explicit removal of objects is due to the fact that the removal algorithm was not optimal, 

because programming an optimal removal algorithm was found to be generally difficult, if 

not impossible. Therefore, these experiments indicate tha t it is better to use the object 

removal heuristic th a t works best and forget about the explicit removal of objects.

3.8 Conclusions

Caches are im portant in a persistent object system to minimize the amount of persistent 

objects stored in primary memory at any given time, to allow object sharing, and to avoid 

swamping the virtual memory system. The comparison made in this chapter is between 

standard page replacement algorithms used in operating systems and original techniques 

devised specifically for persistent object systems.

Experimental evidence shows tha t it is more efficient to remove two objects from the 

cache each time it is cleaned. Also, under the applications used in this evaluation, Faults 

O ut and Faults -f Acc. perform better than LRU in some cases which is contrary to the 

current experience in operating systems which points to LRU [Lis79]. Thus, an im portant
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result of this study is tha t one can do better than LRU by designing replacement algorithms 

based on domain knowledge. The results show that it may be worthwhile under a persistent 

object system for a user to try  these different techniques to determine which one works best 

for his or her specific application.

For the purposes of making PSE more efficient, the Faults Out method has been chosen, 

because it is the most simple and efficient. The determination of using the best caching 

algorithm is consistent with one of the goals of this thesis which is to improve the perfor

mance of PSE. Also, since the persistent object system is merged with parallelism under 

various paradigms to improve performance, it makes sense to have the persistent object 

system be as efficient as possible. In the next chapter, a description of the basic simulation 

mechanisms in PSE is presented. Subsequent chapters present extensions to PSE ’s simula

tion capabilities which provide support for various paradigms and hybrids and the merging 

of parallelism and persistence.

36



Chapter 4

O bject-O riented Sim ulation

The two previous chapters of this thesis were concerned with the persistent object system 

and its implementation. The discussion now moves in this chapter to the basic utilities 

for object-oriented simulation which were ported from the Common Lisp version of PSE to 

EuLisp. Utilities similar to the ones covered in this chapter are available in most discrete- 

event simulation languages. However, it is im portant to include them, because they are 

used as building blocks for the merging of parallelism and persistent objects in support of 

process-based simulation as will be presented in Chapter 5. The advantage of using these 

primitives in PSE as opposed to some other simulation language is th a t in PSE they can 

be used with persistent objects. The advantage of having persistent objects in a simulation 

environment, in addition to those listed in section 1.1, is tha t it gives the user the ability to 

do further analysis of the objects’ stored simulation results following program termination.

Object modelling allows us to define a simulation as a set of classes of objects. Each 

class has attributes which account for its characteristics and procedures which define its 

behaviour. The behaviours represent the simulation actions taken by or upon the simulation 

objects. For example, an airplane with its speed, direction, and location attributes can have 

an increase-air-speed operation which when activated will increase the value assigned to the 

airplane’s speed attribute. Once the classes are defined, we instantiate the classes to create 

objects which represent the environment to simulate. These objects have the attributes and 

behaviour of their classes (eg. Class Boeing 747 with instance British Airways flight 87). 

Classes then define a model base which represents the simulation.

As was mentioned in section 1.1, there are three concepts which characterize object- 

oriented languages:

37



1. Encapsulation: behaviours or generic functions form the only possible interface to 

communicate with objects.

2. Polymorphism: a behaviour or generic function can be defined to do different opera

tions for each class or set of classes it is defined for.

3. Inheritance: a class can inherit attributes and operations from another class.

Object-oriented simulation [Bou92], as mentioned in section 1.1, consists of first forming 

classes of objects with common attributes and behaviours. Classes can refer to real object 

categories (workstation, waiting queue) or abstract object categories (operation, routing). 

The modelling governs the programming of the system, so it must be accurate, though it is 

usually updated during development using stepwise refinement. Object-oriented simulation 

assumes the representation of system knowledge: objects’ characteristics, their behaviours, 

and interactions between them. In object-oriented simulation, methods or generic functions 

are used to program state transition logics. The state transition logic is the plan th a t the 

simulation is to follow throughout its execution. The state transition logic can be realized as 

events or processes which determine which objects’ states get affected. At each processing 

of an event or process, when we launch a corresponding state transition logic, we activate 

associated events or processes through associated generic function calls on them. Time 

stamps are associated with event and process invocation to allow the simulation programmer 

to specify the ordering of events over time. For example, the behaviour change-direction on 

class airplane needs to have a time associated with it, so the simulation can know when in 

time the airplane is to alter its direction.

4.1 Simulation Capabilities in PSE

The discussion at this point will cover the basic simulation models th a t PSE supports: event- 

based and process-based discrete simulation. Subsequent chapters will focus on higher- 

level models supported by PSE. Events are actions th a t occur instantaneously; processes 

are actions which have a time duration and which may or may not consume resources. 

Events are scheduled programmatically (or by the user) to occur at the current simulation 

time or a t some time in the future. Processes are also scheduled to begin at a certain 

time; however, depending on the availability of necessary resources and the priorities of
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competing processes, the PSE scheduler controls the activation, interruption, reactivation, 

and termination of processes.

A global clock object maintains the scheduling and processing of events. However, be

cause PSE is CLOS and Telos-based, it takes advantage of generic functions, described in 

more detail in section 4.1.1. In contrast to message-passing languages like Ross [McA82], 

which discriminate methods on only a single argument, generic functions allow methods to 

discriminate on multiple arguments. In addition, PSE contains routines for sampling from 

normal, Poisson, and exponential probability distributions to facilitate non-deterministic 

stochastic processing, which is not supported in ROSS.

PSE’s process facilities are modeled after those found in Simscript [Rus79] and Simula. 

Once a process is scheduled, control is turned over to PSE for activating the process. 

In many cases, processes utilize resources; and, if a required resource is not available, 

indefinite delays can occur. When the resource is relinquished by another process, it is then 

assigned to the scheduled process and activation begins. Below the event and process-based 

simulation capabilities of PSE are discussed in more detail, and some explanatory examples 

are presented.

4 .1 .1  E v e n t-b a se d  s im u la tio n

The event-based simulation primitives discussed in this section allow the simulation pro

grammer to send messages to other objects with time stamps for when they should execute. 

The scheduling primitives like do-at and do-after place the event with the timestamp onto 

the clock’s queue of events to execute in timestamp order. As the simulation executes, 

the clock picks the next event off its queue, updates the time to the timestamp value, 

and executes the event. The simulation continues executing until all scheduled events are 

processed.

The code presented in this section is for a simple carwash simulation which contains 

several stations tha t cars, to be washed, must pass through. Each station has a queue 

th a t cars must wait in before being processed. Therefore, the carwash is a simple queueing 

simulation. The following method (add-to-queue) can be executed as an event, because it 

has a resource as its first argument.

f i f

;;; add an auto to a carwash’s input queue.
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f t f

(defmethod add-to-queue ((carwash resource) (object auto))

< other functions associated with adding an auto to a carwash queue>

. )

The method add-to-queue merely adds the auto to the carwash resource (eg. vacuum, 

wash, and wax) for processing. It can be scheduled as an event by the PSE do-at function 

as follows:

;;; schedules the method "add-to-queue" to occur every 10 time units 

(defun run-carwash (carwash list-of-vehicles)

(setq wash-time (current-time))
(dolist (object list-of-vehicles)

(do-at carwash wash-time ‘(add-to-queue ,carwash ,object))
(setq wash-time (+ wash-time 10)))

. )

The function do-at will add the method add-to-queue to the list of scheduled events. 

Because the first add-to-queue event is scheduled for the current time, the scheduler will 

process the event before the clock advances. Another similar PSE function for scheduling 

events is do-after. The function do-after has the same format as do-at; however, the time 

param eter indicates a time in the future relative to  the current time.

Telos generic functions give additional modelling power to PSE’s simulation facilities 

not found in message-based simulation languages like ROSS. For example, in ROSS, there 

can be only one method for add-to-queue defined on a resource object. The example below 

shows how PSE supports additional methods for add-to-queue which discriminate on the 

second param eter object. This version of the method is invoked for add-to-queue events 

when the second argument, object, is an instance of type truck.

;;; add a truck to a carwash’s input queue.
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(defmethod add-to-queue ((carwash resource) (object truck))

< other functions associated with adding a truck to a carwash queue>

. )

Thus, through the use of do-at and do-after, discrete-event simulations can be developed 

through the scheduling and execution of events on objects. These primitives are basic, but 

are needed for building the more powerful and higher-level process-based utilities discussed 

in the next section.

4 .1 .2  P ro c ess-b a sed  s im u la tio n

Process-based simulation closely models many activities in the real world. Any system 

where there are clients tha t require and compete for servers can be modeled in this domain. 

Examples tha t map well to process-based simulation include: bank tellers servicing a queue 

of customers, assembly lines, and maintenance schedules of aircraft. When simulating the 

specifics of the modelling of, for example, the maintenance of aircraft, the aircraft to be 

worked on are the clients, and the availibility of technicians and replacement parts are the 

resources tha t they must compete over. A process might be inspect-engine. It would be 

invoked on an instance of airplane. The resource to compete over would be the mechanic. 

If the engine is faulty, then another process would be activated on the airplane to have the 

engine repaired. The resources it would compete for would be a mechanic and spare parts. 

Thus, process-based simulation supports a higher level abstraction tha t maps into many 

real world systems.

The operational differences between processes and events stem from the definition of a 

process as an activity tha t occurs over a duration of time, rather than an event which is 

instantaneous. Processes, like events, are defined as methods and activated as function calls. 

However, most processes include a resource argument. Resources are declared as a subclass 

of the built-in class resource and therefore inherit methods defining their behaviour within 

process calls. When a PSE process is activated, the system determines if a required resource 

is free. If an instance of the necessary resource is available, it is automatically assigned to 

the active process. Control of the resource then belongs to the process it is assigned to 

until the process terminates. Scheduling of processes and allocation and deallocation of 

resources is controlled exclusively by PSE and is transparent to the user and programmer.
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In Simscript and Simula, resources must be requested and relinquished by the programmer 

within the process definition code.

Another feature of PSE processes is the assignment and management of process priori

ties. Priorities are useful when modelling a scenario with processes of differing precedence. 

For instance, in a job shop simulation, critical time-dependent tasks should be serviced 

immediately when they are scheduled. However, lower priority busy work tasks can be per

formed a t any time or interrupted if higher priority tasks are waiting. Suppose an active 

process is utilizing a resource, and subsequently, a higher priority process, requesting the 

same resource, is scheduled. PSE will suspend the lower priority process, execute the higher 

priority process, and then resume the suspended process. All process suspension and re

sumption is managed internally by the PSE system. A user need only specify priorities as 

an optional argument when defining processes. Simscript and Modsim also support process 

priorities but require tha t the simulation application code compare priorities of processes 

and explicitly suspend processes when necessary. Simula has no built-in capabilities for pri

oritizing processes. Thus, PSE has an advantage over Simula, because it supports priorities 

(though only for processes operating on a single resource instance) and handles automatic 

suspension and resumption of low-priority processes. Also, all PSE process-based simula

tion utilities support the use of persistent objects which allow the analysis of the simulation 

data  store in objects following program execution. As will be shown in this section, PSE 

can be used to  support processes operating on multiple resource classes though in a rather 

awkward way which is somewhat of a limitation in comparison to Simula.

Single resource queue vs. m ultiple resource queues

Two variations of process-based simulation are available in PSE: single queue and multiple 

queue. Single queue processes utilize a single queue for each class of resource which has 

been declared. Invoking a process which requires a resource instance results in scheduling 

the resource request on a queue associated with the class of the resource. When a resource 

instance of the class becomes available, the system will activate the scheduled process. 

When the resource is freed, PSE will select the queued process with the highest priority to 

execute next.

For resource classes with multiple queues, a request by a process is queued directly 

on an instance of the resource class. The system determines which resource instance to 

queue the process request by first looking for a free resource and, if none exist, scheduling
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the process for the resource instance with the shortest queue. The differences between the 

implementation code and simulation results for single queue and multiple queue simulations 

are illustrated below in a simple bank teller simulation.

;;; Code segments for teller simulation comparing single and multiple teller queue

;;; Choose one of the following two resource declarations;

(defresource teller single () ())
;;;(defresource teller multiple () ())

;;; Define a customer class

(defclass customer ()
((name :accessor name :initform (gensym))
(service-time .-accessor service-time)))

;;; Define a "service" process whereby a customer is serviced by a teller

(defprocess service 1 :resource (tel teller) ((cu customer))
(work tel ’service (service-time cu)))

;;; The top level function which creates tellers and customers, schedules 
;;; service processes, and executes the teller simulation

(defun run-teller ()
(setq *clock* (make-clock))
(let ((customers nil))

((setter get) ’teller ’resources nil)
(make-resource ’teller)
(make-resource ’teller)
(setq customers (cons (make-instance ’customer :service-time 100) 

customers))
(setq customers (cons (make-instance ’customer :service-time 10) 

customers))
(setq customers (cons (make-instance ’customer :service-time 100) 

customers))
(dolist (c customers)

(process-at ’teller (current-time) ‘(service ,c)))
(run *dock*)))

In the above code, defresource defines a teller resource class. The first argument of
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defresource declares the resource class name; the second argument indicates whether the 

resource is a single or multiple queue resource. The remaining arguments for defresource are 

identical to those for the Telos defclass function. The macro defprocess defines a simulation 

process. The first argument passed to defprocess is the process name; the second argument 

of the process definition provides the process priority, and the list following the :resource 

keyword indicates the required resource. The other parameters of defprocess are the same 

as the parameters of the Telos def method statement. A call to the function work within the 

process definition is used for advancing time during a process. In the function run-teller, 

the code first creates two tellers and three customers with service times of 100, 10, and 100 

units respectively. The call to process-at for each customer queues three service processes. 

Finally, run puts the clock into motion.

Figure 4-1 shows the results of two versions of the teller simulation: one using a single 

teller queue and the other with multiple teller queues, one per teller. In the single queue ver

sion, the customers are placed on a single queue based on their order of arrival. Customers 

are removed from the queue and assigned to the first available teller. W ith multiple queues, 

customers are assigned to the shortest individual teller queue upon arrival. For the given 

service times, the single queue version will terminate in 110 time units; the multiple queue 

version requires 200 units to process all customers. In addition to process-at which schedules 

processes at an absolute time, the analogous function process-after schedules processes at a 

time in the future relative to the current time.

• Single queue simulation utilizes 110 time units.

• Multiple queue simulation utilizes 200 time units.

In all the examples so far, processes have required a single instance of a resource class; 

however, processes can also be defined without the need for resources using the following 

functions:

(process-without-resources-at <time> }(<process-name> <process-parameters>)) 
(process-without-resources-after <time> *(<process-name> <process-parameters>))

In such a case, the scheduler will execute the process at the scheduled time. No waiting 

is necessary because no resources need to be assigned to the process.

44



M ultip le resource instances per process

Another unique feature of PSE’s process-based simulation utilities, which is not available in 

either Simscript or Simula, is the ability to schedule processes requiring multiple instances 

of a single resource class. For example, in a job shop simulation, a work process may require 

more than one instance of an identical machine tool or other resource. This feature can 

be utilized only for single queue resource classes and only for processes without a priority 

parameter. Each process waiting on a resource queue advances through the queue in the 

same sequence as it was scheduled. A queued process waits until the required number of 

resource instances is available before it begins processing. When the resources are free, they 

are assigned to the waiting process and cannot be used or interrupted by other processes. 

For example, if there is a process requiring ten resources, then it must wait until 10 resources 

are free before it can execute. A process waiting for less resources is not allowed to jump 

the queue if they are available. When the process terminates, all resource instances are 

relinquished and available for use by other processes. The following PSE functions for 

dispatching a process with multiple resources correspond to process-at and process-after:

(process-mres-at <resource-class> <time> <number-of-resource-instances>
*(<process-name> <process-parameters>))

(process-mres-after <resource-class> <time> <number-of-resource-instances>
*(<process-name> <process-parameters>))

M ultip le R esource Classes

The example in section 4.1.2 described the modelling of the maintenance of an aircraft. It 

mentioned a process called repair-engine which compete for both a mechanic resource and 

spare parts resources. The way to model such a system in PSE would be to nest one process 

inside the other, each one reserves the classes of resource available.

(defprocess replace-fan-belt 1 :resource (f fan-belt) ((en engine))
(work f ’repair-engine-aux (service-time-to-replace-fanbelt en))
(setq f nil))
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(defprocess repair-engine 1 :resource (me mechanic) ((en engine))
(process-at ’fan-belt (current-time) *(replace-fan-belt en)))

One could argue tha t this way of using multiple resource classes isn’t the same thing as 

having a single process with multiple resources. While this is a valid criticism, by nesting 

one process inside as has been shown, the end result is the same as if there was a single 

resource reserving multiple processes.

Also, in the above example, since once a fan belt is no longer available once it has been 

used, it shouldn’t be freed. Thus the resource or resources associated with the resource 

variable (/in the above example) can be set to nil and tha t way they won’t be made available 

once the process has terminated, because the simulator checks to see if the resource variable 

has been set to nil before it frees any resources. If the resource variable is set to nil the 

simulator won’t  try  to free the resources and since there is no longer a pointer to  them, 

they will get garbage collected by the Lisp system.

M ixed processes and events

Similar to most other simulation languages, PSE supports the combination of processes 

and events in a single simulation. An example of mixing processes and events is illustrated 

in the following code which is part of a carwash simulation. The code segment represents 

the beginning of the simulation when the driver of the automobile pays the attendant for 

the carwash before the car is queued for washing. The activity of paying the attendant 

could be modeled by a process tha t represents the exchange of money, transfer of receipt, 

etc.; however, since none of these individual activities are critical, the carwash payment is 

modeled by use of a single event. As the code describes, the driver first pays the attendant 

and subsequently a carwash process is scheduled. This example also demonstrates the use 

of stochastic processing by the use of a normal probability distribution for sequencing autos 

and for the duration of the carwash process.

;;; Before an auto can get washed, the driver must pay the attendant. This 
;;; is the method for the event "pay-attendant".

(defmethod pay-attendant ((dr driver) (au auto))
((setter attendant-paid) au (current-time))
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;;; After attendant is paid, the car is scheduled for washing 
(process-after ‘vacuumer

(normal *attendant-delay-mean* *attendant-delay-sd*)
‘(vacuum ,au)))

;;; autoinstances is a list of autos to be dispatched for washing

(let ((start 0))
(dolist (auto autoinstances)
;;; schedules the "pay-attendant" event

(do-at (driver auto) start *(pay-attendant ,(driver auto) ,auto)) 
;;; payment of attendant for each auto is time sequenced 

(setq start (+ start (normal *start-mean* *start-sd*))))
(run *clock*))

4 .1 .3  R eco rd in g  s im u la tio n  ev en ts  and  p ro cesse s  in  P S E

Collecting and analyzing the results of simulation trials is a critical component of a sim

ulation lifecycle. Most simulation languages have statistics gathering routines which can 

be included in the simulation application code during implementation. PSE has adopted a 

different approach by transparently maintaining a database of simulation activities. Every 

simulation activity, including event dispatching, process activation, process suspension, and 

resource utilization, is recorded in PSE’s activity database. W ith such a complete audit 

trail of the simulation’s activity, a post-simulation trace can be produced in many different 

formats. Below are two different formats which can be modified by users to accommodate 

their own analysis requirements. The first trace is a time-based account of the single queue 

teller simulation. Note, however, tha t this trace is not generated during simulation process

ing; rather, the required data is recorded during the simulation and the trace is recreated 

by retrieving data from PSE’s activity database.

Time: 0.0
process service g392 is scheduled with args (#<customer 42346236>)
process service g392 is started on #<teller 42325446> with

args (#<customer 42346236>) 
process service g393 is scheduled with args (#<customer 42345606>)
process service g393 is started on #<teller 42322436> with

args (#<customer 42345606>) 
process service g394 is scheduled with args (#<customer 42345156>)

Time: 10.0
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process service g393 is terminated on #<teller 42322436> with 
args (#<customer 42345606>) 

process service g394 is started on #<teller 42322436> with 
args (#<customer 42345156>)

Time: 100.0
process service g392 is terminated on #<teller 42325446> with 

args (#<customer 42346236>)

Time: 110.0
process service g394 is terminated on #<teller 42322463> with 

args (#<customer 42345156>)

An alternative trace format presented below is organized by process identifier and process 

status. For each process that is generated, a set of associated data  is recorded. This format 

provides a different organization of the same data presented above.

pid = g392
pname = service
scheduled-time = 0.0
start-time = 0.0
resources = #<teller 42325446>
end-time = 100.0
suspended = nil
work-time = (100)
arguments = (#<customer 42346236>)

pid = g393
pname = service
scheduled-time = 0.0
start-time = 0.0
resources = #<teller 42322436>
end-time = 10.0
suspended = nil
work-time = (10)
arguments = (#<customer 42345606>)

pid = g394
pname = service
scheduled-time = 0.0
start-time = 0.0
resources = #<teller 42276556>
end-time = 110.0
suspended = nil
work-time = (100)
arguments = (#<customer 42345156>)
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In conclusion, object-oriented simulation allows a model builder to make use of objects 

and methods to describe the characteristics and behaviour of the system they wish to 

simulate. PSE has constructs for both event and process-based simulation. The event- 

based mechanisms allow the scheduling of events on multiple resources, which makes PSE 

more powerful than counterparts like ROSS. PSE’s process-based utilities support resources 

with both single and multiple request queues. It allows priorities to be assigned to processes, 

and supports automatic suspension and resumption of low-priority processes which makes 

it more powerful than Simula, Simscript, and Modsim. It also keeps a audit trail of each 

process’s behaviour during execution as a debugging aid.

The utilities described in this chapter were ported from the Common Lisp version of PSE 

to EuLisp by the author while at the University of Bath. They are necessary to support the 

development of utilities that support the merging of persistent objects and parallelism. All 

these simulation utilities for both discrete-event and process-based simulation allow the use 

of persistent objects which allows analysis of object slots following simulation termination 

as well as freeing the programmer from file and database complexities. PSE is the only 

simulation language tha t supports persistent objects where slot modification updates the 

database transparently. Parallelism will be shown in this to improve the performance of 

simulations.

In the next four chapters, the utilities tha t support these paradigms which were developed 

by the author while at the University of Bath are described. Applications using these 

utilities are also presented with results.
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Figure 4-1: Results of two versions of teller simulation
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Chapter 5

Concurrent Process-based  

Sim ulation w ith Persistent O bjects

In Chapter 3, different replacement algorithms were tested to determine which one of them 

would make PSE perform the most efficiently. In this chapter, parallelism is utilized as a 

means of improving the performance of PSE’s process-based simulation utilities. The focus 

in this chapter turns to the use of conservative protocols for parallel process-based simulation 

in PSE. A comparison between optimistic and conservative techniques will be made with 

reasons given for the use of conservative protocols. Also, an application will be presented 

which extends the capabilities of the conservative concurrency control mechanism so tha t 

it allows the cloning of simulation objects at run time. At the time it was implemented 

for this thesis (1991), the ability to add new objects to a simulation was not allowed under 

conservative protocols. However, I have recently been informed tha t a group a t UCLA 

headed by R. Bagrodia has developed a system th a t also does cloning under conservative 

mechanisms. While I was aware of the existence of Bagrodia’s group, I had no knowledge of 

any work they were doing in cloning. Even so, Bagrodia’s group doesn’t support persistent 

objects, so there are no doubt differences between their work and the work presented here.

In this chapter, a technique tha t makes the dynamic creation of objects under conser

vative mechanisms possible is presented. An application of dynamic object creation called 

cloning (where an object is copied) is also presented to show where dynamic object creation 

can be useful. Cloning is done dynamically to improve the throughput of the system being 

modelled. It works by cloning simulation objects tha t cause bottlenecks. Through cloning 

and the subsequent rerouting of some tasks, the bottlenecks are removed.
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Processes are represented as persistent objects which support the perusal of simulation 

behaviour after the completion of its execution. This chapter also describes why it is 

advantageous to use conservative protocols to synchronize parallel persistent object-based 

simulations. An assembly line application is presented which executes under conservative 

protocols which were modified to permit the cloning of objects.

5.1 Persistent Objects and Concurrency

The motivation for concurrency is to improve the performance of simulations. However, to 

execute a persistent object-based simulation requires protocols to manage the concurrency 

to ensure th a t the simulation semantics are not altered from its sequential version. The 

choice was made to implement concurrency at the event level rather than the database 

transaction level, because if dependent events are synchronized on each object, database 

transactions will be sychronized as well. Event-level sychronization will allow independent 

events (eg. move car to station X , process first car on station Y) to execute in parallel. 

Dependent events which act on the same object (eg. move car A to station X, process car A 

at station X) will be executed in lock-step. Since events are the parallelizable unit, if they 

are synchronized based on the write sets of objects (a write-set is a group of objects that 

are dependent on each other because they modify or access the same mutable attributes), 

so will the database transactions they generate. If dependent events are sychronized, then 

all database transactions will be serialized for each object, because events are the driving 

apparatus of the simulation and the only agent which produces database operations. Thus, 

the environment demands a protocol which will control concurrency for events and the 

transactions will follow suit.

In choosing a concurrency protocol for PSE, a few techniques were considered:

1. placing semaphores around write-instance-which writes an object’s current represen

tation to the database.

2. optimistic concurrency control

3. conservative concurrency control
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5 .1 .1  S em a p h o res

The first approach made for this thesis, to produce concurrent persistent objects, was to 

place semaphores around PSE’s write-instance function. The use of semaphores alone, how

ever, did not produce adequate results, because there is more to  be synchronized than the 

writes to the database. Events as well must be synchronized to ensure tha t the simulation 

results will be identical to the sequential version by obeying the simulation semantics. Inde

pendent events can execute in parallel, but events affecting the same objects must execute 

in time stam p order. Placing semaphores around write-instance does not sychronize events. 

Therefore, another technique was needed.

5 .1 .2  O p tim is t ic  C o n cu rren cy  C ontro l

Optimistic and conservative techniques were considered to utilize concurrency at the event- 

level in PSE. The most commonly referenced optimistic concurrency control mechanism is 

Time W arp [Jef85b].

The basic device used by Time Warp is to impose a virtual time order for every process. 

This ordering is achieved by having each process queue its incoming messages by time-stamp 

order rather than arrival order. In this way, a process can be thought of as working along 

its input queue, increasing its local virtual time (LVT) (the time-stamp of the message 

currently being handled by a process) to the time-stamp of each message as it gets to  it. 

When a  message arrives whose time-stamp is smaller than the process’s LVT, the message 

lands in th a t part of the queue already processed, thereby causing a rollback.

Time Warp solves the problem of ensuring the correct order of messages by unsending 

them. Each real message has a corresponding antimessage which, when sent to the same 

destination as the original positive message, serves to annul it. It is crucial th a t the antimes

sage carry the same time-stamp as its positive corresponding message, because the arrival 

of the antimessage must invalidate any work performed by the recipient from tha t time on, 

and cause the recipient to rollback to tha t point if necessary. Should the recipient rollback 

in response to the antimessage, it will send more antimessages to yet other processes. In 

this way, the rollback will propagate to the other affected parts of the system as desired.

For this thesis, optimistic methods were not chosen, because of the cost involved with 

rollback in database systems. If I’d had access to a database system tha t had a rollback 

mechanism, it certainly would have made it feasible to do Time Warp rollback using tha t
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mechanism. It seems to me tha t the implementation of a database system with rollback 

so tha t I could make use of it for a Time Warp system is beyond the scope of this thesis. 

Also, I would personally argue tha t doing rollback on a database system would be very 

expensive, due to the slowness of disk operations relative to memory operations. Thus, I 

would say th a t database rollback is very expensive compared to rollback implemented in 

primary memory. The cost of storing persistent objects to secondary memory can require 

between one hundredth of a second to one second depending on the size of the object and 

the performance of the database system being used.

The other option for implementing Time Warp with persistent objects would be to 

require th a t all modifications to the database be stored in primary memory until the Global 

Virtual Time (GVT) has passed the transaction’s time-stamp which means the modification 

to secondary memory can then be made safely. However, I would argue tha t the saving of 

object modifications in primary memory until GVT is undesirable, because it adds to the 

already large primary memory requirements associated with optimistic systems [Ung93]. 

The other large memory usage goes to the state saving queues which record the state of 

each object from LVT back to GVT, and the message queues, which may be quite large due 

to antimessages and messages th a t will be undone.

One of PSE’s design goals is to handle large simulations which can require thousands 

of objects which would likewise require a large amount of primary memory. As a result, 

the fact th a t optimistic methods require a large amount of memory for state queues is a 

negative factor and is one reason for not using optimistic methods with PSE. The other 

reason for rejection is due the high cost of undoing messages, which result in modifying 

persistent attributes which, as described previously, is slow and memory intensive under 

optimistic methods making them unattractive.

5 .1 .3  C o n ser v a tiv e  m e th o d s

Conservative techniques require tha t the events for each object execute in time-stamp order. 

This requirement restricts communicating objects from overtaking one another. Therefore, 

unlike optimistic methods, there is no rollback.

Conservative techniques can be summarized as follows [Cha81, Fuj90]: If a process con

tains an unprocessed event E l with time-stamp T1 and tha t process can determine th a t it 

is impossible for it to receive later another event with time-stamp smaller than T l, then
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the process can safely proceed with E l because it can guarantee th a t doing so will not later 

result in a violation of the local causality constraint. Processes containing no safe events 

must block; this can lead to deadlock situations if appropriate precautions are not taken. 

The sequence of messages on an input queue must be in nondecreasing order. Each queue 

has a clock associated with it tha t represents the time of either the first message on the 

queue or if there are no messages, the time of the last message processed. Each object 

repeatedly selects the queue with the smallest time-stamp and processes the message on it 

if there is one. Otherwise it blocks and waits for a message to arrive on th a t queue. The 

protocol guarantees tha t each process will only execute events in time-stamp order.

Figure 5-1 illustrates the behaviour of a process under conservative mechanisms. The 

circle corresponds to a logical process (LP) which is represented as an object. It has two 

input queues tha t are initialized statically connecting it to the other LPs in the simulation 

th a t send messages to it. It has a single output queue it places the output messages on. The 

LP in figure 5-1 repeatedly checks both INI and IN2 for the lower clock value and processes 

a message on the queue if there is one. Chandy and Misra have shown th a t by sending 

null messages, LP’s will continue to advance and therefore avoid deadlock. I have chosen 

Nicol’s variation [Fuj90] which only sends null messages on demand as follows: if there is 

not a message on a queue, the LP will request tha t the LP on the other end of the queue 

send a null message timestamped at the sending LP’s current time. The receiving LP will 

then advance the clock value to the timestamp and proceed to find the next queue with the 

lowest timestamp. This demand-driven scheme was chosen, because it avoids sending null 

messages unless it is necessary which seems to be more efficient.

It should be noted that there are other techniques for handling deadlock other than 

the null message technique, such as active null messages. Chandy and Misra [Mis86] have 

developed a technique tha t can determine when deadlock will occur, so th a t corrective 

measures can be taken without the call for null messages. From the point of view of object 

cloning, which will be discussed in section 5.3, there is no essential difference between these 

methods; they all require a statically determined communication graph.

Conservative mechanisms require less primary memory than optimistic ones, because 

there is no need to save the state each time an event is processed and input queues contain no 

antimessages. Also, in the case of persistent systems, there is no need to save modifications 

to the database, because due to the lock step execution of events for each object, once 

modifications are made, there is no need for the protocol to undo them. While there
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Figure 5-1: A Logical Process

are several techniques for dealing with deadlock in conservative systems[Mis86], the null 

message technique is chosen because it does not require the temporary shutting down of 

the simulation tha t is required by the deadlock detection algorithm.

Livesey presents a combination of optimistic and conservative methods called varimism 

[Liv90], but it has the same memory demands as the optimistic approach, so it was re

jected, because the kind of large-scale simulations th a t PSE is designed to support contain 

thousands of objects using large amounts of primary memory. Thus, a memory-efficient 

technique is necessary. Conservative techniques are memory efficient, because they don’t 

use rollback which requires a large amount of memory-consuming state saving.

5.2 Persistent Objects as Concurrent Processes under Con

servative Protocols

The resulting implementation in PSE consists of having simulation processes (as described 

in chapter 4) represented as persistent objects. Each persistent object is then executed 

by the system as a logical process with input channels connected to the processes they 

receive input from. The advantages of representing processes in a conservative mechanism 

as persistent objects are tha t each object encapsulates the environment associated with each 

process, and a history of the events occurring on the process can be stored transparently to 

the database.

One of the most im portant advantages of object-oriented programming is encapsulation. 

It allows a programmer to partition portions of code and data  in the program which reduces 

the overall complexity of the system. In the example to be presented in section 5.3, each 

assembly line station is represented by an object which contains information about the delay 

time, stations connected to, thread pointer (each LP gets its own thread to execute in -  

threads are the programming language construct used in PSE to implement concurrency), 

and a history list storing the time and name of each job th a t has passed through the
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station. The history list is a persistent slot (as are the connection and delay time slots) 

which when modified cause the underlying persistent object system to modify the database 

accordingly in a manner which is transparent to the application programmer. Thus, once 

the program has terminated, examination of the simulation’s behaviour can be carried out 

through perusal of the history list stored in the database. The thread pointer field is 

not persistent, because the thread is built at load time and the pointer will vary on each 

execution.

Figure 5-2 illustrates the data  structures used to build the parallel simulation of the 

assembly line using conservative protocols and persistent objects. The queue structure is 

supplied by the system and contains a pointer to the message queue, the queue simulation 

time, the pointer to the semphore created to maintain mutual exclusion on access to it by 

separate processes, a pointer to the LP object tha t is placing messages in the queue, and a 

queue identifier which exists for error checking purposes. The station object e l s  illustrated 

contains slots for the simulation time of the LP and a pointer to a list of input queues -  when 

cloning occurs new input queues get added to this list. The station object also contains 

the delay time for the station to work -  an application dependent slot. It also contains a 

pointer to the list of previous station object(s) for error checking purposes. Likewise it has 

another slot which contains the list of station object(s) it sends output messages to. The 

station objects are stored in a list to allow for more than one station object to be connected 

to the other. Finally, it contains a thread pointer and a history list as described earlier. It 

is im portant to note tha t all the slots for the station object must be specified for any other 

conservative protocol-based simulation under PSE. Extra application-dependent slots may 

be necessary, however, depending on the application.

The main difference between a sequential and a concurrent process-based PSE simula

tion from the application programmers point of view is tha t all simulation objects must 

contain an extra thread attribute. The thread attribute must be assigned an initial form 

which consists of a call to the EuLisp make-thread function. Likewise the call to make-thread 

must contain embedded code tha t handles the processing of messages for the logical process 

object. Currently, the code must be copied for each object with slight object-specific mod

ifications tha t know about the object’s structure. The slots are the same, but the naming 

may be different, because it is up to the user to define the LP object. It mainly consists of 

changing the names of the accessors depending on how they are named in the application. A 

more generic version could be developed, but due to time constraints, it is beyond the scope

57



Queue Structure

pointer to message queue
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pointer to semaphore for queue access
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History list

Figure 5-2: Queue Structure and Station Object Contents
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of this thesis which is the development of a prototype. Also, extra system code must be 

loaded into the PSE system which contains utilities tha t support the conservative protocols 

as executed in each thread. Thus, the use of the conservative concurrency control facilities 

in PSE requires some modifications to the user’s code.

5.3 Object Cloning

Conservative mechanisms [Mis86] of concurrency control are characterized by a lock-step ex

ecution of messages amongst each process. Message queues are initialized statically making 

it impossible to create new processes dynamically. However, section 5.4 presents a technique 

th a t allows processes, as represented by persistent objects, to be added to the conservative 

mechanism at run time under some circumstances. This method, termed cloning of objects, 

can be useful when developing a model tha t responds dynamically to its current state; for 

example, a bank opening another teller window in response to  a large queue of customers. 

Since conservative methods execute events on each object in a lock-step fashion, they typi

cally require pre-knowledge of the connectivity, while on the other hand, optimistic methods 

use rollback to allow objects to execute events without ensuring th a t they are executed in 

time ascending order, and so it is possible to introduce new objects with ease. The devel

opment of a cloning mechanism further extends the capabilities of PSE, and the cloning 

application tests out the mechanism.

Replication of objects has been used in the Time Warp operating system to  support 

dynamic load balancing [Rei90]. Essentially cloning in this context consists of copying an 

object and its state into another object. This scheme allows new messages to be sent to the 

clone residing at the new location while the messages sent before the object is cloned can 

still be processed by the original at the old location.

The motivation in this thesis for cloning objects is different from load balancing; cloning 

is used here to experiment as a means of eliminating bottlenecks in a simulation model. 

For a simple example, consider the assembly line simulation described by Misra [Mis86] 

(see Figure 5-3). Note that it is possible for this model to deadlock under conservative 

concurrency control given the following scenario: X  cannot proceed unless it receives from 

Z, Z cannot proceed unless it receives from Y, and Y  cannot proceed unless it receives 

from X .  This model was implemented using conservative protocols under PSE. The null 

messages technique proved effective in avoiding deadlock.
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Source

Figure 5-3: Circular Assembly Line

In conditions of sufficient load, it could be desirable to replicate one of the assembly 

line services, to increase throughput of the model. Thus, cloning can be used to extend 

the modeling capabilities of the simulation model. It is the method of achieving such a 

replication which will be addressed in the next section, as well as the implications of the 

technique for simulation semantics.

5.4 Cloning Technique

The cloning methodology, which further extends PSE’s modelling capabilities, works as 

follows: a candidate is selected if it constitutes a bottleneck in the flow of the simulation 

model. Often simulations will have a smooth flow of traffic with a few bottlenecks in the 

simulation model itself which impede its behavior (traffic flow simulations being the classic 

example). By cloning these objects, bottlenecks can be eliminated to allow a consistent 

flow throughout the simulation. The simulator determines bottlenecks based on the size of 

an object’s input queue. When the number of messages waiting to be serviced on a single 

object is greater than some a , then a candidate is suitable for cloning.

The cloning problem is solved by copying the contents of an object into a newly created 

instance of the same class. A symbol must be generated dynamically, so the program will 

have a means of referencing the clone. After the object is copied, it then must be inserted 

into the simulation in a manner tha t will cause it to be utilized. Firstly queues must be 

dynamically linked to the clone tha t is connected to the same input objects as the original. 

Likewise, output queues must be attached to the clone linking it to the original’s outputs. 

Also, code must be added to each object tha t sends messages to the clone and the original. 

The code will do a random choice between the object and its clone, so it can determine
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Source

Figure 5-4: Assembly Line Configuration with Clone

which one it should send a message to. This process must be repeated for each input queue 

tha t links to the object being cloned. In this way, the number of messages sent to  the 

original object will be halved between it and its clone.

The problem of dynamically modifying the message sending code for objects linked to 

the original is the biggest hurdle in dynamically creating new objects under conservative 

protocols. However, due to the simple syntax and the dynamic nature of LISP (the imple

mentation language), the modification of an object’s message-sending code is much simpler 

than it would be in a static language like C.

5.5 Example Clone

A scenario will now be presented where cloning is useful. In Figure 5-3, assume th a t the 

delay time on station X  is short and long on station Y . As a result, the queue of objects 

to be processed at station Y  will become quite large making station Y  a bottleneck in the 

assembly line. It is therefore advantageous to clone it and divert some of the flow to its 

clone (Y"'). Figure 5-4 illustrates the circular assembly line after station Y  has been cloned. 

There are two queues now exiting from X  and there are two queues entering Z. These 

queues can be added while all processes continue their concurrent execution, because the 

new queues do not get messages placed on them until after they have been installed.

The following code is a snapshot of output from the circular assembly line simulation 

where a cloning occurs using the conservative concurrency control technique described ear-
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Her. It is executing on a three processor Stardent Titan. During the execution, jobs pass 

through the assembly line until the size of the queue for station Y  gets large, at which time 

Y  is cloned. The cloned station’s name, (700062, is generated dynamically using a function 

in the programming language library [Con]. After the cloning occurs, jobs get sent from 

station X  to both stations Y  and (700062 to reduce the bottleneck. The output is as follows:

job c on station y at time 36
job f on station X at time 38
job c on station z at time 44
cloning station
job g on station source at time 40
done cloning station
job a on station y at time 38
job d on station X at time 40
job b on station X at time 42
job f on station y at time 39
job g on station X at time 43
job b on station y at time 43
job g on station y at time 44
job h on station source at time 45
job d on station G00062 at time 41
job e on station X at time 45
job d on station z at time 45
job e on station y at time 46
job c on station X at time 47
job h on station X at time 48
job c on station G00062 at time 48
job h on station G00062 at time 49
job a on station z at time 46

Through observation of both the assembly line simulation of Figure 5-3 and the cloning 

one of Figure 5-4, the queues on Y  process gets reduced by approximately one half after the 

clone. The non-cloning version gets to a state where the Z  process spends most of its time 

waiting for input from the Y  process. The Y  process develops a large input queue, and the 

X  process likewise mostly waits for input from the Z  process.

In the cloning version of the assembly line simulation, it behaves similarly to the non

cloning version, until the Y  object gets cloned. After the clone, an equal number of objects 

get fed to both Y  and Y ' resulting in double the throughput. As a result, the amount of 

waiting done by X  and Z  is dramatically reduced.
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5.6 Impact of Cloning on Simulation Semantics

Certainly cloning alters the model of the simulation and therefore the results obtained. 

Cloning is a means which can possibly improve the behavior of a system being modelled. If 

the purpose of developing a simulation is to analyze an operation’s behaviour so as to better 

understand it and make it more efficient, then cloning is a reasonable technique th a t can be 

built into the simulation tha t will be triggered by a given set of parameters. Thus, cloning 

is an automatic means by which the simulation program can improve what it is modelling.

5.7 Future Developm ent

Future work should look into defining whether or not it is appropriate to clone. Also, 

there are certainly other applications for cloning under conservative protocols th a t should 

be investigated. It has been suggested tha t a simulation of a network of clients and servers 

would be a good application where dynamic object creation could be used for the simulation 

of the arrival of new clients.

5.8 Conclusion

A method for cloning persistent objects in a concurrent simulation environment has been 

presented. The different methods of concurrency control available were discussed. The 

reason for choosing the conservative approach was explained (it requires significantly less 

primary memory to  execute). The scenario provided found it would be useful to clone 

persistent objects in the case of handling bottlenecks in the system being modelled. PSE 

was extended to support conservative concurrency protocols on persistent objects. The 

mechanism was tested with an assembly line simulation. PSE’s support for conservative 

protocols was then extended to handle cloning. A simulation model tha t used cloning was 

then implemented and tested using PSE. Through observation, the use of cloning resulted 

in reducing the size of the queues on the bottleneck process in the assembly line simulation. 

The use of cloning therefore increased throughput.

The mechanism used for cloning in this chapter is original and at this point no other 

known conservative distributed simulation system allows objects to be added to the simu

lation dynamically as is now available in PSE. The dynamic properties of Lisp lended well 

to the implementation of dynamic cloning of objects.
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This chapter has covered one of the simulation paradigms for which parallelism and 

persistence have been merged in this thesis. The advantage of representing logical processes 

in conservative parallel simulation as persistent objects is tha t it supports the perusal of the 

simulation’s behaviour after its completion and frees the programmer from file and database 

complexities. While the assembly line example in this chapter is too small of an application 

to benefit from parallelism, it is useful for presenting a solution to the cloning problem 

under conservative mechanisms. It also paves the way for larger applications which could 

benefit from parallelism.

In the next chapter, the discussion will shift to support for connectionist models. Due 

to the great interest in connectionist modelling, and the number of systems being made 

available to support it, a connectionist representation language has been incorporated into 

PSE which utilizes persistence and parallelism to support knowledge based consultation 

by a simulation. The discussion will cover the language, its capabilities, applications, and 

performance improvements from mappings onto parallel machines.
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Chapter 6

Connectionist Simulations

Up to now, the discussion in this thesis has been concerned with the application of paral

lelism and persistence to time-based simulation paradigms. Time-based simulation is suit

able to modelling a significant amount of real-world problems. However, there are problems 

where time-based simulation is not suitable. Also, time based simulations, as was shown 

in section 1.2, often require a knowledge base for consultation on decisions tha t need to be 

made during execution. One of the domains where time-based simulation has no application 

is the modelling of the brain’s capacity for inferential reasoning. To support this kind of 

modelling, PSE has been extended, as a part of this thesis, to support parallelism and per

sistence for connectionist simulations which support the development of knowledge bases for 

consultation. Connectionist systems model the reasoning mechanisms of the human brain 

[Fel82]. Connectionist models can be combined with discrete-event simulations to support 

expert reasoning where it is necessary. A simple example would be when a moving object 

needs to make a decision about which road to follow. In such a case, it can be useful for the 

moving object, whose behaviour is simulated using discrete-event domains, to consult the 

expert knowledge stored in the connectionist model to make a decision on the proper course 

to take. Thus, the ability to do both discrete-event and connectionist modelling in PSE 

supports simulations tha t need to combine those two paradigms. Likewise, the components 

discussed in the previous chapters tha t utilize persistence and parallelism can be used in 

conjunction with the components described in this chapter as will be shown.

Connectionist models provide a mechanism for representing knowledge through connec

tions between neurons. Those connections are weighted to represent the certainty factors 

between semantic relationships. Due to the recent increase in interest in the use of con-
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nectionist and neural systems, there has been active development in tools th a t support 

their development [D’A88, Flo90, Fel88, Wan90]. Thus, to support the increasing demand 

for connectionist simulators, a component called POCONS (Persistent Object-based CON- 

nectionist Simulator) has been added to PSE. POCONS provides basic primitives for the 

development of object-oriented connectionist models. PSE represents neurons as objects to 

support encapsulation, inheritance, and reuse. These neuron objects can be made persistent 

using PSE’s persistent object system.

In this chapter, the POCONS system will be described and examples of its use will be 

presented. The interesting algorithms required for its implementation will also be described. 

The following chapter will then discuss applications to parallel computing using POCONS 

with results from parallel connectionist simulations. It will also present a feature for storage 

and reuse of neural networks which is a practical application of persistent objects. An 

extension of POCONS which supports chaotic neural networks will be presented in the 

next chapter as well.

6.1 POCONS: A Persistent Object-based Connectionist Sim

ulator

POCONS is a new component added to the EuLisp version of PSE which supports persistent 

object-based connectionist simulation. Other connectionist simulation tools are powerful 

and expressive, but with the exception of Neula [Flo90] and NSL [Wei91], they do not 

support an object-oriented design methodology. Both Neula and NSL have object-oriented 

constructs, but in both cases, their syntax and semantics are unlike the widely used object- 

oriented languages such as Smalltalk [Gol83], C + +  [Laf90], or CLOS [Bob88]. However, 

the syntax and semantics of POCONS is similar to both CLOS and TELOS [Pad91] (thus, 

there should be a shortened learning curve for programmers familiar with either systems). 

POCONS can be used to develop hybrid symbolic/connectionist systems, since it is embed

ded in Lisp which has been used extensively for symbolic inference. It is also extensible, 

because it allows a user to interactively create new neurons and rebuild the neural net

work: a feature not available in Neula or NSL. Also, unlike Neula and NSL, POCONS 

supports persistence which supports perusal of objects, frees the application programmer 

from database complexities, and, as will be shown in the next chapter, also makes the re

training of networks unnecessary through the reuse of trained networks. Likewise, unlike
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Neula and NSL, POCONS uses objects to represent relationships between different ele

ments of the network. Thus, the relationships as well as the neurons can be examined in 

the database after the application has terminated.

POCONS is a declarative language in tha t the programmer simply specifies the structure 

of the network, enters a command to make the system build the network’s internal structure, 

and initiates execution of a simulation.

6 .1 .1  T h e  C o n n ec tio n is t  M o d e l

The fundamental concept behind connectionism [Fel82] is th a t individual neurons do not 

transm it large amounts of symbolic information. Instead, they compute by being appropri

ately connected to large numbers of similar units. In this way, connectionist systems model 

the way the brain processes information. It is therefore unlike pattern-directed inference 

mechanisms which are used to implement production rule [Bro85] and logic-based [Ste86] 

systems. The inferencing mechanisms in Prolog (logic-based) and OPS-5 (production rule) 

use pattern-matching to perform operations like unification which assigns facts to variables 

by matching patterns presented in rules. Connectionist systems use mathematical formulas 

to propagate values which do the inferencing.

In addition, connectionist simulators such as P3[Rum86], M irrors/II[D’A88], RCS[Fel88], 

Neula[Flo90], Slonn [Wan90], NSL [Wei91], and POCONS allow users to execute connection

ist simulations and examine in a stepwise manner how connectionism models the reasoning 

of the brain.

There are many different ways of representing and training neural networks [Was89]. 

However, recent research in machine learning theory indicates th a t the learning of higher 

level knowledge from raw data, as opposed to pattern recognition-based learning, is ex

tremely time consuming and difficult [Pit88]. Recent attem pts have been made to combine 

symbolic with neural techniques. The symbolic component can be used for complicated 

inference, and the neural component can be used to provide a basic knowledge representa

tion scheme tha t works for noisy or incomplete data. As mentioned previously, POCONS 

can support these hybrid systems; however the focus of this chapter will be solely with 

connectionist applications.
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6 .1 .2  O b jec t-O r ien ted  C o n n e c tio n is t  M o d e l

Stroustrup defines object-oriented programming [Str91] as expressing the distinction be

tween general properties (eg. a shape has a color, it can be drawn, etc.) and specific 

properties (eg. a circle is a shape tha t has a radius, is drawn by a circle-drawing func

tion, etc.). Languages which allow these distinctions to be expressed and used support 

object-oriented programming. Other languages don’t.

Object-oriented modelling is advantageous for connectionist systems, because connec

tionist systems are used to model real-world behaviors which have general and specific 

distinctions. Thus, POCONS is based on the object-oriented connectionist model. In 

POCONS, the user does not specify any procedural information about the network’s ex

ecution. The model only requires tha t the user specify the neurons which represent the 

components of the network, their attributes, and relationships between them. POCONS 

can then be instructed to generate a neural network. Queries can be made on the network 

which initiate connectionist simulations.

The underlying POCONS system translates connectionist objects into sets of neurons 

th a t represent the class hierarchy and attributes. Each class has a neuron associated with 

it, and likewise the class neuron has weighted is-a links to the neuron which represents its 

superclass. Also, a neuron is created for each class slot-value pair (eg. (speed . 60)) which 

has links to its class and the class has links to it. In section 6.1.3, an extensive example 

will be presented which shows how to build an object-oriented connectionist network in 

POCONS.

6 .1 .3  B u ild in g  a C o n n ec tio n is t  M o d el

The following sentences were originally presented by Anderson[And76]:

John is a tall lawyer. (6.1)

The lawyer owned a dog. (6.2)

John kicked a model. (6.3)

The model's name is Jane. (6.4)

The model John kicked owns a car. (6.5)
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The knowledge in these sentences can be represented in POCONS in the following way:

(defdbneuron person (newron)
((owned initform nil)
(height initform nil)))

;NEWRON is the top-level object containing 
;audit information used in converting the 
;objects to a connectionist network.
(defdbneuron lawyer (person)

((owned initform ’dog)))

(defdbneuron john (lawyer)
((kicked initform ’model)
(height initform ’tall)))

(defdbneuron model (person) ())

(defdbneuron jane (model)
((owned initform ’car)))

(defdbopposites lawyer model)

In the above code, Defdbneuron is the defining component for the creation of a persistent 

neuron. It has the following form:

(defdbneuron neuron-name (superclasses) (slots))

The neuron-name will be used as a symbol tha t identifies the neuron. The superclasses 

specify the class or classes from which the neuron inherits. The slots describe the explicit 

relationships th a t the neuron will have. Slots are specified as a list containing slot-names 

and initial values. For example, the neuron Jane has a slot owned which has the value car.

Defdbopposites indicates a relationship between two neuron types and is defined as fol

lows:

(defdbopposites neuron-name neuron-name)

The neuron-name arguments must have been defined as neurons using defdbneuron. As 

a result of the use of defdbopposites, the system will place a negative link between the two 

specified neurons in the network. The negative link will keep the attributes of each neuron
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from being associated with the other. For example, (defdbopposites lawyer model) will keep 

the lawyer’s attribute tall from being associated with the model.

The use of defdbopposites generates a persistent object containing the specified infor

mation. Thus when reusing a neural network, one need only to reopen the database and 

all the information will be loaded on demand by the persistent object system into primary 

memory.

6 .1 .4  C on version  o f O b je c ts  to  a C o n n ec tio n is t  N e tw o r k

Once the neuron definitions have been loaded into POCONS, the user can instruct the 

system to convert the neuron classes to the underlying internal representation by executing 

the build-neural-network function.

The conversion algorithm examines each object and a neuron is created for each neuron 

name and for each slot attribute and value. The slot-attribute pair corresponds to (character 

initform ’((good . .7) (evil . .3))) which would be converted into two neuron’s: (character 

good .7) and (character evil .3). It then creates forward links from each subclass neuron 

to each superclass neuron. Links are also created from class neurons to their slot neurons. 

Pseudocode for this procedure is as follows:

For each defneuron
1. Convert neuron name to a neuron and link to superclass neurons
2. For each slot attribute

a. convert each slot-attribute pair to a neuron and link it 
to its class neuron

3. Create back links from subclass neurons to superclass neurons

The following formal specification of the algorithm uses the formal high-level algebraic 

specification technique [Geh86]. In the specification, a neuron-object is the instance created 

by a call to defdbneuron as shown earlier which can be translated into many neurons, and 

a neuron-struct is the structure created for a single neuron.

TYPE conversion-of-obj ects-to-neurons

EXTERNAL OPERATIONS make-instance, write-instance-to-database, member, cons
superclass-of, set-link, create-structure, 
return-class-slots
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INTERNAL OPERATIONS defdbneuron, make-neuron-struct,
build-neural-network, convert-neuron-obj , 
get-superclass-obj, link-slot-to-class, 
link-class-to-superclass

SYNTAX

defdbneuron: arglist -> neuron-object 
make-neuron-struct arglist -> neuron-struct 
build-neural-network: -> neuron-struct-list
convert-neuron-obj: neuron-obj -> neuron-structs 
get-superclass-obj: neuron-obj -> superclass-obj 
link-slot-to-superclass-obj: slot X class -> nil 
link-class-to-superclass: neuron-struct X neuron-struct -> nil

SEMANTICS

VAR sub, super, n: neuron-struct 
k: neuron-object 
slot: neuron-object-slot

AXIOMS

defdbneuron(arglist) = neuron-obj-list:= cons(neuron-obj-list,
write-instance-to-database(make-instance(arglist)))

make-neuron-struct(arglist) = create-structure(neuron, arglist)

get-superclass-obj(neuron-obj) = get-neuron-name(superclass-of(neuron-obj))

link-neuron-class-to-superclass(sub, super) = set-link(is-a, sub, super)

convert-neuron-obj(neuron-obj) = k:= get-superclass-obj(neuron-obj)
IF NOT member(name(neuron-obj),

neuron-struct-names)
THEN convert-neuron-obj(k) 
n := make-neuron-struct(neuron-obj) 
link-neuron-class-to-superclass(n, k)
FOR EACH slot IN return-class-slots(n) 

link-slot-to-class(slot,n)

As the connectionist simulation executes, the inheritance mechanism propagates values 

from class to subclass (Figure 6-1), due to the training algorithm (discussed in the next 

section) acting upon the downward links in the neural network which were initialised by the 

conversion process. The back links from subclass to class have a fraction (0.25) of the weight 

of the downward links. The back links enable, for example, the activity value for person, if
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the one for lawyer is enabled. However, the links from class to subclass have larger weights 

to make the model consistent with the inheritance mechanism in object-oriented systems. 

Figure 6-2 illustrates the internal representation of the simple network defined previously.

A ctivation  Propagation

Activation propagation is the method employed by POCONS to train the network. It is a 

common training algorithm which is also used at least to some extent in M irrors/II, RCS, 

P3, SLONN, and Neula. Activation propagation as used in POCONS is based mostly on 

the way it is used in Neula. It is based on the Hebbian [Heb49] idea of cell assemblies: a 

Hebb rule acts so as to strengthen often-used pathways in a network, and was used by Hebb 

to account for some of the phenomena of classical conditioning. Let j  refer to any one of the 

input lines to a neuron, and let i refer to any one of the neurons in the network. A weight 

associated with a connection is therefore increased whenever the jth  input line is active and 

neuron i is firing. There is no facility for decreasing weights.

The Hebbian learning rule is tha t Wij is strengthened by correlated input to the cell and 

output from the cell. The change of the connection weight at time t between the jth  

and ith cells under Hebbian learning is therefore:

Wij(t) = rx j(t)0 u ti( t)  (6.6)

where Xj is the input line activity from the jth  cell, Outi is the output of the ith cell, 

and r is the learning rate; r = 0.1 is usually chosen.

Hebb proposed his learning rule for networks of real neurons. The biological basis of 

memory is still not clear, but the Hebbian learning technique can be exploited in a computer

Person

ModelLawyer

Figure 6-1: Inheritance in POCONS
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Figure 6-2: Internal Representation of a Connectionist Network

to perform inferential operations as is done in M irrors/II, RCS, P3, SLONN, Neula, and 

POCONS.

The variant of Hebbian learning used in POCONS is called activation propagation. The 

main differences between it and Hebbian learning is th a t it propagates values instead of 

weights and those values can be increased and decreased. Activation propagation is used 

to have values of related nodes affect one another to perform inferences.

In activation propagation each node has an activity value indicating its level of tru th . 

In the object-oriented connectionist model, the activation values get propagated through

out the network according to the rules of inheritance: subclass nodes inherit from their 

superclasses, and slot nodes inherit from their classes.

Initially, nodes have activity values, by default, of zero. Some nodes get values of 1 or 

— 1 stored in them as a result of the query being made on the network. The user may 

specify how many iterations they want the activation propagation algorithm to perform. 

The number of iterations determines how far the user wants the inheritance values to spread 

throughout the network.

To compute the change in a node’s activity level, the following formula is used for each
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node:

a -+1 =  S(a-) +  th res(J2  Wija*) (6.7)
j

The a\ represents the kth. activity level of node a,-. The summation means to sum the 

multiplication of the outgoing arcweights with the activity levels of the nodes they link to. 

The S function computes 1 — abs(a!{) to guarantee th a t there is no drastic change in the 

value when there is a value close to 1 or —1. The thres function is a threshold function 

th a t uses truncation to keep the activity value boundaries between [1 ,-1].

Please note tha t even though there are many different varieties of neural networks, they 

do have the following commonalities: weighted links, independent neurons, and a simulation 

algorithm which multiplies the weights against the neuron values. Activation propagation is 

only one of many techniques available. It was chosen, because it applies well to inheritance 

in object-oriented systems.

Neural networks also make use of training algorithms such as backpropagation [Rum86] 

which modifies the weights to make the network recognize different patterns. Successful 

training of a neural network using backpropagation can require many hours of CPU time. 

Backpropagation is not included as a utility in POCONS, because there are many different 

types of training algorithms which developers may use. If a training algorithm other than 

activation propagation is desired, it can be added by the user by interfacing with the 

POCONS system. In the next chapter, a chaotic model tha t was added to POCONS by 

the author will be presented.

6 .1 .5  E x a m p le  S im u la tio n

Once the the connectionist network has been built, simulations can be executed using the 

query-net command which has the following form:

(query-net activities-to-set values-to-display cycles)

Query-net requires three arguments. The Activities-to-set argument is a list of the neu

rons and initial activity values. If no value exists for a node in the activities-to-set list, the 

value will be set to one. The default value for all activities not listed is zero. Values-to- 

display is a list of the labels associated with the neurons whose values are to be displayed,
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because their changing values are of interest to the user during the simulation. Cycles indi

cates the number of iterations the simulation will use the activation propagation algorithm.

During the simulation, values propagate around the network to indicate the tru th  levels 

of nodes in the system. In the first query given below, the activity value for Jane is set to 

1.0, and the simulation is executed for five cycles. Each set of lists corresponds to a cycle in 

the execution of a simulation. During each cycle, values propagate out from the (is-a jane 

1.000000) neuron to other neurons tha t are either linked directly to it or have an indirect 

connection to it.

The following call to query-net initiates a five cycle simulation on the network defined in 

Section 6.1.3:

eulisp:0:act!2> (query-net ’((is-a . jane)) nil 5) 
(is-a model 0.330000)
(owned car 1.000000)
(is-a jane 1.000000)

(is-a person 0.108900)
(is-a lawyer -0.330000)
(is-a model 0.551100)
(owned car 1.000000)
(is-a jane 1.000000)

(is-a person 0.173917)
(owned dog -0.330000)
(is-a lawyer -0.626274)
(is-a john -0.330000)
(is-a model 0.896259)
(owned car 1.000000)
(is-a jane 1.000000)

(is-a person 0.247517)
(owned dog -0.749604)
(is-a lawyer -0.977629)
(height tall -0.330000)
(kicked model -0.330000)
(is-a john -0.749604)
(is-a model 1.000000)
(owned car 1.000000)
(is-a jane 1.000000)

(is-a person 0.253072)
(owned dog -0.994398)
(is-a lawyer -1.000000)
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(height tall -0.832234)
(kicked model -0.832234)
(is-a john -1.000000)
(is-a model 1.000000)
(owned car 1.000000)
(is-a jane 1.000000)

The resulting values for each neuron represents the level of tru th  tha t can be inferred 

about Jane and the various relations in the net tha t get activated. If a neuron’s activation 

value is zero, then it is not displayed.

The next query illustrates how one can selectively ask the net questions and have the 

output only list certain nodes. The next query asks the following question:

W ho did the dog owner kick? (6.8)

eulisp:0:act!7> (query-net ’((owned . dog)) ’(kicked) 5)

(kicked model 0.330000)

(kicked model 0.798489)

(kicked model 1.000000)

It takes the simulation three cycles before it has any kind of information pertaining to 

the query to display. The final value, (kicked model 1.000000), occurs at the fifth cycle. 

It indicates tha t the network infers tha t the model was kicked by the dog owner. The 

certainty factor increases after each step, because the links to (kicked model val) propagate 

larger values as the simulation proceeds.

6.2 Implication in a Connectionist M odel

Implication allows rules to be specified which help to solve a problem and build knowledge 

bases. The implication rules described in this section is an extension tha t I made for this 

thesis to  the modelling capabilities of the activation propagation algorithm. A knowledge 

base requires a set of facts, a set of rules, and an inference engine which applies the rules 

to the facts to produce inferential results. The implication mechanism described in this
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section, provides both a construct for defining rules and an inference engine mechanism 

which applies the rules to the facts stored in the neural network.

For the purposes of this thesis, the ability to develop knowledge bases in PSE is im portant 

so th a t simulations can be written tha t need to consult expert knowledge. The integration 

of knowledge-based systems and simulation has been shown to be useful by O ’Keefe [0 ’K86] 

and others. O ’Keefe lists three useful applications for this integration:

1. Generating new simulation tools from combining existing simulation and knowledge- 

based methods.

2. Advice giving systems for inexperienced simulators particularly in areas of experimen

tation and analysis.

3. Intelligent front-ends to a simulation.

Modsim [Her92a] is a Modula-2 based simulation language which has a component tha t 

allows the simulation programmer to interface with a Prolog-like system called ModLog 

[Whi92a] which, like POCONS, can be used to represent expert knowledge for consultation 

by the simulation. Like Modsim, PSE integrates knowledge representation with simulation 

libraries. Unlike Modsim, PSE’s knowledge-based representation component uses a connec

tionist representation as opposed to Modsim’s Modlog component which uses a logic-based 

representation. The advantage of using a connectionist representation is th a t it is more 

efficient [Ali93] and is explicitly parallel [Rum86]. Large simulations normally require sig

nificant amounts of CPU time, and for this reason the connectionist model was chosen 

to be included in PSE, because as will be shown, its explicitly parallel nature allows for 

significant performance improvements when executed on a parallel machine. Experiments 

using parallelism have been conducted in this thesis using POCONS and will be described 

in chapter 7.

Originally, POCONS was implemented to represent facts and connections through an 

object-oriented specification, but recently the ability to represent implication has been 

added to it. The motivation for representing implication in POCONS stems from experi

ence with langauges such as Prolog[Ste86] which represents implication in logic and OPS-5 

[Bro85] which represents implication in production rules. Other connectionist languages 

allow users to build the information contained in rules, but it must be built in an implicit 

rather than explicit manner. The construct for implication, defimplies, can be used to
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represent knowledge explicitly. This section describes the implication construct, its imple

mentation, how the system converts it into the connectionist representation, and presents 

an example of its usage.

The only other connectionist system which provides constructs for rules is DCPS [Tou86] 

which does the matching of rules at run time. POCONS resolves the matching at compile 

time for greater efficiency.

DCPS is based on a working memory model which contains the facts used for inference. 

It is based on the standard rule-based system approach which has a set of rules, a set of 

facts, and an inference engine which does the matching of rules to facts a t run time. The 

advantage of matching of predicates at run time is tha t it allows rules to  fire tha t partially 

match, allows rules which become satisfied due to dynamic behavior of the system, and 

allows new rules to be added dynamically. However, due to its dynamic nature, there is a 

greater amount of run time complexity than there is in the method described in this section 

which resolves rules at compile time.

6 .2 .1  Im p lica tio n

The implication construct in POCONS is a new addition to activation propagation tha t I 

designed and implemented for this thesis. The construct is called defim plies. It allows 

a set of conditions tha t if active will cause the set of results to be activated as well. The 

syntax for defim plies is as follows:

(defimplies (conditionl [conditions])
=> (result1 [results]))

A condition contains a condition name followed by a list of variables corresponding to 

the neurons it depends on to be satisfied. For example, in the condition (nand-gate inputl 

inputs output), the first element, nand-gate, is the name for the condition tha t will be 

satisfied if the other conditions and result clauses are satisfied. Inpu tl, input2, and output 

correspond to variables tha t must be satisfied based on their use in the result clauses to be 

made true. Multiple conditions are anded together as in Prolog. Each result must consist 

of variables or constants which will be used to match against values stored in neurons. For 

example, in the result clause (transistor inputl X  output), the values for inputl and output 

must will be the same as for the condition. Each variable represented in the conditions must
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appear in at least one of the result clauses. However, result clauses can contain variables 

th a t don’t exist in conditions (eg. X). Conditions and results are not order dependent.

The defimplies primitive can only be used after a connectionist network has been built 

by using (build-neural-network). The system interprets defimplies by creating a partition of 

links between the conditions and the results. This partition is built by the system between 

links created by the definition of the network and links created due to  the conditions and 

result clauses in defimplies. Figure 6-3 illustrates the representation of a neuron in this 

partitioned network. The neuron in Figure 6-3 labeled n has arrows leaving it to  indicate 

links to other neurons. The arrows leaving the circle inside the neuron represent connections 

built to the neuron as a result of one or more defimplies. The connections in this rule- 

partition will be used to compute the activation value for the neuron, because, out of 

semantic necessity, they take priority over the other ones.

Figure 6-3: Neuron with Partitions

Since the clauses in both the condition and result lists are anded together, it is necessary 

for the system to produce links only for those neurons whose values match the values 

expressed in the conditions. For example, if a result clause has a variable or constant that 

is the same as tha t of another result clause, then only neurons th a t have values th a t meet 

both requirements will be used.

If a neuron is shown to meet the requirements of the result clauses, then links are made 

from the neurons listed in the condition clauses to tha t result neuron. This procedure is 

executed at load time, after a call to build-neural-network.

For each condition
match variables in the result class against neuron values
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if it matches compare it to the other conditions

if it matches all the conditions then set a link from the
matching neuron to each one of the neurons in condition clause

end for loop.

The following is a high-level formal algebraic specification for the algorithm:

TYPE build-implication-links

EXTERNAL OPERATIONS get-all-matches, slots-match, get-neuron-value, cons,
set-links

INTERNAL OPERATIONS defimplies, set-rule-links,
match-all-results, match-slots, 
vals-match-results

SYNTAX

defimplies: conditions X results -> NIL 
match-all-results: conditions X results -> NIL 
match-slots: condition X neuron-list -> neuron-list 
set-rule-links: neuron-struct X neuron-struct -> NIL 
vals-match-results: slot X neuron-struct -> nil

SEMANTICS

AXIOMS

defimplies(conditions, results) =
match-all-results(conditions, results)

match-all-results(conditions, results) = 
neuron-list := get-all-matches(results)

FOR EACH result IN results
neuron-list := match-slots(result, neuron-list)

ENDFOR
cond-list := get-all-matches(conditions)
FOR EACH condition IN conditions

cond-list := match-slots(condition, cond-list)
ENDFOR
set-rule-links(cond-list, neuron-list)

match-slots(sit, neuron-list) = 
newlis:= NIL
FOR EACH neuron in neuron-list
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IF vals-match-result(sit, neuron)
THEN newlis:= cons(neuron, newlis) 

RETURN(newlis)

vals-match-result(sit, neuron) =
FOR EACH slot in get-neuron-slots(slt) 

IF slots-match(slot, neuron)
THEN RETURN(TRUE)

set-rule-links(conditions, neuron-list) =
FOR EACH neuron in conditions 

FOR EACH n in neuron-list
set-links(conditions, neuron, n)

When the activation propagation [Bur92] training algorithm is then executed, the system 

will look first to see if there are links associated with rules in the current neuron. If rule 

links exist, it uses them to calculate the neuron’s activity value. Otherwise, it uses the links 

associated with the original network configuration. Thus, the components of a neuron are 

represented internally as follows:

(defstruct neuron-struct ()

;symbolic arc label name (eg. is_a)
((nlabel initform nil initarg nlabel accessor nlabel)

;symbolic value associated with it (eg. person)
(nval initform nil initarg nval accessor nval)

;integer id for the neuron
(node-num initform nil initarg node-num accessor node-num)

;The neurons truth level
(activity-level initform 0 initarg activity-level accessor activity-level) 

;The list of connections built from rules
(rule-list initform nil initarg rule-list accessor rule-list)

;The downward inheritance links
(connect-list initform nil initarg connect-list accessor connect-list)

;The upward inheritance and semantic links.
(back-pointers initform nil initarg back-pointers accessor back-pointers)) 

constructor make-neuron-struct)
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The only difference between evaluation of rules at load time versus evaluation a t execu

tion time is the time at which evaluation occurs. A run-time rule evaluator, as in DCPS, 

would fire when a query resulted in the conditions of a rule to be satisfied. Whereas in 

POCONS, the rule links built at load time determine whether a rule is satisfied. The end 

result is the same.

The reason for having the rule links in the partition of a node have precedence over the 

node’s other links can be justified as follows: a rule is made to answer specific questions 

about the nature of the facts in the knowledge base. Therefore, if a rule is satisfied, it should 

take precedence over the other relationships specified between facts in the knowledge base.

6 .2 .2  Im p lic a tio n  E x a m p le

The following example is based on a Prolog example due to Sterling and Shapiro [Ste86]. It 

consists of a database of facts on components of logic circuits as illustrated in Figure 6-4. 

It also has rules tha t when applied to the facts will determine which components make up 

the inverters, and-gates, and nand-gates in the circuit.

/ / /  / / / /

Figure 6-4: logic circuit

The code segment below shows how to define the classes for resistor and transistor in
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POCONS. rl and t l  are definitions for instances of resistor and transistor respectively. 

E ndl and end2 are components which make up the two parts of a resistor. In the case 

of rl, power is the endl part and n l is the end2 part. In like manner, n2, ground, and 

drain correspond to gate, source, and drain in t l  respectively. In the interest of brevity, 

the code for all of the facts and rules is not listed in full, however after the execution of 

(build-neural-network) the network of neurons will be built.

(defneuron resistor (newron)
((endl initform nil)
(end2 initform nil)))

(defneuron rl (resistor)
((endl initform ’power)
(end2 initform ’nl)))

(defneuron transistor (newron)
((gate initform nil)
(source initform nil)
(drain initform nil)))

(defneuron tl (transistor)
((gate initform ’n2)
(source initform ’ground)
(drain initform ’nl)))

(build-neural-network)

After the network is built, the defimplies for nand-gate can be issued as in the following

code segment:

(defimplies ((nand-gate inputl input2 ouput))
=> ((transistor inputl X output)

(transistor input2 ground X)
(resistor power output)))

As a result, links will be attached from the nand-gate neuron linking to the neurons 

associated with transistor and resistor instances which satisfy the variables and constants 

listed in the result field of the defimplies. Note tha t the X  variable only needs to match 

elements from the two different transistor neurons. It isn’t used in the condition.

After the defimplies has been executed, a call to query-net will cause the activation
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propagation algorithm to make use of the connections between neurons to propagate the 

implied knowledge throughout the network.

The following listing is produced after three iterations of the activation propagation 

algorithm over the circuit-based network.

(end2 nl -1.000000)
(is-a rl -1.000000)
(end2 n2 1.000000)
(is-a r2 1.000000)
(is-a transistor 1.000000)
(drain nl -1.000000)
(gate n2 -1.000000)
(is-a tl -1.000000)
(drain n2 1.000000)
(source n4 1.000000)
(is-a resistor 1.000000)
(gate n3 1.000000)
(is-a t2 1.000000)
(drain n4 1.000000)
(gate n5 1.000000)
(is-a t3 1.000000)
(is-a nand-gate 1.000000)

Components in the listing tha t have positive values are ones inferred by the system 

to be parts of the nand gate. Components with negative values are those which do not 

meet the requirements of the implication rules to compose a nand gate. This example has 

shown how the facts defined as objects and the implication rules can be used to do Prolog 

type programming. One big advantage tha t neural systems have over Prolog is th a t their 

training algorithms are explicitly parallel [Rum86] and can therefore be applied to parallel 

processing hardware for execution with little difficulty as will be shown in the next chapter.

6 .2 .3  U se  O f N eu ro n  R u les  in  a S im u la tio n

W ith the implication primitives implemented, a PSE simulation can now exploit these 

inferencing capabilities. In many simulations, expert knowledge is needed to make a decision 

about which of several choices the simulation should choose. For example, in a military 

simulation, if a tank is under fire and it reaches a fork in the road, the knowledge in the 

rules can be used to determine which path to take. If the tank is evading attack, then 

certainly it will want to take the road which is going away from its attackers. It will also
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want to choose a road which is more concealed. Knowledge like this can be represented 

in rules and used to make decisions about which path to take. The following pseudocode 

shows how it can be done:

Consult query on roads to take in evasion given the 
current location 

Choose the road that has the most positive attributes that 
support knowledge about evasion

The values of the attributes can be dependent on the state of the simulation. No work 

has been done in this thesis in developing such a simulation. Nevertheless the utilities 

for discrete-event simulation and connectionism have been tried and tested. Also, both 

components can be loaded into a EuLisp image so tha t they can be used together. The 

development of a meaningful simulation tha t combines a knowledge base and discrete-event 

simulation is a large project and is beyond the scope of this thesis; however, a small example 

will be presented now just to illustrate the interface. The following code shows how an event 

written for the event-based utilities from chapter 4 can access the tiny knowledge base from 

section 6.1.3.

;;; Predicate using the kb.
(defun is-abusive (name)

(reset-neural-network)
(query-net (list (cons ’is-a name)) ’(f) 5)
(if (= (activity-level (get ’kicked ’model)) 1.0) 

t
nil))

(defmethod review-background ((b boss) (pe potential-employee))
(if (is-abusive (name pe))

(do-at (current-time) ‘(dump-resume-into-trash ’,b ’,pe))
(do-after 1000.0 *(schedule-interview ’,b ’,pe))))

The predicate is-abusive is given the name of the person to do a check on, and since the 

only information related to abusive behavior in the knowledge base is (kicked model xxx), 

does a check on tha t neuron to see if the system can infer whether such an action took
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place. If it has taken place, the event review-background schedules the event dump-resume- 

into-trash to occur immediately. If there is no evidence of abuse, the system schedules the 

event schedule-interview for sometime in the far distant future.

Below is an example of how a knowledge base can be reset and how the accessing of an 

activity value works in the POCONS system. Resetting is im portant, because it allows the 

user to query the network with new settings without rebuilding the entire network.

eulisp:0:pse-net!4> (print-vals *neuron-list*)
(is-a db-converse 0.000000)
(is-a db-negconverse 0.000000)
(is-a person 0.270958)
(owned dog 0.000000)
(is-a lawyer 0.108900)
(height tall 0.000000)
(kicked model 0.000000)
(is-a john 0.000000)
(is-a model 0.748122)
(owned car 1.000000)
(is-a jane 1.000000)
eulisp:0:pse-net!4< (() () () () () () () () () () ()) 

eulisp:0:pse-net!5> (reset-neural-network)
eulisp:0:pse-net!5< (0.000000 0.000000 0.000000 0.000000 0.000000
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000)

eulisp:0:pse-net!6> (query-net ’((is-a . john)) ’(a) 5) 
eulisp:0:pse-net!6< ()

eulisp:0:pse-net!7> (activity-level (get ’kicked ’model)) 
eulisp:0:pse-net!7< 1.000000
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6.3 Summary

POCONS is a language that supports the development of connectionist networks using 

persistent objects. It was added to PSE to provide support for the development of knowledge 

bases to be consulted by a simulation. Like other connectionist simulators, it uses a form 

of activation propagation. However, it has several advantages over those other systems:

1. persistent objects

2. interactively extensible

3. relationships are objects

The POCONS system creates persistent objects to represent all neurons and relationships 

in the neural network. These objects can then be examined in the database and reused (as 

will be shown in the next chapter).

Another advantage is that POCONS is Lisp-based, so it supports symbolic inference 

mechanisms.

POCONS is limited in that it has no built-in learning mechanisms. Also, it contains 

both a prototype persistent object system (PSE) and a preliminary implementation of 

EuLisp[Con] as underlying layers. Thus, it is not a good performer for large-scale applica

tions. However, it does serve its purpose as a prototype system which shows the effectiveness 

and utility of its design as a persistent object-based connectionist simulator.

POCONS was added to the EuLisp version of PSE to extend its modelling capabilities. 

Simulation and knowledge-based systems can be combined to allow simulations to exploit 

expert knowledge. POCONS is an object-based connectionist language which provides 

primitives for developing knowledge bases which can be consulted by a simulation developed 

using discrete-event, process, or Petri net utilites in PSE (see chapters 4, 5, and 8). The 

defimplies primitive shows that rules can be implemented in a connectionist model without 

symbolic pattern matching. The main advantage of using the connectionist model over a 

symbolic one is its explicitly parallel nature.

The object-oriented connectionist model and its realization through POCONS primi

tives has been described. The technique for implication through partitioned connections 

as implemented in POCONS has been described. Neurons tha t match the rules are de

termined statically and connections between neurons as a result of the rules are stored in 

partitions separate from the links built between factual information. When using activation
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propagation to train the network, the system gives priority to connections associated with 

rules.

Two examples have been presented. The first one was simple, but was useful as an aid 

to describing the system. The second was a logic circuit simulation which though it is not 

an actual real-world application, it is realistic in the nature th a t it is large and it is similar 

to the kinds of models tha t get used in practice.

The next chapter will cover extensions made to the connectionist component of PSE to 

support parallelism, reuse (a particularly good use of persistence), and chaos-based models 

which extends POCONS’s inferencing mechanism.



Chapter 7

Extended C onnectionist Sim ulation

This chapter is a direct followup to chapter 6 in tha t it describes extensions made, for 

this thesis, to the POCONS connectionist simulation package which was added to  PSE 

to provide support for knowledge bases. Once again, the goal of this thesis is to  merge 

parallelism and persistence in support of several and hybrid simulation paradigms. The 

advantages of this goal as related to the connectionist model will be shown in this chapter 

through the improvement of performance through parallelism and the reuse of trained neural 

networks through persistence. The extensions were carried out to support a different kind of 

modelling (chaos-based), parallel simulation (on SIMD and MIMD machines), and storage 

and reuse of neural network objects which relies heavily on persistent objects.

The chaos-based modelling component was designed to support the modelling of systems 

which exhibit chaotic behavior such as financial markets, weather patterns, and ocean waves. 

These and other models have been shown by researchers in their various fields to exhibit 

chaotic or persistently unstable behavior [And88].

Another extension, which will be discussed first, is the support for parallel simulation 

of neural networks on SIMD and MIMD architectures through compilation techniques that 

convert the neural network into code tha t uses parallel constructs.

An altogether different extension was the addition of a feature tha t supports storage 

and reuse of persistent neural networks. As will be described in the next section, one of 

the major advantages of this feature is tha t it supports the reuse a t a later date of trained 

neural networks which makes retraining unnecessary and therefore improves performance.
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7.1 Language Supported Storage and Reuse o f Persistent 

Neural Network Objects

The new feature (which is only available in POCONS) described in this section allows the 

state of the neural network to be checkpointed, stored as persistent objects, and reused 

from its checkpointed state. This feature provides an elegant facility for storing data  from 

trained neural networks and reusing them in later executions. Since trained neural networks 

can take many CPU hours to create, it is useful to have an elegant manner to store and 

reuse these objects.

7 .1 .1  C h e ck p o in tin g  and  S torage

While executing a neural network simulation, it can be desirable to save the state of the 

network at various intermediate stages to examine its evolutionary development. While 

the training algorithm executes, the state of the neurons and/or weights get altered. The 

checkpointing feature saves the state of the neurons to a persistent object store but allows 

the simulation of the network to continue execution. Objects in the persistent object store 

can later be examined through queries to an object-oriented database system.

Likewise, when execution of the neural network has ceased, the state of the network can 

be saved using the persistent object checkpointing system. Then the network can be loaded 

and reused at a later date in the same state it was in when it was stored saving possibly 

hours of CPU time. Certainly, a trained network could be stored in files manually, then 

loaded and converted without the use of persistent objects. However, POCONS’s built- 

in facility for persistent neural network objects, transparently stores and retrieves them. 

Storage and retrieval is carried out by the underlying system on a demand driven basis. It 

therefore requires little extra application code (opening and closing of databases) to save 

and load objects as will be shown in a later example.

Execution of the newly built-in function convert-neurons-to-pos will cause the check

pointing mechanism to convert the neuron structures into persistent objects by storing 

neuron data  items in persistent slots and converting hard pointers to other neurons to soft 

pointers tha t can then be stored in the database as integers and dereferenced through a 

table lookup. The system creates one persistent object for each neuron and stores all data  

associated with tha t neuron in it. Note tha t these checkpointing objects are of a different 

class than the ones used to describe the structure of the network as shown in the calls
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to defdbneuron (in section 6.1.3) where one persistent object is used to represent the 

information described in the call to it. As described previously, this information is then 

used to create a neural network for which there will be several neurons used to represent 

the information in a single call to defdbneuron. Likewise, when the neural network then 

gets converted into persistent objects for storage, there will be a one-to-one correspondence 

between neurons and persistent objects created by the system to store the information in 

those neurons.

7 .1 .2  R e u se

POCONS supports the loading of the state of a previously trained or simulated network 

into primary memory, and the conversion of it into POCONS’s internal neural network 

representation, so tha t it can then be reused. Once reloaded and converted, training can 

be resumed from where it left off. In the conversion process, data  items (activity values 

and semantic information) from persistent objects are stored in the representative neurons. 

Soft pointers stored in the persistent objects are then converted into hard links and stored 

in the respective neurons.

After opening the correct databases, execution of the newly built-in function convert- 

pos-to- neurons will convert the persistent objects representing the previously check- 

pointed neural network into the internal neural network representation so it can be exe

cuted. The structure of the executable neural network does not use persistent objects, so 

it can contain hard pointers. Also, the attributes of the neuron get updated frequently 

as it executes and there would be too much overhead if the neuron slots were persistent. 

Thus, by avoiding the storage of frequently updated slots at execution time, performance 

is greatly improved.

Figure 7-1 represents a flip-flop used by a circuit analysis program written in POCONS 

which analyzes the basic units of the circuit (eg. transistor, resistor) and determines based 

on the configuration, which groups of these units make up different types of gates (eg. nand, 

and, nor, etc.).

Besides improving runtime efficiency, another advantage of resolving rules at load time 

rather than at execution time is tha t the rule links can be stored in the persistent object, 

and reloaded for future program execution. As a result, the rules don’t need to  be resolved 

when they have been stored in persistent objects. This ability to store rule links greatly
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Figure 7-1: Flip-flop used for circuit analysis

improves the performance of the reuse of a neural network as will be shown in the upcoming 

example.

The output below was generated from a session using POCONS to load and create 

the neural network code from section 6.1.3. After the network is created, the function 

q u e ry -n e t is used to generate three iterations of the activation propagation algorithm. 

The network is then converted to persistent objects and EuLisp is exited. Then EuLisp 

is started up again, and POCONS is loaded. After opening the database, the persistent 

objects are converted into a neural network which has the same state as it did when it 

was stored as shown. Further activation propagation iterations are then executed on the 

network.

brad:l '/, nufeel
Initialised with: 400000 [128 pages] 
stack: 0xl001a2f8 Lim: 0xl001e2f8
Bytecodes compiled on: Thu May 28 14:01:59 BST 1992
EuLisp FEEL: Version (7.04 SystemV) Thu May 28 14:02:36 BST 1992

Version Message

"Bugs fixed, goes faster, version message changed."

Support the campaign for informative messages

Loading module ’initcode’
Loaded ’initcode’
EuLisp:0:root!0> (!> pse-net)
Loading module ’pse-net’

[ LOADING OF PSE MODULES ]
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Loaded ’pse-net’
eulisp:0:pse-net!0< pse-net

;;;OPENING OF DATABASE

eulisp:0:pse-net!1> (open-dbclass-cache "../neuron/cl.dir") 
eulisp:0:pse-net!1< ()
eulisp:0:pse-net!2> (open-classes "../neuron/pmppos")
eulisp:0:pse-net!2< #<stream: 268483904 ’r ’>
eulisp:0:pse-net!3> (open-objects ./neuron/objects.pos")
eulisp:0:pse-net!3< #<stream: 268483920 ’r ’>
eulisp:0:pse-net!4> (open-object-cache /neuron/obj.dir")
eulisp:0:pse-net!4< ()

; ;;LOADING OF DEFDBNEURON DESCRIPTIONS

eulisp:0:pse-net!9> (include-forms "../neuron/act-np.em") 
including *../neuron/act-np.em’ 
eulisp:0:pse-net!9< ()

;;; CONVERSION OF DEFDBNEURON DESCRIPTIONS INTO NEURAL NETWORK

eulisp:0:pse-net!10> (build-neural-network) 
eulisp:0:pse-net!10< ()

;;;EXECUTION OF 3 ITERATIONS OF ACTIVATION PROPAGATION.
;;;PRINT-0UTS SHOW STATUS OF NETWORK FOR NEURONS <> 0.0

eulisp:0:pse-net!11> (query-net ’((is-a . jane)) nil 3)
(is-a model 0.330000)
(owned car 1.000000)
(is-a jane 1.000000)

(is-a person 0.108900)
(is-a model 0.551100)
(owned car 1.000000)
(is-a jane 1.000000)

(is-a person 0.270958)
(is-a lawyer 0.108900)
(is-a model 0.748122)
(owned car 1.000000)
(is-a jane 1.000000) 
eulisp:0 :pse-net!11< 4

;;;CONVERSION OF NEURONS TO PERSISTENT OBJECTS FOR STORAGE.

eulisp:0:pse-net!12> (convert-neurons-to-pos) 
eulisp:0:pse-net!12< ()

;;;CLOSING OF THE DATABASE.

eulisp:0 :pse-net!13> (close-system) 
eulisp:0:pse-net!13< ()
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eulisp-handler:0:pse-net!15> (exit)
Exiting EuLisp

; ;;NOW A NEW EULISP IS STARTED UP TO REUSE THE SAME NETWORK, 

nufeel
Initialised with: 400000 [128 pages]
stack: 0xl001a2f8 Lim: 0xl001e2f8
Bytecodes compiled on: Thu May 28 14:01:59 BST 1992
EuLISP FEEL: Version (7.04 SystemV) Thu May 28 14:02:36 BST 1992

Version Message

"Bugs fixed, goes faster, version message changed."

Support the campaign for informative messages

;;;L0AD POCONS AGAIN.

Loading module ’initcode’
Loaded ’initcode’
eulisp:0 :root!0> (!> pse-net)
Loading module ’pse-net’
Loading module ’standardO’

;;; DECLARE NAMES OF PERSISTENT CLASSES AND OPEN DATABASE

eulisp:0:pse-net!1> (persistent-classes
(person lawyer john model jane nnode db-opposites 
db-converse db-negconverse) "../neuron/cl.dir")

eulisp:0:pse-net!3> (open-classes "../neuron/pmppos")
eulisp:0 :pse-net!3< #<stream: 268483904 ’r ’>
eulisp:0:pse-net!4> (open-object-cache "../neuron/obj.dir")
Reading class db-opposites from the database
eulisp:0:pse-net!5> (open-objects "../neuron/objects.pos")
eulisp:0:pse-net!5< #<stream: 268483936 ’r ’>

; ; ;CONVERT THE PERSISTENT OBJECTS TO A NEURAL NET.

eulisp:0:pse-net!7> (convert-pos-to-neurons) 
eulisp:0:pse-net!7< ()

;;;PRINT THE STATE OF THE NETWORK. NOTICE IT IS THE SAME 
;;;STATE AS IT WAS SAVED.

eulisp:0:pse-net!8> (print-vals *neuron-list*)
(is-a person 0.270958)
(is-a lawyer 0.108900)
(is-a model 0.748122)
(owned car 1.000000)
(is-a jane 1.000000) 
eulisp:0:pse-net!8< ()

; ;;COMPUTE A FURTHER ITERATION OF THE ACTIVATION PROPAGATION
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;;;ALGORITHM.

eulisp:0:pse-net!9> (compute-activation-aux *neuron-list*)
(is-a person 0.477144)
(owned dog 0.108900)
(is-a lawyer 0.350351)
(is-a john 0.108900)
(is-a model 0.899490)
(owned car 1.000000)
(is-a jane 1.000000) 
eulisp:0:pse-net!9< ()

The above example was kept small for brevity, but it fully illustrates the small amount 

of application code required for the storage and reuse of neural networks in POCONS. The 

larger circuit analysis application works in a similar fashion.

7 .1 .3  P er fo rm a n ce  Im p ro v em en ts

On a Stardent Titan executing EuLisp [Pad91] it takes 238.94 seconds to load 437 neuron 

objects, build the neural network, and resolve three rules from the circuit analysis program 

described in section 6.2.2. It then takes 37.88 CPU seconds to  convert the neural network 

to persistent objects converting the hard links to soft links and storing them and the other 

neuron values in newly created persistent objects (which the persistent object system trans

parently stores to secondary memory). In comparison, to reload and build the same network 

takes 102.42 CPU seconds. Thus, by reusing the objects you get more than double speedup 

on the amount of time required to initialize the network.

It is interesting to break down the time required to build the network. As a result 

doing several timings with PSE on different data sets, I found th a t it takes on average 60 

milliseconds to load and instantiate a persistent object using PSE. Thus, since there are 437 

objects in the database, it takes approximately 26.22 seconds to load and instantiate them. 

The remaining 76.2 seconds is required to convert the persistent objects to  the internal 

POCONS representation. Please note tha t the speedup was attained, because the rules 

didn’t have to be resolved on reloading.

In the case of a backpropagation trained network, more speedup would definitely be 

attained, because the time to save and reuse the network remains constant, but the time 

to  execute a backpropagation training algorithm requires much greater time than creating 

a new network from a POCONS language description.
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7.2 Parallel Execution on SIMD and M IM D machines

The activation values for the neurons have been implemented to execute in parallel on 

both a SIMD and MIMD machine architecture. The POCONS system utilizes the Plurals 

construct for the execution on a SIMD machine and the Futures construct for execution on 

a MIMD machine.

7 .2 .1  S IM D  E n v iro n m en t

The mechanism used for achieving parallelism on a SIMD machine is called Plurals [Mer92] 

which is an intermediate between the Paralation model [Sab88] and *LISP [Thi88]. Plurals 

have been implemented by Simon Merrall on our local dialect of EuLisp [Con] executing on 

our 1024 node M asPar MP-1011.

M a s P a r  M P -1  A rc h ite c tu re

The M asPar MP-1 [Bla90] is a data-parallel architecture having the following unique char

acteristics: scalable in terms of the number of processing elements, system memory, and 

system communication bandwidth; and a “RISC-like” instruction set design th a t leverages 

optimizing compiler technology.

The M asPar system contains subsystems for array and independent program execution 

control, a processor element array, communication mechanisms, a UNIX susbsystem which 

provides UNIX services, and an channel typed I/O  subsystem which allows overlapped I/O  

messages.

P lu ra ls

Plurals are implemented on the MasPar using the above mentioned synchronous program

ming model. Plurals are a separate class in Eulisp which are similar in appearance to 

vectors, but each element is allocated on a separate processor. Two plurals allocated on the 

same set of processors are said to be conformant. Conformant plurals can be operated on 

in parallel, for example a pair of conformant plurals of integers could be added in parallel 

and this will create a new plural conformant to the arguments. The function m a k e-p lu ra l 

can be used to create a new conformant set or a new plural within a conformant set. Given 

a positive integral argument, a set of processors will be selected for the new conformant
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set and a new plural is allocated on that set of processors. The function bang projects a 

singular lisp object into a plural variable.

(setq a (make-plural 10))

#P(0 0  0  0  0  0  0  0  0  0 )

(setq c (bang 55.5 a))

#P(55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5 55.5)

There are parallel versions of serial functions like car, cons, nullp, and zerop having 

the suffix -s which act on the individual elements of the plural.

The function list-to-plural converts a list to a Plural with the elements of each sublist 

stored in each plural element. In the following example, the if-s function acts on each plural 

element testing if it is null and if not summing up the values. Otherwise it places a zero in 

the plural slot. In the following code segment, sum -list-s computes a vector addition over 

the plural list-s.

(defun sum-list-s (list-s)
(if-s (nullp-s list-s) (bang 0 list-s)

(+ (car-s list-s) (sum-list-s (cdr-s list-s)))))

(sum-list-s (list-to-plural ’((3 2 1) (2 1) (1) ())))
=> #P(6 3 10)

Also, there is a function called match which creates maps which allow data  to  be moved 

between plurals of conformant sets. The map describes which elements of the source plural 

are sent to the destination plural.

C om pilation techniques for SIM D Plurals

To execute the simulation of a neural network using Plurals, the system first builds the 

connectionist network from the object-based representation [Bur92]. The resulting con- 

nectionist network consists of a set of structures each one corresponding to  a node in the 

network as described in section 1 of chapter 6.

Once the set of neurons exists, the mapping to plurals begins by first assigning node 

identifiers to each neuron, and then the network is converted into a pair of lists. Each
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list has an entry for each neuron in node id order. The first element of each pair is a list 

of the ids of the nodes that this node has back links to, and the second element is a list 

with the corresponding weights for each one of the back links. The list is then converted 

into a list of plurals containing weights and nodes as specified. Each time an activation 

propagation is computed for the network, the plurals use a map tha t represents the activity 

values for neurons and the weights on their associated links. The activity value is computed 

for each node in parallel by having the system look at the connections and compute the 

values. The single operation is to compute the activity value using the map for each node, 

and the multiple data  is the different state and links associated with each node. Thus, to 

summarize:

• Convert object description into connectionist network.

• Create a list containing lists of all the activity values and weights in the network ((al 

a2 a3 ...) (wl w2 w3 ...)).

• List is converted to a plural.

• A plurals map is made which associates each activity value with the weights on its 

incoming links.

• The multiply of the activity value times each link’s weight is done in parallel.

Figure 7-2 illustrates the plurals map tha t gets created for the connectionist network 

for execution on the Maspar. It illustrates the activity values of the neurons in a network 

and the mapping th a t exists between them and the weights on their outgoing links. Since 

part of the activation propagation algorithm is to multiply the value of the weights by the 

activity values on the outgoing links, this mapping allows the vector multiply operation to 

multiply the weights by the activity values in parallel.

It should be noted that a full implementation of the paralation model was not available, 

and as a result, the SIMD operations were limited to those supplied by the plurals system. If 

a full paralation model had been supported, a complex operator could have been constructed 

which would compute the full activation propagation algorithm for a single node. This 

operator could then, under the paralation model, operate in parallel over all the nodes in 

the network. The result would have been far more parallelism than was produced using the 

more limited plurals model.
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Figure 7-2: Internal Representation for execution of POCONS network using plurals

An evaluation of the usefulness of SIMD connectionist simulation will be made in sections 

7.2.4, 7.2.5, and 7.2.6.

7 .2 .2  M IM D  E n v iro n m en t

Our MIMD environment consists of two Stardent Titan multiprocessors each containing 

four MIPS processors and 32 megabytes of memory.

Stardent A rchitecture

The Stardent Titan system can configure up to four identical processor boards. It supports 

three types of parallel processing:

1. Multiprocessing -  the parallel execution of multiple processes on multiple processors.

2. M icrotasking-the division of a process into multiple threads (microtasks) th a t can be 

executed in parallel on multiple processors.

3. The parallel execution of integer operations (address calculations, bitwise operations, 

etc.) and floating point operations within each Titan server processor.

Futures

Futures [Hal85] are the mechanism used to achieve parallelism for the connectionist system 

when executed on the Stardent. Futures act as a promissory note allowing a process to 

request a computation and then continue on its way knowing th a t the system will provide
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it with the requisite information when needed. In the event the Future has not been 

computed when the process attem pts to access its value, the process blocks until the Future 

has completed execution. Futures in EuLisp are implemented using threads. Threads in 

EuLisp are implemented in the same manner as in CLIP [Jac90]. Threads are essentially 

lightweight processes tha t execute on shared memory in a non-preemtive manner. Thread 

states can either be blocked or in execution. The next subsection describes how the system 

generates Futures tha t execute the network in parallel on the Stardent.

7 .2 .3  C o m p ila tio n  tech n iq u e  for M IM D  F u tu res

Since our Stardent system has four processors, the MIMD compilation package partitions 

the neural network into both three and four sets of equal size to determine which partition 

produces the best results (see Figure 7-3). It partitions the neurons randomly, because 

under the activation propagation algorithm, there are no dependencies between neurons. It 

then places each partition in a Future tha t will execute the activation values computed in 

each partition concurrently with the neurons in the other partitions. Specifically, it takes 

the list of neurons tha t comprise the neural network and divides it into both three and 

four lists on separate executions. It then calls a function which maps through the list of 

neurons passed to it and computes the new activity value for each neuron in the list. The 

mapping function is called three (or four) times each time within a different Future, so 

th a t the three (or four) calls execute concurrently. Once all three Futures have completed 

execution, the system sequentially updates the activity values for each neuron with its new 

computed value. The process is repeated for each cycle except th a t the partition is saved, 

so tha t subsequent steps don’t have to repartition the network.

There is no need for mutual exclusion amongst the three concurrently executing par

titions, because each neuron can have its value computed independently. The number of 

Futures is limited to four at the most (though it can easily be extended to include more), 

because any more Futures than the number of processors executing at any given time results 

in greater overhead and a decrease in performance. This technique has been implemented 

and tested with a small and a large network. It appears th a t there are no benefits from 

partitioning the network in any specific manner, and there is no reason to believe th a t there 

would be, because due to the total independence each neuron has in computing its activity 

value, it is irrelevant as to how the neurons are grouped.
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7 .2 .4  C o m p a r iso n  o f a rch ite c tu res

Clearly, due to the large amount of processors, the M asPar architecture has far greater 

potential for speedup. However, the port of EuLisp to the M asPar is still preliminary. Cur

rently there is no garbage collection, and the EuLisp front end sends the plural operations 

from a DEC Vaxstation to the MasPar. Thus, the Vaxstation is a major bottleneck for 

the SIMD computations. However, currently the garbage collector and EuLisp front end 

are being implemented on the M asPar and upon completion, there should be improved 

performance.

The Stardent does allow for some concurrency, but with only four processors, the great

est possible speedup is not overwhelming. However, it does provide a vehicle to test the 

networks on a MIMD architecture and possibly speculate about improvements given more 

processors.

7 .2 .5  R e su lts

A 440 node connectionist network which does an analysis of the logic circuits for two flip- 

flops has been executed on the Stardent using Futures (as described above). Figure 7-3 

shows the performance improvements made using the same net partitioned into three and 

four sets compared to the execution time of the sequential execution of the non-partitioned 

net. Each point on the graph represents the average over five executions of a 10 cycle query 

on each configuration. It is interesting to note th a t the three Future (or partition into 

thirds) configuration provided better results than the four Future partition. The reason for 

the this result is tha t even using three partitions, there is still a main thread which fires off 

the Futures. In the four partition version, even with four processors, one thread will always 

be blocked. Whereas with the three partition configuration on four processors, no threads 

will be blocked. Thus, all threads executed concurrently. The results in Figure 7-3 show 

slightly better than double speedup (2.1 to be exact) in the best case (partition by thirds on 

four processors). Also note tha t on a single processor, the partitioned sets were slower (less 

than 1) than the sequential version. This result can be explained by the extra overhead 

needed to utilize Futures.

While it may seem tha t the results from a single application are meaningless, since all 

the activity values are calculated independently on the MIMD machine, the only difference 

between different applications is the number of neurons. The amount of parallelism remains
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Figure 7-3: Speedup From Connectionist Executions on MIMD Architecture

constant across applications. Therefore, each application will have as much speedup as any 

other as long as memory usage doesn’t get to the point where it causes the virtual memory 

system to thrash.

A connectionist simulation has also been implemented for the MasPar, but there is no 

comparable single processor machine to compare it to. It does however, execute faster 

than the same simulation executed serially on the front-end machine. The problem with 

SIMD plurals in general, is tha t SIMD parallelism occurs over the number of connections 

between nodes. However, if a full paralation model had been available for use, an iteration 

of the activation propagation could have been made into a vector operator which then 

could be executed in parallel over the entire network. Using plurals, the connectivity in 

the applications tested is often only two which limits the speedup regardless of the number 

of processors utilized. A quick scan through the literature found tha t there were few large 

connectionist models th a t had a high connectivity which is bad news for SIMD plurals 

enthusiasts. It appears th a t paralations would be much more useful and productive.

7 .2 .6  L im ita tio n s

As stated earlier, due to the static nature of the rules in POCONS, rules cannot be added 

dynamically. Also, POCONS will not allow rules to  activate neurons if there is a partial 

match which does not prove to be a problem for the applications written in it to date. Com-
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parisons have been made to Prolog, but there is no facility for Prolog-like grammar rules 

in POCONS. Also, the implementation of EuLisp which POCONS is written in is a proto

type as is PSE. Thus, it is not an extremely stable system for production code, but rather 

it is a system tha t can be used to experiment with language design and implementation 

techniques. Nonetheless, the results show tha t the use of parallelism with the POCONS 

connectionist model results in significant speedup.

Next, there will be a discussion on a modification to the activation propagation algorithm 

which produces chaotic neural networks.

7.3 Using Chaos in Neural Networks to M odel Com m odity  

Market Price Fluctuations

While conventional neural network training algorithms produce static results given a con

stant input, we wish to use them to model a dynamic phenomena: commodity market 

price fluctuations. Recently, researchers in economic modelling and forcasting have been 

investigating the use of nonlinear dynamics to explain market forces. Through analysis of 

market data, they have been able to show evidence of chaotic behavior in these markets 

[Sav91][And88].

This section describes a technique to model the behavior of commodity market price 

fluctuations which is included to extend the modelling capabilities of the connectionist 

component of PSE. Minsky [Min86] defines modelling as follows: “Any structure th a t a 

person can use to simulate or anticipate the behavior of something else.” The goal here 

is not to specifically predict market prices. Instead, we agree with Stern [Ste] th a t neural 

networks are not capable of accurately predicting the stochastic behavior of markets, but 

can be used to build effective models tha t aid in understanding the markets’ behavior. Thus, 

models of the trends in pricing are chosen to improve understanding on how market prices 

fluctuate and how various commodities affect one another’s prices.

An example of a commodity whose price fluctuates chaotically is the gold market. For 

example, if the jewelry market has increased demand, it will cause an increased demand for 

gold and silver. The increased demand for these metals will cause their price to rise in a 

chaotic manner as investors take profits. Eventually, the price will stabilize a t a new level 

until new circumstances result in once again altering the price. Likewise, the rise in gold 

and silver will cause a relative rise in the price of platinum. Examples from actual market
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data  will be used to support this point.

Neural networks present a natural way of modelling the effects of price changes in such 

commodity markets, because if one commodity, say jewelry, has increased demand, so will 

other related commodities like gold. In the chaotic neural model presented in this chap

ter, neurons represent commodities and connections represent the effects they have on one 

another. A chaos-producing feedback equation is then introduced into the training algo

rithm to generate the effects of noise and dynamic behavior in the commodity prices to be 

modelled.

The utilities for the chaotic neural networks described in this section are contained in a 

PSE module, and the use of these utilities to model market prices is an im portant example.

7.4 Other Work on Chaotic Neural Networks

Chaotic neural networks have been designed based on backpropagation [ Ai90] and have 

been applied to associative memory [ Ik91]. However, the use of connectionism in this 

thesis is to represent higher level knowledge.

7.5 The Mechanism

Given a price associated with a commodity, the percentage of price change for a given 

day is estimated based on changes in other related commodities. The system models the 

perturbations in the price as time passes followed by a stabilization. Given the activation 

propagation algorithm as was presented in section 6.1.4:

a*+1 = a\ + S ia ^ s ig m ^ W ija / j )  (7.1)
2

The sigrn function is a threshold function tha t uses truncation to keep the activity value 

boundaries between [1 ,-1 ], and the 6 function computes 1 — abs(a^) to guarantee that 

there is no drastic change in the value when there is a value close to 1 or —1. Chaos is then 

introduced into the system by substituting X  for ■ Wijdj in the equation above and then 

feeding it through a chaos-producing function as follows:
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A X ( l - X ) a  +  X ( l - a ) (7.2)

where A =  4 and a  has a value in [0,1]. a  has a value th a t starts at 1 and gradually 

decreases to 0 over time to  model the progression from unstable prices to stable ones. As 

each day goes by from a new instability in the market, the amount of chaos in price changes 

reduces. The gradual decrease in a  models a system tha t starts off being entirely chaotic, 

then gradually moves towards one that is partially chaotic, and finally stabilizes.

Experiments have shown th a t values were not decreasing a t a desirable rate, so the 

result was multiplied by exp(—(k +  1 )/8) where 9 is a constant value th a t can be modified 

to increase or decrease the leveling of prices. Thus, the final equation became:

ai +1 =  a? +  e x p (- (k  +  l) /0 )(\'% 2 w ija]j ( l  ~ Y ^ wijaj ) a  +  Y l wijaj t 1 ”  °0) (7'3)
i j j

In the real data  for precious metals, prices never fluctuated by more than seven percent 

in a single day. Thus, it was necessary to keep a range on the price fluctuations by taking 

the modulo (3 of the result, where (3 is the maximum percentage change for a single day’s 

trading.

7.6 Example Network

The following code defines a chaotic neural network in PSE using non-persistent objects. 

The application describes the relationships between the precious metals: gold, silver, and 

platinum. Defmodule defines a module of code. Defneuron defines a neuron object which 

the system will translate into neurons in a network.

(defmodule metals
(standard neu-cnn plists aux aux-macros)
0

(defneuron gold (newron)
((affects initform ’((silver . 1.0) (platinum . 0.6)))))

(defneuron silver (newron)

105



((affects initform ’((gold . .75) (platinum . 0.6)))))

(defneuron platinum (newron)
((affects initform ’((gold . 0.45) (silver . 0.45)))))

(build-neural-network)

(set-same-ln ’(affects . silver) ’(is-a . silver))
(set-same-ln ’(affects . gold) ’(is-a . gold))
(set-same-ln ’(affects . platinum) ’(is-a . platinum))

(set-activity-level ’is-a ’gold -0.022)
(set-activity-level ’is-a ’silver -0.01)
(set-activity-level ’is-a ’platinum -0.015)

(compute-new-chaos-act 10)
)

Build-neural-network translates the objects defined by defneuron into a connectionist 

representation. The numeric values associated with the names indicate the values of the 

weights on the links between the neurons. Back links exist from the neuron class name (eg. 

gold) to the neurons created from the slot names (eg. affects silver). Figure 7-4 illustrates 

the links and neurons created from the above code. Solid lines represent links th a t have 

weights as defined by the user with defneuron, and the dashed lines indicate back links 

which represent upward inheritance with only fractional weights [Bur92]. Note th a t the 

function set-same-ln must be called to specify tha t links exist between neurons in a way 

th a t can not be adequately described in the defneuron primitive. Notice tha t the values for

the weights are hardcoded, and were produced through observation and experimentation.

7.7 Real D ata vs Generated D ata

The graphs in Figure 7-5 are from four different time periods when there was a somewhat 

dramatic price fluctuation around the time of the gulf war (winter-spring 1991). Each 

interval indicates a day. Note tha t there is a dramatic rise or drop of prices. The graph 

is continued only to the point of stabilization. By observation of the graphs in figure 7-5, 

one can see tha t prices fluctuate chaotically. For example, in the second graph, there is 

a drop the first day of 7% followed by a one percent increase 2 days later which is then 

followed another drop. Also notice tha t the prices of the different precious metals rise and 

drop somewhat together. For example, in all the graphs of figure 7-5, the prices follow the

106



is-a gold

affects silver affects platinum

affects gold

( is-a silveris-a platinum

Figure 7-4: Internal Network Representation

same relative up and down movement.

The graphs in Figure 7-6 were produced from data  generated from the chaotic neural 

networks described in section 7.6 where the change for the first day is the same in the 

corresponding graph of real data. The rest of the data, however, is generated by the chaotic 

neural network mechanism. Observation of the time history of the graphs indicates th a t the 

values generated are chaotic. Notice tha t while the match is clearly not exact, the chaotic 

fluctuations of the market are represented as is the effect of the different commodity prices 

rising and falling somewhat relative to one another.

While the numbers are not the same in the real data  as compared to the generated 

data, it does aid as a first step in understanding the chaotic price fluctuations of related 

commodities. Further tuning of the chaotic neural network and analysis and understanding 

of chaotic market fluctuations should produce even better models.

7.8 Conclusions

This chapter contains extensions made to the POCONS connectionist simulator which was 

added to PSE to provide a simulation environment with support for knowlege-based con

sultation. A description of the SIMD and MIMD architectures and the implementation of 

POCONS networks on them were discussed. Results were presented for a 440 node con

nectionist network (an extension to the logic circuit one presented in the previous chapter)

107



5

0

•5

5
Time

%

0

5

5

0

5

5

0

5

Gold ------------------

S ilv er -----------------

Platinum ................

Figure 7-5: REAL DATA

108



Gold ------------------

S ilv er -----------------

Platinum .................

Figure 7-6: GENERATED DATA

109



executing on four processor Stardent achieving more than double speedup. This result shows 

th a t the explicitly parallel nature of connectionist networks can be practically exploited.

A built-in feature for storage and checkpointing using persistent objects has also been 

presented. Not only is it an elegant solution to the problem, but results in improved 

performance as well. The implementation of this feature has been described, and an example 

has  been presented. Performance improvements resulting in double speedup have been 

reported using this facility for networks trained using activation propagation, and greater 

performance improvements will result from the storage and reuse of networks trained using 

more costly algorithms such as backpropagation.

Finally, there was a presentation on a mechanism, implemented in PSE, for modelling 

the behavior of commodity market prices using chaotic neural networks. First the author’s 

own chaotic network mechanism based on activation propagation was described, and then 

an example was given of its usage for modelling the behavior of the precious metals market: 

first by showing and describing the code, and second by illustrating and describing the 

internal representation of the system. Finally graphs were presented which were generated 

by the system and were compared to graphs of real data. While the results are not the same, 

the model helps us further understand the chaotic price fluctuations of related commodities. 

It is convincing, however, tha t through tuning and modification of the parameters to the 

chaotic neural network, the model can be improved, because in theory, chaos can be used to 

model the behavior of commodity market prices. Neural networks are an effective tool for 

modelling in this case, because they are a natural way to describe the relationships between 

commodities and their prices.

While the model does not mirror the example data, it does show similar chaotic behavior. 

The model also shows inherited effects from one commodity upon another. Thus, the com

parison of the model against the real world example suggests th a t by better understanding 

deterministic chaos and time series, one can better understand what to expect in the future 

of commodity market prices. This work is a first step in understanding this process, and 

while it does not tell us how to invest, it gives us an im portant experimental tool to help 

develop theories about the behavior of market prices.

In conclusion, parallel persistent object-based simulation has been applied to the connec

tionist paradigm. Parallelism has been shown to be advantageous for improving performance 

and persistence has been shown to have the advantage of providing an elegant means for 

reuse of neural network objects.
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The next chapter will contain a discussion of Petri net simulation facilities added to PSE 

with applications th a t utilize parallel processing and persistence.
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Chapter 8

Petri N et M odelling in PSE

The purpose of this chapter is to show tha t persistence and parallelism which were applied 

to process-based and connectionist simulation in previous chapters, can also be applied to 

Petri net simulation. To achieve this goal, this chapter covers the Per-Trans representation 

language th a t has been added to the EuLisp version of PSE to provide support for both 

higher level representations which can greatly simplify the modelling process, and hybrid 

models which are often required, as was shown in section 1.2, for the development of large- 

scale simulations. Per-trans is a representation language for the description of stochastic 

Petri nets. It makes use of persistent objects for the storage and reuse of the simulation 

objects and the simulation history. After describing Per-trans, an example will be presented. 

Then a technique will be described which vastly improves the performance (30-fold) of serial 

Petri net simulations using Per-trans. Results of the extension of a distributed virtual 

shared memory simulation will be presented, and it will be followed by a discussion of 

parallel techniques for Petri net simulation. Finally, results from actual parallel simulations 

will be presented as well.

8.1 Per-Trans: A Persistent Object-based Stochastic Petri 

N et Representation Language

Petri nets are widely used in the simulation of concurrent systems [Pet81]. As a result of 

the popularity of Petri nets, there have been a variety of tools developed [Fel89]. These 

tools allow graphical editing and creation of Petri net models. This chapter describes a 

tool for the development of Petri nets: a language called Per-trans. It features the fusion
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of persistent object technology with Petri net development. Per-trans is a component of 

the EuLisp version of PSE which was added for this thesis. The motivation for PSE stems 

from the need to support large-scale persistent object-oriented simulations. The addition 

of Per-trans expands the application areas tha t PSE can be used to apply parallelism and 

persistence to.

Per-trans has features tha t simplify the task of developing stochastic Petri net models 

[Mar89]. It contains constructs tha t specify the places, transitions, and token locations in 

the Petri net. The underlying system handles all the procedural execution of the simulation. 

Per-trans allows Petri net components to be represented as persistent objects.

8 .1 .1  P er-T ran s C o m p o n en ts

Per-trans provides an application programmer with primitives to represent and execute 

simulations using the stochastic Petri net model. Since it is implemented within PSE, 

it contains all the advantages associated with persistence th a t exist for connectionist and 

process-based simulations as described in chapters 5, 6, and 7. Per-trans simulations contain 

objects for places and transitions. Theses objects are the two main components of a Petri 

net and the connections and delays associated with them define the Petri net model. The 

application programmer can decide whether he or she wants some or all of the net to be 

persistent.

Per-trans, like POCONS (described in chapters 6 and 7) is also declarative, which means 

tha t the programmer need not specify procedural information for the model or for the use 

of parallelism and persistence as supported by PSE. In Per-Trans the programmer need not 

specify any of the control information used to determine when a transition will fire and send 

tokens throughout the net. The Per-trans defining forms generate an event-based simulation 

th a t is executed by the underlying scheduler and simulator. The programmer need only 

specify the places and transitions, where they are connected, and any time delays tha t 

might exist on transitions (details of the language constructs will appear in section 8.1.4). 

The internal scheduler examines places and transitions to determine whether a transition 

is enabled and when it should fire. It also passes tokens to places tha t are enabled once 

a transition fires. The underlying scheduler sends messages to objects tha t contain a time 

stamp for when they should execute. It then executes those messages at the appropriate 

simulation time.
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Also, Per-trans allows the application programmer to embed Lisp code in the definition 

of specific nodes (places and transitions). The embedded code will be executed when a 

token moves to the node’s location in the network. Such embedded code can be used to 

process information or produce graphical output illustrating the net’s behavior. Figure 8-3 

is an example of graphical output produced in X-windows from a Per-Trans specification.

8 .1 .2  S to c h a stic  P e tr i N e ts

The basic concepts applicable to all Petri nets is tha t they are a graphical and mathematical 

modelling tool which can be used to simulate many different systems [Mur89]. They are a 

promising tool for describing and studying information processing systems tha t are char

acterized as being concurrent, asynchronous, distributed, parallel, nondeterministic and/or 

stochastic. As a graphical tool, basic Petri nets can be used as a visual communication 

aid similar to flow charts, block diagrams, and networks. In addition, tokens are used in 

these nets to simulate the dynamic and concurrent activities of systems. As a mathematical 

tool, it is possible to set up state equations, algebraic equations, and other mathematical 

models governing the behavior of systems. Petri nets can be used by both practitioners and 

theoreticians.

A basic Petri net is a particular kind of directed graph, together with an initial state called 

an initial marking. The underlying graph of a Petri net is a directed, weighted, bipartite 

graph consisting of two kinds of nodes, called places and transitions, where arcs are either 

from a place to a transition or from a transition to a place. In graphical representation, 

places are drawn as circles, transitions as bars or boxes.

There are many varieties of Petri nets. One of the most useful varieties are called stochas

tic Petri nets (SPN)’s. SPN’s are useful in performance evaluation of concurrent systems. 

The type of SPN th a t will be focused on at this point is called a deterministic stochastic 

Petri net (DSPN) [Mar87]. DSPNs contain transitions with deterministic (constant) de

lays, immediate delays, and exponential delays. The organization of a particular network 

represents the system being modeled. For example, figure 8-1 illustrates a multiprocessor 

system modeled using a DSPN. The processor active state (p i) indicates th a t the processor 

is ready to make a request of memory. Tokens residing at p i indicate free processors. At 

initialization time, the number of tokens residing on p i indicates the number of processors 

the system has in total. Since more than one processor can be free simultaneously, more
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than one token can reside at p i at any given time. Transition t l  represents a timed de

lay transition indicating tha t some processing time is required for the system to determine 

which memory to access. The place p2 represents the state where the computer system 

being simulated must choose which central memory to access. The states represented by 

both p3 and p4 indicate tha t a memory request is being made to one of the central mem

ories. Transitions t4  and t5 cause the tokens to leave p5, p9, and p6 indicating th a t the 

bus and the central memory are busy. Transitions t6 and t7  are time delays modelling the 

time required to send information from memory to a processor. Finally, when the access is 

finished, the tokens are sent back to p5, p9, p6, and p i respectively indicating th a t the 

memory access has completed.

t7C

Figure 8-1: Petri net for Multiprocessor System

8 .1 .3  P e tr i N e t  S im u la tio n

The algorithm for simulating a DSPN is [Mar86]:

loop for each marking

0. Activity for each transition enabled is restarted for each marking.

1. If only one transition enabled
then fire it

else if several transitions are enabled in a marking and all transitions
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enabled are timed, then transition with shortest delay fires, 
else if (only one immediate transition is enabled) 

then fire the immediate transition 
else if (several immediate transitions are enabled)

then choose the transition to fire based on priorities or probabilities.

end loop

This algorithm requires lock-step execution of transitions. Each time through the loop, 

the system computes the delay for each enabled transition. It then fires the enabled transi

tion with the shortest delay and updates the places on the network accordingly. A marking 

is the current state of a network.

Note th a t in the case when several immediate transitions are enabled, the algorithm can 

resort to either using priorities or probabilities. When using priorities, it fires the enabled 

immediate transition with the highest priority. If using probabilities, it fires the enabled 

immediate transition with the highest calculated probability.

The requirement of this algorithm tha t only one transition be executed and then all 

enabled ones checked each time through the loop does not apply well to the requirement of 

having several processes tha t execute concurrently as is required in optimistic and conser

vative simulation techniques. Therefore, specialized techniques for exploiting parallelism in 

stochastic Petri nets were investigated which includes the parallel firing of transitions under 

certain constraints which maintain the consistency of the model. The description of these 

techniques and results obtained from their use will be described in section 8.3.

8 .1 .4  D efin in g  Form s

The discussion will now move from the discussion of general Petri nets and SPN properties, 

to the basics of the Per-Trans language. Note the similarities in style between the defining 

forms in Per-Trans and those in POCONS. In both cases, the forms are EuLisp macros tha t 

expand into code tha t creates persistent objects to store modelling attributes and methods 

which perform modelling operations.

The three underlying classes of objects created by the Per-trans defining forms include: 

petri-net, dbtransition, dbplace, and dbtoken corresponding to the elements of a Petri 

net. It also contains the following-defining forms: defdb-petri-net, defdbtransition , and
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defdbplace.

defdb-petri-net requires a list of places and transitions. It allows a Petri net to be 

encapsulated within a single object.

The dbtransition  class consists of the attributes delay, p laces-in, p laces-ou t, tokens- 

en tered , tokens-left, and token-delays. The delay field stores values to be used as 

probabilistic or constant time delays. These time delays are located on transitions to de

lay their firing. The time delays are relative to simulation tim e-not real time. P laces-in  

and places-out are slots which contain lists of places entering and leaving the transition. 

P laces-in  indicates to the Per-trans run time system which places have arcs entering the 

transition and can thus enable it for execution. Likewise, the Per-trans run-time system ex

amines places-out to determine which place or places will receive tokens from the enabled 

transition. Tokens-entered, tokens-left, and token-delays are internal to Per-trans. 

They store audit information on the tokens entering and leaving a transition, the times 

they entered and left, and the delays associated with them. The user need only, however, 

use the defdbtransition  primitive as follows (note tha t the syntax is Lisp-based):

(defdbtransition tl
(delay poisson val) ;Either poisson, normal, or exponential.
(places-in list) ; A list of the input places.
(places-out list)); A list of the output places.

The call to defdbtransition produces a generic function and a d btransition  object by 

automatically generating a call to make-instance as follows:

(setq transitions
(cons (make-instance dbtransition

’name tl
’delay (poisson val)
’places-in list 
’places-out list) 

transitions))

The above object is used by the system to store information about the tokens traversing 

the net. It also contains information about which places the transition depends on for firing 

and which places it enables after it has fired. Along with the object creation shown above, 

the following method definition will be generated by the underlying system as a result of 

the above execution of d e fd b tra n s itio n  called on t l .
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(defmethod tl ((tr transition) (old-place place) (tok token))
SET VALUES
(apply work (delay tr))
SET MORE VALUES)

t l  will be executed by the system when all of the input places to transition t l  are 

enabled. The values tha t get set inside the method store data  concerning the number and 

frequency of transition firings.

The construct for defining immediate transitions is called defdb-imed-transition. It is 

identical to defdbtransition execept tha t it has a priority and a probability field. During 

execution, when more than one immediate transition is enabled, Per-Trans checks whether 

the probability field is set to a non nil value on the enabled transitions. It then evaluates the 

contents of the slot and uses it to compare against the probability it gets from the other 

slots. The application programmer must make certain th a t if one immediate transition has 

a probability set, tha t the others do as well.

Priorities work in a similiar manner. If the probability field is null, then the Per-Trans 

simulator looks at the priority field which has a default of one. It then compares the priority 

values for all the enabled immediate values and fires the one with the highest value.

D efdbplace works similarly except tha t there are no delays. Each place is represented by 

a generic function and an instance of the class dbplace. The attributes of the place class are 

as follows: num -tokens, tokens-entered, tokens-left, tokens-allow ed, transitions- 

entering, and transitions-leaving. D efdbplace is used as follows:

(defdbplace pi
(num-tokens num)) ;The number of tokens allowed to reside at a place.

As a result of the above code segment, D efdbplace will create a method of p i  (from 

figure 8-1) which is similar in form to the one for t l .  As in defdbtransition, defdbplace  

stores information on the tokens traversing the net. The instance contains information 

used by the system. Per-trans will execute the method attached to a specific place when 

it receives a new token. The slots for trans-entered and trans-leaving are initialised by 

the system based on the definitions in defdbtransition which indicate the places-in  and 

places-out field. This feature keeps the programmer from coding redundant information.

When the Per-trans simulation executes, tokens get created when they move from firing 

transitions to newly enabled places. The underlying system will handle queues on transitions
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which require more than one token to fire. It will also generate new tokens where there is 

more than one leaving a place. Per-trans allows for stochastic delays by accepting a time 

param eter in the delay field of a transition generated by any of the following probablistic 

distribution functions: Poisson, normal, and exponential. The programmer can also use 

constant delays (including zero) by putting a constant value in the delay attribute field.

To execute the Petri net, the programmer need only make a call to (run-petri-net 

petri-net duration). The Petri net instance is returned by the call to defdb-petri-net 

and the duration is specified by the user to determine the length of simulation time tha t 

the Petri net should execute.

A portion of the Per-trans code for the Petri net of figure 8-1 appears below.

(defdb-petri-net mult-proc
((places pi p2 p3 p4 p5 p6 p7 p8)
(transitions tl t2 t3 t4 t6 t7)))

(defdbplace pi
((tokens-residing 2)
(code (lambda () (format t "processor is active at time "a"'/,"

(current-time))))))

(defdbplace p2
((code (lambda ()

(format t "choosing one of the common memories at time "a"'/," 
(current-time))))))

(defdbtransition tl 
((places-in pi)
(places-out p2)
(delay normal 4 2)))

(defdbtransition t2 
((places-in p2)
(places-out p3)
(delay normal 0 0)))

(defdbtransition t3 
((places-in p2)
(places-out p4)
(delay normal 0 0)))

The call to defdb-petri-net indicates the different places and transitions in the system.

It encapsulates the net in tha t several Petri nets can exist in primary memory at the
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same time. By executing ru n -p e tr i-n e t on the specified net, the system will execute 

a simulation of it. The calls to defdbp lace  indicate the tokens residing on the various 

places at initialization time. They also indicate the transitions connected to the place. 

D e fd b tra n s it io n  determines which places the transition is connected to. The delay  field 

is required for the transition, because it determines the amount of simulation time th a t a 

passing token will be delayed before it can move on. In the case where the delay is (delay  

n o rm a l 0 0), there is no time delay.

8.2 Techniques for Improving the Performance o f an Object- 

Oriented Stochastic Petri-net Simulator

Numerical methods have been developed to evaluate the performance of SPNs, but require 

too much CPU time to evaluate large nets as are needed in industrial applications. Discrete 

event simulation provides the only alternative for solving these larger nets, because as the 

nets get larger, the complexity of solving them using discrete event simulation is significantly 

less than the cost of using numerical techniques.

The work described in this section has been concerned with making OOP technology 

efficient enough for use in simulating large Petri nets. In the initial implementation of Per- 

Trans, the cost of object-oriented discrete event simulation was found to be significantly 

high due to method dispatch and slot-accesses. Also, list processing and garbage collection 

in EuLisp were found to be extremely expensive.

Thus, the system has been reimplemented with two levels. The top or interface level 

remains in EuLisp to allow users to define sets of Petri net objects and manipulate them 

in the EuLisp object system (called Telos). It also continues to allow Petri net simulation 

objects to  be persistent. Thus, to the simulation programmer nothing has changed. Func

tionally, the system is the same; it has just been made more efficient, because the underlying 

simulator has been reworked.

The underlying or simulator level has been rewritten mostly in C and interfaced with 

Lisp. The system is composed of two layers as is shown Figure 8-2. The simulator level 

extracts the Petri net information from the Lisp objects and stores it in C data  structures. It 

then executes the simulation in C using the techniques to be described which have reduced 

the execution time by 30 fold: the pure EuLisp version required 20 CPU hours to solve the 

ten page network, whereas after moving the simulator into C, it took only 35 minutes of CPU
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time. These two layers give users the expressive power of a Lisp object system at the top 

level combined with an efficient low level implementation tha t has dramatically improved 

run-time performance. This resulting system produces the same analysis as numerical 

simulators, but in a fraction of the CPU time, which makes it efficient enough to simulate 

Petri nets which are too large for numerical simulators to  handle [Lina],

User Interface

(Telos)

Simulator

Figure 8-2: The User Interface and Simulator Layers

The four components which have been eliminated by the new implementation are as 

follows:

1. method dispatch

2. slot accesses

3. garbage collection

4. Lisp floating point arithmetic

The overhead of method dispatch was eliminated by rewriting all methods as C functions 

tha t expected specific arguments. The generic function lookups were replaced by direct 

function calls. Likewise slot accesses have been made more efficient by storing objects 

as C structures, and there is a separate array for storing all the objects in each class. 

Objects are then given an id number when initialized, and they are then referred to  by their 

object identifier. When a slot access is made, it consists of a table lookup and a structure 

reference which is far more efficient than the dynamic type checking and slot descriptor 

lookup involved in Telos slot accesses.

The component tha t brought about the greatest improvement in performance was the 

movement of all list processing from EuLisp into C. The lists are now built dynamically
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using malloc and free. As a result, the EuLisp garbage collector does not need to be used 

during a simulation. This modification alone provided an order of magnitude in speedup.

Finally, another factor which greatly improved the performance of the simulator was the 

movement of all floating point operations from EuLisp into C. The C functions do no type 

checking as Lisp would, and therefore the calculations are executed immediately. Also, the 

C compiler does good optimizations on floating point tha t EuLisp cannot forsee.

Therefore, by moving the simulation engine of the Petri net simulator into C, the perfor

mance of the system was improved 30 fold (20 hours before compared to  35 minutes after). 

It should be stated tha t EuLisp is still in the prototyping stages and should be much faster 

in later more stable implementations. Thus, the same comparison was done using CMU 

Common LISP to see what the performance improvements would be. The C version was 

still 10 times faster than the CMU Common Lisp version which is still a substantial amount.

It should be mentioned tha t these comparisons were used for non-persistent objects for 

both the EuLisp and EuLisp/C versions of Per-Trans. One could make the argument that 

the pure EuLisp version still has the advantage th a t objects can be made persistent by 

simply using defdbplace and defdbtransition. However, in the light of the information 

presented in the storage and reuse section of chapter 7, it is more sensible to  store the 

representation information in persistent objects, while converting the network into an in

ternal representation which will execute efficiently. Then when the simulation has ceased 

execution, the data  in the internal representation can be checkpointed to the persistent ob

jects by the system. Thus, as a result of the knowledge gained from the storage and resuse 

section, the EuLisp/C version is consistent with the idea of creating an efficient internal 

representation of the model. The information stored in the C data  structures is accessable 

from EuLisp, so tha t information could be easily checkpointed and stored in the persistent 

Petri net objects.

8.3 Parallel Simulation o f Stochastic and Colored Petri N ets

Now th a t an efficient means of applying persistent object-oriented simulation of Petri nets 

has been applied, it is now time to move onto the investigation of parallelism as applied to 

Petri nets for improving performance. This section describes several techniques th a t have 

been implemented for parallel simulation of stochastic Petri Nets [Mar89], and a parallel im

plementation of a Colored Petri net [Jen90]. The simulations were written in EuLisp [Pad91]
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and executed on a three-processor Stardent Titan. Coarse-grain parallelism was utilized, 

because in preliminary experiments, fine-grained techniques actually reduced performance, 

and coarse-grain improved it.

One problem with the parallel execution of stochastic Petri nets is determining what 

to parallelize. Parallelism-related overhead must be small to achieve performance improve

ments. Thus, the standard parallel simulation techniques (optimistic [Jef85b] and conser

vative [Mis86]) have been considered and rejected by the author [Bur93b] [Bur93a], because 

while they provide elegant and general mechanisms, they tend to produce the best results 

on systems with coarse-grain events. At an invited talk, Brian Unger [Ung93] (who has a 

lot of experience in developing parallel simulations at Jade in Calgary, Canada) said th a t in 

Time Warp events need to be at least 200 milliseconds of computation to break even with 

overhead costs. 200 milliseconds is a vast amount of computation on todays super micro

processors. Unfortunately, the problem in the simulation of Colored and stochastic Petri 

nets is th a t events are very fine grain. Therefore, an application-specific approach similar to 

th a t used for the simulation of VLSI [Kar93] is employed which focuses on parallel aspects 

of the model rather than in parallelizing events.

VLSI circuit simulation exploits structural and temporal parallelism. Structural paral

lelism occurs through concurrent evaluation of two subcircuits which have no dependency 

relationship. Temporal parallelism occurs in subcircuits which have a dependency relation

ship, but the two subcircuits can be evaluated concurrently for different simulation instants. 

A high level pipeline is used so tha t subcircuit A  can execute a t time tn while subcircuit 

B  which feeds into A  can execute at time tn+1 . This kind of model-based parallelism ap

proach is taken in this chapter, because Petri nets contain independent subnets tha t can be 

executed in parallel in the same manner as VLSI subcircuits.

Stochastic Petri nets by definition can only execute a single transition per step. Thus, 

there is no inherent parallelism in the model. However, the techniques described in this 

chapter offer some ways around this problem. On the other hand, Colored Petri nets have 

been investigated, because their definition does allow them to execute concurrently enabled 

transitions in a single step. Thus, the Colored Petri net model has the advantage of a t least 

some inherint parallelism. In addition to applying various approaches to parallel simulation 

of stochastic Petri nets, this section will discuss a parallel implementation which shows a 

reduction in the complexity in the simulation of Colored over stochastic Petri nets.
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8 .3 .1  S to c h a s tic  P e t r i  N e t  A p p lic a tio n

The Petri net representation for a 10-page virtual shared memory (VSM) system is the 

application testbed for the parallel simulation algorithms. Figure 8-6 contains an X window 

screen dump of a graphical illustration of the one page version of the simulation. The X 

window graph animates the Petri net’s execution by specifying the number of tokens on 

each place and updating them after a transition fires. When transitions fire, the graphical 

interface causes the boxes marking transitions and the lines pointing to the new place where 

the token will reside to flicker to indicate the movement of tokens.

I

figure 8-3: Graphic interface for one page VSM simulation

The Petri net model shown is based on a one page virtual shared memory system de

veloped a t GMD [Linb]. There are two kinds of parallelism being discussed here. The first 

is the simulation of a Petri net model which contains parallelism: a virtual shared memory 

system. The second is the parallel execution of th a t model to improve the performance of 

calculating its solution. The Petri net models a parallel system which is not to be confused 

with the parallel simulation of the Petri net itself.
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The Petri net model represents a protocol for guaranteeing sequential consistency in 

a VSM system. The strong consistency scheme allows a single-writer or a multiple-reader 

status for each shared page with a write-invalidate protocol. Comparable results for the one- 

page model were exhibited by both Per-Trans and the GMD numerical simulations[Linb]. 

The model was extended to ten pages by the author through the copying of the internal 

read-write access protocol portion of the net ten times and linking the copies with the single 

server and request nodes. As a result, a page access has ten pages to choose from instead of 

just one. The results for the ten-page system using Per-trans appear in Figure 8-4. The top 

graph in Figure 8-4 shows tha t using the model for a 16 processor machine (done by having 

16 reside on P I initially), tha t the read rate and write rate have a dramatic impact on the 

sytem ’s processing power. Processing power is the measure of the system’s performance 

minus the system overhead. The simulation results show th a t lower read and write rates 

result in greater processing power -  as would be expected. The simulation results for the 

ten-page model are similar to tha t from the one-page model. The only real difference is 

th a t the server utilization is slightly higher in the ten-page model at low read rates.

The lower graph in Figure 8-4 illustrates the utilization of the single file server for virtual 

memory paging, and the effect tha t different read and write rates have on it. The results 

show tha t lower read and write rates result in less utilization of the server -  as would also 

be expected.

This ten-page model is too large to be executed on a numerical simulator [Lina], but can 

be simulated using the Per-Trans discrete-event simulator. The ten-page model was used 

to test the execution time in Per-Trans as will be shown.

8 .3 .2  P a ra lle l P r o g r a m m in g  C o n stru ct

Futures, as was explained in section 7.2.2, were used on MIMD machines for parallel con- 

nectionist simulation. For the purposes of parallel Petri net simulation, a Futures package 

has been especially implemented in EuLisp by the author. Since the creation of separate 

threads is quite expensive, it creates several threads at s ta rt up time and recycles these 

threads, so th a t no new ones need to be created. If all of the Futures are in use and a 

request is made by the application program for another one, the request will block until a 

currently used Future is freed and can be made available for the new request. Please note
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Figure 8-4: Simulation Results from 10-page DVSM Petri Net
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th a t the reuse of threads wasn’t necessary for MIMD connectionist simulations, because 

only three and four Futures were utilized and none were reused. However, the techniques 

used for parallelizing Petri nets in this thesis can require reuse of threads, because it is 

possible th a t a Future may be used and freed up many times.

8 .3 .3  P a ra lle l R e p lic a tio n

Parallel replication was straightforward to implement a.nd provided impressive results. 

Replication is based on the requirement of the simulation algorithm tha t three genera

tions of X  number of transition firings occur where X  transition firings cause the entire 

net to be traversed by tokens a multitude of times. Each generation has a different seed to 

the random number generator. The parallelization has three generations of the Petri net 

simulation executing in Futures in parallel. D ata is collected separately for each generation. 

Once each generation has finished execution, the system collects data  from the different 

generations and merges it. The merging process is serial, but consists of a minor amount of 

the total computation of the simulation, so it does not have much of an impact on perfor

mance. As is shown in figure 8-5, experiments using this technique on three processors have 

shown a substantial improvement of performance by a factor of more than double. Figure 

8-5 contains a graph illustrating the results from executions using Futures on one, two, and 

three processors compared to the serial non-Futures version executed on a single processor. 

Notice th a t the single processor Futures version takes only a small percentage more time 

to execute than the serial version. This result can be accounted for the limited number of 

Futures (3) and the efficiency of the implementation of the author’s Futures package. While 

replication may not be the most intellectually exciting method for parallel simulation, it is 

straightforward to implement and produces good results.

8 .3 .4  D e p e n d e n c y -b a se d  P a ra lle lism

Another technique has been implemented and tested for parallel execution of stochastic 

Petri nets which is based on dependencies. Dependency-based parallelism is similar to 

structural parallelism for VLSI circuit simulation mentioned in section 8.3. Under the 

dependency scheme, transitions belong to the same set if they share any common incoming 

places -  transistions linked to the same incoming arc belong to the same set even if they 

are linked to other places as well. The reasoning behind this method is tha t when a place
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Figure 8-5: Time taken for the Per-Trans simulator to execute the 10-page DVSM model on 
multiple processors (using parallel replication) vs. a single processor (using the sequential 
algorithm of section 8.1.3

is enabled, it will enable (on its own or in conjunction with other places) all the transitions 

it has outgoing links to. Transitions tha t are concurrently enabled and are not members 

of intersecting sets can be fired concurrently, because they are enabled by different places. 

Figure 8-6 illustrates this technique.

In Figure 8-6, there are two dependency sets. The transitions in set A  form a dependency, 

because t l , t2, and t3 are dependent on p i; likewise t3 and t4 are dependent on p3. Thus, t4 

must be a part of the dependency set, because it cannot execute concurrently with t3, and 

t3 cannot execute concurrently with If they were executed concurrently, it would be a 

violation of the semantics for a Petri net which says tha t one token can cause only a single 

transition to fire -  not many. Any one of the transitions in set B  can fire concurrently with 

anyone of the transitions in set A, because there are no dependencies between the two sets.

The clock is then updated to the current time plus the maximum delay of all the transi

tions being fired to represent the behavior of the simulator -  with several transitions firing 

concurrently the time required for their execution will be the maximum it takes a transition 

to fire. If several transitions tha t are members of intersecting sets are enabled, then the 

system executes the one with the shortest delay only: if A  and B  are enabled transitions 

where A £ X  and B  G Y  and <f) ^  X  f ) Y  then A  and B  can both execute when both 

transitions are not members of both X  and Y .

Note th a t this technique is only useful for transitions with delays > 0. If there are any 

transitions with immediate delays enabled, then only one of them will get fired across the
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entire net to maintain the semantics of the network.

A mechanism for dependency-based parallelism has been implemented and tested. On 

three and four processors, it achieved approximately 22 % speedup over the sequential 

simulator described earlier in this chapter. It should however perform better under a larger 

model containing large independent subnets (eg. 30-50 transitions).

8 .3 .5  S e le c t io n -b a se d  P a ra lle lism

The dependency-based technique produces parallelism at the transition firing level. However 

a more significant portion of computation is required to select the next transition to fire 

than is required by the event which actually fires the transition. The stochastic Petri 

net simulation algorithm (listed previously) requires th a t the delay time for every enabled 

transition be computed for all enabled transitions to determine which transition to  fire (see 

section 8.1.3). In some cases the calculation of delay can be a computation of exponential 

distribution which requires several floating point operations and a significant amount of 

CPU time. The algorithm must then search through the enabled transitions to find the one 

with the lowest delay-time. Thus, a selection-based technique is employed which partitions 

the enabled transitions into three threads so tha t their delay times can be computed in 

parallel.

The technique was straightforward to implement and when tested with the ten-page 

model produced about a 30% performance improvement over the serial version. However, 

as in the case of the dependency-based method, through simple analysis one can see th a t it 

is also well-suited for big (1000 node) Petri nets where large numbers (> 25) of transitions 

are concurrently enabled. The computation time to compute the delays for a large number 

of transitions then becomes a much more significant percentage of overall computation time.

8 .3 .6  C o lo red  P e tr i-n e ts

Due to the difficulties in applying parallelism to SPNs, the author decided to investigate 

Colored Petri nets (CP-nets) [Jen90] to determine if they could be exploited for parallelism. 

CP-nets allow the modeller to make much more succint and manageable decisions than 

stochastic Petri nets allow without losing the possibility of formal analysis. The color in 

CP-nets refer to the model’s support for different token types. Transitions can then have 

guard functions which require tokens of certain types to become enabled. The complexity of
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a model can be divided between the net structure, the net inscriptions, and the declarations 

meaning th a t it is able to handle the description of much larger and more complex system. 

Using CP-nets, one can describe simple data manipulation (like the addition of two integers) 

by means of arc expressions (such as x +  y) -  instead of having to describe this by a complex 

set of places, transitions, and arcs. Figure 8-7 contains a non-hierarchical CP-net which 

describes a system where a number of processes compete for some shared resources. In 

the CP-net, places and their tokens represent states, while the transitions represent state 

changes.

In Figure 8-7, the constraints on each line determine what tokens, if any, pass along an 

arc. Likewise, guard functions (eg. (r,z) where x must be bound to a p or q resource and 

i indicates the number of resources) must be satisfied for a transition to be enabled. As 

a token or set of tokens traverse a CP-net, they carry contextual information collected on 

their journey indicating where it has been and the associated semantics. For example, in 

Figure 8-7 i gets incremented everytime a token moves from T5 to  either B  or A. Note tha t 

according to the constraints in the figure, if the token is of type g, it moves to A. Otherwise, 

if the token is of type p it moves to B. The other constraints work similarly. For example 

on the arc from S  to T2, the constraint states tha t if the token on B  is of type p , then 

two e tokens should be removed from S  when T2 fires. Otherwise, if the token is of type q 

then only one e token should be removed from S  to T2. The init values for A, R , S', and T  

represent the tokens residing on those places at startup time for the simulation.

The main reason for discussing CP-nets in this chapter is th a t they have the ability to 

execute concurrently enabled transitions in the same step without altering their semantics. 

Stochastic Petri nets are unable by definition to execute concurrently enabled transitions in 

the same step and thus modifications to the simulation algorithm must be used to support 

parallelism.

However, CP-nets explicitly allow concurrent execution of transitions in the same step 

and therefore provide a much more elegant model for implementing parallelism. The CP-net 

model in Figure 8-1 has been implemented and execution o f concurrently enabled transitions 

in the same step has been exploited in that implementation. The algorithm is as follows:

loop
determine-enabled-transitions
fire-all-enabled-transitions-in-parallel
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e n d -lo o p

The implementation was much simpler to develop than the dependency-based SPN 

model, and it shows a great amount of promise for significant speedup in larger models. The 

experience gained from experimentation in this domain suggests th a t when given a large 

model, examine it for independent subnets. If there is a significant number of independent 

subnets, it should be worthwhile to use the dependency-based technique. A large-scale 

colored Petri net model was not available, and the development and simulation of such a 

model is a major project and beyond the scope of this thesis.

8.4 Conclusions

Per-trans is a Lisp-based representation language which utilizes persistent objects and par

allelism in simulations of stochastic Petri nets. It was added to PSE to provide a higher-level 

representation language which, as was shown in section 1.2, can simplify the modelling task. 

Per-Trans was also added to PSE to provide support for hybrid models which, as was shown 

in section 1.2, are often required for large-scale simulations. Probablistic time delays may 

or may not be embedded into transitions by the user. Per-trans is declarative in tha t the 

control of the firing of transitions and enabling of places is handled by the underlying sys

tem. The programmer can, however, embed Lisp code into the places and transitions to 

process information or produce graphical output to illustrate the behavior of the Petri net 

simulation. Per-trans is implemented in Eulisp under FEEL [Con] which has an X windows 

interface th a t supports graphical output and can be used in Per-trans applications.

To simulate large Petri nets, the system had to be made more efficient. Thus, the 

majority of the Petri net simulation engine was coded in C. The EuLisp interface remained 

the same, so tha t objects could be stored and manipulated as before. The only difference 

being tha t the Petri net was represented internally in C data  structures. Thus, there were 

no more generic function calls, and slot accesses where reduced to table lookups. Also, 

dynamically created lists were malloc1 d and /ree’d which eliminated the need for garbage 

collection. This technique improved performance some 30 fold. It should be noted though 

th a t EuLisp is still in the prototyping stage, and tha t once the design is settled, more 

efficient implementations can be expected.

This chapter has also covered techniques for the parallel simulation of Petri nets. The mo

tivation for this work was to decrease the cost of solving Petri net models. The first paradigm
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init = 3’(q,(f

if x = q 
then l ’(q,i+l) 
else empty

(x,i)

T1

case x of 
p  => 2 ’e 
q => l ’e

in it=  3’e

(x,i) if !x=p
then l ’(p,i+l) 

—  else empty
T2

if x =q then l ’e 
else empty

(x,i)

init = 2 ’e

T3

(x,i)

T42’e

case x of 
p => 2’e

q => l ’e (x,i)

T5

Figure 8-7: Colored Petri Net

(x,i) is the token format

x - token type 

i - count

CONSTRAINT:
^  if x=p then l ’e 

' else jempty
V

intrepretation:

if the x token coming in from 

C is of type p then send 1 e token 

else send nothing.
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inspected was stochastic Petri nets. Among the techniques tested in this paradigm, paral

lel replication has been shown to give the most impressive results by producing more than 

double speed up on three processors. Parallel replication was straightforward to implement, 

and even though it is not the most intellectually interesting technique, it does produce good 

results. Dependency-based and selection-based schemes have been implemented and tested 

and appear to  be well suited for large applications. It would be worthwhile to investigate 

the advantages of these techniques on larger models in the future.

Colored Petri nets have also been investigated and they have the advantage of being 

explicitly parallel through allowing concurrent execution of transitions. The evidence shows 

th a t further investigation of parallel simulation of large Colored Petri nets holds great 

promise.

The knowledge gained from this work leads to the following design criteria when simu

lating Petri nets. First, use parallel replication. It is simple to implement and gives good 

results. If the net is large, inspect the independent components of it. If there are large com

ponents tha t are independent of one another use a dependency or selection-based scheme 

for a stochastic Petri net and concurrent execution of transitions for a Colored Petri net.

The underlying message expressed by this work is tha t Petri net simulation can be 

supported to utilize persistent objects and parallelism, much in the same way it was done 

for connectionist and processed-based simulation in chapters 5, 6 and 7. All represent the 

main simulation components (processes, neurons, places, and transitions) as objects. The 

Per-Trans language provides declarative constructs for the development of stochastic Petri 

nets (as does POCONS for connectionism -  see section 6.1.3).
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Chapter 9

Conclusion

This thesis has been concerned with the merging of parallelism and persistent objects in the 

development of a simulation environment. Parallel persistent object-oriented simulation has 

been applied in this thesis to several models to demonstrate its usefulness and to provide 

support for large-scale simulations which, as was shown in section 1.2, can require knowledge 

bases for consultation and may utilize higher-level representations like Petri nets, because 

they simplify the modelling process. Built-in defining forms and utilities tha t have been 

implemented for this thesis, which support these models using persistence and parallelism, 

have been described. Also, large-scale applications were implemented using these forms and 

utilities, and performance evaluations were presented which illustrate impressive results from 

both improvement of sequential codes and parallelization. Persistence has shown itself to 

be useful not just for perusal of objects after simulation completion, but also for storing 

simulation data  tha t can be reused at a later date as described for connectionism in section 

7.1.

The name of this simulation package tha t these forms and utilities were integrated into 

is the Persistent Simulation Environment (PSE) which was originally developed in CLOS, 

but was ported to EuLisp as a part of the work on this thesis. The port to  EuLisp was made 

so th a t its support for parallel programming could be exploited. The EuLisp port provided 

several problems due to its lack of dynamic binding and module restrictions. While these 

problems were overcome, it was not possible to do so in an entirely transparent manner. 

The result was to make PSE a less than seamless interface between the application program 

and the database. To overcome this problem, one would have to implement persistence at 

the lowest level of EuLisp, so tha t persistent classes get instantiated across modules and
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bindings of slot accessors to names could be done at run time. However, there are some 

serious ramifications resulting from such modifications. The compiler would have to be 

modified to handle the compilation of methods where the class is not present. The result 

would be a less-restrictive EuLisp. It would be, however, a EuLisp th a t does not meet the 

design goals of the EuLisp committee which is geared towards lexical instead of dynamic 

binding and non-mutually referential modules.

As a means to improve the performance of PSE’s persistent object management system, 

a performance evaluation was done in chapter 3 comparing various object replacement 

algorithms, because for maximal improvement of performance, it makes sense to have the 

serial code be efficient before making it execute in parallel. An algorithm developed by the 

author (Faults Out) was found to perform best and was therefore the one added to PSE.

Event and process-based simulation utilities are necessary for simulation programming. 

Thus, as a basis for simulation and modelling, PSE was designed to augment a contemporary 

object-oriented language with discrete-event and process-based simulation facilities equaling 

those found in Simscript and Simula, and to tightly couple an object-oriented simulation 

language with a secondary storage facility to achieve the persistence of simulation objects. 

Chapter 4 described the simulation utilities for event and process-based simulation available 

in PSE. Examples of their use were also presented.

To provide the benefits of performance, object reuse, and perusal, parallelism and per

sistence were merged to support the process-based simulation for this thesis described in 

chapter 5. Optimistic and conservative models were compared, and the conservative tech

nique was chosen, because since it ensures tha t no rollbacks will occur, it reduces the amount 

of memory usage and/or secondary memory modifications tha t would be required under an 

optimistic mechanism. Persistent objects were used to represent executing processes. This 

use of persistent objects simplifies the storage of the simulations’ history. An example sim

ulation was implemented to test the mechanism. It was an assembly line model, which was 

later extended to allow objects to be cloned which required modifications to the conserva

tive concurrency protocol being used. The dynamic nature of Lisp greatly simplified the 

implementation of the cloning facility.

Chapters 6 and 7 presented a new component added to the EuLisp version of PSE, for this 

thesis, which supports connectionist simulation. The POCONS (Persistent Object-based 

CONnectionist Simulator) representation language was added to PSE to provide support 

for knowledge bases used in conjunction with simulations for planning and decision-making
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as described in section 1.2. Persistence and parallelism were merged to support the model. 

The basic system allows the definition of neurons e l s  objects which may or may not be 

persistent. The system was then extended to allow rules about the neuron elements to be 

specified. This rule-base facility is a basic building block for the development of knowledge 

bases. A large application was implemented which does a circuit analysis on the components 

of a flip-flop and a discussion was presented on how POCONS could be used for consultation 

of a knowledge base in a simulation. Then parallelism was added for these connectionist 

simulations on SIMD and MIMD machines to improve its performance. Improvements of 

more than double speedup were shown on four processors using the logic circuit application. 

Also a facility was added to POCONS for the storage and reuse of persistent neural network 

objects. The facility converts an internal neural network structure to persistent objects 

storing all information associated with the neural network, so th a t it can be recreated 

from storage. This facility was shown to have practical application as an elegant means 

to avoid retraining neural nets. Finally, the inferencing mechanism was also modified to 

promote chaotic neural networks. An application using the chaotic neural network facility 

was then implemented. The application modeled price fluctuations in the precious metals 

market. The neural network was not able to forecast the behavior of the markets, but 

it did show similar behavior. Further tuning of the model should produce better results, 

and while it would never be expected to model it exactly, it does aid in developing an 

understanding of the behavior of chaotic systems. The chaotic paradigm further expands 

the kinds of modelling tha t PSE supports which, as was shown in section 1.2, is required 

for the development of large-scale simulations.

Another module tha t was added to the EuLisp version of PSE as a part of this thesis was 

a Petri net representation language called Per-Trans. It was added to PSE, because as was 

shown in section 1.2, high-level representations like Petri nets can simplify the modelling 

process and large-scale simulations can require the combination of several models. Per- 

Trans allows the definition of Petri net components as objects which, like POCONS, may 

or may not be persistent. The base classes are Place and Transition. They serve as the 

basic building blocks for Petri net models. The focus of Per-Trans was on stochastic Petri 

nets, because they have been shown to be practical for use in performance evaluation of 

parallel and/or distributed computer systems. Per-trans was tested on several Petri net 

models including a 10 page distributed virtual shared memory model th a t was extended 

by the author from one tha t was designed at GMD in Berlin. Results from the simulation
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were presented. Parallelism was utilized to support concurrent execution of stochastic Petri 

nets. Several techniques were tested and parallel replication produced the best results (more 

than double speedup on three processors). Though a case was presented tha t the others 

may give good results on larger nets. Finally, Colored Petri nets were investigated and an 

implementation showed tha t they were relatively straightforward to map onto a parallel 

machine. Transitions in Colored Petri nets can require complex decisions where it may be 

useful to consult a knowledge base, which could be built using POCONS, for advice.

The result of this work has been to show tha t various areas of advanced computing 

(persistent object systems, parallel computing, and high-level representations) can be inte

grated effectively and are useful in supporting various kinds of modelling. The advantage of 

having persistent objects in a simulation environment is tha t it gives the user the ability to 

do further analysis of the objects’ stored results following program termination. Parallelism 

has been shown in this thesis to improve the performance of simulations.

The PSE system is not in a state to be used in a production environment, because it 

is essentially a prototype system written in a prototype system (EuLisp). Also EuLisp’s 

module system and binding mechanism makes persistence awkward at best. Nevertheless, 

the applications tha t execute under PSE show tha t the ideas presented in this thesis have 

practical usage: it supports large-scale simulations by supporting the merger of several 

models, parallelism improves performance, and persistence provides an elegant means for 

storage and reuse of simulation objects.

The next stage of development would be to reimplement PSE for industrial purposes. 

Persistent object systems have progressed rapidly in the last four years, and are now ready 

for industrial use. I would pick one of the better ones (eg. Gemstone [But91]) and use 

its persistent capabilities. Then I would rewrite the utilities for discrete-event, process- 

based, connectionist, and Petri-net based simulation as are described in this thesis using 

C-|—b and Gemstone. The techniques described in chapters 6 and 7 for execution of con

nectionist models on a MIMD machine and parallel replication of Petri nets should also be 

utilized, because both techniques produced impressive results. The result would be a major 

advancement over any other simulation package currently available.
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A ppendix A

Glossary

• primary memory -  The Lisp Image

• secondary memory -  The database

• virtual image -  The Lisp Image

• PSE -  The Persistent Simulation Environment

• POCONS -  Persistent Object-based Connectionist Simulator

• Per-Trans -  Petri net simulator library for PSE

• Petri Net -  A simulation model consisting of places, transitions, and arcs

• Connectionism -  A knowledge-representation technique tha t relies on weighted links 

between facts

• Discrete-event simulation -  a paradigm driven by a clock tha t advances at event-driven 

lump intervals as opposed to continuous time.

• Instantiation -  the creation of an object or class.

• Persistent Objects -  Objects tha t reside in the database as well as in the Lisp system 

and are managed by an underlying system instead of by an application programmer.

• Modsim -  a simulation language that is sold commercially and is being extended in 

research laboratories.
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