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Abstract
Chloroplasts from higher plants contain the enzymes superoxide 

dismutase, ascorbate peroxidase and glutathione reductase that scavenge 

0^* and and the antioxidants ascorbate and glutathione together

with carotenoid pigments. A high proportion of the activity of these 

enzymes was detected in chloroplasts from pea leaves, although they 

only contained 30% of leaf ascorbate and 10% of leaf glutathione. 

Chloroplasts contained no detectable catalase or peroxidase activity.

Carotenoid levels and chloroplast enzymes that scavenge 0^* and 

H^O^ were monitored during leaf development (greening) and senescence. 

Etiolated leaves contained antioxidants and enzymes, and the levels 

of ascorbate and ascorbate peroxidase increased during greening. Levels 

of chloroplast antioxidant enzymes declined during the senescence of 

flax cotyledons and pea leaf discs. Levels of these antioxidants and 

of enzymes that scavenge 0^* and were monitored in the leaves

and chloroplasts of pea plants grown under glasshouse conditions at 

different times of the year, and in response to different growth light 

intensities. Plants grown in summer contained higher levels of 

ascorbate, ascorbate peroxidase and glutathione reductase than plants 

grown in winter. Chloroplasts isolated from plants grown at a low light 

intensity contained less ascorbate, ascorbate peroxidase and gluta­

thione reductase than plants grown at a higher light intensity. Light 

may therefore be an important factor that influences the levels and 

activity of chloroplast antioxidant mechanisms.

A number of herbicides or stress conditions that promote photo- 

oxidative injury to plants have been investigated. Damage induced by 

an electron flow inhibitor (monuron),a bipyridyl (paraquat) and a photo­

sensitizer (rose bengal) has been compared with that induced by 

nitrodiphenyl ether herbicides. All four classes of compound induced



similar light dependent chlorophyll bleaching, inhibition of photo­

synthesis and membrane lipid peroxidation to leaf material. The effect 

of these herbicides on electron flow reactions of isolated thylakoids 

was used to distinguish between different sites of activation or modes 

of action. The damage induced probably occurred because the increased 

formation of free radicals, 0^* » ^2^2 °r ^ 2  excee(*e(* the capacity 

of endogenous chloroplast antioxidant mechanisms to scavenge them. 

Photoinhibition of photosynthesis in pea leaf discs incubated at 

chilling temperatures, or of thylakoid membranes incubated in the absence 

of electron acceptors, indicated that damage was induced by a mechanism 

analogous to the mode of action of photosynthetic inhibitor herbicides. 

Injury was light dependent and resulted in the loss of photosystem 

II function.

Peroxidation of illuminated thylakoid membranes induced by herbi­

cides was strongly retarded by ascorbate, carotenoids and a-tocopherol. 

These antioxidants are normally present in chloroplasts, indicating 

their possible protective function in vivo. Chlorophyll bleaching of 

pea leaf discs induced by the herbicide paraquat was promoted if 

endogenous superoxide dismutase activity was lowered using the inhibitor 

diethyl dithiocarbamate. Leaf discs containing chloroplasts with 

reduced levels of ascorbate, ascorbate peroxidase and glutathione 

reductase, achieved by growth of plants at low light intensity, also 

showed enhanced rates of paraquat induced bleaching. Control of the 

levels of chloroplast mechanisms that scavenge free radicals, O^*-,

or ma^ k0 one important factor by which increased or decreased 

tolerance to stress is achieved.
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INTRODUCTION



1. Photosynthesis
Photosynthesis is defined as the assimilation of CO^ in light 

to form carbohydrates and oxygen (Trebst and Avron, 1977). Experiments 

in the 1930's by Hill (1937, 1939) first demonstrated that isolated 

chloroplasts could reduce artificial electron acceptors in light with 

the evolution of oxygen. Improved techniques of chloroplast isolation 

from higher plants have subsequently shown that the entire process 

of photosynthesis occurs within chloroplasts.

1.1 Chloroplast structure and function
Chloroplasts from higher plants consist of a double membraned 

envelope enclosing a stroma containing enzymes necessary to convert 

CO^ into carbohydrates in the photosynthetic Calvin cycle. The most 

prominent feature of chloroplasts is their complex internal membrane 

structure which can be resolved as stacked (granal) and unstacked 

(stromal) thylakoid lamellae. Chloroplast thylakoids contain a high 

proportion of unsaturated lipid in their membrane structure, together 

with the light harvesting pigment proteins, photosystem I and II and 

other protein complexes required for photosynthetic electron flow 

(Barber, 1983).

The most widely accepted model of photosynthetic electron flow

is based on the scheme proposed by Hill and Bendall (1960), which

requires two photosystems linked by a series of electron carriers

arranged in order of decreasing electronegativity. The two reaction

centres, P^qq and p7q q » detected in higher plant thylakoids contain

chlorophyll and are closely associated with further light harvesting

chlorophylls. The complex containing P7qq is known as photosystem

I, while that containing Pcor. is photosystem II. Light energy absorbedboU



by chlorophyll is channelled into the reaction centres. Excitation 

of chlorophyll molecules within the reaction centres initiates the 

loss of an electron to a neighbouring acceptor molecule. Charge 

separation in photosystem II causes the reduction of a primary acceptor, 

Q, and the formation of an oxidant, Z. Reduced Q, possibly a form 

of plastoquinone, transfers electrons to further plastoquinone molecules 

in the thylakoid membrane. Electrons pass from plastoquinone to cyto­

chrome f and plastocyanin, a copper containing protein loosely attached 

to the inner face of the thylakoid membrane.

Light absorbed by the reaction centre chlorophyll in photosystem 

I causes charge separation, and the reduction of an acceptor molecule,

X. The photosystem I electron acceptor can reduce the iron sulphur 

protein ferredoxin. Chloroplast ferredoxin NADP+ reductase catalyses 

the reduction of NADP+.

Electrons ejected from photosystem II are replaced by the photo­

lysis of water, accompanied by oxygen evolution. Experiments by Jolliot 

and Kok (1975) demonstrated that the water oxidising complex accumulated 

four positive charges, each representing one quantum of light, prior 

to the rapid splitting of two molecules of water. The oxidising complex, 

Z, contains manganese as an essential co-factor. An outline of an 

updated Hill-Bendall scheme of photosynthetic electron flow is shown 

in Figure 1.

1.2 Photophosphorylation
The fixation of CO^ by photosynthesis requires both NADPH and 

ATP. The synthesis of ATP may be associated with photosynthetic electron 

flow from water to NADP+ (non cyclic photophosphorylation), or may 

occur as a consequence of electron flow around photosystem I (cyclic
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Fig 1. The electron transport pathway of higher 
plant chloroplasts. (based on Foyer 1984)



photophosphorylation). Photophosphorylation in chloroplasts may also 

occur as a consequence of electron flow to oxygen catalysed by electron 

acceptors such as methyl viologen (pseudo cyclic photophosphorylation). 

In the latter example ATP synthesis is accompanied by significant 

rates of oxygen uptake by chloroplasts as oxygen is reduced by photo­

system I electron flow. Both cyclic or pseudo cyclic photophosphoryl­

ation may be significant reactions in vivo for the formation of ATP 

in the absence of NADP+ reduction.

Two models to explain the mechanism of phosphorylation have been 

proposed. The chemical coupling hypothesis proposes the formation 

of an energy rich intermediate which is coupled to ATP synthesis (Chance 

and Williams, 1956). The chemiosmotic hypothesis is based on the accumu­

lation of a proton gradient across the thylakoid membrane during 

electron flow, which drives ATP synthesis (Mitchell, 1966). For 

chemiosmotic phosphorylation in chloroplasts it is proposed that the 

arrangement of electron carriers in the thylakoid membrane promotes 

proton uptake on one side of the membrane and proton release into 

the intrathylakoid space during photosynthetic electron flow. This 

hypothesis requires that thylakoid membranes are impermeable to protons 

except at certain sites, the chloroplast coupling factor. Coupling 

factors are ATPases which allow for the controlled release of the 

proton gradient, generating ATP. Uncouplers such as amines or NH^Cl 

increase the permeability of thylakoids to protons, preventing the 

build up of a proton gradient across the membrane. Rates of electron 

flow are thus stimulated by uncouplers as electron flow is no longer 

dependent on the rate of photophosphorylation. The chemiosmotic hypo­

thesis accounts for many of the observed properties of photophosphoryl­

ation in chloroplasts (Halliwell, 1981).



1.3 Carbon dioxide fixation
The ATP and NADPH generated by the light reactions of photosynthesis 

are used by chloroplasts to drive the incorporation of CO^ into sugars 

(Bassham, 1977). The initial stage in the photosynthetic reductive 

carbon cycle is carboxylation of ribulose 1,5-bisphosphate by CO^j 

catalysed by the enzyme ribulose 1,5-bisphosphate carboxylase, forming 

two molecules of 3-phosphoglycerate. Phosphoglycerate is converted 

to 3-phosphoglyceraldehyde in a reaction that requires both NADPH 

and ATP. These three carbon compounds may be exported from the chloroplast 

into the cytosol or further metabolised to regenerate ribulose 1,5- 

bisphosphate. ATP is required in this cycle for the phosphorylation 

of ribulose 5-phosphate into ribulose 1,5-bisphosphate. This cycle 

of reactions is drawn in Figure 2.
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Fig 2. The reductive pentose phosphate pathway of 
CO2 incorporation, (from Bassham,1977)



2. Oxygen Activation
2.1 Properties of Oxygen

Oxygen is essential for the life of aerobic organisms. However, 

oxygen, and more reactive products derived from oxygen, can be toxic 

to biological systems. The oxygen molecule, shown in Figure 3, contains 

two unpaired electrons each with a parallel spin, and therefore occupying 

different ir*antibonding orbitals. This form of oxygen, the triplet 

state, is the state of lowest energy, and is therefore the ground 

state. Most organic molecules contain electrons arranged in spin opposed 

pairs, referred to as the singlet state. The addition of a pair of 

electrons to dioxygen would be prevented according to the Pauli Exclusion 

Principle, as this would result in two electrons with parallel spin 

occupying the same orbital. Ground state oxygen is therefore relatively 

unreactive towards biological molecules due to the spin restriction 

encountered when triplet oxygen reacts with a singlet substrate (Taube, 

1965).

The reactivity of oxygen can however be increased by the excitation 

of triplet ground state oxygen to a singlet state (Foote, 1976). Two 

singlet states of oxygen are known, designated ^Ag and *Zg+. Either 

singlet state can revert to the ground state by emitting radiation, 

or by the transfer of energy to a quencher molecule. The ^Eg+ singlet 

state is unstable and there is no evidence for its formation in biolo­

gical systems. The ^Ag singlet state of oxygen is more stable and 

probably occurs during the dye sensitized transfer of light energy 

to oxygen termed photodynamic action (Nilsson and Kearns, 1973).

The spin restriction of oxygen can also be circumvented by oxygen 

reduction. Direct divalent reduction of ground state oxygen is not
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a feasible reaction due to the spin restriction. The addition of electrons 

one at a time in the univalent pathway of oxygen reduction does however 

avoid the spin restriction (Elstner, 1982). The complete reduction 

of oxygen to water requires four electrons, although the intermediates 

of this pathway are more reactive than ground state oxygen. This presents 

a potential hazard whenever univalent oxygen reduction occurs in biolo­

gical systems. The states of oxygen, and the pathway of univalent 

oxygen reduction is outlined in Figure 3.

2.2 Oxygen reduction in chloroplasts
The univalent pathway is the most feasible route of oxygen reduction 

in biological systems. The addition of one electron to oxygen forms 

the hydroperoxy radical (HO^’) or its conjugate base, superoxide (0^* ). 

The formation of 0^* has been demonstrated in chloroplasts (Asada 

and Kiso, 1973) and mitochondria (Rich and Bonner, 1978), and may be 

formed during a variety of enzyme catalysed oxidative reactions 

(Fridovich, 1976).

Potentially the most important site of 0^’ formation in the 

leaves of higher plaints is the reduction of oxygen by photosynthetic 

electron flow. Isolated chloroplast laimellae have been widely demonstrated 

to produce 0^* on illumination (Asada and Kiso, 1973; Allen aind Hall, 

1973; Elstner aind Heupel, 1974). Superoxide formation has also been 

demonstrated from intact chloroplasts or photosynthetic algae, or 

by chloroplasts in vivo (Egneus et al., 1975; Radmer and Kok, 1976; 

Glidewell and Raven, 1977). The site of 0^’ formation by photosynthesis 

has been established as the reducing site of photosystem I (Asada 

et at., 1974a; Miller and MacDowall, 1975). Oxygen reduction by

photosystem 1 can probably be mediated by the photosystem I 

acceptor, or ferredoxin. Isolated chloroplast lamellae take



up oxygen under illumination, although the rate of oxygen uptake is 

significantly enhanced if ferredoxin is added (Halliwell, 1981). Up 

to 15% of photosystem I electron flow may be diverted to oxygen, 

forming 0^* ,in vivo (Allen, 1976; Asada et at., 1977).

Two important physiological roles for the photoreduction of oxygen 

have been proposed. Efficient CO^ assimilation requires the light 

driven generation of NADPH and ATP in the correct stoichiometric amounts. 

Pseudocyclic electron flow to oxygen in chloroplasts may support ATP 

synthesis without NADP+ reduction, and may be a mechanism of varying 

the ratio of ATP to NADPH formed (Allen, 1976). An alternative role 

of oxygen reduction in vivo is that it allows dissipation of light 

energy from light harvesting chlorophyll under conditions of low rates 

of CO^ fixation (Furbank, 1984). Under such conditions electron flow 

to oxygen forming 0^* would prevent the ovei>reduction of electron 

transport intermediates.

Further reduction of oxygen in the univalent pathway shown in 

Figure 3 generates Hydrogen peroxide can be formed in vivo

by the dismutation of 0^’ either spontaneously (Bielski, 1978) or 

catalysed by superoxide dismutase (McCord and Fridovich, 1969) or 

by manganese (Lumsden and Hall, 1975; Kono et at., 1976). Additionally, 

enzymes such as glycollate oxidase can transfer two electrons to oxygen 

directly forming H^O (Halliwell, 1981). Experiments by Mehler (Mehler, 

1951 a, b; Mehler and Brown, 1952) demonstrated oxygen uptake by 

illuminated chloroplasts and the accumulation of Photosynthetic

formation of has been widely demonstrated (Good aind Hill, 1955;

Egneus et at., 1975; Radmer and Kok, 1976), and may occur through 

the reduction of 0^* (Allen, 1977a) or 0^* dismutation (Asada 

et at., 1974a).



2.3 Singlet oxygen
The most important mechanism of ^0^ formation in biological systems

is by dye sensitized photodynamic action (Foote, 1976; Krinksky, 1977).

The absorption of light by sensitizers results in a singlet excited

state (1) which can be converted to a longer lived triplet state by

spin inversion (2). Molecular oxygen can react with triplet sensitizers

generating singlet oxygen (3):

S ----- ►  1S (1)

1S ----- ►  3S (2)

3S + 302  ►  S + 102 (3)

Singlet oxygen is much more reactive than triplet ground state oxygen

as the spin restriction has been removed (Figure 3). Both chlorophyll

a and b have been demonstrated to generate *02 by dye sensitized

reactions (Foote, 1968, 1976). In chloroplasts photodynamic formation 
1of 02 from chlorophyll may be a significant aspect of oxygen toxicity 

(Rabinowitch and Fridovich, 1983). Photodynamic reactions involving 

^02 are probably enhanced when normal photosynthetic energy dissipation 

from chlorophyll is prevented by the inhibition of photosynthetic 

electron flow with certain herbicides (Dodge, 1983). Singlet oxygen 

may also be generated during the non-enzymic dismutation of 02*~ (Khan , 

1970), or during the breakdown of lipid peroxides (Lai et at., 1978).

2.4 Hydroxyl radical
It has been realised for many years that the ability of H202 

to oxidise organic compounds was greatly enhanced by iron salts. Haber 

and Weiss (1934) proposed that the catalytic decomposition of H202 

by iron salts initiated a chain reaction forming 02* and hydroxyl 

radicals (OH*). Considerable evidence has accumulated to show that



0^* and can react together in biological systems to form OH*

(Halliwell and Gutteridge, 1985). The reactions involve the interaction 

of iron and 02 *~ (4), followed by oxidation with H202 (5). The net 

reaction is shown in Equation 6.

Fe3+ + 02-  -----► F e 2+ + 02 (4)

Fe2+ + H O  -----►  Fe + OH" + OH- (5)
Fe3+

°2* * H2°2  °2 + OH + 0H (6)
Although several of the early attempts to demonstrate these 

reactions were unsuccessful (Halliwell, 1976; McClune and Fee, 1976), 

recent observations have shown the formation of OH* in the presence 

of iron or copper salts (Rowley and Halliwell, 1983; Halliwell and 

Gutteridge, 1985). In chloroplasts the formation of OH’ may occur 

if 02* and H202 are not scavenged efficiently.



3. Oxygen toxicity in chloroplasts
3.1 Lipid peroxidation

Lipids form approximately 35% of the dry weight of chloroplasts.

A high proportion (75%) of chloroplast lipid is mono and digalactosyl- 

diacylglycerol (Barber, 1983). Thylakoid lipids contain a high proportion 

of double bonds; unsaturation promoting membrane fluidity. Linolenic 

acid, containing three double bonds can account for up to 90% of the 

fatty acid present in chloroplast lipids of some species (Quinn and 

Williams, 1978). Polyunsaturated fatty acids are particularly susceptible 

to peroxidation. Lipid peroxidation is initiated by hydrogen abstraction 

from an unsaturated fatty acid forming a fatty acid radical (Figure 

4). Attack by oxygen generates a lipid peroxide which can abstract 

a hydrogen atom from an adjacent unsaturated fatty acid, forming a 

lipid hydroperoxide and thus initiating a chain reaction. Lipid hydro­

peroxides decompose to give a range of products including aldehydes, 

such as malondialdehyde (Pryor, 1978), or hydrocarbons such as ethane 

(Sandmann and Boger, 1982). Triplet sensitizers such as chlorophyll 

can initiate hydrogen abstraction from unsaturated fatty acids in 

a type I reaction (Foote, 1976). Alternatively triplet sensitizers 

can react with oxygen forming ^0 that can react with unsaturated 

fatty acids directly to form lipid hydroperoxides in a type II reaction 

(Figure 4b). Hydroxyl radicals may also induce hydrogen abstraction, 

and therefore the peroxidation of unsaturated fatty acids (Halliwell, 

1981).

3.2 Inhibition of photosynthesis
Photosynthetic reactions can be suppressed or inhibited by oxygen 

or activated oxygen species. Oxygen can inhibit CO^ fixation because
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0^ is itself a substrate for the enzyme ribulose 1,5-bisphosphate 

carboxylase-oxygenase. Oxygen and CO^ compete for the same active 

site on the enzyme in either photorespiration or photosynthesis (Foyer 

and Hall, 1980b). The diversion of photosynthetic electron flow to 

oxygen forming O^* in pseudocyclic photophosphorylation may reduce 

the capacity for CO^ assimilation. The accumulation of in chloro­

plasts has more serious consequences for photosynthetic activity.

Kaiser (1976) demonstrated that 10 yM was sufficient to inhibit

photosynthesis by 50% in intact chloroplasts. The site of inhibition 

appeared to be certain Calvin cycle enzymes including fructose and 

sedoheptulose bisphosphatases and glyceraldehyde 3-phosphate dehydrogenase 

(Heldt et al., 1978; Kaiser, 1979; Tanaka et al., 1982b). Oxidation 

of these enzymes by probably prevents their participation in

the Calvin cycle (Charles and Halliwell, 1980).

A common feature of damage to the photosynthetic apparatus induced 

by environmental stress or certain air pollutants such as SO^ in the

presence of high light intensities is loss of photosystem II function

(Shimazaki et al., 1984; Powles, 1984). Increased formation of damaging 

oxygen species (0^* , OH* or ^0^) under conditions of drought

stress, chilling or high light intensities (Osmond, 1981; Powles,

1984) or induced by air pollutants (de Kok et al., 1983; Sakaki et al.,

1983) may contribute to the damage to photosystem II. Photosensitizers 

that induce the formation of ^O^ also promote damage to photosystem 

II in isolated thylakoids (Knox and Dodge, 1985).

Damage to the photosynthetic assembly, whether through inhibition 

of electron flow, loss of Calvin cycle activity or as a consequence 

of fragmentation of chloroplast membranes, is probably a significant 

aspect of the toxicity of active oxygen species in chloroplasts.



3.3 Other damage reactions
One of the earliest proposals to account for the toxic effects 

of oxygen was that oxygen inactivates enzymes (Haugaard, 1968). Many 

enzymes from anaerobic organisms are inhibited by oxygen, and similar 

effects have been observed with enzymes from aerobes. Particularly 

sensitive are those enzymes that contain reduced thiol (-SH) groups 

(Halliwell, 1981), which are readily oxidised with a resulting loss 

of enzyme activity. The chloroplast Calvin cycle enzyme NADP+ 

glyceraldehyde 3-phosphate dehydrogenase is inhibited when chloroplasts 

are exposed to high oxygen tensions (Ellyard and Gibbs, 1980). Other 

Calvin cycle enzymes are inhibited by H^O^ through oxidation of the 

enzyme thiol group (Charles and Halliwell, 1980). The accumulation 

of H^O^ in chloroplasts may also inhibit CuZn SOD (Asada et at., 1975).

Nilsson and Kearns (1973) demonstrated that photodynamic oxidation 

of certain amino acids, and the inhibition of the enzyme alcohol 

dehydrogenase was caused by ^ 2* Pr°teins that contain methionine, 
tryptophan, histidine or cysteine residues are probably particularly 

susceptible to damage by ^0^ (Halliwell and Gutteridge, 1985).

Hydroxyl radicals, due to their extreme reactivity can attack most 

biological molecules (Anabar and Neta, 1967; Halliwell, 1981). The 

damaging action of 0^* and in biological systems is probably

to a large extent due to the formation of OH*.



4. Protective mechanisms against oxygen toxicity

4.1 Superoxide

Probably the best defence against damaging oxygen species is to 

avoid their formation. Enzymes such as cytochrome oxidase, the terminal 

oxidase of respiratory electron transport, can reduce oxygen by a di­

valent or tetravalent mechanism, thus avoiding the formation of 0^* 

(Fridovich, 1978). The photosynthetic apparatus of plants can adapt 

to some degree to match environmental growth conditions (Boardman,

1977; Berry and Bjorkman, 1980). This ensures that the size of the 

light harvesting apparatus and the capacity for electron transport 

reactions match the capacity for CO^ assimilation. Thus much of the 

light energy absorbed by chlorophyll would be dissipated through photo­

synthetic reactions. However chloroplasts can form 0^* as a normal 

reaction of photosynthesis. Indeed its formation may be an important 

physiological reaction of photosynthesis to allow for the generation 

of ATP in the absence of NADP+ reduction in pseudocyclic photophos­

phorylation (Furbank, 1984).

One important mechanism for removing 0^* is the dismutation 

reaction (7), which can occur spontaneously (Bielski, 1978) or catalysed 

by superoxide dismutase (McCord and Fridovich, 1969).

02-  + 02-  + 2H+ ----- *~H2°2 + °2 (7)
5 -1 -1The rate constant for this reaction has been calculated at 2 x 10 M s

.- 9 -1for the spontaneous dismutation of 0^ (Bielski, 1978), or 2 x 10 M s

for the reaction catalysed by SOD (Asada et al., 1977). The high 

concentration of SOD in cells, and the increased rate of O^*- decay 

catalysed by SOD favours enzymic rather than spontaneous dismutation 

(Fridovich, 1975).



SOD has been isolated from a wide range of organisms including 

nearly all aerobes and some anaerobic organisms (Fridovich, 1975).

Three classes of SOD have been isolated which are all metaloproteins 

containing either copper/zinc (CuZn SOD), iron (Fe SOD) or manganese 

(Mn SOD) as the prosthetic group. CuZn SOD is associated with 

eucaryotic organisms, whereas Mn SOD is found in procaryotes and the 

mitochondria of eucaryotes (Fridovich, 1975). Fe SOD has been isolated 

from bacteria and algae and from three families of higher plants 

(Fridovich, 1975; Bridges and Salin, 1981). Amino acid sequencing studies 

indicate close similarities between Mn SOD and Fe SOD, although CuZn SOD 

is distinct (Harris et al.,, 1980). CuZn SOD is also inhibited by 

cyanide, whereas both Mn SOD and Fe SOD are not, and this is often 

used to distinguish between these families of SOD in crude extracts 

(Rabinowitch and Fridovich, 1983). The CuZn SOD is also inactivated 

by H^O^ (Asada et al., 1975).

In the leaves of higher plants Mn SOD is located in mitochondria 

(Giannopolitis and Ries, 1977; Jackson et al., 1978; Rabinowitch and 

Fridovich, 1983), although this probably only represents 3-5% of the 

total leaf SOD (Jackson et al. , 1978). The majority of SOD in green 

leaves is present in chloroplasts (Asada et al., 1973; Lumsden and 

Hall, 1974; Jackson et al., 1978). Chloroplast SOD is of the CuZn 

type located in the stroma, and can be released on rupture of the 

chloroplast envelope (Jackson et al., 1978). Foyer and Hall (1980a) 

demonstrated that osmotic shock of intact chloroplasts released over 

90% of the SOD present. Some SOD may also be present in chloroplasts 

associated with thylakoid membranes or the intrathylakoid space 

(Lumsden and Hall, 1974; Hayakawa et al. , 1984, 1985).



Thylakoid membranes may also be protected against 0^* by manganese 

which catalyses the dismutation reaction (Lumsden and Hall, 1975; Kono 

et al., 1976). Dismutation of 0^* by manganese is probably particularly 

important in a number of aerobic Lactobacillus organisms which do not 

contain SOD (Archibald and Fridovich, 1981). The chloroplast stroma 

also contains millimolar concentrations of ascorbate (Foyer et al.,

1983; Law et al. , 1983) that can react with 0^* at a considerable 

rate (Epel and Neuman, 1973; Nishikimi, 1975).

Ascorbate + 2H+ + 20^*  ►  Dehydroascorbate + (8)
5 -1 -1Although the rate constant for this reaction (2.7 x 10 M s ) is 

lower than for SOD catalysed dismutation of 0^* , the ascorbate con­

centration of the stroma (10-50 mM) is higher than the 10 pM concen­

tration of SOD (Asada et al., 1977; Halliwell, 1981). Ascorbate may 

therefore intercept a significant proportion of the 0^’ formed in 

chloroplastsin vivo.

4.2 Hydrogen peroxide
Many aerobic organisms contain catalase which degrades H^O^ 

according to Equation 9:

2H202  ^ 2 ^ 0  + 02 (9)

Catalase can break down high concentrations of H202 very rapidly, 

although it is less effective at scavenging low H202 concentrations, 

because of its low affinity for this substrate (Jones and Suggett,

1968; Scandalios et al. 3, 1972). Much of the catalase activity in the 

leaves of higher plants is present in peroxisomes (Tolbert et al. ,

1968), where it probably scavenges H2C>2 generated by photorespiration. 

Chloroplasts from higher plants contain little if any catalase (Allen, 

1977b; van Ginkel and Brown, 1978). Although catalase may be a common



contaminant of chloroplast preparations (Allen, 1977b),it probably 

has no significant function in scavenging ^0^ in that organelle 

in vivo.

Glutathione peroxidase is present in the cytosol and mitochondria 

of animal cells, and catalyses glutathione dependent decomposition 

of (Halliwell, 1981). Glutathione peroxidase has not however been

detected in higher plants (Smith and Schrift, 1979; Halliwell, 1981). 

Plant extracts do contain peroxidases that can act on a wide range 

of substrates, and are usually assayed in vitro by the H^O^ dependent 

oxidation of guiacol. Since the identity of their natural substrates 

are largely unknown, their role in scavenging H^O^ in vivo is difficult 

to assess (Halliwell, 1981).

Chloroplasts from higher plants scavenge H^O^ in light at 

appreciable rates (Nakano and Asada, 1980). Chloroplasts contain the 

enzyme ascorbate peroxidase which may be bound to the thylakoid 

membranes (Groden and Beck, 1979) or present in the stroma (Nakano 

and Asada, 1981; Jablonski and Anderson, 1982). The enzyme catalyses 

the oxidation of ascorbate by H^O^ (10).

2H+ + Ascorbate + H^O^ —-»■» Dehydroascorbate + 2H^0 (10)

Chloroplast ascorbate peroxidase has a high affinity for H_0^ (K =2 2 m
5-50 yM) and shows optimum activity at alkaline pH values present in 

the chloroplast stroma during illumination (Nakano and Asada, 1981; 

Gerbling et al., 1984). Enzyme activity is also saturated by ascorbate 

concentrations below those present in the chloroplast stroma (Nakano 

and Asada, 1981; Jablonski and Anderson, 1982). Ascorbate peroxidase, 

which can scavenge H^O^ at rates up to 2000 ymol mg chi ^h  ̂ (Groden 

and Beck, 1979), may be an important enzyme in degrading low concen­

trations of H^02 in chloroplasts during illumination.



21.

H20

DHA

GSSG

NADP NADPH

Thyl akoi d membrane. P/Sreactioncentre

Fig 5. The mechanism of oxygen reduction to superoxide
by photosynthetic electron flow, and the scavenging 
of O ’" and H202 by SOD (1), ascorbate peroxidase (2), 
dehydroascorbate reductase (3) and glutathione 
reductase (4) in chloroplasts.



Dehydroascorbate, formed by reaction 10, can be reduced to ascorbate 

by glutathione (GSH) which is present in the chloroplast stroma at 

millimolar concentrations (Foyer and Halliwell, 1977; Foyer et al.,

1983). This reaction (11) proceeds non enzymically at pH 8.0 at an 

appreciable rate.

Dehydroascorbate + 2GSH— — ►Ascorbate + GSSG (11)

Chloroplasts also contain the enzyme dehydroascorbate reductase that 

can catalyse this reaction (Jablonski and Anderson, 1981; Nakano and 

Asada, 1981; Hossain and Asada, 1984 ).

Oxidised glutathione (GSSG) can be reduced in chloroplasts by 

a reaction that consumes NADPH catalysed by the enzyme glutathione 

reductase (12):

GSSG + NADPH + H+ -----►  PGSH + NADP+ (12)

Glutathione reductase has been isolated from pea and spinach chloroplasts 

(Foyer and Halliwell, 1976; Schaedle and Bassham, 1977; Jablonski and 

Anderson, 1978). Chloroplast activities of glutathione reductase are 

probably adequate to reduce GSSG formed by reaction 11. This cycle 

of reactions to scavenge in chloroplasts is drawn in Figure 5.

Considerable evidence in support of a cycle of reactions involving 

ascorbate and glutathione to scavenge in chloroplasts has emerged.

Chloroplasts contain millimolar concentrations of ascorbate and gluta­

thione (Law et al.t 1983; Foyer et al., 1983), sufficient to ensure 

that high activities of ascorbate peroxidase, dehydroascrobate reductase 

and glutathione reductase are maintained. The breakdown of by

this cycle is dependent on photosynthetic electron flow to form NADPH.

The scavenging of by chloroplasts has been demonstrated to be

light dependent and inhibited by compounds that prevent photosynthetic



electron flow (Nakano and Asada, 1980, 1981; Jablonski and Anderson,

1982; Anderson et al., 1983). Studies with radio labelled H202 and 

02 have demonstrated that the decomposition of H202 by illuminated 

chloroplasts does not result in 02 evolution, and is therefore consistent 

with the reaction in equation 10 (Asada and Badger, 1984).

4.3 Singlet oxygen

One mechanism by which energy spillover from light harvesting 

chlorophyll to oxygen can be avoided is to adjust the size of the light 

harvesting assembly to match the capacity of chloroplasts for photo­

synthetic reactions. Thus plants grown at high light intensities contain 

less chlorophyll but a higher capacity for photosynthetic reactions 

than plants grown at low light intensity (Boardman, 1977). Damage that 

occurs to the photosystem II reaction centre when low light adapted 

plants are transferred to strong light (Powles and Critchley,1980; 

Critchley, 1981) is probably due to photodynamic effects as a result 

of energy spillover from chlorophyll. Adaptation of the size of the 

light harvesting assembly to match the light environment ensures that 

much of the light absorbed by chlorophyll is utilised to drive photo­

synthetic reactions.

At high light intensities when the rates of C02 assimilation 

are low, photoreduction of oxygen forming 02* may be one mechanism 

of maintaining photosynthetic electron flow and thus preventing the over­

reduction of electron carriers and energy spillover from chlorophyll 

to form ^02 (Furbank, 1984). Superoxide can be metabolised in chloro­

plasts by the enzyme SOD and through the chloroplast ascorbate- 

glutathione cycle. Thus the formation of 02* , which is less reactive 

than ma^ restrict the formation of ^ 2*



Chloroplast membranes contain quenchers such as a-tocopherol and 

carotenoid pigments that can scavenge ^ 2* Some ^0% of a-tocopherol 
present in leaves is found in chloroplast membranes (Bucke, 1968; Hughes 

et at., 1971). Tocopherols can react with free radicals, and can 

quench lipid peroxidation (Fahrenholtz et at., 1974; Yamauchi and Matsushita, 

1979). The radical generaged by a-tocopherol reacting with ^0^ can 

be reduced back to a-tocopherol by ascorbate (Packer et at., 1979).

Ascorbate and glutathione present in the chloroplast stroma can also 

quench ^0^ directly (Bodannes and Chan, 1979; Chou and Khan, 1983).

Carotenoid pigments are also important in preventing photo-oxidative 

damage to chloroplast membranes. Mutants which lack carotenoids bleach 

rapidly on exposure to light (Anderson and Robertson, 1960). Similar 

observations have been made with plants treated with herbicides that 

inhibit carotenoid synthesis (Bartels and Watson, 1978; Ridley and 

Ridley, 1979). The protective function of carotenoid pigments has also 

been demonstrated in experiments into the peroxidation of liposome 

membranes. Incorporation of 8-carotene protected such membranes against 

dye sensitized peroxidation (Anderson and Krinsky, 1973; Anderson 

et at., 1974).

Carotenoids are present in chloroplasts as carotenes and xanthophylls.

An important feature of the carotenoid molecule is that it contains 

several conjugated double bonds. Carotenoids that contain nine or more 

double bonds are effective quenchers of while carotenoids with

seven or less double bonds or carotenoid synthesis precursors such 

as phytoene or phytofluene are ineffective quenchers (Krinsky, 1979). 

Carotenoids can quench both triplet chlorophyll directly or they can 

quench (Foote, 1968; Foote and Denny, 1968; Krinsky, 1979).



4.4 Hydroxyl radical
The extreme reactivity of OH* means it will react with most biolo­

gical molecules in its path. Quenchers like a-tocopherol in thylakoid 

membranes or ascorbate and glutathione in the chloroplast stroma may 

scavenge OH*. The most effective protection against OH* is to prevent 

its formation. Chloroplast enzymes that scavenge 0^* and prevent the 

accumulation of H^O^ thus have an added importance.



5. Concluding section: Aims of this study
Chloroplasts from higher plants have the potential to generate 

several forms of activated oxygen species that may be toxic to photo­

synthetic reactions if their formation and subsequent scavenging is 

not carefully controlled. High internal oxygen concentrations during 

photosynthesis, and the presence of compounds such as ferredoxin that 

can reduce oxygen to 0^* may lead to the formation of more toxic H^O^ 

or OH*. Chloroplast pigments can sensitize the formation of ^ 2* 
especially if photosynthetic electron flow is inhibited. The damaging 

effects of these species are restricted under normal conditions by 

enzymes such as SOD, ascorbate peroxidase and glutathione reductase, 

and antioxidants that can scavenge activated oxygen species. However 

under conditions when normal photosynthetic reactions are impaired 

such as during drought stress or chilling injury or treatment with 

certain herbicides, the formation of these active oxygen species may 

be enhanced (Osmond, 1981; Dodge, 1983; Powles, 1984). Air pollutants 

such as 0g or SO^ may also promote the formation of 0^* » H^O^ or 

^0^ in chloroplasts (Shimazaki et al., 1980; Sakaki et al., 1983; 

de Kok et al., 1983; Tanaka and Sugahara, 1980; Tanaka et al., 1982a). 

Chloroplast enzymes and antioxidants that scavenge these damaging oxygen 

species may therefore have an important role in the tolerance of plants 

to such stresses.

Following the isolation of SOD (McCord and Fridovich, 1969), a 

number of workers have investigated the role of this enzyme in protecting 

organisms against oxidative stress. Studies with bacteria, yeast and 

algae have indicated that tolerance to high oxygen tensions, paraquat, 

SO^, chilling and photo-oxidative conditions could be associated with 

endogenous SOD activity (Gregory and Fridovich, 1973; Gregory et al.,



1974; Pullich, 1974; Hassan and Fridovich, 1977a, 1978; Steinitz 

et al.i 1979; Rabinowitch et al., 1983; Clare et al., 1984; Rabinowitch

and Fridovich, 1985). In higher plants SOD activity has been monitored 

during development and senescence, in response to chilling and drought 

stress, and in tolerance to paraquat, S0_ and o_ (Beauchamp and
^  O

Fridovich, 1973; Simon et al., 1974; Giannopolitis and Ries, 1977;

Foster and Hess, 1980, 1982; Tanaka and Sugahara, 1980; Dhindsa et al., 

1981; Youngman and Dodge, 1981; Michalski and Kaniuga, 1981; Lee and 

Bennett, 1982; McRae and Thompson, 1983). Studies of the role of SOD 

in plant tolerance to stresses that may promote 0^* formation in 

chloroplasts must be coupled with assessments of the activity of 

enzymes that scavenge In many of these studies the activity of

SOD has been monitored in parallel to changes in catalase or peroxidase 

(Simon et al., 1974; Dhindsa et al., 1981; McRae and Thompson, 1983).

The activity of chloroplast enzymes that scavenge in response

to such stresses has been largely ignored.

The aim of this investigation was to examine the role of activated 

oxygen species, particularly 0^* and H^O^, in photo-oxidative damage 

to plants, and to assess the role of chloroplast antioxidant mechanisms 

in restricting injury. In the first part of this study the enzymes 

that scavenge 0^* and have been assessed in leaf homogenates

and chloroplasts to determine the proportion and activity present in 

chloroplasts. Enzyme and antioxidant levels have been monitored during 

leaf development and senescence, in leaves and chloroplasts from plants 

grown at different light intensities and in plants grown under glass­

house conditions at different times of the year. In the second part 

of this study photo-oxidative injury has been induced by a number of 

herbicides that may promote the formation of free radicals, 0^’ ,



and in chloroplasts. The role of chloroplast antioxidant 

mechanisms in preventing such injury has also been considered.



MATERIALS AND METHODS



MATERIALS AND METHODS
1. Preparation of experimental materials
1.1 Growth of plant material

Flax (Linum usitatimum var. Reina) seedlings were grown on moist

vermiculite in crystallising dishes in a constant environment cabinet
-2 -1under continuous illumination of 300-400 pmol m s photon flux density 

provided by warm white fluorescent tubes, and a mean air temperature 

of 23°C.

Pea (Visum sativum var. Meteor) seedlings were grown in trays 

of moist Levington Universal Compost in a glasshouse under natural 

daylight conditions or natural daylight extended to a 14 h photo- 

period (Thorn 400W mercury vapour lamps) and a mean air temperature 

of 22°C. Plants were grown for 14-21 days prior to transfer to the 

laboratory. For experiments involving plaints grown at different light 

intensities, pea plaints were grown (as above) in a controlled environ­

ment cabinet for 14-21 days. The light intensity in the cabinet was
-2 -1varied between 100 and 400 pmol m s photon flux density using layers 

of Kodak neutral density filter mounted on a stage 200 mm above the 

plaints. For etiolated plants, peas were grown in trays of moist compost 

in total darkness in a growth room at 20-23°C for 8 days.

Maize (Zea mays var. Pioneer) plaints were grown in trays of 

Levington Universal Compost under glasshouse conditions aind a mean 

air temperture of 22°C, for 14-21 days.

Spinach plaints used in the isolation of ferredoxin and superoxide 

dismutase were purchased from a local market.

1.2 Preparation of experimental compounds
Stock solutions of monuron (1 mM) were prepared by initially 

dissolving the chemical in methanol and then refluxing for 2-3 hours



until a clear solution was obtained. Paraquat was dissolved in distilled 

water. The diphenyl ether herbicides were dissolved in acetone and 

fluridone dissolved in ethanol, and diluted with distilled water. Final 

concentrations of solvent in experimental test solutions did not exceed 

0.5%.

Penacillamine copper complex was prepared according to the method 

described by Birker and Freeman (1977). Penacillamine (100 mg) was 

dissolved in 15 ml of 0.5 M sodium acetate, pH 6.2, and mixed with 

2 ml CuC12.2H20 (containing 85 mg CuCl2). After adding an approximately 

equal volume of ethanol, the precipitate formed was removed by filtering, 

washed with alcohol and redissolved in 5.0 ml distilled water. The 

concentration of the complex was determined from the absorbance at 

518 nm, corresponding to 1820 M ^cm  ̂per atom of copper.

Crocetin was prepared from commercial saffron according to the 

method of Friend and Mayer (1960). Approximately 2-3 g of finely 

ground saffron was extracted for 1 hour with diethyl ether in a 

Soxhlet extractor to remove fats and lipids. The residue was dried 

under a stream of nitrogen and re-extracted with methanol. After 

reducing the volume by evaporation under a stream of nitrogen, methanolic 

extracts were stored in darkness at -20°C until required. Prior to 

use, an aliquot of the extract was dried under a stream of nitrogen 

and redissolved in a small volume of distilled water.

1.3 Treatment of plant material

Pea leaf discs were routinely used to test the effects of chemical 

treatment on plant material. Pea plants grown in a glasshouse or a 

constant environment chamber were transferred to the laboratory, and 

15 mm diameter leaf discs cut from sub-apical leaves with a sharp



cork borer and floated on the appropriate test solution in glass 

petri dishes. For experiments on the effect of chilling on plants, 

discs cut from pea leaves or segments of the second leaf of maize 

seedlings were floated on distilled water in crystallising dishes and 

transferred to either a constant environment chamber or a dark growth 

room. Dishes were maintained at 20°C or cooled and kept at 5°C by 

standing in an ice bath.

For incubation of leaf discs under altered gas atmospheres or 

for ethane determinations, discs were floated on test solutions in 

25 ml glass vials, or 20 ml glass tubes, in each case fitted with a 

screw cap containing a rubber septum. Tubes or vials were kept under 

air, or flushed with oxygen or nitrogen using a hypodermic needle 

attached to the gas supply for 5 min prior to incubation. Details 

of the experimental conditions for each experiment are listed in the 

Results section.

1.4 Replication and statistics
All results represent the mean of at least three replicate samples. 

Each experiment was repeated twice, and the data pooled. The standard 

error of the means were less than 10% of the mean for each experiment, 

unless indicated otherwise in the Results section.



2. Subcellular fractionation techniques
2.1 Leaf homogenates

Crude enzyme extracts from pea leaves or treated leaf discs were 

used for many of the assays.Leaf material was ground in a cold mortar 

or a glass homogeniser, in 5-10 ml of cold 50 mM Tricine-NaOH, pH 7.8.

The homogenate was squeezed through 4 layers of muslin and centrifued 

at 3000 g for 5 min in an M.S.E. Chillspin centrifuge at 4°C. The 

supernatant was used for enzyme determinations.

2.2 Chloroplast membranes for electron transport studies
Leaf material was ground in a cold mortar with cold 50 mM Tricine- 

NaOH, pH 7.6, containing 0.3 M NaCl and 5 mM MgCl^, using approximately 

10 ml buffer per gram of leaf material. The homogenate was squeezed 

through 4 layers of muslin and centrifuged at 200 g for 1-2 min at 

4°C. The pellet was discarded and the supernatant centrifuged at 

3000 g for 10 min at 4°C. The pellet consisting of chloroplast membranes 

was resuspended in 50 mM Tricine-NaOH, pH 7.6,containing 0.03 M NaCl 

and 5 mM MgCl^.

2.3 Intact chloroplasts
Intact chloroplasts (Type A, Hall, 1972) were prepared according 

to the method described by Walker (1980). Approximately 25 g of leaf 

material were homogenised in a domestic blender (3 x 2 s bursts) in 

100 ml ice slush of grinding media. The extract was squeezed through 

2 layers of muslin and filtered through 8 layers of muslin plus 1 layer 

of cotton wool. Chloroplasts were recovered by centrifugation at 4 500 rpm 

for 20 s in a M.S.E. Chillspin centrifuge (maximum radius 16.8 cm).

The pellet was superficially washed with 50 ml washing medium, and



Grinding buffer

resuspended in 1-2 ml incubating buffer. The respective composition 

of buffers were:

0.33 M 

50 mM 

50 mM 

5 mM

0.1% (w/v)

0.33 M 

5 mM

0.1% (w/v)

Washing buffer

Incubation buffer

sorbitol

Na^HPO adjusted to pH 6.5 
with K0H

kh2po4

MgCl2
Bovine serum albumin type V

sorbitol

Mg01o

BSA

4 ml incubation buffer per 100 ml 

0.33 M sorbitol

50 mM Hepes-KOH pH 7.6

2 mM EDTA

1 mM MgCl_

0.1% (w/v) BSA

This technique routinely yielded chloroplasts that were approximately 

60% intact. Further purification was achieved by layering the chloroplast 

preparation over 10 ml of 40% Percoll containing 0.33 M sorbitol and 

50 mM Hepes-KOH, pH 7.6, and centrifuging at 4 500 rpm for 1-2 min.

After washing, the pellet was resuspended in 2 ml of incubating 

buffer and contained chloroplasts of greater than 75% intactness 

(Edwards and Walker, 1983). Alternatively the modified Percoll 

gradient method described by Nakano and Asada (1980) was used to 

purify chloroplasts. The chloroplast preparation was layered above 

a Percoll density gradient prepared by pipetting successively 1.0 ml 

90%, 3.0 ml 70%, 4.0 ml 40% and 2.0 ml 10% Percoll containing 50 mM

Hepes-KOH, pH 7.6, 0.33 M sorbitol, 10 mM NaCl, 1 mM MgCl^, 2 mM EDTA



and 0.5 mM KF^PO^. After centrifuging at 6 500 rpm for 15 min the intact 

chloroplasts were removed from between the third and bottom layers. 

Chloroplasts were washed to remove Percoll and were usually greater 

than 80% intact.

2.4 Subcellular fractionation
The distribution of enzymes between organelles and the leaf soluble 

fraction of pea leaves was examined. For the chloroplast fraction, intact 

chloroplasts were prepared as described in Section 2.3. The pellet 

from the first centrifugation contained both intact and broken 

chloroplasts, nuclei and cell debris. The supernatant from this stage 

was centrifuged at 6000 g for 15 min at 4°C. The pellet from this 

step containing mitochondria, peroxisomes and broken chloroplasts was 

taken as the crude mitochondrial fraction and the supernatant was 

referred to as the leaf soluble fraction. Total activity of enzymes 

assayed in each fraction was calculated. This was compared with the 

activity of those enzymes in a total leaf homogenate prepared by 

grinding 0.5-1.0 g leaf material in 10 ml of grinding buffer (Section 

2.3) containing no osmoticum. This was squeezed through 2 layers of 

muslin to remove coarse cellular debris.

2.5 Preparation of spinach ferredoxin
Spinach ferredoxin was prepared according to the method described 

by Buchanan and Arnon (1969). Spinach leaves were purchased from a 

local market, and were deveined and washed in distilled water. These 

were stored in plastic bags at -20°C until required. Approximately 

5 kg of leaves were crushed by hand and then passed through a mincer 

into 0.02 M Tris-HCl, pH 8.0 (1000 ml/kg). The mixture was allowed



to thaw, squeezed through 2 layers of muslin, and acetone was added 

to give a final concentration of 75% (v/v). After standing for 1 hour 

at -20°C, the supernatant was removed and the precipitate centrifuged 

at 10 000 g for 10 min to remove excess acetone. The precipitate was 

dried with a hair drier, redissolved in 0.15 M Tris-HCl, pH 7.3 (50 ml/kg 

leaves) and dialysed overnight against 10 volumes of 1 mM Tris-HCl, 

pH 7.3. Following centrifugation (10 000 g for 30 min)the clear super­

natant was absorbed onto a DEAE cellulose column (4 cm x 2 cm high 

per kg of leaf material) pre-equilibrated with 0.15 M Tris-HCl, pH 

7.3, containing 0.08 M NaCl. The column was washed with 0.15 M Tris-HCl, 

pH 7.3, containing 0.08, 0.11 and 0.14 M NaCl successively to elute 

flavins and plastocyanin, Ferredoxin was eluted from the column with 

0.30 M Tris-HCl, pH 7.3, containing 0.55 M NaCl. After diluting 2.5 times 

with distilled water, ferredoxin was applied to a second DEAE cellulose 

column (3 cm x 50 cm high) pre-equilibrated as before. Ferredoxin was 

eluted with 0.15 M Tris-HCl, pH 7.3, containing 0.25 M NaCl,and fractions 

with a 420/276 nm absorbance ratio of greater than 0.4 were pooled 

and retained. Ferredoxin preparations were stored at -20°C until required.

2.6 Ferredoxin NADP+ reductase

The eluate from the first chromatography step in the preparation 

of spinach ferredoxin contained ferredoxin NADP+ reductase. This was 

further purified by ammonium sulphate precipitation. Sodium pyro­

phosphate (0.1 M) was added to the eluate (10% v/v) to protect the enzyme 

against denaturation. This solution was then fractionated with 

ammonium sulphate, and the fraction that precipitated between 50-66% 

salt saturation was retained (Shin, 1969). The precipitate was re­

dissolved in 0.1 M Tris-HCl, pH 7.3, and was taken as crude enzyme.



Ferredoxin NADP+ reductase activity in the preparation was assayed 

according to the method of Avron and Jagendorf (1956), using the enzyme 

to catalyse the reduction of DCPIP by NADPH. The 2.0 ml reaction mixture 

contained 0.1 M Tris-HCl, pH 7.3, 1 mM NADPH, 50 jjM DCPIP and an aliquot 

of enzyme preparation. The reaction was followed as the change in 

absorbance at 620 nm as DCPIP was reduced. One unit of enzyme activity 

was defined as the amount of enzyme causing a decrease in absorbance 

at 620 nm of 1.0 per minute.

2.7 Extraction and purification of superoxide dismutase
SOD from spinach leaves was extracted and purified by a method 

based on that described by Vaughan et al. (1982). Samples of 25 g of 

leaf material were homogenised in 250 ml 0.1 M phosphate buffer, pH 7.8, 

and the debris removed by centrifugation at 10 000 g for 15 min. SOD 

in the supernatant was partially purified by adding ammonium sulphate 

to 35% saturation, standing for 1 h at 5°C, and centrifuging at 

2 500 g for 10 min. More ammonium sulphate was added to the supernatant 

to bring this to 55% saturation, and after standing for 1 h and centri­

fuging as before, the precipitate containing SOD was dissolved in 

25 ml phosphate buffer, pH 7.8. A 5.0 ml aliquot of the enzyme solution 

was applied to a G-75 Sephadex column (2.5 x 30 cm), previously washed 

with 0.1 M phosphate buffer, pH 7.8, and eluted with the same buffer 

using a flow rate of 20 ml per hour. Fractions (5.0 ml) were 

collected, and those showing SOD activity were pooled, and concentrated 

by dialysis against polyethylene glycol 4000. SOD extracts were stored 

at -20°C until required.



3. Quantitative determinations
3.1 Chlorophyll and carotenoids

Chlorophyll and carotenoid levels in leaf discs were determined 

in acetone extracts obtained by soaking discs in 80% acetone in darkness 

for 5 days. Chlorophyll was quantified according to Arnon (1949):

Chlorophyll (yg ml 1) = 8.02 (Ag63) + 20.2 (Ag45)

Carotenoid levels in etiolated or greening leaves were estimated from 

the absorbance of the acetone extract at 480 nm after correction to 

account for chlorophyll according to Kirk and Allen (1965):

Carotenoid = A + (0.114 Acco - 0.638 A )480 663 645

Alternatively leaf discs were soaked for 1-2 days in ethanol, 

and pigments estimated from the absorbance of the ethanol extract 

at 470, 649 and 665 nm according to Lichtenthaler and Wellburn (1983):

Chlorophyll a (tig ml *) = 13.95 (A ) - 6.88 (Acyl_)boo 04y
Chlorophyll b (yg ml-1) = 24.96 (A64g) - 7.32 (Ag65)

Carotenoid (yg ml ^  = 1000 (A.--) - 20.5 C.-114.8 C,_______ 4/0__________a________b_
245

Chlorophyll concentration of chloroplast preparations was deter­

mined by adding 0.1 ml of chloroplasts to 3.9 ml 80% acetone, centri­

fuging (2 500 g x 5 min) and determining the absorbance at 663 and 

645 nm as above.

3.2 Protein
Protein was determined according to the method of Hartree (1972). 

Solution A. 2 g potassium sodium tartrate

100 g sodium carbonate 

500 ml 1 N NaOH
made up to 1 litre with distilled H^O.



Solution B. 2 g potassium sodium tartrate

1 g copper sulphate 

10 ml IN NaOH 

H^O to 100 ml.

Solution C. 1 vol. Folin Ciocalteu reagent

14 vol. H20

0.9 ml of solution A was added to 1.0 ml of protein sample, and heated 

to 50°C for 10 min. After cooling to room temperature, 0.1 ml solution 

B was added, and the mixture left to stand for at least 10 min. Freshly 

mixed solution C (3.0 ml) was added rapidly and the colour was 

developed by heating to 50°C for 10 min. After cooling to room 

temperature the absorbance was determined at 650 nm.

A calibration curve was constructed with BSA as the protein 

standard and was linear between 15 and 100 ug protein.

3.3 Ascorbate
Ascorbate was determined by the method of Oser (1979) as 

described by Mukherjee and Choudhuri (1983), based on spectrophoto- 

metic determination of the red colour formed between dehydroascorbate 

and 2,4-dinitrophenylhydrazine. A sample of plant extract containing 

approximately 100 mg ascorbate was mixed with 6% TCA to give a final 

volume of 10 ml, left to stand for 5 min and centrifuged (200 g x 5 min) 

Ascorbate in the supernatant was oxidised by the addition of 0.3 g 

acid washed activated charcoal, mixed thoroughly, and filtered through 

No. 1 Whatman filter paper. To a 2.0 ml aliquot of the filtrate 1.0 ml 

2,4-dinitrophenylhydrazine (2% in 9 N H2S0^) and 1 drop 6% thiourea 

(in 70% ethanol) was added. After heating for 15 min in a boiling 

water bath and cooling, 2.5 ml 80% l^SO^ was added slowly, mixed, and



the absorbance determined at 530 nm. Ascorbate was calculated from 

a calibration curve,constructed using 0.5 - 40 Mg ascorbate.

3.4 Glutathione
Determination of glutathione was based on the method described 

by Law et al. (1983), based on the glutathione reductase specific 

reduction of glutathione by NADPH. The reaction mixture contained 330 mM 

sorbitol, 50 mM Hepes-KOH, pH 7.6, 0.5 mM NADPH, 0.3 mM DTNB and 

glutathione reductase (1 unit). The rate of increase in absorbance 

at 412 nm obtained with leaf extracts or chloroplasts was compared 

to standards containing known amounts of glutathione.

3.5 Ethane
Ethane evolved from intact leaf discs was determined by GLC.

Leaf material was incubated under constant illumination in 25 ml screw 

top vials fitted with air tight rubber seals. After incubation for 

varying lengths of time 1 ml samples of the gas headspace were removed 

using an air tight syringe, and analysed in a Pye-Unicam chromatograph 

with an alumina column. The column oven temperature was 125°C and 

the gas flow rate set to 40 ml min Ethane was identified and

quantified by comparing the retention time and peak height of the 

sample with authentic standards.

3.6 Carbon dioxide exchange
The C0^ exchange of leaf segments of discs was measured in 

an Infra-red Gas analyser (Model 225; Analytical Development Co., 

Hoddesdon, Herts), connected to an open circuit gas flow system. 

Compressed air (800 ml min- )̂ was passed through a CaCl^ drying chamber



and divided into two streams. One stream passed through the sample

chamber to a second drying chamber into the IRGA sample tube. The other

stream went directly into the IRGA reference tube. The flow rate of

gas through both streams was identical.

Leaf material in the sample chamber was incubated in darkness,

and then illuminated with a photoflood lamp (Thorn 400W) giving a light
-2 -1intensity of 250 nmol m s photon flux density at the chamber 

surface. CO^ exchange by leaf material was calculated by comparing 

the CO^ content of the air flow through the sample with that of the refer­

ence stream. The IRGA was calibrated using a gas supply with a 

known CO^ concentration.

3.7 Leaf disc chlorophyll fluorescence
A portable Kautsky apparatus (Plant Productivity Meter SF-10;

Richard Branker Research, Ottawa, Canada) was used to monitor the 

fluorescence kinetics from chlorophyll. The fluorimeter induced chloro­

phyll fluorescence with radiation at 670 nm and detected fluorescence 

at wavelengths > 710 nm. The output was monitored on a chart recorder.

All plant material was maintained in darkness for at least 1 hour prior 

to measurement of chlorophyll fluorescence. Fluorescence kinetics were 

assessed on 10 replicate samples of leaf material, and the change in 

variable fluorescence analysed (see Results Section 7).

3.8 Electrolyte leakage
Electrolyte leakage as an assessment of herbicide induced injury 

to plant membranes has become widely used (Vanstone and Stobbe, 1977).

Leaf discs (15 mm diameter) were cut from glasshouse grown pea plants 

and floated on 20 ml of herbicide solution, prepared using 

deionised water, in glass petri dishes (15 leaf discs per 20 ml), and
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incubated under continuous illumination. Conductivity changes in the 

solutions were assessed using a Data Scientific PT1-18 Digital 

Conductivity meter, both prior to and following various periods of 

illumination.



4. Experimental assay techniques
4.1 Photosynthetic electron transport

Photosynthetic electron transport by isolated chloroplast lamellae

was assessed by measuring electron flow from water to a variety of

electron acceptors in a Hansatech oxygen electrode, coupled to a Phillips

chart recorder. The electrode was calibrated with sodium dithionite

prior to each experiment. The basic 3.0 ml reaction mixture contained:

30 mM Tricine-NaOH, pH 8.0

5 mM MgCl2

1.7 mM NH.Cl4
Chloroplast lamellae containing 50-100 pg chlorophyll

In all cases the chloroplast lamellae were the last addition, and

the reaction mixture was allowed to equilibrate at 20°C in darkness
-2 -1before being illuminated (500 pmol m s photon flux density provided 

by projector lamp).

Additions to this basic reaction mixture were:

Photosystem I 6.6 pM DCPIP

13.3 mM ascorbate 

66 pM monuron

6.6 pM paraquat

Photosystem II (ferricyanide reduction)

1.33 mM K_Fe(CN)3 6
Photosystem II (silicomolybdate reduction)

1.0 mg silicomolybdate 

Photosystem I and Photosystem II (Mehler reaction)

6.6 pM paraquat



Photosystem I and Photosystem II (using DPC as an electron 

donor to PSII)

1.0 mM 1,5-diphenylcarbazide (DPC)

6.6 yM paraquat

Differences in oxygen uptake or evolution were calculated between 

the light and dark reactions and results expressed as ymol 0^ mg ^chl h

4.2 Chloroplast intactness
Chloroplast intactness was assayed by the method described by 

Edwards and Walker (1983). Photosynthetic electron transport activity 

of intact and osmotically shocked chloroplasts was assessed in an 

oxygen electrode using FeCN as sin electron acceptor. The 2.0 ml 

reaction mixture contained:

0.33 M sorbitol

50 mM Hepes-NaOH, pH 7.6

1 mM MgCl^

1 mM MnCl2

1 mM EDTA

1.5 mM K_Fe(CN)_ o b
5 yM NH4C1

Chloroplasts containing 50-100 yg chlorophyll. 

Chloroplast intactness was assayed as the rate of FeCN reduction in 

intact chloroplast as a percentage of the rate in osmotically shocked 

chloroplasts.

4.3 NADP+ reduction
This was determined by following the absorbance change at 340 nm, 

due to the reduction of NADP+ to NADPH, in a Shimadzu UV 260 recording 

spectrophotometer. The 3.0 ml reaction volume contained 30 mM Tricine-NaOH,



pH 8.0, 5 mM MgCl^ 1.7 mM N H ^ l , 13.3 yM NADP+, 100 Mg ferredoxin

and chloroplast lamellae containing 30 yg chlorophyll. This was
-2 -1prepared in a silica-glass cuvette and illuminated (500 ymol m s 

photon flux density). At set time intervals the cuvette was trans­

ferred to the spectrophotometer and the absorbance determined at 340 nm.

4.4 NADPH oxidation
Oxidation of NADPH in darkness, catalysed by ferredoxin and 

ferredoxin NADP+ reductase was based on the method described by Wessels 

(1965). The basic 3.0 ml reaction mixture contained 0.33 M Tris-HCl, 

pH 8.0, and 80 yg NADPH. Other additions, listed in the Results 

section, included chloroplast membranes containing 30 yg chlorophyll,

150 yg ferredoxin, 0.5 units ferredoxin NADP+ reductase, 25 yM 

myoglobin, 25 yM cytochrome C, and 25 yM acifluorfen or oxyfluorfen.

The reaction was followed as the fall in absorbance at 340 nm as 

NADPH was oxidised.

4.5 Superoxide formation by illuminated chloroplasts
Superoxide was assayed by its ability to oxidise hydroxylamine 

to nitrite according to the method described by Elstner et at. (1975). 

The 3.0 ml reaction mixture contained:

25 mM Tris-HCl, pH 8.0

1.0 mM KCN 

66 yM NH4C1

1.0 yM NH20H

Chloroplast membranes containing 100 yg 
chlorophyll.

The reaction mixture was illuminated in a water bath (20°C), illum­

inated from below (Thorn 400 W photoflood lamps giving 500 ymol photon



flux density at the samples). Aliquots were analysed for nitrite by 

adding 1.0 ml of sulphanilamide (1% w/v in 25% HC1) and 1.0 ml of 

naphthylethylene diamine dihydrochloride (0.02% w/v) to 1.0 ml of 

sample. The colour was allowed to develop for 20 min at room temp­

erature, and the absorbance determined at 540 nm. Nitrite present 

was calculated from a calibration curve obtained with potassium nitrite.

4.6 Enzyme assays

4.6.1 Superoxide dismutase

Superoxide dismutase was assayed by the method described by 

Elstner and Heupel (1976), based on SOD inhibiting the oxidation of 

hydroxylamine by superoxide:

NH20H + 202‘" + H+ ►N02“ + H20 + H202

Superoxide was generated enzymically by xanthine/xanthine oxidase.

The 3.0 ml reaction mixture contained 22 mM potassium phosphate, pH 

7.8, 0.33 mM hydroxylamine, 0.5 mM xanthine, and an aliquot of enzyme 

extract. The reaction was initiated by adding xanthine oxidase 

(Sigma) containing 100 Mg protein. After incubation at 25°C for 

20 min, an aliquot (1.0 ml) was analysed for nitrite (see section 

4.5). One unit of enzyme activity was defined as the amount of enzyme 

that causes a 50% inhibition of nitrite formation from hydroxylamine.

Alternatively SOD was assayed by the inhibition of nitro blue 

tetrazolium oxidation to formazan by superoxide, based on the method 

described by Beauchamp and Fridovich (1971). The reaction mixture 

(3.0 ml) contained phosphate buffer as above, containing 0.1 mM xanthine, 

25 nM nitro blue tetrazolium, and an aliquot of SOD. The reaction 

was initiated by the addition of xanthine oxidase containing 50-60 ng



protein. After incubation at 20°C for 25 min, the absorbance of the 

solutions was determined at 560 nm, and SOD activity calculated. One 

unit of activity represented the amount of enzyme that inhibited formazan 

production by 50%.

4.6.2 Ascorbate peroxidase

Two methods were used in determining activity of this enzyme.

In the method described by Groden and Beck (1979), ascorbate peroxidase 

was determined by following H^O^ breakdown in an oxygen electrode.

The 3.0 ml reaction volume contained an aliquot of enzyme extract,

0.1 M Tris-HCl, pH 8.0, and 8.5 mM ascorbate. The peroxidative 

reaction was initiated by adding 0.05 ml of 8 mM H2®2* Tlie H2^2 re_ 

maining after 30 s was determined polargraphically following the 

addition of excess catalase (2500 units). H^O^ consumed by the per­

oxidative reaction was calculated from the difference between added 

and unreacted H^O^, after accounting for controls in which either 

ascorbate or the enzyme extract had been omitted. Peroxide consumed 

was proportional to the amount of enzyme extract added, and to the 

reaction time.

Alternatively, ascorbate peroxidase was determined by following 

the change in absorbance at 290 nm as ascorbate was oxidised (Nakano 

and Asada, 1981).The 3.0 ml reaction volume contained 50 mM Hepes-NaOH, 

pH 7.6, 0.1 mM EDTA, 0.5 mM ascorbate, 0.1 mM H^O^ and an aliquot 

of enzyme extract. Correction was made for the oxidation of ascorbate 

in the absence of H^O^ or enzyme. Enzyme activity was expressed as 

pmol ascorbate oxidised.



4.6.3 Glutathione reductase

Glutathione reductase was assayed by measuring the enzyme 

catalysed reduction of glutathione by NADPH, by following the loss 

of absorbance at 340 nm as NADPH was oxidised (Jablonski and Anderson, 

1978). The 3.0 ml reaction volume contained enzyme extract, 0.4 M 

potassium phosphate, pH 8.0, 0.4 mM EDTA, 0.5 mM NADPH and 5 mM 

GSSG. The reaction was followed by the change in absorbance at 340 nm 

and enzyme activity, expressed as nmol NADPH oxidised, was calculated 

after accounting for controls that lacked either GSSG or enzyme extract.

4.6.4 Dehydroascorbate reductase

This enzyme was assayed by the increase in absorbance at 265 nm 

as ascorbate was formed from dehydroascorbate according to the method 

described by Nakano and Asada (1981). The 3.0 ml reaction volume 

contained 50 mM potassium phosphate, pH 7.0, 0.1 mM EDTA, 2.5 mM GSH 

and 0.2 mM dehydroascorbate. The rate of reduction of dehydroascorbate 

to ascorbate was calculated, and corrected for the rate of reduction 

in the absence of enzyme, and is expressed as ymol ascorbate formed.

4.6.5 Glutathione peroxidase

Glutathione peroxidase was assayed by the method described 

by Overbaugh and Fall (1982). The 3.0 ml reaction volume contained 

enzyme extract, 50 mM potassium phosphate, pH 8.0, 0.1 mM EDTA,

0.1 mM GSH, 0.1 mM NADPH, glutathione reductase (7.5 units) and 

0.4 mM H^O^ or 0.4 mM cumene hydroperoxide. Enzyme activity was 

determined from the loss of absorbance at 340 nm as NADPH was oxidised 

after accounting for control reactions. The controls used were; NADPH 

alone, NADPH + GSH, NADPH + GSH + glutathione reductase, NADPH + GSH +
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enzyme extract, and reaction mixtures containing all the reagents 

except peroxide or enzyme extract. was used in the determination

of selenium dependent glutathione peroxidase, and cumene hydroperoxide 

for the determination of selenium independent enzyme activity.

4.6.6 NADPH glyceraldehyde 3-phosphate dehydrogenase

Enzyme activity was assayed according to the method described 

by Jackson et at. (1978). The 3.0 ml reaction volume contained 67 mM 

Tris-HCl, pH 7.2, 4 mM EDTA, 10 mM MgCl^, 3.3 mM ATP, 1 mM dithiothreitol, 

130 yM NADPH, 3.3 yg ml 1 phosphoglycerate kinase and an aliquot of 

enzyme extract. After incubating at 25°C for 5 min, the reaction was 

initiated by addition of 5 mM 3-phosphoglycerate and followed by the 

fall in absorbance at 340 nm as NADPH was oxidised.

4.6.7 Peroxidase

Peroxidase activity was assayed by the method of Braber (1980), 

using guiacol as a substrate. The 3.0 ml reaction volume contained 

40 mM potassium phosphate, pH 5.9, 33 mM guiacol and an aliquot

of enzyme extract. The peroxidative reaction was initiated by 

addition of 0.2 ml of 1% ^O^, and the reaction followed from the 

change in absorbance at 420 nm.

4.6.8 Cytochrome C oxidase

The assay for this enzyme was based on the method described 

by Tolbert (1974) which measures the loss of absorbance at 550 nm 

as cytochrome C was oxidised. The 3.0 ml reaction volume contained 

enzyme extract, 0.1 M potassium phosphate, pH 7.2, 1 mM EDTA and 

0.0033% Triton X-100. The reaction was initiated by the addition of
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_10.2 ml of reduced cytochrome C (5 mg ml ). Reduced cytochrome C was

prepared by adding sodium dithionite to the cytochrome solution until

the E,_,_ /E_or. ratio was greater than 6. Excess dithionite was removed 55o 565
by bubbling nitrogen through the solution.

4.6.9 Catalase

Catalase activity was determined polargraphically in a Hansatech 

oxygen electrode according to the method of Jablonski and Anderson 

(1978). The 2.0 ml reaction volume contained enzyme extract and 

50 mM potassium phosphate buffer, pH 7.0. The reaction was initiated 

by adding H^O^ to give a concentration of 10 mM, and catalase activity 

monitored from the rate of oxygen evolution.

4.6.10 Glycollate oxidase

Enzyme activity was assayed by following formation of glycollate 

phenylhydrazone from glycollate (Feierabend and Beevers, 1972). The

3.0 ml reaction volume contained 33 mM triethanolamine, pH 7.8, 2.7 mM 

EDTA, 5 mM glycollic acid, 3.3 mM phenylhydrazine-HCl, pH 6.8, 0.67 mM 

GSSG, 0.2 mM flavin mononucleotide, 0.0083% Triton X-100 and an 

aliquot of enzyme extract. The reaction was monitored by following 

the increase in absorbance at 342 nm.

4.7 Peroxidation of illuminated chloroplast membranes
Peroxidation of illuminated chloroplast membranes was followed 

by thiobarbituric acid determination as described by Takahama and 

Nishimura (1975). Chloroplast membranes (50 Mg chlorophyll per ml) 

were incubated in screw top flasks in 50 mM potassium phosphate buffer, 

pH 8.0. After incubation in a water bath at 20°C, illuminated from
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-2 -1below (500 Mmol m s photon flux density), aliquots were analysed 

for thiobarbituric acid reactive material. To a 2.0 ml aliquot in 

a test tube, 0.5 ml 40% trichloroacetic acid, 0.5 ml 2% thiobarbituric 

acid and 0.25 ml 5 N HC1 were added, mixed and heated in a boiling 

water bath for 10 min. After cooling and centrifuging at 2 500 g 

for 5 min, the absorbance of the supernatant was determined at 532 nm, 

and corrected for non-specific turbidity by subtracting the absorbance 

at 600 nm.



RESULTS



IffiSULTS
1. Distribution and activity of chloroplast superoxide and hydrogen 

peroxide scavenging systems in pea leaves
Chloroplasts from higher plants contain superoxide dismutase, 

ascorbate peroxidase, dehydroascorbate reductase, and glutathione 

reductase and millimolar concentrations of ascorbate and glutathione 

which protects them against 0^* and H^O^ (Foyer and Halliwell, 1976; 

Halliwell, 1981). These enzymes have been shown to be released from 

the chloroplast on rupturing the envelope, and are therefore stromal 

and not bound to the chloroplast envelope (Jackson et at., 1978; 

Jablonski and Anderson, 1978, 1981, 1982; Nakano and Asada, 1981).

The proportion of these enzymes and of ascorbate and glutathione in 

chloroplasts however remains unclear. The aim of this investigation 

was to determine the chloroplast activity and leaf distribution of 

O^* and scavenger mechanisms in pea leaves.

1.1 Characterisation of enzyme activities
Extracts from pea leaves were prepared by grinding approximately

1.0 g of leaf material into 10.0 ml buffer, followed by centrifugation

at 5000 g for 10 minutes. Such leaf homogenates catalysed ascorbate

dependent reduction of H2®2’ re^uct;*-on DHA ascorbate by GSH,

and NADPH dependent regeneration of GSH from GSSG. The rates of these

reactions was proportional to the amount of enzyme added at protein

concentrations up to 100 yg ml * of reaction volume. The activity

of these enzymes in leaf extracts was 0.325 ymol ^0^ reduced mg

protein *min 1 for ascorbate peroxidase, 0.075 ymol DHA reduced

mg protein "̂ min 1 for dehydroascorbate reductase and 0.115 ymol NADPH
-1 . -1oxidised mg protein min for glutathione reductase. Leaf homogenates
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also showed SOD activity, assessed by inhibition of nitrite formation 

from hydroxylamine or by nitro blue tetrazolium oxidation to formazan, 

equivalent to 25 units SOD mg protein

The effect of substrate concentrations on the activity of glutathione 

reductase, dehydroascorbate reductase and ascorbate peroxidase from 

pea leaf homogenates (using 75 Mg protein ml *) is shown in Figure 6.

The apparent Km values for these enzymes under saturating levels of 

other substrates, estimated using Lineweaver-Burk plots from this 

data are shown below:

Glutathione reductase 

Km (NADPH) 26 mM

Km (GSSG) 12 pM

Dehydroascorbate reductase 

Km (DHA) 27 pM

Km (GSH) 4 mM

Ascorbate peroxidase 

Km (ascorbate) 0.5 mM

These values are comparable with those of spinach or pea enzymes reported 

elsewhere (Jablonski and Anderson, 1978, 1981, 1982; Nakano and Asada,

1981; Gerbling et at., 1984; Hossain and Asada, 1984 ).

The pH optima of these enzymes assessed in phosphate or Tris-HCl 

buffer is shown in Figure 7. Optimum enzyme activity was shown at 

pH 8.0 for glutathione reductase, pH 7.0 for dehydroascorbate reductase 

and pH 7.5 for ascorbate peroxidase. The rate of H^O^ reduction by 

ascorbate or NADPH oxidation by GSSG was low in the absence of enzyme 

extracts. At alkaline pH values non enzymic reduction of DHA by GSH 

exceeded the enzymic rate, as reported previously (Foyer and Halliwell, 1977).
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1.2 Subcellular fractionation of pea leaves
To assess the distribution of organelle marker, and active oxygen 

scavenging enzymes in pea leaves, leaf homogenates were subjected 

to a fractionation procedure as outlined in Tables 1 and 2. Centri­

fugation of leaf homogenates at 2500 g for 1-2 -minutes left a pellet 

rich in intact and broken chloroplasts. Further centrifugation at 

6000 g for 15 minutes removed mitochondria. Results presented in 

Table 1 show the distribution of chlorophyll and organelle marker 

enzymes between these fractions. The chloroplast fraction (chlorophyll 

marker) also contained mitochondria (cytochrome oxidase marker) and 

peroxisomes (glycollate oxidase marker). The mitochondrial 6000 g 

pellet also contained peroxisomes and chloroplast membranes (chlorophyll 

marker). The 6000 g supernatant contained a high proportion of glycollate 

oxidase activity indicating that this fraction was rich in peroxisomes. 

The high activity of NADPH-GPD recovered in this fraction shows that 

many chloroplasts had lost their envelopes during fractionation.

The distribution of 0^* and H^O^ scavenging enzymes is shown 

in Table 2. Distribution of SOD, ascorbate peroxidase and glutathione 

reductase was found to be similar to that of NADPH-GPD. This indicates 

that a high proportion of their activity was chloroplastic and released 

from chloroplasts during fractionation.

SOD activity in plants has often been assessed in parallel to 

catalase and peroxidase levels (Simon et at., 1974; Harper and Harvey, 

1978; Dhindsa et at., 1981; McRae and Thompson, 1984). Results presented 

in Table 2 confirm that chloroplasts contain little or no peroxidase 

activity, as demonstrated elsewhere (Parrish, 1972), and indicate 

that much of the activity of this enzyme was in the leaf soluble 

fraction. Distribution of catalase was similar to that of glycollate



Table 1. Subcellular fractionation of pea leaves: distribution of 
chlorophyll and organelle marker enzymes between 2500g (chloroplast) 
pellet, 6000g (mitochondrial) pellet and the 6000g (leaf soluble) 
supernatant. The recovery of enzyme from the three fractions is 
also shown.

Chlorophyll NADPH-GPD Cytochromeoxidase Glycollateoxidase

Homogenate 100.00 100.00 100.00 100.00
2500g pellet 62.10 20.30 21.70 5.95
6000g pellet 3.50 74.10 19.20 79.80
6000g supernatant 26.98 0.51 61.90 19.10

{% recovery) (97.58) (91.90) (103.50) (104.80)



Table 2. Subcellular fractionation of pea leaves: distribution of 
enzymes that scavenge 0^” and

superoxidedismutase ascorbateperoxidase glutathionereductase catalase peroxidase

Homogenate 100.00 100.00 100.00 100.00 100.00
2500g pellet 19.60 19.60 18.90 4.50 0.33
6000g pellet 76.60 76.60 78.30 87.10 92.30
6000g
supernatant 4.20 4.20 1.15 14.70 1.10

(% recovery) (103.60) (100.40) (94.40) (106.30) [93,70}
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oxidase, confirming that this enzyme originates from peroxisomes (Halliwell, 

1981). As SOD is predominantly a chloroplast enzyme (Table 2, Jackson 

et at., 1978), it would be unlikely that peroxidase or catalase could 

scavenge H^O^ generated as a consequence of SOD activity.

Glutathione peroxidase is an important enzyme that scavenges 

H^O^ in animal cells (Halliwell, 1981). This enzyme has also been 

detected in Euglena and other microalgae (Overbaugh and Fall, 1985), 

and in cultured cells of several higher plant species (Drotar et at.,

1985; Overbaugh and Fall, 1985). By contrast, Smith and Shrift (1975) 

suggested that this enzyme was absent from higher plants. The extracts 

of pea leaves used in this study did not show glutathione peroxidase 

activity, using either H^O^ or cumene hydroperoxide as substrates to assess 

selenium independent or selenium dependent forms of the enzyme.

1.3 Chloroplast activity
To further examine chloroplast levels of NADPH-GPD, SOD, ascorbate 

peroxidase, glutathione reductase and ascorbate, pea chloroplasts 

of varying degrees of intactness were prepared. The activity present 

in chloroplast preparations was compared with the activity in leaf 

homogenates. The proportion of activity was then compared with 

the intactness of the chloroplast preparation, and these results are 

shown in Figures 8 and 9. Extrapolation from these figures to the 

level present in intact chloroplasts shows that 95% of NADPH-GPD would 

be present (Figure 8a), demonstrating that this enzyme is a valid 

chloroplast stromal fraction marker. In addition intact chloroplasts 

would contain 30% of leaf ascorbate (8b), 96% of SOD (9a), 82% of 

glutathione reducase (9b) and all the ascorbate peroxidase activity 

(9c).
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Table 3. Activity of enzymes scavenging 0£ and (a) and the 
levels of antioxidants (b) in pea leaf homogenates and isolated 
chloroplasts (85% intact). The proportion of activity present in 
the chloroplast fraction is also shown.

Activity
a ' (pn.PT mg-^chi h'1) chior0plast

leaf chloroplast homogenate_ _ _ _ _ _ _ _ _Superoxide dismutase (1) 200.6 151.2 77.8
Ascorbate peroxidase 1198.7 935.5 78.9
Glutathione reductase 45.9 34.7 76.8
Dehydroascorbate reductase 110.2 70.2 64.7

(1) Activity of SOD expressed as units mg_1c

Leyel
b. (pmol mg”^chl) % in

~ T ^ f  chloroplast chlor°Plast
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ homogenate_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _Glutathione 1.00 0.091 9.1
Ascorbate 1.68 0.54 32.3



In addition to these data, chloroplasts(85% intact) were isolated 

from pea leaves, and levels of ascorbate, glutathione, and 0^* and 

Ĥ Ô , scavenging enzymes were compared to the levels present in pea 

leaf homogenates. These data are presented in Table 3. These results 

confirm that SOD, ascorbate peroxidase and glutathione reductase are 

present mainly in the chloroplast fraction of pea leaves. Additionally 

a high proportion of leaf dehydroascorbate reductase activity was 

chloroplastic. Pea chloroplasts contained a low proportion of leaf 

glutathione (< 10%) and ascorbate (< 35%), which equated to 0.1 and 

0.6 ymol mg * chlorophyll. Assuming a chloroplast volume of 26 pi mg  ̂

chlorophyll (Heldt et at., 1973) this would give a chloroplast ascorbate 

concentration of 20-25 mM and a glutathione concentration of 3.5-4.0 mM. 

These values are similar to results published for spinach chloroplasts 

(Foyer and Halliwell, 1976; Foyer et at., 1983).

1.4 Discussion
Previous investigations have demonstrated that SOD, ascorbate 

peroxidase, dehydroascorbate reductase and glutathione reductase are 

present in chloroplasts with activities similar to those shown in 

Table 3 (Foyer and Halliwell, 1976; Jackson et at. , 1978; Jablonski 

and Anderson, 1978, 1981, 1982; Nakano and Asada, 1981). Furthermore, 

these studies demonstrated that these enzymes were present in the 

chloroplast stroma, and not bound to the chloroplast envelope.

Comparisons of the distribution of SOD and glutathione reductase 

activity with that of NADPH-GPD in spinach leaves (Foyer and Halliwell, 

1976; Jackson et at. , 1978) produced results similar to those reported 

in this study. Jackson et at. (1978) concluded that much of the total 

leaf SOD was present in chloroplasts. Foster and Edwards (1980) showed



that 50-80% of leaf SOD was chloroplastic. Chloroplast SOD may be bound 

to the thylakoid membranes (Lumsden and Hall, 1974; Hayakawa et al., 

1985), in the intrathylakoid space (Hayakawa et al. , 1984) or in the 

stroma (Lumsden and Hall, 1974). Intact spinach chloroplasts have also 

been reported to contain 67% of leaf glutathione reductase activity 

but only 28% of dehydroascorbate reductase (Anderson et al., 1983). 

Ascorbate peroxidase has previously been shown to be a chloroplast 

stromal enzyme (Nakano and Asada, 1981) and bound to the thylakoid 

membranes (Groden and Beck, 1979). SOD and glutathione reductase have 

also been detected in a variety of non-photosynthetic tissues, including 

wheat germ (Conn and Vennesland, 1951; Beauchamp and Fridovich, 1973), 

etiolated leaves (Giannopolitis and Ries, 1977; Gamble and Burke, 1983) 

and mitochondria (Young and Conn, 1956; Foster and Edwards, 1980).

The activity and subcellular distribution of these enzymes may depend 

on the stage of plant development or growth conditions. Chloroplasts 

isolated from pea leaves in this study contained a high proportion 

of leaf SOD, ascorbate peroxidase, dehydroascorbate reductase, gluta­

thione reductase and millimolar concentrations of ascorbate and gluta­

thione. This indicates their importance in scavenging O^’- and H^O^ 

in that organelle. Catalase, glutathione peroxidase and non-specific 

peroxidase appear to have no significant role in scavenging H^O^ in 

pea chloroplasts. These enzymes may however be important in scavenging 

H^02 in other organelles or plant parts.
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2. Chloroplast protection in greening leaves
The transfer of etiolated plants to light induces many changes in 

chloroplasts that leads to full photosynthetic competence. Illumination 

promotes the reorganisation of the prolamellar body to form thylakoids 

and induces the synthesis of chlorophyll. Photosystem I activity can 

be detected after a few minutes illumination, although whole chain 

electron transport and photosynthetic CO^ exchange do not commence until 

several hours after transfer to light (Bradbeer et al., 1977; Bradbeer, 

1981). The development of the photosynthetic apparatus increases the 

potential for the generation of damaging oxygen species in chloroplasts. 

Greening must therefore be carefully controlled, both to restrict the 

formation of these radicals, and to ensure that a full range of anti­

oxidant protective mechanisms are present early in development. Many 

studies have shown changes in the photosynthetic apparatus during greening 

(Bradbeer et al., 1977; Bradbeer, 1981). It is not clear whether enzymes 

and antioxidants that protect chloroplasts against photo-oxidative 

damage are present in etiolated leaves, or how their levels change during 

greening.

2.1 Pigments
The accumulation of chlorophyll and carotenoids that occurred 

in the leaves of eight day old etiolated pea seedlings when transferred 

to continuous illumination is shown in Figure 10a. In agreement with 

previous investigations (Goodwin, 1958; Lichtenthaler, 1969) etiolated 

leaves were shown to contain appreciable levels of carotenoid pigments.

No chlorophyll was formed until seedlings were illuminated, reflecting 

the light requirement for the accumulation of protochlorophyll, and 

for its conversion to chlorophyll (Castelfranco and Beale, 1981). The
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Table 4. The ratio of chlorophyll to carotenoid during the 
greening of etiolated pea leaves.

Hours illumination Chi: Car ratio
0.1 0.336
12 3.36
24 4.56
36 5.07
48 6.28

Table 5. Changes in the photosynthetic activity of thylakoid 
membranes isolated from etiolated and greening pea leaves.

Hours illumination. P/S electron flow (H«0— ►PQ )
-1 i _ I/jmol O ^ g  chi h"1’ /jmol gFW~ h"

0.1 0 0
12 78.3 36.7
24 110.8 129.6
36 109.3 192.4
48 108.0 222.8



relationship between chlorophyll and carotenoid levels during greening 

is shown in Table 4. During the first 12 hours of illumination there 

was a ten-fold increase in the ratio of chlorophyll to carotenoid. 

Subsequently the ratio of chlorophyll to carotenoid increased to approach 

that of mature pea leaves (5-6 : 1).

2.2 Photosynthetic activity
The development of photosynthetic electron flow and CO^ exchange 

is shown in Figure 10b. Both photosynthetic processes were active after 

12 hours illumination and subsequently increased in parallel with chloro­

phyll accumulation. When the rate of photosynthetic electron flow in 

greening leaves was calculated per unit of chlorophyll, no marked 

change in activity was detected after 24 hours illumination (Table 

5). This indicates that the increase in photosynthetic electron flow 

shown in Figure 10b was due to the accumulation of light harvesting 

chlorophyll.

2.3 Superoxide and hydrogen peroxide scavenging systems
The results presented in Figure 11 show the activity of SOD, ascorbate 

peroxidase and glutathione reductase, and the level of ascorbate in 

leaf homogenates from etiolated and greening pea leaves. Etiolated 

leaves contained these enzymes and ascorbate. Transfer to light promoted 

a marked increase in ascorbate peroxidase activity and ascorbate levels 

during the first 12 hours illumination (Figure 11a). The activity of 

glutathione reductase and SOD did not change throughout the greening 

period (Figure lib).
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2.4 Discussion
Although the greening of etiolated seedlings is a somewhat artificial 

experimental system, it does provide a convenient and commonly used 

method for studying chloroplast development. Seedlings probably encounter 

a certain degree of etiolation during their early growth through soil 

prior to their emergence at the surface. It is important however that 

the development of the photosynthetic apparatus occurs rapidly on 

emergence into the light, so as to remove the dependence on stored 

reserves. Several aspects of the development of etioplasts into chloro­

plasts are probably significant in restricting photo-oxidative damage 

during the early stages of greening. During this period several hours 

may elapse between the appearance of chlorophyll and the detection 

of functional electron transport activity (Bradbeer, 1981). In this 

period carotenoid pigments, which are present in etiolated leaves, 

would have an important role in protecting chloroplasts against photo- 

oxidative damage. The importance of carotenoids in protecting seedlings 

against photosensitized reactions during greening has been clearly 

demonstrated elsewhere. Anderson and Robertson (1960) demonstrated 

that in maize mutants lacking carotenoids, chlorophyll was rapidly 

bleached on exposure to high light intensities. Such mutants retained 

pigments if they were maintained in darkness or illuminated in an 

atmosphere containing no oxygen. Similar results have been observed 

with plants treated with carotenoid synthesis inhibitor herbicides 

(Bartels and Watson, 1978; Ridley and Ridley, 1979). The results 

presented in Figure 12 demonstrate the effect of fluridone, a carotenoid 

synthesis inhibitor herbicide, on the accumulation of chlorophyll in

etiolated peas during their subsequent illumination at low light intensity 
-2 -1(50 Mmol m s photon flux density). No chlorophyll accumulation occurred
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in plants sprayed with fluridone (10 mM, 50 ml per 100 x 210 mm tray) 

immediately prior to the transfer of etiolated plants to light (Figure 

12). This observation, and the high ratio of carotenoid to chlorophyll 

observed during the early hours of greening (Table 4), indicates that 

carotenoids are important in preventing photo-oxidation of chlorophyll 

before photosynthetic electron flow is fully functional. The data in 

Figure 12 also illustrates that carotenoid synthesis must be maintained, 

following the transfer of etiolated plants to light, for greening to 

occur.

Much of the light harvesting chlorophyll was not synthesised until 

photosynthetic activity had developed (Table 5, Bradbeer, 1981). While 

this may reflect a role for photosynthesis in supplying substrates 

necessary for chlorophyll synthesis (Dodge et at., 1971), it would 
also restrict the potential for damaging photosensitized reactions.

If chlorophyll were present in developing chloroplasts in excess of 

the level required to saturate photosynthesis, potentially lethal energy 

spillover from chlorophyll to singlet oxygen would occur.

Photosynthetic electron transport activity, and therefore the 

potential to reduce oxygen to 0^* by photosystem I, was detected after 

12 hours greening (Table 5). In mature chloroplasts electron flow to 

oxygen may be an important reaction of photosynthesis to generate ATP 

in the absence of NADP+ reduction (Halliwell, 1981; Furbank, 1984). 

Electron flow to oxygen during photosynthesis may also be important 

to dissipate photochemical energy under conditions when the rate of 

CO^ assimilation is low (Furbank, 1984). A similar mechanism of energy 

dissipation may occur during the early stages of greening, when the 

rate of photosynthetic electron flow per unit of chlorophyll is high, 

but the dark reactions of photosynthesis are not fully functional



(Popovic et al., 1984). Such a mechanism of energy dissipation requires 

that chloroplast 0^* and scavengers are present very early in

chloroplast development. SOD and chloroplast enzymes that scavenge

were present in etiolated pea leaves and throughout greening. The 

chloroplast would therefore be well protected against damaging 0^* 

and during its early development.



3. Active oxygen species and leaf senescence
The senescence of leaves proceeds in a specific, genetically con­

trolled pattern, characterised by a decline in photosynthetic activity, 

a fall in chlorophyll, protein and nucleic acid levels, and a loss of 

membrane integrity (Thomas and Stoddart, 1980; Woolhouse, 1982). However 

the mechanism of senescence induction is not well understood. Theories 

accounting for the initiation of senescence include changing hormonal 

control, competition for nutrient or environmental change (Thomas and 

Stoddart, 1980). Increased accumulation of free radicals in ageing leaves 

has also attracted recent attention (Leshem, 1981). Woolhouse (1984) 

postulated that deterioration of thylakoid membrane proteins in senescent 

leaves led to increased formation of 0^* , which contributed to the 

degradation of chlorophyll and membrane lipids. If 0^* or H^O^ 

derived from 0^* dismutation are important in controlling the degradation 

that occurs in ageing leaves, chloroplasts as potential sites of oxygen 

radical formation may have an important role in the initiation of 

senescence. The activity of enzymes that scavenge 0^* and H^O^ in 

chloroplasts would also be important in the control of senescence.

In this study photosynthetic activity and the level of chloroplast 

0^* and scavengers have been monitored during the ageing of

attached flax cotyledons and isolated pea leaf discs.

3.1 Senescence and regreening in flax cotyledons
Cotyledons excised from 5, 10, 15 and 20 day old flax seedlings 

were analysed for pigment levels, photosynthetic activity and enzyme 

levels, and the results presented in Figures 13 and 14. For regreening 

experiments young shoots above the senescent cotyledons were removed 

and cotyledon activities monitored at 2 and 4 days regreening.
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3.1.1 Pigments and photosynthetic activity

Chlorophyll and carotenoid levels in flax cotyledons declined 

after 10 days growth(Figure 13a). Photosynthetic activity of senescent 

flax cotyledons is shown in Figure 13b. Photosynthetic electron flow 

and C0^ exchange declined progressively from 5 days. Removal of shoots 

above senescent cotyledons after 15 days stimulated accumulation of 

chlorophyll and carotenoid and restoration of photosynthetic activity.

3.1.2 Superoxide and hydrogen peroxide scavengers

Changes in the activity of SOD, ascorbate peroxidase and

glutathione reductase and levels of ascorbate in ageing flax cotyledons 

are shown in Figure 14. The levels of ascorbate peroxidase, glutathione 

reductase and ascorbate declined between 5 and 10 days. This preceeded 

the loss of pigments or photosynthetic activity. No loss of SOD activity 

was detected during flax cotyledon senescence. Regreening of flax 

cotyledons was accompanied by increased ascorbate peroxidase and 

glutathione reductase activity. No change in SOD or ascorbate levels 

occurred during regreening.

3.2 Senescence in pea leaf discs

Discs cut from the sub-apical leaves of bean plants were floated 

on distilled water in glass petri dishes under constant illumination 

for up to nine days. Discs were analysed at 24 hour intervals for 

pigments, photosynthetic activity and levels of chloroplast O^*- and

^2^2 scavenSers*

3.2.1 Pigment levels and photosynthetic activity

The results presented in Figure 15 show the changes in chlorophyll
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and carotenoid levels (Figure 15a) and photosynthetic electron flow 

and CO^ exchange (Figure 15b) during the ageing of pea leaf discs. 

Chlorophyll and carotenoid levels showed no marked change during the 

first four days incubation, but then declined rapidly. Photosynthetic 

electron flow in thylakoids isolated from ageing leaf discs declined 

in parallel to chlorophyll. Photosynthetic CO^ exchange of pea leaf 

discs showed a marked loss of activity between three and four days 

incubation, prior to the decline in leaf pigments or photosynthetic 

electron flow. This may reflect the loss of Calvin cycle enzymes that 

occurs during leaf senescence (Woolhouse, 1982).

3.2.2 Superoxide and hydrogen peroxide scavengers

The levels of SOD, ascorbate peroxidase, glutathione reductase 

and ascorbate during the ageing of pea leaf discs are shown in Figure 

15 (c and d). Ascorbate peroxidase (Figure 15c) and ascorbate 

(Figure 15d) declined after three days incubation. Marked loss of 

glutathione reductase (Figure 15d) was not detected until after four 

days incubation. SOD activity (Figure 15c) declined progressively 

throughout the incubation period.

3.3 The role of light and oxygen in pigment and protein breakdown
The effect of incubating pea leaf discs for up to nine days

—2 —1under different light intensities (100, 200 or 400 pmol m s photon 

flux density) on their chlorophyll and leaf soluble protein content 

is shown in Figure 16 (a and b). The loss of chlorophyll and protein 

was dependent on light intensity.Stronger light intensities promoted 

their degradation, while incubation at lower light intensities retarded 

the loss of chlorophyll and protein.
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Chlorophyll bleaching in leaf discs incubated in sealed vials 

flushed with air, N2 or 02 at the start of the experiment, and subse­

quently incubated under constant illumination is shown in Figure 16c. 

Chlorophyll breakdown was enhanced by incubation under an oxygen enriched 

atmosphere, but delayed by incubation under nitrogen.

3.4 Discussion

Chloroplasts from higher plants may form C>2* and H202 as

a consequence of photosynthetic electron flow. If leaf senescence 

is initiated or promoted by these active oxygen species (Dhindsa et al. , 

1981; McRae and Thompson, 1983), chloroplasts as a major potential 

site of their formation, might be expected to show the first signs 

of cellular disruption. Ultrastructural studies have shown that the 

loss of chloroplast thylakoid structure in senescent leaves preceeded 

the degradation of other organelles (Butler, 1967). Furthermore, protein 

synthesis in chloroplasts of senescent Perilla leaves declined prior 

to cytoplasmic protein synthesis (Callow et al., 1972). The activity 

of chloroplast stromal enzymes in wheat leaves declined from full 

leaf expansion, although cytoplasmic enzyme activities remained high 

until the latter stages of senescence (Camp et al., 1984). These results 

are consistent with leaf senescence being first manifest in chloroplasts.

An indication that photo-oxidative mechanisms contributed to 

the cellular disruption occurring in ageing leaves was shown in Figure 

16. Light and oxygen, either alone or as a component of air, promoted 

the loss of chlorophyll and protein from pea leaf discs. Previous 

studies have shown that protein degradation in ageing oat leaf segments 

was promoted by oxygen and retarded by nitrogen (Salter and Thimann,

1983). Chlorophyll bleaching of sycamore leaves was promoted by light
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(Maunders and Brown, 1983). Senescence in maize and

rice leaves was enhanced by but delayed by antioxidants

(Mondal and Choudhuri, 1981, 1982). These

studies indicate that photo-oxidative degradation contributes to cellular 

disruption in ageing leaves.

One mechanism which may account for the increased photo-oxidative 

damage in senescent leaves is for a reduction in the capacity of leaves 

to scavenge active oxygen species during senescence. In ageing pea 

leaf discs loss of 0^* and scavengers occurred slightly in advance

of, or at the same time as the decline in photosynthetic activity 

and leaf pigments. In flax cotyledons however there was a marked loss 

of ascorbate peroxidase, ascorbate and glutathione reductase early 

in senescence. A decline in SOD and catalase activity has also been 

correlated with the onset of leaf senescence in tobacco (Dhindsa et al., 

1981). Reduced capacity to scavenge 0^* and in ageing leaves

may contribute to an accumulation of free radicals, and therefore 

photo-oxidative cellular disruption. A decline in enzyme synthesis, 

coupled with increased protein hydrolysis has been identified by some 

workers as an important event in the initiation of leaf senesence 

(Martin and Thimann, 1972; Thomas, 1976). The loss of activity of 

enzymes that scavenge 0^* and in chloroplasts observed in this

study was probably one consequence of a redirection of protein meta­

bolism in senescent leaves. The accumulation of free radicals and 

active oxygen species in senescent leaves would therefore be a 

consequence of the onset of leaf senescence rather than the initiating 

step.

Alternatively photo-oxidative damage to chlorophyll, protein 

and membrane lipids may occur as a consequence of increased formation



of active oxygen species in senescent leaves. Disruption of the photo­

synthetic apparatus leading to inhibition of CO^ exchange or photo­

synthetic electron flow may promote the formation of 0^* or 

McRae and Thompson (1983) observed that the production of 0^* by 

illuminated chloroplasts isolated from bean leaves increased four fold 

during the early stages of leaf senescence. This coincided with the 

initiation of membrane disruption. Increased 0^’ formation in chloro­

plasts together with the observed decline in the activity of enzymes that 

scavenge 0^* and in pea and flax leaves in this study would

contribute to an increased rate of photo-oxidative degradation.

While photo-oxidative reactions occurring through increased 

formation of active oxygen species, or a decline in scavenger enzyme 

activities may contribute to cellular disruption in ageing leaves, it 

is difficult to assess their significance. Leaf senescence is clearly 

a very organised process, as indicated by the controlled reversal that 

occurs when shoots are removed above senescent leaves, or by the 

application of cytokinins (Dhindsaet al ., 1982; Venkatarayappa et al. ,

1984). Such treatments, as shown in this study, promoted pigment and 

protein synthesis and restoration of photosynthetic activity. These 

events are in marked contrast to the damage that occurs when leaves 

are treated with certain herbicides that promote the formation of 

02* and H202 (Harris and Dodge, 1972; Pallett and Dodge, 1979, 1980;

Chia et al ., 1982). Such herbicides induced extensive cellular dis­

ruption that was essentially irreversible. If photosynthetically 

derived activated oxygen species are important in cellular degradation 

in senescent leaves, their formation and accumulation must be carefully 

controlled.



4. Seasonal variations and control by light of chloroplast superoxide
and hydrogen peroxide scavengers from pea leaves
Changes in the levels of SOD, ascorbate peroxidase, glutathione 

reductase, ascorbate and glutathione have been observed in higher 

plants in response to a variety of environmental stresses or air 

pollutants (Tanaka and Sugahara, 1980; Tanaka et al. , 1982a, 1985; 

de Kok and Oosterhuis, 1983; Gamble and Burke, 1984). In other sections 

of this thesis, changes in the levels of chloroplast 0^* and 

scavengers have been observed in pea leaves during greening and leaf 

senescence or in response to the herbicide paraquat (Section 8). As 

a consequence of the routine analysis of pea plants grown under glass­

house conditions at different times of the year, a seasonal variation 

in the levels of ascorbate peroxidase, glutathione reductase and 

ascorbate has been observed, which is reported here.

4.1 Seasonal variations in activity
The results of analysis of the youngest fully expanded (sub-apical 

leaves of pea plants grown under glasshouse conditions between April 

1984 and May 1985 are shown in Figures 17 and 18. All data points 

are the means of three separate analyses from different batches of 

leaves. Levels of ascorbate peroxidase, ascorbate and glutathione 

reductase (Figure 17) showed marked seasonal variation, with a peak 

in early summer (May - June) and a sharp decline in winter (Dec - 

Jan). The sampling procedure entailed using the youngest fully expanded 

leaves to prepare homogenates for analysis. Changes in ascorbate, 

ascorbate peroxidase and glutathione reductase levels between summer 

and winter were therefore not due to leaf samples being of different 

ages. The activity of SOD and chlorophyll and carotenoid levels between
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April 1984 and May 1985 are shown in Figure 18. Although there was 

some variation in their levels throughout the year, there was no marked 

fluctuation between summer and winter.

A high proportion of leaf SOD, ascorbate peroxidase and glutathione 

reductase is present in chloroplasts. To demonstrate that seasonal 

variations in the leaf activity of these enzymes occurred in chloroplasts, 

these organelles (75% intact) were isolated from pea plants grown 

under glasshouse conditions in Feb. 1985 and July 1985. Levels of 

SOD, ascorbate peroxidase, glutathione reductase and ascorbate were 

then assessed (Table 6). No difference in SOD activity was detected 

between the two samples of chloroplasts. Chloroplasts isolated from 

plaints grown in July contained increased levels of ascorbate, ascorbate 

peroxidase and glutathione reductase. These results show a similar 

trend to those presented in Figure 17.

One environmental factor likely to have influenced chloroplast 

ascorbate and enzyme levels was light. The data in Figure 19 shows 

the meam daily irradiance for each month between April 1984 and May 

1985 falling at Long Ashton Research Station (15 miles WNW of Bath 

University). Although the variation in total irradiation between summer 

and winter was greater than the variations in enzyme and ascorbate 

levels shown in Figure 17, the pattern of change appears similar.

Growth in early summer, the period of highest mean daily irradiance, 

corresponded with the highest levels of ascorbate peroxidase, ascorbate 

and gluathione reductase. By contrast the low levels of these enzymes 

and of ascorbate as a consequence of growth in winter matched the 

period of lowest mean daily irradiance.
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Table 6. Activity of enzymes that scavenge 0£ and 
and ascorbate levels, in pea chloroplast (75% intact) 
isolated from plants grown under glasshouse conditions 
in February or July 1985.

Activity.
(jjmol mg’^chl h"*̂ )

Feb 1985 July 1985

Ascorbate peroxidase 792 1185
Glutathione reductase 24.9 34.6
SOD1 142.5 148.5

1 Activity expressed as units mg chi.

Level 
(jjmol mg’^chl)

Ascorbate 0.35 0.55



Tot
al 

irr
adi

anc
e 

(J 
m

88.

.0

5

.0

0.5

0
A M J J A

1984 1985
Fig 19. Mean total daily irradiance falling at Long 
Ashton Research Station for each month between April 
1984 and May 1985.



89.

4.2 Control by light

The effect of light intensity on the activity of chloroplast

O^* and scavenging systems was investigated in pea plants grown

in a constant environment chamber for 14-21 days under continuous
-2 -1illumination of 100 or 400 ymol m s photon flux density. Chloroplasts 

were isolated and analysed for SOD, ascorbate peroxidase, dehydro- 

ascorbate reductase and glutathione reductase activity and levels 

of ascorbate and glutathione (Table 7). No difference was detected 

in chloroplast SOD activity or glutathione levels between the two 

batches of plants. Plants grown at the higher light intensity contained 

enhanced levels of ascorbate peroxidase, glutathione reductase, dehydro- 

ascorbate reductase and ascorbate. These results indicate that light 

intensity during growth may have a significant role in regulating 

the chloroplast activity of 0^* and scavengers.

4.3 Discussion

The results presented here indicate that seasonal variations 

in ascorbate, ascorbate peroxidase and glutathione reductase levels 

in pea leaves and chloroplasts may have been caused by changes in monthly 

mean daily irradiance between summer and winter. Control of chloroplast 

antioxidant protective mechanism levels by light was confirmed by 

studies of plants grown in a controlled environment chamber. Light 

intensity has a strong influence on chloroplast structure and function. 

Adaptations that favour growth at high or low light intensity include 

changes in chloroplast orientation, the degree of thylakoid stacking, 

levels of chlorophyll and light harvesting pigment protein complexes 

and the level of electron transport intermediates (Boardman, 1977; 

Lichtenthaler, 1983). Light intensity can also influence the level
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- 2 -1Table 7. The effect of growth at 100 or 400^umol m s photon 
flux density on the activity of enzymes that scavenge 0^” and 
^ 2  (a) and level of antioxidants (b) in isolated pea 
chloroplasts (80-85% intact).

Superoxide dismutase (1)

Activity 
(/jmol mg’^chl 
100 
160.7

h’1)
400
170.8

Ascorbate peroxidase 542.2 925.4
Glutathione reductase 28.1 44.5
Dehydroascorbate reductase 37.2 58.5

(1) Activity of SOD expressed as units mg~^i

Ascorbate

Level 
(pmol mg“^chl)
100 400 
0.29 0.48

Glutathione 0.085 0.86



and activity of chloroplast carboxylative enzymes (Huffaker et at. ,

1966; Hatch et at. , 1969). One consequence of these adaptations is 

that plants grown under strong light show high maximum photosynthetic 

rates, whereas low light adapted or shade plants with a well developed 

light harvesting apparatus show greater photosynthetic efficiency 

at low light intensities. The increased chloroplast levels of ascorbate, 

ascorbate peroxidase and glutathione observed in this study in plants 

grown at a moderate compared with low light intensity, or in summer, 

may permit high photosynthetic rates whilst ensuring that chloroplasts 

are well protected against damaging 0^* and H^O^.

The effect of daylength on levels of chloroplast 0^* and H^O^ 

scavenger enzymes was not investigated. Daylength, through photoperiodic 

control by phytochrome, affects many aspects of plant growth and 

development, including germination, flowering and leaf fall (Hillman, 

1969). Phytochrome may also control the activity of many leaf enzymes 

(Schopfer, 1977). It remains to be determined whether seasonal variations 

in chloroplast ascorbate, ascorbate peroxidase and glutathione reductase 

observed in pea leaves in this study were in response to light intensity, 

daylength or total light received. While light may have contributed 

to changes in levels of chloroplast 0^* and H^O^ scavengers in pea 

leaves between summer and winter, it is possible that annual fluctuations 

in temperature, water status or air pollutants may also exert some 

control. Reports in the literature indicate that low temperature, 

drought, C>3, SO^ or increased oxygen tensions affect ascorbate, 

glutathione, ascorbate peroxidase, glutathione reductase or SOD levels 

in leaves (Grill et at., 1979; Tanaka and Sugarhara, 1980; Foster 

and Hess, 1980; McKersie et at., 1982; Guy and Carter, 1984; Gamble 

and Burke, 1984; Tanaka et at.., 1985). Clearly a wide variety of



environmental factors can influence the levels of chloroplast 0^* 

and scavenging enzymes and antioxidants. Great care must therefore

be taken in the growth of plant material for such investigations.



5. Photo—oxidative damage in chloroplasts: The action of light
activated herbicides
Many herbicides are known to interact with photosynthesis inducing 

photo-oxidative damage to plants. These include electron transport 

inhibitors such as triazines, ureas or uracil compounds, bipyridyl 

compounds such as paraquat and diquat, which promote oxygen reduction 

by photosystem I, and diphenyl ether (DPE) compounds that may inhibit 

electron flow or promote photosystem I oxygen reduction (Dodge, 1983; 

Ridley, 1983; Boger, 1984). The mode of action of DPE herbicides however 

remains unclear. In addition photosensitizers such as rose bengal 

and xanthene dyes induce light and oxygen dependent damage to leaves 

and chloroplasts (Knox and Dodge, 1984, 1985). Damage induced by these 

compounds probably occurs because increased formation of 0^’ , ^2^2 
and ^0 exceeds the capacity of chloroplast protective mechanisms 

to scavenge them (Dodge, 1983). Damage induced to pea leaves and chloro­

plasts by monuron (electron flow inhibitor), paraquat (bipyridyl) 

and rose bengal (photosensitizer) has been compared here to that induced 

by the DPE herbicides acifluorfen and oxyfluorfen.

5.1 Assessment of herbicide injury
Damage to plant tissues induced by paraquat, monuron, rose bengal

and acifluorfen was assessed in leaf discs, cut from sub-apical leaves

of 14-21 day old pea plants, incubated on 25 pM herbicide solutions

in glass petri dishes or sealed vials under constant illumination 
—2 —1(300 pmol m s photon flux density). Damage was monitored by following 

photosynthetic C02 exchange, chlorophyll bleaching, electrolyte leakage 

and ethane evolution from leaf discs. These results are presented 

in Figures 20 and 21. Paraquat and monuron inhibited photosynthesis
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in illuminated leaf discs within eight hours treatment (Figure 20a). 

Acifluorfen and rose bengal inhibited photosynthesis by 50% after 

eight hours, although 24 hours incubation was required to abolish 

photosynthetic activity. Chlorophyll bleaching (Figure 20b) was detected 

in paraquat treated leaf discs after eight hours, and 50% loss of 

chlorophyll was observed after 24 hours. Leaf discs incubated on 

acifluorfen, rose bengal and monuron showed 50% loss of chlorophyll 

after 48, 72 and 96 hours respectively. Thus although photosynthetic 

inhibition was detected after a few hours herbicide treatment, there 

was a considerable delay before chlorophyll bleaching was observed.

Damage to membranes in herbicide treated leaf discs was assessed by 

monitoring electrolyte leakage into the bathing medium (Figure 21a) 

or by lipid peroxidation (ethane evolution, Figure 21b). Paraquat 

induced increased electrolyte leakage from leaf discs after four hours, 

and was followed by lipid peroxidation (8-16 hours incubation). Electrical 

conductivity changes in the bathing medium surrounding acifluorfen 

or rose bengal treated leaf discs were detected after 16 hours illum­

ination, although ethane evolution was not detected until 36 hours 

incubation. Membrane damage induced by monuron was observed after 

72 hours.

Damage induced by electron transport inhibitor herbicides, bipyridyls 

and photosensitizers is dependent on light and oxygen (Dodge, 1982). The role of 

light and oxygen in DPE herbicide injury to pea leaf discs is shown 

in Figures 22 and 23. Chlorophyll bleaching and ethane evolution was 

assessed in leaf discs incubated on 10 pM acifluorfen or oxyfluorofen 

in sealed vials flushed with air, oxygen or nitrogen for five minutes 

prior to illumination (Figure 22). These results demonstrate that 

chlorophyll bleaching and membrane lipid peroxidation was dependent
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a.
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Fig 22. The effect of incubating pea leaf discs under 
air, nitrogen or oxygen on acifluorfen and oxyfluorfen 
induced chlorophyll bleaching (a) or ethane evolution (b).
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on oxygen, either alone or as a component of air. Damage was retarded 

by incubation under nitrogen and enhanced by oxygen. The role of light 

intensity in acifluorfen and oxyfluorfen induced chlorophyll bleaching 

of pea leaf discs is shown in Figure 23. No chlorophyll loss was 

detected in leaf discs incubated for 48 hours in darkness. Bleaching 

occurred only in light and was greater after 48 hours incubation at 

highest light intensities. Ethane evolution from acifluorfen or 

oxyfluorfen treated pea leaf discs was also light dependent. No lipid 

peroxidation was detected after 48 hours dark incubation (results 

not shown).

Herbicide damage induced by acifluorfen, paraquat, monuron and 

rose bengal was also assessed in illuminated chloroplast membranes. 

Thylakoids isolated from pea leaves were incubated in a 20 ml reaction 

volume containing phosphate buffer (50 mM, pH 7.6) and 10 pM herbicides. 

Damage was assessed following periods of illumination, by monitoring 

lipid peroxidation (malondialdehyde formation) or chlorophyll bleaching. 

The results, presented in Figure 24, show that rose bengal induced 

rapid membrane peroxidation and chlorophyll bleaching of thylakoids. 

Acifluorfen, paraquat and monuron induced damage to thylakoids at 

similar rates, although no marked lipid peroxidation or chlorophyll 

bleaching was detected before 180 minutes illumination.

5.2 Discrimination between herbicidal modes of action
The results presented in Figures 20 - 24 demonstrated that paraquat, 

monuron, rose bengal and acifluorfen induced similar symptoms of injury 

to pea leaf discs and chloroplasts. However, such studies indicate 

little about the site of activation or mode of action of these herbicides. 

The effect of these chemicals against photosynthetic reactions of
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leaf discs or isolated thylakoids, and the role of photosynthetic 

electron flow in herbicide activation are compared here in an attempt 

to discriminate between their distinct modes of action.

All four classes of herbicide inhibited photosynthesis in pea 

leaf discs after 24 hours illumination (Figure 20). The results in 

Table 8 show the effects of these herbicides on photosynthetic activity 

of pea leaf discs after 24 hours dark incubation. Both paraquat and 

monuron abolished photosynthesis within 24 hours incubation. Rose 

bengal had no effect on photosynthetic CO^ exchange, although both 

acifluorfen and oxyfluorfen retarded photosynthesis by 20-30% after 

24 hours dark incubation.

The results in Table 9 and Figure 25 demonstrate the effect of 

herbicides on photosynthetic electron flow reactions of illuminated 

thylakoids. Monuron abolished photosystem II ferricyanide reduction 

at low concentrations. As a consequence electron flow through photo­

system I and II using paraquat as an electron acceptor (Table 9), 

and NADP+ reduction by illuminated thylakoids (Figure 25) was also 

inhibited by monuron. Paraquat had no effect on photosystem II activity, 

but promoted oxygen uptake by photosystem I. Paraquat promotion of 

electron flow from photosystem I to oxygen caused the inhibition of 

NADP+ reduction (Figure 25) and photosynthetic CO^ exchange (Table 8). 

The DPE herbicides acifluorfen and oxyfluorfen had no marked effect 

on electron flow through photosystem I or II at concentrations up 

to 50 uM. These herbicides did however inhibit NADP+ reduction by 

illuminated thylakoids (Figure 25). This indicates that the inhibition 

of CO^ exchange induced by these herbicides in pea leaf discs (Table 8) 

was a consequence of DPE herbicide interaction with NADP+ reduction.

Rose bengal did not inhibit electron flow reactions through photosystem 

I or II.
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Table 8. The effect of herbicides on photosynthetic CO^ 
exchange in pea leaf discs after 24 hours dark incubation.

CO2 uptake (jumol CÔ  gFW’^h’^) 
71.88 (100%)
0 

0

71.55 (99.5%)
55.3 (76.8%)
51.6 (71.8%)

Control 
25jjM paraquat 
25|liM monuron 
25jliM rose bengal 
25jjM acifluorfen 
25uM oxyfluorfen



Table 9. The effect of paraquat, monuron, rose bengal, acifluorfen 
and oxyfluorfen on electron transport reactions of isolated pea 
thylakoids.

H90— ► FeCN H90 -* PQ Ascorb/-* 09 H90-* 09
d d DCPIP
(PS II) (PS I+II) (PS I) (PS I+II)

Control rate 125.1® 134.5b 20.13b 29.5b
(100%) (100%) (100%) (100%)

Inhibitor concentration (jjM)
10 50 50 10 50 50

Paraquat 100% 98.0% _ c 977% 992% 837%
Monuron 1.6% 0% 0% _ d — 0%
Rose bengal 95.3% 90.0% 93.0% __e — 107%
Aci f1uorfen 101.6% 100% 91.6% 106% 100% 108%
Oxyfluorfen 100% 94.7% 95.5% 103% 100% 89%

a. Results
b. Results

as jjmol 
as piol

O2 evolution mg”  ̂
O2 uptake mg’^chl

chi h~^ 
h-1

c. Reaction mix contained paraquat
d. Reaction mix contained monuron
e. No result- Rose bengal sensitised the oxidationof ascorbate.



fig 25, The effect of paraquat, monuron, acifluorfen 
and oxyfluorfen on NADP* reduction by illuminated 
thylakoid membranes.
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Results presented here indicate that inhibition of photosynthetic 

electron flow is unlikely to account for the herbicidal action of 

DPE compounds. Functional photosynthetic electron flow was however 

necessary for acifluorfen and oxyfluorfen activity in pea leaf discs.

Leaf discs were incubated for 24 hours in darkness on water or monuron 

(0.1 mM) and transferred to 10 yM DPE herbicide solutions under constant 

illumination. Herbicide damage was assessed by chlorophyll bleaching 

and lipid peroxidation (Figure 26). Leaf discs preincubated on water 

and then transferred to acifluorfen or oxyfluorfen showed chlorophyll 

bleaching and lipid peroxidation after 24 to 4 8 hours illumination.

Pre incubation on monuron retarded damage induced by these DPE herbi­

cides. Similar experiments on the role of photosynthetic electron 

flow in chlorophyll bleaching induced by paraquat or rose bengal are 

shown in Table 10. Inhibition of electron flow by monuron retarded 

paraquat induced bleaching of pea leaf discs. By contrast chlorophyll 

bleaching induced by rose bengal was unaffected by monuron. This shows 

that although symptoms of injury induced by rose bengal were similar 

to those induced by paraquat, monuron and DPE herbicides, this occurred 

independently of photosynthetic electron flow.

5.3 The role of antioxidants in preventing injury
Chloroplasts are normally protected to some degree against phot- 

oxidative damage in vivo by antioxidants and enzymes in the stroma 

and thylakoid membranes. Peroxidation of illuminated thylakoids can 

however be promoted by herbicides such as monuron, paraquat, rose bengal 

and acifluorfen. Herbicide promoted chloroplast membrane peroxidation 

was investigated further in the experiments shown in Figures 27 - 30.

The aim of this study was to determine the effect of various antioxidants

on herbicide induced chloroplast damage, and to investigate whether anti-
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Table 10. The role of photosynthetic electron transport 
in paraquat and rose bengal induced chlorophyll bleaching 
of pea leaf discs. Discs were preincubated on herbicide 
solutions for 24 hours in darkness prior to illumination.

Chlorophyll (as % of control)

25yuM paraquat 24.1%'
25uM paraquat + O.lmM monuron 59.3%

25̂ liM rose bengal 30.8%'
25uM rose bengal + O.lmMmonuron 29.6%'

a, after 24 hours illumination
b. after 72 hours illumination



oxidants may discriminate between the damaging action of different 

herbicide classes. Peroxidation of illuminated thylakoids was pro­

moted by paraquat (Figure 27), monuron (Figure 28), acifluorfen (Figure 

29) and rose bengal (Figure 30). The other results in these figures 

demonstrate the effect of adding 10 mM ascorbate, 1 mM a-tocopherol,

1 mM DABCO (diazobicyclooctane, an ^O^ quencher), 1 mM crocetin (a 

carotenoid isolated from saffron), or 2000 units of SOD plus catalase 

on lipid peroxidation induced by these herbicides.

Chloroplast membrane peroxidation induced by all four herbicides 

was strongly retarded by 10 mM ascorbate, an antioxidant normally 

present in the chloroplast stroma at concentrations up to 25 mM (Section 

1). Carotenoids and a-tocopherol, which are present in thylakoid 

membranes, strongly retarded herbicide induced thylakoid membrane 

peroxidation. The ^0^ quencher DABCO gave no protection against paraquat 

and acifluorfen induced lipid peroxidation. DABCO did however restrict 

peroxidation induced by monuron and rose bengal. SOD plus catalase 

had no significant effect in reducing thylakoid peroxidation induced 

by any of the herbicides tested. In addition 1.0 mM or 5.0 mM copper 

penacillamine, a copper complex with SOD activity, did not protect 

thylakoids against herbicide induced peroxidation (results not shown).

Discrimination between herbicidal modes of action by antioxidants 

was restricted to the protection by DABCO against the herbicides monuron 

and rose bengal. Both compounds promote ^0^ formation, either directly 

or as a consequence of the inhibition of photosynthetic electron flow 

(Dodge, 1982). Other antioxidants tested were either ineffective at 

quenching damage (SOD plus catalase or PaCu), or retarded lipid 

peroxidation induced by all four herbicides (ascorbate, a-tocopherol 

and crocetin). The effectiveness of ascorbate, a-tocopherol and crocetin 

in preventing injury may reflect an ability to quench lipid peroxidation
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directly as well as scavenge °2 H2^2 and *°2 6enerated as a

consequence of herbicide action.

Several recent studies of herbicide action, particularly with 

DPE herbicides, have attempted to use antioxidants to evaluate the 

role of 0 •“ and ^0 in herbicide action. Experiments by Kunert and 

Boger (1981) and Ensminger and Hess (1985) showed that PaCu, DABCO 

and SOD did not prevent acifluorfen or oxyfluorfen induced injury.

These workers concluded from these results that generation of 02* 

and ^02 was not the primary mechanism of action of these compounds.

Results presented in Figures 27 - 30 show that the use of antioxidants 

to scavenge these radicals and thus prevent tissue injury is not a 

specific method for evaluating the role of such radicals in herbicide 

action.

5.4 Discussion
The herbicides paraquat, monuron, acifluorfen and rose bengal 

induced lipid peroxidation and chlorophyll bleaching of illuminated 

thylakoids, and loss of photosynthetic activity, membrane disruption 

and chlorophyll bleaching of pea leaf discs. Although the symptoms 

of injury induced by these chemicals were similar, the effects against 

photosynthetic reactions and requirement for electron flow in herbicide 

activity indicated distinct modes of action.

Bipyridyl herbicides such as paraquat are readily reduced by photo­

system I electron flow. Their subsequent reoxidation by oxygen promotes 

02* accumulation in chloroplasts (Dodge, 1983). This is illustrated 

in this study by paraquat induced oxygen uptake by illuminated thylakoids 

(Table 9), thus inhibiting NADP+ reduction and photosynthetic C02 exchange.



Accumulation of 0^’ and H^O^, and the formation of OH* by interaction 

between Ô *"" and initiates damage. Damage symptoms can be observed

rapidly in paraquat treated leaf material, illustrated by chlorophyll 

bleaching and membrane disruption observed after 8 hours paraquat treat­

ment. This may reflect the positive generation of damaging oxygen species 

that occurs in chloroplasts as a consequence of herbicide action.

Electron flow inhibitor herbicides induce damage to leaf material 

more slowly. Although monuron abolished photosynthesis in pea leaf 

discs after 4-8 hours incubation, chlorophyll bleaching and membrane 

disruption was not detected until after 72 hours treatment. Electron 

flow inhibitors such as monuron inhibit the Hill reaction at concen­

trations below 1 viM (Corbett, 1974). Thus photosystem II ferricyanide 

reduction and NADP+ reduction by isolated thylakoids, and CO^ exchange 

in leaf discs were strongly inhibited by monuron. Inhibition of 

electron flow prevents the normal dissipation of light energy absorbed 

by chlorophyll through photosynthetic carbon metabolism. Excitation

energy absorbed by chlorophyll in monuron inhibited chloroplasts promotes 
3 1the formation of Chi and 0^ (Dodge, 1983). Damage induced by monuron 

is therefore a consequence of prolonged illumination of photosynthetically 

incompetent chloroplasts, and may be compared to the positive generation 

of active oxygen species that occurs when photosynthesis is inhibited 

by paraquat.

The photosensitizer rose bengal is a well known generator of 

(Ito, 1978). Light energy absorbed by the dye is transferred directly 

to a biological substrate in a type I mechanism, or to oxygen forming 

*0 in a type II mechanism (Foote, 1976). Compounds such as rose bengal 

do not inhibit electron flow reactions of isolated thylakoids, or require 

electron flow for their phytotoxic action, even though loss of photo-
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Inhibition

Fig 31. Proposed sites of interaction of monuron (a), 
paraquat (b) aciluorfen (c) and rose bengal (d) with 
photosynthetic electron flow.
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synthetic activity was one of the first symptoms of injury in rose 

bengal treated leaf discs (Figure 20). This may reflect the sensitivity 

of photosynthetic reactions to photo-oxidative disruption. A scheme 

outlining the damaging action of paraquat, monuron, acifluorfen and 

rose bengal, and their interaction with photosynthetic electron flow 

is shown in Figure 31.

The DPE herbicides acifluorfen and oxyfluorfen initiated membrane 

damage to pea leaf discs after 8-16 hours illumination, followed by 

chlorophyll bleaching. Several studies have indicated that the primary 

mode of action of this group of herbicides is to initiate membrane 

lipid peroxidation. This has been demonstrated in studies of electrolyte 

leakage or lipid peroxidation in DPE herbicide treated material, or 

by ultrastruetural investigations (Vanstone and Stobbe, 1979; Kunert 

and Boger, 1981; Orr and Hess, 1982; Kenyon et at,, 1985). Although 

these herbicides are dependent on light for activity the mechanism 

of light activation remains unclear. Results from this study support 

observations by Kunert and Boger (1981) that functional photosynthetic 

electron flow is necessary for DPE herbicide activity. Some DPE herbi­

cides have been shown to inhibit electron flow through photosystem II, 

while others promote oxygen uptake and 0^* formation by photosystem I 

electron flow (van den Burg and Tipker, 1983; Ridley, 1983). Results 

presented here indicate that such mechanisms do not account for the 

herbicidal action of acifluorfen or oxyfluorfen. These herbicides had 

no effect on electron flow through photosystem I and II, although 

ferredoxin dependent NADP+ reduction was retarded. Thus activation 

by electron flow may occur at a site on the thylakoid membrane close 

to ferredoxin or ferredoxin NADP+ reductase. The mechanism of activation 

and mode of action of DPE herbicides will be considered further in
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a later section of this thesis.

The role of light and oxygen in DPE herbicide damage to pea leaf 

discs may reflect a photo-oxidative damage mechanism involving the 

generation of activated oxygen species (^2* * °r ^2^2^ c*1*oro“ 

plasts similar to the damaging action of paraquat, monuron and rose 

bengal. The increased formation of free radicals or toxic oxygen 

species in herbicide treated chloroplasts probably exceeds the capacity 

of endogenous antioxidant mechanisms to scavenge them. Thus the anti­

oxidants ascorbate, a-tocopherol and crocetin restricted the peroxidation 

of illuminated thylakoids induced by these herbicides. While such anti­

oxidant treatments could not be used to discriminate between the 

damaging action of these herbicides in vitro, their presence in vivo 

may be a significant factor accounting for the delay between the rapid 

loss of photosynthetic activity and the development of chlorophyll 

bleaching or lipid peroxidation in herbicide treated leaf discs. 

Alterations in the endogenous levels of these antioxidants in chloro­

plasts may be one mechanism whereby increased or decreased tolerance 

to these herbicides is achieved.
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6. Modes of action of nitrodiphenyl ether herbicides
Diphenyl ether herbicides induce light and oxygen dependent inhibition 

of photosynthesis, chlorophyll bleaching and membrane damage to leaf 

material similar to that induced by photosynthetic inhibitor herbicides. 

Activation by photosynthetic electron flow induces the peroxidation 

of chloroplast membranes, although the site of activation and damaging 

action remains unclear. The action of DPE herbicides are considered 

further in this section by comparing the damaging action of acifluorfen 

with a range of other DPE chemicals.

6.1 The role of ferredoxin in herbicide activation
Acifluorfen and oxyfluorfen were shown previously to retard ferre- 

doxin-dependent NADP+ reduction by illuminated thylakoids, although 

no inhibition of electron flow through photosystem I and II was detected. 

Activation of these herbicides by photosynthetic electron flow may 

therefore occur at a site on the thylakoid membrane in the region of 

ferredoxin. Electron flow through ferredoxin and ferredoxin NADP+ 

reductase is investigated here using the diaphorase properties of this 

enzyme to catalyse NADPH oxidation.

To a basic reaction mixture of Tris-HCl buffer containing NADPH 

was added ferredoxin and ferredoxin NADP+ reductase extracted from 

spinach leaves. Other additions are shown in Table 11. In the presence 

of this enzyme, ferredoxin promoted the oxidation of NADPH according 

to the pathway shown. The reaction proceeded at a slow rate if either 

ferredoxin or enzyme were omitted from the reaction mixture. This 

experimental system has been used in several investigations to assess 

the role of ferredoxin in reducing a variety of compounds (Wessels,

1965; Forti and Grubas, 1985; Camilleri et at., 1985). Comparisons



Pathway of electron flow from NADPH to ferredoxin via ferredoxin 
NADP+ reductase:

NADPH

NADP

Ferredoxin
Ferredoxin /  (red )
NADP* 1
reductase J
-+  —  Ferredoxin

(ox)

Table 11. The effect of acifluorfen, oxyfluorfen, cytochrome C 
and myoglobin on the rate of oxidation of NADPH by ferredoxin 
and ferredoxin NADP+ reductase. The basic 3.0ml reaction mix 
contained 0.33M phosphate buffer, pH 8.0, and 80^g NADPH.

Additions to basic reaction:
Fd-NADP+reductase

Rate of NADPH oxidation (nmol min"^)
Control 25/jM 25/liM 25jjM 25>jMacifluorfen oxyfluorfen cytochrome myoglobin

3.78 4.4 4.6 6.29 5.17

Ferredoxin 1.79 1.62 1.62 1.83 1.97

Ferredoxin 13.32 16.01 15.86 23.67 22.32+ reductase (+20.2%) (+19.1%) (+78.4%) (+67.7%)
Ferredoxin 13.25 18.4 19.8 23.72 21.96+ reductase (+38.9%) (+49.4%) (+72.0%) (+65.7%)+ thylakoids
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of the effect of the DPE herbicides acifluorfen and oxyfluorfen with 

cytochrome C and myoglobin on NADPH oxidation by ferredoxin and ferre­

doxin NADP+ reductase are shown in Table 11. All four compounds promoted 

the oxidation of NADPH provided that both ferredoxin and ferredoxin 

NADP+ reductase were present in the reaction mixture. This indicates 

that all four compounds can be reduced by ferredoxin but not ferredoxin 

NADP+ reductase. Reduction of myoglobin and cytochrome C by ferredoxin 

has been confirmed elsewhere by following the change in absorbance 

of these compounds as they were reduced (Davenport and Hill, 1960). 

Experiments shown here indicate that acifluorfen and oxyfluorfen behave 

in a similar manner to cytochrome C and myoglobin in this experimental 

system. The rate of NADPH oxidation catalysed by ferredoxin and ferre­

doxin NADP+ reductase and promoted by DPE herbicides was however 

significantly enhanced if chloroplast membranes (30 yg chlorophyll) 

were added to the reaction mixture. No such stimulation by chloroplasts 

was observed in experiments using cytochrome C and myoglobin. The promo­

tion by chloroplasts of NADPH oxidation in experiments using DPE herbi­

cides may have been by providing a herbicide binding site as a pre­

requisite of herbicide activity in this system. Binding of DPE herbi­

cides to chloroplast thylakoids and their subsequent reduction by 

ferredoxin may account for the observed role of photosynthetic electron 

flow in herbicide activation.

Ferredoxin has an important role in a number of biological electron 

transfer reactions, which include NADP+ reduction, fatty acid desatur­

ation reactions, oxygen reduction to 0 *“ and the activation of certain 

chloroplast stromal enzymes by ferredoxin-ferredoxin thioreductase 

(Hall and Rao, 1977; Halliwell, 1981). Ferredoxin has also been demon­

strated to reduce a variety of compounds including cytochrome C and
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Fig 32. Membrane lipid peroxidation of illuminated thylakoids. 
Control (•) and the effect of IOjjM acifluorfen (o).
Thylakoids were unwashed* (a), washed once (b) or twice (c) 
prior to the experiment. The effect of adding ferredoxin 
to the washed thylakoids is shown in figure d.
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Fig 33. The effect of paraquat (a ), monuron (□) and 
acifluorfen (o) compared with the control (•) on lipid 
peroxidation of illuminated thylakoids. Thylakoids were 
unwashed (a) or washed twice (b) prior to the 
experiment.
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myoglobin, dinitrophenols and heteropentalenes (Davenport and Hill,

1960; Wessels, 1965; Camilleri et at., 1985). Studies of the redox 

chemistry of acifluorfen-methyl and several other nitro DPE herbicides 

showed that their one electron reduction potentials did not preclude 

reduction by the acceptor site of photosystem I (Orr et at., 1983 a,b, 

Bowyer et at., 1986). Ferredoxin reduction of DPE herbicides in illum­

inated chloroplasts may therefore be a feasible reaction.

The role of ferredoxin in DPE herbicide activation was examined 

further by following the effect of acifluorfen on the peroxidation 

of illuminated thylakoids (Figure 32), using the experimental system 

described previously (Section 5.1). Membrane lipid peroxidation was 

promoted by acifluorfen (Figure 32a). This promotion of lipid peroxid­

ation was strongly retarded if thylakoids were washed with 50 mM Hepes- 

NaOH buffer either once or twice prior to use (Figure 32 b, c). Membrane 

lipid peroxidation was therefore dependent on a chloroplast component 

loosely attached to the thylakoids and easily removed by washing. 

Ferredoxin is known to be readily lost from chloroplasts by washing 

(Barber, 1983). Results presented in Figure 32d demonstrate the effect 

of adding ferredoxin to washed thylakoid preparations on acifluorfen 

induced peroxidation. Ferredoxin almost completely restored the aci­

fluorfen promotion of membrane peroxidation.

Lipid peroxidation of illuminated thylakoids can be promoted by 

acifluorfen, paraquat and monuron to a similar extent (Section 5.1). 

Peroxidation induced by these herbicides on unwashed thylakoids was 

compared with thylakoids washed twice prior to use (Figure 33).

Washing thylakoid membranes twice prior to use did not affect the per­

oxidation promoted by paraquat and monuron, although thylakoid membrane 

lipid peroxidation induced by acifluorfen was retarded (Figure 33b).
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Fig 34. Diphenyl ether herbicide structures.
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These results show that the interaction of acifluorfen with chloroplast 

membrane and the subsequent induction of membrane peroxidation is 

fundamentally different than that induced by paraquat or monuron.

6.2 Comparisons with other DPE herbicides
Acifluorfen induced light dependent peroxidation of leaf discs 

or isolated thylakoids. Activation was dependent on photosynthetic 

electron flow via ferredoxin, although the nature of the radical species 

formed by DPE herbicide activation is unclear. To determine if other 

DPE herbicides are dependent on a similar mechanism for herbicide 

activation, the action of acifluorfen in pea leaf discs and chloroplasts 

has been compared with a range of other experimental DPE compounds 

shown in Figure 34.

Visible symptoms of injury to pea leaf discs were assessed following

incubation on DPE herbicide solutions (25 yM) for up to 48 hours under
-2 -1constant illumination (300 ymol m s photon flux density). The effect 

of DPE herbicides on membrane permeability, assessed by increased 

electrolyte leakage into the bathing medium, is shown in Figure 35.

All six DPE herbicides induced electrolyte leakage from pea leaf discs 

after 8-16 hours illumination, indicating membrane damage. The effect 

of herbicide treatments on membrane lipid peroxidation and chlorophyll 

bleaching from leaf discs, and the requirement for photosynthetic electron 

flow in DPE herbicide activity is shown in Figure 36. Pea leaf discs 

were preincubated for 24 hours in darkness on water or 0.1 mM monuron 

prior to transfer to DPE herbicide solutions and illumination for 48 

hours. All DPE herbicides tested induced some chlorophyll bleaching 

and membrane lipid peroxidation in leaf discs. No chlorophyll bleaching 

or lipid peroxidation was detected in leaf discs incubated on DPE
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herbicides for 48 hours in darkness (data not shown). Pea leaf discs 

preincubated on monuron prior to DPE herbicide treatments showed less 

chlorophyll bleaching and membrane lipid peroxidation than leaf discs 

pre incubated on water. DPE herbicide activity therefore required photo­

synthetic electron flow.

The results presented in Table 12 show that DPE herbicides (25 pM) 

retarded photosynthetic CO^ exchange in pea leaf discs after 24 hours 

dark incubation. Inhibition of photosynthesis was not complete, although 

CO^ exchange was totally abolished by these herbicides after a similar 

period of light incubation (data not shown). DPE herbicides have been 

reported to promote oxygen uptake by photosystem I or inhibit photo­

synthetic electron flow (Ridley, 1983; van den Burg and Tipker, 1983; 

Boger, 1984). To examine the interaction of the compounds shown in 

Figure 34 with photosynthetic electron flow reactions, thylakoids were 

isolated from pea leaves and electron transport through photosystem 

I and II assessed (Table 13). Although acifluorfen showed no inhibition 

of photosystem II ferricyanide reduction at concentrations up to 50 pM, 

this was retarded by other DPE herbicides. The inhibitory effect of 

DPE herbicides such as nitrofen was however poor compared with urea 

herbicides which inhibit photosystem II function at concentrations 

below 1 pM (Corbett, 1974). Acifluorfen can induce the peroxidation 

of chloroplast thylakoids at a concentration of 0.5 pM (Figure 37), 

and other DPE herbicides induce damage symptoms to leaves at concen­

trations below 0.1 pM (Orr and Hess, 1981; Boger, 1984). A 50% 

inhibition of photosystem II electron flow is induced by many DPE herbi­

cides at concentrations above 10 pM (van den Burg and Tipker, 1983). 

Inhibition of electron flow is therefore unlikely to be the primary 

mode of action of this group of chemicals. Several DPE herbicides



Table 12. The effect of diphenyl ether herbicides on 
photosynthetic CC^ exchange in pea leaf discs after 
24 hours dark incubation

CO2 uptake (jLimol CO2 gFW~^h~^)
Control 71.88 (100%)
25jjM Acifluorfen 55.3 (76.8%)
25jjM Bifenox 31.2 (43.4%)
25jjM Etnipromid 54.6 (75.9%)
25jjM Nitrofen 40.7 (56.6%)
25/jM 92611 44.0 (61.2%)
25/jM 38968 55.4 (77.1%)



Table 13. The effect of diphenyl ether herbicides on electron 
transport reactions of isolated pea thylakoids.

FeCN FLO— ► PQ Ascorb/-* 0
6 L DCPIP(PS II) (PS I+II) (PS I)

Control rate 130.5a 146.9^ 18.66^
(100%) (100%) (100%)

Inhibitor concentration (pM)
10 50 50 10 50

Acifluorfen 101.6% 100% 91.6% 106% 100%
Bifenox 96.9% 68.7% 73.2% 159% 271%
Etnipromid 96.9% 57.8% 71.8% 153% 297%
Ni trofen 65.1% 23.3% 21.4% 100% 93.2%
92611 100% 79.6% 95.8% 147% 247%
38968 102% 86.5% 95.5% 153% 199%

a. Results as pmol O2 evolution mg ^chl h ^
b. Results as jumol O2 uptake mg ^chl h ^
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Fig 37. The effect of acifluorfen at 0.5jjM (a ), I.OjjM 
(□) or IOjjM (o) compared with the control treatment 
(•) on the peroxidation of illuminated thylakoids.



can promote oxygen uptake by photosystem I (Table 13; bifenox, etnipromid, 

38 968, 92 611), although the effect is poor compared with that induced 

by paraquat (Table 9). These results indicate that depending on their 

chemical structure, some DPE herbicides can inhibit photosystem II 

electron flow and promote oxygen uptake by photosystem I. While these 

effects are unlikely to be the primary damaging action of these compounds, 

they may contribute to their herbicidal action.

Studies with acifluorfen and oxyfluorfen indicated that herbicide 

activity was dependent on photosynthetic electron flow through ferre­

doxin. The role of ferredoxin in the activity of other DPE herbicides 

was assessed by following the peroxidation of illuminated thylakoids 

induced by these compounds (Figure 38). All DPE herbicides tested 

promoted the peroxidation of illuminated thylakoids. Membrane lipid 

peroxidation that was promoted by acifluorfen and 38 968 was abolished 

if thylakoids were washed twice prior to use. Peroxidative activity 

of these two herbicides was restored if exogenous ferredoxin (300 pg) 

was added to washed thylakoid preparations. The peroxidation of illum­

inated thylakoids that was promoted by etnipromid or b ifenox was un­

affected by washing. Herbicide activity, although dependent on functional 

electron flow (Figure 36) was independent of ferredoxin. Lipid perox­

idation induced by nitrofen or 92 611 was partially reduced by thylakoid 

washing, and this was restored by the addition of exogenous ferredoxin. 

Damage induced by these two herbicides was probably enhanced by 

electron flow through ferredoxin although herbicide activation could 

occur in the absence of ferredoxin.
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6.3 Discussion
Several studies have indicated that the primary effect of DPE 

herbicides to plant tissues is to induce light dependent membrane damage. 

These herbicides caused increased membrane permeability, membrane 

lipid peroxidation, loss of membrane structure shown by ultrastruetural 

studies, and wilting and desiccation of whole plants (Vanstone and 

Stobbe, 1979; Kunert and Boger, 1981; Orr and Hess, 1981, 1982; Kenyon 

et al., 1985). The mechanism of light activation remains unclear, 

although results from this study support the observations by Kunert 

and Boger (1981) that photosynthetic electron flow is necessary for 

the activity of DPE herbicides.

Elucidating the mechanism of DPE herbicide activation by light, 

and the nature of the radical species formed by light activation that 

initiates membrane lipid peroxidation may indicate the primary mode 

of action of this group of chemicals. Draper and Casida (1985) demons­

trated the reduction of the nitro DPE herbicide nitrofen to p-nitroso 

derivatives, and the binding of these derivatives to unsaturated 

lipids. This promoted the formation of nitroxide radicals that were 

sufficiently reactive to initiate membrane lipid peroxidation. The 

initial reduction step was proposed to have been coupled to photo­

synthetic electron flow. Studies of the redox chemistry of nitrofen, 

acifluorfen methyl and a range of other nitro-DPE herbicides have shown 

that their reduction potentials do not preclude reduction by the 

acceptor site of photosystem I (Orr et at., 1983 a, b; Bowyer et at., 

1986). Reduction and reoxidation by oxygen forming 0^* was not a 

feasible reaction, thus precluding a paraquat type mode of action (Orr 

et at., 1983 a, b). Reduction of DPE herbicides by photosystem I or 

ferredoxin as indicated in this study may therefore be an important
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initial step in herbicide activation. Recent studies of other DPE 

compounds where the p-nitro group was replaced by p-H or p-Cl have 

shown that although these compounds were herbicidally active, their 

reduction potentials precluded direct reduction by photosynthetic electron 

flow (Orr et al. t 1983 b; Ensminger et al., 1985). Reduction of the 

nitro group to a p-nitroso derivative as proposed by Draper and 

Casida (1985) could not occur in these compounds. It does remain 

possible that herbicidally active non-nitro DPE compounds are meta­

bolised to nitro DPE compounds in vivo. Herbicide activation could 

then occur by a similar mechanism to the nitro DPE compounds used in 

this study.

Identification of the radical species formed by DPE herbicide 

activation that initiates membrane lipid peroxidation may indicate 

the mechanism of light activation of these herbicides. Electron spin 

trapping (ESR) techniques have demonstrated the formation of 0^* in 

chloroplasts following paraquat treatment (Harbour and Bolton, 1975;

Miller and MacDowall 1975; Chia et al., 1982). Similar ESR techniques 

with illuminated chloroplasts treated with DPE herbicides have shown 

the formation of radicals, although they were not identified (Lambert 

et al., 1985). Radical formation induced by DPE herbicides in illuminated 

chloroplasts was inhibited by diuron, confirming the role of photo­

synthetic electron flow in herbicide activation (Lambert et al., 1985). 

Radicals induced by nitro and p-Cl DPE herbicides in these studies 

were similar, indicating a common mechanism of herbicide activation.

Studies by Draper and Casida (1985) using ESR techniques showed the 

generation of nitroxide radicals in illuminated beet leaves that had 

been treated with nitrofen and illuminated. Further such studies using 

other DPE herbicides may indicate whether nitroxide radicals are important
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in the activation and herbicidal mode of action of nitro and non-nitro 

DPE compounds.

Structure activity studies with DPE herbicides have shown that 

the most active compounds are derivatives of nitrofen and nitrofluorfen 

with 2,4-Cl or 2,4-CF3substitution and a 4'-N02 group (see Figure 34). 
Appropriate substitutions at the 3' position, as in acifluorfen or 

bifenox, enhance herbicide activity (Lambert et al. , 1983). Compounds 

with 3,5 substitution or substituents at the 2 ’, 5' or 6' positions 

were inactive (Matsunaka, 1969; Swithenbank, 1982; Lambert et al.,

1983). The specific requirement for substituents in certain positions 

on the ring structures may reflect a specific receptor or binding site 

for DPE molecules prior to light activation (Swithenbank, 1982). Identi­

fication of the nature and location of that binding site may indicate 

the mechanism of DPE herbicide activation.

Several reports of the mode of action of DPE herbicides have indi­

cated that these herbicides are active in etiolated, non photosynthetic 

leaves, or in non-chlorophyll containing mutants (Matsunaka, 1969;

Orr and Hess, 1982). Furthermore, several workers have shown that in­

hibition of photosynthetic electron flow prior to DPE herbicide 

treatments did not affect the development of herbicide injury (Orr 

and Hess, 1982; Kenyon et al., 1985; Ensminger and Hess, 1985). DPE 

herbicide activity was observed in mutants that contained carotenoids 

but not chlorophyll, but not in mutants lacking both chlorophyll and 

carotenoids (Matsunaka, 1969). Herbicide activity was also observed 

in etiolated leaves that contained carotenoids but not chlorophyll 

(Orr and Hess, 1982). These workers suggested that DPE herbicide 

activation occurred through carotenoid pigments, although no mechanism 

was proposed.
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Fig 39. Scheme outlining possible site of activation of 
DPE herbicides by photosynthetic electron flow. Reduction 
of nitro DPE‘s by PS I (1) or ferredoxin (2) forms 
p-nitroso derivatives and nitroxide radicals that initiate 
membrane damage. Non-nitro DPE's may be metabolised 
in vivo to nitro derivatives.
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Althamgh damage induced by DPE herbicides has been well documented, 

their mechanism of activation by light remains unclear. Whether 

activation occurs by carotenoid pigments or photosynthetic electron 

flow is unresolved. Results from this study indicate that in photo- 

synthetically active tissues, chloroplast electron flow is important 

in DPE herbicide activity, activation occurring via photosystem I or 

ferredoxin. Interaction with photosynthetic electron flow at a site 

on the thylakoid close to ferredoxin may promote the formation of 

nitroxide radicals that initiate lipid peroxidation, as proposed by 

Draper and Casida (1985). Activation of non-nitro DPE herbicides may 

occur through their conversion to nitro compounds in vivo, followed 

by herbicide activation. This proposed mechanism of DPE herbicide 

activation is shown in Figure 39. The identification of the site of 

DPE herbicide binding to membranes, and the nature of radicals formed 

after light activation that initiate subsequent membrane damage are 

central to elucidating the mode of action of this group of herbicides.



7. Environmental stress and photoinhibition of chloroplast reactions
Light energy absorbed by chloroplasts that is not utilised in 

photosynthetic carbon metabolism or other light driven metabolic reactions 

may damage the photosynthetic apparatus. Such damage has been observed 

if photosynthesis is impaired during chilling or drought stress, or 

if shade adapted plants are transferred to strong light (Osmond, 1981; 

Powles, 1984). Damage,termed photoinhibition, induces the loss of photo­

system II function and has been extensively studied in leaves, leaf 

cells, isolated chloroplasts and thylakoids (Krause et al., 1978, 1985; 

Powles et al.t 1979, 1983; Critchley, 1981; Cornic et al., 1982; Powles,

1984). Photoinhibition is promoted by light, although the mechanism 

of damage is unclear (Powles, 1984). Several reports have indicated 

that reduced photosynthetic activity during stress may promote the 

formation of toxic oxygen species that induce damage to the photosynthetic 

apparatus (van Hasselt, 1972, 1974; Osmond, 1981; Barenyi and Krause,

1985; Krause et al., 1985). Damage would probably occur analogous to 

the action of certain herbicides that inhibit photosynthesis. In this 

study the photoinhibition of photosynthesis has been assessed in leaves 

incubated at chilling temperatures, and in isolated chloroplasts incubated 

in the absence of electron acceptors.

7.1 Photoinhibition of photosynthesis induced by chilling temperatures
The effect of chilling on the photosynthetic activity of pea leaf 

discs or maize leaf segments was investigated. Leaf material was 

incubated on distilled water and maintained at 20°C or 5°C, using an 

ice bath, in darkness or under illumination. Leaves were returned to 

room temperature and photosynthetic activity assessed. The results 

presented in Figure 40 show the effect of 5 hours incubation at 20°C
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or 5°C on the subsequent rate of photosynthetic COexchange measured

at room temperature. Photoinhibition characteristically reduces the

rate of light saturated photosynthesis and the quantum yield (Osmond,

1981; Long et al. , 1983). The results presented in Figure 40 demonstrate

that chilling pea leaf discs for 5 hours reduced the quantum yield

of photosynthesis by nearly 50%. In subsequent experiments photosynthetic
-2 -1C0^ exchange was assessed at 300 vimol m s photon flux density as 

an indicator of photoinhibition. The results presented in Figure 41 

demonstrate the effect of the chilling period on the development of 

photoinhibition, assessed by photosynthetic CO^ exchange (Figure 41a) 

or chlorophyll fluorescence (Figure 41b).

Chlorophyll fluorescence kinetics have been increasingly used 

in recent years to assess the inhibition of photosynthetic reactions 

in vivo (Papageorgiou, 1975; Baker and Bradbury, 1981). The induction 

of chlorophyll a fluorescence in photosynthetic cells has been resolved 

into fast and slow phases. The fast phase, of a few seconds, consists 

of a biphasic rise from the initial level, through 0, to a maximum 

P followed by a slow decline in fluorescence yield (Figure 42a). These 

changes are considered to reflect photochemical events associated with 

photosystem II (Baker and Bradbury, 1981). The initial rise to 0 repre­

sents the fluorescence of constant yield from photosystem II, occurring 

prior to excitation energy inducing photochemical electron flow through 

the photosystem II reaction centre. The rise above 0, the variable 

component of fluorescence, is correlated with photosystem II mediated 

electron flow that reduces the primary electron acceptor Q. Following 

the peak, P, fluorescence slowly declines as electron flow mediated 

by photosystem I and CO^ reduction initiates the reoxidation of Q.

The transient F^ through P and the subsequent fluorescence decline
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is considered to reflect the redox state of Q (Papageorgiou, 1975).

The arbitrary ratio Fj:Fp has been used in this study to quantify the

variable fluorescence yield of leaf discs following chilling treatments.

Treatments that prevent photosystem II activity reduce the fluorescence

peak, giving an increased ratio (Figure 42b). Inhibition of

electron flow beyond Q, as occurs when electron flow is inhibited by

monuron (Figure 42c), or if photosystem I is damaged, prevents the

reoxidation, of Q. Fluorescence yield is therefore at maximum value

and does not decline beyond P. Incubating pea leaf discs at chilling

temperatures increased the Fj:Fp ratio (Figure 41b), indicating damage

to photosystem II function.

The role of light intensity in the photoinhibition of pea and

maize leaves incubated at 20°C or 5°C for 5 hours is shown in Figure 43.

No photoinhibition was detected after 5 hours dark incubation. Damage

was promoted by increased light intensities.

Photoinhibition is commonly characterised by reduced photosystem

II function although loss of photosystem I activity may also occur

(Powles, 1984). To assess the site of photoinhibition of photosynthesis

induced by chilling, pea and maize leaves were incubated for 5 hours
-2 -1at 5°C or 20°C under constant illumination (400 pmol m s photon 

flux density). Chloroplast thylakoids were isolated from leaf material 

and photosynthetic electron flow reactions assessed (Figure 44). 

Photoinhibition of photosynthesis in pea and maize resulted in loss 

of photosystem II function, using either FeCN or SiMo as photosystem 

II electron acceptors, or paraquat to assess electron flow through 

photosystem I and II. Diphenyl carbazide (DPC), which can donate electrons 

to photosystem II (Izawa, 1980) was unable to restore electron flow.

This indicated that damage had occurred to the photosystem II reaction



TOOoi-4->coo
to O

•r- C\Jto
<U *4-

C
to to o <o

0.8
to ' <u oi- -c- O +->

Q_U_ •o— •
>>
o u.
fc.

0.4c_>

oo oo oo oo oo oon3 i— w  ^  nj i—O  Q
Light intensity (pol m"2s"1 PFD)

Fig 43. The effect of light intensity during incubation
on the development of photoinhibition in pea (a) or
maize (b) leaves incubated at 5*C (o) or 20’C (•).
Photosynthetic activities were assessed at room temperature

- 2 -1after 5h preincubation at 100, 200 or 400 p o l  m s PFD or 
in darkness.



oi-4->coo
o(XI
M-o
to
t o

CO<y
•r~>
ortJ

4->a»
c>>COO4->O

Maize.
100

80
60
40
20

O'
Cl.

z;o O'Q_O'

OCXI oCOzc
oCO3:

O •—I U Q_ 
CO OC  Q

oD_Q

Fig 44. Inhibition of photosynthetic electron flow 
reactions in thylakoids isolated from pea or maize leaves 
incubated at 20*C or 5*C for 5h. The results are expressed 
as electron flow*rates at 5 ’C as a percentage of the 20*C 
control.



147.

centre, and not to the water splitting reaction. Electron flow through 

photosystem I using ascorbate/DCPIP as an electron donor coupled to 

paraquat as an acceptor was unaffected by chilling pretreatments.

Inhibition of photosynthetic electron flow by urea herbicides 

has been reported to reduce chilling induced photoinhibition of photo­

synthesis (Mustardy et al., 1984). To assess the role of photosynthetic 

electron flow in photoinhibition of pea and maize leaves during chilling, 

leaves were incubated on water or 10 yM monuron for 5 hours at 5°C 

or 20°C and illuminated. Chloroplasts were isolated from chilled or 

unchilled leaves and photosynthetic electron flow assessed. If photo­

inhibition was induced by a promotion of 0^’ formation during chilling, 

it may be expected that impaired rates of electron flow during chilling 

by monuron would provide some protection against damage. Protection 

would be similar to that provided by monuron against the herbicical 

action of paraquat (Section 5.2). The results presented in Figures 44 

and 45 show the rates of photosynthetic electron flow in thylakoids 

isolated from leaves incubated on water (Figure 44) or monuron (Figure 

45). The results show the rate of electron flow in leaves incubated 

at 5°C as a percentage of the rates from leaves incubated at 20°C.

The photosystem II electron acceptor SiMo is particularly useful in 

such studies. SiMo accepts electrons prior to the site of action of 

monuron (Izawa, 1980), and cam therefore be used to assess photosystem 

II activity in leaf material incubated on monuron solutions. Leaf material 

incubated on water for 5 hours at 5°C showed 40% loss of photosystem 

II (SiMo reduction) activity in pea and 35-40% inhibition in maize 

comoared to controls incubated at 20°C (Figure 44). Leaf material in­

cubated on 10 yM monuron for 5 hours at 5°C showed similar photosystem 

II inhibition (Figure 45). Monuron thus provided no protection against
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chilling induced loss of photosystem II activity. Electron flow through 

photosystem I and II, using paraquat as an electron acceptor in thyla­

koids isolated from leaves incubated on water (Figure 44) or monuron 

(Figure 45) at 5°C or 20°C showed similar photoinhibition.

These results can be compared with the effect of monuron on the 

loss of photosystem II activity that occurred when leaves were incubated 

on paraquat and illuminated (Figure 46). Paraquat promotes oxygen 

reduction to 0^’ by photosystem I, and thus its damaging action is 

dependent on photosynthetic electron flow. Thylakoids isolated from 

pea leaf discs incubated on 10 pM paraquat for 5 hours under continuous 

illumination showed 35-40% loss of photosystem II activity using either 

FeCNor SiMo as electron acceptors. Electron flow through photosystem 

I and II was retarded to a similar extent, although photosystem I 

electron flow was unaffected (Figure 46a). The effect of incubating 

leaf discs on monuron (10 pM) or monuron plus paraquat on electron 

transport activity is shown in Figure 46b. The activity of electron 

flow reactions in thylakoids isolated from leaf discs incubated on 

paraquat plus monuron is shown as a percentage of the activity of discs 

incubated on monuron alone. Monuron almost completely protected photo­

system II activity against paraquat induced damage. This indicates 

that reduced rates of electron flow in monuron treatments restricted 

paraquat induced formation of 0^* by photosystem I. Protection was 

therefore similar to monuron protection against paraquat induced 

chlorophyll bleaching of pea leaf discs demonstrated previously 

(Table 10). These results demonstrate that the mechanism of chilling 

induced damage to photosystem II occurred by a different mechanism 

from damaged induced by paraquat.
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Studies by Michalski and Kanuiga (1981) have indicated that one 

consequence of chilling was a loss of SOD activity from leaves. Long 

(1983) suggested that chilling-induced photoinhibition in maize may 

occur if the activities of chloroplast 0^’ and H^O^ scavenger enzymes 

were inhibited by chilling treatments. Homogenates of pea or maize 

leaves that had been incubated at 5°C for 5 hours showed no loss of 

SOD, ascorbate peroxidase, glutathione reductase or ascorbate compared 

to leaves incubated at 20°C (data not shown). Reduced enzyme activity 

at low temperatures may however impair their ability to scavenge 0^* 

and ^2^2 c^^oroP^as^s* This may contribute to the photo-oxidative 

damage that occurs if chilling treatments are prolonged (van Hasselt, 

1972, 1974).

7.2 Photoinhibition of isolated chloroplasts
Photoinhibition of electron transport can be induced in isolated 

chloroplasts or chloroplast fragments incubated in the absence of 

electron acceptors (Krause et al., 1978; Barenyi and Krause, 1985).

Such studies may assist in the elucidation of the mechanism of photo­

inhibition, and the role of activated oxygen species in the induction 

of damage.

Chloroplast membranes (100 ng chlorophyll) isolated from pea plants 

were incubated in vials containing 30 mM Tricine-NaOH buffer (2.5 ml) 

at varying light intensities for up to 15 minutes. The contents were 

transferred to the reaction chamber of an oxygen electrode at three 

minute intervals and the rate of photosynthetic electron flow assessed 

using paraquat as an electron acceptor. Electron flow in chloroplasts 

that had been illuminated was compared with that of chloroplasts 

incubated in darkness. These results are presented in Figure 47a. A



oi-■MCou
S-fO■a
<♦-o
u>«o

<u+■><o

o
cos.■MOa>r—LlJ

80

60

40

20

0 153 6 9 12Illumination time (min)
Fig 47a. Inhibition of photosynthetic electron flow
induced by incubation of thylakoids in the absence of
electron acceptors at 250 (•), 500 (o) 750 (a ) or

- 2 - 11000 (■) pnol m _s 
60

PFD for up to 15 minutes.

♦ 5
1 <U t s

c yQ_
u  ex.

t s

U_o •i—
O  CO o o

CM CM CM CO CJ ex.
zn. z c z c o Q

Fig 47b. Inhibition of electron flow in pea thylakoids
- 2 -1atfer 10 minutes preincubation at 750 piol m s PFD.



153.

reduction in photosynthetic electron flow in illuminated chloroplast 

thylakoids compared with those incubated in darkness was observed after 

six minutes incubation. Photoinhibition was more marked in thylakoids 

incubated at higher light intensities.

To investigate the site of photoinhibition, chloroplast membranes
-2 -1were incubated for 10 minutes at 750 Mmol m s photon flux density 

prior to the assessment of electron transport (Figure 47b). Photo­

inhibition of photosynthetic electron flow was expressed as inhibition 

of photosystem II activity. Photosystem I activity was retarded by 

10% as a consequence of preillumination. The inability of DPC to 

restore electron flow through photosystem II indicated that damage 

had occurred to the photosystem II reaction centre.

The results presented in Figure 48 show the effect of various 

additions during the chloroplast pr eincubation period on the rate 

of subsequent electron flow. They are expressed as the percentage 

inhibition of ferricyanide reduction that occurred in illuminated chloro­

plasts compared with controls maintained in darkness. Preincubation 

of chloroplasts induced a 40-50% loss of photosystem II activity.

Addition of FeCN (1.0 mM) during the preincubation period reduced the 

degree of photoinhibition. Protection provided by FeCN was reduced 

if monuron concentrations (1.0 mM) that partially inhibit electron 

flow were also added during the preincubation period. These results 

indicate that photoinhibition of chloroplast reactions achieved by 

incubation in the absence of electron acceptors could be mimicked by 

incubating thylakoids with an electron acceptor in the presence of 

monuron. In the absence of electron acceptors light energy absorbed 

by chlorophyll cannot be dissipated by photosynthetic electron flow.

Thus damage induced to the photosystem II reaction centre would be
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similar to damage induced by inhibition of photosynthetic electron 

flow with monuron. Addition of FeCN to thylakoids, or bicarbonate to 

intact chloroplasts (Krause et at., 1978; Barenyi and Krause, 1985) 

permits maintained electron flow through photosystem II during pre- 

incubation, thus preventing over-reduction of the electron carriers 

and hence, photoinhibition.

The results in Figure 48b show the effect of paraquat (10 pM) 

and SOD plus catalase (250 units) added during the preincubation period 

on the inhibition of photosystem II ferricyanide reduction. Neither 

paraquat or SOD plus catalase alone protected photosystem II against 

photoinhibition. Thus even though paraquat promotes electron flow to 

oxygen, thereby maintaining electron flow through photosystem I and 

II, this did not prevent photoinhibition. Results presented previously 

(Figure 46) demonstrated that paraquat can induce damage to photosystem 

II. Superoxide formed as a consequence of paraquat action probably 

initiates damage. Incubation of chloroplasts with paraquat and SOD 

plus catalase significantly retarded damage to photosystem II (Figure 

48b). These results indicate that photoinhibition of isolated thylakoids 

can be prevented by electron flow to oxygen provided that a catalyst 

of oxygen reduction is present (paraquat), and 0^* formed is scavenged 

by SOD and catalase. SOD and catalase did not protect photosystem II 

against photoinhibition unless paraquat was also present. This 

indicates that the endogenous rate of oxygen reduction by photosystem

I was too low to maintain sufficient electron flow through photosystem

II to prevent photoinhibition. In chloroplasts in vivo oxygen reduction 

by photosystem I is catalysed by ferredoxin. Addition of ferredoxin

to illuminated thylakoids promotes oxygen uptake by photosystem I 

(Halliwell, 1981).
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The results presented in Figure 48c show the effect of ferredoxin 

and SOD plus catalase on photoinhibition of illuminated thylakoids. 

Addition of ferredoxin (150 pg) alone did not prevent loss of photosystem 

II function that occurred as a consequence of preincubation in light. 

However ferredoxin together with SOD plus catalase did reduce the 

degree of photoinhibition. This was similar to that shown in Figure 

48b with paraquat and SOD plus catalase. These results indicate that 

either ferredoxin or paraquat can promote electron flow to oxygen. 

Provided that the products of oxygen reduction are scavenged, photo­

inhibition can be restricted.

7.3 Discussion
Although the inhibition of photosynthesis induced by chilling 

leaves in light has been extensively studied (Taylor and Rowley, 1971; 

Rowley and Taylor, 1972; Lindenman, 1979; Powles et al. , 1983), the 

mechanism of damage remains unclear. Photosynthesis is one of the 

first processes to be adversely affected by low temperatures (Berry 

and Bjorkman, 1980). Chilling temperatures at high light intensities 

in the presence of oxygen cause damage to the photosystem II reaction 

centre (Rowley and Taylor, 1972; Powles et al. , 1983), as also 

demonstrated in this study. Reduced photosynthetic function at low 

temperature may occur as a conseqeunce of reduced activity of carboxy- 

lative enzymes, or because phase changes in thylakoid membrane lipids 

impair electron flow (Berry and Bjorkman, 1980; Oquist, 1984). One 

consequence of reduced photosynthetic function at chilling temperatures 

is that less light is required to saturate photosynthesis than at higher 

tempertures (Berry and Bjorkman, 1980). Incubating leaves at low temp­

erature and at light intensities in excess of that required to saturate



photosynthesis induces photoinhibition. Photosynthetic reactions are 

unable to dissipate light energy trapped by chloroplast pigments under 

such conditions. The mechanism of damage is probably similar to that 

occurring when shade adapted plants are transferred to strong light 

(Powles and Critchley, 1980; Critchley, 1981), or if photosynthesis 

is restricted during drought stress (Newton et al. , 1981; Bjorkman 

and Powles, 1984), or by incubating leaves in the absence of both C0^ 

and 0^ (Powles and Osmond, 1978; Krause et al., 1985). Impaired photo­

synthetic carbon metabolism reduces the availability of NADP+ as a 

photosystem I electron acceptor. Illumination may promote electron 

flow to oxygen with the formation of 0^* • Alternatively the reduced 

availability of electron acceptors, or disruption of the electron 

transport pathway itself as a consequence of membrane damage during
3stress, may promote energy spillover from chlorophyll to form Chi

or ^ 2* Damage by these mechanisms would therefore occur in a manner
analogous to the mode of action of paraquat or photosynthetic electron

flow inhibitor herbicides. Results from this study indicate that 0^*

did not initiate photoinhibition of photosynthesis in pea or maize

leaves during chilling. While monuron prevented damage to photosystem

II induced by paraquat, no such protection was provided against chilling

induced damage. Chilling-induced photoinhibition probably occurred

because photosynthetic electron flow was impaired by low temperature,
3 1promoting energy spillover from chlorophyll to form Chi and 0^ as 

proposed by van Hasselt (1974). Photoinhibition and subsequent membrane 

damage during chilling would therefore be similar to the damage occurring 

when photosynthetic energy dissipation from chlorophyll is inhibited 

by certain herbicides that prevent photosynthetic electron flow 

(Dodge, 1983).



The mechanism of photoinhibition was examined further in experiments 

with isolated thylakoids. Photoinhibition was induced by incubating 

thylakoids in light in the absence of electron acceptors. Addition 

of ferricyanide reduced damage to photosystem II. Similar experiments 

(Barenyi and Krause, 1985; Krause et al. , 1985) showed that photo­

inhibition of intact chloroplasts or thylakoids induced by illumination 

in the absence of electron acceptors, could be prevented by the addition 

of bicarbonate to intact chloroplasts, or ferricyanide to thylakoids.

These experiments indicate that in the absence of photosynthetic electron 

flow acceptors, over-reduction of the electron transport chain induces 

damage to photosystem II. Damage probably occurs because over-reduction 

of the electron transport chain promotes oxygen reduction to 0^* by

photosystem I, or because energy spillover from chlorophyll increases 
3 1the formation of Chi and 0^. The experiments in this study indicate 

that both mechanisms of damage may occur. Photoinhibition of photosystem 

II activity in illuminated thylakoids was relieved by addition of ferri­

cyanide during the preincubation period. If however electron flow was 

impaired by monuron, inhibition of photosystem II activity was observed. 

This indicates that photoinhibiti'ori occurred because electron 

flow beyond photosystem II was impaired, either as a consequence of 

illuminating chloroplasts without electron acceptors, or because 

electron flow was inhibited by herbicides. Reduction of oxygen by photo­

system I did not protect thylakoids against photoinhibition unless 

a catalyst of oxygen reduction (paraquat or ferredoxin), and a scavenger 

of the products of oxygen reduction (SOD plus catalase) were added.

In the absence of SOD and catalase damage occurred presumably because 

0 * formed by photosystem I oxygen reduction initiates damage to 

photosystem II.
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Studies of the role of oxygen in photoinhibition of thylakoids, 

intact chloroplasts, leaf cells or whole leaves have shown that oxygen 

can promote or protect against photoinhibition. Damage induced by in­

cubating thylakoids or leaves in light under anaerobic conditions was 

reduced if oxygen was present (Krause et al. , 1985). Similar experiments 

have shown that photoinhibition induced by illuminating leaves under 

low partial pressures of oxygen in the absence of CO^ was prevented 

if the oxygen concentration was increased (Powles and Osmond, 1978; 

Powles et al., 1979, 1983). Photoinhibition during chilling was by 

contrast dependent on oxygen (Lindenman, 1979; Powles et al. , 1983). 

Studies of photoinhibition in intact chloroplasts or isolated leaf 

mesophyll cells illuminated in CO^ free buffer showed that damage 

occurred only if oxygen was present (Krause et al., 1978). Photo­

inhibition in leaves induced by high light intensities was similar 

whether the oxygen tension was that of normal air or close to zero 

(Powles, 1984). A scheme to account for possible mechanisms of photo- 

inhibitory damage to photosystem II, and the role of oxygen in promoting 

or preventing damage is shown in Figure 49.

Light energy absorbed by chlorophyll is normally dissipated through 

photosynthetic electron flow to NADP+. A pool of chloroplast NADP+ 

is maintained by photosynthetic carbon metabolism that utilises NADPH 

(Figure 49a). During normal photosynthesis a small proportion of electron 

flow may be lost to oxygen with the formation of 0^* . Superoxide 

formed is efficiently removed by stromal SOD enzymes (Halliwell, 1981).

Photoinhibition induced by the transfer of shade adapted plants 

to full sunlight probably occurs because the well developed light 

harvesting apparatus in such plants absorbs more light than can be 

dissipated by electron flow reactions (Osmond, 1981). Photoinhibitory
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damage to photosystem II is caused by direct photochemical damage 

(Figure 49b) and is dependent on light but not oxygen (Powles, 1984).

Environmental conditions that prevent normal photosynthetic CO^ 

metabolism (incubation of leaves in the absence of CO^, drought or 

chilling induced loss of Calvin cycle enzyme activity) would prevent 

the oxidation of NADPH, thus leading to the reduced availability of 

photosystem I electron acceptors. Over-reduction of the electron trans­

port chain may promote energy spillover from light harvesting pigments 
3 1to Chi and 0^ initiating damage to the photosystem reaction centres 

(Figure 49c).

Reduced rates of photosynthetic C0^ metabolism may alternatively 

promote ferredoxin catalysed reduction of oxygen to 0^’ • The subsequent 

generation of the and OH* probably induces damage to photosystem

II (Figure 49d). Damage by this mechanism may occur in isolated thylakoids 

provided that a catalyst of oxygen reduction is present (ferredoxin 

or paraquat). In intact chloroplasts, cells or leaves, the increased 

formation of 0^* probably exceeds the capacity of chloroplast enzymes 

and antioxidants to scavenge it. Damage would therefore occur in a 

manner analogous to the herbicidal action of paraquat. This mechanism 

was unlikely to have accounted for chilling induced photoinhibition 

of photosynthesis in pea or maize leaves observed in this study as 

the mechanism of damage appeared to be different from damage induced 

by paraquat.

An alternative mechanism to account for chilling induced photo­

inhibition is shown in Figure 49e. Disruption of electron flow may 

occur because thylakoid lipids change from fluid to gel phase at low 

temperature (Oquist, 1983). Inhibition of electron flow would be 

analogous to that induced by electron transport inhibitor herbicides.



Damage presumably occurred because energy spillover from light harvesting
3 1chlorophyll promoted the formation of Chi and O^. Enhanced formation 

of ^0^ may account for the oxygen dependence of chilling induced 

photoinhibition and would be similar to the requirement for oxygen 

in damage to leaves or chloroplasts induced by electron transport 

inhibitor herbicides (Dodge, 1982).

The role of oxygen in preventing photoinhibition is outlined in 

Figure 49f. Under conditions where low rates of CO^ assimilation limit 

photosynthesis, oxygen can promote energy dissipation in chloroplasts 

via photorespiration (Heber and Krause, 1978). Such a mechanism would 

be operative only in leaves or intact cells containing functional 

chloroplasts, mitochondria and peroxisomes. Alternatively oxygen 

reduction to 0^* would maintain electron flow through photosystem

I and II. Damage would be prevented provided that the products of

oxygen reduction were efficiently scavenged. Such a mechanism may operate in 

intact chloroplasts catalysed by ferredoxin, or in isolated thylakoids 

provided exogenous ferredoxin or paraquat and SOD plus catalase were 

added, as demonstrated in this study.

The mechanism of photoinhibition induced by a variety of stresses, 

and the role of oxygen, may therefore depend on the nature of that 

stress and the type of experimental material (intact or broken chloro­

plasts, leaf cell or whole leaf). Photoinhibitory damage to photosystem

II although induced by a variety of stresses (Powles, 1984) probably 

occurs in a manner analogous to the mode of action of photosynthetic 

electron flow inhibitor or bipyridyl herbicides.
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8. Aspects of paraquat action
Several studies have indicated that SOD activity is correlated 

with paraquat tolerance in photosynthetic organisms (Harper and 

Harvey, 1978; Rabinowitch et at., 1983; Rabinowitch and Fridovich,

1985). In addition bacteria or green algae grown in the presence of 

low concentrations of paraquat contained enhanced SOD activity (Hassan 

and Fridovich, 1977a; Rabinowitch et at., 1983). In this study the 

relationship between paraquat toxicity and chloroplast 0^* and H^O^ 

scavenger enzyme levels in higher plants has been investigated.

8.1 Herbicidal symptoms of paraquat injury
Pea leaf discs were incubated on a range of paraquat concentrations

—  2 —1in glass petri dishes and illuminated (250 ymol m s photon flux 

density) for up to 72 hours. The effect of these treatments on chlorophyll 

and carotenoid levels, photosynthetic activity and membrane lipid per­

oxidation is shown in Figures 50 and 51. Incubation of pea leaf discs 

on 10 yM paraquat abolished photosynthetic CO^ exchange within 24 hours 

treatment (Figure 50c). This was followed by pigment bleaching, loss 

of photosynthetic electron transport activity in thylakoids isolated 

from paraquat treated leaves (Figure 50d), and enhanced membrane lipid 

peroxidation (Figure 51). Leaf discs incubated on 1 yM paraquat showed 

similar symptoms of injury, although damage developed more slowly.

Compared with the control treatment, 0.1 yM paraquat induced no loss 

of chlorophyll or carotenoid and did not promote membrane lipid per­

oxidation in leaf discs. Photosynthetic C0^ exchange in pea leaf discs 

was inhibited by 30% after 24 hours, indicating paraquat uptake and 

herbicide activity.
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8.2 The effect of paraquat on chloroplast superoxide and hydrogen
peroxide scavengers
Levels of ascorbate, and the activity of SOD, ascorbate peroxidase 

and glutathione reductase in homogenates from pea leaf discs incubated 

on paraquat solutions are shown in Figure 52. Leaf discs incubated 

on 10 yM paraquat showed a marked loss of ascorbate and enzyme activity. 

This presumably occurred as a consequence of increased photo-oxidative 

damage to chloroplasts. Leaf discs incubated on 0.1 yM paraquat showed 

no marked change in ascorbate (Figure 52a) or SOD (Figure 52b) levels.

The activity of ascorbate peroxidase (Figure 52c) and glutathione reductase 

(Figure 52d) were however enhanced after 24 hours treatment. The activity 

of these two enzymes remained higher than the control level after 72 

hours. These results indicate that although 0.1 yM paraquat showed 

herbicide activity against photosynthesis, and therefore increased 

0 •“ formation in chloroplasts, damage symptoms were not expressed.

The increased activity of ascorbate peroxidase and glutathione reductase 

observed in paraquat treated leaf discs may have prevented the accumulation 

of H^O^ in chloroplasts. Thus photo-oxidative damage was prevented.

Pea leaf discs incubated on 1 yM paraquat showed initial increased 

activity of ascorbate peroxidase and glutathione reductase, although 

as herbicidal damage developed the activity of these enzymes also declined. 

These results indicate that in higher plaints stimulation of 0^’ gener­

ation in chloroplasts can enhance the activities of ascorbate peroxidase 

and glutathione reductase but not SOD. If the generation of 0^* is 

excessive or prolonged as occurs with herbicidal concentrations of 

paraquat, damage symptoms prevail. Loss of activity of protective enzymes, 

together with pigment bleaching and membrane lipid peroxidation then occurs.
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8.3 The role of chloroplast protective enzymes in paraquat tolerance
Paraquat promotes the formation of 0^* in chloroplasts. Accumulation 

of and the formation of OH* initiates photo-oxidative damage (Dodge,

1983). Increased levels of enzymes that scavenge 02* and H^O^ in chloro­

plasts may prevent the accumulation of toxic oxygen species, and thus 

restrict herbicidal damage symptoms. Chloroplasts isolated from pea plants 

grown at a moderate compared with a low light intensity were shown previously 

to contain elevated levels of ascorbate, ascorbate peroxidase, dehydro- 

ascorbate reductase and glutathione reductase. To assess whether the in­

creased chloroplast protective enzyme levels affected paraquat tolerance,
-2 -1leaf discs were cut from pea plants grown at 100 or 400ymol m s photon 

flux density and incubated for up to 48 hours on 10 pM paraquat. Injury 

was assessed by following chlorophyll bleaching (Figure 53). Leaf discs 

cut from plants grown at the lower light intensity and subsequently incu­

bated on paraquat showed rapid chlorophyll bleaching (50% loss after 12 

hours). Chlorophyll bleaching in leaf discs excised from plants grown at 

the higher light intensity was, by comparison, considerably delayed 

(50% loss of chlorophyll after 36 hours). This difference was not due to 

different rates of paraquat uptake, as photosynthetic C0^ exchange in both 

sets of leaf discs was inhibited by paraquat after a similar time period 

(results not shown). These results indicate that the increased tolerance 

to paraquat in plants grown at the higher light intensity may have been 

caused by enhanced chloroplast levels of ascorbate, ascorbate peroxidase, 

dehydroascorbate reductase and glutathione reductase.

The role of SOD in protecting plants against paraquat toxicity 

was investigated using copper penacillamine (PaCu), a copper complex 

with SOD activity (Lengfelder et al.f 1979). Leaf material incubated 

on PaCu readily take it up into chloroplasts (Youngman, 1980). Pea 

leaf discs were preincubated on water or 1 mM PaCu in darkness prior
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to transfer to 10 yM paraquat and illumination. Damage was assessed 

by loss of chlorophyll from leaf discs (Figure 54). Preincubation on 

PaCu had no effect on paraquat induced chlorophyll bleaching from pea 

leaf discs compared with leaf discs preincubated on water. These results 

indicate that elevated levels of 0^* scavengers did not enhance the 

tolerance of leaf discs to paraquat.

8.4 The potential of chloroplast antioxidant mechanisms as a target
for herbicide action
Several recent investigations have shown that the copper chelating 

compound diethyl dithiocarbamate (DDTC) inhibits SOD function. This 

chemical has been used to investigate the protective role of SOD in 

plants (Asada et al., 1974b; Tanaka and Sugarhara, 1980; Rabinowitch 

and Fridovich, 1983). The results presented in Figure 55 demonstrate 

the effect of DDTC (1 and 10 mM) on the activity of SOD extracted from 

spinach leaves. Enzyme activity was assessed by measuring the inhibition 

of nitro blue tetrazolium oxidation to formazan, a reaction initiated 

by 0^* • This reaction was inhibited by 50% with 23 yl of spinach SOD. 

The activity of the spinach SOD preparation therefore equated to 

44 units ml Addition of 1 mM or 10 mM DDTC to the SOD assay reduced 

the activity of spinach SOD by 39% and 66% respectively (calculated 

assuming that 1 unit of SOD represents the amount of enzyme that in­

hibited NBT oxidation to formazan by 50%). The activity of SOD was 

also reduced in pea leaf discs incubated on a range of DDTC concen­

trations for up to 72 hours in light (Figure 56) or darkness (Table 

14). These results demonstrate that DDTC is an effective inhibitor 

of SOD, although millimolar concentrations are required to abolish 

enzyme activity.
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Fig 56. The effect of 1.0 (o), 10 (a ) and 20mM (□) 
DDTC compared with the water control (•) on the 
SOD activity of pea leaf discs incubated on test 
solutions for up to 72 hours in light.

Table 14. The effect of incubating pea leaf discs on 
lOmM DDTC compared to a water control on SOD activity 
after 24 or 48 hours darkness.

DDTC treatment.
24h_ _ _ _ _ _ 48h

SOD (% of control level) 36.3% 21.4%



The effect of DDTC on chlorophyll bleaching in pea leaf discs

is shown in Figure 57. Leaf discs were incubated on a range of DDTC

concentrations in light for up to 72 hours. Those discs incubated on 

10 mM or 20 mM DDTC showed extensive chlorophyll loss compared with 

the control treatment. Lower concentrations of DDTC induced limited 

chlorophyll bleaching. Thus although 1 mM DDTC induced a 50% loss of 

SOD activity in pea leaf discs after 24 hours illumination (Figure 

56), this did not induce significant chlorophyll bleaching. Chlorophyll 

loss induced by 10 mM DDTC from leaf discs was light dependent (Figure 

57b), being enhanced at higher light intensities.

The effect of DDTC induced loss of SOD activity on the toxicity

of paraquat to pea leaf discs is shown in Figure 58. Leaf discs were

incubated on DDTC (1 mM) or paraquat (1 |iM), alone or in combination, 

for up to 48 hours under constant illumination. Damage was assessed 

by chlorophyll bleaching in leaf discs. Both DDTC or paraquat alone 

induced some chlorophyll loss from leaf discs (20 and 40% loss of 

chlorophyll after 48 hours respectively). Incubation on DDTC and 

paraquat in combination induced 80% loss of chlorophyll after 48 hours. 

This result indicates that inhibited SOD activity led to enhanced para­

quat toxicity.

8.5 Discussion
Low concentrations of paraquat have been reported to enhance the 

SOD activity of some bacteria and green algae (Hassan and Fridovich, 

1977a; Rabinowitch et at., 1983), although this has not been shown 

previously with higher plants. Results from this study showed that 

incubating pea leaf discs on sub-lethal concentrations of paraquat 

enhanced the activity of ascorbate peroxidase and glutathione reductase,
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although there was no effect on SOD. Higher paraquat concentrations 

reduced the levels of chloroplast 0^’ and scavenger enzymes from

pea leaf discs, presumably as a consequence of herbicide damage. This 

indiates that there is a close relationship between 0^’ formation 

in chloroplasts and the activity of enzymes that scavenge 0^* and 

^2^2’ Low paraquat concentrations enhanced 0^* formation and 

stimulated the levels of ascorbate peroxidase and glutathione reductase 

Increased paraquat concentrations generate 0^* levels that exceed 

the capacity of these enzymes, and hence damage symptoms occur. 

Accumulation of H^O^ in chloroplasts inhibits Calvin cycle enzymes 

and also chloroplast CuZn SOD (Asada et at., 1975; Kaiser, 1979). Inter 

actions between 0^* or reduced paraquat and H^O^ ma^ Senera^e OH* 

that can react with most biological molecules (Halliwell, 1981; 

Winterbourn, 1981).

The role of SOD in paraquat tolerance has been widely investigated 

Resistance to paraquat has been observed in several weed species, and 

paraquat resistant plants have also been obtained by in vitro selection 

procedures from cell cultures (Harper and Harvey, 1978; Miller and 

Hughes, 1980; Youngman and Dodge, 1981). One feature of paraquat 

resistant plants is that they contain higher levels of SOD than sus­

ceptible plants (Harper and Harvey, 1978; Youngman and Dodge, 1981; 

Hughes et al. , 1984). Increased capacity to scavenge 0^* may there­

fore be an important part of the resistance mechanism, although 

herbicide exclusion from chloroplasts may also contribute to resistance 

(Fuerst et at., 1985). Increased tolerance to paraquat has also been 

observed in plants in which SOD levels had been enhanced by benzyl 

viologen (Lewinsohn and Gressel, 1984) or with PaCu (Youngman and 

Dodge, 1979). Paraquat protection by PaCu was not demonstrated in this
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study. It would be interesting to determine whether EDU (N— [2— (2-oxy-l- 

imadazolidinyl)ethyl]-N'-phenyl urea) which promotes SOD levels in 

plants, and has been used as an antiozonant (Lee and Bennett, 1982), 

provides any significant protection against paraquat toxicity.

The role of chloroplast scavenger mechanisms in the tolerance

of plants to paraquat has not previously been investigated. If elevated 

levels of SOD are to provide significant protection against this herbi­

cide, this must presumably be coupled to enhanced activities of enzymes 

that scavenge Results presented in this study indicated that

plants with varying levels of ascorbate peroxidase, dehydroascorbate 

reductase and glutathione reductase achieved by growth at two different 

light intensities do show differences in their tolerance to paraquat.

The role of 0^* and H^O^ scavenger enzymes in paraquat tolerance is 

therefore worthy of further investigation.

Many herbicides are known to inhibit photosynthetic reactions, 

thus promoting the formation of free radicals and toxic oxygen species 

in chloroplasts (Section 5). Damage probably occurs because the formation 

of damaging radicals exceeds the capacity of endogenous antioxidant 

mechanisms to remove them (Dodge, 1983). Chemicals that reduce the 

capacity of chloroplasts to scavenge these radicals may enhance herbi­

cide activity, or be herbicidally toxic themselves. Studies here 

indicate that the activity of chloroplast ascorbate peroxidase and 

glutathione reductase may influence paraquat toxicity, while reduced 

levels of SOD, achieved by DDTC, enhance paraquat toxicity. Higher 

DDTC concentrations induced chlorophyll bleaching, indicating that 

inhibition of chloroplast protective enzyme function could be a potential 

herbicide target.

Studies shown previously on the peroxidation of illuminated thylakoids 

showed that ascorbate, carotenoids and a—tocopherol were effective



quenchers of herbicide induced damage (Section 5.3). Chemicals that 

enhance or reduce the levels of these antioxidants may have potential 

as antagonists or safeners against herbicides that promote the formation 

of active oxygen species in chloroplasts. As the search for new herbi­

cides becomes more expensive, an increased understanding of the 

mechanisms of herbicide action becomes more important. Compounds that 

enhance or reduce the activity of these herbicides may have increased 

commercial significance. Results presented here indicate that control 

of chloroplast antioxidant and protective enzyme levels may be one 

mechanism by which enhanced or reduced activity of some herbicides 

is achieved.
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CONCLUDING DISCUSSION
Chloroplasts from higher plants contain the enzymes SOD, 

ascorbate peroxidase, dehydroascorbate reductase and glutathione 

reductase that scavenge 0̂ * and formed by electron leakage to

oxygen during photosynthesis. In addition millimolar concentrations 

of ascorbate and glutathione in the chloroplast stroma plus 

carotenoids and a-tocopherol in the thylakoid membranes quench 0̂ * * 

H202 and 10^.

Several workers have considered the role of chloroplast 

protective mechanisms, particularly SOD, in preventing photo- 

oxidative injury during leaf development and senescence, and in the 

tolerance of plants to certain air pollutants, environmental 

stresses and herbicides such as paraquat (Rabinowitch and Fridovich, 

1983; Guy and Carter, 1984; Gamble and Burke, 1984; Tanaka et at., 

1985). In many such studies enzyme levels have been assessed in leaf 

homogenates from whole plaints or isolated leaf discs that have been 

subjected to stress. The demonstration in this study that a high 

proportion of leaf SOD, ascorbate peroxidase, dehydroascorbate 

reductase and glutathione reductase were present in chloroplasts of 

pea leaves is therefore significant. Alterations in activity of 

these enzymes in leaf homogenates during ageing, changes in plant 

growth conditions or in response to environmental stress are 

probably a good indication of increased or decreased chloroplast 

protection against 02* and ^2^2*
In studies of the physiological role of enzymes that protect 

plants against 02 and H202, SOD activity has commonly been assessed 

in parallel with changes in catalase and peroxidase (Simon et at., 

1974; Harper and Harvey, 1978; Dhindsa et at., 1981; Lee and
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Bennett, 1982; McRae and Thompson, 1983; Kar and Feierabend, 1984). 

Results from this study confirm that while SOD is predominantly a 

chloroplast stromal enzyme, chloroplasts contain little or no 

catalase or peroxidase (Parrish, 1972; Halliwell, 1981). Catalase is 

found mainly in peroxisomes (Halliwell, 1981) and probably scavenges 

formed during photorespiration. Peroxidase activity is commonly 

assessed using a wide range of artificial substrates such as guiacol 

or catechol, and its role in scavenging in vivo is therefore

difficult to assess (Halliwell, 1981). The physiological role of 

this enzyme may involve biological oxidations that require such

as lignification of cell walls (Elstner, 1982). Chloroplasts contain 

the enzymes ascorbate peroxidase, dehydroascorbate reductase and 

glutathione reductase, and the physiological properties of these 

enzymes are consistent with the scavenging of in that organelle

(Jablonski and Anderson, 1978, 1981, 1982; Nakano and Asada, 1981; 

Gerbling et at,, 1984).

Results presented in this study indicate that the activity of 

ascorbate peroxidase in pea chloroplasts was 10-20 times higher than 

the capacity of dehydroascorbate reductase and glutathione reductase 

to regenerate ascorbate. Similar observations with spinach 

chloroplasts indicated the presence of an additional enzyme in 

ascorbate metabolism, monodehydroascorbate free radical reductase 

(Hossain et at,, 1984). Oxidation of ascorbate by probably

forms both dehydroascorbate and monodehydroascorbate free radicals 

(Arrigoni et at., 1981). Monodehydroascorbate radicals break down 

spontaneously (Bielski et at., 1981) or catalysed by the reductase 

enzyme (Arrigoni et at., 1981; Hossain et at., 1984) to form 

ascorbate and dehydroascorbate. Dehydroascorbate would then be
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reduced to ascorbate via the dehydroascorbate reductase and gluta­

thione reductase enzymes. The activity of monodehydroascorbate 

reductase in spinach chloroplast was probably sufficient to account 

for the difference in activity between ascorbate peroxidase and 

dehydroascorbate reductase (Hossain et at., 1984).

Monodehydroascorbate reductase has been identified in 

chloroplasts, mitochondria, peroxisomes and the leaf soluble 

fraction of leaves, and in etiolated shoots, roots, buds and tubers 

from a variety of plants (Arrigoni et at., 1981). Ascorbate, found 

at high concentrations in plant cells, can be oxidised by O2 and 

at significant rates (Halliwell, 1981), probably forming mono­

dehydroascorbate radicals (Arrigoni et at., 1981). Oxidation of 

ascorbate by 0^* and and its regeneration by monodehydro­

ascorbate reductase, may therefore represent an additional mechanism 

for scavenging these active oxygen species. Results from this study 

showed that a high proportion of leaf SOD and ascorbate peroxidase 

were present in chloroplasts, and are therefore unlikely to scavenge 

02* and ^2^2 rates outside that organelle. The role

of ascorbate and monodehydroascorbate reductase in scavenging 02* 

and H202 may therefore be significant in non-photosynthetic 

organelles or plant cells.

Results presented in this study showed that the transfer of 

etiolated plants to light stimulated increased levels of ascorbate 

and ascorbate peroxidase in pea leaves. Levels of ascorbate, 

ascorbate peroxidase and glutathione reductase were also enhanced in 

leaf homogenates and intact chloroplasts from peas grown at moderate 

compared with low light intensity, or in summer compared with



183.

winter. Leaf discs incubated on low concentrations of paraquat also 

showed enhanced ascorbate peroxidase and glutathione reductase activity. 

The activity of SOD was by contrast unaffected by these changes in 

growth conditions or paraquat treatment. Hyperbaric oxygen tensions were 

shown elsewhere to promote glutathione reductase activity in leaves, 

although SOD activity was not affected (Foster and Hess, 1980, 1982). 

Fumigation of leaves with low levels of 0^ enhanced the activity of 

ascorbate peroxidase and monodehydroascorbate reductase, again without 

effect on SOD levels (Tanaka et al., 1985). Glutathione reductase levels 

in leaves have also been observed to increase in response to low temp­

erature hardening (de Kok and Oosterhuis, 1983; Guy and Carter, 1984), 

or drought stress (Gamble and Burke, 1984; Burke et al. , 1985).

Hydrogen peroxide is extremely toxic to chloroplasts through 

inhibition of CuZn SOD (Asada et al., 1975; Rabinowitch and Fridovich, 

1983) and Calvin cycle enzymes (Kaiser, 1979; Charles and Halliwell,

1980; Tanaka et al., 1982b). One important adaptation of the photo­

synthetic apparatus to stress would therefore appear to be increased 

activity of enzymic mechanisms that scavenge H2®2’ activity was 

unaffected by conditions promoting the levels of ascorbate, ascorbate 

peroxidase or glutathione reductase. This indicates that the chloroplast 

capacity to scavenge 0^* is higher than the capacity to remove H^O^.

This is supported by observations of the effect of SO^ on spinach chloro­

plasts (Tanaka et al., 1982a). This air pollutant promoted oxygen 

uptake and consequently 0^* formation in chloroplasts. Spinach leaves 

fumigated with SO^ accumulated in chloroplasts thus although SO^

promoted 0^* formation in chloroplasts, this was reduced to by

SOD. The activity of enzymes that scavenge were however insufficient

to prevent its accumulation.



Studies with bacteria, yeast and green algae have by contrast 

demonstrated that one facet of adaptation to increased oxygen levels, 

paraquat or SO^ fumigation was an enhanced level of SOD (Gregory 

and Fridovich, 1973; Gregory et at., 1974; Pullich, 1974; Hassan and 

Fridovich, 1977a, 1978; Rabinowitch et at., 1983; Clare et at ., 1984; 

Rabinowitch and Fridovich, 1985). SOD levels in Escherichia coli 

were also enhanced by compounds that promoted the intracellular 

formation of 0^* (Hassan and Fridovich, 1979). Metal chelators, 

absence of glucose or accumulation of organic acids in the growth 

media had a similar effect (Hassan and Fridovich, 1977b; Pugh and Fridovich, 

1985). The Mn SOD in these organisms would therefore appear to be 

inducible in response to. stress. Levels of CuZn SOD in higher plant 

chloroplasts by contrast did not change in response to similar stresses.

Thus in bacteria, yeast and algae, increased SOD activity was a feature 

of adaptation tooxidative stress such as high light levels, increased 

oxygen tensions, SO^ or paraquat. Similar stresses to plants promoted 

the activity of enzymes that scavenge in chloroplasts. The diff­

erent mechanisms of adaptation to stress between these organism compared 

with higher plants may reflect differences in inducibility between 

Mn SOD and CuZn SOD, and the susceptibility of chloroplasts to H^O^ 

toxicity.

Incubation of pea leaf discs on paraquat solutions showed that 

while low herbicide concentrations promoted the activity of ascorbate 

peroxidase and glutathione reductase, higher herbicide concentrations 

induced loss of enzyme activity, chlorophyll bleaching and membrane 

lipid peroxidation. Photo-oxidative damage to plants induced by 

herbicides, air pollutants and environmental stresses has been well 

documented. A large number of herbicides inhibit photosynthetic 

electron flow, thus preventing CO^ exchange and initiating oxygen and



light dependent damage (Dodge, 1983). Other herbicides such as the

bipyridyls divert photosynthetic electron flow to oxygen, stimulating

0^* formation in chloroplasts and initiating damage reactions.

Similar mechanisms may cause the photoinhibition of photosynthesis

that is observed if plaints are subjected to certain environmental

stresses at high light intensities. Results from this study showed that

photoinhibition of chloroplast reactions was initiated by incubating

leaves at chilling temperatures in light, or by illuminating thylakoids

in the absence of electron flow acceptors. Damage probably occurred

because light energy absorbed by the chloroplasts could not be

dissipated by photosynthetic reactions. Energy spillover from light
3 1harvesting chlorophyll to form Chi or 0^ may then occur in a similar 

way to damage induced by photosynthetic inhibitor herbicides. Alter­

natively, over-reduction of the photosynthetic electron carriers may 

promote electron flow to oxygen, forming 0^* » and this would initiate 

damage that is analogous to the herbicidal action of paraquat. Short 

periods of stress (chilling, drought, heat, high light intensities 

or incubation of leaves in the absence of CO^ and 0^) cause damage 

to the photosystem II reaction centre (Krause et at . , 1978; 1985; 

Santarius and Muller, 1979; Critchley, 1981; Powles et at., 1983;

Powles, 1984; Bjorkman and Powles, 1984). Prolonged stress probably 

initiates chlorophyll bleaching and membrane lipid peroxidation similar 

to that observed when leaves were incubated for several days in strong 

light at chilling temperatures (van Hasselt, 1972; 1974). Damage symptoms 

would therefore be similar to those induced by herbicides in this study.

Photo-oxidative damage to leaves and chloroplasts can also be 

initiated by air pollutants such as 0^ and SO^ which cause inhibition 

of photosynthesis, pigment bleaching and membrane lipid peroxidation 

(Shimazaki et at., 1980; 1984; Sakaki et at., 1983; Tanaka et ajf 

1985). The similarity between damage induced by these air pollutants
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to that induced by photosynthetic inhibitor herbicides observed in 

this study indicates that damage may be initiated by similar mechanisms.

The toxicity of SO^ and 0^ may involve the enhanced formation of 0^* 

in chloroplasts, although 10 H2®2 anc* ma^ a^so cause damaged induced 

by these air pollutants (Shimazaki et al.t 1980; Tanaka and Sugahara,

1980; Tanaka et at., 1982b; Sakaki et al., 1983; de Kok et al.t 1983).

Photo-oxidative damage to plants may also occur if the activity 

of chloroplast antioxidant mechanisms is impaired. Leaves incubated at 

chilling temperatures in darkness showed a loss of SOD activity. This was 

followed by a marked increase in membrane lipid peroxidation when the chilled 

leaves were subsequently illuminated (Michalski and Kaniuga, 1981). Results 

from this study showed that reduction of leaf SOD levels by incubation with 

DDTC induced light dependent chlorophyll bleaching. Photo-oxidative des­

truction of chloroplast pigments has also been observed in plants that do 

not contain carotenoids (Anderson and Robertson, 1960; Bartels and Watson,

1978). Reduced carotenoid levels increased the susceptibility of chloroplast
3 1membranes to damage induced by Chi and 0^. During leaf senescence reduced 

activity of chloroplast antioxidant mechanisms, as observed in this study, 

may promote photo-oxidative damage reactions which contribute to cellular 

breakdown.

The photosynthetic apparatus is particularly susceptible to photo- 

oxidative damage. Injury probably occurs because the formation of free 

radicals, 0^* » H2®2 °r exceec*s ^he capacity of endogenous antioxidants 

to scavenge them. This may occur either because the formation of 

toxic species is enhanced, or the activity of antioxidant protective 

mechanisms are lowered. This hypothesis is supported by several lines 

of evidence from this study and elsewhere. Results in this thesis 

demonstrated that the peroxidation of illuminated thylakoid membranes
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by herbicides in vitro was retarded by ascorbate, a-tocopherol and 

carotenoids. These antioxidants are present in chloroplasts in vivo, 

and this observation indicates their potential role in preventing 

photo-oxidative damage to membranes. Herbicidal injury induced by 

paraquat was greater in leaf discs cut from plants grown at a low 

light intensity compared with discs cut from plants grown at a moderate 

light intensity. This was probably related to the increased activity 

of scavenger enzymes and a higher ascorbate concentration in

chloroplasts from plants grown at the higher light intensity. Incubation 

of pea leaf discs on DDTC, which impaired SOD activity, enhanced the 

toxicity of paraquat. Cotton plants subjected to drought stress were 

shown to contain enhanced glutathione reductase activity. The increased 

activity of this enzyme may have contributed to the increased toler­

ance of these plants to paraquat (Burke et at., 1985). Some plant 

varieties resistant to paraquat have been reported to contain elevated 

SOD levels compared with paraquat susceptible varieties (Harper and 

Harvey, 1978; Youngman and Dodge, 1981; Furusawa et at., 1984). These 

reports indicate that an increased capacity to scavenge 0^* and H^O^ 

in chloroplasts could contribute to herbicide tolerance. Damage 

induced by the air pollutants SO^ and 0^ may also be related to the 

level of enzymes and antioxidants that scavenge 0^* and H^O^ in 

chloroplasts. Spinach cultivars tolerant to 0^ contained higher levels 

of ascorbate and glutathione than 0^ susceptible plants (Tanaka et at., 

1985). Plants treated with EDU, a chemical that promotes SOD levels, 

also showed enhanced tolerance to 03 (Lee and Bennett, 1982; Lee and 

Chen, 1982). Young leaves of poplar, that contained higher levels of 

SOD than older leaves, showed increased SO^ tolerance (Tanaka and 

Sugahara, 1980). Leaves treated with DDTC, which reduced SOD levels,
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also showed increased sensitivity to SO^ (Tanaka and Sugahara, 1980). 

These studies indicate that damage induced by SO^ and 0^ is related 

to endogenous 0^* and scavenger levels.

Increased levels of antioxidants, SOD or enzymes that scavenge 

H O  in chloroplasts may confer tolerance to 0_, SO and paraquat.
C  u  O  u

A correlation between drought stress and paraquat tolerance, mediated 

by enhanced glutathione reductase activity has been proposed (Burke 

et at., 1985). In studies with the green algae Chlorella SOD 

activity has been correlated with paraquat tolerance and susceptibility 

to chilling injury. Chlorella jtrains resistant to chilling contained 

higher levels of SOD than chilling sensitive strains. Growth of the 

chilling sensitive strain with paraquat induced an elevated SOD 

level and an increased tolerance to chilling (Clare et at., 1984).

Other studies with Chlorella have demonstrated that SOD levels in this 

organism were enhanced by growth in the presence of low concentrations 

of paraquat or with sulphite (Rabinowitch et al., 1983; Rabinowitch 

and Fridovich, 1985). Elevated SOD levels conferred increased tolerance 

to paraquat toxicity. These studies indicated that there was a corre­

lation between tolerance to paraquat, chilling injury and sulphite 

toxicity in Chlorella. Comparative plant studies may show similar 

co-tolerance to such stresses, and are worthy of further investigation.

Control of the activity and level of chloroplast antioxidants 

and enzymes may, as indicated in this study, be one important mechanism 

by which increased or decreased tolerance to herbicides, environmental 

stresses or air pollutants that promote the formation of free 

radicals, 0^* , °r ^ 2  *n chl°roplasts is achieved.
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Hydrogen-peroxide-scavenging systems within pea chloroplasts
A quantitative study

D J . Gillham and A.D. Dodge
School of Biological Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK

Abstract. The subcellular distribution of ascorbate 
peroxidase and glutathione reductase (EC 1.6.4.2) 
in pea leaves was compared with that of organelle 
markers. Enzyme distribution was found to be 
similar to that o f the chloroplast enzyme 
NADPH-glyceraldehyde-3-phosphate dehydroge­
nase (EC 1.2.1.13). Isolated chloroplasts showed 
a close correlation between intactness and the per­
centage of enzyme activity recovered. Chloroplasts 
o f 85% intactness were found to contain a high 
proportion o f leaf dehydroascorbate reductase ac­
tivity (EC 1.8.5.1), 10% of leaf glutathione and 
30% of leaf ascorbate. These results are discussed 
in relation to the potential role o f chloroplast anti­
oxidant systems in plant resistance to environmen­
tal and other stress conditions.

Key words: Ascorbate -  Chloroplast -  Glutathione 
-  Hydrogen peroxide -  Pisum (superoxide) -  Su­
peroxide.

Introduction

Superoxide formation within the chloroplast may 
occur as an accidental result of electron leakage 
to oxygen (Allen 1977). Chloroplasts contain, how­
ever, high activities o f the enzyme superoxide dis­
mutase (SOD) and this catalyses the dismutation 
of superoxide (O J ) to hydrogen peroxide (H 20 2). 
Although H 20 2 is strongly inhibitory towards 
some of the Calvin-cycle enzymes (Kaiser 1976), 
chloroplasts do possess high activities of an ascor- 
bate-specific peroxidase that can scavenge H 20 2 
efficiently (Nakano and Asada 1981; Jablonski
Abbreviations: GSH = reduced glutathione; GSSG = oxidized 
glutathione; NADPH-GPD = glyceraldehyde-3-phosphate de­
hydrogenase; SOD = superoxide dismutase

and Anderson 1982). Ascorbate peroxidase cata­
lyses the peroxidation o f ascorbate to dehydroas­
corbate, and dehydroascorbate reductase utilises 
reduced glutathione to maintain the ascorbate pool 
in a reduced form (Jablonski and Anderson 1981). 
Glutathione is in turn reduced by NA DPH via the 
enzyme glutathione reductase (Foyer and Halliwell 
1976).

High activities o f SOD, ascorbate peroxidase, 
dehydroascorbate reductase and glutathione re­
ductase, and high levels of ascorbate and glutath­
ione have been detected in chloroplasts. Further­
more, these enzymes have been shown to be re­
leased from the chloroplast stroma on rupturing 
the envelope. They are therefore presumably stro­
mal in origin and not bound to the chloroplast 
envelope (Jackson et al. 1978; Jablonski and An­
derson 1978, 1981, 1982; Nakano and Asada 
1981). The proportion o f these enzymes and of 
ascorbate and glutathione in chloroplasts however 
remains unclear. Changes in activity of some of 
these enzymes have been recorded in plants in re- 
ponse to water stress (Gamble and Burke 1984), 
chilling stress (de K ok and Oosterhuis 1983; Guy 
and Carter 1984), treatm ent with low levels o f par­
aquat (Gillham and Dodge 1984), S 0 2 fumigation 
(Tanaka and Sugahara 1980) or growth in hyper­
baric oxygen levels (Foster and Hess 1981, 1982). 
Superoxide dismutase activity has also been corre­
lated with the onset of leaf senescence (Dhindsa 
et al. 1981) resistance to paraquat (Harper and 
Harvey 1978), drought tolerance (Dhindsa and 
Matowe 1981), and resistance to ozone (Lee and 
Bennett 1982) and S 0 2 (Tanaka and Sugahara
1980). In all o f these experiments, enzyme activities 
were determined in crude leaf extracts. In order 
to assess the importance of these results, and the 
relevance of changes in activity of these enzymes 
to the chloroplast antioxidant system, it is essential



D.J. Gillham and A.D. Dodge: Hydrogen-peroxide-scavenging systems 247

to determine the proportion o f activity present in 
the chloroplast. In this study, we have examined 
the subcellular distribution and activity of ascor­
bate peroxidase, glutathione reductase, dehydroas­
corbate reductase, ascorbate and glutathione.

Material and methods
Plant Material. Pea (Pisum sativum L. cv. Meteor) seedlings 
were grown for 14—21 days in Levington universal compost 
in a glasshouse with a 14-h photoperiod (natural day length 
extended by Thorn (London, UK) 400-W mercury-vapour 
lamps) and a mean air temperature of 22° C.

Subcellular fractionation. For isolated chloroplasts, 25 g of leaf 
material was homogenised (three 2-s bursts) with domestic blen- 
dor in 100 ml ice slush of grinding buffer according to the 
method described by Walker (1980). The extract was squeezed 
through two layers of muslin and filtered through eight layers 
of muslin, plus one layer of cotton wool. Chloroplasts were 
recovered by centrifugation at 4500 rpm for 20 s in an MSE 
(Crawley, Sussex, UK) chillspin centrifuge (maximum radius 
16.8 cm). The pellet was superficially washed with 50 ml of 
washing buffer and was resuspended in 1-2 ml incubating 
buffer. The respective composition of buffers were: grinding 
buffer: 0.33 M sorbitol, 50 mM N a2 H P 0 4, 50 mM KH2 P 0 4, 
5 mM MgCl2, 0.1% (w/v) NaCl, and 0.1% bovine serum albu­
min (BSA) type V adjusted to pH 6.5 with KOH; washing 
buffer: 0.33 M sorbitol, 5 mM MgCl2, 0.1% (w/v) BSA and 
4 ml incubating buffer per 100 ml of washing buffer; incubating 
buffer: 0.33 M sorbitol, 50 mM 4-(2-hydroxyethyl)-l-pipera- 
zine-ethanesulfonic acid (Hepes), 2 mM disodium ethylenedi- 
aminetetraacetic acid (Na2 EDTA), 1 mM MgCl2, 1 mM 
MnCl2 and 0.1% (w/v) BSA adjusted to pH 7.6 with KOH. 
This technique routinely yielded chloroplasts that were approx. 
60% intact. To vary the intactness of the chloroplast prepara­
tion the amount of superficial washing of the crude chloroplast 
pellet was altered. Increased or decreased washing changed the 
proportion of broken chloroplasts retained in the pellet. Alter­
natively, for chloroplasts of 80% intactness, the chloroplast 
suspension was layered over 10 ml of 40% Percoll containing 
0.33 M sorbitol and 50 mM Hepes adjusted to pH 7.6. After 
centrifugation at 4500 rpm for 1-2 min the pellet was washed 
to remove Percoll and resuspended in 1-2 ml of incubating 
buffer (Edwards and Walker 1983). Chloroplast intactness was 
determined by the ferricyanide method (Lilley et al. 1975).

For enzyme-distribution studies, chloroplasts were pre­
pared as above. The pellet from the centrifugation was left 
unwashed and contained intact and broken chloroplasts, nuclei 
and cell debris, and was taken as the crude chloroplast fraction. 
The supernatant from this stage was further centrifuged at 
6000 g for 15 min at 0-4° C. The pellet, containing mitochon­
dria, peroxisomes and broken chloroplasts was resuspended in 
1-2 ml of incubating medium, and was taken as the crude mito­
chondrial fraction. The supernatant from this step is referred 
to as the “ leaf soluble fraction” . Enzyme activity recovered 
in each fraction was compared with the activity in crude leaf 
homogenates prepared by grinding 0.5-1.0g leaf material in 
10 ml of chloroplast grinding medium containing no osmoti- 
cum. This was squeezed through two layers of muslin to remove 
cellular debris.

Enzyme assays. All enzyme assays were carried out at 25° C. 
Glyceraldehyde-3-phosphate dehydrogenase (NADPH-GPD; 
EC 1.2.1.13) was assayed by the loss in absorbance at 340 nm 
as NADPH was oxidised. A 3.0-ml reaction volume contained

67 mM 2-amino-2-(hydroxymethyl)-l,3-propanediol (Tris)-HCl 
pH 7.2, 3.3 mM ATP, 10 mM MgCl2, 4 mM EDTA, 130 pM 
NADPH, 3.3pg-m l_1 phosphoglycerate kinase, 1 mM dith- 
iothreitol (DTT) and 100 pi of extract (Jackson et al. 1978). 
Glycollate oxidase (EC 1.1.3.1) was assayed by the formation 
of glycollate phenylhydrazone in a 3.0-ml reaction volume con­
taining 33 mM triethanolamine pH 7.8, 2.7 mM EDTA, 
0.0083% Triton X-100, 0.67 mM oxidized glutathione (GSSG), 
0.2 mM flavin mononucleotide (FMN), 5 mM glycollic acid 
and 100-200 pi of extract (Feierabend and Beevers 1972). The 
assay for cytochrome-c oxidase (EC 1.9.3.1) was based on the 
method of Tolbert (1974), measuring the loss in absorbance 
at 550 nm as reduced cytochrome-c was oxidased. The 3.0-ml 
reaction volume contained enzyme, 0.1 M phosphate buffer 
pH 7.2,1 mM EDTA, and 0.0033% Triton X-100. The reaction 
was initiated by the addition of 0.2 ml reduced cytochrome-c 
(5 mg-ml-1). Glutathione reductase (EC 1.6.4.2) was assayed 
in a 3.0-ml reaction volume containing 100-200 pi sample,
0.4 M phosphate buffer pH 8.0, 0.4 mM EDTA, 5 mM GSSG 
and 0.5 mM NADPH (Jablonski and Anderson 1978). Activity 
was determined by the fall in absorbance at 340 nm as NADPH 
was oxidised. Correction was made for oxidation of NADPH 
in the absence of GSSG or enzyme extract, although these were 
less than 5% of the GSSG, and enzyme-dependent rates. De­
hydroascorbate reductase (EC 1.8.5.1) was determined accord­
ing to the method described by Nakano and Asada (1981) in 
a 3.0-ml reaction volume containing 50 mM phosphate buffer 
pH 7.0, 0.1 mM EDTA, 2.5 mM reduced glutathione (GSH) 
and 0.2 mM dehydroascorbate. The reaction was followed by 
the increase in absorbance at 265 nm as dehydroascorbate was 
reduced to ascorbate. Correction was made for reduction of 
dehydroascorbate in the absence of enzyme, although this was 
normally less than 1 % of the enzyme-dependent rate. Ascorbate 
peroxidase activity was determined from the fall in absorbance 
at 290 nm as ascorbate was oxidised, in a 3.0-ml reaction vol­
ume containing enzyme, 50 mM Hepes buffer pH 7.6, 0.1 mM 
EDTA, 0.5 mM ascorbate and 0.1 mM H20 2 (Nakano and 
Asada 1981). Correction was made for the oxidation of ascor­
bate in the absence of H 20 2, although non-enzymic rates of 
oxidation of ascorbate were less than 5% of the enzymic rate. 
Catalase (EC 1.11.1.6) activity was determined polargraphically 
in a Hansatech (King’s Lynn, Norfolk, UK) oxygen electrode. 
The 2.0-ml reaction volume contained enzyme and 50 mM 
phosphate buffer pH 7.0. The reaction was initiated by adding 
H 20 2 to give a final concentration of 10 mM (Jablonski and 
Anderson 1981). Guiacol peroxidase (EC 1.11.1.7) activity was 
determined according to Braber (1979). The 3.0-ml reaction 
volume contained enzyme, 40 mM phosphate buffer pH 5.9, 
and 33 mM guiacol. The peroxidative reaction was initiated 
by adding 0.2 ml of 1% H 20 2, and the reaction monitored 
by the increase in absorbance at 420 nM.

Determinations. Ascorbate was determined according to the 
method of Mukherjee and Choudhuri (1983) following reaction 
with 2,4-dinitrophenylhydrazine. Glutathione was determined 
from the specific reaction of glutathione with glutathione reduc­
tase as described by Law et al. (1983). Chlorophyll was extract­
ed from samples with 80% acetone and determined according 
to Arnon (1949).

Results

The distribution p f enzymes from the subcellular 
fractionation o f pea leaves is shown in Tables 1 
and 2. One problem of studies of this type is that 
chloroplast fractions are heavily contaminated
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Table 1. Subcellular fractionation of pea leaves: distribution 
of chlorophyll and organelle marker enzymes between 2500-g 
(chloroplast) pellet, 6000-g (mitochondrial) pellet and 6000-g 
(leaf soluble) supernatant. The recovery of enzymes from the 
three fractions is also shown

Chloro­
phyll

NADPH-
GPD

Cyto­
chrome
oxidase

Glycollate
oxidase

Homogenate 100.00 100.00 100.00 100.00
2500-g 67.10 20.30 21.70 5.95
6000-g super­ 3.50 74.10 19.90 79.80

natant
6000-g pellet 26.98 0.51 61.90 19.10
(% recovery) (97.58) (91.90) (103.50) (104.80)

Table 2. Subcellular fractionation of pea leaves: 
of enzymes scavenging H 20 2

distribution

Ascorbate Glutathione 
peroxidase reductase

Catalase Per­
oxidase

Homogenate 100.00 100.00 100.00 100.00
2 500-g pellet 19.60 18.90 4.50 0.33
6000-g super­ 76.60 78.30 87.10 92.30

natant
6000-g pellet 4.20 1.15 14.70 1.10
(% recovery) (100.40) (94.40) (106.30) (93.70)
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Fig. 1 a, b. Determination of the proportion of a glutathione 
reductase and b ascorbate peroxidase activity in pea chloro­
plasts. Chloroplasts of varying degrees of intactness were pre­
pared as described in Material and methods. Intactness is plot­
ted against the proportion of total enzyme activity recovered 
in the preparation

with mitochondria and peroxisomes (Halliwell
1981). The crude chloroplast pellet (Table 1) was 
rich in mitochondria (cytochrome-ooxidase 
m arker; Tolbert 1974) and peroxisomes (glycol- 
late-oxidase m arker; Tolbert 1969). The m itochon­
drial 6000-g pellet, was also heavily contaminated 
with peroxisomes. This pellet also contained a high 
proportion of chloroplast membranes (chlorophyll 
marker), presumably broken, as indicated by the 
low activity of NA D PH -G PD  activity recovered 
in this fraction. A high proportion of the activity 
o f this enzyme was recovered in the 6000-g super­
natant, indicating that many chloroplasts had lost 
their envelopes during fractionation. Distribution 
of oxygen-scavenging enzymes in pea leaves is 
shown in Table 2. The distribution o f ascorbate 
peroxidase and glutathione reductase was found 
to be similar to that o f NADPH-GPD. Only a 
small proportion of these enzymes were recovered 
in the 6000-g mitochondrial fraction which indi­
cates that mitochondria contain little or no activity 
of these enzymes. It is assumed that much of the 
enzyme is released from chloroplasts during frac­
tionation. Changes in activity of peroxidase and 
catalase have often been followed in plants as en­

zymes im portant in scavenging H 20 2 formed by 
SOD activity (e.g. Harper and Harvey 1978; 
Dhindsa et al. 1981; M cRae and Thompson 1983; 
Kar and Feierabend 1984). Results from Table 2 
confirm that chloroplasts contain little or no non­
specific peroxidase (Parrish 1972) and indicate that 
much of the activity of this enzyme is in the leaf 
soluble fraction. Distribution o f catalase was simi­
lar to that of glycollate oxidase confirming that 
this enzyme was mainly of peroxisomal origin 
(Halliwell 1981). As SOD is predominantly a chlo­
roplast enzyme (Jackson et al. 1978), it would be 
unlikely that peroxidase or catalase could scavenge 
H 20 2 generated by SOD activity.

To examine further the chloroplast activity of 
ascorbate peroxidase, glutathione reductase, 
NA D PH -G PD  and the level of ascorbate, pea 
chloroplasts of varying degrees of intactness were 
prepared and activity in the chloroplast pellet was 
compared with activity in a total leaf homogenate. 
The proportion o f activity in the chloroplast was 
then compared with the intactness of the chloro­
plast preparation. These results are shown in 
Figs. 1 and 2. Over 95% of the N A D PH -G PD  was 
present in the chloroplast (Fig. 2 b). In addition,
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Fig. 2 a, b. Determination of the proportion of a ascorbate and 
b NADPH-GPD activity recovered in chloroplasts of varying 
degrees of intactness

chloroplasts were found to contain 82% of the glu­
tathione reductase activity (Fig. 1 a) and all the as­
corbate peroxidase activity (Fig. 1 b). Only 30% 
of the leaf ascorbate was detected in chloroplasts 
(Fig. 2 a), a value which is in close agreement with 
data published for spinach chloroplasts (Foyer 
et al. 1983).

In addition to these data, chloroplasts of 85% 
intactness were isolated from pea leaves and the 
activity of these enzymes and dehydroascorbate re­
ductase and glutathione levels were compared with 
the levels in crude leaf extracts. These data are 
presented in Table 3. While much of the leaf ascor­
bate peroxidase and glutathione-reductase activity 
was confirmed to be chloroplastic, high activities 
of dehydroascorbate reductase were also detected.

The ascorbate and glutathione content of pea 
leaves grown during M arch was typically found 
to be 1.7 and 1.0 pm ol-m g-1 chlorophyll, respec­
tively. Chloroplasts however, were found to con­
tain 0.6 and 0.1 pmol m g-1 chlorophyll. Assum­
ing a chloroplast volume of 26 pi-m g-1 chloro­
phyll (Heldt et al. 1973), this would give a chloro­
plast ascorbate concentration o f 20-25 mM and 
a glutathione concentration o f 3.5^4 mM. This is 
in good agreement with the results from spinach

Table 3a, b. Activity of enzymes scavening H 20 2 (a) and level 
of antioxidants (b) in pea leaf homogenates and isolated chloro­
plasts (85% intact). The proportion of activity present in the 
chloroplast fraction is also shown

a)
Activity
(pmol-mg-1 Chl-h-1)

% in 
chloro­
plast

Leaf
homogenate

Chloro­
plast

Ascorbate peroxidase 1198.7 935.5 78.9
Glutathione reductase 45.9 34.7 76.8
Dehydroascorbate 110.2 70.2 64.7

reductase

b)

Activity % in
(pmol-mg-1 C hl-h"1) chloro­

plast
Leaf Chloro­
homogenate plast

Glutathione 1.00 + 0.10 0.091+0.01 9.1
Ascorbate 1.68 + 0.11 0.54 +0.04 32.3

chloroplasts (Foyer and Halliwell 1976; Law et al.
1983).

Discussion

The results presented in this paper demonstrate 
that chloroplasts contain a high proportion o f the 
total leaf ascorbate peroxidase, dehydroascorbate 
reductase and glutathione reductase activities. 
However, only 10% of leaf glutathione and 30% 
of ascorbate was present in chloroplasts.

Previous investigations have confirmed the 
presence of these enzymes in chloroplasts o f pea 
and spinach leaves at activities similar to those re­
ported in this paper. (Foyer and Halliwell 1976; 
Jablonski and Anderson 1978,1981,1982; N akano 
and Asada 1981).

Comparison of glutathione reductase distribu­
tion with that of NA DPH -G PD  (Foyer and H al­
liwell 1976) produced results similar to those pre­
sented in this paper. Jackson et al. (1978) con­
cluded that much of the total leaf SOD was present 
in the chloroplast, while Foster and Edwards 
(1980) found 50-80% of leaf SOD to be chloro­
plastic. Anderson et al. (1983) found spinach chlo­
roplasts to contain 67% of glutathione-reductase 
activity but only 28% of dehydroascorbate-reduc- 
tase activity. Ascorbate peroxidase has previously 
been reported as a chloroplast stromal enzyme 
(Nakano and Asada 1981) bound to chloroplast
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membranes (Groden and Beck 1979) and present 
in the leaf soluble fraction (Kelly and Latzko 1979; 
Gerbling et al. 1984). Reports o f a cytoplasmic 
form of this enzyme may reflect release o f ascor­
bate peroxidase from chloroplasts during prepara­
tion of crude enzyme extracts. Both SOD and glu­
tathione reductase activity have also been detected 
in a variety of non-photosynthetic tissues and or­
ganelles including wheat germ (Conn and Vennes- 
land 1951; Beauchamp and Fridovich 1973), etio­
lated leaves (Giannopolitis and Ries 1977; Gamble 
and Burke 1983) and mitochondria (Young and 
Conn 1956; Foster and Edwards 1980). Investiga­
tions showing differences in the distribution of 
these enzymes and their proportion in chloroplasts 
may reflect changes in their activity and location 
dependent on plant development or growing condi­
tions.

The results presented in this paper are im por­
tant in view of several recent reports into the effects 
of environmental and other stresses on the activity 
of these enzymes. W ater stress (Gamble and Burke
1984) low-temperature hardening (de K ok and 
Oosterhuis 1983; Guy and Carter 1984) and hyper­
baric oxygen (Foster and Hess 1981, 1982) were 
shown to stimulate glutathione reductase activity 
in leaves. Incubation of leaf discs with low concen­
trations of paraquat promoted the activity of as­
corbate peroxidase (Gillham and Dodge 1984) and 
gluatathione reductase (Gillham and Dodge un­
published result). In these experiments, enzyme ac­
tivities were estimated on crude leaf homogenates. 
The demonstration in this present work that a high 
proportion o f activity of these enzymes is chloro- 
plastic indicates that changes in activity o f these 
enzymes may be an im portant adaptation of the 
photosynthetic apparatus in response to stress.

This work was supported by a University of Bath research 
studentship to D.J.G.
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Changes in photosynthetic activity, leaf pigments and the activities of enzymes that 
scavenge damaging oxygen species in chloroplasts were followed during the greening 
of 8-day-old etiolated pea (Pisum sativum L. cv. Meteor) seedlings.
Accumulation of chlorophyll and carotenoids was accompanied by development of 
photosynthetic activity. Carotenoids present in etiolated leaves, and the high ratio of 
carotenoid to chlorophyll detected during the early hours of greening are suggested to 
provide important protection against singlet oxygen. Superoxide dismutase, ascor­
bate peroxidase and glutathione reductase, which scavenge superoxide and hydrogen 
peroxide in chloroplasts, are present at high activities in etiolated leaves and through­
out greening. The mechanisms by which developing chloroplasts may generate dam­
aging oxygen species, and the role of these scavengers during greening is discussed.

Additional keywords -  Ascorbate peroxidase, carotenoids, chloroplast development, 
glutathione reductase, Pisum sativum, superoxide dismutase.

D. J. Gillham and A. D. Dodge (reprint requests), School o f Biological Science, Univ. 
o f Bath, Bath, Avon, BA2 7AY, United Kingdom.

Introduction

Chloroplasts of higher plants possess the potential for 
generating several forms of damaging oxygen species. 
Interaction between triplet chlorophyll (3Chl) and oxy­
gen (3Oz) results in the generation of singlet oxygen 
(lOz) (Foote 1968). Oxygen can accept electrons from 
the terminal electron carriers of photosystem I, being 
reduced to superoxide ( 0 2'). Dismutation of 0 2~ by su­
peroxide dismutase (SOD) forms hydrogen peroxide 
(H20 2), while reaction between 0 2~ and H20 2 generates 
highly reactive hydroxyl radicals (O H ) (Halliwell 
1981). Generation of oxygen radicals in chloroplasts can 
lead to extensive damage to the photosynthetic appara­
tus. Low concentrations of H2Oz inhibit photosynthesis 
by inactivating the fructose and sedoheptulose bisphos- 
phatase enzymes of the Calvin cycle (Charles and Hal­
liwell 1981). Both ’0 2 and OH can initiate peroxidation 
of membrane unsaturated fatty acids, as well as oxidise 
certain protein amino acids and other cellular com­
ponents (Halliwell 1981). Damage is normally restricted 
by a range of protective mechanisms which reduce the

Received 26 March, 1985; revised 26 July, 1985

toxicity of the damaging species. Generation of J0 2 is 
restricted by carotenoids which quench both 3Chl and 
'0 2 (Foote and Denny 1968). SOD catalyses the conver­
sion of 0 2~ to H20 2, while ascorbate peroxidase and glu­
tathione reductase are efficient scavengers of H2Oz in 
chloroplasts. In addition, ascorbate, present at high 
concentrations in the chloroplast stroma, can quench 
both 1Oz and 0 2 (Halliwell et al. 1981).

The transfer of etiolated plants to light induces many 
changes in the photosynthetic apparatus. Illumination 
activates the conversion of protochlorophyll to chloro­
phyll, followed by de novo synthesis of the pigment. 
Electron transport and C 0 2 fixation commence several 
hours after the transfer to light (see Bradbeer et al. 
1974, Bradbeer 1981).

The development of the photosynthetic apparatus in­
creases the potential for the generation of damaging 
oxygen species. Greening must therefore be carefully 
controlled, both to restrict formation of these radicals, 
and to ensure that a full range of protective mechanisms 
are present early in development.

In this investigation we have monitored the devel­

Physiol. Plant. 65, 1985 393



opment of the photosynthetic apparatus and levels of 
oxygen radical scavengers following transfer of etiolated 
seedlings to light.

Abbreviations -GSSG, oxidized glutathione; SOD, superoxide 
dismutase.

Materials and methods 
Plant material

Peas (Pisum sativum L. cv. Meteor) Were grown in 
moist Levington compost at 23°C for eight days in total 
darkness. All manipulations, such as watering were car­
ried out under minimal green light. For greening, plants 
were transferred to a growth cabinet at 23°C under con­
tinuous light (400 pmol n r2 s-1 photon flux density, pro­
vided by warm-white fluorescent tubes 65/85W; Thorn, 
London, UK).

Photosynthesis

An infra-red gas analyser was used to measure pho­
tosynthetic C 0 2 exchange in pea leaves. Plant material 
was incubated in a glass chamber maintained at 25°C. Il­
lumination was provided by a photoflood lamp (Thorn, 
400 W) giving 250 pmol m 2 s_1 photon flux density at the 
sample chamber.

Chloroplast membranes for electron transport studies 
were prepared by grinding leaves in a cold mortar in 
10-20 ml of 50 mM Tricine-NaOH buffer, pH 7.6, con­
taining NaCl (0.3 M) and MgCl2 (5 mM). The homoge­
nate was filtered through 4 layers of muslin and cen­
trifuged at 4°C at 200 g for 1 min. The supernatant was 
recentrifuged at 2 500 g for 10 min. Chloroplast pellets 
were resuspended in 2.5 ml cold Tricine buffer, pH 7.6, 
containing NaCl (0.03 M) and MgCl2 (5 mM).

Non-cyclic electron transport was estimated in a 
Hansatech oxygen electrode at 20°C under 500 pmol m'2 
s '1 photon flux density. The electrode chamber con­
tained 3.0 ml of 20 mM  potassium phosphate buffer, pH 
8.0, containing NH4C1 (1.0 mM), NaN3 (1.0 mM), 
methyl viologen (80 pM) and chloroplast membranes 
containing 50-100 pg chlorophyll.

Preparation of leaf extracts

For enzyme determinations, cell free homogenates were 
prepared. Approximately 0.5 g leaf material was ground 
in 10 ml cold 50 mM potassium phosphate buffer, pH 
7.6, in a cold mortar. The homogenate was strained 
through 4 layers of muslin and centrifuged at 4 000 g for 
10 min. The resulting supernatant was used to estimate 
enzyme activities.

Enzyme Assays

Enzyme activities were determined at 20°C. The assay 
for SOD (EC 1.15.1.1.) was as described by Elstner and

Heupel (1976). The 2.0 ml reaction mixture contained 
65 \iM potassium phosphate buffer, pH 7.8, 1 pM hy- 
droxylamine, 1.5 \iM xanthine and an aliquot of enzyme 
extract. The reaction was initiated by adding xanthine 
oxidase (Sigma) containing 100 pg protein. After in­
cubation at 20°C for 25 min, a 1 ml aliquot was analysed 
for nitrite as described by Elstner and Heupel (1976).

Ascorbate peroxidase was assayed according to the 
method of Groden and Beck (1979) in a Hansatech oxy­
gen electrode. The 2.0 ml reaction mixture contained 
0.1 MTris-HCl buffer, pH 8.0, sodium isoascorbate (0.1 
mM) and enzyme extract containing 200-250 mg pro­
tein. The peroxidative reaction was initiated by addition 
of 0.05 ml of 8 mM H20 2. H20 2 remaining after 30 s was 
determined polargraphically following the addition of 
2 500 units of catalase (EC 1.11.1.6.). H20 2 consumed 
by ascorbate peroxidase was calculated from the differ­
ence between added and unreacted H2Oz after account­
ing for controls lacking ascorbate or enzyme extract.

Glutathione reductase (EC 1.6.4.2.) was assayed by 
the method of Jablonski and Anderson (1978). The 3.0 
ml reaction mixture contained potassium phosphate 
buffer, pH 8.0 (0.13 M), Na2 EDTA (0.13 mM) GSSG 
(0.33 mM) and enzyme extract containing 150-250 pg 
protein. The reaction was initiated by the addition of 33 
pM NADPH, and the reaction followed by monitoring 
the decline in absorbance at 340 nm as NADPH was ox­
idised. Enzyme activity was expressed as the difference 
in rate of NADPH oxidation (as mol h_1) with and with­
out GSSG.

Pigments and ascorbate

Chlorophyll was determined spectrophotometrically on 
a sample of leaf material extracted with 80% acetone, 
using the extinction coefficients of Arnon (1949). Total 
carotenoid in the acetone extract was estimated from 
the absorbance at 480 nm after correction for chlor­
ophyll interference using the coefficients of Kirk and 
Allen (1965) as described by Davis (1976).

For determination of ascorbate, a sample of leaf ho­
mogenate containing approximately 100 mg ascorbate 
was extracted with 6% TCA. Ascorbate was oxidised to 
dehydroascorbate with acid-washed activated charcoal 
(Oser 1979). Total ascorbate was then determined spec­
trophotometrically following its reaction with 2% 2,4- 
dinitrophenylhydrazine (Mukherjee and Choudhuri 
1983).

Results

The accumulation of chlorophyll and carotenoid pig­
ments that occurred when 8-day-old dark grown pea 
seedlings were transferred to light is shown in Fig. la . In 
agreement with other investigators (Goodwin 1958, 
Lichtenthaler 1969), etiolated leaves were shown to 
contain appreciable levels of carotenoid pigments, al­
though no chlorophyll was present. The relationship be-
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Fig. 2. Levels of oxygen radical scavengers during greening of 
etiolated pea leaves, (a) Ascorbate and ascorbate peroxidase, 
(b) SOD and glutathione reductase. Data points represent the 
mean of three replicate samples.

Tab. 1. Changes in the ratio of chlorophyll to carotenoid during 
greening in peas.

Hours greening Chi: Car ratio

0.1 0.33
12 3.36
24 4.56
36 5.07
48 6.28

tween the level of chlorophyll and carotenoid during 
greening is shown in Tab. 1. Over the first 12 h of il­
lumination there was a ten-fold increase in the ratio of 
chlorophyll to carotenoid. Subsequently the ratio of 
chlorophyll to carotenoid progressively increased to ap­
proach that of normal green pea leaves of 5.8:1. This 
has also been described elsewhere (Lichtenthaler 1969).

Development of photosynthetic electron transport 
activity and C 0 2 fixation are shown in Fig. lb. Both 
processes were active after 12 h illumination and in­
creased in parallel to chlorophyll accumulation between 
12 and 48 h of illumination.

Etiolated leaves also contained high activities of 
SOD, glutathione reductase and ascorbate peroxidase 
(Fig. 2). While the activity of ascorbate peroxidase was 
high in etiolated leaves, enzyme activity was shown to 
increase from 629 to 917 mol H20 2 consumed (g fresh 
weight)'1 during the first 12 h of illumination. The level 
of ascorbate increased from 1.0 to 1.6 mg (g fresh 
weight)'1 during this period (Fig. 2a). The activity of 
SOD and glutathione reductase changed little during 
the greening period (Fig. 2b).

Discussion

Although the greening of etiolated seedlings is a some­
what artificial experimental system, it does provide a 
convenient and commonly used method for studying 
chloroplast development. Some seedlings probably en­
counter a certain degree of etiolation during their early 
growth through the soil, prior to emergence at the sur­
face. Several aspects of the subsequent development of 
chloroplasts are probably significant in preventing 
photo-oxidative damage during greening. Several hours 
may elapse between the appearance of chlorophyll and 
the operation of a fully functional electron transport 
chain (Bradbeer 1981). In this period, carotenoid pig­
ments would have an important role in protecting 
chloroplasts against photo-oxidative damage. The im­
portance of carotenoids in protecting chlorophyll from 
photosensitized reactions during greening has been 
clearly demonstrated elsewhere. Maize mutants which 
lack carotenoids were shown to be particularly sensitive 
to chlorophyll bleaching during greening (Anderson 
and Robertson 1960), as were plants treated with herbi­
cides that inhibit carotenoid synthesis (Ridley and Ri-
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dley 1977). Chlorophyll caused considerable damage to 
the developing chloroplasts of greening wheat seedlings 
when carotenoid accumulation was prevented (Ryberg 
et al. 1981). The carotenoids present in etiolated leaves, 
and the high ratio of carotenoid to chlorophyll found in 
the early hours of greening in this study, would have an 
important role in preventing photooxidation and in sta­
bilizing chlorophyll before photosynthetic electron 
transport is fully functional.

Photosynthetic electron transport activity, and there­
fore the potential to generate superoxide was detected 
after 12 h of greening. In mature chloroplasts electron 
flow to oxygen may be an important reaction in allowing 
the generation of ATP without NADP+ reduction (Hal­
liwell 1981). Electron flow to oxygen may also be im­
portant during the induction of photosynthesis. Elec­
tron flow will commence rapidly, but there is a delay be­
fore COz fixation is fully functional and here oxygen 
may act as an electron acceptor (Halliwell 1981). A sim­
ilar mechanism may operate during the early stages of 
greening when the rate of electron flow per unit of 
chlorophyll is high, but the dark reactions of photosyn­
thesis are not fully functional (Popovic et al. 1984). 
Such mechanisms of energy dissipation require that 
chloroplast oxygen radical scavengers are present very 
early in chloroplast development. In the results pre­
sented in this paper we have shown that both SOD and 
the enzymes scavenging H2Oz are present at high activ­
ities in etiolated leaves and throughout greening and 
should provide effective protection.
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The assessment of lipid peroxidation
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Summary Two methods for assessing lipid peroxidation based on the 
formation of breakdown products ethane and malondialdehyde are 
described. These methods are used to compare the effects of 
monuron, paraquat, rose bengal and acifluorfen on ethane generation 
from pea leaf tissue, and on malondialdehyde formation from 
illuminated chloroplasts.

INTRODUCTION

Peroxidation of membrane lipids is an important feature of cellular 
damage (Mead, 1976). Peroxidation is generally initiated by hydrogen 
abstraction from an unsaturated fatty acid, forming a fatty acid radical 
(Fig. 1). Attack by oxygen generates a lipid peroxide, which can abstract a 
hydrogen atom from an adjacent unsaturated fatty acid, forming a lipid 
hydroperoxide and thus initiating a chain reaction. Lipid hydroperoxides 
decompose to give a range of products including malondialdehyde and ethane 
(Halliwell, 1981).

Chloroplast membranes are particularly susceptible to lipid peroxidation 
because they contain a high proportion of unsaturated fatty acid (Halliwell, 
1981), and are surrounded by a medium containing potentially high oxygen 
tensions. Lipid peroxidation is also strongly promoted by several classes of 
herbicides that promote the generation of free radicals, superoxide and 
singlet oxygen (Dodge, 1983). These herbicides include photosynthetic 
electron flow inhibitors (e.g. monuron), bipridyls (e.g. paraquat),
photosensitisers (e.g. rose bengal) and diphenyl ethers (e.g. acifluorfen). 
In this paper we describe two methods for assessing lipid peroxidation, of 
intact leaf samples or isolated chloroplast membranes.

MATERIALS AND METHODS

Plant material. Pea (Pisum sativum cv. Meteor) plants were grown in 
moist Levington Universal compost in a glasshouse under natural daylight 
conditions and a mean air temperature of 22°C for 14-21 days.

Herbicide solutions. Stock solutions of rose bengal and paraquat were 
prepared in distilled water. Monuron was dissolved in methanol, and diphenyl 
ethers were prepared in acetone. Final concentrations of solvent in any 
experimental system never exceeded 0.5^*

Ethane. Discs (15 mm diameter) were cut from the first fully expanded 
leaves below the apex using a sharp cork borer. Batches of fivp leaf diece 
were floated on '10.0 ml of herbicide solution in 50 ml screw top conical
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flasks, which had been fitted with a rubber septum to facilitate analysis of 
the gas headspace. Flasks were incubated in a controlled env^rojjiment chamber 
for up to 120 hr under constant illumination (400 umol ra- s” photon flux 
density) provided by warm white fluorescent tubes (65/85-W Thorn). A 1 ml 
sample of the flask gas headspace was removed using a gas tight syringe 
(Precision Sampling, St. Louis. Mo) and analysed for ethane by gas 
chromatography, using an alumina column at 125°C in a Pye Unicam (Cambridge 
U.K.) GCD chromatograph. Ethane present in the flask headspace was 
identified and quantified . by comparison to authentic standards (Phase 
Separations Ltd, Queensferry, Clwyd).

Rearrangement

Itpkl radical
radical attack

\ /C'C\ / CH CHj
lipid peroxy radical

,C-C
CH. CH.

n n \
\ f m\ /—CH2 CHj 

fatty acid

c—c 
\  / \  / CHa CH’
lipid radical

products H_c.0

■♦h-c -o
malondialdehyde

Figure 1. Mechanism of peroxidation of membrane lipids.

Malondialdehyde formation by isolated chloroplasts. Chloroplast 
membranes were isolated from 14-21 day old pea leaves as described elsewhere 
(Gillham A Dodge, 1986). Chloroplasts (50 pg chlorophyll ml ) were 
incubated in 50 mM phosphate buffer, pH 7.6, in a total volume of 20 ml in 50 
ml screw capped conical flasks. Flasks were incubated in a water bath
maintained at 20°C and illuminated from below for up to. six hours.
Illumina^io^i was provided by seven photoflood lamps (Thorn 100W), giving 500
pmol m” s~ photon flux density at the sample. Aliquots of the reaction
mixture were analysed for malondialdehyde by the thiobarbituric acid method 
(Takahama A Nishimura, 1975). To determine malondialdehyde, 0.5 ml of 40^ 
(w/v) TCA, 0.25 ml of 5M HC1 and 0.5 ml of 2% (w/v) thiobarbituric acid were 
added to 2.0 ml of chloroplast fragments. After mixing, the chloroplasts 
were heated to 100°C for 10 min (water bath), cooled on ice and centrifuged 
at 2000 £  for 5 min. Malondialdehyde was estimated from the absorbance of ! 
the resulting solution at 532 nm, after correction for non specific turbidity 
by subtracting the absorbance at 600 nm.

Chlorophyll. Chlorophyll was extracted using ethanol, and quantified 
According to Licht$nthaler A Wellburn (1983). :
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RESULTS

The quantification of short chain hydrocarbons eraraanating from leaf 
tissue is a non-destructive method for estimating membrane damage. The 
results in Fig. 2 show the effect of monuron, paraquat, rose bengal and
acifluorfen on chlorophyll bleaching ( 2 a )  and ethane generation (2̂ b) from pea 
leaf discs. Ethane evolution from leaf discs was closely paralleled by 
chlorophyll loss, and this indicates that both processes are closely linked 
during photo-oxidative damage to green plants.

Ethane evolution has been used by some workers to assess lipid 
peroxidation in isolated membranes in response to herbicide treatments 
(Kunert A Boger, 1981; Percival A Dodge, 1984). Peroxidation of isolated 
membranes can also be followed by measuring malondialdehyde generation using 
the thiobarbituric acid method (Heath A Packer, 1968; Takahama A Nishiraura,
1975). The results in Fig. 3£ show that malondialdehyde was formed when
isolated chloroplast membranes were illuminated. Addition of rose bengal (10 
yM) to the reaction mixture induced a rapid increase in malondialdehyde
formation. The herbicides monuron, paraquat and acifluorfen also promoted 
malondialdehyde formation, although no significant increase in generation was 
detected before 180 min incubation. Peroxidation of chloroplast membranes 
was also paralleled by chlorophyll bleaching (Fig. 3]>)*

Due to its simplicity and sensitivity, the thiobarbituric acid method 
can be used to compare damaging effects induced by different members of one 
group of herbicides. Results in Fig. 4 show peroxidation of illuminated 
chloroplasts is promoted to a similar extent by the diphenyl ether herbicides 
acifluorfen, fomesafen, nitrofen and bifenox. In addition, a range of other 
nitro and non-nitro diphenyl ether compounds were all active in inducing 
peroxidation of illuminated thylakoids (data not shown).

DISCUSSION

Assays of membrane lipid peroxidation have become widely used to assess 
damage to plant tissues induced by herbicides, environmental stress or 
senescence (Dhindsa et al., 1981; Kunert A Boger, 1981; Lambert et al., 1983;  
Horvath A van Hasselt, 1 9 8 5 ) .  Methods employed include the determination of 
lipid breakdown products, for example hydrocarbons, aldehydes and lipid 
hydroperoxides. Other methods include measuring oxygen uptake, or the loss 
of lipid substrate from membrane preparations (Slater,g£98^). Additionally, 
measurements of electrolytic conductivity changes or Rb efflux from leaf 
tissue have been used to assess membrane disruption (Vanstone A Stobbe, 1977;  
Orr A Hess, 19 8 2 ) .  However these methods are not assays of lipid 
peroxidation, but only of membrane permeability changes.

The two methods in this study to assess membrane lipid peroxidation have 
advantages in that both are simple to uset sensitive, and do not require 
complex preparative or analytical procedures. Ethane generation is a 
particularly suitable method of assessing iipid peroxidation- in vivo because 
the technique is non-destructive, and therefore permits repeated observations 
to be made on the same tissue sample over a period of hours or days.

The thiobarbituric acid assay for malondialdehyde is probably the most 
frequently used technique for assessing membrane lipid peroxidation. However 
while this technique is suitable in vitro, it has become increasingly used in 
vivo, (Dhindsa et al., 1981; Orr A Hess, 1982; Horvath A van Hasselt, 1985T  
for which it' is not suitable. Malondialdehyde is readily metabolised in
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vivo, and numerous substances interfere with the thiobarbituric acid 
reaction. These include haematoproteins and transition metals associated 
with biological membranes, which enhance colour formation. Tissue aldehydes 
and sugars also react with thiobarbituric acid forming a chromataphore that 
absorbs at 537 nm (Beuge A Aust, 1978). Despite these disadvantages, the 
simplicity and sensitivity of the thiobarbituric acid method makes it a 
useful tool for assessing lipid peroxidation jLn vitro, provided adequate care 
is taken to prevent interference by other substances.
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containing 30 mM NaCl and 5 mM MgCl^.

Photosynthetic electron transport reactions. Light dependent oxygen 
uptake or evolution from illuminated thylakoids was determined in a Hansatech 
oxygen electrode, in a 3.0 ml reaction volume containing 30 mM Tricine-NaOH 
buffer, pH 7.6, 5 mM MgCl2, 1.7 mM NH.C1 and chloroplast membranes containing 
50-100 yg chlorophyll.^ Illumination was provided by a 500 W tungsten lamp 
giving 500 pmol ra_ s” photon flux density at the reaction chamber. 
Additions to the basic reaction mixture were 1.7 mM potassium ferricyanide 
(FeCN) for photosystem II, 10 yM paraquat for measuring electron flow through 
photosystem I and II in a MehLer reaction, 6.6 uM DCPIP, 13*3 mM ascorbate 
and 66 yM monuron for measuring Jhe effect of herbicides on photosystem I 
oxygen uptake, or no additions to test the ability of herbicides to act as 
Mehler reaction catalysts. For NADP reduction, 13-3 MM NADP was reduced 
following periods of illumination.

Photosynthesis. Sub-apical pea leaves were floated on test solutions 
for 24 h in darkness prior to measuring photosynthetic activity. An 
Infra-Red gas analyser (model 225, Analytical Development Co, Hoddesdon, 
Herts) was used to measure CO- exchange in batches of 4 leaf discs. Plant 
material was maintained in a chamber at 24 C, and irradiation provided by a 
photoflood lamp (Thorn 400 W) giving 250 ymol m~ s~ photon flux density at 
the sample chamber.

Chlorophyll bleaching. Pea leaf discs were incubated on H20 or 0.1 mM 
monuron for 24 h in darkness prior to transfer to herbicide test solutions 
and incubated in a controlled environment cabinet for up to 72 h under 
constant illumination (400 ymol m” s” photon flux density) provided by warm 
white fluorescent tubes (65/85-W; Thorn). Chlorophyll was extracted from 
leaf discs with ethanol, and quantified using the coefficients described by 
Lichtenthaler & Wellburn (1983).

Table 1. The effect of herbicides on C0„ fixation in pea leaf discs. Leaf 
discs were incubated on herbicide solutions for 24 h in darkness 
prior to measurement of photosynthetic activity

C02 fixation (ymol C02 uptake g  ̂ FW h ^)

Control 71.88 (100*)
10 yM Paraquat 0
10 yM Monuron 0
25 uM Rose bengal 71-53 (99.5*)
25 UM Acifluorfen 55-27 (76.8*)
25 yM Fomesafen 51. 7 (71.9*)
25 yM Nitrofen 41. 6 (57.9*)
25 uM Bifenox 32. 1 (44.6*)

RESULTS

Both paraquat and monuron (10 yM) inhibited photosynthesis of pea leaf 
discs after 24 h dark incubation (Table 1). The diphenyl ether herbicides 
acifluorfen, nitrofen, bifenox and fomesafen (all at 25 yM) only partially \ 
inhibited photosynthesis after the same period of dark incubation. Rose 
bengal had no effect.
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Table 2. The effect of herbicides on photosynthetic electron transport 
reactions of isolated pea thylakoida

H_0 —  PeCN 
TPS II)

H O  —  PQ 
(PS II— PSI)

Ascorb/-*-Or 
DC PIP *
(PS I)

H_0 ̂  0 , 
(PS II —  PS I)

Control 125.1“
(loose)

134.5(loose) 20.13
(10C#)

29-5( l o o s e )
Herbicide concentration

1 OuM 
%

5 OuM 
%

5 OuM 
%

10uM
%

5 OuM 
%

50uM
%

Monuron 1.6 0 0 _c - 0

Paraquat 100.0 98.0 _d 997.0 992.0 837.0

Rose bengal 95*3 90.0 93.0 e - 107-0

Acifluorfen 101.6 100.0 91.6 106.1 100.0 108.3

Fomesafen 100.0 64.1 77-4 176.8 353.0 -

Nitrofen 65-1 23-3 21.4 100.0 100.0 -

Bifenox 96.9 6QT.1 73-2 159-2 -271 .0 -

a. as umol 0^ evolution ijig Chl^h
b. as umol 0 uptake rag Chi h
c. not assayed as reaction mixture contained monuron
d. not assayed as reaction mixture contained paraquat
e. no result obtained as rose bengal sensitises oxidation of ascorbi

the reaction mixture

The results presented in Tables 2 and 3 show the effect of paraquat, 
monuron, rose bengal and diphenyl ether herbicides on uncoupled
photosynthetic electron flow reactions of isolated chloroplast membranes. 
Monuron abolished photosystem II ferricyanide reduction at low concentration. 
As a consequence, electron flow through photosystem I and II, and NADP 
reduction by illuminated thylakoids was abolished. Paraquat promoted oxygen 
uptake by photosystem I, thus causing an inhibition of NADP reduction (Table 
3). Photosystem II activity was unaffected by paraquat. The diphenyl ether 
herbicide acifluorfen had no effect on electron flow through photosystem I 
and II, or on oxygen uptake by photosystem I (Table 2) at concentrations up 
to 50 yM. By contrast fomesafen, nitrofen, and bifenox all inhibited 
photosystem II ferricyanide reduction, although a higher concentration was 

luired to elicit a response similar to monuron. Fomesafen knd bifenox were 
additionally active Mehler reaction catalysts, promoting oxygen uptake from 
photosystem I (Table 2).
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Table 3. The effect of herbicides on NADP* reduction by illuminated 
chloroplast membranes

NADP+ reduction (ymol mg ^Chl h

Control 33*53(1005?)
Herbicide concentration 

(NADP+ reduction as * of control)

10uM 50yM

Monuron 16.3 0

Paraquat 14.8 0

Acifluorfen 81.7 63-4

Fomesafen 100 147.3

Nitrofen 58.4 20.8

Bifenox 88.5 62.4

While acifluorfen, nitrofen and bifenox were all inhibitory of NADP+ 
reduction (Table 3)» high concentrations of fomesafen catalysed electron flow 
to NADP . Rose bengal had no direct effect on any photosynthetic electron 
flow reactions.

Table 4* Requirement for photosynthetic electron transport in herbicide 
induced chlorophyll bleaching of pea leaf discs. Discs were 
pre-incubated on 0.1 mM monuron or H^Q for 24 h prior to 
illumination

Chlorophyll after 48 h
H_0 +Monuron

(0.1 mM)
pg/leaf disc * control

Control 51-59 (100*) 50.78 (10Q*)

10 uM Rose bengal 16.461 (31-9*) 15-51 (30.6*)

10 uM Paraquat 11.932 (23-6*) 229-7 (58.5*)

25 yM Acifluorfen 26.3 (51.0*) 47.6 (93-6*)

25 yM Fomesafen 12.41 (24.1*) 27.2 (53-5*)

25 yM Bifenox 10.82 (20.9*) 25.6 (50.4*) j

25 yM Nitrofen 21.3 (41.3*) 46.02 (53-5*) ]i
1 . 
2.

Leaf discs 
Leaf discs

illuminated
illuminated
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The results presented in Table 4 demonstrate the role of photosynthetic 
electron flow in herbicide induced chlorophyll bleaching of pea leaf discs. 
Electron flow was inhibited by incubating discs on monuron for 24 h in 
darkness, prior to their transfer to herbicide test solutions and 
illumination. Monuron pre-treatment retarded bleaching induced by paraquat, 
acifluorfen, nitrofen, bifenox and fomesafen. This indicated that a 
functional electron flow system was necessary for herbicide activity. It is 
important to note, however, that monuron pre-treatment which abolished 
electron flow in leaf discs did not totally prevent paraquat induced 
chlorophyll bleaching, even though this herbicide is dependent on 
photosynthetic electron flow for activity. Bleaching of leaf discs induced 
by rose bengal was unaffected by monuron pre-treatment. Although rose bengal 
can stimulate the peroxidation of illuminated chloroplast membranes (Dodge A 
Gillham, 1966), these results show that the action, although light induced, 
is dependent of photosynthesis.

DISCUSSION

Although symptoms of injury induced by herbicides that promote membrane 
lipid peroxidation and chlorophyll bleaching are similar, results presented 
in this paper demonstrate that the requirement for photosynthetic electron 
flow in herbicide activity can be used to discriminate between sites of 
activation and modes of action of different herbicide classes.

The primary mode of action of the herbicides paraquat and monuron is to 
divert or inhibit photosynthetic electron flow thus stimulating the formation 
of superoxide and singlet oxygen in chloroplast respectively (Dodge, 1983). 
The increased formation of these oxygen species promotes lipid peroxidation.

Photosensitisers such as rose bengal, promote singlet oxygen formation 
but independently of photosynthesis (Dodge, 1983). Diphenyl ether herbicides 
are not strong inhibitors of photosynthetic electron flow. Furthermore the 
differences in response elicited by diphenyl ether herbicides tested in this 
study (Table 2) indicated that inhibition of photosynthetic flow was not 
their primary mode of action. Photosynthetic electron flow was necessary for 
herbicide activity with this group of chemicals (Table 4). Thus activation 
may occur by reduction of the diphenyl ether molecule to a radical capable of 
inducing lipid peroxidation, as proposed by Sandmann and Boger (1982). While 
acifluorfen appears to be activated by photosynthetic electron flow in the 
region of ferredoxin (Gillham A Dodge, 1986) the precise site of activation 
of other diphenyl ether herbicides, and the nature of the radical species 
formed that initiates lipid peroxidation remains unclear.
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