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Summary

Chemical sensors based on the quartz crystal microbalance are investigated. Two 

liquid phase and two gas phase sensor systems are utilised with the main focus of the 

work towards the development of the liquid phase systems.

The two liquid phase systems are based on crown ether containing copolymer 

coatings that respond selectively to K+(aq) over the other Group I ions Na+(aq) and 

Li+(aq). The uptake of the resins for K +(aq) was in the order of 1000  pg per gram of the 

resin. The equilibrium constant for the crown ether complex formation with K+(aq)is 

found to be 1554 ± 617 dm3mol'1. The 18-crown-6 copolymer is successfully 

synthesised on the surface of a QCM resonator with selectivity over other Group I 

ions maintained. The sensitivity of the sensor is estimated to be 0.2 ppm over the 

concentration range of 0-2000 ppm. The sensor is also employed in an FIA system to 

monitor the concentration of K+(aq) injected into the flow.

The two gas phase systems are based on cyclodextrin (CD) and azobenzene 

dye coatings. The cyclodextrin based sensors are designed to respond generally to 

volatile organic species (VOCs) and more specifically alcohol vapours. The 

azobenzene dye coating is designed to respond selectively to NOx gas.

For the cyclodextrin system three resonators are coated with 2.46 pg, 2.66 pg 

and 1.39 pg of a-CD, Jl-CD and amylose respectively. The response factor 

associated with the exposure of the resonators to VOCs is calculated. For a-CD the 

methanol response factor is 5.30 Hz Sec pg ' 1 with all other non-alcoholic VOCs less 

than 0.50 Hz Sec pg'1. For p-CD the methanol response factor is 3.03 Hz Sec pg'1, 

again with all other non-alcoholic VOCs less then 0.60 Hz Sec pg'1. The amylose 

sensor had response factors less than 0.70 Hz Sec pg' 1 for all VOCs.

For the NOx(gas) system several resonators are coated with Langmuir- 

Blodgett, (LB), films of the azobenzene dye. The mass of the films are estimated to 

be 0.17 pg, 0.97 pg and 1.50 pg. The resonators are utilised to determine 0; the ratio 

of occupied binding sites to the total available binding sites after the films were 

exposed to fOO ppm N O X(gas)- This is found to be 0 = 0.433 ± 0.018. The detection 

limit for NOx(gaS) is about 1 ppm.
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INTRODUCTION AND THEORY
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1.1 Chemical Sensors

An interesting trend of the modem society is the desire to take control. To control the 

level of fluoride in their drinking water, to control the temperature of the office 

building, to control and understand every aspect o f the environment in which they 

live, work and play. This quest requires the acquisition and the processing of vast 

amounts of information associated with different circumstances and different events. 

The complex data manipulation required for this ‘control’ is only conceivable 

because of the super computers so widely available in today’s high-tech world. The 

processing power and data storage facility of these devises far exceeds that of their 

early predecessors. Chemical sensors form part of this information revolution and 

contribute to a data acquisition process in which some insight is obtained about the 

chemical composition of a system in real time. Like most aspects of modem science 

this insight owes its existence to the data processing powers of neoteric computers. 

Without these devices the endless amount of raw data collected could not be 

processed and the subsequent analysis could not be performed.

The term ‘chemical sensor’ can be somewhat misleading and is used in the 

scientific community to describe a variety of devices. For this reason a brief attempt 

will be made to clarify the meaning of the term ‘chemical sensor’ and provide a 

definition for the purpose of this dissertation.

Sensors, in general, can be defined as anything that receives a signal or 

stimulus and responds to it [1]. They can be divided into two main subsets, physical 

sensors for purposes such as measurement of temperature, pressure, or magnetic 

flux, and chemical sensors such as glucose, CO2 gas and pH meters. Physical 

sensors, as their name suggests, respond to changes in the physical environment, a 

temperature increase for example. They offer no correlation between the physical 

change and any chemical reaction that may have caused that change. A chemical 

sensor on the other hand is a device that responds to a particular chemical species 

and can be used for the qualitative or quantitative analysis of that species, in either 

the gas phase or the liquid phase. The useful information obtained is primarily the 

concentration or activity of the species of interest, however, this can often be related 

to other aspects of the system.
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Chemical sensors generally consist of two distinct components that perform 

two separate tasks; these are selection followed by conversion. The first step, 

selection, is the mechanism employed by the sensor to identify and recognise the 

species of interest. The conversion step is the translation of the physical or chemical 

signal generated by the recognition process into a signal that can be recorded and 

interpreted by the operator. The transducer performs this task. Sensors can therefore 

be further categorised by either the mechanism used for selection or the type of 

transducer employed. A brief overview of the various transducers available will be 

presented in the following pages before a more detailed review on the specific 

method employed for the work covered in this dissertation.

1.2 Transducers Utilised in Chemical Sensors

Each individual method of transduction requires a different type of input signal, 

therefore the sensors developed based on each transducer vary considerably in their 

operating conditions and sensitivity. Each type has its own specific requirements, its 

own advantages and disadvantages.

The transducer is the element of the sensor that receives the physical or 

chemical signal generated during the recognition process. The signal is then 

translated and amplified to form an output signal. This output signal is related via 

some mathematical function to the concentration of the target species, hence, a real 

time read out can be obtained of the concentration, and any changes or fluctuations 

in the concentration that may have occurred during the period of analysis. The 

various categories of transducers available are listed and summarised below.

1.2.1 Electrochemical

Electrochemical transducers [2] are the most widely utilised in chemical sensor 

applications. This is probably related to the fact that this is also the oldest group of 

transducers and to date many chemical sensors based on electrochemical devices are 

commercially available. The transducers rely on the variation of an electrochemical 

property within the system. This variation can occur in any of three electrical 

properties, current, conductance and potential difference. The knowledge and
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understanding of these three electrochemical properties can be attributed to the 

works of Heyrovsky [3], Faraday [4] and Nemst [5], with the three properties 

leading to amperometric, conductimetric and potentiometric devices respectively. 

Examples of chemical sensors based on these three electrochemical properties 

include, solid electrolyte gas sensors [6 ] [7] for amperometric devices, 

semiconductor-based gas sensors [8] [9] [10] for conductimetric devices and ion- 

selective electrodes [11] or ion-selective field effect transistors [12] for 

potentiometric devices. The huge scope and amount of work carried out on 

electrochemical sensors means that a simple paragraph can not cover every aspect, 

however, a brief attempt will be made to illustrate the important points and provide 

examples where appropriate.

The greatest advancements have been in the field of potentiometric devices 

and amperometric devices. Commercially available chemical sensors based on 

potentiometric systems find extensive applications in areas such as environmental 

analysis [13], and particularly in the field of medical analysis [14]. Sodium and 

potassium are the two most important electrolyte ions in biological fluids, 

potentiometric chemical sensors are routinely used to analyse solutions for both of 

these ions. The sensors are based on polymer membrane ion-selective electrodes.

The polymer membrane contains a selective ionophore that transports the required 

species across an interface. The K+ ionophore is the depsipeptide antibiotic 

valinomycin which forms a stable 1:1 complex with K+ selectively over Na+. The 

valinomycin membrane transports K+ about 5x103 times greater than Na+. The 

normal range for the concentration of K+ in adult blood serum is about 3.5-5.0 mM 

and the concentration of Na+ about 135-145 mM, thus, this high K+ selectivity, 

imparted by the valinomycin, is vital for the sensors useful application. These 

sensors replaced the flame photometer method previously employed for the clinical 

determination of K+ in blood serum. The ion-selective sensors can be operated in situ 

and without excessive operator training, improving both the ease and speed of 

analysis.

The glucose biosensor [15] is perhaps the most successful amperometric- 

based sensor. The latest developments have realised the ultimate aim of all chemical 

sensor research. The production of a commercially available, hand held, easy to use 

and reliable device. The sensor analyses whole blood for the determination of
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glucose levels and can be used by diabetics without supervision in the privacy of 

their own home. The sensor operates by monitoring the current flow that occurs 

during the glucose oxidase (GOD) catalysed oxidation of glucose to gluconic acid 

[16]. The redox process is mediated by the presence of a ferrocene derivative that 

reproduces the GOD and eliminates the need for oxygen. It is the presence of this 

mediator that led to the final commercial sensor. Previous glucose biosensors relied 

on dissolved oxygen to mediate the redox reaction between GOD and glucose. This 

hampered the biosensor as the oxygen content of blood varies considerably from 

patient to patient. The ferrocene also allowed the redox reaction to be catalysed at a 

lower potential +160 mV as opposed to +600 mV. This also improved the sensor 

reliability, as several impurities in human blood are redox active at +600mV. The 

sensor is sensitive to glucose concentrations down to 2  ppm, diabetics have blood 

glucose levels in the range 360-5400 ppm well above the sensor’s detection limit.

1.2.2 Thermal

Thermal transducers perform simple microcalorimetry as they respond to heat 

generated by chemical reactions. The typical sensors that are available based on 

thermal transducers incorporate a catalytic enzyme reaction [17]. The heat evolved 

from this highly specific reaction is used as the initial signal indicating the presence 

of the target species. The transducer itself is usually a thermistor. These are 

chemically inert, inexpensive, small and very stable [18]. The sensors developed 

based on thermistors, however, have limited sensitivity. They can detect around 

3mM concentrations of the target species. A more promising thermal transducer is 

the pyroelectric crystal [19] [20]. These are crystals that develop opposite charges 

between two faces of the crystal as a result of changes in temperature. They are 

similar to piezoelectric crystals except the potential difference occurs as a result of a 

temperature change rather than a physical stress. Pyroelectric sensors developed in 

the research laboratory had a sensitivity of approximately 10 pW [21]. A 

consequence of this is that the direct measurement of the heat of desorption of less 

than one monolayer of gas is possible [2 2 ].

A third sensor based on a thermal transducer is the catalytic gas sensor [23]. 

These were primarily developed to monitor the concentrations of flammable gases in
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mining safety and are often called pellistors. Structurally these sensors are very 

simple. They consist of a platinum wire passed through a pellet of TI1O2 / AI2O3. The 

pellet is coated with a porous catalytic metal. As gases react at the catalytic layer 

they increase the temperature of the pellet and so increase the resistance of the 

platinum coil. The detection limit for these devices is around 0.5 % v/v in air well 

below the lower explosion limit, (LEL) for most flammable gases. The LEL for 

methane for example is 5%. This made them ideal for applications as warning 

devices in the mining industry for concentrations of methane and other flammable 

gases.

1.2.3 Optical

Optical transducers are devices that can be used for the detection and determination 

of physical or chemical changes by the change in the optical properties of the 

sample. The optical properties that can be measured are absorbance, reflectance and 

luminescence. The technologies available are the same as those found in larger scale 

optical spectrometers such as FTIR, UV-Vis, and fluorescence as well as other 

optical instruments such as light scattering and refractive index devices. The 

improvements in optical fibre technology and advancement with light-emitting 

diodes, LEDs [24], and the miniaturisation of the laser [25] have all had a 

pronounced effect in the field of optical chemical sensors. These provide essential 

components in miniature spectroscopic instruments and light scattering devices. The 

lasers and LEDs provide the small, compact and high intensity light sources while 

the fibre optics provide the means of transporting and trapping both the incident and 

the transmitted or reflected radiation. These devices, however, have their limitations. 

The fibre optic cable limits the region of the electromagnetic spectrum that can be 

transmitted. In the case of silica fibres this extends down from about 60000 cm' 1 to 

only 5555 cm' 1 [26]. The region used to identify organic species in infra-red 

spectroscopy is 4000 cm' 1 to 600 cm'1, well below the range available in fibre optic 

technology. One possible solution to this is to use the organic molecules overtone 

absorbance [27]. These often occur between 8000 cm' 1 and 6000 cm'1; however, the 

overtone absorbance is very low in intensity. An example of a chemical sensor 

employing such technology is the methane gas sensor [28]. The lower explosion 

limit for methane is 5 % and the higher explosion limit is 15 %. The sensor could
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detect methane concentrations at 0.8 % of the lower explosion limit via its overtone 

absorbance. Other sensors developed based on optical techniques include a light 

scattering device for the determination of oil pollution in effluent water [29], a 

reflectance pH sensor based on immobilised bromothymol blue [30] and an ammonia 

sensor based on the changes in absorbance of/7-nitrophenol [31].

1.2.4 Piezoelectric

Piezoelectric transducers are devices that respond to mass or viscoelastic changes. 

These changes can occur in either the transducer itself, on the surface of the 

transducer or in the medium that the transducer is operating. The historical 

applications of such devices in chemical analysis are as either surface mass detectors 

or strain indicators. However, work carried out over the past decade has shown the 

great potential for these devices to operate as selective chemical sensors. The 

application of piezoelectric transducers towards chemical sensing is a new and 

exciting area and has seen great advances in the last few years. This is best illustrated 

by a quote taken from G. J. Bastiaans of Integrated Chemical Sensors, Newton, 

Massachusetts, 1988 [32].

“Piezoelectric devices today play a relatively small role in chemical sensing, but 

there are indications that their use may expand greatly in the future”

To date chemical sensors based on piezoelectric resonators have been 

developed that respond to virtually any chemical species from gases [33], organic 

vapours [34], metal ions [35], proteins [36], organic molecules [37] or inorganic 

molecules [38][39]. The main topic of this thesis is the application of piezoelectric 

transducers towards selective chemical sensors and as such a more extensive review 

chapter follows this brief proem.



1.3 Piezoelectric Transducers

The first observations of an electrical effect associated with a crystalline structure 

can be traced back to the beginning of history itself. The ancient Greeks knew of the 

mysterious attractive power of rubbed amber [40] and the Ceylonese and Indian 

people observed that tourmaline crystals, when placed in hot ashes, first attract and 

then repel the ashes. Europe, however, was a little behind. It was not until 1703 

when tourmalines were first imported from Ceylon that this effect was observed and 

documented.

These observations were all manifestations of the pyroelectric effect, that is, 

the development of charges at the ends of certain hemihedral crystals, such as 

tourmaline, as a result of a change in temperature [41], a phenomenon introduced 

previously. It was the investigation of this pyroelectric effect by Pierre and Jacques 

Curie in 1880 that led directly to the discovery of the piezoelectric effect [42]. The 

scientific discussions concerning the possibility of a piezoelectric phenomenon can 

be traced back to Coulomb (1736-1806), he is reputed to be the first person to 

suggest the possibility of generating electricity by the application of pressure to the 

surface of a suitable material [43]. Around 1820 Hauy [44] and Becquerel [45] 

performed some experiments in which certain crystals showed electrical effects 

when compressed. Their work was merely an observation of the effect, it was not 

until 1880 that this effect was systematically studied.

The two brothers, Pierre and Jacques Curie, had been investigating the 

relationship between pyroelectricity and crystal symmetry, their work had predicted 

the occurrence of electrical polarisation due to the application of mechanical stress. 

They developed a theory explaining the effect that could also be used to predict the 

direction of the applied pressure and to which crystal classes the material exhibiting 

the effect would belong. In later work they supported these predictions with 

experimental data showing the piezoelectric effect in several crystals; zinc blende, 

sodium chlorate, boracite, tourmaline, quartz, calamine, topaz, tartaric acid, cane 

sugar and Rochelle salt.

The piezoelectric effect, however, remained only a scientific curiosity for 

several decades. It was the outbreak of the First World War that saw a flurry in 

activity in the field of piezoelectricity. Langevin applied the principles of



9

piezoelectricity and developed quartz plates to be used as emitters and receivers of 

high frequency sound waves underwater, this led to the creation of sonar and the 

science of ultrasonics [46]. Around the same period it was also realised that the 

piezoelectric crystals could be employed as electrical resonators. If  an alternating 

potential is applied across a quartz plate mechanical oscillations occur with in the 

crystal lattice, these oscillations are only stable at the natural resonance frequency of 

the crystal. Pierce [47] and Cady [48] produced crystal controlled oscillators of high 

stability for use as frequency filters and tuning devices in the radio and 

communications industry.

As one might expect the technology associated with these applications has 

developed over the years. Principally it was the demand from the communications 

and radio industries that led to the ready availability of cheap, reliable, high quality 

crystal resonators which are employed for the analytical and scientific research 

applications. The piezoelectric effect has found extensive applications in a variety of 

forms and functions [49], pressure and force sensors, accelerometers, microphones, 

gas lighters, wave filters, inkjet printers, sonar, timing devices, and “smart 

materials” i.e. active shape, active vibration and active noise control. More recently 

research has focused on the development of novel chemical sensors based on 

piezoelectric devices. It is the chemical sensor application that is the main focus for 

the remainder of this thesis.

1.3.1 Piezoelectric Quartz Crystal Resonators

The crystal structures that will possess the property of piezoelectricity can be 

predicted from crystallographic studies [50][51]. Although a large number of solids 

satisfy the conditions required for only a handful of materials are actually used [52]. 

The material employed for specific applications depends on several physical 

considerations such as temperature coefficients, magnitude of the piezoelectric 

potential, mechanical-electrical coupling constants, the direction and size of the 

piezoelectric displacement etc. In order to develop and enhance these properties 

research into piezoelectric materials has now been extended from ionic crystalline 

solids to include ceramics, polymers and composites [53]. These “new” piezoelectric 

materials have some remarkable properties and as the research continues they will,
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with out doubt, replace the current systems. The quartz crystal resonator is, however, 

the most widely used and most extensively investigated of all the piezoelectric 

devices [53].

BT-cut

Figure 1.1: The assignment o f axis to a quartz crystal and the two 
crystal cuts AT and BT.

A piezoelectric quartz resonator is a precisely cut slab of a single crystal of 

quartz. These can be shorn from either natural or synthetic crystals. The application 

o f an external pressure across two faces of the slab results in the formation of 

internal mechanical stress and produces an electrical potential across the two faces. 

This is referred to as the direct piezoelectric effect [41]. The reverse effect also 

applies, that is the application of external electrical potential results in the production 

o f internal mechanical stress, this is known as the converse effect [41]. Thus, when 

electrodes are attached to the quartz crystal unit and connected to an alternating 

voltage the quartz unit will oscillate at the frequency of the exciting voltage. If the 

frequency o f the driving voltage is very close to the natural mechanical resonant 

frequency o f the crystal unit then the amplitude of the vibration will reach a 

maximum. This also results in the electrical impedance o f the crystal oscillator to an 

AC-current becoming resistive only. These two phenomena enable the quartz 

resonator to be placed in a positive feedback loop o f an oscillating circuit. The 

circuit will then operate at the resonance frequency of the crystal, resulting in an 

extremely stable frequency generator.
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Figure 1.2: A quartz slab oscillating in the thickness shear mode. As 
the acoustic wave propagates it causes displacement in the X- 

direction on the axis defined in the diagram.

At its fundamental resonance frequency the piezoelectric quartz resonator can 

possess several modes o f vibrations. A rectangular solid bar for example may have 

three different vibrational modes; longitudinal (extensional), lateral (shear), and 

torsional (twist) on all three o f the dimensional axes. In addition to the fundamental 

modes o f vibration the system can also oscillate at the overtones o f each mode. 

Further, more complicated modes o f vibration can be formed by the coupling of 

several individual modes, resulting in a set of vibrations that occur in all three- 

dimensions. By cutting the quartz slab from the main crystal in a specific 

crystallographic orientation it is possible to enhance one particular mode o f vibration 

and suppress all others. This orientation o f the cut also has a marked effect on the 

temperature dependence of the resonance frequency.

The mode o f vibration that is most sensitive to mass changes is the thickness- 

shear mode. In this mode o f vibration the two major surfaces vibrate antiparallel with 

each other and are always antinodal, see Figure 1.2. In order to maximise a particular 

mode and suppress all others the slab must be cut from the mother crystal in a exact 

three dimensional orientation. For a thickness-shear mode resonator these cuts 

belong to the rotated Y-cut family, the AT-cut and BT-cut crystals are the most 

extensively used from this group. Over the temperature range of -20 °C to 60 °C the
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AT-cut crystals has been found to have the least temperature dependence on their 

fundamental oscillating frequency [54]. For applications in ranges other than those 

around room temperature different crystal cuts can provide different temperature 

stability.
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Figure 1.3: The dependence o f the cutting angle on the frequency- 
temperature curves for AT-cut quartz crystal resonators.

1.4 The Quartz Crystal Microbalance

The frequency stability o f the quartz resonator is extremely high, typically parts-per- 

billion, consequently they found extensive use in the communications and 

electronics industry. This coupled with the accuracy o f simple frequency 

determination measurements, typically part-per-trillion, meant that the quartz crystal 

resonator became a very reliable highly sensitive device. One o f the advantages of 

the quartz crystal resonator was its fine tuning capabilities. It was soon observed that 

by simply placing a pencil line on the surface o f resonator the frequency of
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oscillation could be lowered. Similarly removing the pencil mark via a pencil eraser 

would restore the initial frequency [55]. The manufacturers produced resonators at a 

frequency slightly higher than that required, allowing the operator to fine-tune them 

to their own standards. This frequency shift phenomenon was not investigated 

systematically for several decades. Sauerbrey [56] was the first to undertake such an 

investigation in the late 1950’s and concluded that there was a simple mass- 

frequency relationship [57]. This relationship was later used as the fundamental 

principle behind the quartz crystal microbalance, a device employed to determine 

film thickness and minute mass changes at the surface of a quartz resonator.

The development of a theoretical model for the quartz crystal microbalance 

can be traced back to Lord Rayleigh [58] and his work on the propagation of sound 

waves and addition of mass to a vibrational body. This laid the foundations for the 

development of a theory relating mass changes on the surface of an acoustic 

oscillator to the shift in the fundamental resonance frequency of that oscillator. Onoe 

[59] applied these theories to the quartz resonator to investigate the general case of a 

quartz plate loaded with a surface film. It was Sauerbrey, however, who suggested 

using a quartz resonator as a sensor to measure film thickness. He showed 

experimentally that, under certain conditions, the frequency shift induced by the 

addition of material to the surface of the resonator was proportional to the mass of 

the added material to within ± 2%. Later work extended the theoretical 

understanding and confirmed the experimental data. This was performed by several 

different groups including, Oberg and Lingensjo in 1959 [60], Behmdt and Love 

1962 [61], Warner and Stockbridge 1962 [62][63], EerNisse 1967 [64], Miller and 

Bolef 1968 [65], and Lu and Lewis 1972 [66][67].

1.4.1 Development of the Sauerbrey Equation

The quartz crystal microbalance, (QCM), as described by Sauerbrey [56] [57] can be 

thought of as a simple piezoelectric resonator coupled to an oscillating circuit. The 

electronic circuit allows for both the driving of the resonator and the determination 

of the fundamental oscillating frequency. An idealised physical model of the 

resonator can be seen in Figure 1.4.
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Figure 1.4: A simplified model o f a QCM resonator

For a quartz plate oscillating in the thickness-shear mode at its fundamental 

resonance frequency the following equation must be satisfied.

t q  —  Y q  /  2  ( 1 )

Where tq is the thickness of the quartz plate and yq is the wavelength o f the shear 

wave propagating in the thickness direction. The effects o f the electrodes are 

neglected in this simplified case. Equation (1) can be rewritten in terms of the 

frequency fq and the velocity vq o f the shear wave.
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f q  t ,  =  Vq /  2  ( 2 )

From equation (2) the resonance frequency shift dfq induced by an infinitesimal 

change in the crystal thickness dtq can be expressed as;

d f q / f q  =  - d t q / t q  ( 3 )

The negative sign indicates that an increase in thickness results in a decrease in 

frequency.

Equation (3) can also be expressed in terms of the mass of the crystal Mq and 

its mass change dMq, thus:

d f q  /  fq =  -  d M q  /  M q  ( 4 )

Sauerbrey made the assumption that for a small mass change the addition of foreign 

material can be treated as an equivalent mass change of the quartz crystal itself. This 

assumption modifies equation (4) to the more general form below.

d f q / f q  =  - d M / M q  ( 5 )

Where dM is an infinitesimal amount of foreign mass uniformly distributed over the 

surface of the crystal. Again this equation can be extended to a more general form 

for an arbitrary addition of foreign mass such as a thin film Mf.

( f c- f q) / fq = - M f / M q (6)

Where £  is the resonance frequency of the quartz crystal with the deposited material.

If the mass per unit area of the deposited film and the quartz crystal are equal 

to mf and niq respectively, then for materials with a spatially uniform density mf and 

niq are equal to the product of thickness and density.

mf = tf pf

I l l q  —  t q  p q

(7)

(8)
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Where pf and pq are the densities of the film and the quartz crystal respectively and tf 

and tq are the thickness of the film and the quartz.

By assuming that — M f /  M q =  m f /  niq and substituting equations (2) and (8) 

into equation (6) then:

nif =  -  ( fc -  5 ,)  pq v q /  2 f^2 (9)

It is more satisfactory to use the term mf, the mass per unit area, rather than 

the absolute mass, Mf, as the resonators do not have a very well defined area. Also 

the piezoelectrically active area has a spatial dependence on the frequency response 

[6 8 ] [69]. If the film density is known then equation (9) can be used to calculate the 

film thickness by substituting equation (7) into equation (9).

Equation (9) has become known as the Sauerbrey equation and is often 

expressed simply by:

A f = -  Cf nif (10)

Where Af is the frequency shift, Af = fc — fq, and Cf is a constant for a particular cut 

of quartz.

Cf =  2 /  (p q Vq ) (11)

Cf is used as the mass sensitivity or calibration constant for a QCM.

For an AT-cut quartz crystal pq = 2650 kg m '3 [70] and vq = 3750 m s' 1 [71].
0 1This gives a mass sensitivity, for a 10 MHz resonator, of 20.13 M Hz m kg' . This 

means that the addition of material equivalent to 4.97 ng cm' will induce a 

frequency shift in the resonator of 1 Hz. The resolution of a number o f frequency- 

determining techniques is several orders of magnitude better than 1 Hz.

The derivation performed by Sauerbrey resulted in a simple frequency to 

mass relationship and leads to several important points. Firstly the QCM monitors 

the mass per unit area or areal density of the deposited film. The area is that covered
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by the overlap of the two electrodes [72]. This is referred to as the piezoelectrically 

active area and is difficult to calculate experimentally. Consequently any attempt to 

estimate the mass of a film that does not have a complete uniform coverage will 

result in the introduction of large experimental uncertainties. Secondly, and more 

beneficially, the mass sensitivity of the QCM is dependent only on the physical 

properties of the quartz, so as long as the deposited material covers the active surface 

completely with an even film then no individual calibration procedure is required. 

The mass sensitivity is also independent of the physical properties of the deposited 

film so the nature of deposition should have no effect on the final outcome. The 

equation was supported by experimental evidence obtained with a calibrated 

electromechanical microbalance and a QCM operating with 14 MHz AT-cut 

resonators [57]. The two microbalances gave values that fell within 2% of each other 

for deposited films over the range 0 -  20 pg cm'2. Several other workers investigated 

the validity of Sauerbrey’s equation by calculating the mass sensitivity Cf of QCMs 

operating with crystals of various resonance frequencies and a variety of deposited 

materials [73]. These results confirm that within the range of mass loads investigated 

Cf is independent of the physical properties of the deposited materials. They also 

show that the Sauerbrey equation only holds for thin rigid films of mass loads ( mf / 

niq ), of less than 2  %.

Although the Sauerbrey equation was supported by extensive experimental 

evidence, the assumptions made during its derivation needed sounder justification; 

the main criticism being the equivalence drawn between the deposition of a quartz 

film, effectively extending the bulk material, and the deposition of a foreign 

material. Sauerbrey assumed that the foreign material acted in identical fashion to 

the quartz itself, it had the same physical and acoustic properties. The only 

justification for this assumption was the fact that the theory fitted extremely well to 

the experimental evidence. In order to support the work by Sauerbrey, Stockbridge 

[63] applied the perturbation analysis developed by Rayleigh [58] to describe the 

effect of added mass to a vibrating entity. He assumed that the mass added to an 

antinode of a vibrating system, such as that at the surface of a quartz crystal 

resonator oscillating in the thickness shear mode, does not store any potential energy. 

This implies that the acoustic wave does not propagate into the deposited film. The 

result of this analysis for a one-dimensional vibrating system with an added mass
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uniformly distributed over the entire surface is a power series, which, neglecting the 

second order and higher terms can be shown to equate to:

(  f c  -  f q  )  /  f q  =  Mf / Mq (12)

This is the same as equation (6) and the Sauerbrey equation.

The two approaches produced identical results, however, the interpretation 

given by Stockbridge still involved assumptions that were difficult to defend. The 

assumption that the deposited material did not propagate the acoustic wave can be 

justified for thin films if  one considers the surface roughness. Typically for a QCM 

resonator this is in the order of 10-100 nm [74]. For a deposited film with thickness 

less than one micron the acoustic wave interaction will be minimal. The 

experimental studies design to test the validity of equation 6 employed much thicker 

films often up to 1.5 mg cm ". This argument is also contrary to the fact that an even 

uniform film is required for accurate mass determination. Another problem 

associated with the Stockbridge equation was the dependence of the higher order 

terms in the power series on experimentally measured constants that had no physical 

interpretation [75]. The two theories did however result in the same conclusion, 

approaching the problem from different angles they both produced the same final 

equation.

1.4.2 The Period Technique

The Sauerbrey equation was used extensively to monitor thin film deposition and a 

range of thin film monitors became commercially available. These devices were, 

however, limited in their practical use due to the break down in the accuracy of the 

Sauerbrey equation for mass loads greater than 2 %. Despite this these devices 

proved to be extremely useful. Their commercial success increased interest in the 

work initiated by Onoe [59] and Sauerbrey [57] with research focusing on 

overcoming the limitation on the mass load. In 1962 Behmt and Love [61] extended 

this mass load to 10 % by replacing fq, the resonance frequency of the uncoated 

QCM, with fQ, the resonance frequency of the QCM prior to deposition. This change
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was introduced because of a common operating practice employed by QCM 

technicians. Material was often deposited onto a resonator that already had a number 

of layers deposited on it. Thus, using the resonance frequency of the uncoated crystal 

introduced a progressive error that could be minimised by employing fQ in place of 

fq. They also suggested that the whole equation should be expressed in terms of the

change in vibrational period, At , where x = 1/f and Ax = ( l/£  -  1/fq).

m f / m q = A x / x q (13)

These simple adaptations resulted in a greater correlation between the 

experimentally deposited mass and that estimated by the QCM. One of the reasons 

for this is in a mathematical approximation present in the original Sauerbrey 

equation. The transformation from frequency, f, to period, X, eliminated this 

approximation [74]. QCM manufacturers adopted the theory put forward by Berhnt 

and Love, which became known as the “period technique”.

1.4.3 The Z-Match Technique

In 1968 Miller and Bolef [65] addressed the problems associated with the derivations 

put forward by Sauerbrey and Stockbridge. For the first time the QCM resonator was 

treated as a composite, with both the film and the bulk quartz interacting with the 

acoustic wave independently. Both Miller and Bolef had worked on the propagation 

of continuous acoustic waves through composite resonators systems [76] and 

developed a strategy for determining the resonance frequencies of the systems. These 

strategies are too complex to be easily analysed, however, a brief attempt will be 

made to summarise their work. They considered the acoustic losses and interface 

reflections associated with a composite resonator and showed that for small mass 

loads their complex equation approximated to the Sauerbrey form. The work of 

Miller and Bolef was extended by Lu and Lewis [6 6 ] in 1972. They introduced the 

terms Zq and Zf to represent the acoustic impedance of the quartz and the film 

respectively. The final form of the Lu and Lewis equation is as follows.
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mf _ Z f  fq
arctan (14)

m q Z q flff Ẑf fq j

Where Zf and Z q are the acoustic impedance of the film and the quartz resonator, ff 

and f, are the resonance frequencies of the QCM with the deposited film present and 

the prior to deposition respectively.

This equation was employed by the third generation film-thickness monitors 

and became known as the Z-Match [77] technique. The first and second generation 

devices were based on the Sauerbrey and Behmt theories respectively. The Z-Match 

technique extended the usable mass load of the resonator to well above 60 %. It can 

be shown that the Z-Match technique encompasses all the previous theories as 

equation (6) and (13) can be developed from equation (14) by successive 

approximations [75]. This is presently the most accurate description of the heavily 

loaded crystal oscillator. The equation indicates that materials with different acoustic 

properties will obey different mass sensitivity on the resonator. Many independent 

authors have substantiated the accuracy of the Z-Match technique [78], however, the 

model is by no means complete. For certain materials a slight deviation is observed 

at mass loads, greater than 40%, these deviations are most likely caused by tensile 

stress in the deposited film. The model also breaks down when the deposited film is 

a viscoelastic material or fluid. This is thought to be as a result of several related and 

unrelated problems for example; the damping of the mechanical wave by the liquid 

or viscoelastic film, trapping of the liquid in surface cavities on the crystal and the 

trapping of tiny microbubbles at the film surface interface. Several later models have 

attempted to address these problems, most noteworthy are those by Benes [75] and 

Mecea et al. [79].

1.4.4 The Energy Transfer Model

In 1979 Mecea and Bucur introduced the Energy Transfer Model (ETM). The ETM 

describes the quartz crystal resonator and the deposited film as one entity. The quartz 

resonator passes vibrational energy to the deposited film that in turn causes the film
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to resonate, some o f the transferred energy is stored in the film and the rest 

dissipated to the surroundings. This differs from the Sauerbrey and Berhnt models 

that viewed the over-layer as an extension to the main resonator, and the Z-Match 

technique that modelled the acoustic wave rather than the acoustic energy coupling. 

For a metallic film the ETM equation can be represented as follows:

fq2 / fc2 =  1 + (  2 m f / m q )  (15)

1.4.5 Implications

O f all the theories describing the mass loaded QCM resonator only the Z-Match 

technique takes into account the acoustic properties o f the over-layer. The nature of 

the material deposited has a greater effect on the resonance frequency as the mass 

load increases. Figure 1.5 below illustrates this fact.
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Figure 7.5: A graphical representation o f the reduced mass, mf /mq, against reduced 
frequency, A f / f q, for different theoretical equations; Sauerbrey equation (9),  

Berhnt equation (13),  Mecea equation (15),  Z-Match Au andAl equation ( 14)  Z 
= 0.381 and Z  = 1.077 respectively, and two experimental sets o f data for the

deposition o f  Au and Al.
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The two materials, Au and Al have acoustic impedance ratio Z equal to 0.381 

and 1.077 respectively, (where Z = Zf /  Zq the acoustic impedance of the film over 

the acoustic impedance of the bulk quartz) [80]. These two different materials follow 

different mass-ffequency curves. The systematic error incorporated into the 

Sauerbrey equation, Berhnt’s period technique and Mecea’s ETM which do not 

include a function to account for different acoustic properties, increases dramatically 

with higher mass loads. This error can be seen graphically in Figure 1.5. When the 

acoustic impedance ratio equals 1 the Z-Match technique approximates to Behmt 

period technique, so for Al equation (13) is an accurate model, however for Au the 

model would break down. The same applies to Mecea’s ETM model, for Au the 

model works well, however, for Al the model fails after a mass-load of around 20 %.

A linear mass-ffequency relationship is assumed throughout the experimental 

work conducted and the data presented within this thesis. The justification for this is 

that the frequency changes induced on the QCM resonators are well below 10 kHz. 

On the graph plotted in Figure 1.5 this corresponds to the frequency-mass region 

below 0.001 A f / f q .  In this region all the theories discussed can be approximated to 

the Sauerbrey equation with the change in frequency proportional to the change in 

mass.

1.5 Liquid Phase Application of the QCM

The successful application of the QCM and the development of a fundamental 

understanding of the oscillating crystal when operated in air or in vacuo encouraged 

the rapid proliferation of the microbalance into the wider scientific community. The 

absolute sensitivity of the QCM to small mass changes on the surface of the crystal 

was soon realised and attempts were made to utilise this inherent sensitivity in a 

variety of different applications. The first application of the QCM resonator other 

than as a film thickness monitor was by Slutsky and Wade [81]. They performed 

limited experiments on the adsorption of gases at the surface of quartz crystal 

resonators with a view to examine the possibility of utilising the resonator as a 

detector for gas chromatography. King [82] later extended Slutsky’s work and 

looked at crystals coated with gas chromatography stationary phases in an attempt to
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introduce selectivity to the frequency response. His approach and results led to some 

interesting conclusions, mainly that the QCM can be successfully applied as a 

selective and sensitive chemical sensor. This was the first application of the QCM as 

a chemical sensor, and as such the subject receives a more extensive review in 

section 1.6 .1.

By the early 1980’s the use of the QCM had extended from that of a simple 

thin film monitor to a huge array of both physical and chemical applications [83]. 

These include, sorption detectors [82], particulate and aerosol analysis [84][85], 

trace metal analysis [86][87], the analysis of polymer-solvent interaction [88][89], 

the quartz crystal pressure gauge [90], and the quartz crystal thermocouple [91].

An interesting finding made by workers applying the QCM in novel systems 

was the discovery that stable oscillation of the resonator can be obtained in a liquid 

phase environment. This was initially thought to be impossible due to the increased 

damping of the liquid at the surface of the resonator preventing adequate energy 

conservation. This realisation led workers to investigate the use of a QCM chemical 

sensor based in a liquid environment. Following the success of King et al. in the 

development of the QCM as a detector for gas chromatography, Bastiaans and 

Konash [92] investigated the potential of the QCM as a detector for liquid 

chromatography. It had been demonstrated by Nomura that, with an appropriate 

oscillating circuit, a quartz crystal resonator can be successfully brought to resonate 

with either one [93], or both [94], of its faces in contact with a viscoeleastic fluid. It 

soon became apparent, however, that the Sauerbrey equation [56] and other models 

[60][65][78] describing the oscillation of a quartz crystal resonator in the gas phase 

or in vacuo were severely deficient when applied to the QCM in contact with a 

liquid. This deficiency was a major issue in the understanding of the QCM frequency 

response in a liquid environment. However, the great potential associated with the 

application of a liquid phase QCM device encouraged several workers to investigate 

the problem. Attempts were made to establish the factors affecting the oscillation of 

the QCM, and to develop a fundamental theory describing its application in contact 

with viscoeleastic fluids.



24

The following sections describe in detail the physical parameters of the 

oscillating medium that effect the fundamental frequency of a QCM resonator 

operating in a liquid environment. These include density, viscosity, temperature and 

conductivity.

1.5.1 Density and Viscosity Effects

Nomura et a l [93] [94] was the first to investigate the oscillation of a QCM resonator 

in aqueous solution. Their work involved examining the factors that influence the 

fundamental oscillating frequency of the resonator. The results showed that the 

frequency was dependent on the density, viscosity and conductivity of the solutions 

[93]. They then extended the investigation to encompass organic liquids and found 

that for a non-electrolyte only the density and viscosity of the solvent influence the 

frequency of the immersed crystal [94]. The experimental procedure involved 

recording the oscillating frequency of the resonator in air then immersing it into the 

appropriate solvent. After a given time interval to allow for stabilisation of the 

oscillating resonator in the new environment, the fundamental frequency was again 

recorded. The value of Af was obtained by subtracting the resonance frequency in the 

solvent from that of the crystal in air. The data was fitted mathematically and no 

physical model was presented to describe this dependence. Their equation took the 

following form;

A f = a p l/2 + bTi,,z + c1/2 (16)

Where Af is the frequency change with respect to air, p is the density and rj the 

viscosity of the solvent, a, b and c are constants depending on the crystal.

Nomura et a l [95] [96] [97] demonstrated that with suitable calibration 

techniques, this lack of theoretical understanding can be negated and the QCM used 

in a variety of liquid phase analytical applications, for example metal ion assay 

[98] [99] and iodide determination [100]. The dependence of the oscillating 

frequency on the density and viscosity of the oscillating solution was also
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demonstrated by Bastiaans and Konash [92] in their work on QCMs as liquid 

chromatography detectors.

The development of a relationship based on a purely theoretical model that 

successfully described this frequency dependency was achieved by Kanazawa et al. 

[101]. He predicted that as the density and viscosity of water increased, the 

frequency of an oscillating crystal with only one face exposed to the solution would 

change according to the following equation.

A f = - f03/2 (pL T|L /  7t p n ) 1/2 (17)

Where Af is equal to the frequency change with respect to air, f0 the resonance 

frequency of the unloaded crystal, pL the fluid density, t | l  the absolute viscosity of 

the fluid, 7i = 3.142, p is the density of the quartz and \x is the shear modulus of the 

quartz crystal.

The model was based upon the analysis of a damped shear wave propagating 

into the bulk solution that is coupled to the shear motion at the surface of a 

resonating crystal. The theoretical derivation of the equation is too complex to 

reproduce here and equation (17) is the ‘linear liquid limit* applicable only when 

(piTIl) 1/2 is less than 20 [102]. The theory was, however, substantiated by two sets of 

experimental data. Kanazawa used aqueous solutions of glucose and ethanol to 

produce density and viscosity variations in a series of solutions and then compared 

the frequency change of a QCM resonator immersed in the solutions with those 

predicted from equation (17) [101].

Around the same time Bruckenstein and Shay [103] predicted a similar 

relationship between the resonance frequency and the density and viscosity of the 

oscillating fluid.

Af = - 2.3 x  10"6 n fq3/2 ( t)L Pl) 1/2 (18)
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Where Af is the frequency change with respect to air as the crystal is immersed in 

solution L, n is the number of faces exposed to the solution (either one or two), fq is 

the fundamental oscillating frequency in air, rjL and pL are the dynamic viscosity and 

density of the solution respectively.

They also demonstrated that during electrochemical experiments where the 

density, viscosity, specific conductivity and temperature of the oscillating solution 

were maintained the mass sensitivity of the QCM was as predicted by the Sauerbrey 

equation. This was achieved by investigating the electrodeposition of silver and 

comparing the data from the QCM frequency drop with the galvanostatic and 

potentiostatic methods. The technique employed by Bruckenstein et al. became 

known as the electrochemical quartz crystal microbalance (EQCM) and is now a 

well-defined electrochemical tool. The device operates with the QCM acting as a 

working electrode in a conventional three electrode experiment and allows for the 

quantitative analysis of the electrical double layer structure and any deposited mass 

that may occur during electrochemical experiments. The EQCM has also been used 

to monitor mass transport processes that accompany redox reactions in thin films 

deposited on the QCM surface. EQCM applications have been extensively reviewed 

elsewhere and as such will not receive close attention in this thesis. For more 

detailed reviews see [ 104] [ 105][ 106].

The work of Bruckenstein and Shay on the mass sensitivity of the QCM 

operating in the liquid phase led to another important application of the device as a 

thin-film dissolution rate monitor. Hinsberg, Willson and Kanazawa [107] were the 

first to propose the use of the QCM in such away. They studied the influence of the 

photoproducts on the dissolution kinetics of photoresists by monitoring the rate of 

loss of an unexposed and exposed film from the surface of a QCM resonator rinsed 

in a developing solvent. The results showed the QCM to be a general and convenient 

tool for the determination of thin film dissolution rates and that it can be applied to a 

large range of materials including polymers and metals. Today many examples can 

be found in the literature where the QCM has been employed as a thin film 

dissolution monitor [108] [109].
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1.5.2 Conductivity Effects

The observation made by Nomura et a l [93] that the conductivity of the solution had 

an effect on the oscillating frequency of the QCM was much more difficult to 

quantify. Unlike the density and viscosity dependence the conductivity dependence 

could not be fitted to an empirical mathematical formula similarly reproducible 

results were difficult to obtain. They found that with the QCM operating in water or 

an electrolyte solution the fundamental resonance frequency was influenced by 

temperature and electrical fields to a greater extent than when it was operated in a 

non-electrolyte. The frequency of oscillation was not only dependent on the 

temperature of the solution but also on the temperature of the oscillating circuit. 

Similarly, different designs and types of oscillating circuit had different temperature 

dependence. The variation between the frequency response of different oscillators 

was most apparent in the frequency versus conductivity profiles for the QCM 

operating in aqueous solutions of different salts [100]. For the application of the 

QCM in solutions these differences can be eliminated by careful calibration, 

however, the dependency of the oscillating crystal on solution conductivity is still 

unanswered and posses a major problem for any theoretical interpretation. As 

Kanazawa and Melroy [106] pointed out “ this conductivity effect would be a very 

serious additional contribution to the frequency shift; it would have to be understood 

in order to preserve the quantitative interpretation of frequency shift data ”.

Kurosawa et al. [110] undertook an extensive investigation of the 

dependence of the liquid phase QCM and confirmed that for non-electrolytes the 

density and viscosity were the only influencing factors. They also showed that for 

aqueous salt solutions and viscous polymer solutions the simple density-viscosity 

relationship broke down. In recent years this conductivity dependence has become 

know as an acoustoelectric effect [111] and has been described as arising from the 

fringe field effects associated with the oscillating electrodes [112][113].

In conductive liquids the operation of the QCM appears to be influenced by 

the electrical properties of the solution. It is believed that the acoustic wave interacts 

with the ions and dipoles of the solution through the induced electrical potential on 

the resonator surface. It is known that an acoustic plate mode (APM) device 

operating in solution will interact with ions and dipoles close to the plate-liquid
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interface as the acoustic wave propagates along the plate surface. APMs are 

piezoelectric resonators that operate with both electrodes on the same surface of a 

piezoelectric plate. The acoustic wave is stimulated via the initial electrode and 

received by the second. As the wave propagates between the two electrodes its 

influence can be observed on the opposites face of the plate. Induced dipoles created 

from the piezoelectric displacement of the crystal lattice develop on the opposite face 

to the electrodes, these dipoles propagate with the acoustic wave and interact with 

the medium that the surface of the plate is exposed to. For electrolyte solutions the 

velocity shift and attenuation of the APM can be related to the conductivity of this 

medium [114], a series of equations and a sound theoretical description can be 

applied to account for these interactions [115]. However, this interaction is 

minimised for the thickness-shear wave devices employed with the QCM as the 

oscillating plate has electrodes on both faces, the surface dipoles induced by the 

acoustic vibration are essentially masked by the potential applied to the plate surface. 

However, at the edge of the electrodes there is a region where the acoustic wave 

propagates with no electrode masking. This region is very small as the amplitude of 

the acoustic displacement decays exponentially from the edge of the electrode [116], 

however, sufficient electrical fields can be established to couple with fields in the 

electrolyte solution encouraging energy dissipation to the medium. This 

acoustoelectric coupling can dominate the energy losses of the oscillating QCM and 

lower the resonance frequency [117].

The effect of conducting solutions on the liquid phase application of the 

QCM is still not clearly understood. Not only are there no suitable theories 

describing the dependence, but the origin of the frequency shift is also unclear. 

Nomura [93] and Yao [118] observed that the temperature and electrical 

environment of the oscillating circuit as well as the resonator itself effect the 

fundamental frequency. These suggest that the origin may be unrelated to any 

physical characteristics of the piezoelectric resonator and rather a consequence of the 

means of oscillation and frequency determination. These observations are supported 

by the lack of reproducible data in the literature. Rodahl [113] claims that only the 

parallel resonance frequency of the QCM is influenced by the conductivity of the 

liquid, and that the series resonance is unaffected. However, the QCM utilised by the 

author operates at the series resonance and can be shown to have marked
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conductivity dependence. Other workers have also presented data showing the 

dependence of the series resonance on solution conductivity [lll][118][119].O na 

more positive note the acoustoelectric response can be utilised for sensor 

applications. In liquid phase chemical sensing applications the acoustoelectric 

response of the QCM can be removed by simple calibration procedures and in some 

cases may even be used as the major influence on the frequency shift to create a 

conductivity or particular ion concentration sensor [118]. The uncertainty 

surrounding the effect will however continue to limit the quantitative interpretation 

of frequency shift data connected to the application of the QCM in electrolyte 

solutions.

1.5.3 Conclusion

It has been shown that QCM resonator can be successfully operated with either one 

or both of the resonator faces exposed to a viscoelastic fluid. The fundamental 

oscillating frequency of the resonator is dependent on the density, viscosity and 

electrical conductivity of the oscillating medium, as well as the viscoelastic 

properties of any over-layer on the surface of the resonator. The temperature 

dependence of the fundamental frequency is a lot greater than that of the same 

resonator operating in vacuo. Not only does the temperature effect the quartz 

resonator directly through the crystal lattice, but also indirectly by the temperature 

dependence of the density, viscosity and conductivity of the oscillating medium.

As with the gas phase application, the inherent sensitivity of the QCM and 

the accuracy of the frequency determining elements make the liquid phase 

application an extremely sensitive and versatile device. The very fact that the final 

oscillating frequency is coupled to the trio of physical parameters described above 

has hindered the development of a sound theoretical understanding, however, this 

dependence will also increase the potential application of the oscillating resonator. 

With careful calibration procedures and the use of multiple resonator arrays it should 

be possible to monitor and to remove these influences selectively. The overall mass 

sensitivity of the resonator has been shown to be the same as that predicted by 

Sauerbrey or more completely by the Z-Match technique. However, with the
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exception of an acoustically thin rigid over-layer such as that obtained with the 

electrical deposition of a metal, the viscoelastic properties of the surface layer have a 

much greater contribution to the fundamental oscillating frequency than the surface 

mass. Again with careful calibration and well-defined surface structures this 

dependence can be utilised to form a sensitive chemical or physical sensor.

Overall the potential application of the liquid phase QCM is as great, if  not 

greater, than the application of the gas phase counterpart. At present the theoretical 

understanding is incomplete, however, the practical research and analytical 

applications are proving to be very rewarding.

With regards the applications developed throughout the work presented in 

this thesis the extra response associated with the viscoelastic properties of the over

layer will be utilised to enhance the response of the aqueous K+(aq) sensor. The 

conductivity changes associated with the cations in solution will also contribute to 

the overall response. Two reference systems are used, a blank resonator with no 

coating and a resonator coating containing no crown-ether groups. In the solutions 

used the frequency of these two reference systems and that of the developed sensor 

are dominated by the conductivity of the solution. The responses of the two 

references are therefore utilised to interpret the response of the final sensor.

1.6 QCM based Chemical Sensors

The application of the QCM as a transducer for chemical sensors has received 

considerable attention in recent years. The sensitivity of the device to mass or 

viscoeleastic changes at the surface of the QCM resonator has long been appreciated. 

Typically, for a 10 MHz resonator operating in the gas phase, frequency 

measurements can be recorded with a sensitivity of approximately ± 0.01 Hz [120]. 

Given an overall response for the QCM of 4.97 ng cm*2 Hz' 1 this frequency 

sensitivity corresponds to the detection of less than 10 % of a H2 monolayer on the 

surface of the resonator. This clearly illustrates the great potential of the QCM to act 

as a transducer for chemical sensors.
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QCMs are well established in the field of thin film monitoring [121][122]. 

They have also found other applications as detection devices for atmospheric 

particulates and aerosols [123] [124]. More recently, work has been carried out to 

develop specific chemical sensors based on the QCM [125] [126] [127]. These 

function on the principle that the QCM monitors small changes in mass. By 

modifying the surface of a resonator with a film that will selectively bind a particular 

species a sensor can be developed for that species. The majority of sensors reported 

are designed to operate in the gas phase, for example organic vapour detection 

[128][129] and electronic nose systems [130]. The nature of the selective coating 

employed covers a whole range of chemical and physical properties, examples 

include metals [131], metal oxides [132], metal-complexs [133], polymers 

[134][135], and host compounds such as porphyrins [136], cryptands [137], crown 

ethers [138] and cavitands [139].

The study of liquid phase systems has been more limited due to the 

difficulties in maintaining satisfactory operation of the QCM resonators in a highly 

damping, viscous fluid. These problems have been largely overcome by the design of 

suitable electronic circuits [140] and the application of sensor systems where only 

one face of the resonator is exposed to the viscous fluid. The majority of liquid phase 

sensors involve the use of biological recognition species such as lectin-sugar [141] 

and avidin-biotin [142] interactions. Such devices fall under the general heading of 

biosensors [143]. Man-made recognition species such as calixarenes [144][145], 

crown ethers [146], a variety of polymers [147] and molecularly imprinted polymers 

[148] have also been employed as recognition membranes for aqueous QCM sensors.

This chapter reviews briefly the historical development of QCM based 

chemical sensors. The major steps in the design and application of the devices and 

the evolution of the sensor system from a simple gas phase microbalance to a highly 

sensitivity and selective chemical sensor, for use in both the gas phase and in 

solution. The compounds used as selective coatings and the relative success of 

different approaches will be discussed, as well as some indication of the lower 

detection limits and overall sensitivity o f the developed sensors.
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1.6.1 Gas Phase Chemical Sensors

As mentioned previously the first application of the QCM as a chemical detector 

rather than a thin film monitor was in 1962 by Slutsky and Wade [149]. They 

conducted several experiments on the adsorption of gases onto the surface of a QCM 

resonator and fitted the accompanying frequency changes with simple isotherms.

The results showed the QCM resonator to be sensitivity to surface adsorption 

phenomena. King [150][151] initiated the concept of applying such adsorption 

studies to the QCM coated with a selective binding layer. He used piezoelectric 

resonators coated with different gas chromatography stationary phases. Since these 

phases had proved to be useful in partitioning various gases on a column King 

proposed that they would be capable of interacting with the same components of a 

gas stream while on the surface of the resonator. The frequency of the resonator 

would then depend on the interaction parameters of the coating and the target species 

in the gas stream. A selection of coating materials employed, and the species they 

responded to can be seen in Table 1.1 below.

Resonator Coating Response and Selectivity

Squalene, Silicone oil Hydrocarbons non-selective

Polyethylene glycol and Dinonyl 
phthalate

Selective for aromatic, oxygenated or 
unsaturated polar molecules

Silica-gel, Zeolites and Hydroscopic 
polymers

Selective for water vapour

Table 1.1: Resonator coatings used by King fo r  the application o f  the QCM as a gas 
chromatography sorption detector [151].

As the species pass over the resonator both adsorption and absorption would 

occur and increase the mass of the coating. This in turn changes the fundamental 

resonance frequency of the oscillator. The QCM proved to be a useful detector. They 

could be operated in a range of temperatures from around 0 °C to 200 °C, with a 

variety of carrier gas systems including helium, nitrogen and air. Another advantage 

was their extremely long operating lifetimes. QCM water-analysers have regularly
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been in service for more than 5-years without fouling or poisoning, the detector 

lifetime does not become an important issue in the instrument performance [152].

Several workers followed up this initial investigation and developed systems 

to calculate interaction and partition parameters for the response of the QCM 

detectors [153][154][155]. Karasek et al. [153] reported the performance 

characteristics of a coated resonator and minimum detectable concentrations of a 

number of materials. These included alkanes, aromatic hydrocarbons, simple ketones
O £

and esters, over the range 2 x l 0 ‘ g to 8 x 1 0 '  g. He also described the response of 

the coated resonator to a compound eluted from a gas chromatography column by 

the following equation [156]:

A  =  C M / y P ° F  (19)

Were A is the area under the response curve, M is the total weight of the eluent, y is 

the activity coefficient of the eluent in the coating, P° is the vapour pressure of the 

eluent at the operating temperature, F is the carrier gas flow rate, and C is a constant 

characteristic of the detector temperature, piezoelectric resonator and resonator 

coating. The equation highlights some of the problems associated with QCM gas 

chromatography detectors. The sensitivity of the detector decreases with increasing 

temperature whereas retention times for gas chromatography columns increase with 

a decrease in temperature. This means that a compromise must be reached between 

retention time and sensitivity. Another consequence is the dependence on vapour 

pressure, as the vapour pressure of the eluted compound decreases the detector 

sensitivity increases, however, a suitably high vapour pressure is a prerequisite for 

gas chromatography.

Janaghorbani et a l [154] described the response of a coated resonator in 

terms of the partition constant of the coatings to vapours dissolved in a gas flow. The 

authors assume the detector is connected to the outlet of a gas chromatography 

column and that the peak response is related to an imaginary plug of the sample-gas 

mixture. The equation they derived describes the behaviour of the resonator 

employed in gas or liquid chromatography under conditions that approximate to 

equilibrium:
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A y =  - C f K y x V x M t / F  (20 )

Where Ay is the area under the peak due to component y, Cf is the constant 

describing the frequency change (Af) of the resonator due to the addition of mass 

(AM) to the surface (Af = -  Cf AM) [56], (see the development of the Sauerbrey 

equation section 1.4.1, page 13) and Kyx is the partition coefficient of the gas y in a 

stationary phase x, described by the ratio:

M yx / M y  =  K yx (2 1 )

Where Myx is the mass of gas y in a unit volume of the resonator coating, x, at 

equilibrium, and My is the mass of gas y in a unit volume of the gas phase. Vx is the 

volume of the coating x present on the sensitive area of the resonator. Mt is the mass 

of the gas contained within the detector volume when it is at equilibrium with the 

coating and F is the flow rate of the gas stream. Excellent linear relationships 

between Ay and an injected volume of an organic solvent were obtained for several 

solvent-solute systems, for example octane, heptane, hexane and pentane with a 

squalene-coated resonator. Other theoretical predictions presented include response 

times and the effect of temperature on the sensitivity of the detector.

1.6.2 Liquid Phase Chemical Sensors

The application of the QCM in liquid phase systems is more complicated than the 

gas phase application. Damping of the piezoelectric oscillation and propagation of 

the acoustic wave into the surrounding medium causes instability in the fundamental 

frequency (see section 1.5 for a more detailed discussion). Initial liquid 

chromatography detectors based on the QCM avoided this problem by spraying 

samples of the liquid chromatography eluent directly onto the surface of a QCM 

resonator [157]. The solvent evaporates rapidly leaving any residual low vapour 

pressure solute on the surface. The mass deposited can then be calculated and used to 

determine the relative concentrations. The complete sampling time for one cycle was 

approximately 60 seconds and the method was unsuitable for many applications.
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Bastiaans and Konash [158] developed a simpler liquid chromatography 

detector. They incorporated a piezoelectric resonator directly in the outlet flow of a 

liquid chromatography column. The detector responded to density and viscosity 

gradients associated with the presence of a solute in a solvent system. As the solute 

passes over the surface of the resonator these gradients induce a frequency shift in 

the resonator. These non-specific interactions can be used as the bases of a detector; 

however, a much more useful and versatile device would be a sensor that responds 

selectively to a specific species. An attempt was made by Bastiaans and Konash 

[158] to introduce this selectivity. They employed a reference resonator in the same 

sampling procedure and subtracted the response of the working resonator from that 

of the reference, in this way the density and temperature effects could be removed 

from the resonator response. Coating the working resonators with a compound that 

possessed a specific binding potential then controlled the surface adsorption 

properties of the solute targeted. The system employed by Bastiaans et a l  was 

designed to detect small nonpolar organic molecules in an aqueous flow. By coating 

the reference resonator with long chain hydrocarbons a sensor system was 

developed. The small nonpolar molecules partition from the aqueous flow and 

penetrated the organic coating inducing a frequency response. All responses 

associated with density and viscosity gradients in the eluent flow were removed and 

the frequency response induced solely by the surface interaction of the target species,

Overall it was concluded that piezoelectric sorption detectors offer efficient, 

sensitive, cheap and reliable sensor systems for analytes in both gas phase and the 

liquid phase applications. The foundations laid by the work of Slutsky [149], King 

[150], Karasek [153], and Edmonds [155] showed the versatility of the QCM 

detector. Over the next few decades a variety of different coatings were used to 

introduce greater selectivity and enhance sensitivity of the detector response. In the 

following sections the relative successes of these approaches are reviewed as well as 

the type and design of the selective coatings employed.
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1.7 Polymer Coated QCM Sensors

Polymer coatings have been used extensively in conjunction with QCM resonators to 

produce chemical sensors. The polymers form an interface between the surface of 

the resonator and the external medium, and offer a versatile method for controlling 

the partitioning and binding of molecules from the external source to the surface of 

the resonator. Generally the polymer coating has one of three functions:

I, Non-selective adsorption membranes

This involves the polymer coating interacting with species such as volatile organic 

compounds (VOCs) either in the vapour phase or in solution. The VOCs partition 

onto the surface of the resonator and induce mass and viscoeleastic changes in the 

polymer layer. These changes in the polymer membrane induce a shift in the 

resonance frequency of the QCM.

II, Matrix or encapsulation membranes

This involves the polymer coating forming a stable and inert matrix for 

encapsulating a host compound. The host selectively binds a target species from the 

external medium. The polymer matrix is simply an anchor to hold the host 

compound in position, preventing dissolution or evaporation. The membrane is not 

directly involved in the sensing mechanism.

III, Selective adsorption membranes

The polymer coating can also be used directly as the host species. By developing 

polymer chemistry and structural composition that impart selective binding 

potentials to the coating.

The range of polymers and copolymers available for such applications is 

extensive. Their variety in structure, chemistry, solubility and reactivity leads to a 

huge array of potential systems. Examples of these three applications and the 

polymer systems employed are presented in the following paragraphs.
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1.7.1 Non-selective Adsorption Membranes

The most common use of polymer coatings with QCM based chemical sensors is a 

non-selective adsorption membrane. The resonator is typically coated by dissolving 

the polymer or copolymer in a volatile solvent and depositing a known quantity onto 

the surface either by dip-coating [159], spin-coating [160], air brush or by placing a 

drop of the solvent polymer mixture directly onto the QCM surface [161][162]. The 

solvent evaporates leaving a known quantity of the polymer coating on the resonator. 

The system is very simple and easy to perform; however, the deposited film is very 

heterogeneous in nature and has a problem with reproducibility. The process 

involves many variables such as evaporation rate, film thickness, solution 

concentration etc. These all affect the final sensor response. However, the procedure 

is routinely used and is effective as an initial investigation of a sensor response.

The sensors can potentially be operated in both the gas phase and in solution 

phase, but the polymer must be insoluble for solution phase application. This 

requirement limits the use of such sensors in solution phase systems; however, the 

solubility limitation can be avoided by either cross-linking of the polymer or by the 

covalent attachment of the polymer to the QCM surface. These are the two methods 

chosen to coat the K+(aq> sensor discussed in Chapter Three of this thesis. Table 1.2 

summarises the use of polymer coatings with QCM resonators and lists the species 

analysed by the final sensors.

The different recognition sites available in the polymer chains lead to 

different adsorption equilibrium between different types of analytes. As an example 

aromatic and aliphatic compounds can be differentiated using polymers with 

phenylated groups. The aromatic molecules interact strongly with the arene groups 

present in the polymer coating and induce a larger frequency response compared to 

the aliphatic molecules. The sensors tend to have a detection limit in the area of 10- 

100 part per million (where 1 ppm is equal to 1 pg cm' ), however some researchers 

reported detection limits as low as 1 pg dm' 3 for the vapour phase systems [135].

The characterisation of a sample, either vapour or solution can be achieved with a 

sensor array consisting of several individual sensors coated with different polymer
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systems. For every sample mixture an individual response pattern for the whole array 

is recorded [162]. This can then be fed into a pattern recognition program and used 

to analyse more complex mixtures [163]. In such away the identification of complex 

vapour mixtures has been achieved with QCM based chemical sensors, for example 

the identification of spice aromas [164].

Target Compounds Polymer Coating Reference

VOCs gas phase

Poly(3-hydroxybutyric acid) 
Poly(dimethylsiloxane) 
Poly(phenylmethylsiloxane) 
Poly(aminopropylmethylsiloxane)

[160]
[165]
[166] 
[126]

Phenols gas phase Poly(vinyl pyrrolidone) [135]

Poly(ethyl acrylate) [167]
Poly(epichlorohydrin) [165]
Poly(trimethyloxyproylsilane-
octadecyltrimethoxysilane)

[165]

Poly(octadecyl methacrylate) [168]
VOCs in water cis-1,4-Polybutadiene [145]

Poly(ethylene-propylene-styrene) [145]
Poly(styrene) [145]
Silicone OV225 [145]
Poly(triethoxyhydroxysilane) [169]
Polyimide [166]

Alcohol vapour Poly(methyltrimethoxysilane) [170]

Table 1.2: Non-selective polymer coatings used to produce chemical sensors.

1.7.2 M atrix Encapsulation Membranes

One of the potential applications of host-guest chemistry is in the development of 

selective chemical sensors [171]. The incorporation of a host species into a 

transducer capable of converting signals from the host to a signal that can be easily 

recorded or interpreted by a human operator would lead to an effective sensor. As 

the guest interacts with the host the signal is produced, indicating the presence of the 

guest species and its relative concentration.

One of the major obstacles limiting sensor production is the lifetime of the 

selective coating [172]. Simple films of the host species can rapidly deteriorate. If
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the molecules have limited adhesion to the surface of the transducers, the thin films 

can erode with only mild abrasion. A useful way to ameliorate film lifetime is to 

incorporate the host species into a polymer layer [173]. This encapsulation improves 

film-transducer adhesion and protects the host from physical erosion and chemical 

attack.

Eamples of host species encapsulated in such a way are the cyclodextrins 

[126], for more details on cyclodextrin compounds see section 1.8.6. Wessa et a l 

[126] used 50 % w/w of a modified y-cyclodextrin embedded in a polysiloxane 

backbone containing phenyl, vinyl, and methyl groups. A QCM resonator was 

coated with the polymer-host mixture using the spray technique mentioned earlier. 

The cyclodextrin used had been extensively studied using conventional gas 

chromatography (GC). When employed in a GC stationary phase the cyclodextrin 

could separate three chiral anaesthetics, (deflurane, isoflurane and enflurane) from 

their biologically inactive isomers. The response of the QCM sensor was in excellent 

agreement with the data obtained from the GC system. The encapsulation of the 

cyclodextrin molecules in the polymer matrix led to only a minor loss in the sensor 

response but greatly improved the sensor and film lifetime.

1.7.3 Selective adsorption membranes

The process of encapsulating host compounds in a polymer matrix has been shown 

to improve the long-term stability of the host-guest sensor. The method does, 

however, have its limitations. Although the film lifetime is increased, leaching of the 

host and other low molecular weight materials from within the polymer film can still 

occur. This leads to deterioration in the porosity of the film and the overall 

sensitivity of the sensor. Also for liquid phase applications of the sensor the host 

compound still suffers severe dissolution if used in a highly solvating medium. By 

attaching the host species directly to the polymer backbone via a covalent link the 

lifetime of the selective membrane will be increased greatly. The host may also act 

as a plasticiser increasing the free volume of the polymer chains and so improving 

the porosity of the film. This also increases the host’s availability for binding 

[174][175].
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Dickert et al. [176] covalently attached cyclodextrin macrocycles to a 

polyurethane backbone and used the polymer as a selective interface on the surface 

of a 10 MHz QCM resonator. The sensor had enhanced selectivity for gaseous 

xylene isomers with full reversibility and response times of less than 5 minutes.

They also attached/?-te/ra-butylcalix[6 ]arene (see section 1.8.1) in a similar system. 

Again the selectivity induced into the sensor response by the presence of the 

calixarene were probed with the o-, m- and ̂ -xylene isomers. The embedding of the 

larger macrocycles into the polymer matrix opened channels within the network 

increasing the specific surface area and acting as a porogen. The two sensors had 

detection limits of about 50 ppm.

Another method used for the production of chemical sensors utilising 

polymer coatings with specific binding potentials is the application of molecularly 

imprinted polymers, MIPs [176][177]. Molecular imprinting [178][179] is a 

technique used to create polymer networks that have cavities of precise size and 

shape to complement a target molecule. The cavities can also have functional groups 

arranged in a 3-dimentional (3-D) orientation to interact with complementary 

functional groups on the target molecule. Due to the size, shape and 3-D interactions 

the cavities selectively rebind the target species from either the gas phase or in 

solution.

The most favourable transducers for use in association with MIPs are the 

piezoelectric based devices such as the surface acoustic wave (SAW) and the QCM. 

These transducers are sensitive to mass or viscoelastic changes on the resonator 

surface and the binding of a target compound into the MIP cavity can be monitored 

by the associated mass change. The MIP polymers are readily synthesised on the 

surface of the resonator, and by their very nature afford a chemically inert, rigid 

system, insoluble in any solvent or environment. These properties make the MEP- 

QCM combination an ideal system for the preparation of simple hand-held chemical 

sensors [177]. QCM resonators coated with polyurethane imprinted with THF have 

been shown to have a selective response for THF vapours over other solvents [180]. 

Changing the solvent used during the polymerisation process can alter the selectivity 

of the MIP. If the polyurethane is imprinted with ethanol or ethyl acetate then the 

coated QCM sensor responds selectively for ethanol and ethyl acetate respectively 

[180].
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The simplicity, versatility and compatibility of the MIP technique with the 

QCM transducer make the two an ideal match. The non-covalent imprinted polymers 

now offer a universal solution for sensor technology as well as in their main 

application of chromatography. MIP based sensors have not yet made their way into 

the commercial market but the result obtained from the current research efforts 

suggest that these polymers have a bright future [181].

1.8 Selective Host Compounds

The selectivity of any QCM based sensor is achieved by placing an interface 

between the surface of the QCM resonator and the oscillating environment. The 

interface is designed to possess a selective binding property and interacts with only 

one component of the sensor’s external environment. This introduces selectivity to 

the sensor as a whole as a signal is only recorded as a consequence of the interaction 

of the interface with the target species.

Host-guest chemistry is an ideal mechanism for introducing this selective 

binding affinity. The variety of compounds available and the range of target species 

are constantly increasing, with a huge amount of research being involved in the 

general field o f molecular recognition. In theory any one of the host-guest systems 

available can be readily incorporated within a QCM based chemical sensor.

This section takes a brief look at the types of host compounds used to date. 

The recognition mechanism involved in the binding process and their suitability to 

QCM sensor technology. The discussion opens with a look at calixarene based 

systems. These compounds have been extensively employed in conjunction with the 

QCM transducer. The work covered progresses from the simple gas phase sensors to 

more sophisticated liquid phase sensors and the use of self assembled ordered 

monolayers. This is particularly relevant to the cyclodextrin sensor system under 

investigation in Chapter 4 of this thesis and as such receives greater attention. 

However, due to the nature of the experimental conditions it was not possible to 

compare the response of a sensor operating in both environments.
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1.8.1 Calixarenes

Calixarenes [182] [183] are cyclic organic molecules. Named from the Greek, Calix-, 

meaning a cup, they are composed of aryloxide repeat units connected to form a 

macrocyclic structure. In most cases the ring has between 4 and 8 aryl units. At the 

centre of the ring is the cavity that gives these molecules their molecular recognition 

capabilities and selective chemistry. By controlling the number of aryloxide repeat 

units the dimensions of the internal cavity can be varied. The chemistry and the 

chemical environment of the cavity is dominated by the aromatic systems of the 

repeat units but can also be mediated by changing the functional groups on the rim 

and on the base of the calixarene molecule, see R and R ' respectively in Figure 1.6. 

The naming of calixarenes follow the general form of R-calix[n]arene-R', where R is 

the functional group at the open end of the cavity, these vary considerably but some 

standard examples are /-butyl and /-amyl. R ' is the group at the base of the cavity 

attached to the arene ring via the phenolate linkage for example methylether (-OMe). 

The [n] refers to the number of aryloxide repeat units and is usually between 4 and 8 .

OR’ R'O

OR' R'O,

R Figure 1,6: The general^tructure o f  calixarene molecules.

The cavity can be both hydrophilic and hydrophobic depending on the nature 

of the phenoxide protons. This gives the molecule the ability to bind small organic 

compounds or transport metal ions through a hydrophobic interface [184].

Calixarenes have been extensively employed in the field of chemical sensors 

[185][186][187]. Their applications are in the general field of organic vapour 

detection although some work has also been published concerning their metal-ion 

complexing ability [188] [189], The transducers utilised include optical devices 

[189] [190] as well as QCM based systems [144] [145].
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1.8.2 Calixarene Vapour Phase Systems

Hartmann e ta l  [191] coated a 10 MHz QCM resonator with the calixarene t- 

butylcalix[4]arene-teframethylether and compared the frequency response of the 

resonator with that of a similar resonators coated with poly(3-hydroxy-butyric acid) 

or w-pentadecyl-thioglycolate. The resonators were mounted in a gas flow system of 

2 0 0 0  ml/h and exposed to five different organic vapours; methanol, acetonitrile, 

chloroform, benzene and styrene. The results presented were very limited and 

allowed only qualitative analysis. The calixarene coating had an increased sensitivity 

towards all five of the analytes when compared to the other organic coatings, and 

had a response five times greater for acetonitrile. This apparent selectivity for 

acetonitrile is consistent with the organic vapours binding within the cavity of the 

calixarene molecule. The X-ray crystal structure of the solid calixarene-acetonitrile 

complex [192] shows the linear CH3CN molecule bound perpendicular in the cavity 

with its CN group extending down towards the phenlate calixarene groups. The 

profile of the frequency shifts was also markedly different for the calixarene system 

compared to the others. The peaks obtained had an extended desorption phase of up 

to 600 seconds whereas for the polymer system and the thioglycolate system the 

desorption phase was completed by approximately 100 seconds. This suggests the 

analyte binds to the calixarene film in a manner unavailable in the polymer and the 

thioglycolate films.

The results of the work carried out by Hartmann et al. showed the potential 

of the calixarene systems to function as a binding interface on the surface of the 

QCM resonator and illustrates their improved sensitivity and selectivity compared to 

other non-specific interfaces such as polymer coatings. The specific binding of the 

organic vapours had a marked effect on the frequency profile of the resonator during 

exposure to the vapours; the slow desorption and the total peak height being the 

main examples.

1.8.3 Calixarene Liquid Phase System

Following the success of the vapour phase system Lucklum et a l extended 

Hartmann’s work to examine the liquid phase application of QCM-calixarene based
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sensors [145] [193]. They tested a variety of calixarenes with a selection of organic 

analytes to investigate the response of a QCM coated resonator to trace amounts of 

the analytes in seawater. The experimental procedure was very simple. The 

calixarenes were coated onto the resonators by airbrush. A known volume of a 

predetermined concentration of the calixarene dissolved in chloroform, 

trichloroethanol or methanol was sprayed onto the surface of the resonator. After 

evaporation of the solvent a thin film of calixarenes remain on the resonator. The 

calixarenes used, and the analytes tested can be seen in Table 1.3.

Calixarenes Selected

r-Butylcalix[6]arene, f-Butylcalix[8 ]arene, f-Amylcalix[8]aren-acetate, 

£-Butylcalix[8]arene-octaacetate, f-Butylcalix[8 ]arene-aceticmethylate, 

f-Butylcalix[8]arene-dibenzylether

Target Analytes Investigated

Trichloroethylene, Dichloroethylene, Chloroform, Dichloropropane, 

Trichloropropane, Benzene, Toluene, Pyridine, Octane, Methanol

Table 1.3: List o f  calixarenes studied and target analytes selected as potential water
pollutants [193],

After coating, the resonators were mounted in a flow cell though which 

seawater was pumped. A premixed solution of seawater and the analyte investigated 

was intermittently blended with the seawater flow. As with the vapour phase system 

the presence of the target species in the flow induced a frequency shift in the QCM 

resonator. The detection limit of a selection of the calixarenes to the target analytes 

can be seen in Table 1.4.
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Target Analyte Calixarene Coated

z-nonyl

calix[8]arene

f-amyl

calix[8]arene

f-butyl

calix[8]arene

Trichloroethylene 0.8 ppm 0.3 ppm 0.2 ppm

T etrachloroethylene 0.1 ppm 0.06 ppm 0.1 ppm

Chloroform 1.9 ppm 0.5 ppm 0.6 ppm

Benzene 2.8 ppm 0.8 ppm 0.6 ppm

Toluene 1.0 ppm 0.4 ppm 0.5 ppm

Dichloromethane 3.7 ppm 1.0 ppm 1.1 ppm

1,2-Dichloroethane 2.2 ppm 0.6 ppm 0.5 ppm

1,2-Dichloropropane 2.3 ppm 0.6 ppm 0.5 ppm

Table 1.4: Detection limits o f 10 MHz QCM resonator coated with calixarenes, 
to aqueous solutions o f  the target analyte [193].

The detection limits quoted by Lucklum et a l are comparable, and in some cases 

better than, the current detection limits of other sensors developed to detect 

hydrocarbon pollutants in aqueous solutions [194]. However no comparison was 

made between the liquid and vapour systems and so it was unclear whether the 

sensitivity of a calixarene system to specific organic compounds is independent of 

the local environment.

1.8.4 Ordered Monolayers of Calixarenes

An improvement on the coating technique employed by Lucklum et al. is the so- 

called self assembled monolayer (SAM) approach utilised by Cygan et al. [144]. 

SAMs form spontaneously on gold surfaces when exposed to several thiol containing 

molecules [195]. They offer a general mechanism for the production of highly 

ordered pseudo-crystalline monolayers of compounds on the surface of gold 

electrodes. The surfaces of the gold electrodes on QCM resonators offer an ideal
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application for SAMs and an opportunity to incorporated the highly ordered 

structures within a chemical sensor device.

4 -

Figure 1.7; The t-butylcalix[4]arene-tetrathiolate synthesised 
by Cygan et a l [144].

Cygan synthesised /-butylcalix[4]arene-te/rathiolate, see Figure 1.7, and used 

this compound to form a SAM on the surface of a QCM resonator. Infrared external 

reflection spectra, IRS, single wavelength ellipsometry and contact angle 

measurements were used to investigate the SAM structure. These all confirmed the 

ordered crystalline nature of the film and the orientation of the calixarene molecules. 

The arene ring is parallel to the surface with the /-butyl groups extended away from 

the gold as illustrated crudely in Figure 1.8. A similar sensor was prepared with the 

standard phenolate calixarene, /-butylcalix[4]arene. This is incapable of forming a 

SAM and instead forms a randomly oriented surface layer. The two sensors were 

employed in a flow cell similar to that described previously, and exposed to aqueous 

solutions of several organic molecules. The concentration of the aqueous solutions 

was in the part-per-million range.

The results demonstrated the effect of the orientation of the calixarene cavity 

on the sensor selectivity and overall sensitivity. The SAM sensor had an increased 

response for the alkylbenzenes; o-xylene, w-xylene, p-xylene, and toluene. Typically 

a response of 1-3 Hz was obtained for the sensor on exposure to 0.5 mmol dm '3 

aqueous solutions of non-alkylbenzenes compared to a response of 10-15 Hz on 

exposure to 0.5 mmol dm '3 aqueous solutions of the alkylbenzenes mentioned. Using
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the Sauerbrey equation [57] the frequency response was converted to the moles of 

the analyte bound, this was found to yield a 1:1 binding ratio between the calixarene 

cavity and the alkylbenzenes. In contrast the /-butylcalix[4]arene film had a response 

of 2-6 Hz for all the anayltes and a maximum binding ratio o f anaylte : calixarene of 

1:2 .

Figure 1.8: A representation o f an ordered self-assembled-monolayer o f the
cal ixarene-tetrathiolate.

1.8.5 Cavitands

Cavitands are another class o f synthetic organic molecules with enforced concave 

surfaces, or cavities. The cavities o f these species can be used as interesting and 

versatile molecular receptors. The compounds are capable o f forming host-guest type 

complexes with an array of aliphatic or aromatic species in the gas phase, solution 

phase or solid phase [196][197]. The main interaction parameters are hydrophobic 

van der Waals forces, dipole-dipole interactions and the CH- -tc interactions. As with 

the calixarenes by modifying the chemical functionality around the cavity rim the 

molecular recognition capabilities of the cavitand can be tailored to selectively bind 

target analytes. These modifications can take place on both the upper and low rims, 

see Figure 1.9.
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X Upper Rim
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Lower Rim

Figure 1.9: The general chemical structure o f cavitands and a representation o f 
their shape, cavity and functional group orientation.

Because of their selective binding properties towards organic solvents cavitands have 

been applied in chemical sensor membranes [198] [199] [200]. Dalcanale et al. [201] 

first investigated the potential for cavitand coated QCM sensors for the detection of 

volatile organic compounds. Their initial study yielded promising results [139]. 

Modifying the functional groups on the cavitand surface had a marked effect on the 

frequency response of the coated sensor. Comparing the sensor response of the 

modified cavitands to organic vapours these effects were systematically studied. The 

cavitand they utilised can be seen in Figure 1.10.

The paper first investigated the effect of deepening the cavity of the basic 

cavitand shown in Figure 1.9. This was achieved by adding the four diaza- 

naphthalene units to the upper rim. The organic vapours used to probe the cavitand 

coated sensor were; hexane, ethanol, acetonitrile, chloroform, tetrachloromethane, 

nitromethane, THF, benzene, cyclohexane, butanone and ethyl acetate. They showed 

that reducing the number of diazanaphthalene bridging units (from four to three, two, 

one and finally zero) had only a minor effect on the sensor response to chlorinated 

and aromatic compounds. Typically a reduction of about 3 % of the sensor response 

was observed for each bridge unit removed, the total frequency response was around 

100 Hz for a 200 ppm solvent vapour concentration. A significant change in the 

frequency response pattern was only observed for the organic solvents that could not
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contribute a CH - tt interaction, namely nitromethane, ethyl acetate and acetonitrile. 

These compounds doubled their frequency response on removal of all the bridge 

units.

^11111111114,

Figure 1.10: The chemical structure and shape o f the cavitands use by Dalcanale

[ 139].

The second investigation looked at the effect of changing the substituents on 

the lower rim of the cavitand. The lower rim of the te/ra-diazanaphthalene cavitand 

was modified with R = methyl, R = hexyl, R = phenyl and R = phenoxybutyl. These 

modifications were found to have a much more pronounced effect on the sensor 

response. The phenyl derivatised cavitand had virtually no response to any of the 

vapours. The frequency shift was below 20 Hz in all cases compared to frequency 

shifts of between 100-200 Hz for the tetra-hexyl cavitand. The tetra-methyl cavitand 

also had a very minor response to all the probes, less than 60 Hz. In all cases the 

tetra-hexyl or the te/ra-phenoxybutyl cavitands had the largest response, typical 

values were greater than 100 Hz. In general the changing of the hexyl groups to 

methyl groups reduced the sensitivity to most analyte vapours. The same trend could 

be seen in the changing of the phenyl groups to phenoxybutyl groups.

Both experiments indicated that it is the chemical nature of the lower rim that 

has the greatest influence on the interaction of the cavitand with organic vapours. 

However it is worth mentioning that the deposition of the cavitand film was carried



Figure 1.11: An illustration o f the tetra-phenyl and tetra-phenoxybutyl derivitised
cavitands

out with the evaporation method. This involves the application of a solution of the 

cavitand in a suitable solvent to the surface of the QCM resonator via an airbrush, 

followed by simple solvent evaporation. This method results in a film with no 

directional order, a random orientation of the cavitands. Although some self- 

assembly may occur it is unlikely that the cavitand will be placed on the QCM 

surface orientated as shown in the diagrams, so the labelling of the upper and lower 

rims is arbitrary. Only the chemical modifications on the lower rim of the cavitand 

induced a variation in the selectivity profile of the coated sensor, it can therefore be 

assumed that only this region is involved in the vapour binding. This is supported by 

previous work. In several systems guest molecules have been observed residing in 

sites other than the central cavity of host molecules [202]. X-ray crystal structures of 

cavitands with pendant alkyl chains have found molecules such as acetone and 

dichloromethane bound within the chains as opposed to the cavity [203] [204].

Pinalli et al. adapted the basic cavitand shown in Figure 1.9 to develop a 

chemical sensor for the detection of C1-C5 alcohols [205]. They introduced a 

hydrogen-bond donor group, P = 0 , to interact with the alcohol -O H  group forming
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the P = 0- • H -O -R  hydrogen bond. The orientation of the arene cavity, the CH- • -n 

interaction and the traditional hydrogen-bond system all combined to increase the 

binding potential of these cavitands to small alcohol molecules.

X

X

X

Figure 1.12: The modified cavitand employed by Pinalli [205] showing the presence
o f the P=0 group and its orientation.

The contribution to the binding potential that arose from the pre-organised 

cavity and spatial functionality was investigated by the structural isomers of the 

cavitand. The hydrogen-bond donor was orientated towards the cavity and away 

from the cavity. This simple shift in geometry of the P = 0  donor resulted in a five

fold drop in sensitivity for all the alcohols investigated. The sensor response to each 

alcohol increase slowly with the addition of more -C H 2-  units, methanol had the 

lowest sensitivity and 1-pentanol had the highest sensitivity. The typical response, to 

3000 ppm alcohol vapour, of a sensor coated with the cavitand shown in Figure 1.12, 

were 60 Hz, 80 Hz, 110 Hz, 150 Hz and 400 Hz for methanol to pentanol 

respectively. The structural isomer with the P = 0  facing away from the cavity had 

typical responses of 2 Hz, 3 Hz, 5 Hz, 20 Hz and 80 Hz respectively. They 

concluded that the response of the two diastereomeric-cavitands clearly showed the 

simultaneous presence of the two binding interactions, and that these combined to 

give a remarkable increase in the response of the sensor to linear alcohols. Their 

strategy o f ‘focusing’ interactions, so those molecules located in a molecular 

receptor can be suitably entrapped, can be utilised to produce highly selective 

supramolecular mass sensors.
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1.8.6 Cyclodextrins

Another group of molecules with a well-documented cavity is the cyclodextrins 

[206]. These are cyclic amylose structures that usually containing 6 , 7 or 8 glucose 

units, as shown in Figure 1.13. The three common cyclodextrin molecules are a-, p-, 

and y-cyclodextrin and consist of 6 , 7 and 8 member rings respectively. The cavity 

ranges in size from about 0.4 nm diameter in the case of the a-cyclodextrin to 0.8 

nm in the y-cyclodextrin. The depth of the cavity is the same for all three, 

approximately 0.8 nm.

HO

Figure 1,13: Molecular structure o f  a-cyclodextrin and a schematic representation 
o f  the shape o f  the molecule with the primary and secondary hydroxyl groups shown.

The upper rim of the cavity has two slightly different orientated secondary hydroxyl 

groups, one attached to the glucose carbon numbered 2 angled inwards and one on 

carbon number 3 angled outwards. The lower narrower rim has the primary hydroxyl 

groups projecting outwards. These functional groups allow various chemical 

modifications to be made to the basic cyclodextrin molecules via simple primary and 

secondary hydroxyl chemistry. The cyclodextrins are well known for their 

complexes in solution, especially aqueous medium. They form simple 1:1 cage type 

complexes with a variety of species ranging from the noble gases to large organic 

molecules [207]. The exact nature of the complex varies from molecule to molecule. 

Stable complexes are known with large species that have one end of the guest

OH

HO
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molecule protruding out of the cavity, similarly, smaller species such as methanol 

form complexes containing one or more water molecules co-complexed. 

Cyclodextrin derivatives have been used to separate organic vapours with gas 

chromatography columns, enantiomers have also been successfully resolved in such 

away [208].

The variety of ring sizes and functional group modifications available offer 

great scope for developing host-guest interactions and creating highly specific 

systems. For these reasons cyclodextrins have been studied for a whole range of 

potential applications such as enzyme mimics, drug delivery [209] and chemical 

sensors [210][211]. Their application in combination with a QCM, however, seems 

slightly limited. Ide et al. [212] successfully used a QCM resonator coated with 

cyclodextrin to discriminate between two optical isomers in the gas phase. It was 

shown that a sensor produced using a phospholipid layer or a cellulose film in place 

of the cyclodextrin film had no difference in response to the two isomers. The results 

confirm the molecular recognition capabilities of the cyclodextrin cavity and the 

chiral nature of the compound.

Dickert et al. [213] utilised the cyclodextrin to monitor the formation of 

Grignard reagents. The cyclodextrin was attached to a polymer support coated onto a 

QCM resonator. The resonator was placed in a reaction mixture and used to detect 

the reactant chlorobenzene. The sensor response was linear in the range 10-500 ppm 

with respect to chlorobenzene and could determine the end point of the Grignard 

reaction to within 2 %. Another advantage of the sensor over other devices was its 

on-line capabilities, the ability to supply a real-time read-out for the analyte 

concentration. The problem of coating selectivity was negated in this instance, as 

only one potential analyte would interact with the cyclodextrin in the reaction 

mixture.

More recently several works have used SAW devices coated with modified 

cyclodextrins to examine volatile organic species (VOCs) [214] [215]. Yang et al. 

[215] used SAMs of p-cyclodextrin on SAW surfaces and exposed these surfaces to 

a selection of VOCs. In general the sensor could detect vapours down to 100 ppm 

concentrations. The largest response was for the perchloroethylene and toluene with 

the smaller molecules such as methanol and acetone having the lower responses. 

They concluded that by incorporating molecular recognition reagents such as
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cyclodextrins and their derivatives into sensing layers SAW sensors with high 

sensitivity and selectivity can be obtained.

The lack of work published on QCM based sensors coated with cyclodextrin 

material is surprising. Considering the success of SAW coated devises and other 

chemical sensing applications of cyclodextrins as well as the potential for chiral 

recognition, cyclodextrins should offer ideal solutions for QCM based chemical 

sensors. For this reason the response of a-cyclodextrin and P-cyclodextrin coated 

resonators to VOCs, and more specifically alcohol vapours will be explored in 

chapter 3. This is with a view to establishing the groundwork for a more extensive 

investigation utilising derivatised cyclodextin compounds in both gas phase and 

liquid phase sensor applications.

The results of several QCM sensor experiments involving the binding and 

molecular recognition potential of cavitands, calixarenes and cyclodextrins were the 

subject of a published correspondence [216]. In the article Grates et a l  point to the 

lack of a control in most of the QCM sensor reports. They present data to suggest 

that the interaction and selectivity profiles observed are in some cases due to general 

dispersion interactions of the vapour with the sensor-vapour interface and are 

therefore not true cases of molecular recognition. A fundamental difficulty in 

attempting to use host-guest or lock and key interactions to obtain selective gas 

phase sensors is that the main interaction between the host and the guest molecules is 

driven by solvating parameters and partition coefficients. These interactions take 

place between the guest and any part of the host interface; they do not depend on the 

nature of the pre-organised cavity. For example, the interactions available between a 

solvent molecule and the cavitand surface will be the same as those available 

between a solvent molecule and a non-cyclic polymer or oligomer of similar 

chemical functionality. Such polymers could be used as control membranes 

demonstrating whether the presence of the pre-organised cavity increases the binding 

potential of such molecules to these surfaces. These conclusions do not exclude the 

possibility that the presence of a pre-organised cavity may perturb the selectivity 

patterns expected solely on the grounds of dispersion interactions. The total binding 

potential will be the sum of all interactions, of which dispersion interactions may 

well be the dominant factor. In some cases these may prove to be useful in sensor 

development. A trend has developed in recent years to move away from the
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investigations of single sensor device with highly selective binding potentials and to 

focus instead on the development of sensor arrays. The arrays consist of a number of 

individual sensors each coated with different absorbing membranes such as 

polymers, dendrimers and sol-gels. These membranes are non-selective and absorb 

or adsorb many different chemical species indiscriminately, however, the response 

pattern of the whole array will be indicative of a particular analyte. The response of 

the whole array to a given analyte or analyte mixture is then recorded and processes 

by a pattern recognition program or artificial neural network. These systems 

recognise ‘smells’ in a similar way to the human olfactory system and are proving to 

be of great potential in the field of chemical sensors, electronic nose and electronic 

tongue devices.

1.8.7 Clathrates and Inclusion Complexes

In the previous examples of QCM based selective chemical sensors the molecular 

recognition was achieved within a cavity. The cavity was present in a larger 

macromolecule and supplied both size and shape selectivity as well as functional 

group orientation. Another potential source o f species recognition are clathrate 

compounds [217] and both organic and inorganic inclusion complexes.

Clathrates are compounds in which a guest molecule is physically trapped in 

the crystal lattice of the host species. The interaction between host and guest is often 

limited to van der Waals forces. Other more energetic interactions such as hydrogen 

bonding and dipole-dipole interactions can also occur between the host and the guest 

species. Reinbold et a l [218] used the clathrate structure of bis-fluorenyl derivatives 

and lactic acid as selective vapour sorption membranes on QCM resonators. The 

QCM was used to determine the host-guest ratio of the clathrate-vapour complex, 

and to examine the internal phase transitions that occur during formation and decay 

of the clathrate-vapour complex. The clathrate coated resonator was also employed 

as a chemical sensor responsive to the organic vapours that form complexes with the 

compounds used. The sensitivity and selectivity of the sensors was not quoted but 

the frequency changes in the resonator on exposure to the analytes were fast and 

reproducible. A further investigation involved modifying the clathrate host in such 

away as to induce greater selectivity in the vapour uptake. This was achieved by the
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addition of bulky f-butyl groups distorting the crystal lattice and limiting clathrate 

formation. A system was developed that could selectively uptake cyclohexanone or 

dioxane in the presence of methanol, ethanol, 1-butanol, acetone, THF and 

trichloromethane. Reinbold et a l also claimed some chiral separation when single 

enantiomers of the host were employed to form the clathrate lattice [219]. A minor 

drawback to the systems studied by Reinbold et al. was the observation that 

quantities of the clathrate host were lost from the crystal lattice during exposure of 

the crystal interface to the organic vapours. This is a consequence of using relatively 

small molecules with an appreciable vapour pressure, and one reason why sensor 

coatings tend to consist of larger macromolecules such as calixarenes and cavitands. 

This loss of material resulted in the occasional random frequency shift and would be 

a major concern for the sensor lifetime. However the chiral recognition potential of 

clathrates crystal lattice could prove to be extremely useful in the field of chemical 

sensors.

1.8.8 Transition Metal Complexes

The selective chemistry of transition metal complexes has also been employed as the 

basis for a QCM chemical sensor. Several inorganic compounds have the desired 

properties for application as selective binding membranes, fast, reversible and 

selective interactions. Current work concerning the fixation of atmospheric CO2 for 

organic synthesis has involved the development of transition metal complexes that 

react reversibly with CO2 gas. The /ra«s-[carbonylhydroxy-6zs(triphenylphosphine)- 

rhodium(I)] species is stable under standard atmospheric conditions [220]. The 

interaction between CO2 and this rhodium complex can be considered to be 

molecular recognition due to the highly selective nature of the binding. Li et al.

[221] [222] coated the complex onto the surface of a QCM resonator via the standard 

dip technique using dichloromethane as the solvent. The resulting sensor had a 

pronounced frequency response to CO2 gas but only a limited sensitivity. The lower 

detection limit was approximately 500 ppm. The sensor was also influenced by the 

presence of atmospheric impurities such as water, SO2 and NH3. The author 

suggested that the sensor head could be manufactured under a dry atmosphere, 

packaged and sealed before storage, and unsealed by the end user. This is a rather 

complex procedure and economically unsound. In general the use of inorganic metal
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complexes for either gas phase or liquid phase selective QCM based chemical 

sensors has be largely unexplored. The selective and reversible binding potential of 

these metal centres should in theory be ideally suited to chemical sensor 

applications. As with most chemical systems a comparison can be drawn with nature, 

all of the natural processes that involve the recognition and use of gases such as O2 

and CO2 have transition metal complexes at the heart of the chemistry. Without a 

doubt the use of such complexes in man-made chemical sensors will increase rapidly 

over the coming years.

1.8.9 Crown Ethers

The crown ether compounds are well known for their metal ion chelating ability. 

They have found a variety of applications mainly as phase transfer catalysts [223] 

and extraction reagents [224] but also in more elaborate areas such as membranes for 

ion-selective electrodes [225]. However, their use as selective host material in QCM 

based sensors have been limited to vapour phase VOC detection [226] [227].

As with the majority of the work discussed so far the crown ether host 

compounds were deposited using the dropping technique and the sensor response 

determined by the exposure of the coated resonator to a mixture of the VOCs in an 

air stream. The results obtained were similar to those reported for the other host 

VOC systems and so will not be discussed al length here. Battenberg et al. 

developed an interesting variation of the system [228]. They compared the response 

of the standard crown ether polymer coatings with that of the metal loaded crown 

ether polymer. The results shown a 1000 times increase in the sensor response to 

alcohol vapours in the presence of the metal loading. They also employed porphyrin 

based coatings in a similar fashion.

As with cyclodextrin based sensors the lack of published data on crown ether 

systems is surprising. They are known for their Group I cation binding ability and 

yet have only been employed as vapour phase VOC detectors. For this reason the 

subject of QCM based, Group I metal ion sensors, utilising crown ether systems is 

the main topic of this thesis. Chapter Three describes the sensor systems developed. 

The binding ability of the crown ethers and the factors influencing this are discussed, 

followed by a detailed account of the fabrication of the sensor and the response 

studies undertaken.
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1.9 Conclusion

The papers discussed in this section illustrate the binding and molecular recognition 

capability of a range of host molecules. These have been successful translated into 

selective chemical sensors via the QCM transducer. The development of the QCM 

calixarene systems is representative of the general trend; firstly the application of a 

vapour phase system followed by the progression to the liquid phase and subsequent 

fine tuning of the chemistry to produce an acceptable chemical sensors. The initial 

development of a vapour phase system is probably as a result of the improved 

stability and greater fundamental understanding associated with the vapour phase 

application of QCM transducers. This reinforces the observation that a greater 

understanding of the liquid phase QCM transducer is a prerequisite to any sound 

commercial development. Improved theoretical description and greater stability will 

lead to more versatile and more selective liquid phase sensors.

The variations of the response of the host-coated sensors and their correlation 

with the chemical modification of the molecules confirm that the frequency response 

is associated with the binding of target species within or around the central cavity. It 

is clear that the host-guest interactions relate to the frequency change of the 

resonator and that the use of selective binding is an excellent way of introducing 

selectivity to the QCM response for both liquid phase and vapour phase systems.

The selective binding can be used as a simple mass change, as in the case of MIP 

coated sensors, or as a means of inducing a viscoelastic change in the coating, as in 

the case of the phase transitions associated with clathrates.

The work presented and discussed in the following chapters is concerned 

with the development of both vapour and liquid phase QCM chemical sensors. The 

sensors make use of the host guest relationships associated with the crown ether 

compounds and cyclodextrin compounds as well as ordered Langmuir-Blodgett (LB) 

layers of smaller organic molecules. The crown ether based systems were developed 

as selective aqueous metal ion sensors, the LB coated systems as selective gas phase 

sensors and the cyclodextrin based systems as general VOC sensors. Each system 

will be discussed in turn with the relevant background and experimental detail after 

discussion of the general principles of the set up used.
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2.1 Introduction

The research carried out during the project involved a variety of different areas. 

These include copolymer syntheses, uptake studies, the sensor fabrication and 

response studies both in the gas phase and in the liquid phase. The experimental 

details of the main points common to these studies are presented here. A more 

detailed discussion on the methodology used for the individual studies is presented at 

the relevant points in the specific chapters that follow.

The section opens with the details of the quartz crystal microbalance 

employed. The operating conditions and frequency stability are discussed. This is 

followed by a general account of the other analytical equipment utilised, chemicals 

purchased and synthetic procedures that were followed.

2.2 The Quartz Crystal Microbalance

The QCMs were built ‘in house’ by Dr Mike Bailes. They are based on the standard 

transistor oscillator circuit shown in Figure 2.1. The design incorporated two 

individual resonators, these being the reference and the working with the difference 

between the two being the frequency output. The QCM functions with 10 MHz 

resonators as this is the region the oscillating circuit operates.
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Figure 2.1: Shows a diagram o f the electrical circuit used in the QCM.
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The resonators are placed in a positive feedback loop and oscillate at the frequency 

o f lowest impedance. This is often referred to as the series resonance. The frequency 

output from the QCM was recorded on a desktop PC running QBasic and fitted with 

a Metrabyte IEEE analogue-to-digital interface card. 10MHz, AT-Cut, thickness 

shear, quartz resonators were used as purchased from International Crystal 

Manufacturing Co, Inc, Oklahoma City, Oklahoma. These consisted o f a 15.0 mm 

diameter quartz disc coated on either side by a 4.5 mm diameter circular electrode. 

The electrodes had a 50 A Cr under-layer on the quartz surface and a 1000 A Au top- 

layer. The Cr interface improved adhesion o f the gold to the resonator surface.

Figure 2.2 shows the general appearance o f the resonators.

The connections to the oscillating circuit were made via two screw adapters 

joining the QCM to the two base pins; these pins were connected to either electrode. 

The active piezoelectric area is that covered by the overlap o f the two electrodes and 

only mass changes in this region effect the QCM frequency. The mass sensitivity 

decays rapidly at the edge of the electrodes [229].

Figure 2.2: A schematic representation o f  the QCM resonators.

Once connected the resonators were mounted in individual flow cells and 

placed within a Faraday cage along with the oscillating circuit. Three different flow 

cells were utilised throughout the QCM response experiments. These are illustrated 

in the appropriate sections later in the thesis. Briefly two liquid phase systems (the 

batch chamber and a flow injection analysis cell) and one gas flow cell were utilised. 

The QCM set up and the Faraday cage can be seen in Figure 2.3. The dual resonator
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Figure 2.3: The QCM set up for the batch method

system increases the overall stability of the recorded frequency by eliminating the 

changes associated with external conditions such as temperature. The reference is 

generally exposed to the same operating environment as the working resonator with 

the difference between the two being the recorded frequency. Not only does this 

eliminate unwanted frequency shifts but it also reduces the recorded frequency from 

10MHz down to the kHz region. As the frequency change o f interest is typically 

below 1kHz this facilitates data manipulation. The stability o f the QCM frequency 

output can be seen in Figure 2.4. This was typically ± 0.2 Hz in the gas phase with a 

baseline drift of approximately 0.5 mHz sec' 1 and ± 5 Hz with a drift o f 20 mHz sec' 1 

in liquid phase systems.
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Figure 2.4: The stability o f the QCM frequency output for a resonator oscillating in
air.



2.3 Analytical Instrumentation

'H- and'}C-NMR 

Mass spectroscopy 

CHN

SEMandX-PES

AES

GPC

DSC

NMR spectra were recorded in CDCI3 or C 5D 5N  on a Varian 

400 mercury system spectrometer using TMS as the reference.

Mass-spectrometry was conducted on a Micromass VG 

autospec. Typically both El and FAB+ ionisation were used.

Elemental analysis was conducted on a CarloErba 1106.

SEM images and X-PES data were obtained on a JEOL 6310 

scanning electron microscope.

Aqueous metal ion concentrations were determined using 

atomic emission spectroscopy (AES) on a Varian AA275 

instrument using standard calibration techniques.

GPC analysis was carried out by RAPRA on a polymer 

laboratories GPC-210 using DMF as the solvent and 

poly(methylmethacrylate) as the standard.

Differential Scanning Calorimetry was carried out on a TA 

instruments 2910 DSC. Aluminium pans were employed with 

the lids crimped. An empty pan of equal mass was used as the 

reference.

FTIR FTIR was carried out on a Perkin Elmer spectrometer.
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2.4 Syntheses

Except where indicated all solvents were purchased from Aldrich as HPLC grade 

reagents and used without further purification. AIBN was purchased from BDH 

Chemicals Ltd. a-Cyclodextrin and P-cyclodextrin were purchased from Fluka. All 

chemicals were used without further purification. M illi-Q P]Us 185 water was used 

throughout for the production of aqueous stock solutions and the sensor response.

2.4.1 Crown Ether Monomer Synthesis

Acryloyl chloride, 96% purity, was purchased from Aldrich and used with no further 

purification. 2-(Aminomethyl)-15-crown-5 and 2-(aminomethyl)-18-crown-6 were 

also purchased from Aldrich with 97% and 95% chemical purity respectively. 

Sodium carbonate was purchased from Fisons Laboratory Reagents and dried in an 

oven at 120 °C prior to use.

Synthesis o f acrylamidomethyl 18-crown-6,1

Dried Na2CC>3 (approximately 5 g) was added under N2 to dry 1,4-dioxane (25 cm3). 

The solution was allowed to stand with stirring for a 10 minutes before the addition 

of 2-(aminomethyl)-18-crown-6 (1 g). This was followed by the addition of acryloyl 

chloride (1 cm3) in three equal aliquots over a period of 2 hours. This solution was 

left, with stirring, at room temperature, under N2 for a further 3 hours before being 

filtered. The Na2CC>3 was washed with chloroform before being discarded and the 

chloroform added to the reaction mixture. The reaction mixture was then reduced via 

vacuum distillation to constant mass. The product was viscous yellow oil with a 96% 

yield.

• 1H NMR [6.2, 6.2, 5.5 ppm alkene protons, 2.7 integration. Multiplet 3.2-3.8 

ppm, ring protons, integration 25].

• 13C NMR [165 ppm C carbonyl, 130 ppm CH alkene, 125 ppm CH2 alkene, 70- 

65 ppm CH2 ring, 40 ppm CH2 amine].

• FAB Mass Spec (M+H)+= 348.2 [calculated = 348.4].

• CHN: 55.2C, 8.3H, 3.9N [calculated 55.3C, 8.3H, 4.0N].
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Synthesis o f acrylamidomethyl 15-crow>n-5, 2

The same procedure was repeated substituting 2-(aminomethyl)-15-crown-5 for 2- 

(aminomethyl)-18-crown-6 using identical mass ratios. The product was very similar 

in appearance with a yield of 80%.

• *H NMR [NH proton, integration 1, 6.8  ppm. Alkene protons, integration 3, 6.1,

6.2, 5.6 ppm mutliplet. Ring protons, integration 19, multiplet, 3.4-3.8 ppm].

• 13C NMR [166 ppm C carbonyl, 132 ppm CH alkene, 126 ppm CH2 alkene, 72-

66  ppm CH2 ring, 42 ppm CH2 amine].

• FAB Mass Spec (M+H)+= 304.2 [calculated = 304.2].

• CHN: 53.0C, 7.6H, 3.6N [calculated 53.1 C, 7.9H, 4.4N].

2.4.2 Cross-linked Crown ether Copolymer Resin

In a typical procedure the crown ether monomer 1 (0.9g), ethylene-glycol- 

dimethacrylate, EGDMA, (7g), acrylic acid (2g) and AIBN (O.lg) were dissolved in 

200 cm acetonitrile under N2. The solution was heated to 65 °C with stirring for 24 

hours. During the polymerisation the solution went from a clear colourless liquid to 

opaque white colloidal suspension. After 24 hours 50 cm of ice cold methanol were 

added and the resulting precipitate recovered via filtration. The polymer was washed 

separately with methanol, diethyl ether, chloroform and water in a Soxhlet apparatus 

for 12 hours, 12 hours, 24 hours and 24 hours respectively. The polymer was 

recovered and dried in the oven at 80°C with an average yield of 95%. The same 

procedure was employed to produce the equivalent 15-crown-5 cross-linked 

copolymer, using monomer 2 in place of monomer 1.

The recovered material was analysed by CHN elemental analysis, FTIR 

spectroscopy, SEM and differential scanning calorimeter (DSC). See Appendix 1 for 

further details and the results of the analysis.
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2.4.3 Crown Ether Acrylic Acid Copolymer

Synthesis of poly(acrylamido-18-crown-6)-(acrylic acid), 3

AIBN (0.07 g) was dissolved in a solution of dry DMF (20 cm ) and acrylic acid (3.2 

g) at 0 °C under N2. The 18-crown-6 monomer 1 (0.90 g) was also dissolved in DMF 

(5 cm ) and the two solutions combined. The reaction mixture was then heated to 60 

°C for 2.5 hours. After this time the heat source was removed and ice cold methanol 

(40 cm ) was added to quench the reaction. The copolymer was recovered via 

precipitation into diethyl ether and subsequent filtration. The total yield of the 

copolymer was 72 % with 2 % of the crown ether remaining unreacted.

• 1H NMR [4-3 ppm multiplet integration 1.28 crown ether ring protons, 3.8-1.8 

ppm multiplet integration 1 copolymer backbone protons].

• 13C NMR [180 ppm C carboxylic acid, 70 ppm CH2 crown ether ring, 43 ppm 

CH copolymer backbone, 35 ppm CH2 copolymer backbone].

• CHN: 49.9C, 6.3H, 1.9N [calculated 51.5C, 6.7H, 2.0N].

• FTIR [3800-2800 cm' 1 OH (carboxylic acid), 1876-1700 cm' 1 C=0 (carboxylic 

acid), 1700 cm' 1 C=0 (amide), 1642 cm' 1 N-H bend, 1500-1200 C-H bend, 1104 

cm' 1 C-0 str, 951 cm' 1 C-N str].

• GPC [Mw 801000, Mn 37500, polydispersity 23].

Synthesis ofpoly(acrylamido-15-crown-5)-(acrylic acid), 4

The same procedure was repeated substituting the 2 for 1. The synthesis proceeded 

as before with the copolymer recovered in a 70 % yield.

• NMR [3.8-3 ppm multiplet integration 5 crown ether ring protons, 3.8-1.8 

ppm multiplet integration 4 copolymer backbone protons].

• 13C NMR [180 ppm C carboxylic acid, 70 ppm CH2 crown ether ring, 42 ppm 

CH copolymer backbone, 35 ppm CH2 copolymer backbone].

• GPC [Mw 1040000, Mn 31500, polydispersity 32],



67

2.5 Uptake Experiments

For this section all glassware was carefully washed with 2M sulphuric acid and 

rinsed using M illi-QpiuS 185 water, 18.2 MQcm resistance. This water was also used 

to make up all aqueous stock solutions.

Batch Uptake

The resins were dried in a vacuum oven at 30 °C then a pre-weighed amount added 

to a precise volume of the aqueous metal ion solutions. The concentration of the 

solutions was determined via AES. Several stock solutions of the metal ions were 

prepared containing between 10 and 2 0 0  ppm with respect to the metal cation.

Before weighing the metal salts were dried in an oven at 120 °C for several hours 

then allowed to cool in a desiccator. Two types of stock solutions were produced.

The individual stocks made as indicated and a series of mixed stocks containing 

Li+(aq), Na+(aq) and K+(aq) were prepared. These mixed stock solutions were used to 

investigate the competitive binding properties of the resins.

Uptake Kinetics

The experimental method consisted of pre-soaking the resin (1.343 g) m 53 cm of 

Milli-Qpius 185 water, 3 cm3 of the water were then removed and saved for analysis. 

To the remaining solution 50 cm3 of a 100 ppm K+(aq> stock solution were added. 

These were mixed rapidly by vigorous shaking before a 1 cm sample was removed. 

At three minute intervals further samples were removed until a total reaction time of 

40 minutes had elapsed. After removal the samples were instantly filtered to separate 

the copolymer resin from the metal ion solution. On shaking the mixture of the resin 

and the stock solution an even suspension of the solid resin was produced throughout 

the stock. Removing 1 cm3 of this suspension effectively removed a constant ratio of 

resin and stock solution from the total mixture. The procedure was such that the ratio 

of resin to stock solution was maintained throughout. The results of this study can be 

seen in Table A2.5.
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2.6 Resonator Preparation

The resonators were cleaned prior to use with piranha solution [230], (a 1:1 ratio of 

98% sulphuric acid and 40% H2O2), and rinsed with Milli-Qpius 185, 18.2 MQcm, 

water. They were then soaked in methanol and chloroform and dried under an air 

stream at room temperature. This procedure was repeated several times until a 

constant dry frequency was obtained (± 25Hz). After drying the resonance frequency 

was recorded and this used as the ‘clean* frequency. In order to maintain satisfactory 

oscillation of the resonators in the aqueous solutions the resonators were capped 

[231]. This involved the placement of a glass cover over the gold electrode on one 

side of a resonator, preventing the contact of this electrode with the oscillating 

solution. The glass cover was held in place by a polysiloxane resin. The reference 

was maintained in air as the placement of both the working and the reference 

resonators in a liquid environment resulted in unstable oscillation.

2.6.1 Cross-linked Resin Coating

A solution of the individual monomers was prepared by dissolving the 18-crown-6 

monomer 1 (0.0636 g), acrylic acid (0.2283 g), EGDMA (0.1575 g) and AIBN 

(0.0060 g) in acetonitrile (100 cm3). The resonators were coated by placing 0.5 cm3 

of the monomer mixture in a 0.5 cm3 reaction well on the QCM resonator. The 

monomer ratios were the same as those used to prepare the cross-linked resins. The 

solution was then heated to 75 °C for several hours to polymerise. After cooling the 

coated resonators were rinsed with hot acetonitrile followed by hot methanol. The 

frequency was recorded after drying and this used as the ‘coated frequency*.

2.6.2 Cyclodextrin and Copolymer Coating

The cyclodextrin and crown ether-acrylic acid copolymer were coated onto the 

resonator using the drop technique [232]. This involves placing a drop of solution of 

the material dissolved in an appropriate solvent onto the surface. In the case of the 

cyclodextrins water was used as the solvent and for the copolymer DMF was used. 

The drop is then left to evaporate in air, depositing the material and coating the 

resonator.
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2.6.3 Self-Assembled Monolayer of 2-Aminoethanethiol

The resonators were placed into 30 cm3 of ethanol, removed, rinsed with ethanol, 

acetone and chloroform respectively, and then dried in air. This procedure was 

repeated and a reproducible dry resonance frequency was obtained. This shows that 

the exposure of the resonator to ethanol produced no frequency change in the 

resonator. The data from these runs were used as a blank control experiment. A 

second clean resonator was then placed into 30 cm3 of a 2-aminoethanethiol solution. 

All thiol solutions were 5 x 10'3 mol dm' 3 of the appropriate thiol in ethanol. After 

several hours the resonator was removed, rinsed with ethanol, acetone and 

chloroform respectively, then dried. The resonance frequency was again recorded.

2.7 Liquid Phase Resonator Response

The responses of the coated resonators were monitored in two ways, a batch method 

and an FLA method. As described previously the resonators utilised in the liquid 

phase were capped prior to use. The reference was maintained in the gas phase.

Batch Response

The sensor was placed in a volume of pure water (30 cm ) and allowed to stabilise. 

After stabilisation metal cations were added to the water via the injection of a metal 

sulphate stock solution (0.230 mol dm'3). The M+(aq) concentration was steadily 

increased by successive injections. This process is referred to the batch method and 

was used to investigate the response of the coated sensors to Li+(aq), Na+(aq) and 

K+(aq). The metal stock solutions were added in 10-100 pi injections.

FIA Response

The FIA system involved the injection of the metal sulphate solutions into an eluent 

flow that carried the cations through a flow cell containing the coated resonator. The 

same stock solutions were used as before. The flow of water across the resonator 

surface was started and the resonator frequency allowed to stabilise. Injections in the 

range of 5-40 pL of the stock solution were then added into the eluent flow and the
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frequency response of the sensor monitored. The FIA system had a flow rate of 1.66 

cm3 s'1 and tube diameter of 5 mm. Milli-Qpius 185,18.2 MQcm water was employed 

as the eluent.

2.8 Gas Phase Sensor Response

Once coated the resonators were mounted in a PTFE flow cell. The flow cell 

contained two resonators. These were the reference resonator and the working 

resonator, the working resonator being the sensor employed. The actual frequency 

recorded was that of the reference minus the working resonator. N2 was used as the 

carrier gas. This was first passed through a zeolite-containing purification tube and a 

silica-gel moisture indicator before reaching the injection point. The VOC vapour 

was introduced by the injection of approximately 1 pi of the liquid solvent into the 

N2 flow. The distance from the injection point and the flow cell was 70 cm with a
- i 1

tube diameter of about 4 mm. The flow rate employed was 40 cm min’ .



CROWN ETHER BASED K+(aq) SENSORS

CHAPTER THREE
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3.1 Introduction

The chapter describes the development o f an aqueous metal ion sensor based on a 

QCM resonator coated with a copolymer layer. The copolymer forms a selective 

adsorption interface between the transducer, the QCM, and the sensing medium, the 

aqueous solution. On exposure to a solution containing the target ion the copolymer 

chelates the ion at the interface. This induces a mass change and a viscoelastic 

change in the copolymer layer and subsequently a frequency change in the QCM 

resonator. This process is depicted schematically in Figure 3.1 where the QCM is 

coated with a ‘virtual’ layer designed to chelate spheres over triangles. In theory a 

sensor can be developed that will respond selectively for any given target species 

provided that a suitable selective adsorption interface could be created.

Computer

o

Computer

Signal

A *  A
A  1 D  O
•  JH 

A 9
i  A

y

Figure 3.1: A schematic representation o f the sensing mechanism. The sensor 
designed to respond to spheres over triangles is immersed in a solution o f both 

species. The spheres bind to the selective coating and produce a signal proportional
to their concentration.

The technique of coating a QCM with a selective adsorbing copolymer has 

been shown to be a useful approach to developing QCM based aqueous metal ion 

sensors. Previous work by Hunter et al. [233] led to the successful coating o f a QCM 

resonator with a copolymer designed to chelate Cu2+(aq) [234]. The coated resonator 

responded to the presence o f Cu2+(aq) with a detection limit o f ~0.1 ppm. However,
•  •  •  Ithe resonator also responded to a variety o f other metal ions, particularly Ni (aq), and 

to a lesser extent Co2+(aq), Zn2+(aq) and Fe2+(aq). In order to develop systems for the
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analysis of Group I metal ions and introduce a higher degree of metal ion selectivity 

it was decided to investigate sensors based on crown ether [235] containing 

copolymers.

The polymer coating on the resonator is a water compatible copolymer 

containing crown ether substituents. The metal ion binding properties of a number of 

crown ether copolymers have been investigated by Kimura et al. [236] who showed 

that the copolymers reflect, and in some cases enhance, the binding properties of the 

free crown ether rings. For this reason the polymers used in this work were based on 

those employed by Kimura et al. The crown ether moieties selectively chelate the 

metal ion with an ionic radius compatible with the diameter of the crown ether ring 

[237] [238]. This selective chelating potential has been well documented ever since 

the initial work carried out by Pedersen [235] in the mid 1960’s.

In the following section the composition of the copolymer coating and the 

properties associated with their individual components are discussed. Two sections 

covering the synthesis of the crown ether monomer and the synthesis of a cross- 

linked resin follow. The uptake properties of the resin are then examined and 

discussed before the final sections concerning the fabrication and response of the 

K+(aq) sensor developed.

3.1.1 The Crown Ether Copolymer

The crown ether copolymer forms the basis of the adsorption interface. This imparts 

the selectivity on the QCM sensor. Its chemical composition and overall binding 

potential are crucial factors influencing the sensor response. It was our intention to 

develop a coating that fulfilled two initial requirements; firstly possessing some 

selective adsorption property, and secondly, to be water compatible. The first of 

these requirements was realised by incorporating crown ether groups which 

selectively bind Group I ions. This is discussed in section 3.1.2. The second 

requirement was achieved by incorporating poly(acrylic acid). This is necessary so 

as to increase the interaction between the aqueous phase and the adsorption interface. 

Poly(acrylic acid) is a highly water-soluble polymer containing carboxylic acid side 

groups. Apart from the water solubility the poly(acrylic acid) has two other major 

contributions to both the synthesis and overall performance of the copolymer layer:
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The monomers can be readily derivatised via simple amide or ester chemistry, the 

derivatives of which can be included in the polymerisation process. This aids the 

synthesis and incorporation of the crown ether groups. The carboxylic acid side 

groups can also facilitate metal ion adsorption by providing added donor sites and 

charge neutralisation.

The final property of the copolymer not yet discussed is its anchoring to the 

surface of the QCM resonator. Previous sensors based on crown ether polymer 

systems use the simple dropping technique to coat the resonator [239] [240]. This 

involves dissolving a known mass of the coating material in a suitable volatile 

solvent. Applying a small drop of this solution to the surface of the resonator and 

subsequently evaporating the solvent produces a thin film of the coating material. 

However, the sensors are of no practical use in liquid applications as the films 

simply dissolute from the surface. Two approaches were taken to anchor the 

copolymer coating to the surface of the resonator. The first was to attach the 

copolymer directly to an amine functional self-assembled monolayer [241] providing 

a covalent link between the copolymer and the surface of the resonator. The second 

was to cross-link the copolymer with ethylene-glycol-dimethacrylate, EGDMA.

With a high cross-linker percentage present during the polymerisation a solid 

material is formed. This material is insoluble and is permanently adhered to the 

QCM surface in a similar fashion to epoxy-resins and other copolymer based glues. 

The solid resin is porous and water can penetrate the inner network of the copolymer 

layer allowing the metal cation access to the crown ether rings. This also swells the 

resin although with the high cross-linker ratio this swelling is expected to be 

minimal. The choice of cross-linker has a pronounced effect on the porosity, 

EGDMA was chosen as the cross-linker is a diester and as such aids the water 

compatibility of the final copolymer resin.

3.1.2 Crown Ether Complexes

Ever since their discovery by Charles Pedersen [242] the ability of the crown ethers 

to form stable complexes with metal cations has been well documented. The award 

of the 1987 Nobel Prize in chemistry to Charles Pedersen, Donald Cram and Jean- 

Marie Lehn emphasises the importance of their work on the crown ethers, 

binaphthocrown ethers [243] [244] and cryptands [245] [246] respectively. In the case
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of crown ethers the stability of such complexes varies with the size of the crown 

ether ring and the metal cation involved. At a basic level this variation in complex 

stability is rationalised by size exclusion and compatibility concepts. These concepts 

are adequate for a general discussion, however, they are not the only factor involved. 

The following paragraphs attempt to introduce some of the other factors and place 

them in context with the crown ether copolymer system employed for the final 

chemical sensor.

The basic structure of the free 18-crown-6 ring is a useful starting point to 

begin this discussion. The ring is in a different conformation to the ring involved in 

the metal complex. The central ‘cavity’ occupied by the metal cation represents a

rotation of two opposite methylene groups, see Figure 3.2. The structural shape of 

the free crown ether that represents the most energetically favourable configuration 

is therefore a distorted ring [247].

The complex formed between 18-crown-6 and K+ is a much more symmetrical 

structure. The K+ ion is situated at the centre of the crown ether ring with 

approximately equal bond lengths to all six oxygen donors, see Figure 3.2. The 

average K+- 0  bond length is 2.8 A [247] with the hetroatoms adopting the 

energetically favourable gauche configuration. The structure is difficult to depict in a 

2D-diagram but can be imagined with the oxygen atoms in Figure 3.2 alternating 

between pointing up and pointing down with respect to the plane of the paper. 

Another aspect of the ring structure, which has a major contribution to the overall 

complex stability, is the co-ordination number of the metal cation. In this case the

Uncomplexed 18-crown-6 K+ Complexed 18-crown-6

Figure 3.2: The conformational shape o f complexed and 
uncomplexed 18-crown-6.

destabilising void when unoccupied. This destabilisation is minimised by the inward
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central K+ is in its preferred site, hexa co-ordinate, however, this is not always the 

case.

The ability of the crown ethers to form stabile complexes with the Group I 

cations is not related to size compatibility alone, 12-crown-4 can complex Na+ and 

3 0-crown-10 can complex K+. These clearly do not represent ideal ion-cavity size 

ratios. However the Na+ complex of 12-crown-4 is not a simple 1:1 structure but a 

sandwich type structure with a stoichiometric ratio of crown ether to Na+ of 2:1. This 

stoichiometry is induced not only by the size difference between the ring and the ion 

but also by the co-ordination requirements of the Na+ cation. The 12-crown-4 ring 

can only provide 4 donor groups and Na+ prefers a solvation number of six. A 

similar 2:1 structure exists between 15-crown-5 and K+ for the same reasons; the 15- 

crown-5 ring can only provide five donor groups not enough to stabilise the K+ 

cation. The donor group stabilises the metal cation by donating electron density. The 

closer they are to the cation the stronger their electron donation and the greater their 

stabilising effect. The stable complex formed between 15-crown-5 and Na+, and 18- 

crown-6 and K+, is a trade-off between preferred co-ordination number and Nf^-O 

bond lengths. With the 18-crown-6 Na+ complex the co-ordination number of Na+ is 

satisfied but the Na+-  O bond lengths enforced by the crown ether ring are too great 

to stabilise the Na+ cation. For the crown ether metal cation complex where the metal 

cation occupies the central cavity the bond lengths are fixed to those available by 

conformational changes in the crown ether ring. For example the cavity size of the 

18-crown-6 ring can vary between 2.6 A and 3.2 A [248] and so the M ^ O  bond 

lengths must fit within these dimensions. The preferred bond lengths vary for each 

metal cation and increase with co-ordination number.

If the co-ordination number of the M+ cation is too low then extra ligands can 

help stabilise the ion. These extra ligands are often the anion associated with the 

metal cation but can also come from other sources such water or from structural 

donors incorporated into the crown ether macrocycle. In the case of the copolymers 

used the crown ether rings will be in close proximity to -COOH side groups. These 

form suitable ligands to help complex the Group I cations, stabilising the complex 

formed with the cations too large to bond entirely within the cavity of the crown 

ether ring, for example the 15-crown-5 K+ complex. The ready availability of these 

extra ligands will render the crown ether rings more susceptible to forming
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complexes with metal cations larger than the ring. However cations too small for the 

ring will still be uncomplexed as these can not gain enough electron donation from 

the extra ligands to fully stabilise the central ion.

The final contribution to the complex stability discussed here arises from the 

macrocyclic effect [247]. One of the key factors involving the stability of the crown 

ether metal cation complex is the preorganisation of the crown ether ring. This can 

best be imagined by considering the enthalpy and entropy contributions in the 

complex formation. For six free ligands to come together and form a 3D structure 

there is an enthalpy and entropy barrier to be overcome. With the pre-organised 

macrocycle these barriers have already been overcome and the energy contributed to 

the stability of the overall complex. The close proximity of the crown ether rings to 

the extra carboxylic acid groups will add to this pre-organisation and again add an 

extra stabilising effect.

3.2 Synthesis of Crown Ether Monomers

In order to incorporate the crown ether rings into the copolymer network via a 

covalent linkage the crown ethers themselves must first be derivatised to contain a 

polymerisable functional group. This section details the chemical synthesis of the 

crown ether monomers 1 and 2 below. It details their design and intended properties, 

as well as their structure as determined by a variety of spectroscopic and analytical 

techniques.

The two monomers utilised can be seen in Figure 3.3 above. They comprise of an 

arcylamino functional group attached directly to the crown ether ring via a methyl

Figure 3,3: The crown ether monomers synthesised
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chain. The vinyl bond in the acrylamino group is open to polymerisation through the 

standard free radical addition mechanism. This has been confirmed by previous work 

undertaken by Kimura et a l [236] and Yagci et a l [249]. See Chapter Two section

2.4.1 for the experimental procedure.

3.2.1 Analysis

The synthesis of the 18-crown-6 monomer was accomplished via a simple coupling 

reaction between acryloyl chloride and the amine functionalised crown ether as 

shown in scheme 3.1 below.

Aminomethyl-18-Crown-6 18-Crown-6 monomer

Scheme 3.1: The chemical reaction used to form the 18-crown-6 monomer

The reaction was performed at room temperature and under a nitrogen 

atmosphere. The total yield of the acrylaminocrown ether was around 96%. The 

product was not subjected to any further purification and collected simply by 

vacuum distillation of the reaction mixture. The NMR, Mass Spectrum, FTIR and 

CHN analysis carried out on the product confirmed its structure and showed it to be 

that illustrated in Scheme 3.1. They also showed the product to be uncontaminated. 

The results of the analysis are discussed in the following pages.

13c -n m r

The C-NMR of the vinyl crown ether prepared in scheme 3.1 can be seen in Figure 

3.4. This shows the presence of all the carbon nuclei at their expected chemical shift 

(the reference was TMS). The spectrum compares well with the predicted spectrum 

obtain from the Spec-Info Chemical Database Service, Daresbury Lab.

Dioxane
Na2CC>3

o
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Figure 3.4: The 1SC-NMR o f the 18-cr own-6 monomer

‘h -n m r

The 1 H-NMR below shows the three alkene protons, Hx at 5.5 ppm, Ha and Hb at 6.2 

ppm (where RHaC=CHxHb). The crown ether ring protons appear between 3.2 ppm 

and 3.8 ppm as a multiplet unresolved by the spectrometer. The integration ratio for 

the multiplet and the alkene protons is 2.7:23; this is in good agreement with the 

expected 3:23 ratio. The alkene protons Hx, Ha and Hb have an integration ratio of 

2:1 (Ha + Hb : Hx), and coupling constants, JXb =2.6 Hz, Jxa =9.7 Hz, Jab =17.0 Hz.

H x Ha

Crown-Ether Ring Protons

Alkene Protons
Integration Ratio 

2.7:23

Figure 3.5: The 1 H-NMR o f the 18-crown-6 monomer
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FAB+ Mass Spectra

Experimental m/z = 348.2 Calculated m/z (M+ H)+ = 348.4 

Experimental m/z = 370.2 Calculated m/z (M+Na)+ =370.2

The FAB+ mass spectra showed two dominant peaks. Peak one at m/z 348.2 with 

92% intensity and peak two at m/z 370.2 with 99% intensity. There was no 

significant fragmentation and all other peak appeared below 6% intensity. The peak 

at m/z 348.2 is attributed to the molecular ion plus a proton, (M+H)+. The peak at 

m/z 370.2 has been assigned to the ( M+Na+) species. The reaction of the crown 

ether was carried out in the presence of sodium carbonate and so some Na+ ions will 

have been extracted into the dioxane phase in the form of the crown ether Na+ 

complex.

Elemental Analysis

Calculated 4.0 %N, 55.3 % C, 8.4 % H  => C i6 H 29N i

Experimental 3.9 % N, 55.2 % C, 8.3 % H => C i6.o H 28.9 N i.o

The carbon, hydrogen and nitrogen content of the acrylamino-18-crown-6 monomer 

were identical to the calculated value. The percentages above lead to a C:H:N atomic 

ratio of C16.0 H 28.9 N 1.0 compared to the vinyl 18-crown-6 monomer that has a C:H:N 

atomic ratio of Ci6 H 29 N i.

Infrared Analysis

The infrared (IR) spectrum of the crown ether monomer is consistent with the 

product’s structure and functional groups. Comparison of the ER with that of the 

reactant, aminomethyl-18-crown-6, confirms the functional group transformations. 

The large broad peak associated with N-H stretching in the primary NH2R functional 

group, (3360 cm'1), reduces in intensity on transformation to the secondary NHRX 

amide group. The C-N stretching of the primary amine shifts from 944.59 cm'1 to
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958.93 cm' 1 in the secondary amide and a C=0 stretching peak appears at 1716.48 

cm'1. These observations all confirm the transformation o f a primary amine to a 

secondary amide. The reaction is further confirmed by the appearance of a new peak 

at 1553.38 cm' 1 assigned to the H2C=CHCONHR double bond. This is in the 

expected region for an a,p-unsaturated amide O C  stretching frequency.

Red = 18-crown-6 monomer 
Black = aminomethyH8-crown-6
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Figure 3.6: The FTIR o f the 18-crown-6 monomer and the starting material
aminomethyl-18-crown-6.

3.2.2 Conclusion

The analysis performed confirms the structure o f the product to be that o f the 18- 

crown-6  monomer depicted in Scheme 3.1. The synthesis is straightforward with a 

high percentage yield, typically above 90 %. The product must be refrigerated and 

stored under nitrogen. Under these conditions the monomer has a shelf life of 

approximately 2 weeks after which time some precipitate is formed that is assumed 

to be from the autoinitiated polymerisation o f the product.
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3.3 Absorption Properties of the Copolymer Coating

The crown ether monomers synthesised in the previous section are included in the 

formation of the copolymer coating and responsible for its inherent adsorption 

properties. The sensor is dependent on these properties for its overall response and 

selectivity. For this reason the binding properties of the acrylic acid crown ether 

copolymers were investigated.

The standard approach to study the binding properties of crown ether 

systems is to extract the metal ions from the aqueous phase to the organic phase via 

the crown ether metal ion complex. An alternative method is to monitor the 

concentration of the crown ether metal complex directly via spectroscopic 

techniques, usually UV-Vis spectroscopy. Determination of the concentration of this 

metal ion crown ether complex in the organic phase, and comparison with the 

concentration of free crown ether leads to the stability constant log K, were K is the 

equilibrium constant described in equation 22 page 97.

These two systems can not be achieved with the acrylic acid crown ether 

copolymers employed directly on the sensor as the copolymers are solid resins 

formed in situ on the QCM surface. However, it is possible to synthesise a solid 

powder of the same composition as the sensor coating. This powder can be used to 

examine the binding potential of the crown ether acrylic acid copolymer system and 

a valuable insight into the metal ion binding interactions can be obtained. This is the 

chosen route to investigate the binding potential of the selective coating.

The resins synthesised were insoluble and so easily separated via decanting 

the liquid or filtering the solid. They were designed to be hydrophilic in nature and 

compatible with aqueous phase systems. This maximises the solid-liquid interaction 

and results in the surface crown ether groups being available to chelate aqueous 

metal ions. The interaction leads to the binding of the target ions and a concentration 

drop for these specific metal ions in the bulk solution. From the concentration drop 

the binding properties of the resins, their uptake and overall selectivity can be 

compared. This method also allows for the calculation of the selectivity constant for 

each crown ether system. The concentration drop of the aqueous metal ions could be 

monitored by atomic emission spectroscopy, AES.
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The synthesis of the cross-linked resins has a second major function. Not 

only can the resins be used to gain an insight into the binding properties of the film 

but they can also be used to investigate the polymerisation mechanism induced on 

the surface of the QCM sensor. The nature of the thin film can be related to the bulk 

properties of the resin, the monomer composition and the nature of the cross-linked 

network. Secondly the concentration drop of the aqueous metal ions associated with 

the bulk material compared to that of the sensor film will be much larger. This 

allows the possibility of monitoring these changes via different mechanisms and 

obtaining some kinetic data on the binding mechanism. In turn this data can be used 

to support any data obtained directly from the sensor response.

3.3.1 Experimental

The following resins were synthesised using the experimental procedure described in 

Chapter Two section 2.4.2.

Resin
% Monomer Mixture Resin C H N

Crown Ether Cross-linker % C % H %N

15c5/70 10% 15-5 70 % EGDMA 54.05 6.82 0.46

15c5/30 10% 15-5 30 % EGDMA 48.35 6.35 0.61

15c5/2 10% 15-5 2 % EGDMA 46.75 6.07 0.62

18c6/70 10% 18-6 70 % EGDMA 54.10 6.83 0.52

18c6/30 10% 18-6 30 % EGDMA 50.25 6.40 0.62

18c6/2 10% 18-6 2 % EGDMA 49.10 6.33 0.54

EG/70 00 % crown ether 70 % EGDMA 54.97 7.14 0.08

Table 3.1: The composition o f  the cross-linked resins synthesised. All percentages 
are based on w/w values. The monomer mixture was made up to 100 % with acrylic 

acid. The CHN data is that obtained experimentally from the final resins.
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3.3.2 Analysis of the Resin

For each sample the recovered resin was in the form of a white powder, all seven of 

the resins looked visually similar. After filtering, washing and drying the percentage 

yield based on the mass of the monomers used was typically between 84 % and 99 

%. Also, no unreacted crown ether monomer could be recovered from the reaction 

mixture.

The SEM data was obtained for the three 70 % EGDMA samples, resins 

15c5/70,18C6/70 and the blank resin EG/70. They showed the resins to comprise of 

spheres approximately 300 nm to 1000 nm in diameter. Resin EG/70 was the most 

monodispersed sample with spheres evenly distributed between 0.38 pm and 0.45 

pm a few larger spheres were found up to 0.67 pm. This narrow size distribution led 

to evenly packed spheres forming compact macroscopic particles, see Figure 3.7. 

The two crown ether containing resins were more polydisperse. Resin 15c5/70 

consisted of particles mainly in the range 0.26 pm to 0.57 pm but with some larger 

particles present in the range 1.19 pm to 1.33 pm. Resin 18c6/70 consisted of 

particles in the range 0.23 pm to 0.66 pm but no larger spheres. Their larger size 

distribution led to less compact macroscopic particles with a more globular shape 

compared to the angular structures of the blank resin particles.

The DSC studies were conducted on resin 18c6/70. The primary objective of 

this was to simply investigate the composition of the recovered powder. The 

percentage yield for the polymerisation based on the concentration of monomers 

indicated that >90% of the monomers were incorporated into the growing network. 

Using DSC it is possible to establish that the resin consists of a single cross-linked 

network rather than an agglomeration of individual polymer chains. This is an 

important issue as the stability of the resin and their chelating properties depend on 

their composition. If any of the components are free to migrate compositional 

changes may occur within the network, also components can be leached out on 

exposure to particular solvents. These compositional changes may have a 

detrimental effect on the chelating potential of the resin and the overall sensor 

response. The DSC trace showed no evidence of glass transitions or any other phase 

transition within the temperature range o f-10 °C to 200 °C. This is consistent with



85

the view that the resins comprise of a single cross-linked copolymer network. See 

Appendix 1 for the DSC trace and FTIR spectra o f the resin 18c6/70.

Figure 3.7: SEM images o f resin EG/70, the black bar in the smaller inset picture
represents 1 pm.

Crown Ether Content

The percentage crown ether in each resin was estimated from their CHN elemental 

analysis. The nitrogen content of the resins can be directly associated with the crown 

ether content of the resin as the acrylaminomethylcrown ether monomers are the 

only major source. A second minor source of nitrogen arises from the initiator 

AIBN. This contributes the NC-C(Me)2- group to the copolymer network. The 

initiator is normally assumed to have a negligible contribution to the nitrogen 

content of the copolymer as this is only present in trace amounts, less than 1%. 

However, the blank resin EG/70 was shown from its CHN to have nitrogen present. 

This indicates that the initiator contributes an appreciable nitrogen response. The 

content in resin EG/70 was therefore taken as a measure of the uncertainties in the 

CHN analysis and the contribution to the overall nitrogen content due to the initiator 

AIBN. This value was subtracted from the other readings prior to any calculation of
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the percentage crown ether. The error in the crown ether content was estimated at 

± 2 % .  This was calculated from the theoretical nitrogen content with 100 % 

monomer conversion both neglecting the AIBN contribution and including it in the 

calculation.

Resin % Yield % Crown Ether

15c5/70 84% 8.12%

15c5/30 99% 11.36%

15c5/2 82% 13.31 %

18c6/70 74% 10.78 %

18c6/30 69% 13.38 %

18c6/2 83% 11.40%

EG/70 94% Not Applicable

Table 3,2: The percentage yield from the polymerisation and the crown ether 
content o f  the resins. All values are weight percent. The error associated with the 

crown ether content is estimated at ± 2 %

3.3.3 Conclusion

The experimental procedure describing the synthesis of the crown ether resins 

produces a highly cross-linked copolymer network. This network contains all three 

of the monomers. No information was obtained on the spatial distribution of the 

individual monomers within the network, however, this is assumed to take a random 

statistical form with an even distribution. The appearance and macroscopic structure 

of the resins are that of a white powder consisting of spheres approximately 300 nm 

to 1000 nm in diameter. The crown ether content calculated from the CHN elemental 

analysis varied from around 8 % w/w to 13 % w/w
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3.4 Uptake Experiments

As discussed earlier the change in concentration associated with the aqueous metal 

ions solutions were used to investigate the uptake properties of the resins. The 

experimental procedure involved placing a known mass of the specific resin into a 

volumetric flask containing the aqueous solution. The concentrations of the aqueous 

metal ions were determined both before and after the addition of the resin by atomic 

emission spectroscopy, AES.

The initial investigations involved the chelating potential of the resins 

towards the different Group I ions Na+(aq), Li+(aq) and K+(aq). Further investigations 

concentrated on the variation of the metal ion resin ratio. This allowed for the 

determination of the number of crown ether rings within the copolymer that are 

accessible to the metal ions and the equilibrium constant for the metal ion crown 

ether complex. A second investigation looked at the uptake of several 2+ metal
^  I ^  I ^  i ^  i

cations, namely Co (aq), Ni (aq), Zn (aq) and Ca (aq). For the experimental detail see 

section 2.5.

3.4.1 Results and Discussion

The tables of results are listed in Appendix 2 and the uptake values plotted in Figure 

3.8. It is clear that all of the resins absorbed K+(aq) as the concentration fell by more 

than 6 ppm g'1. The Na+(aq) and Li+(aq) concentrations fell by a lower extent, typically 

below 2 ppm g'1. This larger fall in the K+(aq) concentration is expected as K has an 

atomic mass of 39.1 compared to Na and Li with atomic masses of 22.9 and 6.9 

respectively. As 1 ppm is equivalent to 1 pg cm'3 any uptake measured in ppm will 

be five and a half times larger for K+(aq) than Li+(aq). Since the crown ether rings 

chelate the ions in a 1:1 ratio (2:1 in the case of 15-crown-5 to K*) the results should 

be represented in terms of a molar uptake, molg'1.

Uptake of the 18-crown-6 Copolymers

Figure 3.10 shows the molar uptake of the resins with respect to Li+(aq), Na+(aq) and 

K+(aq). It can be seen that the resins containing 18-crown-6, i.e. resins D, E and F 

have an uptake of about 25 pmoles of K+(aq) ions per gram of copolymer and a high 

degree o f selectivity for K+(aq) over the other two ions. These observations can be 

attributed to the crown ether ring. 18-Crown-6 has a ring diameter of 2.6-3.2 A [247]
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Figure 3.8: The uptake o f aqueous metal ions by the resins synthesised.

A=15c5/70 B=15c5/30 C=15c5/2 D=18c6/70 E=18c6/30 F=18c6/2 G=EG/70

Only one metal ion was present in each run. The experimental procedure involved a 
50 cm3 volume o f a 50 ppm stock solution and 1 g o f resin.

and K+a diameter o f 2.7 A [247]. Because o f this size comparability the K+ ions 

bind strongly to the crown ether ring and they are retained in the copolymer 

network. Na+ by comparison has a diameter o f 1.9 A [247] and Li+ a diameter o f 1.2 

A [247], therefore these ions are not held as strongly by the crown ether groups and 

remain mobile passing in and out of the copolymer network and the solvent. The 

stability constants, logioK (see equation 26 on page 98), for the 18-crown-6-metal 

ion complex in water are 0.8 and 2.03 for Na+(aq)and K+(aq) respectively [247]. The 

value calculated for logioK for the 18-crown-6 K+(aq) complex in the copolymer is 

3.20 (see section 3.5.2). The data indicates that the copolymer resin has an increased 

affinity for K+(aq) as compared to the free crown ether compounds.

The uptake o f Li+(aq) by the copolymer appears to be approximately half that 

o f the K+(aq) uptake for resin D and zero for resins E and F. This large fluctuation in 

values is associated with the mass o f the metal. Li+ is five and a half times lighter 

than K+ consequently when the data is transformed from a mass change to a molar

□  Li uptake /ppm
□  Na uptake /ppm 
■  K uptake /ppm

C D 

Resin Used
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change a large experimental error is introduced; the readings are either 0 or 7 pmolg 

For this reason the molar uptakes o f Li+ shall be treated with great care and used 

only as an indication o f any trend.

The calculated K+/ Na+ selectivity based on the molar uptakes for the 18- 

crown-6  containing resins are 18c6/70= 13.01, 18c6/30=13.01 18c6/2=13.76. For 

comparison the selectivity for the blank resin EG/70=2.14.

® Li uptake 

^  Na uptake 

*  K uptake

Resin Used

Figure 3.9: The results o f all the uptake experiments.

A=15c5/70 B=15c5/30 C=15c5/2 D=18c6/70 E=18c6/30 F=18c6/2 G=EG/70

Resins marked with a 2 indicate that all three metal ion were present in each stock. 
Other resins used separate stock solutions. The experimental procedure involved a 

50 cm3 volume o f a 50 ppm stock solution and 1 g  o f resin.

Uptake of the 15-Crown-5 Copolymers

The resins containing 15-crown-5 have a much lower uptake o f K+(aq) compared with 

the equivalent 18-crown-6 resin, 34-50% lower, and a much larger Na+(aq) uptake. 

This is as expected. The cavity size of the 15-crown-5 ring is 1.7-2.2 A, too small for
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the K+(aq) ion to form a strong stable complex. The free 15-crown-5 compound forms 

a 2:1 crown ether-metal ion complex with K+(aq) ion [247], so the K+ uptake could be 

expected to drop by 50%. However, these complex have a stability constant in water 

of 0.74 compared to the 18-crown-6 K+ stability constant of 2.03 [248], this would 

lower the expected uptake to below 50 %. The Na+ ion has an ionic radius of 0.8 A 

[248], comparable to the 15-crown-5 cavity diameter of 1.7-2.2 A. This leads to an 

increase in the Na+(aq) uptake of the resin from 2.5 pmoles per gram in the case of 

the 18-crown-6 resins, to more than 10 pmoles per gram for resins B and C.

The calculated K+/ Na+ selectivity based on the molar uptakes for the .15- 

crown-5 containing resins are 15c5/70=3.62,15c5/30=7.23 15c5/2=4.33.

The blank copolymer

Looking at the blank resins G, it can be seen that they have only limited uptake 

ability (below 3 pmol per gram) and no selectivity. The acrylic-acid EGDMA 

copolymer is not capable of chelating the metal ions and so there is only a very small 

drop in the concentrations of the ions in the solution presumably from non-specific 

ion exchange. These two blank resins enable us to estimate the experimental 

uncertainty of ± 1 ppm in the concentration changes. This is in good agreement with 

the values obtained for the concentration readings of the same sample over an 

extended period of time. As discussed previously, this estimation when converted to 

an error in the mole changes reveals a large uncertainty in the uptake of Li+ ions.

The calculated K+/ Na+ selectivity based on the molar uptake of the blank 

resin EG/70=2.14.

The Competitive Uptake Studies

In order to study the selective uptake of each resin it is necessary to have both Na+(aq) 

and K+(aq) ions present in the same solvent. Although it is possible for each resin to 

uptake both metal ions it is more important for the resins to selectively uptake one of 

the metals when both metal ions are present in the same solution. Figure 3.10 shows 

the results. Resins B and C were placed separately into solutions of 50 ppm Na+(aq) 

and 50 ppm K+(aq), while resins B2 and C2 were placed in solutions containing both
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C uptake Na+(aq) and K+(aq) in equal amounts, however, when both Na+(aq) and K+(aq) 

are available for chelating only K+(aq) is taken up. This reveals the selectivity o f the 

resins for K+(aq) over Na+(aq).

□  Na uptake /ppm

■  K uptake /ppm

Resin Used

Figure 3.10: Highlighting the difference between the competitive and non
competitive uptake o f the resins. Resins B=15c5/30 C=15c5/2. Runs B and C were 
conducted with separate metal-ion stock solutions and runs B2 and C2 used a stock 

solution containing all three o f the metal ions.

3.4.2 Uptake Kinetics

The result o f the kinetics experiment can be seen in Figure 3.12. The data indicate 

that 90 % of the total metal ion uptake by resin 18c6/70 (D) is completed within the 

first 2 minutes o f contact. The expected time scale for the uptake mechanism was in 

the order o f hours and days rather than seconds, so the experimental procedure used 

to follow the reaction is not considered adequate for such a rate.

The kinetics of the binding processes were investigated by recording the 

concentration change associated with the addition of the resins to the stock solutions 

as a function o f time. This was achieved by filtering a sample of the resin-stock 

mixture after a given time interval, effectively separating the copolymer and metal 

ions after a certain contact time. There were several difficulties with the procedure.
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Firstly the powdered resin in the dry state required approximately twelve hours to 

fully immerse in an aqueous solution. On initial contact the powder appeared to be 

hydrophobic and simply float on the solution in a similar fashion to that of powdered 

poly(styrene). After a short time particles o f the resin would begin to sink until 

eventually all the resin had fully immersed in the solution. These observations were 

presumed to be due to the slow incorporation of water into the porous network o f the 

copolymers. As the water is drawn into the network the density o f the particles 

increases until they eventually sink. The time scale of this process is such that 

without pre-soaking the resins in clean water any uptake o f the metal ions can not be 

measured for the first twelve hours of exposure. Secondly and more importantly the 

removal o f samples o f the stock solution and resin from the total mixture will alter 

the crown ether metal ion ratio and change the equilibrium conditions. However no 

alternative method could be perceived and the procedure followed was considered 

suitable for an initial investigation o f the time scale involved in the adsorption 

process.

Ea.a.
4>*68
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Figure 3.11: The results o f the kinetic uptake experiment. The data refers to the 
uptake o f fC (aq) by 1.343 g  o f resin 18c6/70 in a 70 ppm stock solution.
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3.4.3 Initial Conclusion

Overall the resins behave as expected. The 18-crown-6 resins, D, E and F, uptake 

about 25 pmolg"1 of K+(aq) and only trace amounts of Na+(aq) or Li+(aq), less than 3 

pmolg'1. The percentage of cross-linker has very little effect, although the high 

cross-linker ratios do tend to have a slightly increased uptake of about 10 %. The 15- 

crown-5 resins, A, B and C, uptake Na+ and K+ equally, around 11 pmolg"1 but 

selectively bind K f(aq) over Na+(aq) when both ions are in the same solution. In the 

case of resins A, B and C the % cross-linker appears to have a slight effect. The 70% 

EGDMA resin, A, has a 60% drop in Na+(aq) uptake compared to the 30% EGDMA, 

resin B, and the 2% EGDMA, resin C. This may be due to the smaller Na+ ion 

penetrating deeper into the resins with low cross-linker ratios and so increasing the 

availability of binding sites. The K+(aq) uptake is constant for all three of the resins 

suggesting that the larger K+(aq) ion binds at sites around the surface of the resin 

particles and has limited penetration into the inner copolymer network.

The data collected shows that the resins successfully chelate Na+(aq) and 

K+(aq) and that the 18-crown-6 or 15-crown-5 moieties impart a high degree of 

selectivity to the copolymers. They also show that the percentage cross-linker has 

only a minor effect on the uptake abilities.

3.5 Further Investigation

The graph in Figure 3.12 shows the uptake of Li+(aq), Na+(aq), and K+(aq) for resin 

18c6/70 as a function of the mass of the resin. The results confirm the selectivity 

towards K+(aq) over the other Group I ions, Li+(aq) and Na+(aq). These ions showed no 

uptake by the resin. The uptake was a competitive process with Li+(aq), Na+(aq) and 

K+(aq) present in the same stock solution. These data confirms the conclusions 

discussed previously, that the resin selectively binds K+(aq) in the presence of Li+(aq) 

and Na+(aq). The resin was washed and recycled after each run. This cleaning was 

performed by simply washing the resin in a Soxhlet thimble with warm M illi-Q piUs

185,18.2 M Q  cm water. Previous experiments had confirmed that this washing 

procedure fully recharged the resin ready for another uptake run. EDTA was also
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employed in the washing rinse, however, this was found to be unnecessary as no 

discernible difference could be observed between the uptake of the resin rinsed with 

EDTA solution or that rinsed with pure water.
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Figure 3.12: The competitive uptake o f Resin 18c6/70 as a function o f the mass o f  
the resin. The concentration of the metal stock solution was 50 ppm, the precise 

values can be seen in Table A2.4, Appendix 2. Uptake values were recorded after 24
hours o f exposure.

The uptake of 0.5 g o f resin 18c6/70 as a function o f metal ion concentration can be 

seen in Figure 3.13. The profile of the curve associated with the uptake of K+(aq) 

indicates that the adsorption of the ions by the resin is an equilibrium characterised 

by the concentration ratio of the K+(aq) and resin used. The theoretical prediction 

plotted on the graph was calculated by applying a Langmuir type isotherm to the 

adsorption mechanism. The derivation o f this isotherm is discussed in the following 

section. Values can be calculated from the model for the equilibrium constant 

involved and the total number o f binding sites available to the K+(aq). This later value 

can be related directly to the percentage o f the crown ether groups available at the 

surface of the resin.

The data relating to similar experiments with resin 15c5/70 can be seen in 

Figures 3.14 and 3.15. They show similar trends as those observed for resin 18c6/70 

but with a much lower uptake o f the metal ions. The phenomenon o f the 15-crown-5 

resin chelating K+(aq) to a larger degree than Na+(aq) is once again observed. The 

results confirm that this is not an experimental error and that the resin does indeed 

have a preference to absorb K+(aq) over both Na+(aq) and Li+(aq). The two extra points
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in the K+(aq) plot, the white triangles, are estimates (taken from Table A2.4) on the 

values expected in this region from other experiments. These are included as there 

was some doubt over the validity o f the points obtained from the 150 ppm and 200 

ppm stock solutions.
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Figure 3.13: The uptake of 0.5 g o f resin 18c6/70 in various concentrations o f metal 
ion stock solution. Uptake values were recorded after 24 hours o f exposure. The data

was taken from Table A2.3.
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Figure 3.14: The uptake of Resin 15c5/70 as a function of the mass o f the resin. The 
concentration o f the metal stock solution was around 50 ppm, the precise values can

be seen in Table A2.4.
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Figure 3.15: The uptake o f0.5 g  o f resin 15c5/70 in various concentrations o f metal 
ion stock solution. The data was taken from Table A2.3. The two extra points were 
values estimated from previous experiments taken from Table A2.4. Uptake values 

were recorded after 24 hours o f exposure.

3.5.1 Langmuir Isotherm

From the data collected it is possible to obtain information on the availability o f the 

crown ether groups within the copolymer network. It is also possible to calculate a 

value for the equilibrium constant, K, for the formation o f the complex between the 

metal ions and the crown ether rings. This is achieved by applying a Langmuir type 

adsorption profile.

The uptake of the metal ions by the crown ether resins can be equated to the 

surface adsorption o f molecules at solid-fluid interfaces. The crown ether groups at 

the solid surface provide the binding sites for the ions that adsorb from the solution. 

The Langmuir isotherm [250] and the assumptions made during its derivation are 

ideally suited to the adsorption mechanism involved in this system. The isotherm 

assumes that every adsorption site is equivalent and that the ability o f a species to 

bind is independent of any occupancy o f a surrounding site. In the system used the 

binding sites are the crown ether rings so all binding sites can be assumed to be 

equivalent. Also the interaction of a crown ether group with a metal ion will be
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independent of the chemical state of any neighbouring crown ether group so all the 

binding sites are independent of the occupancy of a surrounding site. The Langmuir 

isotherm can be derived in several way, however the derivation that applies most 

suitably to the surface reactions involved here can be obtained from the application 

of simple equilibrium theory.

The following section derives the Langmuir based absorption profile from 

basic principles and applies the theory developed to the surface interaction of the 

crown ether groups with the aqueous metal ions. Values are calculated from the data 

for the equilibrium constant K and the total number of binding sites Lt available. Lt is 

then related to the crown ether content and compared to the values obtained from 

other sources such as CHN elemental analysis.

3.5.2 Derivation of the Langmuir Isotherm

The Langmuir isotherm is applied to the adsorption of gases at solid surfaces. It is 

assumed that the free gas and the adsorbed gas are in dynamic equilibrium and that 

the fractional coverage, 0, depends on the pressure of the gas at the surface. The 

dependence of the fractional coverage on the pressure for a set temperature is 

described by the adsorption isotherm. In our system the binding of the metal ions by 

the crown ether groups is assumed to be in a similar dynamic equilibrium. The 

number of crown ether metal ion complexes compared to the number of free crown 

ether groups i.e. the fractional coverage 0, is dependent on the concentration of the 

metal ions in the solution and the total available crown ether groups.

The dynamic equilibrium is described by the following equation;

ka
[L(s)] + [M+(aq)] =------ = [LM+(s)] (22)

kd

Where [L(S)] is the concentration of the uncomplexed crown ether rings, [M*(aq)] is 

the concentration of the aqueous metal ions, [LM+(S)] is the concentration of crown 

ether metal ion complex and ka and kd are the rate constants for the adsorption and 

desorption steps respectively. Because of the difficulty in relating the concentration 

of the crown ether groups [L(S)] and the concentration of the free metal ions [M*(aq)]
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these terms are replaced by the total ‘amount’ present, moles instead of moles per 

dm3.

If the total crown ether content is equal to Lt then;

[L,] = [L<s)] + [LM+(s)] (23)

and the fractional coverage 0 equals;

e = [LM+(s)] / [ L t] (24)

then by combining equations (23) and (24);

6 / (1- 6) = [LM+(S)] / [L(s)] (25)

Since the equilibrium constant K equals;

K = [LM+(s)] / [ L (s)][M+(aq)] (26)

then

[LM*(s)] /  [L(s)] =  K  [M +(aq)] (27)

and so combining equations (25) and (27);

e / ( i - e ) = K [ M +(aq)] (28)

rearranging equation (28) and substituting in equation (24) for 0 gives;

K [ M ^ [ L M ^  + [L M ^ ] 
[Lt] [L,]

This rearranges to the final useful equation;

[M+(aq)l [ 1 _  [M +(aq)]

[L t] K [L t] [L M +(s) ]

Hence, plotting [M +(aq)] /  [LM*(S)] verses [M +(aq)] will give a straight-line graph of 

gradient 1 / [Lt] and intercept 1 / K  [Lt].
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The plot o f equation 30 for resin 15c5/70 and 18c6/70 can be seen in Figure 

3.16 and 3.17 respectively. The two extra points plotted for resin 15c5/70 were 

estimated from previous experiments and are only displayed for reference. The 

points were not included in the calculation of the gradient or intercept. From the two 

graphs the following values were calculated.

Resin [Lt] / moles Percentage of 
Total

K / d m 3 m ol1

15c5/70 1.947 x 10-6 ± 0.421 x 10"6 2.77 2187.6 ± 866.6

18c6/70 1.597 x 10'5+ 0.186 x 10'5 10.14 1554.1 ±616.9

Table 3.3: Values for [LJ and the equilibrium constant K  calculatedfrom equation 
30 for the binding o f lC  to the crown ether groups. The percentage o f total in 

column 3 is the percentage o f crown ether groups available for binding compared to 
the total amount included in the resin synthesis.

5000

4000

3000

sQ.
2000  -

y = 538806x + 234.77 
R2 = 0.9143

1000

-1000
0.005 0.0060 0.001 0.002 0.003 0.004

[M | / moles per litre

Figure 3.16: A plot o f equation 30 for the uptake o f i f  (aq) by resin 15c5/70. The data 
is displayed in Table A2.3. The extra two points shown, the light blue triangles, are 

those values estimated from other experiments and are included purely for reference 
purposes. The points were not used in the calculation o f the gradient or intercept

quoted.
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Figure 3.17: A plot o f equation 30 for the uptake o f K  by resin 18c6/70. The data
used can be seen in Table A2.3.

The values obtained for the equilibrium constants suggest that the 15-crown- 

5 copolymer, resin 15c5/70, has binding sites with a greater affinity for K+(aq) than 

the equivalent 18-crown-6 copolymer. However, the values are calculated from the 

Langmuir isotherm which assumes all binding sites within a sample are equal. This 

is not necessarily the case, as the surface binding sites will vary considerably in their 

chemical environment, accessibility and surface distribution. From the calculated 

values it can be concluded that the binding sites available to K+(aq) in resin 15c5/70 

are on average of greater affinity than those available in resin 18c6/70. However, the 

sites in resin 15c5/70 are present in a much lower concentration as shown by the [Lt] 

values. These sites may simply exist as a result o f the random formation of sites with 

abnormally high K+(aq) affinity, for example the close proximity of two 15-crown-5 

rings capable o f mutually binding K+(aq) in a 2:1 ratio. Sites with an equally high 

affinity for K+(aq) could exist in the 18-crown-6 resin, however the greater 

distribution o f sites with lower affinity reduce the average binding potential. The 

values o f the equilibrium constants are comparable with those quoted for other 

crown-ether systems [247][248]. Typically values for logioK are 3.24 and 3.43 in the
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case of 15-crown-5 and 4.35 and 6.08 for 18-crown-6 binding Na+(aq) or K+(aq) 

respectively. The values that were calculated here are 3.34 and 3.19 for the 15- 

crown-5 and 18-crown-6 copolymers binding K+(aq).

30n □  15c5/70

■  18c6/70EacODuZJa.

P

- ^  ^ = 7
Zn2+

Co2+ Ni2+ 

Metal ion present

Na+ K+

Ca2+

Figure 3.18: The uptake o f various metal ions by resins 15c5/70 and 18c6/70. The 
metal ion stock solutions were 50 ppm, with only one ion present. 0.5 g  o f each resin 

was used and the uptake values calculated after 24 hours exposure.

The uptake o f the two resins for other metal ions can be seen in Figure 3.19. The 

results do not correlate with the expected uptake based on the ionic radii o f the ions, 

these can be seen in the table below.

Ion Li (aq ) Ni (aq) Co2+(aq) 1
+N

N a  (aq) C a 2 + (aq) K+(aq)

r  / pm 68 69 72 74 97 99 133

Table 3.4: Ionic radii, r,for the metal ions used in uptake studies. The values quoted 
are for the maximum coordination number o f the ion [251].

Resin 15c5/70 binds the ions in the following order, with the highest uptake first;

Co (aq)>Zn ( a q ) '5' K (a q ) '>  Na (aq)> Ni ( a q ) — Ca (aq)

In contrast resin 18c6/70 binds the ions in the following order;
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K  (aq) Co (aq)'>Zll (aq) '> N i (aq) -> N a (aq)-> Ca (aq)

If the Group I ions are disregarded then the uptake affinity is in the same order for 

both resins. This is in agreement with the expected result, that the crown ethers have 

an unusually large complexity constants for the Group I ions [252] compared to 

other ions. The relative effects of altering the crown ether ring size only influence 

the order of the uptake of K+(aq), Na+(aq), and Li+(aq). The results suggest that trace 

amounts of other metal ions may have a pronounced effect on the sensor developed 

from the copolymer system. This observation warrants further investigation, a more 

extensive study including a greater distribution of aqueous metal ions. Further work 

with the uptake of the resins should also included the variation in crown ether 

content, both increasing and decreasing the crown ether percentage in the final 

resins. In conclusion, the data collected shows that the resins successfully bind K+(aq). 

Resin 18c6/70 and the other 18-crown-6 copolymers have a high degree of 

selectivity for K+(aq) over the other Group I ions with the percentage cross-linker 

having only a minor effect on the uptake. The synthesis was straightforward and the 

analysis shows the resin to be a highly cross-linked network with an even 

distribution of all the components. Overall the copolymers should form an ideal 

binding interface on the surface of a QCM resonator designed to selectively respond 

to K+(aq) over Na+(aq) and Li+(aq).

3.6 The K*(aq) Sensor: System One

Following the work described in section 3.4 and 3.5 on the uptake properties of a 

series of crown ether copolymers a suitable system was selected for coating onto a 

QCM resonator. The 18-crown-6 copolymer systems provided the highest degree of 

selectivity for one particular Group I cation, in this case K+(aq). The copolymer 

displays a high affinity as well as a high degree of selectivity for K+(aq), with a 

response time of less than 60 seconds. The results of the uptake studies demonstrate 

the potential of the resins to act as an ion-selective membrane in conjunction with a 

QCM resonator.
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3.6.1 Introduction

The copolymer described in the previous sections consisted of crown ether rings 

covalently attached to a highly cross-linked network of EGDMA and acrylic acid. 

This cross-linked network can be assumed to have a semi-rigid structure with very 

limited volume changes associated with solvent uptake. Similarly the potential of the 

cross-linked network to undergo viscoelastic changes are limited. An improvement 

in sensor response could be achieved with a copolymer coating that can undergo 

greater structural changes during the metal-ion binding process. For example 

increased swelling and inter-chain cross-linking. In such a case the response of the 

QCM sensor to the binding of the target species would be governed not only by the 

mass change but also to a greater extent the viscoelastic changes associated with the 

binding mechanism. These extra contributions would add to the overall response of 

the sensor and increase the sensitivity.

To this end a non cross-linked crown ether containing copolymer was 

synthesised and employed as a selective membrane on the surface of a QCM. The 

response was investigated in via the batch method described in section 2.5. The 

coated sensor was stabilised in a set volume of pure water and metal sulphate 

solutions injected into the system, progressively increasing the metal ion 

concentration.

This section describes in detail the copolymer synthesis and the fabrication of 

the final sensors. The results from the investigation of the sensor response to K+(aq), 

Na+(aq) and Li+(aq) are presented and a model put forward to account for these 

responses.

3.6.2 Sensor Design

The copolymer employed is an acrylic acid backbone substituted with crown ether 

pendent groups, see Scheme 3.2. The copolymer is hydrophilic in nature and swells 

considerably when exposed to water. This swelling increases the copolymer water 

interaction and hence the crown ether metal-ion interaction. The swollen copolymer
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is more susceptible to the viscoelastic changes that accompany the metal ion binding 

and these in turn contribute to the overall sensor response. In order to prevent 

copolymer dissolution the copolymer was attached covalently to the resonator 

surface. This was achieved via a self-assembled monolayer, (SAM) [253]. SAMs 

form spontaneously between gold surfaces exposed to solutions o f many sulphides, 

disulphides and thiol containing species. The structure o f the SAMs is that o f a 

pseudo-crystalline monolayer on the gold surface with close packing o f the 

molecules. The Au-S bond dissociation energy is 418 kJmol'1 [254] this is the 

driving force behind the SAM formation and provides a covalent link between the 

sulphur containing species and the gold surface [255].

•  •  •
•  •  •

] t . . .   •]
Gold Surface Gold Surface

Figure 3.19: A schematic representation o f the formation o f a SAM

By selecting an appropriate thiol species a surface monolayer o f differing 

chemical functionality can be established. In this case 2-aminoethanethiol was used. 

This forms a SAM with an amine functional surface, see Figure 3.19, X=NH2 [256]. 

The amine groups are used to anchor the copolymer to the SAM via an amide link 

with the carboxylic acid groups present in the copolymer backbone.

The formation of the SAM proved to be a very difficult process to observe 

and only limited evidence could be produced to support the assumptions made 

concerning the structure. The standard techniques employed are; contact angle 

measurements [257], infrared grazing angle reflectance spectroscopy (FTIR-RAS) 

[258], surface plasmon resonance [253], X-ray photoelectron emission spectroscopy 

(X-PES) [257] and X-ray diffraction [259]. However the orientation and structure of 

the QCM resonator and the availability o f the analytical instruments limited the 

application o f such techniques. The QCM itself can be used to monitor the formation 

of a SAM [260] [261], by stabilising the resonator in an appropriate solvent and
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monitoring the frequency change associated with the addition of a thiol species. The 

frequency change is instigated by the build-up of the SAM and is generally of the 

order of 100 Hz, although values from 10-900 Hz have been quoted [260][261]. The 

time scale for the SAM formation varies considerably depending on the solvent-thiol 

combination employed and can be anywhere from a few seconds to several hours 

[261].

Once the SAM has formed the copolymer can be chemically attached by the 

reaction of the amine functional groups present on the SAMs surface and the 

carboxylic acid groups present in the copolymer backbone. Two approaches were 

used to attempt this coupling reaction. Firstly a SAM coated resonator was placed in 

a DMF solution of the copolymer along with a suitable catalysts. The catalyst is an 

amino acid coupling agent, dicyclohexylcarbodiimide (DCC) [262]. This encourages 

the formation of the amide link. The second approach simply involved the placing of 

a copolymer layer onto the surface of a pre-formed SAM and heating the coated 

resonator to 130 °C. The combination of a carboxylic acid group and a primary 

amine results in the formation of a salt. These salts can be converted to amides by 

simple heating of the sample [263]. The reaction is not often used for preparative 

methods, however, the amide linkages formed should be sufficient to anchor the 

copolymer to the QCM surface.

The first of these methods is considered to be more elegant but initial 

attempts proved to be unsuccessful. A precipitate formed which covered the 

resonator. The precipitate was not as a result of the copolymer coupling and could be 

removed by rinsing of the resonator with various solvents, for example methanol and 

ethanol. The second approach of heating the copolymer layer in the presence of the 

SAM was successful and it is this method that is utilised to fabricate the sensor 

described in section 3.9.
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3.7 Synthesis of the Copolymer

Acrylic acid was polymerised in the presence of the acrylamidocrown ether 

monomers synthesised in section 3.2. The polymerisation followed standard free 

radical conditions. Scheme 3.2 below illustrates the process and the final copolymer 

produced. The reaction was initiated with AIBN by heating the monomer solution to 

above 60 °C. The ratio w/w of the acrylic acid to crown ether monomers in the initial 

reaction mixture was about 3.5:1 (acrylic acid = 3.5). See section 2.3 for more detail 

on the experimental procedure.

CH, CH,
I m  J n

ch 2 p   ► Ok
o c h 2   Dimethylformamide

r  J, o k, A IB N , 60 °C  ^  V
, _£• 'C hT  CH? „ s °  \NH— CH,

Scheme 3.2: Formation o f  the crown ether copolymer

3.7.1 Analysis

The copolymers were recovered with 70 % and 72 % yield with respect to the 15- 

crown-5 and 18-crown-6 copolymers. They both displayed the same solubility; of 

the common solvents tested they were only soluble in DMF, pyridine and DMSO 

although both copolymers swelled in water and methanol. This lack of solubility 

hampered the analysis, however 13C-NMR, !H-NMR, CHN, FTIR and GPC were 

performed on the 18-crown-6 copolymer and confirmed the structure to be that 

illustrated in Scheme 3.2. NMR and GPC analyses were conducted on the 15-crown-

5 copolymer and confirmed the structure to be the same as the equivalent 18-crown-

6 copolymer with identical m:n ratio. The results of the 18-crown-6 analyses are 

discussed in the following pages.
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13c -n m r

The 13C-NMR, Figure 3.20, shows three carbon nuclei, C-triplet at 70 ppm, C- 

doublet at 43 ppm and C-triplet at 35 ppm. The NMR also revealed a C-singlet 

nuclei at 180 ppm, however, for ease o f presentation the entire spectra is not shown. 

The spectrum is consistent with the copolymer structure shown in Scheme 3.2. The 

C-singlet nuclei can be assigned to the carboxylic acid. The C-doublet and C-triplet 

nuclei at 43 and 35 ppm respectively can be assigned to the copolymer backbone 

carbon atoms and the C-triplet at 70 ppm to the crown ether ring CH2 carbon atoms.

CH-Backbone

100 _c

Figure 3.20: The I3C-NMR o f the 18-cr own-6 copolymer.

‘h -n m r

The *H-NMR of the crown ether copolymer can be seen in Figure 3.21. This shows 

poor peak resolution, which can be attributed to the slow molecular motion 

associated with polymer chains as well as chemical and magnetic inequivalence of 

the proton chemical environments. This, combined with the viscosity of the 

copolymer-CsDsN solution limits the structural information available from the 'H- 

NMR. The multiplets associated with the crown ether ring protons and the 

copolymer backbone protons, however, can be isolated. These appear between 3-4 

ppm and 2-3 ppm respectively. The integration ratio of these two regions can be used 

to calculate the percentage crown ether present in the copolymer. The spectrum 

showed the crown ether loading to be 16.7 % i.e. the m:n ratio in Scheme 3.2 to be 

1:5.
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Crown Ether 
Ring Protons CH, CH2 Copolymer

ppm

Figure 3.21: The 1H-NMR o f the 18-crown-6 copolymer.

Elemental Analysis

Experimental 1.9 % N, 49.9 % C, 6.3 % H => C 30.6 H 46.5 N 1.0

Calculated 2.0 % N, 51.5 % C, 6.7 % H  => C 30.7 H 48.6 N 1.0

The elemental analysis of the copolymer revealed the nitrogen content to be 1.9 % 

assuming this arises only from the amide linkage the CHN data can be utilised to 

calculate the crown ether loading of the copolymer. This worked out to be 17 % of 

the carboxylic acid groups and agreed well with the 16.7 % predicted from the 'H- 

NMR. The calculated values for the CHN data above were based on the crown ether 

loading value obtained from the 'H-NMR.

Infrared Analysis

The infrared (IR) spectrum of the poly(18-crown-6)-(acrylic acid) copolymer can be 

seen in Figure 3.22. The spectrum indicates the removal of the C=C stretching 

frequency at 1546.59 cm '1. It also shows the large broad absorption between 3800 

cm '1 and 2800 cm'1 indicative of the carboxylic acid O-H group. The
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Figure 3.22: The FTIR o f both the 18-crown-6 monomer and the 18-crown-6
copolymer.

region extending from 1880 cm '1 to 1700 cm'1 shows a large broad peak. This is 

consistent with the expected C =0 stretching frequency o f poly(acrylic acid). The 

shoulder on this peak below 1700 cm'1 can be assigned to the C=0 amide stretching 

frequency and the N-H bending frequency. Both these will be expected in the 

copolymer but with a decreased intensity compared to the bulk poly(acrylic acid) 

absorption.

GPC

The GPC trace of the two crown ether containing copolymers can be seen in Figure 

3.23. A standard poly(acrylic acid) sample synthesised by the identical experimental 

procedures excluding the crown ether monomer can also be seen. The results of the 

data analysis performed on the samples are shown in Table 3.5. The GPC system 

was calibrated with poly(methylmethacrylate) standards and so the values for the 

molecular weights are PMMA equivalent molecular weights and not the absolute 

values.
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Sample Mw. M„. Polydispersity

PDAAl 37100 8360 4.4

PDAA2 36100 8340 4.3

PD15P1 1000000 31500 32

PD15P2 1040000 27700 37

PD18P1 801000 37500 21

PD18P2 840000 36300 23

Table 3.5: Poly(methylmethacrylate) equivalent molecular weights and the 
polydispersity for the two crown ether copolymers and the standard 

poly (acrylic acid) samples synthesised in section 2.4.3.

PDAAl
Pd AA2

/  PD15P1 
/  PD15P2 
/  PD18P1 
/  PD18P2

2 3 4 5 6 7 8

logM

Figure 3.23: Molecular weight distributions for the three copolymers synthesised. 
PDAA is the standard poly (acrylic acid), PD15P is the 15-crown-5 containing 

copolymer and PD18P is the 18-crown-6 copolymer.
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3.7.2 Conclusion

The spectroscopic and elemental analysis of the poly(18-crown-6)-(acrylic acid) 

copolymer confirm the proposed structures. The !H-NMR and CHN analysis of the 

copolymer reveals the ratio of crown ether pendent groups to carboxylic acid groups 

to be 1:4.96 and 1:4.88 respectively. Both calculations are in good agreement and the 

ratio m:n can assumed to be 1:5. This shows a large crown ether content. The 

carboxylic acid groups are present to induce the hydrophilic nature of the copolymer. 

If they are reduced in population the copolymer may not interact with the aqueous 

solutions. The copolymer, however, still swells in the presence of water so the high 

crown ether content does not have an overwhelming effect on the hydrophilic nature 

of the copolymer. The carboxylic acid groups are present in a high enough ratio and 

so anchoring of the copolymer to the sensor surface via an ester or amide linkage 

should be easily achieved.

These three properties, high crown ether content, hydrophilic nature and free 

carboxylic acid groups were the main targets for the synthesis. The copolymer 

developed has been shown to meet these requirements and should form a suitable 

cation selective membrane when incorporated in a QCM based chemical sensor.

3.8 Self-Assembled Monolayers

Several methods were utilised in the formation of the self-assembled monolayers. A 

variety of thiol compounds, different solvent systems and a range of surface pre- 

treatments. The results from these studies will be discussed in this section. The 

experimental detail presented in section 2.4.3 is that used to fabricate the SAM 

employed in the final sensor. The experimental details of the previous attempts are 

neglected for ease of presentation, however details of the attempts are discussed and 

the conclusions presented.
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3.8.1 Results

Two resonators were employed to investigate the SAM formation. Both were 

subjected to the same cleaning procedure. Resonator 1 was placed in pure dry 

ethanol while resonator 2 was placed in a 5 mmoldm* ethanol solution of 

aminoethanethiol. The frequency change associated with the exposure of resonator 1 

to pure ethanol was consistently below 20 Hz. By contrast Resonator 2 had an 

increase in resonance frequency of 119 Hz. Using equation 10 and a value of 0.70 

Hz ng'1 for the calibration constant this is equivalent to the addition of 83 ng of 

material. Assuming a value of 25 A2 for the area of one molecule and a 0.16 cm2 

geometric area for the gold electrode, monolayer coverage would be expected to be 

approximately 8 ng.

Unsuccessful Methods

Other thiol species employed were 3-mercapto-l,2-propandiol and thioctic acid. The 

mercaptopropandiol species was found to undergo a chemical reaction. When the 

QCM resonator was placed in an ethanol solution of the mercaptopropandiol a 

precipitate was formed. Interestingly this precipitate only formed when the QCM 

resonator was oscillating. A solution of the thiol in ethanol remained clear and free 

from precipitate for several weeks. All early attempts to from the SAM failed. The 

frequency change of the resonator on exposure to the thiol compounds was 

inconsistent and less than 50 Hz. This was attributed to the nature of the gold 

surface. The formation of an ordered SAM is very dependent on the structure and 

composition of the gold surface [264]. Several methods exist for the pre-treatment of 

the gold surface in preparation for the SAM these include physical polishing with 

alumina slurry [265] and electrochemical cleaning [266]. Due to the delicate nature 

of the gold electrode on the resonator surface the polishing procedure was not 

suitable, the electrode simply eroded away. The electrochemical cleaning process 

was effective and is the cleaning procedure recommended for further work.

However, with appropriate QCM resonators these steps are not required. The work 

conducted with the QCM resonators in this thesis utilised two different ‘batches’ of 

the same specification resonators. Batch one failed to form SAMs even after
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extensive cleaning, whereas batch two resonators responded well to the formation of 

SAMs. The X-PES a spectrum of the gold electrodes on a batch one resonator was 

dominated by a silicon peak. By contrast the expected Au peak dominated the X-PES 

spectra of the gold electrode in the second batch. It is therefore highly probably that 

the Si contamination on the Au surface was responsible for inability of these 

electrodes to form SAMs. It is recommended that future resonators be subjected to 

X-PES analysis on receipt simply to confirm the chemical nature of the gold surface. 

See Appendix 3 for the X-PES spectra.

3.9 Fabrication of the Sensor

The final sensor was fabricated by taking a resonator with a pre-formed SAM of 

aminoethanethiol and placing a layer of the acrlyamido-18-crown-6 copolymer over 

the surface. The coated resonator was then heated to 130 °C with the intention of 

promoting the formation of an amide link between the amine functional SAM and 

the copolymer [263]. The response of the coated resonator to K+(aq), Na+(aq) and 

Li+(aq) were then investigated using the batch method described in section 2.7. The 

following pages discuss the results from the fabrication of the sensor and the sensor 

response

3.9.1 Results for the Fabrication of the Sensor

Table 3.6 lists the frequency changes associated with the fabrication of the sensor. 

On formation of the SAM layer the resonance frequency of the crystal dropped by 

119 Hz. This is as expected for the formation of a monolayer of the thiol species on 

the surface of the resonator. The copolymer coating induced a frequency shift of 

around 2200 Hz indicating a mass of approximately 1.59 pg. On heating to 130 °C 

and subsequent rinsing with warm DMF this mass reduced to 1.41 pg.
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A F /H z Mass / pg

Thiol Layer 119 0.08

Copolymer Coating

After heating
2021 1.41

Copolymer Coating

After soaking in water 
and drying in air

2599 1.81

Table 3.6: The frequency changes associated with the sensor fabrication.

Previous attempts to coat the resonator with the copolymer produced similar 

results. However, on soaking the coated resonator in water for several hours and 

after several injection runs, the frequency returned to that of the clean resonator. 

Using this SAM methodology the frequency of the coated resonator remained 

constant throughout the sensor response studies.

The change of resonance frequency of the dry film on exposure to water is 

believed to be due to the hydrophilic character of the copolymer layer. Differential 

scanning calorimetry (DSC) studies conducted on the copolymer show that it has a 5 

% by weight moisture content when exposed to the atmosphere. After soaking in 

water and simply drying in an air stream at room temperature this moisture content 

would be expected to increase substantially. The QCM data above suggest that the 

moisture content of the copolymer film after soaking in water and drying is 28 % by 

weight.

The heating to 130 °C was intended to promote the formation of the amide 

link between the copolymer acrylic acid groups and the SAM amine groups, 

effectively dehydrating the copolymer layer. Once heated the copolymer shows no 

physical change that may be associated with thermal decomposition, and a thin film 

can be seen on the surface of the resonator. All attempts to remove the copolymer 

film failed, these included washing with warm solvent, 1M sulphuric acid, 1M 

NaOH and gentle rubbing. The gold electrodes on the surface of the resonator are 

very thin and any vigorous cleaning techniques such as polishing and ultrasonic
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etching damage the electrodes rendering the resonator inoperative. We are therefore 

confident that the polymer film is present and adhered to the resonator surface.

3.9.2 Response Studies

The response of the sensor was monitored in a batch process (see Chapter Two 

section 2.7). This involved the injection of 10 pi, 50 pi and 100 pi o f a 0.68 mol dm' 

3 [M] (aq> concentration. After each injection the resonant frequency was allowed to 

stabilise before any subsequent injections. This was about 10 minutes for the coated 

sensor. The frequency was considered ‘stabilised’ when the value was ± 5Hz for a 

period o f 2 minutes. After this time the resonant frequency was recorded for 30 to 40 

seconds prior to the next injection. Typically a total o f 800 pi o f the metal ion stock 

solution were injected for each run.
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Figure 3.24: The response o f the coated resonator to the injection o f 100 p i aliquot
o f 0.68 mol dm'3 Kf (aq) solution.

The response o f the coated QCM to the injection o f the metal sulphates 

followed a similar trend for all the sensor system, see Figure 3.24. This was an
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almost instantaneous shift in the resonant frequency that occurred within 1 or 2 

seconds o f the injection time. In some cases the shift would level off as much as 50 

seconds after the injection. This was only in the first few runs and can be attributed 

to the flux o f the solvent molecules in the region close to the resonator surface. 

Initially the resonator is operating in an ion free solvent environment. The addition 

of the Group I sulphates therefore has an immediate effect on the resonator 

oscillation. This effect takes several seconds to reach an equilibrium condition. Later 

injections simply add more ions into the system so the overall flux of water 

molecules and metal ions near the surface of the electrodes is greatly reduced. Once 

the initial shift has occurred the resonant frequency remains stable. Further 

experiments on the stability o f the QCM have shown that the base line drift in water 

is in the region o f 0.03 Hz Sec'1 and can be maintained for a period of several hours.

The response of the copolymer coated resonator to the injections o f K+(aq>, 

Na+(aq), and L i+(aq) can be seen in Figure 3.25. The resonator displayed a similar 

trend for all three o f the metal ions. Both in the magnitude and in the time period of 

the frequency shifts. After each cleaning run the fundamental oscillating frequency 

of the copolymer coated sensor returned to a value representative o f the resonator 

after the initial copolymer layer was deposited.
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Figure 3.25: The response o f the 18-crown-6 copolymer coated sensor to the 
injection o f metal stock solutions
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The response ratio of the three metal cations (the ratio of the three gradients 

in Figure 3.25) is 1.32:1.06:1.0 for K+(aq)-Na+(aq):Li+(aq). This is the ratio predicted 

from the simple conductivity changes associated with the metal cation concentrations 

and indicates that the sensor has no selective response to K+(aq> The following 

section accounts for these observed ratios and shows that no frequency change 

associated with the uptake of any of the Group I ions occurred.

Frequency Response Interpretation

The frequency change of the non-functionalised resonators is believed to be 

associated with changes in the conductivity and viscoelastic properties of the 

oscillating medium. The resonant frequency of an oscillator operating in a liquid 

environment is related to the density, viscosity and ionic concentration of the 

solution [267]. The relationship between these three physical properties and the 

resonance frequency of the QCM are discussed in length in section 1.4 of this thesis 

and are not wholly understood at the present time.

The response observed in this case can be accounted for by considering only 

the changes in conductivity of the oscillating medium. The ratios developed from 

experimental observations can be predicted by applying Kohlrausch’s law [268], or 

more completely by the Debye-Huckel-Onsager theory [269] to the metal sulphate 

solutions. These two theories relate the conductivity of a solution to the 

concentration of the electrolyte.

The Debye-Hiickel-Onsager theory states that;

A m = A°m -  (A + B A°m ) cl/2 (31)

where A m is the molar conductivity of the solution, A°m is the limiting molar 

conductivity of the electrolyte, c is the molar concentration of the added electrolyte 

and A and B are constants related to the stoichiometry of the electrolyte.
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For the metal sulphates used A°m equals [270];

Li2S 0 4 A°m = 237.32 S cm2 mol'1

Na2S 0 4 A°m = 260.16 S cm2 mol'1

K2S 0 4 A°m = 306.96 S cm2 mol'1

The concentration, c, o f the metal sulphates after injection was less than 1

mmol dm' in all cases and the values o f A and B are constant for all three sulphates. 

For these reasons the values o f A, B and c1/2 can be neglected when calculating the 

ratio o f the conductivity ratios and A m assumed to be equal to A°m.

For equally concentrated solutions this leads to a conductivity ratio of;

[K2S 0 4] Am / [U 2SO4] Am = 1.29 (32)

[Na2S 0 4] Am / [U 2SO4] Am = 1.10 (33)

[U 2SO4] Am / [Li2S 0 4] Am = 1.00 (34)

These values are close to the response ratios developed experimentally for 

the uncoated resonators. This suggests that the initial response observed for the 

resonators are related to the conductivity o f the oscillating solution. The change in 

viscoelastic properties were also plotted using Kanazawa’s equation (17), however 

these were insignificant in comparison frequency change associated with the 

conductivity and are therefore neglected.

For these reasons the response o f Li+(aq) by the resonators was used as a 

calibration response. From this the predicted response o f an uncoated resonator to 

the other cations Na+(aq) and K+(aq) could be calculated by the application o f the 

simple ratio quoted. The predicted response calculated in this way was subtracted 

from the actual response. This revealed the response associated with the crown ether 

containing copolymer coating. The process can be expressed mathematically by the 

following equations. The predicted response for a resonator operating with no metal 

adsorption taking place i.e. an uncoated resonator or a resonator coated with a non

chelating copolymer was found to follow these ratios;
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Pk / ALi = 1.44 (35)

PNa / ALi = 1.06 (36)

Py / ALi = 1.00 (37)

Where Pk is the gradient of the predicted K+(aq) response, Pn3 is the gradient of the 

predicted Na+(aq) response and Pu is the gradient of the predicted Li+(aq) response and 

Au is the actual experimental Li+(aq) response. These ratios were obtained 

experimentally by observing the response of several uncoated resonators using the 

batch method described in section 2.7.

The ‘normalised’ frequency response is calculated from the predicted 

response minus actual the response:

Nk= P k -Ak (38)

NNa = PNa-ANa (3 9)

N Li =  PLi-ALi (40)

Where Nk is the gradient of the ‘normalised’ K+(aq) response, Nns is the gradient of 

the ‘normalised’ Na+(aq) response and Nu  is the gradient of the ‘normalised’ Li+(aq) 

response.

From these equations it follows that for a resonator response identical to the 

uncoated resonator the ‘normalised’ gradient will equal zero, and for a resonator 

with modified response the gradient will not equal zero.

The normalised response graph is not plotted for the current sensor system 

shown in Figure 3.25 as the ratios indicated that no absorption was occurring and so 

no reference data from a blank poly(acrylic acid) system was obtained. However the 

K+(aq) sensor developed in system two section 3.12 was shown to respond as 

predicted and this normalisation process used to plot the data.
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3.9.3 Conclusion

The coating of the sensor was apparently successful. The frequency changes 

associated with the SAM formation and subsequent copolymer coating followed 

those expected. After careful cleaning and throughout the sensor application the 

copolymer remained intact on the sensor surface. This is evident by the dry 

oscillating frequency of the sensor. Previous coating attempts resulted in the gradual 

depletion of the copolymer layer, with the dry frequency returning to that of the 

clean resonator prior to the coating procedure. These observations support the 

assumption that the copolymer layer is covalently attached to the SAM and 

permanently adhered to the resonator surface.

The response of the coated sensor to aqueous metal ions was disappointing. 

The sensor displayed no response associated with the selective binding of K+(aq), 

Na+(aq) or Li+(aq) and only responded to the conductivity changes of the solution 

induced by the metal ion concentration. This was surprising as the crown ether 

moieties were shown to be present in the copolymer prior to coating and the 

equivalent cross-linked copolymer displayed definite uptake properties towards 

K+(aq). This suggests that the copolymer coating in the present system has in some 

way lost its uptake. The two most likely explanations for this are that the copolymer 

synthesised has no potential for uptake or that the copolymer under went some kind 

of structural change during the coating procedure. The analytical evidence obtained 

on the copolymer prior to coating indicates that the crown ether groups are present 

and intact, this includes 13C-NMR, !H-NMR and FTIR. The only process involved 

in the copolymer coating that may have a detrimental effect on the copolymers 

chemical composition was the heating procedure. It is possible that the heating of 

the copolymer layer may induce structural changes with in the copolymer, 

destroying the crown ether groups or hindering their binding mechanism.

The following section describes the DSC studies undertaken to investigate the 

chemical and physical changes induced in the copolymer layer upon heating.
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3.10 Copolymer Thermal-Stability

The DSC investigation on the thermal stability o f the 18-crown-6 copolymer and the 

18-crown-6 resin will reveal any chemical or physical change in the two polymers 

under the conditions employed to coat the resonator.
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Figure 3.26: The DSC trace obtainedfor the 18-crown-6 copolymer. PLD.044 was 
the first heating cycle followed by PLD. 045.

The 18-crown-6 copolymer synthesised in section 3.7 was heated from 25 °C 

to 200 °C with a rate of 5 °C m in1. The copolymer was dried prior to the run by 

cycling from 20 °C to 60 °C. This removes any moisture from the system. The 

results showed the glass transition temperature, Tg, to be 94.96 °C. This is consistent 

with the expected Tg given the Tg o f poly(acrylic acid) is 106 °C [271]. A second 

thermal process was initiated at a temperature of about 130 °C. This appeared as an 

endothermic peak in the DSC trace and suggests a decomposition reaction. The DSC 

trace can be seen in Figure 3.26.

On repeating the heating cycle this second peak reduced considerably in 

intensity and the Tg increased to a higher temperature, 97.08 °C. With continued 

heating from 25 °C to 150 °C the Tg increases lurther. The process was repeated with 

a second sample the results o f which can be seen in Figure 3.27, Table 3.7 shows the 

Tg values.
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Number of heating 
cycles

Tg/°C Mass of the sample / 
mg

0 - 11.544

1 94.96 11.216

2 97.08 11.044

3 104.13 10.874

4 110.13 10.804

Heated to 200 °C for 48 
hours

132.91 10.370

Table 3.7: The change in Tg and mass o f  the sample that accompanied the heating 
cycles. These are for the 18-crown-6 copolymer.

The shift in the Tg value and the loss of mass in the copolymer sample both 

suggest that a thermal degradation of the copolymer is occurring. The mass change is 

not related to the evaporation of moisture from the copolymer as this was removed 

prior to the experiments. After drying and prior to the heating process cycling up to 

70 °C produced no mass change in the copolymer or shift in the Tg. The total mass 

change was 10 %, this compares well with the 11 % mass change associated with the 

heating of the copolymer layer on the surface of the sensor during the sensor 

fabrication.

The increase in the Tg value indicates a reduction in the free-volume of the 

copolymer chains. This can be associated with the removal of a plasticiser, such as 

water molecules, or large spacer groups preventing the close contact of the 

copolymer backbones. As the copolymer was already dried and all moisture had 

been removed one possible explanation for this shift would be the decomposition of 

the crown ether rings. These form large bulky pendent groups attached to the 

copolymer backbone and act as internal plasticisers. As the rings decompose the 

copolymer chains have less free-volume and the Tg shift to a higher value. FTIR and 

CHN analysis were used in an attempt to confirm this hypothesis however the results 

were inconclusive. No obvious difference could be determined between the heated
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copolymer and the original copolymer. 13C-NMR or 'H-NMR was not possible, as 

the heated copolymer was no longer soluble in the solvents available.
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Figure 3.27: The shift in Tg and the initial first order endothermic decomposition 
peak associated with the heating o f the 18-crown-6 copolymer 130 CC.

3.11 Cross-linked Resin Thermal Stability

The uptake properties of the heated copolymers were investigated with the cross- 

linked resins synthesised in section 3.3. The chemical environment o f the crown 

ether groups in the cross-liked resins are very similar to those in the copolymer. Any 

thermal degradation of these groups will be comparable in both the cross-linked 

resins and the copolymer system. As the uptake properties of the resins can be 

readily investigated using aqueous solutions o f Group I ions, the uptake properties of 

the heated resins can be equally investigated.

The study was conducted in two parts. The first section used the DSC to 

investigate the thermal properties of the resins. The second section looks at the 

uptake properties of the heated resins.
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3.11.1 DSC Investigation

A sample of the 18-crown-6 cross-linked resin 18c6/70 [272] was dried in the DSC 

chamber by cycling from 10 °C to 80 °C. The cycling was conducted in an air 

atmosphere. This resulted in a reproducible trace after approximately four cycles and 

a mass change from 5.05 mg to 4.79 mg. This is consistent with the drying of the 

resin by the evaporation of the excess moisture. The reproducible DSC trace 

indicates that no irreversible thermal processes are taking place during this drying 

step. The DSC trace can be seen in Figure 3.28.

Once dried the resin was heated to 190 °C. As with the copolymer this saw 

the emergence o f an endothermic peak at about 140 °C see Figure 3.29. The peak 

was not reversible and later cycles displayed a reduction in the peak to a constant 

base line. This suggests the occurrence o f a thermal oxidation or degradation process 

taking place with in the cross-linked resin. The process was repeated with two new 

samples with identical results.
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Figure 3.28: The DSC trace showing the drying o f resin D. The mass o f the sample 
was initially 5.05 mg and reduced to 4.79 mg. The process was conducted in an air

atmosphere.
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Again as with the copolymer the resin had identical FTIR spectra both before 

and after heating. However due to the low concentration o f the crown ether groups 

the degradation o f these moieties would not be expected to show an obvious change 

in the FTIR spectra. See Appendix 4 for the FTIR spectra.
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Figure 3.29: The DSC trace showing the thermal degradation o f resin D.

3.11.2 Uptake Investigation

The uptake properties of the heated resin were determined in an identical fashion to 

that o f the original sample [273]. The resin was heated for 48 hours in a fan-assisted 

oven at 180 °C. The resin was subjected to occasional stirring to ensure an even 

heating. This resulted in no obvious degradation, the resin appeared the same before 

and after the heating with no charring or colour change, however, the uptake of the 

resin was effected. This can be clearly seen in Figure 3.30. The original resin had an 

uptake o f 53 ppm with respect to K+(aq)- This was for a 1.3 g sample in 100 cm3 o f a 

69 ppm stock solution. By comparison the heated resin had an uptake of only 41 

ppm under similar conditions.
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Figure 3.30: The uptake properties o f both the original and a heated sample o f resin 
D. The sample consisted o f 1.3 g  of the resin in 100 cm3 o f 69 ppm fC (aq).

The results confirm that the uptake of the cross-linked resin is reduced 

considerably after heating. Since this property is directly related to the crown ether 

content it leads to the conclusion that the heating o f the resin in some way limits the 

binding o f the metal cations to the crown ether rings, either by the degradation o f the 

rings or by hindering the accessibility o f the rings. The resin is synthesised with 70 

% cross-linker and so it is very unlikely that the heating of the resin could limit the 

accessibility o f the crown ether rings by further cross-linking. For this reason it is 

believed that the crown ether groups are either chemically or thermally degraded.

3.12 The K+(aq) Sensor: System Two

The copolymer coated sensor displayed no uptake o f any o f the Group I ions. This 

was attributed to the thermal degradation o f the crown ether groups during the sensor 

fabrication. An alternative method for coating the sensor would be to form the cross- 

linked copolymer resin utilised in sections 3.3 and 3.4 directly on the resonator 

surface. The conditions required would be identical to those used to synthesise the 

bulk powdered resin, which are known to selectively uptake K+(aq).
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3.12.1 Introduction

The experimental procedure applied to create the powdered copolymer resins 

synthesised in section 3.3 was readily modified to produce a cross-linked copolymer 

film on the surface of the QCM resonator. The three individual monomers, 

(acrylamidomethyl-18-crown-6, acrylic acid and EGDMA) were combined with a 

suitable solvent, (acetonitrile) and initiator (AIBN) in a small reaction well, the base 

of which was formed by the QCM resonator. By slowly heating the mixture the 

copolymerisation was initiated. The end result was a solid film permanently adhered 

to the resonator surface. On the bases of the monomer ratios employed it is assumed 

that this film possesses a similar composition to that of the powdered resin described 

previously. The coated resonator was then employed as a K+(aq) sensor in two 

different applications, a batch system and a flow injection analysis (FIA) system.

The following sections describe the coating procedure and the response of the 

developed sensor. The analytical results used to confirm the presence of the coating 

layer and its chemical composition will be presented and discussed. The sensor 

response will also be investigated by the application of the Langmuir isotherm 

derived in section 3.5.2.

3.12.2 Fabrication of the Sensor

Two copolymer coatings were investigated; an 18-crown-6 copolymer based on the 

composition of resin 18c6/30 and a blank copolymer containing no crown ether 

based on resin EG/70. The monomer mixtures were prepared in a solution of 

acetonitrile using the ratios shown in Table 3.8. The concentrations were limited so 

that the mass of the final film would be around lpg. This was based on the 

assumption that thinner films have greater response times and that the oscillation of 

the resonator is impaired as the thickness of any coating increases. Experimental 

details can be found in section 2.6.
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Solution 18-Crown-6 
monomer / g

Acrylic 
Acid / g EG D M A /g A IB N /g Acetonitrile /

„ 3cm

1 0.0636 0.2283 0.1575 0.0060 100

2 None 0.2848 0.1651 0.0063 100

Table 3.8: The monomer ratios in the solutions used to coat the QCM resonator.

3.12.3 Results and Discussion

To investigate the response of the final sensor three resonators were prepared. The 

first one coated with the 18-crown-6 containing copolymer using solution 1. The 

second coated with solution 2, the “blank” resin containing no chelating groups and 

the third simply an uncoated resonator with no copolymer layers. The frequency 

changes associated with the coating of the resonator can be seen in Table 3.9.

Resonator Coating
Solution Functionality A f/H z Mass / ng

A 1 18-crown-6 1593 ±50 1111 ±35

B 2 None 1011 ±50 705 ±35

C None None None None

Table 3.9: The three resonators prepared. A f is the frequency difference between the 
coated and uncoated resonator measured in air. The coating solutions are those

described in Table 3.8.

The coating process resulted in a visible film that was unaffected by the usual 

cleaning methods, for example rinsing with hot solvents and gentle swabbing with 

cottonwool soaked in a suitable solvent. The chemical nature of the film was difficult 

to determine in situ via any analytical techniques. This was due to the shape of the 

resonator and the thin film thickness estimated at about 70 nm (assuming a density 

of 1 g cm' ). However, X-ray photoelectron emission spectroscopy, X-PES, showed 

the expected carbon and oxygen peaks as well as the silicon, gold and oxygen peaks 

associated with the uncoated QCM resonator surface. These confirm the presence of



129

the carbon based coating but can not be utilised to calculate the carbon : oxygen ratio 

confirming the copolymer elemental ratios, see Appendix 3.

Sensor Response in the Batch Process

The response of the individual resonators, A, B and C were very similar. On 

injection o f the metal stock solution the resonance frequency increased by about 10 

Hz for a 10 pi injection of the 0.230 mol dm'3 stock solution. An example o f the 

frequency response can be seen in Figure 3.31.
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Figure 3.31: The response o f resonator A to the injection o f two successive 10 pi 
aliquots o f 0.230 mol dm 3 K j(aq) stock solution. The injections were on 10 seconds

and 58 seconds.

The frequency response occurred instantaneously as the injections were made. 

The profile shown in Figure 3.31 was observed for all resonators and is considered to 

be representative of the general trend. However, a tail-off o f the frequency response 

was occasionally observed. This tail-off could be minimised with the inclusion of a 

magnetic stirrer in the reaction vessel. The stirrer speed had no effect on the value or 

stability o f the resonance frequency. As before the frequency increase for all three 

resonators was found to have a linear relationship when plotted against the injected 

volume. The graphs can be seen in Figure 3.32, 3.33 and 3.34. The R2 values 

obtained from the linear regression analysis for all three resonators to Na+(aq> Li (aq), 

and K+(aq) were all greater than 0.996.
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Figure 3.32: The response o f resonator A to the injection o f0.230 mol dm 3 metal
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Figure 3.33: The response o f resonator B to the injection o f0.230 mol dm 3 metal
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cation stock solutions.
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Frequency Response Interpretation

The initial frequency responses of the resonators, i.e. the gradients in Figures 3.32, 

3.33 and 3.34, were found to follow the simple ratios quoted Table 3.10. It was the 

consistency of the response for the uncoated resonator C and the blank copolymer 

coated resonator B that led to the observation of the shift in the K+(aq) response 

associated with the coated resonator A. The response was normalised following the 

procedure described in section 3.9.2.

Ratio of Response Gradients

Resonator K+/L i+ Na+/ Li+ Li+/L i+

A 18c6/30 coated 1.07 1.13 1.00

B EG/30 coated 1.28 1.14 1.00

C no coating 1.32 1.12 1.00

Table 3.10: The ratio o f the gradient fo r  the response o f  resonator A, B and C taken
from Figures 3.32, 3.33, 3.34.

The normalised frequency response graphs can be seen in Figures 3.35 and 

3.36. These clearly show the response of the crown ether coated resonator and are 

discussed in the following paragraphs.
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Figure 3.35: The normalised frequency response o f resonator B (no crown ether) to 
the addition o f metal cations. The experimental procedure involved the injection of 

10 p i o f a 0.230 moldm3 stock solution into a 30 cm3 sample ofpure water.

From the graph in Figure 3.35 it can be seen that resonator B, coated with the 

copolymer containing no crown ether, had no extra response to the addition o f the 

metal cations. The normalised response profiles of the resonator to Li+(aq), Na+(aq) and 

K+(aq> were obtained and the resonator showed no affinity for any o f the ions 

investigated. The response was the same as that predicted for the uncoated resonator. 

This is the expected result; the equivalent bulk copolymer (resin EG/70) showed no 

uptake in the previous section. With no adsorption of the metal cations the 

copolymers mass and viscoelastic properties remain constant, independent of the 

metal cation concentration. The resonator is the control for the response experiments. 

It is worth pointing out however that the linear regression for the Li+(aq) data by 

definition has a gradient equal to zero. This is a prerequisite for the data 

transformation performed and means the response plotted is with respect to any 

Li+(aq) uptake
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Figure 3.36: The normalised frequency response o f resonator A to the addition of 
metal cations. The experimental procedure involved the injection o f 10 p i of a 0.230 

mol dm 3 stock solution into a 30 cm3 sample ofpure water.

The response o f resonator A coated with the 18-crown-6 copolymer can be 

seen in Figure 3.36. It can clearly be seen that the resonator has a pronounced 

response to K+(aq) over the other two Group I ions Na+(aq) and Li+(aq). The results of 

run 1 were confirmed by the second set of data for run 2. This was collected for the 

same resonator after a light rinse with pure water. The second run also illustrates the 

mild cleaning conditions required between each exposure of the resonator. As with 

the powdered copolymer a simple rinse with pure water appears to fully reactivate 

the resonator. From the slope o f the plot, a response factor of 0.68 FIz ppm'1 can be 

calculated. Assuming a frequency stability o f  ± 0.10 Hz this gives an estimated 

sensitivity o f 0.15 ppm for the current system. This value is well within the 

sensitivity required for environmental and clinical applications of commercial K+ 

sensors. The concentration o f K+ in tap-water is typically in the range o f 1-80 ppm

[274]. In the human body the concentration o f K+ in blood serum is around 140 ppm

[275] and bile around 500 ppm [274]
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3.12.4 Initial Conclusion

The results of the two resonators strongly indicate that the binding properties of the 

copolymer resin synthesised in section 3.3 have successfully been transposed to the 

QCM chemical sensor. The resonance frequency of the sensor displays concentration 

dependence with respect to K+(aq> induced by the chelating potential of the 

copolymer interface. This dependence is masked by the general response of the 

QCM resonator to the electrical and viscoelastic changes associated with the addition 

of Group I sulphates to pure water. These non-specific changes can be predicted and 

removed from the overall response.

The profile of the dependence does not follow that predicted by the Sauerbrey 

equation [276]. This is not surprising as the relationship between frequency change 

and absorbed mass will not be straightforward and will not be given to any degree of 

accuracy by the Sauerbrey equation. However, for the purpose of the work carried 

out in this area the precise origin of the frequency response is of limited interest. The 

important observation is that a response exists and that this response is associated 

with the presence of the fimctionalised polymer. The system is easily calibrated by 

measuring the response to solutions of known concentration and can be applied to 

very dilute solutions.

3.12.5 Sensor Saturation

The normalised response of the sensor has so far been displayed as a straight-line 

graph of the type y = mx + c. However, intuitively this relationship can not hold over 

an infinite concentration range. At some point the sensor response has got to tail-off. 

This section describes the experiment undertaken to discover this saturation point.

The experimental procedure was the same as that followed for the batch 

sensor response. Sensor A was placed in 30 cm3 of pure water and allowed to 

stabilise. Volumes of a Group I metal sulphate solution were then injected into the 

system gradually increasing the metal cation concentration. The stock solution used 

can be seen in Table 3.11.



135

Group I Metal 
Sulphate Mass / g Volume / cm3 Concentration / 

moldm'3

Li2SC>4' H2O 2.9535 100 0.461

Na2SC>4 3.2655 100 0.460

K2SO4 4.0191 100 0.461

Table 3.11: The metal ion stock solutions usedfor the saturation study of sensors A
and B.

The volumes of the stock solutions added to the reaction chamber were such 

that it was necessary to remove a sample o f solution before adding an equal volume 

o f the stock. Accordingly, 500 pi o f the stock solution was added initially, followed 

by the removal o f 500 pi o f the solution from the reaction chamber. This process was 

repeated 11 times each consisting o f the addition o f a 500 pi aliquot o f the stock 

solution followed by the removal o f 500 pi o f the solution. The initial response of 

the two sensors A and B can be seen in Figures 3.37 and 3.38. It can be seen that the 

frequency response follows a curve gradually tailing off as the concentration o f the 

metal cations increases.
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Figure 3.37: The response o f sensor A (crown ether coated) to the injection o f the
metal stock solution
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Figure 3.38: The response o f sensor B (EGDMA coated) to the injection o f the metal
stock solution

The initial frequency response was normalised following the same principle 

as before. The K+(aq) and Na+(aq) response were predicted from the Li+(aq) response of 

sensor A based on sensor B. The normalised frequency graph for sensor A can be 

seen in Figures 3.39. This is the sensor coated with the 18-crown-6 containing 

copolymer. The error bars were calculated by assuming an uncertainty in the 

frequency response o f ± 20 Hz estimated by observing the frequency fluctuations of 

the sensor immersed in the metal cation solution.

It can be seen from the graph that the K+(aq> response rises to a plateau and 

levels off, the Na+(aq) response tends to fluctuate around zero with no positive trend. 

Again, by definition the Li+(aq) response is zero. Assuming that the plateau represents 

the saturated sensor response, from the data the fractional coverage 0 can be 

calculated. By applying the Langmuir type isotherm derived in section 3.5.2 the 

fractional coverage can then be used to estimate the equilibrium constant for the 

metal ion adsorption process. The plot o f equation 28 can be seen in Figure 3.40.
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Figure 3.39: The normalised frequency response o f sensor A to the injection of
metal cation solutions.

The Langmuir plot showed poor linear correlation. The expected fit should 

produce a straight-line graph with a zero intercept. The deviation from the Langmuir 

isotherm can usually be attributed to a failure in the assumption of equivalent, 

independent binding sites. The binding energy o f each site increases or decreases 

with the fractional coverage. In this case the deviation suggests that the equilibrium 

constant K for the binding process is lower than expected at coverage with 0 < 0.73 

and higher than expected at coverage with q > 0.97. From a mechanistic point of 

view this could be explained if the cation penetration and binding to the copolymer 

coating proceeds slowly at first but increases with time as more and more ions 

penetrate the network; effectively acting in a co-operative nature to encourage ion 

binding.

Different isotherms such as the Temkin [277] and Freunlich [278] isotherms 

show a much greater linear correlation with R2 greater then 0.97, however, these 

offer no benefit in terms or calculating thermodynamic values for the binding 

process as they are empirical models only. For a more in-depth study it is suggested 

that that these isotherms are used to model the sensor response.
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Figure 3.40: The plot o f equation 28 for the saturation study o f sensor A.

Given the overall profile of the Langmuir plot shown in Figure 3.40 it was 

decided to approximate the isotherm to only include the values for 0/( 1 -0) greater 

than 5 and less than 40. The reason for this was the increased uncertainty outside this 

range. The plot o f this region can be seen in Figure 3.41 and corresponded to the best 

linear approximation for the isotherm.

The gradient of the graph is equal to the equilibrium constant for the metal 

ion absorption process. Given the fact that equilibrium constants cover a larger 

numerical range this compares well with the same value calculated from the bulk 

resin in section 3.5.2. For reference the two values are shown in Table 3.16. The 

consistency in the value o f K obtained supports the mechanism put forward for the 

sensor response based on the adsorption o f K+ ions by the crown ether macrocycles. 

They also show the chemical similarities between the bulk resin synthesised and the 

copolymer coating assumed to be on the sensor surface.



139

Linear (K)

40

30

20 -

C D

C D

-10 T

0.03 0.035 0.04 0.045 0.05 0.055 0.06 0.065

Concentration of metal cation 
/ moles per litre

Figure 3.41: A plot o f 0/(1- 0) against [A t (aq)] calculatedfrom the data plotted in 
Figure 3.39. The gradient o f the fitted line is 1033 dm3moT1

Method K Units

1, the bulk resin 1554 ±617 dm3 mol'1

2, response o f sensor A 1033 ±299 dm3 mol-1

Table 3.16: Comparing the two values o f the equilibrium constant K (from equation 
26) calculated via two different experimental methods.
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3.12.6 Sensor lifetime

Experiments conducted on the bulk resin showed no significant loss in the uptake 

potential as a function o f lifetime. The uptake conducted two years after the resin 

was first synthesised was the same as that of freshly prepared samples. Also repeated 

uptake experiments on the same sample o f resin showed no loss in resin activity 

provided the resin was rinsed with pure water. However the response o f the 

copolymer coated sensor showed a marked loss in activity after repeated exposure to 

K+(aq) salts. This was most apparent after the saturation studies discussed in the 

previous section. All attempts to employ the sensor for further investigation resulted 

in a zero response after normalisation. A second copolymer coating was added to the 

sensor following identical procedures to those used in section 3.12.2, and the sensor 

response determined. The results can be seen in Figure 3.42.
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Figure 3.42: The response o f  sensor A after repeated exposure to i f  (aq) solution. 
Runs 1 and 2 were for the first coating. Runs 3, 4, 5 and 6 were conducted with the

second coating.

The first run with the second coating, run 3, followed the normal procedure. 

After this the sensor was soaked in a saturated K +(aq) solution over night prior to the 

next run. This procedure was repeated for the subsequent runs and resulted in a zero 

response after three overnight soakings.
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The loss in activity of the sensor was attributed to the permanent chelation of 

K+ ions in the crown ether moieties of the copolymer layer. No conclusive evidence 

to support this could be obtained. The dry resonance frequency of the sensor in air 

shown no loss in mass of the sensor coating but could not be used to determine any 

increase in mass associated with the incorporated K+. This was due to the small mass 

changes involved and the random fluctuation in the dry frequency. X-PES was used 

in an attempt to perform elemental mapping on the QCM surface. Although the 

technique could clearly show the presence of a carbon-based coating it was 

inconclusive as regards the potassium. Small peaks in the correct region of the 

spectra for K were present, however, these were very low in intensity, (see Appendix 

5 for the spectra) and by no means definitive. The only conclusion that could be 

reached was that the copolymer coating was still intact and present on the sensor 

surface.

3.13 FIA Sensor Response

The FIA system was the second method employed to investigate the response of the 

sensor. The method differs from the batch studies in that the metal ion concentration 

is not progressively increased by successive injections of the stock solution. Rather a 

set volume of the stock solution is injected into a flow cell and exposed to the sensor. 

The time interval and maximum concentration for the exposure are determined by 

the flow speed and injection conditions of the system. The advantages of the flow 

system are that the injection process and the sensor exposure occur at different times 

allowing for a more detailed investigation of the early stages of the sensor response. 

This eliminates any perturbation to the resonance frequency by the injection 

mechanism itself. The method also allows the desorption process to be examined 

confirming the ‘initial state’ of the copolymer layer, whether loaded or unloaded.

A schematic representation of the FIA set-up can be seen in Figure 3.43. The 

metal cations are injected up stream of the sensor and carried down by the eluent 

flow. The eluent in this case was pure water. As the ions pass the QCM sensor a 

frequency shift occurs and is recorded by the data analysis system. Assuming no



142

metal ions are permanently adsorbed by the copolymer coating, once all the ions 

have passed the sensor the frequency of the QCM resonator returns to its initial state.

Injection

Computer

Sensor

Eluent * = >

Figure 3.43: A schematic representation o f the FIA system.

Sensor Response

Sensors A, B and C were investigated by the FIA system with identical experimental 

procedures. After stabilisation of the sensor frequency in the flow system, known 

volumes o f the metal ion solutions were injected. The onset of frequency changes 

corresponded to the expected time for the sample to reach the crystal surface. 

Examples of the elution peaks obtained for injections o f K+(aq) can be seen in Figure 

3.44. On initial inspection no appreciable difference could be observed between the 

response o f the uncoated sensor C, the nonfimctionalised copolymer coating sensor 

B, and the crown ether copolymer coating sensor A. This is the same as with the 

batch method. However on closer inspection and after the effectively removing the 

nonspecific response associated with the QCM resonator a clear K +(aq) response can 

be determined.
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Figure 3.44: The response o f sensor A to the injection o f0.230 moldrri3 tC  (aq) stock 
solutions. The numbers in the legend refer to pL volumes. The response profiles are 

representative for all three sensors responding to Li+(aq), Na+(aq), and tC  (aq).

Again, as with the batch method a linear correlation was found between maximum 

peak height and the volume injected. The R2 values for the linear regressions were 

0.98-0.99 indicating an acceptable fit to the data. These can be seen in Figures 3.45, 

3.46 and 3.47.
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Figure 3.45: The response o f sensor A to injection o f0.230 moldm3 metal-cation
stock solutions.
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Figure 3.47: The response o f  sensor C to injection o f0.230 moldm3 metal-cation
stock solutions.

The normalised results for the resonator coated with the copolymer 

containing no crown ether, (sensor B), are shown in Figure 3.48. The normalised 

response profiles o f the crystal to Li+(aq), Na+(aq) and K+(aq) were obtained and the 

crystal showed no uptake for any of the ions investigated. The same procedure was 

used to assess the response of the crown ether coated resonator (sensor A), the 

results being shown in Figure 3.49.
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Figure 3.49: The normalised frequency response o f  sensor A to the injection of 
0.230 moldm'3 metal ion stock solution into the FIA flow.

It can been seen that the coating induced a small response to Na+(aq) and a 

much larger response to K+(aq) (with respect to Li+(aq)). This indicates a high degree 

of selectivity for K+(aq). From the slope o f the plot, a response factor of 5.77 Hz 

pm of1 can be calculated. Taking into account the dilution in the FIA system, this 

gives an estimated sensitivity of 0.04 ppm for the current system.
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3.14 Conclusion

3.14.1 Copolymer Synthesis

Two crown ether monomers were synthesised, acrylamidomethyl-18-crown-6 and 

acrylamidomethyl-15-crown-5. These monomers were utilised to produce a series of 

crown ether containing copolymers. This was achieved by the free-radical addition 

polymerisation of solutions containing acrylic acid, EGDMA and the crown ether 

monomers in acetontirile.

Two crown ether containing copolymers were synthesised. Poly(acrylic acid)- 

(arcylamidomethyl-15-crown-5) and poly(acrylic acid)-(acrylamidomethyl-18- 

crown-6). The copolymers were synthesised via free-radical addition polymerisation 

in DMF initiated by AH3N and subjected to ^-N M R , 13C-NMR, FTIR, GPC and 

CHN elemental analysis. The crown ether loading was shown to be 18 % and 17 % 

respectively. The poly(methylmethacrylate) equivalent molecular weights were 1.04 

x 106 and 8.40 x 105 g mol'1 respectively.

3.14.2 Copolymer Uptake Properties

The uptake properties of the copolymer system were determined via the EGDMA 

cross-linked resin. Both the 15-crown-5 and the 18-crown-6 resins selectively uptake 

K+(aq> over the Group I metal ions Li+(aq) and Na+(aq). The crown ether content of the 

resins were calculated by CHN elemental analysis, these were found to vary between 

8 % and 13 % w/w. The uptake of the resins for K+(aq) was in the order of 1000 pg 

per gram of the resin and the response time was less than 60 seconds. The 

equilibrium constant for the crown ether complex formation with K+(aq) was 

calculated by application of a Langmuir type isotherm, this was found to be 1554 

tb n d n ^ m o r 1.
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3.14.3 Sensor Systems

System One: The Non Cross-linked Copolymer

The copolymer was chemically attached to the surface of the gold electrode on the 

QCM resonator via an amine functional SAM. This is apparent from the frequency 

changes associated with the various steps involved during the fabrication of the 

sensor. The film did not dissolve in water or DMF and remained intact throughout 

the experimental studies that followed. However, the coated resonator showed no 

response to any of the Group I ions. This is believed be as a result of the thermal 

degradation of the crown ether macrocycles during the sensor fabrication. The results 

of the DSC studies on both the copolymers and the 18c6/70 cross-linked resin 

confirm that the heating of the copolymers to temperatures above 130 °C induces a 

physical and chemical change within the copolymer network. The uptake studies 

performed on the heated resin 18c6/70 confirmed that this change reduces the 

binding potential of the copolymer towards K+(aq).

The actual chemistry of this thermal degradation is difficult to investigate. 

The free crown ether rings are considered to be thermally stable at temperatures 

below 164 °C as the dibenzo-18-crown-6 compound has a melting point of 162-164 

°C [279]. Any thermal degradation of the copolymer would be expected to involve 

the elimination of CO2 (g> from the carboxylic acid groups. This would result in the 

reduction of the hydrophilic nature of the copolymer and so reduce the crown ether 

metal ion interaction. The heated resin did show evidence to support this; on 

immersion in water the resin at first repels the water with very limited resin-water 

interaction. However, after several hours the heated resin becomes fully immersed in 

the water in a similar fashion to the original ‘ unheated’ resin. This hydrophobic 

effect would be greater in the copolymer system. The resin contains 70 % EGDMA 

which itself contributes substantial hydrophilic character. The presence of the Tg also 

indicates that the copolymer remains essentially uncross-linked. A fully cross-linked 

interconnected copolymer network displays no glass transition temperature, as can 

be seen in the DSC of the 18-crown-6 resin, Appendix 1 Figure A1.2.

Further work is required on this thermal degradation to establish the 

mechanism involved and the consequence of this on the coating process. A useful
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investigation would be the mass spectroscopy or FTIR study of the vapour emitted 

during the DSC heating and the DSC of the aminomethylcrown ether starting 

material.

System Two: The Cross-linked Resin

The 18-crown-6 resin 18c6/30 was successfully synthesised on the surface of a QCM 

resonator with the selectivity over other Group I ions maintained. In this case the 

Langmuir based absorption isotherm utilised previously showed poor linear 

correlation, however, the equilibrium constant was calculated to be 1033 ± 299 

dm3mol'1. An improved absorption model could be obtained using the Freundlich 

isotherm.

The resulting resonator was employed as a K+(aq) chemical sensor. The 

lifetime of the sensor appeared to be limited when exposed to saturated salt 

solutions, however, when used to analysis solutions in the concentration range below 

1000 ppm no loss in activity was observed. The sensitivity of the sensor was 

estimated to be 0.2 ppm over the concentration range o f 0-2000 ppm. This should be 

considerably improved upon in future sensor fabrications. The sensor was also used 

in an FIA system to monitor the concentration of K+(aq) injected into the flow.

The commercial implications of the sensitivity and operational range are 

discussed in the final conclusions at the end of this thesis.
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4.1 Introduction

Research conducted in the field of QCM based gas-phase chemical sensors is well 

established. For a review of the historical development in this area and some of the 

more recent applications see sections 1.6-1.9. The QCM affords a cheap reliable and 

sensitive transducer for such devices and has been successfully utilised to produce 

selective chemical sensors operating in the gas-phase. Unlike the liquid phase 

applications discussed in the previous chapter the theoretical understanding of the 

gas-phase oscillation of a QCM resonator is well understood. The reader is referred 

to Chapter One for a more detailed account of this theoretical understanding. The 

important point being that the gas-phase application of the QCM is more stable and 

more reliable than the equivalent liquid phase.

This chapter details two applications of the QCM operating as a gas-phase 

chemical sensor. These are as a general organic vapour sensor and as a specific gas 

sensor designed to respond selectively to a target species. The organic vapour sensor 

is based on the interaction of a cyclodextrin surface layer with a variety of organic 

vapours, specifically alcohols. The work focuses on the general response of a- 

cyclodextrin, p-cyclodextrin, and amylose coated resonators, the response 

characteristics imparted by the cyclodextrin structure and their potential in the field 

of selective chemical sensors. The final sensor envisaged would consist of an array 

of individual QCM resonators coated with different materials. The sensor would 

function as a general VOC sensor in both liquid and gas phases. For such devices the 

sensor coatings are required to respond to a variety of compounds with differing 

signals, the overall response of the array forming a finger print for a particular 

compound or mixture of compounds.

The specific gas sensor utilises an azobenzene dye developed primarily as a 

coating for optical NOx gas sensors. The QCM is used as an alternative transducer 

for the material and looks at the binding kinetics and response factors of the QCM 

system.
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4.2 Cyclodextrin Coated QCM Sensors

Cyclodextrins are amylose structures with well-documented host-guest interactions. 

The versatility of the macrocycle lies in the simple glucose repeat-unit. This forms 

the basic building block of all the cyclodextrin species. The chemistry of the glucose 

unit is has been extensively investigated and this can be easily translated to perform 

simple chemical modifications on the larger cyclodextrin molecules [280], For 

example the three different hydroxyl groups on the rim of the cavity allow for the 

selective chemical transformation of both the upper and lower rims [281]. Such 

modifications alter the interaction parameters of the cyclodextrin cavity and can be 

used to tailor the response of the final sensor. The aim of the current work is to 

investigate the potential of the cyclodextrin-QCM system for application as both gas- 

phase sensors and liquid phase sensors. Previous work has been published on the 

application of several derivatised cyclodextrin-QCM sensors [282]. However, no 

published data could be found relating to similar systems utilising the underivatised 

macrocycle. Also the systems discussed in the literature are only applied to the gas- 

phase application and no record could be found for similar liquid phase systems. For 

these reasons the response of a QCM resonator coated with a surface layer of 

underivatised cyclodextrin molecules to volatile organic vapours was chosen as an 

initial study. This was with the view to developing more selective systems and 

applying these to both liquid and gas phase applications.

The response studies utilised four resonators. These were an a-cyclodextrin 

coated resonator, a P-cyclodextrin coated resonator, a resonator coated with a linear 

amylose and a blank resonator with no coating, resonators 1, 2, 3 and 4 respectively. 

The chemical structure of the three coatings can be seen in Figure 4.1. The solvents 

interact with the resonator surface via several mechanisms, for example van der 

Waals forces, dipole-dipole interactions and hydrogen bond interactions [283]. The 

pre-formed cyclodextrin cavity offers a binding site that can maximise these 

interactions and provide both hydrophobic and hydrophilic stabilisation. The inner 

cavity is predominantly hydrophobic and the outer rims hydrophilic. For compounds 

that are stabilised by the type of interactions available in the cyclodextrin molecule 

the pre-formed cavity offers improved binding sites. The orientation of the functional 

groups, focusing towards the central void and the three-dimensional encapsulation of
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any molecule placed within the cavity enables a greater interaction to occur between 

the cyclodextrin surface and the passing VOC. Amylose is the linear equivalent of 

the cyclodextrin molecules and as such provides identical surface interaction with 

the solvent vapours, however, these exclude those interactions associated exclusively 

with the preformed cavity. For this reason an amylose coated resonator was 

employed as the experimental control. The response of this will be representative of 

the non-specific interactions associated with the VOCs and the glucose-type surface.
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Figure 4.1: The structure o f  a-cyclodextrin, P-cyclodextrin and amylose.

4.2.1 Coating the Resonators

The resonators were coated by using the dropping technique [284]. 1 pi of a 1 mmol 

dm' aqueous solution of the cyclodextrin compound was placed onto the resonator 

surface. The drop was then allowed to evaporate in air, depositing the cyclodextrin 

and coating the resonator. The procedure was repeated twice, once on either face of
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the resonator. The resonance frequency o f the QCM could be used to monitor the 

deposition process. A typical frequency-time plot can be seen in Figure 4.2. The 

frequency o f the resonator is recorded in air, after approximately 10000 seconds the 

copolymer solution is placed on the surface. This induces an instant frequency shift 

o f about 6 kHz. As the solution dries the resonance frequency returns to a value 

greater than the initial frequency, approximately 3 kHz. This difference in the dry 

frequencies is proportional to the mass of the copolymer deposited.
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Figure 4.2: A typical frequency change profile for the deposition o f a resonator 
coating using the dropping technique.

It can be seen from the graph in Figure 4.2 that the deposition results in a 

permanent frequency change in the resonator. This frequency change can be used as 

an indication o f the presence o f the coating. Any change in the coating such as a loss 

o f material will result in a change in this frequency.

The amylose coating was prepared from an aqueous solution o f the same 

mass concentration as the p-cyclodextrin solution. The average molar mass o f the 

amylose chain was unknown, however, by using the same mass o f the dry amylose 

as the p-cyclodextrin the concentration of the glucose repeat units will be the 

maintained. The total frequency change and mass deposited for each resonator can 

be seen in Table 4.1.
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Resonator Coating Frequency change / Hz Mass / pg

1 a-cyclodextrin 3521 ±60 2.46 ± 0.04

2 P-cyclodextrin 3799 ±40 2.66 ± 0.03

3 amylose 1980 ±60 1.39 ±0.04

4 No coating - -

Table 4.1: The frequency change and mass deposited during the resonator coating. 
The mass was calculated from the Sauerbrey equation [285]

The deposition resulted in a visible tarnish of the resonator surface. It was 

noted that the use of more concentrated solutions (effectively increasing the mass 

deposited) caused instabilities in the resonator oscillation. It also resulted in the 

formation of visible crystallites on the resonator surface. However with the 

concentrations used and the mass deposited the resonator oscillation was stable.

Once coated the resonators were mounted in a PTFE flow-cell. The flow-cell 

contained a reference and a working resonator with the difference between the two 

being the frequency measured. For more detail on the flow system see section 2.8.

4.3 Response to VOCs

The injection of the volatile organic compounds (VOCs) into the gas stream resulted 

in a frequency shift in the sensor. As the vapour passed through the flow-cell the 

frequency difference of the sensor compared to a reference increased. This difference 

returned to the original value after the vapour dissipated. An example of a frequency 

/ time plot can be seen in Figure 4.3.
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Figure 4.3: The response o f resonator 2 to the injection o f methanol. The injections 
were o f 0.2, 0.4, 0.6 and 0.8 p i after about 30, 180, 300 and 510 seconds.

A linear correlation was obtained between the peak area and the volume of 

methanol injected. The peak area was calculated using the trapezium rule [286]. This 

is considered appropriate as the peaks are composed o f a series o f frequency 

readings at one-second intervals. Consequently the peak-area is divided into roughly 

40 segments. The trapezium rule gives a value o f within 95 % for the peak area when 

the peak is segmented into 4 parts; this accuracy increases with further segmentation. 

Consequently the values obtained for the peak areas will be within in an acceptable 

uncertainty. The regression analysis results can be seen in Tables 4.2, 4.3 and 4.4. 

The response graphs can be seen in Figures 4.4, 4.5 and 4.6.

Resonator 1 a-cyclodextrin coated

Solvent injected
Regression analysis results; Y = MX + C

M / Hz Sec p i1 C / Hz Sec R2

Methanol 4193.2 188.97 0.9832

Acetone 208.4 -0.80 0.9733

Chloroform 103.4 -16.23 0.9810

Hexane 142.3 -26.37 0.9806

Toluene 454.8 -47.58 0.9595

Table 4.2: The response factors o f the resonator 1 to a series o f volatile organic
compounds.
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Resonator 2 p-cyclodextrin coated

Solvent injected
Regression analysis results; Y = MX + C

M / Hz Sec pYl C / Hz Sec R2

Methanol 2394.6 264.61 0.9954

Acetone 473.2 50.70 0.9832

Chloroform 706.3 -111.49 0.9814

Hexane -64.7 42.47 0.354

Toluene 32.9 -23.92 0.0783

Table 4.3: The response factors o f resonator 2 to a series o f volatile organic
compounds.

Resonator 4 no coating

Solvent injected
Regression analysis results; Y = MX + C

M / Hz Sec ii\ l C / Hz Sec R2

Methanol 32.7 556.4 0.8448

Acetone 28.3 210.0 0.9087

Chloroform 19.6 -66.0 0.9724

Hexane 13.3 -38.7 0.9925

Toluene 82.7 -437.4 0.9863

Table 4.4: The response factors o f resonator 4 to a series o f volatile organic
compounds.
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Figure 4.4: The response o f a-CD coated resonator 1 to the injection o f several
volatile organic compounds.
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Figure 4.5: The response o f fi-CD coated resonator 2 to the injection o f several
volatile organic compounds.
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Figure 4.6: The response o f the uncoated resonator 4 to the injection o f several
volatile organic compounds.

The response o f uncoated resonator 4 was too small to be determined with a 

volume range up to 1 pi so the injected range was increased to 25 pi. The gradients 

o f the linear regression analysis are referred to as the response factors. These can be 

used to compare the response of each resonator to the particular VOC. However, for 

this comparison to be meaningful when compared to different VOCs the gradient 

must first be converted to a mass value, i.e. from Hz Sec pi’1 to Hz Sec pg’1. The 

converted factors can be seen in Tables 4.5, 4.6, 4.7 and 4.8. The data can be seen 

plotted in Figures 4.7.



158

Resonator 1 a-cyclodextrin coated

Solvent injected
Regression analysis results; Y = MX + C

M /H z  Sec |ag_1 C / Hz Sec R^

Methanol 5.30 188.97 0.9832

Acetone 0.26 -0.80 0.9733

Chloroform 0.07 -16.23 0.9810

Hexane 0.22 -26.37 0.9806

Toluene 0.52 -47.58 0.9595

Table 4.5: The response factors o f resonator 1 to a series o f  volatile organic 
compounds. M  expressed in terms o f  Hz Sec jug'1.

Resonator 2 p-cyclodextrin coated

Solvent injected
Regression analysis results; Y = MX + C

M / Hz Sec jag'1 C /H z  Sec R z

Methanol 3.03 264.61 0.9954

Acetone 0.60 50.70 0.9832

Chloroform 0.48 -111.49 0.9814

Hexane -0.10 42.47 0.354

Toluene 0.04 -23.92 0.0783

Table 4.6: The response factors o f resonator 2 to a series o f  volatile organic 
compounds. M  expressed in terms o f  Hz Sec jug'1.

Resonator 3 amylose coated [287]

Solvent injected
Regression analysis results; Y = MX + C

M / Hz Sec |ag_1 C /H z  Sec R 4

Methanol 0.69 -746.5 0.9589

Acetone 0.23 -501.5 0.9843

Chloroform 0.05 188.55 0.9609

Hexane 0.09 0.343 0.9823

Toluene 0.25 -71.0 0.9378

Table 4.7: The response factors o f resonator 3 to a series o f  volatile organic 
compounds. M  expressed in terms o f  Hz Sec p g 1.
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Resonator 4 no coating

Solvent injected
Regression analysis results; Y = MX + C

M / Hz Sec pg'1 C /H z  Sec R*

Methanol 0.04 556.4 0.8448

Acetone 0.04 210.0 0.9087

Chloroform 0.01 -66.0 0.9724

Hexane 0.02 -38.7 0.9925

Toluene 0.10 -437.4 0.9863

Table 5,8: The response factors o f resonator 4 to a series o f  volatile organic 
compounds. M  expressed in terms o f  Hz Sec jug'1.

4.3.1 Discussion

The response factor M represents the extent of the interaction of the resonator with 

the passing vapour. The higher the number the greater the interaction. It takes into 

account the molar mass of the passing eluent so that direct comparison can be drawn 

between its value and the extent of the solvent interaction with the amylose and 

cyclodextrin surface. The conversions from liquid volume to mass are necessary as 

the injection of the solvents with a constant liquid volume results in different molar 

quantities, and therefore a different concentration of the vaporised solvent in the gas 

streams. The QCM responds predominantly to mass changes. If the solvents were 

injected with a constant molar quantity then, assuming each solvent vapour interacts 

equally with the resonator, the response factor would be proportional to the molar 

mass, i.e. a greater response would be expected for a heavier species. By converting 

the response factor to a molar quantity and then dividing through by the molecular 

mass of each solvent the true interaction parameter can be found and these compared 

to develop an understanding of the effect each coating has on the overall resonator 

response. The data is displayed graphically in Figure 4.7.
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It can be seen in Figure 4.7 that the uncoated resonator 4 had no significant 

response to any of the VOCs used during these experiments. When the volume 

injected was increased by a factor o f 25 some frequency shift in the resonator was 

observed, however, compared to the cyclodextrin-coated resonators this value was 

insignificant. The same results were obtained for the amylose-coated resonator 3. 

Simona Negro [287] obtained the data for the VOC response o f this resonator. She 

also conducted similar experiments with the cyclodextrin-coated resonators, 

injecting volumes in the range 5-25 pi as opposed to the 1 pi range used previously. 

Her initial results reflected those presented here although the data have yet to be 

fully analysed

The two cyclodextrin-coated resonators 1 and 2 had a marked deviation in 

their response pattern. This change was dominated in both cases by the large 

methanol response. This response increase is related to the cyclodextrin cavity. The 

methanol can form hydrogen-bonds with the hydroxyl groups associated with the 

glucose repeat unit. However the same hydrogen-bonds can form with the amylose 

coating and in the case o f the amylose resonator these interactions do not lead to 

such a high frequency shift. The cavity o f the cyclodextrin ring adds a second factor

□  Blank
■  Amylose
□  a-CD
■  b-CD

4.7: The response factors o f  the four resonators to VOCs. The data is shown 
in Tables 4.5, 4.6, 4.7 and 4.8.

b-CD  

a-CD  

Amylose 

Blank
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to the interaction potential. The hydrophobic cavity can stabilise the methyl group of 

the alcohol. This dual interaction and pre-formed binding site offer extra input to the 

overall stabilisation energy increasing the extent o f the methanol interaction and so 

increasing the response o f the resonator. The same arguments account for the slight 

loss in resonator response of the P-cyclodextrin coating compared to the a - 

cyclodextrin coating. The larger cavity offers less interaction parameters than the 

smaller cavity, lowering the methanol binding energy and lowering the resonator 

response. The volume o f the cyclodextrin cavities are estimated at 174 A3 and 262 

A3 for the a-cyclodextrin and P-cyclodextrin respectively [288].

The response factor associated with the cyclodextrin cavity can be 

represented by the overall response factor of resonators 1 and 2 minus the response 

o f resonator 3. The amylose coating offers the VOC vapour the same binding sites 

and interaction energies as the cyclodextrin coating except with out those associated 

with the cyclodextrin cavity. The cavity response factors can be seen plotted in 

Figure 4.8.

a M
zL

>a
U

Methanol
Acetone

Toluene

Hexane

a-CD Chloroform

Figure 4.8: The response factors o f the cyclodextrin cavities. The data is obtained
from Table 4.5-4.8.
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Both the cyclodextrin-coated resonators respond selectively for methanol over the 

other VOCs studied. The response factors quoted neglect the effect of the solvent 

vapour pressure, however, the amylose-coated resonator had no response to any o f 

the VOCs. This implies that the vapour pressure effects can be assumed to have only 

a minimal contribution to the overall resonator response.

4.4 Response to Alcohols

Following the observation that methanol interacts strongly with the cyclodextrin a 

more detailed investigation o f a series o f alcohols was conducted. The aim was to 

determine the effect o f increasing the carbon chain and the overall size o f the alcohol 

molecule, to observe any steric effect associated with increasing the molecular 

volume. The same experimental conditions were used as the previous section. The 

alcohols used were methanol, ethanol, propanol and butanol, as well as the branched 

isomers of propanol and two of the branched isomers o f butanol.

Results

As with the previous study a linear correlation was found between the peak area and 

the volume injected. This can be seen in the three graphs plotted in Figures 4.9, 4.10 

and 4.11. The results o f the regression analysis can be seen in Tables 4.9, 4.10 and 

4.11.
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Figure 4.9: The response o f resonator 1 to the injection o f a series o f alcohols.
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Figure 4.10: The response o f resonator 2 to the injection o f a series o f alcohols.
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Figure 4.11: The response o f resonator 3 to the injection o f a series o f alcohols.

In order to compare the response o f the resonators to each alcohol the 

response factors (the gradients o f the graphs listed in Tables 4.9, 4.10 and 4.11), 

were again converted to mass values. The unconverted values are listed in Appendix 

6 , Tables A6.1, A6.2 and A6.3.
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Resonator 1 a-cyclodextrin coated

Solvent injected
Regression analysis results; Y = MX + C

M / Hz Sec pg"1 C / Hz Sec Rz

Methanol 5.45 98.3 0.9781

Ethanol 3.02 -141.8 0.9680

1-Propanol 2.31 189.7 0.9982

1-Butanol 2.04 279.6 0.9862

2-Propanol 0.31 160.8 0.9980

2-Butanol 0.84 224.2 0.9910

/-Butanol 0.18 221.8 0.9824

Table 4.9: The response factors for resonator 1 (in mass values) to a series o f
alcohols.

Resonator 2 p-cyclodextrin coated

Solvent injected
Regression analysis results; Y = MX + C

M/ Hz  Sec pg'1 C / Hz Sec Rz

Methanol 3.03 264.6 0.9954

Ethanol 3.02 -77.3 0.9930

1-Propanol 3.02 -131.0 0.9922

1-Butanol 4.07 12.2 0.9996

2-Propanol 1.34 258.7 0.9901

2-Butanol 2.47 138.1 0.9638

/-Butanol 1.24 116.0 0.9951

Table 4.10: The response factors for resonator 2 (in mass values) to a series o f
alcohols.
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Resonator 3 amylose coated

Solvent injected
Regression analysis results; Y = MX + C

M /H z  Sec pg'1 C /H z  Sec Rz

Methanol 1.48 142.9 0.9776

Ethanol 1.45 71.2 0.9563

1-Propanol 0.99 69.8 0.9537

1-Butanol 2.03 171.7 0.9882

2-Propanol 0.92 98.5 0.9984

2-Butanol 1.21 267.1 0.9857

/-Butanol 1.29 -95.8 0.9876

Table 4.11: The response factors fo r  resonator 2 (in mass values) to a series o f
alcohols.

4.4.1 Discussion

It can be seen in Figure 4.12 that the control resonator 3, coated with amylose, 

displays no selectivity. The response factors are within ± 0.5 Hz Sec pg'1 for all 

seven alcohols. The interaction of the alcohol vapour would be predicted to vary 

slightly with vapour pressure and hydrogen-bonding capability. By contrast the two 

cyclodextrin coatings have very different response factors. The general trend is of an 

increase in the straight chain alcohols response and no change in the branched 

alcohol response. Also the larger p-cyclodextrin ring has an increased response 

compared to the a-cyclodextrin.
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Figure 4.12: Comparison o f the response factors for resonators 1, 2 and 3. The data
are obtained from Tables 4.9-4.11.

With respect to the straight chain alcohols the a-cyclodextrin resonator has 

an increase in response compared to the amylose coated resonator o f 3.97, 1.57 and 

1.32 Hz sec pg '1. These values are for methanol, ethanol and propanol respectively. 

There was no difference in response to butanol. This suggests that the three shorter 

chain alcohols bind within the cavity o f the cyclodextrin ring with a greater 

interaction for the smaller species. The enhanced methanol sensitivity can be 

attributed to the size compatibility o f the methanol molecule with the cyclodextrin 

cavity. The zero response for the larger butanol molecule suggests that this interacts 

with the coating at sites external to the central cavity.

The a-cyclodextrin resonator displays an overall fall in response to the three 

branched isomers with the largest drop for the sterically hindered /-butanol molecule. 

This is consistent with the view that the branched molecules can not interact with the 

internal cavity and so the total available binding sites will be lower for the a- 

cyclodextrin coating compared to the linear amylose coating. The response factors 

associated with the cyclodextrin cavity can be seen in Figure 4.13.
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Figure 4.13: The response factors associated with cyclodextrin cavity. These are the 
M values obtained for the cyclodextrin resonators minus the values obtainedfor the 

amylose resonators. The data are obtained from Tables 4.9-4.11.

The P-cyclodextrin resonator displays a similar increase in the response to 

the straight chain alcohols, however, the largest increase is associated with the longer 

chains, butanol and propanol. The values are 1.55, 1.57, 2.03 and 2.04 Hz sec pg ' 1 

for methanol, ethanol, propanol and butanol respectively. The p-cyclodextrin 

resonator also has an increased response to the two secondary alcohols 2 -propanol 

and 2 -butanol compared to the linear amylose coating, suggesting that these two 

branched molecules can interact with the larger internal cavity o f the p-cyclodextrin 

ring. The /-butanol response is identical to the amylose resonator but larger than the 

a-cyclodextrin coating. As before the similarity o f the /-butanol response for the 

amylose and p-cyclodextrin resonators indicates that the /-butanol molecule interacts 

with sites external to the cyclodextrin cavity that are available in both the glucose 

based coatings.
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4.5 Conclusion

Three AT-cut quartz resonators (10 MHz) were coated with 2.46 pg, 2.66 jag and 

1.39 pg of a-cyclodextrin, p-cyclodextrin and amylose respectively. The response 

factor associated with the exposure of the sensor to VOCs were calculated. For a- 

cyclodextrin the methanol response factor was 5.30 Hz Sec pg*1 with all other non

alcoholic VOCs less than 0.50 Hz Sec pg*1. For p-cyclodextrin the methanol 

response factor was 3.03 Hz Sec pg'1, again with all other none alcoholic VOCs 

were less then 0.60 Hz Sec pg*1. The amylose sensor had response factors less than 

0.70 Hz Sec pg*1 for all VOCs. This revealed the selectivity of the cyclodextrin 

coating.

The second study utilised a series of alcohols. The results obtained show that 

the interaction of the resonator coating with the alcohols present in the gas stream is 

dominated by the structure and shape of the two cyclodextrin molecules. These 

impart selectivity to the response of the overall resonator. The response of the 

underivatised cyclodextrins are guided by hydrogen bond interactions with size 

exclusion adding greater detail. The cyclodextrin coated sensors generally showed 

signals ten times greater for the alcohols than the other VOCs investigated. These 

included an aromatic compound, a straight chain hydrocarbon and polar compounds 

incapable of acting as hydrogen-bond donors.

The smaller a-cyclodextrin cavity has a greater response for the smaller 

alcohol while the p-cyclodextrin cavity has a greater response for the larger alcohols. 

As the cavity size increased the response of the larger molecules increased and the 

response of the smaller molecules decreased. Similarly only the branched alcohols 

interact with the larger p-cyclodextrin cavity; they showed no response with the 

smaller a-cyclodextrin cavity.

The results illustrate the potential of the coatings to distinguish between 

different solvent vapours with such diverse properties as toluene and acetone or such 

similar properties as ethanol and methanol. By derivatising the parent cyclodextrins 

this selectivity could be directed and optimised for specific target vapours. The 

hydroxyl groups can be replaced with a variety of species offering different
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interaction potentials, for example methyl-groups. Removing the hydrogen-bond 

donor and acceptor capabilities and adding dipole-dipole and van der Waals 

interacting groups should have a marked effect on the resonator response. This 

should switch from being alcohol dominated to other compounds such as the straight 

chain hydrocarbons and aromatic species. At the same time the size exclusion 

properties would be maintained, again provide the fine detail to the resonator 

response.

4.6 NOx Gas Sensor

The work described in this section was carried out as part of a collaboration with the 

Centre for Molecular and Biomolecular Electronics, Coventry University.

4.6.1 Introduction

With an increase in environmental concern laws and legislation covering gaseous 

emissions and their permitted level of concentration are under review. NOx is major 

component in combustion exhausts [289] and an important species in photochemical 

air pollution [290]. This pollution is a problem in all the major cities through out the 

world and is largely caused by the action of NOx gas with atmospheric O2 in the 

presence of sunlight [291]. For this reason there is great interest in developing NOx 

sensors that can give rapid in situ readings for the concentration of the gas in a 

variety of environments. These sensors would find applications in environmental 

research and emission monitoring required for new legislation as well as devices for 

monitoring the operating conditions of the internal combustion engine.

The current EC legislation has a first safety limit for NO2 of 200 pg m'3 

[292], this corresponds to about 100 ppb [293]. The 1996 threshold limits value for 

NO2 and NO as set by the American Conference of Governmental Industrial 

Hygienist, ACGIG, is 3 and 25 ppm respectively [294]. The analytical methods 

currently employed for NOx monitoring include chemiluminescence, infrared 

spectroscopy and UV-vis spectroscopy [295] [296]. However these systems are often
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impractical due to size and expense. Attention has therefore been applied to the 

development of cheaper and simpler sensor systems. These include solid state 

amperometric sensors [297] [298] and optical gas sensors [299] [300]. The current 

detection limits of these devices are around 1 ppb and 0.1 ppm respectively.

The work covered in this section discusses the use of a QCM resonator 

coated with an azobenzene dye. The coated resonator is employed as a specific 

chemical sensor for NOx gas. The mass detection limit for the QCM utilised in this 

study is 4.97 ng Hz'1 cm'2. This corresponds to a 10 % NO2 monolayer on the surface 

of the resonator. It is clear from this sensitivity that the detection of low NOx 

concentrations will be possible. The QCM resonator was coated with Langmuir 

Blodgett (LB) layers of the azobenzene dye, compound 5 Figure 4.14. Compounds 

based on this structure have been shown by Scheerder et al. [299] and Worsfold et 

al. [301] to bind NO2 (g) in a reversible process. This reversible nature coupled with a 

strong binding energy suggests that the compound will be of great potential as a 

surface sensitive layer in a QCM sensor designed to respond to NO2 gas.

OMe

c  14H29— O— (  ( ^ J ) ) — N

OMe

Figure 4.14: The azobenzene dye used as the sensitive coating.

The azobenzene dye was synthesised by Worsfold et al. [301] at the Centre 

for Molecular and Biomolecular Electronics, Coventry University. The dye was 

employed as an optical sensing material for NO2 and NOx gas. The mechanism for 

the gas sensing is unclear at present but is believed to be centred on the N=N double 

bond [299][301]. This is highlighted by the UV-Vis spectra of the dye both before 

and after exposure to NOx gas, see Figure 4.15.

0H Compound 5

Mw = 498 g mol'1
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Figure 4.15: The change in the UV-Vis spectrum o f  compound 5 upon exposure to
100 ppm NOx gas.

4.6.2 Experimental

Langmuir-Blodgett film deposition was carried out at the Centre for Molecular and 

Biomolecular Electronics, Coventry University. The QCM resonators were dipped 

through a surface layer o f the azobenzene dye. Once coated the resonators were dried 

in an air stream and stored in a dry atmosphere for 72 hours. The difference in the 

fundamental resonance frequency between the clean resonators and the coated 

resonators were used to estimate the mass o f the deposited LB layers.

Gas Sensing

Two resonators were mounted in a flow cell, a reference and a working sensor. The 

QCM monitored the difference in resonance frequency between the two resonators. 

The working sensor was coated with the azobenzene dye and the reference resonator 

was uncoated. This set up allows for the subtraction o f non-specific binding 

interactions between the NO2 gas and the surface of the resonator.
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The QCM was allowed to stabilise in airflow. Once stabilised the airflow was 

switched to a 100 ppm NO2 in air. The frequency response was recorded until the 

frequency difference between the working sensor and the reference resonator 

remained constant. The exposed resonators were then removed and heated to 60 °C 

for about one hour to eliminate the bound NO2 gas.

4.6.3 Langmuir-Blodgett Film Deposition

The quartz resonator resonators were coated with LB layers of the azobenzene dye. 

After the deposition a thin orange film could clearly be seen on the surface of the 

resonators. This is as expected for the addition of a small amount of the dye onto the 

resonators. The 10 monolayer sensor appeared from simple observation to have an 

uneven coating of the dye. The colour was patchy and irregular, however, the 20 and 

30 monolayer sensors had what appeared to be uniform coatings. For this reason the 

frequency change associated with the deposition of the 10 monolayer LB films was 

assumed to be more susceptible to errors.

Number of LB layers Frequency Change / Hz Mass / pg

0 0 0

10 236 0.17

20 1382 0.97

30 2116 1.50

Table 4.12: The frequency change and deposited mass associated with the addition
o f the LB layers.

The data in Table 4.12 above leads to the graph in Figure 4.16. As expected 

the mass associated with the 10 monolayer deposition is slightly lower than that 

predicted by extrapolation from the other data points. This point was therefore 

excluded from the linear regression.
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Figure 4.16: The increase in mass on the surface o f the QCM resonator associated 
with the deposition o f LB layers o f compound 5.

4.6.4 Sensor Response

Figure 4.17 shows the response o f the 10 LB coated sensor to NO2 gas. The 

frequency change plotted is the resonance frequency o f the sensor minus the 

resonance frequency o f the sensor in the initial airflow. The NO2 flow was initiated 

at time zero and had a time delay of about 300 seconds before reaching the sensor 

flow cell. It can be seen from the graph that the resonance frequency dropped slowly 

after the NO2 reached the sensor, finally levelling off at a value 20 to 25 Hz lower 

than the resonance frequency in air. Accompanying this shift was a colour change in 

the coating from orange to brown. This is the same colour change observed in the 

optical studies and the UV-Vis spectra o f the dye exposed to NO2. The colour 

change is attributed to the binding of the NO2 gas to the azo-linkage in the dye. 

Simple heating o f the sensor to a temperature of 60 °C is sufficient to return the film 

coating to its initial colour and hence remove the bound NO2. The sensor was then 

used for runs 2 and 3, the results of which were slightly different from the first 

exposure.

All three runs provided a similar response, however, the second and third 

runs had an interesting frequency time relationship. A plateau appeared 20 seconds 

after the sensor frequency shift was initiated. This levelled o f at 5 Hz below the 

resonance frequency in air. The frequency remained constant for a further 100



174

seconds, then proceeded to drop to the final value with an overall time period the 

same as the first run.
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+  2nd Run 
■  3rd Run
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Figure 4.17: The response o f the sensor coated with 10LB layers to 100 ppm NOx.

As both the second and third runs displayed identical frequency-time 

responses this initial plateau can not simply be due to experimental error. The mostly 

likely explanations is o f a reorganisation in film morphology that occurred upon 

heating the coated sensor to 60 °C. This may result in the formation of 

heterogeneous binding sites within the film. It is also interesting to note the absence 

of this binding phenomenon with the higher LB film sensors. This suggests that it 

may be a consequence o f the uneven coating o f the 10 LB sensor rather than a 

consequence o f the chemical binding interactions. Further study of the frequency

time response will reveal more information on the nature o f this plateau. It may also 

go some way to answering the questions on the macroscopic morphology o f the LB 

coatings and the mechanism for the NO2 binding.

Figure 4.18 shows the response of the 20 LB layer sensors. The frequency 

change on exposure to 100 ppm NO2 gas is approximately twice that o f the 10 LB 

layer sensor. The colour change in the film was the same as that experienced for the 

10 LB sensor and previous studies on the exposure o f the azobenzene dye to NO2. 

Again, simply heating the sensor restored the film colour to its original form.

Overall, for the 20 LB layer sensor, the frequency change was around 50 Hz over a 

time period o f 600 seconds.
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Figure 4.18: The response o f the sensor coated with 20 LB layers to 100 ppm NOx.

The 30 LB layer sensor responded in much the same fashion and can be seen 

in Figure 4.19. The overall frequency change was between 80 to 90 Hz 

approximately three times that o f the 10 LB layer sensor. Again the same colour 

change occurred which was reversible upon heating. The time period for the binding 

process was similar to the 20 LB layer sensor at 400 to 500 seconds both o f which 

were slower than the 10 LB layer sensor. This is consistent with the response times 

o f thin film sensors. As the thickness o f the sensing film decreases so the response 

time decreases. The response times observed in the optical studies o f this compound 

were o f the order o f 60-120 seconds. This is three times as fast as the QCM response 

time. Again fiirther investigations on the response time and the factors effecting this 

would be particularly useful.

The response o f the three sensors to NO2 gas was very encouraging. The 

magnitude of the frequency shift induced by the binding of NO2 correlated well with 

the number o f LB layers deposited. This confirms that the deposited material was 

indeed binding the NO2 gas and the response was not simply a physical interaction 

o f the gas with the surface o f the sensors. The colour change o f the film associated 

with the NO2 binding suggests that the film-gas interaction was chemical rather than 

physical and centred on the N=N double bond.
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Figure 4.19: The response o f the sensor coated with 20LB layers to 100 ppm NOx.

Figure 4.20 below shows the mass o f the bound NO2 plotted against the 

number o f LB layers deposited. This clearly indicates the linear correlation between 

the number o f gas molecules adsorbed and the total number o f azo-binding sites 

available. This linear relation would be expected to break down as the number o f LB 

layers increased due to the inaccessible nature o f the lower films. The fact that the 

relationship holds up to 30 monolayers suggests that the azo-benzene film is highly 

porous and allows the NO2 molecules to defuse freely throughout the layers.
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Figure 4.20: The response o f the coated sensors to NOx.
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4.6.5 Fractional Coverage

From the data obtained it is possible to work out a value for 0 the fraction of 

available bindings sites occupied.

^  _ Number of binding sites occupied _
Number of binding sites available N Av

Assuming a 1:1 interaction between each azo-linkage in the dye molecules 

and the NO2 gas the total number of sites occupied is equal to the total number of 

moles of NO2 gas bound to the film, Noc- This can be calculated from the graph in 

Figure 4.20.

N0c = Gi x n / Mr nox (42)

Where Gi = 1.98 x 10 ~9 g and is the gradient from Figure 4.20, n is the number of 

LB layers and Mr nox is the molecular weight of NO2 = 46 g mol"1.

The total number of binding sites available is equal to NAv, the total number 

of moles of the azobenzene dye deposited. This can be calculated from Figure 4.16.

NAv = G2 x n / Mr azo (43)

Where G2 = 4.95 x 10 ~8 g and is the gradient from Figure 4.16, n is the number of 

LB layers and Mtav is the molecular weight of the azobenzene dye = 498 g mol'1. 

Combining equations 41, 42 and 43 leads to an expression for 0:

0 = Gi x Mr azo / G2 x Mr nox (45)

0 = (1.98 x 10'9 x 498) / (4.95 x 10'8 x 46)

0 = 0.43310.018

The uncertainty in 0 was calculated from the linear regression analysis 

performed on the data in Figures 4.16 and 4.20. This value compares well with the 

value predicted from the optical studies; however a direct comparison is not possible 

due to differing film composition.
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4.6.6 Conclusion

AT-cut quartz resonators were coated with Langmuir-Blodgett, (LB), films of an 

azobenzene dye, see compound 5 Figure 4.14. The mass of the films were estimated 

to be 0.17 pg, 0.97 pg and 1.50 pg for 10,20 and 30 Langmuir-Blodgett layers 

respectively. The sensors were utilised to determine 0; the ratio of occupied binding 

sites to the total available binding sites after the films were exposed to 100 ppm NOx 

gas. This was found to be 0 = 0.433 ± 0.018. The response of the sensor was 

monitored via the fundamental frequency change of the resonator and was slightly 

greater than expected. With the QCM driving circuit and frequency recording device 

employed for this study the sensitivity in the frequency reading was ± 0.5 Hz. This 

gives an overall sensitivity to NO2 gas of about 1 ppm. With more sophisticated 

frequency recording devices this sensitivity could be reduced to ± 0.005 Hz. 

Combining this with the addition of further LB layers of the azobenzene dye and a 

sensor sensitive to sub ppb levels could be produced.

The response times were rather slow. The optical studies showed a response 

time of less than 100 seconds. Typically a 60 second exposure of a dip-coated film to 

100 ppm NO2 produced a 90% response. Exposure of the film for a further 600 

seconds produced only a minor increase in the UV-Vis absorption peak associated 

with the NO2 binding. This may be attributed to thinner film being employed for the 

earlier work. But as no data was available on the thickness of the films used for the 

optical studies a definite conclusion can not be drawn.

It was also interesting to observe the frequency-time relationship in the 10 

LB layer sensor. The formation of the plateau a few seconds after exposure to NO2 

gas. It should be possible to use the QCM sensor to study the binding kinetics of the 

NO2 gas. This could be particularly useful for observing any changes in morphology 

of the film due to the NO2 binding and the heating process used to remove the gas 

once exposed.

Generally QCM based gas sensor offer great potential for the analysis of 

trace components in a gaseous environment. The QCM itself is a very simple way of 

coupling a sensitive coating to a transducer that converts chemical binding to a 

recordable signal. The sensitivity has been shown to be very low and the responses 

reproducible.
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CHAPTER FIVE
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The aims of the project were to synthesis chemical interfaces that displayed selective 

uptake capabilities for target compounds in the presence of potential contaminants 

and to couple these systems to QCM transducers. This was with the intention of 

developing selective chemical sensors for application in both liquid and gas phase 

environments. The systems investigated successfully demonstrated the usefulness of 

this approach to the advancement of such sensors; the ease of sensor fabrication, 

signal formation and data manipulation has all been highlighted.

5.1 The Liquid Phase K*(aq) Sensor

The liquid phase sensors were design to respond to K+(aq) selectively over the other 

Group I ions Na+(aq) and Li+(aq) with the chemical interface based on acrylic acid 

crown ether copolymer systems. Both the 15-crown-5 and 18-crown-6 containing 

copolymers were successfully synthesised and shown to preferentially bind K+(aq) in 

the presence of the other Group I ions Na+(aq) and Li+(aq). The 18-crown-6 resin 

system was coated onto a QCM resonator and used as a K+(aq) sensor. This is the first 

account of a crown ether based coating being employed with a QCM for the 

detection of cations. As discussed at the end of Chapter Three the sensor developed 

had an estimated detection limit of 0.2 ppm and a linear response range of 0-2000 

ppm with zero response to either Na+(aq) or Li+(aq). These values are well within the 

operating criteria for commercial K+ sensors. The markets for such devices are in the 

areas of water analysis [302] and physiological sensors. The concentration of K+ in 

tap-water is typically in the range of 1-80 ppm [302]. In the human body the 

concentration of K+ in blood serum is around 140 ppm [303] and bile around 500 

ppm [303] with the most common interference arising from Na+.

The standard devices employed for clinical and environmental analysis are 

atomic emission (AES) and atomic absorption spectrometers (AAS). These are 

extremely sensitive to metal cation concentrations but operate only in a limited 

concentration range, usually below 100 ppm. Samples are routinely diluted prior to 

analysis resulting in lengthy preparation time. The devices are expensive and can not 

perform continuous monitoring. Another consequence of using the AES and AAS
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systems is their accessibility. The devices are not mobile and located away from the 

sample location; again this increases the sample time and cost. More mobile sensor 

systems have recently been employed for metal ion analysis. The potentiometric 

system discussed in section 1.1.2 is an example of this. The sensor is now used in 

many clinical applications bringing both health and economic benefits. The 

sensitivity of these potentiometric systems is comparable to the system developed 

here operating in the concentration range of 0.1-1000 ppm with the K+(aq) selectivity 

imparted by a valinomycin based membrane. The QCM transducers offer more 

versatile sensor systems as the recognition and signal generation is combined in a 

single step. The transducers are also cheaper increasing the economic benefits.

The sensor described here is still far from any commercial application with a 

great deal of development work still required (this is discussed in section 5.3). 

However the potential use of the system would be to offer an alternative to the AAS 

and AES analysers. The sensor could also function as an on-line continuous system 

monitoring K+ concentration in biological fluids where the current AAS and AES 

systems are impractical; for example during open-heart surgery [302].

Environmental applications of the QCM sensors are those concerned with the quick 

and easy water analysis out in-the-field and again continuous on-line monitoring of 

water quality in flow through systems.

This is the first account of a crown ether based copolymer being employed 

with the QCM as a selective cation sensor. It brings together the innovative use of a 

water compatible copolymer system with the QCM transducer for application in an 

aqueous environment. It has been demonstrated that such an approach is suitable to 

the development of liquid phase QCM based sensors and that such sensors possess 

the required selectivity and stability to operate in the ppm range. With improved 

design such as the inclusion of the reference and working electrodes in the same 

liquid sample, and response optimisation by increasing the crown ether loading and 

the mass of the copolymer coating, this range could be extended down to one part in 

109. The copolymer system incorporated in the sensor design can be readily modified 

to include a variety of different host compounds and offers a general route to the 

production of an array of selective chemical sensors.
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5.2 The Gas-Phase Sensors

Research in the field of gas phase piezoelectric sensors is progressing rapidly with 

the first major commercial applications already on the market. Marconi Applied 

Technologies have developed odour analysers based on QCM systems, for example 

the eNOSE 5000 [304]. As discussed in section 1.5 a variety of different adsorbent 

coatings have been studied, each with their own advantages and disadvantages. The 

cyclodextrins are one group of host compounds that to date have only had limited 

application.

The work conducted on the a-cyclodextrin and P-cyclodextrin demonstrates 

the potential of these hosts to function as selective binding interfaces coupled to the 

QCM transducer. Direct comparison with other systems is of limited practical use as 

no firm conclusions on sensor response or selectivity can be drawn. This is a 

consequence of the variety of operating conditions; transducer design and result 

presentation carried out in previous systems. However, such a comparison does help 

to illustrate the sensitivity of the cyclodextrin coating. Pinalli et al. [305] published 

data on a cavitand based QCM alcohol sensor. The sensor had a 60 Hz response to a 

3000 ppm methanol vapour. The a-cyclodextrin coating employed here has a 950 Hz 

Sec peak area for a similar vapour concentration. The lower detection limit for the 

methanol system is estimated at 20 ppm. This compares well with the detection 

limits of 100 ppm quoted by Yang et a l [215] for VOCs utilising a cyclodextrin 

SAW device and 50 ppm quoted by Dickert et al. [176] the vapour phase detection 

of xylenes using cyclodextrin based coatings.

As discussed at the end of section 4.5 the response of the underivatsed 

cyclodextrin sensors is dominated by hydrogen bonding interactions. The cavity size 

formed a secondary factor adding subtle variations to the overall sensor response.

The system could therefore operate as a functional group sensor indicating the 

presence of a hydrogen bond donor and acceptor in unknown vapour mixtures. The 

device can also be used to examine the interaction parameters of the cyclodextrin 

coating with different molecular probes in a similar fashion to GC and IGC systems. 

However, the final application envisaged at this stage of the investigation is that of 

an electronic tongue or electronic nose system with the cyclodextrin coating forming
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part of an overall sensor array. The diversity of the response to a range of VOCs 

shows the suitability of the cyclodextrin coatings for such applications.

The work conducted on the NOx sensor in section 4.6 again shows the 

capability of the QCM to operate as a chemical sensor in the low ppm region. The 

azobenzene dye utilised was developed to operate in an optical sensor with 

complementary information being obtained from both the optical and QCM sensor 

systems. The QCM forms an alternative transducer maintaining the ppm sensitivity 

and brining the economic benefits associated with the production and fabrication of 

QCM resonators. The commercial requirements for NOx gas sensors are in the ppm- 

ppb concentration range and so slight improvements on the sensor response are still 

required. This could be achieved by using the SAW systems currently available. The 

section also illustrates the other aspects of the system, the possibility of obtaining 

absorption data and performing kinetic experiments on the reaction rates of surface 

absorption processes.

In summary, the work presented demonstrates the potential of QCM based 

systems to operate as selective chemical sensors in liquid phase and gas phase 

applications. The methodology employed for the sensor fabrication is both simple 

and versatile with the final sensors having low detection limits and broad operating 

ranges. The cyclodextrin surfaces investigated displayed selective absorption 

properties arising from the central cavity. The response profiles were reproducible 

and the coatings remained active after repeated exposure. The NOx system illustrated 

the potential of the QCM to act as an alternative transducer to the more expensive 

optical system.

5.3 Future Work

The Liquid Phase iC faqj Sensor

The immediate work that could be conducted on the liquid phase K+(aq) sensor would 

be the variation of the mass of the copolymer coating and the percentage crown ether 

content. These two variables would be expected to have a marked effect on the 

sensor response. The oscillation of a QCM resonator follows a linear frequency-mass
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relationship for mass-loads (niq/mf) less than 0.02. This corresponds to a frequency 

change of 200 kHz. The coating employed for the current work was around 1 kHz. 

Increasing the mass of the copolymer coating would increase the available binding 

sites and so increase the sensor response. Similarly increasing the crown ether 

loading within the copolymer would also increase the number of binding sites. It 

would also be interesting to vary the cross-linker concentration in the sensor coating. 

Although this had only a minor effect on the uptake of the solid resins the 

dependence of the QCM operating frequency on the viscoelastic properties of the 

coating indicates that this may have a more significant effect on the sensor response. 

Similarly the work on the non cross-linked copolymer system should be continued. 

Lowering the temperature used to promote the amide links and the use of other 

amino-acid coupling agents are two of the most suitable directions to proceed.

The lifetime of the sensor also needs further investigation. The use of 

different cleaning procedures such as acid washing or even washing with a free 

crown ether solution may help to regenerate the sensor after exposure to 

concentrated K+(aq) solution. It would also be interesting to alter the sensing 

conditions such as temperature and pH. As well as being important from a 

commercial point of view these would also enhance the understanding of the binding 

and recognition mechanism involved.

A more long-term direction would be to vary the host compound 

incorporated into the copolymer network. Targeting other metal ions, dissolved 

organic species and even anions are three possible sensor routes. Cryptands and 

porphyrins are two examples of host compounds that could be readily incorporated 

and have increased binding affinities towards metal ions compared to the crown 

ether systems currently employed. Work on anion receptors based on redox active 

metal centres in conjunction with amides has been published by Reinhoudt et al. 

[306] and Beer et al. [307]. These anion sensor systems could also be readily 

incorporated into a copolymer matrix in a similar fashion to the crown ethers. 

Molecularly imprinted polymers are another area with great potential in the field of 

QCM-based chemical sensors and offer systems with chiral recognition capabilities 

or organic compounds recognition such as explosives.
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The Cyclodextrin System

The variation of the functional groups on the two rims of the cyclodextrin cavity is 

the obvious next step to extend the current work. This could be achieved simply and 

easily as several derivatised cyclodextrin are commercially available. A more long

term investigation would be to look at the orientation of the cyclodextrin cavities. 

Utilising the SAM technology discussed in section 3.8 ordered monolayers of the 

cyclodextrins could be formed on the gold electrodes of the QCM resonator 

[288][308]. These would be similar to the ordered monolayers of calixarenes 

synthesised by Cygan [309]. Tabushi et al. [310] [311] developed a synthesis for 

thiol derivatised p-cyclodextrins. This involved capping the p-cylcodextrin ring with 

an aryltosylate group then opening the bridge with two benzenedithiol molecules.

The final product possesses the thiol groups on the narrow rim of the cavity and is 

the ideal candidate to produce the SAM. An alternative synthesis of a thiol- 

cyclodextrin compound would be to use H2S and AI2O3 [312]. This reaction 

selectively converts primary alcohols to the equivalent thiol and so the secondary 

and tertiary hydroxyl groups on the larger rim would remain intact. Again this would 

produce an ideal candidate for the formation of ordered cyclodextrin monolayers.

Another use of the cyclodextrin SAM could be in the application of the 

coated sensors in a liquid environment. For such an application the coating must be 

secured in some way to the resonator surface. There are several other methods 

available for this attachment, including covalent and non-covalent encapsulation in 

an inert matrix [313]. Dickert et al. [314] coated a QCM resonator with a 

cyclodextrin compound attached directly to a polymer support and used the resonator 

as a sensor for chlorobenzene in a liquid environment. Such sensors could operate as 

VOC detectors in both the liquid phase and in the gas phase offering a much more 

versatile sensor than the current electronic nose systems and the potential for the 

development of the electronic tongue.
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General

On a commercial side the advantages of QCM based chemical sensor are the 

versatility and robust nature of the QCM transducer. It would be a relatively 

straightforward procedure to miniaturise the oscillating circuit and produce a small 

handheld device with interchangeable heads for sensing different species in different 

environments. QCM systems have been modified by several workers to operate with 

multiple resonators [305][315][316]. A modification to the QCM utilised throughout 

this work would be to combine the signals from several resonators as opposed to just 

the current reference and working system. This ‘multi-channel’ QCM would aid in 

the calibration of sensor response and data interpretation by eliminating unwanted 

signals and increasing the range of reference data. The system could also be used as 

a pattern recognition sensor combining information from several different coating 

materials.

The fabrication of novel QCM operating systems and resonator designs that 

are more appropriate for application as hand held chemical sensors is an essential 

requirement for the development of these devices. The miniaturisation of the 

electronic circuits and the incorporation of ‘multi-channel’ resonators are two 

possible ways forward to reach this final goal.
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Appendix 1

Analysis of the cross-linked resins synthesised in section 2.4.2.
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Figure A 1.1: The KBr disc FTIR spectra o f resin 18c6/70 after drying.
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Figure A l. 2: The DSC trace for resin 18c6/70 after drying at 70 °C.
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Appendix 2

Results from the uptake studies on the cross-linked resins.

Experiment 1: The uptake of Na+(aq), Li+(aq) and K+(aq) were recorded individually 

with separate stock solutions.

Cross-linked
Resin

Stock
Used

Concentration

L i+(a q ) /p p m Na+(aq)/ppm K +(aq)/PPm

15c5/70 Stockl 49 (51) 48 (46) 34 (35)

15c5/30 Stock2 50 43 31

15c5/2 Stock2 49 44 30

18c6/70 Stockl 48 (51) 48 (44) 24 (25)

EG/70 Stockl 51 (52) 47 (46) 45 (46)

Stock 1 - 52 (52) 49 (45) 45 (45)

Stock2 - 50 49 39

Table A2.1: The metal ion concentrations were recorded around 10 hours after 
exposure to the chelating resin. The numbers in brackets were recorded fo r  the same 

sample after 2 weeks o f continuous exposure.

Experiment 2: The competitive uptake study. This time all three metal ions were in 

the same stock solution.

Cross-linked
Resin

Mass / 
g

Concentration

Li+(aq)/ppm Na+(aq)/ppm K+(aq)/PPm

15c5/70 1.002 60 (61) 51 (52) 51 (56)

15c5/30 0.998 52(52) 49(50) 36(46)

15c5/2 0.998 48(52) 50(50) 40(46)

18c6/70 1.014 53 (53) 45 (46) 32 (50)

18c6/30 1.001 52(52) 52(50) 26(45)

18c6/2 0.999 51(52) 52(50) 26(45)

EG/70 1.012 51(52) 49(50) 42(45)

Table A2.2: Uptake o f Li+(aq), Na+(aq) and K f (aq). All three ions were present in the 
same stock. The numbers in brackets indicate the stock solution concentration fo r

that specific run.
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Experiment 3: Varying the concentration of the metal ion stock solution. Using 0.5 

g of resin A and D and 10, 20, 50, 80, 150 and 200 ppm solutions.

Cross-linked
Resin

Mass / 
g

Concentration

L i+(a q ) /p p m Na+(aq) / p p m K +(a q )/P P m

15c5/70

0.500 13(13) 11.7(11.6) 11.4(12.8)

0.504 23(23) 14.5(14) 22(23)

0.500 58 (57) 36 (37) 53 (55)

0.501 92(93) 82(83) 89(91)

0.506 180(180) 150(150) 165(165)

0.506 230(230) 200(200) 220(220)

18c6/70

0.501 13(13) 12.2(11.6) 6.4(12.8)

0.501 23(23) 14.5(14) 15.5(23)

0.506 58 (57) 38 (37) 44 (55)

0.500 90(93) 81(83) 74(91)

0.499 180(180) 145(150) 150(165)

0.510 230(230) 200(200) 200(220)

Table A2.3: Varying the concentration o f the stock solutions The concentrations 
aimed fo r  were 10, 20, 50, 80, 150 and 200ppm o f each metal ion. The numbers in 

brackets indicate the stock solution concentration fo r  that specific run.
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Experiment 4: Varying the mass of the resin used keeping the initial metal ion 

concentration and volume constant. Using 50 ppm stock solutions and 0.5,1.0,1.5, 

2.0,2.5 g of resin A and D.

Cross-linked
Resin

Mass / 
g

Concentration

L i+(aq)/ p pm N a +(aq)/ppm K +(aq)/PPm

15c5/70

0.500 58 (57) 36 (37) 53 (55)

1.002 60 (61) 51(52) 51 (56)

1.499 60 (61) 51 (52) 50 (56)

2.009 59(61) 51 (52) 50 (56)

18c6/70

0.502 53 (53) 45 (46) 39 (50)

1.014 53 (53) 45 (46) 32 (50)

1.503 60 (61) 52 (52) 32 (56)

2.000 58 (57) 50 (50) 30 (55)

Table A2.4: Varying the mass o f the resin used from 0.5 g  to 2.0 g. The numbers in 
brackets indicate the stock solution concentration fo r  that specific run.

Experiement 5: The kinetic uptake, see section 2.4 for the experimental detail.

Resin D, 1.343 g

Concentration at t  = 0 of K^aq) / ppm 69

Tim e/
minutes

2 5 8 12 16 20 24 28 37 200

Concentration
K-̂ (aq) / PPm

19 17 16 19 16 17 17 16 16 15

Table A2.5: The uptake o f K f (aq) by resin D as a function o f  time.
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Appendix 3

X-PES data for the surface of an uncoated and polymer coated resonator. Figure 

A3.2 shows an increased peak associated with the presence of the carbon based 

coating. Also Figure A3.1 is representative of the spectra recorded for a resonator 

which failed to form SAM’s. The large Si peak indicates surface contamination of 

the gold electrode preventing the reaction with the thiol compound used. Figure A3.2 

shows the expected Au:Si peak ratio, this was recorded for a resonator that 

successfully formed SAMs.

X-ftfiV: 0 - 2 0  k eU
L i v e :  SHs P r e s e t ;  5 0 0 s  R e m a i n i n g ;  H I 6 s
R e a l *  1 6 8 *  30% D e a d

S

H
U
A

0

2 . 6 6 0  keU
ch 1H3-

10KM

Figure A3.1: The X-PES spectra for an uncoated resonator showing the expected Si, 
O and Au peaks with only a minor Cpeak.



Figure A3.2: The X-PES spectra for a resonator coated with the cross-linked resin 
18c6/70. This shows the increased carbon peak indicating the presence o f the

copolymer coating.
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Appendix 4

Figure A4.1 shows the overlay o f two FTIR spectra o f the cross-linked resin 

18c6/70. They were recorded for the resin both before and after heating (red is after 

heating). The heating process is described in section 3.11.1 and involved placing the 

resin in a fan-assisted oven at a temperature o f 180 °C for 24 hours. The spectra 

show no evidence for the thermal decomposition o f the crown ether groups present 

in the copolymer network.

83.9

%T

6 8 .

6 6 .

64 .

62.5
4400.0 4000 3000 2000 1500 1000 450.0

cm-1

Figure A4.1: The FTIR spectra o f resin 18c6/70 before and after heating. The red
spectrum is after heating.
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Appendix 5

X-PES spectrum for coated resonators looking for evidence o f K contamination in 

the saturated sensor. The three spectra are for a resonator prior to exposure to K+(aq), 

after exposure to a saturated K+(aq) solution and that of the saturated sensor 

respectively. The elemental labels in the spectra are those assigned to the associated 

peak. The regions of the spectra marked with a K represent the expected K peak

position

X-RftV* o _  20  keM
Live* 5 0 0 s Preset,:  5 0 0 s Remaining  

8K 
5 3Y1 h

5 . 8  > 
3HUH q%<\

Figure A 5.1: No tC(aqj exposure.
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X-RFtV; 0 -  20  k*U
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^  p «k».«.«i > * t : . i i ;«4 |   ̂ : s«|  ̂j :  ̂  | : j : i r i c ' ; ;  _ : ̂
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Figure A5.2: Exposed to concentrated fC(aq) solution and rinsed.
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Figure A 5.3: The saturated sensor.
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Appendix 6

The response factors calculated for the exposure resonators 1, 2 and 3 to a series of 

alcohol vapours. The figures associated with these tables can be seen in section 4.4. 

These are Figures 4.9, 4.10 and 4.11 respectively.

Resonator 1 a-cyclodextrin coated

Solvent injected
Regression analysis results; Y = MX + C

M l  Hz Sec pi'1 C /H z  Sec R z

Methanol 4312.5 98.3 0.9781

Ethanol 2380.8 -141.8 0.9680

1-Propanol 1858.1 189.7 0.9982

1-Butanol 1651.9 279.6 0.9862

2-Propanol 239.4 160.8 0.9980

2-Butanol 677.5 224.2 0.9910

f-Butanol 158.6 221.8 0.9824

Table A6.1: The response factors o f  resonator 1 to a series o f  alcohols.
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Resonator 2 p-cyclodextrin coated

Solvent injected
Regression analysis results; Y = MX + C

M /H z  Sec pi'1 C /  Hz Sec R"

Methanol 2394.6 264.6 0.9954

Ethanol 2380.8 -77.3 0.9930

1-Propanol 2429.7 -131.0 0.9922

1-Butanol 3294.6 12.2 0.9996

2-Propanol 1054.6 258.7 0.9901

2-Butanol 1994.0 138.1 0.9638

^-Butanol 1108.4 116.0 0.9951

Table A6.2: The response factors o f resonator 2 to a series o f  alcohols.

Resonator 3 amylose coated

Solvent injected
Regression analysis results; Y = MX + C

M /H z  Sec p i 1 C / Hz Sec R 4

Methanol 1172.4 142.9 0.9776

Ethanol 1142.5 71.2 0.9563

1-Propanol 791.4 69.8 0.9537

1-Butanol 1647.6 171.7 0.9883

2-Propanol 722.65 98.5 0.9984

2-Butanol 976.1 267.1 0.9857

^-Butanol 1154.9 -95.8 0.9876

Table A6.3: The response factors o f  resonator 3 to a series o f alcohols.


