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Summary
The nature of flow and absorption in the small intestine is of particular interest and 
importance to Unilever in the emerging area of Health and Food. Unilever are inter
ested in designing Optimal Systems for the delivery of nutrients and functionally active 
material to the gut lining. In doing so they must understand how substances flow in 
the intestine and how this flow affects the absorption of drugs. In this thesis we model 
mathematically the way fluid flows under the action of peristalsis and how the complex 
flow patterns lead to enhanced absorption of therapeutic solute in the intestine.

We mathematically model peristaltic flow of fluid flowing in a vibrating peristaltic 
axisymmetric domain. We derive an asymptotic expression for the peristaltic velocity 
profile from Stokes slow flow equations which we solve by a perturbation expansion 
in the small wave curvature. We elucidate the complex flow patterns of peristalsis; 
trapping (circulating flow) and reflux, through particle paths. We apply the peristaltic 
velocity, u, to the 2D dispersion model

Ct +  u.V c =  D V 2c,

for the motion of solute with concentration c in a peristaltic flow. Fundamental to the 
project is the appropriate modelling of drug absorption which we approximate by a 
suitable boundary condition. We model passive absorption at the epithelial wall in the 
intestine by

-D n .V c  =  K ac,

a diffusive flux condition for the solute at the boundary with permeability K a. As a 
first step to understanding solute behaviour in a peristaltic domain, we consider the ID 
asymptotic equation applied by Stoll et al. [73] for the mean concentration behaviour 
c of a solute in a cylinder where the fluid flow is Poiseuille

Ct  " I "  U g C xx  =  D g C x  K qC.

The coefficients Ue,D e,K e are related to the overall flow field. Stoll et al. had applied 
this ID equation to the movement of solute in the intestine, however, we show the 
conditions for applying his asymptotic analysis are not met. We then numerically solve 
the peristaltic dispersion model, which is a moving boundary problem, by a moving 
rectangular domain transformation and applying finite differences. We solve the model 
concurrently with the Poiseuille dispersion model for the same parameters and compare 
the results. We show that more solute is absorbed in a peristaltic flow as a result of 
trapping and that peristalsis retards solute motion. This an efficient means for mixing 
slow diffusing therapeutics as solute travels backwards from one region of circulation 
to another.
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Chapter 1

Introduction

The nature of flow and absorption in the small intestine is of particular interest and 
importance to Unilever in the emerging area of Health and Food. Unilever are in
terested in designing Optimal Systems for the delivery of nutrients and functionally 
active material to the gut lining, such as the optimal particle size for delivery and the 
development of more readily digestible foods. In this introduction we discuss how the 
boom in the functional foods market has motivated Unilever to support the work of this 
thesis. We briefly discuss Chapter by Chapter the structure of the thesis and present 
a summary of the new work.

1.1 Functional Foods and Unilever

With the mapping of the human genome to the strains and challenges associated with 
increased life expectancy, media coverage on issues of health has been fervent as ad
vances have been made in the last decade. Consequently, the increasingly aware public 
are taking a greater look at their health and the potential benefits afforded to them. 
This is highlighted by public surveys showing they view diet as more important in 
attaining better health than exercise [26].

Hectic lifestyles and longer working hours have left the public precipitous in fol
lowing dietary guidelines and differentiating between various diets and foodstuffs. Fad 
diets and confusion have left consumers seeking nutritional support to prevent and fend 
off chronic diseases associated with ageing. Nutrition has had to adapt to the new chal
lenges of a changing society. As a result, pharmaceuticals (Novartis) to food and food 
ingredient companies (Unilever) have recognised the potential of the new market, given 
the current advances and understanding of nutrient properties. Intense research into 
identifying and implementing food ingredients with the potential for health benefits 
has begun, resulting in the booming ‘Neutraceutricals and Functional Foods’ market, 
the fastest growing sector of our food industry [26].

Neutraceutricals and Functional foods, or alternatively by other named phrases
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CHAPTER 1. INTRODUCTION 2

pharmaconutrients and dietary integrators, are substances that are a food1 or form 
foods2 providing health and medical benefits beyond that of common nutrition. The 
rising pharmacological applications of certain nutrients affecting the human body at a 
cellular level is blurring the thin line between neutraceutricals and drugs3. Recent ex
amples of simple functional foods appearing lately in supermarkets and commercials are 
calcium enriched water and orange juice, but most noticeably is the headlining ’choles
terol reducing margarine’ Benecol, which acts more as a drug than as a supplement by 
preventing the absorption of cholesterol into the blood.

However, an exploding market will appeal to irresponsible companies whose prod
ucts fail to live up to their claims. Hence, manufacturers must authenticate any health 
claim with scientific evidence and prove that functional foods are safe for consumption. 
Unilever is interested in designing delivery systems for their own functional foods, e.g. 
Slim Fast, to contain added health benefit. One current aim is to prevent absorption 
of sugars in the Gastro-Intestinal (GI) tract to reduce the onset of Diabetes Type II. 
To do this requires a better understanding of fluid dynamics in the small intestine and 
to then factor in the fluid flow properties in the optimal design of their product.

Case Study Questions

Consequently Unilever have posed the following questions that this thesis will help 
answer.

• How do substances flow in the small intestine?

• Can we model this flow mathematically?

• How does the fluid flow in the small intestine affect solute motion and conse
quently its absorption?

• Were Stoll et al. [73] correct in assuming a ID asymptotic dispersion equation 
to describe the motion and absorption of solute in the intestine? If not what is a 
more suitable model?

This PhD is the first part in a series of connected projects aimed at understanding 
the small intestine at Unilever. Projects currently in place are concerned with (i) 
physically modelling the intestine in a lab, (ii) modelling absorption rates of solute 
flow in a cylinder to develop a suitable boundary condition for passive absorption and 
(iii) developing optimal transport systems for Unilever products.

^ o o d  example: Oats, whose health benefits have recently been uncovered
2Food Ingredient examples: Polyunsaturated fatty acids (omega-3 and omega-6) and antioxidants
3Definition: A drug is a pharmacologically active substance that will potentiate, antagonize or 

otherwise modify any physiological or metabolic function
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CHAPTER 1. INTRODUCTION 3

Food and  T he In tes tin e

Upon ingestion foodstuff becomes emulsified from chewing and rolled into a bolus which 
is squeezed down the oesophagus by a muscle contraction into the stomach. From here 
the food is mixed with gastric juices and passes from the stomach to the small intestine 
by contractions of the lower end of the stomach. It is here in the small intestine that 
foodstuffs are absorbed at the membrane. On average the small intestine is 3m in length 
[73] and has many bends as it is wrapped around for efficient storage in the body. Hence 
fluid flowing in the intestine must traverse round bends. It does so by complex intestinal 
contractions that send waves down the intestine. The principle wave for transporting 
digested food is peristalsis, a longitudinal contraction (see §2.3). However, across the 
length of the small intestine there exists a pressure gradient between the opening and 
outlet. This change in pressure combined with peristalsis determines the nature of the 
fluid flow.

1.2 The Thesis

We answer Unilever’s questions in this thesis by mathematically modelling peristaltic 
flow to determine the complex flow patterns: trapping and reflux, which we illustrate 
through particle paths (Chapter 3). We apply the peristaltic velocity u to the 2D 
dispersion model

ct +  u.V c =  D V 2c,

for the motion of solute with concentration c in a peristaltic flow. Fundamental to the 
project is the appropriate modelling of drug absorption which we do through a suitable 
boundary condition. We model passive absorption at the epithelial wall in the intestine 
by

-D n .V c  = K ac,

a diffusive flux condition for the solute at the boundary with permeability K a. As a first 
step to understanding solute behaviour in a peristaltic domain we derive the averaged 
solute concentration behaviour c in a cylinder where the fluid flow is Poiseuille (Chapter
4). Stoll et al. [73] applied this method to modelling the mean concentration of a 
solute in the intestine. We show that the conditions to apply the asymptotic analysis 
to derive the ID equation for c are not appropriate given the anatomical parameters 
of the intestine. We then numerically solve the peristaltic dispersion model with the 
Poiseuille dispersion model for the same parameters and compare the results (Chapter
5). We show more solute is absorbed in a peristaltic flow from trapping and that 
peristalsis retards solute motion. This is an efficient means for mixing slow diffusing 
therapeutics as solute travels backwards from one region of circulation to another.
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CHAPTER 1. INTRODUCTION 4

1 .2 . 1  C h a p te r  2 : B ack g ro u n d  an d  S im ple  M odels

In Chapter 2 we begin the thesis with background knowledge of the intestine. First 
we describe the physical make up of the intestine and in particular describe intestinal 
motility, the random motions occurring in the intestine propelling food along it. We 
also discuss previous intestinal absorption models. There are two types, 1) the com- 
partmental models which form a system of odes and 2 ) dispersion models which are 
governed by pdes. Case 1 , favoured by pharmacologists, represent the intestine by a 
series of compartments, each with their own properties.

Absorption
/ / / / / / /

Stomacl h h h h h h h

Degradation

Figure 1-1: The Compartmental & Transit Model

This model is very simple and parameters are fitted to determine the compartment 
absorption and degradation rates. This model forms the basis of GASTROPLUS, 
an advanced simulation software package to model drug absorption by following the 
concentration of the therapeutic through a system of compartments involving a series 
of compartments for the intestine, the intestinal wall and the blood stream. Such a 
model cannot describe in a continuous sense the distribution of solute concentration 
in the intestine. Hence chemical engineers have favoured the ID dispersion models for 
the drug’s concentration (Ho et al. [28]). However, in time this has evolved to a ID 
asymptotic equation for the mean solute concentration of a 2D Poiseuille dispersion 
model [73].

1.2.2 C h a p te r  3: M o d ellin g  P e r is ta lt ic  F low

To understand how substances flow in the intestine we discuss previous efforts to model 
flow in the intestine by peristalsis. We then model mathematically peristaltic flow to 
derive the peristaltic velocities. We do this by modelling a viscous inhomogeneous fluid 
flow in a tube that is moving under the action of standing peristaltic waves induced by 
a vibrating boundary with location

f  = f (x ,  t) = 1 +  a  cos (27t(x — t ) ) .

We apply Lubrication Theory to simplify the Navier-Stokes equations to obtain the 
biharmonic equations for the fluid streamfunction tf; and tangential vorticity 0  in a 
frame moving with the speed of the wave (x,r) = (x — t,r).
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/  = 1 + QCOS(27TX

C 0 xx + 0 ff -  =  - 0
n A A -I A

£ (ftxx 4*rr f4*f ~  0

1

P̂vvr — 0

Figure 1-2: The Nondimensionalised Model for the Peristaltic Flow of Fluid with 
Streamfunction 0  and Tangential Vorticity 0

We solve the streamfunction model in Figure 1-2 by a perturbation expansion for 
the small wave number4 e as a function of the flow rate . We determine the peristaltic 
velocities up to order 0(e4)and show that they simplify to Poiseuille flow in the absence 
of vibration, a = 0. For the leading order solution when q  ^  0, we determine the 
existence of 5 types of peristaltic flow that depend on the amplitude of vibration a  and 
the flow rate 0 w. The different flows elucidate two important features of peristaltic 
flow (i) trapping where fluid particles circulate in the wave frame and (ii) reflux where 
the net motion of the particles close to the boundary after one period is retrograde. We 
illustrate these fluid motions by plotting the exotic particle paths, see example Figure 
1.2 .2 .

We study the convective dispersion of the peristaltic flow in the absence of diffusion 
and illustrate the behaviour of the oscillatory flow, namely centreline trapping, which 
induces large radial mixing. Some analysis allows us to actually determine the amount 
of volume of fluid recirculating in the flow. We wish to model the motion of a solute in 
a peristaltic flow to represent therapeutic motion in the intestine. Hence we consider 
the 2D dispersion model

ct +  u.V c =  f lV 2c, (1-2.1)

for the solute concentration with peristaltic velocity u. However, first we consider the 
trivial case in the next Chapter when a = 0 and the model (1.2.1) reduces to the 
Poiseuille dispersion equation (1.2.2).

4 The wave number is the ratio of the height of the wave to the wavelength
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Figure 1-3: Evolution of an Initial Condition consisting of 106 passive particles which 
are dyed black at the centreline. The flow exhibits Trapping and Reflux (a =  0.b,ipw = 
—0.4). The frames correspond to T = 0,1,.., 4 cycles of flow.

1.2.3 C hapter 4: D ispersion M odels in C ylindrical Flow w ith  A pp li
cation  to  th e Intestine

In this Chapter we look at the averaged solute concentration behaviour in a cylin
der where the fluid flow is Poiseuille. The full concentration profile satisfies the 2D
Poiseuille dispersion model,

ct + u{r)cx = D V 2c. (1.2.2)

To understand the dispersion effects of a nonuniform velocity we start from the basics 
and build up from a ID model to the desired 2D model. We then apply asymptotic 
analysis to reduce the 2D model to a ID equation for the mean concentration c. We 
start by describing the ID model of solute concentration in a cylinder with plug flow u, 
solute diffusion D and solute absorption K, such that the solute concentration satisfies

ct + ucx = Dcxx -  Kc,

a convection-diffusion-reaction equation. We motivate extending ID model to the 2D 
Poiseuille convection diffusion equation (1.2.2) to take into account convective disper
sion from Poiseuille flow. Fundamental to modelling solute motion in the intestine is 
the modelling of absorption at the epithelial wall, hence, we describe passive absorption 
at the boundary with permeability K a by

—Dn.'Vc = K ac, (1.2.3)

6
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a Robin boundary condition. In dimensionless form the boundary condition satisfies 
n .V c =  —Darc, where Dar is the radial Damkohler number which describes whether 
the membrane is diffusion limited or absorption limited. This 2D model has been 
investigated before and has been applied to the intestine by Stoll et al. [73]. They used 
a macrotransport approach to reduce the model to a ID equation for the cross sectional 
average of the solute concentration. To understand their approach we consider first the 
simpler impermeable case, described by Taylor [74]. We describe Taylor’s long time 
asymptotics which approximates Poiseuille solute transport, (1.2.2), in an impermeable 
tube to a ID asymptotic equation

Ct “I- UqCx — De^xxi

for the mean solute concentration c. We describe two important parameters governing 
the application of asymptotics: they are 1) the tube length ratio t  and 2) the Peclet 
number Per which describes whether convection dominates diffusion or vice versa. We 
show that the conditions to apply the asymptotic analysis in the intestine for a non
absorbable tracer are not met. We then describe the permeable wall case where the 
asymptotic form of this equation is the most advanced dispersion model describing so
lute motion in the intestine [73]. However, we observed different results from [73]. This 
required reworking the asymptotic analysis by Lungu and Moffatt [52] who reduced the 
model (1.2.2) with the boundary condition (1.2.3) to a ID asymptotic equation

Ct Û Cx — Decxx K ec. (1.2.4)

We show that the long time asymptotics by Moffatt and by Stoll match with the 
exception of the effective absorption coefficient which is stated incorrectly by Stoll et 
al. in [73], [10], [6 ], resulting in high levels of absorption. To apply (1.2.4) to a physical 
example, Stoll et al. derived a fictitious initial condition to validate their model for 
short time. However, we show that this fictitious term is insufficient by 1) reworking its 
derivation in our dimensionless coordinates and then 2 ) compare the numerical solution 
of the asymptotic equation (1.2.4) with the numerical solution of the full model (1.2.2) 
and (1.2.3). Furthermore Stoll had modelled peristalsis simply by enhanced diffusion 
as a function of the strength of the peristaltic flow. We state the formula in its full 
form from [1 0 ], and show that its application is in contradiction to its derivation.

1.2 .4  C hapter 5: T h e P er ista ltic  D isp ersion  M odel

In this Chapter we incorporate the leading order peristaltic velocities, derived in Chap
ter 3, in the 2D dispersion model (1.2.1) We numerically solve the Peristaltic dispersion 
model, shown in full with boundary condition in Figure 1-4, to determine the effects 
of peristaltic flow on (i) the solute concentration profile and (ii) absorption. However,

7
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we need a base to compare our model against and we solve the Poiseuille dispersion 
model concurrently. Hence we compare the concentration profile and the amount of 
mass absorbed for the peristaltic dispersion model and Poiseuille dispersion model, for 
the same instantaneous mean volume flow rate and therapeutic parameters. In solving 
the peristaltic model we apply the domain transformation

to move from a moving peristaltic ‘physical’ domain to a fixed rectangular ‘computa
tional’ domain.

a

1

t)c* +  ecv(x, r , t )c f =  p^- (e2c** +  cff +

lo

/  =  1 +  a  cos(27r(x — et)

C i ( n , r ,  t) =  0

Figure 1-4: The Nondimensionalised Peristaltic Dispersion Model

Our numerical results show peristaltic flow gives rise to an oscillatory mean solute 
concentration profile. Using contour plots we show that in the presence of trapping 
the peristaltic solute concentration profile looks nothing like that of the Poiseuille 
concentration profile, the flows are too dissimilar. We observe from the peristaltic 
flow of a solute that solute is constantly brought to the wall by trapping enhancing 
absorption. What this model reveals that can not be illustrated in the particle paths 
is that solute does not just stick to one region of trapping it diffuses backwards into 
other regions of trapping, greatly increasing the convective dispersion of the solute.

x
Figure 1-5: An Example of a Solute Concentration Profile in a Peristaltic Flow with 
Centreline Trapping

8
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In Figure 1-5, solute has diffused from the leading wave of circulating flow into a 
trailing wave (darkest red), and it continues to do so with time. This has implications 
to the movement of food/drugs in the intestine. The villi are largest at the entrance to 
the intestine, and most nutrients are absorbed in the first quarter of the intestine [75]. 
Hence peristalsis is responsible for improving absorption of nutrients as it brings the 
solute closer to the epithelial wall and keeps solute at the entrance of the tube whilst 
constantly mixing it. This is unlike Poiseuille flow where most solute convects down 
the centreline (see Figure 1-6).

x
Figure 1-6: An Example of a Solute Concentration Profile in a Poiseuille Flow

In the presence of trapping, we show that solute movement is far too complicated to 
be modelled by enhanced diffusion in a Poiseuille model by showing that the peristaltic 
mean solute concentration and the Poiseuille mean solute concentrations, found for 
enhanced diffusion, are quite dissimilar for the same flow rate. It becomes even more 
apparent from varying the initial condition where solute is now placed at the centerline 
of the tube and we observe that more mass is absorbed and more mixing occurs from 
trapping which is not seen in a Poiseuille flow.

1.2.5 C hapter 6: N um erical M ethods for th e Fluid Flow  and for th e  
D ispersion  M odels

In this thesis we are dealing in general with equations too complicated to have an an
alytical solution. We apply a finite difference numerical scheme to solve the dispersion 
models (1.2.2) and (1.2.4) in one and two dimensions. The different numerical schemes 
for the ID case are (i) standard upwinding difference method, (ii) a ID diffusion trans
formation of (1.2.4) to wt = Dwxx followed by finite difference and (iii) a moving mesh 
equation. The latter schemes are designed to reduce numerical dispersion from apply
ing upwinding to the convection term. We solve (1.2.4) where the solution is known 
and show that the ID diffusion transformation reduces numerical dispersion more than 
the moving mesh approach. Hence we show the error in the amount of mass absorbed 
and the amount of mass present in the domain is reduced. However, absorption in the 
intestine is not uniform down the gut, K  = K(x), and the diffusion transformation 
would no longer hold in this case. Hence it is necessary to develop the complex moving 
mesh approach. In the 2D case, there is no diffusion transformation and we can only 
improve accuracy by locating grid points in regions of sharp solution change located at

9
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the boundary layer induced by absorption across the wall.

1.2 .6  B r ie f Sum m ary o f  N ew  W ork

In this thesis we derive a peristaltic dispersion model to measure absorption in the 
intestine. This is an alternative model to the standard Compartmental and Transit 
Models which simplify solute motion by assuming fluid is transported by plug flow. This 
basic assumption of fluid flow neglects mixing effects that are induced by a peristaltic 
flow. However, we capture the mixing by determining peristaltic velocities and applying 
them to a 2D dispersion model.

We derive the peristaltic flow using a power series expansion in e, the wave number, 
on the Stokes flow equations in streamfunction-vorticity form. We analyse the break
down of the leading order solution when the amplitude of vibration a  of the peristaltic 
wave increases. However, to analyse peristaltic flow we assume e is sufficiently small 
so that we need only consider leading order terms. We consider fluid flow not only 
when the pressure gradient is positive [64] but when it is negative. Through analysis 
we describe the behaviour of peristaltic flow for all types of flow rates (pressure gradi
ents) and amplitude of vibrations. In particular this analysis allows us to quantify the 
proportion of recirculating fluid per wavelength of the peristaltic wave. Hence we can 
determine the fluid flow conditions for maximum mixing effects.

We implement the fluid flow in the 2D dispersion model c* -I- u.V c =  f lV 2c with 
passive absorption on the boundary modelled by the flux condition — D n.V c = Kc. 
We consider the trivial case when a = 0, the Poiseuille Dispersion Model. In [74] and 
[52] the authors have shown it is possible to average the solute concentration across the 
cylinder cross-section to obtain a ID asymptotic equation of the 2D model for the mean 
solute concentration. However, this ID equation is valid only after a significant time has 
passed. The asymptotic equation has been derived for two cases, (i) an impermeable 
boundary by Taylor [74] and (ii) the permeable case Brenner et al. [10] Stoll et al. [73]. 
The macrotransport approach by Stoll et al. [73] needed to be reworked from a different 
perspective as we had obtained erroneous results when reproducing their results. We 
reworked the asymptotic analysis by Lungu and Moffatt [52] to correspond with that 
of Brenner et al. [10] and we observed three errors in the model by Stoll et al.; (i) the 
absorption coefficient is stated incorrectly in the book on Macrotransport Processes by 
Brenner et al. [10] and consequently in the paper by Stoll et al. [73], (ii) the fictitious 
initial condition is meant to make the asymptotic equation valid for all time, but by 
reworking the analysis in dimensionless form and numerically solving both 2D and ID 
models, we observe that the initial condition fails to do so, (iii) the enhanced diffusion 
equation is derived for small Peclet number by a perturbation expansion but is applied 
in practice for large Peclet number.

The main part of this thesis is concerned with solving the Peristaltic dispersion in
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Chapter 5. We observe the following interesting behaviour of the peristaltic flow on 
the mean solute concentration:

• Oscillations in the mean solute concentration which for weak peristaltic forces 
can be filtered to reveal an underlying Poiseuille mean solute concentration.

• When comparing the mean solute concentrations of the peristaltic dispersion 
model to that of the Poiseuille dispersion the advance of the solute in the peri
staltic flow is retarded if there is centreline trapping.

• Peristaltic dispersion is too complex to model by Poiseuille dispersion plus en
hanced diffusion.

• Peristalsis enhances absorption by (i) inducing enhanced radial mixing and (ii) 
reducing the distance solute has to diffuse to be absorbed.

Hence peristalsis optimises absorption in the intestine by retarding solute motion and 
circulating solute towards the membrane.

11



Chapter 2

Background and Simple M odels

In this Chapter we describe the physiological make up of the intestine and the physical 
factors occurring within. We review previous intestinal absorption models which are 
mainly being developed by pharmacologists. The most common is the CAT model, 
where the intestine is modelled by a sequence of compartments, each with their own 
absorption and degradation rates. This model is the basis of GASTROPLUS, a simula
tion software package sold to pharmaceutical companies. We further review dispersion 
models used by chemical engineers which model continuously the spatial distribution 
of solute in the intestine. The dispersion model is mathematically the most complex 
intestinal absorption model that has been conceived to date.

2.1 How is Food Digested?

The ‘Digestion System’ is responsible for converting the food we eat into fuel for the 
body. Food is broken down into small molecules to be absorbed into the bloodstream. 
The process begins when food is chewed in the mouth. Saliva assists in softening the 
food which is then pushed into the throat by the tongue. Food then travels down the 
oesophagus to the stomach and at this point is known as the ‘bolus’. The muscles of 
the stomach twist and churn and strong acids and enzymes are released that dissolve 
the food until it becomes ‘chyme’, a creamy liquid mass. The stomach then empties 
the chyme into the small intestine at a rate that depends on the composition of the 
food in the stomach (fat/protein/carbohydrate). Carbohydrates are easy to dissolve 
and are released into the intestine much faster than say protein. More enzymes are 
then released in the small intestine to break the food down further. The contents 
of the intestine are mixed together and absorbed across the intestinal lining into the 
bloodstream. The waste products are then propelled into the colon to be excreted some 
time later. We are interested in the small intestine which is responsible for the mixing 
and absorption of the chyme. We describe in the next section the physiological make 
up of the small intestine.

12



CHAPTER 2. BACKGROUND AND SIMPLE MODELS 13

2.2 T he Sm all In testine

Virtually all nutrients in blood are absorbed by the small intestine. This is accom
plished by the breaking down of large supramolecular aggregates into small molecules 
that can be absorbed across the epithileum (small intestine wall). Water and elec
trolytes (sodium, chloride, potassium) and essentially all dietary organic molecules 
(such as glucose, amino acids and fatty acids) are absorbed there. Consequently, the 
small intestine plays a vital role in water and acid-base balance. It is split into three 
segments: the duodenum, jejunum and the ileum, which make up 5, 50 and 45% of the 
length respectively. The average length of a human small intestine is somewhere in the 
region of 3m. Approximately 90% of all absorption from the gastrointestinal (GI) tract 
occurs here [73].

a: Serosa
b: Longitudinal Muscle 
c: Circular Muscle 
d: Submucosa 
e: Mucosa 
f: Circular Fold 
g: Vein 
h: Artery

Figure 2-1: The Small Intestine (The Figure has been adapted from [73])

Taking the small intestine to be a simple cylinder, the lumenal surface area would 
be on the order of one half square meter. However, the total exposed absorptive surface 
area is about 2 0 0 m2, since the small intestine has three structural features that set it 
apart from other regions in the digestive tract and account for the huge absorptive 
surface area. The inner surface is not flat but comprised of circular folds known as 
mucosal folds, which increase surface area as well as aid in the mixing process of the 
chyme1. Along the mucosa are small projections known as villi which themselves con
tain small projections known as microvilli. There are about 20,000 villi and 10 billion 
microvilli per square inch of the small intestine. Each villus brings in fresh oxygenated 
blood and sends out nutrient-enriched blood. In addition the villi constantly sway to 
stir up the chyme. Due to the decrease in the size and the number of mucosal folds 
and villi in the ileum, absorption primarily occurs in the duodenum and jejunum.

There are two distinct states of activity in the small intestine, where each state 
is associated with distinctive patterns of motility. The post meal cycle has two main 
types of motility: segmentation contractions that chop, mix and roll the chyme and

1 Chyme - A semiliquid mass of partially digested food that passes from the stomach through the 
pyloric sphincter into the small intestine
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Mucosa
Submucosa

Figure 2-2: The Villi Structure (The Figure has been adapted from [73])

peristalsis, that slowly moves the chyme towards the large intestine. The second cycle 
occurs between meals, when the lumen is mostly empty. A sequence of ’housekeeping’ 
contractions, propagate from the stomach through the entire small intestine, sweeping 
the undigested food clear and is the cause of ‘growling’. Chyme moves at a rate where 
the residue of one meal leaves the ileum as another enters the stomach [75].

The most important and most common form of intestinal motility is segmentation 
which causes chyme to mix with digestive juices and exposes the chyme to the absorp
tive surface of the mucosa repeatedly. A common scenario is a small mass of food lies 
in one of the intestinal loops, suddenly constrictions at regular intervals along the tract 
cut the mass into little ovoid pieces. Moments later these segments are divided into 
two masses, and immediately after the separation neighbouring particular masses rush 
together and merge to form new segments. Then new segments are divided and a third 
series of segments are formed when neighbouring particles unite and so forth.

Peristalsis contractions are short lived weak contractions by nature move very slowly 
at 1 to 2 cm per second and die out after travelling just a few centimeters. However, 
following the distension of the duodenum as the stomach empties, intense peristaltic 
contractions occur that sweep the food through greater distances, and with greater 
speed. There are also pendular movements present in the small intestine that are 
contractions swaying back and forth.

The Ileocecal sphincter that separates the colon from the terminal ileum is normally 
closed. Unabsorbed chyme delivered to the terminal ileum several hours after eating 
can remain there undergoing further segmentation, peristalsis and absorption for quite 
some time before exiting the ileum.

2.3 F luid  M echanics in the In testine

Kinematics and Dynamics are two branches of Mechanics, the study of motion. Kine
matics deals with the motion of a body relative to a reference frame. However, Dy
namics studies the forces associated with motion and the properties of the material 
in motion. Intestinal motility is practically unstudied from either the kinematic or
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dynamic viewpoint. Empirical investigations that have dealt with intestinal motion 
are generally referred to as transit studies and take a very simple kinematic viewpoint. 
Usually a radioactive marker or radiopaque particles are ingested and their intestinal 
motion described. Average velocities of the marker over given distances are sometimes 
obtained. However, this is far short of a thorough quantitative description of motion 
over the entire intestine, or even a part of it.

For a greater understanding of intestinal motility it is necessary to investigate the 
interaction between chyme and the epithelial wall. A dynamic model is required, as 
it deals with the causes of the motion as opposed to just describing the motion (kine
matics). Determining how the properties of the particle and the forces acting on it 
move the particle adds a greater complexity to a model. For the small intestine, fluid 
particles in the lumen are acted on by viscous forces from the intestinal wall, internal 
pressure in the lumen and gravity. Very little is known about the complex properties 
of chyme and early attempts to model have assumed that the lumenal contents have 
simple physical properties. Chyme is assumed to be a highly viscous Newtonian fluid 
allowing for Stokes flow approximations to be made. The intestinal wall is also consid
ered to be a simple axisymmetric tube with a propagating boundary prescribed by a 
periodic function. One of the first papers to describe the intestine in such a way was by 
Lew, Fung and Lowenstein [47]. However, instead of a peristaltic boundary a series of 
traveling axisymetric, infinitely long, nodal constrictions are considered. Two funda
mental solutions are given, (i) where the peristaltic flow is of pure transport, where the 
work done by peristalsis on the fluid is converted into mass transport with maximum 
effectiveness and (ii) peristaltic flow of pure compression and work done by the wall is 
used only to maintain the pressure gradient without any accompanying net transport 
of the fluid. This stands to reason because with the illeocecal valve closed, peristaltic 
flow of chyme must be of pure compression (although slight transport exists due to the 
distensibility of the lumenal wall). In this case pressure builds up at the colon end of 
the intestine until the valve opens, allowing the pressure to help empty contents of the 
lumen. Vortex flow created by the peristalsis in the model moves chyme back and forth 
from the centre of the tube towards the tube wall, aiding in absorption. Pressure build 
up in the compression phase should also aid the absorption process [47].

Macagno and Christensen [53] claimed the terms peristalsis, segmentation and pen
dular movements were poorly defined and abandoned them in favour of simpler nomen
clature. There are contractions of both the circular muscle layer and of the longitudinal 
muscle layer, which are both rhythmic; they repeat briefly and regularly, with a stereo
typed time course. The contractions are also propagative, progressive or sweeping 
along the tube. Longitudinal muscle layer contractions can occur independently of 
the circular muscle layer. A simple model of longitudinal contractions of the wall was 
developed from observed data. In their notation the displacement <$o for points of a 
segment of duodenum is given by a simple equation =  Acos(ujt — a), where A  is the
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local amplitude, a  is the phase lag, and co is the angular frequency of the slow wave.
Ring (circular muscular) contractions were studied by Christensen et al. [19] after 

taking systematic observations in the human duodenum. Once the statistics of the 
contractions were obtained, attempts were made to model ring contractions at a point 
in the duodenum as a series of independent events. However, results were unsatisfactory 
and a Markov type model was approached [67], where dependence on a given number of 
previous slow wave cycles were assumed. Success was achieved by assuming dependence 
on three previous slow wave cycles. Frequency distributions from experimental data 
and generated data from the Markov model were then compared using Chi-squared 
goodness of fit tests and were found to be statistically similar.

2.4 Absorption M odels for the Intestine

Estimating the amount of drug absorbed is paramount in selecting therapeutic candi
dates when researching new drugs are developed. It is of particular interest to pharma
ceutical scientists who are optimising drug delivery. A primary reason for developing 
predictive drug absorption models is to remove the need for in vivo studies in humans. 
In so doing, drug delivery strategies may be developed from the understanding of the 
rate limiting processes that affect drug absorption.

Intestinal Mechanics is fundamental to understanding how drugs flow and are ab
sorbed in the intestine. However, previous drug absorption models have been very 
simple and neglected intestinal motility by assuming plug flow, constant velocity of 
flow at all points in the intestine. Predictive therapeutic models may be split into two 
types: Compartmental and Transit model and Dispersion models. The first treats the 
intestine as a series of connected compartments with concentration determined by a 
first order differential equation [77]. However, in the dispersion model concentration 
satisfies a convective dispersion pde, to take into account the spatial distribution of 
solute concentration (Ho et al. [73]). We discuss the uses of both models citing their 
advantages and disadvantages.

2.4 .1  T h e M ass B alance A pproach

Some approaches to modelling oral drug absorption have focussed on the actual ep
ithelial boundary of the small intestine whereby a macroscopic mass balance approach 
(MMBA) is applied for passive and non-passive drugs (Sinko et al. [6 8 ]). It is recog
nised that drug dissolution and permeability are the main parameters that control the 
rate and extent of drug absorption (Amidon et al. [3]). Mass balance occurs due to 
a wall flux Jw = PWCW, and fraction dose absorbed is then estimated as a function 
of the membrane permeability, Pw, and membrane drug concentration Cw. This flux 
condition is applied to two models in their steady state 1 ) the mixing tank model
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(MT), where the contents of the intestine are assumed to be uniform and spatially 
independent, and 2) the complete radial mixing tank (CRM), a spatially dependent 
process (Sinko et al. [6 8 ]). The fraction dose absorbed for amoxicilin is then estimated 
for initial doses of high and low solubility and permeability with in situ and in vitro 
obtained parameters.

2.4.2 The C om partm ental and Transit M odel

The most commonly used model for calculating the amount of drug absorbed in the 
small intestine is the Compartmental and Transit Model (CAT) (Yu et al. [77]. The 
flow of solute in the small intestine is deemed similar to that of flow through a series 
of connected, well mixed compartments where the rate of transfer of the drug from 
one compartment to the next is proportional to the amount of drug present in the 
current compartment (the drug transfers in a ‘1st order fashion’). The number of com
partments subsequently increased from the original one compartment model to better 
fit experimental results, until Yu et al. [77] determined the optimal number to be 
seven. For a non-absorbing non-degrading tracer, an increasing number of compart
ments were added until the residual sum of squares error (SSE) of the transit time 
compared to the experimental result became small. The physiologically changing fea
tures of the gastrointestinal tract make the seven compartment approach reasonable, 
where each compartment represents the different portions of the small intestine. The 
first compartment is comprised of the duodenum and part of the jejunum. The jejunum 
also occupies part of the second and third compartment and the ileum makes up the 
remaining compartments.

It is assumed that the drug dissolves instantaneously and the amount of absorption 
in the stomach and colon is negligible compared to the amount absorbed in the small 
intestine.

Absorption
/

Stomacl h h h h h h h

Degradation

Figure 2-3: The Compartmental & Transit Model

The following equation (2.4.1) governs the percentage of dose of drug in the stomach 
Ys where the drug leaves the stomach compartment in a 1st order fashion with gastric 
emptying constant K s

dY,
dt = —KsYc. (2.4.1)
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The main equation (2.4.2) calculates the fraction dose Yn in compartment n (denoted 
in Figure 2-3 by In for intestinal compartment n) for n = 1 , . . . ,  7.

(2.4.2)

In (2.4.2), for each compartment n = 1 ,. . . ,7 , the uniform transit rate constant is 
denoted by Kt, the absorption rate constant by K an and the degradation rate constant 
by Kdn• Yu et al. [77] factored into the drug absorption coefficient a compartment 
dependent saturable absorption coefficient and a compartment independent passive 
absorption parameter. Simply summing the rate of absorption in each compartment 
yields the total rate of absorption in the intestine:

Similarly the rate of degradation over the small intestine is the sum of degradation over 
the 7 compartments:

drug absorbed is very easy.
The CAT model is given by a set of first order ordinary differential equations de

scribing plug flow through the intestine where experimental data is used to reasonably 
estimate transfer and absorption rate parameters. It has undergone various changes to 
incorporate passive and saturable absorption as well as degradation (Yu et al. [77]). 
Here the results of the varying size of oral doses of Cefatrizine, an Amino-^-lactam 
antibiotic, were used to explain the observed oral plasma concentration time profiles. 
In general, the model offers reasonable accuracy by the model, however, physiological 
effects can only be incorporated discretely for each compartment and as a result the 
models fail to describe spatially, in a continuous sense, the distribution of a drug. How
ever, the CAT model exceeds the mass balance models and the single tank models in 
terms of effectiveness and versatility.

n—1

n—1

Consequently the fraction of the dose of the drug absorbed by the intestine as time 
tends to infinity is given by

Hence deriving the rate of absorption and degradation as well as the total amount of
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2.4 .3  T he D isp ersion  M odels

A one dimensional dispersion model was originally applied by Ho et al. [28] to simulate 
oral drug absorption of a non-absorbable non-degradable drug. The equation takes the 
form ct = Dcxx — ucx, where solute travels axially in the x  direction with concentration 
c. The plug flow velocity is denoted by u and is determined from the mean intestinal 
transit speed by assuming constant velocity in the intestine. The dispersion coefficient 
D  incorporates molecular diffusion and physiological effects. In general an analytical 
solution is not always obtainable for the dispersion model. This is true also for the full 
convection diffusion reaction (CDR) model ct =  Dcxx — ucx — Kc, where an absorption 
rate K  is taken into account. The downside of the dispersion model is its inability 
to factor in (i) the physiological differences of the duodenum and the ileum and (ii) a 
reasonable way to incorporate gastric emptying as a function of volume (Yu et al. [77]). 
This has allowed the simpler ode CAT model to be favoured over the more complex 
pde model.

The CAT, MMBA and ID dispersion models have all assumed that there are no ra
dial inhomogeneities in the solute concentration and in the fluid flowing along the small 
intestine. This assumption neglects a more complex underlying phenomena known as 
‘convective dispersion’ which is discussed in Stoll et al. [73]. This phenomena and the 
work of Stoll form the basis of Chapter 4. Convective dispersion is a consequence of 
viscous forces whereby fluid particles on the boundary of the tube obey the no-slip 
condition and as a result neighbouring particles move at slower speeds when compared 
to particles occupying the centerline. Let us consider a dissolved therapeutic in situ. 
It will exhibit dispersion in part from (i) molecular diffusion and (ii) from axial con
vection. As the boundary of the wall becomes increasingly permeable, solute particles 
close to the membrane that occupy slower streamlines are removed. Hence the re
maining therapeutic particles towards the center of the tube occupy faster streamlines. 
Consequently, the centroid of concentration travels faster than the mean flow speed 
and as a result the enhanced dispersion from axial convection diminishes.

The 2D model can actually be approximated by a ID process after a significant 
amount of time has passed. This happens when all radial positions have been sampled 
by the remaining solute resulting in the removal of all radial inhomogeneities. This 
chromatographic effect was seen by Taylor (1953) [74] when solute travelled in a tube 
with impermeable walls (see §4.4.1). The mean concentration profile was then solved 
for asymptotically long time. In the presence of permeable walls the asymptotic mean 
profile was solved to account for the loss of conservation of mass by Sankarasubramanian 
and Gill (1973) [4] and also by Lungu and Moffatt (1982) [52] (see §4.4.3). Similarly 
a paper by Stoll et al. used Macrotransport Theory by Brenner and Edwards (1993) 
[10], to reduce the axisymmetrical 2D model of the small intestine to a ID model. The 
advantage of applying the asymptotic analysis is that it is both easier and quicker to
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solve numerically a ID pde than a 2D pde. The Macrotransport approach by Brenner
[10] is similar to the analysis applied by Sankarasubramanian et al. but takes general 
form to encompass a wide variety of transport processes involving enhanced dispersion 
phenomena not just that seen in Poiseuille flow in a permeable tube.

2.5 Oral Drug Absorption

In the previous section we discussed models that predict absorption from the intestine 
that vary in complexity. However, the models form only one part of what is known as 
the ”‘Oral Drug Absorption’” (alternatively Oral Drug Bioavailability2) process. This 
process follows the course of a drug from being orally administered to its movement to 
the intestine, its absorption from the lumen, to reaching the systemic circulation. Start
ing off as a solid drug, there are two main steps involved in reaching circulation, they 
are dissolution and absorption. Before absorption the therapeutic must be dissolved. 
Using in vitro3 methods the dissolution process has become fairly well understood to 
predict dissolution in vivo4. However, the absorption process is still not fully known. 
Grass et al. ([23]) stated there are two factors, physical and physiological, that affect 
oral drug absorption.

The physical parameters depend on the drugs physicochemical characteristics they 
include a) solubility, b) dissolution rate, c) molecular size, d) partition coefficient, e) 
chemical degradation and f) delivery system.

These factors determine how easily the compound can be dissolved, whether it is 
absorbed by passive or active absorption, and how strong the compound stands up 
to degradation before it can be absorbed. All of these parameters may be influenced 
by the choice of delivery system, whether it be tablet, capsule, suspension, solution 
or modified release, these systems will determine where and when the drug can be 
absorbed [23] and [2].

Physiological factors are the properties of the gastrointestinal tract that aid or hin
der absorption: a) binding/complexation; therapeutics may undergo binding or com- 
plexation in the intestine, that is where the compounds that compose the drug react 
to the lumen contents, such as enzymes. Consequently the amount of absorbable ther
apeutic reduces, b) regional pH; local pH plays an important role in the GI tract and 
is responsible for (i) varying dissolution rates of solid dose forms [2 ], (ii) the degrada
tion rates and (iii) the permeability of the lumen, c) intestinal permeability; there is 
variation in the permeability throughout the intestine, this stems from the decreasing 
size of i) the lumen and ii) the number of villi, both affecting the absorption surface 
area, d) gastric and intestinal transit which determines how long the drug is available

2 Bioavailability refers to the fraction of dose reaching systemic circulation
3In Vitro: in an artificial environment outside the living organism
4In Vivo: within a living organism
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for absorption, and e) first pass extraction.
First pass extraction has been defined to be the loss of therapeutic between two 

points; the point where the drug is administered to the point where systemic concentra
tion is measured. Main loss of therapeutic is attributed to gut metabolism and hepatic5 

elimination. Other sites of degradation occur in the lungs and blood, although elimina
tions here are minor in comparison. However, the liver is most responsible and extracts 
therapeutic at a rate dependent on the hepatic flow rate and plasma binding [2]. The 
contribution from the liver in reducing bioavailability is considerable enough to war
rant designing any dosing regimen around it. It is particularly difficult to estimate the 
correct dosage when drugs undergo extensive first pass metabolism, since factors such 
as age, gender, enzyme activity and food become increasingly responsible for fraction 
dose absorbed and are responsible for the observed wide inter-individual variability. 
Hence for such easily matabolised drugs to achieve desired plasma concentration levels 
much larger oral doses than those administered by IV6 doses is required.

We have shown that it is essential for any therapeutic model to take into account 
1 ) as many physical and physiological parameters as possible and 2 ) as much feasible 
experimental testing to corroborate the model. The foundations of any predictive dis
persion model is the ID intestinal absorption pde reviewed in the (2.4.3). From this 
equation we can extend the model to include additional parameters. The dispersion 
equation is complex in comparison to the CAT equation and so very little has been done 
to improve the dispersion model. However, Stoll et al. have attempted to additionally 
model 1) convective dispersion from Poiseuille flow, 2) enhanced diffusion from peristal
sis and 3) hepatic extraction [73]. Their model also assumes instantaneous dissolution 
of therapeutic, an assumption used to simplify the model by removing the dissolu
tion phase. Without this assumption the model would require coupling the dispersion 
equation with a dissolution equation [3].

By considering the physical and physiological factors we can elucidate the weak
nesses of the CAT model. It is unable to account for a number of factors: the pH 
dependence of solubility, the drug dissolution rate, the delivery system and first pass 
elimination in the gut and in the liver to name a few. For drugs with low permeability 
and low solubility (e.g. controlled release drugs), it is possible that absorption will be 
incomplete by the time the therapeutic reaches the colon. In this case colonic absorption 
will account for a significant amount of the overall mass absorbed [2], [23]. Conversely, 
for highly soluble and highly permeable drugs (in the case of immediate release drugs), 
colonic absorption will be negligible and absorption taking place in the stomach will 
play an increasing role. Hence, the addition of a further two compartments to model 
absorption in the stomach and colon would make the CAT model more effective (Grass 
et al. [23]). We review more advanced compartmental models which improve upon the

5Hepatic: acting on or occurring in the liver
6IV is short for ‘intravenous’ which means: within a vein.

21



CHAPTER 2. BACKGROUND AND SIMPLE MODELS 22

CAT model by considering further physical and physiological parameters.

2.6 Advanced Simulation Software for Intestinal Absorp
tion M odels

Primary research into therapeutic models is still mainly undertaken by pharmaceuti
cal researchers7. To extend a dispersion model would require in depth mathematical 
knowledge, hence, the CAT model has been the favoured model to build upon. It simply 
requires experimental pharmocokinetic data and can quickly solve for the absorption 
and degradation kinetics by parameter fitting to plasma concentration [77]. It is made 
even simpler by removing the user from the hard-coding of the model’s equations by 
modelling the equations in a software package and presenting the user with a GUI 
(Graphical User Interface) of the model.

2.6 .1  E xam ple 1: STELLA

One such example of a simulation software packages is STELLA (Structural Thinking 
Experimental Learning Laboratory with Animation). It is fronted by a GUI that 
actually allows the user to graphically build his own variant of the CAT system [23]. 
An advantage of such a system is the ease with which alterations can be made to the 
model using graphics rather than manually amending the hard code and the equations. 
This is a major reason why dispersion models have been less favoured. In STELLA 
data may be entered numerically or graphically, such as a graph of experimental data, 
without having to prescribe mathematical functions.

In Grass et al. [23], STELLA was used to simulate gastrointestinal absorption. 
However, what sets this apart from the work by Yu et al. [77], is that each intestinal 
segment is represented by their own compartment. Rather than 7 compartments for 
just the small intestine, instead the stomach, duodenum, jejunum, ileum and colon, 
were represented by their own compartment. This introduced two additional absorbing 
compartments; the stomach and the colon. As in the CAT model, the gastrointestinal 
transit times for each segment are estimated using literature. What stands STELLA 
apart from the CAT model is that absorption in each compartment is determined by
(i) the solubility of the compound as a function of the segments pH, Sph , (ii) surface 
area A  and (iii) drug permeability P. The mass flux absorbed is subsequently given by 
the simple formula M* =  P.A.Sph per compartment.

An important part of the oral drug process is metabolism. This is a factor not con
sidered by Yu [77], however, the model by Grass et al. [23] circumvented this by testing 
non-metabolisable compounds. Hence, by applying a two compartment pharmacoki
netic model for the elimination of a therapeutic after it has been absorbed. Grass et al.

7See Advanced Drug Delivery Reviews journal
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were able to fit the elimination constants using plasma concentrations. However, this 
model can only be used for validation purposes since the data for the plasma kinetics 
is unavailable during the screening process of a drug. This form of elimination is post
absorption, but what is more important is pre-absorption elimination, e.g. metabolism, 
as most drugs are highly metabolisable. We now consider the advanced CAT (ACAT) 
model, the most advanced oral drug absorption model. The ACAT models not only 
metabolism but a significant number of other physiological parameters.

2.6 .2  E xam ple 2: G A ST R O P L U S

GASTROPLUS is a more advanced simulation software based on the advanced CAT 
model by Agoram et al. [2]. The ACAT model describes the movement of a drug 
through a series of compartments, namely the standard 7 intestinal compartments 
plus compartments for the stomach and colon. The model captures the motion of a 
therapeutic from when it is released, to its dissolution, its lumenal degradation, its 
metabolic extraction and finally to its absorption as well as exsorption. In reality drug 
movement from the lumen is not unidirectional, but depends on the concentration 
gradient. This implies that solute can move in either direction at the epithelial wall. 
However, unlike in the CAT model, the luminal barrier is not treated as a thin wall, 
but rather as a further series of compartments that absorbed lumenal therapeutic must 
pass through, they are the enterocyte and surrounding tissue.

The ACAT models a system of equations representing 18 compartments (9 GI 
and 9 enterocyte) and captures six states of a therapeutic; unreleased, undissolved, 
dissolved, degraded, metabolized and absorbed. There are a further three states for 
excreted material as well, they are unreleased, undissolved and dissolved. Similar to the 
CAT model, the total amount of drug absorbed is the sum over all the compartments 
that absorb material. Intercompartmental movement is modelled by four main rate 
constants known as the transfer rate the dissolution rate k the absorption rate ka 
and the degradation rate constant kdeg-

In the CAT model the transfer rate Kt is considered to be uniform but in GAS
TROPLUS the rate is adjusted based on the volume of each compartment. In this new 
model the rate constant for dissolution is a function of particle size density, the lumen 
concentration, the diffusion coefficient and the solubility of the drug as a function of 
pH. The absorption rate now depends on the effective permeability of the drug mul
tiplied by a correction term for the change in permeability as a result in surface area 
and pH. In each compartment the absorption rate coefficient is rescaled according to 
pH and passive diffusion (known as log D) . 8 The parameter log D is used to represent 
passive diffusion and is determined by the size and the shape of a drug’s molecule as

8Passive Diffusion involves carriers, channels, or direct diffusion through a membrane, as opposed 
to Active Diffusion where a source of energy is required to move the carrier and its materials against 
the concentration gradient, e.g. Glucose in the intestine.
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well as the molecule’s acid and base dissociation constants which are a function of the 
GI tract’s pH. Similarly, the luminal degradation rate is found from experimentation 
as a function of pH.

2.7 Summary

Therapeutic absorption models fall into two categories, (i) compartment models and
(ii) dispersion models. Compartment models are a system of simple odes describing 
the absorption, degradation, and transit of solute in a series of compartments that 
represent the stomach, segments of the intestine and the colon. The model parameters 
are fitted to experimental results. The compartment models are simple enough to be 
extended to follow the course of a therapeutic from its oral admission to movement in 
the intestine, its absorption in the lumen to finally its circulation in the blood stream. 
This drug process is known as ‘oral drug absorption’ and takes into account further 
factors such as pH and hepatic elimination. The extended models are used in software 
packages, such as STELLA or GASTROPLUS. The software is presented by a GUI 
which removes the user from the maths and coding. However, the compartment models 
simplify solute motion in the intestine to just bulk flow and do not give us an idea of 
how solute behaves in the lumen. The solute concentration profile is also only given 
in a discrete sense. However, a dispersion model is more informative and describes the 
solute concentration profile in a continuous sense. It elucidates ‘convective dispersion’, 
this is where therapeutic solute exhibits diffusion from axial convection of fluid by 
Poiseuille flow.

We wish to investigate the effects of intestinal flow, which is more complex than 
Poiseuille flow, on solute behaviour. In this Chapter we have discussed motion in the 
intestine known as intestinal motility. It is particularly difficult to model as there has 
been much debate on how to define the flow. Previous terms included peristalsis, seg
mentation and pendular movements but they were seen as poorly defined. Circular and 
longitudinal contractions are preferred definitions and describe propagating waves down 
the lumen. Longitudinal contractions were modelled by a sinusoidal function whereas 
ring contractions were represented by Markov type models. We wish to model these 
intestinal contractions but rather than modelling random waves we model a constant 
standing wave propagating down the intestine, based on the longitudinal contractions. 
This fluid motion has already been studied and contrary to the aforementioned def
initions is known as ‘peristaltic motion’. We ultimately wish to model the effect of 
the ‘peristaltic’ waves on solute concentration and how it differs from the effects of 
Poiseuille flow.
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Chapter 3

M odelling Peristaltic Flow

In this Chapter we consider the fluid dynamics when fluid is pumped through a de
formable cylinder with a peristaltic wave propagating on the boundary. Using the 
Stokes’ slow flow equation for an axisymmetric domain, we derive the nondimension- 
alised biharmonic equations of the streamfunction and tangential vorticity. We solve 
the biharmonic problem for two cases, (i) when there are no vibrations to such that 
flow is Poiseuille, and (ii) for a vibrating tube where we derive the peristaltic velocities 
in the wave frame. For the latter we model the propagating wave by prescribing a sinu
soidal boundary function. We obtain two dimensionless parameters; a;, the amplitude 
of wave vibration, and e =  h /A, the wave number or sometimes referred to as the wave 
curvature, the ratio of the height of the tube to the wavelength. For sufficiently long 
wavelengths, the wave number is sufficiently small so that a perturbation expansion in 
e2 may be sought to solve for the streamfunction. The leading order solution yields a 
Poiseuille-like solution for the velocity profile. However, our analysis reveals that for 
small curvature (i.e. small wave number), e «  0 .2 , the leading order solution begins to 
breaks down for large amplitude of vibration a  and it is necessary to consider 0(e2) 
terms to correct the semi-analytical solutions.

For zero curvature, e =  0, it is shown that in contrast to Poiseuille flow where 
positive flow is driven by a pressure drop between the inlet and the outlet, positive 
flow can occur in the presence of a pressure rise. There are two states of flow found 
known as copumping and pumping, occurring in the presence of a pressure drop and 
rise respectively. Phenomena known as reflux and trapping occur in these states and 
give rise to 5  possible types of fluid flow that are a linear combination of the effects of 
peristaltic phenomena and the effects of pressure rise or drop. We discuss how in the 
past application of anatomical parameters combined with inaccurate measurement of 
intestinal length has led to differing values for the flow rates xj)w and pressure gradients 
Ap\. It was believed that flow in the intestine was copumping [5], however, it has now 
come to be accepted that it can also occur in the pumping case given the more accurate 
calculation of and the valve like nature of the illeocecal sphincter. We highlight
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properties of the fluid dynamics through particle paths that show radial mixing and the 
different types of peristaltic behaviour. We analyse the flow to determine a measure of 
the radial dispersion, an indication of the amount of radial mixing. We show this to 
decrease as the flow rate increases as peristaltic flow tends to Poiseuille flow. Our aim 
is to apply the semi-analytic peristaltic velocities to a 2D dispersion model ct +  u .V c =  
l)V 2c with a suitable boundary condition for absorption.

3.1 Literature Review

The driving force of fluid motion in a distensible tube can be a pressure drop between 
the inlet and outlet, or it can be a result of pumping by a mechanism known as Peristal
sis, which stems from the Greek peri stalsis meaning around contraction. Progressive 
waves propagate along the tube propelling the fluid by inducing travelling regions of 
expansion and contraction. Peristalsis is an efficient natural phenomena occurring in 
biological systems for the transportation and mixing of physiological fluids. It is a 
neuromuscular property of smooth muscle structure forming the tube whereby neural 
point stimulation induces sequential squeezing of muscle fibers (long cells that construct 
the muscle) sending waves of muscular contractions along the passage. Observed in oe
sophageal swallowing of food boli, peristalsis mainly accounts for the movement of food 
and its waste derivatives, such as chyme in the GI tract, mixing food in the stomach 
and intra-uterine propulsion. Peristaltic motion has desirable fluid pumping character
istics and has consequently been copied and adapted for many real life applications. 
One such machine is the roller pump where rotating rollers compress a stationary tube, 
usually to the point of complete occlusion and the rollers proceed to squeeze the fluid 
along [64]. This approach is used to prevent contact of the propelled fluid with the 
mechanical pumping parts in cases of pumping blood or corrosive fluids. Also tiny 
mechanical devices have been designed to mix reagents and chemicals in small scale 
experiments where simple mixing methods are required for such small devices [17].

Peristalsis has been studied and documented from a biological standpoint since 
it was first described by Bayliss and Starling (1899). However, it was not until the 
late 60s where initial attempts to describe the motion began to understand the fluid 
dynamics of the propulsion. Experimental work on peristaltic pumping by Latham 
(1966) was soon followed by one of the first mathematical models describing peristalsis 
by Burns and Parkes [12]. An infinite train of travelling1 sinusoidal peristaltic waves 
were considered to pump an incompressible fluid in a channel and an axisymmetric tube. 
Inertia free motion was assumed, that is the fluid is sufficiently viscous to simplify the 
Navier-Stokes equations which govern the fluid dynamics (see §3.2) and a perturbation 
solution was sought in terms of powers of the amplitude ratio of the wave, a. However,

1 Travelling waves refer to an extensible tube moving longitudinally, as opposed to standing waves 
that have pure transverse motion
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no physiological applications were made by the authors. Soon after, Barton & Raynor 
[5] considered the axisymmetric case and removed the assumption of small amplitude 
and replaced it by long wavelength compared to radius of wave such that pressure can 
be seen to be uniform over the cross section. This enabled an analytical solution to be 
found for the velocities as a function of flow rate (when there is a zero pressure drop) 
and as a function of the sinusoidal function describing the wave. In many biological 
systems, viscous fluid boli are transported by such long wavelength peristaltic waves. 
Hence, the lubrication theory approximations were suitably justified for Barton et al. 
to reasonably compare their model to chyme movement in the small intestine.

Shapiro, Jaffrin & Weinberg [64] refined the definition of relatively long wavelength 
assumption to infinite wavelength to derive solutions for the channel case as well. They 
also assumed an integral number of waves between the inlet and outlet of the pump, 
removing time dependency of pressure to discover the conditions for the phenomena 
of reflux and trapping. These peristaltic flow characteristics occur when particles close 
to the wall travel with overall retrograde motion in the former case, and in the lat
ter, a bolus of fluid travels approximately with speed of the wave with particles inside 
undergoing internal circulation. Reflux may in fact be responsible for bacteria move
ment from the bladder to the kidneys in the ureter against the flow of urine [64]. At 
this point urethral physiology became the main motivation for the study of peristal
sis. These early models became the basis of all other studies where now most models 
assume a train of periodic sinusoidal waves pumping a Newtonian or non-Newtonian 
fluid through either a 2D symmetric channel or an axisymmetric tube. The governing 
equations are then obtained from simplifying the Navier-Stokes equations in one of two 
ways, either allowing arbitrary Reynolds numbers and assuming small wave amplitude 
to simplify or applying lubrication theory for arbitrary wave amplitudes. Analysis of 
flow is then conducted in either the laboratory frame, the fixed frame of reference, or 
in a reference frame moving with the velocity of the wave, known as the wave frame 
where the walls are stationary and some flows become steady (independent of time).

There are other physiological differences to consider in peristaltic pumping of biofluid, 
for example, viscosity variation of fluid being one. Typically there exists a peripheral 
layer of fluid at the wall of the pump with differing properties to the pumped fluid 
with one or both immiscible fluids being non-Newtonian. In the intestine the chyme 
bolus is surrounded by a thin layer of mucus which is less viscous. Shukla et al. [6 6 ] 
modified work by Barton and Raynor to include the effect of such a peripheral layer 
but modelled the mucus as a less viscous Newtonian fluid. There results agreed more 
with physiological observations of chyme movement. However, their analysis was found 
to have violated conservation of mass by Brasseur et al. [9] who derived the peripheral 
layer problem for a channel, later derived by Rao et al. [63] for the axisymmetric case. 
In the channel case the peripheral layer has a profound effect on the overall pumping 
characteristics. If the layer adjacent to the wall is more viscous, the volume flow rate
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increases when compared to a single fluid and vice versa for less viscous peripheral 
layer. Peristaltic pumping is a function of viscous forces with more efficient pumping 
when there is a higher viscous layer. However the intestine receives approximately 6  

to 7 litres of fluid a day implying viscosity of the fluid increases the further from the 
wall. This ‘variable viscosity’ was just recently reviewed by Misery et al. [21] in the 
presence of an endoscope but the equations are analytically insoluble.

3.2 Deriving Peristaltic Flow

Consider a Newtonian fluid flowing in a cylindrical tube with constant viscosity and 
density (p and p respectively). The flow velocity u =  u(x, t) at any point x and time 
t of the incompressible fluid is governed by the continuity equation V.u =  0 and

+  (u.V) u =  — Vp +  i/V 2u, (3.2.1)ot p

the Navier-Stokes equation, where Vp is the pressure gradient and v =  p /p  is the 
kinematic viscosity. For an axisymmetric domain we use cylindrical polar coordinates 
(r, 0, x) where the Laplacian is given by

^ 2  d2 d2 I d
V - d ^  + d ?  + r f r '  (3’2'2)

Let us denote U and L to be the characteristic flow speed and length scale respectively 
of the fluid flow. The relative order of magnitude of the inertia term and the viscous 
term in the Navier-Stokes equation is

||(u.V)u|| U2 j L = U L = R ^
||i/V2u|| vU /L2 v

where Re is the Reynolds number, a dimensionless parameter. For a viscous fluid 
travelling at slow speed, Re «  1, the viscous forces i/V2u dominates the inertia forces 
(u.V)u, and it is sufficient to neglect the inertia term from the Navier-Stokes equation. 
We can further assume that the oscillations of the wall are such that a /v l = 0(1) to 
neglect ut = 0 [12]. Hence, the forces arising from pressure balance those coming from 
viscosity such that Vp = p V 2 u. We introduce vorticity, a measure of the amount of 
fluid rotating in the flow, which is defined by w = V  x u. Taking the curl of vorticity 
yields the following identity V x w  =  V x ( V  x u )  =  V (V .u) —V 2 u. We assumed that 
the fluid is incompressible, V .u  =  0, hence the identity is reduced to V 2u = V  x uj. 
Therefore the Navier-Stokes flow for highly viscous fluid is satisfied by the Stokes flow 
(Slow flow) equation

pV  x a? = Vp. (3.2.3)
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In the absence of any external forces acting on the fluid in the cylindrical tube we assume 
by axisymmetry of the domain there is no flow in 9 direction, so u = (v, 0, u ) for radial 
and axial velocities v =  v(r, x) and u =  u(r,x) respectively. We now introduce the 
Stokes stream function ip = ip(r,x) which is constant along any streamline and satisfies 
u =  V x =  (— \ipr)- Similarly vorticity w = V x u in axisymmetric flow
is defined by u> = we#. The vorticity component and Stokes stream function satisfy

ibw = V x V  x —eo —r c o  =  i p xx  +  A r  A  ' =  L - i ( A )r

Noting that the curl of a gradient is zero, then taking the curl of the Stokes flow 
equation yields

/iV x Vo; = V x (—Vp) =  0 0 = (ruj)xx +  (p^)rr — “ 0*w)r := L-i(ru )  r

We have obtained a biharmonic pde problem for Stokes stream function and tangential 
vorticity (p = rui, as seen in Burns & Parkes [12].

L - i ( i P )  =  - A  L _ ! ( 0 ) =  0 .

3.2.1 Sim ulating P erista ltic  M otion  by a M oving B oundary

We consider a cylinder whose solid wall is allowed to undergo a vibration as a result of 
an infinite train of sinusoidal transverse waves propagating with speed o in the positive 
x direction. The motion of the wall in time may be described by

r = f ( x , t ) = h + 77 cos ^ ^ - ( 2; — crt)^ ,

for average radius of the nondisturbed cylinder h , amplitude of vibration 77, wavelength 
A and time t.

Figure 3-1: One Wavelength of the Peristaltic Axisymmetric Deformable Tube
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Fluid flow in the presence of oscillating walls is unsteady but by assuming the length 
of the domain, Lx, is an integral number of waves L/A =  n G N we can introduce a 
wave frame coordinate (x = x  — at, f)  moving with speed a relative to the fixed frame 
(x, r) where flow in the moving frame is steady and flow in the fixed frame is now 
periodic. Hence, we introduce the following wave frame parameters denoted by a bar “ 
superscript

u{x,f)  =  u{x — at,r) = u(x,r ,t) — a, v(x,r) = v(x — at,r)  =  v(x,r,t) ,
0 (x ,f) =  0(x  — at,r) = ip{x, r, t) — ^r2, 4>{x,f) =  4>{x — at,r) = 4>(x,r,t),
p(x,r) = p(x — at,r) — p(x,r ,t), f ( x)  h +  77cos (^-x)  .

As a result of the coordinate transformation the wave frame Stokes stream function 
satisfies the same biharmonic pde but in the corresponding wave frame parameters,

Z _ ! ( 0 ) =  - 0 , =  0 .

3.2 .2  T h e P er ista ltic  B ound ary C on d ition s for th e  B iharm on ic E qua
tion s

By axisymmetry we need only solve the problem for the positive domain [0, A] x 
[0, f{x)] G M. The boundary conditions of the problem need to take into account 
the geometry of the domain and the fluid properties that axe associated with trans
verse oscillating waves. For a regular solution to the biharmonic equations we impose 
boundary condition \{)fff(x, 0) =  0 at the centreline (see Appendix §C.l for proof). We 
also set the streamfunction to be constant, -0 =  0, this implies particles on the axis 
move only on the axis since constant streamlines correspond to particle trajectories in 
the wave frame. To derive boundary conditions at the wall, we note fluid particles on 
the wall are subject to the motion of the wall.

For standing waves, a no-slip condition implies fluid in the wave frame on the 
boundary will be travelling backwards with speed of the wave u = (l/r)t/5f =  —a. By 
viscous effects fluid particles at the wall stick to the wall and consequently the particles 
move up and down so that they undergo transverse velocity of the wall v = — (1 /r)ipx = 
ft. Hence we can rewrite the fluid velocity boundary conditions for the streamfunction 
as

xj)f = —ar, ipx =  - f tf.  (3.2.4)

From boundary conditions (3.2.4) we determine a Dirichlet condition for -0 at the 
boundary, since the rate of change of 0  in the axial direction is

df\) dip dr <90
+ 7F  = ~ f f t  =  0.dx or dx ox

Hence a first integral has been found for the stream function implying a constant
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streamline on the boundary Pp = ipQ. Integrating the axial velocity boundary condition, 
and applying appropriate symmetry conditions we determine the streamline on the 
boundary to be

_ _ _  __ f f ____  f f ____  q
xp(x, f )  = ip(x, 0) + / ru(x,r)dr = / ru(x, r)dr = —  =  tpw, (3.2.5)

Jo Jo 2tt

where ip is proportional to the flow rate q, which is constant and independent of time 
and axial position in the domain. In fact, the flow rate rpw is linearly dependent on the 
pressure gradient over one wavelength Ap\, see §3.5.2.

3.2.3 N ondim ensionalising th e B iharm onic Problem

We choose appropriate scales to characterise the various parameters and introduce the 
following dimensionless quantities denoted by the hat ~ superscript

x f  f f  ~ at  ̂ u Av ? h2p
# = T ,  r =T -  /  = 7 , t = -T, U = ~ ,  V = T ~» ^  = To ’ 4>= P =  t — ,A h, h A o her ahz o Apa

(3.2.6)
Hence the non-dimensionalisation of the axial and radial derivatives (3.2.5) yields the 
dimensionless biharmonic problem in the wave frame (Figure 3-2 below).

r

—r

e 2lipxx  +  f p f f  ~  =  ~<P

£ 4*xx "I" ^ ff "r̂ Pf =  0

1
tpfff = o

Figure 3-2: The Nondimensionalised Model for the Peristaltic Flow of Fluid with 
Streamfunction ip and Tangential Vorticity <p

The Dirichlet boundary condition is given by the dimensionless flow rate ipw = q/2nah2. 
We introduce a further two dimensionless parameters: (i) the amplitude ratio, a = rj/h, 
the relative degree of deformation of the tube (0 < a < 1), and (ii) the wave number, 
e =  h /A, a parameter describing the relationship between the slope and curvature of 
the wave. The nondimensionalised biharmonic problem can be solved numerically using
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an appropriate rectangular domain transformation with finite difference (see Appendix 
E). However, for sufficiently small wave number, the biharmonic equations can be 
simplified to obtain an analytical solution in terms of a perturbation expansion in e2.

3.3 The Trivial Case (ct =  0): Deriving Poiseuille Flow

We solve the nondimensionalised biharmonic equations for the trivial case when the 
amplitude of vibration is zero. For this case we consider the fixed frame and introduce 
dimensionless fixed frame coordinates (x, f, t) for which the biharmonic equations still 
hold. Note the check sign represents fixed frame dimensionless parameters. We assume 
that the flow has been establish long enough to remove any axial inhomogeneities that 
may have existed. Hence there is invariance under translation in the x  direction so that 
0  = ip(f) and the biharmonic equations are given by

h f - H t  = - i ,  (331)
0ff -  j f o  =  0.

We still apply symmetry boundary conditions at the centreline but we must apply 
alternative boundary conditions at the wall, a Poiseuille flow rate xpwp, with a no-slip
condition ipf = 0 at the boundary f = 1. The streamfunction satisfies 0(f) = Af4 +  2f2,
and applying the boundary conditions at the wall the solution is given by

0(r) =  ipwp (2f 2 -  f 4) .

Hence, the Poiseuille velocities satisfy

u{f) = (4ipwp^ (1 -  r 2) =  U0 (1 -  f2) ,

where Uq is the centreline velocity. The mean fluid velocity V  is then found via

V = < u > =  ^ ~ ip r~ r- = 2 f  u( f )rdf  = 2tpwp =
J0 r d f  Jo z

Hence the Poiseuille flow in terms of the mean velocity u (f) =  2V (l — f 2).

3.4 The N on-trivial case ( a  /  0): Solving the Biharm onic 
Equations by a Perturbation Expansion

We expand the streamfunction and vorticity in a power series for the small wave number 
parameter e2 as follows:

ip =  + e27/>2 +  0 ( e 4), 3 4 i
0 — 00 +  e202 + 0 { 6̂ )-
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We are interested in parameters up to 0(e2) since the 0(e), 0 (e3) terms are zero and 
any other higher order terms 0 (e4) are sufficiently small that they may be neglected. 
Hence, upon substitution of (3.4.1) into the biharmonic equations we equate powers of 
e2 to obtain

0(1) 00,rr = 0 , 00,fr ^00,r = 00) (3.4.2)

0(e ) 00,xx 4" 02,ff f4>2,f ~  0) 00,xx 4“ 02,ff f 02,f =  02) (3.4.3)

The following boundary conditions at the membrane and symmetry axis must apply 
for each order of e2:

0(1) 0  o(£,0) =  0, 0o,ffr(£,O) =  0, 00 ( x , f )  =  0U,, 00 ,f(®,/) =  0,
0 (e2) 0 1  (x ,0 ) =  0 , 0 2 ,fff(®,O) =  0 , 0 2  ( x j )  =  0 , 0 2 ,f(®,/) =  0 .

Solving the zeroth order biharmonic equations (3.4.2) and applying the peristaltic 
boundary conditions, the stream function and tangential velocity are given by

00 (£ ,r )  =  A (x )r4 +  B ( x ) r 2 =  ( -  r 4 +  (^jf- +  r 2,

0o(x,r)  =  - 8 ^ ( i ) r 2 =  8 ( ^  +  ^ ) f 2.

From the second order biharmonic equations (3.4.3) we expect the solution to be 0 ( f 2) 
higher than the zeroth order and takes the form:

0 2 (£) r) = C i f6 +  C2 r 4 +  Csf2, r) = D ir 4 +  0 2 r 2, (3.4.5)

Subsequently, substituting (3.4.5) and (3.4.4) into (3.4.3) the first order solution is

4>2 ( x , f )  =  -  ( $ )  r6 +  ( ^ £ )  r4 -

0 2 ( i , r) =  ^4"(£)f4 +  -  4i43 ^ 2 ) r 2.

3.4.1 D eterm in in g  th e  L im its o f  th e  S em i-A n a ly tic  S tream fu n ction

In the literature, [5], [64], [6 6 ], the authors have only considered the leading order an
alytical solution where they assumed the curvature of the wave is exactly zero, e =  0 . 
However, we look at a narrow deformable tube with wave number e < 0.2 ([5] used 
h = 1.25cm, A = 8.01cm). This term may be sufficiently large to warrant consid
ering higher order terms 0(e2) for the solution of the streamfunction and peristaltic 
velocities. We determine numerically that the leading order solution depends also on 
on a small amplitude of vibration, a  to remain valid. Consider the 0(1) solution for 
the streamfunction 0q. By applying the leading order term we assume that e2 0o,xx is

(3.4.6)
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negligible compared to ipff — j i ’fi equivalently —</>, so that

|e2*/>o,xx| «  l^ol

in equation L_i(V>) = — <j). It is similarly expected that e2(/>o,x,x is negligible. We define 
the following function

7-, 2 l^0,x,x| 2 l^ 0 ,i,x | 2 1 / - -MEy ,o = e 7 7  ~TT~: = € = 6 \9{x,r)\,
Wff -  ii>r\ 1001

to be a measure of the relative size of e20o,x,x to 0o- To apply the leading order solution 
we would hope E 1. We consider an example of peristaltic fluid flow with flow 
rate ipw = 0.2. We calculate (i) max(|^(^,r)|), the point where the ratio of 0o,x,x to 
(j>o is maximum, and we do this for increasing amplitude of vibration a  and (ii) the 
maximum size of wave number e# such that o is within 20%, i.e the 0(1) analytical 
solution is an appropriate approximation.

(a) a  — 0.1, <?max =  0.82, ce =  0.50 (b) a  =  0.3, gmax =  3.46, ce =  0.24

X

(c) a  =  0.5, <?max =  8.56, es  =  0.15

X

(d) q  =  0.7, <7max =  12.1, t E  =  0.11

Figure 3-3: Contour Plots of g(x,r) a Measure of the Relative Size of V>o,x,x to </>o for 
iw  =  0.2

In Figure 3-3 it is quite clear that as the amplitude of vibration increases the size
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°f ^o,x,x increases relative to 0o- As a result the size of the wave number, e#, for 
which a leading order solution is appropriate decreases to e = 0.09 when a  = 0.9 to 
maintain to within 20%. We observe that the greatest ‘error’ occurs when /  =  1 
at the boundary of the wall and at the centreline for increasingly large a. Hence, for 
wave number e < 0.2, the leading order solution for the streamfunction is a good 
approximation. We note that as the flux xj)w increases, the maximum moves to the 
centreline trapped contours, and requires smaller wave number e#. To recover the 
higher order term 0(e2) we introduce the function Ey# such that

rp 4 IV,2,x,x|
\<f>o + e24>21

is a measure of the relative size of e4̂ 2 ,xx to (j>o 4- e2(j>2 . We expect max(Eip^) < 
max(E.lpfi) for a given e = 0.2.

n f\ n A
(a) a  =  0.1, m ax(E 1i>< 0 ) 

2 ) =  0.99%
=  3.26%, (b) a  =  0.3, m a x ( ^ ,0) =  13.86%,

m ax(E %i>̂ 2 ) =  4.01%

(c) a  =  0.5, mox(£^,o) = 34.26%, (d) a  = 0.7, max(E1j,, 0 ) = 64.90%,
max(E1/Ĵ 2 ) =  13.11% max(E^,2 ) =  50.67%

Figure 3-4: Contour Plots of E^ 2  a Measure of the Relative Size of e4̂ 2,xx to </>o + e2 </>2 

for =  0.2, e = 0.2

In Figure 3-4 we recover curvature in our streamfunction solution by taking the per
turbation expansion solution up to 0(e2) yielding much better results, max(E7jJ <
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max(Ejj}>o) when a  is small. We note in all cases only a small proportion of the wave 
suffers from such ‘errors’. The ‘errors’ do increase as the flow rate increases. The 
leading order solution is sufficient for e < 0.2, a: < 0.7 and small flow rates which is in 
accordance with the anatomical parameters for the intestine [73].

3 .4 .2  D eterm in in g  T he S em i-A n a ly tic  P er ista ltic  V elocities

The axial and transverse velocities are found by the streamfunction velocity definitions 
u = (l/r)(f)t and v = — (1 /r )</>£. Hence for the power series in e2 we derive the peristaltic 
velocities

u = UQ + e2U2 = 4Ar2 +  2B + e2 +  2\ ^ - f 2 — +  0(e4),

v =  vo +  e2V2 =  - A'f3 -  B'r +  e2 +  A'"J2r 3 — A'i^4r j  +  0 ( e 4).
(3.4.7)

By dimensionalising u, we find the leading order velocities are consistent with those 
derived by Barton et al. [5]. For very small relative wave amplitude (a «  1), the 
peristaltic tube is approximately cylindrical, / « 1 .  Consequently there is zero vertical 
motion, v «  0, and horizontal velocity takes the form

u «  ( ( - 4 ^  -  2)f2 + (4V>„ + 1)) =  U( 1 -  f 2) -  1.

This is Poiseuille flow in the wave frame with mean axial velocity U = 4 ^  +  2. There
fore, for any a, the axial velocity is similar to Poiseuille flow, producing a parabolic 
velocity profile at every axial cross section of the domain.

3.5 Pum ping and Copumping: A Consequence of Peri
staltic Flow

In the absence of a pressure drop along a tube (i.e. closed ends) there is no flow. A 
sudden induced peristaltic wave will cause fluid to flow backwards in the contracted 
regions causing viscous losses, inducing a pressure drop in the opposite direction to 
the wave or a pressure rise in the direction of the wave. Now if the ends were open 
and there was a pressure drop across the tube then fluid is pumped by (i) peristalsis 
and (ii) a driving pressure gradient. So fluid will flow in the direction of the wave in 
the uncontracted part of the wave, with less fluid flowing backwards in the contracted 
region if the tube ends were closed. If there is a pressure rise, fluid is driven by pumping, 
and for a pressure drop, fluid is driven by copumping, due to the additional flow from 
a pressure difference. In this section we determine the pressure gradient over one 
wavelength and show that it is linearly dependent on the flow rate Ap \ = c\i!)w + C2 -
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3.5.1 D eterm in in g  T h e P ressu re G radient

Of particular interest is the relationship between pressure and the flow rate. By Stokes 
equation (3.2.3), the nondimensional pressure gradients are described by

dp    j± d^  . <?£ _ _1 d<}>
dx f_df dx f df ’
dp   n dj)_   d£   e2 d4>
df f  dx df f dx'

We consider a perturbation expansion for the pressure gradients to derive

Px = Po,x + f2P2,x = 16A + e2 ( - 4 A"r2 +  2 ( B " +  ,

Pf =  Po,x +  e2P2 ,x =  e2 (-8  A'r).

In the leading order solution the transverse pressure gradient is negligible, which is to
be expected as there is no streamline curvature to induce it. Therefore, the pressure 
gradient is independent of r but is also independent of t. We assumed there is an 
integral number of waves moving down the tube, Lx = nA, otherwise the volume of 
the domain, the flow rate and pressure drop between the ends of the tube would be 
changing with time. Hence, the pressure gradient is only a function of x  and we can 
calculate the pressure distribution p = p(x) but more importantly we determine the 
change in pressure over one wave cycle, Ap\. The pressure gradient is the same whether 
it is measured in the fixed frame or in the wave frame. By the Fundamental Theorem
of Calculus pressure at any point x  in the wave frame is given by

p{x) = p(0) +  ^ dx
ro

which can be rearranged for the change in pressure over one wavelength

Apa =  [Jo dx

Using Abramowitz and Stegun [1] we integrate for the pressure gradient

8 dx &ipw(2 + 3a2) 8^  _  f 1 16 i ’wdx f 1
PX Jo (1 +  a;cos(27nr))4 Joo (1 + a;cos(27nr)) J o  (1 + a;cos(27nc)) ( 1  — a 2 ) ^  (1 — a 2 ) 2

We rearrange the above equation for the flow rate as a function of the pressure 
change A p\  and amplitude of vibration a,

, _  ( l - a ^ A p ,  ( 1 - a Y  ( .
8(2 + 3a2) (2 + 3a2) ' J

To solve for the peristaltic flow we need to find ifiw, this is done by prescribing the 
pressure change over the domain, ApLx =  nAp\.
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3 .5 .2  R ela tin g  th e  F lu id  F low  R a tes  to  th e  P ressu re G radient

We have determined that the wave frame flow rate is directly proportional to the 
pressure drop over a wavelength. For a zero pressure rise (free pumping) we denote the 
corresponding dimensionless flow rate by xj)wo, and for a zero flow rate we denote the 
pressure change by Apo- So

- _  ( 1 - a 2)2 «
YWQ — n ! o 9-; ^PO —

2  +  3 a 2 _  q , 2 )  2

A zero flow rate corresponds to a pressure drop and in the case of a peristaltic pump, 
a sufficiently negative flow rate ij; < $ 0  is required for a pressure rise (Ap > 0). Under 
certain conditions Ap\  attains a maximum. First, consider the instantaneous volume 
flow rate Q , the flow rate in fixed frame coordinates. Without introducing further 
notation for nondimensionalised coordinates in the fixed frame, the dimensionalised 
instantaneous flow rate in terms of the wave frame flow rate is:

Q{x, t) = 2ir f  urdr = 2ir f  (u +  cr)rdr = 2ir f  u fd f  + 27t f  ardr =  q +  7r c r / 2 .
J o  J o  J o  J o

The average instantaneous time flow rate over one period Q , known as the time-mean 
volume flow rate [64] and its nondimensional equivalent Q are:

Q = [  Qdt = q +  'kg ( h2 +  = ip™ + 7: (1 + ^ a 2
2 )  2tt 2 V 2

Substituting Q for in (3.5.1) yields

9 .  =  I  (1  +  l a A  _  C1 “  a 2 )2 ^ a ( 1 - o :2)2
2tt 2 V 2 J  2 +  3a 2 8(2 + 3a2) ’

an equation for the time mean flow which is directly proportional to the pressure change 
and takes the form Q = A — B A p\.  In the case of free pumping Ap \  = 0, there exists 
a flow rate Q = A  induced by the peristaltic waves. Now, when peristalsis is acting as 
a pump a positive pressure gradient creates a negative flow —B A p \,  that represents 
‘a back leakage Poiseuille flow’ [41]. Now if we consider a zero time flow rate, then 
this will produce a maximum pressure rise Apmax- Similarly a zero pressure rise will 
correspond to a maximum flow rate Qo,

Qo ( ,  , 1 2\  (1 — a 2)2 A„ 4(1 +  i a 2)(2 + 3a2) 8
—  =  ( 1 + - a  ) -  0 , o _0 , Apmax = -------   — ----------- T------ r~T
27t V 2 J 2 + 3a2 ’ ( l - a 2) i ( l - a 2)§ '

In the literature, [64], the pumping range is defined in the region 0 < A p \ < Apmax 
and is given correspondingly in terms of the flow rates 0 < Q < Qo. Hence, a maximum
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pressure rise Apmax may be attainable if the tube end was closed. However, if there 
is too great a pressure rise Ap \ > Apmax then there is on average a negative flow 
rate Q < 0, a contradiction to the role of peristaltic pumping (an unlikely scenario). 
Copumping occurs under a pressure drop, Ap \ < 0, which in terms of flow rates satisfies 
Q > Qo- One other point to note is that as the wall deformation reaches its maximum, 
a  —» 1, the flow rate tends to Qo 3/27T, (agreeing with [5] when dimensionalised) 
however, this leads to a large pressure gradient tending to negative infinity. We are not 
concerned with such large amplitude of vibration in the intestine, since in the intestine 
a  is at most 0.6 [5].

3 .5 .3  T h e In testin e  as a P u m p

Peristaltic motion has been studied with the intention to apply the fluid dynamics to 
machinery in industry biofluids in the human body. Our aim is to understand the 
fluid dynamics of the small intestine determined by the peristaltic motion and the 
pressure gradient. The first authors who applied peristalsis were Barton and Raynor 
[5]. To apply the theory the following anatomical parameters [5] were used2 We observe

Anatomical Param eter Variable Value In SI units
Average Length of Intestine [62] Lx 22.5 feet 675 cm
Average Radius Nondisturbed Tube h 1.25cm -

Speed of Peristaltic Wave o 2cm/min 0.03cm/s
Peristaltic Wavelength A 8.01cm -
Wave Number e 0.156 -

Amplitude ratio a 0.6 -

Time for Chyme to Pass Through SI Ti 4.5hrs 16200s

Table 3.1: A Table of Anatomical Parameters for the Intestine applied by Barton et 
al. [5].

the wave number e is sufficiently small (in conjunction with results from Figure 3-3) 
to justify applying the leading order slowly variant analytical solution (3.4.4). From 
the anatomical data in Table 3.1, the average chyme velocity can be shown to be 
uc =  2.54 cm per minute. In [5], Barton et al. applied the time mean volume flow 
rate Q to determine an average velocity V = 1.83 cm per minute, by assuming there 
was a zero pressure gradient which is a gross assumption. He predicted a negative 
pressure gradient would make the model realistic. We relate the average velocity to 
the dimensionless flow rate by

which using (3.5.1), depends on the pressure gradient by

2Parameter values taken from Piersol, Evans, Houssay, Fulton used in Stoll et al. [73]

2 'ifrw +  1 +
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V  = a
(l — a 2)2Ap^ (1 — a 2)2

8(2 +  3a2) (2 + 3a2)
= a 2 (ci +  c2Ap\)  +  1 +

for constants ci,C2 depending on the amplitude of vibration (see (3.5.1)). Hence the 
pressure gradient Ap\  can be determined from the anatomical data by setting V  = uc 
so that

Hence matching the mean velocity based on Barton’s data it appears a negative pressure
gradient is present. Unfortunately the results found by Barton depend entirely on his

intestine estimated to be 22.5 feet by Piersol [62] in 1930 seems a little exaggerated. 
By further reading we found the value was later remeasured by Vander et al. [75] to 
be 9 feet, about 270cm. This has paramount implications on the nature of peristaltic 
flow in the intestine. Originally a pressure drop was calculated but by recalculating

observed and theoretical mean chyme speed. It appears different measurements of 
the intestine can imply pumping or copumping, and in these measurements we have 
assumed a constant pressure gradient. An exact measurement of the intraluminal 
pressure would be key in the development of a model. We discuss the difficulty in 
achieving such a result.

Since the advent of peristaltic models in the 70s, current literature has progressed 
and described the different types of intestinal motility that occur in the intestine. 
However, due to the complex nature of the intestine, no intestine is unique, and so 
anatomical data varies and are difficult to measure. One such quantity, is the intralu
minal pressure. Gastrointestinal manometry studies are tests that measure intraluminal 
pressure. They also measure the coordination of activity in the muscles of the GI tract.

One such device is the water perfused manometric catheter. They are able to 
measure pressure over the length of a catheter, not just at a specific point, However, 
they do not extend much past the entrance to the intestine due to the large length 
required to go from oesophagus to intestine. Alternatively expanded balloons may be 
used to measure pressure, but all methods will in some way affect the value they are 
trying to measure. A further difficulty in understanding pressure in the intestine is 
that there is no way to measure the pressure gradient over the whole intestine, only 
intraluminal pressure for portions of the intestine. One such area is the entrance at the 
duodenum which varies as it is affected by the gastric emptying at the pyloric sphincter 
[21]. No clear measurement can be given for Ap\,  however, we can roughly estimate it 
from the observed averaged chyme velocity.

The purpose of the intestine is to pump fluid and the nature of the flow most likely

anatomical parameters in table (3.1) being 100% accurate. In fact the length of the

we determine a pressure rise A p\ = 21.1 {xj)w = —0.31) is required to attain similar



CHAPTER 3. MODELLING PERISTALTIC FLOW 41

depends on whether the ileocecal valve (that connects the intestine to the colon) is 
open or closed. When it is closed, as it is for the majority of the time, peristaltic 
motion must be of pure pumping (Ap \  > 0) and copumping when the valve opens [47]. 
Pressure should build up until the valve opens at which point flow should be of pure 
transport - copumping. Lew et al. [47] proposed that the build up of pressure should 
promote solute absorption. Another method that promotes absorption through radial 
mixing of solute is trapping.

3.6 Describing Fluid Particle M otion

In dealing with fluid flow there are two ways to describe the motion kinematically: La- 
grangian or Eulerian. A Lagrangian approach obtains the motion of individual particles 
specifying the coordinates of the particles’ centroids as functions of time, yielding par
ticle path lines. A collection of said path lines are known as streamlines. An Eulerian 
approach describes flow as a velocity vector field where velocities of particles at points 
in space are determined (as was described in the previous section). The set of vectors 
representing the velocities describes the motion of the fluid in that space. Therefore 
the average velocity of individual particles is the mean Lagrangian velocity whereas 
the mean Eulerian velocity is the average velocity of all particles passing through a 
fixed point in space. Each approach has its disadvantages; Lagrangian descriptions 
are difficult to obtain if turbulence exists in the flow whereas an Eulerian description 
falters in unsteady flow where transport properties such as mixing features and circu
lation patterns are present. Converting from one approach to another is possible with 
difficulty depending on the type of flow.

3.6.1 P er ista ltic  P h en om en on  1: R eflux

An interesting phenomenon occurring in peristaltic flow is Reflux and was discovered 
by Shapiro et al. [64]. It occurs when some fluid particles undergo a net retrograde 
motion after some period. It is not possible to determine whether a particle moves with 
or against a wave (a net Lagrangian displacement) from the time mean velocity (the 
axial velocity averaged over a period, an Eulerian quantity). However, since peristaltic 
flow is steady in the wave frame fluid particles can be identified by specific wave frame 
streamlines. It was mentioned in Shapiro et al. [64] that pumping only occurs in the 
pumping range. This was proved for the channel flow case, and mentioned for the 
axisymmetric case. We present the proof for the axisymmetric case in Appendix §C.2.

3.6 .2  P er ista ltic  P h en om en on  2: T rapping

Another phenomenon found in peristaltic flows is Trapping. For large vibrations and 
high flow rates streamlines which normally resemble the shape of the wall, split and
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in enclosed streamlines encompass a bolus of fluid particles which then undergo recir
culation. In general the trapped fluid advances with the mean speed of the wave [64]. 
Previous literature has focussed on trapping in the pumping range, here we consider 
trapping for all positive flow rates Q > 0. As the flow rate increases from pumping to 
copumping, trapping attached to the centreline disconnects from the centerline and ap
proaches the peristaltic wall with decreasing volume. The various forms trapping takes 
has strong implications on the amount of mixing occurring in the fluid. Criteria for 
centerline trapping was the existence of a streamline other than the centreline stream
line where = 0. However this is only when the waves are pumping. Streamlines 
with if) = 0, also exist for copumping where the trapped streamlines will have detached 
from the centreline. In this case we wish to find the streamlines that surround the 
bolus. To do this we need to understand fully the properties of the analytical stream
function ?/> for different flow rate boundary conditions ipw and amplitude of vibration a.

3.6.3 T he D ifferent T ypes o f P erista ltic  Flow

For peristaltic flow we elucidate seven different types of flow for varying ^  E M and 
a G [0,1] in Figure 3-5. We determine the conditions for the different types of flows 
in the following subsection. From Figure 3-5 there are five flow regions occurring with 
a purely positive time mean volume flow rate Q > 0, two regions for pumping (as 
described in Shapiro et al. [64]) and three types of flow for copumping. The results 
are best viewed in a flow rate ijjw versus amplitude ratio a graph, rather than pressure 
gradient Ap\ against a. (See Appendix §C.3 for the alternate visualisations.)

0.2

A: Copumping, Detached Trapping

- 0.2 B: Copumping, Centreline Trapping

C: Copumping, No Trapping
'W -0 .4

D : Pumping, No Trapping 

E: Pumping, Centreline Trapping- 0.6
Q =  0

F: Negative Flux, No Trapping
- 0.1

Free pumping 
Boundary Max 
Boundary Min 

—  Zero Mean Time Flow

G : Negative Flux, Centreline Trapping

0.2 0.3 0.4 0.5
Oi

0.6 0.7 0.8 0.9

Figure 3-5: A Graph of the Different Flow Regions and Behaviour for Arbitrary Flow 
Rate ^  and Amplitude Ratio a
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We observe that the different types of flows are linear combinations of (i) either 
pumping, copumping or negative flux and (ii) no trapping, centreline trapping or de
tached trapping.

Exam ples of S tream function Behaviour

In figure (3-6) we present the possibility of four different types for fixed amplitude of 
vibration, a = 0.1, and varying flow rates.

(c) Case C, tjjw =  —0.4 (d) Case D, \j)w =  —0.5

Figure 3-6: Contour Plots of the Streamfunction for Cases A,B,C,D with amplitude of 
vibration a  =  0.2

We present results for small flow rates where pumping forces dominate. In case A 
we observe detached trapping, and centreline trapping in case B. What is not intuitively 
obvious from the graphs for case C and D is that although solutions of the streamfunc
tion look very similar, fluid particles close to the boundary in case D undergo reflux. 
We now determine the conditions used in determining the different types of flows seen 
in Figure 3-5.

3.6.4 U nderstanding th e Behaviour o f th e Sem i-A nalytic  Stream func
tion

We define the peristaltic domain C M2 by Q = [0,1) x [0, f{x)]. Consider the Stokes 
streamfunction ^  prescribed by (3.4.4) on At the centreline axisymmetry imposes
(i) a zero streamfunction value and (ii) zero symmetry derivatives of the streamfunction
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(if? — iffff — 0). Hence, the streamfunction is either increasing or decreasing in f away 
from the centreline, depending on the sign of the second derivative xf??.

Lem m a 3.1. Streamfunction if(x,r) is increasing in r if ifw > — \ f 2(x) and every
where increasing for'if w > —1(1 —a;)2 = and decreasing for 'if w < — | ( l + a ) 2 =: if*.

Proof. Differentiating 'if in the radial direction yields ifff{x: r) = 12 A(x)r2 + 2B(x).  At 
the centreline (r =  0) the second derivative simplifies to 'iff? =  2B(x) = + 1 which

is increasing if ifw > — \ f 2(x). The periodic boundary f  is bounded by its maximum 
and minimum so that

/min = ^ ~ o ' < f ( x ) < l + a  = /max

Hence, for xfw > —1(1 — a)2 which we denote xf~ the streamfunction is always in
creasing, and conversely is always decreasing for \fw < —1(1 + a )2, which we denote

ifa- □

(a) Case A, ipw =  —0.1 (b) Case B, ipw =  —0.2 (c) Case C, ifw =  —0.4

Figure 3-7: Surface Plots of the Streamfunction for Cases A,B,C with amplitude of 
vibration a = 0.2 to Illustrate Lemma 2

At the peristaltic boundary f = f{x), the imposed no slip condition implies the stream
function gradient satisfies 'if? < 0. Hence the streamfunction achieves a maximum if it 
is increasing in f from the centreline. The critical points of %f then correspond to the 
location of stagnant fluid particles and regions of enclosed streamlines.

Lemma 3.2. For f  ^  0, there are (i) two critical points when %fw > — ̂ (1 — ex)2
(ii) one critical point in the range —1(1 — a)2 >  tf > — ̂ (1 +  oi)2 and (in) none for 
'ifw <  5 ( 1  +  Oi)2 .

Proof. The point (xo,fo) E 11 is a critical point of \f if Vi f(xo,ro) =  0. The axial 
derivative condition ifz = A '(x)r4 + B'(x)r2 = 0 is satisfied only when fx = 0 which 
occurs at the points of maximum and minimum of the boundary function x = 0,
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The radial derivative 0 r = AA(x)r3 +  2B(x)r  has roots when:

n  ^  - 2  B ( x )  } 2 ( i j > w  +  j 2 ) a  

0 2 A(x) 2(2i/>ot +  / 2)

This inequality is satisfied when both the numerator and the denominator take the 
same sign:

0 < 40^ +  / 2 < 2 (2 0 ^ +  / 2) or 0 > 40^ -f / 2 > 2 (2 0 ^ +  / 2).

The rightmost inequality equation can never be satisfied since / 2 (x) is always positive. 
It follows from solving the leftmost that there exists a root when 0m > — \ f 2{x). 
Hence, there exists one critical point when the boundary takes a minimum, x = that 
exists for all 0m > 0 “ . The second critical point occurs when the boundary takes a 
maximum, x = 0, which exists for all 0 m > 0 +. □

Lemma 3.3. The critical point that occurs when the boundary takes its maximum is a 
relative maximum. The critical point when the boundary takes a minimum is a saddle 
point. 3

Proof. Evaluating the second derivatives of 0  at the critical points (£o5fo) implies 

i>tf(xo,ro) =  12-4(io)fg +  2B(x0) =  12A(x<>) +  2B (x0)

= -4 B (S 0) =  -  - ^ 2 -  2 <  0,
P ( x  o)

and we obtain a negative second radial derivative term by applying Lemma (3.1). The 
cross derivative term

i ’fx(xo,r0) = 4A'(x0)r% +  2 B'(x)r0 =  0. 

vanishes since fx{xo) =  0. The second axial derivative takes the form

0xx(£o,»o) = + B " ( x 0)rl  = ^
8/(20m + f l Y

where sgnfyxx) = s9n (f")  when evaluated at the critical points. The discriminant 
A = 0£x0ff — (0^r) determines the nature of the critical point. At x = 5 , we obtain 
positive /" , leading to a negative discriminant hence a saddle point. By the nature of 
/  the other critical point has positive discriminant and is either a relative maximum or 
minimum depending on the sign of 0(0, ro) which is positive since 0m > 0+, a relative 
maximum. □

A stationary point but not an extremum
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Consequently by Lemmas (3.1), (3.2) and (3.3), the saddle point at xq = and relative 
maximum at xq = 0, satisfy radial position and streamfunction value

■2 _  B(x) _  f 2{xo) {^w + f 2{x0))
2 A(x) 2(2ifw + p ( x 0)) ’

(3.6.1)

B 2x ) {tyw + f 2(x o))
(3.6.2)

4 A(x) 8(2 xj}w + f 2(xo))

Lem m a 3.4. Centerline trapping occurs only when the relative maximum is the only 
critical point. When both critical points exist there is detached trapping surrounded by 
a streamfunction whose value is equivalent to that of the saddle point.

Proof. We consider the case of detached trapping first. When there exists two critical 
points, there is a relative maximum, and most notably a saddle point. We define the 
saddle point level set by

We denote the set of level sets with streamfunction greater than that of the saddle 
point by S a = {S(if) : V>(£,r) > sad} which forms a connected set4, with a relative 
maximum.

Figure 3-8: An Example Graph to Show Regions of Detached Streamline Trapping 
(a = 0.3, ipw = 0)

Particle paths correspond to streamlines, hence the relative maximum is a stagna
tion point surrounded by a trapped bolus of fluid particles in S a and are confined to

r

0 0.1 0  2 0.3 0 4 0.5 0.6 0.7 0.8 0 9

X
(a) A Contour Plot (b) A Surface Plot with a Level Set

4 A set which can not be partitioned into two nonempty subsets such that each subset has no points 
in common with the other
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S a by the separatrix S*5. All level sets below defined by the set S b = {S(ip) : ^{x, r) < 
Tpsad} form disconnected sets D \,D 2 where particles in Di are confined to Di for all 
i. Centerline trapping follows the same argument but the separatrix S  now occurs at 
So =  {(£,r) E Q, : t f ( x , r )  — 0} and the set Sb is no longer disconnected. □

In the pumping range, trapping is always attached to the centreline since > V^o-
We have shown that detached trapping exists for >̂w < 0 but only when the flow rate is 
sufficiently large and is driven by copumping. However, copumping does not necessarily 
imply trapping wo for a  E [0,0.25]. From the bounds on the flow rate
if>w, we determine the centerline trapping limits stated by Shapiro [64] when the time 
mean flow rate Q  is normalised by Qo'.

= (i -  f f l + y  < A  < i < (i + ay + y  > = o+.  (3.6.3)
a 2(16 — a 2) Qq Q!2(16 — a 2)

The graph of time mean flow against a  (see Appendix §C.3) confirms our results 
agree with previous literature and the existence of trapping in the pumping range 
0 < Q / Q o  < 1- We now determine the effects on the behaviour of the flow as the flow 
rate increases.

3 .6 .5  H igh  F low  R ate  B ehaviour o f  th e  F lu id  F low

We consider the case of copumping when there are high flow rates. That is, a negative 
pressure gradient dominates the peristaltic pumping diminishing the effects of peristal
sis. We prove that regions of trapping move away from the centerline to the peristaltic 
boundary with decreasing volume equivalently leading to laminar flow. In all cases 
we take the limit as xj)w oo, however, this is purely to demonstrate the effects of a 
high flow rate, we assume the Reynolds number stays sufficiently small and the leading 
order semi-analytical solution remains valid.

Lem m a 3.5. As flow rate increases, ipw —»■ oo we observe (i) the saddle point and 
the relative maximum move away from the centreline to the boundary and (ii) the 
streamfunction value at the critical points, %l)c, tends to ipw.

Proof. The radial positions of the critical points are given by

-2 _  / 2(£q)(4Vv> + / 2(£o)) 
r° 2 ( 2 ^  +  / 2( i 0))

We have shown already that at ifw = i/j~ detached trapping occurs, hence as —> oo

5A separatrix marks the boundary between phase curves with different properties
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by taking limits of the radial position of the critical points then

.lim r(j =  lim iim /2(£o) ( 4 +  = p (io).
Ipw—tOO 1pw—tOO 2(2 ifiw +  f 2(x o)) 4>w^oo 2 (2  + £4^1)

\ Ipw /

Hence fo f  as oo and the critical points move to the wall for high flow rates.
Now the streamfunction value at the critical point satisfies

B 2(x) (4^  +  / 2(£o))
4A(x) 8 ( 2 ^  +  f 2(xo)) ’

hence, as —> oo the limit of the streamfunction if)c is

Uij>w +  f 2(xo)) x / 1 6 ^  +  S f 2(x0) +
lim ifc = lim =  —— ^ — lim -  I ---------------- 1— -—— ) —>• -0̂ ,.

lipw->00 Ipw-tOO 8(2ljjw +  f 2(xo)) Ipw-tOO 8 \ 2 + f ( £ o )

' tpw

□
Lem m a 3.6. For high flow rates the volume of trapping decreases.

Proof. The radial positions of the separatrix 7 ^ 2  that encompass detached trapping are 
the roots of the streamfunction equation

Tpsad = A{x)rA +  B (x ) f2.

Rearranging we solve the quadratic equation in r 2 for the separatrix positions given by

-B ( x )  ±  ^ B 2(x) + A%j>sadA(x)
"  2A (£ )  ’ (3'6-4)

hence as the flow rate increases

-B (x )  ±  J B 2{x) +  40,sadA(x) 
lim f  f;2 =  lim -------------  ----------------

'ipw—too  ’ tpw —> oo Z A { X )

( 7 % ) +  2 ) ±  \Z (/% ) +  2) + 4 ^ sod( 7%) 2/2(4))
lim / . v

ifiw—̂00 2  ( H— — )* V/2(x) ^  2/2(4) 7

lim
( —2 I 4- . I+  ( 2Ipui 1 \  1 4lpsad (  ĴU)______1__\
v / 2( x )  2ipw )  Y  ^ 2  \ + ( £ )  2 y  \  f 2( x )  2f 2{ x ) )

i’w-^oo 2 ( ----1----^-4----  ]
\ / 2 (x)  2 ipw f 2( x ) )

We know that 0 sad i ’w by Lemma (3.5) hence
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lim f 22 — lim
( / 2 (x) y ( / 2 (x) 2ipw )  ^  (  / 2 (x)  2 4>w f 2 ( x ) )

Ipw-̂ -OO ’ û,->00 9 f  I---*—̂ ^

^ ( / 2(s)) / 4(£) _/ 2 (X) v _  , w  r { £ )

/ 4 (x)

Hence the separatrix tends to the wall with decreasing radius. B 2(x) +  4ifisadA^) —> 0 
as flow rate tends to infinity. □

Lemma 3.7. For high flow rates the wave frame velocity is approximately Poiseuille 
flow in the wave frame.

Proof. The wave frame velocity equation u = 4A(x)r2 +  2B(x) may be rewritten in the 
form

u{x,f)  =  4  ( - j ^  +  +
V / 4(£) 2P i * ) )  \ f 2(z)  2 y

V / 2(£) 2 )  / 2(̂ ) \ / 2(£) /

=  +  L
\ f 2(x) 2 /  \  f 2(x ))

Hence for large flow rates, xj)w dominates the reciprocal of the function f(x ) ,  so that

^  ~ ^  \  A \  iu lx .r ) «  —-----  1 — -  — 1,
i m /  V p i * ) )

which is Poiseuille flow in a non-uniform tube in a frame moving with speed 1. □

Lemma 3.8. Axial velocity u (x ,f)  is strictly decreasing in r from the centreline at 
axial point x except in the presence of negative velocities 'i/)w < if~ where it becomes 
strictly increasing.

Proof. The longitudinal velocity at x  is strictly radially decreasing if its radial derivative
Uf = 8A(x)r is negative for all f. This is true provided A{x) =  — J r rr < 0,/ \x) ^j \x)
hence only if ip > —^ f  2(x). Conversely, the velocity is strictly increasing for rfi <  

Hence axial velocity is strictly decreasing in the radial direction for all cases 
of peristaltic flow where Q > 0. □

We have shown that high flow rates decrease the amount of trapping which will 
decrease the amount of mixing of solute. In the following subsection we apply the
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results of §3.6.4 to determine the amount of recirculating fluid in the wave frame as a 
function of ipw and a.

3 .6 .6  D eterm in in g  th e  A m oun t o f W ave Fram e R ecircu la tion

In instances of trapping, a bolus of fluid particles undergo recirculation in the wave 
frame. As flow and amplitude ratio vary, so too does the volume and location of circu
lation. This can be used as an indicator of how much radial mixing is occurring. By 
Lemma 3.7 as the flow rate increases peristaltic flow has been shown to tend to Poiseuille 
flow where there is no trapping and hence no radial mixing of particles. Hence, peri
stalsis as a mixing mechanism is optimised for small flow rates. However, decreasing 
flow rates actually do not maximise trapping volume rather maximum trapping occurs 
in the copumping range.

Lem m a 3.9. Trapping is maximised at the point where streamlines detach from the 
centreline.

Proof. When detached trapping occurs we can find the location of the separatrices f  1,2 

(3.6.4). This is maximised in ipsad when the distance between the separatrices given by

{ x ) +  4A(x)ipsad is greatest, so when ipsad — 0 ie- at the point of detachment. It 
only remains to show that trapping radius r 2 decreases as ipw decreases for centreline 
trapping. Now centreline trapping occurs when ip =  A(x)f^  +  B (x)r2 =  0, so that

f? =  -

B(x) = f 2(x p)(4nj>w +  f 2(x q)) 
M%) 2ipw -f f 2(x0)

We denote g{ipw) = r2(ipw,x)  and determine the rate of change of r 2 with respect to 
the flow rate

2/ 4 (*)
Hu, ~  / . - \ 2 > 0

\2ipw +  p { x y j

which is always positive for all ipw hence, g{ipw) is always increasing in ipw up to 
the point of streamline separation. Hence for centreline trapping we have shown that 
trapping strictly increases as ipw increases to the point of separation and by Lemma 
3.6 we have shown that trapping strictly decreases as ipw increases. Hence maximum 
trapping and radial mixing occurs when streamlines split and form trapping. □

A proof was required for Lemma 3.9 as it was not intuitively obvious that detached 
trapping was strictly decreasing as the flow rate decreased. We now elucidate graphi
cally in Figure 3-9 the relative sizes of trapping for small flow rates as the amplitude 
of vibration increases. We calculate for one wavelength the proportion of volume Vp of 
fluid undergoing trapping to the volume of one wavelength of the tube for various ipw 
and a. Hence, Vp is defined by
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Detached Trapping: Vp = Jo f $ i )  f d fdA

Jo J o (X)

f  rCentreline Trapping Vp = ——-
1 rrc(x) fdrdx

Jo Jo ! {x>

We observe from Figure 3-9 that maximum trapping occurs at the point of streamline 
detachment from the centreline, for fixed a , corroborating Lemma 3.9.

'f tW -0.4

Figure 3-9: A Contour Plot of the Proportion of Volume of 1 Wavelength undergoing 
Recirculation as the Flow Rate and Amplitude of Vibration Varies.

3.6.7 Particle Paths

In §3.4.2 we determined the peristaltic velocities analytically in the moving frame. By 
numerically integrating we can obtain the location of a particle, x(i),r(t), in the fixed 
frame for any time t. Hence plotting the location at all times we can show the particle’s 
path. Let x , f  be the nondimensionalised fixed frame coordinates, then

i  = f t  = u(x ,f , t)  = ) + 1 ’ . .
?  —  dr  _  ( z ,  Z l \  _  _  ( W w f x ( x , t )  , h ( x , i ) \  .3  _ 4 i pwf x ( x , t ) ~

d i  v K * i r , z )   ̂ + /a( x , i ) J  p ( x , i )

Applying a suitable ode solver, we determine the particle paths for particles initially
placed at some point in the domain [a:(0), 2/(0)]. Particle paths depend upon the initial
location of the tracers with respect to the shape of the wave. Fundamental differences 
are apparent when particles are placed at points of maximum and minimum occlusion 
for certain ftw, a. In case B (see Figure 3-6) there is centerline trapping and the majority 
of particles placed at the point of minimum occlusion will undergo recirculation, but no

51



CHAPTER 3. MODELLING PERISTALTIC FLOW 52

particles recirculate at the point of maximum occlusion. This is in contrast to case C 
where axial position of the particles has no effect. However for cases of trapping, there 
is a greater dependence on the initial positioning of tracers in the particle paths. Hence, 
it is important to note that taking a uniform spread of particles at just x(0) =  0 will 
omit some important particle paths. We plot the particle paths for case B for 8 particles 
spread out uniformly in the radial direction and places at the points of maximum and 
minimum occlusion.

1

0.8

0.6

0.4

0.2

OO 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

_L
1

_L_
20.5 1 .5 2.5 3 3.5 4.54

Figure 3-10: Evolution of 9 Particle Paths starting at Maximum and Minimum Points 
of Occlusion for 5 periods in Case B when a = 0.2 and ipw = —0.2.

As predicted we observe very interesting behaviour from the different initial posi
tioning of the tracers. In the top figure most particles encompass a bolus (see Figure 
3-6). Such particles exhibit long wavelength oscillations and radial mixing. Of interest 
is the motion of the particles outside the trapped bolus. In the top figure, there is 
one such particle and it travels with less speed and with shorter wavelength. This 
behaviour is shown in the lower figure where more particles are outside the bolus. Nor
mally this is attributed to the slower axial velocities and faster radial velocity the closer 
the fluid particle is to the moving boundary. We observe trapped particles are moving 
on average with the speed of the wave by travelling a distance x = 5 after times t = 5. 
Consequently, comparing the figures, particles surrounding the bolus are then moving 
at speeds slower than that of the wave, and would slide backwards over the moving 
bolus.

Wave frame streamlines correspond to particle paths and an initial glance at the 
contour plot from Figure 3-6 of case D reveals uninteresting streamline behaviour, 
there is no radial mixing of fluid and motion would be Poiseuille like. However, reflux 
occurs in region D, and in Figure 3-11 we observe a proportion of particles close to 
the boundary move with retrograde motion and that most particles move forward and 
backwards. At points of maximum occlusion, particles have initial negative longitudinal
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velocity and those at minimum occlusion have positive axial velocity.

0.6

0.4

0.7 0.9

1
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0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 . 2 1.3 11 1 1

Figure 3-11: Evolution of 9 Particle Paths starting at Maximum and Minimum Points 
of Occlusion for 5 periods in Case D when a = 0.2 and ipw = —0.5.

Though particle paths may cross this is not proof that cross mixing occurs at all. 
For any two particles placed at the entrance x(0) = 0  with initial radial displacement 
ra > fb we define radial mixing to occur when f a(t) < fb{t) for some time t. Still for 
case D, the final displacement of the particles show that the particles maintain radial 
order at least at the final time step. Running an animation plot of paths shows that 
the particles do not cross each other at any time, this is seen to happen only in the 
presence of trapping. In contrast to case D, where there is no trapping, we observe the 
only difference in behaviour of particles introduced at different points relative to the 
boundary is a phase difference in their paths.

The remaining particle paths for peristaltic flow cases are shown in Figure 3-12. 
Just from looking at the paths we can determine the existence of trapping from the 
presence of radial mixing in cases A, E and G. When there is copumping there is no 
reflux (cases A,B,C), although some particles do flow backwards at points of maximum 
occlusion for sufficiently small flow rate (case C). When trapping is present, no matter 
how small the flow rate the particles in the bolus are seen to advance with the speed 
of the wave (case G).

3.6.8 E volution  O f an Initial C ondition  o f Passive Particles

For an incompressible fluid, the equations describing particle trajectories form a Hamil
tonian system, a dynamical system where volume is preserved. Hence, a slug of tracer 
particles will then preserve its area under displacement from fluid flow. The dispersion 
of a slug in peristaltic flow will depend on the initial placement of the particles that 
form the slug and the time at which they were released into the flow. Hence, for a
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(a) Case A: a  =  0.2, xj}w =  —0.1 (b) Case C: q =  0.2, ipw =  -0 .4

(c) Case E: q =  0.5, rpw — —0.4 (d) Case F: a  =  0.5, %j}w =  -0 .7

(e) Case G: a  =  0.8, tpw — —0.7 

Figure 3-12: Evolution of 9 Particle Paths for 5 seconds in Cases A,C,E,F,G.

sufficiently large number of tracer particles filling one whole wavelength calculate all 
the particle paths to show the full behaviour of the peristaltic flow. In the following 
Figures 3-13-3-17, the pink dye represents particles initially placed at the boundary 
which fades to a black dye for particles at the centreline. We solve for the position 
x(i),f( t)  for each particle after four periods and plot the location after each period. 
Any radial mixing will present itself by a mixing of the dyes.

Case A: Figure 3-13 clearly elucidates the effects of trapping. Black dye at the 
centreline is propelled forwards with a mixture of pink and black dye above the midline 
caught in the trapping region. As time progresses the dyes recirculate (see * in the 
Figure 3-13) around a wave frame stagnation point. We clearly observe here a mixing 
of the dyes from radial mixing. At the midline there is no trapping and the solute 
travels undisturbed through the peristaltic tube at speed grater than that of the wave. 
We note firstly that the initial placement of fluid was in a boundary prescribed by a 
cosine wave /  = 1 -f a;cos(27r(:r — £)), where there are two stagnation points (see Figure
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Figure 3-13: Evolution of an Initial Condition consisting of 106 passive particles for 
Case A: a = 0.2,xpw =  —0.1. The frames correspond to T = 0,1,.., 4 cycles of flow.

3-8) (x = 0,1), corresponding to two neighbouring recirculating regions. Secondly the 
period of the wave is one unit, hence we see that the trapped fluid is indeed moving 
with the speed of the wave, one wavelength per time unit (as the distance between 
successive * in Figure 3-13 is one wavelength).

Case B: Figure 3-14 describes peristaltic flow when there is centerline trapping. 
Here all solute particles from the axis to the top of the trapping region form two wave 
frame recirculating zones that eventually separate from one another. Generally in the 
case of centerline trapping solute occupying the point of maximum occlusion lies outside 
the trapped bolus (Figure 3-6) and travels at a slower speed than that of the wave.

Case C: Figure 3-15 has no trapping and we observe no mixing of dye but the net 
fluid motion is in the direction of the wave. We also do not observe the negative fluid 
motion at the points of maximum occlusion as seen in the time dependent particle 
paths figure (see Figure 3-12(b)). Both illustrations of particle paths are important.

Case D,E: Figure 3-16 describes peristaltic flow when peristalsis is acting as a pump 
and reflux occurs (highlighted by a f). Just a slight change in flow rate or amplitude 
ratio and trapping could occur as seen in Figure 3-17. This has a profound affect on 
solute distribution. Initially there was very little solute movement in Figure 3-16 but 
now the tracer particles have spread out further in the same amount of time as a result 
of trapping.
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Figure 3-14: Evolution of an Initial Condition consisting of 106 passive particles for 
Case B: a = 0 .2 ,^  — —0.2. The frames correspond to T  = 0,1,.., 4 cycles of flow.

Figure 3-15: Evolution of an Initial Condition consisting of 106 passive particles for 
Case C: a = 0.2,ipw = —0.4. The frames correspond to T  = 0,1,.., 4 cycles of flow.
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Figure 3-16: Evolution of an Initial Condition consisting of 106 passive particles for 
Case D: a = 0 . 2 , =  —0.5. The frames correspond to T  =  0,1, ..,4 cycles of flow.

Figure 3-17: Evolution of an Initial Condition consisting of 106 passive particles for 
Case E: a = 0 .5 ,^  = —0.4. The frames correspond to T =  0,1,.., 4 cycles of flow.
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3.6 .9  A  M easure o f  P er ista ltic  Indu ced  C onvective  D isp ersion

In the previous subsection we have shown the effects of peristalsis on the convection of 
non-diffusing tracer particles that have been released into fluid undergoing peristaltic 
flow. In general a solute that is introduced into a flow will disperse as a result of
(i) diffusion and (ii) convection. (We briefly discussed the latter known as convective 
dispersion in the background Chapter.) If the solute is non-diffusing then peristaltic 
convection is solely responsible for the dispersion of the solute. Hence looking at the 
exotic particle paths we expect peristaltic flow to significantly effect the dispersion of 
the solute when compared to a much simpler flow like Poiseuille flow.

In the literature there are methods to measure the extent of dispersion for convec
tion alone [69], [37], [38]. In [69] the author studied the convective dispersion of tracer 
particles for oscillatory flow in furrowed channels in the absence of diffusion. Here, 
Sobey considered unsteady flow for the full Navier-Stokes equation. By numerically 
solving the unsteady Navier-Stokes equations in streamfunction-vorticity form, Sobey 
obtained the particle velocities and subsequently numerically integrated for the parti
cle paths. A measurement of dispersion can be obtained from determining the mean 
position of the particles in the longitudinal direction x and consequently calculating 
the variance a2.

We determine the position of N  particles [zj(t), ri(t)] for i = 1, . . . , JV at time t 
with initial condition [^(0), rj(0)]. (Note we drop the checks to simplify notation and 
to standardize it with the literature.) The mean axial position of the particles is given 
by

1 N

i = l

and the particles are distributed with variance

1 N
a =  N ~̂ 7  ^  ~  X ^ 2 'i— 1

Now in Hwu et al. [38], the authors measured the instantaneous dispersion coefficient 
D(t) using the particle variance so that

m  = (3.6.6)

and then integrated (3.6.6) over a cycle to obtain K ,  the cycle dispersion coefficient,

K  = [  D{t)dt = ^Act2| le =  i  (a2(t +  T) -  a2(t)) .
J cycle z z

It is a requirement that K  be constant over a number of cycles to reliably estimate 
dispersion [38]. We have so far considered measuring convective dispersion in the lon
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gitudinal direction but we are mainly interested in the radial movement of particles 
towards the boundary, which we expect will enhance absorption. We consider measur
ing the average movement of particles in the radial direction in time where it is either in 
the direction of the wall or the centreline. One way would be to calculate the skewness 
of the particles. This requires knowledge of the mean radial position and the variance 
of the tracers. However, the domain in the radial direction is fixed and consequently 
there will be no outliers to affect the radial mean. Hence measuring skewness is only 
useful in the axial direction and requires knowledge of the axial mean and variance

e ( ( X - » ) 3)  ! /  1 *  \

) •
To describe the movement of particles in the radial direction we determine the mean 
radial position of the tracer particles which is given by

f (t) =
i=1

However, the initial mean changes as a function of the amplitude of vibration a. Hence, 
we scale the radial positions by the transformation

* w =  n ( t )  -  n ( t )f ( x i , t ) 1 + a  cos (27r ( x i ( t ) - t ) )

to obtain a uniform mean for all a. The mean scaled radial position is simply

1 N
q(t) = x '52< n(t )-

i—1

and equals 0.5 if we consider a uniform spread of tracer particles only in the positive

N

radial direction. We denote the radial variance by <r2 so that

°q(t) = J f Z J  I t  (q iM “  qW 2 '
i—1

a measure of the expansion or contraction of the cloud of particles.

Examples o f Peristaltic Dispersion

We calculate the particle paths of a slug of passive tracers as in §3.6.8 in a peristaltic 
flow for the duration of 4 periods. We determine the behaviour of the tracer particles 
in the peristaltic flow by calculating (i) the mean position of the tracer particles x(t),
(ii) the variance cr2(£), (iii) the instantaneous dispersion coefficient D(t)  and then (iv)
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the cycle dispersion coefficient K.  We then measure the radial mixing of the particles 
by (i) the mean radial position q{t) and (ii) the radial variance

We measure the particle dispersion quantities for (a) all the particle path cases seen 
in Figures 3-13 to 3-17 and (b) for varying normalised time mean volume flow rates 
Q/Qo with amplitudes of vibration a = 0 ,0 .1 ,... ,0.5. In case (b) we solve for (i) a 
purely pumping case Q/Qo = 0.5 (which involves particle paths cases D and E), (ii) a 
zero pressure gradient case Q/Qo =  1.5 and (iii) a copumping case Q/Qo =  1 (cases 
C and B). We also calculate the proportion of particles caught in trapping for all the 
cases.

P a r t  (a): All Cases: Our results displayed in Figure 3-18 (correspond to analysis 
of the particle paths Figures 3-13-3-17) show the mean axial particle position x moves 
linearly in the positive x  direction. Case A  corresponds to the faster flow rate and 
so tracer particles subsequently spread out the furthest. Consequently the particles 
exhibit an increasing variance cr which is more pronounced in cases where trapping is 
present (case D and C show smaller variance). Clearly the instantaneous dispersion 
coefficient D will be largest for the cases displaying trapping and high flow rates. 
We note that cases D and E display an oscillatory but overall increasing dispersion 
coefficient, a result of a momentary slow down in the expansion of the cloud of tracer 
particles. Hence the cycle dispersion coefficient is always increasing, and unfortunately 
we are unable to estimate the amount of dispersion.

The mean radial position of the particles in Figure 3-18(d), also display an oscil
latory profile, however in general the frequency is shown to increase as the flow rate 
decreases. We further observe in case B that centreline trapping implies more particles 
on average move toward the boundary when compared to case A, even though case A 
has more particles in the trapping region (60% compared to 37%). Both cases have 
the same amplitude of vibration, however, centreline trapping circulates more particles 
at the centreline unlike detached trapping influencing q. In Figure 3-18(f) we observe 
the difference between detached and centreline trapping on the radial variance, with 
fast particles below the detached trapping in case A inducing a postive variance, i.e. a 
radial spread of the particles. This is in contrast to the remaining cases where we tend 
to see a decrease in the initial variance as particles group closer towards the boundary.

P a r t  (b): T im e M ean Volume Flow R a te  Cases: For fixed time mean flow 
rates in the pumping and weak copumping cases we observe in figures 3-19-3-21 that (i) 
for high flow rates the mean axial position decreases as trapping increases, suggesting a 
drop in the mean velocity of particles as they sample the slower wave speed streamline 
(this is more pronounced as Q/Qo increases), (ii) as the amplitude of vibration increases 
particles move closer to the boundary observed by an increase in the mean radial 
position q and (iii) trapping is exhibited by fluctuations in the variance
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Figure 3-18: Measuring Dispersion and Radial Mixing from Particle Paths for all types 
of possible Peristaltic Flow Cases.

(c) Instantaneous Dispersion D(t)

All Casas

(d) Cycle Dispersion Coefficient K
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Figure 3-19: Measuring Dispersion and Radial Mixing from Particle Paths for Time 
Mean Flow Rate Q/QO = 0.5
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Figure 3-20: Measuring Dispersion and Radial Mixing from Particle Paths for Time 
Mean Flow Rate Q/QO =  1
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Figure 3-21: Measuring Dispersion and Radial Mixing from Particle Paths for Time 
Mean Flow Rate Q/QO =  1.5
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3.7 Summary

For viscous fluid flow of chyme in the intestine we simplified the Navier-Stokes equa
tion to Stokes slow flow equations relating pressure and velocity. Consequently using 
streamfunction-vorticity notation we derived the biharmonic equations for 2D axisym- 
metric flow. We prescribed a sinusoidal function to describe a standing wave and mod
elled the Biharmonic problem in the wave frame. Nondimensionalising we introduced 
the wave number e and through a perturbation expansion in this small parameter we 
solved the biharmonic equations for the semi-analytic peristaltic velocities. We showed 
the leading order solution breaks down as the amplitude of vibration a  increases as 
it induces wave curvature. For high flow rates we show the parabolic like peristaltic 
velocities tend to Poiseuille flow.

From the leading order solution of the peristaltic velocities we have shown there are 
two states of peristalsis, ‘pumping’ and ‘copumping’. When peristalsis acts as a pump 
the peristaltic wave induces a pressure rise, this is known as ‘pumping’. However, if 
there is a pressure drop, then peristalsis is aided by a driving pressure gradient, this is 
known as ‘copumping’. In these phases peristaltic motion exhibits two phenomena; (i) 
reflux, where fluid particles near the boundary undergo net retrograde motion after a 
period (this occurs only in pumping) and (ii) trapping, where fluid particles recirculate 
in the wave frame. We have further shown that the amount of trapping decreases 
as the flow rate increases. We elucidated the different flow phenomena using particle 
paths. From these figures it is clear that trapping is responsible for mixing of solute 
in the intestine. We studied the convective dispersion of the peristaltic flow in the 
absence of diffusion. We illustrated the behaviour of this oscillatory flow, namely 
centreline trapping, which induces large radial mixing. Hence peristaltic flow is very 
different from Poiseuille flow! We aim to apply the semi-analytic peristaltic velocities 
u =  (u(x, f, t), v(x, f, t)) to the 2D dispersion model

ct +  u.V c =  I)V 2 c,

with absorption on the boundary. In the next Chapter we consider the trivial case 
when a = 0, the 2D Poiseuille Dispersion Model.
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Chapter 4

D ispersion M odels in Cylindrical 
Flow w ith A pplication to  the  
Intestine

In this Chapter we look at the behaviour of the mean concentration of a solute in a 
cylinder where there is Poiseuille flow. We derive an equation of the form

Ct “I- UqCx — DeCxx KeC-i (4.0.1)

a ID convection dispersion absorption equation for the mean solute concentration c 
which relates the coefficients Ue,D e,K e to the overall flow field. The ID equation is 
obtained from asymptotic analysis of the full 2D Poiseuille dispersion model for the 
solute concentration which is governed by

Ct +  u{r)cx = D'Ve2, in Q, (4.0.2)

with passive absorption at the boundary modelled by

—Dn.Vc = K ac on T (4.0.3)

The diffusive flux boundary condition is significant, it is a reasonable approximation to 
modelling the process of absorption in the intestine. We wish to understand how the 
effective ID equation (4.0.1) differs from the standard ID equation for plug flow of a 
solute in a cylinder by Ho et al. [28],

ct +  ucx = Dcxx -  Kc. (4.0.4)

In doing so we, (i) build up the standard ID model as described by (4.0.4), (ii) motivate
the 2D Poiseuille dispersion equation (4.0.2) as a better model of solute flow in a
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cylinder and (iii) rework the asymptotic analysis that lead to the ID effective equation 
(4.0.1) for the impermeable case, K a = 0, and the permeable case K a ^  0.

We start with the model by Ho et al. (4.0.4) which assumes that a) the solute is 
transported by plug flow, b) there are no radial inhomogeneities, and c) absorption 
occurs everywhere in the axisymmetric tube which represents the intestine. We mo
tivate the full 2D Poiseuille flow dispersion model to take into account factors that 
induce radial inhomogeneities that are not captured by the ID equation. Specifically 
we more realistically model a) the viscous no-slip condition of the fluid flow and b) 
the absorption taking place at the epithelial boundary (4.0.3). This 2D model was the 
basis of the paper by Stoll et al. entitled ‘A Theory of Molecular Absorption from the 
Small Intestine’, which is currently the most advance intestinal dispersion model, and 
upon which this thesis is based. The Poiseuille flow dispersion model was applied to 
the passage of a therapeutic solute in the intestine where absorption took place on the 
epithelial boundary.

Stoll et al. applied a macrotransport approach [73] to reduce the full 2D model to 
(4.0.1). This asymptotic analysis is valid only after a significant amount of time has 
passed t> f * ,  such that all radial positions have been sampled by the solute particles 
and then the mean solute profile satisfies (4.0.1). There are two key features in the 
paper by Stoll et al., (i) it introduces a fictitious initial condition to make the asymptotic 
equation valid for all time and (ii) models the effects of peristaltic flow as enhanced 
diffusion by a formula. In applying the model by Stoll et al. we obtained erroneous 
results and in an effort to understand the model fully we rework the asymptotic analysis 
that lead to (4.0.1) for (i) the case of an impermeable wall and (ii) the permeable case. 
For an impermeable wall, it was Taylor [74] who first averaged solute concentration 
behaviour to

ĉt 4“ Uecx — Decxx, (4.0.5)

where Ue is the mean Poiseuille velocity and De is the dispersion coefficient comprised 
from the molecular diffusion coefficient and a convective dispersion term arising from 
molecules diffusing over different speed streamlines from nonuniform flow. Using an 
alternative nondimensionalisation we derive the 2D equation

-1- ■£ (l f  ) cx — ~  cxx Cff 4" ~Cf ̂  ,

and introduce two important parameters: the radial Peclet number Per, and the tube 
length ratio I. We formulate the dimensionless asymptotic equation as a function of 
these parameters. Consequently, we compare the numerical solutions for both the full 
2D model and its equivalent ID asymptotic model, highlighting the dependence of 
applying the asymptotic analysis on the parameter tPer which must be small.

We consider the 2D Poiseuille dispersion model with absorption (4.0.2), (4.0.3). The
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macrotransport approach applied by Stoll et al. is very complex and is generalised to 
a range of dispersive phenomena. Hence we rework the analysis by Lungu and Moffatt 
[52] and show that we can derive the same effective coefficients, Uei De as in Stoll et 
al. [73]. However our analysis shows that the effective absorption is stated incorrectly 
yielding unrealistic absorption. We then state the peristalsis formula in its full form 
and show it is incorrectly applied as it is derived from a perturbation expansion in Per 
but applied to solute motion with high Per > > 1 . This formula is vital to work of Stoll 
and his co-authors as it yields enhanced diffusion that decreases the Peclet number so 
that Stoll et al. could then apply a macrotransport approach for solute motion in the 
intestine. We further show by equating the analysis of Stoll et al. with that of Lungu 
et al., that the fictitious initial condition, used to compensate c for small time t < t*, 
inappropriately assumes solute motion is effectively represented by

ct = ~p “I" ’ (4.0.6)

and is derived from the analytical solution of (4.0.6). We highlight its ineffectiveness 
with a full 2D numerical solution for four therapeutics used in [73] and solve the equiv
alent ID asymptotic equation. Using the 2D solution we approximate the movement 
of its cross sectional average by a ID dispersion model using an algorithm to find the 
effective velocity, the dispersion coefficient and the absorption coefficient and then com
pare these numerical results to the analytical results found by Stoll et al. We observe a 
relatively large difference in fraction of mass absorbed when we compare the ID model 
by Stoll et al. with its equivalent 2D model.

4.1 Introduction to ID  Dispersion M odels

In the background section we discussed the CAT and MMBA model. They were a 
system of first order odes y' = f ( t , y ), that described plug flow of a therapeutic so
lute through a sequence of compartments. However, these models fail to take into 
account physiological effects, but mainly they only give in a discrete sense the spatial 
distribution of the solute concentration.

In this section we discuss the formulation of the simple ID dispersion equation 
(4.0.4) by Ho et al. [28]. This is a pde which incorporates spatial dependency on the 
concentration profile of the drug. We build up the model by introducing stepwise: 1) 
convection, 2) absorption and 3) diffusion, into the governing equation. We nondimen- 
sionalise the equation as the model becomes more complicated and introduce important 
dimensionless variables that elucidate the dominating factors in flow and absorption.
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4 .1 .1  M od ellin g  So lu te  T ransport

We describe the concentration c =  c(x, t ) of a solute in a ID domain at any point in 
space, x , and time, t, by a first order conservation law, c* +  Jx = 0 for a flux J . In 
the presence of a constant flow u = constant, the flux term satisfies J  = uc and the 
governing equation for solute motion is given by

ct + ucx = 0, (4.1.1)

known as the convection equation equation. This models the bulk flow of a substance 
flowing with constant speed u in the positive ^-direction. We have assumed a ID 
domain so that any variation in the quantity is restricted to one spatial dimension. We 
assume an initial concentration in the domain is given by c(x, 0) =  co(x). The solution 
of (4.1.1) is a right travelling wave, c(x,t) = c q {x  — ut). As time increases the initial 
profile of the wave co(x) moves with undistorted shape rightwards with speed u.

4 .1 .2  M od ellin g  A b sorp tion

A solute convecting through a tube may undergo decay (e.g. enzymatic or chemical) or 
become absorbed, and we can model the solute concentration by the convection-reaction 
equation

ct +  ucx = —Kc.

The term —Kc  is the reaction term which represents either absorption and or decay of 
the solute with rate K  . As in the previous section, let us consider the initial profile 
c q ( x ) on a domain of length L x , then we nondimensionalise the variables as follows

and subsequently the dimensionless convection reaction equation takes the form

Ct + cx = - D ac. (4.1.2)

We introduce the axial Damkohler number, D a = K L x/u , which describes the rate of 
drug removal relative to the rate of convection out of the domain [61]. It is an impor
tant ratio in determining whether convection or reaction dominates the concentration 
distribution over the length and time scales of interest. We solve (4.1.2) using the 
method of characteristics £ = x — t , r  = t so that (4.1.2) in the wave frame is given by 
the exponential decay ode, cr =  — Dac, with solution c(£,r) =  co(£)e~DaT. Hence the 
fixed frame concentration is given by

c(x, t) = c q ( x  — t)e~^a*, (4.1.3)
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a right travelling exponentially decaying wave. The effect of the Damkohler number is 
such, when Da «  1 then convection dominates absorption and the absorption process 
is known as convection-rate limited. Conversely, if Da »  1 the process is known as 
reaction rate limited.

Our main aim is in determining the amount of substance absorbed M A{t). In doing 
so we first denote the amount of concentration present in the domain by M (t), and the 
initial amount present by M (0) =  Mo. Mass present in the tube is defined by

c(x,0)dx = f  co(x,0)dx. 
jo

By integrating the convection decay equation with respect to time and distance, we 
obtain the mass conservation equation:

M{t) = Moe~^a* —e~1~*a* [  e®aSc(l,s)ds + e~®a* f  e ^aSc(0, s)ds . (4.1.4)
s  -----' J 0 J o

absorption '------------- *------------- ' '------------- -̂------------ '
outflow inflow

By the above formula we note that solute is lost not only through absorption across 
the whole domain but also by convection out of the end of the tube. Unless a source is 
present at the opening of the tube the solute inflow is zero. From (4.1.2) concentration 
is lost at a rate of —Dac, hence the blood stream gains concentration at a rate +Dac 
so that blood concentration satisfies the time dependent ode 6 * =  +Dac. We integrate 
with respect to distance to determine the mass absorption equation

(Ma )i = DaM(t).

Hence, by applying the fundamental theorem of calculus in time, the formula for mass 
absorbed is given by

M A{i) = M a {0) +  Da I '  M (i)d i, (4.1.5)
Jo

which tells us that the fraction dose absorbed satisfies FA(t) = M A(t)/M q.

4.1 .3  M od ellin g  D iffusion

Diffusion occurs as a result of randomly moving solute molecules colliding causing solute 
movement from regions of high concentration to low concentration. The steeper the 
concentration gradient the greater the flux. Hence the diffusive flux depends on the 
spatial derivative and by Fick’s law satisfies J D = —Dcx, for diffusion coefficient D. 
Consider a fluid convecting a dissolved chemical by plug flow with velocity u. If the 
solute is diffusing according to Fick’s law, then the total flux is given by

J  = uc — Dcx.

/Jo
M(t) =  / c(x,t)dx , Mq =
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Additionaly if the chemical is being absorbed then the chemical concentration is gov
erned by the convection diffusion reaction equation (4.0.4). We nondimensionalise as 
in the previous subsection to obtain

C't + Cx = ~ ~ C x x  ~ Dac, (4.1.6)
s

where we introduce Pe = the dimensionless axial Peclet number [10] which
measures the the relative importance of axial convection compared to diffusion. For 
Pe «  1, the movement of the solute is dominated by diffusion and conversely for 
Pe »  1, convection dominates solute motion. For a sufficiently slowly diffusing so
lute, the diffusion term Cx± can be ignored and the solution approximately satisfies 
the convection reaction equation. On a bounded domain an analytical solution may 
be found in terms of an infinite series of sinusoidal functions or we can use Laplace 
transforms. It is a far more complicated solution than that found for the convection 
reaction problem (4.1.3).

For the main equation (4.1.6) to be well posed we must apply appropriate initial and 
boundary conditions that represent the physical problem mathematically to obtain a 
unique solution. We consider two models, either (i) a constant amount of solute flowing 
into the channel c(0,t) =  Co, known as a Dirichlet boundary condition, and or (ii) we 
place an initial amount of solute in the channel c(x, 0) =  c q { x ) .  The amount of solute 
absorbed is then calculated in a similar manner as before (4.1.5). We simply assume 
further that convection dominates diffusion at the boundaries so that a zero Neumann 
boundary condition, c± = 0, can be imposed at the boundaries. Hence, mass present 
at any time, M (t), is still prescribed by (4.1.4), since the integral of the diffusion term 
Cx± with respect to x is zero [73].

4.2 M odelling Passive Absorption in the Intestine

In the simple ID model, absorption was represented in the governing equation (4.0.4) by 
the first order reaction term —Kc. This term represented a combination of absorption 
and degradation throughout the tube. However, for absorption of solute purely at 
the boundary we can extend the model to 2D and introduce an appropriate boundary 
condition. For this thesis we are concerned with modelling only passive absorption that 
is we assume that particles permeate through the boundary by diffusion. Hence there 
is a diffusive flux at the boundary, such that

J D = —Dn.'Vc.

This flux term depends on two factors, namely (i) the permeability, K a, of the tube’s 
membrane wall and (ii) the amount of solute concentration at the membrane. Conse
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quently we obtain the absorption equation

—D n.V c = K ac,

This equation is a Robin boundary condition (seen in [73],[10]). If the membrane is 
impermeable, K a = 0 and there is a zero diffusive flux, so that n.V c =  0, a Neumann 
boundary condition. Alternatively, if there is no diffusion then solute concentration at 
the boundary is zero and no mass is absorbed. We consider absorption in a tube of 
fixed radius, so that (4.0.3) reduces to

—Dcr = K ac.

Nondimensionalising with respect to the radius of the tube R q we obtain

Cf = - D arc. (4.2.1)

We introduce the dimensionless parameter Dar =  : the radial Damkohler number
which elucidates the ratio between the wall permeability and the rate of diffusion 
indicating whether the system is diffusion limited or absorption limited respectively.

Now equation (4.2.1) is the most suitable boundary condition provided solute ab
sorption is not limited by the amount of concentration outside the tube’s wall. If this 
were the case the boundary condition would then be given by

=  _DarC
<T +  c ’ v ’

the Michaelis-Menten boundary condition. In (4.2.2) the rate at which the amount of 
solute can be absorbed is bounded, where Dar is now the maximum absorption rate and 
<T is the concentration at which the rate of absorption is half its maximum. However, in 
the intestine, it is known that blood flow is sufficiently fast that absorbed therapeutic 
does not stay long enough at the membrane to impede further absorption [57].

In applying equation (4.2.1) to the intestine we have assumed the wall structure 
to be smooth, that is the villi are sufficiently small so that (i) they do not affect the 
fluid flow and (ii) they can be modelled through the permeability K a by amplifying the 
permeability of the epithelial wall, K w, by the increase in surface area Sa (a product 
of the villi and the microvilli surface area), such that K a = K wSa•

4.3 Introduction to 2D Dispersion M odels

In this section we discuss further motivation for the 2D extension of the ID model 
to factor radial inhomogeneities into a therapeutic model. We build up a model to (i) 
include absorption only at the boundary rather than everywhere as discussed in §4.2 (ii)
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extend diffusion to occur radially not just axially, and (iii) replace plug flow with more 
realistic Poiseuille flow which takes into account viscous effects at the boundary. All 
three modification will induce radial inhomoegenities in a solute concentration profile.

We nondimensionalise the equations and introduce alternative dimensionless Peclet 
number Per, that now depends on the radial length scale of the tube. We introduce 
a simple example, where the solution is known, to understand the importance of the 
dimensionless parameters.

4.3.1 Introducing R adial D iffusion

Absorption on the boundary is not the only source of radial variation in concentration 
but also diffusion. We have so far considered axial diffusion but now we introduce into 
our 2D model radial diffusion. This is the process that governs solute motion across 
the membrane used in deriving the boundary condition. It is also plays an important 
role in the solute profile of very small tubes, such as chromatography [74]. We define 
the 2D diffusive flux by J D =  -P n .V c  and the 2D convection-diffusion model by

ct + u.Vc =  V. (D V c). (4.3.1)

For axial plug flow of a solute with concentration c =  c(x,r), diffusing with constant 
coefficient, D, we reduce equation (4.3.1) to

ct + ucx = Z)V2c,

for 2D cylindrical coordinate Laplacian (3.2.2). We present the model in Figure 4-1.

Figure 4-1: A 2D Plug Flow Dispersion Model in a Cylindrical Tube

As opposed to the ID model (4.1.6), where the axial length Lx is the only appropriate 
length scale to nondimensionalise the model, the 2D model offers an alternate choice 
Ro, the radius of the tube. We are interested in particle residence times and so the
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time scale of interest to us is the length of time it takes solute particles to travel to the 
boundary. Hence we nondimensionalise the time scale with respect to the radius of the 
tube. In doing so we introduce an important dimensionless parameter, the ratio of the 
radius and length of the tube i  = Ro/Lx, which satisfies t  «  1 for a narrow tube and 
this is observed throughout the intestine (using anatomical data from [73]). Using the 
following nondimensionalised variables

x r tu
i = L ?f  =

we derive the dimensionless 2D therapeutic equation

c t "I" ^c x  =  ~p~ ( f i c x x  4“ c f f  “I" f c f )  i l n  ^  ^  2 )

Cf =  - Darc, on T.

We introduce the dimensionless radial Peclet Per — • Hence, for a sufficiently
long tube £2 << 1, we see it is quite reasonable to ignore axial diffusion. In general 
solving this system is possible only be means of a numerical scheme, analytical solutions 
are fairly hard to come by in higher dimensions. However, applying a few simple 
assumptions we can obtain an analytical solution for (4.3.2).

4.3.2 A Sim ple Solvable 2D Problem

Let us consider a solute convecting and diffusing in a tube satisfying the 2D model
(4.3.2). In this example we consider the case of a maintained source of solute at the 
inlet of the tube. It is possible to find an analytical solution if we impose a Bessel 
function as the Dirichlet boundary condition source term. By considering a specific 
case of (4.3.2), we can understand the effects of diffusion and absorption on the mean 
solute concentration profile.

C£ +  £C x  — p er Cxx 4“ C ff  +  f C f )c(0, r, t) =  J o 0 n f)

Figure 4-2: A Solvable 2D Plug Flow Dispersion Model in a Cylindrical Tube
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For the purposes of understanding this model we neglect the contribution from axial 
diffusion in this section to obtain a simpler analytical solution. We impose a radially 
varying Dirichlet boundary condition c(0, r,£) =  Jo(/3nOco(0) where Jo is a Bessel 
function of order zero and c q ( x ) the initial axial concentration profile. An analytical 
solution may be found through a separation of variables and assuming the solution 
takes form c(x,r,t) = Jo((3nf)c(x,i). Substituting in this form of the solution into
(4.3.2) (without axial diffusion) yields

7oc( + ^ o c i  =  ^ - ( ^  +  i ^ ) c ,  (4.3.3)

The right hand side of (4.3.3) satisfies the zeroth order Bessel equation, and the pde 
reduces to a simple ID convection reaction equation seen in (4.1.2):

* + ®* = _ 0 b ) *
An analytical solution for this equation for initial profile c q ( x ) is given by (4.1.3), hence 
the concentration c satisfies

c(x,r,t)  =  c0(x -  £t)J0(/3nf)e per .

If the initial axial profile is zero everywhere except at the inlet co (x = 0) =  1 the solute 
concentration profile in 2D is given by

c(x,r,t) = Jo(/3nf)e~7p̂ xH (-£i). (4.3.4)

The eigenvalues /3n are found by substituting the solution (4.3.4) into the absorption 
boundary condition so that

Cf =  finJi{/3n)c =  DarJo{/3n)c = Darc,

and consequently they satisfy the transcendental equation

PnJl(Pn) ~  DarJo(/3n).

This equation is seen also in Stoll et al. [73] and Lungu et al. [52] and comes out 
in the averaging of the concentration in the Poiseuille dispersion model. By [73] and 
[52] we are only interested in the zeroth eigenvalue /3o which ranges from 0 to «  2.4 as 
the Damkohler number varies from a impermeable membrane Dar = 0 to an infinitely 
permeable boundary Dar —> oo (see Appendix Figure D-2(c)). Hence, from the solu
tion (4.3.4) as absorption increases the membrane increasingly removes solute at the 
boundary. From the exponential term we learn that a decreasing Per number decreases
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the penetration of the source into the tube, increasing the amount of solute absorbed. 
This corresponds to an increase in radial diffusion promoting absorption. Similarly, 
the length ratio t  enhances absorption, the smaller the width of the tube becomes the 
greater the effect of radial diffusion. Consequently penetration of solute into the tube 
is limited by the dimensionless parameters, t  and Per, such that solute concentration 
drops to 1 /e  after a distance x «  tPer-

Though we wish to consider a full 2D model to account for important radial varia
tions, our main interest is the radial cross sectional average of the concentration c(x, t). 
This is defined as the mean solute concentration, which in dimensional form is given by

I f f  1 f R° f 2nc ( x , t ) = < c > = —  / / cix.r, t)dA = —5— ~----------  / / c(x,r,t)rdrd6.
A a J j K f f °  f t "  rdrdO Jo Jo

The nondimensional area average concentration for solution (4.3.4) is then

c(x,t) = 2  f  c(x , f , t ) f df  = 2c(x,t) f  J q (/̂ o r)r dr =  c(x, t),
J o  J o  P o

and decreases as a function of absorption.

4.4 Averaging the Concentration Behaviour for Poiseuille  
Flow

The 2D plug flow model (4-1) is quite unrealistic. In general fluid moves from regions 
of high pressure to low pressure but in plug flow there is no pressure difference from 
the ends of the tube. Secondly the assumption of plug flow neglects the realistic no
slip condition that comes from viscous forces acting on fluid particles at the boundary. 
Hence incorporating Poiseuille flow instead of plug flow into (4.3.1) is a more physical 
approach to the way fluid flows. A more realistic pressure drop Ap < 0 drives the 
solute with radially varying flow u(f) > 0, in the positive x direction. The dimensional 
Poiseuille therapeutic dispersion model is given by

ct +  u(r)cx = D V 2c. (4-4.1)

We note a simple analytical solution is not possible even if we prescribe a Dirichlet 
boundary condition and we must solve (4.4.1) numerically.

In this section we consider the paper by Stoll et al. [73] who applied the ID 
asymptotic equation for the mean solute concentration to model solute transport and 
absorption in the intestine. The full 2D Poiseuille dispersion model is quite complex to 
solve numerically and is high in computer cost (cpu time and memory). Hence, a ID 
equation is more favourable to solve. Stoll et al. believed that conditions for therapeutic 
transport in the intestine were sufficient to warrant application of a macrotransport
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approach1 to obtain an easy numerically soluble ID equation. However, the asymptotic 
form is applicable only in the long time, that is only after t »  Per. In the short 
time t < Per, the ID equation (4.4.9) fails to provide an accurate description of the 
true solute mean’s behaviour nor of the amount of solute absorbed. This is where 
Brenner et al. [10] derived a fictitious initial condition to correct the error in the mean 
concentration for t «  Per.

It was hoped that a greater understanding of absorption in the intestine can come 
from a model that takes into account increased axial diffusion from convective disper
sion, unlike a model using plug flow. This understanding would then aid in the design 
of therapeutic delivery systems. The model by Stoll et al. was designed in the hope 
that it would be able to factor in the following: molecular properties of the therapeutic 
and the intestinal anatomy, histology, physiology, and enzymatic activity. The model 
would then be able to predict the

• mean concentration of therapeutic in the lumen as a function of time and distance

• instantaneous total therapeutic mass; in the lumen, convected out of the ileum, 
absorbed into the systemic circulation, degraded and the systemic concentration 
as a function of time following oral administration.

Such detail could then elucidate the amount of drug absorbed and the amount of drug 
lost in the intestine. The model introduced a bolus of instantaneously dissolvable 
therapeutic into the duodenum, and applied anatomical data to determine the roles 
of degradation and permeability on the drug plasma concentration. This data was 
then compared to experimental therapeutic plasma concentrations following similar 
intraduodenal injection. However, in reproducing the results in Stoll et al. [73] we 
obtained erroneous results. Hence we needed to rework their analysis to understand 
the problem.

We consider two cases of the Poiseuille dispersion model (4.0.2), (4.2.1) when the 
boundary is (i) impermeable, Dar = 0 and (ii) permeable. We break down this section 
into the following subsections: in §4.4.1 we discuss the results of Taylor’s asymptotic 
analysis for the impermeable case in dimensionless form. We describe the effects of the 
nondimesional parameters t  and Per on the effective coefficients Ue, De and the amount 
of time or distance d = lPer until the asymptotic equation (4.0.5) is valid. Then in 
§4.4.2 we determine the asymptotic conditions for the four therapeutics used in Stoll 
et al. [73] and show that the asymptotic conditions in the intestine are not met for the 
impermeable case.

We then consider the permeable case as in Stoll et al. [73]. Application of asymp
totic analysis is no longer as straightforward the impermeable membrane case as the 
conservation of mass no longer applies. It was Sankarasubramanian et al. [4] who were

1An asymptotic method based on moments
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the first to apply analysis to the problem to reduce the 2D model to a ID equation 
for the mean concentration. The asymptotic analysis was for unsteady flow u(r,t). 
However, we focus on the steady Poiseuille flow case that was solved by Lungu and 
Moffatt [52]. A quite different approach to this problem was taken by Brenner et al. 
[1 0 ], who derived a method known as a ‘macrotransport approach’ to solve a variety of 
dispersive phenomena problems. Based on this work Stoll et al. applied the ID asymp
totic equation for therapeutic motion in the intestine [73]. Stoll et al. understood 
the lack of models taking into account complex transport phenomena. They modelled 
convective dispersion that comes from Poiseuille flow and stated it is responsible for 
greater mixing of solute particles in the small intestine.

In §4.4.3 we rework the analysis of Lungu et al. [52] and derive the same ID 
asymptotic equation derived by Stoll. We highlight an important error in the absorption 
term seen in all macrotransport work by [6 ], [10], [73]. Other than this we show that 
Stoll et al. and Moffatt et al. derived equivalent effective absorption coefficient K e and 
effective convection coefficient Ue. However, the effective dispersion term, De, in Lungu 
et al. [52] is in a form quite dissimilar from that by Stoll et al. We manipulate the 
term in [52] by introducing an asymptotic term used in the macrotransport approach 
[10], to derive the same De found in [73].

We show in §4.4.4 the failings of the fictitious initial condition which is used to 
apply the long time asymptotic equation for all time. We then discuss in §4.4.5 the 
application of the enhanced diffusion term meant to describe the effects of peristaltic 
flow, and how its use contradicts its derivation.

4 .4 .1  T aylor’s So lu te  D isp ersion  for an Im perm eab le M em brane

Consider the case of an impermeable boundary, Dar = 0 where there is no solute 
flux at the membrane Cf = 0. Dispersion of the solute arises in part from molecular 
diffusion but also now from radially varying non-uniform axial convection, known as 
convective dispersion. This convective dispersion is a property of Poiseuille flow, a 
spatially inhomogeneous velocity field, and comes from Brownian motion of solute 
molecules moving from one streamline to the next sampling all axial velocities.

Taylor [74] investigated the dependence of the mean solute concentration c on 
Poiseuille flow and diffusion for asymptotically long times. This long time behaviour 
was based on the following assumptions on the relative sizes of solute convection and 
molecular diffusion: 1 ) axial convection dominates axial diffusion; the time for changes 
in concentration to occur from axial diffusion when compared to the time axial convec
tion occurs is sufficiently small that axial diffusion can be ignored, 2 ) radial diffusion 
dominates axial convection; the radial variations in solute concentration disappear be
fore the onset of the effects of axial convection.

We nondimensionalise (4.4.1) with the same dimensionless quantities used in the
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plug flow case so that concentration in the tube satisfies:

q  + £(1 -  f 2)ci =  - J -  [ i 2Cx± +  cf f +  \ c f )  . (4.4.2)
Per \  r J

For a sufficiently narrow tube t  «  1, the solute concentration distribution is domi
nated by radial diffusion, seen by the leading order term in then by axial convection
0{l)  and finally axial diffusion 0(£2). Hence the dimensionless narrow tube model 
yields terms that satisfy the assumptions of solute motion laid out by Taylor [74]. By 
using this dimensionless form (4.4.2) the asymptotic assumption that for time t > flo ID  
the mean solute concentration satisfies a ID equation becomes clearer.

Since £ < <  1 we seek a perturbation expansion in £ for the concentration so that

c(x, f , t )  = co(x, f , t)  +  £ci(x, f , t )  + £2C2 (x, f , t )  +  0 (£3).

The leading order equation corresponds to radial diffusion in a disc and by Fourier 
analysis and applying separation of variables the analytical solution satisfies

oo

co(x, f, t) =  ^ a „  exp ( - P lP ~ lt) J0 (pnr ) , (4.4.3)
71=0

where (3n are the eigenvalues satisfying the no flux boundary condition J\ ((3nr) = 0. 
Taylor stated that for a radially uniform concentration to occur the radial variations 
in the initial concentration must have died down to 1 /e.

The smallest eigenvalue fio corresponds to the largest exponential term in (4.4.3). 
Hence radial variation decay occurs after some time r  such that —0^P~1t =  — 1 by
(4.4.3), which upon rearranging satisfies

t >  Per > Per/Po = T,

since fio > 1- This condition is valid for an infinitely long tube where the solute may 
have convected sufficiently far down the tube before radial variations die down.

A second condition that has been imposed in [10] is that radial diffusion must be 
much larger than convection so that 1 /P er »  £ (see (4.4.2)) or £Per < < 1 . We have 
seen this before in the simple solvable example §4.3.2 where a narrow tube £ and a 
fast diffusing solute Per, promotes solute decay. Hence, Taylor reduced the 2D model 
to a ID equation for the cross-sectional average concentration [74], c(x,t), and we can 
derive it in dimensionless form such that

q  +  Uecx =  (Dm +  D c) Cxxi (4.4.4)' ^ '
D e
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with effective coefficients

In (4.4.4) the dimensionless axial dispersion is comprised of (i) the nondimensional
axial molecular diffusion Dm and (ii) the dimensionless convective dispersion term D° 
which is given in dimensional variables by

and we note that dispersion from convective forces is inversely dependent on the molec
ular diffusion. This is from molecules spending shorter times sampling any one fluid

of solute due to Poiseuille flow.
We now investigate the importance of the term, tPer, on applying Taylor diffu

sion asymptotics. We solve numerically both the full 2D model and its corresponding 
asymptotic ID equation (see Numerics Chapter 6 ) for the solute mean c for varying Per 
and £. We do this in the case of a slug of instantaneously dissolvable therapeutic being 
placed at the entrance of the tube. We solve up until time t = 0.5/^, that is, the time it 
takes for the mean solute centroid (which moves at speed Ue) to approximately travel 
a quarter the length of the tube. The results for the mean axe a function of d, where 
d — £Per and are shown in Figure 4-3. We label the 2D and ID numerical solution in 
blue and red respectively.

As the radial Peclet number decreases solute motion is driven away from convection 
to diffusion. As a result the problem becomes radially inhomogeneous sooner allowing 
for a better ID fit to the 2D model before a significant amount of solute has left the 
tube. Only in the final case (f) is £Per «  1 satisfied and is shown to be a better fit 
than the other cases. Given that the mean solute speed is £/2, the other cases will 
show a better ID fit but only after t »  Per, i.e. after the mean solute centroid has 
travelled a distance £Perl 2 which lies outside the unit tube. We conclude that Taylor’s 
ID asymptotic equation (4.0.5) is a good approximation only if £Per <0.1.

4 .4 .2  A p p ly in g  T aylor’s ID  A veraged  E quation  to  th e  In testin e  In  
th e  A b sen ce o f  A b sorp tion

The Gastro-Intestinal tract is very long and quite narrow and it is reasonable to pos
tulate that Taylor diffusion could be applied to solute motion in the intestine. We in
vestigate the suitability of applying Taylor asymptotic analysis. We test the conditions 
in its application to four diffusing therapeutics in the intestine using the anatomical 
parameters for three mammals described in Stoll et al. [73].

D c = ——1 2 uR q
192 \ L X)  D ’

streamline when there is large diffusion resulting in a decrease in the axial dispersion

80



CHAPTER 4. DISPERSION MODELS IN CYLINDRICAL FLOW WITH APPLICATION TO THE
INTESTINE 81

C

0 2

0.1

0
0.2 0.4 0.5 0.6 0.7 0.8 09

0.25

0 2

0.15

0.05

0
0.1 0.3 0.4 0.6 0.6 0.8 0.9

(a) Asymptotic Condition d — lP er =  1000 (b) Asymptotic Condition d — iP er =  100

_ 0*[ c§

0.15 f- 

° '1 | 

0.06 -

xh«t

X

(c) Asymptotic Condition d =  tP er =  1 0

0.1 0-2 0.3 0.4 0^  0.6 0.7 0.8 09

X

(d) Asymptotic Condition d =  lP er =  1

X

(e) Asymptotic Condition d=  tPer = 0.1

0.6 0.7 0.8 0.9

X

(f) Asymptotic Condition d =  iP eT =  0.01

Figure 4-3: A Comparison of the Numerical Solution of the Mean Solute Concentration 
from the full 2D Poiseuille Dispersion Model (Blue) with the Numerical Solution of the 
Mean Solute Concentration from the ID Taylor Dispersion equation (Red).
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Therapeutic Parameters Human Prim ate Rat
Length of Small Intestine (cm) 285 285 1 0 0

Mean Time Avg Lumen Radius (cm) 1 .8 0 . 8 0.375
Mean Axial Velocity (cm/s) 1.7e-2 1.7e-2 8.0e-3

Amplitude Ratio t 6.32e-3 2.81e-3 3.75e-3
M odel Parameters

Therapeutic Diffusion D m (cm2 /s) P er £Per P er ^Per P er £P er
Ibuprofen 2.5e-5 2.45e3 1.55el 1.09e3 3.05e0 2.40e2 6.74e-l
GHRP-1 4.4e-6 1.39e4 8.78el 6.18e3 1.74el 1.36e3 3.83e0
Calcitonin 2.7e-6 2.27e4 1.43e2 1.01e4 2.83el 2.22e3 6.24e0
Insulin 2 .2 e- 6 2.78e4 1.76e2 1.24e4 3.47el 2.73e3 7.66e0

Table 4.1: A Table of Anatomical and Therapeutic Parameters

In Table 4.1 we observe the amplitude ratios in the intestine of the three mammals 
are all approximately of the order O(10~3). Hence for Peclet numbers between O(103) 
and O(104), we determine the asymptotic distance condition d =  £Per for humans 
is greater than one. Across the species d > 1 for most of the therapeutics. Hence 
anatomical conditions do not warrant applying asymptotic analysis. For conditions 
to improve for the ID equation to be a better approximation of the 2D model in the 
intestine, the membrane Peclet number must decrease, either by (i) a decrease in fluid 
velocity in the intestine (e.g. increased viscosity), or (ii) a faster diffusing therapeutic.

4 .4 .3  S o lu te  D isp ersion  for a P erm eab le  M em brane

We now derive the dispersion equation by Stoll et al. using Lungu and Moffatt’s 
analysis [52] using alternative scaling. In the case by Lungu et al., the Poiseuille 
dispersion model was for an infinitely long tube and as such had no characteristic axial 
length scale. Hence they used an alternative dimensionless form to ours seen in (4.4.2). 
Their analysis still applies for a finite length tube, however, as seen in (4.4.2) it is not 
always possible that the mean solute concentration achieves asymptotic form before 
solute exits the cylinder d > 1 .

Consider the solute concentration c(x, f , t )  satisfying (4.4.2), to be a Fourier trans
form of some function c{k, f, t) whereby

/o°
c(/c, r, t)elkxdh.

-oo

Then we can rewrite equation (4.4.2) in terms of the fourier function and transforming 
all the partial derivatives in x , into multiplication operations in the transform domain
k. Let u(f)  =  1 — f 2, then the pde can then be written as

c-i +  (iik)u(r)c = P g ^ V 2 — £2k2)c, in Q,
| f  +  Darc = 0, on T,
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for purely radial gradient operator V =  dff + (l /r)df .  It was assumed that through 
separation of variables the general solution has the form

c = £ A lFn( k , e , f ) e - ^ k’e>1,
n

of a sum of exponentially decaying Fourier waves. They then satisfy the time indepen
dent eigenfunction problem in space

- p F  +  (ik£)uF =  P - 1 (V2 -  f i k 2)F, in ( I ,  4
Ff +  DarF  = 0 ,  on r ,

for eigenvalues pn and corresponding eigenfunction Fn. Multiplying (4.4.5) by F  and 
integrating by parts implies the problem satisfies:

{ p - P ~ l t 2k2) [  |.F|2dfi = p- 1 I \VF\2U + p - lDar [  \F\2dT +ike  [  u\F\2dQ.
J n  J n  J  r J n

(4.4.6)
Separating (4.4.6) into real and imaginary parts one observes that the real parts of the 
eigenvalues pn are greater than k2 and consequently can be rearranged such that

k2 < Re(po) < Re(pi) < R e fa )  < . . .

With any eigenvalue problem the general solution is given by an infinite sum of the
solutions for each n, but for suitably large time t, and Re(po) < Re(p\), the general
solution for the Fourier solution c and the solute concentration c is dominated by the 
zeroth eigenvalue solution for sufficiently large t ,

/oo
A0F0(k,e ,r)e-p°(ke)teikxdk (4.4.7)

-oo

For a narrow tube, if kl <£. 1, a perturbation expansion in ik t  can be found for po such 
that

Po = Poo +  (ik£)poi +  {iki)2po2 +  •. • (4.4.8)

Hence, we can substitute (4.4.8) into (4.4.7) such that

/oo .
A 0F0e-(poo+iik£)poi+{ike) ^ - r e ^ d k

-oo

/oo
A 0 F 0 e - poot (1 +  (ikl)palt + 0 (k 2e2t2)) e i k x d k

-oo
«  Co+o(l)

By a similar method we can show
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dc _  d 
dt dt J_

/ oo 

-oo

dc _  dco 
dx dx ^

It follows from differentiating the asymptotic form (4.4.7) with respect to time that

I POO POO

,  /  A0F0e-poteikxdk = / - p 0A0F0e -poieikxdk
t  J  — oo J  —OO

-{poo +  (^fc)Poi +  (itk)2po2 +  . . .  ).4oF0 e-po°* (l +  (ik£)poit +  0 (k 2£2t2)) elkxdh

/OO POO

A0F0e-paoteikld k - p 0le /  (ik)A0F0e -pooieikxdk
-OO J  —OO

/OO
(ik)2A0F0e -pooteikxdk + o(l)

-OO

Hence, the ID asymptotic equation governing the solute concentration is given by

§  =  -Pooco - p o i l ^  - p02̂ 2f |  -  0 ( e 3), (4.4.9)

a ID convection diffusion reaction equation (from hereon we drop the subscript 0).
The coefficients of the pde represent an effective absorption K e = poo, an effective 
convection Ue — po\£ and an effective diffusion De =  po2 ^2- The expansion coefficients 
of po are found by substituting the power series ofpo into (4.4.5) under the assumption 
that Fo can also be expressed by a similar perturbation expansion,

Fq = Foo + (ikl)FQ\ +  {ikt)2 Fq2 +  • • •

Hence comparing powers of ik£, the coefficients satisfy

0 (1 ) (A r ^ + P o o J A o  =  0 ,
0 ( M )  ( P ^ 2 + P oo)Foi =  (u-poi)Foo, (4.4.10)
0 ( ( k t f )  ( P - ^ + p o o W w  = (a -p o i)F o i- (p o 2  + P ~ l )Foo-

Lungu et al. stated that Fqo can be normalised so that its square integral is unity,

|F0o|2dfi =  1- (4.4.11)/
Hence, multiplying the 0(1) equation by Foo and using Green’s Identity with the Robin 
boundary condition, we find poo satisfies

POO = A ; 1 ( /  |VF„o|2 dS2 +  Da J  IFoofdr) =

The solution to the 0(1) equation is then given by Fqo = $ J q{/3q), where 4? was found
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through normalising the solution,

- 1 /2

$  = 2 tt /  J$(/30f ) f d f  = [ir{J$((30) +  J?{Po)\
Jo J

- 1 /2

Most important is that the eigenvalue (3 must satisfy the dimensionless transcendental 
equation

A -M A ) =  D«Jo(A)- (4.4.12)

Hence, upon rearranging (4.4.12), the effective absorption coefficient can be found so 
that

TS _  _  0o_ _  P g r  ( P o M M \  _  P g r
e - P O O -  p ^  -  p ^  ^ ) -  P „  2 '

The above asymptotic form for a* differs from the work by [73], [10], [6 ] where they 
have inverted the Bessel functions. We plot a* as a function of the Damkohler number
in Appendix Figure D.l and it is the same as seen in [10], [6 ] for a* match, which
suggests a transcript error. This has a profound effect on the fraction dose absorbed 
if it were applied incorrectly. Moving on to solve 0(£k) equation for Foi, we apply a 
similar method and multiply by Foo so that

Per1 J  FooVFoidfi +  Fgr^Ol J  FoiFoo =  j { u  — Poi)|-Fbo|2-

This above problem can only be solved under the assumption that the left hand side 
of the equation was zero [52], so that

„ ( f > \  [  , - l F  |2 jrt Jo u ( f ) ( M P o f ) ) 2 f d f  1 /  J ? ( M  +  [ W o l J l { M  -  M M ]=  J  “ l*bo I -  =  - \ i  + - - - - - - - 3 m o )  +  j U M ] - - - - - -

We plot Ue/V  as a function of the Damkohler number in Appendix Figure D.l, this is 
in agreement with the asymptotic convection term found in Brenner et al. [10]. Simply 
multiplying 7 * = 2poi by £ and we obtain the corresponding dimensionless effective 
velocity term found in [73]. It is only left to show the equivalence of the effective 
diffusion term D e. Lungu et al. applied a similar solvability condition to derive the 
following

{ p 0 2  +  P e r 1 )  F o o  =  J ( u  — Pol)^00-^01^ =  J ((P.e r ^  +  P Q o ) F o i ) F o i d Q ,  

=  POO [  \Foi\2dQ — P ~ l f  \^7F01\2d n -  p - ' D a  [  \F01\2( ^ . 4 . 1 3 )
Jn Jn Jr

= —M ( D ar)

where Foi is found solving 0(£k). We manipulate (4.4.13) to reduce it to an asymptotic 
form found in [73].
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Deriving the Effective Dispersion Coefficient

In showing that the effective dispersion coefficient by derived by Stoll et al. [73] and 
Lungu et al. [52] are one and the same we need not solve for Foi, but rather we define 
a dimensionless function B  that is proportional to the ratio of Foi and Foo so that

We substitute Foi =  —BFoo into (4.4.13) and obtain

{P~l V 2 +Poo)(#-Foo) = (poi -  u)Foo,

Expanding the laplacian operator yields and denoting ' =  d /dr

P ^ F o o ^ B  +  2F“ 1F /Foo +  F F ~ 1V 2 F0o +P00BF 00 = (poi -  &)Foo, 

Rearranging we obtain

P ^ F mV 2B +  2P - lB’F^ + B (P ~vV2F00 + pooBoo) = (poi -  «)Boo, (4.4.14)

= 0  by 0 (1)

Consequently we determine the second order ode

d2B  l d B  2F L d B  „  , . ^
l ^  + ~ rlF  + ^  = P^ - u)' (4A15)

The boundary condition for B  obtained from (4.4.5) so that

But on the boundary we have K i  +  DaFoi = 0, SO

TF =  W  (*0 0 * 0 1  -  FooDaF01) = ^  (F^ + DaFoo) = 0. (4.4.16)
ar -̂ 00 ^00

Hence a zero derivative boundary condition for B  and so we have proved B  satisfies the 
field equation mentioned in [6 ], [10]. Consequently the effective diffusion component 
M{ Dar) can be rewritten using (4.4.14) as

M(Dar) =  f  (poi -  u)FooF01 =  - P erl f  (FooV2F  +  2V FV Foo)(FFoo)
Jn Jn

=  - P ~ l f  B020B V 2B  +  2B F 00V B V F 00
Jn

86



CHAPTER 4. DISPERSION MODELS IN CYLINDRICAL FLOW WITH APPLICATION TO THE
INTESTINE 87

Hence,

M (D ar) = P - 1 [  VBV(F020 B) -  f  F ^ B V B  -  f  2BF0oVBVF0o 
Jn J r  Jn

=o by(4.4.i6)

=  P e r 1 f  ^oo(VB ) 2 (4.4.17)
Jn

As in [10], we apply an integrating factor to (4.4.15) to find the derivative of B

dB Pprr / l +  ((£p0 1 (y30) - e ) - ? 2 {ep0i(Pof) -  £)) . (4.4.18)
dr 2 \ u0

Now the effective dispersion coefficient is given by

D e  =  - P 0 2 ( 2 =  I 2 ( M ( D aT) +  P ~ l )  =  b  +  J f 02o | V B | 2 ')  .

Hence by substituting (4.4.18) in (4.4.17) we obtain

De =  ( l  + J  ®2J$(Po?) f P " T'

1 +  J 2 (/?of))  ^  “  ef2(P0l(P»r) ~  l ) ) 2 rdf

=  +

P e r  \  4 48

where Q, is the diffusion factor described in [73]. We plot Q as a function of the 
Damkohler number in Appendix Figure D.l. Hence we have derived the ID asymptotic 
equation to the 2D Poiseuille dispersion model

et- + ( 1 - / )  = + ̂ 2pl)  c <4-4-19)

The coefficients 7 *,a* and Q, are functions of the Damkohler number (see Appendix 
Figure D-2). For zero absorption the coefficients equal unity and (4.4.19) reduces 
to the ID Taylor asymptotic equation. From the asymptotic coefficient we see that as 
absorption increases the effective velocity increases corresponding to slower streamlines 
being eroded. Similarly, the contribution to dispersion from convection decreases as 
molecules are no longer able to diffuse into the slower streamlines and spread out further 
axially. In the next subsection we consider the macrotransport approach by Stoll et al. 
for solute dispersion in the intestine.
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4 .4 .4  C om p en satin g  for Long T im e B ehaviour: D eriv in g  T h e F ic ti
tiou s In itia l C ond ition

Brenner et al. [10] state that for the long time asymptotics ID equation (4.4.9) to be 
valid for short time, then the mean solute concentration must satisfy

cgc (i:,0) =  / A(r)c(x, r, 0)rdr.
J o

where the true initial mean at t = 0  was defined as

^true(^’°) =  [  c{x,f,0)rdr.
Jo

It was assumed that the initial cross-sectional average satisfies c(^,0) =  4 > ( x ) ,  and so

cgc(x ,0) =  4̂*ĉ rue(x ,0), such that A* = f  A(f)fdr,
J o

and the fictitious and true initial mean concentration are not identical. Now the fic
titious function A(f)  was chosen by brenner to be the solution of a boundary value 
problem which in our dimensionless coordinates is

V j A ( f )  +  P erK \  =  0, (4.4.20)

with absorption boundary condition n.Vf^4(r) =  — DarA{f). This is known as the 
adjoint eigenvalue problem for A(f)  [10]. We observe that A(r) satisfies the leading
order equation of Moffat’s long time asymptotic analysis (4.4.10) for poo-

(Pe- 1V 2 + poo)i;bo =  0. (4.4.21)

However, Too and A  are not the same, their equations are self adjoint so that their solu
tions differ by a multiplicative constant and this depends on the normalisation condition 
applied to Foo and A. The macrotransport approach by Brenner et al. applies condi
tional probability densities based on the Brownian behaviour of a single molecule. One 
of the main variables introduced was Fq°, the long time zero order local moment. This 
is very similar to Foo which was also uniquely defined such that its square integral was 
unity (4.4.11). However, Pq° satisfies (4.4.20) known as the characteristic eigenvalue 
problem, but also a second unique normalisation conditions

(t) f p g ° d n  = i,

(■i i ) f P g ° A ( r ) d Q  =  l .
(4.4.22)

(4.4.23)
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Hence, the fictitious term A(r), local moment Pg° and our perturbation expansion term 
Foo are related by:

Pg°A(r) = itfo =  ^ o 2 (f tr) , Pg° = c p M f o f ) ,  A(f)  = cAJ0{fi0f),  (4.4.24)

where the multiplicative constants cp, ca are found through the normalisation condition 
(4.4.23) such that

Batycky et al. have shown that there is significance in the value of the fictitious constant 
ca [6 ]. Consider the Poiseuille dispersion model (4.4.2) to leading order term in £, that 
is

with the appropriate absorption boundary condition (4.2.1). The corresponding asymp
totic equation to leading order is then

since convective fluxes 0{£) are assumed to be negligible. For an initial condition 
c (f ,0 ) =  /( r ) ,  the analytical solution is given by

2 Jo (A)) ( $  + £&)
(4.4.25)

(4.4.26)

C£ = -pooc + 0(£). (4.4.27)

We are basically considering radial diffusion in a disc with absorption at the boundary,

an JUMWl + DDJof  f(r)J((3nr)fdr, 
Jo

(see [10]). The cross-sectional average is subsequently given by

Arranging the eigenvalues in increasing size order such that A) is the smallest, then the 
leading order term of the exact solution is found to be

ctrue(0 )e Per

Now the solution for the asymptotic equation can easily be solved for
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For initial condition c(£,f, 0) =  / ( f )  we substitute A(f)  (4.4.24) and ca (4.4.25) into 
(4.4.28) to obtain the asymptotic solution

c( t)  =  |c a 2  J  /(f)Jo(A )f)fdf j  e ~ P ^ .

We have shown that the mean concentration solution to the purely radially diffusive 
part of the Poiseuille problem (4.4.26) matches the equivalent solution of the asymptotic 
equation (4.4.27) to leading order eigenvalue /3o- We clearly see the motivation for a 
fictitious initial condition by Batycky et al. However, we also see the limits to which 
the fictitious term was applied, and that is of a purely radially diffusing solute. If 
convection plays a larger role in the dispersion of the solute then we do not expect to 
see the fictitious initial term to compensate effectively for short time.

Application of a Fictitious Initial Condition

Consider the case where the initial condition is constant in the radial direction c ( x , 0) = 
c q { x ) .  Then using (4.4.24) and (4.4.25) we derive the fictitious condition used in the 
model by Stoll et al. [73]:

so that cgc = A*c^rue. As the boundary membrane becomes increasingly impermeable, 
Dar —> 0 , the fictitious term tends to unity, A* —>• 1 . Conversely, as the membrane 
becomes more permeable, Dar —> oo, then A* —> 0.692 [6 ]. See Appendix Figure D.l 
for the graph of A* versus the Damkohler number. Hence, all long time asymptotic 
coefficients of the permeable membrane reduce to those of Taylor when Dar =  0, for 
an impermeable membrane.

Here lies the ambiguity of the macrotransport approach applied by Stoll, Baycky 
and Brenner. They have suggested that a fictitious term compensates long time asymp
totics over the short time to justify the use of the asymptotic equation for a physical 
problem rather than for theoretical purposes only. However, we know this fictitious 
term is one in the impermeable case and the asymptotic equation reduces to that of 
Taylors which has been shown to be valid only for d = lPeT < < 1 . Hence, following the 
argument by Stoll et al., the ID asymptotic mean concentrations of an impermeable 
membrane are a valid representation of the full two-dimensional mean for all time (see 
Figures 4-3 (a) and 4-3 (b)). We have clearly shown it is not possible to compensate 
for short time for an impermeable membrane, leaving open the question whether the 
fictitious initial condition do so for an increasingly permeable wall. We satisfy this 
argument later by solving numerically the full 2D model (4.4.2), (4.2.1) and the ID 
asymptotic equation (4.4.19) with the fictitious term (4.4.29). Now Stoll et al. made

90



CHAPTER 4. DISPERSION MODELS IN CYLINDRICAL FLOW WITH APPLICATION TO THE
INTESTINE 91

one amendment to the macrotransport approach laid out by Brenner et al. [10]. That 
is peristalsis can be modelled by enhanced diffusion making the time for the asymptotic 
equation to become valid shorter. We review this in the next subsection.

4 .4 .5  M od ellin g  P erista lsis  by E nhanced  D iffusion

In the intestine, fluid undergoes peristaltic motion, the body’s natural adaption to 
enhance mixing and increased absorption. This process is very complex and quite 
difficult to model. It was simplified by Stoll et al. [73] to be a macrotransport process 
yielding enhanced diffusion. Consider in 2D tracer particles in an incompressible fluid 
trapped in closed streamlines such that they undergo Taylor vortex-like flow [10] with 
velocities

u(x,y, t)  = A(t) cos ) sin , 

v(x,y, t)  = -A ( t )  sin (j j f)  cos ,

and time dependent field strength

A{t) =  A q exp(—Tri/t(d^2 +  d^2)).

An enhanced diffusion coefficient is found by applying a perturbation expansion for 
small Peclet number (large diffusion). Using a macrotransport approach Brenner [10] 
derived the enhanced dispersion coefficient:

D -  = D  + { ^ f )  ( 1 + ( |)2) +op'2)-
Hence for circular trapped streamlines and constant field strength A  =  T, Stoll et al. 
formulated the enhanced dispersion term

(T d*)2
^  =  +  (4-430)

Without this diffusion enhancement, the therapeutic Per number would be too high to 
even consider applying a macrotransport approach.

We determine d = tPer, for the four therapeutics applied to Humans (seen earlier), 
as a function of 1) molecular diffusion and 2) enhanced diffusion from peristalsis. We 
tabulate the results, see Table 4.2, and observe two facts (i) the Peclet numbers for the 
therapeutics are too large to apply a perturbation expansion, invalidating the use of the 
peristaltic diffusion formula (4.4.30), and (ii) even applying the formula the condition 
d = iPer{De) does not sufficiently decrease to warrant applying the ID asymptotic 
equation (4.4.9).

We also note the results for Per(De) are inconsistent with those obtained from Stoll
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Therapeutic Parameter Ibuprofen GHRP-1 Calcitonin Insulin
Molecular Diffusion Dm 2.5e-05 4.4e-6 2.7e-6 5.2e-4
Enhanced Diffusion De 7.1e-5 2.7e-4 4.3e-4 5.2e-4

P e r  {.D-m) 2.4e3 1.4e4 2.3e4 2.8e4
Ps r(Den) 8 .6 e2 2.3e2 1.4e2 1 .2 e2

iPer(Dm) 15.4 87.8 1.4e2 1 .8 e2

£ P e r  ( D e n ) 5.4 1.4 0.90 0.73

Table 4.2: A Table of Therapeutic Peclet Numbers and their Corresponding Asymptotic 
Condition Value (main asymptotic conditions are shown in bold).

et al., 10 orders of magnitude lower are seen for Calcitonin and Insulin in [73]. This 
is sufficient cause for concern when viewing the work by Stoll et al., especially when 
they calculated that the initial bolus of tracer particles will only have travelled 5-10cm 
(d «  0.02 — 0.04) into the small intestine by the time t »  R q/D.  This justified the use 
of the fictitious initial condition by Stoll et al. as it need only compensate for a very 
short distance. However, from the above table we see that £Per(De) > 0.7 > >  0.04 
so that the tracers will have travelled well over 70% of the intestine before the mean 
solute concentration would attain asymptotic form. Now using the anatomical and 
therapeutic parameters in [73] we investigate the results obtained for the mean using 
(i) the asymptotic approach and (ii) numerically solvingthe full 2D model.

4.5 Comparing the Num erical Solution of the Full 2D 
m odel with the Num erical Solution of the ID  A sym p
totic Equation

We now test the validity of the model by Stoll et al., particularly on the effectiveness of 
the fictitious initial condition, by numerically solving the full 2D Poiseuille dispersion 
model (4.4.2), (4.2.1) and compare the mean solute concentration C2 with ci, the numer
ical solution of the ID model (4.4.19). Given the four therapeutic Ibuprofen, GHRP-1, 
Calcitonin and Insulin, and anatomical parameters in humans [73], we determine £, Per 
and Dar. We solve the full 2D Poiseuille dispersion model (4.4.2) using finite difference 
operators on a discretised domain for solute concentration c ( x j , t n , fk)  (see Numerics 
Chapter 6 ). We solve up to time t = l/2£, where the peak of the centroid concentration 
will on average have travelled one quarter of the distance of the intestine, we then find 
the cross-sectional average concentration C2 (x j , tn) using trapezium rule. We stipulate 
the time condition to ensure that little mass will have been lost by convection out of 
the intestine. Subsequently we solve the ID asymptotic equation (4.4.9) for the mean 
concentration c\ (x j , tn).

We compare the mean solute concentration of the two models, and determine 
whether (i) the full Poiseuille model can be approximated by a ID dispersion equa
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tion, if so (ii) what are the effective coefficients and (iii) how do these numerically 
obtained coefficients compare with those obtained asymptotically by Stoll. We require 
an algorithm to determine the first two conditions.

4.5 .1  A pp roxim atin g  th e  N u m erica lly  O btained  M ean S o lu te  C oncen
tra tio n  o f th e  2D  D isp ersion  M od el by a ID  D isp ersion  E q u ation

Having solved for the 2D Poiseuille dispersion mean concentration for a discretised set 
of time and spatial steps c2{xj,  tn), we assume that the cross-sectional average of the 
numerical solution can be represented by a ID dispersion equation

for unknown effective convection, diffusion and absorption coefficients Uh, Dh, Kh re
spectively. It is these constants that we will use to check against the asymptotic coeffi
cients Ue,D e, K e. The unknown coefficients may be found by the following algorithm. 
Step 1: Determining the Absorption Coefficient
We may determine Kh from one of two similar ways. This allows us to verify we are 
coding our algorithm correctly for Kh- The first approach is based on the total amount 
of drug present based on (4.1.4). We assume that negligible mass has been lost by 
convection out of the tube, and that there is no inflow either, hence equation (4.1.4) 
reduces to a simple exponential equation

M(t) = M 0e~Khi,

which we can rearrange to solve for Kh- Hence the absorption coefficient of the numer
ically obtained 2D mean concentration is found by

t \ M ( t n) )  t \ f Q c2(x j , in)dx J

which should be true for all times tn, n = 1 , . . . ,  N.  The alternative method which we 
can use to corroborate our above result is based on taking the Laplace transform of 
equation (4.5.1) so that

noo
Ct+Uh {sc -  c2 (0 , t )) =  Dh (s2 -  sdx(0 , t ) -  c(0 , t)) - K hc, c(s, t ) =  c2(x, t)e~sxdx

Jo

We must apply a zero Dirichlet boundary condition at the inlet (this is not unreasonable
see Numerics Chapter 6 ) and taking 5  =  0 the above formulation reduces to

K ci JQ°° cffix =  /d  Cj{x,i)dx 
c J 0° °  cdx c(x, t)dx
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Using backwards finite difference on the time derivative term with a time step interval 
of At,  we may approximate for Kh using the numerical solution to find

(jo c(x,tn)dx — f Q c(x,tn- i )dx  ̂ M (tn) — M{tn- 1)

A t  Jq c(x, in)dx A tM ( in)

where tn = l/(2£), and tn- \  is the penultimate finite difference step in time. Hence, 
for greater accuracy we take very small time steps. The first method is the simpler of 
the two, however, it is always useful to find means to corroborate our results with an 
alternative method.

Step 2: Determining the Effective Velocity
The effective convection of the mean concentration is found by tracking the peak of the 
mean solute concentration, maxj(c2 (x j , tn), which corresponds to the centroid of a ID 
dispersion model. For simple plug flow the centroid moves approximately with speed 
Uh- Hence, for any time t, we can find the axial distance Xj that corresponds to the 
peak so that C2 {xj, tn) > C2 (xj , tn) Vxj = 0, . . .  ,N .  We denote the peak axial position 
by x* = Xj and assume the peak moves with constant velocity so that the effective 
velocity is simply given by Uh ~  x*/tn.

Step 3: Determining the Effective Dispersion
Finding the effective dispersion is more difficult and we approximate De by a least 
squares fit. We apply the effective absorption and convection term found in steps 1 
and 2  to the dispersion equation

dc dc d2c
m + u ^  = d ^ - k ^  (4-5-2)

for mean solute concentration c. We apply the mean concentration of the 2D initial 
concentration to be the initial condition for (4.5.2) and apply the same Neumann 
boundary conditions at the ends of the tube. We wish to solve for Dh as accurately 
as possible and this involves applying a diffusion transformation (see §6.1.3 ) to (4.5.2) 
and solve the resulting diffusion equation

dw d2w
<4-5-3>

Hence we convert the mean solute concentration C2 to the decreasing Fourier wave. We 
solve (4.5.3) numerically for w and we minimise the function F  given by

J  N

F(Dh) =  ^ 2 ^ 2  {w (Xjjn) -W2(Xj , in)) ,
j =  o 71=1
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to find the effective dispersion D^.

4 .5 .2  C om paring th e  N um erica l S o lu tion s o f  th e  M od els

For the four therapeutics we solve the 2D model (4.4.2) and approximate the mean 
solute concentration with a ID dispersion model. We compare the effective coefficients 
and the mean concentration [c2 ,Uh,Dh,Kh\ with those from the model by Stoll et al. 
[ci,Ue,D e, K e] but most importantly we compare the mass fraction absorbed in both 
models. In the ID case, (4.4.9), the mass fraction absorbed, Fa, is given by (4.1.5) so 
that:

i _  M A(t) _  K e Jq M(i)dt  
a ~  M0 M0

In 2D the amount of therapeutic absorbed is determined by the flux boundary condition 
Cf =  — Dac, where at any time t the mass absorbed is given by

Ma(£) = [  [  f  —Cf(x,t,(f),R())d(f)dxdi =  27r f  f  ^^ -c (x , i , l )dxd t .
J o  J o  J o  J o  J o  P e r

Hence, mass fraction absorbed depends on the mass on the boundary Mr{t) = c(x, t, 1 )dx
at any time such that

f 2 _  M A { t )  _  P g r  f 0 M r

M0 M0 ' [ J
We numerically solve the full 2D model and then numerically solve the asymptotic 
equation (4.4.9) with and without the fictitious initial condition. This corresponds to 
the analysis by Stoll et al. and by Moffatt et al. respectively. We do this to see if the 
fictitious term effectively compensates for short time. We also solve the full 2D model 
and its asymptotic equivalent when there are no peristaltic effects, Den = Dm.

Discussion

Comparing Figures 4-4(a)-(d) with Figures 4-4(e)-(h) we see just how important en
hanced diffusion through peristalsis is in applying the macrotransport approach to the 
Poiseuille dispersion model. As predicted in §4.4.5, without enhanced diffusion, the 
model (4.3.2) is convection dominant and the the mean can not be represented by a 
dispersive process iPer > 10, see Figures 4-4(e)-(h). Even with enhanced diffusion, 
Figures 4-4(a)-(d), the sizes of d = iPer for the four therapeutics lie in the range
0.5 < iPer < 5 and we clearly observe a bad fit to the 2D process.

The fictitious initial condition implemented by Stoll et al. [73] was meant to resolve 
the issue of applying an asymptotic equation for all time. We observe in Figures 
(4-4)(a)-(d), the fictitious condition only serves to increase or decrease c\ however we 
obtain different effective velocity and diffusion values, see Table 4.3.
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(a) Ibuprofen D en, £Per =  5.4, A* =  0.993 (b) GHRP- 1  D en, £Per =  1.4, A* =  1

(c) Calcitonin Den, £Per =  0.9, A* =  1 (d) Insulin D en, £Per =  0.73, A* =  1

XX

(e) Ibuprofen £>m, £Per =  15.4, A* (f) GHRP- 1  Dm, £Per =  87.8, A* =  0.948=  0.928

Cf

(g) Calcitonin D m , £Per =  140, A* =  0.903 (h) Insulin D m , £Per =  180, A* =  0.990

Figure 4-4: A Comparison of the Numerical Solution of the full 2D Poiseuille Dispersion 
Model with the Numerical Solution of the ID Macrotransport Dispersion equation.
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T h erap eu tic K* K h u* u h D* D h
Ibuprofen
GHRP-1

Calcitonin
Insulin

2.584e-03
1.553e-03
1.516e-03
4.064e-04

3.977e-03
1.856e-03
1.682e-03
4.361e-04

3.815e-03
3.193e-03
3.170e-03
3.160e-03

2.358e-03
2.484e-03
2.526e-03
2.568e-03

1.586e-04
4.777e-05
2.976e-05
2.440e-05

3.401e-02
1.897e-05
1.328e-05
1.113e-05

Table 4.3: A Table of Asymptotic Coefficients Compared Against the Determined 
Numerical Effective Coefficients

Prom Table 4.3 we observe that the absorption coefficient is a very good guess, 
K* «  Kh, and is within 10% for the better approximated therapeutics. We hypothesise 
this is due to the fact that the effective absorption constant is the leading order term in 
the perturbation expansion. From Figure 4-4 and the above table we observe U* > Uh, 
effective velocity predicted by the asymptotics is faster than the actual velocity. The 
same effect is seen in Figure 4-3, the better the asymptotic fit £Per «  1 the more U* —>• 
Uh- The algorithm fails to converge for the first therapeutic for the diffusion coefficients 
as the process is convection dominant. However, for the remaining therapeutics the 
effective diffusion coefficients are found to be of the same order 1 0 - 5  but the asymptotic 
values are slightly larger. Hence inapprorpiately applying asymptotic analysis results in 
larger convection and dispersion coefficients resulting in more mass loss by convection 
out of the tube than what would occur in reality. We calculate the fraction dose 
absorbed in the 2D and ID case.

T herap eu tic IPer F 2 F 1 D ar
Ibuprofen
GHRP-1

Calcitonin
Insulin

5.4
1.4 
0.9 

0.73

9.72%
2 .1 1 %
1.17%
0 .2 2 %

9.99%
9.08%
9.73%
2.80%

1 .6 e+ 0 0

6.7e-02
2.3e-02
3.3e-03

Table 4.4: A Table of Fraction Dose of Therapeutic Absorbed from the 2D Model 
Compared with the ID Model

Looking at Table 4.4 the mass fraction absorbed varies quite significantly for the 
better fitting therapeutics, Figures 4-4(b-d). Less mass is absorbed in the 2D case 
than in the ID, this occurs for two reasons 1) the fictitious term does not compensate 
sufficiently and 2) the ID asymptotic equation assumes radial diffusion is dominant 
and that solute is absorbed quicker, but in reality for slowly diffusing solutes it takes 
time for the solute to move to the boundary.

4.6 Summary

In this Chapter we have started with the basics by building up the ID dispersion model 
introducing the convection, diffusion and reaction terms. Consequently nondimension-
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alising has introduced important dimensionless parameters, the Peclet number and the 
Damkohler number. They determine whether solute motion is dominated by convec
tion, diffusion or absorption. Finally we showed in the ID dispersion model how to 
calculate the fraction does of solute absorbed. We then extended the ID model to a 
2D dispersion model. We moved absorption to the boundary which was represented 
by the diffusive flux term; — Dcr = Kc. This equation is fundamental to this thesis 
and describes passive diffusion through a permeable membrane. We further introduced 
radial diffusion and discussed a simple 2D plug flow dispersion model to understand 
the solute motion and absorption process.

We removed plug flow as the basis of fluid motion and replaced it with Poiseuille 
flow. We discussed Taylor diffusion when the tube membrane is impermeable. The 2D 
Poiseuille dispersion model can be simplified to a ID asymptotic dispersion equation 
for the mean solute concentration after a long time (a time by which the radial inho
mogeneities have died down). The ID equation depended on an effective dispersion 
coefficient and an effective convection coefficient. The asymptotic analysis introduced 
convective-dispersion, this is where solute diffusion is enhanced by nonuniform convec
tion such as Poiseuille flow. We showed how the application of the analysis depends 
on two dimensionless parameters, the radial Peclet number Per and £, the ratio of the 
tubes radius to length. There are two conditions for the asymptotic equation, namely 
(i) t »  Per, a sufficient amount of time must have passed and (ii) if in a finite length 
tube d = £Per «  1, the ID equation is applicable after a distance d which must be 
before solute leaves the tube. We then showed that the conditions for applying the 
asymptotic equation are not met in the intestine.

We reworked analysis by Moffatt et al. and derived the ID asymptotic equation 
for the 2D Poiseuille dispersion model in the case of a permeable membrane. We 
introduced the absorption dependent effective convection coefficient, the effective dis
persion coefficient and the effective absorption coefficient. The analysis showed that 
as absorption increases, slow streamlines at the boundary are eroded increasing the 
effective convection speed of the solute centroid, whilst decreasing convective disper
sion and consequently decreasing the effective dispersion term. We show that Stoll et 
al. applied this ID asymptotic equation inappropriately to the intestine in that (i) 
he applied the equation for all time using a fictitious initial condition which we have 
shown to be valid only for diffusive dominant systems and (ii) he assumed peristalsis 
could be modelled by enhanced diffusion, however, we showed that the conditions used 
in deriving the formula were violated by Stoll et al.

We solved the full 2D Poiseuille dispersion model and its effective ID equation 
numerically, and we conclusively showed (i) the fictitious initial condition does not 
work, (ii) even with enhanced diffusion from peristalsis the condition to apply the 
asymptotic equation d = £Per are not met at all, (iii) when comparing the 2D and 
ID mean solute concentration it is apparent the ID equation overcompensates the
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effective convection and diffusion term but even worse is the fraction dose absorbed 
in the ID case is significantly higher than the 2D case. We now wish to model the 
effect of peristalsis on solute dispersion and determine whether peristalsis can really be 
modelled by enhanced diffusion as suggested by Stoll et al.
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Chapter 5

The Peristaltic D ispersion M odel

In this Chapter we look at the behaviour of the mean concentration of a solute in a 
vibrating tube where the flow is peristaltic and apply this to the intestine. We discuss 
whether the mean solute concentration can be represented by

Ct Û Cx — De^xx K ec (5.0.1)

the ID dispersion equation which relates the coefficients Ue,D e, K e to the peristaltic 
flow field. We showed that this was possible in the trivial case of peristaltic flow when 
the amplitude of vibration, a, was zero, yielding Poiseuille flow. The full 2D peristaltic 
dispersion model for the solute concentration is governed by

ct +  u.V c = D V 2 c, (5.0.2)

where u =  (u, v) are the steady-periodic peristaltic velocities derived from Stokes slow 
flow equations in Chapter 3. This is a moving boundary problem where we prescribe 
the location of the vibrating wall by the sinusoidal function

f  = f ( x , t) = 1 + a  cos ( 27t(x — £)) , (5.0.3)

where a  is the amplitude of vibration. We assume further that the boundary is per
meable and the solute is subject to passive absorption which satisfies

- D n . V c  = K ac. (5.0.4)

It was suggested by Stoll et al. [73] that peristaltic motion of a solute can be modelled by 
Poiseuille flow with an enhanced diffusion term Den such that the solute concentration 
satisfies

ct +  u{r)cx =  DenV 2c. (5.0.5)
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Prom equation (5.0.5), Stoll et al. modelled solute motion in the intestine by the 
average concentration satisfying equation (5.0.1).

In this Chapter we wish to validate the hypothesis by Stoll et al. by (i) solving 
the 2D peristaltic dispersion equation, (5.0.2), numerically and determining the mean 
solute concentration denoted cpe, (ii) determining whether c can be modelled by the 
ID effective equation, (5.0.1), by applying the ID dispersion model algorithm in §4.5.1, 
(iii) solving the 2D Poiseuille dispersion equation with enhanced diffusion (5.0.5) nu
merically and determining the mean solute concentration denoted Cp0, (iv) determining 
whether the mean peristaltic concentration cpe can be approximated by CpQ as diffusion 
is increased.

To solve the peristaltic dispersion model numerically we apply a suitable transfor
mation from the peristaltic ‘physical’ domain to a rectangular ‘computational’ domain 
and use finite differences to discretise the equation into a system of odes by the method 
of lines and solve using a suitable DAE solver (see Chapter 6 ). We solve the model for 
the five1 different flow regions found from the leading order semi-analytic velocities in 
Chapter 3. There are five key parameters of the peristaltic dispersion model in total. 
We have introduced three from peristaltic flow; a  the amplitude of vibration, the 
dimensionless flow rate and e the wave curvature. There are a further two parame
ters from modelling solute motion; the solute Peclet number Peh and that Damkohler 
number Dar.

We show that for a small radial Peclet number, Peh, the mean concentration CpQ 
satisfies a ID dispersion model (5.0.1) with a very slight oscillatory component to 
it. The fast diffusion (small Peh) removes the radial inhomogeneities in the solute 
concentration imposed by the peristaltic velocities, however, unless Peh is very small 
there will remain slight inhomogeneities in the axial component which are responsible 
for the observed oscillation. We can apply a low pass filter to remove the noisy high 
frequency component to the mean concentration to obtain a smoother Gaussian profile. 
As the Peclet number increases, the peristaltic convective forces dominate diffusion and 
the mean solute concentration suffers increasingly from an overlapping oscillatory term. 
We can again apply the low pass filter and we observe the mean concentration profile 
looks similar to Poiseuille dispersion of a solute but only in the cases where there is 
little trapping. In case C of peristaltic flow there is no reflux or trapping, just mild 
retrograde motion of fluid at the point of the wave’s contraction. We clearly observe 
that solute motion exhibits characteristics shown in Poiseuille dispersion of a solute. 
In cases D and E we notice that solute motion is increasingly retarded from reflux and 
cpo and Cpe are very dissimilar.

We now compare the dimensionless form of the peristaltic dispersion model (5.0.2) 
with the dimensionless form of the Poiseuille dispersion model (5.0.5) for the same 
solute parameters, Peh,Dar and for the same instantaneous mean volume flow rate Q.

1From Figure 3-5 there axe 5 regions with a strictly positive instantaneous mean volume flow rate.
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We compare the filtered mean solute concentration from the peristaltic model Cpe with 
the mean concentration from the Poiseuille model cpo. We then artificially increase 
the diffusion Den, decreasing Peh, for the Poiseuille dispersion model and compare the 
mean solute concentration cpo with Cpe. The mean solute concentrations look very 
dissimilar, hence we show that peristalsis is too complex to be modelled simply by 
enhanced diffusion as believed by Stoll et al. We further show by solving for a radially 
nonuniform initial condition, that peristalsis increases absorption as trapping and the 
deformation of the tube brings solute closer to the boundary unlike Poiseuille flow.

These results show that peristalsis is a great means to (i) mix food, (ii) bring food 
closer to the boundary and (iii) retard food movement and thus maximise absorption 
in the duodenum where nutrients are mainly absorbed and the villi are largest.

5.1 Deriving the 2D Peristaltic D ispersion M odel

We consider the behaviour of a therapeutic in solute form2 placed in a fluid undergoing 
peristaltic flow induced by the vibrating wall. The boundary of the tube is permeable 
and the solute is subject to passive absorption. The profile of the solute concentration 
depends on (i) the molecular diffusion D of the drug, (ii) the permeability of the 
membrane K a and (iii) the nature of the peristaltic flow. We define the 2D peristaltic 
dispersion equation governing the solute’s distribution in expanded form by

ct +  u(x,r, t)cx +  v(x,r, t)cr = D (̂ cxx +  Cj.r +  , (5.1.1)

where (u , v) are the velocities from peristaltic flow. We prescribe the boundary to be a 
periodic time dependent function of the form f ( x , t ), which exhibits passive absorption 
of the solute modelled by

—Dn.'Vc = K ac. (5.1.2)

D escribing th e  P e ris ta ltic  Flow

We now derive the nature of the peristaltic flow. We assume that the fluid is viscous 
and the flow has been fully established to yield a steady periodic flow by the time the 
drug has been introduced. In Chapter 3 we obtained the biharmonic equations for 
Stokes’ slow flow which were solved3 by a perturbation expansion in the small wave
curvature, e < 1 . We determined the leading order semi-analytic peristaltic velocities
in dimensionless form which are given in the fixed frame by

u(x,i',i>w) = 4A(x, t\ V’wjf2 -I- 2B(x, ipw) +  1-1- 0 (e2),

v(x,i;ipw) = - A ,(x,t-,'ipw) f3 -  B'(x,t]'ipw) 0 ( e 2). (5.1.3)

2We assume the complete instantaneous dissolution of the therapeutic in the flowing fluid.
3 Alternatively we could solve for the peristaltic velocities numerically see Chapter 6
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The velocities are periodic and depend on the flow rate i[)w. In deriving the velocities we 
made the following assumptions (i) the curvature of the wave e is sufficiently small that 
we can ignore higher order terms from the power series (3.4.7), (ii) by taking the the 
leading order term we obtain a formula for the pressure gradient over a wavelength, A p \  

as a function of the flow rate i[)w, (iii) the domain is an integral number of wavelengths 
so that the pressure gradient over the whole domain, Ap  is constant.

Following these assumptions we have shown in Chapter 3 the existence of five differ
ent types peristaltic flow depending on the flow rate (or pressure gradient Ap\)  and 
the amplitude of vibration a. The type of flow affects directly the numerical scheme 
(see §6.3.2) we can implement to solve the model and also the boundary condition we 
can impose at the inlet (see §5.1.1). We also define the velocities as a function of the 
flow rate 'ipw rather than the pressure gradient since it is easier to distinguish the dif
ferent flow regions on the flow rate versus amplitude ratio graph, see Figure 5-2, than 
on the pressure gradient versus amplitude ratio graph (see Appendix Figure C-l).

Scaling th e  D ispersion M odel

We now proceed to nondimensionalise the peristaltic dispersion model (5.1.1), (5.1.2) 
for which there is more than one choice of scaling for time t and space x. We first 
introduce the following dimensionless quantities which are independent of our choice 
of scaling

r ; f „ u „ \ v „ p  ah
r  =  T ’ /  “  I i  «  =  - ,  v  =  — ,  p  =  — ,  P eh =  - p r -h h a ha po D

We now consider scaling the axial length x  and the time t. In the Poiseuille dispersion 
model, x  was scaled by the length of the tube, Lx =  nA, and t by the radius of the 
tube4, Ro = h. Hence, we introduced the tube length ratio i  = Ro/Lx into the model. 
In nondimensionalising the peristaltic velocities we scaled x and t by the wavelength 
of the tube, A, and consequently introduced the wave curvature e = Ro/X, a ratio of 
the height of the wave to the length of the wave. The dimensionless quantities t  and e 
are related by

h Ron o /r , ^e = -  = —— = nt. (5.1.4)
A Lx

We mentioned in Chapter 4 that an appropriate choice of nondimensionalising time is 
with respect to the radial length scale. Hence we rescale the peristaltic time scale t 
with respect to the radius of the nondisturbed tube such that

ta l t a  1 -
h e A e

4We also scaled by a characteristic speed, however, that is not factor in our choice of scale seen 
later.
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and keeping the peristaltic length scale x we obtain the nondimensionalised peristaltic 
dispersion model

(5.1.5)

This is in a similar form to the Poiseuille dispersion model which was given by

The standing peristaltic waves are now described by

f  = f(x ,  t\) =  1 + a  cos (27r (rr — e£i)) •

Prom here on we drop the subscript on the time variable. We observe in equation
(5.1.5) that when the Peclet number is sufficiently small the diffusion terms may be 
ignored, and flow is convection dominant. In this case the solute profile should be 
similar to the evolution of the particle paths seen in §3.6.8. All that is required now is 
to scale the boundary condition, hence

which simplifies to a purely radial boundary condition when curvature is sufficiently 
small (e <<  1), e.g. c? =  —Darc. Hence the 2D peristaltic dispersion model is shown 
in the following figure

Figure 5-1: The Peristaltic Dispersion Model

We have prescribed a symmetry condition along the centreline of the tube and have 
also prescribed a Neumann boundary condition at the outlet to imply convective fluxes

(5.1.6)

Cj. f  Cj AT
= —c i—̂

K (5.1.7)

r
e f  = 1 + acos(27r(dc — et)

a

c i  +  eu(x, r , t)c* +  ev(x, f , t )c f =  (e2c** +  cff +  j C r )

X
0 Cf(x, 0, t) =  0 71
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dominate over diffusion at the boundary. We now discuss the restrictions that the 
different peristaltic flow regions have on the dispersion model when it comes to (i) its 
application and (ii) solving the model numerically.

5.1.1 C on d ition s for a M aintained  Source at th e  In let

The peristaltic dispersion model is a moving boundary problem, and as such the inlet 
boundary is constantly changing in size, but more importantly the peristaltic velocities 
at the inlet are constantly changing. To model the therapeutic distribution in the 
presence of a maintained source, a condition for the model would be that fluid flow is 
purely in the positive direction. However, in peristaltic flow this is not always the case 
as a small positive instantaneous mean flow rate has been shown to give rise to negative 
flow (see Appendix Lemma C.2). This is clearly shown in the case of pumping where it 
has been proved that reflux occurs, which would violate an imposed Dirichlet boundary 
condition and the model would be ill-posed. Hence, the peristaltic dispersion model 
should only be solved for a purely pumping case when a slug of solute is placed in the 
tube. We then require a Neumann boundary condition at the inlet to prevent solute 
leaving the tube. This is a realistic condition if we apply this model to the intestine 
since the inlet to the intestine is a valve that closes to prevent chyme moving back into 
the stomach.

However, not only does peristaltic flow cases in the pumping zone have negative 
velocities but so too do specific cases of flow in the copumping region. From the 
particle paths for case C (see Figure 3-12), we observe that fluid particles around the 
point of maximum occlusion have retrograde motion. We consider the leading order 
semi-analytic solution for the peristaltic velocities (5.1.3). For horizontal velocity at 
some point x to be purely positive then

u(x,r) = 4A{x)f2 +  2 B(x)  +  1 > 0 , 

must be satisfied for all radial positions. Hence,

. 2  2 B(x)  +  1 =  ij>wf 2 +  2/ 4

2  A(x) 4 i>w + 2  p

Consequently, the horizontal velocity is positive at some point x  when ipw > —0.5f  {x). 
Hence, u is positive V# when

i>w >  -^ /m in  =  -  Q)2'

We highlight this result on the flow rate versus amplitude ratio in Figure 5-2 by the 
black line. We observe negative velocities occur not only in case C but in case B where 
centreline trapping is present. It is important to know when negative velocities occur
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as this directly affects our choice of numerical scheme used to solve (5.1.5).

psiw vs alpha
0.2 

0 

- 0.2 

iftw  - 0.4

- 0.6

- 0.8

-1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1a

Figure 5-2: A Graph of Flow Rate, $w, versus Amplitude of Vibration, a , indicating 
the Region of Purely Positive Horizontal Velocity

5.1.2 C om paring th e P erista ltic  D ispersion  M odel w ith  th e P oiseu ille  
D ispersion M odel

In this section we derive a means to compare the effects of peristaltic flow with Poiseuille 
flow on the behaviour of solute concentration. We have shown that peristaltic flow tends 
to Poiseuille flow when (i) the amplitude of vibration tends to zero and (ii) for high flow 
rate i/jw (see Lemma 3.7). Hence we expect the behaviour of the solute concentration 
governed by the peristaltic dispersion model to be similar to solute concentration in 
the Poiseuille dispersion model for these cases. But what happens when peristaltic 
phenomena occur, such as trapping and reflux. How do they affect the profile of the 
solute concentration? We wish to compare the peristaltic dispersion model (5.1.5) with 
the Poiseuille dispersion model (5.1.6), but how do we do so?

According to Poiseuille flow, a zero pressure gradient would result in zero fluid 
motion. However, for peristaltic flow a zero pressure gradient does not imply the 
same result, rather we observe Poiseuille like flow, and depending on the amplitude of 
vibration some trapping (see Figure 5-2). Similarly, a positive pressure gradient does 
not equate to complete retrograde motion as it does with Poiseuille flow. Hence, we 
can not compare the two models by imposing the same pressure gradient when deriving 
the fluid flow.

In the peristalsis Chapter 3 we derived the ‘time mean volume flow rate’, Q, that 
is, the average over one period of the peristaltic wave of the amount of fluid moving. 
Hence, it is feasible to compare both dispersion models when therapeutic solute is

Apx -  0

Free pumping 
Boundary Max 
Boundary Min 
Zero Mean Time Flow 
Negative Velocity

A: Copumping, Detached Trapping 

B: Copumping, Centreline Trapping 

C: Copumping, No Trapping 

D: Pumping, No Trapping 

E: Pumping, Centreline Trapping 

F: Negative Flux, No Trapping 

G: Negative Flux, Centreline Trapping
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introduced into peristaltic flow and Poiseuille flow have the same Q. The peristaltic 
and Poiseuille mean volume flow rate satisfy

9 .
2 tr peri

-  ■iv, +  \  ( l  + i a 2 R
2n

Hence, we assign Poiseuille flow to have the flow rate

1 A 1

pois

tpwp — 'ipw T 2  y 2 ^

so that we can describe the laminar flow derived in §3.3 by

u ( f )  =  ( 4 tpwp^J ( l  -  f 2) =  ^ 4 ^  +  2 +  a 2) ( l  -  r2) .

We expect Poiseuille flow to now transport the same amount of fluid as the peristaltic 
flow after one period. Now when the amplitude of vibration dies down, a = 0, the 
peristaltic dispersion model simplifies to

ci + eu(f)ci  =  ^e2Cxx + Cff + ^Cf ĵ . (5.1.8)

an alternatively scaled version of the Poiseuille dispersion model (5.1.6). Hence we 
compare the peristaltic dispersion model with a Poiseuille dispersion model by numer
ically solving equations (5.1.5) and (5.1.8). Ideally one would compare the solutions of 
the models when t = Tn G N, at points in time when the same volume of fluid has 
been transported by peristalsis in the peristaltic tube that would have been transported 
by laminar flow in an an undisturbed tube. However, for high flow rates fluid travels 
the distances of several wavelengths in just one period, and we are limited in solving
(5.1.5) numerically for a small number of wavelengths. Hence, we compare models up 
to a time t* that depends on the flow rates.

5.2 Solving the Peristaltic D ispersion M odel

We solve numerically the peristaltic dispersion model governed by equation (5.1.5) up 
to time t — t* when a slug of solute with radially uniform concentration,

c(x, f, t) = (f>(x) = 1 0 0 0  (H(x) — H(x  — I) ) , 5

is placed at the entrance to the tube at time t = 0. The size of the initial slug of solute, 
I, determines how much therapeutic is released into regions of trapping or reflux. We 
expect slightly different solutions for different values of I when the Peclet number falls

5H( x ) denotes the heaviside function.
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and solute motion is dominated by peristaltic convection.
In the peristaltic dispersion model there are 5 key parameters. Prom peristalsis we 

obtained the amplitude of vibration a, the flow rate 'ipw, and the wave curvature e. In 
deriving a dispersion model we introduced the Peclet number Peh and the Damkohler 
number Dar• However, an important factor that also plays a role in the dispersion 
model is n, the number of wavelengths that make up the domain. We are interested 
in parameter ranges similar to those observed in the small intestine for the various 
therapeutics considered by Stoll et al. [73]. We discuss the choice of parameter values 
as follows.

Amplitude of Vibration, a
The peristaltic vibrations vary depending on the strength of the segmentation contrac
tions, from a slight deviation a = 0.1 to a = 0.4. Any longer and the solver takes a 
significantly larger time to solve the problem, and due to limited resources this becomes 
counterproductive. It is also unnecessary as we have shown in Figure 3-9 that large 
trapping also occurs at small wavelengths, and we can still observe large mixing for 
small amplitude of vibrations.

Wave Curvature Number, e
The wave number can be estimated to be «  0.1 using anatomical data [5], [73].

Flow Rate,
The movement of chyme in the small intestine is very slow [73]. We have estimated 
that the flow rate is about = —0.31 in §3.5.3 and this falls in the pumping range 
when we observe Figure 5-2. However, as the illeocecal sphincter opens, the pressure 
gradient is likely to move from a positive value to a negative value [47], so flow rate 
moves from the pumping range to the copumping range. The exact value at any par
ticular time is unknown and so we solve (5.1.5) for various values of small flow rate 

in the pumping and copumping zones to illustrate the effects of peristalsis on the 
solute concentration profile.

Number of Wavelengths, n
From literature the wavelength A ranges from 8  — 10 cm and the average length of the 
intestine is 285 cm [73]. Consequently, there are approximately n = 30 wavelengths 
across the length of the intestine. In fact we do not need to consider solving the model 
for so many wavelengths as 90% of most solute is absorbed in the first portion of the 
intestine, the duodenum [73] and very little ‘absorbable’ solute enters the ileum.
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Peclet Number, Peh
Both physical and physicochemcial properties of the therapeutic determine the solute 
Peclet number. We vary the Peclet number to similar fast and slow diffusing drugs, as 
we did in Chapter 4. Prom this we can examine the effects of the solute profile when 
it is driven by (i) peristalsis or (ii) diffusion.

Damkohler Number, Dar
Again the physicochemcial properties of the therapeutic and the permeability of the 
tubes wall affect the amount of absorption and the Damkohler number. As the Damkohler 
number increases, an increasing number of streamlines away from the wall containing 
solute are eroded. Hence by Lemma 3.8, as axial velocity is strictly decreasing in the 
radial direction, we can say that the effective velocity of the mean solute concentration 
will always increase for all cases of peristaltic flow with Q > 0. We do not consider 
varying the Damkohler number in this Chapter as we are already varying a number of 
parameters and we already know the effect of its variation on the mean solute concen
tration. We maintain Dar = 1 for all cases based on the therapeutic values observed 
in [73].

Unfortunately, we can not solve for just any range of parameter values. There are 
limits imposed not just by the numerical scheme but by the cpu. We are solving a 
DAE, using the method of lines to obtain the system of odes Me = Ac. The matrices 
have size J K  x J K  for J  = 200 grid points in the axial direction and K  = 50 in the 
radial direction. There are two factors that decide how large we can take J K , (i) the 
cpu’s memory and (ii) the cpu solve time. We solve the system using DASSL, a DAE 
solver for FORTRAN 90 on a unix machine.6

We require a sufficient number of grid points per wavelength to compute the peri
staltic flow accurately, An =  K/n .  Hence we we solve the model for just n = 10 
wavelengths. Although this falls short of the number of wavelengths in the intestine 
(«  30, we are interested in qualitative results rather than quantitative. The results 
of peristaltic convection of a solute over 1 0  wavelengths are sufficient to elucidate the 
behaviour of the solute.

Unfortunately the problem becomes increasingly stiff as the amplitude of vibration 
increases and the DAE solver is no longer able to solve the model effectively. Hence, 
with our current numerical scheme and solver we are limited so solving (5.1.5) for 
a  < 0.5. Similarly we restrict how long we solve the model for, and generally stop the 
computation long before solute exits the tube. We solve for just enough time to explain 
the observed behaviour of the solute concentration.

6The machine runs Redhat 9, and has an Intel 2.5 Pentium 4 processor with 1  gigabye of RAM.
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5.3 R esults of the 2D Peristaltic D ispersion M odel

In this section we numerically solve the 2D peristaltic dispersion model (5.1.5) with the 
2D Poiseuille dispersion model (5.1.8) for the five different types of peristaltic flow (see 
Figure 5-2) and compare the effects of peristaltic motion to Poiseuille flow on solute 
motion and absorption. We then vary the Peclet number to simulate solute motion 
driven by (i) diffusion (Per = 1 0 0  small) and (ii) peristaltic convection (Per = 1 0 0 0  

large). In the case of a highly diffusive drug, the mean solute concentration has a 
Gaussian profile and we apply our ID dispersion model algorithm to determine the 
effects of increased absorption on the mean velocity Ue for the different peristaltic 
flows. For each calculation we present the following,

1 . A plot of the mean solute concentration along the tube for the peristaltic case cpe 
(blue), its noise free case Cpe (green) and the Poiseuille case cpo (red), at various 
times with their corresponding ID dispersion model approximation Cpe (dashed 
blue lines), cpe (dashed red lines) respectively.

2. Contour plots of the solute concentration for the peristaltic and Poiseuille model 
at various times.

3. A plot of the cumulative amount of mass absorbed in time for the peristaltic 
model (blue) and Poiseuille model (red).

We note that the low pass filter (see §E.2 for description) is employed automatically 
as we need to solve for many examples. To do so we wrote a small program to find 
the oscillations in the fast Fourier transform of the mean solute concentration and to 
remove them. This program is not perfect at finding the oscillations and as such we 
obtain slight oscillations in the noise free solution at the inlet and outlet. However, it 
is where the concentration is nonzero that the filter works sufficiently to remove the 
noise. We further note that we output solutions at times that vary between cases, this 
is to elucidate peristaltic behaviour with the best three plots, e.g. every 2 ,4 , 8  periods 
for case B, but every 8,12,16 periods for case E.
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5.3.1 C ase A - Slow Flow

We solve the peristaltic dispersion model (5.1.5) for slow flow in case A when there is 
detached trapping and no reflux. We implement a small amplitude of vibration a = 0.1 
and numerically solve for two cases of a slow and fast diffusing solute, when the flow 
rate is i/)w = 0, which exhibits large trapping, 40.7%.

c

x X

(a) 2 Periods (b) 4 Periods (c) 6  Periods

Figure 5-3: Mean Solute Concentration for the Peristaltic Dispersion Model and the 
Poiseuille Dispersion Model, and their ID Dispersion Approximation with the the FFT 
of the Peristaltic Solution, for a Fast Diffusing Solute, Per =  100, when a = 0.1, tj>w = 0 
and Dar =  1 .

c

x x x
(a) 2 Periods (b) 4 Periods (c) 6  Periods

Figure 5-4: Mean Solute Concentration for the Peristaltic Dispersion Model and the 
Poiseuille Dispersion Model, and their ID Dispersion Approximation with the the FFT 
of the Peristaltic Solution, for A Slow Diffusing Solute, Per =  1000, when a = 0.1, 

= 0 and Dar = 1

In Figure 5-3, we clearly observe that for the fast diffusing solute the mean solute 
concentration of the peristaltic dispersion model cpe is essentially that of the Poiseuille 
dispersion model cpo plus some oscillatory term. The two means move approximately 
with the same effective velocity and exhibit the same effective dispersion. We confirm 
this with contour plots of the solute concentration profiles in Figures 5-7 and 5-8.
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As the level of diffusion decreases and convective fluxes dominate solute motion, we 
observe in Figure 5-4 that the amplitude of oscillations have increased in Cpe and the 
frequency of oscillations increases with time. It is clear that both means no longer move 
with a ID Gaussian profile. The head and rear of the solute profile for both models 
move essentially with the same speed, approximately the same amount of convective 
dispersion occurs but the convective speed of the slow diffusing drug is clearly much 
slower than of the fast diffusing drug.

In both cases of the diffusing solute, the amount of mass absorbed by peristalsis is 
much more than that of Poiseuille (see Figures 5-5, 5-6). We observe (i) most solute is 
absorbed at the entrance to the tube (ii) the amount of mass absorbed levels off with 
time, M(t) = t1 for smaller Peclet number, e.g. 7  is smaller for smaller Per.

(a) Location of Mass Absorbed at Final Time (b) Mass Absorbed Against Time

Figure 5-5: Mass Absorbed for the Peristaltic and Poiseuille Dispersion Models for a 
Fast Diffusing Solute, Per = 100, when a  = 0.1, tpw =  0 and Per = 1000, Dar = 1

MA

tx
(a) Location of Mass Absorbed at Final Time (b) Mass Absorbed Against Time

Figure 5-6: Mass Absorbed for the Peristaltic and Poiseuille Dispersion Models for a 
Slow Diffusing Solute, Per = 1000, when a = 0.1, xj)w =  0 and Per = 1000, Dar = 1
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f

X

(a) Peristaltic Contour Profile After 1 Period

f

X

(b) Peristaltic Contour Profile After 2 Periods

C

(c) Peristaltic Contour Profile After 3 Periods

(d) Peristaltic Contour Profile After 4 Periods

r
(e) Peristaltic Contour Profile After 5 Periods

c

(f) Peristaltic Contour Profile After 6  Periods

Figure 5-7: Peristaltic Contour Plots when ipw = 0, Per = 100, a = 0.1, Dar = 1

113



CHAPTER 5. THE PERISTALTIC DISPERSION MODEL 114

f

X

(a) Poiseuille Contour Profile After 1 Period

f C

(c) Poiseuille Contour Profile After 3 Periods

(d) Poiseuille Contour Profile After 4 Periods

(e) Poiseuille Contour Profile After 5 Periods

c

c

(f) Poiseuille Contour Profile After 6  Periods

Figure 5-8: Poiseuille Contour Plots when ipw =  0, Per =  100, a  =  0.1, Dar =  1
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(a) Peristaltic Contour Profile After 1 Period

(b) Peristaltic Contour Profile After 2 Periods

11!

■ • ■

i

* — mm
(c) Peristaltic Contour Profile After 3 Periods

(d) Peristaltic Contour Profile After 4 Periods

(e) Peristaltic Contour Profile After 5 Periods

c

c

c

(f) Peristaltic Contour Profile After 6  Periods 

Figure 5-9: Peristaltic Contour Plots when = 0, Per = 1000, a = 0.1, Dar = 1
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X

(a) Poiseuille Contour Profile After 1 Period

X

(b) Poiseuille Contour Profile After 2 Periods

X

(c) Poiseuille Contour Profile After 3 Periods

X

(d) Poiseuille Contour Profile After 4 Periods

X

(e) Poiseuille Contour Profile After 5 Periods

X

(f) Poiseuille Contour Profile After 6  Periods

Figure 5-10: Poiseuille Contour Plots when ipw =  0, Per =  1000, a  =  0.1, Da r 1
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5.3.2 C ase A - Fast Flow

We solve the peristaltic dispersion model (5.1.5) for fast flow in case A when there is 
detached trapping and no reflux. We implement a small amplitude of vibration a  =  0.1 
and numerically solve for two cases of a slow and fast diffusing solute, when the flow 
rate is =  1 which exhibits less trapping, namely 17.6%, than that of the slow flow 
case (40.7% in §5.3.1).

c

St.
X

(a) 1/2 Period (b) 1 Period (c) 2 Periods

Figure 5-11: Mean Solute Concentration for the Peristaltic Dispersion Model and the 
Poiseuille Dispersion Model, and their ID Dispersion Approximation with the the FFT 
of the Peristaltic Solution, for a Fast Diffusing Solute in Case A, Per =  100, when 
a  =  0.1, ij)w = 1 and Dar = 1.

c

o 10
X

(a) 1/2 Period (b) 1 Period (c) 2 Periods

Figure 5-12: Mean Solute Concentration for the Peristaltic Dispersion Model and the 
Poiseuille Dispersion Model, and their ID Dispersion Approximation with the the FFT 
of the Peristaltic Solution, for A Slow Diffusing Solute in Case A, Per =  1000, when 
a = 0.1, %j)w =  1 and Dar = 1

In Figure 5-11, we observe the same results as in the slow flow case for the fast dif
fusing solute. The mean solute concentration of the peristaltic dispersion model cpe is 
essentially that of the Poiseuille dispersion model Cp0 plus some oscillatory term. See 
Figures 5-15 and 5-16 for contour plots.
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Again, as the level of diffusion decreases and convective forces dominate solute 
motion, we observe in Figure 5-12 that the amplitude of oscillations have increased in 
cpe and the frequency of oscillations increases with time. However, this differs from 
that of the slow flow case as the amount of trapping has decreased, and the amplitude 
of oscillations is not so pronounced. We observe that cpe is approximately cpo plus some 
oscillatory term. See Figures 5-17 and 5-18 for contour plots.

Similar to the slow flow case, ipw = 0, the amount of mass absorbed by peristalsis 
is much more than that of Poiseuille for the fast and slow diffusing solute, see Figures 
5-13 and 5-14.

(a) Location of Mass Absorbed at Final Time (b) Mass Absorbed Against Time

Figure 5-13: Mass Absorbed for the Peristaltic and Poiseuille Dispersion Models for a 
Fast Diffusing Solute, Per = 100, when a = 0.1, ipw = 1 and Per = 1000, Dar = 1

tx
(a) Location of Mass Absorbed at Final Time (b) Mass Absorbed Against Time

Figure 5-14: Mass Absorbed for the Peristaltic and Poiseuille Dispersion Models for a 
Slow Diffusing Solute, Per = 1000, when a = 0.1, ipw =  1 and Per = 1000, Dar =  1
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X

(a) Peristaltic Contour Profile After 0.25 Periods

X

(b) Peristaltic Contour Profile After 0.5 Periods

X

(c) Peristaltic Contour Profile After 0.75 Periods

X

(d) Peristaltic Contour Profile After 1 Period

(e) Peristaltic Contour Profile After 1.25 Periods

(f) Peristaltic Contour Profile After 1.5 Periods

Figure 5-15: Peristaltic Contour Plots for Case A when =  1, Per =  100, a  = 0.1,
D ar =  1
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(a) Poiseuille Contour Profile After 0.25 Periods

(b) Poiseuille Contour Profile After 0.5 Periods

(c) Poiseuille Contour Profile After 0.75 Periods

(d) Poiseuille Contour Profile After 1 Period

(e) Poiseuille Contour Profile After 1.25 Periods

c

c

-*■ c

(f) Poiseuille Contour Profile After 1.5 Periods 

Figure 5-16: Poiseuille Contour Plots for Case A when =  1, Per = 100, a = 0.1,
D ar =  1

120



CHAPTER 5. THE PERISTALTIC DISPERSION MODEL 121

X

(a) Peristaltic Contour Profile After 0.25 Periods

X

(b) Peristaltic Contour Profile After 0.5 Periods

X

(c) Peristaltic Contour Profile After 0.75 Periods

(d) Peristaltic Contour Profile After 1  Period

(e) Peristaltic Contour Profile After 1.25 Periods

(f) Peristaltic Contour Profile After 1.5 Periods

Figure 5-17: Peristaltic Contour Plots for Case A when ij)w =  1, Per =  1000, a  =  0.1,
D ar =  1
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(a) Poiseuille Contour Profile After 0.25 Periods

(b) Poiseuille Contour Profile After 0.5 Periods

(c) Poiseuille Contour Profile After 0.75 Periods

(d) Poiseuille Contour Profile After 1 Period

(e) Poiseuille Contour Profile After 1.25 Periods

(f) Poiseuille Contour Profile After 1.5 Periods

Figure 5-18: Poiseuille Contour Plots for Case A when =  1, Per =  1000, a  =  0.1,
D ar =  1
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5.3.3 Case B - C entreline Trapping

We solve the peristaltic dispersion model (5.1.5) for case B of peristaltic flow, when 
there is centreline trapping, 36.6%, and no reflux. We implement a small amplitude 
of vibration a = 0.2 and numerically solve for two cases of a slow and fast diffusing 
solute.

c

X

(a) 2 Periods (b) 4 Periods (c) 8  Periods

Figure 5-19: Mean Solute Concentration for the Peristaltic Dispersion Model and the 
Poiseuille Dispersion Model, and their ID Dispersion Approximation with the the FFT 
of the Peristaltic Solution, for a Fast Diffusing Solute in Case B, Per = 100, when 
a = 0.2, xpw = —0.2 and Dar = 1.

r»-

2 •
XX

(a) 2 Periods (b) 4 Periods (c) 8  Periods

Figure 5-20: Mean Solute Concentration for the Peristaltic Dispersion Model and the 
Poiseuille Dispersion Model, and their ID Dispersion Approximation with the the FFT 
of the Peristaltic Solution, for A Slow Diffusing Solute in Case B, Per = 1000, when 
a = 0.2, rpw = -0.2 and Dar = 1

In Figures 5-19 5-20, we observe quite different results from that of the detached trap
ping case. Most striking is the advancement of the wave of the solute. Previously the 
head of the peristaltic wave has always coincided with Poiseuille wave. However, that 
is no longer the case in centreline trapping. This is more pronounced in the case of a 
slow diffusing solute. The head of the Poiseuille wave should move approximately with
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speed Uo = 2eV = e(4ij)w + l + a 2), which after 6  periods should occur just after x = 7.2 
if there were no diffusion. However, the head of the peristaltic wave is trapping which 
moves with speed of the wave which is one wavelength per period. Hence, we observe 
the head of the solute occurs around x = 6 . What is interesting is that in both the 
fast and slow diffusing solute the head of the peristaltic wave is very steep, and that 
diffusion does not appear to axially spread the solute forward of the waves head, as it 
did for the detached trapping case. Hence peristaltic centreline trapping retards solute 
motion.

Again in the fast diffusing case the mean solute concentration of the peristaltic 
dispersion model Cpe is similar to that of the Poiseuille dispersion model cpo plus some 
oscillatory term. Now for the case of the slow diffusing solute we observe a large 
oscillatory term but more importantly we notice the large amplitude of the wave at the 
head of the solute profile is decreasing in size with time with respect to the size of the 
other waves, suggesting that not all solute in further most trapped regions is advancing 
with the wave, and that it is in fact moving into circulating regions behind the leading 
wave (see Figures 5-26 5-25). We still observe enhanced absorption from peristalsis.

tx
(a) Location of Mass Absorbed at Final Time (b) Mass Absorbed Against Time

Figure 5-21: Mass Absorbed for the Peristaltic and Poiseuille Dispersion Models for a 
Fast Diffusing Solute, Per = 100, when a = 0.2, ipw = —0.2 and Per = 1000, Dar = 1

tx
(a) Location of Mass Absorbed at Final Time (b) Mass Absorbed Against Time

Figure 5-22: Mass Absorbed for the Peristaltic and Poiseuille Dispersion Models for a 
Slow Diffusing Solute, Per = 1000, when a = 0.2, = —0.2 and Per =  1000, Dar = 1
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X

(a) Peristaltic Contour Profile After 1 Period

X

(b) Peristaltic Contour Profile After 2 Periods

X

(c) Peristaltic Contour Profile After 3 Periods

100, a  =

x
(d) Peristaltic Contour Profile After 4 Periods

f

X

(e) Peristaltic Contour Profile After 5 Periods

f

X

(f) Peristaltic Contour Profile After 6  Periods 

Peristaltic Contour Plots for Case B when ipw = —0.2, Per =

125

Figure 5-23:
D ar =  1
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(a) Poiseuille Contour Profile After 1 Period

(b) Poiseuille Contour Profile After 2 Periods

(c) Poiseuille Contour Profile After 3 Periods

(d) Poiseuille Contour Profile After 4 Periods

(e) Poiseuille Contour Profile After 5 Periods

--- c

c

— c

— c

(f) Poiseuille Contour Profile After 6  Periods

Figure 5-24: Poiseuille Contour Plots for Case B when %j)w =  —0.2, Per =  100, a  =  0.2,
D ar =  1
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(a) Peristaltic Contour Profile After 1 Period

X

(c) Peristaltic Contour Profile After 3 Periods

jiimiiwi
X

(d) Peristaltic Contour Profile After 4 Periods

f

X

(b) Peristaltic Contour Profile After 2 Periods

X

(e) Peristaltic Contour Profile After 5 Periods

(f) Peristaltic Contour Profile After 6  Periods

Figure 5-25: Peristaltic Contour Plots for Case B when =  —0.2, Per =  1000,
a  =  0.2, Dar =  1
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a
(a) Poiseuille Contour Profile After 1 Period

(b) Poiseuille Contour Profile After 2 Periods

(c) Poiseuille Contour Profile After 3 Periods

(d) Poiseuille Contour Profile After 4 Periods

(e) Poiseuille Contour Profile After 5 Periods

>:

nbJ

—  c

(f) Poiseuille Contour Profile After 6  Periods

- 0 . 2 ,  P er =  1 0 0 0 ,  C t  =  0 . 2 ,
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Figure 5-26: Poiseuille Contour Plots for Case B when i[)w =
Dar =  1
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5.3.4 Case C - N o Trapping

We solve the peristaltic dispersion model (5.1.5) for case C of peristaltic flow where 
there are no peristaltic phenomena. We implement a small amplitude of vibration 
a = 0 . 2  and numerically solve for two cases of a slow and fast diffusing solute.

c

x x X

(a) 4 Periods (b) 8  Periods (c) 16 Periods

Figure 5-27: Mean Solute Concentration for the Peristaltic Dispersion Model and the 
Poiseuille Dispersion Model, and their ID Dispersion Approximation with the the FFT 
of the Peristaltic Solution, for a Fast Diffusing Solute in Case C, Per = 100, when 
a = 0 .1 , ipw = —0.38 and Dar — 1.

c

0V
X X

(a) 4 Periods (b) 8  Periods (c) 16 Periods

Figure 5-28: Mean Solute Concentration for the Peristaltic Dispersion Model and the 
Poiseuille Dispersion Model, and their ID Dispersion Approximation with the the FFT 
of the Peristaltic Solution, for A Slow Diffusing Solute in Case C, Per = 1000, when 
a = 0.1, %j)w = —0.38 and Dar = 1

In case C there is no trapping and as such we do not observe a large oscillatory compo
nent on the mean solute concentration for the slow diffusing solute (see Figure 5-28). 
The oscillations occur as a result of the nonuniform axial velocity profile induced by 
peristalsis. The weak oscillatory term is removed for small Peclet number (see Figure 
5-27) and the mean solute profiles for the two models, Cpe and cpo, are almost identical. 

We continue to observe peristalsis is responsible for more absorption of solute when
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compared to Poiseuille flow. This is because solute need not travel as far to the bound
ary at points of contraction. Consequently, peristalsis at any amplitude of vibration 
will always result in increased absorption.

tx
(a) Location of Mass Absorbed at Final Time (b) Mass Absorbed Against Time

Figure 5-29: Mass Absorbed for the Peristaltic and Poiseuille Dispersion Models for a 
Fast Diffusing Solute, Per =  100, when a = 0.1, \j)w =  —0.38 and Per =  1000, Dar = 1

tx
(a) Location of Mass Absorbed at Final Time (b) Mass Absorbed Against Time

Figure 5-30: Mass Absorbed for the Peristaltic and Poiseuille Dispersion Models for a 
Slow Diffusing Solute, Per = 1000, when a  = 0.1, =  —0.38 and Per = 1000, Dar = 1
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n

(a) Peristaltic Contour Profile After 2 Period

(b) Peristaltic Contour Profile After 4 Periods

(c) Peristaltic Contour Profile After 6  Periods

(d) Peristaltic Contour Profile After 8  Periods

(e) Peristaltic Contour Profile After 10 Periods

c

— c

c

.. c

(f) Peristaltic Contour Profile After 12 Periods

Figure 5-31: Peristaltic Contour Plots for Case C when \J)W =  —0.38, Per =  100,
a =  0.1, Dar =  1
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(a) Poiseuille Contour Profile After 2 Period

X

(b) Poiseuille Contour Profile After 4 Periods

X

(c) Poiseuille Contour Profile After 6  Periods

(d) Poiseuille Contour Profile After 8  Periods

(e) Poiseuille Contour Profile After 10 Periods

(f) Poiseuille Contour Profile After 12 Periods

Figure 5-32: Poiseuille Contour Plots for Case C when —0.38, 100, 0.1,
D a  r  =  1
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x
(a) Peristaltic Contour Profile After 2 Period

X

(b) Peristaltic Contour Profile After 4 Periods

X

(c) Peristaltic Contour Profile After 6  Periods

X

(d) Peristaltic Contour Profile After 8  Periods

f

X

(e) Peristaltic Contour Profile After 10 Periods

c

= 1000,

x
(f) Peristaltic Contour Profile After 12 Periods

Figure 5-33: Peristaltic Contour Plots for Case C when ij)w =  —0.38, Per
a =  0.1, Dar =  1
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(a) Poiseuille Contour Profile After 2 Period

(b) Poiseuille Contour Profile After 4 Periods

(c) Poiseuille Contour Profile After 6  Periods

(d) Poiseuille Contour Profile After 8  Periods

I

(e) Poiseuille Contour Profile After 10 Periods

(f) Poiseuille Contour Profile After 12 Periods

Figure 5-34: Poiseuille Contour Plots for Case C when ipw =  —0.38, Per =  1000,
a  =  0.1, Dar =  1
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5.3.5 Case D - N o Trapping, R eflux

We solve the peristaltic dispersion model (5.1.5) for case D of peristaltic flow where 
there is mild reflux. We implement an amplitude of vibration a =  0.3 and a flow rate 
tyw — —0.43 and numerically solve for two cases of a slow and fast diffusing solute when 
the solute is initially placed one wavelength into the domain. This is so that we can 
observe the effects of reflux.

c

X
I

(a) 4 Periods (b) 6  Periods (c) 8  Periods

Figure 5-35: Mean Solute Concentration for the Peristaltic Dispersion Model and the 
Poiseuille Dispersion Model, and their ID Dispersion Approximation with the the FFT 
of the Peristaltic Solution, for a Fast Diffusing Solute in Case D, Per = 100, when 
a = 0.3, ipw = —0.43 and Dar = 1.

c

4.
X X X

(a) 4 Periods (b) 6  Periods (c) 8  Periods

Figure 5-36: Mean Solute Concentration for the Peristaltic Dispersion Model and the 
Poiseuille Dispersion Model, and their ID Dispersion Approximation with the the FFT 
of the Peristaltic Solution, for A Slow Diffusing Solute in Case D, Per = 1000, when 
a = 0.3, ipw = —0.43 and Dar = 1

In case D we have reflux and as such we expect some solute to make its way back 
towards the inlet. In Figure 5-35, the fast diffusing solute, we observe the effect of 
reflux in the peristaltic mean concentration cpe which has a larger effective dispersion 
when compared to that from Poiseuille flow cpo, and a slower effective convection speed.
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For the slow diffusing solute, see Figure 5-36, the effects of reflux are even more apparent 
as convection forces dominate. We observe the Poiseuille mean cpo convects solute only 
forwards, there is negligible solute at x < 1. However, solute in the peristaltic flow 
slowly creeps backwards and suffers from an oscillatory component. As a result of the 
this particular peristaltic flow, the noise free mean Cpe, looks very dissimilar to the 
Poiseuille mean independent of the Peclet number.

What is most interesting is the greater absorption of solute from the peristaltic 
flow than observed in the Poiseuille flow. Case C only exhibited a mild increase in 
absorption from peristalsis. The only difference between the two cases is that case D 
exhibits reflux, which is responsible for solute absorption at x < 1, see Figure 5-38(a). 
However, the fact is that the amplitude of vibration in case D, a  =  0.3, when compared 
to case C, a = 0.1, is responsible for the large increase in absorption as solute need 
travel less to move to the boundary (see §3.6.9 where we observed a greater radial mean 
q for tracer particles as a  increases). Solving for case D takes a long time and requires 
a large number of time steps. This is why we have only solved for 8 periods.

tx
(a) Location of Mass Absorbed at Final Time (b) Mass Absorbed Against Time

Figure 5-37: Mass Absorbed for the Peristaltic and Poiseuille Dispersion Models for a 
Fast Diffusing Solute, Per = 100, when a = 0.3, ipw = —0.43 and Per = 1000, Dar = 1

tx
(a) Location of Mass Absorbed at Final Time (b) Mass Absorbed Against Time

Figure 5-38: Mass Absorbed for the Peristaltic and Poiseuille Dispersion Models for a 
Slow Diffusing Solute, Per — 1000, when a — 0.3, =  —0.43 and Per = 1000, Dar = 1

136



CHAPTER 5. THE PERISTALTIC DISPERSION MODEL 137

»
X

(a) Peristaltic Contour Profile After 1 Period

X

(b) Peristaltic Contour Profile After 2 Periods

X

(c) Peristaltic Contour Profile After 3 Periods

I H H  g
(d) Peristaltic Contour Profile After 4 Periods

(e) Peristaltic Contour Profile After 5 Periods

— c

(f) Peristaltic Contour Profile After 6  Periods

Figure 5-39: Peristaltic Contour Plots for Case D when =  —0.43, Per =  100,
ct =  0.3, Dar =  1
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(a) Poiseuille Contour Profile After 1 Period

I
(b) Poiseuille Contour Profile After 2 Periods

— c

(c) Poiseuille Contour Profile After 3 Periods

r

(d) Poiseuille Contour Profile After 4 Periods

(e) Poiseuille Contour Profile After 5 Periods

c

(f) Poiseuille Contour Profile After 6  Periods

Figure 5-40: Poiseuille Contour Plots for Case D when =  —0.43, Per =  100, a =  0.3,
Dar =  1
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(a) Peristaltic Contour Profile After 1 Period

(b) Peristaltic Contour Profile After 2 Periods

(c) Peristaltic Contour Profile After 3 Periods

(d) Peristaltic Contour Profile After 4 Periods

(e) Peristaltic Contour Profile After 5 Periods
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(f) Peristaltic Contour Profile After 6  Periods

Figure 5-41: Peristaltic Contour Plots for Case D when ipw =  —0.43, Per =  1000,
a =  0.3, Dar =  1
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(a) Poiseuille Contour Profile After 1 Period

(b) Poiseuille Contour Profile After 2 Periods

(c) Poiseuille Contour Profile After 3 Periods

(d) Poiseuille Contour Profile After 4 Periods

(e) Poiseuille Contour Profile After 5 Periods

(f) Poiseuille Contour Profile After 6  Periods
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 c

Figure 5-42: Poiseuille Contour Plots for Case D when ij)w =  —0.43, Per = 1000,
a  = 0.3, Dar =  1
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5.3 .6  Case E - Trapping and R eflux

We solve the peristaltic dispersion model (5.1.5) for case E of peristaltic flow where 
there is reflux and trapping, 24%. We implement an amplitude of vibration a = 0.4 and 
a flow rate xjtw = —0.3 and numerically solve for two cases of a slow and fast diffusing 
solute when the solute is initially placed one wavelength into the domain, again to 
observe the effects of reflux.

c

(a) 4 Periods (b) 6  Periods (c) 8  Periods

Figure 5-43: Mean Solute Concentration for the Peristaltic Dispersion Model and the 
Poiseuille Dispersion Model, and their ID Dispersion Approximation with the the FFT 
of the Peristaltic Solution, for a Fast Diffusing Solute in Case E, Per — 100, when 
a  = 0.4, iftw = —0.3 and Dar = 1.

c

(a) 4 Periods (b) 6  Periods (c) 8  Periods

Figure 5-44: Mean Solute Concentration for the Peristaltic Dispersion Model and the 
Poiseuille Dispersion Model, and their ID Dispersion Approximation with the the FFT 
of the Peristaltic Solution, for A Slow Diffusing Solute in Case E, Per = 1000, when 
a  = 0.4, \j)w = —0.3 and Dar =  1

Our results of case E are very interesting. The mean solute concentrations are very 
dissimilar. This case exhibits centreline trapping which we have shown is responsi
ble for retarding solute motion. We observe the same effects here. Poiseuille flow is 
convecting solute faster than peristalsis, see Figures 5-43-5-44. This is perhaps even
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more pronounced because reflux is also occurring. However, as the solute is able to 
diffuse it appears trapping dominates reflux and we observe very little solute convecting 
backwards to x < 1 (this is very different from the particle paths see Figure 3-17 ).

For the fast diffusing solute, the filter reveals a Gaussian like profile but the oscil
lations in the mean cpe have prevented the ID dispersion algorithm from applying a 
best fit curve. When convection forces dominate, Per = 1000, the shape of the mean 
solute concentrations are extremely different. Peristaltic flow in case E is not at all 
Poiseuille like. Again we observe more solute is absorbed in the peristaltic flow, see 
Figures 5-45, 5-46. We note the slightly larger concentration in cpe when compared to 
cpo, this may be a result of numerical error where the solver needed more time steps 
to yield an accurate solution. However, the effects of peristalsis are non the less still 
observed.

M a

tx
(a) Location of Mass Absorbed at Final Time (b) Mass Absorbed Against Time

Figure 5-45: Mass Absorbed for the Peristaltic and Poiseuille Dispersion Models for a 
Fast Diffusing Solute, Per = 100, when a =  0.4, = —0.3 and Per = 1000, Dar = 1

M x

tx
(a) Location of Mass Absorbed at Final Time (b) Mass Absorbed Against Time

Figure 5-46: Mass Absorbed for the Peristaltic and Poiseuille Dispersion Models for a 
Slow Diffusing Solute, Per = 1000, when a =  0.4, ipw = —0.3 and Per = 1000, Dar =  1
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r
(a) Peristaltic Contour Profile After 1 Period

(b) Peristaltic Contour Profile After 2 Periods

(c) Peristaltic Contour Profile After 3 Periods

(d) Peristaltic Contour Profile After 4 Periods

(e) Peristaltic Contour Profile After 5 Periods

—  c

-• c

c

c

c

(f) Peristaltic Contour Profile After 6  Periods 

Figure 5-47: Peristaltic Contour Plots for Case E when \j)w = —0.3, Per = 100, a = 0.4,
D ar =  1



CHAPTER 5. THE PERISTALTIC DISPERSION MODEL 144

X

(a) Poiseuille Contour Profile After 1 Period

X

(b) Poiseuille Contour Profile After 2 Periods

X

(c) Poiseuille Contour Profile After 3 Periods

X

(d) Poiseuille Contour Profile After 4 Periods

X

(e) Poiseuille Contour Profile After 5 Periods

X

(f) Poiseuille Contour Profile After 6  Periods

Figure 5-48: Poiseuille Contour Plots for Case E when ipw =  —0.3, Per =  100, a  =  0.4,
D a r =  1
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X

(a) Peristaltic Contour Profile After 1 Period

R V I  ... 9VW W W W  W W  ▼ ▼ ▼ !
(b) Peristaltic Contour Profile After 2 Periods

X

(c) Peristaltic Contour Profile After 3 Periods

r ^ V ^ T T T V T T l  ■
c

(d) Peristaltic Contour Profile After 4 Periods

F f ' #/ v v  ? T ? T T ^  ■
x

(e) Peristaltic Contour Profile After 5 Periods

X

(f) Peristaltic Contour Profile After 6  Periods

Figure 5-49: Peristaltic Contour Plots for Case E when ij)w =  -0.3, Per = 1000,
a  =  0.4, Dar =  1
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(a) Poiseuille Contour Profile After 1 Period

(b) Poiseuille Contour Profile After 2 Periods

(c) Poiseuille Contour Profile After 3 Periods

(d) Poiseuille Contour Profile After 4 Periods

(e) Poiseuille Contour Profile After 5 Periods

.... c

c

(f) Poiseuille Contour Profile After 6  Periods 

Figure 5-50: Poiseuille Contour Plots for Case E when ij)w =  —0.3, Per = 1000, a  = 0.4,
D ar  =  1
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5.4 D iscussion of the Behaviour of Solute M otion under 
Peristaltic Flow with Application to  the Intestine

The effects of peristalsis on solute motion have been studied and compared to that of 
Poiseuille flow and the effects are fascinating. Our first observation is the oscillations 
on the peristalsis mean solute profile Cpe. These oscillations are dampened for faster 
diffusing solutes (low Peclet number) as the radial inhomogeneities are removed by 
faster radial motion from diffusion. We also observe the effect of the Peclet number on 
the mass of solute in the domain. The smaller the diffusion the more solute is convected 
out of the tube from the fast streamlines at the centre of the tube. This is not the case 
for a fast diffusing solute which remains in the tube for longer as the solute samples 
fast and slow streamlines and moves as a whole with an effective velocity less than that 
of the fast moving streamlines at the centreline.

In general, for small Peclet number the mean solute concentration for peristaltic 
model and the Poiseuille model are (i) approximately the same, Cpe «  cpo, and (ii) have 
a Gaussian profile that is effectively captured by the ID dispersion model algorithm. 
This is not the case for larger Peclet number where both models do not take Gaussian 
shape. However, the mean solute concentrations can be shown to be similar for specific 
cases of peristaltic flow.

When trapping is negligible, as seen in case A for high flow rates (as predicted by 
our analysis in the Peristalsis Chapter 3), then

Cpe ~  Cpo +  oscillatory term,

where the oscillatory term can be removed using a low pass filter (see Appendix §E.2) 
so that

Cpe ~  Cpo-

When trapping is prominent, the noise free solution of the peristaltic mean solute 
concentration does not look like that from Poiseuille flow

Cpe 7̂  Cpoi

as trapping has greatly distorted the flow of the solute.
We observe that centreline trapping is responsible for retarding the overall motion 

of the solute when compared to Poiseuille flow and appears to convect solute motion 
backwards into circulating regions behind the leading wave. We believe that solute in 
trapping is circulated around and is brought closer to the slow streamlines surrounding 
the bolus. At this point the solute diffuses into the slower streamlines and it eventually 
diffuses back into the fast streamlines at a later time where it enters a circulating region 
behind the leading wave. Not only does peristalsis aid absorption by bringing solute
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closer to the membrane, but also in retarding the advance of the solute, keeping solute 
in the tube for longer when compared to Poiseuille flow.

In the intestine, enzymes are released at the membrane to break down the chyme 
for absorption [75]. Hence peristalsis is an efficient means to (i) mix the enzymes with 
the chyme, (ii) bring solute closer to the membrane to be absorbed and (iii) retard 
the advance of the solute to allow the enzymes sufficient time to work and then bring 
solute to the wall where absorption is site specific.

5.5 Weak Peristaltic Forces: A Superim posed Oscillatory  
Profile in the M ean Solute Concentration

It has been shown that oscillations in the mean solute profile are a byproduct of the 
peristaltic flow. Solute is convected by either i) trapping or ii) parabolic flow. The 
former is a key feature of peristalsis suggesting that the cross-sectional average is dom
inated by convection through trapping and peristalsis presents itself at leading order 
in the mean concentration c = cpe. However, in copumping where there are regions 
of small trapping from high flow rates, flow is dominated by parabolic velocities seen 
in laminar flow and less by the effects of peristalsis (Lemma 3.6). Hence we hypothe
sised the peristaltic mean solute concentration profile is the mean solute concentration 
profile from Poiseuille flow plus some contribution from peristalsis.

Let us consider the peristaltic velocities u, v. For small amplitude of vibration we 
can simplify the reciprocal of the boundary function f ~ n for small n, so that

1 1
1 — na  cos(2irx) + 0 ( a 2)

f n ( x ) (1 +  a  cos(27t£))

using a binomial series. Hence we can reduce the peristaltic velocities u, v to Poiseuille 
flow at leading order plus a peristaltic term at 0 ( a ):

u = 4A(x)r2 -I- 2B(x)

=  4 ( _ ^ _ _ L ) r 2 +  2 ( ^  + i )
V f 4 V 2 )  \ P  V

4 ( —ifrw (1 — 4c«cos(27r£)) — I  (1 — 2acos(27rx)H r2 +  2 (2tpw (1 — 2acos(2jr®)) +  I

4 (~ ipw -  i )  r2 +  (ii>w +  l ) )  +  acos(2nx)  (4 ( 4^  +  l )  f 2 -  8)

^po(^) +  o:cos(27rx)upe(r),

(5.5.
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V —A'(x)r3 — B'{x)r

sin(27nr) (2ir ^4$ w -  l )  r 3 +  4 ^ ^

sin(27r£)vpe (r) +  0 ( a 2).

Hence, the 2D ‘simplified peristaltic’ dispersion model is given by

up to 0 ( a 2) for small peristaltic amplitude of vibration a. The peristaltic dispersion
model has been simplified and now neglects the effects of trapping from the simplifi
cation of the peristaltic velocities. When a = 0, it is quite clear that this problem 
reduces to the 2D Poiseuille dispersion model.

This model is similar to the spreading of heat or soluble surfactant along a thin

solute concentration plus a small fluctuation term. In our case the solute concentration 
takes the form

c (x ,f , t)  = CpoOM) + a c i(x , f , t) ,  

where the cross sectional average of the fluctuation is zero

f 2 ( x , t )

subject for further investigation.

5.6 Comparing Peristaltic Dispersion w ith Poiseuille Flow  
with Enhanced Diffusion

In the previous section we have shown that for high flow rates peristalsis appears as 
an oscillatory component that can be removed by applying a high pass filter to obtain 
a cleaner mean solute concentration profile similar to that of the Poiseuille dispersion 
model. In this section we test the validity of the claim by Stoll et al. that peristaltic 
motion of a solute can be effectively represented by Poiseuille flow plus some enhanced

liquid film seen in Jensen et al. [43]. In this paper, Jensen et al. applied asymptotic 
analysis to reduce a 2D channel dispersion model in a domain bounded by a function 
h (x ,t) like ours and showed the concentration profile can be written in terms of a mean

Ideally we would like to use the analysis from Jensen et al. to find the asymptotic form 
for the peristaltic model. This is beyond the scope of this thesis and would be a useful
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diffusion.
We take an arbitrary case where peristalsis exhibits circulating regions much like 

the recirculating regions suggested by Stoll et al. [73] in his derivation of the enhanced 
diffusion formula (§4.4.5). We consider a slow diffusing solute Peh = 1000 in peristaltic 
flow case B where there is centreline trapping, the flow conditions of which given by 
a = 0.2, = —0.2. We solve the peristaltic dispersion model for the mean solute
concentration and clear up the noise to obtain Cpe. We then solve the Poiseuille disper
sion model for Peh =  1 0 0 0  and subsequently for Peh = 1 0 0 , 1 0  to represent increased 
diffusion. We obtain the following solution.

c

(a) 2 Periods (b) 4 Periods (c) 8  Periods

Figure 5-51: The Mean Solute Concentration for the Peristaltic Dispersion Model and 
the Poiseuille Dispersion Model with Enhanced Diffusion.

It has become quite clear that from increasing diffusion, we have only helped to 
enhance axial diffusion and make the Poiseuille solute profile take Gaussian profile 
which looks nothing like the cleaner peristaltic profile. Tests have shown that this is 
true for other cases of peristaltic flow. Peristaltic flow is just too complex to model it 
by only enhanced diffusion. The effects of trapping slow the effective convection of the 
mean concentration but enhanced diffusion acts to increase it. In most examples we 
have shown peristalsis increases absorption but the amounts are quite similar. In the 
next section we consider the effects of peristalsis on a more realistic radially nonuniform 
initial condition.

5.6.1 Enhanced A bsorption  by P eristalsis

In all our examples of the 2D dispersion models we have placed an initial amount 
of solute at the entrance of the domain, that occupies a very thin region. In reality 
the initial conditions are not so uniform. We experiment with the case of a radially 
nonuniform slug initial condition modelled by

c(x, f, 0) = 1000 (H(x) -  H(x -  ( f f  (f) )  •
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This initial condition is a step function in the radial direction of the original initial 
condition. It represents a solute placed at the centre of entrance to the tube. As a result 
we obtain very different mean solute concentration profiles for both the peristalsis and 
Poiseuille model when for the slow diffusing drug Peh = 1000. We observe the effects of

s
X

(a) 2 Periods (b) 4 Periods (c) 8  Periods

Figure 5-52: Solute Mean Concentration for the Peristaltic and Poiseuille Diffusion 
Model for a Radially Nonuniform Initial Condition.

retardation on the peristalsis mean solute concentration (see also Figures 5-55, 5-54). 
We now look at the amount of mass absorbed and its location.

x t
(a) A Plot of Mass Absorbed Against Loca- (b) A Plot of Mass Absorbed Against time, 
tion after 4 periods

Figure 5-53: Mass Absorbed for the Peristaltic and Poiseuille Diffusion Model for a 
Radially Nonuniform Initial Condition.

In Figure (5-53) it is quite obvious more mass has been absorbed in the peristaltic 
case, and much of it is located towards the entrance of the tube as opposed to the 
Poiseuille model. This shows that trapping enhances mixing, increases absorption and 
slows solute flow down. Hence more solute is absorbed at the entrance to the tube 
corresponding our initial findings.
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(a) Peristaltic Contour Profile After 1 Period

(b) Peristaltic Contour Profile After 2 Periods

(c) Peristaltic Contour Profile After 3 Periods

(d) Peristaltic Contour Profile After 4 Periods

c

at

(e) Peristaltic Contour Profile After 5 Periods

I" c

n " c

X

(f) Peristaltic Contour Profile After 6  Periods

Figure 5-54: Peristaltic Contour Plots for Radially Non-Uniform Initial Condition for
Case B when %j)w = -0.2, Per =  100, a  =  0.2, Dar =  1
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. c

: c

(a) Poiseuille Contour Profile After 1 Period

(b) Poiseuille Contour Profile After 2 Periods

c) Poiseuille Contour Profile After 3 Periods

(d) Poiseuille Contour Profile After 4 Periods

c

— c

(e) Poiseuille Contour Profile After 5 Periods

(f) Poiseuille Contour Profile After 6  Periods

— c

Figure 5-55: Poiseuille Contour Plots for Radially Non-Uniform Initial Condition for
Case B when %j)w =  -0.2, Per =  100, a  =  0.2, Dar = 1
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5.7 Summary

In this Chapter we have applied the derived semi-analytic peristaltic velocities to lead
ing order into a 2D dispersion model, to model solute in a tube with flow induced by the 
pressure gradient and the peristaltic waves. The complex nature of this model meant 
we had to solve the solute concentration profile numerically. Unlike the Poiseuille model 
the peristaltic model has a number of restrictions imposed by the peristaltic velocities, 
(i) the wave curvature must be small e < 0 . 2  for the leading order peristaltic velocities 
to be a suitable representation of the flow, (ii) the domain size must be an integral 
number of wavelengths and (iii) peristalsis induces negative velocities which means the 
numerical scheme must be altered (see numerics Chapter). As a result of computing 
time, memory and the stiffness of the model we can only solve the peristaltic dispersion 
model for (i) small amplitude ratios a  < 0.5 and (ii) a limited number of wavelengths 
n = 1 0  to optimise mesh size.

We solved the peristaltic dispersion model and the Poiseuille dispersion model si
multaneously for the same flow and solute parameters for the different types of peri
staltic flow. We showed for slow diffusing therapeutics the peristaltic convective forces 
dominate and the mean solute concentration exhibits an oscillatory component. These 
oscillations die down for faster diffusing solutes and Cpe «  Cp0 tend to a Gaussian profile, 
which can be modelled numerically by a ID dispersion model.

When there is little trapping we show that the peristaltic mean concentration is 
approximately that of the Poiseuille model plus some oscillatory component which can 
be removed by a high pass filter to show that cpe «  cpo. Some analysis was applied 
by Jensen et al. [43] on a similar problem to show thin film motion exhibited an 
oscillatory component. We derived a simpler peristaltic model on which the analysis of 
Jensen et al. could be applied to derive the oscillatory component explicitly for future 
work. However, when trapping is significant it is not possible to filter the cpe for Cp0 as 
trapping alters the flow so that fluid motion is no longer mostly Poiseuille-like.

We showed that for centreline trapping the flow of the solute is retarded and it 
‘appears’ that solute moves into circulating regions behind the leading wave. This is 
responsible for (i) greater absorption as solute is left in the tube for longer and moved 
closer to the boundary and also for (ii) the large amount of absorption occurring earlier 
in the tube not seen in the Poiseuille model.

We tested the theory from Stoll et al. that peristalsis could be modelled by the 
Poiseuille dispersion model plus some enhanced diffusion. We compared the mean so
lute concentration of the noise free peristaltic dispersion model, cpe with the mean 
concentration from the Poiseuille model for decreasing Peclet number to simulate en
hanced diffusion cpo. Observations of the effects of enhanced diffusion were (i) the mean 
solute concentration Cp0 looked increasingly like a Gaussian profile which Cpe does not 
and (ii) the mean speed of Cp0 was increased, convecting solute further down the tube
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than seen in Cpe.
Finally for a radially varying initial condition, we showed more clearly that more 

solute is absorbed in a peristaltic flow than in a Poiseuille flow as trapping convects 
solute to the boundary and that more absorption occurs in peristalsis at the entrance 
to the tube than in the Poiseuille model.

Essentially peristalsis is an efficient means to mix the enzymes from the membrane 
and enhance absorption. The effects of which are too complicated to be modelled 
simply by an averaged formula.
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Chapter 6

N um erical M ethods for the Fluid  
Flow and for the D ispersion  
M odels

In this Chapter we set up the numerical methods used to solve the ID and 2D dispersion 
models derived in the previous Chapters. We discretise these differential algebraic 
equations in space using finite difference operators on a non-uniform mesh and apply 
the method of lines to solve the resulting system of odes M(c)c' = g(t, x, c , . . . ) .  This 
uses the stiff solvers odel5s in Matlab or dassl in Fortran. In order to compare the 
full 2D Poiseuille dispersion model (4.4.2) and its ID asymptotic equation (4.4.9) it is 
very important that the numerical results we obtain are accurate. Hence, we test the 
general accuracy of our finite difference numerical schemes for similar equations with 
known solutions.

For the ID therapeutic model we try to reduce numerical dispersion that arises from 
applying upwinding on the convection term. We compare the known solution of the 
model with the numerical solution when applying the following schemes a) standard 
upwinding, b) diffusion transformation and c) a moving mesh pde. We show that 
the diffusion transformation is the most accurate but is only applicable for uniform 
absorption. However, in the intestine absorption is nonuniform and the transformation 
is not possible. Hence a moving mesh approach is likely to provide the greatest accuracy 
in this case.

When considering the full 2D Poiseuille model (4.4.2) we solve the system of odes 
using Fortran 95 which integrates the DAEs at a fraction of time compared to Matlab. 
For slowly diffusing compounds there is a steep concentration gradient at the peristaltic 
boundary and for increased accuracy we locate more grid points at the membrane to 
capture the boundary layer. This is important as the measurement of mass absorbed 
is taken directly from the solute concentration at the boundary which must be solved
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for as accurate as possible with our chosen numerical scheme.
In the peristaltic dispersion model (5.1.5) the peristaltic velocity profiles can be 

found 1) analytically from the perturbation expansion (3.4.1) or 2) from solving the 
biharmonic equations numerically (see Appendix §E). We then transform the peristaltic 
solute model to a rectangular domain and discretise the equations with finite difference 
operators. We subsequently input the rectangular domain velocities into the dispersion 
model (5.1.5) and solve it numerically in Fortran. It is necessary to apply an alternating 
upwind/downwind method for the axial convection term that depends on the sign of 
the peristaltic velocities.

6.1 Num erically Solving the ID  Dispersion M odel

We consider the ID asymptotic convection diffusion reaction (4.4.9), introduced by 
Stoll et al. [73], for the asymptotic long time reduction of the 2D Poiseuille dispersion 
model (4.4.2). After a sufficient amount of time, solute concentration c(x ,t) in a tube 
in the axial direction x  may be modelled by the dimensionless equation

q  +  UeCx = DeCxx ~ K ec, t > 0 , 0  < x  < 1 , (6 .1 .1 )

where it is assumed the solute moves with effective velocity C/e, an effective dispersion 
De and is removed from the tube at an effective absorption rate K e (see Chapter 4). 
This pde may be solved for two cases of drug transport where the case determines the 
type of initial and boundary conditions we must apply. We consider:

• An Initial Amount of Solute is Placed in the Tube.

Initial Condition: c(x, 0) =  <f)(x), 0 < x < 1,
Boundary Conditions: c(0, t)x = c(l,t)x  =  0, t > 0.

The Neumann boundary conditions imply that the convection forces dominate 
over diffusion at the boundaries [73]. For the problem to be well posed in our 
numerical scheme (6.1.1), it is necessary to additionally prescribe a zero Dirichlet 
boundary condition at the inlet, c(0 , t) =  0  for t > 0  to prevent numerical scheme 
errors at the boundary (6 .1 .2 ).

• A maintained source of therapeutic at the entrance.

Initial Condition: c(x,0) =  0 0 < x < 1
Boundary conditions: c(0, t) = co,c(l,t)x =  0, t > 0

In this case a constant amount of solute is being released into an initially solute 
free tube.
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Analytical solutions may be be found for the case where a slug of solute is introduced, 
in terms of an infinite Fourier series. However, for simplicity we test our numerical 
scheme for a simpler known solution in the case of a maintained source.

6.1 .1  D iscretis in g  th e  ID  D isp ersion  E quation  on a U niform  M esh

We discretise (6.1.1) on a uniform mesh by using finite difference operations. Let 
0 < t < T  and 0 < x  < 1 and consider a uniform spatial step A x  = 1 / J  for given J. 
We denote the numerical approximation of the concentration c(x j,tn) at a meshpoint 
by c” where (Xj,in) = ( jAx, nAt)  for j  =  0,1, . . . ,  J,  n = 0,1 , . . . ,  N. We define the 
following notation for the finite difference operators as in [58]:

Upwinding: A - Xc{x,t) := c(x, t) — c(x — Ax, t),
Downwinding: A +Xc(x,t) := c(x +  Ax, i) — c(x,t),
Central Difference: AoXc(x, t) := ^ (c(x +  Ax, t) — c(x — Ax, t)) ,
2nd Order Central Difference: 6%c(x, t) := c(x + Ax, t) — 2c(x, t) +  c(x — Ax, t).

Since flow is constant in the positive direction we apply upwinding on the convection 
term to prevent spurious oscillations in the numerical solution [58]. We also apply the 
second order centered difference operator to the diffusive term. Hence equation (6.1.1) 
is reduced to a discretised system of J  odes:

ci,j = -U ,
A —x Cj

A x
421
A x 2

AeCj, Vj — (6 .1 .2 )

that satisfy the linear system C£ = Ac for column vectors ĉ , c €! R(,/+1)xl and tridi
agonal matrix A  € r(-7+1)x(</+1). The interior tridiagonal entries of A  correspond to 
interior grid points

Ue . De Ce   2De   De
A x  A i2’ A x  A x 2 e’ A x 2 Vi =  1 , 1 .

At the outlet, we introduce a fictitious grid point c j+ 2 outside the grid, known as 
a ghost point, so that the prescribed Neumann boundary condition can be given in 
discretised form by

A. — t  . .  r ,  m

(6.1.3)
A x  2Ax

The ghost point satisfies c j+ 2 =  cj  so that (6.1.2) at the outlet satisfies

[ A /+ i ,j , A / + i ,j + i ] =
2DP 2 Df
A x 2 ’ A x 2

- K P

It is only left to prescribe (6.1.2) at the inlet, however, depending on the choice of 
finite difference we may obtain an ill posed problem. We discuss this issue in §6.1.2.
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For the moment we have derived the standard finite difference approach to solving 
a convective dispersive equation by the method of lines. However, for sharp wave 
fronts seen in convective dominating systems, e.g. in slowly diffusing therapeutics, the 
numerical solution suffers increasing error through artificial numerical dispersion due to 
the upwinding term. We seek alternative methods to reduce such errors such as a pde 
transformation §6.1.3 and a moving mesh approach §6.1.4. For simplicity we limit our 
research to just the two schemes mentioned, however, we note there are other methods 
such as the Lax Wendroff scheme and Total Variation Diminishing scheme that can be 
applied to the ID dispersion model [58], [46],

6.1 .2  D eterm in in g  a W ell-P osed  N u m erica l Schem e

Consider the case where an initial amount of solute occupies the tube, so that c(x, 0) =  
<f){x). In general a Neumann boundary condition c± = 0 can be applied to represent an 
insulated boundary. However, we show that it can also represent a maintained source 
at the inlet c(0, t ) = 0(0) if the Neumann condition is applied inappropriately. Let us 
consider equation (6.1.1) with the Neumann boundary condition, then as in (6.1.3) we 
apply a ghost point to be applied on the dispersion term so that

[Ai,uA ii2] =
2  De 2  De
A x 2 ’ A x 2

Hence, the concentration at the inlet boundary condition satisfies

(6.1.4)

(  2 De r,  \  2 De
^  =  ( "  ~ K e)co + ^ d .  (6.1.5)

Consider the case where there is no absorption, then for an applied constant initial 
concentration <j>{x) = 0o yields a constant concentration c(0, t) =  0o (see Figure 6 - 
1 (a)). A similar argument for non-zero absorption yields a decaying inlet concentration 
c(0,t) = e~Ket4>o (see Figure 6 -l(b)). This maintained source arises from applying 
upwinding, A-%, to the convection term resulting in a constant (or decaying) amount 
of solute being produced at the inlet [58]. Even applying a zero initial inlet boundary 
condition 0 (0 ) =  0 , the inlet concentration increases in time due to diffusion of the 
initial slug. This then feeds backs into the system as if it were a slowly increasing 
maintained source (Figure 6-1 (c), (d)).

We solve (6.1.1) for the different boundary conditions with and without absorption 
to show the inappropriateness of some numerical schemes in dealing with upwinding 
on the convection term.7 To correct the numerical scheme we prescribe a zero Dirchlet 
boundary condition =  0, to prevent an inlet source from occurring (see Figure 
6-1 (e)). This results in a Gaussian profile for the concentration solution, which is what 
we expect.
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(a) Unwanted Maintained Source c(0, xo) =  
1, K e =  0

(b) Unwanted Decaying Source c(0,xo) =  1, 
K e > 0

I

(c) Feeding Back Source at Inlet c(0, xo) =  0, 
Ke = 0

(d) Feeding Back Source at Inlet c(0, xo) =  0, 
K e =  0

|

(e) Proper zero Dirichlet Boundary Condi- (f) Actual Maintained Source c(0, xo) =  1,
tion c(0, xo) =  0, K e >  0 K e >  0

Figure 6-1: The Effects of an Inappropriate Inlet Boundary Condition in the Numerical
Scheme on the Solute Concentration Profile at time t = 10 when Ue = le  — 2, De =
l e - 4 .
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6 .1 .3  A  D iffusion  T ransform ation  o f  th e  ID  D isp ersion  E q u ation

In general applying a first order upwinding scheme, A_j ,  leads to unwanted numerical 
diffusion as the difference method is only accurate up to 0(h)  [58]. A useful pde 
transformation, c(x ,t) =  w(x,t)eax~^t, can reduce the convection diffusion reaction 
pde (6 .1 .1 ) to a pure diffusion equation wi = DeWxx-

Proof. Defining e =  e^ax~ ^ \  then substituting c(x,t) = w(x,t)e^ax~ ^  into (6.1.1) 
yields:

(we)i +  Ue(we)x = De(we)x± ~ K e(we)

W{i — /3we 4- Uewxe 4- Ueawe =  De(wx£ +  awe)x — K ewe 

w^e +  Uewx£ 4- (Uea — f3)we = De(wx±£ 4- 2cm^e 4- a 2we) — K ewe 

wi +  UeWx 4- (Uea -  (3)w =  DeWx± 4- 2aDew$ +  (a2De -  K e)w 

Wi = DeWxx +  (2aD e -  Ue)wx +  (a 2De -  K e -  Uea  +  /3)w.

The last two terms in the brackets can be set to zero by an appropriate choice of a  
and 13. Hence (6 .1 .1 ) transforms to wi = Dew±x a purely diffusion pde provided Ue is 
constant. □

By applying the diffusion transformation we have removed the convection term, 
the source of numerical diffusion from upwinding. To apply this method the initial 
condition and boundary conditions must suitably be transformed for w. We then simply 
discretise with finite difference as seen earlier but without convection and diffusion to 
solve the linear system Wf = Aw. Having found the numerical solution of w we simply 
transform back for the concentration profile c.

6.1 .4  R efinem ent T echniques o f  ID  P artia l D ifferen tia l E quations

In general very little has been done to design more accurate and efficient methods for 
solving dispersion models with application to therapeutic drugs. In ID the dispersion 
equation is very common with applications to ground water transport [36]. There have 
been many adaptive schemes designed to reduce numerical dispersion and oscillations 
coming from sharp wave fronts [36]. Generally numerical methods use fixed spatially 
uniform grids to solve the time dependent pde. In Numerical Analysis there are various 
techniques for improving accuracy in any numerical scheme, which include

• p-refinement\ which involves using higher order schemes.

• h-refinement\ that subdivides elements or nodes.

• r-refinement; that relocates existing grid points without adding any new nodes.
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The advantage of h-refinement is that it is simple and robust, however as it is a static 
regridding method it requires interpolation and is not smooth in time. In contrast, r- 
refinement, is continuous in time and requires no interpolation but becomes increasingly 
difficult, and in higher dimensions becomes highly nonlinear and suffers from distorted 
meshes.

As in Huang et al. [36], we apply a moving mesh partial differential equation known 
as an MMPDE (an r-refinement mesh adaptation), which has been shown to reduce 
errors in the numerical solution of (6.1.1) when compared to standard techniques [36], 
This involves moving the mesh around in an orderly way where the solution varies 
significantly, by applying the equidistribution principle. This is where mesh points are 
selected by equalising the monitor function, which measures a property of the
physical solution or its error, over each element. However, we differ from Huang et al. 
by testing the solution of equation (6.1.1) with the more spatially smooth MMPDE 
which we now explain in detail.

6.1 .5  Form ulation o f  a M oving  M esh  P artia l D ifferen tia l E q u ation

At the forefront of adaptive mesh movement are Russell and Huang who have unified 
and developed the class of moving mesh algorithms based on their MMPDE (see review 
[33]). We formulate our moving mesh equation based on their work [30], [35], [55], [72],
[31], particularly on [36]. We define a coordinate transformation by mapping from a 
computational domain Oc C  1  to a physical domain ft C M.. A similar coordinate 
transformation is used in solving the peristaltic biharmonic problem numerically where 
the peristaltic domain is our physical domain and the rectangular domain is our com
putational domain. We denote x as the physical coordinate and £ as the computational 
coordinate, however since our problem is dimensionless the physical coordinate is also 
defined as the computational coordinate on the unit interval [0,1] =  fi =  Dc. The 
MMPDE generates meshes on Q as images of a fixed uniform computational mesh on 
Qc by a one-to-one time dependent coordinate transformation x = x(g,t) with fixed 
boundary nodes i ( 0 , t) = 0  and x ( l ,7) =  1 .

We define a uniform mesh on the computational domain, Q° = where £j = j / J  
ioT j  = 0 , . . . ,  J . The domain Qc is mapped to a corresponding physical mesh Q = X j .  

There are two methods to derive the mesh equation of the map x (£) which are interre
lated by the equidistribution principle. They are 1) a variational approach, that is the 
map that minimises a functional depending on the properties of the physical solution 
and the mesh captured by the monitor function used in [36] or 2) direct manipulation 
of the equidistribution principle. Both methods obtain similar results, although the 
latter generates more choices for the mesh equation [33].
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In [36] the functional was given by

which when minimised produces equidistribution. This mesh adaptation functional 
is formulated by the inverse mapping £ =  £(£) rather than x = £(£) to prevent mesh 
crossings. The MMPDE is then defined as the modified heat flow equation for the 
functional /[£], such that

<9£ 1 d  (  1 d £
dt r M  dx \ M d x

for a user prescribed parameter r  > 0 , that is the timescale that moves the mesh towards 
equidistribution. Hence rewriting in terms of the physical coordinate x = x(£(x,t) ,t) ,  
then

dx d
a m  = d i {  d ( ) ’

as derived in [36] for time scaling parameter a = tM 3x Alternatively in Huang et al. 

[33] the functional is defined differently so that a = r  M 2 +  M | to allow invariance 
of the mesh equation under transformation.

Alternatively the mesh equation may be derived directly from the Equidistribution 
Principle (EP) [33] such that

r x ( ^ , t )  _ n l
/ M (x,t)dx  = £0(t) = £ / M (x,t)dx.

Jo Jo

Upon diferentiating twice with respect to £ we obtain what is known as a quasi-static 
EP .

^  | m (:z(£J),^ j^(£,£) j  = 0. (6.1.6)
There are two forms of the MMPDE that can be derived from (6.1.6) seen in [35]. They 
are chosen for their relative simplicity that allows them to be more easily discretised 
than other MMPDES with finite difference:

1 d { dx \
MMPDE5 x = f .M — j  , (6.1.7)

MMPDE6 g  =  I | ( M g ) ,  (6.1.8)

where we now denote xi =  x. Here MMPDE5 has zero speed when the mesh is equidis-
tributed. However, unlike in [36] we choose to apply MMPDE6  to our numerical scheme
as MMPDE5 has been found to be not as effective as the better scaled MMPDE6 . Us
ing centred difference, we discretise MMPDE6  on our uniform computational mesh
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yielding
X j + 1 — 2 x  +  £ j - i  1

MMPDE6 3+1 A J ~ 1 =  - E j ,  (6.1.9)

^ „  M,-+i +  M,-£,-+i — a;,- M i +  M,-_i x ?- -  a:,'+iEquidistribution Term Ej =  —-——-----  ———— ------ -——— ----- -——r — ,
3 A £  A £  A £

(6 .1 .10)

We now seek to discretise (6.1.1) with finite difference on Q =  i j ,  a nonuniform mesh. 
Hence (6.1.1) becomes

Ci — Ut A-xCj 2De / A+xcj A —xCj\ . 1 i i \
a— - + _ x— ( a — ~ a— r r ) - K eCj, V? =  1 , . . . , J  6.1.11)

Combining the discretised pde (6.1.11) and the discretised mmpde (6.1.9), we form a 
nonlinear system M y =  g(t ,y)  for y =  [c x]T.

6 .1 .6  T he C hoice o f  M onitor F u nction  and S m ooth in g

The arc-length monitor function is most frequently used to equidistribute grid points 
along the solution gradient Cx [1 1 ], placing more nodes where the solution changes the 
greatest,

M {x,t) = +

There are other monitor functions which are based on interpolation error indicators 
(which require apriori knowledge of the solution) or on higher order derivatives of the 
solution which are more likely to be related to the error in the numerical scheme [1 1 ]. 
However, we are primarily interested in comparing numerical schemes to an MMDPE, 
rather than specifically tailoring an MMPDE scheme. Consequently we choose the 
most reliable and simplest monitor function.

The nonlinearity of the MMPDE when coupled with the physical pde causes the 
system to become very stiff. It has been shown that it is possible to make the MMPDE 
easier to integrate numerically by smoothing the mesh [29]. Generally the computed 
monitor function is very non-smooth, and we repeatedly apply the standard low-pass 
filter to obtain a smoother mesh.

M ( x j , t ) <- ^ M ( x j - i , t )  +  ^ M (x j , t )  -I- ^ M (x j+i,t).

6 .1 .7  A  C om parison o f  th e  D ifferent N u m erica l Schem es for th e  ID  
D isp ersion  E quation

We consider the ID dispersion equation (6.1.1) in the case of a maintained source at 
both the inlet and the outlet where (6.1.1) has a known solution. This is the same 
problem with known analytical solution c* (x, t ) used by Huang et al. [29] to compare
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numerical schemes for fixed and moving meshes. Consider the following model

Equation C{ +  UeCx = DeCxx — K ec t > 0 ,  0 < 3: < 1,

Initial Condition c(x, 0) =  0,

Inlet DBC  c(0,i) = 1,

Outlet DBC c(l,t)  =  c*(l,t) =  f(i) .

The exact solution is given in terms of the complementary error function Erfc(x) =  
J?° e~z* dz and discriminant 7  =  Uê ^ i De such that

c*(x,t) =  ^ | e ( 2£>e+v/̂ )xErfc ^ ^  +  \JDeyi^j

+  e ( ^ " v̂ ) i Erfc ~ y/Dej?j j  • (6.1.12)

We test the accuracy of the numerical solution of three schemes, they are 1) applying 
standard upwinding technique (6.1.2), 2) solving the diffusion transformed pde (6.1.3) 
instead of (6.1.1) and 3) applying moving mesh equation MMPDE6  (6.1.8) in con
junction with the nonuniform discretised dispersion equation (6.1.11). We measure the 
accuracy of each numerical scheme by three important criteria (i) global mass conser
vation and (ii) discrete L2 norm error and iii) most importantly relative proportion of 
mass absorbed. We define exact mass at time tn by m ex(in) =  Jq c*(x,tn)dx, then the 
accumulated errors are defined by:

1 f 1
Mass Conservation M err(tn) = ------—r / c(x j,tn)dx,

m ex{tn) J0
I f 1 ~ 2L2 Error L 2(in) = ------— -  /  (c(xm,in) -  c*(xj,tn)) dx,

m ex{tn) Jo

Error in the Mass Absorbed M aerr(tn) = — "” ■■■■■"— .
K e f0 rnex{tn)

We solve (6.1.1) for the three numerical schemes for N  = 30,60,120 grid points, with 
fixed velocity Ue = le — 2, up to time T  — 1 for two diffusion values (i) De = 10- 2  

and (ii) De = 10~4. In the case of large diffusion, we obtain a small Peclet number 
and solute transport is diffusion dominant. Here we expect small numerical errors as 
the wavefront is not so profoundly steep when compared to case (ii) where transport is 
dominated by convection. For each calculation we determine (a) the difference in the 
error of mass present \Merr — 1|, (b) the L2 error and (c) the difference in the error of 
mass absorbed |M aerr — 1 |.

We observe in Tables 6.1, 6.2, 6.3 that the diffusion transformation is overall the
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Mass Present Error
D B =  l.Oe -  02 De = l.Oe —04

N Upw. MMPDE6 Wi = DeWxx Upw. MMPDE6 —  D qWxx
30 1.56e-02 7.78e-03 2.92e-03 5.90e-01 7.49e-02 2 .8 8 e+ 0 0

60 7.20e-03 5.24e-03 7.29e-04 2.79e-01 4.51e-02 5.11e-01
1 2 0 3.44e-03 2.97e-03 1.82e-04 1.40e-01 2.64e-02 1.23e-01
240 1.68e-03 1.44e-03 4.55e-05 7.07e-02 1.52e-02 3.06e-02
480 8.30e-04 6.75e-04 1.13e-05 3.56e-02 8.69e-03 7.63e-03

Table 6.1: The Difference in the Error of Mass of Solute Present for the Numerical 
Solution of the ID Dispersion Model using (i) Upwinding, (ii) Moving Mesh Equation 
MMPDE6  and (iii) a Diffusion Transformation

L2 Error
D s =  l.Oe -  02 De = l.Oe —04

N Upw. MMPDE6 wi =  DeWxx Upw. MMPDE6 W£ — DeWxx
30 8.05e-05 1.97e-05 4.88e-06 1.19e-01 2.77e-03 1.81e+00
60 1.77e-05 9.01e-06 3.07e-07 3.41e-02 1.00e-03 9.96e-02

1 2 0 4.18e-06 2.93e-06 1.92e-08 1.05e-02 3.37e-04 7.05e-03
240 1.01e-06 6.92e-07 1.20e-09 3.01e-03 1.09e-04 4.64e-04
480 2.50e-07 1.52e-07 7.62e-ll 8.11e-04 3.55e-05 2.94e-05

Table 6.2: The L2 Error of the Numerical Solution of the ID Dispersion Model using (i) 
Upwinding, (ii) Moving Mesh Equation MMPDE6  and (iii) a Diffusion Transformation

Mass Absorption Error
D b =  l.Oe -  02 De = l.Oe —04

N Upw. MMPDE6 Wi — DeWxx Upw. MMPDE6 Wi — DeWxx
30 2 .0 1 e- 0 2 7.82e-03 7.49e-03 4.67e-01 7.06e-02 1.69e+00
60 8.40e-03 6.55e-03 1.85e-03 3.44e-01 4.55e-02 4.94e-01

1 2 0 3.77e-03 4.00e-03 4.52e-04 1.85e-01 2.87e-02 1.41e-01
240 1.78e-03 1.84e-03 1.12e-04 9.30e-02 1.78e-02 3.70e-02
480 8.62e-04 7.88e-04 2.80e-05 4.61e-02 1 .1 0 e- 0 2 9.32e-03

Table 6.3: The Difference in the Error of Mass of Solute Absorbed for the Numerical 
Solution of the ID Dispersion Model using (i) Upwinding, (ii) Moving Mesh Equation 
MMPDE6  and (iii) a Diffusion Transformation

most accurate in all three categories except when we solve for small diffusion with a 
small number of gridpoints. This is the only time the moving mesh method is the 
most accurate. However, the moving mesh approach is always more accurate than 
the upwinding scheme but becomes increasingly less so when the number of gridpoints 
increases removing the need to distribute nodes. The MMPDE will always do better if 
Ue or K e varies though. The latter is known to vary in the intestine, K e = K e(x), due 
to the variation in the villi density.
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6.2 N um erically  Solving T he 2D P oiseu ille  D isp ersion  M odel

In the previous section we considered the release of a therapeutic modelled by a ID dis
persion equation (6.1.1). This was an asymptotic form of a more complex 2D Poiseuille 
convection dispersion model in an axisymmetric tube fI with absorption on the bound
ary T, with governing equations

ct +  eu(r)cx = -pr; (e2Cxx +  Cff + \cf)  , in P, (6 2 1)
Cf =  —Dac, on T.

We must solve this problem numerically and we discretise (6.2.1) using finite difference 
operators, however, instead of a uniform-mesh, we choose a non-uniform mesh in the 
radial direction and a uniform mesh in the axial direction. Due to cpu limits, solving a 
2D problem uses a lot of memory and a balance must be met between mesh size and cpu 
run time; too fine a mesh and the system takes too long to solve. Discretising with as 
many points as desired in the axial x and radial r direction is not possible. Our overall 
concern is attaining an accurate cross-sectional average of the solute concentration, the 
macroscopic quantity. We require a sufficient number of points in the axial direction to 
represent the intestine more accurately; solving for concentration at grid points every 
3cm is better than every 6cm. As mentioned in Chapter 4, absorption on the boundary 
introduces a boundary layer, hence we wish to add more grid points in this region 
to capture the change in solution more accurately. We optimise by implementing a 
nonuniform radial mesh (size K  = 50) with a uniform axial mesh (size J  = 200) such 
that J  > K.

6.2.1 A pplying a 2D F in ite  D ifference Schem e to  th e P oiseu ille  D is
persion M odel

Consider the Poiseuille dispersion model (6.2.1) on the unit tube 0 < x < 1 and 
0 < f  < 1, for time 0 < t < T. We denote c^k to be the numerical approximation 
of the solute concentration «  c(x j,fk ,tn) on the discretised grid for axial nodes 
Xj = j  A x  for j  = 0 ,1, . . . ,  J  and radial nodes {0 =  fo < f \  < • • • < t k  =  1}.

( 'I r
ci.fc+i S

c

)  ̂

? ~ l, i  C

J  ̂

hh
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We define non-uniform radial spatial steps hk for given k such that hk = rk+i — ?k 
for k = 0 ,1 , . . . ,  K  — 1 . As a result of the absorption boundary layer we distribute 
half the radial gridpoints, in the interval [0, 0.9] and in the small interval
containing the boundary [0.9, 1]. We apply a standard 5 point finite difference stencil 
for the Laplacian. Hence the discretised form of the Poiseuille dispersion equation is 
given by

c - ,  -  - e i i ( r i . ) A - xCi ’k 4- + ____2___ ( A - ?c i , k\  ■ l Aw cj tk \c 3 ,k -  e u [ r k ) A i  ~r p&r y e  h k _ 1 + h k  y  hk h k _ 1 J  1- ffe h ^ + h k  J

Vj =  l , . . . , J  Vfc =  l , . . . , t f  —1 

0  =  ^ f + D a r C j . K

This forms a DAE system M e = Tc  for the concentration vectors c ,c  G M^+1(,7+1)x l,
block tridiagonal matrix T  G R(^+1)('7+1)x(i^+1)('jr+1) and Mass matrix M  G K(-Rr+1)(J+1)x(jfr+1)('/+1)
with zeros corresponding to the DAE boundary. However, we have yet to define the
pde along the axisymmetric boundary. On the longitudinal axis, the radial term jCf
tends to c?f as f  —> 0 (by L’Hopital’s rule) and we apply the symmetric boundary
condition Cf(x, 0 , t) = 0  and a ghost point to derive the equation at xq

-r _  r7./^ \ ^ - x cj ,o 1 (  2$lcj,o 4 /A + fC j,o \\
< * 0  -  -»(•■>)- 5 S -  +  p -  (« +  Y0 { - h T j )

6.2 .2  A  2D  M oving M esh  Schem e

The next logical and more accurate approach to solving the 2D dispersion models would 
be the 2D moving mesh approach. However, this is extremely complicated and for now 
remains out of the scope of this PhD. For further reading see [29], [33], [34], [7], [18],
[32], [14], [54], [15], [16], [13]. A 2D MMPDE would be ideal in locating points at the 
boundary, as we did with the nonuniform mesh, but also at the head of the wavefront.
It is essential when solving the model with a limited number of nodes. Hence, we could 
compare the 2D MMPDE against the standard nonuniform mesh approach, for the 
solvable problem:

Equation q  +  ucx = - p ^  (ecu +  c f f  + j C f )  — K^c, t > 0, 0 < x, f  < 1,

Initial Condition c(x, 0) =  0,

Inlet DBC  c(0, f,f) =  Jo(/3or),

Outlet DBC c(l, t) = c*(l,t) = f( t) ,

Absorption BC c(x, 1, i)f = Darc(x, 1, i).

168



CHAPTER 6. NUMERICAL METHODS FOR THE FLUID FLOW AND FOR THE DISPERSION
MODELS 169

c( x , r ,  t)

Besides calculating the mass conservation and L2 errors we could measure the mass 
absorption error

% UL fn fn c ( Z i  i f  k ,  i n )  d x d t
Error in the Mass Absorbed Maerr(tn) = —— — — \----------- :---------•

j g  Jo (A)) Jo f o  c ( x j , f k, i n ) d x d t

The higher dimensional moving mesh approach would be an invaluable tool for models 
with absorption boundary layers.

6.3 N um erically  Solving th e  P er ista ltic  D isp ersion  M odel

Consider an axisymmetric tube where the inelastic walls are allowed to vibrate and 
induce standing peristaltic waves. After a sufficient amount of time the fluid velocities 
become steady. We defined the nondimensional model for a diffusing solute convecting 
under the action of peristalsis with absorption on the boundary by Figure 6-2.

cr eT f 1 =  
sA

a

C i  +  eu(x, r , t)c* +  ev(x, r , t

lo

/  = 1 + a cos(27r(a: — et)

Figure 6-2: The Peristaltic Dispersion Model

By defining the function of the peristaltic boundary for all time f(x,et) ,  (note this 
is not a free boundary where the position of the membrane is unknown ahead of time), 
we can apply a change of coordinates from the physical peristaltic geometry (rr, f) to the 
computational rectangular domain (x ,«)• We note that as the wall is time dependent 
it is important to remember to transform the time scale t —> r  so that

X = x, k = , r = t. (6.3.1)
/(M )

The partial derivatives of the solute concentration may be rewritten as
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Cj =  CxX-t "t” T CtVL = ”1“
Cf — Cx X f  “I” “1“ C-j-Tf — (L2Cki

C± = ^xXx "I" Ck^ x Ct^x ~  ('X

where the transformation coefficients a{ are coordinate derivatives such that:

ai =  «f =  - f  =
0,2 — Kf — ~Ji

0*3 = K± =

We note that from the fixed frame we have the boundary property f i  = —c.f±- Trans
forming the laplacian terms is a little more complicated in the axial direction, it goes 
as follows

C ± x  =  (^x)xX x ”1“ (^x)/c^x =  { ( ' X  ^ x ^ k ) x  k x ^ k ) k k x

= ^XX "b 2^x^xk (^xx “1“ «x«x/c)C/c

^ ) 2Cm- 2 ( ^ ) o XK+K( ? £ j l h .

= ^XX ^4C/c/c ~t” Q'5('Xk

cff =  (Cf)«^f =  (fi'f C/O/ĉ r 5 = ~Ĵ Ckk = ^7^kk
J Z

1 1 1 a7
~ C f  — ~s — cK.r  / «  / 2 «

Substituting in the domain transformation for the peristaltic model

(cT +  aiCK)-feii (cx -I- CL3Ck)-\-€V(L2Ck — — (cXX ^4^kk “1“ 0,5̂ 'XK ^6 /̂c)̂ ~^p (^7^kk “I ’

Hence, the peristaltic model may be rewritten in the form:

-  —  - l  ( J—  - l  0 , 7  ^
^  "  Pek0™ { . P e S ^  Peh) CKIt

,2 /  ,2/  e „ . fl7 \+ — a5 cx« -  eucx +  I p - ^ a 5 -  o,\ -  eua3 -  eva2 +  ~̂ p~h J °K

=  b iC x x  “I-  &2^k/c “1“ ^3^xK ^4^x  ^5^/c* ( 6 .3 .2 )

The absorption boundary condition must also be transformed, and in a similar manner:

<»2 C« g_/_(Cx +  a3cK) _  _ D^ c ^  _  e2 / 'a 3 ))cK- e 2 / 'c x = -  ( J l  + «2( / ') 2)  I>orc,
V  l  +  e2 ( / ' ) 2 V >

• • ^7^x  =  bgDarC.
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Consequently, the 2D peristaltic dispersion model can be represented in the rectangular 
‘computational’ domain by

K
u — e

b(,CK — b7Cx = bsDarC

CT — b i C x x  + b2CKK + b$CXK 

+ & 4CX +  65 CK

c(x,«,r) = 0 o(x)

Figure 6-3: The Peristaltic Dispersion Model in the Rectangular Domain

Before we discretise the dispersion equation (6.3.2) we must determine the semi-analytic 
peristaltic velocities in the rectangular frame. In the physical domain they were given 
by

u = 4A(x, t ) f2 + 2B(x,  t) + e2 + _ + i ;

v  = - A i ( x , i ) f 3 - B±0 M >  +  e2 ,

Hence, using the domain transformation they may be written as

u(x , t) = 4 A(x, t ) f 2K2 + 2 B(x,  t) + l + e2 (_ 3 K2 +  4 k 2 _  ?

v(x,*J)  = ~Ax(x, t ) f V  -  Bx(x, t ) f2K2 +  e2 [̂ XXX̂  ^ / 5)  («5 +  2«3 - k ) .

For the purposes of our model we assume e is sufficiently small that we apply the 
peristaltic velocities to leading order (see Chapter 5).

6.3.1 D iscretising th e 2D M odel w ith  F in ite  D ifference O perators

We solve the peristaltic dispersion model (Figure 6-3) using finite difference operations 
on the computational domain. Hence for an axially uniform radially nonuniform mesh 
we obtain

X U , u ( 2 \  ( A + ? c j ,k A — i'c j , k \  ! u $ XKCi ,k  I U ^  — Xc i ,k  I U ACj,k -  b i ^ r  + bi{ht_l+hk)  { — hf+ fe 3  2A x ( k t j 1 + * t )  +64  A x  + 65^

V j  =  l , . . . , J  V f c  =  1 , . . . ,  i f  —  1  

where we have defined the cross derivative finite difference operator by

$ Xk  =  6 XKip =  '0 (x + A x ,« + A k )+ ^ (x -A x ,k -A « :) - '0 (x -A x ,  k+A ac)-^ (x+A x, k - A k ) .

K Cj, k
1 +hk ’
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On the boundary we discretise the differential algebraic equation using upwinding in 
the radial direction and centred difference in the axial direction:

A- KCj,K , 5-0 xcj,K , ~be— r bj—   = bgDarCj,K-
hK Ax

At f  = 0 we implement the symmetry boundary condition Cf(x,0, i) = 0. Hence the 
cross derivative term cX£ vanishes and the radial term simplifies to le f  = Cff • Defining 
t>2 = 62 + "pS then the dispersion equation at the centreline becomes■*67*

x _  L ^x°hk , oi 5KCj,h , u A-Xcj,k 1 r
•f>° ~Ax^ Ax 1 •

As with the Poiseuille model we obtain a time dependent DAE system Me = Ac.

6.3.2 N um erical Schem e Instability

In the Peristaltic Dispersion Model Chapter 5 we have shown that the axial velocity 
u(x ,f , t)  is not always positive (see Figure 5-2) and for certain flow rates ipw it can 
take a negative value, ii < 0. A consequence of this is numerical instability as a result 
of applying the upwinding finite difference operator. This leads to spurious oscillations 
that distort the mean solute concentration, see Figure 6-4(a).

(a) Upwinding (b) Mixed Upwinding/Downwinding

Figure 6-4: The Mean Solute Concentration of the Peristaltic Dispersion Model when 
using different Finite Difference Operators on the Convection Term for an example of 
Peristaltic Flow with Negative Velocities present. Example: Case D after 4 periods 
when e =  0.156, a  = 0 .3 ,^  = — 0.45, Pe/i =  1000, Dar = 1-

In Figure 6-4(a) we expected a Gaussian profile. However, spurious oscillations have 
occurred that are not a result of trapping as Case D has none. To compensate for the 
oscillations, we can apply a mixed upwinding/downwinding scheme on the convection 
term. We simply apply upwinding A_x if the axial velocity is positive and downwinding 
if flow is negative. The results are shown in Figure 6-4(b) and we achieve a Gaussian
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profile for the peristaltic mean solute concentration. This scheme is quite reliable with 
the only drawback being that the DAE solver now takes up to 10 times longer to solve 
as a result of checking the velocity at every point (xj, f°r all iterations in time and 
possibly increased stiffness in the system.

6.4 Summary

In this Chapter we have described the numerical schemes we have used to solve our 
ID and 2D dispersion models. We have used finite difference operations and applied 
the method of lines to convert the dispersion equations into a system of odes M(c)c' = 
g(t, x , c) which we solved using DASSL, a DAE solver for FORTRAN.

We solved the ID dispersion model most accurately by applying a diffusion transfor
mation to reduce the artificial numerical dispersion. The ID MMPDE is more accurate 
than the standard scheme (6 .1 .2 ) but is useful for future work if we were to model ab
sorption as non-constant to reflect the decrease in villi, and hence the permeability of 
the membrane down the intestine. In this case the diffusion transformation is no longer 
applicable. Due to the complexity of the 2D dispersion models we could only solve the 
model accurately using a nonuniform mesh to locate gridpoints at the membrane to 
capture the boundary layer. Ideally a 2D MMPDE would be applied to capture not 
only steep concentration gradient at the boundary but also at the sharp wave front.

Our main effort was in solving the peristaltic dispersion model (5.1.5) which is a 
moving boundary problem. We applied a moving domain transformation to solve the 
problem on a rectangular computational domain that is fixed in time rather than the 
moving physical peristaltic domain. We discretised the resulting equations, shown in 
Figure 6-3, using standard finite difference operators on a nonuniform mesh. However, 
we implemented an alternating upwinding/downwinding scheme on the convection term 
to adapt to changes in the sign of the axial velocity to remove spurious oscillations.
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Chapter 7

Conclusions

In this thesis we have been tasked with answering several questions posed by Unilever 
concerning the motion and absorption of solute in the intestine. They were

• How do substances flow in the small intestine?

• Can we model this flow mathematically?

• How does the fluid flow in the small intestine affect solute motion and conse
quently its absorption?

• Were Stoll et al. [73] correct in assuming a ID asymptotic dispersion equation 
for the motion and absorption of solute in the intestine? If not, what is a more 
suitable model?

Our research into fluid flow in the intestine brought to our attention one of the 
body’s main means for propelling chyme down the intestine, ‘peristalsis’, a series of 
randomly occurring waves traversing down the intestine. We modelled these intestinal 
contractions as a constant standing wave propagating down the intestine (Chapter 3). 
By assuming that chyme is sufficiently viscous we were able to apply Stokes slow flow 
equations. Consequently, by prescribing the moving boundary as a travelling sinusoidal 
function we were then able to solve for the peristaltic velocities semi-analytically.

From the derived velocity profiles we elucidated the different effects peristalsis has 
on fluid behaviour and in particular solute behaviour. Namely we showed that peri
stalsis gives rise to circulating regions known as trapping. In particular with respect 
to the intestine there is centreline trapping which has been shown to enhance solute 
mixing and absorption and even retard solute advance when compared to Poiseuille 
flow. We summarise our findings in the following section. We then describe how our 
findings affect the approach by Stoll et al. to modelling the intestine and subsequently 
summarise the key features of this project that are new and discuss future work.
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7.1 M odelling Peristaltic Fluid Flow in the Intestine

We have investigated the behaviour of peristaltic motion to represent intestinal motion 
and to derive analytically for the peristaltic velocities. These velocities have elucidated 
different flow patterns that depend on the pressure gradient across the wavelength, Ap\  
and the amplitude of vibration of the peristaltic wave, a.

Peristalsis operates in two phases: (i) pumping, when there is a pressure rise across 
the tube, and (ii) copumping, when there is a pressure drop and peristalsis assists the 
pressure gradient in moving the fluid. We have discussed the difficulty in measuring the 
actual pressure gradient in the intestine and at best we can only estimate it based on 
the observed average velocity of chyme in the intestine uc. We do this by determining 
the time mean volume flow rate Q from uc and then calculating the pressure gradient 
Ap\  from the flow rate.

Using anatomical parameters we have shown that there should be a pressure rise 
across the intestine which is consistent with the illeocecal sphincter being predomi
nantly closed. However, when the sphincter does open there should be a pressure drop 
driving the flow and peristalsis would operate in ‘copumping’. The pressure gradient 
at any given moment across the intestine is unknown and we discuss the behaviour of 
each type of peristaltic flow.

We have elucidated with particle paths two peristaltic phenomena; reflux and trap
ping. In the pumping phase fluid particles undergo reflux and centreline trapping. 
However, in the copumping phase fluid particles undergo either centreline trapping or 
detached trapping. We have shown as the flow rate increases that (i) the amount of 
trapping decreases and that (ii) the peristaltic flow tends to Poiseuille flow. These 
results are reflected in the behaviour of the mean solute concentration of solute in a 
peristaltic flow.

7.2 M odelling Solute Behaviour in a Peristaltic Flow

To understand solute behaviour in a peristaltic flow we modelled the solute concentra
tion by a 2D dispersion model for solute with peristaltic velocities u,

ct +  u.V c =  l)V 2 c, in Q.

Fundamental to applying the model to solute motion in the intestine is prescribing a 
suitable boundary condition to represent passive absorption. We applied the diffusive 
flux condition

-T n .V c  = K ac, on T,

to model absorption across the membrane.
We considered first the trivial case of the peristaltic dispersion model, when the
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amplitude of vibration is zero. It has been shown that in this case the model reduces 
to the 2D Poiseuille dispersion model,

ct +  u(r)cx = Z)V2c, in Q.

This equation is the basis of the model by Stoll et al. [73] in their model of solute 
motion in the intestine. For small Peclet number the equation can be reduced to a 
ID dispersion process of the mean solute concentration with the solution exhibiting a 
Gaussian profile. As the Peclet number increases, convective fluxes dominate and the 
mean solute concentration Cp0 takes the form of a negatively distorted bell curve (see 
Figure 4-3).

We solved the 2D peristaltic dispersion model numerically and observed that the 
mean solute concentration cpe was approximately Cp0 plus some oscillatory component 
provided there is negligible trapping. We can remove the oscillatory term using a low 
pass filter to obtain a ‘cleaner’ mean solute concentration for the peristaltic model, Cpe, 
which is approximately the Poiseuille mean solute concentration CpQ. When trapping 
presents itself in the peristaltic flow, the Poiseuille-like streamlines distort and cpe can 
no longer be represented by cpo and we observe an increasingly oscillatory solution 
when trapping increases.

However, it is centreline trapping that greatly affects the effective velocity of the 
mean solute concentration. We have shown that (i) the advance of the solute front is 
retarded by the circulating streamlines and that (ii) solute diffuses backwards (in the 
wave frame sense) into trailing trapping boli. The combination of the two phenomena 
imply substantial mixing and convective dispersion of the solute. The results of the 
peristaltic model are shown by increased absorption when compared to the Poiseuille 
model

7.3 Stoll’s Approach to M odelling Solute in the Intestine

The basis of this thesis was the paper by Stoll et al. [73]. The authors applied a 
macrotransport approach [1 0 ] to the motion of solute and its absorption in the intestine. 
We investigated the suitability of applying their asymptotic analysis of the 2D Poiseuille 
dispersion model. However, we were unable to recreate the results described in Stoll et 
al. [73] and we were unfamiliar with the macrotransport approach. Hence, we reworked 
the analysis of (i) Taylor [74] for the impermeable case and (ii) Lungu et al. [52] for the 
permeable case, to show that their ID asymptotic equations are the same equations 
derived by Stoll et al. using the macrotransport approach.

When the boundary is impermeable the macrotransport approach [10] reduces the 
2D model to a ID asymptotic equation
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H" UeCi — D eCxxi

for the mean solute concentration which was first described by Taylor [74]. We have 
shown the asymptotic equation can only be applied if the following conditions are 
satisfied, they are (i) the ID equation for c is an effective representation of the full 2D 
model only after some time t »  t* = Per and (ii) the distance travelled by the mean 
solute concentration after time t* is approximately d — £Per, hence, for the unit tube 
we require d <C 1 if we want to represent c by the ID equation. For the therapeutic 
parameters used by Stoll [73] we show that the conditions in the intestine axe not met.

In the case of the permeable membrane, by reworking the analysis of Moffatt et al. 
[52] we were able to understand reasons why our attempt at recreating Stoll’s results 
failed. It turned out that in all the papers by Stoll et al. [73], [10], [6 ] the absorption 
coefficient K e is stated incorrectly resulting in abnormal levels of absorption . 1

To apply the ID asymptotic equation to the intestine Stoll et al. [73] applied a 
fictitious initial condition to compensate in the short time for mass lost so that the ID 
equation would be valid for all time.

We have shown by (i) rederiving the fictitious initial condition and (ii) numerically 
solving the ID equation with the fictitious term and the 2D model that the fictitious 
term has no overall effect whatsoever. Secondly Stoll modelled peristalsis in the intes
tine by enhanced diffusion. We showed this was also in error by (i) stating the original 
formula found in [1 0 ] which clearly suggests that application of the enhanced diffusion 
formula by Stoll et al. violates its derivation and (ii) we solved the peristaltic disper
sion model for Cpe for flow with large trapping and the Poiseuille dispersion model with 
increased diffusion for CpQ and have shown that the mean concentration profiles look 
increasingly less alike. Hence peristaltic flow is far too complex to be modelled simply 
by enhanced diffusion.

7.4 W hat A spects of the Thesis are New?

In this section we highlight for the reader, the new elements of the thesis that set 
it aside from previous work. We discuss our methods and results for the three main 
Chapters of the thesis.

7.4.1 M od ellin g  P er ista ltic  F low

In deriving the peristaltic flow (Chapter 3) we discussed the break down of the semi- 
analytic solution for the streamfunction as the amplitude of vibration increases. The 
semi-analytic solution was determined from a perturbation expansion in e, the wave

1 We also found a number of calculation errors in Stoll et al. [73] when determining the dimensionless 
parameters.

177



CHAPTER 7. CONCLUSIONS 178

curvature, for the biharmonic equations. Previous literature assumed e =  0 and took 
the solution to leading order. However, we have highlighted that for small but not 
negligible wave curvature, for example, e «  0 .2 , the 0 (1 ) solution begins to significantly 
breaks down as a  increases and it may be necessary to recover 0 (e2) terms. However, 
for the intestine e «  0.15 and we have shown, not assumed, that the 0(1) solution is 
sufficient for use.

We elucidated the different mixing attributed to peristaltic flow by plotting particle 
paths. We investigated the behaviour of trapping as the flow rate varies to determine 
the proportion of fluid in one wavelength circulating as a result of trapping. Some 
further analysis showed that (i) peristaltic flow tends to Poiseuille flow as the flow 
rate increases, (ii) trapping is maximised at the point of detachment and (iii) trapping 
increases as a  increases.

7.4 .2  D isp ersion  M odels in  C ylindrical F low  w ith  A p p lica tion  to  th e  
In testin e

By nondimensionalising the 2D Poiseuille Dispersion model (Chapter 4) we have brought 
to the attention of the reader two important parameters I  and Per, the length scale 
ratio and the radial Peclet number respectively. In reworking the analysis of Taylor’s 
long time asymptotics of the Poiseuille dispersion model in the impermeable case, we 
have shown that £Per 1 must be very small for a good fit of the 2D Poiseuille mean 
solute concentration to the ID asymptotic mean solute concentration before solute con- 
vects out of the tube. Hence for the therapeutics described in [73] the conditions for 
applying the asymptotic equation are not met.

For the permeable case we investigated the macrotransport approach by Stoll et 
al. described in [1 0 ] where they apply long time asymptotic analysis to real problems 
for all time by introducing a fictitious initial condition. By reworking their analysis 
and solving the full 2D model we have shown that this fictitious initial condition is 
ineffective. A clear example of this is when the boundary becomes impermeable. Ac
cording to Stoll et al. the fictitious term satisfies A* = 1 but we have shown that 
the numerical and asymptotic solution are far from equal when tPer is not small (see 
Figure 4-3). Our result casts serious doubt on applying a macrotransport approach to 
real problems. Further doubt is cast on the model by Stoll et al. when an enhanced 
diffusion equation is applied to simulate the effects of peristaltic flow. We later showed 
this to be in error too. Our research into macrotransport processes has become quite 
important to Unilever. They were considering to apply a macrotransport approach 
to a second PhD case study in the area of multiphase flows in flexible channels. Our 
research has highlighted the limits of such methods.
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7.4 .3  T h e P er ista ltic  D isp ersion  M odel

We combined the peristaltic fluid mechanics with a dispersion model to describe the 
motion of a solute in a peristaltic flow. We numerically solved the 2D peristaltic 
dispersion model, a moving boundary problem, by transforming the moving peristaltic 
domain to a rectangular computational domain. To solve for the solute concentration 
profile when the velocity is changing we applied an alternating upwinding/downwinding 
finite difference operator to the convection term to remove spurious oscillations.

We have obtained five main results from solving the model, (i) peristaltic flow 
induces oscillations in the mean solute concentration, which for sufficiently small levels 
of trapping can be removed by a low pass filter to reveal an underlying Poiseuille mean 
solute concentration profile cpo, (ii) trapping distorts the Poiseuille-like streamlines so 
that the mean solute concentration for such flows no longer resembles that of CpD, (iii) 
centreline trapping retards solute motion and is seen to enhance convective dispersion 
by solute diffusing into trailing waves of trapping, (iv) peristalsis is too complex to 
be modelled by Poiseuille flow plus enhanced diffusion as suggested by Stoll as the 
simplification simply can not factor the effects of trapping, (v) peristaltic flow enhances 
absorption when compared to Poiseuille flow.

7.5 Final Thoughts

Current pharmacological models used to estimate absorption of therapeutics in the 
intestine oversimplify intestinal motility to plug flow. Consequently the compartment 
models do not accurately model gut mixing. There have been attempts at modelling the 
intestine more accurately by taking into account spatial and dispersion effects. None 
more advanced than the ID asymptotic equation of the 2D Poiseuille dispersion model 
by Stoll et al. However, the asymptotics were inappropriately applied and assumed 
solute motion was more dispersive than it actually is. By introducing the peristaltic 
dispersion model we have modelled the peristaltic forces overlooked by previous simpler 
ID models, namely reflux and trapping. We have shown that solute motion is retarded 
by centreline trapping, allowing solute to remain longer at the entrance to the intestine 
where there are more villi to absorb. The regions of circulation would greatly enhance 
mixing of enzymes released at the epithelial membrane with solute in the lumen.

7.6 Future Work

There were many other features of the intestine that we wanted to capture in a model 
which we had investigated but were unable to follow through. There are four key 
parts to our model of the intestine that can be investigated, namely developing a more 
accurate representation of (i) the geometry of the intestine, (ii) the fluid flow, (iii) the
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numerical scheme and (iv) the absorption boundary condition.
The Geometry of the Intestine. We have so far assumed a fixed radius tube to 

represent the intestine, however, the width of the intestine decreases and so should 
that of the tube. There are two possible adaptations of our model. For the Poiseuille 
dispersion model we can prescribe a function to describe the radius of the tube and 
then rederive the laminar flow which will now depend on the axial coordinate as well, 
u(x,r).  We can then apply a suitable domain transformation (similar to that of the 
peristaltic model) to solve the dispersion model on a rectangular domain. However, 
for the peristaltic model with a shrinking tube, the peristaltic velocities would now be 
very difficult to determine as we can no longer solve the biharmonic equation in the 
wave frame. An alternate method must be sought.

The Fluid Flow. In this thesis we have assumed chyme in the intestine is sufficiently 
viscous that it can be modelled by a Newtonian fluid. However, it may be more 
reasonable to assume chyme behaves like a Power Law Fluid, a fluid whose viscosity 
decreases as the shear rate increases, e.g. water-base polymer muds. The peristaltic 
flow of non-Newtonian fluids has been briefly discussed in [70]. We further assumed 
that the peristaltic flow was steady. It would be very interesting to determine peristaltic 
flow in the unsteady case to observe the initial mixing of solute (an example of which 
is seen in [48]). We would like to understand the effects of the peripheral layer of water 
that surrounds the chyme on solute motion and mixing. We present in Appendix §A the 
effects of a peripheral layer on Poiseuille flow as a start in the modelling of peristaltic 
flow of fluid with nonuniform viscosity.

The 2D Numerical Scheme. We observed that the numerical solution of the 2D 
dispersion models suffers from (i) artificial numerical dispersion from the sharp wave 
front of a ‘slug’ initial condition and (ii) a boundary layer from passive absorption at 
the boundary. The most effective means to solve the model as accurately as possible 
would be to implement a 2D adaptive numerical scheme, namely a 2D MMPDE. This 
is quite difficult to do in practice but time permitting to develop such a scheme would 
be an extremely valuable tool. An alternate means for solving the peristaltic dispersion 
model would also be useful.

The Absorption Boundary Condition. Fundamental to modelling absorption across 
the epithelial layer was the absorption boundary condition. This was modelled by the 
flux term —Dn.Vc = Kc  to represent passive diffusion. However, this was just an 
approximation to the unknown physical boundary condition. So far we have neglected 
the villi by assuming they do not affect the flow and are sufficiently small that they can 
be modelled as the flux boundary condition. For a more realistic model we could also 
determine solute motion through the villi as well, see Appendix §B for an introduction. 
Some asymptotic analysis may then give rise to a more accurate boundary condition 
where there may be slight convection and diffusion along the boundary.
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Future Work 1: M odelling A  
Peripheral Layer o f W ater

In this section we review in more detail literature where peristaltic flow has been applied 
to the intestine so that we can learn and improve upon our peristaltic dispersion model 
as a suitable representation of solute flow in the intestine. More specifically we discuss 
previous work on modelling the peripheral layer of water surrounding the chyme in 
the intestine. We base this appendix Chapter on the variation in viscosity seen in the 
intestine to learn the effects of a water layer has on (i) fluid flow and (ii) solute motion.

We discuss previous efforts to model the peripheral layer by (i) two separate fluids 
with different flow rates and viscosity and (ii) as one fluid with slightly exponentially 
decaying viscosity. In the former case the flow suffered from non-uniqueness of the 
fluid layer interface position. In the latter the model was for axisymmetric flow but the 
authors applied a channel flow viscosity variation (p =  e~vr and pf ^  0). We consider 
modelling the radial viscosity variation for Poiseuille flow as a basis of future work on 
describing the effect of a peripheral layer on peristaltic flow.

We rederive from the Navier-Stokes equation the biharmonic equations for radially 
varying viscosity by assuming a slowly varying solution. We model viscosity variation 
for a corrected axisymmetric exponential decay, p = e~vr , and by applying a pertur
bation expansion in the small parameter v to the biharmonic equations we obtain a 
semi-analytic solution for the streamfunction and velocity. We show a drop in viscosity 
at the boundary results in a decrease in the effective velocity and effective diffusion of 
the solute centroid as absorption increases. However, the viscosity drop is small and 
we proceed to model a larger drop in viscosity by a boundary layer function p{f) where 
we can prescribe the drop in viscosity and the width of the layer. We solve numerically 
the amended biharmonic equations to determine the velocity u using a nonuniform 
equidistributed mesh and determine the effective velocity. Hence, we implement the 
velocity into the 2D laminar flow model and elucidate the effects of the peripheral layer 
on the mean solute concentration.
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We observe that a small peripheral layer with a large drop in viscosity results 
in a velocity profile with faster streamlines in the vicinity of the boundary. We can 
reproduce similar results by assuming that the velocity satisfies the same standard 
biharmonic equations but with a relaxed no-slip condition to indicate a slip velocity at 
the boundary. We do so by implementing the Navier-slip law

u +  A Uf = 0,

that implies velocity at the boundary depends on the shear stress. As A —> oo the fluid 
flow tends to plug-like flow.

For the peristaltic case applying a variation in the viscosity to fluid flowing by peri
stalsis. It is no longer possible to model the radial viscosity by the exponential function 
seen in the earlier perturbation expansion, as that implies a nonuniform viscosity on

_ i/r ̂
the boundary f  = f(x).  If we were to add a slight modification so that p = e 
to yield constant viscosity at the boundary, then we impose a periodic axial variation 
in viscosity p = p(x, r) which can not be modelled by our simplified radially varying 
viscosity biharmonic equations. Hence we can not apply the perturbation expansion 
to obtain a semi-analytic solution. Nor can we model the layer by applying a modified 
boundary layer function as in the Poiseuille flow case. For a small layer we suggest an 
alternative model where we can model the effect of the water by relaxing the no-slip 
condition as seen in the Poiseuille flow case.

A .l  Previous Efforts to M odel the Peripheral Layer

Shukla et al. [6 6 ] modelled peristaltic flow in the intestine in a similar way to Barton 
[5], however, they considered the presence of a peripheral layer of mucus (observed by 
Guton (1971)) in the intestine surrounding the chyme core. This is due to the presence 
of fluid from various glands and organs being secreted into the GI tract. As much as 
6  to 7 litres [21] plus a couple of litres of water from every day consumption [20]. This 
gastric mucus layer is approximately 0.1 cm thick with viscosity varying from 1 — 102 cP, 
while the chyme has similar viscosity to that of faeces, about 103 — 106 cP. Scaling the 
viscosity of the chyme to be one then the viscosity of the mucus layer is between 1 0 - 4  

and 10-2 . Shukla modelled the peripheral layer and assumed the chyme core takes 
form similar to that of the wall. Hence, they found that the flow rate Q increases if (i) 
the viscosity of the mucus decreases or (ii) the gastric layer thickness increases [6 6 ].

The analysis of the results is very useful and are true even though Shukla’s choice 
of interface shape was independent of viscosity. This was later shown to violate the 
conservation of mass giving inaccurate results [9]. The theory was later revised by Rao 
et al. [63] in the axisymmetric case, however the position of the interface was non
unique for certain flow rates. Numerical results have shown that as the viscosity ratio
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increases the amount of reflux decreases in the pumping case, this is consistent, since 
a decrease in the viscosity of the layer decreases the pressure drop over a wavelength 
(reflux is pressure dependent) [63].

Given that the gastric layer at the wall is less viscous than the chyme core [6 6 ], 
ElMisery et al. proposed the viscosity varies radially, decreasing away from the ax- 
isymmetry line [21]. It was proposed by Srivastava et al. [71] that the dimensionless 
form of the viscous function should take form fi{f) = e_"r , an exponentially decaying 
viscosity, whereby for small viscous parameter v «  1 , the function may be simplified 
to /2(f) =  1 — vr. This was applied to peristaltic flow in the presence of an endoscope 
[21] and later to peristaltic hydromagnetic flow [20]. This choice of function is not 
axisymmetric and so p,(r) = e~ur would be more appropriate. To see how the change 
in viscosity affects fluid behaviour we must first rederive the biharmonic equations for 
radially varying viscosity, jl = fi{r).

A .2 Rederiving the Biharmonic Equations for Fluid Flow  
with a Radially Varyiation in V iscosity

In Chapter 3 we used the simplified version of the Navier-Stokes equation for constant 
fluid viscosity. The original equations takes the form

P j £  +  Vp =  V . (M Vii +  (V " )r ) ) . (A.2.1)

For constant viscosity, // factorises out of the brackets and V .((V u)T) =  0 by the con
tinuity equation, simplifying (A.2.1) to (3.2.1). The velocity rate of strain components 
for an axisymmetric geometry are [65]:

_  v
V U — V f G f G f  “I- U r 6 r 6 x  “I” H- V x Bx B f  U X BX BX ,

r

,T. cr / d (  d v \  d (  d u \  f iv \  ex (  d (  d u \  d f  dvV .(m( V  u) ) = -  ( _  j  +  _

(^7ll) — VfBfBf VxBfCx “I” UfCx&f -|- UXBXBX,r
f d u \  /j,v\ ex (  d (  (

er /<9 /  d v \  d (  d v \  f iv \  ex f  d (  d u \  d (  d u \ \  V .(MVu) =  _  j  +  _  j  -  -  j  + -  j  +  -  j  J

Assuming viscosity varies only in the radial direction and not in the axial direction we
can combine the terms and split them into radial and axial components. This yields
the Navier-Stokes Equation for radially varying viscosity
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p (vur +  uvx) + p x = 2rpuxx +  -  (rp(vx +  ur))r . (A.2.3)r
We can convert the pressure-velocity equations (A.2 .2), (A.2.3) into streamfunction- 
vorticity notation. The streamfunction equation is given by —(f) = L_i(0) =  V  x V-0, 
as seen in Chapter 3. However, for radial variation in the viscosity p, Stokes equation 
Vp =  (p(r)V  x cj) is no longer valid and we would have to convert equations (A.2 .2 ), 
(A.2.3) into streamfunction-vorticity equation manually. However, we can assume that 
the fluid is sufficiently viscous that the Reynolds number is sufficiently small and we 
can remove the nonlinear inertia terms and nondimensionalise so that

2e2  ̂ 2 (- 2 - \ 2 /iue2
Pf = — (rpvf)f +  e P {uf +  e vx) . -

px =  2 e2fp u xx +  i  (fp(e2vx +  Uf))f •

Hence, if the curvature of the wave is sufficiently small we may exclude 0(e2) terms, 
and we obtain the simplified pressure-velocity equations

Pf = 0, px — t  (rpuf))f • r

The vorticity stream function equation is independent of the viscosity variation and for 
small wave number, still satisfies

't/iff 'ipf =  —0 .
f

Now the radial pressure gradient is negligible and the axial pressure gradient takes the 
form Vp =  V  x (p(r)u>). Hence taking the curl implies:

o f  ( j  ( w ) ) f )  = 0  => i f f  + ( - y  = 0

Consequently the Biharmonic equations take the following form

VW ztyf =  05r
4>fr +  Pi0f 4“ /^20 — O5 (A.2.4)

which reduces to the uniform viscous biharmonic problem when v — 0 .

A .3 Deriving Fluid Flow in the Presence of a Peripheral 
Layer

We model the radially varying viscosity for laminar flow to understand the effect of 
the peripheral layer on the fluid flow. We determine the axial velocity for (i) a small
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viscosity variation using a perturbation expansion for p(r) and (ii) a large viscosity 
variation by using a boundary layer function that prescribes the size of the boundary 
layer, 7 , and the viscosity at the boundary, pc.

A .3.1 M od ellin g  th e  P eriph eral Layer by a W eak V ariation  in  th e
V isco sity

Based on work by ElMisery et al. [21], we seek a solution for the amended Biharmonic 
problem (A.2.4) as a power series in v for the radially varying viscosity p =  e~ur . For 
small v if we were to take the simplified form of the viscous equation p =  1 — v f 2 it 
would actually complicate matters as the viscous fraction derivatives would not cancel 
(e.g. pi, p 2 do not simplify). Hence, for any cj, taking p =  e~vr then the tangential 
vorticity equation satisfies

<j)ff +  ^ —4v f  — ^  &  +  (4v2r2) 0  =  0 .

We seek a solution to (A.2.4) in the form of a perturbation expansion in v for the 
vorticity, the streamfunction, velocity, and the effective velocity,

0 — 00 +  ^01 +  ^202 +  • • • , (A.3.1)

0  =  0  0 +  ^01 +  ^20 2 +  • • • , (A.3.2)

u = uo 4- vui + v2U2 +  • • • , (A.3.3)

u =  uq +  vu\ +  v2U2 + ----- (A.3.4)

Hence substituting the above power series in v into the biharmonic equations and 
comparing of power of v we obtain

^(1) 0 0 , f f  f  0 0 , f  — 0? 0 0 ,  f f  f0O , f  =  0 0 ,

O ( ^ )  0 1 , f f  f 0 1 , f  =  4 0 o , f f ,  0 1 , f f  f 0 1 , f  =  0 1 )

0 { v 2 ) 0 2 , f f  -  7 0 2 , f  =  4 0 i ) f f  -  4 0 Of 2 , 0 2 , f f  -  7 0 2 , f  =  “ 0 2 .

The following boundary conditions at the membrane and symmetry axis must apply 
for each order of v\

0(1) 0 O (5,0) =  0, 0 o,fff (x,  0) =  0, 0 O (5,1) =  0U,, 0 O)f (x,  1) =  0,
0 (  v) 0 i( i ,O )= O , 0i,fff(5,O) =  0, 0 i ( a , l )  =  O, 0i,f (*f, 1) =  0,
0 { y 2 ) 02(*f) 0) = 0, 02,fff(i,O) = 0, 02(i, 1) = 0 02,f(s, 1) = 0.
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Determ ining the Integrals of the Bessel Function

In calculating the effective velocities we need to calculate the following integrals rnJo(/3of)dr 
where n is odd. This requires repeated integration by parts,

h  = fo f J$(p0r)df  = 5 (Jq (A) + J?(A )),
h  =  =  i ( 3 J 02(A) +  2J12( f t ) - J | ( A ) ) ,
h  =  Jo] f S j Z ( p 0f ) d f  =  i ( lO J | ( /3 0) + 5 J ? ( A ) - 4 J | ( A )  +  J | ( A ) ) ,
h  = fo f 7Jg(/30f)d f  =  2S0 (35Jo (A) + 14J2(A) — 1 4 J |(A) +  6J 3 (A) — J 2(/?o)) •

Determ ining the Zeroth Order Solution

This is the standard Poiseuille flow parabolic solution taking the form

ip0(r) = A 0r4 +  B 0r2 = \pwp (2f 2 -  r4) ,
u0(r) = a0f 2 + b0 = 4ipwp (l -  f 2) = £p0 i-

Hence, from asymptotic analysis in Chapter 4 the effective velocity is found by

fJuo(r)Jg(0or)rdr „ f 1 ( _2 , L  ̂ t2 ,o t > i* t \uQ = u 1------------------ = c (a0r +  b0) J0 (j30r)rdr = c (a0Ii +  M o ) ,
Jo JoKPonrdf Jo

where
c =

/q1 Jq (fiof) rdf 4 m  +  0 )

D eterm ining the First Order Solution

This solution is 0 ( f 2) larger than the previous stemming from the biharmonic problem, 
with solution

ipi(f) = A i r 6 +  B i f 4 +  Ci f 2 =  — ̂ ipw (f6 -  2f4 +  f 2) ,
u i(r) =  M 4 +  b\f2 +  ci =  ~ ^ w (3r4 -  4f2 +  l ) ,
ui(r) = cfo u i(r) Jq (/30 f)fd r =  c ( M 2 +  h h  +  M o ) .

D eterm ining the Second Order Solution

Similarly this solution is 0 { f 2) greater than the first order, hence

V>2 (f) =  A 2f s -f B 2f 6 +  C2f 4 +  D2f 2 = (3r8 -  8 f 6 +  7r4 -  2f 2) ,
u2(f) = a2f 6 + b2f 4 + c2f 2 + 82 = — ̂ ipw (6 r 6 -  12f4 +  7r2 -  l ) ,
u2(f) =  c fo u2(f)Jo(fiof)fdr = c (a2 / 3 +  b2I2 +  c2h  +  d2IQ).
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A .3.2 A n Exam ple o f th e  Effect o f a W eak Drop in th e V iscosity  on  
T he Effective V elocity

We determine the effect of the varying viscosity on the velocity profile in the case of a 
large a drop in viscosity whilst maintaining v < 1. For this example we take v — 0.8, 
and impose a large absorption at the boundary represented by the eigenvalue /?o = 2  

from the transcendental equation (4.4.12). We impose a flow rate = 50 and graph 
the velocity profiles up to 0 (v 2) in Figure A-l.

Uq.

r r
(a) Zeroth Order (b) First Order

r
(c) Second Order (d) Full Expansion

Figure A-l: Velocity Profile for varying Orders of the Perturbation Expansion

Looking at the Figure A-l(d), it is clear from the velocity profile that for decreasing 
viscosity, fluid flows faster at the boundary and slower at the centreline when compared 
to the Poiseuille case Figure A-1(a). Hence we expect the faster streamlines at the 
boundary to be eroded as absorption increases, resulting in a decrease in the effective 
velocity. We can determine the effective velocity up to order 0(is2) and it is given by 
Ue = uq + vu\ +  v2U2 . In the absence of a peripheral layer the effective velocity was 
Ue = uq = 139.8, and subsequently drops to Ue = 133.9 as v —> 0.8.

It is quite difficult to derive the effects of the drop in viscosity on the effective 
dispersion. It requires manipulating asymptotic analysis used in deriving Moffatt’s 
dispersion coefficient. It is easy to show the effects numerically. We do so later.
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A .3.3 M od ellin g  th e  P eriph eral Layer by a B ound ary  Layer F u nction  
for th e  V isco sity

The previous perturbation expansion relied on a small change in radial viscosity. If 
v < 1 then the viscosity at the boundary is given by p c = p{ 1) > e_1. Hence we see 
a gradual drop of about two-thirds in viscosity between the centreline and the wall. 
The actual variation of viscosity at the boundary seen with biofluids is much larger, 
where p c < 0.01. Most importantly this drop occurs in a very small region at the 
boundary, a characteristic not captured by the function p = e~l>r . Hence, we derive 
an axisymmetric boundary layer function for the viscosity

H = Ae~yf2 +  B  =  +

with centreline viscosity fi = 1 and boundary viscosity /ic which is defined over a small 
region 7  at the membrane. This function is taken as the solution of the steady ID 
convection diffusion pde

Ct + Cx = 7  cxx, c(0) =  1, c(l) =  pc,

which exhibits a classic boundary layer [59]. In the intestine the viscosity of chyme 
is approximately 103 — 106cP and that of the mucus layer is 1 — 103cP [6 6 ]. Hence, 
in nondimensional terms, there exists a boundary viscosity pc «  1 0 - 4  — 1 0 - 2  over a 
distance 7  =  0 .1 .

We aim to solve the amended biharmonic equations (A.2 .4) for the fluid profile 
to use in a 2D dispersion model, however we must solve numerically for the fluid 
flow. Hence, the limits on solving the dispersion model will directly affect the way we 
solve numerically (A.2.4) for the streamfunction and velocity. The dispersion model in 
Chapter 4 was given by

ct +  u{r)cx = D V 2c -  K dc, in ft,
—Dcr =  K ac, on r.

Computing time and limited memory restrict the size of the mesh on which the DAE 
can be solved numerically. Hence, we distribute mesh points to solve the biharmonic 
equations numerically using a radially nonuniform mesh as seen in Chapter 6 . However, 
we now apply the Equidistribution Principle to suitably distribute grid points to capture 
the boundary layer of the fluid flow. We consequently locate mesh points for the 
dispersion model in the same way.

Consider a mesh in the radial direction with non-uniform mesh distribution hj for 
N  cells. The nodes are found by r* =  hj and we denote pj the approximation to 
p{fj).  For the equidistribution principle we define a monitor function M( p , p f , r )  such
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that for fixed mesh points at f  = 0 , 1  the monitor function satisfies

r r i+1 i  r 1
J  M{jjL,jif,r)dr = — M(p,, , f)df .

An appropriate monitor functions should scale in a similar manner to the exact solution. 
We apply the arc-length function M (/2,/2f) =  y/ l  +  fif so that

I  1 + $ df  = [  y j l +p , }d f ,
Jf j -1 Jfj

which can be approximated by difference methods to yield

h){ l  + $ ) j _ i  = /*?+1(l + /2?)j+i, j  = l , . . . , i V-  1,
{p,{rj) -  p,{rj-1))2 =  (/i(rj + i ) - / / ( r ^ ) ) 2, j  =  1 , . . . ,  N  -  1,

and is solved in conjunction with the condition ^2^=^ hj = L We compare solving 
the biharmonic equations for the velocity profile on (i) a nonuniform mesh with (ii) a 
uniform mesh.

In Figure A-2(a),(b) we observe that the equidistributed mesh captures the bound
ary layer, and the velocity profile displays a more prominent boundary layer not cap
tured by the uniform mesh. We observe the fluid flow profile obtained from a uniform 
mesh does not differ from the standard Poiseuille flow. We observe in Figure (A-2)(d) 
that as absorption increases, the effective velocity of the fluid flow decreases. This is 
consistent with the results from the perturbation expansion for a weak drop in viscosity, 
only in this case the effects are more pronounced. This happens because the water layer 
induces much faster streamlines at the boundary and significantly slows the centreline 
velocity to conserve the fixed flow rate. Similarly the faster streamlines at the wall are 
eroded by absorption, decreasing the overall effective velocity.

A .3.4  T h e E ffects o f  M od ellin g  a P eriph eral Layer on  th e  C oncentra
tio n  Profile  from  th e  2D  D isp ersion  M od el

We solve the 2D dispersion model (A.3.5) of a solute in a viscous flow surrounded by 
a peripheral layer of water. We consider now an example. Let the fluid flow have 
flow rate \j)wp = 50, Peclet number Per = 100 and Damkohler number Dar = 1. 
We are only interested in observing the effects of the peripheral layer on the mean 
solute concentration profile. We solve the dispersion model numerically as in Chapter 
6  by applying a finite difference approach to the dispersion equation on a radially 
nonuniform mesh. We solve the velocity profiles for a boundary layer of size 7  =  0.05 
(which is consistent with the observed value in the intestine) with wall viscosity given 
by (lc = 0.9,0.5,0.1,0.001.
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Figure A-2: The Effects of a Peripheral Layer Modelled by a Boundary Layer Function 
on the Fluid Flow Profile and Effective Velocity on (i) an equidistributed mesh and (ii) 
a uniform mesh.
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Figure A-3: The Effects of a Peripheral Layer on the 2D Dispersion Model
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In Figure A-3 we observe the mean velocity of the solute centroid decreases as 
viscosity at the boundary decreases. This corresponds to the drop in effective velocity 
as faster streamlines in the boundary layer are eroded. More obvious is the effect on 
effective diffusion which is a more pronounced effect than that of the decrease in the 
effective velocity. The solute diffuses less from the decrease in convective dispersion as 
there are fewer slower streamlines. The increasingly plug like flow is responsible for 
distributing solute absorption further down the tube (see Figure A-3). However, this 
may not necessarily be the case in peristaltic flow.

A .4 Relaxing the No-Slip Condition

We consider laminar flow in a cylindrical tube with a peripheral layer of water. So 
far we have applied the no-slip condition of fluid at the boundary to represent viscous 
effects. The no-slip boundary condition is a core concept in fluid mechanics where 
there is a zero relative velocity between the fluid and the solid tube wall ( u\f=i = 0 ). 
However, 200 years ago Navier proposed a general boundary condition to incorporate 
fluid slip at the wall [60]. It has been observed that many foodstuffs in glass tubes 
exhibit a wall slip as the flowing materials squeeze out a serum to form a thin layer 
adjacent to the solid surface [27]. The Navier slip boundary condition is the simplest 
alternative to the no-slip condition and it states the the amount of slip at the wall 
is proportional to the tangential fluid stress at the wall. Hence, the slip velocity is a 
function of the wall shear stress

(3ii = rw = p, •> when f  = 1, (A.4.1)

where (3 is the sliding coefficient [76]. We observe the classic no-slip boundary condition 
as f3 —> oo . In literature /3 is said to depend on the characteristic length of flow not 
just the properties of the wall and fluid [76]. Unfortunately there is no completely 
satisfactory method available to predict (3. However, we apply the Navier-slip condition 
as a means to understand the affect of a peripheral layer. There are many slip-laws in 
use, some which exhibit a maximum and minimum value [22]. The Navier slip law can 
be modified for the case where there is a thin layer of a Newtonian fluid of thickness 7  

adjacent to the wall and is modelled by

CUyj  
T~w =  •

7

Hence the slip law can be rewritten as

Uw + =  0 ,
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and we obtain the no-slip condition when 7  =  0 . We denote A =  /ry to be the slip 
coefficient so that

uw +  A Uf =  0. (A.4.2)

We consider the biharmonic equations (3.3.1) which have known solution 0 (f) =  A f 4 +
B f 2 (see §3.3). We determine the coefficients A  and B  from the flow rate boundary
condition -0(1) =  ij)wp and the slip law (A.4.2) so that

i>wp =  0(1) =  A  +  B ,

0 =  u(l) +  Auf(l) =  (4A +  2£) +  A(8 A).

This has streamfunction and velocity solution

m  = (^rSr^)f2 - ( i r l x ) (AA3)
« A ( r )  =  ( A 4 4 )

Hence, we derive the slip velocity

ux{f  =  1 ) =  4A + 2B =  =  8,

and the centreline velocity

(4 8 A) A0u,p
u \ ( f  =  0) =  4 A  +  2B =

1 + 4A

The mean velocity is given by twice the flow rate so that V  =  2ipwp. The limit of the 
velocity, u, as the slip coefficient increases is

lim u\(r)  =  lim (4Ar2 -1- 2 B)  =  2ipwp = V.
A—^ 0 0  A—>-oo

Hence, the laminar flow tends to plug flow as A —>■ 0 0 . We determine the effective 
convection by

u  =  fp u\(r)J$(l3or)rdr 
^  fo Jo (M rd r

which can be written as

Uex = c ( 4 A h - ( 4  + SX)AI0)=4i>wpc ( I o - h ) ( T 2 — ) + 8 ^  Awp' ' KU U \ 1  + 4 \ J  ™ P V1 +  4A 

Hence by differentiating Ue\  with respect to A we obtain 

dUe\  ^cipwp . 4c'ifjwp (  2 10  \ 10 r2 to \ 1
d \  (1 + 4A)

^  (h  -  2 / 0) =  - (14^ J )2 ( 3 J 02 (A ) +  y J? (A )  +  ( A ) )  <  0 ,
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and the effective velocity is decreasing as the slip coefficient increases.

A .5 Summary

In this section we have modelled a peripheral layer of water in the intestine by a 
change in viscosity of the fluid. We considered only the trivial case of peristaltic flow: 
Poiseuille flow case. From literature [71] it is assumed that viscosity varies according to 
/2 (f) = e~vr . Hence we rederived the biharmonic equations for nonuniform viscosity 
and apply a perturbation expansion to derive a semi-analytical solution to the velocity 
profile in the uniform tube. However, the viscosity function presents a mild change in 
viscosity at the boundary. For a more realistic drop in viscosity as seen in the intestine 
we applied a more reasonable boundary layer function /2 =  Ae~ir2 +  B.

In this case we numerically solved for the velocity profile and showed that a periph
eral layer yielded faster streamlines at the wall. As absorption increases these faster 
streamlines erode, leading to a decrease in effective convection and diffusion. We showed 
this by deriving the effective convection coefficients (as described in Chapter 4 and im
plementing the new velocity profile into the 2D dispersion model q  -I- u.Vc =  I)V 2c 
and solving numerically. From our results we have shown that for a thin water layer 
we can model the viscous water layer by relaxing the no-slip condition in the original 
biharmonic equations. Implementing the Navier-slip law u +  XHf =  0 we were able to 
obtain an analytical solution for the velocity profile. It is then easy to show that a slip 
velocity at the boundary decreases the overall effective convection coefficient.

This is just an introduction to modelling the peripheral layer for the peristaltic 
flow case. We hope that ideas generated here will help solve for peristaltic flow with a 
peripheral layer, that does not yield a non-unique interface. The effects of the water 
layer on trapping and hence mixing would be quite important to Unilever. It may be 
possible to influence the size of the water layer and consequently affect solute motion 
to ones advantage.
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A ppendix B

Future Work 2: M odelling the  
V illi as a Porous M embrane

In this section we discuss possible future improvement of the full 2D Poiseuille disper
sion model (4.4.2) by modelling the villi as a porous medium rather than a boundary 
condition. In previous literature [73], the villi were not specifically modelled themselves. 
The permeable membrane that lined the intestine was modelled by the boundary con
dition

DCf = K ac,

for drug diffusion D and epithelial permeability K a. The villi and microvilli act to 
enhance surface area of absorption and are incorporated into the boundary condition 
—Dcr = SaK c , by amplifying the permeability K  by the surface area Sa (a product 
of the villi surface area and the microvilli surface area). However, the size of the villi 
region decreases down the gut not only because the radius of the intestine decreases 
but because the villi regions also become less dense. Hence, the boundary condition 
—Dcr = SaKc  is crude at best and is more suitable if we were to include some axial 
dependency in the surface area to reflect changes in the villi structure, i.e. —Dcr =  
Sa{x)Kc.

We may incorporate the new boundary condition into (4.4.2) as a first improvement. 
However, the boundary condition is only an approximation of the true nature of how 
solute passes through the epithelium. The villi region is not sufficiently dense to assume 
solute particles are (i) unable to flow through the region if there is a driving pressure 
gradient or axe (ii) unable to diffuse in the region. The assumption is less true further 
down the lumen as the density of villi decreases. Hence, in this section we look at free 
fluid flow in a tube surrounded by a porous layer. We briefly review previous work on 
establishing, (i) the correct interfacial boundary conditions of the fluid in the free flow 
and in the porous layer and (ii) the fluid boundary conditions at the outer wall of the 
porous medium.
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Generally free fluid in a tube surrounded a porous medium has been modelled by 
one of two ways; 1) the Darcy model or 2) the Brinkmann model. For both models, 
the free fluid obeys Stokes flow

/iV 2 u^ =  —/iVp.

However, flow in the porous medium is assumed to satisfy in case 1) Darcy’s law

k V p  =  /mp,

where there is a plug flow in the medium that depends on the pressure drop, or alter
natively in case 2) a combination of Stokes flow and Darcy Law

Vp =  PcV V  -  ^ u ”,

which recovers the viscous effects by imposing a no-slip at the boundary of the outer 
porous wall.

Consequently it is necessary to balance the free fluid Stokes equation with the 
Daxcy or Brinkmann equation at the interfacial boundary. In the literature this has 
been achieved either by the Beavers-Joseph-Saffman law for the Darcy model, or for 
the Brinkmann equation by balancing the pressure and the velocities. We propose that 
we could model flow by the Brinkmann model and implement the new velocity profiles 
u^ ,up into a dispersion model where we have, 1 ) our standard dispersion equation,

ct +  u^.Vc =  V(DVc) — KdC,

in the free fluid and 2 ) a dispersion equation,

vt +  up.Vu =  V(D V u) — K ac

for villi solute concentration t>, in the porous villi medium where we could model ab
sorption everywhere in the villi region. Solute is now able to flow in the porous region 
depending on the region’s permeability and is also allowed to diffuse.

Some asymptotic analysis may allow us to reduce the porous diffusion equation 
to a boundary condition for the free flowing solute. This boundary condition would 
physiologically be more reasonable than its predecessor (4.2.1). The free fluid diffusion 
equation will have a non-zero velocity at the interface with slip speed depending on the 
shear stress and the permeability. The problem would look similar to the peripheral 
layer model (A.3.5) but with a new boundary condition.
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B .l  M odelling Fluid Flow in a Porous M edium

Fluid flow in a channel surrounded by a permeable medium is of significant impor
tance to engineers where many industrial processes involve modelling such phenomena. 
Examples include oil recovery, the manufacturing process of advanced composites and 
modelling underground water. Particularly coupling between groundwater and surface 
water presents a serious problem in predicting how pollution in lakes and rivers makes 
its way into a water supply. There has been various studies into accurately predicting 
fluid flow over such porous medium to understand the solute transport phenomena.

B .1 .1  D a rcy ’s Law

It has been widely accepted that Darcy’s law is the correct model to describe steady 
laminar incompressible viscous flow of fluid through weakly porous media. Darcy had 
conducted research on the flow of water through sandbed filters. The porous medium 
was modelled as a collection of interconnected parallel capillary tubes where the per
meability of each tube contributes to the mediums total permeability. The law assumes 
that permeability is independent of the medium’s size and the geometry as well as the 
fluid, the flow rate and the pressure drop but rather the permeability is a characteris
tic of the porous medium. Darcy’s law is applied for homogeneous isotropic mediums, 
that is the permeability of the porous medium is uniformly distributed and at any given 
point the permeability is independent of the direction. Hence, the law states that the 
apparent velocity u is proportional to the pressure gradient V P  in the porous medium 
so that,

u  =  - —V P, (B.1 .1 )
A1

where fi is the dynamic viscosity of the fluid and k is the permeability of the homoge
neous medium. The filtration velocity u is the cross-sectional average velocity so that 
Darcy’s law predicts a plug flow.

B . l . 2 T h e B rinkm ann M odel

In many cases Darcy’s law is inapplicable when fluid is flowing in a medium bounded by 
an impermeable boundary. The flow field can not satisfy a no flow boundary condition 
between the medium and the solid wall and the important transport phenomena at 
the boundary can not be captured by the law. Brinkmann (1947) accounted for the 
viscous drag and the viscous damping effects by modifying Darcy’s law to be a linear 
semiempirical combination of (i) Stokes equation for microscopic pore level flow and
(ii) Darcy’s law for bulk resistance. The Brinkmann equation for a fully developed flow 
satisfies

McV2 u - £ u  =  VP, (B .l.2)
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for an apparent viscosity fj,c which differs from the free fluid viscosity due to the added 
resistance of the porous structure. The apparent viscosity is expected to be larger than 
that of the fluid viscosity and is dependent on the properties of the porous media. Now 
the Navier-Stokes viscous resistance term has been introduced in equation (B .l.2) but 
the driving force is still considered to be the pressure gradient. When the permeability k 
is small the Darcy resistance dominates Stokes resistance and the Brinkmann equation 
(B .l.2) reduces to Darcy’s law (B.1.1). Conversely if permeability is large, then Darcy 
resistance is negligible and (B .l.2) reduces to ID steady Stokes flow. The Brinkmann 
model has the advantage of coping with viscous drag along walls as well as the Darcy 
effects in the porous medium. There are many examples of the Brinkmann model in 
use in flow over porous media, see [42], [8 ], [49], [25].

M odelling Free Fluid Flow over a Porous M edium

Consider free fluid flow over porous media. Typically flow in the non-porous channel 
is modelled by Stokes flow, but in literature porous flow has been modelled by either 
Darcy’s law or the Brinkmann equation. In combining equations it is necessary to 
specify the location of the interface between the porous and non porous region. Even 
when one equation is used in both domains, for instance in a permeability step change, 
the interface location is required. The quantities of interest are the velocity at the in
terface known as the slip velocity and how far fluid penetrates into the porous medium. 
Porosity plays an important role, as an increase in porosity increases fluid penetration, 
the slip velocity and the shear.

Clearly the momentum equations describing the flow in the adjacent porous media 
and free fluid domain are quite different; they have different orders and are quite 
incompatible pdes. The fast moving flow above the interface and the slow porous 
medium below complicate modelling the interface velocity. For instance, Darcy’s law 
fails to describe the penetration of high velocities into the porous medium and for 
shallow media, the law becomes inappropriate as velocity is no longer uniform and the 
viscous forces dominate. This incompatibility between the equations has resulted in a 
great deal of uncertainty in regards to defining appropriate boundary conditions at the 
interface and implies the existence of a boundary layer. Consequently the Brinkmann 
equation has difficulty in predicting the thickness of the layer.

A boundary condition can be found by integrating the divergence of the fluid veloc
ity over the porous and non-porous region and applying continuity of normal velocity, a 
consequence of the incompressibility condition. However, for a completely determined 
flow it is necessary to also specify a condition on the tangential velocity component at 
the interface. When applying the Brinkmann equation previous authors have applied 
continuity of the flow; the velocities, the viscous shear stresses and the the pressure 
at the interface [50]. However, for more dense porous media where flow is governed
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by Darcy’s Law, the existence of a tangential slip velocity at the interface was demon
strated by Beavers and Joseph (1967). They developed a semi-empirical slip condition 
by measuring the flow rates above the porous interface and applied the laminar solution 
for a no-slip condition in the free region. The Beavers Joseph condition is given by

7 .t =  V k n .V u f . t ,  (B .l.3)

for the free fluid velocity u f  at the interface T, a porous seepage velocity the unit 
tangent vector to the interface t, the unit normal into the fluid n, a permeability k 
and a slip coefficient 7 . The slip coefficient is a dimensionless parameter that does not 
depend on the viscosity of the fluid 11 but rather on the geometry of the microstructure 
of the porous medium at the interface. Later Saffman showed by a statistical approach 
(later justified mathematically [56]) that the seepage velocity was much smaller than 
the other terms in Beavers Joseph condition so that

.t =  Vkn.'Vu^ .t +  0 (k)

The Beavers Joseph condition has been thoroughly analysed to prove the unique ex
istence of a solution to the flow in [56], [39], [40], [51], [45] and applied in [24], [44]. 
There are many examples of the Brinkmann model in use in flow over porous media, 
see [42], [8 ], [49], [25].

B.2 The Porous Dispersion M odel

The villi and microvilli that line the intestine are very dense and greatly enhance 
absorption of solutes. So far they have been neglected as a physical factor in previous 
intestinal models, however, solute in the villi may exhibit a velocity and some diffusion, 
albeit small. We may model the villi region of the lumen as a porous region where we 
simplify the medium to that of a homogeneous isotropic region. Hence fluid flowing in 
the intestine is modelled by free fluid flow in a porous region.

B .2 .1  D eriv in g  th e  V elocity  P rofile

We model the intestine as a tube of radius r = R q and length x = L x with a porous 
region occupying [h,Ro] so that Ro =  h +  5 for porous radius S. We consider an 
incompressible Newtonian fluid in steady flow in the tube and we assume no external 
forces act on the fluid. We can solve for velocities u f  and up in the free and porous region 
respectively by applying Stokes flow in the free region and the Brinkmann equation in
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the porous medium.

/ i V V  =  V P, r  6  [0, h],
/ i c V V - g u '  =  V P, re[fc ,Po].

We denote fj, for the fluid viscosity and (ic for the porous viscosity. At the interface we 
simply apply continuity of flow and pressure.

B .2 .2  D efin in g a D isp ersion  M odel

For the known velocity profile we may solve two 2D coupled dispersion equations. One 
equation represents solute concentration c(x, r ) in the free fluid region, and the other 
models solute concentration in the villi v{x,r) such that:

ct + ui (r)cx = V . { D ( r ) V c ) - K i c, re [0 ,fc], (B.2.1)

v, + up(r)vx = V . ( D ( r ) V v ) - ( K d + K a)v, r€[h ,R o].  (B.2.2)

Here we assume that degradation occurs in both regions with strength K In reality
enzymes in the villi region increase solute degradation, for simplicity we can remove
the degradation rate from the villi model. We assume further that absorption occurs 
only in porous villi medium. We note that diffusion should vary in the free and porous
region, with tighter spacing, diffusion should be much less in the villi than in the free
fluid. Hence, we could model diffusion by a step function

D{r) = D f , r<E[0,h],
D(r) = kD f, r e [ h , R 0],

where k (E (0,1).

B .2 .3  A sy m p to tic  A nalysis

It may be possible to perform some asymptotic analysis on B.2.2 if S is sufficiently 
small to reduce the villi equation it to a ID equation for the boundary equation to 
B.2.1, greatly simplifying any 2D numerical scheme. Some further analysis may then 
reduce the 2D model to a ID equation in order to understand the effects of the villi 
density on the mean solute concentration profile. This is a useful subject for further 
investigation.
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M odelling Peristaltic Flow

C .l Boundary Conditions for the Biharmonic Equations

For a regular solution of the biharmonic model, Figure 3-2, it is necessary to im
pose boundary condition VWr =  0 at the centreline. To prove this we convert the
streamfunction-vorticity equations (3.3.1) for the case when e =  0 into streamfunction 
form

» 2 ~ 3 3
V’rrrf Tiftffr "b P̂rf ^3^^ =  (C.1.1)

We take a Taylor series expansion for ?/> =  ?/>(£, f) at r =  0 such that

^ 2  ^3 4̂
^ (r) =  -0(0) +  r ^ f (0) +  y ^ ff(0 )  +  — ipfrf (0) +  — V>ffrf (0) +  0 ( r 5) (C.1.2)

Hence, substituting (C.1 .2 ) into (C.1.1) for terms up to O(r) we obtain

,0ffff(O) T (^firfrify *b V^fff (0)^ +  T2 ^Afr(O) +  '̂4)frf{0) ”b ~^^rrff

3 / -  - r 2 - r 3 - \
^3 ( f'iprf (0) “I —̂ fff(O) “I g"^frrr(0) ) “b Oix)  =  0

For a regular solution where we do not want an analytical solution that blows up at 
r = 0 we impose 0(r~ n) terms for n  G N to be zero. Hence comparing 0 (r~ n) terms 
in the above equation

0 (1 ) 'Ipffff (f̂ ) —I- 2 V̂ rrrr(f̂ ) 2 V̂ rrrr(f̂ ) — 0

0 (r-1) — 2 lfiffr{0 ) +  3Vjfrr(0) — f^rrr (0 ) =  0

0 (r-2) 3 ^ ( 0 )  — 3 ^f(0 ) =  0

0 (r~ 3) —3 ^ (0 ) =  0

Therefore, for regularity we impose 0) =  0 and xj)fff (0 ) =  0 .
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C.2 Reflux in the Pum ping Range

Lemma C .l. Reflux occurs only in the pumping range ([64])-

Proof. The Instantaneous flow rate Q^a of all fluid between the centreline and a par
ticular streamline 'ifa is determined to be

Q rr(iPa,x,t) r f ^  _ _ _ r f ^  _ f 2
—— =  / ru(x,r,t)dr = / r(u +  cr)dr = / ipf  +  radr =  ifa -I- a — ,
2tt J o Jo Jo 2

where we have transformed from the fixed frame to the wave frame coordinate system. 
The time mean volume flow rate of the material up to the streamline ifa is given by

where the integral is now with respect to distance x  by the substitution x =  at. 
Nondimensionalising we obtain:

=  +  ^  r2 ('ipa,x ,t)dx.

Let us consider the small parameter (5 defined to be the difference in a streamline in 
the flow -0 and the streamline at the boundary ifw such that

S = ij) -  fpw.

Hence 8 is a small parameter for streamlines close to the wall which will have equation 
close to that of the boundary and thus we define their shape to be governed by a 
perturbation expansion on 8 such that

r(x; 8 ) = f (x )  +  a\(x  +  a2 (x)S2 + . . .  (C.2.1)

Substituting (C.2.1) into (3.4.4) and expanding the powers up to 0(82) yields:

xj) = A ( f  +  +  a28 2 ) 4 “I- B ( f  A ai 6 +  a2 82)2,

j>w + 8 = A ( f 4 +  4 p a q6 + A f3a28 2 +  6 p a \ 62) +  B ( f 2 +  a \8 2 +  2 / M  + 2 fa 282).

Therefore, comparing orders of magnitude of 6 we obtain the following equations

0(1) ^  =  A f 4 +  b f2,
0(6) 1 =  (4 p A  + 2 B f)a u
0(82) 0 =  (4 f3A + 2 B f)a 2 + (6 f 2A + B)a2.

The first condition satisfies the value of the streamfunction along the peristaltic bound

201



APPENDIX C. MODELLING PERISTALTIC FLOW 202

ary. Looking at the 0(<5) equation we derive a\ by

a 1 1 = r 1
/(4 /2  +  2B) f u a

Similarly we determine a2 using the no-slip condition on the boundary from (3.4.4):

( 6  f 2A  +  B)a\ 6 f 2A  +  B  4A 1
a2 = —

4 p A  +  2 B f  p  f  2/3

Hence, to evaluate the instantaneous mean flow rate integral we require r2 from the 
perturbation expansion

t 1 — p  +  2 f a \ 8  +  a28 2 -(- 2 f a 28  

1

72 ' '  v /  2 / 3

= P - 2 8  + 8 A 6 2.

=  P - 2 S  + 4 -J 2 + 2 f ( ^ - ^ - ) 6 >

whereby the mean flow rate becomes

^  P d x  — 28 J  1 dx + 8 2 J

H(i+H _25+̂ 2}=  «  +  +  ) ~ 2S +

= Vv> + 2  ( i  +  2 “ 2)  +  4 ^ P ^ 2-

We scale with respect to the mean flow rate when there is a zero pressure drop so that:

- g -  =  l + f - , - 7 t : V  +  -
Qo x i ’w + 5  ( 1  + q̂;2) /

At the boundary 8 = 0 and the ratio of the flow rate clearly equals unity. As the
instantaneous flow rate increases from the center towards the wall, if there is any net 
retrograde motion, the flow rate Q will decrease. Hence, reflux exists if Q at any point 
exceeds that at the wall Qw. So if the ratio of mean flow rate to that of the wall exceeds 

1,
S -  >  1  = 4 -  ^ 5 2 > 0  =>  A p A  >  0 .
Q o  Q o

Hence a peristaltic wave acting as a pump in the absence of an assisted flow will cause 
a pressure rise and induce reflux. □
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C .3 Flow  R a te /P ressu re  D rop versus A m p litu d e R atio

In the peristalsis chapter we have shown the existence of five different flow regions for a 
purely positive instantaneous mean volume flow rate, Q > 0. The different flow regions 
were determined as a function of the flow rate, ifiw, and the amplitude of vibration, a. 
We show here the different regions as a function of a and (i) the instantaneous mean 
volume flow rate Q , (ii) Q/Qo the instantaneous mean volume flow rate normalised 
with respect to a zero pressure gradient, ('") 3 pressure gradient Ap\ for small a and
(iv) the pressure gradient Ap\ for larger a.
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Figure C-l: Flow Types for various Amplitude Ratio
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A ppendix  D

D ispersion M odels

D .l  P oiseu ille  D ispersion  A sy m p to tic  C oefficients

We have shown that it is possible to apply asymptotic analysis to reduce the 2D 
Poiseuille dispersion model

Cf ■£ (l f  ) C± =  ~p C xx ”t“ Cfr d” ~  Cf̂  j

to a ID dispersion equation

/ 7*A P  A n  ^
C' + (  2 j C± “  Per (  +  192 erj  C“  ~

where the asymptotic factors 7 *,P were found to satisfy those derived in Brenner et 
al. [10]. However, the formula for a* was stated incorrectly in all their work [10] [6 ]
[73], but graphed correctly in [10]. We plot the absorption coefficient a* as a function
of the Damk’ohler number Dar for both cases in figure (D-l), showing the enormous 
amount of absorption if the wrong coefficient is used.

2 5

2

1 5

0 5

10° 101

Figure D-l: A Comparison of Moffat’s and Stoll’s Absorption Coefficient a*
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We further plot the velocity and dispersion factor as a function of the Damk’ohler 
number, and also the root of the transcendental equation (4.4.12) and the fictitious 
initial condition (4.4.29).
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Figure D-2: Asymptotic Coefficients

205
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Num erical M ethods

In this section we numerically solve the peristaltic dispersion model in the absence of 
a semi-analytic solution. This was our first attempt at solving the dispersion model 
when we had not yet derived the peristaltic velocities. We must first solve the bihar

monic mesh’ for the velocities on the ’dispersion mesh’.

E .l A Finite Difference Approach to  Num erically Solving  
the Biharmonic Problem

Consider slow flow in an axisymmetric tube, where the wall undergoes standing wave os
cillations. We consider the biharmonic problem for the fluid flow given in streamfunction- 
vorticity form by figure (E.l). We apply a rectangular coordinate transformation in 
the wave frame from given by

monic equations in the wave frame numerically for the streamfunction i/j and we do so 
using the ‘fixed’ rectangular domain transformation. Hence, we derive the wave frame 
peristaltic velocities (u, v) and consequently the fixed frame velocities (u,v). However, 
to implement the velocities in the peristaltic dispersion model,

we must linearly interpolate the fixed frame velocities which we found on the ‘bihar-

X = x, k = r / f ( x )

to obtain the biharmonic problem on a uniform domain Qc = [0, l]2. We first transform 
the derivatives in the physical domain to those of the computational domain by
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r

/  = 1 + acos(27rx)

d “ $ f r  r '&r  — 0

4>xx “I" &rf "I" j4>r — 0

4 >r f f  =  0

The second derivatives are consequently given by

^ f f  = (^r)^KK)
$ xx — ifixX d ~  (^ x) 2$kk  d "  ^^x^xk  d "  ( ^ i x  d -  Kx^fx)  V V e *

and we obtain the biharmonic problem in the rectangular domain

1

4> = 4>w 
= - f 2

ip =  tpx 

4>-4>\
e2^XX + 9xk^xk d- 5/ck^kk d- gk^k  =  ~<f> u, = ^

^&XX d“ Qxk&xk d- Qkk&kk d" 9k&k =  0  4> =

•ip - e
V'kkA = 0

Figure E-l: The Peristaltic Biharmonic Problem in the Rectangular Computational 
Domain

The tensor functions gi (i = 1 , . . . ,  5) are derived from the rectangular transformation 
of the cylindrical Laplacian

2* / '

r
9 k  — :  d" 6 d-  K x K r x )  —

/« /*

We discretise the rectangular domain into a standard uniform mesh with J, i f  points in
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(x, k) with spatial steps Ax =  1 /J  and Ak = 1/K . We denote ^  to be the numerical 
approximation of the streamfunction «  i>{Xj,kk) on the discretised grid for axial 
nodes Xj — j&X (j =  0 , 1 , ,  J) and radial nodes kk =  kA k  (k = 0 , 1 ,K ).  The 
discretised biharmonic equations in finite difference axe given by

+  l  + * »  -

Vj =  1 , . . . ,  J  — 1 and V/c =  1 ,. . . ,  K  — 1. As seen earlier we apply L’Hoptial’s rule to 
approximate as k —> 0. Hence, the tensor functions on the boundary simplify to

5\i

f 2 J  — ” -   ̂ p

for the Dirac delta function S j and consequently the Biharmonic equation (E.1.1) 
simplifies to just

+  +  9k(Xj) 2^2° +  4>j,k = 0, V? =  1 , . . . ,  J  — 1. (E.1.3)

The equation for 0 at k = 0 is not required as there are a sufficient number of boundary 
conditions to solve (E.1.1) and (E .l.2); four periodic conditions for 4> and at x = 0,1 
and two axisymmetry conditions at k = 0 and two fluid flow conditions at k =  1 . At 
the peristaltic boundary we apply the no slip boundary condition ^  =  —/ ,  which in 
finite difference terms is given by A ^ j fK  — 2Ak f .  Hence the cross derivative term 
simplifies to = ~ 2 f f x ’ an(  ̂ the P^e becomes

+9kk(Xj) j  +&J =  2 f f m ^ X j ) + ^ 9 K k { x ) + f 29k{x), V? =  1 , . . . ,  J - l .

(E.1.4)
At the axial boundaries, we merely apply ghost points for the periodic boundary 
condition =  V>j_i>fc, =  i>i,k to ((E.1.1),(E.l.2)and(E.1.3)). Let =
$ i , k , ' 4 ’2 , k , - - - , ' 4 ’N,k]T  and ^  Then 3A E that repre
sents the discretised form of L_i(V>), with the incorporated relevant boundary condi
tions. Similarly for 4> =  rw, E MJ(i<:_2)x,7i<r that represents L_i(</>, fi), Vj and for 
k = 2 , . . . ,  K  — 1 which is smaller than A as we have stipulated 4> to have no boundary 
conditions. We then obtain the linear system for the Biharmonic problem.
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J J 2 J X  J K Q 2  J x J K

I 
I

---
---

---
 

_ a n 2JxJK
A J J K x J K = Q J K x J K

Q J ( K - 2 ) x  J K B Q j ( K - 2 ) x J K

where (i) dQ'2KxJK is a matrix containing the Dirichlet boundary data for -0 at k = 0 
and k = 1, (ii) D contains the location of the Dirichlet boundary and (iii) Q contains 
the Neumann boundary data. This forms a linear system (Ax = b) which is easily 
solved for ip and <p in MATLAB.

E.1.1 D eterm in ing th e P erista ltic  V elocities from th e Solu tion  o f th e  
Biharm onic Problem  in th e R ectangular D om ain

In order to solve the peristaltic dispersion model (6.3.2), we require fixed peristaltic 
velocities found from the wave frame velocities. Hence by definition of Stokes stream- 
function, and by solving the biharmonic problem for ip (E.l) we obtain axial and 
transverse velocities u and v in the wave frame. However, we must solve the peri
staltic dispersion model and biharmonic equations on the rectangular computational 
domain Qc. Hence, Stokes velocities in the rectangular frame are found by the usual 
domain transformation. Applying appropriate symmetry and boundary conditions we 
obtain: We use standard centered difference on ip  ̂ and ipa for ipj^ to find approximate

k

6 -  T ^ i t

= ji'Pnk 
v  =  0

Figure E-2: A Model to Display How to Determine Wave Frame Peristaltic Velocities 
from the Streamfunction Solution of the Biharmonic Problem

velocities Uj^ and Vj^- Hence, from the calculated steady wave frame velocities it is 
possible to solve for the fixed frame unsteady velocities in the rectangular frame by the 
transformation:

u(x,  k , i) = u(x,  k) + \ = u ( x ~  t, k ) + 1, 

v ( x ,«) = v(x,  k) = v ( x  ~  t, k),
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Note that (x, fa is the dimensionless fixed frame rectangular coordinates and (x,fa are 
the corresponding wave frame coordinates. Fixed frame velocities axe periodic, T = 1, 
and so

u(x,  k, t) = i i(x + n, a c , t) = u{x,  a c ,  ̂— 1) for n  G N.

E . l .2 D eterm in ing th e Pressure G radients from th e T angential Vor- 
tic ity  Solution o f the B iharm onic Problem  in th e R ectangular  
Frame

By Stokes slow flow equation V x u = —Vp (3.2.3) we can determine the pressure 
gradients in the wave frame for unknown variable viscosity p ( r )  by the relations:

d p
d x

1 d ( j )  d p  e 2  d ( j )
r  d r '  d r  r  d x

Hence, in rectangular coordinates the changes in pressure may be found with similar 
methods to the rectangular wave frame velocities see figure (E.1.2). At the centreline

S± = -dx
n  =-

? f= i Sf =+

|E  =
0 \  K  OK

I?  =  i i  ( S t
O K  f  K  \OX J  O K  J

d p  _  1 vkk dfi -  -yr

f i
an

Figure E-3: A Model to Display How to Determine Pressure Gradients from the Tan
gential Vorticity Solution of the Biharmonic Problem

0 =  — r u )  and by symmetry fa = 0. Hence fa  =  0. Now fa = 0 since 4> is zero, hence 
fa  = fa  fa  +  fa  fa  = 0 - The rectangular pressure gradients at the centreline are then 
found by L’Hopitals rule so that
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E . l . 3 D eterm in in g  th e  F ixed  Fram e V elocities by L inearly In terp o
la tin g  th e  N u m erica lly  Solved  W ave Fram e V elo cities  o f  th e  
B iharm onic P rob lem

We have solved the biharmonic problem numerically and found the fixed frame axial 
and transverse velocities (see §E.1.1). It is only necessary to solve the biharmonic 
problem for one wavelength and then apply periodicity to find the velocities for x  > 1 . 
There are two ways to find the fixed frame velocities u from the wave frame velocities 
u .

In the first method we solve the biharmonic problem and the peristaltic dispersion 
model on the same size mesh. We prescribe the DAE solver to then solve for a uniform 
time step At; which we require to be an integral function of the spatial step so that at 
each time step tn the velocities can be found by rotating the wave frame velocities 
uj fh. As the velocities are time dependent this would require a very small time step to 
reduce errors and would then require a large number of spatial steps since A t = £Ax  
where £ is the number of spatial steps a time step would jump (with £ =  1 minimising 
the error).

This method imposes a uniform time step restriction. It requires the domain to 
be an integral number of wavelengths (or an integral number of wave frame mesh size 
cA x ) and the biharmonic and dispersion model be solved on a very coarse mesh, which 
is quite costly. The peristaltic model forms a DAE system which is very stiff. Hence to 
solve accurately we need to allow the DAE solver to solve for time steps of its choosing 
which will generally be nonuniform. An alternative method is sought, and that is to 
linearly interpolate the velocities on the ‘biharmonic mesh’ for the velocities on the 
mesh used to solve the dispersion model.

We assume that the wave frame velocity profile has been solved, so u is known for 
x  G [0,1]. Then every fixed frame velocity has a corresponding wave frame velocity

«(x> «> i) = «) +  1 , v (x , «, t) = v (x ,«).

The radial component is unaffected when moving from the fixed frame to the wave 
frame. Therefore k = k. However, the corresponding wave frame axial component, x, 
is determined by x  — X ~ t +  n, n £ Z, where an arbitrary number of wavelengths is 
added or subtracted until x £ [0,1]. We discretise the wave frame into J ,K  points in 
X and k respectively, and the fixed frame into J ,K  points for x  and n so that

(*;•»«*) =  (0 ~ 1)&X, (fc “  l)A k), j  = & =  ! , . . . ,  M,

Ax =   ------ , A k = —------
N  — 1 M - l
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A X = Ak =
1

AT — 1 ’ M  -  1
In the discretised form, the velocity at a point, (xj, Kk), in the fixed frame is found by 
the velocity at a point ( X j , f c k ) ,  in the wave frame:

u(Xj, *k) = u (x j ,k k) + 1 =  u{xj - t  + n, Kk) +  1 ,

v{Xj, = HXji «Jfc) =  v{xj, Kk),

which may not necessarily lie in the wave frame mesh, i.e. (Xj,Kk) 7  ̂ ( X j ^ k)- The 
corresponding wave point (X j , f c k ) =  will lie in the wave frame surrounded by 4 grid 
points.

BC

We define a further 4 points on the grid lines parallel to E:

B  — ( X j i ^ f c —1 )> '̂ -‘B C  — (Xj' i  ( X j —i ) ^ / c  )•

The distances from A to Eab and A to Eda are defined by a = Xj ~ Xj_i and 
/3 =  Kk — fcjc_l respectively. If the discretised meshes have the same radial grid spacing 
then K  = K. Hence, Kk = kk = k~k and the arbitrary point lies on a radial grid 
line. Then to find u (Xj,K'k) we need only linearly interpolate between u ( X j - i ^ k) and 

u(x>«i)-
Only when J  — J  and A t  = £Ax/cr would the arbitrary point lie on an axial 

grid line, Xj — Xji and we need only linearly interpolate in the radial direction to 
find u(xj,£fc)- However, for non-superimposing meshes, it is necessary to linearly 
interpolate for u(xj, &k) in 2 Dimensions. The wave frame velocity at points on the
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grid in (E.1.3) parallel to E are found by:

u B  — U A
U Sab — U a +  CXVCiAB, m A B  = ----------------- -,

Uc -  u B
BC = UB ~I- pm flc, rage  =  — — ,

Uc -  u  D

u s BC =  u b  +  /3m  s c ,  n i s c  =

u e c d  =  u p  +  a m c D i  m C D  =

U e Da =  ^ a  +- /3 m DA, mjr>A =

Ax ’
U p  -  UA

Afc

Therefore, u$] can be found by radially linearly interpolating between u s AS and u s CD 
or axially linearly interpolating between u s Da and u s BC.

Proof. Define V« to be the radial linear interpolant of U£ between u s AB and U£CB, 
and define V p to be the axial linear interpolant of u s  between u e ba and u s BC. Then:

v *  =  u SjlB +  /3m * , m *  =  =  u Ejm +  a m i :  =  BC

Expanding V* into the original 4 surrounding grid points u a , u s , u c , u p  implies:

V «  =  ( u a  +  a m A B ) +  P  ^ U Sq p ^ . - SAB)

=  A I | P  +  a m i ) C ) ~ ' & A  +  a m A fl) j

Expanding into the original 4 surrounding grid points u a ,  u b ,  u c ,  u d  implies:

V *  =  ( u a  +  P m D A ) +  a  ( U £B ?a ^ U~~P~ )

=  ^UA 1 I a +ygm-BC') ~ fo-4 +/3m pA )^

- , o f ^ D -  uA \  f u B - u A\  0 f m BC- m DA\
= + » \ - ^ r ) + a { - * * - ) + a/?r  Ax  )

„ f u B - U A\  f u D - U A \  ^ U c  + U A - U B - U D ^

Therefore, u s  =  = V*, a 2D linear interpolant, made up of linear interpolations
in the axial direction A B , radial direction AD  and a cross product radial axial term. 
The equations hold when (xi, kk) fie on the wave frame grid lines. □

_  ,  US -  Ua
=  U A  +  a

„ , U s  -  UA
=  UA +  a
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E.2 How to Apply the Low Pass Filter to Rem ove Noise

To test our hypothesis that peristalsis contributes to the mean solute concentration 
profile in superimposed oscillations we remove the oscillatory terms using a Low Pass 
Filter a technique used in noise reduction. We apply in MATLAB the Fast Fourier 
Transform (FFT) at the end time t = T  to express the set of discretised mean solute 
values cj at nodes Xj = j  A x  as a combination of samples of periodic functions of
different frequencies. The FFT maps from the set of N  mean values to a set of N
complex numbers, where the FFT constructs complex vector f j 1 defined by

N

f j  = y  Cj-e-2̂ -7' - 1) ^ - 1)/^. 
k = l

As Cj is real then f j  is symmetric so that f j  =  /Ar+2 -j- The contribution of noise to a 
signal appears as terms in FFT centered on index AT/2. Hence the effects of noise from 
peristaltic can be reduced by suppressing these values. So we multiply the FFT of the 
mean concentration by a symmetric vector which sets the central section of the FFT 
to zero:

' 9j =  1 j  < M,
< 9j = 1 j  > N  +  2  -  M,

9j = 0  otherwise,

and obtain the vector h  =  g .f . We choose M  small enough to remove noise but 
large enough to retain detail of c. Consequently we obtain the cleaner mean solute 
concentration from taking the inverse Laplace transform of h.

lrrhis /  is not the same as the prescribed boundary f (x ) .
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