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Abstract

Inflammatory bowel disease is a chronic relapsing and remitting inflammatory 

disorder o f the gastrointestinal system. Although its aetiology remains unknown, 

increasing evidence has outlined that immune mechanisms, including aberrant T- 

cell activation and abnormal cytokine production in the intestine may contribute 

to its pathogenesis. A role for intestinal myofibroblasts in chronic inflammation is 

gradually emerging even though the mechanisms by which they participate in this 

process are ill defined. In this study the role of myofibroblasts in expression of 

inflammatory mediators and their interactions with the adjacent colonic epithelial 

cells and T-lymphocytes was investigated.

Human intestinal myofibroblasts were found to constitutively express a variety of 

co-stimulatory molecules such as PD-L1, B7-RP-land B7H3, whereas B7.1 and 

ICOS expression was induced by the combination of the pro-inflammatory 

cytokines TNF-a/IFN-y. Expression of a cognate receptor, for the IFN-y inducible 

chemokines, IP-10, Mig and I-TAC that are known to be produced by human 

intestinal epithelium, was demonstrated indirectly, by the ability of these 

chemokines to initiate various signalling events in myofibroblasts. Stimulation 

with all three chemokines induced phosphorylation o f PKB, ERK1/2, p38 and 

p90RSK, whereas only I-TAC stimulation resulted in an increase in intracellular 

calcium. All signalling events exhibited a varying degree o f sensitivity to the 

PI3K inhibitor LY294002, but were insensitive to the Gai inhibitor pertussis 

toxin. The different kinetics o f the signalling events in myofibroblasts compared 

to activated T-cells in addition to unresponsiveness to pertussis toxin, suggested 

that a receptor different to CXCR3 is expressed on myofiborblasts, which also 

induced actin polymerisation and stress fiber formation.

Taken together, the data presented here suggest a possible trimeric model 

consisting o f intestinal myofibroblasts, T-cells and colonic epithelial cells that 

may have a role in modulating physiologic and pathologic mucosal inflammation.
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Chapter 1: Introduction

1 Introduction

1.1 The mucosal immune system

The mucosal immune system comprises those lymphoid elements associated with 

the internal mucosal surfaces of the body, namely the gastrointestinal tract (GI), 

the respiratory and the urogenital tract. The physiological roles of the mucosae are 

to absorb, digest and exchange nutrients. In addition to being a considerable size, 

most of the relevant organs employ a variety of anatomical strategies to increase 

their functional surface area. For example, the human GI tract alone comprises 

almost 400m2 surface, approximately 200 times that of the skin. The resulting 

large potential for antigenic stimulation is increased further by the fact that 

tissues such as the GI are exposed continuously to a vast array of diverse 

antigens. It is not surprising then that the lymphoid tissues associated with the 

mucosal surfaces comprise the largest compartment of the immune system, with 

more lymphocytes present there than in all parts of the immune system added 

together.

1.2 The gastrointestinal system

The gastrointestinal system is primarily involved in reducing food for absorption 

into the body. This process occurs in five main phases within defined regions of 

the gastrointestinal system: ingestion, fragmentation, digestion, absorption, and 

elimination of waste products. Ingestion and initial fragmentation of food occurs 

in the oral cavity. The next segments of the tract, the pharynx and oesophagus 

conduct food from the oral cavity to the stomach where fragmentation is 

completed and digestion initiated. This process reduces the stomach contents to a

1



Chapter 1: Introduction

semi-digested liquid called chyme and which is passed on through the pylorus, 

into the duodenum, the short, first part of the small intestine where it is neutralised 

partly by an alkaline secretion from the duodenal mucosa. The duodenal contents 

pass onwards along the small intestine where the process of digestion is 

completed and the main absorptive phase occurs. After the duodenum, the next 

segment of the small intestine, where the major part of absorption occurs, is called 

the jejunum; the rest of the small intestine is called the ileum, but there is no 

distinct junction between these parts of the tract. The unabsorbed liquid residue 

from the small intestine passes through a valve, the ileo-caceal valve, into the 

large intestine. In the large intestine, water is absorbed from the liquid residue, 

which becomes progressively more solid as it passes towards the anus. The first 

part of the intestine is called the caceum, from which projects a blind-ended sac, 

the appendix. The next part of the large intestine, the colon is divided 

anatomically into ascending, descending and sigmoid segments although 

histologically the segments are similar. Contractile activities in the final segment 

of the gastrointestinal tract, the rectum, eliminate the waste products by the 

process of defaecation via the anal canal.

Structure of the gastrointestinal tract

The structure of the gastrointestinal tract conforms to a general plan, which is 

clearly evident from the oesophagus to the anus. The tract is essentially a 

muscular tube lined by a mucous membrane. The arrangement of the major 

muscular component remains relatively constant throughout the tract whereas the 

mucosa shows marked variations in the different regions of the tract.

The gastrointestinal tract has four distinct functional layers:

2



Chapter 1: Introduction

1. The mucosa: the mucosa is the divided into three layers: an epithelial lining, a 

supporting connective tissue lamina propria and a thin smooth muscle layer, the 

muscularis mucosae, which produces local movements and folding of the mucosa.

2. The submucosa: this is a second connective tissue layer that supports the 

mucosa and contains the larger blood vessels, lymphatics and nerves.

3. The muscularis propria: this muscular wall is subdivided into two histological 

layers, a relatively thick inner layer of circular muscle and a thinner outer layer of 

longitudinal muscle. The action of these smooth muscle layers is the basis of 

peristaltic contraction.

4. The adventitia: this outer layer of connective tissue conducts the major vessels 

and nerves. Where the adventitia is exposed to the abdominal cavity, it is referred 

to as the serosa.

The intestine as a lymphoid organ

The best-studied organ of the mucosal immune system is the intestine, partly 

because of its essential role in host resistance to bacteria, viruses, and parasites 

and in the host’s interaction with environmental antigens (e.g., food antigens).

The lymphoid tissue that forms the mucosal immune system in the intestine can 

be divided on anatomic, morphologic, and functional grounds into three major 

populations, Peyer’s patches, lamina propria lymphoid cells and intraepithelial 

lymphocytes (Figure 1.1).

Peyer’s patches: have an important role in the initiation of the mucosal immune 

response and are an important source of B and T lymphocytes that ultimately 

populate other regions of the intestinal mucosa. These lymphoid areas are
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Chapter 1: Introduction

separated from the intestinal lumen by a single layer of columnar epithelial cells, 

known as the follicle-associated epithelium (FAE), which differs from the 

epithelium that covers the villus mucosa and is infiltrated by large numbers of B 

cells, T-cells, macrophages and dendritic cells. Draining the Peyer’s patches via 

lymphatics are the mesenteric lymph nodes (Mowat and Viney, 1997).

Lamina propria lymphoid cells: The lamina propria is the layer of connective 

tissue between the epithelium and muscularis mucosa. It is made up of smooth 

muscle cells, fibroblasts, lymphatics and blood vessels, and makes up the villus 

core over which the absorptive epithelial cells migrate from the crypts to the villus 

tips. The most striking feature of adult human large and small intestinal lamina 

propria is the infiltrate of lymphoid cells. The large numbers of macrophages, 

dendritic cells and T-cells in the lamina propria make it likely that antigen 

crossing the epithelium may be processed and presented to lamina propria T-cells.

Intraepithdial 
J. Lymphocyte

Organized Tissues -Induction Sites
(Q  Epithelium

Intestinal
Lumen

o llid li

Lymphatic
Drainage

Peyer’s
Patch

Lamina
Propria

Afferent
Lymphatic Mesenteric ' 

Lymph Node

Figure 1.1 Schematic representation of the lymphoid elements of the 
intestinal mucosal immune system, acquired from (Mowat, 2003).

4



Chapter 1: Introduction

Intraepithelial lymphocytes: The intestinal mucosa also contains a specialized 

subset of lymphocytes that are interspersed within the epithelial layer, so called 

intraepithelial lymphocytes (EELs). The major physiologic functions of these cells 

are still uncertain, but their role in host defence as cytolytic cells and response to 

antigens presented on the surface of adjacent epithelial cells are being studied. It 

is possible that IELs and epithelial cells interact in ways that modify each other’s 

functions (Hayday et al., 2001).

1.3 Intestinal myofibroblasts

Myofibroblasts are a unique group of cells that have a similar appearance and 

function regardless of their tissue of residence. These cells share characteristics of 

both fibroblasts and smooth muscle cells and have therefore been designated 

myofibroblasts.

Phenotypical characterisation of myofibroblasts

Immunohistochemical characterization of myofibroblasts is based on antibody 

reactions to two of the three filament systems of eukaryotic cells. These three 

systems are composed of:

•  actin, a component of the microfilaments

• vimentin, desmin, lamin, or glial fibrillary acidic protein 

(GFAP), members of the intermediate filament system; and

• tubulins of the microtubules.

Myofibroblasts have not been characterized with regard to tubulins. Based on 

immunohistochemical staining of these filaments in a given tissue, a classification 

system has been proposed (Schmitt-Graff et al., 1994). Myofibroblasts that
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express only vimentin are termed V-type myofibroblasts, those that express 

vimentin and desmin are called VD-type, those that express vimentin, a-smooth 

muscle actin, and desmin are called VAD-type, those that express vimentin and a- 

smooth muscle actin are called VA-type.

Origin of myofibroblasts

Several questions remain to be answered regarding myofibroblast origin. It is 

unclear whether myofibroblasts originate from progenitor stem cells or simply 

transdifferentiate from resident tissue fibroblasts or from tissue smooth muscle 

cells. Nevertheless two soluble factors have been shown to promote 

differentiation from embryonic stem cells: platelet-derived growth factor (PDGF) 

(Jobson et al., 1998) and stem cell factor (SCF) (Der-Silaphet et al., 1998). 

Myofibroblasts are also thought to represent an intermediate state between 

conventional Fibroblasts and smooth muscle cells. Transforming growth factor-p 

(TGF-P) (Vaughan et al., 2000) and PDGF (Tang et al., 1996) appear to be the 

most important growth factors for the differentiation of fibroblasts to 

myofibroblasts (Figure 1.2.).

In some tissues, e.g., the liver, intestine the synoviocyte of the joint space and 

brain (astrocyte), myofibroblasts exist in two distinct morphological states: 1) the 

"activated" myofibroblast, as described above, and 2) the stellate-transformed 

myofibroblast, which is considered to be a transiently differentiated 

myofibroblast. In vivo activation, as signified by the development of a-SM actin 

positivity, may be separable from proliferation. Whereas many fibrogenic 

cytokines such as IL-1, tumor necrosis factor (TNF)-a, PDGF, fibroblast growth 

factor (FGF), and TGF-P have been incriminated in this process (Kovacs and 

DiPietro, 1994), TGF-P appears to be the most important cytokine causing the
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development of a-SM actin staining and an activated phenotype capable of 

collagen secretion. It has been determined that the activation of the myofibroblast 

also requires the presence of matrix molecules, specifically, the ED-A (EIIIA) 

domain of fibronectin (Serini et al., 1998). Tissue injury gives rise to this specific 

ED-A domain splice variant of fibronectin. ED-A is the binding site for cell 

membranes and for other matrix molecules. Following activation of the 

myofibroblast, PDGF appears to be the factor primarily responsible for 

myofibroblast proliferation (Jobson et al., 1998).

E n d o th e lin .l 
P D G F ,E O F

cA M P 
P G  E,.IL-1

Stem cell ?

Myofibroblast

Smooth Muscle CellFibroblast

Figure 1.2 Proposed scheme depicting the origin, transdifferentiation, 

activation, and stellate transform ation of myofibroblasts (adapted from 

(Powell et al., 1999)). Abbreviations used in the diagram: PDGF, platelet-derived 

growth factor; TGF(3, transforming growth factor p; SCF, stem cell factor; cAMP, 

cyclic adenosine monophosphate; PGE2 , prostaglandin E2 ; IL-1, interleukin-1; 

EGF, epidermal growth factor; bFGF, basic fibroblast growth factor).

Subtypes of intestinal myofibroblasts

Intestinal myofibroblasts can be divided in two main types: 1) the interstitial cells 

of Cajal (ICC) and 2) intestinal subepithelial myofibroblasts (ISEMF). The ICC
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are located in the submucosa and muscularis propria in association with the 

smooth muscle layers of the gut. The ISEMF are located in the lamina propria 

under the epithelial cells immediately subjacent to the basement membrane.

This study concentrates on ISEMF which have attracted the most interest between 

the two types of cells, primarily because an easy protocol for their isolation is 

available (Mahida et al., 1997). ISEMF initially were thought to exist as a sheath 

of fibroblasts, more dense in the region of crypts than at the surface of the colon or 

in the villi of the small intestine (Pascal et al., 1968), but were later shown to exist 

as a two-dimensional network that extends throughout the lamina propria of the 

gut (Joyce et al., 1987). ISEMF stain positive for vimentin and a-smooth muscle 

actin and negative (or weakly) for desmin (VA-type) (Valentich et al., 1997).

Function of intestinal myofibroblasts

The function of ISEMF is gradually being extended from merely structural 

components of the intestine to key mediators of various biological processes that 

occur in the intestine including, cell proliferation, differentiation, apoptosis, 

morphogenesis, tissue repair, inflammation and the immune response. These 

essential processes are initiated, maintained and terminated by local interactions 

between cells and myofibroblasts.

ISEMF are likely to be important in the regulation of intestinal epithelial cell 

proliferation (Fritsch et al., 1997), differentiation (Halttunen et al., 1996) and 

migration in response to minor injuries that occur in the intestine (McKaig et al.,

1999), both because their location under the basement membrane is ideal for 

paracrine action and because myofibroblasts secrete the agents that thus far have
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been shown to enhance epithelial cell migration in experimental disease states in 

vivo and in wound healing models in vitro. It has been proposed that 

myofibroblast-epithelium cross talk occurs via ECM proteins (Mahida et al.,

1997), especially those making up the basement membrane. The latter contains 

discrete pores that would allow myofibroblast-derived secretory products reach 

the basal surface of epithelial cells.

Tissue repair is a complex, coordinated event, in which there is release of various 

lipid mediators such as eicosanoids, gases such as nitric oxide, cytokines such as 

TNFa , IL-1, IL-6, IL-2, and IL-15, and various growth factors. Many of these 

factors activate myofibroblasts, resulting in myofibroblast motility and the release 

of extracellular matrix (ECM) proteins and other growth factors. Remodelling of 

intestinal tissue is also an important response to gut injury. There is evidence that 

myofibroblasts take part in this process through the secretion of matrix 

metalloproteinases and other proteases (Daum et al., 1999), as well as secretion of 

TGF-aand KGF (Bajaj-Elliott et al., 1998).

Interestingly, even though myofibroblasts are not traditionally regarded as 

immune cells, they are capable of many immune functions such as secretion of 

cytokines, growth and differentiation factors, chemokines and expression of 

adhesion proteins (summarized in table 1.1). Many of the factors secreted by 

activated myofibroblasts, as well as their respective receptors, are up-regulated in 

the intestine in various disease states. Examples include prostaglandins via 

cyclooxygenase (COX)-2 activity (Kim et al., 1998), EGF, TGF-p, HGF, and 

KGF in small bowel injury (Dignass et al., 1996), in gastric ulcer models or 

disease (Hull et al., 1998), and in inflammatory bowel disease (Babyatsky et al.,
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1996). Adhesion protein expression such as, ICAM-1, VCAM-1, and ap integrins, 

by myofibroblasts has also been documented in response to inflammation (Pang et 

al., 1994). Finally the close proximity of ISEMF to lamina propria T-cells 

suggests a possible role for them in the growth and development of these cells 

(Roberts et al., 1997).

Inflammatory mediators Receptors expressed
secreted by ISEMF by ISEMF

Cytokines

IL-1 (Valentich et al., 1997) IL-1 R(Strong et al., 1998)

IL-6 (Pang et al., 1994) IL-IRa (Hinterleitner et al., 1996)

IL-10 (Pang et al., 1994) TNF-a R(Hernandez-Munoz et al., 1997)

Growth factors

TGF- p (McKaig et al., 1999) TGF- P R (Graham et al., 1990)

EGF (Barnard et al., 1995) PDGF R(Jobson et al., 1998)

KGF (Bajaj-Elliott et al., 1997) FGF R(Jobson et al., 1998)

HGF (Goke et al., 1998) EGF R (Jobson et al., 1998)

Chemokines Adhesion proteins

ENA-78 (Casola et al., 1997) ICAM-1 (Pang et al., 1994)

MIP-1 a  (Casola et al., 1997) VCAM-1 (Pang et al., 1994)

RANTES (Casola et al., 1997) VLA-4 (Ebert and Roberts, 1996)

IL-8 (Furuta et al.. 2000)
EGF, epidermal growth factor; ENA-78, epithelial neutrophil-activating 

peptide 78; FGF, fibroblast growth factor; HGF, hepatocyte growth factor; 

ICAM-1, intracellular adhesion molecule-1; IL,interleukin; KGF, 

keratinocyte growth factor; MIP-1 a  macrophage protein la ; PDGF, platelet 

derived growth factor; RANTES, regulated, upon activation, normal T cell 

expressed and secreted; TGF- p, transforming growth factor p; TNF-a, tumor 

necrosis factor-a; VCAM-1, vascular cell adhesion molecule-1; VLA-4.very 

late antigen 4

Table 1.1 Soluble factors and receptors important in inflammation 
expressed by intestinal sub-epithelial myofibroblasts.
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1,4 Inflammation

Inflammation is the body’s reaction to invasion by an infectious agent, antigen 

challenge or even just physical, chemical or traumatic damage. The main purpose 

of inflammation seems to be to bring fluid, proteins, and cells from the blood into 

the damaged tissues. Under normal conditions tissues lack most of the proteins 

and cells that are present in blood, since the majority of proteins are too large to 

cross the blood vessel endothelium. Thus there have to be mechanisms that allow 

cells and proteins to gain access to extravascular sites where and when they are 

needed if damage and infection has occurred. The discovery of the detailed 

processes of inflammation has revealed a close relationship between inflammation 

and the immune response. Many effector mechanisms capable of defending the 

body against such antigens and agents have developed and these can be mediated 

by soluble molecules or by cells. If infection occurs as a consequence of the tissue 

damage, the innate and, later, the adaptive immune systems are triggered to 

destroy the infectious agent.

The main features of the inflammatory response are: vasodilation, i.e. widening of 

the blood vessels to increase the blood flow to the infected area; increased 

vascular permeability, which allows diffusible components to enter the site; 

cellular infiltration by the directed movement of inflammatory cells through the 

walls of blood vessels into the site of injury; and activation of cells of the immune 

system as well as of complex enzymatic systems of blood plasma. Of course, the 

degree to which these occur is normally proportional to the severity of the injury 

and the extent of infection. The development of inflammatory reactions is 

controlled by cytokines, by products of the plasma enzyme systems, by lipid 

mediators (prostaglandins and leukotrienes) released from different cells, and by
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vasoactive mediators released from mast cells, basophils and platelets. Fast-acting 

mediators, such as vasoactive amines, modulate the immediate response. Later, 

newly synthesized mediators such as leukotrienes are involved in the 

accumulation and activation of other cells. Once leukocytes have arrived at a site 

of inflammation, they also release mediators that control the later accumulation 

and activation of other cells.

In inflammatory reactions initiated by the immune system, the ultimate control is 

exerted by the antigen itself, in the same way as it controls the immune response 

itself. For this reason, the cellular accumulation at the site of chronic infection, or 

in autoimmune reactions (where the antigen cannot ultimately be eradicated), is 

quite different from that at sites where the antigenic stimulus is rapidly cleared.

The inflammatory process inevitably causes tissue damage and is accompanied by 

simultaneous attempts at healing and repair. The attempts at reconstruction may 

have different outcomes. If there is little tissue destruction then some organs may 

be able to regenerate their original structure. This involves removal of the 

destroyed tissue by phagocytosis with proliferation of capillary blood vessels and 

lymphatics into the lesion together with fibroblasts and collagen production (so- 

called granulation tissue), resulting in a dense fibrous scar.

Inflammatory bowel disease

Inflammatory Bowel Disease (IBD) in humans, mainly encompassing Crohn’s 

disease (CD) and ulcerative Colitis (UC), is a complex immunological disorder.

CD is a chronic inflammatory disorder of unknown aetiology. The small intestine 

is most commonly affected, but any part of the gut may be involved. The 

pathological features include thickening of the submucosa, ulceration, transmural
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inflammation with granulomas and dense fibrosis. The lesions may be single or 

there may be multiple affected areas separated by normal bowel described as ‘skip 

lesions’. UC is a chronic relapsing inflammatory disorder, which may have an 

acute fulminating presentation. It affects only the colon and rectum, sometimes 

confined to the latter. The lesion is essentially of the mucous membrane with loss 

of goblet cells associated with acute inflammatory cell infiltrate.

Our understanding of IBD has been greatly enhanced by research performed in 

human in vitro studies and in particular by in vivo studies using appropriate 

animal models. Such animal models allow both the examination of inflammatory 

processes (both early and late events) as well as the evaluation of new therapeutic 

modalities. Overall 63 models have been described, most within the last decade. 

These IBD animal models can be divided into 5 different categories: (1) antigen- 

induced colitis and colitis induced by microbials; (2) other inducible forms of 

colitis (chemical, immunological, and physical); (3) genetic colitis models 

(transgenic and knock-out models); (4) adoptive transfer models, and (5) 

spontaneous colitis models. In spite of the high overall number of models, none of 

them is the 'perfect' model and therefore numerous aspects of IBD are still under 

intensive investigation. Even though the aetiology is still unclear, the pathogenesis 

of these disorders is better understood, and it is increasingly clear that these 

diseases represent the outcome of three essential interactive cofactors: genetic 

host susceptibility, enteric microflora and mucosal immunity.

Genetic factors influencing IBD

Linkage studies have implicated several genomic regions as likely containing IBD 

susceptibility genes, with some observed uniquely in CD or UC, and others
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common to both disorders (summarised in table 1.2). The best replicated linkage 

region, termed IBD1, on chromosome 16q contains the CD susceptibility gene, 

nucleotide-binding oligomerization domain 2 (NOD2). NOD2 was identified by 

searching public genomic libraries for genes encoding similar proteins to NODI. 

NODI is an intracellular protein composed of a N-terminal caspase recruitment 

domain (CARD), a centrally located nucleotide binding domain (NBD), and a 

leucine rich repeat (LRR) domain at its C-terminus which could activate nuclear 

factor kB (NFkB) and also promote apoptosis (Inohara et al., 1999). NOD2 has 

one more CARD at its N-terminal than NODI. It is expressed primarily in 

monocytes and following stimulation by bacterial lipopolysaccharide (LPS), 

activates NF-kB. So far, approximately one hundred sequence variants have been 

detected in NOD2 gene, most of which are rare mutations, located in LRR domain 

and are thought to initiate CD. The most likely mechanism by which the 

mutations in NOD2 contribute to the pathogenesis of IBD is either by raising the 

sensitivity of monocytes to bacterial pathogenic agents, resulting in 

overexpression of certain pro-inflammatory cytokines, or by causing deficiency of 

apoptosis, leading to monocyte accumulation in intestinal mucosa (Schreiber et 

al., 1998; Hugot et al., 2001; Ogura et al., 2001a; Ogura et al., 2001b; Inohara et 

al., 2001).

The significance of the colonic microflora in IBD

In human IBD, inflammation is present in parts of the gut containing the highest 

bacterial concentrations. Furthermore, increased mucosal absorption of viable 

bacteria and bacterial products is found in IBD. Serum and secreted antibodies are 

increased and mucosal T-lymphocytes that recognize luminal bacteria are present.
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IBD locus 
designation

Chromosomal
location

Diagnoses Candidate genes within 
or near locus

IBD1 16ql2 CD NOD2 (Hugot et al., 1996)

IBD2 12ql3 UC VDR, IFN-y (Satsangi et al., 
1996)

IBD3 6pl3 CD, UC MHC I and II, TNF-a (Duerr 
et al., 1998)

IBD4 14ql 1 CD TCR a/6 complex (Duerr et 
al., 2000)

IBD5 5q31-33 CD IL-3, IL-4, IL-5, IL-13, CSF-2 
(Rioux et al., 2000)

IBD6 19p 13 CD, UC ICAM-1,C3,TBXA2R, 
LTB4H (Rioux et al., 2000)

Other loci lp36 CD, UC TNF-R family, CASP9 (Cho 
et al., 1998)

Other loci 7q CD, UC MUC-3 (Satsangi et al., 1996)

Other loci 3p CD, UC HGFR, EGFR, GNAI2
(Satsangi et al., 1996)

VDR, vitamin D receptor; IFN, interferon; TCR, T-cell receptor; CSF, 
cerebrospinal fluid; TBXA2R, thromboxane A2 receptor; LTBH4H, leukotriene 
B4 hydroxylase; CASP, caspase; MUC3, mucin 3; GNAI2, inhibitory guanine 
nucleotide-binding protein

Table 1.2 IBD locus designation, chromosomal location, diagnoses and 

candidate genes. Table adapted with modifications from (Bonen and Cho, 2003).

However, there is evidence that the immune system reacts over-aggressively 

towards the normal luminal flora rather than the flora being altered in IBD 

(Swidsinski et al., 2002). Several approaches have been used in attempts to 

discover a specific microbial agent in the cause of IBD, but no specific micro

organism has been directly associated with the pathogenesis of IBD so far. 

Analysis of the luminal enteric flora, however has revealed differences in the 

composition of the flora compared to healthy controls (Schultsz et al., 1999). In 

CD, concentrations of Bacteroides, Eubacteria and Peptostreptococcus are 

increased (Krook et al., 1981; Van de Merwe et al., 1988), whereas Bifidobacteria
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numbers are significantly reduced (Favier et al., 1997). Furthermore, in UC, 

concentrations of facultative anaerobic bacteria are increased (Campieri and 

Gionchetti, 2001).

Cell mediated immunity in IBD

The first study implicating classical immune mechanisms in IBD pathogenesis 

demonstrated the cytotoxic action of peripheral blood white blood cells derived 

from UC patients, against human fetal colon cells in vitro (Perlmann and 

Broberger, 1963). Since then various studies have provided evidence that all 

intestinal cell types are affected in IBD. Increasing evidence suggests that 

dysregulation of mucosal T-cells plays a key role in the pathogenesis of IBD 

(MacDonald et al., 2000). Studies in animal models of experimental colitis have 

also definitely confirmed abnormal immune responses to potential immunogenic 

stimuli (Sadlack et al., 1993; Mombaerts et al., 1993; Kuhn et al., 1993; Koh et 

al., 1999; Wirtz et al., 1999). However, the molecular mechanisms responsible for 

the initiation and maintenance of lymphocyte activation in the intestinal mucosa 

remains elusive.

Patients with CD and UC both overproduce macrophages, probably because of an 

increased demand of macrophages in the inflamed gut (Grip et al., 2003). 

Emerging evidence demonstrates that various cell types populating the mucosa 

have an active role in intestinal immunity and inflammation. Epithelial, 

endothelial, fibroblasts, and nerve cells display broad and previously unsuspected 

effector and regulatory functions, including immune-like functions, and interact 

intimately with lymphoid cells. Among the various immune-nonimmune cell 

interactions occurring in the gut, the functional communication existing between
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epithelial cells and lymphocytes has been the most extensively studied (Campbell 

et aL, 1999b). Studies showing that human intestinal epithelial cells produce 

cytokines that regulate the proliferation of intestinal lamina propria mononuclear 

cells, e.g DL-7 (Watanabe et al., 1995), and express functional cytokine receptors 

for several T-cell-derived cytokines such as IL-2R beta, IL-4R, IL-7R (Reinecker 

and Podolsky, 1995) have strengthened the concept of an exchange of regulatory 

signals between the epithelial and immune compartments of the mucosa.

Role of mesenchymal cells in IBD

A variety of other nonimmune cells actively participate in IBD pathogenesis, 

including “structural” cells such as fibroblasts, myofibroblasts, and muscle cells 

the so-called cells of mesenchymal origin. These cells produce a variety of 

extracellular matrix proteins, but this production is altered in IBD, as exemplified 

by the increased production of collagen observed in IBD patients (Lawrance et al., 

2001). These alterations are associated with classical pathological features of IBD, 

such as the increased proliferation of muscle cell layers, formation of thickened 

bowel wall, and strictures. Intestinal smooth muscle cells and/or myofibroblasts 

have also been incriminated in the fibrotic process that characterizes CD. 

Myofibroblast proliferation is seen in response to inflammation in many tissues 

regardless of the aetiology of the insult. Excess myofibroblast proliferation 

persisting beyond the inflammatory insult, may be a risk factor leading to scarring 

and pathological remodelling of the tissue.

The role o f the mucosal immune system in the pathogenesis of IBD is probably

the most complex, as it involves various cellular components as well as a large

variety of inflammatory mediators, of which the most important are probably 

cytokines, many of which are dysregulated in IBD.
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Pro-inflammatory cyokines in IBD

Differing cytokine profiles have been identified for UC and CD. While it has been 

hypothesized that CD is a T-helper 1 (Thl) dominated immune reaction, there is 

also evidence that UC is characterized by T-helper 2 (Th2) domination. However, 

pro-inflammatory cytokines tend to be consistently elevated in IBD. IL-1, IL-6, 

and tumor necrosis factor-alpha (TNF-a) are found elevated in both inflammatory 

bowel conditions (Reinecker et al., 1993; Nikolaus et al., 1998). Several studies 

have suggested particular relevance of IFN-y to CD, as indicated by the 

spontaneous release of IFN-y and increased IFN-y mRNA expression by lamina 

propria mononuclear cells and the presence of IFN-y-secreting T-cells in actively 

inflamed mucosa (Fais et al., 1991; Breese et al., 1993).

Evidence from human and animal studies have highlighted the central role for 

TNF-a in the pathogenesis of IBD. These include the dramatic results from a 

clinical trial where by approximately 2/3 of the patients responded positively to a 

single infusion of the mouse/human chimeric monoclonal anti-TNF-a antibody 

infliximab (Targan et al., 1997) and the development of a Crohn’s like phenotype 

in mice overexpressing TNF-a (Kontoyiannis et al., 1999). Infliximab was 

approved for clinical use in active CD in the USA in the autumn of 1998, and 

received a positive advice for the European Medicines Evaluation Agency in May 

1999 and its success has resulted in various alternative attempts aimed at reducing 

TNF-a in IBD patients. Examples include the humanized monoclonal antibody 

CDP571, the human monoclonal antibody D2E7 (adalimumab), the anti-TNF 

human antibody Fab' fragment-polyethelene glycol (PEG) conjugate CDP870, and 

the small molecules thalidomide and CNI-1493 (MAP-kinase inhibitor).
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Anti-inflammatory cytokines in IBD

In EBD significant changes also occur in the tissue expression of 

immunoregulatory cytokines. Contradicting results exist for the presence of IL-12 

in IBD. Various immunohistological studies indicate that in situ IL-12 is 

overproduced by macrophages in CD, but not in UC (Monteleone et al., 1997; 

Parronchi et al., 1997) and macrophages that are isolated from the inflammatory 

lesions of patients with CD produce increased amounts of IL-12 ex vivo (Liu et 

al., 1999), whereas macrophages that are isolated from patients with UC produce 

decreased amounts of IL-12, compared with those from normal tissues. The 

cytokine profile in UC patients provides more evidence of an exaggerated Th2 

response, elevated IL-5 but no significant elevation of IFN-y and other cytokines 

associated with an overactive Thl response (Fuss et al., 1996), even though there 

is no evidence of increased amounts of IL-4, the definitive Th2 cytokine. Overall 

the pathogenesis of IBD is characterized by an imbalanced activation of Thl and 

Th2-cytokines. This is exemplified by IL-10, an anti-inflammatory cytokine 

which down-regulates the production of Thl-derived cytokines. The relative 

deficiency of IL-10 in patients with UC may contribute to persistent inflammatory 

changes (Ishizuka et al., 2001). IL-10-deficient mice spontaneously develop 

intestinal inflammation characterized by discontinuous transmural lesions 

affecting the small and large intestines and by dysregulated production of pro- 

inflammatory cytokines, indicating that endogenous IL-10 is a central regulator of 

the mucosal immune response (Rennick and Fort, 2000).

Even though cytokines have been the most studied area in EBD, other soluble 

mediators like growth factors, eicosanoids, reactive oxygen and nitrogen
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metabolites especially inducible nitric oxide synthase (iNOS), short chain fatty 

acids, are increasingly being recognized as having a role in IBD.

1.5 Chemokines

Chemokines constitute a superfamily of small (8-10 kDa) pro-inflammatory 

cytokines that are involved in a variety of immune and inflammatory responses, 

acting primarily as chemoattractants and activators of specific types of leukocytes. 

Four classes of chemokines have been defined depending on the number and 

arrangement of the conserved cysteine residues (C) at the N-terminal cysteine 

residues of the mature proteins. These four classes are: CC chemokines in which 

the first two conserved cysteine residues are adjacent, CXC chemokines which 

have one amino acid separating the first two conserved cysteine residues, C 

chemokines which lack two of the four conserved cysteine residues and finally 

CX3C chemokines in which three amino acids separate the two cysteines.

The human chemokine system comprises about 50 distinct chemokines (Table 

1.3) and 20 chemokine receptors. The CXC chemokine genes, with a few 

exceptions, most notably Stromal Derived Factor 1 (SDF-1/CXCL12), which has 

been localized to human chromosome 10 (Shirozu et al., 1995) are all clustered on 

human chromosome 4 (Oppenheim et al., 1991). The majority of CC chemokines 

are clustered around chromosome 17 (Opdenakker and Van Damme, 1994).

Recently, the nomenclature of chemokines has been changed to a systematic

system. The CC chemokines have been renamed CC chemokine ligand (CCL) 1,

2, 3, etc., and the CXC chemokines, (CXCL1), 2, etc (Murphy, 2002). In this

study we use the old nomenclature but also provide the new name when 

introducing a new chemokine.
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Official name Commonly used synonyms Gene locus
CXC(a)
Chemokines 4q 12-q 13
CXCL1 GROa 4q 12-q 13
CXCL2 GROp; MIP-2a 4q 12-q 13
CXCL3 GROy; MIP-2P 4q 12-q 13
CXCL4 PF4 4q 12-q 13
CXCL5 ENA-78 4q 12-q 13
CXCL6 GCP-2 4q 12-q 13
CXCL7 NAP-2 4q 12-q 13
CXCL8 IL-8 4q21.21
CXCL9 Mig 4q21.21
CXCL10 ip-Io 4q21.21
CXCLI1 I-TAC lOqll.l
CXCL12 SDF-la; SDF-1P; PBSF 4q21
CXCLI 3 BCA-1; BLC 5q31
CXCLI 4 BRAK Unknokwn
CXCLI 5 Not applicable 17p 13
CXCLI 6 Not applicable
CC(p) Chemokines 17q 1 1.2
CCLI 1-309 17q 1 1.2
CCL2 MCP-I; MCAF I7ql 1.2
CCL3 MlP-lct; MIP-1 aS; LD78a 17q 1 1.2
Not applicable LD78p, MIP-laP 17ql 1.2
CCL4 MIP-lp 17ql 1.2
CCL5 RANTES 17q 1 1.2
CCL7 MCP-3 17q 1 1.2
CCL8 MCP-2 17ql 1.2
CCLI 1 Eotaxin 17q 1 1.2
CC L 13 MCP-4 I7ql 1.2
CCLI 4 CC-I: HCC-I I7ql 1.2
CCLI 5 HCC-2; Lkn-1; MIP-5; MIP-15 I7ql 1.2
CCL16 HCC-4; LEC; NCC-4; LMC 16q 13
CCLI 7 TARC 17q 1 1.2
CCL 18 DC-CK-I; PARC; MIP-4 9p 13
CCL 19 MIP-3P; ELC; exodus-3 2q33-q37
CCL20 MIP-3a; LARC; exodus-1 9p 13
CCL21 6Ckine; SLC; exodus-2 16q 13
CCL22 MDC 17q 1 1.2
CCL23 MPIF-I; MIP-3 7q 11.23
CCL24 MPEF-2; eotaxin-2 19ql3.2
CCL25 TECK 7q 11.23
CCL26 Eotaxin-3; MIP-4a 9p 13
CCL27 ESkine; CTACK 5p 12
CCL28 MEC
C(y) Chemokines lq23
XCL1 Lymphotactin a; SCM-la lq23
XCL2 Lymphotactin p; SCM-ip
CX3C (5) Chemokine 16q 13
CX3CL1 Fractalkine

Table 1.3 Human chemokines: systematic nomenclature, common names 
and chromosomal location. This table also highlights the clusters of 
chemokines that are typically found on chromosome 4 (CXC) and 17 (CC).
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Chemokines can also be classified based on their pattern of expression. 

Homeostatic chemokines are expressed constitutively and participate in re

circulation of leukocytes between tissue and lymphatics and in the traffic of 

leukocytes within compartments of lymph nodes and thymus (Cyster, 1999). In 

contrast, inflammatory chemokines are induced by infection and other pro- 

inflammatory stimuli. This division however should not be regarded as absolute 

but rather as a rule with some exceptions (Figure 1.3). Constitutive expression of 

inducible chemokines is observed in neoplastic disorders (Haghnegahdar et al., 

2000; Azenshtein et al., 2002). Moreover a number of molecules behave as both 

constitutive and inducible chemokines. For instance, Macrophage-Derived 

Chemokine (MDC/CCL22) was initially described as a chemokine constitutively 

expressed in certain cell types and lymphoid organs (Godiska et al., 1997). 

Subsequent work, prompted by the recognition that this molecule attracted 

preferentially polarized Th2 cells, has shown that MDC is expressed in a 

regulated way ( Bonecchi et al., 1998a; Andrew et al., 1998).

HOMOEST ATIC INFLAMMATORY

MIG
MEC

HCC-l NAP-2
SDF MCP-3

LARC IP-10
GRO-p

HCC-2 MIP-1 aMDCTECK

RANTES MIP-3 
ENA-78

LYMPHOTACTIN
FRACTALCINE IL-8SLC

MCP-1 ORO-a
HCC-4 MIP-4

ELC EOTAXIN1-309

CTACK MIP-1 p 

MPIF-2I-TACBCA-1

CONSTITUTIVE INDUCIBLE

Figure 1.3 Chemokines can be classified as constitutive or inducible. This 
arrangement also determines their functions as regulating leukocyte trafficking 
or involvement in inflammatory processes.
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ELR chemokines

The CXC chemokines can be further subdivided into those that contain the 

sequence glutamic acid-leucine-arginine (the ELR motif) near the N-terminal 

preceding the CXC sequence and those that do not. This motif dictates the 

angiogenic activity of those chemokines, with members containing the ELR motif 

(ELR+) being potent promoters of angiogenesis (Strieter et al., 1995). In contrast, 

members that are induced by interferons and lack the ELR motif (ELR ) are potent 

inhibitors of angiogenesis (Angiolillo et al., 1995; Sgadari et al., 1997). Most 

CXC chemokines are ELR+, apart from the CXC3 ligands, IP-10, Mig, I-TAC and 

Platelet Factor 4 (PF-4/CXCL4). Although SDF-1 is another ELR' CXC 

chemokine, its role in angiogenesis remains unclear (Arenberg et al., 1997; Zou et 

al., 1998).

Chemokine structure

Despite considerable differences in primary sequence, CXC and CC chemokines 

have a remarkably similar, three-dimensional structure. This structure is 

comprised of a short, Nth-terminal region, a large core, which is stabilized by the 

disulfide bonds and hydrophobic interactions and characterized by three anti

parallel P-strands, and a COOH-terminal a-helix. The Nth-terminal binding site is 

required for receptor signalling upon ligation, and the length and amino acid 

composition of the N th  terminus determines whether a chemokine will bind with 

high affinity to a receptor and whether binding has agonistic vs. antagonistic 

effects (Clark-Lewis et a t, 1995). The second major site of interaction between a 

chemokine and its cognate receptor lies within the loop that follows the second
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cysteine (Blanpain et al., 2001). The relative importance of each of these two 

contact regions to overall ligand affinity varies depending on the receptor 

examined and reflects synergy between several important contacts.

Chemokine receptors

The chemokine receptors (Table 1.4) are seven-transmembrane-spanning, G- 

protein-coupled receptors (GPCRs) and are classified based on the class of 

chemokines they bind, e.g., CC chemokine receptors bind CCLs, and CXC 

chemokine receptors bind CXCLs. Two highly promiscuous non-signalling 

(silent) receptors or binding proteins, DARC (Neote et al., 1994) and D6 (Nibbs et 

al., 1997), have also been identified, even though their function remains unclear.

CXC chemokine receptors Main ligands Expression
CXCR1 IL-8, GCP-2 N, M, EN
CXCR2 GROa-y, ENA78, NAP-2 N, M, E, EN
CXCR3 -A IP-10, MIG, I-TAC T, B, SM
CXCR3 -B IP-10, MIG, I-TAC, PF-4 T, B, SM
CXCR4 SDFl-a Ubiquitous
CXCR5 BCA-1 B, T
CXCR6 CXCLI 6 T
CC chemokine receptors
CCR1
CCR2 RANTES,MIP1-a, MCP-2, 3 M, DC, T, N, E
CCR3 MCP-1,2, 3,4 M, DC, T, NK,
CCR4 Eotaxin, RANTES, MCP-4 FB, EN
CCR5 MDC, TARC E, B, T, P, EP
CCR6 MIPl-a, |3, RANTES T, DC, B, P
CCR7 MIP3- a T, DC, NK, M
CCR8 ELC, SLC DC, T, B
CCR9 1-309 DC, T, B, NK
CCR10 TECK T, M, NK, B, EN
C chemokine receptor MEC, CTACK T, EN, FB
XCR1 Lymphotactin a-|3 T
CX3Cchemokine receptor
CX3CR1 Fraktalkine T, NK

N: neutrophils, M: monocytes, E: eosinophils, DC: dendritic cells
EN: endothelial, EP: epithelial, NK: natural killer cells, FB; fibroblasts

Table 1.4 Human chemokine receptors, their ligands and pattern of 

expression.
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Chemokine receptors belong to Class A GPCRs, which are characterized by high 

homology with rhodopsin, the prototypical family member, although their 

structure has not been completely resolved yet. In addition to the transmembrane 

spanning domains, the receptor contains three intracellular loops, three 

extracellular loops, an N-terminal extracellular domain, and a C-terminal 

cytoplasmic tail. Typically, chemokine receptors are 340-370 amino acids in 

length with 25-80% amino acid identity. Common features include an acidic NH2 

terminus, a conserved 10-amino acid sequence in the second intracellular loop, a 

short basic third intracellular loop, and one cysteine in each of the four 

extracellular domains (Murphy et al., 2000). The interaction of chemokines with 

their receptors is characterized by considerable promiscuity. Most known 

receptors have been reported to interact with multiple ligands and most ligands 

interact with more than one receptor. For instance, all four Monocyte Chemotactic 

Proteins (MCPs) interact with CCR2, and at least MCP-2/CCL8, MCP-3/CCL7 

and MCP-4/CCL13 also recognize CCR1 or CCR3. However, certain chemokines 

bind only one receptor and vice versa, such as the exclusive interactions of 

CXCR4 with SDF-1, CXCR5 with B-cell-attracting chemokine (BCA- 

1/CXCL13), CCR6 with Macrophage-Inflammatory Protein-3a (MIP-3a/CCL20), 

CCR9 with Thymus-Expressed ChemoKine (TECK/CCL25), CCR10 with 

Cutaneous T-cell-Attracting ChemoKine (CTACK/CCL27), and CXCR6 with 

CXCLI6. Historically, the identification and characterization of chemokine- 

receptor-ligand specificities was based on agonist activity. Recently, it has 

become clear that the interplay of the receptors and ligands in physiological 

conditions is complicated by the presence of agonist and antagonist activities. The 

CXCR3 agonists have been reported to be antagonists of CCR3, (Loetscher et al.,
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2001). Additionally the CCR1 agonist MCP-3 is an antagonist for CCR5 

(Blanpain et al., 1999). A thorough characterization of the binding of all known 

chemokine ligands with all known receptors is likely to reveal additional 

examples of cross-reactivity between chemokine ligands and receptors.

Biological functions of chemokines

The role of chemokines initially was thought to be restricted to provide directional 

cues for the trafficking of leukocytes to sites of inflammation. The discoveries 

that chemokines can block human immunodeficiency virus (HIV) replication 

(Cocchi et al., 1995) and that their receptors have essential functions in fusion of 

HIV to target cells (Feng et al., 1996) propelled this field into the limelight, and 

raised expectations that chemokines might hold the key to understanding HIV- 

mediated pathogenesis. Although this promise has yet to be fulfilled, the increased 

interest in the field resulted in many findings that suggest chemokine functions are 

not limited to cellular recruitment and might be involved in a variety of biological 

functions including, T-cell activation (Taub et al., 1996), dendritic cell maturation 

(Sozzani et al., 1998), neutrophil degranulation (Meddows-Taylor et al., 1999), B 

cell antibody class switching (Bacsi et al., 1999), macrophage activation (Liu et 

al., 2000b) and gene transcription, proliferation and apoptosis (Thelen and 

Baggiolini, 2001).

Evidence for the roles chemokines and chemokine receptors might play in the 

pathogenesis of different acute or chronic inflammatory diseases is also rapidly 

increasing (Gerard and Rollins, 2001). Many studies in this field are focused on 

examining the response of animal models of acute inflammation to genetic 

elimination of the chemokine receptors (tables 1.5 and 1.6). Interestingly, the
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deletion of receptors pivotal to basal trafficking and homing have striking 

phenotypes, whereas those that are inducible remain viable and healthy when 

maintained in a standard pathogen-free environment but are more susceptible to 

infection with large doses of pathogen than their wild type counterparts. The fact 

that only one chemokine receptor knockout has proved to be embryo lethal could 

imply that some compensation occurs for the loss of a given chemokine receptor, 

and is probably due to the redundancies of the ligands and receptors. Of all the 

chemokine knockouts (a selection of which is summarised in Table 1.7), MCP-1 

deletion has the greatest effect (Gu et al., 1998; Izikson et al., 2000; Huang et al., 

2001), an unexpected finding since its receptor CCR2 can be activated by all five 

MCPs.

Chemokines in the gastrointestinal system

Expression of IL-8/CXCL8, Epithelial Neutrophil Activating Peptide-78 (ENA- 

78/CXL5), MCP-1, eotaxin/CCLll, IP-10 and Fraktalkine/CX3CL1 has been 

detected in animal models as well as human disease condition of the 

gastrointestinal inflammation (Mazzucchelli et al., 1994; MacDermott et al., 1998; 

Uguccioni et al., 1999; Muehlhoefer et al., 2000; Hogan et al., 2001). TECK and 

its specific receptor CCR9, which is preferentially expressed on gut-homing 

intestinal memory T-cells (Zabel et al., 1999; Agace et al., 2000; Kunkel et al.,

2000), are found up-regulated in small bowel but not colonic CD (Papadakis et al.,

2001), suggesting that homing of T-cells to distinct gastrointestinal sites is 

differentially regulated in both inflammatory and basal conditions. Analysis of 

colitis induction in CCR2 A or CCR5 7 mice showed significant protection from 

disease (Andres et al., 2000). Furthermore, in a rat model of chronic colitis, a 

CCR1 and CCR5 antagonist reduced cellular infiltration and inflammation (Ajuebor 

et al., 2001).
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However, individuals carrying a mutated form of CCR5 (D32-CCR5) are equally 

susceptible to colitis (Martin et al., 2001), indicating that CCR5 is not necessary

for development of disease.

Ablated gene Phenotype
CCR1 Reduced NK-cell recruitment (Shang et al., 2000) 

Prevention of heart transplant rejection (Gao et al., 2000)

CCR2

Protection in EAE (Izikson et al., 2000)

Reduced symptoms of atherosclerosis (Boring et al., 1998)

Partial protection in DSS induced colitis (Andres et al., 2000) 

Increased airway allergic inflammation in response to Aspergillus 

(Blease et al., 2000)

Reduced airway hypersensitivity following allergen challenge 

(Campbell et al., 1999a)

Reduced Langerhans cell migration to draining lymph nodes (Sato et 

al., 2000)

Increased severity of experimental glomerulonephritis (Bird et al., 

2000)

Inability to clear Listeria infections (Kurihara et al., 1997)
CCR3 Decreased eosinophils, increased airway hyper responsiveness 

(Humbles et al., 2002)
CCR4 No protection of airway inflammation in the OVA sensitization 

model, reduced fatality in LPS induced sepsis (Chvatchko et al., 
2000)
Reduced airway hyper responsiveness (Bishop and Lloyd, 2003)

CCR5
Reduced clearance of Listeria infections (Zhou et al., 1998) 

No protection in EAE (Tran et al., 2000)

Resistance to DSS induced colitis (Andres et al.. 2000)
CCR6 Reduced humoral immune response to oral antigens and increase in 

cells of select T lymphocyte populations within the mucosa (Cook et 
al., 2000)

CCR7 Altered secondary lymphoid organ structure (Forster et al., 1999)

Reduced humoral immune responses and contact sensitivity (Saeki 
et al., 1999)

CCR8 Reduced Th2 responses (Chensue et al., 2001)

Decreased eosinophilia in airway inflammation (Chung et al., 2003)
CCR9 Reduced pre B cells and reduction in T-cell receptor y5 (+) gut 

intraepithelial lymphocytes (Wurbel et al., 2001)

Table 1.5 CC chemokine knock out mice. Highlighted in red are the knockouts 
and the studies with relevance to the gastrointestinal system.

28



Chapter 1: Introduction

Ablated gene Phenotype
CXCR1 Reduced neutrophil recruitment (Gerard and Rollins, 2001)

CXCR2

Lymphadenopathy (Cacalano et al., 1994)

Delayed wound healing (Devalaraja et al., 2000)

Defective acute neutrophil accumulation (Hall et al., 2001)

Decreased protection against Toxoplasma gondii infection (Del Rio 
et al., 2001)

Reduce macrophage recruitment in atherosclerosis (Boisvert et al., 
1998)

CXCR3 Long term protection in heart transplant (Hancock et al., 2000)

CXCR4
Embryo lethal (Nagasawa et al., 1996)

Vasculature defects (Nagasawa et al., 1996; Tachibana et al., 1998)
CX3CR1 Defects in B-cell homing and lymph nodes (Forster et al., 1996)

Table 1.6 CXC and CX3C chemokine receptors knock out mice

Ablated gene PhenotvDe

MCP-1

Development of resistance by the gastrointestinal nematode 
Trichuris muris (deSchoolmeester et al., 2003)

Suppression of IFN-y and up-regulation of TGF-|3 production in 
lamina propria (Gonnella et al., 2003)

Disruption in the balance of Thl and Th2 cytokines (DePaolo et al., 
2003)

Eotaxin Reduced eosinophil accumulation in the gastrointestinal tract 
(Hogan et al., 2001)

IP-10
Small bowel allografts are resistant to acute allograft rejection 
(Zhang et al., 2004)

BCA-1
Impaired development of Peyer’s patches and mesenteric lymph 
nodes (Ansel et al., 2000)

Table 1.7 Chemokine knock out mice with relevance to the gastrointestinal 

tract.

CXCR3: expression and functions

Because this study will concentrate on CXCR3-mediated effects a detailed section 

on CXCR3 and its ligands is included in this introduction.
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CXCR3 is a seven-transmembrane receptor, which is highly induced by T-cell 

activation. CXCR3 expression can be detected on IL-2-activated T-cells, on 

allogeneically activated T-cells, and on thymocytes during lymphopoiesis 

(Loetscher et al., 1996; Loetscher et al., 1998; Qin et al., 1998; Ebert and McColl, 

2001; Romagnani et al., 2001b). Although exogenous IL-2 can enhance CXCR3 

expression on T-cells in culture, CXCR3 is also expressed on 35—40% of normal 

blood T-cells (Loetscher et al., 1998; Qin et al., 1998; Mohan et al., 2002). CXC3 

was first identified in incomplete form in 1995 on a genomic clone isolated by 

polymerase chain reaction (PCR)-based homology hybridization. At the same 

time, a full-length cDNA was independently isolated from an IL-2-activated T-cell 

library (Loetscher et al., 1996). The gene was named GPR9 and was originally 

mapped incorrectly to human chromosome 8pl 1.2-12 (Marchese et al., 1995) and 

later mapped correctly to Xql3 (Loetscher et al., 1998). The open reading frame is 

interrupted by one intron in the region encoding the N-terminal segment and the 

predictive polypeptide is 368 aa in length with a molecular mass of ~ 40 kDa. 

Other lymphocytes expressing CXCR3 are NK cells, and a small subset of normal 

circulating B cells, (Trentin et al., 1999; Inngjerdingen et al., 2001).

Furthermore CXCR3 has also been detected in eosinophils (Jinquan et al., 2000), 

endothelial (Salcedo et al., 2000; Romagnani et al., 2001a), pericytes (Bonacchi et 

al., 2001), and microglia (Biber et al., 2001; Rappert et al., 2002). CXCR3 has 

been detected preferentially on Thl cell lines and clones in vitro (Sallusto et al., 

1998; Bonecchi et al., 1998a; Bonecchi et al., 1998b; Sallusto et al., 1999). Blood 

T-cells positive for CXCR3 are mostly CD45RO+ memory cells, which express 

high levels of pi integrins (Qin et al., 1998). Additionally, several studies have 

shown that CXCR3 plays an important role in the pathophysiology of Thl-type
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diseases such as autoimmune disorders and viral infections (Balashov et al., 1999;

Liu et al., 2000a; Reinhart et al., 2002) and has therefore been suggested as a 

marker of Thl cells, even though CXCR3 did not discriminate between Thl and 

Th2-dominated responses in vivo (Annunziato et al., 1999).

CXCR3 knockout mice have been tested in allograft rejection models. Like most 

knockouts of inducible chemokine receptors, CXCR3'7" mice retain a normal 

phenotype when unchallenged, but showed profound resistance to development of 

acute allograft rejection and CXCR3-deficient allograft recipients treated with 

cyclosporin A maintained their allografts permanently and without evidence of 

chronic rejection (Hancock et al., 2000). Similar results were observed in 

pancreatic islet allograft CXCR3-deficient recipients (Baker et al., 2003).

CXCR3 agonists

CXCR3 binds three inflammatory/inducible, ELR" CXC chemokines: Monokine 

induced by human interferon-y (Mig/CXCL9), Interferon-inducible 10-kDa 

Protein (IP-10/CXCL10) and, Interferon-inducible T-cell a Chemoattractant (I- 

TAC/CXCL11) (Loetscher et al., 1996; Cole et al., 1998), all of which 

chemoattract and induce calcium flux in activated T-cells and CXCR3-transfected 

cells.

IP-10

IP-10 is expressed constitutively at low levels in thymic, splenic, and lymph node 

stroma (Gattass et al., 1994) but its expression can be highly induced by IFN-a, p 

and y and LPS in a variety of cell types, including endothelial cells, keratinocytes, 

fibroblasts, mesangial cells, astrocytes, monocytes, and neutrophils (Luster and
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Ravetch, 1987). It has been demonstrated to be highly expressed in many Thl- 

type inflammatory diseases, including skin diseases (Gottlieb et al., 1988; Flier et 

al., 1999; Flier et al., 2001), atherosclerosis (Mach et al., 1999), multiple sclerosis 

(Sorensen et al., 1999; Balashov et al., 1999), allograft rejection (Melter et al., 

2001; Zhao et al., 2002) and others. Studies with inhibitory antibodies and IP-10- 

deficient mice have revealed that IP-10 plays an important role in the recruitment 

of effector T-cells into inflammatory tissues (Hancock et al., 2001; Dufour et al., 

2002; Zhang et al., 2002).

Mig

Mig was originally identified by differential screening of a cDNA library prepared 

from lymphokine-activated macrophages (Farber, 1990). Mig expression can be 

induced on monocytes and macrophages, hepatocytes, fibroblasts, keratinocytes, 

and endothelial cells in response to IFN-y (Farber, 1990; Farber J. M., 1993; 

Farber, 1993; Amichay et al., 1996). In mice, systemic administration of IFN-y 

and infection with protozoa or virus was associated with induction of the Mig 

gene in a variety of tissues, including liver, spleen, heart, and lung (Amichay et 

al., 1996). A comparison of chemokine protein sequences shows that human Mig 

is related to IP-10, with the chemokines sharing 37% amino acid identity. The 

genes for human Mig and IP-10 were found to be adjacent on chromosome 4q21, 

suggesting a close evolutionary relationship (Lee and Farber, 1996).

I-TAC

I-TAC was initially identified by screening a cDNA library from primary human 

astrocytes stimulated with various cytokines and is ~ 40% identical at the amino
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acid level to IP-10 and Mig. Expression of human I-TAC has been detected in 

cultured primary monocytes, cultured foetal astrocytes, microglial cell line (Cole 

et al., 1998), astrocytoma cells (Rani et al., 1996), atheroma-associated cells 

(Mach et al., 1999), bronchial epithelial cells (Sauty et al., 1999), neutrophils 

(Gasperini et al., 1999) and keratinocytes (Tensen et al., 1999). Moderate 

expression has also been detected in human central nervous system (Luo et al.,

1998), pancreas, lung, thymus and spleen tissues (Cole et al., 1998). In addition, I- 

TAC was recently shown to be up-regulated in IFN-y-stimulated human 

endothelial cells, suggesting a role for this chemokine in T lymphocyte 

recruitment to sites of inflammation (Mazanet et al., 2000). I-TAC appears to 

have the highest affinity for CXCR3 with a dissociation constant (K^) ~ 3nM 

(Clark-Lewis et al., 2003).

Despite the redundancy in the chemokine system, there is evidence to support the 

notion that IP-10, Mig and I-TAC exert different biological activities. Although 

freshly isolated T-cells respond to I-TAC, curiously they are relatively less 

responsive to IP-10 or Mig (Rabin et al., 1999; Mohan et al., 2002). Recent 

studies have shown that the CXCR3 ligands exhibit unique temporal and spatial 

expression patterns suggesting that they have non-redundant functions in vivo 

(Sorensen et al., 1999; Flier et al., 2001; Agostini et al., 2001). Moreover a 

CXCR3-specific mAb named 1C6 has been reported to block human IP-10, but 

not human Mig, binding to CXCR3 (Qin et al., 1998). Finally it has been 

demonstrated that I-TAC binds allotopically with IP-10 and Mig to the active 

conformation of CXCR3 (Cox et al., 2001).
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Additional ligands for CXCR3

It has been suggested that leukocyte recruitment during inflammatory responses 

may be tightly regulated by chemokines acting as agonists at some receptors and 

antagonists at others. With respect to CXCR3 and CCR3, it has been suggested 

that eotaxin could act as a natural antagonist of CXCR3 by blocking IP-10- 

mediated receptor activation in vitro (Weng et al., 1998). This was subsequently 

disputed by a study, which demonstrated, reciprocally, that the CXCR3 ligands 

could antagonize CCR3 function (Loetscher et al., 2001). CXCR3 ligands inhibit 

CCR3 responses not only to eotaxin but also to eotaxin-2/CCL24 and eotaxin- 

3/CCL26. Additionally, although the three eotaxins exhibit low structural 

homology, they were all similarly inhibited by the CXCR3 ligand. Finally mouse 

Secondary Lymphoid-tissue Chemokine (SLC/CCL21) which binds to CCR7 has 

been reported to induce calcium flux through mouse CXCR3 (Soto et al., 1998) 

but this was not observed with human SLC with either human or the highly 

homologous (87% aa identity) mouse CXCR3 (Jenh et al., 1999). However a 

recent study has demonstrated that human SLC is a functional ligand for 

endogenously expressed CXCR3 in human adult microglia. In absence of CCR7 

expression, SLC induced chemotaxis of human microglia with efficiency similar 

to Mig and IP-10 (Dijkstra et al., 2004). The fact that SLC did not show any 

effects in CXCR3-transfected HEK293 cells, suggests that CXCR3 signalling 

depends on the cellular background in which the receptor is expressed.

Other receptors that bind IP-10, Mig and I-TAC

An alternative functional high-affinity receptor for IP-10 but not Mig or I-TAC, 

has been found recently to be expressed on epithelial and endothelial cells
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(Soejima and Rollins, 2001), however, cloning and more detailed analysis will be 

necessary to determine the function of this putative alternative receptor in 

mediating the actions of IP-10 in vivo. Several studies have also pointed out that 

IP-10 and PF-4 share a great number of activities, such as inhibition of chemotaxis 

and proliferation of endothelial cells or inhibition of hematopoiesis (Aronica et al., 

1995; Luster et al., 1995; Strieter et al., 1995). This large overlap of biological 

activities was finally explained with the discovery of an alternatively spliced 

variant of CXCR3, termed CXCR3-B on endothelial cells (Lasagni et al., 2003) 

which binds PF4 as well as the other CXCR3 ligands. IP-10, like many 

chemokines, also binds to cell surface glycosaminoglycans (GAGs) (Luster et al., 

1995). GAGs are polysaccharides with a high negative charge due to sulfate and 

carboxyl groups and are usually attached to core proteins to form proteoglycans. 

Chemokines are largely basic molecules that exhibit electrostatic interactions with 

GAGs, especially heparin and heparan sulfate. This heparan sulfate-binding site 

for IP-10 can also bind PF-4. While our understanding of the biological activities 

of the CXCR3 ligands has increased, relatively little is known about the 

importance of their interaction with GAGs. It has been postulated that GAGs on 

cells bearing the chemokine receptors facilitate chemokine binding to their high 

affinity receptor by sequestering chemokines, raising their effective concentration 

and, thus, their probability of encountering the receptor (Hoogewerf et al., 1997).

The role o f GAGs on endothelial cells and in the extracellular matrix might be 

important for retaining chemokines close to their site of secretion (Tanaka et al., 

1993). A summary of all the ligands and receptors related to CXCR3 are 

presented in table 1.8.
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Receptor Expression Function

CXCR3 T-cells, natural killer cells, B cells, 
pericytes, microglia, eosinophils, 
endothelial cells

T-cell migration, 
possible in Thl 
type diseases 
and allograft 
rejection

CXCR3-B Endothelial cells Inhibits
endothelial cell 
proliferation

IP-10 Receptor Endothelial cells, epithelial cells Unknown

Ligand Expression Function

IP-10 Induced by IFN-a, p and y in 
endothelial cells, keratinocytes, 
fibroblasts, astrocytes, monocytes, 
neutrophils

T-cell migration,
angiostatic,
inhibits
endothelial cell 
proliferation

Mig Induced by IFN- y in monocytes, 
macrophages, hepatocytes, 
fibroblasts, keratinocytes and 
endothelial cells

T-cell migration, 
angiostatic, 
promotes 
vascular pericyte 
proliferation

I-TAC Induced by IFN- y in monocytes, 
astrocytes, microglial, neutrophils, 
keratinocytes and epithelial cells

T-cell migration, 
angiostatic, 
promotes 
vascular pericyte 
proliferation

PF-4 Secreted by activated platelets Inhibits
endothelial cell 
proliferation

Table 1.8 CXCR3, related receptors and their ligands.

Role for CXCR3 and its ligands in IBD

Consistent with the involvement of Thl cells in the pathogenesis of CD, 

expression of CXCR3 has been reported on T-cells infiltrating the inflamed 

gastrointestinal submucosa of patients (Yuan et al., 2001). However its expression 

was also largely found on lymphocytes isolated from patients with ulcerative
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colitis (Qin et al., 1998) which appears to be a Th2 disease. Another study using 

two different Thl mediated models of IBD, demonstrated increased amounts of 

Mig in mice deficient in IL-10, whereas in the RAG knock out model, IP-10 and 

Mig production was enhanced (Scheerens et al., 2001). Furthermore, expression 

of IP-10 and CXCR3 has been found to be up-regulated in the epithelium in the 

dextran sulfate sodium (DSS) animal model of colitis (Sasaki et al., 2002). 

Neutralization of IP-10 protected the mice from epithelial ulceration by promoting 

crypt cell survival without any evidence of altered immune cell infiltration, 

indicating a possible role for IP-10 as a new therapeutic target for IBD by 

controlling the dynamics of epithelial homeostasis.

1.6 Signalling pathways associated with chemokines

Phosphoinositide metabolism

Phosphoinositides (Pis) are minor lipid components of biological membranes, 

which have emerged as essential regulators of a variety of cellular processes, both 

on the plasma membrane and on several intracellular organelles. The versatility of 

these lipids stems from their ability to function either as substrates for the 

generation of second messengers, as membrane anchoring sites for cytosolic 

proteins or as regulators of the actin cytoskeleton. This allows them to interact 

with proteins and to orchestrate the spatio-temporal organization of key signalling 

pathways.

Phosphatidylinositol (Ptdlns), the basic building block for the intracellular inositol 

lipids in eukaryotic cells, consists of D-myo-inositol-l-phosphate (InsIP) linked 

via its phosphate group to diacylglycerol (DAG). This molecule is the target of a
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number of lipid kinases that phosphorylate the inositol ring on positions D3, D4, 

and D5 in different combinations. The 2 and 6 positions in these lipids are not 

known to be esterified with phosphate. Ptdlns and its phosphorylated derivatives 

are collectively referred to as phosphoinositides. Eight PI species have been 

documented in eukaryotic cells (Figure 1.4).

B

Diacylglycerol

Phosphodiester link

0X1 Inositol head 
group

P T E N
P tdlns P I(5)P

P 13K

P T E N

PI(4)P P I(4 ,5 )P ;
P 13K

D A G

Figure 1.4 Chemical structure of P tdlns (A) and summary of 

phosphosinositide lipid metabolism (B). Only kinases specifically involved in 3- 

PI metabolism are included. Blue boxes represent phosphatases, green boxes 

represent kinases that catalyse phosphorylation of the lipid substrates and 3-PIs 

are represented in red. Abbreviations used in the diagram: SHIP, Src homology 

domain-containing inositol 5'-phosphatase; PTEN, phosphatase and tensin 

homologue deleted on chromosome TEN; PLC, phospholipase C; PI5K, 

phosphoinositide 5 kinase; DAG, diacylglycerol.
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Phospholipase C

Eleven distinct isoforms of Pi-specific phospholipase C (PLC), which are grouped 

into four subfamilies (P, y, 8  and e), have been identified in mammals. These 

proteins catalyze the hydrolysis of phosphatidylinositol 4,5-bisphosphate 

(Ptdlns4 ,5 -P2) to inositol 1,4,5-trisphosphate (Insl,4 ,5 -P3) and DAG in response 

to the activation of various cell surface receptors. These messengers then promote 

the activation of protein kinase C (PKC) and the release of Ca2+ from intracellular 

stores, respectively. All PLC isoforms apart from a highly conserved catalytic 

core, also contain various combinations of regulatory domains. The latter target 

the different PLC isoforms to the vicinity of their substrate through protein- 

protein or protein-lipid interactions. For instance the p, y, and 8  isoforms all 

contain an NPL-terminal pleckstrin homology domain (PH), a module that is 

present in many signalling proteins and that binds to various Pis (Rameh and 

Cantley, 1999). The presence of distinct regulatory domains in PLC isoforms 

renders them susceptible to different modes of activation. Given that the partners 

that interact with these regulatory domains of PLC isoforms are generated or 

eliminated in specific regions of the cell in response to changes in receptor status, 

the activation and deactivation of each PLC isoform is a highly regulated process.

Phosphoinositide 3-kinase

Phosphoinositide 3-kinase (PI3K) is an enzyme that participates in many cellular 

processes and whose activity has been linked to cell growth and transformation, 

differentiation, motility, insulin action, and cell survival to name a few. Thus it is 

not surprising that considerable effort has gone into understanding the 

mechanisms by which PI3K mediates these responses. PI3K compromises a
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family of signalling enzymes that catalyse the phosphorylation of the D3 position 

of the inositol ring of Pis. PI3K initiate signalling cascades by generating three 

distinct membrane inositol lipids, PtdIns-3-P, PtdIns-3 ,4 -P2, and PtdIns-3 ,4 ,5 -P3 

(referred from now on as 3-PIs). Approximately 5% of cellular PI is 

phosphorylated at the 4-position, and another 5% is phosphorylated at both the 

4 and 5 positions . However, less than 0.25% of the total inositol-containing lipids 

are phosphorylated at the 3-position, consistent with the idea that these lipids exert 

specific regulatory functions inside the cell, as opposed to a structural function. 

Resting mammalian cells contain significant levels of Ptdlns3-P, but hardly any of 

the other 3-PIs. Whereas the overall levels of Ptdlns3-P do not seem to increase 

upon cellular stimulation, the levels of the other 3-PIs can rise sharply, although 

they probably never match the levels of Ptdlns4 ,5 -P2 or Ptdlns4-P. PI3K lipid 

products are not substrates for the Pi-specific PLC enzymes. Instead, 3-PIs are 

metabolised by kinases and phosphatases that act on the inositol ring (summarized 

in Figure 1.4).

PI3K isoforms

Based on structural characteristics, regulatory mechanisms and their selective in 

vitro substrate specificity, PI3Ks can be grouped into three classes: class I, class II 

and class III (summarized in Figure 1.5).

Class I PI3K

The prototypical PI3Ks are the class I PI3Ks which are heterodimers of 

approximately 200 kDa, composed of a 110-120 kea catalytic subunit and a 50- 

100 kDa adaptor subunit and are able to phosphorylate, Ptdlns, Ptdlns 4-P and 

Ptdlns 4 ,5 -P2 in vitro. The preferred in vivo substrate for class I PI3Ks, however,
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seems to be Ptdlns 4,5-P2 (Stephens et al., 1991; Hawkins et al., 1992). 

Depending on the adaptor proteins involved in this process, class I PI3Ks can be 

segregated into two groups: those able to associate with p85 will be directed to 

phosphorylated tyrosine motifs (class IA), while PI3Ky interacts with trimeric G 

proteins and the p 101 protein (class IB).

Class Catalytic Subunit Adaptor Subunit Lipid Substrate

I A 

B

pi 10 a,p,5 

pllOy

p85 a ,(3 p55 a,y p50 

plOl

Ptdlns, Ptdlns-4P, 
Ptdlns 4,5 P2 
Ptdlns, Ptdlns-4P, 
Ptdlns 4,5 P2

II C2a, C2pC2y clathrin Ptdlns, Ptdlns-4P

III Vps34p pi 50 Ptdlns

s -B D

-<Sro>-fPK ^R H ~;:H PM  SH2 \

ic Domain} pnoa,p,S

{ S H 2

C lass  I,

- B —{ S H 2

p85a
S H 2 HD  P85P 

S H 2  H iS H 2D f S H 2  ] p55a5y
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P IK  >-̂ atalytic Domain} P11 °T
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C lass III
<  P IK  >-}Catalytic Domain' Vps34

Figure 1.5 Classes, subunits, lipid substrates of mammalian PI3Ks and 

structural characteristics of the different PI3K isoforms (adapted from 

(Curnock et al., 2002). PI3Ks have been divided into three classes, based on 

primary structure, substrate specificity and regulatory mechanisms; class 1 is 

further subdivided according to the associated adapter subunit. The protein 

domains are as follows: BH, breakpoint-cluster region; C2, C2 domain; P, proline- 

rich motif; PIK, phosphatidylinositol kinase domain; PX, phox homology 

domain; Ras-BD; Ras-binding domain; SH2, src-homology domain 2; SH3, 

src-homology domain; iSH2, inter SH2 domain.
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Class IA PI3Ks are tightly and constitutively associated with a 50-85 kDa 

regulatory subunit, of which p85 is the prototype. The p85 is composed, starting 

from the N terminus, of a Src homology 3 (SH3) domain, a breakpoint-cluster- 

region homology (BH) domain flanked by two proline-rich regions and two C- 

terminal SH2 domains spaced by an inter-SH2 region (Otsu et al., 1991; Skolnik 

et al., 1991; Hiles et al., 1992). The latter mediates tight binding of p85 to the 

catalytic subunit. The subsequent cloning of PI3Ky (Stoyanov et al., 1995) 

identified a protein with similarities to the class IA PI3K, but without an N- 

terminal p85-binding site. Instead, PI3Ky was found associated with a novel 101 

kDa protein without any functional homology to known proteins, and was 

proposed to be essential in conferring G(3y sensitivity to pllOy (Stephens et al., 

1997). Others have reported that GPy-dependent pllO y activation in absence of 

plO l occurs in vitro reconstitution assays with permeabilized neutrophils (Kular 

et al., 1997; Leopoldt et al., 1998).

Class IIPI3K

The drosophila PI 3-kinase PI3K68D/cpk has been identified as the first member 

of a new class of PI3Ks (MacDougall et al., 1995), They are distinguished from 

other PI3K isoforms by the presence of two tandem domains at their carboxyl 

terminus that. The first is termed a phox homology (PX) domain and the second a 

C2 domain which are known to act as a specific Pi-binding modules in other 

signalling molecules. Class II isoforms are characterized Ptdlns and Ptdlns4-P 

specificity in vitro, although PI3-K-C2a was claimed to phosphorylate Ptdlns4 ,5 -P2 

as well (Domin et al., 1997). Of the PI3K-II a, p and y families, drosophila 

PI3K68D/cpk resembles most the mammalian PI3K-IIp and shares with it a
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ubiquitous expression pattern (Brown et al., 1997). Class II PI3Ks display 

homologies with class I enzymes, but have different N-termini and do not 

associate with p85. The C2 domain of PI3K-IIs, although related to the one of 

synaptotagmin, is Ca2+-insensitive due to the lack of conserved Asp residues 

necessary for Ca2+-binding (Sutton et al., 1995). Indeed it has been shown to bind 

weakly to phospholipids in a Ca2+-independent fashion (MacDougall et al., 1995) 

and to be essential for catalytic activity of the enzyme (Misawa et al., 1998). The 

observation that drosophila PI3K68D/cpk can be phosphorylated on Tyr suggests 

that protein tyrosine kinases and protein-protein interactions could mediate the 

activation of PI3K-IIs (Molz et al., 1996).

Class III PI3K

Class III PI3Ks are homologues of S. cerevisiae Vps34p (vacuolar protein sorting 

mutant, and phosphorylate exclusively Ptdlns (Schu et al., 1993). Based on 

observations in yeast Vps34, the mammalian homologue of this class III PI3K is 

considered to be the principle mediator of vesicle transport from the Trans-Golgi 

network (TGN) to lysosomes, the organelle in mammalian cells that is 

functionally equivalent to the yeast vacuole. In support of this, transport of newly 

synthesized lysosomal enzymes from the TGN is inhibited by PI3K inhibition 

(Brown et al., 1995).

Lipid phosphatases

To ensure that activation of this pathway is appropriately suppressed/terminated, 

there are three major lipid phosphatases involved in negatively regulating the 

levels of 3-PIs: the ubiquitously expressed 54-kDa tumor suppressor PTEN
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(Phosphatase and TENsin homologue deleted on chromosome TEN) which 

hydrolyzes Ptdlns3 ,4 ,5 -P3 to Ptdlns4 ,5 -P2, and the 145-kDa hematopoietic- 

restricted SHIP (Src homology domain 2 (SH2)-containing inositol 5'- 

phosphatase, also known as SHIP1), as well as the more widely expressed 150- 

kDa SHIP2, which breaks it down to Ptdlns3 ,4 -P2. PTEN will de-phosphorylate 

several phosphoinositide signalling molecules in vitro, specifically removing 

phosphate from the D-3 position of the inositol ring in each case (Maehama and 

Dixon, 1998; Myers et al., 1998). However, Pltdlns3 ,4 ,5 -P3 and Pltdlns3 ,4 -P2 are 

the most efficient substrates for PTEN in vitro, although it will also de- 

phosphorylate PI3-P and the soluble head group of Pltdlns3 ,4 ,5 -P3, inositol 

l ,3 ,4 ,5 -tetrakisphosphate(Ins(l,3 ,4 ,5 )P4). SHIP 1 and 2 are capable of hydrolysing 

Ptdlns3 ,4 ,5 -P3 at position 5 of the inositol ring to produce Pltdlns3,4-P2 (Damen 

et al., 1996; Lioubin et al., 1996). SHIP1 is also capable of de-phosphorylating 

Ins(l,3 ,4 ,5 )P3, whereas SHIP2 is not (Wisniewski et al., 1999). The D-3 position 

of the inositol phospholipid must be phosphorylated before SHIP can de- 

phosphorylate the D-5 position (Damen et al., 1996), suggesting that SHIP acts 

sequentially with PI3K in the inositol phospholipid pathway.

Targeting PI3K isoforms

The specific PI3K inhibitors, wortmannin (Wymann et al., 1996) and LY294002 

(Vlahos et al., 1994), have been invaluable tools for elucidating the roles of these 

enzymes in signal transduction pathways in various cellular responses in vitro. 

However, it has been difficult to study the function of this enzyme family in vivo. 

Moreover, neither of these inhibitors exhibit any degree of selectivity for
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individual PI3K isoforms, even though PI3K-C2a has been reported as displaying 

reduced sensitivity to wortmannin (Domin et al., 1997).

The recent development of genetic approaches based on gene-manipulated mouse 

systems has provided a breakthrough in elucidating the in vivo role of the 

individual PI3K enzymes. To date, each of the class I PI3K catalytic subunits has

been inactivated by gene targeting, as have the p85a and p85(3 regulatory subunits 

(summarised in table 1.9).

Ablated gene Phenotype

p85cx/p55a/p50 a  

p85p

Perinatal lethal (Fruman et al., 1999),

Impaired B-cell development and activation (Suzuki et al., 

1999),

Over production of IL-2 from DCs and enhanced Thl 

responses to Leishmania major infection (Fukao et al., 

2 0 0 2 a)

Selective loss of gastrointestinal mast cells and impaired 

responses to intestinal nematodes (Fukao et al., 2002b),

No immune phenotype reported (Ueki et al., 2002)
pi 1 0 a
piiop

pi 108

Embryonic lethal (Bi et al., 1999)

Embryonic lethal (Bi et al., 2002)

Impaired T and B antigen receptor signaling, impaired B cell 

development and activation (Clayton et al., 2002; Jou et al., 

2002; Okkenhaug et al., 2002)

pllO y

Impaired T cell development, activation, chemotaxis and 

inflammatory responses, improved heart function, decreased 

oxidative burst and thromobembolism (Hirsch et al., 2000; 

Li et al., 2000; Sasaki et al., 2000; Hirsch et al., 2001; 

Laffargue et al., 2002; Crackower et al., 2002)

Table 1.9 Immune phenotypes of genetically targeted PI3K isoforms (adapted 

from (Ward and Finan, 2003).
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Despite the advantages of this approach, the results obtained are incomplete 

because the p i 1 0 a  and P knockouts are embryonic lethal, and need to be 

interpreted with caution due to the complex regulation of p i 10 by p85. Targeting 

p85a interferes with recruitment of p i 10 to tyrosine-phosphorylated receptor 

complexes, while expression of each of the class Ia catalytic subunits is reduced, 

supporting a role for p85 in protecting p i 10 from proteolysis. In addition it is 

thought that loss of one member of the family might be compensated for by 

another isoform.

Lipid products as mediators of PI3K downstream signalling

PI levels are exquisitely regulated within cells and constitute important spatial and 

temporal signals coordinating a wide range of cellular processes. The effects of 3- 

PIs are mediated primarily by direct interaction with a large number of 

downstream effector proteins (summarized in Figure 1.6), and these protein-lipid 

interactions involve numerous, specific lipid-binding modules, including the PH, 

FYVE and PX domains.

The pleckstrin homology (PH) domain was first identified in 1993 as a 100-120- 

residue stretch of amino-acid-sequence similarity that occurs twice in pleckstrin 

and is found in numerous proteins involved in cellular signalling. It was originally 

proposed that PH domains, like SH2 and SH3 domains, might be involved in 

protein-protein interactions in cellular signalling (Haslam et al., 1993). 

Subsequent work has shown that many PH domains direct membrane targeting of 

their host proteins, but by binding to Pis rather than proteins in cellular 

membranes. They are the only domains known to exhibit PtdIns3 ,4 ,5 -P3-binding
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properties in molecules such as protein kinase B (PKB) (James et al., 1996), 

Bruton's tyrosine kinase (Btk) (Salim et al., 1996), the general receptor for 

phosphoinositides-1 (Grpl) (Klarlund et al., 1997), and the dual adaptor for 

phosphotyrosine and 3-phosphoinositides-l (DAPP1) (Dowler et al., 1999). 

Ptdlns3,4-P2 has also several well-known targets, which all contain PH domains. 

Several of the PH domains that are recruited by Ptdlns3 ,4 ,5 -P3 also recognize 

Ptdlns3,4-P2. These include the PH domains from PKB and DAPP1, but not those 

from Btk or Grpl (which are PtdIns3 ,4 ,5 -P3-specific) (Kavran et al., 1998). Only 

one PH domain, from TAPP1 (tandem PH domain containing protein 1), has been 

reported to bind exclusively to Ptdlns3,4-P2, and evidence has been presented to 

suggest that Ptdlns3,4-P2 is the target of this PH domain in vivo (Kimber et al., 

2002).

Of all physiological Pis, PtdIns(3)P is the one that has the largest number of 

known specific binding partners, being recognized specifically by most FYVE 

domains and PX domains, of which there are 30 and 42, respectively, in the 

human proteome. The FYVE domain contains approximately 60-70 amino acids, 

and is named for the four proteins in which it was first identified: Fablp, YOTB, 

Vaclp, and EEA1 (Stenmark et al., 2002). Since their initial description, it has 

been clear that more than just the FYVE domain is required for efficient targeting 

of proteins to PtdIns3-P-containing membranes in vivo, simply because Ptdlns3-P 

is not very abundant, and that head group binding, while specific, is relatively 

weak (Dumas et al., 2001). FYVE finger proteins regulate distinct trafficking 

steps such as membrane fusion, receptor sorting, membrane invagination, and the 

endocytic pathway, consistent with the localisation of Ptdlns3-P on both 

endosomes and vacuoles (Gillooly et al., 2000). PX domains were pointed out in
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1996 as a 130-amino acid homology region in two components of the phagocyte 

NADPH oxidase complex (p40 phox and p47 phox) as well as many other proteins 

with diverse functions (Ponting, 1996). PX domains are now recognized as 

Ptdlns3-P binding modules, although the PX domains from PI3K C2a has been 

reported to bind Ptdlns4 ,5 -P2 (Song et al., 2001).

The potential of some PH domains to specifically bind PItdIns3 ,4 P2 and 

Ptdlns3 ,4 ,5 -P3 correlates with in vivo data defining the same PH domain- 

containing proteins as PI3K effectors. For example, PI3K activity leads to

P Z I /

multiple phosphorylations of p70 , which is involved in G1 cell cycle transition

and proliferation (Chung et al., 1994; Alessi et al., 1998). p70s6K can also 

associate with and is activated by the Rho family G proteins Rac and Cdc42 

(Chou and Blenis, 1996; Welch et al., 1998) which are again under the control of 

PI3K. The list of PI3K targets further includes the atypical PKCs e, r|, X (Toker 

and Cantley, 1997), and PLC y (Falasca et al., 1998; Bae et al., 1998).

Protein Kinase B

Although the serine/threonine protein kinase PKB was not the first PI3K effector 

discovered, intense interest in this field has led to what is arguably the best 

understood mechanism of activation and function of any Ptdlns3 ,4 ,5 -P3 target. 

PKB was identified as a 57kDa serine/threonine kinase with high homology to 

protein kinases A and C, and was therefore termed PKB. PKB is cytosolic in 

unstimulated cells, and is activated trough membrane localization (Andjelkovic et 

al., 1997) and Ser/Thr phosphorylation (Andjelkovic et al., 1996; Alessi et al.,

1996). Both events are dependent on PI3K: the PH domain of PKB promotes
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translocation to the plasma membrane by binding to Ptdlns3,4-P2 (Franke et al., 

1997), and phosphorylation at Thr308 and Ser473 requires phosphoinositide - 

dependent kinases (PDKs) 1 and 2 respectively. Activity of PDK1 is specifically 

controlled by interaction of Ptdlns3,4,5-P3, and Ptdlns3,4-P2 with its PH domain 

(Stokoe et al., 1997; Stephens et al., 1998). Apart from phosphorylating PKB on 

Thr308, PDK1 phosphorylates members of the AGC subfamily members on the 

equivalent residues such as on PKC isoforms (Dutil et al., 1998), p70-S6K (Alessi 

et al., 1998), PKA (Cheng et al., 1998) and others.
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Figure 1.6 Overview of PI3K and phosphoinositide signalling. Proteins 

containing PH domains (PKB, PDK1, and PLC-y) are present downstream of 

PI(3,4)P2 and PI(3,4,5)P3. Various target proteins function downstream of these 

molecules. Proteins containing FYVE and PX domains function upon binding to 

PI(3)P and/or PI(3,4)P2. Activation mechanisms of class II and class III PI3Ks are 

largely unknown. Abbreviations: AP-2, adaptor-related protein complex 2; PKB, 

protein kinase B; PKC, protein kinase C; PDK-l, phosphoinositide dependent 

kinase-1; PLC-y, phospholipase Cy ; PTKs, protein tyrosine kinases.

49



Chapter 1: Introduction

PKB has been implicated in many biological processes including intermediary 

metabolism, protein synthesis, and anti-apoptotic signalling. Once activated, PKB 

leaves the plasma membrane to phosphorylate intracellular substrates. Consistent 

with this, translocation of PKB to the nucleus has been reported (Andjelkovic et 

al., 1997) and this undoubtedly links PKB to phosphorylation of transcription 

factors such as c-AMP-responsive element-binding protein (CREB), forkhead 

transcription factors, and NF-kB (Kandel and Hay, 1999). PKB phosphorylates 

and activates endothelial nitric oxide synthase (eNOS) leading to sustained 

production of NO by endothelial cells, which has been implicated in gene 

regulation and angiogenesis (Snyder and Jaffrey, 1999; Fulton et al., 1999). The 

glycogen synthase kinase 3 (GSK3) is also phosphorylated and inactivated by 

PKB leading to an increase in glycogen synthesis (Cross et al., 1995).

One of the major functions of PKB is as a cell survival factor, and a number of 

proteins have been shown to mediate its anti-apoptotic function. The pro- 

apoptotic Bcl-2 family member BAD is phosphorylated and inactivated by PKB 

leading to protection from apoptosis (Datta et al., 1997). However it is unlikely 

that this represents the major anti-apoptotic mechanism by which PKB, as Bad is 

not ubiquitously expressed. A cysteine protease, caspase-9, as well as forkhead 

transcription factors such as FKHR, FKHRL1 and AFX also induce apoptosis, an 

event that is inhibited by PKB mediated phosphorylation of these proteins 

(Cardone et al., 1998; Brunet et al., 1999a). Another anti-apoptotic action of PKB 

may operate via the transcription factor NF-kB. When bound to its cytosolic 

inhibitor, IkB, NF-kB is sequestered in the cytoplasm. PKB has been reported to 

associate with and activate IkB kinases (IKKs), which are known to phosphorylate 

and degrade IkB. This results in translocation of NF-kB to the nucleus where it
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activates the transcription of anti-apoptotic members of the inhibitor-of-apoptosis 

proteins (IAP) such as c-IAP-1 and c-IAP-2 (Kane et al., 1999; Wang et al.,

1999). The PI3K/PKB pathway is summarized in figure 1.7.

Transcription

Glucose metabolism
Survival

NO production

Transcription

APOPTOSIS

Figure 1.7 The PI3K/PKB pathway. Activation of PI3K results in the local 

accumulation of Ptdlns3,4,5-P3 at the plasma membrane. Newly synthesized 

Ptdlns3,4,5-P.3 recruits both PDK-l and PKB to the plasma membrane where the 

combination of lipid binding and phosphorylation by PDK-l serves to activate 

PKB. Once activated PKB has profound effects on cell function leading to gene 

transcription and cell survival. Abbreviations used in the diagram: FKHR, 

Forkhead transcription factors; BAD, Bcl-2/Bcl-XL-antagonist, causing cell death; 

eNOS, endothelial nitric oxide synthase; GSK-3, glycogen synthase kinase-3; 

IKKs, IkB kinases.
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PI3K activation by chemokines

The first evidence for the involvement of PI3K in chemokine-stimulated cell 

migration was the demonstration that the chemotaxis and polarization of T-cells 

induced by RANTES is inhibited by the PI3K inhibitor wortmannin (Turner et al., 

1995b). Subsequent studies by several groups showed that other chemokines, such 

as MIP-3, MCP-1, IL-8  and SDF-1 stimulate wortmannin-sensitive chemotaxis of 

eosinophils, THP-1 monocytic cells, neutrophils and T-cells respectively (Knall 

et al., 1997; Turner et al., 1998; Sotsios et al., 1999; Sullivan et al., 1999). 

Moreover SDF-1 and certain SDF-1 peptide analogues stimulate the transient 

accumulation of Ptdlns3 ,4 ,5 -P3 in leukaemic T-cell lines and peripheral blood- 

derived T-cells (Sotsios et al., 1999). Given that chemokine receptors are G 

protein coupled, one might predict an involvement of the Gpy-dependent PI3K in 

mediating Ptdlns3 ,4 ,5 -P3 accumulation. Indeed, the accumulation of Ptdlns3,4,5- 

P3 stimulated by SDF-1 and MCP-1 can be completely inhibited by pre-treatment 

with pertussis toxin, strongly indicating that 3'-phosphoinositide lipid 

accumulation occurs via the Gi protein-coupled PI3K (Turner et al., 1998; Sotsios 

et al., 1999). However, in PDKy'7' mice, neutrophils are still capable of migrating 

to several chemoattractants (Hirsch et al., 2000; Li et al., 2000; Sasaki et al.,

2000), suggesting that other PI3K isoforms are also activated. In vitro assays of 

immunoprecipitated p85 subunits of PI3K indicate that the p85 /p ll0  heterodimer 

is activated by SDF-1 and RANTES in T cells (Turner et al., 1995a; Sotsios et al., 

1999) and by MCP-1 in THP-1 cells (Turner et al., 1998). The study with MCP-1 

revealed that Ptdlns3 ,4 ,5 -P3 accumulation in THP-1 cells is wortmannin resistant, 

yet entirely pertussis toxin sensitive, suggesting the involvement of PI3K-C2a, 

which is thought to exhibit reduced sensitivity to wortmanin.
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Calcium (Ca+2) signalling

Originally thought to be a structural element for bone and teeth formation, Ca2+ is 

now known to be involved in many intracellular signalling processes (e.g. gene 

transcription, proliferation, apoptosis, migration and muscle contraction) and its 

intracellular mobilisation is initiated by a wide variety of receptors.

The process of Ca2+ signalling involves regulated changes in the concentration of 

Ca2+ in the cytoplasm from 100 nM in resting conditions to roughly 1000 nM 

upon activation. This is achieved by an extensive molecular repertoire of 

signalling components, which comprise the Ca2+ signalling toolkit (Figure 1.8). In 

most cell types, the major internal Ca2+ stores are the endoplasmic reticulum (ER) 

or the sarcoplasmic reticulum (SR). Release of Ca2+ from these stores is attained 

via multimeric ligand gated ion channels: IP3 receptors (IP3RS) and ryanodine 

receptors (RRs). The latter is gated by Ca2+ itself (also known as calcium-induced 

calcium release (CICR), but can also be operated by an endogenous ligand named 

cyclic ADP ribose (cADPR) (Galione and Churchill, 2000). There are currently 

three IP3Rs and three RRs (Berridge et al., 2003). A further internal store 

operated by nicotinic acid adenine dinucleotide phosphate (NAADP) has been 

recently identified (Genazzani and Billington, 2002).

Additionally, Ca2+ is able to enter the cell externally via various entry channels: 

voltage-operated channels (VOCs) are plasma membrane ion channels that are 

activated by membrane depolarisation; receptor-operated channels (ROCs) open 

in response to the binding of an extracellular ligand; second-messenger-operated 

channels (SMOCs) open in response to the binding of intracellular second 

messengers such as DAG, cyclic nucleotides or arachiodonic acid; and store-
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operated channels (SOCs) open in response to the depletion of internal stores of

Ca2+.
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Figure 1.8 An overview of the pathways involved in calcium mobilisation,

Acquired from (Berridge et al., 2000). Calcium mobilising signals are shown in 

blue. Influx mechanisms are in green, with efflux pathways highlighted in red. 

Abbreviations: cADPR, cyclic adenosine diphosphate ribose; ER, endoplasmic 

reticulum; G, G-protein; InsP3R, inositol (l,4,5)-trisphosphate receptor; NAD, 

nicotinamide adenine dinucleotide; NADP, nicotinamide adenine dinucleotide 

phosphate; NAADP, nicotinic acid adenine dinucleotide phosphate; PLC, 

phospholipase C; PMC A, plasma membrane calcium ATPase; PTP, permeability 

transition pore; R, receptor; RTK, receptor tyrosine kinase; RYR, ryanodine 

receptor; SIP, sphingosine 1-phosphate; SCaMPER, sphingolipid calcium release- 

mediating protein of the ER; SERCA, sarco(endo) plasmic reticulum calcium 

ATPase; SR, sarcoplasmic reticulum.
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For a cell to be able to maintain viability, the calcium influx must be balanced by 

calcium efflux. Four different mechanisms are responsible: plasma membrane 

calcium ATPase (PMCA), sodium/calcium exchanger (NCX), sarco (endo) 

plasmic reticulum calcium ATPase (SERCA), and the mitochondrial uniporter. 

PMCA and SERCA have high affinities but limited capacities meaning they can 

respond to modest increases in calcium levels and set basal calcium levels. The 

remaining two calcium transporters, NCX and the mitochondrial uniporter, have 

much higher capacities and can limit the calcium transient over a wider range (i.e. 

optimal mitochondrial calcium accumulation occurs when calcium is in the pM 

range but do accumulate calcium even when presented with modest nM global 

calcium changes). The PMCA couples ATP hydrolysis to the transport of calcium 

from cytosolic to extracellular spaces. NCX (plasma membrane) exchanges three 

moles of sodium for one mole of calcium, either inward or outward, depending on 

the ionic gradients across the membrane. The mitochondrial uniporter transports 

calcium from the cytosol into the mitochondrial matrix and is located on the inner 

mitochondrial membrane. SERCA is located on SR and ER membranes and 

couples ATP hydrolysis to the transport of calcium from the cytosol to the 

lumenal space (for reviews (Berridge et al., 2000; Berridge et al., 2003)). Rises in 

cytosolic calcium levels are decoded by various intracellular calcium binding 

proteins coupling the calcium flux to a biochemical and cellular response, with 

calmodulin being the most abundant and well known of these calcium sensors.

Calmodulin binding to calcium leads to its conformational change and activation 

of the serine-threonine phosphatase calcineurin, allowing this protein to then 

activate various transcription factors and subsequent transcription of various 

genes, such as IL-2.
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Chemokines and calcium signalling

The activity of chemokine receptors is most commonly assayed by measuring 

changes in intracellular Ca2+ levels following application of agonists, although it 

does not define which G protein family has transduced the chemokine message 

from receptor to effector. For instance in cultured cerebellar Purkinje cells, 

CCR8 -induced Ca2+ fluxes were not affected by PTX treatment of the cells 

indicating the lack of involvement of Gi-coupled pathways (Gillard et al., 2002).

In the same system, activation of CCR3 by the specific ligand eotaxin induces 

calcium transients, but the calcium release is completely inhibited by pre

treatment of the cells with PTX (Gillard et al., 2002).

Increases in intracellular Ca2+ levels do not necessarily prove activation of IP3Rs.

An alternative explanation would be the chemokine-mediated opening of channels 

in the outer cell membrane allowing Ca2+ flux into the cell. Indeed it has been 

observed that the rise in intracellular Ca2+ levels following activation of CCR1 

expressed in HEK-293 cells is completely inhibited by the PLC inhibitor U73122, 

indicating that the Ca2+ is released from intracellular pools. However, it was 

noticed that in the absence of extracellular Ca2+, the intracellular levels induced by 

CCRl-mediated events were considerably reduced (Nardelli et al., 1999). This 

implies that CCR1 is able to promote the influx of Ca2+ into a cell by activating 

Ca2+ channels as well as by promoting the release of Ca2+ from IP3-sensitive 

intracellular pools. Another interesting observation from calcium studies with 

chemokines is that chemokine receptor stimulation can have biological effects in 

the absence of measurable calcium mobilization. SDF-1 was unable to stimulate 

increases in [Ca2+]i in Jurkat cells, although these cells still elicited a chemotactic 

response to SDF-1 (Turner et al., 1995b; Sotsios et al., 1999).
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The Mitogen-Activated Protein Kinase pathways

Mitogen-activated protein kinase (MAPK) pathways are conserved in all 

eukaryote organisms and are common participants in signal transduction pathways 

from the cell membrane to the nucleus. These kinases regulate directly or 

indirectly a number of transcription factors that control a very large number of 

important genes that are responsible for such fundamental cellular processes as 

proliferation, differentiation, survival and apoptosis. The mammalian MAP kinase 

family includes: 7 members of the ERK family, 4 isoforms of p38 MAP kinase 

and 10 or more splice variants of the JNK/SAPK family (c-Jun N-terminal /stress 

activated protein kinases).

Mammalian MAPK pathways can be activated by various receptor families, such 

as tyrosine (Tyr), serine/threonine (Ser/Thr) kinase receptors, cytokine receptors 

or GPCRs, including chemokine receptors. All the known MAP kinases can be 

categorized by the sequence of the canonical dual phosphorylation site Thr-Xaa- 

Tyr (TXY) in a regulatory loop between kinase subdomains VII and VIII (Tanoue 

and Nishida, 2003). The ERK group members have the Thr-Glu-Tyr (TEY) dual 

phosphorylation motif; all the p38 group kinases have the Thr-Gly-Tyr (TGY) and 

JNK/SAPK group has a Thr-Pro-Tyr (TPY) motif. All MAPK pathways feature 

three-tiered central 'core signalling modules' (Figure 1.9), consisting of three 

kinases: a MAPK kinase kinase (MAPKKK) that activates a MAPK kinase 

(MAPKK) by Ser/Thr phosphorylation, which in turn activates a MAPK. MAPKs 

are activated by concomitant Thr/Tyr phosphorylation within a conserved motif in 

the activation loop of the kinase domain.
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The Extracellular Regulated Kinase pathway

The ERKs are a very heterogeneous group within the MAPKs. They include the 

ERK1/2, ERK3/4 and ERK5/BMK (Zhou et al., 1995) subfamilies, as well as the 

newly discovered ERK7 (Abe et al., 2001) and ERK8 (Abe et al., 2002). ERK1, 

ERK2 and ERK5, participate in signal transduction pathways that originate from 

the cell surface receptors.

GPCR
Cytokine receptor
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M APKKK
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Figure 1.9 Overview of the mitogen-activated protein kinase (MAPK) core 

signalling module. Divergent inputs feed into a core MAPK-kinase-kinase 

(MAPKKK) —»MAPK-kinase (MAPKK)-* MAPK pathways. MAPKs, in turn, 

coordinate activation of gene transcription factors or further downstream targets. 

Abbreviations:ATF-2, activating transcription factor-2; CREB, cAMP response 

element-binding protein; Elk-1, Ets-like gene-1; Max, Myc-associated factor X; 

MEF2A/C, myocyte enhancer factor-2A/-2C; MNK1/2, MAPK-interacting 

kinase-1/-2; PRAK, p38-regulated/activated kinase.

Termed MAPK/ERK kinase (MEK1 and MEK2), these dual specificity kinases 

are the immediate upstream activating kinases for ERK1 and ERK2 (Crews et al.,
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1992). The MAPK kinase kinase for this module, which is the most extensively 

studied, Raf, has been shown to activate MEK1 and/or MEK2 (Kyriakis et al., 

1992; Dent et al., 1992). Only the knockout of ERK1 has been described (Pages et 

al., 1999). ERK1 deficient mice are viable and appear normal and with a modest 

defect in T-cell development, suggesting that ERK1 is dispensable and that the 

second isoform, ERK2, can compensate for the loss of ERK1. A similar and more 

marked defect is present in transgenic mice expressing dominant-negative MEK1 

in thymocytes (Alberola-Ila et al., 1995).

The p38 pathway

Four isoforms of p38 have been identified: p38 (also called p38a), p38p, p38y 

(also called ERK6 ), and p388. p38a and p38p are expressed in almost all tissues 

and are particularly abundant in brain and heart (Jiang et al., 1996). In contrast, 

p38y and p388 show very selective tissue distribution, with p38y predominantly 

expressed in skeletal muscle and p388 enriched in lung, kidney, testis, pancreas, 

and small intestine. In the past few years, intensive study has been done regarding 

the activation of p38a in many systems, whereas there is not much information 

concerning activation of the other isoforms. Growth factors, GPCR agonists, heat 

shock, cell stretching, and ischemia have all been found to be able to trigger the 

activation of this pathway (Kumar et al., 2003). Like all MAP kinases, p38 is 

activated by dual kinases, the MAPKKs. MKK6  can activate all four p38 

isoforms, whereas MKK3 activation of both the p38 and JNK pathways, which 

may be the reason why p38 and JNK are often co-activated. However specific 

activation of p38 and JNK has been observed, implying that there is specific 

activation of the p38 pathway at this level. The biological consequences of p38
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activation are very diverse, varying from production of pro-inflammatory 

cytokines, induction of enzymes like cyclo-oxyenase 2 (COX-2), induction of 

adherent proteins such as VCAM-1 and many other inflammatory related 

molecules (Kumar et al., 2003).

ERK, p38 and chemokines

Several reports have shown that ERK and/or p38 is involved in chemotaxis 

induced by serum, lysophosphatidylcholine, and chemokines in leukocytes and 

smooth muscle cells (Jing et al., 2000; Ayala et al., 2000; Stupack et al., 2000). 

p38 is also involved in chemotaxis induced by MCP-1 in THP-1 cells (Ashida et 

al., 2001), contradicting previous results, which showed that ERK but not p38 is 

responsible for MCP-1-mediated chemotaxis (Yen et al., 1997). On the other 

hand, IL-8 -mediated chemotaxis is both ERK and p38 independent (Knall et al.,

1997). It has also been demonstrated that GROa in parental melanoma cells 

enhances Ras, MEKK1, MEK3/6, p38, but not ERK activity (Wang and 

Richmond, 2001), whilst the pro-apoptotic signal SDF1 sends through CXCR4 in 

CD4+ T cell are p38 phosphorylation-dependent (Vlahakis et al., 2002).

1.7 Actin and the cytoskeleton

The cytoskeleton is a cellular network of structural, adaptor and signalling 

molecules that regulates most cellular functions including those related to the 

immune response, such as migration, extravasation, antigen recognition, 

activation and phagocytosis. Cytoskeletal genes represent 2.8% of the human 

genome, and they form a part of complex and finely regulated polymer networks, 

including microfilaments, microtubules and intermediate filaments.
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Microfilaments, composed of filamentous (polymerised) actin (F-actin), are 

mainly utilized in eukaryotic cells to drive locomotion by the extension of 

pseudopods. Depending on their morphology and the cellular context, 

pseudopods, are called lamellipods, leading lamellae, or ruffles. Many different 

processes depend on cell locomotion, including morphogenetic movements during 

embryonic development, movement of neurites during development and 

remodelling of the nervous system, chemotactic movements of immune cells, and 

fibroblast migration during wound healing.

The high rates of actin polymerisation or depolymerisation, are regulated by many 

capping, nucleator and adaptor proteins which allow fast growth and 

deconstruction of microfilament-based structures (Pollard and Borisy, 2003). The 

Arp2/3 complex, an abundant assembly of seven subunits (Machesky et al., 1994), 

which is comprised of two actin-related proteins (Arp2 and Arp3) with five novel 

proteins: p40 (ARPC1), p35 (ARPC2), p l9  (ARPC3), p l 8  (ARPC4), and p l4  

(ARPC5) is integral in this process. At the leading edge of motile cells, the entire 

network of actin filaments is a branched array with Arp2/3 complex localized to 

the branch sites (Svitkina and Borisy, 1999). The best studied Arp2/3 complex 

activators are members of the Wiskott-Aldrich syndrome protein (WASP) and 

WASP family Verprolin-homologous proteins (WAVE) (Machesky and Insall,

1998; Miki et al., 1998), which are regulated by Rho-type small GTPases.

Rho GTPases

Ras homology (Rho) family GTPases, are small (20-30 kDa) GTP-binding 

proteins of the Ras superfamily. The prototype Rho family members are RhoA,
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(Racl), and Cdc42. Their distinct biological were first demonstrated in 

microinjection experiments in fibroblasts, in which the introduction of Rho 

induced the formation of actin stress fibers and focal contacts, whereas the 

introduction of Rac, in a distinct pathway, led to membrane ruffling and formation 

of lamellipodia. Cdc42 induced a third signal transduction pathway, producing 

finger-like structures known as filopodia, which contain bundles of F-actin 

(Ridley and Hall, 1992; Ridley et al., 1992; Nobes and Hall, 1995). These proteins 

function as binary switches by cycling between the active GTP-bound state and 

the inactive GDP-bound state. In the GTP-bound form, these proteins bind to and 

activate a variety of downstream effector proteins including kinases, actin-binding 

proteins, and lipid-modifying enzymes. The guanine nucleotide binding cycle of 

Rho family GTPase is controlled by: guanine nucleotide exchange factors (GEFs) 

which promote the transition from the inactive GDP-bound state to the active 

GTP-bound conformation; GTPase-activating proteins (GAPs) that stimulate the 

inactivation; and guanine nucleotide dissociation inhibitors (GDIs) act to lock the 

GTPase in either the active or inactive state.

Rac-1 and Cdc42

By regulating F-actin, Cdc42 and Rac exert a profound effect on cell shape, 

polarity, migration, celkcell and cell:matrix adhesion, protein traffic, and 

cytokinesis. Rac and Cdc42 are required at the front of the cell to regulate actin 

polymerisation and membrane protrusion. For efficient cell migration, this activity 

would be expected to be spatially restricted as demonstrated for Rac which can be 

visualized in migrating fibroblasts with the highest concentrations at the leading 

edge (Kraynov et al., 2000).
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Over 30 target proteins have been identified that interact with either Cdc42 or 

Rac, or both, specifically in their GTP-bound forms (reviewed in (Bishop and 

Hall, 2000)). Many, though not all, of these contain a recognizable motif, the 

Cdc42 and Rac interactive binding (CRIB) motif, as part of their Rac/Cdc42 

binding domain (RBD) (Burbelo et al., 1995). Cdc42 binds to WASP or N- 

WASP, which are primary effectors mediating filopodia formation, whereas Rac 

activates WAVE. Interestingly, while the WASPs contain a recognizable CRIB 

motif, the WAVEs do not. Instead, their linkage to small GTPases is provided by 

an adaptor protein, insulin receptor substrate p53 (IRSp53) (Miki et al., 2000). 

WASP binding to Cdc42 and Ptdlns3,4-P2 (via a PH domain), opens its normally 

masked and auto-inhibited C-terminal domain that binds Arp2/3, thus regulating 

the position of newly assembled actin filaments (Prehoda et al., 2000). Another 

downstream effector of Rac that has been implicated in cytoskeletal 

rearrangements and membrane ruffling are the p21 activated kinases (PAKs). 

PAKs are serine/threonine protein kinases that associate with Cdc42, and usually 

also with Rac, via a conventional CRIB motif. PAKS have been implicated in 

MAP kinase signalling pathways, apoptosis, and cytoskeletal regulation (Knaus 

andBokoch, 1998).

Rho A

RhoA-induced stress fiber formation is associated with focal adhesion assembly 

and cell contractility and is responsible for cell body contraction and rear end 

retraction (Ridley and Hall, 1992). RhoA activation induces changes in the actin 

cytoskeleton through a large number of downstream targets, of which the best 

characterised are the Rho-activated kinases, the Rho-associated coiled-coil 

forming protein kinases (ROCK). Rho and p i60 ROCK have been shown to be
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essential for rear cell detachment in single migrating leukocytes (Alblas et al.,

2001). p i60 ROCK can phosphorylate and activate LIM kinase (named from the 

Lin-11, Isl-1 and Mec-3 genes) (LIMK), which in turn phosphorylates and 

inactivates cofilin, leading to stabilization of actin filaments within actimmyosin 

filament bundles (Maekawa et al., 1999). pl60ROCK also inhibits by 

phosphorylation the myosin binding subunit of myosin light chain (MLC) 

phosphatase (Kawano et al., 1999) thereby regulating actin-myosin contraction 

formation of actin stress fibers (Ridley, 2001). Another important downstream 

target of Rho is the mammalian ortholog of D ro so p h ila  Diaphanous (mDia), mDia 

belongs to the formin-homology containing family of proteins, which have been 

linked to actin filament assembly in both D ro so p h ila  and yeast (Pruyne et al., 

2002; Sagot et al., 2002).
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Figure 1.10 Rho-GTPase pathways in actin filament organization. Rho

promotes contractile actin:myosin filament assembly through two effectors, mDia 

and pl60ROCK. Rac and Cdc42 both regulate actin polymerisation through 

WASP/WAVE or through PAK kinases. Abbreviations: Arp2/3, actin related 

proteins 2/3 complex; mDia, mammalian ortholog Diaphanous; MLC, myosin 

light chain; LIMK, LIM kinase, PAK, p21 activated proteins; WASP, Wiskott- 

Aldrich syndrome proteins; WAVE, WASP family Verprolin-homologous proteins.
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Rho activity at the front of a migrating cell is incompatible with membrane 

protrusion and hence mechanisms must inhibit its activity at the leading edge. One 

way this might occur is through Rac. Expression of activated Rac has been shown 

to inhibit Rho function in many cell types, (Sander et al., 1999). A summary of 

the pathways of the Rho GTPases regulating actin organization is shown in figure 

1. 10.

1.8 Antigen presentation and the CD28/B7 model of co-stimulation

T lymphocytes play a key role in immunity by distinguishing self from nonself 

peptide antigens and regulating both the cellular and humoral arms of the immune 

system. To avoid damage to the host, these immune responses must be tightly 

regulated. Molecular recognition is performed by the antigen receptor of T 

lymphocytes, the T- cell receptor (TCR). The TCR is limited to scanning 9-12 

amino acid long peptides bound in the groove of major histocompatibility 

complex (MHC) class I or class II glycoprotein heterodimers (Germain, 1994), or 

glycolipids bound to the MHC-like molecule CD Id (Beckman et al., 1994). MHC 

class I molecules, which present peptides form endogenous sources to CD8+ T- 

cells, are expressed on the majority of nucleated cells. In contrast, MHC class II 

molecules, which present peptides from exogenous sources to CD4+ T cells, are 

found primarily on the surface of specialised antigen presenting cells (APCs) due 

to the tightly controlled expression of the class II transactivator (CIITA), which is 

essential for MHC class II transcription (Chang et al., 1994).

The three classical MHC class I molecules (HLA-A, HLA-B and HLA-C) play 

essential roles in the detection and elimination of virus-infected cells, tumor cells 

and transplanted allogeneic cells. The non-classical MHC class I molecules
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(HLA-E, HLA-F and HLA-G) have specialized immune regulatory functions 

(Braud et al., 1999). HLA-E functions predominantly as an inhibitor of NK-cell 

functions, whereas HLA-G inhibits both T- and NK-cell functions, including the 

transendothelial migration of human NK cells (Dorling et al., 2000).

MHC class II genes encode the polymorphic HLA-DR, HLA-DQ and HLA-DP 

proteins, which are expressed as a|3 heterodimers on the cell surface. MHC class 

II molecules play a central role in the initiation of the cellular and humoral 

immune responses, but they have also been implicated as contributing factors for 

a variety of autoimmune disorders, and they play an important role in transplant 

rejection. Constitutive expression of MHC class II proteins is confined to APCs, 

which include dendritic cells, macrophages, B lymphocytes and thymic epithelial 

cells. On most other cell types, expression of MHC class II molecules can be 

induced in an environment rich in inflammatory cytokines of which IFN-y is the 

most potent (Giacomini et al., 1988).

T-cell anergy and co-stimulation

Acquired, antigen-specific unresponsiveness is the most important mechanism by 

which T-cell responses to antigen are regulated in vivo. The term 

unresponsiveness was coined by Bretscher and Cohn in 1970 to describe 'the 

immunological state of an animal to which antigen has been administered and 

which cannot subsequently respond to that antigen but can respond to other non 

cross-reacting foreign antigens' (Bretscher and Cohn, 1970).

Engagement of the TCR with MHC-peptide complexes may elicit four distinct 

functional outcomes: no response (ignorance), productive T-cell activation, 

induction of unresponsiveness to subsequent antigen, or activation-induced cell
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death (peripheral deletion). T-cell responses need therefore to be tightly regulated 

and are subject to finely tuned control mechanisms. One such mechanism is the 

requirement for a co-stimulatory signal (Signal 2) provided by soluble factors or 

cell-surface molecules on APCs, in order to produce full T-cell activation. T-cell 

clones fail to proliferate in the absence of co-stimulatory signals and become 

refractory to further activation (Jenkins and Schwartz, 1987).

The finding that T-cell inactivation, termed T-cell anergy, was a direct 

consequence of regulated IL-2 production (DeSilva et al., 1991) led to the search 

for a master co-stimulatory signal that targeted the IL-2 pathway. This search 

resulted in the identification of the CD28/B7 pathway as a prominent co

stimulatory pathway for T-cells (Harding et al., 1992). Although additional co

stimulatory pathways have since been identified, including the CD40 ligand 

CD154/CD40, CD2/CD58, LFA-1 (CD18)/ICAM-1 (CD54), and others, the 

CD28 CD28/B7 pathway remains the most potent and well characterized.

Receptors of the CD28 family 

CD28

CD28 is expressed on virtually 100% of murine T-cells, all human CD4+cells and 

about 50% of human CD8+ T cells. Although CD 28 is expressed constitutively, 

its levels increase after T cell activation (Turka et al., 1990). CD28 is also highly 

expressed on developing thymocytes (Gross et al., 1992) although its role in 

thymocytes is not well understood. Signalling through CD28 is required for 

optimal IL-2 production, IL-2 receptor expression and cell cycle progression 

(Jenkins et al., 1991). CD28 also regulates cell survival by induction of the anti- 

apoptotic protein Bcl-XL and activation of PKB (Parry et al., 1997).
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CTLA-4

Cytotoxic T lymphocyte antigen 4 (CTLA-4) is expressed on the surface of 

activated CD8+ and CD4+ T cells. However, unlike CD28, CTLA-4 is not 

expressed on the surface of resting T cells. Moreover, CTLA-4 expression is only 

2-3% of the levels of CD28 (Linsley et al., 1992). In contrast to CD28, CTLA-4 

delivers a negative signal to the activated T cell, opposing CD28-mediated co

stimulation (Walunas et al., 1994). Mice deficient in CTLA-4 have been shown to 

exhibit profound lymphoproliferative defects that are characterized by polyclonal 

T-cell activation and a high frequency of cells expressing activation and/or 

memory T cell antigens (Tivol et al., 1995).

ICOS

Inducible co-stimulator (ICOS) was first identified in a screen for unique 

molecules expressed on human peripheral blood T-cells following activation. 

ICOS enhances all basic T-cell responses to foreign antigen and like CTLA-4 it 

has to be induced on the T cell surface (Hutloff et al., 1999). ICOS-mediated co

stimulation does not induce IL-2 production but increases secretion of IL-4, IL-5, 

IL-10, INF-y and TNF-a suggesting that ICOS functions primarily to induce T- 

cell effector function (Yoshinaga et al., 1999).

PD-1

Programmed Death 1 (PD-1) is unique among the CD28 family members in that it 

is widely expressed on hematopoietic-derived tissues. It is constitutively 

expressed on a subset of CD4' CD8' thymocytes, immature B cells and some 

peripheral T-cells, and is expressed on T-cells, B cells, monocytes and myeloid
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cells following activation (Ishida et al., 1992). PD-1 like CTLA-4, appears to 

mediate an inhibitory signal. The exact role of PD-1 is just beginning to be 

elucidated. It has been reported that PD-1 ligation inhibits IFN-y, IL-10, and IL-2 

secretion (Freeman et al., 2000), but unlike CTLA-4 , PD-1 can influence positive 

and negative thymocyte selection (Nishimura et al., 2000).

BTLA

The B and T lymphocyte attenuator (BTLA), is the most recently discovered Ig 

superfamily member (Watanabe et al., 2003). BTLA engagement results in down- 

regulation of T-cell activation, and mice deficient in BTLA show increased 

incidence and severity of autoimmune disorders. Table 1.10 summarizes the 

ligands for the CD28 family receptors.

Ligand Alternative
name

Receptor(s) Expression

B7-1 CD80 CD28, CTLA-4 Induced on DC, T, B (Hathcock et 
al., 1994)

B7-2 CD86 CD28, CTLA-4 DC, monocytes (Chang et al., 1995)

PD-L1 B7H1 PD-1 DC, induced on monocytes (Dong 
et al., 1999)

PD-L2 B7 DC PD-1 DC, monocytes (Tseng et al., 2001)

B7 RP-1 B7h, GL-50 ICOS B, DC, up-regulated on monocytes 
by IFN-y (Aicher et al., 2000)

B7 H3 B7 RP-2 9 DC (Chapoval et al., 2001)

B7 H4 B7S1, B7x BTLA DC, B, macrophages (Prasad et al., 
2003)

Table 1.10 B7 ligands for the CD28 family receptors, alternative names and 

expression in the immune system. Abbreviations: B7 RP-1, and 2, B7 related 

proteins 1 and 2; BTLA, B and T lymphocyte attenuator CTLA-4, cytotoxic T

lymphocyte antigen 4; DC, dendritic cells; ICOS, inducible co-stimulator; PD-1, 

programmed death 1; PD-L1 and 2, programmed death ligands 1 and 2.
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Co-stimulation in the intestine

The notion that T-cells primed in the gut play an important role in regulating 

mucosal immune responses has been long suggested. Normal intestinal epithelial 

cells (IECs) can process and present antigen to T-cells, including CD8+ regulatory 

T-cells, which may control the inflammation seen in the intestine (Allez et al., 

2002). However, the absence of conventional co-stimulatory molecules on normal 

intestinal epithelium would suggest that antigen presented by IECs would result in 

anergy. Lack of co-stimulatory molecule expression could be a way to control 

mucosal immune responses in the gastrointestinal tract, where exposure to dietary, 

viral, and bacterial antigens is constant.

In UC, however, B7.2 is expressed (Nakazawa et al., 1999), while PD-L1 can be 

induced by IFN-y on a colonic epithelial cell line (Dong et al., 1999), 

underscoring, at least in this disease, the potential contribution of the IEC to 

mucosal T-cell responses. Moreover, regulatory T-cells were demonstrated to 

inhibit inflammation through ICOS-B7RP-1 engagement (Akbari et al., 2002), 

suggesting that regulation of co-stimulation by IECs (and other APCs in the 

mucosa) may have a beneficial therapeutic effect in patients with inflammatory 

responses characteristic of IBD.

1.9 Aims of the study

During the past decade, several experimental approaches have stressed the 

functional importance of the mesenchymal cell compartment in the intestine. The 

permissive and instructive actions of myofibroblasts on gastrointestinal epithelial 

cells has been demonstrated and underlined by the observation that these cells
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secrete important growth factors whose receptors are found on the epithelial cell 

surface, exemplified by the expression of HGF and KGF which regulate the 

epithelial cell behaviour. These studies have highlighted the central role of 

intestinal epithelial cells in regulating the mucosal immune system and its 

response. It is now well established that these cells are capable of performing 

various immunological functions, such as expression of class I and II MHC 

antigens, presentation of antigens to lymphocytes, expression of adhesive 

molecules, and production of cytokines. These functions allow them to interact 

with other cells of the immune system in order to induce an efficient 

inflammatory response.

The role of myofibroblasts has been slightly overlooked, even though there is 

growing evidence that these mesenchymal derived cells present in the gut lamina 

propria interact with various other cell types, among which are immune cells, 

indicating their involvement in the inflammatory cascade. The aim of this thesis is 

therefore to investigate the participation of myofibroblasts in a trimeric model 

consisting of epithelial cells, T lymphocytes and myofibroblasts. More 

specifically this project will investigate two main areas.

The first is to determine a possible role for myofibroblasts in the activation 

process of T-cells. This will be done by investigating the possibility of co- 

stimulatory molecules expression on myofibroblasts, as has already been 

demonstrated for intestinal epithelial cells.

The second is to establish a possible cross-talk pathway between myofibroblasts 

and epithelial cells. Colonic epithelial cells are known to secrete members of the 

chemokine superfamily, which are strong chemoattractants for T-cells. Possible
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expression of the cognate chemokine receptors on intestinal myofibroblasts would 

therefore substantially influence the immune response during intestinal 

inflammation.
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2 Methods and materials 

2.1 Methods 

Cell Culture

All cells were cultured at 37° C in a humidified atmosphere of air supplemented 

with 5% CO2. For long term storage cells were frozen under liquid nitrogen. Ceils 

were pelleted (400g, 5 min), resuspended at 107 cells/ml of freeze medium (90% 

FBS / 10% DMSO) and aliquoted in cryovials. Vials were then gradually cooled 

in vapour phase of liquid nitrogen overnight and tubes were stored in liquid 

nitrogen tanks. For resuscitation of cells from liquid nitrogen, cells were rapidly 

defrosted at 37°C in a water bath, washed twice in fresh medium, resuspended in 

complete medium and returned to culture. Cells from one cryovial were seeded 

into 175cm2 tissue culture flasks in 50 ml of medium.

Mucosal Tissue

Fresh, histologically normal, colonic mucosal samples, were obtained from human 

intestinal specimens resected at operation. Normal colonic mucosal samples were 

obtained >5 cm from the tumor, from multiple colonic biopsies in patients who 

underwent colonoscopy at the Royal United Hospital, Bath. Biopsies were 

immediately placed in transport medium, Hanks balanced salts solution (HBSS) 

pH 7.3, supplemented with antibiotics (penicillin 100 U/ml, streptomycin 100 

pg/ml, gentamicin 50 pg/ml, and fungizone 2.5 pg/ml), transferred to the 

laboratory and gently washed 3 times for 15 minutes in HBSS and cut into small 

pieces of about 1 cm.
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Isolation of intestinal myofibroblasts

Intestinal myofibroblasts were isolated from these mucosal samples as previously 

described (Mahida et al., 1997). Biopsy specimens were treated with ImM DTT 

for 15 minutes and washed again 3 times in HBSS. They were then incubated for 

30 minutes at 37° in the presence of ImM EDTA, pH 8.0 for 3 times. At the end 

of the EDTA treatment the mucosal samples were completely denuded of 

epithelial cells and were subsequently cultured in RPMI medium supplemented 

with antibiotics. During culture numerous cells appeared both in suspension and 

adhered to the culture flask. The cells in suspension were removed every 24h-72h 

culture period and the denuded mucosal tissue was maintained in culture for up to 

4 weeks till myofibroblasts appeared attached to the bottom of the culture flask. 

Tissue specimens were then removed, and intestinal myofibroblasts were cultured 

in DMEM medium supplemented with penicillin (10 u/ml), streptomycin (10 

pg/ml), fungizone 0.5 pg/ml, 1% (v/v) non-essential amino acids and 10% (v/v) 

foetal bovine serum (referred to as complete medium). Cells were passaged when 

fully confluent in a 1:2 to 1:3 split ratio.

Intestinal myofibroblasts were routinely cultured in 500 cm2 tissue culture flasks 

in complete DMEM medium. The medium was changed every 3 days. To 

subculture confluent monolayers, the medium was removed and the cells were 

washed twice with PBS (without Ca2+ and Mg2+). Cells were then treated once 

with a 20 ml Trypsin-EDTA mixture of 0.05% (w/v) trypsin and 0.02% (w/v) 

EDTA. The cells were then incubated for approximately 5 minutes at 37°C until 

the cells had detached from the flask. Adding 50ml of complete medium inhibited 

the action of Trypsin-EDTA and the cell suspension was centrifuged at 400g for 5
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minutes. The cell pellet was resuspended in complete medium and cell counting 

and viability were checked in a Neubauer haemocytometer after mixing with 

Trypan Blue. Dead cells stained blue, due to the uptake of Trypan Blue. Cell 

viability was always greater than 95%. Cells were counted and then seeded at 2-3

A 2
x 10 /ml of DMEM complete medium, into 500 cm tissue culture flasks for 

further culture, or into 6 well plates or smaller tissue culture flasks for 

experimental protocols. Cells were used between passage number 6-12, since they 

have been reported to acquire an altered phenotype at higher passage numbers.

18 Co cells

The 18Co colon adenocarcinoma cell line is human fibroblast cell line that was 

isolated from a primary tumour in a 2.5month year old Black female (ATCC). 

They are well characterised with features that match the myofibroblast phenotype 

(Valentich et al., 1997). 18Co cells were provided by Dr Don Powell (University 

of Texas, Department of Internal Medicine and Physiology, Texas, USA) and 

cultured in MEM medium supplemented with penicillin (10 u/ml), streptomycin 

(10 pg/ml), and 10% (v/v) foetal bovine serum. Cells were passaged when fully 

confluent and used between passage numbers 6-12 since they have been reported 

to acquire an altered phenotype at higher passage numbers. (Valentich et al., 

1997)

Peripheral blood mononuclear cell isolation

Blood form healthy donors was taken aseptically in 50ml syringes containing 

heparin lU/ml of blood, via 19-gauge ‘butterfly’ needles. The blood was diluted 

1:1 with RPMI 1640 culture medium and 35 ml aliquots of the mix were carefully
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layered on to 15ml Lymphoprep™ in 50 ml transparent centrifuge tubes and 

centrifuged brake-free for 30 min at 400g. The monocyte/lymphocyte (PBMCs) 

band was carefully removed, washed three times in RPMI (400g, lOmin, 20° C), 

and counted under a x200 microscope with a Neubauer haemocy to meter.

Peripheral blood derived T-blast preparation

PBMCs obtained from centrifugation with Lymphoprep™ as described above, 

were re-suspended at 1 x 106 cells /ml in RPMI 1640 with 10% (v/v) FBS, 50 

U/ml penicillin and 50pg/ml streptomycin. They were then incubated for 72h with 

1 jig/ml Staphylococcal Enterotoxin B. After 72h and every 48 for 10-15 days, the 

T lymphoblasts were supplemented with 20ng/ml hr IL-2. T-cells were 

maintained at 0.5-1.5 x 106 cells /ml. Prior to use, the cells were washed of IL-2 

and deprived for 18 hours to allow accumulation in the Go phase of the cell cycle 

so that they represented a more homogenous population with respect to IL-2 

receptor expression and signalling potential (Cantrell et al., 1989).

Chinese Hamster Ovary cells

CHO cells stably transfected with B7.1, were cultured in Ham's F12 medium 

supplemented with, 2mM glutamine, penicillin (10 u/ml), streptomycin (10 

jig/ml), and 10% (v/v) foetal bovine serum.

Jurkat cells

Jurkat cells were cultured in RPMI 1640 medium supplemented with, penicillin 

(10 u/ml), streptomycin (10 pg/ml), and 10% (v/v) foetal bovine serum.
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Experimental protocol

Unless otherwise stated, primary intestinal myofibroblasts or 18 Co cells were 

grown until confluent. Prior to experiments, monolayers were washed and 

cultured in DMEM without serum for 24 hours. Growth-arrested cultures were 

washed twice with PBS, treated with fresh serum free medium and stimulated 

with the appropriate doses of either drugs, cytokines or vehicle controls for the 

times described in the results section.

Peripheral blood derived T-cells were washed in RPMI 1640 without serum three 

times and left in a water bath at 37°C for 60 minutes prior to stimulation. 

Supernatants were collected, centrifuged to remove cellular debris and stored at - 

70°C until assayed. Total RNA and cellular proteins were extracted as described 

below.

Polymerase chain reaction

Kleppe and colleagues first described the polymerase chain reaction, a technique 

used to amplify virtually any DNA segment that lies between two regions of 

known sequence, in 1979. PCR was applied to amplify DNA encoding for 

chemokine receptors and members of the B7 family. The cDNA was generated by 

reverse transcription from mRNA isolated from cells and PCR enabled 

visualisation of DNA segment bands in UV illuminated ethidium bromide gels. 

With this qualitative process, the extent of constitutive transcription of chemokine 

receptor or B7 family members was assessed, as well as responses to various 

stimuli.
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Sample mRNA extraction

Sample mRNA was extracted from primary intestinal myofibroblasts, 18 Co cells 

and T-lymphoblasts at various time points. Initially total cellular RNA was 

isolated from the cells using RNAzol B according to the manufacturers 

instructions. For the adherent cells, monolayers were lysed directly in the culture 

dish by the addition of 1ml RNAzol B per well. The lysate was homogenised with 

a sterile cell scraper and transferred to sterile eppendorf tubes by pipette. For the 

suspension cells 1 x 106 cells were quickly centrifuged at 13000 rpm, the 

supernatant was discarded and the cells were homogenized in 400 pi RNAzol B.

100 pi of chloroform per 1 ml of homogenate was then added, the samples shaken 

vigorously for 15 seconds and then cooled on ice for 15 minutes. The samples 

were then centrifuged at 14.000 rpm for 15 minutes at 4°. This results in the 

formation of two phases: a lower blue phenol-chloroform phase and the RNA 

containing upper aqueous phase. The aqueous phase was then transferred to a 

clean eppendorf tube and an equal volume of isopropanol was added. The samples 

were then cooled on ice for 15 minutes and centrifuged again at 14.000 rpm for 15 

minutes at 4°. RNA will then form a precipitate at the bottom of the tube. The 

supernatants were removed and the RNA pellet washed in 1ml 70% ethanol. The 

pellets were then dried and re-dissolved in RNase free water.

RNA was quantified, using a deuterium lamp spectrophotometer, Gene Quant II 

RNA/DNA calculator, (Pharmacia, UK). RNA concentration is measured by the 

absorbance of 1 pi of RNA sample diluted in 500 pi of water at 260 nm. The 

amount of RNA (in pg) present in each sample was calculated by the following 

formula:
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A260 x dilution factor (500) x40 x volume of remaining RNA solution in ml 

(0.048)

ODs were also read at 280 nm and 230 nm to assess the purity of RNA. A value 

of less than 2 for the OD260 • OD280 ratio indicated protein contamination. A low 

OD260 • OD230 ratio indicated guanidine contamination. 1 pg of total RNA was 

dissolved in 8 pi of nuclease free water and was treated with 1 pi DNase I for 

possible DNA contamination. DNase I was then inactivated by the addition of lp l 

EDTA and heating at 65° for 10 minutes.

Reverse Transcription (RT) step

The resulting solution was then mixed with 2pl oligo (dT) cellulose and denatured 

at 70° for 10 minutes. The reverse transcription mixtures were made up in 0.2 ml 

PCR tubes and contained 4 pi reverse transcription buffer, lp l DTT, lpl DNTP’s, 

lp l RNAsin and lpl of reverse transcriptase per sample and together with the 12 

pi mRNA sample gave a final volume of 20 pi per PCR tube. The final 

concetration in 20 pi of the constituents was: lpM  of pd (T) 12-18 , 0.5mM from 

each of the deoxynucleoside triphosphates dATP, dCTP, dGTP and dTTP, 10 

U/pl Superscript II RNase H' Reverse Transcriptase, and 1 U/pl RNAsin, a non

competitive ribonuclease inhibitor.

The tubes were placed in a Perkin Elmer Gene Amp 2400 thermocycler 

(Warrington, UK) and followed a reverse transcription program of: 42° C for 60 

min, 94° C for 2 min and 4° C thereafter. The RT products were either used 

immediately, or briefly stored at -80° C.
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PCR step

A forward and reverse primer was obtained for all the genes of interest, using 

Primer 3 design software, which is available on the Internet. The DNA sequence 

that was amplified by PCR was selected in a way that the primers were spanning 

at least one intron, which would result in the generation of a larger intron- 

containing PCR product in the case of DNA contamination. Each RT template 

from an experimental sample, apart from the genes of interest, was also tested for 

a positive control, the house keeping gene p-actin and a negative control of 

original RNA before the RT step, to check for DNA contamination. Each PCR 

reaction was carried out in 0.2 ml thin PCR tubes in 25 pi total volume containing 

0.05 pg cDNA template, 15.9 pi of nuclease-free water, and the following final 

concentrations of constituents (in appropriate volumes to give a final volume of 

25 pi per tube): 200 pM of each of the 4 deoxynucleoside triphosphates dATP, 

dCTP, dGTP and dTTP, 500nM of the forward primer, 500 nM of the reverse 

primer, 1.25 Unit of Expand ™ High Fidelity enzyme mix which comprised of 2 

DNA polymerase enzymes: Taq and a proofreading polymerase and lx  the 

Expand ™ PCR buffer with Mg2+. The polymerase enzymes and PCR buffers 

were used according to ‘Expand ™ High Fidelity PCR System’ manufacturer’s 

specifications, and the theromocycler was given the following programme: 30 sec 

94° C, 30 sec 60° C, 30 sec 72° C repeated for 30 cycles and two holds, one at the 

beginning of the programme for 5min/94° C and one at the end for 7 min/72° C, 

prior to cooling to 4° C thereafter. The temperatures set were optimal for the 

phases of the PCR cycle: 94° C for denaturation of the template, 60° C for 

annealing of the primers to the open DNA strand and 72° C for optimum DNA 

synthesis by the heat stable polymerase enzymes. Cycle composition was

80



Chapter 2: Methods

determined by manufacturer’s instructions and by GC content of primers 

(annealing temperature). The PCR products were either loaded immediately on an 

agarose gel, or briefly stored at 4° C.

Detection of PCR products

A 2% agarose gel was made in TBE (10 mM Tris base, 10 mM Boric acid, 2 mM 

EDTA, pH 8.0), boiled and cooled with the addition of 1 pg/ml ethidium bromide.

5 pi from each tube containing the PCR end products were coloured with 5 pi of 

Blue Juice (15% (w/v) Ficoll 400, 0.25% (w/v) bromo-phenol blue in water). A 

100 base pair ladder comprising of 15 blunt end fragments (100-1500 base pair 

scale) was also coloured with Blue Juice. Samples and ladder were loaded onto 

the agarose-ethidium bromide gel and run by gel electrophoresis with 100V/0.1 

mA current (BioRad Instruments). The resulting bands were visualised with a UV 

illuminator and photographed with a Polaroid camera and film or using the Gene 

Quant imaging software program

Sequence and design of primers

The sequence of the primers used are summarized in the following table:

Gene Forward primer Reverse primer
p-actin CATCACCATTGGCAATGAGC AT ACTCCTGCTTGCTGATCC
B7.1 CTTACCACCTTGCTTCTGTG AGGATCACAATGGAGAGGTT
B7.2 CTTACCACCTTGCTTCTGTG CCC AT AGTGCTGTC ACAAAT
PD-L1 GGTCATCCCAGAACTACCTC ACGGAAGATGAATGTCAGTG

B7 RP-1 AGAACAGCTCCTTGGAAAAC TCACATTGGAGTTGCGAGTT
B7-H3 AGCAGGGCTTGTTTGATGTG TGATCTTTCTCCAGCACACG
ICOS ACAAACACCCTCTTGCAACC TCCAGCTTTGAAGCATCTCC
CD28 ATCCCTTCACAAAGGACTGG GGTGTTTCCCTTTCACATGG

CTLA-4 TC ACT ATCC AAGGACTG AGG TAGACCCCTGTTGTAAGAGG
CXR3 GCC AAT AC AACTTCCC AC AG TGACCCCTACAAAGGCATAG
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Parameters that were taken into account when designing the primers were: the 

length of the primer, the melting temperature, the specificity and the G/C content 

of the primers. One of the most critical parameters in primer design is the melting 

temperature (Tm). Both of the oligonucleotide primers should be designed such 

that they have similar melting temperatures. If primers are mismatched in terms of 

Tm, amplification will be less efficient or may not work at all since the primer 

with the higher Tm will miss-prime at lower temperatures and the primer with the 

lower Tm may not work at higher temperatures. The melting temperatures of 

oligos are most accurately calculated using thermodynamic calculations with the 

formula:

Tmprimer = AH [AS+ R In (c/4)] -273.15°C + 16.6 log i0 [K+]

where H is the enthalpy and S is the entropy for helix formation, R is the molar 

gas constant and c is the concentration of primer. This is most easily 

accomplished using any of a number of primer design software packages on the 

market. Fortunately, a good working approximation of this value (generally valid 

for oligos in the 18-24 base range) can be calculated using the formula:

Tm = 2(A+T) + 4(G+C), which is known as the Wallace formula.

Using the above formula and keeping the length and the G/C content of the 

primers constant, at 20 bases and 50% respectively, the resulting primers had Tm 

of 60° C. Specificity was ensured by putting the primers through the NCBI blast 

search facility, and primers that amplified additional sequences of DNA to the 

gene of interest were redesigned.
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Cell Lysis and sample preparation for SDS-PAGE

Monolayers of primary intestinal myofibroblasts were trypsinized, washed three 

times in DMEM and re-suspended at the desired concentration in 500 pi DMEM/

20 mM HEPES and placed in a water bath at 37° C. After appropriate treatments 

and stimulations, reactions were terminated by rapid-pulse cell pelleting and 

supernatant aspiration, followed by lysis with the addition of 50 pi/ point of 

freshly prepared ice cold lysis buffer (137 mM NaCl, 20 mM Tris pH 7.5, 10 mM 

NaF, ImM EDTA, 1% w/v IGEPAL CA-630, 10% w/v glycerol, ImM sodium 

ortho vanadate, lpg/ml leupeptin, 1 pg/ml pepstatin A, 1 pg/ml aprotinin and 1 

mM phenyl methyl sulphonyl fluoride. The samples were rotated at 4° C for ten 

minutes before removal of the nuclear lysate debris by centrifugation for 15 min 

at 14000 rpm / 4° C in a microfuge. Supernatants were removed to a clean tube 

and used immediately or stored at -20° C.

Protein assay

Total protein per lysate was estimated using the Bio-Rad DC  Protein Assay. This 

assay is based on the Bradford dye-binding procedure. Known concentrations of 

bovine serum albumin (BSA) diluted in lysis buffer were used as a standard curve.

5 pi of sample or standard were placed in a 96-well plate with 25 pi of working 

reagent A' (20 pi reagent S into 1 ml reagent A), plus 200 pi of Bio-Rad reagent 

B, provided in the kit. After 15', the plate was read at 595 nm on a Dynatech 

MR5000 platereader. The protein concentrations were calculated by linear 

regression from the standard curve and, if significantly variable, the lysate 

volumes were adjusted using lysis buffer, thus ensuring equal concentrations of 

protein in each sample.
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Total protein preparation

Protein samples were resolved essentially as described by Laemmli (1970), 

according to protocols established in our laboratory. Proteins to be analysed from 

total cell lysates were solubilised by boiling for 5 minutes in SDS-PAGE sample 

buffer consisting of 4% (w/v) SDS, 20% (w/v) glycerol, 125 mM Tris, 10% (v/v) 

2-mercaptoethanol and coloured appropriately with bromophenol blue.

Western Blot Analysis

Proteins were separated by SDS-PAGE using the Bio-Rad Mini Protean III. 

Minigels of the appropriate percentage were prepared as described below. The 

resolving gel was poured into the gel equipment and overlaid with Milli-Q water. 

Polymerisation took 20 -  30 minutes, after which the water was aspirated off, the 

stacking gel was poured and a 10 or 15 lane comb inserted. Polymerisation took 

20 minutes, the comb was removed and the wells washed thoroughly with Milli-Q 

water APS and TEMED were added immediately prior to casting the gels. The 

wells were then filled with IX SDS-PAGE running buffer consisting of 25mM 

Tris, 192 mM glycine and 0.1% w/v SDS.

20 jil of each sample was then loaded into the wells in parallel with molecular 

weight markers and the gels run at 80 V through the stacking gel, followed by 150 

V through the resolving gel, until the bromophenol blue reached the bottom of the 

gel. Gels were then placed in transfer buffer. The acrylamide gels were prepared 

as presented in the table below:
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Resolving gel (20 ml) Stacking gel (12 ml)

Final % gel 5% 7.5% 10% 12% 14% 5.0%

dH20 (ml) 11.31 9.63 7.97 6.64 5.31 6.72

Resolving gel 
buffer pH(8.8)

5.0 5.0 5.0 5.0 5.0 Stacking gel 
buffer (pH 
6.8)

3.0

Bis-Acryl 
(30%) (ml)

3.33 5.00 6.67 8.00 9.33 2.0

10% APS 150pl 150 pi 150 pi 150 pi 150 pi 150

pi

TEMED 15 pi 15 pi 15 pi 15 pi 15 pi 15 pi

Resolving gel -  5 ml is sufficient for 1 mini gel 

Stacking gel -  1.5 ml is sufficient for 1 mini gel

Semi-dry transfer of proteins to nitrocellulose

The graphite electrodes of the semi-dry transfer apparatus (Pharmacia-Biotech 

Multiphor II) were dampened with semi-dry transfer buffer, followed by placing a 

sandwich of 4 pieces of 3MM Whatmann paper (the same size as the gel), one 

piece of nitrocellulose membrane, the gel and another 4 pieces of 3MM paper, all 

soaked in transfer buffer. Each layer was rolled gently to expel air bubbles. The 

transfer was run for 60 minutes at 0.8 mA/cm2 of membrane. The membrane was 

then stained with Ponceau S to check for transfer and even loading of the samples 

and to determine the location of the molecular weight markers. The stain was 

removed by washing the membrane in distilled water for 2 minutes, followed by a 

10 minute wash in Tris buffered saline (TBS).
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Blocking and Developing

The non-specific protein binding was blocked by incubation of the membrane 

with the appropriate blocking buffer at room temperature for 60 minutes on a 

rocking platform. After alO minute wash in TBS, the membrane was incubated 

with the primary antibody diluted in a 1:5 dilution of fresh blocking buffer for 2h 

-  overnight (usually 3h). Membranes were washed IX with TBS, 3X with TBSN 

(TBS with 0.005% (v/v) Tween 20), IX with TBS for -10  minutes each wash.

The membrane was incubated for 1 -  2 hours with the appropriate secondary 

antibody diluted in TBSN, followed by extensive washing as described above. 

Antibody dilutions ranged from 1:1000 to 1:2000 for primary antibodies and 

1:7000 to 1:2000 for secondary antibodies An extra TBS wash for 10 minutes was 

done before adding 5 ml of Enhanced Chemiluminescent (ECL) reagent for 1 

minute. The membrane was exposed to X-ray film for a few seconds up to 30 

minutes and the film was developed using an RGII Fuji X-ray film developer.

Membrane stripping

Where appropriate, blots were stripped of bound protein and re-probed with a 

different primary antibody. After the ECL procedure described above, the 

membrane would be washed twice in TBS for 10 minutes, placed in 50 ml of 

stripping buffer (100 mM 2-mercaptoethanol, 2% (w/v) SDS, 62,5 mM Tris pH 

6.7) in a sealed sandwich box and incubated for 1 hour at 55°C. After extensive 

washing in at least three changes of TBSN and one wash in TBS, the membrane 

would be re-blocked for 1 hour in blocking buffer. A different primary antibody 

could then be applied to the membrane for further protein detection.
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Immunoprecipitation and In Vitro Lipid Kinase Assay

Cells were aliquoted at lx 107 per point and lysed as described above in Cell 

Lysis. The lysates were pre-cleared by adding 20pl of a 50% v/v suspension of 

either protein-A or protein-G sepharose beads (depending on the antibody to be 

used) and rotated for 15-30 minutes at 4°C. The beads were spun down at 12000g 

for 1 minute and the supernatant removed to a clean tube. The protein G 

sepharose beads from Sigma were provided in methanol and were therefore 

washed three times with 1 ml of lysis buffer and then re-suspended as a 50% 

suspension in lysis buffer. 500pl aliquots were stored at 4°C until required. 

Protein A sepharose is provided in powder which swells up to 4x its weight. 

Therefore 100 mg of protein A sepharose are re-hydrated by the addition of 1ml 

ice cold lysis buffer and kept on ice for 30 minutes with regular mixing. The 

beads are then treated like the protein G beads to give the 50% suspension.

The appropriate antibody was then added to the pre-cleared extract, briefly 

vortexed and rotated for l-2h at 4°C. Then 30 pi of the 50 % slurry of the 

corresponding protein A or G sepharose beads was added for another l-2h 

rotation at 4° C.

After completing the immunoprecipitation incubation, the beads were pulse 

pelleted, and the supernatant was removed. Thereafter, the immunoprecipitates 

were washed 3 times with 1% IGEPAL CA-630 in PBS, three times with 5mM 

lithium chloride (in 100 mM Tris, 0.25 mM EDTA pH 7.4), and twice with lipid 

kinase buffer (10 mM Tris, pH 7.4, 150 mM NaCl, 5 mM EDTA) spinning at 

lOOOOg between each wash. After the final wash, surplus kinase buffer was 

removed using a Hamilton syringe.



Chapter 2: Methods

Each of the samples was resuspended in 50pl of lipid kinase buffer. 70pl of the 

lipid substrate mixture (50 pi of lipid kinase buffer, 10 pi Ptdlns and 10 pi 100 

mM MgCl2 or CaC^ was added to the immunoprecipitates. The reaction was 

initiated by the addition of 5 pCi of [y-32P]-ATP (S.A. 3000Ci/mmol, 0.5mCi/ml, 

18.5MBq) and lOOpM ATP. The samples were incubated in a 25°C water bath for 

15' and the reaction quenched using 20pl 1M HC1 and 160pl 1:1 

chloroform:methanol. The samples were spun for 10 at lOOOOg to separate the 

phases. 50 pi of the lower chloroform layer was removed and separated by thin 

layer chromatography TLC, as described previously (Ward et al., 1992).

Laned silica gel 60 plates were pre-treated with 1% sodium oxalate in water and 

allowed to dry. The extracted phospholipid samples were loaded onto the plates 

and placed in a pre-equilibrated solvent tank containing chloroform: methanol: 

water: ammonium hydroxide (60: 47: 11:2) and lined with filter paper to ensure 

adequate vapour equilibration. The samples were allowed to run till the solvent 

front had reached the end of the plate. Thereafter, the plate was air dried and the 

samples were visualised by exposure to iodine vapour, to confirm even extraction 

of substrate lipids between individual samples, and finally exposed to a film for 1- 

12 hours at -70°C. The film was developed using an RGII Fuji X-ray film 

processor.

FACS Analysis

Cells were trypsinized and centrifuged at 1500 rpm for 5 minutes, washed 3 times 

in PBS, and re-suspended at 5x l06 cells/ml in PBS/20% FBS. 90 pi of this 

suspension was added to polypropylene FACS tubes with 10 pi of the appropriate 

antibody or isotype control and shaken at 4° C for 30 min. All antibodies were

88



Chapter 2: Methods

used at a final concentration of 1 pg/ml. To remove unbound antibody, cells were 

washed three times in 4 ml of PBS. Following this, they were re-suspended again 

in 90 pi PBS/20% FBS with 10 pi goat anti-mouse polyvalent (anti-IgM, IgG, 

IgA) secondary antibody conjugated to FITC. After 30 min shaking at 4° C the 

cells were washed with PBS and analysed immediately or fixed in 4% 

parafolmadehyde/ 1% glutaraldehyde in PBS at 4° C. All FACS analyses were 

performed on a Beckton Dickinson FACS Vantage using a 200 mW 488 argon 

laser with light being channelled by an FL-1 filter (520nm ± 20) and an FL-2 filter 

(580 nm ± 20). Cell quest software was used for subsequent analysis and WinMDI 

software for presentation.

Calcium fluorimetry

Fura-2 is a UV light-excitable, ratiometric Ca2+ indicator that has become the dye 

of choice for ratio-imaging microscopy, in which it is more practical to change 

excitation wavelengths than emission wavelengths. Upon binding Ca2+, fura-2 

exhibits an absorption shift that can be observed by scanning the excitation 

spectrum between 300 and 400 nm, while monitoring the emission at -510 nm.

The sodium and potassium salts of fura-2 are cell-impermeant probes that can be 

delivered into cells by microinjection. In addition, these salts are useful as 

standards for calibrating Ca2+ measurements. Unlike the salt forms, the 

acetoxymethyl (AM) esters of fura-2 can passively diffuse across cell membranes, 

avoiding the use of invasive loading techniques. Once inside the cell, these esters 

are cleaved by intracellular esterases to yield cell-impermeant fluorescent 

indicators.
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Loading cells with fura-2/AM

A 10 mM stock solution of the ester probe in anhydrous dimethylsulfoxide 

(DMSO) was prepared and divided into appropriately sized aliquots that can be 

stored at -20°C. This procedure curtails the spontaneous ester hydrolysis that can 

occur in moist environments. Before loading, the DMSO stock solution was 

diluted in ‘calcium buffer’ (140 mM NaCl, 5 mM KC1, ImM MgCl2, 25mM 

HEPES) to a final concentration of 5pM. The non-ionic and non-denaturing 

detergent Pluronic F-127 was added to help disperse the indicator in the loading 

medium.

Cells were grown on 22 mm glass cover slips. When subconfluent, the cells were 

washed twice in ‘calcium buffer’ and incubated at 37°C for 30 minutes in the dark 

with fura-2, and then washed again three times with fresh ‘calcium buffer’. It is 

important that the loading medium is free of amino acids or buffers containing 

primary or secondary amines because aliphatic amines may cleave the AM esters 

and prevent loading.

[Ca2+]j measurements

The coverslip was positioned on a Axiovert S I00 inverted epifluorescence 

microscope from Zeiss, (Oberkochen, Germany) which is connected to an ultrapix 

camera with Kodak KAF1400 chip (Eastman Kodak), and a personal computer 

with Merlin Imaging software (Olympus America, New York, NY, USA). The 

cells were covered with 500 pi of ‘calcium buffer’ in which ImM CaC^ had been 

added to adjust external calcium concentration.
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A population of approximately 30 cells was selected by adjusting the field of 

view. Using a X40 oil immersion objective, the fluorescence changes were 

monitored over 5 minutes for a basal intracellular calcium measurement. After 

addition of the agonist, the response was monitored for at least 10 minutes and 

detected using dual excitation wavelengths of 340 nm and 380 nm and a single 

emission of 510 nm provided by a dual excitation/single emission spectromaster 

from Perkin Elmer Life Science (Boston, MA, USA).

Indicators that show an excitation or emission spectral shift upon ion binding, like 

fura-2 can be calibrated using a ratio of the fluorescence intensities measured at 

two different wavelengths, resulting in the cancellation of artifactual variations in 

the fluorescence signal that might otherwise be misinterpreted as changes in ion 

concentration. Calibration procedures consisted of recording fluorescence signals 

corresponding to a series of precisely manipulated ion concentrations.

Chelation of all free calcium ions with 10 mM EGTA at pH 8.5 was used to 

produce the minimum fluorescence signal (Rmin) equivalent to less than 10 nM 

[Ca2+]j. Maximum fluorescence signal (Rmax) was produced by treating the cells 

with 5mM ionomycin. Sample [Ca2+]i was determined using Merlin software 

based on the formula:

[Ca2+]i = (R-Rmin )/( R-Rmax) X Kd

where R is the measured sample fluorescence ratio and Kd the dissociation 

constant for the fura- Ca++ complex (224 nM).
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Cell staining for immunofluorescence microscopy

Cells were grown on 22 mm glass cover slips in 6 well plates. When subconfluent, 

the cells were serum starved for 24 hours and then washed twice in PBS, treated 

with fresh serum free medium placed in a water bath at 37° C and stimulated with 

the appropriate doses of drugs, chemokines or vehicle controls for various times.

Stimulations were terminated by aspirating the medium and fixing the cells for 10 

minutes in either 4% w/v parafolmadehyde, 1% glutaraldehyde in PBS, or in ice 

cold methanol depending on the antibody that would be used. The coverslips 

were then placed in a petri dish, rinsed with PBS and permeabilised with 0.2% v/v 

Triton X100 at room temperature for 5 minutes. After washing 3 times with PBS, 

the cells were covered with blocking buffer (1% BSA in PBS) for 30 minutes at 

37°C to minimize non-specific adsorption of the antibodies to the coverslip.

The blocking buffer was removed by holding each coverslip on its edge with 

forceps and draining it onto a sheet of fiber-free paper. Primary antibodies were 

diluted to 1-10 pg/ml in blocking buffer (optimal concentration depended on 

several variables, such as the affinity of the antibody and the abundance of the 

antigen). 100 pi of the primary antibody solution was placed on each coverslip 

and distributed evenly, by covering each coverslip with a small piece of parafilm.

The antibody was left on for 1 hour at room temperature after which it was 

removed by aspiration. The coverslips were again washed three times in PBS, for 

5 minutes each time.

The coverslips were then incubated with secondary antibodies conjugated to a 

fluorochrome; e.g. anti-mouse IgG- FITC, depending on the donor species of the
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primary antibody and the desired fluorochrome. The procedure for applying the 

secondary antibody was exactly the same as for the primary antibody.

Mounting coverslips and preparation for microscopy

Mounting media is prepared by adding 6 gr of glycerol and 2.4 gr of Mowiol to 6 

ml of water and 12 ml 0.2 M Tris buffer pH 8.5 and mixed on a rocker for at least 

3 hours. The mixture is then left to settle for 2 hours followed by incubation for 

10 minutes at 50° C. Non soluble material is pelleted by centrifugation for 15 

minutes at 5000g, the supernatant is collected and 0 .1%  (v/v) DABCO is added to 

the solution as an anti-bleaching agent. The mounting media is aliquoted and kept 

at -20° C.

After the final washes each coverslip was inverted onto a slide containing 20 pi of 

mounting media and the excess mounting media was removed with fiber-free 

paper. The coverslips were placed in and allowed to dry overnight.

Imaging of the cells was performed using an epifluorescence imaging system 

comprised of an Olympus 1X70 inverted epifluorescence microscope (Olympus 

America, New York, NY, USA), an Ultrapix camera with Kodak KAF1400 chip 

(Eastman Kodak)(6.7 x 6.7 pm physical pixels, giving 67 nm per image pixel with 

a lOOx oil immersion objective), and a personal computer with Fluoview imaging 

software (Olympus America).
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2.2 Materials

Material Source
[y-32P]ATP (3000 Ci/mmol) Amersham Biosciences, 

Little Chalfont (UK)
2-Mercaptoethanol Sigma, Poole (UK)
4G10, monoclonal Ab Upstate Biotechnology, (USA)
Absolute Ethanol Fisher Scientific (UK)
Acrylamide/bis acryl amide Bio-Rad (UK)
Actin a-smooth muscle, 
monoclonal antibody

Sigma, Poole (UK)

Adenosine triphosphate Sigma, Poole (UK), stock 100 mM 
dissolved in 100 mM Tris pH 7.4

Agarose Sigma, Poole (UK)
Akt polyclonal antibody New England Biolabs, MA (USA)
Ammonium hydroxide Sigma, Poole (UK)
Ammonium persulphate BDH, Poole (UK)
Bovine serum albumin (BSA) Sigma, Poole (UK)
Bromophenol blue BDH, Poole (UK)
Calcium Chloride Sigma, Poole (UK)
CD80 monoclonal antibody 
FITC conjugate

BD Biosciences, CA (USA)

Cell culture plastics Nunc, (UK)
Chloroform Fisher Scientific (UK)
Deoxynucleoside triphosphate: 
dATP, dCTP, DGTP and dTTP

Roche, Basel, Switzerland

Desmin, monoclonal antibody Sigma, Poole (UK)
Dimethyl sulphoxide (DMSO) Sigma, Poole (UK)
Dithiothreitol (DTT) Sigma, Poole (UK)
DNAase I Invitrogen Ltd, Paisley, (UK)
DNA 100 base pair ladder (100- 
1500 bp scale)

Invitrogen Ltd, Paisley, (UK

Dulbeccos’ modified essential 
medium

Invitrogen Ltd, Paisley, (UK)

Endothelin Sigma, Poole (UK)
Enhanced chemiluminescence 
detection kit for Western 
blotting (ECL)

Amersham Biosciences, 
Little Chalfont (UK)

Ethanol Fisher Scientific (UK)
Ethidium bromide Sigma, Poole (UK)
Ethylenediaminetetraacetic acid 
(EDTA)

Sigma, Poole (UK)

Ethyleneglucol -b is  (p- amino- 
ethylether)-N,N,N\N’ 
tetraacetic acid (EGTA)

Sigma, Poole (UK)
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Expand Polymerase Roche, Basel, Switzerland
Filter paper Whatman (UK)
Foetal bovine serum (FBS) Invitrogen Ltd, Paisley, (UK)
Formaldehyde BDH, Poole (UK)
Fura-2 acetoxylmethyl ester 
(Fura-2AM)

Calbiochem (UK)

Glacial acetic acid Amersham Biosciences, Little Chalfont 
(UK)

Glass slide covers BDH, Poole (UK)
Glutaraldehyde Sigma, Poole (UK)
Glycerol Sigma, Poole (UK)
Glycine Sigma, Poole (UK)
Goat anti-mouse IgG-FITC 
conjugated

DAKO, Denmark

Goat anti-mouse 
immunoglobulins peroxidase 
conjugate

DAKO, Denmark

Goat anti-rabbit 
immunoglobulins peroxidase 
conjugate

DAKO, Denmark

Hank’s balanced salt solution Invitrogen Ltd, Paisley, (UK)
Hepes (1M liquid) Invitrogen Ltd, Paisley, (UK)
Hydrochloric acid BDH, Poole (UK)
ICOS polyclonal antibody Alexis Corporation, CA (USA)
rFN-y: human recombinant; 
specific activity > 2x l07 U/mg

Boehringer Mannheim, Germany

IGEPAL CA-630 Sigma, Poole (UK)
IL -la : human recombinant Gift from Glaxo (Greenford, UK); 

diluted in sterile PBS + 0.25% (w/v) 
BSA

IL-2: human recombinant PeproTech EC Ltd, London (UK)
IL-4: human recombinant PeproTech EC Ltd, London (UK)
IL-10: human recombinant PeproTech EC Ltd, London (UK)
IL-13: human recombinant PeproTech EC Ltd, London (UK)
IP-10: human recombinant PeproTech EC Ltd, London (UK)
I-TAC: human recombinant PeproTech EC Ltd, London (UK)
Lantruncilin B Calbiochem, Nottingham (UK)
Lymphoprep 1M Nycomed, Birmingham (UK)
Methanol Fisher Scientific (UK)
MIG: human recombinant PeproTech EC Ltd, London (UK)
Molecular weight markers Bio-Rad (UK)
Minimum Essential Medium 
(MEM)

Gibco BRL, Paisley, UK

Mouse anti-hCXCR3 FITC 
conjugate

R&D Systems, Abingdon (UK)

Mouse anti-rabbit 
immunoglobulins peroxidase 
conjugate

DAKO, Denmark
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Mouse IgGl isotype Sigma, Poole (UK)
Mouse IgG2a isotype Sigma, Poole (UK)
Mowiol" 4-88 Calbiochem, Nottingham (UK)
Myosin monoclonal antibody Sigma, Poole (UK)
Nitrocellulose blotting 
membrane 0.45 pM

BDH, Poole (UK)

Non Essential amino acids lOx Sigma, Poole (UK)
Nuclease free water Promega, WI (USA)
p38 MAPK polyclonal antibody New England Biolabs, MA (USA)
p42 MAPK monoclonal 
antibody

New England Biolabs, MA (USA)

p44/42 MAPK polyclonal 
antibody

New England Biolabs, MA (USA)

p85 a , monoclonal Ab Dr. D. Cantrell, University of Dundee 
(UK)

Parafolmadehyde Sigma, Poole (UK)
PCR filter tips Greiner BioOne (UK)
PCR tubes Anachem, Luton (UK)
Penicillin Sigma, Poole (UK)
Petussis Toxin Calbiochem (UK)
Pepstatin Sigma, Poole (UK)
Phalloidin-TRITC Sigma, Poole (UK); stock 0.3 mM in 

PBS stored at -20° C
Phosphate buffered saline Invitrogen Ltd, Paisley, (UK)
Phosphatidylinositol Sigma, Poole (UK)
Phospho Akt (Ser 473) 
polyclonal antibody

New England Biolabs, MA (USA)

Phospho Akt (Thr 308) 
polyclonal antibody

New England Biolabs, MA (USA)

Phosphotyrosine antibody 
(4G10)

Upstate technology, NY (USA)

Phospho p38 MAP kinase 
(Thrl80/Tyrl82) polyclonal 
antibody

New England Biolabs, MA (USA)

Phospho p44/42 MAP Kinase 
(Thr 202/Tyr 204) polyclonal 
antibody

New England Biolabs, MA (USA)

Phospho p90RSK (Thr 573) 
antibody

New England Biolabs, MA (USA)

PI3K C2a polyclonal antibody Dr J Domin, Imperial college, London 
(UK)

PI3K C2(3 monoclonal antibody BDH, Poole (UK)
PMSF Sigma, Poole (UK)
Polaroid film (type 55) Sigma, Poole (UK)
Polyd(T) 12-18 Pharmacia (UK)
Polypropylene FACS tubes Beckton & Dickinson (USA)
Ponceau S Sigma, Poole (UK)
Potassium oxalate Sigma, Poole (UK)
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Primers for PCR MWG, Ebersberg, Germany
Propan-l-ol Fisher Scientific (UK)
Propan-2-ol Fisher Scientific (UK)
Propidium iodide Sigma, Poole (UK)
Protein A beads Sigma, Poole (UK)
Protein G beads Sigma, Poole (UK)
RNase A Sigma, Poole (UK)
RNAsin-,non competitive 
ribonuclease inhibitor

Promega, WI (USA)

R P M I1640 cell culture 
medium

Gibco BRL, Paisley (UK)

RNAzol B Tel Test, Texas, (USA)
Silica gel 60 Thin Layer 
Chromatography laned plates

Whatman (UK)

Sodium azide Sigma, Poole (UK)
Sodium chloride Sigma, Poole (UK)
Sodium dodecyl sulfate (SDS) Sigma, Poole (UK)
Sodium fluoride Sigma, Poole (UK)
Sodium hydroxide Sigma, Poole (UK)
Sodium molybdate Sigma, Poole (UK)
Sodium nitrite Sigma, Poole (UK)
Sodium orthovanadate Sigma, Poole (UK)
Staphylococcal Enterotoxin B Sigma, Poole (UK); stock 1 mg/ml in 

0.1% BSA stored at -20 °C
Superscript Invitrogen Ltd, Paisley, (UK)
TEMED Sigma, Poole (UK)
Tissue culture reagents Invitrogen Ltd, Paisley, (UK)
TNF-a: human recombinant; Gift from Bayer (Slough, UK); diluted
specific activity 6x l07 U/mg in sterile PBS +0.1%  (w/v) BSA
Triton X-100 Sigma, Poole (UK)
Trizma base Sigma, Poole (UK)
Trypan Blue Invitrogen Ltd, Paisley, (UK)
Tween-20 Sigma, Poole (UK)
Vimentin monoclonal antibody Sigma, Poole (UK)
Wortmannin Sigma, Poole (UK)
X-OMAT film Amersham Biosciences, Little Chalfont 

(UK)
Y27632 Calbiochem, Nottingham (UK)
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3 Results I

Profile of B7/CD28 family members expression in intestinal 

myofibroblasts

3.1 Background

In the intestine, T-cell activation, mediated by the interaction of T-cells with 

MHC-peptide complexes and B7 co-stimulatory molecules on antigen-presenting 

cells, is an essential event in the pathogenesis of IBD (Powrie et al., 1994). This 

second effect is most potently effected by ligation of CD28 on T cells via the B7 

molecules, CD80 and CD86 (Guinan et al., 1994), on APCs. APC’s of the human 

gut are heterogeneous, including both macrophages, a variety of dendritic cells 

and B cells. They are found both in gut-associated lymphoid tissue and in the 

mucosal lamina propria, especially beneath the surface epithelium. Moreover, 

recent studies (Hogaboam et al., 1996; Roberts et al., 1997), have established a 

role for mesenchymal cells in T-cell activation in the gut.

Intestinal myofibroblasts are considered to have an important role in intestinal 

fibrosis. This is based primarily on the role of similar cells in other systems such 

as hepatic stellate cells (HSC), the equivalent of myofibroblasts in the liver. HSCs 

play a key role in the development of liver fibrosis and are the major producers of 

extracellular matrix in the liver after undergoing an activation process that results 

in a phenotypic change from retinoid-storing quiescent cells to activated HSCs 

with a myofibroblast phenotype (Friedman, 2000). Migration of HSCs is believed 

to be critical for the accumulation of HSCs at the site of injury. It has been 

suggested that chemokines induce the migration of HSCs to the site of injury and
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attract a leukocytic infiltrate to the site of injury (Marra et al., 1998; Marra et al.,

1999). Therefore, chemokines may be part of a cytokine network within the liver 

that regulates the interaction of resident and non-resident cells during the hepatic 

wound-healing response. This hypothesis is supported by the fact that HSCs 

express the molecular machinery to interact with infiltrating leukocytes such as 

ICAM, VC AM, and CD40 and are able to present antigen and to stimulate the 

proliferation of allogenic lymphocytes.

To investigate the possibility of a cross-talk between myofibroblasts and cells of 

the immune system in the gut to achieve a concerted cellular response during the 

intestinal wound healing process, expression of the B7 co-stimulatory molecules 

on primary intestinal myofibroblasts as well as the relevant 18 Co cell line 

(Valentich et al., 1997) at the mRNA and protein level was studied.

3.2 Results

Phenotypical characterisation of isolated cells

In order to ensure that the cells isolated following the procedure described in 

Materials and Methods, have the myofibroblast phenotype, cells were grown on 

coverslips fixed with methanol and then stained for a-smooth muscle actin, 

vimentin and desmin (Figure 3.1).

Cells isolated from biopsy specimens, stain positive for a-smooth muscle actin 

and vimentin but not for desmin. Negative controls were performed by using non

specific mouse IgG instead of the specific antibodies.

To further demonstrate that the cells are indeed myofibroblasts, cells were lysed 

in order to isolate protein for western blot analysis of a-smooth muscle actin and
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vimentin (Figure 3.2). This experiment compared to immunocytochemistry has 

the advantage of providing additional information for the identity of the protein 

detected, by means of its molecular weight. Both proteins correspond to the 

predicted molecular weight for a-smooth muscle actin and vimentin.

Induction of B7.1

It is commonly reported that B7.1 is inducible in other cell lines by stimulation 

with a variety of pro-inflammatory cytokines, tumour promoters and other 

mitogens. The pro-inflammatory cytokines TNF-a and IFN-y were chosen in an 

attempt to induce B7.1 in intestinal myofibroblasts as it has been previously 

demonstrated that these cytokines induce expression of B7.1 on murine fibroblasts 

(Pechhold et al., 1997). Due to the limitation of the numbers of myofibroblasts 

available, the concentrations of the cytokines used in the following experiments 

were chosen to be within physiological limits and are routinely used in studies of 

the gastrointestinal system (Weaver et al., 2001).

B7.1 mRNA induction in intestinal myofibroblasts

Primary intestinal myofibroblasts and 18 Co cells were stimulated with TNF-a 

(100 ng/ml) or IFN-y (300 u/ml) or in combination and mRNA was isolated for 

PCR analysis for B7.1. The time course for this study was elected to be up to 48 

hours since B7.1 expression is usually detectable only at 24 hours and peaks at 

around 48-72 hours following stimulation in a variety of systems (Coyle and 

Gutierrez-Ramos, 2001). The combination of the two cytokines caused B7.1 

induction in both primary intestinal myofibroblasts (Figure 3.3 A) and the 18Co 

cell line (Figure 3.3 B). The induction in the primary cells appeared quicker, 

starting at 6 hours after stimulation and was sustained untill the end of the time
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course, whereas B7.1 induction was detected in 18 Co cells only 12 hours after 

stimulation. In both cases the induction appeared to be sustained with gradually 

increasing amounts of B7.1 mRNA being produced at the later time points.

Neither cytokine alone, over the same time frame of 48 hours, was able to induce 

B7.1 expression in either primary intestinal myofibroblasts (Figure 3.4A) or in the 

18 Co cell line (Figure 3.4 B). Stably transfected CHO cells expressing B7.1 were 

used as a positive control for these experiments to verify that the PCR products 

were valid (Figures 3.3 and 3.4).

Cell surface expression of B7.1 in intestinal myofibroblasts

In light of TNF-a/IFN-y inducing ICOS mRNA in both primary intestinal 

myofibroblasts, FACS analysis was employed to assess whether the same 

stimulation also caused induction of B7.1 cell surface expression. Primary 

intestinal myofibroblasts and 18 Co cells were stimulated over a 72 hour time 

course with TNF-a (100 ng/ml) or IFN-y (300 u/ml) or a combination of both and 

subsequently prepared for FACS (Figures 3.5-3.6).

B7.1 cell surface was detected only 72 hours after stimulation in both cell types. 

This lags behind the induction of B7.1 mRNA, possibly in order to allow for 

protein translation and translocation to the membrane.

Cell surface expression was slightly higher in the primary cells (Figure 3.5), 

compared to the 18 Co cells (Figure 3.6). The two cytokines were also used 

individually in order to confirm the PCR findings that both TNF-a and IFN-y on 

their own are not able to induce B7.1 expression in our system. In these
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experiments stably transfected CHO cells expressing B7.1 were again used as a 

positive control.

B7.2 mRNA in intestinal myofibroblasts

After the successful induction of B7.1 in both primary intestinal myofibroblasts 

and 18Co cells, B7.2 induciblity in these cells was investigated. Primary intestinal 

myofibroblasts were again stimulated over a 48hour time course with TNF-a (100 

ng/ml) or IFN-y (300 u/ml) (Figure 3.8) or a combination of both (Figure 3.7) and 

mRNA was isolated for PCR analysis for B7.2. This combination of cytokines 

proved unable to induce B7.2 expression in either primary intestinal 

myofibroblasts or 18 Co cells (Figure 3.7).

The two cytokines when used on their own, over the same period of 48 hours were 

also unable to induce B7.2 expression in the two cell types (Figure 3.8). In these 

experiments stably transfected CHO cells expressing B7.2 were used as a positive 

control.

Expression of other B7 family members in intestinal myofibroblasts

Assessment of the more recently described members of the B7 family in our 

system was also performed. Primary intestinal myofibroblasts and 18 Co cells 

were stimulated over 48 hours with TNF-a (100 ng/ml) and IFN-y (300 u/ml) and 

mRNA was isolated for PCR analysis for various B7 family members (Figure

3.9). Both primary intestinal myofibroblasts and 18 Co cells demonstrated a 

constitutive expression of all the novel B7 family members they were tested for, 

namely PD-L1, B7 RP-1 and B7 H3. The cytokines that were used to stimulate the
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cells did not appear to have any effect in the expression of these proteins (Figure

3.9).

Expression of CD28 and CTLA-4 in intestinal myofibroblasts

After completing the studies of B7 family member expression, we also wanted to 

determine the expression of their cognate receptors in our system. Even though 

these receptors are thought to be T-cell specific, there are some studies suggesting 

that their expression is not restricted to the lymphoid cell lineage. CTLA-4 has 

been found to be expressed on placental fibroblasts (Kaufman et al., 1999). 

Moreover various pro-inflammatory cytokines induced the expression of COLA-4 

and COD on normal human muscle cells (Niagara et al., 1999).

Primary intestinal myofibroblasts and 18 Co cells were stimulated over a 48hour 

time course with TNF-a (100 ng/ml) or IFN-y (300 u/ml) or a combination of both 

and mRNA was isolated for PCR analysis for CD28 and CTLA-4.

As expected both cell types did not express CD28 and CTLA-4 and the cytokines 

were also unable to induce their expression (Figure 3.10). Peripheral blood 

derived activated T-cells, which are known to express both CD28 and CTLA-4, 

was used as a positive control to verify validity of PCR products.

Expression of ICOS in intestinal myofibroblasts

Our studies then concentrated on the most recently discovered receptor of the 

CD28 family, inducible co-stimulator (ICOS). Primary intestinal myofibroblasts 

were stimulated over a 48hour time course with 100 ng/ml TNF-a or 300 units/ml 

IFN-y or a combination of both and mRNA was isolated for PCR analysis for 

ICOS. The combination of TNF-a /IFN-y surprisingly proved able to induce the
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expression of ICOS in primary intestinal myofibroblasts. Induction was visible at 

6 hours after stimulation and peaked at 48 hours (Figure 3.11 A). The two 

cytokines when applied on their own, over the same time frame of 48 hours were 

unable to induce ICOS expression in primary intestinal myofibroblasts (Figure

3.12 A).

In contrast to primary cells, the combination of TNF-a/IFN-y was unable to 

induce ICOS expression in the 18 Co cell line (Figure 3.11 B). The two cytokines 

on their own were also not capable of inducing ICOS expression in these cells 

(Figure 3.12B).

Regulation of ICOS expression in primary intestinal myofibroblasts by anti

inflammatory cytokines

Having established that the pro-inflammatory cytokines TNF-a/IFN-y can induce 

ICOS mRNA in primary intestinal myofibroblasts, the next aim was to assess any 

possible regulatory role for other cytokines relevant to gastro-intestinal biology. 

Primary intestinal myofibroblasts were pre-treated with IL-4 or IL-10 (both at 

30ng/m for 1 hour), prior to stimulation with TNF-a/IFN-y for up to 48 hours.

The two cytokines used had very different effects on ICOS expression. Pre

treatment with IL-10 completely inhibited the induction of ICOS mRNA (Figure

3.13 B). Pre-treatment with IL-4 on the other hand, promoted early induction of 

ICOS mRNA at lhour, following the addition of TNF-a/IFN-y, but the response 

was more transient as no ICOS mRNA could be detected beyond the 2 hour time 

point (Figure 3.13 A).

The cells were also stimulated with IL-4 and IL-10 for 1 hour to verify the 

synergistic effect of the anti with the pro-inflammatory cytokines. Both IL-4 and
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IL-10 failed to induce any detectable levels of ICOS mRNA in primary intestinal 

myofibroblasts (Figure 3.13 C and D).

Protein expression of ICOS in primary intestinal myofibroblasts

The unexpected finding that ICOS mRNA could be induced in primary intestinal 

myofibroblasts, prompted us to assess ICOS protein expression in these cells. 

Unfortunately, the only available antibody for ICOS at the time of these 

experiments recognizes an intracellular epitope of ICOS. Moreover according to 

the manufacturer it is not suitable for FACS analysis. Therefore possible positive 

results do not necessarily correlate with surface expression of this molecule.

Activated T-cells were first tested for ICOS expression as a positive control for 

the antibody (Figure 3.14A). Peripheral blood mononuclear cells were isolated as 

described in Materials and Methods, stimulated with SEB and left in culture for 

up to 12 days. Samples of these cells were collected at days 0 (day of isolation), 3,

5,7,10,12 post isolation and whole cell lysates were isolated for Western blot 

analysis. No ICOS protein could be detected in the freshly isolated cells. However 

activation of the cells by SEB proved to induce ICOS expression at days 3 and 5 

following activation. The identified protein has a molecular weight of 

approximately 55kDa. The molecular weight for ICOS is 23kDa, but was initially 

recognized as a 55kDa homodimeric glycosylated protein when purified and 

cloned from a T cell line cDNA library (Hutloff et al., 1999).

Primary intestinal myofibroblasts cells were stimulated with TNF-a (100 ng/ml) 

or IFN-y (300 u/ml) or a combination of both and protein was isolated for analysis 

of ICOS (Figure 3.14 B). This combination of cytokines was able to induce ICOS 

expression in a pattern very similar to the one observed for the mRNA induction.
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ICOS protein was first detected 6 hours after the addition of the cytokines, peaked 

at 24 hours and was still visible 48 hours after stimulation.
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Figure 3.1 Immunofluorescence staining of prim ary hum an intestinal 

myofibroblasts for a-smooth muscle actin, vimentin and desmin.

2xl05 primary intestinal myofibroblasts were plated on coverslips in 35mm plates 

and cultured for 48 hours. Cell were then fixed in methanol and labelled with 

monoclonal mouse antibodies against a-smooth muscle actin (A), vimentin (B), 

desmin (C) or mouse IgG as an isotype control (D-F) for 1 hour to a final 

concentration of 20 pg/ml for all antibodies. After three washes, the coverslips 

were incubated for 30-45 min with FITC-labelled goat-anti-mouse IgG secondary 

antibody and visualized under a confocal microscope as described in Methods and 

and Materials. Results are from single experiments representative of 6 replicate 

experiments.
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Figure 3.2 W estern blot analysis of prim ary hum an intestinal myofibroblasts 

for a-smooth muscle actin and vimentin.

Indicated numbers of unstimulated primary intestinal myofibroblasts were lysed 

in lysis buffer as described in Methods and Materials and then probed with 

specific mouse monoclonal antibodies against a-smooth muscle actin (upper 

panel) or vimentin (lower panel) at a final concentration of 0.5 pg/ml for both 

antibodies. Results are from single experiments representative of 3 replicate 

experiments.
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Figure 3.3 The combination of TNFa and IFN-y induces expression of 

B7.1mRNA in prim ary hum an intestinal myofibroblasts and 18 Co cells.

1 x 1 0 6  primary intestinal myofibroblasts (A), or 18Co cells (B) were left 

unstimulated (ctrl) or stimulated with lOOng/ml TNF-a and 300 units/ml IFN-y for 

indicated times and then lysed in 400 pi RNAzol. 1x10 6 CHO cells, stably 

transfected with B7.1 were also lysed in 400 pi RNAzol as a positive control for 

B7.1 expression. RT PCR was then performed on the lysates as described in 

Methods and Materials using primers for B7.1 and p-actin as a housekeeping gene 

to verify equal amounts of mRNA and equal amplification. (+) and (-) refers to 

RT positive and negative samples respectively. Results are from single 

experiments representative of 3 replicate experiments.
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Figure 3.4 TNFa and IFN-y fail to induce expression of B7.1mRNA in 

prim ary hum an intestinal myofibroblasts and 18 Co cells.

1 x 1 0 6  primary intestinal myofibroblasts (A) or 18Co cells (B) were lysed in 400 

pi RNAzol (ctrl) or stimulated with lOOng/ml TNF-a (left panels) or 300 units/ml 

IFN-y (right panels) for indicated time points and lysed in RNAzol. 1x10 6 CHO 

cells, stably transfected with B7.1 were also lysed in 400 pi RNAzol as a positive 

control for B7.1 expression. RT PCR was performed on the lysates as described 

in Methods and Materials using primers for B7. (+) and (-) refers to RT positive 

and negative samples respectively. Results are from single experiments 

representative of 3 replicate experiments.
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Figure 3.5 B7.1 surface expression on prim ary intestinal myofibroblasts.

lxlO6 cells / tube primary intestinal myofibroblasts were stimulated with 

lOOng/ml TNF-a or 300 units/ml EFN-y or a combination of both for indicated 

time points and then stained with FITC conjugated anti-B7.1 (green histograms) 

or isotype matched mouse IgGl (purple filled histograms), as described in 

Methods and Materials.lxlO6 CHO cells stably transfected with B7.1 were used 

as a positive control for B7.1 staining.
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Figure 3.6 B7.1 surface expression on 18 Co cells.

lxlO6 cells / tube 18 Co cells were stimulated with lOOng/ml TNF-a or 300 

units/ml IFN-y or a combination of both for indicated time points and then stained 

with FITC conjugated anti-B7.1 (green histograms) or isotype matched mouse 

IgGl (purple filled histograms), as described in Methods and Materials. lxlO6 

CHO cells stably transfected with B7.1 were used as a positive control for B7.1 

staining.
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Figure 3.7 The combination of TNFa and IFN-y fails to induce expression of 

B7.2 mRNA in prim ary hum an intestinal myofibroblasts and 18 Co cells.

1 x 1 0 6  primary intestinal myofibroblasts (A), or 18Co cells (B) were lysed in 400 

pi RNAzol (ctrl) or stimulated with lOOng/ml TNF-a and 300 units/ml IFN-y for 

indicated times and then lysed in RNAzol. 1x10 6 CHO cells, stably transfected 

with B7.2 were also lysed in 400 pi RNAzol as a positive control for B7.2 

expression. RT PCR was then performed on the lysates as described in Methods 

and Materials using primers for B7.2 (+) and (-) refers to RT positive and negative 

samples respectively. Results are from single experiments representative of 3 

replicate experiments.
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Figure 3.8 PCR analysis of B7.2 expression in prim ary hum an intestinal 

myofibroblasts and 18 Co cells.

1x 1 0 6  primary intestinal myofibroblasts (A) or 18Co cells (B) were lysed in 400 

pi RNAzol (ctrl) or stimulated with lOOng/ml TNF-a (left panels) or 300 units/ml 

IFN-y (right panels) for indicated time points and lysed in RNAzol. 1x10 6 CHO 

cells, stably transfected with B7.2 were also lysed in 400 pi RNAzol as a positive 

control for B7.2 expression. RT PCR was performed on the lysates as described 

in Methods and Materials using primers for B7.2 (+) and (-) refers to RT positive 

and negative samples respectively. Results are from single experiments 

representative of 3 replicate experiments
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Figure 3.9 Prim ary hum an intestinal myofibroblasts and 18Co cells 

constitutively express mRNA for PD-L1, B7 RP-1 and B7 H3.

1 x 1 0 6  primary intestinal myofibroblasts (A) or 18 Co cells (B) were lysed in 400 

pi RNAzol (ctrl) or stimulated with lOOng/ml TNF-a and 300 units/ml IFN-y for 

indicated time points and lysed in RNAzol. RT PCR was performed on the lysates 

as described in Methods and Materials using primers for PD-L1, B7 RP-1, B7 H3. 

(+) and (-) refers to RT positive and negative samples respectively. Results are 

from single experiments representative of 3 replicate experiments.
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Figure 3.10 PCR analysis of CD28 and CTLA-4 expression in prim ary 

hum an intestinal myofibroblasts and 18 Co cells

1x 1 0 6  primary intestinal myofibroblasts (A) or 18 Co cells (B) were lysed in 400 

pi RNAzol (ctrl) or stimulated with lOOng/ml TNF-a and 300 units/ml IFN-y for 

indicated time points and lysed in RNAzol. 1x10 6 12 days old SEB activated 

peripheral blood derived T cells (PBL) were also lysed in 400 pi RNAzol as a 

positive control for CD28 and CTLA-4 expression. RT PCR was performed on 

the lysates as described in Methods and Materials using primers for CD28, 

CTLA-4. (+) and (-) refers to RT positive and negative samples respectively. 

Results are from single experiments representative of 3 replicate experiments.
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Figure 3.11 The combination of TNFa and IFN-y induces expression of ICOS 

mRNA in prim ary hum an intestinal myofibroblasts but not in 18Co cells.

1 x 1 0 6  primary intestinal myofibroblasts (A) or 18 Co cells (B) were lysed in 400 

pi RNAzol (ctrl) or stimulated with lOOng/ml TNF-a and 300 units/ml IFN-y for 

indicated time points and lysed in RNAzol. 1x10 6 12 days old SEB activated 

peripheral blood derived T cells (PBL) were also lysed in 400 pi RNAzol as a 

positive control for ICOS expression. RT PCR was performed on the lysates as 

described in Methods and Materials using primers for ICOS. (+) and (-) refers to 

RT positive and negative samples respectively. Results are from single 

experiments representative of 3 replicate experiments.
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Figure 3.12 TNFa and IFN-y are unable to induce expression of ICOS mRNA 

in prim ary hum an intestinal myofibroblasts and 18Co cells.

1x 1 0 6  primary intestinal myofibroblasts (A) or 18Co cells (B) were lysed in 400 

pi RNAzol (ctrl) or stimulated with lOOng/ml TNF-a (left panels) or 300 units/ml 

IFN-y (right panels) for indicated time points and lysed in RNAzol. 1x10 6 12 days 

old SEB activated peripheral blood derived T cells (PBL) were also lysed in 400 

pi RNAzol as a positive control for ICOS expression. RT PCR was performed on 

the lysates as described in Methods and Materials using primers for ICOS. (+) and 

(-) refers to RT positive and negative samples respectively. Results are from 

single experiments representative of 3 replicate experiments.
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Figure 3.13 Regulation of of ICOS expression mRNA expression in prim ary 

human intestinal myofibroblasts by IL-4 and IL-10.

1x 1 0 6  primary intestinal myofibroblasts were lysed in 400 pi RNAzol (ctrl) or 

pre-treated with IL-4 (100 ng/ml) (A) or IL-10 (100 ng/ml) (C) for 1 hour and 

then stimulated with lOOng/ml TNF-a and 300 units/ml IFN-y for indicated time 

points or treated with IL-4 (B) or IL-10 (D) for indicated time points and then 

lysed in RNAzol. 1x10 6 12 days old SEB activated peripheral blood derived T 

cells (PBL) were also lysed in 400 pi RNAzol as a positive control for ICOS 

expression. RT PCR was performed on the lysates as described in Methods and 

Materials using primers for ICOS. (+) and (-) refers to RT positive and negative 

samples respectively. Results are from single experiments representative of 3 

replicate experiments.
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Figure 3.14 Protein expression of ICOS in peripheral blood derived activated 

T-cells and prim ary intestinal myofibroblasts.

A. lxlO6 peripheral blood mononuclear cells were lysed in lysis buffer (ctrl) or 

stimulated with SEB for 72 hours. Cells were then washed and maintained in 50 

I.U/ml IL-2 and lysed at indicated time points. The resulting lysates were probed 

with a specific goat polyclonal antibody against ICOS at a final concentration of 

0.1 [ig/ml. B. 0 .2 x 1 0 6  primary intestinal myofibroblasts were plated in 35mm 

plates and cultured till confluence. Cells were then lysed (ctrl) or stimulated with 

lOOng/ml TNF-a and 300 units/ml IFN-y for indicated times and then lysed in 

lysis buffer as described in Methods and Materials and then probed with a specific 

goat polyclonal antibody against ICOS at a final concentration of 0.1 pg/ml. 

Results are from single experiments representative of 3 replicate experiments.
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B7.1 B7.2 PD-L1 B7 RP-1 B7H3 ICOS

Primary
intestinal

myofibroblasts

mRNA X s

protein X ✓ ✓ s
18 Co mRNA X s X

protein X s X

Table 3.1 B7 and CD28 family members expression on human primary 

intestinal myofibroblasts and in 18 Co cells. Human primary myofibroblasts 

and 18 Co cells, express most of the B7 family members at the mRNA level and 

at least B7.1 on the cell surface. Primary myofibroblasts also express at both 

mRNA and protein level ICOS.

3.4 Discussion

Aberrant T-lymphocyte responses are implicated in a wide range of 

gastrointestinal disorders including IBD, celiac disease and autoimmune hepatitis. 

Numerous studies over the past decade have shown that stimulation through the 

antigen-specific TCR is not sufficient for full activation of a T-cell. Specifically, 

the induction of stimulatory T-cell responses requires two independent signals 

from the APC. As outlined, one is via TCR interaction with the MHC-peptide 

complex, while the other is via interaction of a co-stimulatory molecule on the
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APC with its counter-ligand on the surface of the T-cell. Data from various 

experimental systems suggest that delivery of the first signal in the absence of the 

second results in T-cell anergy. This model highlights co-stimulatory molecules as 

potentially important therapeutic targets to intervene in autoimmune diseases.

Progression from early to chronic gut inflammation is accompanied by multiple 

structural abnormalities in the affected bowel segments, where persistent 

infiltration by immune cells is associated with qualitative and quantitative changes 

of local non-immune cells. Therefore, it is reasonable to assume that the cellular 

and molecular mechanisms underlying EBD vary during the course of the disease.

In particular, it is possible that non-classic immune cells (such as epithelial, 

endothelial, and mesenchymal cells) become increasingly more important in 

sustaining chronic inflammation. This notion, yet to be explored in IBD, has 

already gained wide acceptance in other chronic diseases (Smith et al., 1997). A 

chronic intestinal inflammatory condition in which non-immune cells are 

recognized to play a key pathogenic role is celiac disease (Schuppan, 2000), 

where activated endothelial cells and fibroblasts are the prime source of tissue 

transglutaminases that selectively deaminate gliadin peptides, generating new 

epitopes recognized by mucosal T-cells that proliferate, produce cytokines, and 

perpetuate inflammation (Molberg et al., 1998). The fact that fibroblasts also play 

an active role in inflammation has finally been appreciated, and now fibroblasts 

are recognized as sentinel cells that not only modulate inflammation but actually 

regulate the switch from acute resolving to chronic persistent inflammation 

(Buckley et al., 2001).
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In this report it has been demonstrated using flow cytometry and RT-PCR 

amplification that primary intestinal myofibroblasts and the relevant 18Co cell 

line express co-stimulatory molecules such as B7.1, PD-L1, B7-RP-1 and B7H3.

B7.1 and B7.2 expression in intestinal myofibroblasts

B7.1 expression was observed as a response to the pro-inflammatory cytokines 

TNFa and IFNy. On the other hand the combination of theses cytokines failed to 

induce expression of B7.2 in both cell types B7.1 expression in intestinal 

myofibroblasts is in accordance with a previous study of regulated expression of 

B7.1 but not B7.2 in murine fibroblasts by the same cytokines (Pechhold et al., 

1997).

To appreciate the implications of this finding, one needs to consider the potential 

role of intestinal myofibroblasts as important APCs in mucosal immune 

responses. In the intestinal mucosa, large numbers of lymphocytes normally reside 

in close physical proximity to a rich network of sub-epithelial and lamina propria 

fibroblasts and myofibroblasts. Preliminary evidence indicates that human 

intestinal fibroblasts can bind T-cells, modulate mucosal T-cell proliferation and 

apoptosis, and synthesize extracellular matrix capable of adhering T-cells 

(Fiocchi, 1997). It is more than likely that the net outcome of antigen presentation 

events associated with intestinal myofibroblasts are complex and occur via a 

variety of molecules. A previous study has already proposed that ICAM-1 is such 

a molecule, responsible for mediating mucosal fibroblasts-T-cell cross-talk 

(Musso et al., 1999).

Whether intestinal myofibroblasts can stimulate naive CD4+ T cells or CD28- 

dependent T-cells in the intestinal mucosa remains a matter for speculation. It is
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conceivable however, that the delivery of ‘signal 1’ in the absence of ‘signal 2 ’ 

via B7 will result in the induction of tolerance in a subset of CD4+ T-cells in the 

intestinal mucosa. Under physiological conditions, the net response (or lack of 

observed response) represents a balance between the stimulation of T-cells with 

suppressive activity versus those with a potential role in inflammation. With 

antigen exposure consistently high, the net result (i.e. suppressive versus 

inflammatory T-cell activity) is likely to depend on the underlying degree of 

inflammation and the state of activation of intestinal myofibroblasts. Due to 

reciprocal interactions between local fibroblasts and T-cells contribute to 

persistence of inflammation; blocking these interactions could limit T-cell 

accumulation and, eventually, down-regulate inflammation. It should also be 

noted that under the same conditions that intestinal myofibroblasts express B7.1, 

intestinal epithelial cells express B7.2, suggesting a supplementary role between 

the two cell types for regulating co-stimulatory events in the intestine

PD-L1, B7-RP-1 and B7H3 expression in intestinal myofibroblasts

Data presented here, also demonstrate, that intestinal myofibroblasts express B7 - 

H I, PD-L1 and B7-H3, the more recently identified co-stimulatory molecules of 

the B7 family, at the mRNA level. Unfortunately the lack of commercially 

available antibodies for these molecules at the time of this study, did not allow 

confirmation of their expression at the protein level.

These molecules are expressed mainly on professional APCs and T-cells. 

Although their precise function(s) and relationship with their cognate receptors 

CD28 and CTLA-4 are still not completely understood, there is universal
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agreement that these B7 molecules provide critical co-stimulatory signals to T- 

cells and play an essential role in normal and pathologic immune reactions.

What might be the role of PD-L1 in intestinal myofibroblasts? PD-L1 expression 

has been detected not only in lymphoid organs, but also in non-lymphoid organs, 

such as heart, lung, placenta, kidney, and liver (Dong et al., 1999; Freeman et al.,

2000). PD-L1 expression is also found in the majority of human cancers and leads 

to increased apoptosis of activated T-cells (Dong et al., 2002), raising the 

possibility that some tumours may use PD-L1 to inhibit an anti-tumour immune 

response. It has also been proposed that PD-L1 may be involved in setting 

thresholds for activation in the peripheral immune system (Freeman et al., 2000).

In the intestine, a balance must be met between tolerance and the ability to rapidly 

induce memory responses. This involves the setting and maintaining of finely 

tuned thresholds and it seems likely that PD-L1 could have an important role in 

this process.

In humans, cell surface expression of B7-RP1 has been described on B cells, 

dendritic cells, monocytes/macrophages, T-cells and endothelial cells (Carreno 

and Collins, 2002). B7-RP1 mRNA expression has been detected in a variety of 

lymphoid and non-lymphoid organs (Liu et al., 2001), but the functional 

significance of B7-RP1 on non-lymphoid cells has remained unclear. Current 

models propose that B7-RP1-ICOS interactions play a more prominent role in the 

co-stimulation of effector or memory T-cell responses (Hutloff et al., 1999; Coyle 

et al., 2000), whereas CD28 co-stimulates primary T-cell functions. It is tempting 

therefore to speculate that B7-RP1 on intestinal myofibroblasts may augment the 

production of T hl and Th2 cytokines by interaction with CD4+ effector/memory
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T-cells, thus augmenting antigen-specific immune responses in inflammatory 

conditions. Another possibility is that activated T-cells expressing ICOS may 

encounter and interact with B7-RP1 expressed on intestinal myofibroblasts, 

resulting in maintenance of activation in intestine in the presence of continued 

antigen exposure.

The possible role of B7-H3 on intestinal myofibroblasts is more difficult to assess. 

B7-H3 is expressed in multiple organs in humans and mouse and in several human 

tumour cell lines, and binds to an unknown receptor expressed on activated CD4+ 

and CD8+ T cells (Chapoval et al., 2001). This receptor is distinct from CD28, 

CTLA-4, PD-1 and ICOS, the receptors known to bind to the other B7 family 

proteins. Human B7-H3 augments TCR-mediated T-cell proliferation, IFN-y 

production and generation of cytotoxic T lymphocytes (CTL) in vitro, indicating 

that B7-H3 may have positive regulatory functions in CTL responses. It seems 

likely that expression by intestinal myofibroblasts of different combinations of 

molecules mediating intestinal myofibroblast-T-cell interactions, such as B7.1, 

B7-H1, PD-L1 and B7-H3 may be important in shaping immune responses under 

different conditions. For instance in normal conditions, human gut mucosa is 

infiltrated with a large number of mononuclear cells reflecting the fact that the 

human intestine is continuously subjected to a massive stimulation by luminal 

antigens. This state of "physiological" inflammation is a tightly controlled 

phenomenon, as several mucosal cells interact to generate and maintain an 

appropriate local immune response. Lamina propria T-cells play the dual role of 

providing protection against pathogens, dietary and enteric florae antigens while 

limiting this potentially damaging immune response. This daunting task of 

adaptive immunity is complemented by that of other cells (macrophages,
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eosinophils, mast cells, and natural killer cells) mediating innate immunity. To 

preserve an anti-inflammatory environment, lamina propria T-cells must put in 

motion complementary mechanisms to concomitantly provide active immunity 

and tolerance. To maintain this balance indispensable to gut homeostasis lamina 

propria T-cells effector functions must be turned on and off, which is 

accomplished through signals mediating cell activation, growth, differentiation, 

survival and death. In other words, health is the result of homeostasis between 

death and proliferation and the co-stimulatory signals provided by intestinal 

myofibroblasts might be crucial in regulating this process.

Induced expression of ICOS in primary intestinal myofibroblasts

The most unexpected finding of our study was the fact that primary human 

intestinal myofibroblasts were able to express ICOS at both the mRNA and 

protein level. This finding was not confirmed in the 18Co cells. Even though this 

result was confirmed for five different patients, it will be necessary to study 

fibroblasts from multiple additional subjects without colonic disease and from 

patients with adenomas, adenocarcinomas, and other colonic diseases to define the 

range of colonic fibroblast responsiveness to cytokine stimulation and the 

temporal relationship of ICOS expression to the stage of colon carcinogenesis. It 

may be that the distinct phenotypic attributes of an individual's colonic fibroblasts, 

such as relative sensitivity to cytokine stimulation, can have a protective role or 

contribute to the pathogenesis of large bowel disease.

However, one obvious possibility arising from ICOS expression in these cells is 

that myofibroblasts act as pluripotent stem cells capable of expressing a variety of 

molecules at low levels. Our RT-PCR results suggest that CD28 and CTLA-4
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were not present in those cells, excluding the possibility of contamination of 

myofibroblasts with mucosal T-cells, while ICOS was detected both in 

myofibroblasts and in lymphocytes. Therefore, intestinal myofibroblasts express 

specifically ICOS but not CD28 or CTLA-4 under cytokine stimulation.

Assuming that the function of this molecule on myofibroblasts is similar to that of 

their T-cell counterparts, the induced expression of ICOS in intestinal 

myofibroblasts may be a critical parameter in determining the state of activation 

of these cells. Recent studies have shown that ICOS regulates both Thl and Th2 

responses up-regulating the levels of IFN-y and IL-2 as well as IL-4 and IL-10 in 

vivo (Khayyamian et al., 2002), and therefore may also have a role in determining 

the cytokine milieu in the intestine. IL-4 in particular is known to be important in 

the formation of germinal centres in Peyer’s patches (Vajdy et al., 1995).

Indirect evidence for the role of ICOS in intestinal myofibroblasts comes from a 

study in a well-validated Thl-mediated mouse colitis model, which found that 

expression of ICOS and B7-RP1, was increased during experimental colonic 

inflammation (Totsuka et al., 2003). Furthermore, anti-ICOS mAh could both 

prevent and reverse established inflammation, suggesting a potential therapeutic 

application in human Thl-mediated intestinal inflammatory conditions such as 

CD. On the other hand, blockade of B7RP- 1 did not have a protective effect, 

indicating that the interaction between these co-stimulatory molecules was not 

critical to the development of colitis. The resulting phenotype was attributed to 

the fact that anti-ICOS mAb induced apoptosis of activated T-cells. ICOS 

expression in intestinal myofibroblasts, raises the possibility of a similar 

mechanism for apoptosis in myofibroblasts which could provide a means to
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control myofibroblast proliferation and therefore limit the damage of the tissue 

observed in CD.
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4 Results II

CXC3 ligand-mediated signalling events in human primary 

intestinal myofibroblasts

4.1 Background

The first suggestion that chemokines contribute to the pathogenesis of IBD came 

from a series of clinical studies published nearly a decade ago, in which rectal 

biopsies from patients with active ulcerative colitis or Crohn's disease were found 

to produce high levels of the chemokine IL-8 (Izzo et al., 1993; Raab et al., 1993). 

Subsequent studies have also implicated other chemokines such as RANTES 

(Mazzucchelli et al., 1996), MCP-l(Grimm et al., 1996) and MCP-3 (Wedemeyer 

et al., 1999).

One major source of chemokines in the gut is the intestinal epithelium. 

Stimulation of human intestinal epithelial cells with TNFa, IL-1 or infection with 

enteroinvasive bacteria such as Salmonella, causes the increased expression and 

secretion of a number of chemokines with pro-inflammatory functions. Thus, 

stimulated epithelial cells express and secrete relatively high levels of IL-8, 

GROcc, GROP, GROy, and ENA-78 (Eckmann et al., 1993; Yang et al., 1997). 

These cytokines belong to the C-X-C family of chemokines and are characterized 

by their ability to chemoattract and activate polymorphonuclear leukocytes. 

Activated epithelial cells also secrete, albeit at lower levels, a range of C-C 

chemokines, including MCP-1, M IP-ip, MIP-lot, RANTES, MDC and MIP-3a 

(Jung et al., 1995; Berin et al., 2001; Izadpanah et al., 2001) which variably can 

act as chemoattractants of monocytes/macrophages, eosinophils, and
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subpopulations of T-cells. More recently the T-cell chemoattractants IP -10, I- 

TAC and Mig have also been shown to be secreted by intestinal epithelial cells 

(Dwinell et al., 2001). Interestingly the receptor for these chemokines, CXCR3, 

has been found to be expressed on HSC, the equivalent of myofibroblasts in the 

liver (Bonacchi et al., 2001). The close proximity of intestinal myofibroblasts to 

intestinal epithelial cells, being separated only by the basement membrane, makes 

it reasonable to propose that the CXCR3 ligands may play a role in mediating 

cross talk between these two cell types.

In order to explore this possibility the effect of the CXCR3 ligands on various 

biochemical responses was investigated, using activated T-cells, an established 

CXCR3 expressing cell type, as a positive control for these experiments.

4,2 Results

Expression of CXCR3 in primary intestinal myofibroblasts

To determine if intestinal myofibroblasts express mRNA transcripts for CXCR3, 

total RNA was isolated from cells derived from two different biopsy specimens, 

and was analysed for expression of CXCR3 transcripts by RT-PCR. As shown in 

Fig. 4.1, cells from both biopsies constitutively expressed CXCR3 mRNA. This 

result was consistent for the cells that were isolated from all the biopsy specimens 

used throughout this project. Peripheral blood derived, SEB activated T-cells 12 

days old, were used as a positive control for this experiment.

To determine if this constitutive expression of mRNA CXCR3 was paralleled by 

expression of CXCR3 on the cell surface, cells were stained with an anti-CXCR3 

antibody and examined by flow cytometry (Figure 4.1, lower panel). No
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detectable levels of CXCR3 were observed on the cell membrane of any of the 

different patient derived cells tested, as opposed to the high levels of CXCR3 

expression detected on activated T-cells, which were used as a positive control for 

this experiment.

Effect of endothelin-1 in [Ca2+]i in primary intestinal myofibroblasts

The disparity between the presence of CXCR3 mRNA and lack of detectable 

protein expression in primary human intestinal myofibroblasts, leaves several 

possibilities regarding the presence or not of that receptor on those cells. One 

possibility is that the receptor is expressed on the cell surface, but below 

sensitivity limits of the antibody used in this study. Another possibility is that the 

receptor is post-translationally modified. In order to verify that CXCR3 is indeed 

not expressed on primary intestinal myofibroblasts we tested the ability of the 

known CXCR3 ligands to generate various biochemical signals in these cells.

The process of cellular Ca2+ signalling involves regulated changes in the 

intracellular cytosolic concentration of Ca2+ ([Ca2+] i ) and is known to regulate a 

broad range of secondary signals and functional responses. Calcium mobilization 

was the first and one of the best characterized responses to chemokine stimulation 

(Loetscher et al., 1994; Baggiolini et al., 1997), and was thus chosen as the first 

functional response to the CXCR3 ligands in our system.

However, we first examined the ability of human primary intestinal 

myofibroblasts to mobilize Ca2+, using endothelin-1, which has recently been 

shown to mobilize calcium in a relevant cell line (Kemochan et al., 2002).
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Cultured intestinal myofibroblasts grown on glass coverslips, were loaded with 

1 pM fura-2 AM for 30 minutes, at room temperature, before the coverslip was 

mounted in a chamber and the cells stimulated at 37°C with endothelin-1 at 100 

nM. Live images of the cells were obtained using digital fluorescence imaging 

microscopy. Endothelin-1 transiently increased [C a2+]j, in most but not all cells 

(Figure 4.2). In all subsequent experiments, 100 nM endothelin-1 was used to 

ensure responsiveness of the cells.

Differential effect of the CXCR3 ligands in [Ca2+]j in intestinal 

myofibroblasts

Having established the ability of intestinal myofibroblasts to elicit calcium 

responses, the effect of IP-10, I-TAC and Mig in [Ca2+]i was next investigated. 

Intestinal myofibroblasts were prepared for digital fluorescence imaging 

microscopy as described above. Cells were temperature-equilibrated to 37°C for 

five minutes, during which the basal fluorescence spectrum was observed. 

Chemokines were added to the chamber at concentrations between 10 and 

100 nM, and the fluorescence was monitored. Endothelin-1 at 100 nM was used at 

the end of each experiment to verify that the cells would respond to a calcium- 

mobilizing stimuli. Intestinal myofibroblasts did not respond to IP-10 (Figure 4.3) 

or Mig (Figure 4.5). However, it was found that intestinal myofibroblasts showed 

a rapid and transient increase in intracellular Ca2+ following stimulation with I- 

TAC (Figure 4.4). All of these cells showed a positive control response to 

endothelin-1, indicating that the cells are indeed non-responsive to IP-10 and Mig.

It should be noted that two factors render the interpretation of the results of these 

experiments difficult. First, in most cases there were several Ca2+ oscillations
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before and after the addition of the chemokines or endothelin-1, resulting in high 

basal levels of intracellular Ca2+. Secondly, these cells almost constantly undergo 

shape changes due to spontaneous contraction and expansion, thus limiting the 

accuracy of the technique since a specific area, indicating the space of a cell, must 

be outlined.

CXCR3 ligands and PKB phosphorylation

The data obtained from the calcium assays, further complicated the possibilities 

regarding the presence or absence of CXCR3 in primary human myofibroblasts. 

These cells could be expressing a receptor that responds only to I-TAC, like the 

receptor that has been reported to respond only to IP-10 but not the other CXCR3 

ligands (Soejima and Rollins, 2001).It was therefore imperative to compare any 

further biochemical responses to the CXCR3 ligands in the myofibroblasts, with 

responses in activated T cells which are known to express CXCR3 (Kim and 

Broxmeyer, 1999).

The serine/threonine kinase PKB has been shown to be critical for cell survival, 

proliferation, and gene expression. The products of PI3K activity are absolutely 

required for phosphorylation at Thr-308 and Ser-473 and consequent activation of 

PKB, a reaction catalyzed by PDK-1, which phosphorylates Thr-308, and a second 

unidentified kinase that targets PKB Ser-473 (Alessi et al., 1997). Thus, 

phosphorylation of PKB is a facile readout for activation of the PI3K pathway. 

Most chemokines are known to phosphorylate PKB and therefore this 

phosphorylation event was examined as a possible downstream target of IP -10, 

Mig and I-TAC in our system.
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Primary human intestinal myofibroblasts were stimulated over a short time course 

of up to 20-minutes with IP-10, I-TAC or Mig at 10 nM, since this concentration 

was sufficient to mobilize calcium in response to I-TAC. Protein was then 

isolated for western blot analysis. Whole cell lysates were run on SDS- 

polyacrylamide gels and probed with a specific rabbit antibody against the 

phosphorylated (activated) PKB phospho 473 PKB. Membranes were then stripped 

and re-probed for the respective un-phosphorylated isoform of PKB (Figure 4.6 

A, B, C).

Activation of PKB, for all three ligands is sustained, with a peak of 

phosphorylation occurring five minutes after stimulation but remaining above 

basal levels at the end of the time course.

Using similar experimental protocols, SEB activated peripheral blood-derived T- 

cells that had been maintained in IL-2 for 12 days were stimulated with IP -1 0 ,1- 

TAC or Mig over a 20-minute time course. Protein was isolated for western blot 

analysis and membranes were probed for phospho 473 PKB (Figure 4.6 D, E, F). 

This was used as a positive control since it has recently been shown that all 

CXCR3 ligands result in a robust PKB phosphorylation in activated T-cells (Smit 

et al., 2003). Indeed the chemokines again induced a transient phosphorylation of 

PKB but with very different kinetics compared to the one observed in 

myofibroblasts. Phosphorylation levels were very high for the first 2 minutes of 

the time course, but were not detectable 5 minutes after the addition of the 

chemokines.

As mentioned earlier, phosphorylation at S473 partially activates PKB, whereas 

full activation of PKB requires phosphorylation on a second site, T308 (Alessi et
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al., 1996). In order to determine if PKB was phosphorylated on this second site, 

intestinal myofibroblasts and activated T-cells were again stimulated with the 

CXCR3 ligands over a 20-minute time course, protein was isolated for western 

blot analysis and membranes were probed for the activated phospho 308 PKB 

(Figure 4.7).

The phosphorylation patterns for T308 were identical to the ones observed for 

S473, with activation of PKB being sustained throughout the time course in the 

myofibroblasts (Figure 4.7 A, B and C), and returned to basal levels after 2 

minutes in T cells (Figure 4.7 D, E, F).

PKB phosphorylation in the presence of PI3K inhibition

PKB is one of the most well known downstream targets of PI3K. To confirm this 

intestinal myofibroblasts and blood-derived T-cells were treated with the PI3K 

inhibitor LY294002 at 10 pM or a vehicle control for 30 minutes and then 

stimulated with IP-10, I-TAC or Mig for up to 20-minutes. As expected PKB 

phosphorylation is PI3K dependent in both intestinal myofibroblasts (Figure 4.8) 

and activated T-cells (Figure 4.9) as demonstrated by its complete inhibition by 

the PI3K inhibitor. It should be noted however, that phosphorylation of PKB does 

not necessarily indicate activation of this kinase. In order to examine PKB 

activation, one would have to investigate downstream targets of PKB such as 

GSK-3 or FKHR. Those experiments were carried out but did not result in 

detection of any phosphorylation of these proteins in intestinal myofibroblasts. 

This could be because the amounts of protein in our samples are very low 

(approximately 3 pg/sample) due to the primary nature of the cells and the 

limitation in the numbers that can be realistically obtained from biopsy tissues.
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Sensitivity of various PI3K isoforms to LY294002

The availability of a PI3K inhibitor such as LY294002 has contributed greatly to 

our understanding of the biological role of PI3K and its effector proteins. 

However, the issue of the selectivity of LY294002 for individual PI3K isoforms is 

highly controversial. The generally accepted view is that LY294002 inhibits all 

PI3K with an IC50 in the 1-50 \iM  range (Foster et al., 2003). Use of this inhibitor 

can therefore implicate a PI3K activity in a cellular process of interest, but is not 

suitable for dissecting the involvement of individual PI3K isoforms. In order to 

verify the selectivity of LY294002 on different PI3K isoforms, whole cell lysates 

from unstimulated Jurkat cells, which are known to exhibit a high basal PI3K 

activity (Freebum et al., 2002), were immunoprecipitated with antibodies against 

various PI3K isoforms. The isoforms chosen for investigation were limited by the 

lack of reliable commercially available antibodies for the other PI3K isoforms.

The resulting immunoprecipitates were treated with various concentrations of the 

inhibitor and assayed for PI3K activity using an in vitro lipid kinase (Figure 4.10). 

Both class IA PI3K isoforms examined, p85a and p i 108, were very sensitive to 

LY294002 and almost completely inhibited at lOpM (Figure 410 A and B). In 

contrast both class II isoforms, C2a and C2p, proved very resistant to LY294002, 

even at concentrations well beyond the range which is normally used, namely > 

30pM (Figure 4.10 C and D).

PI3K isoform expression in intestinal myofibroblasts

In order to investigate the involvement of specific PI3K isoforms in chemokine 

induced signalling in intestinal myofibroblasts and activated T cells, it was 

essential to establish which isoforms were expressed in these cells. Different cell
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numbers were lysed in order to isolate protein for western blot analysis of p85a, 

p i 10 8 and the two class II PI3K isoforms, PI3K-C2a and PI3K-C2p. All four 

isoforms examined were found to be expressed in both intestinal myofibroblasts 

(Figure 4.11) and T-cells (Figure 4.12).

Chemokine induced PI3K isoform activation

The limitation of relying on PKB phosphorylation experiments is that it does not 

provide any information about the specific isoforms involved in those processes.

The only valid method for examining specific PI3K isoform activation, is by 

employing in vitro lipid kinase assays, to assess catalytic activity within isoform- 

selective immunoprecipitates. One disadvantage of this method is the large 

number of cells required (lx lO 7 cells per point). Due to the difficulty of obtaining 

sufficient number of primary human intestinal myofibroblasts, these studies were 

confined to only one of the three CXCR3 ligands, IP-10. In addition, the activity 

of the PI3K isoforms in these established assays, is not studied in its natural 

environment, i.e., inside the cell and therefore possible activity might not reflect 

events in a living cell.

With antibodies suitable for immunoprecipitation available for the PI3K isoforms 

found to be expressed in intestinal myofibroblasts, the cells were stimulated with 

IP-10 at 10 nM over a short time of thirty minutes and then immunoprecipitated 

with antibodies recognizing p85a, p i 108, PI3K-C2a or PI3K-C2p (Figure 4.13).

-l0Buffers containing Ca were used for all isoforms except PI3K-C2p since it has 

been demonstrated that an increase in Ca2+ would have a negative effect on the 

production of PI(3,4)P2by PI3K-C2P (Arcaro et al., 1998).
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In contrast to p85a and p i 108, which did not appear to be activated above basal 

levels, both PI3K-C2a and PI3K-C2|3 phosphorylated the exogenous substrate 

Ptdlns. The kinetics for the activation of the two isoforms was slightly different, 

with C2a activation being observed two minutes after stimulation and returning to 

basal levels within the end of the time course applied, whereas C2p activation was 

faster and sustained throughout the stimulation period.

Having demonstrated that only class II PI3K isoforms are detectably activated by 

IP-10 in intestinal myofibroblasts, a similar range of experiments were performed 

in T-cells to determine PI3K isoform activity in this system. SEB activated 

peripheral blood derived T-cells, maintained in IL-2 for 12 days were stimulated 

as previously with IP-10 at 10 nM over a short time course of 30 minutes. Protein 

was isolated and an in vitro lipid kinase assay was performed using specific PI3K 

isoform immunoprecipitates (Figure 4.14).

The results were very different compared to those obtained with the 

myofibroblasts. In T-cells, both class I PI3K isoforms examined were found to 

respond to IP-10, with activity peaking in both cases five minutes after 

stimulation. However the activity of C2a and C20 was not altered by the 

chemokine.

It should be noted though that the two different cell types appear to have high 

basal levels of activity for the isoforms that appear unresponsive, which could 

explain why no activation is observed in those experiments.
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IP-10 stimulates the recruitment of PI3K-C2a and PI3K-C20 to 

phosphotyrosine complexes in intestinal myofibroblasts

Reports of tyrosine phosphorylation of PI3K have mainly concerned class I 

PI3Ks. Tyrosine phosphorylation of the p85 subunit has been shown to occur in 

many different systems, such as in response to platelet-derived growth factor 

(Kaplan et al., 1987), insulin (Hayashi et al., 1993), B cell antigen receptor 

ligation (Gold et al., 1992), and interleukin-2 (Kamitz et al., 1994). The only 

reports of tyrosine phosphorylation of class IIPI3K  has been in Drosophila (Molz 

et al., 1996), and in EGF-stimulated A431 cells (Arcaro et al., 2000). The same 

study demonstrated tyrosine phosphorylation of PI3KC2p in PDGF-stimulated 

fibroblasts. The observation that these proteins were phosphorylated on tyrosines 

could imply that protein tyrosine kinases and protein-protein interactions could 

mediate the activation of class II PI3Ks. Since activation of both of the class II 

PI3Ks in response to IP-10 had been demonstrated in this study, the possibility 

that these proteins were tyrosine phosphorylated was investigated.

Intestinal myofibroblasts were treated with IP-10 at a concentration of 10 nM for 

up to thirty minutes. The lysates generated were immnunoprecipitated with an 

anti-phospotyrosine specific antibody (4G10) and the recovered immune 

complexes were collected on protein G-sepharose beads for one hour at 4°C and 

finally was analysed by Western blotting with antibodies against PI3K-C2a or 

PI3K-C2P (Figure 4.15).

Both class II PI3K enzymes were found to be tyrosine phosphorylated. 

Phosphorylation for C2a occurred between one and ten minutes after stimulation 

while maximal phosphorylation for C2p was observed five minutes after the
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addition of the chemokine but was still above basal levels at the end of the time 

course. This pattern of activation corresponds with the results obtained from the in 

vitro lipid kinase assays.

CXC3 ligand-induced phosphorylation of ERK 1/2

Having established that IP-10, I-TAC and Mig activate the PI3K pathway, 

regulation of the MAPK pathway was next investigated. Activation of the MAPK 

pathway has been demonstrated to occur in response to many cytokines and is 

involved in the activation of transcription factors required for various cell 

functions (Chang and Karin, 2001).

Intestinal myofibroblasts were stimulated over a time course of up to 20-minutes 

with IP-10, I-TAC or Mig at a concentration of 10 nM and then protein was 

isolated for Western blot analysis with a specific rabbit antibody against the 

phosphorylated MAP kinases phospho 202,204 ERK 1/2.

Basal levels of constitutive phosphorylation of ERK were detected in intestinal 

myofibroblasts. However, all three chemokines were able to phosphorylate ERK 

transiently between two and ten minutes following stimulation above the basal 

levels observed (Figure 4.16 A, B and C).

Similarly SEB activated T-cells, were stimulated over a 20-minute time course 

and analysed for ERK 1/2 phosphorylation. In contrast to the intestinal 

myofibroblasts, no basal levels of phospho-ERK 1/2 was found in this system. 

Nevertheless, stimulation in these cells, resulted in phosphorylation of ERK 1/2 

which like phosphorylation of PKB was much more rapid and transient compared
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to intestinal myofibroblasts. Phosphorylation was maximal two minutes following 

stimulation and was not detectable after 10 minutes (Figure 4.16 D, E and F).

CXC3 ligand-induced p90RSK phosphorylation

Having demonstrated that IP-10, I-TAC and Mig phosphorylate ERK 1/2 in 

intestinal myofibroblasts and activated T-celis, a downstream target of ERK was 

selected to correlate phosphorylation of ERK with its activity. It is well known 

that p90RSK lies downstream of ERK (Richards et al., 2001), and it has been 

suggested that when activated, both ERK 1/2 and p90RSK are translocated to the 

nucleus (Pierrat et al., 1998). Cells were stimulated with IP-10, I-TAC or Mig and 

protein was isolated for western blot analysis as previously, probing for 

phosphorylated form p90RSk, namely phospho 380p90RSK (Figure 4.17).

In primary human intestinal myofibroblasts, activation of p90RSK is delayed and 

more transient compared to the activation of ERK 1/2, with phosphorylation 

observed only between 5 and 10 minutes after the addition of the chemokines 

(Figure 4.17 A, B and C). These delayed kinetics should be expected since 

p90RSK lies downstream of ERK 1/2.

In activated T-cells, all three chemokines also induce transient phosphorylation of 

p90RSK. This event is also delayed compared to ERK 1/2 phosphorylation in this 

system, with optimal phosphorylation occurring 2 minutes post-ligand stimulation 

and then declining rapidly (Figure 4.17 D, E and F).

CXC3 ligands and p38 phosphorylation in primary intestinal myofibroblasts

Mig has been shown to be able to activate the p38 pathway human melanoma 

cells (Robledo et al., 2001). Having previously shown that the chemokines are
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able to induce phosphorylation of one MAPK pathway in our systems, their 

ability to phosphorylate the p38 pathway was also investigated.

Intestinal myofibroblasts were stimulated with IP-10, I-TAC or Mig at 10 nM and 

the protein lysates were probed with a specific rabbit polyclonal antibody against 

the phosphorylated MAP kinase phospho 180/182 p3 8  (Figure 4.18).

Phosphorylation of p38 was found to be sustained with a peak of activation 

between 2 and 5 minutes following stimulation but still quite prominent at 10 

minutes, and in the case of Mig (Figure 4.18 C), phosphorylation levels were 

above basal even at the end of the time course. This discrepancy most likely 

reflects the heterogeneity and the individuality within a population of primary 

cells rather than any differences between the three different ligands.

The same experiment was performed with SEB activated T-cells but no detectable 

levels of phosphorylated p38 were observed. This may not necessarily imply that 

p38 is not phosphorylated in those cells in response to the CXCR3 ligands but 

might simply reflect the low levels of phosphorylated p38 beyond the sensitivity 

levels of the antibody.

CXCR3 ligand-induced ERK phosphorylation in the presence of PI3K  

inhibition

The involvement of PI3K in the activation of the ERK in chemokine signalling 

appears to be highly dependent on the chemokine and cell type involved. Indeed it 

has been shown that ERK phosphorylation can be both dependent (Sotsios et al., 

1999) or independent (Bonacchi et al., 2001) of PI3K activation. To assess the 

role of PI3K signalling pathway in ERK phosphorylation, cells were pre-treated
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with either the PI3K inhibitor LY294002, or a vehicle control for thirty minutes 

before adding the chemokines. Protein was isolated for Western blot analysis and 

membranes were probed for activated phospho 202/204 ERK (Figures 4.19-4.20).

The results obtained from these experiments are not very consistent for human 

primary intestinal myofibroblasts. The data presented here show that in the 

presence of LY294002, ERK 1/2 phosphorylation appears to be modestly inhibited 

in IP-10 and Mig stimulated cells, whereas I-TAC appears to be the most sensitive 

to LY294002 treatment (Figure 4.19 B). However, interpretation of these results is 

difficult due to the discrepancies of the effect of LY294002 on basal levels of 

phosphorylation of ERK 1/2. The PI3K inhibitor markedly reduced the basal 

phosphorylation levels of ERK 1/2 in I-TAC stimulated cells, something not 

observed in the experiments with the other 2 ligands. The only explanation we can 

give for these apparent contradictions is donor variability in conjunction with the 

nature of primary cells renders them very susceptible to the handling procedures 

employed, resulting in varying responses. Overall though, it seems likely that 

there is some involvement of PI3K in the activation the ERK pathway.

Results obtained from SEB activated T-cells are more uniform than the results 

from intestinal myofibroblasts. LY294002 appeared to partially inhibit ERK 1/2 

phosphorylation in IP-10, I-TAC or Mig stimulated cells (Figure 4.20). ERK 

phosphorylation was not completely abolished indicating that PI3K kinase activity 

is involved in the activation of the ERK pathway in this system.

p90RSK phosphorylation in the presence of PI3K inhibition

Little is known about the signalling mechanisms involving p90RSK in response to 

chemokine stimulation. However it is known that p90RSK is phosphorylated and
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activated by the PI3K target PDK-1 (3-phosphoinositide-dependent protein 

kinase-1) (Jensen et al., 1999). To examine the involvement of PI3K in 

chemokine-mediated p90RSK activation, cells were pre-treated with LY294002, 

prior to stimulation over a short time course of up to twenty minutes with IP -10 ,1- 

TAC or Mig at 10 nM and then protein was isolated for western blot analysis 

(Figures 4.21-4.22).

Treatment with LY294002 in human myofibroblasts partially inhibited p90RSK 

phosphorylation. Consistent with the previous finding for ERK 1/2 

phosphorylation, this event was more significant for I-TAC stimulated cells where 

LY294002 had a more profound effect on basal phosphorylation levels (Figure 

4.21 B). Therefore, PI3K appears to be a critical upstream kinase responsible for 

activation of p90RSK in the IP-10 / I-TAC/ Mig signal transduction pathway in 

human primary intestinal myofibroblasts. The effect of LY294002 in p90RSK 

phosphorylation in activated T cells was very similar to the effect of the inhibitor 

in ERK 1/2 phosphorylation (Figure 4.22). This event was partially inhibited 

suggesting a possible role for PI3K in this event in this system as well.

p38 phosphorylation in the presence of PI3K inhibition

Having previously shown that p38 could be phosphorylated by the CXCR3 

ligands in our system, the role of PI3K in activating this pathway was 

investigated. Previous studies have indicated that activation of p38, is PI3K 

dependent (Rane et al., 1997; Madrid et al., 2001). In addition, a new mechanism 

for PKB-mediated nuclear factor- kappaB (NF-kB) activation has been proposed 

by demonstrating that PKB utilizes IkB kinase (IKK) and p38 to stimulate the 

transactivation potential of theRelA/p65 subunit of NF-kB (Madrid et al., 2001).
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Intestinal myofibroblasts were incubated with IP-10, I-TAC or Mig at lOnM up to 

20 minutes, in the presence or absence of LY294002 pre-treatment at 10 pM for 

30 minutes (Figure 4.23). Treatment of the cells with the PI3K inhibitor markedly 

reduces the chemokine-induced phosphorylation of p38. Moreover it should be 

noted that the cells appear to have higher basal levels of phosphorylation when 

treated with LY294402. This would suggest that the cells are stressed, since p38 is 

known to be a stress signal and could explain the inconsistencies observed earlier 

in respect of ERK 1/2 phosphorylation when LY294002 was used.

Effect of pertussis toxin in chemokine signalling in intestinal myofibroblasts

The major G protein attributed to be coupled to chemokine receptor is Gaj because 

in the hands of most investigators pertussis toxin inhibits the biological activities 

induced by chemokines. However, pertussis toxin -sensitive G proteins also 

include Gaoi, and G0102. In addition to this it has been observed that while 

pertussis toxin completely inhibits IP-10, and the C chemokine lymphotactin- 

induced calcium mobilisation in NK cells, anti-Gaq also inhibits these responses, 

suggesting that pertussis toxin-insensitive G proteins might also be involved in 

those processes (Maghazachi et al., 1997). Recently it has been found that 

CXCR3 signalling in activated T-cells is completely inhibited by the use of 

pertussis toxin (Smit et al., 2003). On the other hand the newly identified 

alternative splice variant of CXCR3, CXCR3-B, appears to exert its biological 

activities by coupling to G proteins other than Ga* (Lasagni et al., 2003). Finally 

the as yet unidentified receptor that binds only IP-10 is probably coupled to Gai, 

as demonstrated by sensitivity to pertussis toxin (Soejima and Rollins, 2001).
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In light of the knowledge that pertussis toxin can have opposing effects on 

CXCR3 ligand-mediated events, it was decided to examine the effect of this 

inhibitor in IP-10 induced signalling in both human intestinal myofibroblasts and 

activated T-cells.

Cells were therefore treated with IP-10 at lOnM for up to 20 minutes in the 

presence or absence of pre-treatment with pertussis toxin at 100 ng/ml for 16 

hours and analysed by western blot analysis with specific antibodies against the 

active forms of ERK 1/2, PKB and p90RSK. In the myofibroblasts, 

phosphorylation of all proteins was found to be insensitive to pertussis toxin 

(Figure 4.24). Moreover, p90RSK phsosphorylation in cells treated with pertussis 

toxin was sustained compared to the chemokine only induced signals, with 

phosphorylation levels still increasing at the end of the time course (Figure 4.24 

C). These observations contrasted the results in the activated T-cells. Pertussis 

toxin completely abrogated chemokine induced ERK phosphorylation but was 

unable to block phorbol 12-myristate 13-acetate (PMA)-induced activation which 

is known to activate several proteins independently of G-protein mechanisms 

(Volpi et al., 1985) and was therefore used as a positive control (Figure 4.25 A). 

Consistent with this, pertussis toxin completely blocked ERK 1/2 downstream 

target p90RSK activation (Figure 4.25 B). Finally, phosphorylation of PKB was 

also found to be pertussis toxin sensitive (Figure 4.25 C), confirming the 

involvement of G aiin CXCR3 signalling events in activated T-cells.
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Differences in potency of the CXCR3 ligands in intestinal myofibroblast 

signalling

There have been contradicting reports concerning the relative potency of IP-1 0 ,1- 

TAC and MIG in receptor binding, calcium flux, and chemotaxis (Cole et al., 

1998; Stanford and Issekutz, 2003). However, I-TAC appears to be more potent 

and efficacious than either IP-10 or Mig in its ability to mobilize intracellular 

calcium and as a chemotactic factor in activated T-cells (rank order potency I- 

T A C >M IG  -  IP-10 (Cole et al., 1998). Studies comparing the ability of these 

chemokines to initiate intracellular signals are lacking.

Having established that all three CXCR3 ligands are capable of activating various 

signalling pathways in intestinal myofibroblasts and activated T-cells, the potency 

of these chemokines to activate those pathways was compared in both of our 

systems. Cells were stimulated over time course of up to 10 minutes, within which 

maximal phosphorylation of ERK 1/2 and PKB had previously been demonstrated 

for both cell types, with IP-10, I-TAC or MIG at 10 nM and then protein was 

isolated for western blot analysis.

In intestinal myofibroblasts, no differences could be detected in the magnitude of 

the signals elicited by those 3 ligands, suggesting that their efficacy for the 

signalling events examined is similar in these cells (Figure 4.26). On the other 

hand, in activated T-cells. I-TAC appeared to confirm the calcium and chemotaxis 

studies (Cole et al., 1998) as the most potent of the 3 CXCR3 ligands. 

Phosphorylation of both ERK 1/2 and PKB by I-TAC was induced to a greater 

magnitude than those observed with IP-10 and Mig, which were very similar 

between them (Figure 4.27).
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Figure 4.1 mRNA and cell surface expression of CXCR3 in prim ary intestinal 

myofibroblasts.

A. PCR analysis of CXCR3 mRNA expression of intestinal myofibroblasts 

isolated from two different patients (PI, P2). (+) and (-) refers to reverse 

transcriptase (RT) positive/negative samples respectively. Activated peripheral 

blood derived T cells (PBLs) were used as a positive control (upper panel). B. 

Fluorescence Activated Cell Sorting (FACS) analysis of CXCR3 expression on 

intestinal myofibroblasts, again using activated peripheral blood derived T-cells 

(PBLs) (lower panel). Cells were stained with a specific mouse monoclonal 

fluorescein isothiocyanate (FITC) conjugated anti-CXCR3 antibody (green line) 

at a concentration of lpg/ml or with FITC conjugated mouse IgG at the same 

concentration (purple area), as an isotype matched control. All three results are 

from single experiments representative of 3 replicate experiments.
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Figure 4.2 Effect of endothelin-1 on calcium mobilization in human prim ary 

intestinal myofibroblasts.

0.2 x 106 primary human intestinal myofibroblasts were plated on coverslips in 

35mm plates and cultured for 48 hours. Prior to experimentation, cells were 

washed and kept in physiological salt solution (PSS) and loaded with Fura-2 as 

described in Methods and Materials. Cells were stimulated with endothelin-1 

(lOOnM) whilst alternately excited with light at 340 and 380 nm. Fura -2  

fluoresence emission intensity was measured at 510nm and transformed to 

intracellular-free calcium concentrations, based on calibration of the cells with 30 

pM ionomycin and 10 mM EGTA, for individual cells (A) or for the average of 

the cells in view (B). A representative graph of emission intensity at 340 nm and 

380 is presented for a single cell(C). Results are from single experiments 

representative of 3 replicate experiments.
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Figure 4.3 Effect of IP -10 on calcium mobilization in human prim ary 

intestinal myofibroblasts.

0.2 x 106 primary human intestinal myofibroblasts were plated on coverslips in 

35mm plates and cultured for 48 hours. Prior to experimentation, cells were 

washed and kept in physiological salt solution (PSS) and loaded with Fura-2 as 

described in Methods and Materials. Cells were stimulated with IP-10 (10 nM) 

and then endothellin-1 (100 nM) whilst alternately excited with light at 340 and 

380 nm. Fura -2  fluoresence emission intensity was measured at 510nm and 

transformed to intracellular-free calcium concentrations, based on calibration of 

the cells with 30 pM ionomycin and 10 mM EGTA, for individual cells (A) or for 

the average of the cells in view (B). A representative graph of emission intensity 

at 340 nm and 380 is presented for a single cell(C). Results are from single 

experiments representative of 3 replicate experiments.
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Figure 4.4 Effect of I-TAC on calcium mobilization in human prim ary 

intestinal myofibroblasts.

0.2 x 106 primary human intestinal myofibroblasts were plated on coverslips in 

35mm plates and cultured for 48 hours. Prior to experimentation, cells were 

washed and kept in physiological salt solution (PSS) and loaded with Fura-2 as 

described in Methods and Materials. Cells were stimulated with I-TAC (10 nM) 

and then endothellin-1 (100 nM) whilst alternately excited with light at 340 and 

380 nm. Fura -2  fluoresence emission intensity was measured at 510nm and 

transformed to intracellular-free calcium concentrations based on calibration of 

the cells with 30 pM ionomycin and 10 mM EGTA, for individual cells (A) or for 

the average of the cells in view (B). A representative graph of emission intensity 

at 340 nm and 380 is presented for a single cell(C). Results are from single 

experiments representative of 3 replicate experiments.
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Figure 4.5 Effect of Mig on calcium mobilization in human primary intestinal 

myofibroblasts.

0.2 x 106 primary human intestinal myofibroblasts were plated on coverslips in 

35mm plates and cultured for 48 hours. Prior to experimentation, cells were 

washed and kept in physiological salt solution (PSS) and loaded with Fura-2 as 

described in Methods and Materials. Cells were stimulated with Mig (10 nM) and 

then endothellin-1 (100 nM) whilst alternately excited with light at 340 and 380 

nm. Fura -2  fluoresence emission intensity was measured at 510nm and 

transformed to intracellular-free calcium concentrations, based on calibration of 

the cells with 30 pM ionomycin and 10 mM EGTA, for individual cells (A) or for 

the average of the cells in view (B). A representative graph of emission intensity 

at 340 nm and 380 is presented for a single cell(C). Results are from single 

experiments representative of 3 replicate experiments.
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Figure 4.6 Effect of CXCR3 ligands in PKB473 phosphorylation in human 

prim ary intestinal myofibroblasts and peripheral blood derived activated T- 

cells.

1 x 106 intestinal myofibroblasts (left panels) or 1 x 106 12 days old SEB activated

peripheral blood derived T cells (right panels) were lysed in 50 pi lysis buffer

(ctrl) or stimulated with IP-10 (A, D) or I-TAC (B,E) or Mig (C, F all at 10 nM)

for indicated time points, lysed in lysis buffer as described in Methods and

Materials and then probed with a specific rabbit polyclonal antibody against

phospho473 PKB diluted 1:1000 from stock (upper panels). Membranes were then 

stripped and re-probed with an antibody against the non-phosphorylated protein to 

show equal loading (lower panels). Blots are from single experiments but are 

representative of at least two others.
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Figure 4.7 Effect of CXCR3 ligands in PKB308 phosphorylation in human 

prim ary intestinal myofibroblasts and peripheral blood derived activated T 

cells.

1 x 106 intestinal myofibroblasts (left panels) or 1 x 106 12 days old SEB activated

peripheral blood derived T cells (right panels) were lysed in 50 pi lysis buffer

(ctrl) or stimulated with IP-10 (A, D) or I-TAC (B,E) or Mig (C, F all at 10 nM)

for indicated time points, lysed in lysis buffer as described in Methods and

Materials and then probed with a specific rabbit polyclonal antibody against
308phospho' PKB diluted 1:1000 from stock (upper panels). Membranes were then

stripped and re-probed with an antibody against the non-phosphorylated protein to 

show equal loading (lower panels). Blots are from single experiments but are 

representative of at least two others.
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Figure 4.8 Phosphorylation of PKB in prim ary intestinal myofibroblasts is 

abrogated by PI3K inhibition.

1 x 106  intestinal myofibroblasts were lysed in 50 pi lysis buffer (ctrl) or

stimulated with IP-10 (A) or I-TAC (B) or Mig (C, all at 10 nM) in the presence

or absence of pre-treatment with the PI3K inhibitor LY294002 (lOpM for 30

minutes) for indicated time points, lysed in lysis buffer as described in Methods

and Materials and then probed with a specific rabbit polyclonal antibody against 

phospho4 7 3  PKB diluted 1:1000 from stock (upper panels). Membranes were then

stripped and re-probed with an antibody against the non-phosphorylated protein to 

show equal loading (lower panels). Blots are from single experiments but are 

representative of at least two others.
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Figure 4.9 Phosphorylation of PKB in peripheral blood derived activated T 

cells is abrogated by PI3K inhibition.

1 x 106 12 days old SEB activated peripheral blood derived T cells were lysed in 

50 pi lysis buffer (ctrl) or stimulated with IP-10 (A) or I-TAC (B) or Mig (C, all at 

10 nM) in the presence or absence of pre-treatment with the PI3K inhibitor 

LY294002 (lOpM for 30 minutes) for indicated time points, lysed in lysis buffer 

as described in Methods and Materials and then probed with a specific rabbit 

polyclonal antibody against phospho47 3 PKB diluted 1:1000 from stock (upper 

panels). Membranes were then stripped and re-probed with an antibody against 

the non-phosphorylated protein to show equal loading (lower panels). Blots are 

from single experiments but are representative of at two experiments.
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Figure 4.10 Sensitivity of various PI3K isoforms to the PI3K inhibitor 

LY294002.

1 x 107 Jurkat cells were lysed in 500 pi lysis buffer and then immunoprecipitated 

with an antibody against p85a (A), pi 108 (B), PI3K C2a (C) or PI3K C2p (D). 

Lysates were then incubated with a vehicle control (ctrl) or with indicated 

concentrations of the PI3K inhibitor LY294002. An in v itro  lipid kinase assay was 

then performed on the lysates as described in Methods and Materials, using Ptdlns 

as a substrate. Results are from single experiments but are representative of three 

experiments.
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Figure 4.11 W estern blot analysis of prim ary human intestinal 

myofibroblasts for various PI3K isoforms.

Primary human intestinal myofibroblasts were lysed in lysis buffer at indicated 

numbers as described in Methods and Materials and then probed with specific 

rabbit polyclonal antibodies against p85a (A), pi 108 (B), PI3K-C2a (C) and 

PI3K-C2P (D). All antibodies were used at a final concentration of 0.1 pg/ml. 

Results are from single experiments representative of 2 replicate experiments.
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Figure 4.12 W estern blot analysis of peripheral blood derived activated T- 

cells for various PI3K isoforms.

12 days old SEB activated peripheral blood derived T cells were lysed in lysis 

buffer at indicated numbers as described in Methods and Materials and then 

probed with specific rabbit polyclonal antibodies against p85a (A), pi 105 (B), 

PI3K C2a (C) and PI3K C2p (D). All antibodies were used at a final 

concentration of 0.1 fig/ml. Results are from single experiments representative of 

2  replicate experiments.
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Figure 4.13 IP-10 activates class II but not class I PI3K isoforms in prim ary 

human intestinal myofibroblasts.

1 x 107 intestinal myofibroblasts were lysed in 500 pi lysis buffer (ctrl) or 

stimulated with IP-10 (10 nM) for indicated time points, lysed in lysis buffer and 

then immunoprecipitated with an antibody against p85a (A), pi 105 (B), PI3K 

C2a (C) or PI3K C2|3 (D). An in v itro  lipid kinase assay was then performed on 

the lysates as described in Methods and Materials. Results are from single 

experiments but are representative of two experiments.
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Figure 4.14 IP-10 activates class I but not class II PI3K isoforms in 

peripheral blood derived activated T-cells.

1 x 107 12 days old SEB activated peripheral blood derived T-cells were lysed in 

500 pi lysis buffer (ctrl) or stimulated with IP-10 (10 nM) for indicated time 

points, lysed in lysis buffer and then immunoprecipitated with an antibody against 

p85a (A), pi 105 (B), PI3K C2a (C) or PI3K C2P (D). An in v itro  lipid kinase 

assay was then performed on the lysates as described in Methods and Materials. 

Results are from single experiments but are representative of two experiments.
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Figure 4.15 PI3K-C2a and PI3K-C20 are tyrosine phosphorylated in 

intestinal myofibroblasts upon chemokine ligation.

1 x 107 intestinal myofibroblasts were lysed in 500 pi lysis buffer (ctrl) or 

stimulated with IP-10 (10 nM) for indicated time points, lysed in lysis buffer, 

immunoprecipitated with the murine anti-phospho tyr monoclonal antibody 4G10, 

and then probed with specific rabbit polyclonal antibodies against PI3K-C2a (A) 

or PI3K-C2p (B). Both antibodies were used at a final concentration of 0.1 pg/ml. 

Whole cell lysates from each sample were also probed for isoform expression to 

verify equal loading (lower panels). Blots are from single experiments but are 

representative of two experiments
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Figure 4.16 Effect of CXCR3 ligands on ERK l/2phosphorylation in hum an 

prim ary intestinal myofibroblasts and peripheral blood derived activated T- 

cells.

1 x 106 intestinal myofibroblasts (left panels) or 1 x 106 12 days old SEB activated 

peripheral blood derived T-cells (right panels) were lysed in 50 pi lysis buffer 

(ctrl) or stimulated with IP-10 (A, D) or I-TAC (B, E) or Mig (C, F all at 10 nM) 

for indicated time points, lysed in lysis buffer as described in Methods and 

Materials and then probed with a specific rabbit polyclonal antibody against 

phospho2027204 ERK diluted 1:1000 from stock (upper panels). Membranes were 

then stripped and re-probed with an antibody against the non-phosphorylated 

protein to show equal loading (lower panels). Blots are from single experiments 

but are representative of at least two others.
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Figure 4.17 Effect of CXCR3 ligands on p90RSK phosphorylation in human 

prim ary intestinal myofibroblasts and peripheral blood derived activated T 

cells.

1 x 106 intestinal myofibroblasts (left panels) or 1 x 106 12 days old SEB activated

peripheral blood derived T cells (right panels) were lysed in 50 pi lysis buffer

(ctrl) or stimulated with IP-10 (A, D) or I-TAC (B, E) or Mig (C, F all at 10 nM)

for indicated time points, lysed in lysis buffer as described in Methods and

Materials and then probed with a specific rabbit polyclonal antibody against

phospho3 8 0  p90RSK diluted 1:1000 from stock (upper panels). Membranes were 

then stripped and re-probed with an antibody against a non-phosphorylated 

protein to show equal loading (lower panels). Blots are from single experiments 

but are representative of at least two others. A diagram of the ERK pathway is 

included on the left, to indicate which part of the cascade is monitored with this 

experiment.
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Figure 4.18 Effect of CXCR3 ligands on p38 phosphorylation in human 

prim ary intestinal myofibroblasts.

1 x 106 intestinal myofibroblasts were lysed in 50 pi lysis buffer (ctrl) or 

stimulated with IP-10 (A) or I-TAC (B) or Mig (C, all at 10 nM) for indicated 

time points and then lysed in lysis buffer as described in Methods and Materials 

and then probed with a specific rabbit polyclonal antibody against 

phospho 180/l82p38 diluted 1:1000 from stock (upper panels). Membranes were 

then stripped and re-probed with an antibody against the non-phosphorylated 

protein to show equal loading (lower panels). Blots are from single experiments 

but are representative of at least two others.
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Figure 4.19 Phosphorylation of ERK 1/2 in human prim ary intestinal 

myofibroblasts is moderately affected by PI3K inhibition.

1 x 106  intestinal myofibroblasts were lysed in 50 pi lysis buffer (ctrl) or 

stimulated with IP-10 (A) or I-TAC (B) or Mig (C, all at 10 nM) in the presence or 

absence of pre-treatment with the PI3K inhibitor LY294002 (lOpM for 30 

minutes) for indicated time points, lysed in lysis buffer as described in Methods 

and Materials and then probed with a specific rabbit polyclonal antibody against 

phospho2027204 ERK 1/2 diluted 1:1000 from stock (upper panels). Membranes 

were then stripped and re-probed with an antibody against the non-phosphorylated 

protein to show equal loading (lower panels). Blots are from single experiments 

but are representative of at least two others.
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Figure 4.20 Phosphorylation of ERK 1/2 in peripheral blood derived 

activated T-cells is abrogated by PI3K inhibition.

1 x 106 12 days old SEB activated peripheral blood derived T-cells were lysed in

50 pi lysis buffer (ctrl) or stimulated with IP-10 (A) or I-TAC (B) or Mig (C, all at

10 nM) in the presence or absence of pre-treatment with the PI3K inhibitor

LY294002 (lOpM for 30 minutes) for indicated time points, lysed in lysis buffer

as described in Methods and Materials and then probed with a specific rabbit

polyclonal antibody against phospho2027204 ERK diluted 1:1000 from stock (upper 

panels). Membranes were then stripped and re-probed with an antibody against 

the non-phosphorylated protein to show equal loading (lower panels). Blots are 

from single experiments but are representative of at two experiments.
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Figure 4.21 Phosphorylation of p90RSK in human prim ary intestinal 

myofibroblasts is moderately affected by PI3K inhibition.

1 x 106 intestinal myofibroblasts were lysed in 50 pi lysis buffer (ctrl) or 

stimulated with IP-10 (A) or I-TAC (B) or Mig (C, all at 10 nM) in the presence 

or absence of pre-treatment with the PI3K inhibitor LY294002 (lOpM for 30 

minutes) for indicated time points, lysed in lysis buffer as described in Methods 

and Materials and then probed with a specific rabbit polyclonal antibody against 

phospho3 8 0  p90RSK diluted 1:1000 from stock (upper panels). Membranes were 

then stripped and re-probed with an antibody against a non-phosphorylated 

protein to show equal loading (lower panels). Blots are from single experiments 

but are representative of at least two others.

169



Chapter 4: Results II

L Y 2 9 4 Q Q 2  ( 1 0  p M )

I P - 1 0  ( 1 0  n M )  I P - 1 0  ( 1 0  n M )

5  V  T  5 ’ 10’ 20’ 5  1’ 2 ’ 5 ’ 10’ 20’
p-p90

A  PK B 
 ►

LY 294002 (10 pM)~ 

I-TA C (10 nM ) I-TAC (10 nM )

o 1’ 2 ’ 5 s 10s 20’ £  1’ 2 ’ 5 ’ 10s 20’
p - p 9 0

LY 294002 (10 jllM )  

M IG (10 nM ) M IG (10 nM )

5  1’ 2 ’ 5* 10’ 20’ t? 1’ 2* 5* 10’ 20*
p-p90

PK B

Figure 4.22 Phosphorylation of p90RSK in peripheral blood derived 

activated T-cells is abrogated by PI3K inhibition.

1 x 106  12 days old SEB activated peripheral blood derived T-cells were lysed in 

50 pi lysis buffer (ctrl) or stimulated with IP-10 (A) or I-TAC (B) or Mig (C, all at 

10 nM) in the presence or absence of pre-treatment with the PI3K inhibitor 

LY294002 (lOpM for 30 minutes) for indicated time points, lysed in lysis buffer 

as described in Methods and Materials and then probed with a specific rabbit 

polyclonal antibody against phospho3 8 0  p90RSK diluted 1:1000 from stock (upper 

panels). Membranes were then stripped and re-probed with an antibody against a 

non-phosphorylated protein to show equal loading (lower panels). Blots are from 

single experiments but are representative of at two experiments.
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Figure 4.23 Activation of p38 in human prim ary intestinal myofibroblasts is 

moderately affected by PI3K inhibition.

1 x 106 intestinal myofibroblasts were lysed in 50 pi lysis buffer (ctrl) or 

stimulated with IP-10 (A) or I-TAC (B) or Mig (C, all at 10 nM) in the presence 

or absence of pre-treatment with the PI3K inhibitor LY294002 (lOpM for 30 

minutes) for indicated time points, lysed in lysis buffer as described in Methods 

and Materials and then probed with a specific rabbit polyclonal antibody against 

phospho180/182 p38 diluted 1:1000 from stock (upper panels). Membranes were 

then stripped and re-probed with an antibody against a non-phosphorylated 

protein to show equal loading (lower panels). Blots are from single experiments 

but are representative of at least two others.
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Figure 4.24 IP-10 signalling in prim ary hum an intestinal myofibroblasts is 

not affected by pertussis toxin.

0.2 x 106 primary intestinal myofibroblasts were plated on coverslips in 35mm 

plates, cultured till confluence and then starved for 24 hours. Cells were then 

lysed in 150 pi lysis buffer (ctrl) or stimulated with IP-10 in the presence or 

absence of pre-treatment with the Gai inhibitor pertussis toxin (100 ng/ml for 16 

hours) for indicated time points and then lysed in lysis buffer as described in 

Methods and Materials and then probed with specific antibodies against phospho 

2 0 2 /2 0 4  ERK (A) or phospho 47 3  PKB (B) or phospho 3 8 0  p90RSK (C). Membranes 

were then stripped and re-probed with an antibody against a non-phosphorylated 

protein to show equal loading (lower panels). Blots are from single experiments 

but are representative of at least two others.
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Figure 4.25 IP -10 signalling in peripheral blood derived activated T-cells is 

abrogated by pertussis toxin.

1 x 106 12 days old SEB activated peripheral blood derived T-cells were lysed in 

50 pi lysis buffer (ctrl) or stimulated with IP-10 all at 10 nM) in the presence or 

absence of pre-treatment with the Ga* inhibitor pertussis toxin ( 1 0 0  ng/ml for 16 

hours) for indicated time points, lysed in lysis buffer as described in Methods and 

Materials and then probed with specific rabbit polyclonal antibodies against 

phospho 2 0 2 /2 0 4  ERK (A) or phospho 4 7 3 PKB (B) or phospho 3 8 0  p90RSK (C). 

Membranes were then stripped and re-probed with an antibody against the non- 

phosphorylated protein to show equal loading (lower panels). Blots are from 

single experiments but are representative of two experiments.
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Figure 4.26 Comparison of the 3 CXC3 ligands in human prim ary intestinal 

myofibroblasts signalling.

1 x 106 intestinal myofibroblasts were lysed in 50 pi lysis buffer (ctrl) or 

stimulated with IP-10 or I-TAC or Mig (all at 10 nM) for indicated time points, 

lysed in lysis buffer as described in Methods and Materials and then probed with 

specific rabbit polyclonal antibodies against phospho2027204 ERK (A) or.phosphp473  

PKB (B). Membranes were then stripped and re-probed with antibodies against 

non-phosphorylated proteins to show equal loading (lower panels). Blots are from 

single experiments but are representative of two experiments.
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Figure 4.27 Com parison of the 3 CXC3 ligands in peripheral blood derived 

activated T-cells signalling.

1 x 106 12 days old SEB activated peripheral blood derived T-cells were lysed in 

50 pi lysis buffer (ctrl) or stimulated with IP-10 or I-TAC or Mig (all at 10 nM) 

for indicated time points, lysed in lysis buffer as described in Methods and 

Materials and then probed with specific rabbit polyclonal antibodies against 

phospho2027204 ERK (A) or.phosphp47 3  PKB (B). Membranes were then stripped 

and re-probed with antibodies against non-phosphorylated proteins to show equal 

loading (lower panels). Blots are from single experiments but are representative of 

two experiments.
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• CXCR3 is expressed at least at the mRNA level on primary human 

intestinal myofibroblasts

• I-TAC, but not IP-10 or Mig mediate calcium mobilisation in primary 

human intestinal myofibroblasts

• IP-10, I-TAC and Mig induce a time dependent phosphorylation of PKB 

at both phosphorylation sites in primary human intestinal myofibroblasts

• Activation of PKB is PI3K dependent

• Class II PI3Ks are activated and tyrosine phosphorylated in human 

intestinal myofibroblasts in response to IP-10 but not in peripheral blood- 

derived activated T-cells

• IP-10, I-TAC and Mig induce a time dependent phosphorylation of ERK 

1/2 and p38 in primary human intestinal myofibroblasts, which is partially 

dependent on PI3K

• IP-10, I-TAC and Mig also induce a time dependent phosphorylation of 

p90RSK in primary human intestinal myofibroblasts again partially 

dependent on PI3K

• Phosphorylation events in primary intestinal myofibroblasts are Gai 

independent in contrast to peripheral blood-derived activated T-cells

•  The potency of IP-10, I-TAC and Mig in these phosphorylation events are 

similar in primary intestinal myofibroblasts, whereas in peripheral blood- 

derived activated T-cells I-TAC is the most potent
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4,4 Discussion

Even though chemokines were first identified by their ability to act as 

chemoattractants for specific leukocyte subsets, leukocytes are not the only cell 

types that respond to chemokines. For example, although the CXC chemokine IP- 

10 was initially characterized as a chemoattractant for T lymphocytes (Taub et al., 

1993), it also has anti-angiogenic activities that appear to be mediated by its direct 

effects on endothelial cells (Luster et al., 1995; Angiolillo et al., 1995; Strieter et 

al., 1995). Because some endothelial cells express no detectable CXCR3, it was 

suggested that a different receptor was responsible for these effects. This problem 

was solved with the identification of the alternative splice variant of CXCR3, 

CXCR3-B (Lasagni et al., 2003). In intestinal myofibroblasts we were unable to 

detect any surface expression of CXCR3, even though these cells expressed the 

message for this receptor. The disparity between the presence of CXCR3 mRNA 

and lack of detectable protein expression in primary human intestinal 

myofibroblasts, leaves several possibilities regarding the presence or not of that 

receptor on those cells. One possibility is that the receptor is expressed on the cell 

surface, but below sensitivity limits of the antibody used in this study. Another 

possibility is that the receptor is post-translationally modified in these cells, which 

might alter the recognition site of the antibody. Chemokine receptors are known 

to undergo a variety of post-translational modifications. For instance, 

phosphorylation of specific intracellular serine residues in the C-terminal region 

of chemokine receptors is essential for their signal transduction function. In some 

chemokine receptors, extracellular regions are also known to be post- 

translationally modified. Human chemokine receptors CCR2b, CCR5, CX3CRI, 

and CXCR4 are reported to be sulfated and/or glycosylated at their N-terminal
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extracellular domains (Farzan et al., 1999; Preobrazhensky et al., 2000; Farzan et 

al., 2002; Fong et al., 2002). On the other hand, one last possibility could be that 

CXCR3 was expressed at the mRNA level but the protein was either not 

translated at all or degraded post-translationally.

Calcium mobilization in intestinal myofibroblasts

In order to rule out the possibility that this receptor was indeed not present in our 

system, calcium mobilization of the cells to the CXCR3 ligands was investigated.

The nature of these cells however quickly revealed a limitation in this approach.

In our hands intestinal myofibroblasts show spontaneous transient increases in 

[C a 2+]i. The C a 2+ oscillations were not synchronous among the cells and the 

frequency varied from cell to cell. This made the effect of the agonist difficult to 

determine. Unfortunately there are no calcium studies in primary intestinal 

myofibroblasts to compare this finding. However, in intact tissues of the 

gastrointestinal tract, fluorescent calcium imaging has already been employed to 

monitor calcium changes during spontaneous (and evoked) activities over large 

areas of the smooth muscle network (Stevens et al., 1999b; Stevens et al., 1999a; 

Stevens et al., 2000; Hennig et al., 2002). These studies demonstrated that 

contractions of gastrointestinal smooth muscle are produced by robust rises in 

[C a2+]i initiated by slow waves or C a 2+ influxes through calcium channels, and 

intestinal myofibroblasts seem to comply with this pattern.

Despite the limitations of this technique, it was clear that the cells do not respond 

to IP-10 and Mig. The only CXCR3 ligand that resulted in a response was I-TAC, 

which stimulated a rapid and transient elevation in [C a 2+]j, similar though lower in 

magnitude to the response seen previously with endothelin-1.
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These observations further perplexed the possibilities regarding expression or not 

of CXCR3 on intestinal myofibroblasts. In CXCR3 expressing activated T-cells 

IP-10, MIG and I-TAC induce transient mobilization of intracellular calcium 

(Cole et al., 2001). Moreover, stimulation of cultured glial cells (Biber et al., 

2002), or primary podocytes (Huber et al., 2002), with chemokine ligands for 

CXCR3 also induced intracellular calcium transients. On the other hand, ligation 

of CXCR3-B by any of its ligands does not result in calcium mobilization 

(Lasagni et al., 2003). However, a receptor that mobilizes calcium only in 

response to I-TAC has not been described yet. There are several potential 

explanations for these results. First, I-TAC-induced calcium mobilization might 

be due to a functionally wild-type CXCR3 expressed at very low levels in 

intestinal myofibroblasts. The fact that only I-TAC is able to mobilize calcium 

could be explained by the fact that it is known to be considerably more potent 

than the other two CXCR3 ligands (Cole et al., 2001). Second, a novel receptor 

that binds only I-TAC is responsible for the transient calcium increase. Such a 

receptor could either be the product of a post-translational modification of the 

mRNA of CXCR3, which is present in intestinal myofibroblasts, resulting in a 

new receptor capable of binding only I-TAC, or a receptor completely unrelated 

to CXCR3. A receptor like that has already been demonstrated to exist for IP-10 

although its identity has yet to be revealed (Soejima and Rollins, 2001). The last 

possibility is that I-TAC could be binding to a glycosaminoglycan (GAGs), since 

it is known that these molecules bind various chemokines (Hoogewerf et al., 

1997; Ali et al., 2000). However, this is highly unlikely to be the receptor we have 

identified since binding of chemokines to GAGs has never been shown to result in 

signal transduction.

179



Chapter 4: Results II

PKB phosphorylation in intestinal myofibroblasts

In order to further examine the nature of this receptor, activation of the PI3K 

pathway was assessed as it has been shown to be activated by CXCR3 ligands in a 

similar cell type in the liver (Bonacchi et al., 2001). Indeed, the downstream target 

of PI3K, PKB, was found to be phosphorylated at both possible sites upon 

stimulation of the cells by I-TAC. Unexpectedly however, IP-10 and MIG 

stimulation also resulted in PKB phosphorylation. Moreover phosphorylation of 

PKB in intestinal myofibroblasts was much more sustained compared to 

phosphorylation events observed in activated T-cells. The dependence of this 

phosphorylation event by PI3K was confirmed by its complete inhibition by the 

PI3K inhibitor LY294002.

A possible molecular mechanism to explain the different kinetics of PKB 

phosphorylation could be the differential expression of various phosphatases in 

the different cell types. For example, the PTEN gene product dephosphorylates 

tyrosine and serine/threonine residues and exhibits phosphatase activities with 

both protein and lipid substrates (Cantley and Neel, 1999; Maehama and Dixon, 

1999). The major substrate of PTEN is Ptdlns3,4,5-P3 a product of PI3K (Myers et 

al., 1998). The loss of PTEN function increases the concentration of Ptdlns3,4,5- 

P3 , which in turn leads to PKB hyperactivation, which suggests that the tumor- 

suppressor function of PTEN is exerted through the negative regulation of the 

PI3K/PKB cell survival pathway (Di Cristofano and Pandolfi, 2000). Although 

the protein phosphatase activity of PTEN is not considered to be as important as 

its lipid phosphatase activity for tumor suppression, the PTEN function as protein 

phosphatase has been implicated in the inhibition of cell migration and invasion
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via dephosphorylation of focal adhesion kinase (FAK), a molecule critical in the 

regulation of integrin signalling (Tamura et al., 1998). Another phosphatase that 

has recently been implicated in the regulation of Ptdlns3,4,5-P3, and thus PKB 

phosphorylation, is SHIP-1 (Freebum et al., 2002). It would therefore be 

interesting to determine whether these proteins are expressed in intestinal 

myofibroblasts.

The robustness and duration of the activation of a given signalling pathway has 

far reaching biological consequences. For example, in T-cells, persistent 

activation of PKB by SDF through CXCR4 is thought to occur because SDF and 

CXCR4 are involved in homeostasis rather than inflammation; sustained 

activation could protect CXCR4+ cells from undergoing apoptosis, a process that 

is critical for the activation of T-cells (Tilton et al., 2000). In contrast, CXCR3 

ligands are up-regulated in the intestine in inflammatory conditions (Dwinell et 

al., 2001). Sustained PKB activation by these chemokines could therefore not just 

regulate and guide the migration of CXCR3-bearing myofibroblasts but also have 

a protective role in apoptosis in case of local high expression of the CXCR3 

ligands. Disturbance of such a balance might contribute to the presence of 

irregular numbers of myofibroblasts in certain inflammatory diseases like CD and 

UC.

The finding that intestinal myofibroblasts respond to the CXCR3 chemokines 

suggests that they might also regulate the number of T-cells migrating into the 

vicinity of the epithelium. IP-10, Mig, and I-TAC are thought to play an important 

role in the pathogenesis of intestinal inflammatory responses, particularly those 

driven by Thl-type responses by chemoattracting CXCR3-expressing

181



Chapter 4: Results II

activated/memory T-cells (Luster, 2001). Indeed it is known that virtually all IELs 

and LPLs express CXCR3 (Agace et al., 2000). Binding of the chemokines on the 

surface of myofibroblasts would decrease the concentration of the chemokines 

available to CXCR3+ T-cells. Interestingly at lower concentrations of I-TAC, 

PKB phosphorylation has been demonstrated to be sustained in T-cells and 

thought to have an anti-apoptotic role (Smit et al., 2003).

PI3K isoforms involved in CXC3 ligand-mediated signalling events

Although LY294002 has been used extensively to study the physiologic role of 

class I PI3Ks in various cellular responses (including chemotaxis), contradictory 

results have been obtained regarding its ability to inhibit class II isoforms. For 

example, LY284002 has been shown to inhibit all PI3K isoforms with an IC5o in 

the 1-50 jaM range (Foster et al., 2003), whereas another study demonstrated 

inhibition of PI3K C2 a only at concentrations of the compound where it is known 

to inhibit other signalling enzymes, including Ptdlns 4-kinases (PI4Ks) (Domin et 

al., 1997). In our hands both class II PI3K isoforms appear to be insensitive to 

LY294002, suggesting that PKB phosphorylation is not dependent on class II 

PI3K isoforms.

Nevertheless, class II PI3Ks are known to be activated by chemokines (Turner et 

al., 1998) . This notion was confirmed in intestinal myofibroblasts in which both 

class II isoforms are activated by IP-10, but not in T-cells. The apparent 

discrepancy could be due to differences in signalling pathways employed by 

different cell types. This is emphasized by the fact that class IP13K  do not appear 

to be activated in our in vitro lipid kinase assays in intestinal myofibroblasts. 

However, the possibility that CXCR3-mediated signalling in human T-cells is
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coordinated in a different way involving class II PI3K should not be excluded. It is 

more than likely, that high activity basal levels in the lipid kinase assays are a 

consequence of the experimental procedures, resulting in masking activation of 

some of these molecules in both systems. Indeed, the high levels of p85 and 

p i 108 observed in the intestinal myofibroblasts, would lead someone to expect 

these cells to exhibit high basal levels of PKB phosphorylation, which is not the 

case. Moreover, if class I isoforms were not activated in this system it would be 

impossible to explain the chemokine induced and LY294002-dependent PKB 

phosphorylation.

Following phospho-tyrosine immunoprecipitation, we have found that class II 

PI3K activity is clearly increased in cells exposed to IP-10 albeit with different 

kinetics for the two isoforms. This difference suggests either differential 

compartmentalization of the class II PI3K isozymes or a difference in their 

mechanisms of regulation. Evidence for the former exists from reports that 

demonstrate that PI3K-C2a is concentrated in trans-Golgi network and is present 

in clathrin-coated pits (Domin et al., 2000), whereas PI3K-C2P was found in the 

nuclei of rat liver cells (Sindic et al., 2001).

Coupling of receptors to the class I p85/pl 10 PI3K is known to require interaction 

of src homology 2 (SH2) domains within the p85 regulatory subunit with specific 

phosphotyrosine-containing binding motifs (pYXXM; where pY represents 

phosphotyrosine) located in several growth factor receptors or adaptor molecules 

such as the insulin receptor substrate-1 (IRS-1). The mechanism by which the G 

protein-coupled CXCR3 could couple to class I PI3K is unclear, since there is no 

recognized binding motif for the p85 SH2 domains contained within the CXCR3
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sequence. G-protein coupled receptors activate the p85 /p ll0  isoform, by tyrosine 

kinase-regulated pathways (Ptasznik et al., 1996). It has also been proposed that 

activation of the p85/l 10 isoform may be mediated by binding of an adapter to the 

receptor and could be independent of hetero-trimeric G proteins (Luttrell et al., 

1999). CXCR3 signalling has been demonstrated to activate the tyrosine kinase 

Src in hepatic stellate cells (Bonacchi et al., 2001) providing a possible 

mechanism for class I activation in intestinal myofibroblasts.

The possible mechanisms that allow coupling of class II PI3K to receptors, are 

less clear. Binding of Ca2+ or phospholipid to the C2 domains can play a role in 

regulating protein function (Rizo and Sudhof, 1998), making this a potential 

candidate to explain chemokine regulation of class II PI 3-kinases. Indeed, there is 

evidence that this domain is involved in regulating the activity of class II PI 3- 

kinases because deletion of this domain in PI3K-C2(3 increases catalytic activity 

(Arcaro et al., 1998). However, it appears unlikely that a similar mechanism 

operates in this case since IP-10 stimulation does not result in calcium 

mobilization in intestinal myofibroblasts. Another possibility is by direct 

interaction of GPy subunits with class II PI3K, or indirectly via protein tyrosine 

kinases (PTK(s)). The latter has been proven downstream of the epidermal growth 

factor receptor (EGFR) and is supported in this study by the fact that IP-10 

stimulates the recruitment of PI3K-C2a and PI3K-C2|3 to phosphotyrosine 

complexes in intestinal myofibroblasts.

Characterization of PI3K-C2p has established that its N-terminus is responsible 

for the interaction with the activated EGFR. This sequence lacks phosphotyrosine 

binding motifs; instead it has 3 proline-rich regions that have the potential to bind
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SH3 containing adaptor molecules. The adaptor Growth binding protein 2 (Grb2) 

has been proposed as the link between C2(3 and EGFR. This protein consists of a 

single, phosphotyrosine binding SH2 domain flanked by two polyproline binding 

SH3 domains (Lowenstein et al., 1992). Recruitment of Grb2 to the EGFR 

following ligand addition has been described extensively, and its interaction is 

dependent upon 2 phosphotyrosine residues (Rozakis-Adcock et al., 1993). Grb2 

therefore couples pTyr-X-Asn motifs, recognized selectively by the SH2 domain, 

to signalling pathways that are recruited by the SH3 domains, and promote cell 

proliferation, growth, and survival. A variation on this theme is provided by 

mammalian docking proteins, such as Src homologue and collagen homologue 

(She), fibroblast growth factor substrate 2 (FRS2), and IRS-1 family members. 

These proteins all possess a phosphotyrosine-binding (PTB) domain that binds 

phosphorylated NPXY motifs on activated RTKs, and are phosphorylated on 

tyrosine on recruitment to the receptor. Their phosphorylation creates binding sites 

for the SH2 domains of cytoplasmic signalling proteins, including Grb2, and 

thereby potentiates the activation of specific biochemical pathways that stimulate 

growth and survival. The assembly of such large multi docking/adaptor protein 

complexes and the effectors that are bound to them may provide a mechanism for 

generation of signal diversity.

The hypothesis that different mechanisms are employed for the activation of 

different PI3K isoforms could be a reflection of the fact that different PI3K 

enzymes fulfil specific biological roles.
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MAPK activation in intestinal myofibroblasts

In intestinal myofibroblasts and in activated primary human T-cells, IP-10, I-TAC 

and Mig induce activation of the p44/p42 MAPK- as well as phosphorylation of 

the ERK downstream target, p90RSK. However, considerable differences exist 

between the two cell types. Similar to PKB, phosphorylation of ERK and p90 in 

intestinal myofibroblasts is delayed and more sustained compared to the 

phosphorylation events in the T-cells. It should be noted that the efficacy of 

chemokines is subject to myofibroblast and T-cell donor variability but the results 

are very similar in terms of kinetics.

The duration and amplitude of MAP kinase activation represents the balance 

between the activating signal and inactivation mechanisms. Both are influenced by 

negative feedback triggered by the activating signal upstream of the MAP kinase. 

Sustained activation has been shown to induce nuclear translocation of ERK-1 and 

2 (Lenormand et al., 1998; Brunet et al., 1999b).

Perhaps the most well defined signalling pathway from the cell membrane to 

ERK1 and ERK2 is that used by RTKs. Stimulation of these receptors by the 

appropriate ligand results in an increase in receptor catalytic activity and 

subsequent autophosphorylation on tyrosine residues. Phosphorylation of these 

receptors results in the formation of multi-protein complexes whose organization 

dictates further downstream signalling events. Quite often one of these functions 

is the activation of the monomeric G protein, Ras. This is achieved by the 

recruitment of adaptor proteins, such as She and Grb2, to the receptor through 

interactions between their SH2 domains and phosphotyrosine residues. The

186



Chapter 4: Results II

guanine nucleotide exchange factor (GEF) Son of Sevenless (Sos) then becomes 

engaged with the complex and induces Ras to exchange GDP for GTP. GTP- 

ligated Ras is capable of directly interacting with a number of effectors, including 

Raf isoforms, of which the best characterized is Raf-1. Signalling to ERKs by 

GPCRs also involves modulation of Raf activity; however, the mechanisms 

employed by these receptors are widely varied. The existence of multiple classes 

of G proteins, the ability of some receptors to activate more than one class of G 

protein, and cell type-specific mechanisms contribute to the diversity. CXCR3- 

ligand induced activation of ERK is thought to be Gai-dependent (Smit et al., 

2003). In a proposed model for this type of ERK activation, the Py subunits 

stimulate a Src family kinase activity in a PI3K y dependent manner (Lopez- 

Ilasaca et al., 1997). Src may then phosphorylate a tyrosine kinase receptor, 

PYK2, or FAK, to create SH2 domain binding motifs (Dikic et al., 1996; Della 

Rocca et al., 1999). Then, analogous to the signalling mechanism used by receptor 

tyrosine kinases described above, a She-, Grb2-, and Sos-containing complex is 

formed at the membrane to activate Ras and, in turn, Raf-1. ERK activation in cell 

types where PI3K llOy expression is low, as is probably the case for intestinal 

myofibroblasts, may be dependent on alternative means to activate Src or PYK2 

(Dikic et al., 1996). This PI3K-ERK cross talk is supported by the fact that 

LY294002 seems to have an effect on ERK phosphorylation in both cell types 

used in this study. p90 RSK phosphorylation appears to be more sensitive to the 

PI3K inhibitor probably reflecting the involvement of PDK-1 in this event.

Another MAPK, the p38 pathway was found to be phosphorylated in intestinal 

myofibroblasts in response to the CXC3 ligands. The stimulation of the p38 

family by GPCRs has been well documented, but their mechanism of activation is

187



Chapter 4: Results II

far from being fully understood. A few studies have shown that Py dimers activate 

p38 (Yamauchi et al., 1997), and two PTKs, Bruton's tyrosine kinase (Btk) (Bence 

et al., 1997) and Src (Nagao et al., 1998), have also been implicated in this 

mechanism. Another possible mechanism is through the small GTP binding 

proteins Rac and Cdc42 through their activation of p21 -activated kinase which 

have been implicated as upstream regulators of p38 in transformed cells (Zhang et 

al., 1995; Bagrodia et al., 1995). Furthermore, MAPKK-3, MAPKK-4, and 

MAPKK-6 have been shown to phosphorylate and activate p38 (Derijard et al., 

1995; Raingeaud et al., 1996). It is presently unclear whether there is a role for PI 

3K in regulation of the p38 MAPK pathway. Studies in neutrophils demonstrate 

either partially dependent (Krump et al., 1997) or entirely PI 3K-independent p38 

MAP kinase activation (Knall et al., 1997). From our results it appears that in 

intestinal myofibroblasts, CXCR3 ligand-mediated activation of p38 MAP kinases 

requires PI3K activity.

MAPK are believed to play a crucial role in many aspects of immune mediated 

inflammatory responses. The p44 and p42 ERK 1/2 mediate responses mainly to 

mitogenic stimuli, whereas p38 mediate responses to cellular stress. However, 

very few studies of activation of the MAPK pathways exist for intestinal 

myofibroblasts. A possible role for these kinases emerges from a study in hepatic 

myofibroblasts. Whereas p38 MAP kinase mediates PDGF-BB-stimulated 

migration in hepatic myofibroblasts, ERKs mediate PDGF-induced proliferation, 

but not migration (Tangkijvanich et al., 2002). A similar role for the CXCR3 

ligands and the importance of these pathways in our system would require further 

investigation.
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Is CXCR3 responsible for the signals in intestinal myofibroblasts?

CXCR3-mediated signalling has been found to be sensitive to pertussis toxin in all 

studies to date. Pertussis toxin is a potent inhibitor of all three characterized Gi 

subunits, and blocks most chemokine-mediated chemotactic responses in 

leukocytes. However in intestinal myofibroblasts, pertussis toxin appeared to have 

no effect on IP-10-mediated signalling (Figure 4.24). Pertussis toxin-insensitive 

heterotrimeric G proteins include members of the G 12 and Gq families and one Gi 

family member, i.e. Gz which is predominantly expressed in neurons, platelets 

(Casey et al., 1990).

A potentially important biochemical property of at least two pertussis toxin- 

resistant G-proteins is their ability to be phosphorylated. Gz and G 12 have been 

shown to be excellent in vitro substrates for PKC (Kozasa and Gilman, 1996). 

Members of all three major subtypes of PKC (i.e. classical, calcium-independent 

and atypical) are able to phosphorylate these two G-proteins. While the biological 

significance of this phosphorylation is unclear, phosphorylation of both Gz and 

G 12 blocks their interaction with G0y (Fields and Casey, 1995; Kozasa and 

Gilman, 1996), suggesting that this phosphorylation is a regulatory mechanism for 

amplifying signalling through these Ga subunits by preventing subunit 

reassociation. This mechanism could explain the sustained signalling observed in 

intestinal myofibroblasts compared to the T-cells.

In addition to the identification of the pertussis toxin resistant G-proteins, many 

studies have also characterized the specific signalling pathways in which each 

participates. Signalling experiments through Gq have demonstrated that it can 

directly stimulate PLC-p isoenzymes in in vitro assays (Taylor et al., 1991). There
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is evidence to suggest that this might link Gq with the MAPK pathway (Buhl et 

al., 1995) even though other reports have proposed a more direct involvement.

Since G 12 -coupled receptors appear to also activate Gq family members, it has 

been difficult to selectively study the cellular signalling processes regulated by 

receptor-mediated activation of G 12. G-proteins of the G 12 family, e.g. G 12 and 

G 1 3 , have been demonstrated to be involved in the induction of the platelet shape 

change. This is mainly based on the finding that in Gq-deficient platelets in which 

thromboxane A 2 (TXA2) receptors only couple to G 12 and G 1 3 , a rapid shape 

change is observed when upon receptor stimulation. This effect appears to be 

mediated by the Rho/Rho kinase pathway (Klages et al., 1999). This is further 

supported by the fact that G 12 proteins have also been linked to the regulation of 

the actin cytoskeleton. Mutationally activated G 12 proteins induce actin 

polymerization and focal adhesion when transfected into Swiss 3T3 cells (Buhl et 

al., 1995).

In chemokine signalling, the opposite biological activities mediated by CXCR3-A 

and CXCR3-B are thought to reflect coupling of the two receptors to different 

signal transduction pathways. In contrast to CXCR3-A transfectants, in which 

pertussis toxin treatment inhibits proliferation, pertussis toxin had no effect on the 

proliferation and survival of CXCR3-B transfectants (Lasagni et al., 2003). 

Multifunctional coupling is common to many GPCRs and has been previously 

described for the putative IP-10 receptor (Soejima and Rollins, 2001). Together, 

the lack of calcium influx in response to the CXCR3 ligands (except for I-TAC), 

and pertsussis toxin insensitivity suggest the coupling of the receptor present in 

intestinal myofibroblasts to other than Gi types of G proteins. This receptor could
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either be CXCR3, or a modified CXCR3, or finally a completely different 

receptor. Because intestinal myofibroblasts express mRNA for CXCR3, we 

favour the possibility that the signalling events are mediated by a CXCR3 type 

receptor, through a mechanism summarized in Figure 4.28.

ERK 1/2

p90RSK

Figure 4.28 Model of signalling pathways induced by IP -10, I-TAC and Mig 

in human intestinal myofibroblasts. The solid lines represent pathways, which 

have been demonstrated in this section to be involved in IP-10, I-TAC and Mig 

mediated responses. Dotted lines provide potential pathways that are known to 

occur in different systems as outlined in the discussion section. IP-10 and Mig 

bind and signal through the same receptor, possibly CXCR3. I-TAC could be 

operating via the same receptor, a different receptor or both.
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5 Results III

CXCR3 ligand-mediated effects on actin polymerisation in 

primary intestinal myofibroblasts

5.1 Background

Amongst the most impressive effects of chemokines on leukocytes are the

morphological changes of the cells: the cytoskeleton is rearranged and the cell

becomes polarized. An early event in the leukocyte polarization induced by

chemoattractants is a change in filamentous actin (F-actin) distribution from a

radial symmetry around the cell to its concentration at a particular region,
- *  •*

resulting in the switch from a spherical to a polarized shape. Then integrin- 

mediated focal adhesions are formed, and the cell binds and detaches from the 

substrate in a coordinated manner with extension and retraction of pseudopods to 

execute the directional migration (Bokoch, 1995; Ward et al., 1998).

Cell migration is not restricted to leukocytes but involves almost every cell type. 

For example, fibroblast adhesion and migration, albeit relatively slow compared 

to T-cells (Niggemann et al., 1997), are of critical importance to tissue 

homeostasis, wound healing, fibro-proliferation and tumour growth, and are 

therefore tightly controlled. In most cases, this dynamic process requires 

coordinated changes in the temporal and spatial organization of the actin 

cytoskeleton which are differentially modulated by diverse extracellular stimuli 

(Lauffenburger and Horwitz, 1996; Horwitz and Newsome, 1999; Ridley et al., 

2003).
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There are however some exceptions. PDGF-BB, one of strongest 

chemoattractants, stimulates migration of hepatic myofibroblasts through 

alterations in the actin cytoskeleton (Tangkijvanich et al., 2002). On the other 

hand, PDGF drives vascular smooth muscle cell (VSMC) motility without 

detectable effect on actin cytoskeleton (Abedi et al., 1995). These observations 

suggest that chemoattractant-induced movement might occur in actin 

reorganization -relevant or irrelevant fashions.

Based on this evidence, in order to determine whether the receptors that respond 

to IP-10, I-TAC and MIG on human primary intestinal myofibroblasts are 

functional, we examined these cells for actin re-organization in response to the 

CXC3 ligands.

5.2 Results

CXCR3 ligands induce F-actin polymerisation in intestinal myofibroblasts

Stellate-transformed myofibroblasts become activated in response to many 

fibrogenic cytokines like IL-1, TNF-a, PDGF, fibroblast growth factor (FGF), and 

TGF- p (Kovacs and DiPietro, 1994), typified by re-organization of actin into 

stress fibers. It has also been demonstrated, that chemokine ligand-receptor 

interactions trigger intracellular actin polymerisation in leukocytes (Burger et al., 

1999) a process which is pre-requisite for cell motility and migration.

In light of this knowledge, the effect of the CXCR3 ligands on actin 

polymerisation was assessed. Intestinal myofibroblasts were treated with IP-1 0 ,1- 

TAC or MIG over a short time period of up to 60 minutes fixed, permeabilized
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and finally stained with TRITC conjugated phalloidin and images were analysed 

on a confocal microscope.

Consistent with the findings in leukocytes, IP-10, I-TAC and MIG induced a 

transient increase in intracellular F-actin as indicated by the brighter red staining 

of the stimulated cells compared to cells treated with a vehicle control (Ctrl) 

(Figures 5.1-5.3). This increase was accompanied by a dramatic induction of 

stress fiber formation in intestinal myofibroblasts and a redistribution of F-actin to 

the cell periphery and polarization to the leading edge, resulting in the appearance 

of nuclear sparing. F-actin redistribution was observed as early as 2 min after 

addition of all three chemokines and peaked at thirty minutes following 

stimulation, before receding to basal conditions.

Effect of latruncillin B and Y27632 on chemokine-induced F-actin 

polymerisation in intestinal myofibroblasts

Latrunculins are novel marine compounds isolated from a Red Sea sponge that 

alter cell shape, disrupt microfilament organization and microfilament-mediated 

processes. They also inhibit polymerisation of actin by binding to monomeric G- 

actin in a 1:1 ratio (Spector et al., 1989; Yarmola et al., 2000). Latrunculins are 

frequently used to establish the effects of F-actin disassembly on particular 

physiological functions.

Intestinal myofibroblasts were pre-treated with various concentrations of 

latruncilin B for one hour before the addition of the chemokines at 10 nM for 

thirty minutes. The cells were then fixed, permeabilized and stained with TRITC 

conjugated phalloidin that recognizes polymerised actin (Figure 5.4).
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Latruncilin B at concentrations as low as 1 pM not only completely inhibited 

chemokine induced actin polymerisation but also completely blocked the basal 

level of actin polymerisation observed in these cells.

RhoA, a small, monomeric G-protein, is a member of the Rho subfamily of the 

Ras family of G-proteins and its effector Rho dependent-kinase (ROCK) has been 

identified as upstream components of a major pathway involved in actin 

cytoskeleton-linked morphological changes. A relatively specific Rho kinase 

inhibitor, Y27632, developed by Narumiya and colleagues (Uehata et al., 1997) is 

a particularly useful reagent for identifying mechanisms mediated by Rho kinases. 

Rho works as a molecular switch for the induction of stress fibers in cultured cells 

(Ridley and Hall, 1992) and ROCK is a Rho effector in this process (Amano et al., 

1997).

The possibility that Y27632 could inhibit Rho-induced formation of these 

structures in cultured cells was therefore tested. Intestinal myofibroblasts were 

pre-treated with various concentrations of Y27632 for one hour at various 

concentrations before the treatment with the chemokines for an additional thirty 

minutes at 10 nM (Figure 5.5). Treatment of cells with Y27632 results in a very 

different morphology of the cells compared to the one seen with latrunculin B. In 

this case, at concentrations of lOpM and above, Y27632 abolished stress fibers 

induced by all three chemokines as well as the fibers observed basally. However, 

in contrast to latrunculin B, it failed to inhibit actin polymerisation as staining of 

the cells is still very visible even at the highest concentrations of this inhibitor.
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Effect of pertussis toxin on chemokine induced F-actin re-organization in 

intestinal myofibroblasts

As mentioned earlier both pertussis toxin-sensitive and pertussis toxin-insensitive 

signalling through chemokine receptors in lymphocytes have been reported. The 

previous finding that the CXCR3 ligands induced signals were all insensitive to 

pertussis toxin suggests that the receptor is coupled in intestinal myofibroblasts to 

G proteins other than Gaj. However there have been reports of systems which 

display both pertussis toxin sensitive and in-sensitive chemotactic responses 

(Shibata et al., 2002; Jimenez-Sainz et al., 2003), suggesting that chemokines 

could elicit their various biological functions through distinct G-proteins.In view 

of this the effect of pertussis toxin on chemokine induced actin polymerisation 

and stress fiber formation was investigated.

Intestinal myofibroblasts were subjected to staining for F-actin following 

incubation with pertussis toxin for 16 hours at 100 ng/ml and treatment with the 

chemokines for thirty minutes at 10 nM (Figure 5.6). In agreement with previous 

findings pertussis toxin had no visible effect on either actin polymerisation or 

stress fiber induction.

Effect of PI3K inhibition on chemokine induced F-actin re-organization in 

intestinal myofibroblasts

The mechanisms through which Rho GTPases exert their effects are not 

completely elucidated, although a great number of effectors have been described 

(Hall, 1998). The understanding of the connection between PI3K and Rho 

GTPases remains fragmentary. For instance, PI3K apparently does not activate 

Rac in T lymphocytes (Reif and Cantrell, 1998). Nevertheless, PI3K inhibitors 

abolish polarization and chemotaxis (Turner et al., 1995b). Two distinct pathways
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for F-actin polymerisation during chemoattractant-stimulated pseudopd extension, 

regulated by Rho family proteins, have also been proposed to exist in human 

neutrophils (Chodniewicz and Zhelev, 2003a). One of them is dependent on PI3K 

whereas the other is independent. Therefore, it is feasible that GTPase-induced 

effects could be mediated by multi-molecular complexes and not by linear 

pathways of biochemical cascades.

The involvement of PI3K on chemokine-induced F-actin re-organization in 

intestinal myofibroblasts was therefore explored given that we have showed that 

this pathway is activated in this system. Cells were pre-treated for thirty minutes 

with the PI3K inhibitor LY294002 at various concentrations before adding the 

chemokines for another thirty minutes at 10 nM. Cells were subsequently fixed, 

permeabilized and stained with TRITC conjugated phalloidin for polymerised 

actin and images were visualised on a confocal microscope (Figure 5.7).

Both actin polymerisation and stress fiber formation were both found to be PI3K 

independent, as LY294002 even at concentrations higher than the one normally 

used to inhibit PI3K appeared to have no effect on these processes.
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Ctrl

IP-10 1 0 ’ IP-10 3 0 ’ IP-10 6 0 ’

Figure 5.1 IP-10 induces F-actin polymerisation and re-organization in 

intestinal myofibroblasts.

0 .2  x  10 primary intestinal myofibroblasts were plated on coverslips in 35mm 

plates and cultured for 48 hours. Cells were then fixed in 1ml parafolmadehyde 

/glutaraldeyhde (ctrl) or stimulated with I P - 10 (1 0  nM) for indicated time points, 

fixed and then stained as described in Methods and Materials with a phalloidin- 

TRITC conjugated antibody, at a final concentration of 0.1 pg/ml, that recognizes 

polymerised actin. Results are from single experiments representative of 3 

replicate experiments.
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Ctrl

Figure 5.2 I-TAC induces F-actin polymerisation and re-organization in 

intestinal myofibroblasts.

0.2 x 106 primary intestinal myofibroblasts were plated on coverslips in 35mm 

plates and cultured for 48 hours. Cells were then fixed in 1ml parafolmadehyde 

/glutaraldeyhde (ctrl) or stimulated with I-TAC (10 nM) for indicated time points, 

fixed and then stained as described in Methods and Materials with a phalloidin- 

TRITC conjugated antibody, at a final concentration of 0.1 pg/ml, that recognizes 

polymerised actin. Results are from single experiments representative of 3 

replicate experiments.
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MIG l 5 M IG  2 5 MIG 5s

MIG 10’ M I G 3 0 5 MIG 605

Figure 5.3 Mig induces F-actin polymerisation and re-organization in 

intestinal myofibroblasts.

0.2 x 106 primary intestinal myofibroblasts were plated on coverslips in 35mm 

plates and cultured for 48 hours. Cells were then fixed in 1ml parafolmadehyde 

/glutaraldeyhde (ctrl) or stimulated with Mig (10 nM) for indicated time points, 

fixed and then stained as described in Methods and Materials with a phalloidin- 

TRITC conjugated antibody, at a final concentration of 0.1 pg/ml, that recognizes 

polymerised actin. Results are from single experiments representative of 3 

replicate experiments.
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MIG TMIG 30 ' w  
Latrun 0.1 uM
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Figure 5.4 Effect of Latruncillin B on chemokine induced F-actin re

organization in intestinal myofibroblasts.

0.2 x 106 primary intestinal myofibroblasts were plated on coverslips in 35mm 

plates and cultured for 48 hours. Cells were then fixed in 1ml parafolmadehyde/ 

glutaraldeyhde (ctrl) or stimulated with IP-10, I-TAC or MIG (all at 10 nM) 10 in 

the presence or absence of pre-treatment with the actin polymerisation inhibitor 

Latruncillin B (0.1-10 nM for 30 minutes) and then fixed. Cells were stained as 

described in Methods and Materials with a phalloidin- TRITC conjugated 

antibody, at a final concentration of 0.1 pg/ml. that recognizes polymerised actin. 

Results are from single experiments representative of 3 replicate experiments.
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Figure 5.5 Effect of Y27632 on chemokine induced F-actin re-organization in 

intestinal myofibroblasts.

0.2 x 106 primary intestinal myofibroblasts were plated on coverslips in 35mm 

plates and cultured for 48 hours. Cells were then fixed in 1ml parafolmadehyde/ 

glutaraldeyhde (ctrl) or stimulated with IP-10, I-TAC or MIG (all at 10 nM) in the 

in the presence or absence of pre-treatment with the Rho kinase inhibitor Y27632 

(1-30 nM for 30 minutes) and then fixed. Cells were stained as described in 

Methods and Materials with a phalloidin- TRITC conjugated antibody, at a final 

concentration of 0.1 pg/ml. that recognizes polymerised actin. Results are from 

single experiments representative of 3 replicate experiments.
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Figure 5.6 Effect of pertussis toxin on chemokine induced F-actin re 

organization in intestinal myofibroblasts.

0.2 x 106 primary intestinal myofibroblasts were plated on coverslips in 35mm 

plates and cultured for 48 hours. Cells were then fixed in 1ml parafolmadehyde/ 

glutaraldeyhde (ctrl) or stimulated with IP-10, I-TAC or MIG (all at 10 nM) 10 in 

the presence or absence of pre-treatment with the Ga; inhibitor Pertussis Toxin 

(100 ng/ml for 16 hours) and then fixed. Cells were stained as described in 

Methods and Materials with a phalloidin- TRITC conjugated antibody, at a final 

concentration of 0.1 jig/ml. that recognizes polymerised actin. Results are from 

single experiments representative of 3 replicate experiments.
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Figure 5.7 Effect of LY294002 on chemokine induced F-actin re-organization 

in intestinal myofibroblasts.

0.2 x 106 primary intestinal myofibroblasts were plated on coverslips in 35mm 

plates and cultured for 48 hours. Cells were then fixed in 1ml parafolmadehyde/ 

glutaraldeyhde (ctrl) or stimulated with IP-10, I-TAC or MIG (all at 10 nM) 10 in 

the presence or absence of pre-treatment with the PI3K kinase inhibitor 

LY294002 (1-10 nM for 30 minutes) and then fixed. Cells were stained as 

described in Methods and Materials with a phalloidin- TRITC conjugated 

antibody, at a final concentration of 0.1 pg/ml. that recognizes polymerised actin. 

Results are from single experiments representative of 3 replicate experiments.
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5.3 Summary of findings

•  IP-10, I-TAC and Mig induce actin polymerisation and stress fiber

formation in primary intestinal myofibroblasts

• Chemokine induced stress fiber formation, but not actin polymerisation in

primary intestinal myofibroblasts is ROCK dependent

• IP -10, I-TAC and Mig induced actin polymerisation and stress fiber

formation in primary intestinal myofibroblasts is not facilitated by a Gai 

dependent mechanism

•  IP-10, I-TAC and Mig induced actin polymerisation and stress fiber

formation in primary intestinal myofibroblasts is at least class I PI3K 

independent.

5.4 Discussion

Regardless of the identity of the receptor, it appears to be functional as 

demonstrated by the signaling events presented in the previous chapter. Moreover, 

all three CXCR3 ligands were able to promote actin polymerization and enhance 

formation of stress fibers in intestinal myofibroblasts. Transforming growth factor 

p i (TGF-pi), is a cytokine known to have a similar effect on these cells 

(Simmons et al., 2002). TGF-pi is a well-established mediator of wound healing 

and fibrosis in a number of organs, including skin, lungs, and the liver. In the 

intestine, however, increased expression of TGF-P1 accompanies ulcerative colitis 

UC, which generally is not associated with fibrosis, and CD, where fibrosis is a

205



Chapter 5: Results III

common complication (Babyatsky et al., 1996). The sequence of cellular events 

that underlie fibrosis in the intestine is not well defined due, in part, to the 

complexity of mesenchymal cell subtypes. Subepithelial myofibroblasts and 

enteric smooth muscle cells both are smooth muscle actin positive, making it 

difficult to trace activated myofibroblasts during intestinal inflammation 

(Pucilowska et al., 2000). Nonetheless, our findings indicate that IP-10, I-TAC 

and Mig could profoundly influence the phenotype of intestinal myofibroblasts.

This finding is somewhat expected since chemokines are known to play a major 

role in re-organization of the actin cytoskeleton during cell motility (Sanchez- 

Madrid and del Pozo, 1999). The best studied effects of chemokines in 

morphological changes are in leucocytes, where binding of the chemokine to the 

receptor results in cytoskeleton rearrangement, integrin-mediated focal adhesions 

are formed, and the cell binds and detaches from the substrate in a coordinated 

manner with extension and retraction of pseudopods to execute the directional 

migration (Ward et al., 1998). An early event in this leukocyte polarization 

induced by chemoattractants is a change in filamentous F-actin distribution from a 

radial symmetry around the cell to its concentration at a particular region, 

resulting in the switch from a spherical to a polarized shape (Coates et al., 1992).

Fibroblasts are much less characterized in terms of migratory responses. In fact 

there is only one report about intestinal myofibroblast migration, which 

demonstrated that the growth factors PDGF-AB, insulin growth factor (IGF), EGF 

and TGF-pi stimulate the migration of these cells (Leeb et al., 2002). The 

identification of further physiologically relevant migration inducing factors is still 

required to elucidate the network of interactions and the complex mechanisms
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involved in intestinal wound healing or fibrosis. The ability of the CXCR3 ligands 

to induce actin polymerisation in this system suggests a possible role for them in 

this process.

ROCK in chemokine induced actin polymerisation in intestinal 

myofibroblasts

Within a cell, actin polymerisation is tightly regulated by a host of actin- 

associated proteins. As actin is involved in diverse cellular phenomena and 

signalling pathways, identifying the biochemical steps that lead to force 

generation has been difficult. Nevertheless it is now well established that the 

dynamics of actin cytoskeleton are closely regulated by the activation of members 

of the Rho GTPase family, including RhoA and R acl, and their activities control 

cell migration and adhesion. Rho in particular has been associated with stress 

fiber formation (Ridley and Hall, 1992) and cell contractility (Burridge and 

Chrzanowska-Wodnicka, 1996). Rho acts on downstream effectors to exert the 

above actions. Several proteins have been isolated as putative Rho effectors on the 

basis of their selective interaction with the GTP-bound form of Rho. These 

include the ROCK family comprised of pl60ROCK (ROCK-I) (Ishizaki et al., 

1996) and ROKa/Rho-kinase/ROCK-II (Leung et al., 1995), protein kinase N 

(PKN) (Amano et al., 1996), citron kinase (Madaule et al., 1998) and mDia 1 and 

mDia 2 (Watanabe et al., 1997; Alberts et al., 1998). Among them, the ROCK 

family of kinases has been shown to be involved in Rho-induced formation of 

actin stress fibers and focal adhesions (Leung et al., 1996; Amano et al., 1997).

The synthesis of a specific inhibitor of the ROCK family of kinases, Y27632 

(Uehata et al., 1997) has proven to be an important tool in assessing the role of 

these kinases in mediating changes in the actin cytoskeleton. Indeed, in agreement
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with the previously established importance of Rho for actin stress fiber formation 

pre-treatment of intestinal myofibroblasts with lpM  Y27632 abolishes chemokine 

induced stress fiber formation resulting in a phenotype very similar to the one 

observed in unstimulated cells. At higher concentrations this inhibitor resulted in 

increased polymerised actin as indicated by the intensity of the fluorescence. 

However no stress fibers are visible and actin appears to be concentrated in 

speckles in areas around the nucleus. The physiological importance of this result 

is unclear, but is probably not related to ROCK inhibition since at concentrations 

higher than 5 pM, Y27632 is known to inhibit other kinases (Davies et al., 2000).

PI3K in chemokine induced actin polymerisation in intestinal myofibroblasts

Regulation of actin polymerisation, downstream from GPCRs, is thought to 

depend on PI3K activation and Ptdlns3,4,5-P3 production, and involves the 

activation of PKB and the GTPases Cdc42 and Rac2 (Pollard et al., 2000). Cdc42 

and Rac2 form complexes with the WASP family proteins and the Arp2/3 

complex to promote the formation of free barbed ends which in turn initiate 

cytoskeletal actin polymerisation in the lamella region. This mechanism of actin 

polymerisation provides a useful framework for the understanding of the 

signalling of actin dynamics in the living cell during motility; however, it is far 

from complete. Recently an alternative mechanism, which is PI3K-independent, 

for actin polymerisation in human neutrophils has been proposed (Chodniewicz 

and Zhelev, 2003b). Our findings are in agreement with the latter mechanism 

since LY294002 did not appear to have any effect on IP-10, I-TAC or Mig- 

induced actin polymerisation. Further investigation is required to determine 

involvement of these proteins in actin polymerisation in intestinal myofibroblasts.
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Moreover, since LY294002 does not inhibit class II PI3K, a possible role for 

PI3K C2a and or PI3KC20 in actin polymerisation and stress fiber formation 

should not be excluded.

Effect of pertussis toxin in chemokine induced actin polymerisation in 

intestinal myofibroblasts

A plethora of studies examining various cellular responses have revealed that 

agonist activation of heterotrimeric G protein-linked receptors can result in 

signalling to the small G-protein Rho. An intriguing question that remains to be 

answered is how GPCRs signal to and activate Rho. Both the nature of the G 

protein subunits that mediate this response and the molecular mechanisms 

involved are under intensive study. Even though chemokine receptors, which are 

Gai coupled receptors, are known to be able to activate Rho the majority of 

GPCR-induced, Rho-mediated effects on the cytoskeleton are pertussis toxin 

insensitive (Sah et al., 2000). Consistent with the signalling events, actin 

polymerisation and stress fiber formation were found to be insensitive in intestinal 

myofibroblasts.

Most of the GPCRs agonists shown to activate Rho were thought to be coupled to 

Gq-mediated signalling pathways. However there is evidence to suggest that G 

proteins of the pertussis toxin-insensitive G 12/13 family also are able to control 

Rho-dependent stress fiber formation. Microinjection of either G0112 or G0113 into 

fibroblasts resulted in stress fiber formation (Buhl et al., 1995). Stimulation of 

Gi2/i3-dependent MLC phosphorylation and platelet shape change by thromboxane 

A2 receptors are known to be dependent on both Rho and Rho kinase (Klages et 

al., 1999). Because coupling to Gq leads to activation of PKC, it is likely that this
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kinase might regulate Rho function. PKC also has been shown to phosphorylate 

G otland G an (Offermanns et al., 1996) providing the possibility of an additional 

level of Gq regulation of Rho signalling. Stress fiber formation signalling events 

downstream of the putative receptor(s) for IP-10, I-TAC and Mig are summarized 

in Figure 5.8.

IP-10
I-TAC

RhoA *'"■

MLC
LosphataseROCKCdc42 Rac

LIMKWASP WAVE

A PAK
Stress fibersActin

polymerization

Figure 5.8 Proposed model of signalling pathways induced by IP-10, I-TAC 

and Mig in human intestinal myofibroblasts leading to actin polymerisation

and stress fiber form ation. The solid lines represent pathways, which have been 

demonstrated in this section to be involved in IP-10, I-TAC and Mig mediated 

stress fiber formation. Dotted lines provide additional potential pathways for 

stress fiber formation and actin polymerisation. Abbreviations: Arp2/3, actin 

related proteins 2/3 complex; MLC, myosin light chain; LIMK, LIM kinase, PAK, 

p21 activated proteins; RhoA Ras homology A; WASP, Wiskott-Aldrich 

syndrome proteins; WAVE, WASP family Verprolin-homologous proteins.
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6 Overall discussion and future directions

6.1 Discussion

Intestinal inflammation has traditionally been viewed as a process in which 

effector immune cells are the key mediators while the other mucosal cell types 

have been regarded as passive bystander targets. Progress in understanding the 

process of intestinal inflammation has led to a much broader and more integrated 

picture of the various mucosal components, a picture in which cytokines, 

chemokines, growth factors and adhesion molecules act as functional mediators. 

The existence of specialized communication pathways between non-immune and 

immune cells is now well documented, in which abnormal epithelial cell mediated 

T-cell activation during inflammation has attracted the most attention. Data 

presented here suggest that intestinal myofibroblasts may act in a similar way, 

since they are capable of expressing various co-stimulatory molecules. 

Interestingly, B7.1 expression in intestinal myofibroblasts occurs under the same 

conditions that favour B7.2 expression by intestinal epithelial cells, implying a 

complementary role for these two cell types in regulating activation of T-cells in 

the inflamed gut.

The importance of mesenchymal cells in morphogenetic processes and in the 

maintenance of the tissue integrity in the gut is now well established and 

underlined by the observation that these cells express important growth factors 

whose receptors are found on the epithelial cell surface. This study has provided 

evidence to support the notion that this cross-talk between these cells might be 

extended in order to encompass more interactions, such as chemokine-chemokine 

receptor expressed on the surface of the cells, adding to the emerging evidence
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that all cell types populating the mucosa have an active role in intestinal immunity 

and inflammation. A receptor that binds the chemokines secreted by intestinal 

epithelial cells seems to be expressed on intestinal myofibroblasts, and this 

receptor was shown to activate various signalling pathways in these cells and 

markedly alters their phenotype. Myofibroblasts appear to be an integral part of a 

trimeric model consisting of intestinal myofibroblasts, T-cells and colonic 

epithelial cells that may have a role in modulating physiologic and pathologic 

mucosal inflammation.

Intestinal lumen

IP-10 I-TAC

epithelial cells

TNFa

myofibroblasts
T-cells

Figure 6.1 Trim eric model of interactions between myofibroblasts, epithelial 

cells and T-lymphocytes in the intestine. Pro-inflammatory cytokines induce 

expression of co-stimulatory molecules (represented in yellow) on intestinal 

myofibroblasts and colonic epithelial cells that interact with receptors of the 

CD28 family (represented in blue) on the surface of gut homing T-cells. IP-10, I- 

TAC and Mig produced by the intestinal epithelium chemoattarcts T-cells 

expressing CXCR3 which have to compete with myofibroblasts for chemokine 

binding.
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An impairment of the integrity of the mucosal epithelial barrier is commonly 

observed in the course of various intestinal disorders including IBD, celiac disease 

and intestinal infections. If the wound is deep, the sub-epithelial tissues that 

contain interstitial substance, blood vessels, nerves, and fibroblasts must also be 

reconstituted. Wound healing is an interactive process that involves soluble 

mediators, extracellular matrix components, resident cells and infiltrating 

leukocyte subtypes, which participate differentially in the classically defined three 

phases of wound healing: inflammation, tissue formation, and tissue remodelling. 

Understanding the network of wound healing requires a profound analysis of all 

soluble mediators and adhesion factors involved in the recruitment and trafficking 

of the different cell types during the inflammatory reaction. The presence of a 

receptor on intestinal myofibroblasts, which binds T-cell chemoattractants is 

likely to have important implications in the cellular milieu in the lamina propria. 

Various studies have demonstrated the important role of chemokines for the 

accompanying inflammatory reaction as well as for repair processes during wound 

healing. However, the importance of chemokines during pathological wound- 

healing conditions has not been investigated and needs particular attention. It 

appears conceivable that chemokines could be exploited therapeutically, as major 

adjuvants to stimulate wound healing provided that the timely and spatially 

different expression patterns, as detected in physiological wound healing, are 

considered adequately. Therefore, the orchestrated processes of wound healing in 

the gastrointestinal tract with respect to treatment would certainly require a highly 

complex and sophisticated approach and should target chemokines as important 

traffic lights for migration of resident and inflammatory cells as well as essential 

regulators of repair mechanisms. Based on evidence in this study, chemokines
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agonists and/or antagonists targeted against the CXCR3 ligands and their 

receptors could provide potential therapeutic targets in the treatment of 

gastrointestinal diseases.

6.2 Future directions

• The lack of commercially available antibodies at the time of this study

against the various B7 family members limited the investigation of the 

expression of these molecules in intestinal myofibroblasts to the mRNA 

level. Since then antibodies have become available and should allow 

detection at the protein level and most importantly confirm cell surface 

expression of these molecules.

• The functionality of the B7 family members in intestinal myofibroblasts 

has not been tested. This can be achieved by stimulating T-cells that 

express the receptors for the B7 molecules by co-sedimenting them with 

activated intestinal myofibroblasts, and assessing the effect it has in 

downstream biochemical events in those cells.

• Assessment of the role of ICOS expression would be of great interest. 

ICOS appears to co-stimulate distinct effector functions in different 

immune responses, depending on factors such as the nature of the antigen 

encountered and localization and chronicity of the immune response. For 

example in the severe combined immunodeficiency transfer colitis model, 

ICOS expression is strongly associated with IFN-y and IL-2 production. It 

would therefore be very interesting to determine whether intestinal
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myofibroblasts expressing ICOS are capable of producing the same or 

different pattern of cytokines.

•  Of equal importance would be to identify the signalling pathways 

downstream of ICOS in intestinal myofibroblasts. The ICOS cytoplasmic 

tail contains a YMFM motif that binds the p85 subunit of PI3K analogous 

to the YMNM motif of CD28. It will be essential therefore to examine in 

detail the activation of the PI3K/PKB3 pathway as well as activation of the 

various MAPK signalling pathways in response to ICOS ligation.

• A question that remains unanswered is the identity of the receptor 

responsible for eliciting the signaling events in intestinal myofibroblasts. 

Advances in small interfering RNA (SiRNA) directed against CXCR3 

should all allow to verify if this is the receptor or not. Furthermore, the use 

of blocking peptides against the various G-protein subunits could 

determine the nature of the G-proteins that couple to this receptor. Finally 

the use of inhibitors like PD98059 (MEK inhibitor), RO320432 (PKC 

inhibitor) will help further elucidate the signalling events in intestinal 

myofibroblasts.

•  Further analysis is required to resolve the exact involvement of the 

different PI3K isoforms in the different signaling events. SiRNA could 

again be a useful tool to overcome the absence of PI3K isoform specific 

inhibitors.

• Studies in other systems suggest that other chemokines and chemokine 

receptors are likely to be expressed in intestinal myofibroblasts. Moreover, 

it would be imperative to determine expression of chemokine receptors 

and their ligands from patients with IBD versus normal controls. Signal
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transduction events downstream of those receptors can be determined and 

compared to our knowledge of chemokine signalling in other cell types. 

Regulation of expression of these receptors by pro-inflammatory cytokines 

should also be addressed.

• Even though, actin polymerisation is required it is not sufficient for cell 

migration. Additional chemotactic experiments need to be carried out in 

order to establish a role for the CXCR3 ligands in the motility of intestinal 

myofibroblasts.

• The effect of the chemokines on production of various ECM proteins by 

intestinal myofibroblasts including type IV collagen and p i- and y l- 

laminin and fibronectin should be examined to determine a possible role 

for these proteins in intestinal fibrosis.
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