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Summary

Nitric oxide (NO) and superoxide (0 2 ’’) react rapidly with each other to form 

peroxynitrite (ONOO), a highly reactive species, implicated in tissue injury of 

numerous diseases. ONOO' causes nitration o f  tyrosine leading to 3-nitrotyrosine 

(3-NT), which is considered a marker o f formation o f ONOO' and other reactive 

nitrogen species (RNS) in situ. Unexpectedly, 3-NT was recently identified in blood 

vessels o f structurally normal human synovium, suggesting a physiological role for 

ONOO' in joints. Xanthine oxidoreductase (XOR) may contribute to this ONOO' 

formation, since it can generate both NO and O2 *' during xanthine metabolism, is 

expressed in human synovium and shares anti-microbial properties with ONOO'.

The aim o f this present work was to confirm and characterize 3-NT in normal joint 

tissue in non-primate species and to determine the enzymatic origin o f NO, preceding 

3-NT formation. A major hypothesis to be tested was that XOR contributes to articular 

3-NT formation in normal and inflamed joints.

Using immunohistochemical and mass-spectrometric techniques on synovial tissue from 

rats, mice and cattle, 3-NT was detected in the normal synovial vasculature and hyaline 

cartilage chondrocytes, developing soon after birth. Mice lacking nitric oxide synthase 1, 

2 or 3 had unchanged 3-NT immunoreactivity. Rat joints displayed biochemical and 

histochemical XOR activity which was substantially suppressed by tungsten diet. 

However, in tungsten-fed rats, articular 3-NT immunoreactivity and content was 

unaltered. Wistar rats on a tungsten or control diet underwent antigen-induced knee 

arthritis. Contrary to expectation, tungsten-fed animals showed higher articular 3-NT 

content and more severe acute joint swelling than control animals.

This work suggests that cartilage and synovium o f normal joints contain relatively high 

amounts o f 3-NT/RNS in several mammalian species, ensured by multiple enzymatic 

sources o f NO. XOR is not a significant source o f RNS during antigen-induced arthritis, 

rather it may protect against RNS formation and acute antigen-induced joint 

inflammation.
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Chapter 1: General Introduction

Chapter 1: General Introduction

Reactive chemical species, derived from nitrogen and oxygen, are increased in 

biological fluids and joint tissue from individuals suffering from joint diseases such as 

rheumatoid arthritis or osteoarthritis. While mostly thought o f as mediators o f damage, it 

is increasingly recognised that such reactive nitrogen and oxygen species may also be 

beneficial. However, their precise role during normal joint function and joint 

inflammation remains to be established. This thesis is concerned with 3-nitrotyrosine, a 

marker o f reactive nitrogen species formation, in relationship to normal and inflamed 

joints.

In this section, the chemical nature and origins o f reactive nitrogen and oxygen species 

will be explained, as far as relevant to this thesis.
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Chapter 1: General Introduction

1.1 Reactive nitrogen and oxygen species

Chemically, free radicals are molecules capable o f independent existence that contain 

unpaired orbital electrons (Halliwell B and Gutteridge JMC, 1999) They possess an 

unstable electromagnetic balance and therefore they avidly react with other 

atoms/molecules to achieve complete orbital electron pairs, either by attracting 

electron(s), i.e. being reduced, or by discarding electron(s), i.e. being oxidized. Other 

highly reactive intermediates (e.g. hydrogen peroxide, peroxynitrite) are not free radicals 

and the term reactive nitrogen or oxygen species (RNS/ROS) is usually preferred, when 

referring to reactive metabolites derived from nitric oxide or superoxide (Halliwell B 

and Gutteridge JMC, 1999).

1.1.1 Superoxide

Superoxide (O2 ’") originates from single-electron transfer onto molecular (di-)oxygen 

(O2 ). All aerobic life forms employ the step-wise enzymatic reduction o f molecular 

oxygen and, as such, the production of O2 *’ during normal metabolism is inevitable. 

Mitochondrial respiratory enzymes are probably the main source o f this physiological 

O2 *’ leak (Halliwell B and Gutteridge JMC, 1999). When stimulated, cells such as 

neutrophils and macrophages can produce high amounts o f O2 ’" from a membrane-bound 

NADPH oxidase that forms the basis o f an effective antimicrobial killing mechanism 

(Babior BM, 1978). Many non-phagocytic cells have been shown to have a similar 

cytosolic NADPH oxidase and produce 02*’ under stimulation in vitro: e.g. endothelial 

cells, vascular smooth muscle cells (Griendling KK, et al., 1994) fibroblasts, 

chondrocytes and osteoclasts (Jones OTG and Hancock JT, 2000). A further important 

enzymatic source o f O2 " is xanthine oxidoreductase (XOR), best known for its role in 

the metabolism o f purines. Because o f its relevance to this thesis, XOR will be described 

in more detail below. It has also been reported that all nitric oxide synthase isoenzymes 

(see below) are able to reduce O2  to O2 " in vitro via a reductase subunit (Miller RT, et 

al., 1997; Xia Y, et al., 1998a; Xia Y, et al., 1998b) .
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Chapter 1: General Introduction

1.1.1.1 Basic reactions of superoxide

In aqueous solution at a physiological pH of 7.4, O2 *’ is generally not very reactive with 

biomolecules, such as lipids, proteins or DNA (Halliwell B and Gutteridge JMC, 1999). 

It is thought that most damage caused by O2 ’' requires reactions with other free radicals, 

most notably nitric oxide, and iron ions in iron-sulfur proteins. Since 0 2 ’ is not very 

stable, its fate will depend on a number o f factors, that include proximity and 

concentration o f potential reactants, their thermodynamic properties (i.e. willingness to 

be reduced/oxidized) and pH. Below, the basic reactions, relevant to (V ’-mediated tissue 

damage, are briefly explained. The important reaction with nitric oxide (NO*) will be 

discussed section 1.1.3.

O2 *’ will dismutate in aqueous solutions to form hydrogen peroxide (H2 O2 ) [1];

<V + 0 2" + 2 H+ ->  H20 2 + 0 2 [1]

H 2 O2  is toxic to most cells in the 10 -  100 pM range leading to lipid, protein and DNA 

oxidation, yet no such damage is observed when isolated biomolecules are incubated 

with H2 O2 at millimolar concentrations. This implies that further reactions are required 

to mediate H2 O2 cytotoxicity and there is evidence that the highly reactive hydroxyl 

radical (*OH) is this mediator.

*OH may be formed from H2 O2  in the Haber-Weiss reaction [2].

0 2* + H20 2 — OH + OH + 0 2. [2]

*OH is one o f the most reactive free radical, but it is not known to what extent *OH 

formation occurs in vivo. The Haber-Weiss reaction is unlikely to occur to any relevant 

extent in vivo, due to the much higher rate reaction o f  O2 *’ dismutation that is catalysed 

by a group o f superoxide dismutase (SOD) enzymes.

3



Chapter 1: General Introduction

More likely to occur in vivo is the formation o f 'OH from the reaction o f H2 O2 with 

ferrous iron or other reduced transition metals in the Fenton reaction [3]:

Fe2+ + H20 2 ->• 'OH + OH' + Fe J+ [3]

1.1.1.2 XOR as a source of superoxide

XOR activity was first described in milk a century ago (Schardinger F, 1902), as a 

factor in uncooked milk that decolourised methylene blue (as the final electron acceptor) 

upon addition o f formaldehyde (as the electron-donating substrate). XOR is part o f the 

molybdo-enzyme family, which also includes aldehyde oxidase (AO) and sulfite oxidase 

(SO). XOR protein exists as a dimer of two identical 150 kDa protein subunits, each 

consisting o f one molybdopterin-binding site (Mo-Co), two non-identical iron-sulfur 

centres and a flavin adenine dinucleotide (FAD)-binding site (Fig. 1.1.1.2) (Enroth C, et 

al., 2000). The gene encoding human XOR is located on the short arm o f chromosome 2 

(locus 2p23-p22) and the amino acid sequence is >90% homologous with rat and mouse 

enzyme (Ichida K, et al., 1993), indicating the highly conserved nature of this enzyme. 

In humans, basal activity o f the XOR promoter is much lower compared to rodents (Xu 

P, et al., 2000). Gene expression is enhanced by pro-inflammatory cytokines and other 

mediators o f an acute inflammatory response. Both transcriptional and post-translational 

XOR activity are increased by hypoxia and reduced by hyperoxia (Terada LS, et al.,

1997).

The enzyme exists in two interconvertible forms: xanthine dehydrogenase (XDH; EC 

1.1.1.204) and xanthine oxidase (XO; EC 1.1.3.22) (Stirpe F and Della Corte E, 1969), 

that differ in their substrate specificity. Both will oxidise hypoxanthine to xanthine and 

xanthine to uric acid as part o f purine metabolism. However, XO will reduce O2  only [4], 

whereas XDH will reduce O2  and NAD+, but with greater affinity for the latter [5] 

(Waud WR and Rajagopalan KV, 1976).
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Chapter 1: General Introduction

xanth ine (hypoxanthine) + 2 O 2 + H 2 O —> uric acid (xanthine) + 2 O 2 * + 2 H + [4]

xanth ine (hypoxanthine) + NAD+ + H 2O —> uric acid (xanthine) + NADH + H + [5]

Aspects o f  the mechanisms o f  these reactions remain uncertain (Hille R and Nishino T, 

1995). Simplified, the reduction of XOR takes place at the Mo-Co centre by accepting 

two electrons from the purine substrate (Fig. 1.1.1.2).

allopurinol
tungsten

xanthine/

urate
hypoxanthine/

xanthine

FeS

NADH I 0 2-

Fig. 1.1.1.2 : Schematic structure and basic reactions o f  xanthine oxidoreductase.

While the iron-sulfur centres serve as an electron reservoir, the electrons are ultimately 

transferred to 0 2 /NAD+at the FAD-site. The hypoxanthine analogue allopurinol has 

been used in clinical practice for many years to inhibit uric acid production in purine 

overload states, such as gout or during cancer chemotherapy. It is oxidized by XOR at
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Chapter 1: General Introduction

the Mo-Co site yielding alloxanthine (a.k.a. oxypurinol) which then binds tightly to the 

reduced Mo-Co site, disabling further enzyme action (Massey V, et al., 1970). 

Interestingly, XDH in breast milk was found to have a significant NADH oxidase 

activity when NAD+ levels are low, by directly transferring electrons to O2  to generate 

O2 *’ at the FAD site (Sanders SA, et al., 1997) [6].

2 0 2 + NADH -> 2 0 2’ + NAD+ + H+ [6]

This form o f superoxide generation is noteworthy, since it does not involve the Mo-Co 

site and hence is not inhibited by allopurinol. The ability o f XOR to reduce nitrite to 

nitric oxide will be discussed in section 1.1.2.2.2.

Alternative inhibition o f XOR in animals has been quantitatively achieved using dietary 

supplementation with sodium tungstate (Johnson JL, et al., 1974; Suzuki H, et al.,

1998). Tungstate will replace active-centre molybdenum from XOR, thus rendering the 

enzyme inactive. Therefore all three known molybdo-enzyme (XOR, AO and SO) will 

be inactivated, and this occurs without any obvious signs o f ill health in the animals 

(Johnson JL, et al., 1974), even when exposure starts in utero (Pitt RM, et al., 1991). 

This observation is contrasted by the very shortened life expectancy o f molybdenum- 

cofactor gene ‘knock-out’ mice and the severe neurological deficits in the human disease 

(M cKusickVA, 2004).

In both humans and rats most XOR activity exists as XDH in vivo (Della Corte E, et al., 

1969; Waud WR and Rajagopalan KV, 1976). Via two principle mechanisms XDH can 

be converted to XO in vitro. Limited proteolysis by proteases, such as trypsin, leads to 

irreversible conversion. Oxidation o f specific thiol groups o f the enzyme, e.g. by storage 

at -20°C, incubation at 37°C or anaerobic conditions (Della Corte E, et al., 1969), 

causes reversible conversion to XO.

In humans and primates, XOR activity levels may be 1 OOx lower than in other mammals 

including rats and mice (Abadeh S, et al., 1992). This is not sufficiently explained by 

the reduced human XOR promoter activity, since the difference remains even when
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equal enzyme amounts are considered. XOR variants lacking active centre molybdenum 

or sulphur are thought to be responsible for this observation, but it is uncertain whether 

these variants represent a physiological post-translational mechanism o f regulation 

(Abadeh S, et al., 1992).

1.1.1.3 Tissue localisation of XOR

The tissue localisation o f XOR has in part produced conflicting results. In general, this is 

due to the different methods used for localisation o f XOR. Antibody-based 

immunochemistry will detect XOR protein, irrespective o f whether it represents active 

enzyme or not. Biochemical activity assays in homogenates or tissue sections rely on the 

presence o f active enzyme, but are generally considered less sensitive than immuno

chemical assays. The interpretation for human tissue is particularly difficult due to the 

generally lower activity, described earlier (Abadeh S, et al., 1992).

Table 1.1.1.3 summarizes the data from the literature for human and rat tissue. There is 

agreement that XOR protein and activity is expressed in liver cells and intestinal 

epithelium o f both species. In humans, XOR protein can be demonstrated in lactating 

mammary tissue. For other parenchymal organs, such as the heart, the evidence o f XOR 

expression is less certain, although endothelial cells within these organs have been more 

consistently shown to express XOR using a sensitive radio-immunoassay (Jarasch ED, 

et al., 1986). Blotting studies for XOR gene transcripts suggest that human heart, brain, 

kidney and skeletal muscle do express XOR (Xu P, et al., 1994), but for reasons 

explained earlier this does not imply that there is active protein.

In joint tissue, XOR activity has been found in normal and inflamed (i.e. rheumatoid) 

human synovium by means o f a radiochemical assay (Allen RE, et al., 1987). 

Immunohistochemistry has suggested that this activity localises predominantly to the 

capillary endothelium (Stevens CR, et al., 1991a). Importantly, there are no reports in 

the literature about XOR in cartilage or rat synovium.
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Table 1.1.1.3: XOR localisation in normal human and rat tissue.

Tissue Type Human Rat

Liver + (IB1; IHC2’3; HC4; RIA5) + (IHC10; HC1112)

Intestine + (IB1; IHC2’3; HC4; RIA5) + (IHC10; HC11’12)

Mammary tissue + (IHC2; RIA5)7 NA

Heart + (IB6, IHC3*'7; RIA5) - (IB1; IHC2) + (HC11*) -(H C 12)

Kidney + (IHC3*; IB1) - (IHC2; HC4) + (IHC10; HC12)

Brain + (IHC3*) -(IB 1; IHC2) + (IHC10)

Skeletal muscle + (IHC2,7) - (IB 1) + (IHC10) -(H C 12)

Synovium + (IHC8; RC9) NA

Cartilage NA NA

+, reported as present; -, reported as absent; NA, no reports available.

The method of XOR detection/reference is shown in brackets; IB, immunoblotting; IHC, 

immunohistochemistry; HC, histochemistry; RIA, radio-immuno assay; RC, radiochemistry; t 

Esp. marked in lactating tissue; * XOR confined to endothelial cells of the tissue.

'(Sarnesto A, et al., 1996); 2(Linder N, et at, 1999); 3(Moriwaki Y, et al., 1993); 4(Kooij A, et 
at, 1992b); 5(Jarasch ED, et at, 1986); 6(Abadeh S, et at, 1993); 7(Hellsten-Westing Y, 1993); 

8(Stevens CR, et at, 1991a); 9(Allen RE, et at, 1987); 10(Moriwaki Y, et at, 1996); "(Kooij A, 

et at, 1992a); 12(Moriwaki Y, et at, 1998).

1.1.1.4 Biological role of superoxide from XOR

The biological role o f XOR can be categorized into physiological vs. patho

physiological effects. Furthermore one can distinguish effects according to the XOR 

reaction product exerting a biological effect, i.e. 02*7R0S, nitric oxide/RNS and uric 

acid. The biological effects relating to RNS originating from XOR will be described in 

section 1.1.2.2.2.
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Physiologically XOR is best known for its role in dealing with the waste products of 

purine metabolism. Purine metabolism in humans and primates produces uric acid (UA) 

as the end product. This is due to an inactivated gene for urate oxidase, an enzyme 

which is active in most other vertebrates to convert poorly soluble uric acid into the 

more soluble allantoin. As a consequence, serum uric acid levels are about ten times 

higher in humans than e.g. rodents (Xu P, et al., 1996). This explains, in part, the 

predisposition o f humans to develop gout, a disease characterised by UA crystal 

deposition in joint and renal tissue. It has been proposed that the evolutionary gain of 

this urate oxidase deficiency in man is enhanced longevity due to the anti-oxidant 

properties o f UA (Ames BN, et al., 1981). Interestingly, uric acid has been found to be a 

potent inhibitor o f the tyrosine-nitrating action o f peroxynitrite in vitro (Whiteman M 

and Halliwell B, 1996), although it may be less potent in the presence o f physiological 

concentrations o f bicarbonate (Whiteman M, et al., 2002). There is now in vivo 

evidence, albeit in rodents, that treatment with uric acid ameliorates the course of 

experimental arthritis (Bezerra MM, et al., 2004) and experimental allergic 

encephelomyelitis, an animal model of multiple sclerosis (Hooper DC, et al., 1998). In 

humans, there is no evidence that XOR fulfils essential physiological function, since 

subjects with hereditary classical xanthinuria type I and a non-sense mutation o f the 

XOR gene are asymptomatic (Ichida K, et al., 1997). This is different from mice, where 

targeted gene XOR deletion produced runted homozygous animals with very short live 

expectancy, and heterozygous female animals with defective lactation (Vorbach C, et 

al., 2002).

Pathophysiologically, there is a plethora of evidence linking XOR-derived ROS to tissue 

injury that occurs upon reperfusion following a period o f ischaemia/anoxia in a variety 

o f tissues, such as intestine and heart [reviewed in (Berry CE and Hare JM, 2004; 

McCord JM, 1985)], liver, brain and skeletal muscle. It is thought that ischemia leads to 

a) conversion o f XDH to XOR, b) accumulation o f hypoxanthine from ATP depletion 

and c) release o f chelated transition metals. Upon reperfusion XOR will then generate 

02*', H2 O2 and ‘OH to cause tissue damage [reviewed in (Halliwell B and Gutteridge 

JMC, 1999)]. This observation has potential relevance to many aspects o f vascular
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disease and organ transplantation, although its significance remains to be established for 

human disease. More recently XOR-derived ROS has also been implicated in the 

development o f hypertension, endothelial dysfunction and heart failure (Berry CE and 

Hare JM, 2004). The strength o f pre-clinical evidence for a beneficial effect o f XOR 

inhibition in myocardial dysfunction is such, that currently, a randomised, double-blind 

and placebo-controlled clinical trial is underway, testing the effects of oxypurinol in 

cardiac failure (Freudenberger RS, et al., 2004).

1.1.2 Nitric oxide

Mammals excrete more nitrate than they ingest, and the suggestion that this is due to 

endogenous nitrate synthesis goes back over 80 years (Mitchell HH, et al., 1916). Only 

fairly recently it was realized that this excess urinary nitrate is due to synthesis o f nitric 

oxide (NO) [reviewed in (Nathan C, 1992)] , a free radical with numerous biological 

effects that have had a huge impact on the understanding o f vascular and inflammatory 

disease mechanisms.

NO is a colourless gas with good solubility in organic solvents (Koppenol WH, 1998). 

It therefore readily diffuses within and across cells. One o f the first biological roles 

identified for NO was that as a physiological vaso-relaxing factor, derived from 

endothelium (Palmer RM, et al., 1988). Practically every cell type can express NO upon 

stimulation with pro-inflammatory cytokines or bacterial lipo-polysaccharides (LPS), i.e. 

under pathological circumstances, and many do so constitutively under physiological 

conditions.

1.1.2.1 Basic and physiological chemistry of NO

On exposure to air NO will react with O2  to form the more reactive, brown nitrogen 

dioxide (NO2) gas. In aqueous solutions NO will react with 0 2 to yield mainly nitrite. 

Both these reactions follow a third-order rate law, i.e. the rate o f NO oxidation will 

decline with increasing NO dilution (Halliwell B and Gutteridge JMC, 1999). At
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physiological concentration o f NO and O2 (10 nM and 10 pM, respectively) this would 

result in a half-life o f NO o f many hours (106 s) (Koppenol WH, 1998). This, of course, 

ignores the presence o f numerous other reactants present in biological systems. In vivo 

the most significant o f these reactants will be haemoglobin, which will shorten the half- 

life o f NO to a few seconds, but still leaving enough time for NO* to diffuse across 

several cell diameters.

Like O2 ’', NO is only a relatively weak reactant with non-radical biomolecules. In vivo it 

seems likely that the one-electron reduction to nitroxyl anion (NO', a.k.a oxonitrate(l-)) 

is favoured over oxidation to nitrosonium cation (NO+) for thermodynamic reasons 

(Koppenol WH, 1998). However, as already mentioned for O2 ’', the likelihood o f a 

reaction will also depend on concentration (and with it the generation and decay) o f NO 

and potential reactants, their spatial proximity, pH, oxygen tension, etc. The potential 

reactions o f NO are numerous, and a useful starting point is to distinguish direct effects 

o f NO on biomolecules from indirect ones, i.e. those that result from reactions o f NO 

with 02*' or O2 (.Figure 1.1.2.1) (Grisham MB, et al., 1999).

In vitro direct chemical reactions can be observed at relatively low flux o f NO and it is 

postulated that constitutive, low-output generation o f NO mediates these reactions in 

vivo. A direct effect is the formation o f stable Fe2+- NO complexes in haem moieties of 

enzymes, such as guanylate cyclase. The resultant increase in cellular cyclic guanine 

monophosphate can lead to vasodilatation, inhibition o f platelet aggregation and 

neurotransmission [reviewed in (Ignarro LJ, 1991)]. The rapid reaction o f NO with 

Fe2+-oxy-haemoblobin and subsequent oxidation to nitrite is thought to be the main 

mechanism o f NO breadown in vivo under aerobic conditions (Kelm M, 1999). Direct 

reactions o f NO with other free radicals, such as lipid alkoxyl and -alkyl hydroperoxyl 

radicals, have been shown to inhibit lipid peroxidation and the generation o f pro- 

inflammatory lipids (Rubbo H, et al., 1994).
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Metal complexes
• guanylate cyclase
• cytochrome P450
• cyclooxygenase
• haemo-/myoglobin

direct effects 

indirect effects
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High energy radicals
• carbon-centered, 

e.g. lipids;

• nitrogen-centered, 
e.g. N 0 2

V_ _ _ _ _ _ _  J
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r
Nitrosation Oxidation Nitration

products: products: products:
nitrosamines, DNA strand breaks, nitrotyrosine,

S-nitrosothiols lipid peroxidation,... -guanosine,...

Figure 1.1.2.1: P rincipal chem ical reaction pathw ays of NO, thought to occur in vivo 

[modified from (Grisham MB, e t  al., 1999)].

The indirect effects o f  NO occur in general at higher fluxes o f  NO and in the presence of 

O2 ’’ or 0 2. Dinitro-trioxide (N2 O 3) occurs during the autoxidation of  NO in aqueous 

solutions and is a strong nitrosative reactant to form e.g. putatively carcinogenic 

nitrosamines (R-N-N=0) and/or S-nitrosothiols (R-S-N=0) (Wink DA, e t  al., 1997). 

The biological role o f  S-nitrosothiols is complex and not entirely clear, but includes 

functions as a ’slow-release’ form of NO, a ‘buffer’ for peak NO production and pro- 

inflammatory actions [reviewed in (Gaston B, 1999)]. The reaction of NO with O 2 *' to 

yield the strong oxidising and nitrating reactant peroxynitrite (O N O O ) is o f  particular 

importance to this thesis and will be discussed separately below.

Via the oxy-haemoglobin-mediated oxidation to nitrite and then further to nitrate (NO3'), 

the great majority o f  endogenously synthesised NO is thought to be excreted as N03 in 

the urine. In the absence o f  excess dietary NO2’/ NO3', the estimation o f  N 027 NO3" in 

biological fluids is generally accepted as a measure o f  endogenous NO synthesis (Kelm
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M, 1999) and much o f  the evidence o f increased NO production in vivo and in vitro is 

based on this assumption.

1.1.2.2 Sources of NO

1.1.2.2.1 Nitric oxide synthases

Soon after the recognition o f NO as the vasodilating endothelial factor, it was found that 

NO originates from Z-arginine (Palmer RM, et al., 1988). At least three distinct 

enzymes are now known to generate NO from Z-arginine in mammals and have been 

isolated, cloned and characterized (Forstermann U, et al., 1994).

They all catalyse the same 5-electron oxidation o f a guanidino nitrogen o f Z-arginine to 

yield NO and Z-citrulline. Co-substrates for this reaction are molecular oxygen and 

NADPH, implying that NOS enzymes are unable to produce NO under anoxia. 

Furthermore they share tetrahydrobiopterin, flavin adenine dinucleotide (FAD), flavin 

mononucleotide (FMN) and haem as co-factors. There are two calcium-dependent 

forms: neuronal(n) and endothelial(e) nitric oxide synthase (nNOS or NOS I; eNOS or 

NOS III), that are mainly expressed in a constitutive way in selected cell types to yield 

low local concentrations o f NO. The third form is a largely inducible, calcium- 

independent enzyme (iNOS or NOS II), that is expressed by almost all cell types in 

response to LPS or pro-inflammatory cytokines.

The genes o f human nNOS, iNOS and eNOS are have been mapped to chromosomes 12 

q24, 17 q l l  and 7 q36, respectively and encode 130-160 kDa proteins that function as 

homo-dimers. The amino acid sequence identity between the human iso-enzymes is less 

than 59%, but the homology for each enzyme across species is high (> 90% for nNOS 

and eNOS; > 80% for iNOS).

The terms ‘constitutive/inducible’, ’neuronal’ and ‘endothelial’ have survived in the 

nomenclature o f NOS enzymes, but (as true for most biomolecules) they soon no longer 

accurately described the biology o f these isoenzymes. It was soon recognized that the 

constitutive NOS enzymes are subject to complex pre-and post-translational regulation, 

and that iNOS is expressed constitutively in some tissues (Nathan C and Xie QW, 1994).
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While, with very few exceptions, eNOS appears confined to the vascular endothelium, 

nNOS has been reported in central and peripheral neurons, adrenal tissue, skeletal 

muscle cells, testes and fertile oocytes (Forstermann U and Dun N, 1996; McKusick 

VA, 2005b).

1.1.2.2.2 XOR as source of NO

The possibility o f NOS-independent NO generation was first raised when it was shown 

that ischemic rat heart muscle produced NO in a manner dependent on nitrite and 

independent o f NOS (Zweier JL, et al., 1995). The previously known ability of XOR to 

reduce nitrate to nitrite under low oxygen tension (Fridovich I and Hansert B, 1962) and 

the structural similarity o f XOR to known microbial and plant nitrate-/nitrite reductases 

(Campbell WH and Kinghom KR, 1990), led to investigations as to whether XOR could 

generate NO. It was demonstrated that under conditions o f hypoxia (<1% O2) and in the 

presence o f NADH as the reducing agent XOR can generate NO from nitrite (>1 mM) 

(Zhang Z, et al., 1998) and inorganic and organic nitrates (such as the therapeutic 

glycerol trinitrate) (Millar TM, et al., 1998), as measured by ozone chemiluminescence. 

Inhibition o f NO generation occurred in the presence o f the molybdenum-site inhibitor 

allopurinol and the non-specific flavo-enzyme inhibitor diphenyleneiodonium (DPI), but 

not with nitro-Z-arginine. This has led to the hypothesis that the reductive half-reaction 

o f XOR occurs at the FAD-site and the oxidative half-reaction at the Mo-Co site o f the 

enzyme. Godber et al. found that xanthine could be an alternative reducing agent, 

although it led to progressive inactivation of XOR over time due conversion o f the 

enzyme to its desulfo-form (Godber BJL, et al., 2000). They also showed that both 

XDH and XO can reduce nitrite to NO, and that NADH-mediated nitrite reduction can 

occur under normoxia in the presence o f SOD. This suggests that XOR does reduce 

nitrite to NO under normoxia, which escapes detection by its fast reaction with 

simultaneously produced O2 ’'. Li et al. (Li H, et al., 2001) independently confirmed the 

capacity o f XO as a nitrite reductase with electron spin resonance (ESR) and 

electrochemical methods o f NO detection. They found that low micro-molar xanthine 

(Km 1.5 pM) yielded 4-fold higher rates o f NO generation than NADH under hypoxia, 

whereas higher xanthine levels diminished NO output. DPI had no effect on NO
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generation with xanthine as substrate, suggesting that both xanthine oxidation and nitrite 

reduction takes place at the Mo-Co site of XOR. It was concluded that under conditions 

o f no-flow ischemia the required substrate and XOR concentrations, pH and oxygen 

tension are achieved to make XOR-mediated NO generation a significant reaction in 

vivo (Li H, et al., 2001). There are no studies to date to show that XOR generates NO in 

vivo. However, there is circumstantial evidence to suggest that XOR, as a source o f NO 

and O2 ’", is the key principle behind the anti-microbial properties in human breast milk 

(Stevens CR, et a!., 2000).

1.1.2.2.3 Non-enzymatic sources of NO

Under acidic conditions nitrite can be reduced to NO without any enzyme involvement 

via disproportionation o f nitrous acid [reviewed in (Weitzberg E and Lundberg JON, 

1998)], e.g. under experimental conditions of cardiac ischemia (Samouilov A, et al., 

1998). However, it has been suggested that under these conditions the XOR-mediated 

NO generation would exceed the disproportionation o f nitrite by a factor o f 25 (Li H, et 

al., 2001).

1.1.2.3 Biological effects of NO

Considering the diverse nature o f potential reactions and sources o f NO, it is not 

surprising to see a diversity o f regulatory, protective and deleterious biological effects 

mediated by NO {Figure 1.1.2.3). In general, deleterious biological effects are mediated 

through indirect chemical reactions o f NO, i.e. those involving prior reaction with O2 or 

O2 . Conversely, most, but not all, physiological effects will result from direct reactions 

o f NO. One important exemption to this rule is the anti-microbial action which is a lot 

higher for peroxynitrite, the reaction product o f NO and O2 ’’, than for NO (Brunelli L, et 

al., 1995). The role o f NO in joint health and disease will be discussed in section 1.3.
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Figure 1.1.2.3: The diverse biological effects of NO [modified from (Grisham MB, et 

al., 1999)].

1.1.3 Peroxynitrite

As mentioned earlier, the majority o f deleterious actions o f NO are a consequence o f its 

reaction with co-existent O2 *’ or O2 .

The reaction o f NO with O2 *" can form peroxynitrite (ONOO') [7] (Pryor WA and 

Squadrito GL, 1995).

0 = 0  + N = 0  0 -0 -N = 0  [7]

Since this reaction allows NO with O2 ’’ to share their unpaired electrons, it is highly 

favoured energetically, indicated by rate constant o f up to 1.9 x IO10 M 'V 1 in acellular 

systems (Kissner R, et al., 1998). This means that this reaction is mainly limited by 

diffusion only. This rate constant surpasses that o f dismutation o f O 2 ’’ by SOD enzymes,
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the main competing physiological reaction, by about two orders o f magnitude (Koppenol 

WH, 1998). Nevertheless the production of ONOO' in vivo can be expected to be 

confined to selected areas for a number o f reasons. Firstly, the rate o f ONOO'-mediated 

oxidative and nitrating reactions decline when the flux o f either O2 ’ or NO are in excess 

in vitro (Goldstein S, et al., 2000; Miles AM, et al., 1996). With estimated 

physiological cellular concentration of O2 ’’ and NO of 0.1 -  1 nM and 0.1-1 pM, 

respectively (Grisham MB, et al., 1999), generation o f O2 ’' becomes the more important 

determinant o f ONOO' generation in vivo. Furthermore the estimated physiological 

concentration o f SOD is relatively high (4 - 20 pM), dismutating most o f the emerging 

O2 *' under physiological conditions.

1.1.3.1 Basic and physiological chemistry o f peroxynitrite

The chemistry o f ONOO' and its formation has been reviewed by Koppenol (Koppenol 

WH, 1998). With a pKa = 6.8 (in 0.1 M phosphate buffer), ONOO' is a weak acid in 

aqueous solution. At physiological pH and body temperature, the protonated ONOO' 

(i.e. peroxynitrous acid) will undergo decomposition and isomerisation within seconds 

to yield the stable end products nitrate and di-oxygen. During this process, nitration and 

high-energy oxidation reactions have been observed in vitro, even though the precise 

nature o f the chemical intermediates remain unclear (Koppenol WH, 1998). In vitro 

exposure to ONOO' has been shown to affect many biomolecules (e.g. proteins, DNA 

and lipids). Oxidative change has been described in lipids and DNA, leading to lipid 

peroxidation (Rubbo H, et al., 1994) and 8-oxo-guanine/ DNA strand breaks, 

respectively (reviewed in (Szabo C and Oshima H, 1997)). ONOO' can lead to nitration 

o f e.g. phenolic compounds, such as free and protein-bound tyrosine (Beckman JS, et 

al., 1994a), and purines, such as guanine (Yermilov V, et al., 1995). Many, in particular 

mitochondrial, enzymes have been shown to be modified by ONOO'-mediated nitration 

o f tyrosine residues [reviewed in (Greenacre SA and Ischiropoulos H, 2001)], with 

implications for enzyme function and signal transduction.

In vivo the effects o f ONOO' are probably strongly influenced by its high reaction rate 

constant with the ubiquitous CO2/HCO 3 ' to form a nitrosoperoxycarbonate adduct. In
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vitro studies have suggested that the presence o f CO2/HCO 3 ' increases the nitration, but 

reduces the oxidation o f biomolecules by ONOO' (Denicola A, et al., 1996; Yermilov 

V, etal., 1996).

It is worth noting, however, that the reported biological effects mediated by ONOO' 

have been based on the exposure to synthetically derived ONOO'. This is problematic 

since all methods o f ONOO’ generation have certain limitations including the 

contamination with other nitrogen and oxygen species and difficulties in controlling the 

final ONOO' concentration (Uppu RM, et al., 1996). Similarly, the detection o f such 

ONOO' generation in biological tissues is fraught with problems. Since ONOO' is not a 

free radical, more direct methods such as electron spin resonance (ESR) are not possible. 

The detection has therefore largely been based on the demonstration o f substrate 

modifications by synthetic ONOO' (e.g. nitrotyrosine, oxidised dihydrorhodamine, 

chemiluminescence) which, used in isolation, have limited specificity (Tarpey MM and 

Fridovich I, 2001).

In an elegant study on ex vivo perfused rat hearts, Wang and Zweier were able to show a 

concurrent peak o f NO and O2  ’ production (by ESR) during early reperfusion after 

ischaemia (Wang P and Zweier JL, 1996). This was associated with increased ONOO' 

(by luminal chemiluminescence, blocked by NOS inhibition or O2 ’’ scavenging with 

SOD) and histological nitro-tyrosine immunostaining in post-ischaemic hearts. This 

study suggests that endogenous NO and O2 *' formation leads to tyrosine nitration via 

ONOO’ in vivo.

1.1.3.2 Biological effects of peroxynitrite

The above chemical effects o f ONOO’ on the various bio-molecules are o f adverse 

biological consequence in nearly all cell, tissue and animal models that have been 

examined. Via enzyme modification, DNA breaks and lipid peroxidation, the main 

consequences range from cellular dysfunction and membrane leakage to cell death,

18



Chapter 1: General Introduction

apoptosis and mutagenesis [reviewed in (Groves JT, 1999; Szabo C and Oshima H,

1997)].

Localised ONOO' formation in situ has been described in relevant tissues from very 

diverse disease states [reviewed in (Greenacre SA and Ischiropoulos H, 2001)], such as 

atherosclerosis, septic shock, respiratory distress syndrome, allogenic kidney transplant 

rejection, carbon monoxide poisoning, arthritis and neuro-degenerative diseases, mostly 

by way o f demonstrating the presence o f 3-nitrotyrosine (further explained below). In 

vitro, studies using chemiluminescence and/or various antagonists/scavengers to 

demonstrate that both NO and O2 *’ are involved, detected ONOO' production in 

cytokine-stimulated rat macrophages (Ischiropoulos H, et al., 1992a), human 

neutrophils (Carreras MC, et al., 1994), bovine endothelial cells (Kooy NW  and Royall 

JA, 1994), rat pulmonary vascular smooth muscle cells (Boota A, et al., 1996) and 

motor neurone cells (Estevez AG, et al., 1998).

From the above, one would not expect any beneficial roles for ONOO'. However, there 

are examples o f ONOO' effects that will be o f benefit to the host (Table 1.1.3.2). 

ONOO' is more bactericidal compared to NO in vitro (Brunelli L, et al., 1995), and this 

has implications in vivo (Umezawa K, et al., 1997). Apart from direct bactericidal 

effects, ONOO' could also enhance host defense to infection via priming o f O2 *' 

production in neutrophils (Rohn TT, et al., 1999). Physiologically achievable ONOO' 

concentrations in reperfusion following cardiac ischaemia in rats and cats reduced the 

amount o f myocardial necrosis and neutrophil-endothelium adhesion with improved 

endothelial function (Lefer DJ, et al., 1997; Nossuli TO, et al., 1998). This effect 

seemed mediated via S-nitrosothiol formation, which is supported by independent in 

vitro data (Mayer B, et al., 1995). ONOO' may also be responsible for the protective 

effect o f brief, non-injurious periods of ischaemia (so called preconditioning) against 

subsequent ischaemia-reperfusion injury o f the heart (Laude K, et al., 2002).
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Table 1.1.3.2: Beneficial effects of peroxynitrite.

Function System Experimental Effect Reference

Microbial

host-defense

E.coli (in vitro) Equimolar ONOO' far more 

bactericidal than NO

(Brunelli L, et al., 
1995)

Microbial

host-defense

S.typhimurium

Septicaemia

(mice)

NO (from iNOS) and O f  (from 

XOR) are both required for 

maximum tissue protection

(Umezawa K, et 
al., 1997)

Ischaemia-

Reperfusion

Injury

Mesenteric 

arteries 

and heart 

(rat, ex vivo)

0 .1 -1  pM ONOO'during 

reperfusion:

diminished P-selectin expression, 

neutrophil-endothelium adherence 

and reversed cardiac contractile 

dysfunction

(Lefer DJ, et al., 
1997)

Ischaemia-

Reperfusion

Injury

Heart

(cat, ex vivo)

2pM ONOO'during reperfusion:

diminished P-selectin expression, 

neutrophil-endothelium adherence 

and reversed cardiac contractile 

dysfunction

(Nossuli TO, et al., 
1998)

Ischaemia-

Reperfusion

Injury

Coronary arteries 

(rat, in vivo/vitro)

ONOO' mediates protection of 

endothelial function following 

ischaemic preconditioning

(Laude K, et al., 
2002)

1.1.4 3-Nitrotyrosine

The nitration o f Z-tyrosine by ONOO' at the ort/zo-position leads to 3-nitro-Z-tyrosine 

(3-NT) in vitro (Ischiropoulos H, et al., 1992b). This can occur both in free tyrosine 

and, more importantly, in protein-bound tyrosine. This post-translational modification of 

tyrosine residues has gained considerable importance over recent years due to its 

selective nature and association with altered enzyme function and a wide range of 

diseases.
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1.1.4.1 M echanism s of tyrosine nitration

It was questioned whether ONOO', generated from NO and O2 *’, is able to nitrate 

tyrosine under physiological conditions (Pfeiffer S and Mayer B, 1998). However, other 

investigators were able to show that simultaneously generated NO and O2 ’’ can form 3- 

NT (Reiter CD, et al., 2000; Sawa T, et al., 2000), provided hypoxanthine is avoided as 

substrate for XOR-mediated 02*"-generation as the uric acid product will rapidly 

scavenge ONOO' (Kooy NW, et al., 1994). Nevertheless, a number o f other pathways of 

tyrosine nitration have been described in vitro, which are independent o f ONOO'. 3-NT 

formation can occur non-enzymatically in vitro at physiological pH in the presence of 

NO 2" and hypochlorous acid (HOC1), a powerful agent used in the killing mechanism of 

neutrophils (Eiserich JP, et al., 1996). HOC1 is produced by myeloperoxidase (MPO) 

and other haem-containing peroxidases, such as horseradish, lacto- and eosinophil- 

peroxidase. Accordingly, it was shown that such peroxidases are equally able to nitrate 

tyrosine in the presence o f NO 2 ' (van der Vliet A, et al., 1997). It would appear that the 

main mechanism o f this reaction involves a one-electron oxidation o f NO 2’ to yield N O 2  

(Brennan ML, et al., 2002). Details o f the MPO-dependent reaction to yield 3-NT has 

been reviewed recently by Radi (Radi R, 2004). It is also recognised that tyrosine 

nitration occurs non-enzymatically in the presence o f NO 2 " under acidic conditions 

(Oldreive C, et al., 1998), which can pose a problem for some analytical methods of 3- 

NT detection.

There is now evidence from MPO-deficient mice to suggest that MPO is required for 

tyrosine nitration during inflammation in vivo (Brennan ML, et al., 2002; Gaut JP, et 

al., 2002). However, some inflammatory models and intracellular protein tyrosine 

nitration do not require MPO activity (Brennan ML, et al., 2002). Furthermore, there is 

ex vivo evidence implicating ONOO' in LPS-mediated prostacyclin synthase nitration in 

bovine arteries (Zou MH, et al., 1999). Therefore, ONOO' to form 3-NT in vivo remains 

very much a possibility (Radi R, 2004). Importantly, although in vitro evidence has 

shown that NO itself may nitrate tyrosine at physiological tyrosyl radical sites of 

prostaglandin H synthase (Gunther MR, et al., 1997), there is no in vivo evidence to 

show that NO alone nitrates tyrosine residues. It would therefore seem that Halliwell’s
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conclusion remains valid that 3-NT in biological samples is best regarded as evidence 

for reactive nitrogen species formation in general, rather than a specifically ONOO' 

(Halliwell B, 1997).

1.1.4.2 Methods o f 3-NT detection

A range o f immune and physico-chemical methods have been developed to detect 3-NT 

in biological samples with increasing sensitivity [reviewed in (Herce-Pagliai C, et al., 

1998)].

Initially, immunohistochemical studies were carried out with a rabbit polyclonal 

antibody directed against ONOO'-treated keyhole limpet haemocyanin (Beckman JS, et 

al., 1994b). These demonstrated strong immunoreactivity in cellular inflammatory 

infiltrates o f formalin-fixed, paraffin-embedded human atherosclerotic tissue that was 

abolished by pre-incubation with 3-NT or pre-treatment o f sections with dithionite 

(which reduces nitro-tyrosine to amino-tyrosine). By immunoaffinity purification against 

3-NT and with appropriate specificity controls (see section 3.3.3.4), these antibodies 

became a cornerstone o f demonstrating 3-NT in tissue sections from a wide variety of 

disease states (Viera L, et al., 1999). The antibody is commercially available and 

recognizes 3-NT across a range of species (Product information sheet, TCS Biologicals, 

UK, #06-284). This antibody has also been applied in an indirect competitive enzyme- 

linked immunosorbent assay (ELISA), allowing some quantitation o f 3-NT in samples. 

3-NT in samples was measured against known standards in their ability to compete with 

ONOO'-treated bovine serum albumin, as the immobilized antigen (Khan J, et al.,

1998). Several commercially available, mono- and polyclonal anti-3-NT antibodies have 

recently been characterized for use in competitive solid-phase ELIS As (Franze T, et al., 

2004). Compared to immunochemical methods, physico-chemical methods are less 

sensitive, but more specific. Sensitivity rises from high-performance liquid 

chromatography with UV-detection o f 3-NT (limit o f detection (LOD): approx. 0.2 pM 

(Kaur H and Halliwell B, 1994)) to combined gas chromatographic- mass spectrometric 

methods (LOD 400 attomol) (Crowley JR, et al., 1998). Common to all these methods is 

the need for hydrolysis o f proteins into individual amino acids. Since this has

22



Chapter 1: General Introduction

conventionally been done under acidic conditions, there is scope for artefactual 3-NT 

formation (Oldreive C, et al., 1998). This problem has been circumvented by employing 

an alkaline method o f hydrolysis (Frost MT, et al., 2000), which was used for the 

studies presented here.

During the completion o f my studies, the analysis o f nitrated proteins in tissue 

homogenates has been taken one step further. Digests o f 3-NT immuno-positive protein 

gel spots have been analysed by a mass spectrometric method (i.e. matrix-assisted laser 

desorption ionization/ time-of-flight mass spectrometry), providing a highly accurate 

measure o f peptide molecular mass that allows identification o f protein identity from 

protein databases (Aulak KS, et al., 2001). This proteomic approach allows the 

identification o f a larger number o f nitrated proteins in a given biological system.

1.1.4.3 Biological significance o f 3-NT

Since its original description as an exposure marker for ONOO' over 10 years ago 

(Ischiropoulos H, et al., 1992b), 3-NT formation in proteins is emerging as a post- 

translational modification mechanism to regulate enzyme function and signal 

transduction under pathological and probably physiological conditons [reviewed in 

(Ischiropoulos H, 2003)].

This role o f tyrosine nitration in proteins is suggested by the following findings:

a) Tyrosine nitration in proteins is selective

Biological nitration yields o f tyrosine under inflammatory conditions are low with only 

one to five in 10,000 tyrosine residues (10-50 pmol/mol) detected as 3-NT (Brennan 

ML, et al., 2002). Furthermore, there is good evidence that tyrosine nitration is not a 

random, but very selective process. An increasing number o f examples show that 

nitration o f a small number o f proteins and tyrosine sites associates with altered enzyme 

function and pathological anatomy or physiology. For instance, the mitochondrial anti

oxidant enzyme manganese SOD (MnSOD) in human rejected kidney allografts, was 

found to be the main nitrated protein at few specific tyrosine residues, mimicked by
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ONOO' exposure and associated with loss o f enzyme function (MacMillan-Crow LA, et 

al., 1996). Increased tyrosine nitration of MnSOD has also been reported in aged 

compared to young rat vascular tissue (van der Loo B, et al., 2000d). Similarly, the 

vaso-relaxing prostacyclin (PGI2) synthase in bovine artery walls is tyrosine-nitrated 

during atherosclerosis and endotoxin treatment, leading to enzyme inactivation and 

defective vasorelaxation (Bachschmid M, et al., 2003; Zou MH, et al., 1999). These 

effects could be mimicked in vitro by peroxynitrite and were found to be associated with 

selective nitration o f tyrosine 430 (Schmidt P, et al., 2003). It is worth noting however 

that, although specific tyrosine nitration may be exclusively responsible for the altered 

function o f some enzymes [e.g. in glutathione reductase (Saw ides SN, et al., 2002)], in 

others, oxidative changes other than specific tyrosine nitration may determine enzyme 

function [e.g. in tyrosine hydroxylase (Kuhn DM, et al., 2002)].

Specificity o f tyrosine nitration is also suggested by the selective localisation o f 3-NT in 

biological tissues. Electron-microscopic studies have confirmed this at the subcellular 

level. For instance, electron-microscopy showed 3-NT to immuno-localise in particular 

within mitochondria and the sub-endothelial space o f aortic vessels o f aged rats (van der 

Loo B, et al., 2000c).

The observed specificity o f tyrosine nitration in proteins is thought to depend on the 

concentration and proximity o f the nitrating agent, the surface exposure of tyrosine 

residues and their proximity to active metal-enzyme complexes (Ischiropoulos H, 

2003).

b) Tyrosine nitration can result in loss or gain o f enzyme function 

An indiscriminate pattern o f protein tyrosine nitration could be expected to produce a 

uniform loss o f enzyme function, but this is not what has been observed. There are a 

number o f examples, where selective tyrosine nitration is associated with an increased 

biological signal. For instance, the mitochondrial respiratory chain enzyme cytochrome 

c (Cassina AM, et al., 2000) and the membranous signalling enzyme protein kinase Cs 

(Balafanova Z, et al., 2002) have been shown to undergo activation following ONOO- 

induced tyrosine nitration. In addition, nitration of tyrosine residues may interfere with 

tyrosine phosphorylation, a common mechanism o f cell signalling. Both loss (Brito C, et
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al., 1999; Gow AJ, et al., 1996) and gain (Mallozzi C, et al., 2001) in function have 

been described as a consequence.

c) Tyrosine nitration appears to be a reversible process

While immunoreactivity has long been recognised as a stable footprint marker o f RNS, 

it has become clear that 3-NT proteins undergo selective ‘denitrase’ repair mechanisms. 

A soluble factor from rat spleen and lung was found to denitrate 3-NT bovine serum 

albumin (Kamisaki Y, et al., 1998). Recently, it was demonstrated that a number o f rat 

mitochondrial enzymes, including MnSOD, can undergo rapid de-nitration and nitration 

synchronous with ischemia-reperfusion cycles (Koeck T, et al., 2004). There is also 

evidence that tyrosine nitration may cause accelerated degradation o f enzymes in vitro 

(G runeT, e ta /., 1998).

d) Tyrosine nitration is part o f both physiological and pathophysiological pathways 

Tyrosine nitration o f proteins is not only a mechanism to mediate patho-physiological 

events, but also part o f normal cellular and tissue physiology. ONOO'-mediated tyrosine 

nitration has been shown to inhibit tyrosine phosphorylation and targets proteins for 

degradation in vitro (Gow AJ, et al., 1996). ONOO'-induced tyrosine nitration of 

normal T lymphocytes inhibits activation-induced tyrosine phosphorylation and thus 

lymphocyte proliferation (Brito C, et al., 1999). Furthermore, it primes the cells to 

undergo apoptotic cell death. ONOO' was detectable from macrophages upon immune 

stimulation and the authors postulate that this mechanism serves as a physiological 

suppressor o f immune stimulation. Naseem et al. showed that tyrosine nitration of 

specific proteins occurred within normal platelets upon physiological activation by 

collagen (Naseem KM, et al., 2000). The tyrosine nitration was mimicked by ONOO' 

treatment. Finally, tyrosine nitration o f the microtubule-associated protein x is thought to 

be necessary for normal neural development (Capelletti G, et al., 2004).

Although tyrosine nitration is a selective process, the number and nature o f affected 

proteins reported in the literature is large and diverse. Since the start o f the present 

studies, analysis o f liver and lung tissue of LPS-treated rats and cardiac tissue o f aged
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rats revealed 40 and 48 putative tyrosine-nitrated enzymes, respectively (Aulak KS, et 

al., 2001; Kanski J, et al., 2004). The identified enzymes comprised mitochondrial and 

cytosolic enzymes, mostly o f importance to energy production and cell structure, and 

less so to cell signalling and anti-oxidant defence.
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1.2 Synovial joints

1.2.1 Histology and physiology of normal synovium and cartilage

Joints have evolved to allow bone ends to angle, slide and twist relative to each other for 

the purpose o f smooth and easy, yet secure movement. Joints consist o f hyaline 

cartilage, covering the bone ends, and a surrounding fibrous capsule. The capsule is 

lined by the synovium , which consists of an intimal lining layer and the subintimal layer 

or subsynovium. The lining layer comprises a discontinuous, one to three-cell layer of 

specialized cells, the synoviocytes, without an underlying basement membrane. 

Structurally and functionally two types o f synoviocytes can be distinguished: a 

macrophage-like (type A) synoviocyte and a fibroblast-like (type B) synoviocyte, which 

have predominantly phagocytic or biosynthetic properties, respectively.

The subsynovium is a relatively hypocellular connective tissue, that contains blood 

vessels, fat cells and fibroblasts (Tak PP, 2000). The number o f blood vessels is 

typically highest near the synovial surface to meet its nutritional demand. Morphometric 

studies have suggested that normal synovium has a heterogenous, but generally high 

degree o f vascularity with ca. 240 capillaries per mm2 and a modal capillary depth o f 35 

pm (Stevens CR, et al., 1991b).

Hyaline cartilage consists o f chondrocytes (< 5% volume), embedded in a water-rich, 

complex extra-cellular matrix (ECM). Chondrocytes are zonally arranged, i.e. adopting a 

horizontal orientation in the superficial cartilage layer, changing to a vertical or 

columnar orientation in deeper layers. This orientation is concordant with an arching 

framework o f type II collagen fibres that form a scaffold for the ECM, ensuring tensile 

strength. Firmly attached to the collagen fibres are proteoglycans, such as aggrecan, that 

are rich in hydrophilic, negatively charged carbohydrates, which create high osmotic 

pressure with strong resilience o f normal cartilage. Cartilage is bound to its underlying 

bone through a thin layer o f calcified cartilage, and the strongly staining non-calcified- 

calcified interface is referred to as the tidemark (Hardingham T, 1998). While 

chondrocytes in normal adult cartilage do not show signs o f proliferation, proteoglycans
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are subject to a highly regulated turnover with an estimated half-life between days and 

months. Importantly, cartilage is aneural and avascular tissue and no significant nutrition 

is thought to occur via the tidemark. Hence, its metabolic demands are met solely via 

diffusion from the synovium (Hasselbacher P, 2003). Chondrocytes o f normal avascular 

articular hyaline cartilage have to function at low oxygen tension (down to 1 kPa or less) 

(Silver IA, 1975). Intra-articular (i.a.) pressures in normal joints are subatmospheric 

during most o f the movement range, aiding synovial capillaries to remain perfused. 

However , i.a. pressure have been shown to rise above atmospheric levels during 

maximum flexion: up to 5 mmHg and over 30 mmHg in rabbit and dog knees, 

respectively (Levick JR, 1979; Nade S and Newbold PJ, 1983).

1.2.2 Pathology of joint inflammation

Inflammation is a complex process that can be defined as the response o f living tissue to 

injury (Cotran RS, et al., 1999), caused by microbial, immune-mediated, physical or 

chemical insults. Inflammation requires vascularised tissue. The initial acute 

inflammatory phase is dominated by vascular responses (causing the signs o f swelling 

and redness) and infiltration by neutrophils and/or mast cells. The longer chronic phase 

that may (or may not) ensue is characterized by the presence o f mononuclear cells and 

connective tissue fibroblasts to attempt tissue repair. However, features o f acute and 

chronic inflammation may co-exist from early on, depending on the nature o f the injury. 

The inflammatory response depends on many mediators that, apart from reactive 

nitrogen and oxygen species, include cytokines, histamine, complement, arachidonic 

acid metabolites, kinins, proteinases and -  in order to limit the inflammatory response -  

anti-inflammatory mechanisms, e.g. proteinase inhibitors and anti-oxidants.

1.2.2.1 Rheumatoid arthritis

Rheumatoid arthritis is a human disease, characterised by chronic and frequently 

destructive inflammation affecting synovial joints in a typical distribution. The cause of 

this disease is unclear. Based on twin studies, the genetic component o f disease 

susceptibility is estimated to be about 60%. Although auto-antibodies are commonly
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found in sufferers, the suspected causative foreign antigen/ auto-antigen remains elusive. 

Despite advances over the recent decades, current treatment achieves commonly only 

partial disease control (Hochberg MC, 2003).

In rheumatoid arthritis all components of the synovium, cartilage and bone are altered 

(Freemont AJ, 1995; Tak PP, 2000). The cells o f the synovial lining layer undergo 

both hypertrophy and hyperplasia, often in a focal distribution and synovial villi extend 

into the synovial cavity. At the interface of cartilage and synovium the thickened 

synovial tissue is usually referred to as pannus.

About two thirds o f the synoviocytes in the lining layer are macrophage-like cells and 

their excess number is thought to be the result o f recruitment from bone-marrow derived 

mononuclear phagocytes (Anathasou NA, 1995). Fibroblast-like synoviocyte numbers 

are thought to be increased in part due to impaired apoptosis. They also show a very 

distinctive ‘stellate’ phenotype in cell culture and show gene mutations (e.g. the tumour 

suppression gene p35) and gene activation (e.g. matrix metalloproteinases), suggesting 

transformation to an invasive cell type [reviewed in (Pap T, et al., 2000)].

In the earlier stages o f RA, the subsynovium is characterised by increased cellularity, 

blood vessel formation and oedema. Similar to the lining layer changes tend to be focal, 

i.e. vary not only between, but also within individual joints (Tak PP, et al., 1997). The 

cell types accumulating within the subsynovium are predominantly T cells, plasma cells 

and macrophages; and to a lesser extent B cells, natural killer cells, mast cells and 

dendritic cells. In addition to a diffuse infiltration o f the subsynovium by these cells, 

perivascular lymphocyte aggregates, consistent with an antigen-driven cellular and 

humoral immune response, are commonly observed. As in the lining layer, macrophages 

often represent the majority o f inflammatory cells in the subsynovium and they are 

characterised by strong CD68 expression. They are the main cellular source o f tumor 

necrosis factor a  (TNFa), interleukin-1 (IL-1) and other key pro-inflammatory 

cytokines within the rheumatoid joint (Firestein GS, et al., 1990). They tend to 

accumulate around the cartilage-pannus-junction and their number has been shown to 

correlate with future development o f characteristic erosive joint damage, as detected by
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radiography, in patients with RA (Mulherin D, et al., 1996). Angiogenesis is a further 

prominent feature o f subsynovial change during RA. While new vessel formation during 

tissue repair following acute trauma is a generally a beneficial process, vessel growth in 

the context o f chronic inflammation, immune activation and hypoxia is frequently not 

(Walsh DA, 1999). Furthermore, while arterioles and larger vessels may increase in 

number, the capillary density close to the synovial surface may be decreased (Stevens 

CR, et al., 1991b), which may render the synovium prone to hypoxia depite new vessel 

formation.

Cartilage in RA has been reported to be affected via several routes (Woolley DE, 

1995). Synovial pannus tissue may invade into the cartilage margins and adjacent bone 

to cause characteristic erosions through the release o f proteolytic enzymes. Separate 

from this, chondrocytes may break down their surrounding ECM, leading to an 

enlargement o f the chondrocyte lacunae. Finally, cartilage destruction occurs also from 

the subchondral area via specialised multi-nucleated osteo-/chondroclasts. It is assumed 

that cartilage breakdown at these spatially separate sites is mediated through pro- 

inflammatory cytokines, released from the synovium (Woolley DE, 1995). However, it 

may indicate the possibility that RA is not primarily a synovial disease (Fujii K, et al.,

1999).

1.2.2.2 Osteoarthritis

Osteoarthritis (OA) is the most common joint disease to affect humans worldwide. It can 

be defined as a condition o f synovial joints characterized by cartilage loss and evidence 

o f accompanying periarticular bone response (Doherty M, et al., 1998). However it is 

recognized that all joint components (such as synovium, ligaments and muscle) 

demonstrate structural change. It is a very heterogenous disease. Apart from a small 

minority o f cases where a single cause can be identified, its aetiology is considered 

multifactorial. Hereditary and other susceptibility (e.g. obesity) and mechanical factors 

(e.g. previous trauma, repetitive usage) are all thought to play a role.
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The focus o f pathological change in OA has been on cartilage. Histopathologically the 

loss o f normal cartilage is chararcterized by cartilage fibrillation with cleft formation, 

altered chondrocyte cellularity and loss o f peptidoglycan (Mankin HJ, 1974). 

Chondrocyte proliferation, often leading to focal ‘cell clones’, is thought to precede 

chondrocyte loss with empty lacunae, although the frequency of chondrocyte death may 

be much lower than previously thought (Aigner T and Kim HA, 2002). Apart from NO, 

osteoarthritic chondrocytes release a multitude o f inflammatory mediators, including 

pro-inflammatory cytokines, such as IL-1 and TNFa, as well as an increased amount of 

matrix-metalloproteinases and ECM proteins. The net effect is a catabolic turnover of 

ECM with collagen disruption and proteoglycan loss, relatively early during the disease 

(Wollheim FA, 2003). Cartilage change is usually, but not invariably, accompanied by 

new bone formation at the subchondral and margins o f joints in the form o f bone 

thickening (sclerosis) and bony-cartilaginous overgrowths (osteophytes), respectively. In 

a mechanical canine knee OA model o f anterior-cruciate ligament transaction the earliest 

pathological changes o f OA are cartilage swelling and altered proteoglycan metabolism 

with bone changes featuring prominently later (Brandt KD, 2002). Nevertheless, the 

issue o f whether OA is primarily a disease o f cartilage or bone remains under discussion 

(Felson DT and Neogi T, 2004).

Chronic synovial inflammation with synovial production o f pro-inflammatory cytokines 

can be demonstrated even in early radiographic stages o f OA (Smith MD, et al., 1997). 

In end-stage OA these changes may be indistinguishable from rheumatoid arthritis. It is 

assumed, but not proven, that this synovitis is a secondary event, triggered e.g. by joint 

debris or crystal formation (Wollheim FA, 2003). Angiogenesis in OA is also 

recognised feature, e.g. by vessels crossing the tidemark. It is thought to contribute to 

inflammation and osteophyte formation (Bonnet CS and Walsh DA, 2005).

1.2.2.3 Animal models of inflammatory arthritis

Several models o f arthritis have been characterised, although none o f them shares all the 

known pathogenetic features o f rheumatoid arthritis. They are nevertheless extremely
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useful in studying individual aspects of arthritis and their response to experimental and 

therapeutic pharmacological intervention. The principles o f some o f the more frequently 

used models are briefly described here.

• Adjuvant arthritis (AA) (Pearson CM and Wood FD, 1959) is induced by systemic 

injection o f heat-killed pulverized Mycobacterium tuberculosis, suspended in liquid 

paraffin (also called: complete Freund’s adjuvant) in rats. This stimulates both 

cellular and humeral immunity, leading to a granulomatous inflammation in many 

organs (such as spleen, liver, bone marrow, skin and eyes), and a profound 

inflammatory and erosive polyarthritis, that lasts for a few months. Practically all 

drugs used in human RA have shown to be efficacious in AA, which cannot be said 

o f other animal models o f arthritis. AA has not been reported in mice or primates. 

There is evidence o f increased NO production in AA (Stefanovic-Racic M, et al.,

1994).

•  Collagen-induced arthritis (CIA) (Trentham DE, et al., 1977) is induced by 

immunisation with homologous or heterologous type II collagen, leading to a severe, 

erosive polyarthritis, that is usually self-limiting. Like AIA it has strong T- and B- 

lymphocyte involvement and like human RA it shows association with certain MHC 

haplotypes. There is evidence o f increased NO production in this model (Cannon 

GW, et al., 1996).

• Bacterial cell wall-induced arthritis is induced by intra-peritoneal injection of 

bacterial cell wall peptidoglycans (usually from Streptococcus, Group A) into 

susceptible rat strains, e.g. inbred Lewis, leading to an acute and chronic erosive 

polyarthritis, characterized by a relapsing and remitting course (Cromartie WJ, et 

al., 1977). The acute phase depends on an intact alternative complement pathway, 

and the the chronic phase is T-cell dependent. Part o f  the pathology may be mediated 

by RNS (McCartney-Francis N, et al., 1993), but NO may also have a protective 

role in the erosive phase (McCartney-Francis NL, et al., 2001).
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• Antigen-induced arthritis (AIA) was first described in rabbits (Dumonde DC and 

Glynn LE, 1962), where it shares many histopathological features of RA, e.g. 

lymphoid aggregates, synovial hypertrophy and chronic-persistent inflammation. It 

is produced by immunising the animal with an exogenous foreign antigen, 

commonly methylated bovine serum albumin (mBSA), in CFA. This is followed by 

intra-articular administration o f the same antigen later. An acute immune complex 

arthritis develops, characterized by joint swelling and leukocyte infiltration. In mice 

(Brackertz D, et al., 1977) and rats (Griffiths RJ, 1992) mBSA achieves sufficient 

retention within the joint, which is necessary to generate a T-cell-mediated 

hypersensitivity, which in turn is necessary for a chronic arthritis to develop. The 

chronic arthritis features pannus-like synovial hypertrophy/-plasia with a cellular 

infiltrate o f macrophages, neutrophils, dendritic cells and a few T-cells. Erosions of 

cartilage and bone are seen from day 14 onwards (Griffiths RJ, 1992). NO appears 

to be involved in this arthritis model (Veihelmann A, et al., 2001).
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1.3 Evidence for a role of reactive nitrogen species in joint 

inflammation and physiology

There is a plethora o f evidence linking nitric oxide and its reactive metabolites to joint 

disease in humans. As far as human joint disease is concerned, the majority o f evidence 

is indirect, i.e. based, for instance, on the demonstration o f NOS enzyme activity or 

relatively stable metabolites such as 3-NT or NO 2 ' in biological samples. Experimental 

animal studies will allow study o f the causality o f observations, but their applicability of 

findings to human disease is uncertain. In vitro studies have concentrated on the 

perceived key cells and tissue involved, i.e. the inflammatory cells and synovium in RA, 

and articular chondrocytes and the cartilage in OA.

1.3.1 RNS in rheumatoid and experimental inflammatory arthritis

The suggestion o f increased NO synthesis in human inflammatory arthritis in vivo first 

arose in 1992 when Farrell et al. found increased serum levels o f nitrite,as a metabolite 

o f NO, in subjects with RA, compared to healthy controls and patients with OA (Farrell 

AJ, et al., 1992). RA synovial fluid (SF) concentrations o f NO 2 ' were on average over 

twice as high as paired serum levels, indicating that NO is likely to be generated locally 

within the joint by inflamed synovium. A larger study confirmed these findings and 

showed furthermore that serum NO 2’ concentrations of subjects with RA correlated with 

clinical disease activity and with serum levels o f C-reactive protein, TNFa and 

interleukin-6 (IL-6) (Ueki Y, et al., 1996). The local production o f NO in RA was 

shown by demonstrating spontaneous NO2’ production and NOS protein and mRNA 

expression in excised human synovium and cartilage (Sakurai H, et al., 1995). NOS 

mRNA and protein localized to macrophage-like synoviocytes, endothelial cells and 

chondrocytes in particular, although other investigators found NOS protein 

predominantly in fibroblast-like rather than macrophage-like synoviocytes (Mclnnes IB, 

et al., 1996). Inducible NOS protein has also been immuno-localized to vascular smooth 

muscle cells (Grabowski PS, et al., 1997; Mclnnes IB, et al., 1996). Accordingly, 

synovial fibrobasts, chondrocytes and osteoblasts from rheumatoid joints can produce
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NO in vitro in response to pro-inflammatory cytokines (e.g. IL -ip, TNFa and interferon 

y (IFNy) (Grabowski PS, et al., 1996). While rodent macrophages readily produce large 

amounts o f NO (Hibbs JBJ, et al., 1987), human macrophages have been reported to 

show only very modest amounts o f NO in vitro despite strong stimulation (Albina JE, 

1995). In RA and similar inflammatory arthritides expression of iNOS, IL -lp  and TNFa 

protein in the synovium was elevated and strongly correlated, while only weakly present 

in cartilage (Melchiorri C, et al., 1998). The converse was found for OA subjects. NO 

has been shown to induced mRNA expression o f the pro-inflammatory enzyme 

cyclooxygenase type 2 (COX2) in rheumatoid synovial cells in vitro (Honda S, et al.,

2000). Studies o f the effects o f NO on potential target cells have otherwise focused on 

articular chondrocytes and cartilage, and will be discussed in the next section.

Kaur and Halliwell reported the first evidence implicating more reactive RNS, such as 

ONOO' in rheumatoid arthritis (Kaur H and Halliwell B, 1994). Using HPLC, they 

demonstrated increased levels o f 3-NT in the serum and synovial fluid o f patients with 

RA, compared to osteoarthritic and healthy controls. Immunohistochemically, 3-NT 

localised to synovial macrophages and blood vessels in rheumatoid synovia, and this 

was paralleled by staining for iNOS (Mapp PI, et al., 2001; Sandhu JK, et al., 2003). 

There was disagreement between these two studies as to whether iNOS is expressed in 

vascular smooth muscle or endothelial cells o f the synovium. Nevertheless, there is clear 

evidence to implicate reactive NO-derived species in rheumatoid arthritis.

Initial studies o f pharmacological NOS inhibition, using inhibitors relatively non- 

selective for individual NOS iso-enzymes, showed amelioration o f arthritis in a number 

o f models, e.g. rat streptococcal cell wall (SCW)-induced arthritis (McCartney-Francis 

N, et al., 1993), adjuvant arthritis (Stefanovic-Racic M, et al., 1994) and rabbit antigen- 

induced arthritis (Palacios FA, et al., 1999). Suppression o f chronic joint inflammation 

and cartilage-bone damage was common to all these studies. But not all aspects o f acute 

joint inflammation were improved by NOS inhibition. For instance, joint swelling was 

suppressed in SCW-induced arthritis, but leucocyte infiltrates unaffected (McCartney- 

Francis N, et al., 1993). When using more selective inhibitors o f iNOS or iNOS ‘knock

out’ mouse models in experimental arthritis, the picture was different. SCW-induced rat 

arthritis (McCartney-Francis NL, et al., 2001) was exacerbated with more severe tissue
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destruction and cartilage/bone loss by the iNOS-selective inhibitor N-imino-ethyl-X- 

lysine (X-NIL) (Boer R, et al., 2000). Expression o f eNOS and nNOS mRNA was not 

affected by X-NIL treatment and it was suggested that constitutive NOS enzymes 

mediate the destructive arthritis. AIA in iNOS-deficient mice (iNOS -/-) and mice 

treated therapeutically with L-NIL produced, as expected, lower plasma levels o f nitrite, 

but joint swelling, leucocyte adhesion and adhesion molecule expression during the 

acute phase was increased, compared with appropriate controls (Veihelmann A, et al., 

2001; Veihelmann A, et al., 2002). L-NIL treatment commenced in the chronic phase of 

arthritis had no effect on articular inflammation or bone destruction o f AIA in mice. 

There are, however, examples where specific iNOS inhibition is protective: Paw 

inflammation and joint destruction o f adjuvant arthritis was shown to be inhibited by X- 

NIL, albeit only when given prophylactically, but not therapeutically (Fletcher DS, et 

al., 1998). Proteoglycan loss was decreased in zymosan-induced knee monarthritis in 

iNOS gene ‘knock-out’ mice compared to wild-type, although acute inflammation was 

little affected (van de Loo FA, et al., 1998). This heterogeneity o f results is likely to 

reflect differences o f disease mechanisms o f these arthritis models and the different roles 

that individual NOS isoenzymes may play at different stages o f the inflammatory 

disease process. In general, it would seem that NOS inhibition has to start 

prophylactically, i.e. during the pre-clinical phase o f arthritis development, in order to 

have any chance to be protective.

There is evidence that a putative ONOO'-scavenger, referred to as tempol (Carroll RT, 

et al., 2000), is able to ameliorate inflammation and erosive damage in rats with 

collagen-induced arthritis (Cuzzocrea S, et al., 2000). Accordingly, 3-NT immuno- 

staining was also dimished by tempol.

No published clinical trials o f NOS inhibition exist.

1.3.2 RNS in human and experimental osteoarthritis

Although serum and synovial levels o f NO 2 ' are considerably lower in patients with OA 

than RA, there is much evidence to suggest that NO is an important mediator o f cartilage 

pathology in OA. Chondrocytes are both an important source and target cell o f NO.
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Compared to most other human cell types, chondrocytes from non-diseased joints 

readily release large amounts o f NO (measured as NO 2 ') when stimulated with the pro- 

inflammatory cytokine IL -ip  in vitro (Palmer RJM, et al., 1993) while chondrocytes 

from the cartilage o f subjects with OA produce NO spontaneously (Amin R, et al., 

1995). This NO production by OA chondrocytes was associated with the expression of 

iNOS and a neuronal-type NOS enzyme, respectively. NO generation in vitro was found 

to be higher in superficial compared with deeper parts o f normal human cartilage 

(Hayashi T, et al., 1997). Both endogenous (i.e. IL-ip-induced) NO and exogenous NO 

have been associated with apoptosis in human and bovine chondrocytes (Blanco FJ, et 

al., 1995), reduced ECM synthesis in rabbit cartilage (Taskiran D, et al., 1994) and 

increased matrix metalloproteinase (collagenase and stromelysin) activity in non

diseased human and bovine chondrocytes (Murrell GA, et al., 1995) in vitro. In normal 

rabbit chondrocytes, exogenous NO inhibited mitochondrial respiration and ECM 

synthesis, in particular under hypoxia (Tomita M, et al., 2001). In vivo, a canine 

anterior-cruciate transection model of knee OA was associated with increased 

expression o f iNOS and treatment with Z-NIL decreased cartilage damage and synovial 

inflammation (Pelletier JP, et al., 1998)

There is, however, also evidence that NO generation is not deleterious for OA cartilage 

per se: iNOS inhibition of human OA cartilage showed increased spontaneous release of 

prostaglandin E2 (PGE2) in vitro (Amin AR, et al., 1997).

Some observations suggest that ONOO' is implicated in chondrocyte dysfunction. In 

vitro normal human chondrocytes required the presence o f reactive oxygen species for 

NO-induced cell death (Del Carlo MJ and Loeser RF, 2002). Human OA cartilage 

showed 3-NT immunostaining in chondrocytes and ECM, correlating with histological 

OA severity and IL -ip  staining o f chondrocytes (Loeser RF, et al., 2002). Staining was 

mainly in the superficial cartilage layers.

37



Chapter 1: General Introduction

1.3.3 RNS in joint physiology

There is increasing in vitro evidence that NO has protective roles in cartilage and 

chondrocytes from normal joints. Both endogenous and exogenous NO has been shown 

to inhibit ECM catabolic activity of non-diiseased equine and bovine chondrocytes in 

vitro (Bird JLE, et al., 2000; Stefanovic-Raccic M, et al., 1996). Inhibition o f iNOS led 

to increased release o f IL-1-induced, prco-inflammatory cytokines, such as IL-6, 

interleukin-8 and PGE2 , by chondrocytes from non-diseased human joints in vitro 

(Henrotin YE, et al., 1998). NO appears alsco essential for host defence against bacterial 

arthritis. Mice lacking iNOS had higheir mortality and more joint damage in 

Staph.aureus-induced septic arthritis (Mclnmes IB, et al., 1998). Recently, NO 2 ', as the 

main breakdown product o f NO, was showm to protect normal human chondrocytes in 

vitro against hypochlorous acid, a neutrcophil-derived oxidant mediating cartilage 

destruction (Whiteman M, et al., 2003). Hmwever, evidence that nitrogen species more 

reactive than NO may have a role in normal jjoint physiology has been lacking.

Previous work o f  our group determined the immunohistochemical distribution o f 3-NT 

in inflamed and non-inflamed human synoviium (Mapp PI, et al., 2001). In rheumatoid 

synovium, obtained from patients at the time o f replacement arthroplasty, 

immunoreactivity was found in macrophage-like synoviocytes and vascular smooth 

muscle cells. This showed co-distribution wvith immunoreactivity for iNOS protein in 

serial sections. Control synovium had been taken from post mortem examinations and 

subjects, undergoing arthroscopy for m echanical knee symtoms. The control synovia 

were histologically normal, but displayed 33-NT immunoreactivity in the majority of 

vascular smooth muscle cells, as confirm ed by staining o f serial sections with a 

monoclonal antibody for smooth muscle coc-actin. Co-distribution o f iNOS was not 

observed and vascular smooth muscle cells ifrom a wide range o f  normal non-synovial 

tissues (derived from the post mortem specim ens and a pathological specimen bank) 

showed no immunoreactivity for 3-NT. Tisssues studied, included skin, colon, small 

intestine, liver, kidney, heart, skeletal muscle and spleen.
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These findings suggested a unique capability of synovial vessels to produce potent RNS, 

such as peroxynitrite, under physiological conditions. If  true, this observation was likely 

to reflect an important biological role rather than a coincidental phenomenon. The 

questions that arose were as follows: Could this observation be reproduced in other 

species and by other (i.e. non-immunological) methods? I f  so, when during animal 

development did it come about? What was the enzymatic origin o f the RNS leading to 3- 

NT formation and would this offer a way of modifying 3-NT in healthy joints? Given its 

ability to generate both NO and O2*’, was there a role for XOR in generating articular 3- 

NT formation? Finally the most important question: how does 3-NT in healthy joints 

affect articular physiology and inflammation?
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Chapter 2: Aims and objectives

The aim o f  this work was to elucidate the biological role o f reactive nitrogen species 

(RNS) in normal synovial joint tissue and in joint inflammation:

To this purpose the following objectives were defined:

• To test the hypothesis that 3-nitrotyrosine (3-NT), a marker o f peroxynitrite and 

other RNS formation in-situ, is present in joint tissue from normal animals 

across species.

• To identify a single enzymatic source o f nitric oxide (NO), that precedes 3-NT 

formation in normal joints.

• To study the role o f 3-NT in normal joints and in the development o f joint 

inflammation following the induction o f arthritis in normal and enzyme- 

deficient animals.

Previous work had shown that xanthine oxidoreductase (XOR), a ubiquitous enzyme is 

capable o f generating both NO and superoxide, which can form the powerful RNS 

peroxynitrite.

Therefore a specific hypothesis to be examined was:

• That XOR contributes to 3-NT formation in normal joints and also during joint 

inflammation.
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Chapter 3: Presence and distribution 

of 3-nitrotyrosine in joint tissue

3.1 Introduction

It is recognised that nitric oxide (NO) can have both adverse and beneficial effects on 

joint tissue during inflammation (see section 1.3). However, upon reaction o f NO with 

O2 *', both prevalent during joint inflammation (2000; Halliwell B, 1995), the more 

reactive species peroxynitrite (ONOO) is readily formed (Pryor WA and Squadrito GL,

1995). ONOO', in common with most reactive species derived from NO (RNS), has to 

date only been shown to be o f deleterious consequence for joint tissue. For instance, 3- 

nitrotyrosine (3-NT), a molecular marker o f ONOO' (Ischiropoulos H, et al., 1992b; 

Reiter CD, et al., 2000; Sawa T, et al., 2000) and other RNS (Brennan ML, et al., 

2002; van der Vliet A, et al., 1997), has been found to be elevated in synovial fluid and 

serum from subjects with rheumatoid arthritis (RA) compared to those with 

osteoarthritis (OA) and healthy volunteers, as measured by HPL-chromatography (Kaur 

H and Halliwell B, 1994). Increased immunoreactivity to 3-NT has been described in 

experimental forms o f inflammatory arthritis (Cuzzocrea S, et al., 2000) and 

osteoarthritis (Pelletier JP, et al., 1999), as well as RA synovium (Mapp P.I., et al., 

2001; Sandhu JK, et al., 2003) , OA synovium (Sandhu JK, et al., 2003) and OA 

cartilage (Loeser RF, et al., 2002) in human tissue. The correlation o f 3-NT staining 

with histological inflammation in human joint tissue (Mapp PI, et al., 2001; Sandhu JK, 

et al., 2003) and the reduction o f inflammation and 3-NT staining by ONOO- 

scavengers (Cuzzocrea S, et al., 2000) is indirect evidence o f a pathogenetic role of 

ONOO'/RNS in arthritis.

In additon to 3-NT being a marker of RNS formation in situ there is increasing evidence 

to suggest that 3-NT itself may play a pathogenetic role (see section 1.1.4.3). Nitration 

of tyrosine under inflammatory conditions is a selective process with only one to five in 

10,000 tyrosine residues (10-50 pmol/mol) detectable as 3-NT (Brennan ML, et al.,
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2002). There is an increasing literature showing that nitration o f single or few tyrosine 

sites o f proteins associate with altered enzyme function and pathological anatomy or 

physiology, e.g. manganese SOD (MnSOD) in human rejected kidney allografts 

(MacMillan-Crow LA, et al., 1996) or vascular tissue o f senescent rats (van der Loo B, 

et al., 2000b), and prostacyclin (PGL) synthase in atherosclerotic bovine artery walls 

(Zou MH, e ta i ,  1999).

Previous work from our group has shown distinct immunostaining for 3-NT in 

histologically normal synovium, derived from post-mortem examinations or subjects 

undergoing arthroscopy for knee pain (Mapp PI, et al., 2001). 3-NT immunolocalised in 

particular to the vascular smooth muscle cells o f synovial vessels, but it was not present 

in other vascular beds, such as in skin, gut, kidney or liver from a human tissue bank. 

This was a surprising finding, suggesting a physiological RNS-generating mechanism, 

exclusive to synovium.

But there were several caveats to these findings: Although the post-mortem specimens 

were obtained from subjects without known arthritis, most subjects were of advanced 

age, and it is now known that increased 3-NT in blood vessels and cartilage occurs as a 

part o f normal aging (Loeser RF, et al., 2002; van der Loo B, et al., 2000a). 

Furthermore, an inevitable degree o f ante-mortem and pre-sampling tissue hypoxia 

could have led to oxidative stress and artefactual formation o f RNS, leading to spurious 

results. Finally, the arthroscopically retrieved synovial samples, although histologically 

normal, could not be assumed to be normal in the strictest sense.

There was therefore a need to replicate these immunohistochemical findings in other 

species under controlled conditions. If these findings were reproduced, it would then 

allow further investigations into the biological role o f 3-NT in normal synovium. In 

addition, it was important to examine 3-NT content by a non-immunological, 

quantitative method, e.g. gas chromatography/ mass spectrometry (GC/MS). Finally, it 

was o f interest to see whether specific tyrosine-nitrated proteins could be identified or 

whether 3-NT formation affected joint proteins in an indiscrimate way.
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3.2 Aims and objectives

• To study the presence and distribution of 3-NT immunoreactivity in the normal 

joint and other tissues from the rat, mouse and other mammals, to determine 

whether findings are similar to human tissue.

• To determine at what stage during ontogenetic development 3-NT in normal rat 

joint tissue is first observed.

• To measure any increased presence o f 3NT in the normal rat joint and compare 

this to other tissues by a sensitive quantitative physico-chemical method.

• To perform immunoblotting for 3-NT on joint homogenates o f the rat to 

determine whether physiological tyrosine nitration affects specific proteins or all 

proteins indiscrimately.

43



Chapter 3: 3-NT in Normal Joints

3.3 Methods

Detailed material lists and protocols on general procedures can be found in the appendix 

sections. All concentrations are final, unless stated otherwise.

3.3.1 Animal methods

Laboratory rats and mice were kept under standard conditions with water and food ad 

lib. and 12 hour day-night light cycles. Animal husbandry and general procedures were 

in accordance with the Animal (Scientific Procedures) Act (ASPA), 1986. All 

experimental procedures were carried out under a Home Office-approved project and 

personal licence (#30/5652).

3.3.2 Animal tissues

Outbred Wistar rats (Bath strain; Charles River, UK) were killed by cervical dislocation 

or carbon dioxide overdose in accordance with Schedule 1 (Appropriate methods of 

humane killing, ASPA 1986). Patella with adjacent synovium was dissected together 

with other tissues for analysis.

Male SV 129 mice (B&K, Glasgow, UK) were killed by cervical dislocation. Whole 

knee joints were excised for analysis.

White Frisian cattle tissue samples were obtained from 4 - 6  week old animals, killed by 

electrical stunning and exsanguination, at the former Bath Abattoir, Cheltenham Street, 

Bath. Samples {i.e. synovial samples and cartilage core biopsies from the stifle joint) 

were removed within 20 min o f slaughter.
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3.3.3 Histological methods

3.3.3.1 Fixation and embedding

Joint samples were not decalcified prior to processing, since it was known from previous 

experiments within the group that the 3-NT antibody does not bind to decalcified 

sections.

3.3.3.1.1 By immersion

After excision, tissues were fixed in buffered formal saline (10% (v/v), histological 

grade; BDH, Poole, UK). Formal saline is known to fix tissue by cross-linking proteins 

via methylene bridges. After 24 -72 hours fixed tissues underwent automated 

dehydration and embedding in paraffin wax (Shandon Hypercentre XP, UK).

3.3.3.1.2 By perfusion

Compared to immersion-fixation, perfusion-fixation has a shorter time from cessation of 

circulation to fixation. It is used to demonstrate biomolecules in situ, that are very 

unstable or sensitive to hypoxic modification.

Six week-old, male Wistar rats (weight ca. 200-250 g; n=3) underwent terminal 

anaesthesia with intra-peritoneal (i.p.) pentobarbitone (Euthatal ™, 50-75 mg/animal; 

Rhone-Merieux, UK). Animals were fixed to a dissection board, the cardiac left 

ventricle cannulated with a surgical hollow probe and the probe clamped with a 

customized Spencer-Wells artery forceps. Approximately 200 mis phosphate-buffered 

saline (PBS) with sodium heparin (5 U/ ml PBS; Leo Laboratories, Bucks, UK) were 

perfused via a peristaltic pump (CP Instruments Co. Ltd, Herts, UK), followed by ca. 

500 mis o f formal saline per animal. Completed fixation was indicated by profound 

rigor mortis. Specimens were dissected and processed as for immersion-fixed samples.

3.3.3.1.3 By cryofixation

Certain antigens and staining methods, e.g. immunofluorescent techniques, require tissue 

fixation by cryo-preservation, since chemical fixation would mask the antigen or causes 

tissue auto fluorescence. Excised tissue was mounted in OCT compound (TissueTec; RA

45



Chapter 3: 3-NT in Normal Joints

Lamb, UK) on cork beds and snap-frozen in isopentane (BDH, UK), pre-cooled in liquid 

nitrogen. Cryo-fixed samples were stored at -70 °C until sectioning.

3.3.3.2 Sectioning

Since non-decalcified tissue was used, sectioning of joint tissue was technically difficult 

due to early blade blunting and physical disruption o f sections. Joint specimens were 

(embedded and) sectioned in a sagittal orientation.

3.3.3.2.1 Sledge microtome

Ice-cooled, paraffin-embedded tissue blocks were sectioned at a thickness of 5-8 pm on 

a sledge microtome (Leitz, Wetzlar, Germany), floated on 35 °C warm H2 O and 

mounted on microscopy slides. Sections were incubated at 60 °C overnight to improve 

adherence to the glass slides during the staining procedures. For difficult tissues, e.g. 

joint tissue, adherence was further improved by pre-treatment o f glass slides with 

Vectorbond™ (Vector, UK) or using Superfrost™ glass slides.

3.3.3.2.2 Cryostat sectioning

OCT-embedded frozen samples were cut at 6-8 pm thickness on a cryostat (Bright 

Instrument Co., Huntingdon, UK). Bone-containing knee synovium samples were cut 

using a tungsten carbide blade (Bright, UK). Sections were thaw-mounted on 

Superfrost™ glass slides, air-dried and fixed as appropriate for the histological method.

3.3.3.3 Staining methods

3.3.3.3.1 Covalent-bound stains

Initial histological assessment o f tissues will usually employ a stain that forms strong 

covalent bonds between a dye and a target tissue. In general the advantages o f these 

stains are that they produce quick and durable results with good colour definition. The
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disadvantages are that they require higher concentrations of chemical target groups and 

are less specific than immuno-stains.

One o f the most frequently used stains in general pathological practice is the 

haematoxylin-eosin stain. Haematoxylin stains basophilic cell structures, such as the 

nucleic acid-rich nucleus, blue, whereas eosin stains the eosinophilic cytoplasm o f cells 

red. Details about the procedure are found in Appendix I.

3.3.3.3.2 Immunohistochemistry (IHC)

Immunohistochemical detection relies on the relatively specific interaction of an 

antibody with its corresponding antigen. This interaction is made visible via an enzyme, 

linked to the antibody, which catalyzes a colour reaction (i.e. direct IHC). However, 

since many antigens are present in low concentration, a signal amplification step with a 

‘tagged’ secondary antibody (directed against the primary antibody) is often part of the 

protocol (i.e. indirect IHC), making the immunohistochemical method very sensitive 

(Fig. 3.3.33.2). Potential disadvantages include in particular the possibility o f non

specific (i.e. false positive) staining, which can in part be eliminated by blocking non

specific binding or identified by using appropriate controls. Materials and protocol of the 

general method will be found in Appendix I.

In the following there is a brief description o f the general method with examples for 3- 

NT IHC in brackets:

After de-paraffinisation in xylene and rehydration in industrial methylated spirit (IMS) 

tissue sections were rinsed in PBS. Then blocking medium (e.g. 5 mg BSA and 333 pg 

normal goat serum in 10 ml PBS) was added onto the sections, so as to reduce non

specific binding o f the secondary antibody. After a short incubation, excess medium was 

discarded and primary antibody added at pre-determined optimum dilution in blocking 

medium (e.g. polyclonal rabbit a«ft'-3-NT antibody, 1:100-150 (v/v)). After incubation 

overnight at 8 °C, sections were rinsed twice in PBS. Then the biotinylated, secondary 

antibody (e.g. goat anti-rabbit Ig G, 1:100 (v/v) in PBS) was added, directed against the 

bound primary antibody and incubated approx. 30 min at room temperature (RT).
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Fig. 3.3.3.3.2: Cartoon outlining the principle o f indirect immunohistochemistry:

(a) an antigen (CZ> ) is shown on a histological section; (b) the primary antibody (Y) 

has bound to the antigen; (c) secondary antibody (V ), carrying covalently bound biotin 

( - • ) ,  has bound to the primary antibody; (d) avidin ,which avidly binds up to four biotin 

molecules, has bound a number o f biotinylated enzyme molecules (E) and has cross- 

linked to a biotinylated secondary antibody, thus amplifying the signal o f the primary 

antibody-antigen complex.

After further washing in PBS, sections were incubated for exactly 30 min with pre

prepared avidin-enzyme complex (reagent A (i.e. avidin) and B (i.e. biotinylated alkaline 

phosphatase) in PBS from Vectastain® ABC-AP kit). Each avidin will bind up to four 

biotin residues, thus amplifying the number o f primary antibody-antigen complexes. 

After rinsing again in PBS, the chromogenic enzyme substrate was added (e.g. Sigma 

Fast™ Fast red, containing TR/ naphthol AS-MX tablets including 0.6 mM levamisole 

to inhibit exogenous alkaline phosphatase activity in HhO/Q). Within minutes a colour 

reaction product (i.e. red) could be observed to develop under the microscope. The 

reaction was terminated by immersion into H2 0 /dd, when positive and negative control 

sections turned positive or remain negative respectively. After counterstaining o f nuclei
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with M ayer’s haematoxylin, sections were mounted in water-based mounting medium 

and ready for microscopic analysis.

3.3.3.3.3 Immunofluorescence (IF)

Like IHC, immunofluorescence (IF) is based on the specific interaction between an 

antigen and antibody, but this interaction is then visualized by a fluorescent-labelled 

secondary antibody. The indirect IF method used here is a modification of the technique 

described by Viera et al (Viera L, et al., 1999). The protocol is detailed in Appendix I. 

In brief the method is as follows (with examples for 3-NT IF in brackets):

Cryo-preserved rat joint tissue was sectioned at 8 pm, air-dried and fixed in 4% para

formaldehyde. After solubilisation with 0.3% Triton X-100 (v/v, in PBS) for 10 min, 

blocking medium was added (e.g. 5 mg BSA, 333 pg normal goat serum in 10 ml PBS). 

Then primary antibody was added at pre-determined optimum dilution (e.g. monoclonal 

mouse tf«//-3-NT, clone 1A6, 1:200 (v/v) in blocking medium) for one hour at room 

temperature. After rinsing the sections in PBS, secondary FITC-labelled secondary 

antibody (e.g. goat anti-mouse IgG FITC conjugate, 1:150 (v/v) in PBS) was added and 

the sections from then on protected from light. After incubation for 30 min, the sections 

were rinsed in PBS and nuclei counter-stained with DAPI for a few minutes. After final 

rinsing, sections were mounted with a coverslip using an aqueous anti-fading medium 

and kept protected from light and dehydration at 4°C.

3.3.3.4 Specificity controls

Since immunohistochemical detection is dependent on the specificity o f the primary 

antibody, a number o f control sections are required in each assay to ensure that staining 

is not a result o f non-specific binding.
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The following controls were performed:

•  Omission control: Blocking medium without the primary antibody was added to 

the sections. This controls for non-specific binding o f all IHC media, except of 

the primary antibody itself, and was performed in every assay.

• Non-immune control: Normal immunoglobulin from non-immunised animals of 

the same host from which the primary antibody is derived was used instead of 

the primary antibody at the same final protein concentration. This is a valid 

control for polyclonal primary antibodies, provided it produces no (or negligible) 

staining. Given the sensitivity of IHC and the fact that ‘non-immune’ 

immunoglobulins are a large pool o f different idiotype-specificities, some 

staining may occur, in particular if the antigen o f interest happens to be a 

naturally common immunogen or when using a monoclonal primary antibody. It 

is therefore more appropriate to use a so-called isotype control, i.e. another 

primary antibody o f identical host and immunoglobulin isotype, directed towards 

an antigen known to be absent in the tissue under investigation. In this instance, 

the anti-neurofilament 200 antibody represented such a control for 3-NT IHC in 

cartilage. Non-immune or isotype controls were employed in at least one out of 

three assays.

• Adsorption control: The primary antibody is pre-incubated with the purified 

antigen (if available) which should abolish all staining, if the antibody recognises 

the antigen it purports to do. In IHC for 3-NT this was performed once at the 

beginning o f a new antibody batch, by pre-incubating the anti-3-NT antibody at 

working dilution, in blocking medium, containing 10 mM 3-nitro-Z-tyrosine 

(Sigma, UK; #N-7389), pH-corrected to 7.4 with NaOH. After overnight 

incubation at 8°C, the medium was centrifuged for 20 min at 13000 rpm (Biofuge 

Fresco, Heraeus Instruments, Germany) and the supernatant used instead o f the 

tf«fr'-3-NT antibody.
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A  positive specimen section control was used in every assay to ascertain that the assay 

as whole worked technically well. For the anti-3-NT antibody, the positive histological 

control was provided by human RA synovium, containing mononuclear cell infiltrates 

that stained well for 3-NT (Mapp PI, et al., 2001).

3.3.3.5 Antibodies for IH C /IF

The main antibody used for IHC in this study was the rabbit polyclonal anti-3- 

nitrotyrosine. This immunopurified antibody was developed by Beckman et al. 

(Beckman JS, et al., 1994b) and was generated by immunising mice with ONOO' - 

modified keyhole limpet haemocyanin.

Specificity H ost Type Source

anti- 3- 

nitrotyrosine

Rabbit Polyclonal,

immunopurified

TCS Biologicals, UK, 

#06-284

anti-3 - 

nitrotyrosine

Mouse Monoclonal (clone 1A6), 

immunopurified

TCS Biologicals,UK, 

#05-233

anti-boVmz 

neurofi lament 200

Rabbit Polyclonal,

immunopurified

Sigma, UK; 

#N-4142

3.3.3.6 M icroscopy

Stained tissue sections were examined on Zeiss Axioskop 2 microscope (Zeiss, UK). Via 

an interfaced colour video camera (KY-F558; JVC, UK) pictures were acquired 

digitally, using image analysis software (KS 300, version 3.0, 1997; Zeiss, UK). 

Immunofluorescent sections were analysed using the following emission and excitation 

frequencies: for FITC (359/461 nm; appearance: green) and for DAPI (494/518 nm; 

appearance: blue).

51



Chapter 3: 3-NT in Normal Joints

3.3.3.7 Section analysis

IHC sections for 3-NT were analysed qualitatively for the presence and distribution of 3- 

NT. Particular attention was paid to the vascular smooth muscle cells in synovium, in 

comparison to other organs, such as gut, skin, brain, liver, kidney and heart.

As will emerge, 3-NT immunoreactivity was found not only in the synovial vessels, but 

also the hyaline cartilage chondrocytes, therefore a semiquantitative assessment was 

performed. The sections o f one representative o f at least three IHC assays per species or 

intervention group were coded and scored according to the following rule:

The total number o f synovial vessels, defined as having a lumen with endothelium 

and/or intra-luminal blood cells, in the whole section was expressed as: 0, nil; +, < 5 

vessels; + +, 5-15 vessels; + + +, 1 6 - 5 0  vessels; + + + + ,>  50 vessels. This was done 

to take into account the variability o f number o f vessels seen per section.

The sections were then judged according to the proportion o f synovial vessels showing 

unequivocal staining for 3-NT in the vascular smooth muscle layer: 0, no vessels; +, few 

vessels (i.e. <25 %); ++, moderate number o f vessels (i.e. 25 -  75%); and + + +, most 

vessels (i.e. >75%) stained.

Cartilage, if present, was scored for the proportion o f chondrocytes showing 3-NT 

immunoreactivity: 0, nil; +, few (i.e. < 25%); + +, moderate numbers (i.e. 25 - 75%); 

and + + +, most chondrocytes (i.e. >75%).

Intra-observer agreement o f these semiquantitative scores were calculated as kappa, 

based on 13 mouse knee joint sections, scored twice four weeks apart and blinded to the 

label. Kappa ( k )  expresses the observed agreement between the scores, as a proportion 

of the agreement expected by chance (Altman DG, 1991). The K-value may lie between 

0 (i.e. agreement no better than chance) and 1.00 (i.e. perfect agreement). In practice, k -  

values are taken to reflect agreement as follows: < 0.20 equals poor level o f agreement, 

0.21-0.40 fair , 0.41-0.60 moderate, 0.61-0.80 good, and 0.81-1.00 very good agreement 

(Altman DG, 1991). The level o f intra-observer agreement was fair for the number of
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synovial vessels seen ( k  = 0.39), moderate for the proportion o f 3-NT-positive synovial 

vessels ( k  = 0.44) and good for the proportion o f 3-NT-positive chondrocytes ( k  = 0.76).

3.3.3.8 3-NT immunohistochemistry on Wistar rat offspring

The male offspring o f two Wistar rats, delivering within one hour o f each other, were 

pooled to be raised by one o f the mothers. Random animals (n=3, each time point) were 

sacrificed by cervical dislocation 3 hours, 10 days and 20 days after birth. The following 

joint tissues were obtained for formal saline fixation: whole limbs (from the newborn 

pups), whole knee and feet (from 10-day old pups) and patella-synovium preparations 

(from the weaning age animals, i.e. 20 days). Liver, bowel, skin, kidney, heart, lung and 

brain tissues were also obtained.

3-NT IHC in joint sections from all three time points was performed in the same assay, 

to ensure comparability o f staining. Sections were assessed qualitatively for the absence 

or presence o f  3-NT staining in synovial vessels and cartilage. Negative controls 

included omission o f primary antibody and the use o f  pooled rabbit immunoglobulin 

instead o f the primary antibody. H&E-stained sections showed no histological tissue 

pathology.

3.3.4 Nitrotyrosine measurement by gas chromatography/ mass 
spectrometry

Immunohistochemistry provides information on the localisation o f antigens, like 3-NT, 

but it does not allow quantification of the antigen in question. IHC also relies on and is 

limited by the quality o f the primary antibody, in particular its relative specificity. 

Several physico-chemical techniques have been used to quantify nitrotyrosine (NT), e.g. 

high-performance liquid chromatography(HPLC) or gas-liquid chromatography (GLC) 

and/or mass spectrometry (GC/MS, MS) (reviewed in (Herce-Pagliai C, et al., 1998)). 

This work had the benefit o f collaboration with Prof. Kevin P Moore and Dr Ali R Mani, 

from the Centre for Hepatology, Department o f Medicine, Royal Free & University 

College Medical School, UCL, London, UK. Prof M oore’s group has established a 

highly sensitive method to quantify nitrotyrosine by GC/MS (Frost MT, et al., 2000). In
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principle, the method identifies NT by its molecular mass by inducing detectable 

fragment ions after a derivative of NT has been separated in a gas-liquid 

chromatographic column. For the detection o f protein-bound NT, firstly protein is 

extracted from tissue, and NT is isolated by alkaline hydrolysis. This method is avoids 

artefactual formation o f NT from prevalent nitrite, that may occur under the extremely 

acidic conditions used by acidic hydrolysis (Oldreive C, et al., 1998). After this 

hydrolytic isolation from proteins, NT is further chromatographically purified and then 

chemically derivatised into a silylated heptafluoro-compound. This derivate will adopt 

gas phase state under GC conditions, and interfaced negative-ion chemical-ionization 

MS, is then able to detect as little as 1 picogram o f NT. Both NT and tyrosine 

concentrations can be estimated in this way, using stable isotopic internal standards from 

the hydrolysis onwards. This allows expression of nitrotyrosine in ng per mg tyrosine. 

This is important since the concentration o f nitrotyrosine may vary with the 

protein/solvent ratio used for hydrolysis, whereas the nitrotyrosine/tyrosine ratio is 

stable. Single measurements o f samples were performed. The inter-assay coefficient of 

variation of the NT/tyrosine ratios, based on 10 determinations o f a single plasma 

sample, was 3.1 % (Ali R Mani; personal communication).

Protein extraction from tissues to yield freeze-dried protein pellets was performed as 

detailed below and subsequent analytical steps were kindly performed by Dr Ali R Mani 

in accordance with the method described above (Frost MT, et al., 2000).

3.3.4.1 Sample preparation

Wistar rats {n=5, 56 days old; mean weight (±SEM) 316±14 g) were killed by CO2  gas 

overdose and knees dissected with a scalpel to isolate the patella and, separately, the 

peri-patellar synovium. Furthermore liver tissue was dissected.

3.3.4.2 Protein extraction from biological samples

Biological samples were put into 50 ml polypropylene ultracentrifuge bottles, containing 

4ml ice-cold PBS, immediately after retrieval and kept on ice throughout. Samples were 

mechanically homogenised with a polytron (Ultra-Turrax, Jenke&Kunkel, IKA
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Labortechnik, Germany) until easy to pipette. Chloroform/Methanol (2:1; v/v) was 

added to a volume o f approximately 20 ml and the solution thoroughly mixed on a 

vortex. The samples were centrifuged at 9000 g for 15 min (8000 rpm in JA-14 rotor, 

equivalent to 9820 g at rmax, using a J2-MC ultracentrifuge; Beckman, USA). The liquid 

phases were carefully decanted and the fragile protein pellet at the fluid interphase 

transferred into an Eppendorf container. The samples were dried in a vacuum centrifuge 

(SpeedVac 2000, Savant).

3.3.5 Gel electrophoresis and Western blot analysis

While immunohistochemistry allows topographic localization o f proteins in tissue 

sections by means o f immuno-affinity, Western blot analysis allows identification of 

proteins in biological fluids/ homogenates by means o f immuno-affinity. Western 

blotting may also permit a degree o f protein quantification. Prior to Western blot 

analysis, protein concentration in homogenates was measured and proteins separated by 

gel electrophoresis. The electrophoretic methods used here are standard protocols (see 

also (Walker JM, 1994) for principles and appendices for step-by-step protocol).

3.3.5.1 Sample preparation

Two male Wistar rats (ca. 250 g) were sacrificed by CO2 overdose. Synovium and 

patella with cartilage from both knees were dissected immediately and placed into PBS 

on ice, containing 10 pg/ ml aprotinin (Sigma, Poole, UK) and ImM (w/v) 

phenylmethylsulfonylfluoride (PMSF; Sigma, UK) as protease inhibitors. Samples were 

homogenised with a polytron including two short sonication bursts (Clifton Ultrasonic 

Bath; Nickel Electro Ltd, Weston-super-Mare, UK).

3.3.5.2 Protein quantification

The technique to determine the protein content o f biological fluids and tissue 

homogenates was based on the method, described by Bradford (Bradford MM, 1976).
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This rapid and simple test is based on the principle that proteins bind avidly to the acidic 

dye Coomassie Brilliant Blue, resulting in a shift o f the photometric absorption 

maximum from 465 to 595 nm. Comparison to a standard curve provides a relative 

measurement o f protein concentration. A commercially available reagent kit and 

standard (Bio-Rad Labs, Hemel Hempstead, UK) was used on microtiter plates and the 

protocol can be found in Appendix II. Inter- and intra-assay coefficients o f variation 

were < 10 and < 5 %, respectively.

3.3.5.3 Gel electrophoresis

Gel electrophoresis is the method o f spatially separating proteins in solution in a gel by 

means o f an electrical current. All proteins possess an intrinsic electrical charge, but by 

covalent binding o f sodium dodecyl sulphate (SDS), proteins will separate according to 

molecular size (and not charge) during polyacrylamide gel electrophoresis (PAGE).

The principle is as follows (see Appendix I I I  for details): A mini gel is prepared from 

acrylamide, bis-acrylamide and SDS in water and polymerized by free-radical catalysis 

through the addition o f ammonium persulfate and TEMED. The pore size is determined 

by the polyacrylamide concentration. Depending on the proteins in question, the 

polyacrylamide concentration o f the separating gel may be 12.5 % for proteins up to 100 

kDa, or 8 % for larger proteins. A 4% stacking gel is prepared on top o f the separating 

gel with wells to accept samples. Samples, including standards o f known molecular 

weight and positive controls (for the Western blot analysis), o f defined protein 

concentration are denatured by boiling for 3 min in buffer containing SDS, B-mercapto- 

ethanol and tracking dye. The gel set is connected to a constant current o f 15-20 mA per 

gel until the tracking day reaches the bottom o f the gel.

3.3.5.4 Western blot analysis

Western blot analysis o f proteins involves electrical transfer o f the proteins from the gel 

onto a nitrocellulose (NC) membrane, prior to immunodetection o f specific proteins (see
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Appendix III). A semi-dry protein transfer method was used and successful transfer onto 

NC was verified by Ponceau S protein staining. Following blocking o f non-specific 

binding with non-fat dried milk buffer, primary antibody was applied (e.g. polyclonal 

rabbit anti-3-NT antibody, 1:2000) and, after washing steps, the secondary antibody/ 

horse radish peroxidase (HRP) conjugate (e.g. swine anti-rabbit immunoglobulin/HRP 

conjugate, 1:2000). The bound antibody/HRP conjugate was then detected by enhanced 

chemiluminescence (ECL): HRP oxidizes luminal in the presence o f H2 O2  in alkaline 

solution. Upon oxidation luminol adopts an excited state, which decays to ground state 

with light emission. This can be enhanced in the presence o f phenol, and the 

chemiluminescence was captured by autoradiography on a blue light -sensitive film. 

Exposure time was aiming to maximize the signal-to-noise ratio. Negative controls 

included omitting the incubation with primary antibody.
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3.4 Results

3.4.1 3-NT is located in vascular smooth muscle cells of normal 

joints in small rodents, but not cattle

Immunohistochemistry for 3-NT on normal knee joint sections from Wistar rats and SV- 

129 mice, but not from young cattle, showed immunoreactive vessels.

Table 3.4.1 shows a summary o f the findings. In qualitative-descriptive terms 3-NT 

immunoreactivity (3-NT-IR) in the various species was as follows:

• Wistar rats:

As in the ‘normal’ human samples, 3-NT-IR localised to the vascular smooth muscle 

(VSM) cell layer o f synovial blood vessels (Fig. 3.4.1; image A-C). Sometimes 3-NT- 

positive vessels could be seen adjacent to 3-NT-negative vessels. Some milder staining 

was seen also in occasional cells of the synovial lining layer. There was no difference in 

staining between immersion- and perfusion-fixed joint tissues (Fig. 3.4.1, image D). 

Other organs examined (i.e. skin, small intestine, colon, liver, heart, kidney, spleen and 

brain) did not display clear 3-NT-IR in vascular smooth muscle cells. H&E stains did 

not show any pathological abnormalities.

• SV 129 Mice:

Allowing for a naturally smaller number o f vessels per joint section, mouse knee 

synovium showed similar 3-NT staining in VSM cells. (Fig. 3.4.1.B). Again some 

degree o f milder staining was seen in occasional cells o f the synovial lining layer. Skin, 

heart and gut sections did not show 3-NT-IR in VSM o f blood vessels.

• Cattle:

Although synovial sections showed numerous blood vessels, 3-NT-IR in VSM cells was 

very weak.

58



Table 3.4.1: 3-NT immunohistochemistry in synovial blood vessels of normal knee joint sections.

Species Animals/Knees (n) Age Synovial Vessels 

median (range)

3-NT-positive vessels 

median (range)

Wistar Rat 

(immersion-fixed)

5/5 5 -8 weeks + + +

(+ + - + + +)

+ + + 

( + + - + + + >

Wistar Rat 

(perfusion-fixed)

3/6 6 weeks + + + (+ -  + + +) + +  (+ + -+ + + )

S V 129 Mouse 3/6 7 weeks + + (+ -  + +) + + +  ( + + . + + + )

Cattle 3/3 4 - 6  weeks + + + + 0 (0 - +)

Shown is the data o f  immunohistochemical stains for 3-NT in each species (or intervention group). All sections were coded and scored as 

follows: the total number o f synovial blood vessels, defined as having a lumen with endothelium and/or intra-luminal blood cells, seen in the 

whole section was expressed as: 0, nil; +, < 5 vessels; + +, 5-15 vessels; + + +, 1 6 - 5 0  vessels; + + + + ,>  50 vessels. All sections were scored 

according to the proportion o f  synovial vessels showing unequivocal staining for 3-NT in the vascular smooth muscle layer: 0, no vessels; +, few 

vessels (i.e. <25%); + +, moderate number o f vessels (i.e. 25 - 75%); and + + +, most vessels (i.e. >75%) stained.
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Fig. 3.4.1 : Immunohistochemical stain for 3-NT (shown as red) in normal rat knee 

synovium. A, W istar rat, aged 7 weeks, killed by cervical dislocation. Note 

widespread staining for 3-NT in the majority o f synovial vessels. B, negative 

adsorption control (using 10 mM 3-NT) in a corresponding tissue section to A. C, 

negative omission control (o f primary antibody) in a corresponding tissue section to 

A. D, W istar rat, aged 6 weeks, killed by perfusion-fixation under terminal 

anaesthesia.

3.4.2 3-NT immunolocalizes to hyaline cartilage chondrocytes of 

rats, mice and cattle joints

Unexpectedly, distinct 3-NT-IR was also found in the hyaline cartilage chondrocytes 

o f knee jo in ts from W istar rats, SV 129 mice and cattle. Table 3.4.2 summarises the 

findings.

The qualitative-descriptive findings for the various species were as follows:
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• W istar rats:

Rat patella/ cartilage specimens showed strong 3-NT-IR in the majority o f 

chondrocytes (Fig. 3.4.2 a, A-C). The staining pattern o f individual cells was 

consistent with diffuse cytoplasmic and/or membranous antigen localisation.

Table 3.4.2: 3-NT immunohistochemistry in hyaline cartilage o f normal knee

joint sections

Species Animals/Knees (n) Age

(weeks)

3-NT-positive

Chondrocytes

median (range)

Wistar Rat 

(immersion-fixed)

5/5 5 -8 + + + (+ + +)

Wistar Rat 

(perfusion-fixed)

3/6 6 + + (++)

S V 129 Mouse 3/6 7 + + + (+ + - + + +)

Cattle 3/3* 4 - 6 + + + (+ + +)

Shown is the data o f immunohistochemical stains for 3-NT in each species (or 

intervention group). All sections were coded and scored as follows: 0, nil; +, few (i.e. 

<25%); + +, moderate numbers (i.e. 25 - 75%); and + + +, most chondrocytes (i.e. 

>75%) o f  the whole section showing immunoreactivity for 3-NT. * included were 

sections from inter-condylar cartilage biopsies.

Chondrocytes with 3-NT-IR were occasionally adjacent to chondrocytes w ithout 3- 

NT staining. No consistent zonal distribution o f 3-NT-positive cells (i.e. apical vs.
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basal cartilage zones) was observed otherwise. 3-NT-IR in cartilage sections from 

perfusion-fixed animals appeared less intense, but was still present.

• SV 129 mice:

Mouse knee joints displayed similar widespread 3-NT-IR in chondrocytes o f  the 

hyaline cartilage. The staining intensity appeared generally slightly weaker, 

compared to staining in rat cartilage (Fig. 4.4.1, F). There was no differential 

distribution o f  3-NT-postive cells according to central vs. peripheral (i.e. synovium- 

near) distribution. In addition, chondrocytes o f  the proliferative, columnar cartilage 

layer o f the epiphysial growth plate showed similarly intense 3-NT-IR.

• Cattle:

Punch biopsies from calf stifle joints showed similar 3-NT-IR in chondrocytes. 

Chondrocytes o f all horizontal cartilage zones showed staining (Fig. 3.4.2 a; D,F,G), 

irrespective whether they were from cartilage areas o f  relatively high (e.g. tibial 

plateau) or low (e.g. intercondylar area) mechanic load. IHC with an irrelevant 

antibody (i.e. anti-bovine neurofilament) o f identical host- and type-characteristics 

produced no staining at equivalent dilutions (Fig. 3.4.2 a; E, H).

Indirect immunofluorescent studies, using the monoclonal a«fr'-3-NT antibody in 

cryo-fixed sections o f joints from Wistar rats (8 weeks old), failed to reveal 3-NT 

staining in synovial vessels or cartilage. Fig. 3.4.2 b shows a representative 

photom icrographs.
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Fig. 3.4.2 a: Immunohistochemical stain for 3-NT (shown as red) in normal knee joint 

cartilage. A, patella cartilage from Wistar rat, aged 7 weeks, killed by cervical dislocation; 

stained with anti-3-NT. Note the widespread 3-NT staining of chondrocytes; B, 

corresponding section to A, stained with anti-3-NT antibody, preincubated with 10 mM 

nitrotyrosine; C, corresponding section to A, with omitted primary antibody; D, F, G, 

sections from the superficial (D), middle (F) and basal (G) cartilage zone of the tibial plateau 

of Frisian White cattle, aged 4-6 weeks, stained with anti-3-NT; E and H, corresponding 

sections to D and G, respectively, showing negative staining using anti-bovine neurofilament 

antibody.
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Fig. 3.4.2 b: Immunofluorescent stain for 3-NT of cryo-fixed knee joint tissue from an 8 week-old Wistar rat, using monoclonal anti-3-NT primary antibody. 

Photomicrographs A-C show the same synovial section, with green (FITC) fluorescence representing 3-NT (A) and blue (DAPI) fluorescence of cellular 

nuclei (C). B shows a merged image of A and C. Note the absence of 3-NT staining in synovial vessels (arrow). Photomicrographs D-F show the same section 

of patella with green-fluorescent 3-NT (D) and blue nuclear counterstain (F). Note the absence of 3-NT in cartilage in the merged image E. Bars represent 50 

pm.

64



Chapter 3: 3-NT in Normal Joints

3.4.3 3-NT-immunoreactivity in normal joints develops soon after 

birth in rats

3-NT staining in synovial VSM cells and hyaline cartilage chondrocytes was absent 

at birth, but was seen from age 10 days onwards. (Fig. 3.4.3).
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Fig. 3.4.3 : Im m unohistochem ical stain for 3-NT (shown as red) in knee jo in t tissue 

o f young W istar rats. The microphotographs show representative examples o f  one o f 

two assays. A, from newborn rat showing absent 3-NT-IR; B, from 10 day-old rat; C, 

from 20 day-old rat; D, serial section to C, using normal rabbit im m unoglobulin as a 

negative control.

The findings o f  the experiment, relating to Fig. 3.4.3, are summarized in Table 3.4.3.
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Table 3.4.3: 3-NT immuno-localisation in knee joint tissue
o f young W istar rats.

Age Specimen (Animal No) 3-NT in 

VSMC

3-NT in 

chondrocytes

newborn Hind limb (I) - -

Fore limb (I) - -

Hind limb (III) - -

Fore limb (III) - -

10 days Knee (I) + +

Foot (II) NA* +

Knee (III) + +

20 days Synovium-patella (I) + +

Synovium-patella (II) + +

Synovium-patella (III) + +

Sections were scored for the absence (-) or presence (+) o f  3-NT staining in synovial 

vessels and hyaline cartilage chondrocytes. Roman figures refer to different animals. 

VSMC, vascular sm ooth muscle cells; *NA, not available due to lack o f unequivocal 

synovial vessels in sections.

3.4.4 NT content is high in pateila tissue compared with synovium 

and liver

The mean (±SEM ) nitrotyrosine-tyrosine ratios, assessed by GC/MS, in patella 

(n=5), synovium («=5) and liver (n=2) o f  Wistar rats were 423 ± 92, 82 ± 14 and 43 

± 5 pg/pg, respectively (p<0.05 for difference between patella vs liver and synovium, 

ANOVA with Bonferroni’s multiple comparison test). Due to limitations o f the 

maximum num ber o f  samples that can be run in one assay and the anticipated low
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standard error for measurem ents in liver tissue, only 2 o f  5 liver samples were 

m easured (Fig. 3.4.4 ).

Synovium Patella Liver

Fig. 3.4.4. : N T/ tyrosine ratios o f  tissue homogenates from W istar rats (aged 56 

days; killed by CO 2  overdose), as measured by GC/ MS. Bars represent means ± 

SEM. Synovium (n=5), patella (n=5), liver (n=2). * p < 0.05 vs liver and vs 

synovium (ANOVA w ith B onferroni’s multiple com parison test).

3.4.5 Synovial and patella/cartilage proteins 

display disparate 3-NT content

SDS-PAGE and subsequent im munoblotting o f  synovial and patella/cartilage 

hom ogenates from W istar rats revealed a discrepancy o f signal intensity between 

protein bands and 3-NT bands. Fig. 3.5.4 shows representative gel stains and blots o f 

three separate assays. For instance, the strong protein band between 50 and 75 kDa, 

w hich may represent albumin or im m unoglobulin heavy chains, shows hardly any 3- 

NT im m uno-reactivity. Conversely, 3-NT staining is seen at sites with relatively little 

protein staining. The strongest 3-NT signal localises to ca. 150 kDa in both synovium 

and patellar cartilage, and a w eaker one to between 35 and 50 kDa. At least in 

patella/cartilage, there is a further weak 3-NT band parallel to one o f the
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peroxynitrite-treated protein standards, i.e. the nitrated bovine Cu,Zn-SOD  dimer. 

N egative controls, omitting the prim ary antibody incubation, were negative.

MW S1 S2 C1 C2 N02-Std MW S1 S2 C1 C2 N02-Std

160 kDa

75 kDa 

50 kDa 

35 kDa 

30 kDa 

25 kDa

15 kDa

Fig. 3.5.4 : Ponceau S protein stain (following 8% SDS-PAGE) o f a nitrocellulose 

blot (A) and corresponding im munoblot for 3-NT (B), using polyclonal anti-3-NT 

antibody. M olecular weight markers (M W ) and peroxynitrite-treated standards (N 0 2- 

Std) are labelled. Samples include 20 pg protein o f  hom ogenates o f  synovium  (SI 

and S2) and patella w ith cartilage (C l and C2). The nitrated protein standards are: 

nitrated rabbit myosin (N 02-m yos, ca. 215 kDa), nitrated BSA (NO 2 -BSA, ca. 66 

kDa), nitrated bovine Cu,Zn-SOD (N 0 2-SOD, ca. 16 kDa) and dim er ( [N 0 2-S 0 D ]2). 

Note the discrepancy between protein signal and 3-NT signal, e.g. for the protein 

band above 50 kDa, displaying only very little 3-NT immunoreactivity.

M N02-myos

<  [IM02-SOD];
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3.5 Discussion

These investigations have shown that normal cartilage and, to a lesser extent, normal 

synovial vessels from a variety o f mammalian species (W istar rat, SV 129 mice and 

cattle) contain increased amounts o f 3-NT, a molecular marker o f RNS formation in 

situ, compared to non-articular tissues. Longitudinal studies in rats indicated that this 

phenomenon develops shortly after birth and, as perfusion-fixed tissues showed, is 

not due to post-mortem artefact. Electrophoretic and 3-NT immunoblotting studies o f 

rat jo in t homogenates showed a discordant pattern o f  protein and 3-NT bands, 

suggesting that tyrosine nitration o f proteins is not a random event. Together, these 

results indicate an exclusive ability o f  normal cartilage and synovial vessels to 

generate specific RNS/3-NT-modification o f proteins for reasons yet to be identified.

These findings support the previous observation o f  our group showing 3-NT in 

vascular smooth muscle cells o f  histologically normal human synovium from post

mortem and arthroscopic examinations, but not from other vascular beds (Mapp PI, 

et al., 2001). However, they are at odds with reports by other investigators. Using a 

rabbit polyclonal anti-3-NT antibody, Loeser et al. studied 3-NT-IR in cartilage from 

post-mortem human and monkey samples by immunohistochemistry (Loeser RF, et 

al., 2002). Using a simple dichotomic score o f 3-NT staining being positive or 

negative, they reported 3-NT-IR in chondrocytes, correlating with increasing age and 

changes o f  osteoarthritis. They did not find positive 3-NT-IR in human donors 

without arthritis below  the age o f 50. Similarly, in normal dog knee jo in t tissue, only 

a few cells in cartilage and the occasional synovial lining cell stained positive for 3- 

NT (Pelletier JP, et al., 1999). In another study o f collagen-induced arthritis in the 

rat, the presence o f  3-NT-IR in normal controls is not commented upon (Cuzzocrea 

S, et al., 2000). Both these studies were pharmacological intervention studies, 

focussing on the com parison o f two experimental groups rather than the normal 

tissue as control. In those circumstances, it is desirable to terminate the chromogen- 

reaction step o f  the IHC assay early to ensure a clear difference between pathological 

and physiological signal. This may lead to differential staining in normal tissue to 

remain masked and thus unreported. The absence o f  staining by 

immunofluorescence, using the monoclonal anti-3-NT antibody, was disappointing,
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since it precluded further experiments to try and co-localize 3-NT with putative 

proteins by double immunofluorescence.

This study is the first report o f 3-NT analysis in jo in t tissue by GC/MS and shows 

increased 3-NT levels in cartilage, compared to liver and synovium in normal rats. 

Results were normalized for any potential variation in tyrosine content o f  different 

tissues. The discordant pattern o f protein and 3-NT bands in synovial and 

patella/cartilage homogenates from normal rat knee joints, is consistent with other 

reports in the literature [see 1.1.4.3 and (Ischiropoulos H, 2003)]. These suggest that 

tyrosine nitration o f  proteins is a selective process in order to modify protein 

function. The 3-NT band in patella/cartilage homogenates at the level o f the 32 kDa 

nitrated bovine Cu, Zn-SOD dimer standard raises the possibility that this anti

oxidant enzyme may be nitrated during normal jo in t physiology. SOD enzymes play 

an important part in limiting adverse effects o f aerobic metabolism. Both 

cytoplasmic Cu,Zn-SOD and the mitochondrial Mn-SOD protein have been found by 

immunohistochemistry in chondrocytes but not in the extra-cellular matrix o f 

tracheal cartilage in healthy rats (Frederiks WM and Bosch KS, 1997). However, 

histochemical SOD activity was only encountered in extra-cellular cartilage matrix 

(Frederiks WM and Bosch KS, 1997). This discrepancy was explained by the 

presence o f  a distinct high-molecular (i.e. 135 kDa) extracellular form o f Cu, Zn- 

dependent SOD. Using proteomic methods that aim to identify the individual 

proteins that undergo tyrosine nitration, to date only the mitochondrial Mn-form o f 

SOD has been reported in aging cardiac rat tissue (Kanski J, et al., 2004). This form 

o f SOD was the first to be described to undergo inactivation via selective tyrosine 

nitration in the pathological context o f chronic renal allograft rejection (MacMillan- 

Crow LA, et al., 1996). It was argued that this forms a positive feed back loop to 

enhance oxidative stress.

In the absence o f  identified target proteins for tyrosine nitration, what might be the 

biological role o f 3-NT/RNS in normal jo in t tissue? In general, one o f the best 

known host-protective functions o f RNS, such as ONOO', is that o f anti-microbial 

action. Experimental studies on mice lacking iNOS showed that NO production is 

required to protect against staphylococcal septic arthritis (M clnnes IB, et al., 1998). 

It is generally thought that chemical species more reactive than NO are involved in
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this bacterial defence mechanism (Fang FC, 1997; Grisham MB, et al., 1999). For 

instance , ONOO' is far more toxic to bacteria than NO or O2 ' (Brunelli L, et al., 

1995; Um ezawa K, et al., 1997). Moreover clinical observations and anatomical 

factors illustrate the need for an effective anti-microbial defence system within 

joints. Septic involvement is uncommon in relation to the frequency o f septicaemia. 

This is surprising considering the heavily vascularised nature o f the synovium. 

Having no basement membrane, it could be expected that bacterial spread to the 

synovial cavity is facilitated (Miller ML, 1998). The avascular and relatively 

hypoxic cartilage would then be a vulnerable target to direct microbial attack. 

Furthermore, metabolically active structures o f Chlamydia trachomatis have been 

found in the synovium o f some asymptomatic human subjects (Schumacher HR, et 

al., 1999), suggesting that microbial joint invasion may not always be clinically 

apparent and more common than generally thought. It would therefore be 

conceivable that 3-NT represents RNS formation to counteract local microbial 

invasion.

A further beneficial function for ONOO' is cardioprotection in experimental models 

o f  cardiac ischemia-reperfusion injury (CIRI). During reperfusion after temporary 

complete ischemia, maximally achievable physiological concentrations o f ONOO' 

(2 pM) restored cardiac contractility and reduced polymorphonuclear (PMN) cell 

accumulation in an ex vivo rat model (Lefer DJ, et al., 1997). In a feline model o f 

CIRI, ONOO' reduced infarct size and endothelial PMN cell adhesion (Nossuli TO, 

et al., 1998). Furthermore, ONOO' was found to be the cardio-protective mediator o f 

ischemic pre-conditioning in rats (Laude K, et a I., 2002). The investigators 

suggested that ONOO' may exert these effects by nitrosylation o f the thiol group o f 

glutathione (GSH) to S-nitrosoglutathione (GSNO), w hich then acts as a slow and 

‘good’ NO-donor on vascular endothelial cells (Mayer B, et al., 1995). There is good 

evidence that similar cycles o f  hypoxia and reoxygenation occur during mobilisation 

o f arthritic joints, which is thought to contribute to pathology (Blake DR, et al., 

1989; M app P.I., et al., 1995). However, chondrocytes o f normal avascular articular 

hyaline cartilage are generally assumed to function at low oxygen tension (down to 1 

kPa or less) (Silver IA, 1975). The expression o f the transcription factor hypoxia 

inducible factor-1 alpha in normal as well as osteoarthritic human cartilage is further 

indirect evidence for the functional adjustment o f chondrocytes to low oxygen levels

71



Chapter 3: 3-NT in Normal Joints

(Coimbra IB, et al., 2004). Intra-articular (i.a.) pressures in normal joints are mostly 

subatmospheric, aiding synovial capillaries to rem ain perfused. However, during 

m aximum flexion i.a. pressure has been shown to rise up to 5 mmHg and over 30 

mmHg in rabbit and dog knees, respectively (Levick JR, 1979; Nade S and Newbold 

PJ, 1983). This could be expected to lead to temporary capillary occlusion. It would 

therefore seem conceivable that even healthy, moving joints undergo cycles o f 

hypoxia and reoxygenation that could be harmful to cartilage. One could therefore 

hypothesize that ONOO' might ensure chondrocyte survival in normal mobilizing 

joints, comparable to myocardial survival in CIRI. Consistent with this, 3-NT was 

not seen in cartilage from newborn rats, presumably due to their limited joint 

mobility. Furthermore, articular chondrocytes have been shown to generate GSH in 

vitro (Carlo MD and Loeser RF, 2003). At millimolar concentrations, nitrosylated 

GSH induces chondrocyte apoptosis in vitro, whereas pretreatm ent with micromolar 

GSNO can reduce chondrocyte death (Turpaev KT, et al., 1997). One could therefore 

speculate that cycles o f  hypoxia-reoxygenation in healthy joints induce ONOO' 

generation in articular chondrocytes, that may nitrosylate the prevalent anti-oxidant 

GSH to form a slow NO-donor. The slow release o f NO would then serve to 

maintain the regulatory and protective functions o f NO, ultimately securing 

chondrocyte survival and function.

The present investigations have important limitations. The immunohistochemical 

method depends on the specificity o f the antibody used and does not allow reliable 

quantification o f antigen concentration. Appropriate negative controls were 

employed, but the present data does not eliminate the possibility that the polyclonal 

tf«fr'-3-NT antibody may cross-react with antigens other than 3-NT. GC/ MS allowed 

quantification o f 3-NT and confirmed a higher 3-NT to tyrosine ratio in patella 

compared with liver and synovium in naive rats. However, this data does not 

determine whether the 3-NT originates from the cartilage or the bone. These studies 

will require replication by other investigators and further quantitative analysis o f 3- 

N T in articular and non-articular tissues from other species should be undertaken.

In conclusion, these studies provide evidence o f  high 3-NT/RNS formation in 

healthy synovial joints relative to non-articular tissue in several mammalian species. 

This suggests a physiological role for 3-NT/ RNS that requires further elucidation.
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The next aim was to identify an exclusive enzymatic source o f  NO, the obligatory 

precursor o f 3-NT/RNS in this setting.
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Chapter 4: Studies on the enzymatic origins 

of 3-nitrotyrosine in normal joint tissue

4.1 Introduction

Identification o f the biological role o f a phenomenon requires the selective 

modification o f  the phenomenon and the study o f the consequence this has in vitro 

and in vivo. In the absence o f  specific inhibitors o f tyrosine nitration or methods to 

selectively denitrate tyrosine, one approach is to examine the origins o f the nitrating 

species that yield 3-NT.

While it is recognised that ONOO' is not the only pathway to tyrosine nitration in 

proteins (see section 1.1.4.1), it is generally accepted that RNS more reactive than 

NO are necessary to yield 3-NT (Halliwell B, 1997). With very few exceptions 

(Zweier JL, et al., 1995), the formation o f more reactive nitrogen species will require 

prior enzymatic NO release. There are three isoenzymes o f nitric oxide synthase 

(NOS) that catalyze the oxygen-dependent conversion o f  L-arginine to NO and L- 

citrulline (Forstermann U, et al., 1994). The two calcium-dependent forms are 

predominantly constitutively expressed on endothelial and neuronal tissue, termed 

endothelial NOS (eNOS, a.k.a. NOS III) and neuronal NOS (nNOS; a.k.a. NOS I), 

whereas practically all cell types express a calcium-independent inducible NOS 

(iNOS, a.k.a. NOS II) upon pro-inflammatory stimulation.

Recently, it was demonstrated that xanthine oxidoreductase (XOR), an ubiquitous 

enzyme best known for its house-keeping role in purine metabolism, can reduce 

nitrite to NO under hypoxic (Li H, et al., 2001; M illar TM, et al., 1998) and 

normoxic (Godber BJL, et al., 2000) conditions in vitro. XOR exists in two 

interconvertible forms: xanthine dehydrogenase (XDH) and xanthine oxidase (XO) 

(Stirpe F and Della Corte E, 1969), that differ in their substrate specificity. Both will 

oxidise hypoxanthine to xanthine and xanthine to uric acid as part o f purine 

metabolism. However, XO will only reduce O2 [1], whereas XDH will reduce O2  and 

N AD +, but w ith greater affinity for the latter [2] (W aud WR and Rajagopalan KV,
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1976). XOR activity to convert xanthine to uric acid has been demonstrated in 

rheumatoid synovium by radio-isotope assay (Allen RE, et al., 1987). 

Immunohistochemistry localised XOR protein mainly to endothelial cells in 

rheumatoid synovium (Stevens CR, et al., 1991a) while XOR protein levels and 

activity have not been assessed in healthy mammalian jo in t tissue.

By using animal systems that are selectively deficient for each o f these NO- 

generating enzymes, one might achieve abolition o f 3-NT in synovial vessels and 

hyaline articular cartilage. This will depend on the absence o f redundancy between 

these enzymes, but, if  successful, would allow the investigation o f how such a 

system would behave during health and experimental arthritis.

Specific deficiency in whole organisms for individual arginine-dependent NOS 

enzymes is available in the form o f mice carrying targeted gene deletions for the 

enzymes. At the time o f this work no such ‘gene knock-out’ models were available 

for XOR. There is, however, a model using dietary tungsten-loading o f rats which 

inhibits XOR enzyme activity by substituting active-centre molybdenum (Johnson 

JL, et al., 1974). Preliminary work in our group had shown that in tungsten-loaded 

adult Wistar rats suppression o f XOR activity can be achieved within 2 weeks, as 

measured by the pterin assay in plasma and liver samples (T.Millar; unpublished 

data). Since my work (see section 3.4.3) had shown that 3-NT in synovial vessels and 

cartilage is present as early as ten days o f age, tungsten-supplementation o f chow had 

to begin in pregnant rats and be continued in the offspring. This has been used 

successfully in rodents previously (Pitt RM, et al., 1991).
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4.2 Aims and objectives

•  To determine the enzymatic source responsible for 3-NT formation in 

synovial vessels and hyaline articular cartilage in small rodents
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4.3 Methods

Details o f materials and step-by-step protocols on general procedures can be found in 

the appendices. All concentrations are final, unless stated otherwise.

4.3.1 Animal models

4.3.1.1 Gene knock-out mice for NOS enzymes

The species, source and age o f mice, carrying targeted gene deletions, and their 
controls are summarized in Table 4.3.1.1.

Table 4.3.1.1: Characteristics of NOS ‘knock-out’ mice used.

Deficient NOS nNOS iNOS eNOS

Mouse Strain B6; l29S-Nosla"Ipa 129xM Fl 

(iNOS -/-)

SV129/C57BL/6 

(eNOS -/-)

Reference (Huang FP, et al., 

1993)

(W ei XQ, et al., 

1995)

(Huang PL, et al., 

1995)

Control B6129SF2 129 SV129/C57BL/6

Source The Jackson 

Laboratory, 

M aine, USA

B&K

Universal Ltd, 

Hull, UK

Prof J Polak, 

Dept of

Histopathology, 

Hammersmith  

Hospital, London

Age (weeks) 6 6 6

Sex male male male

Mode 

o f Killing

Exsanguination  

under isofluorane/ 

0 2 anaesthesia

Cervical

dislocation

Perfusion fixation 

under

pentobarbitone

anaesthesia
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Animal tissue was fixed in formal saline, processed and embedded in paraffin as 

previously described.

4.3.1.2 XO R inactivation by dietary tungsten-loading

Pregnant female outbred Wistar rats (Bath strain; Charles River, UK), kept under 

standard laboratory conditions, were fed on chow enriched with sodium tungstate 

(0.7 g/ kg chow; Harlan-Teklad, Oxford, UK) (n=3) or continued on standard chow 

(n=3) from 10 days prior term. One tungsten-fed animal did not deliver and was 

found not to have been pregnant at post mortem examination. After weaning, the 

offspring were continued on their respective diets. From age 21 days three animals o f 

each litter were weighed once weekly.

Animals (n=3; each group, where possible one from each litter) were sacrificed at 0, 

7, 14, 21, 35 and 56 days o f age. This was done by cervical dislocation up to 21 days 

(inclusively) and by CO 2 - overdose thereafter. Apart from knee jo in t tissue for 

formal saline fixation and paraffin embedding (see 3.3.3), blood and liver were 

harvested from each animal. Blood was added to tri-sodium citrate (8mg/ml), gently 

mixed and centrifuged (4 minutes at 5000 rpm, Biofuge Fresco, Heraeus Instruments, 

Germany) to retrieve plasma. Liver was snap-frozen in liquid nitrogen. Plasma and 

liver samples were then stored at -70 °C until further processing.

4.3.2 Histology and microscopy

The histological methods for histopathological analysis and for immuno-localisation 

o f 3-NT have been described previously (see section 3.3.3).

The sections o f  one representative assay o f  at least two IHC assays per species or 

intervention group were coded and scored according to the following rule:

The total number o f synovial vessels, defined as having a lumen with endothelium 

and/or intra-luminal blood cells, in the whole section was expressed as: 0, nil; +, < 5 

vessels; + +, 5-15 vessels; + + +, 1 6 - 5 0  vessels; + + + + ,>  50 vessels. This was 

done to take into account the variability o f  number o f vessels seen per section.

The sections were then judged according to the proportion o f  synovial vessels 

showing unequivocal staining for 3-NT in the vascular smooth muscle layer: 0, no
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vessels; +, few  vessels (i.e. <25 %); ++, moderate number o f  vessels (i.e. 25 -  75%); 

and + + +, most vessels (i.e. >75%) stained.

Cartilage, if  present, was scored for the proportion o f chondrocytes showing 3-NT 

immunoreactivity: 0, nil; +, few (i.e. < 25%); + +, moderate numbers (i.e. 25 - 75%); 

and + + +, most chondrocytes (i.e. >75%).

Intra-observer agreement o f these semiquantitative scores were calculated as kappa 

( k )  (A ltm an DG, 1991), based on 13 mouse knee jo in t sections, scored four weeks 

apart. The level o f  intra-observer agreement was fair for the number o f synovial 

vessels seen ( k  = 0.39), moderate for the proportion o f 3-NT-positive synovial 

vessels ( k  = 0.44) and good for the proportion o f 3-NT-positive chondrocytes ( k  = 

0.76) (see also section 3.3.3.7).

4.3.3 XOR activity assay

To determine XOR activity, the spectro-fluorimetric method described by Beckman 

et al (Beckm an JS, et al., 1989) was used. It is based on the detection o f fluorescent 

isoxanthopterin (IXPt), which originates from the oxidation o f pterin (2-amino-4- 

hydroxypteridine), a reaction is catalysed by XO. If  methylene blue is added to the 

reaction as a final electron acceptor, total XOR actvity (i.e. XO plus XDH) can be 

determined. The addition o f the XOR-inhibitor allopurinol confirms the enzymatic 

specificity o f  the reaction. Comparison with a standard o f known IXPt concentration 

and knowledge o f  the tissue protein content then allows calculation o f the enzyme 

activity per protein weight o f  the sample.

The details o f  method are described in Appendix IV.

In brief, the addition o f pterin to a sample in the spectro-fluorimeter containing XOR 

activity will produce a linear rise in fluorescence over time, due to the production o f 

IXPt. M ethylene blue, when added to this reaction, will replace N AD+ as an electron 

acceptor and therefore any increase o f  the rate o f fluorescence production will reflect 

the contribution o f XDH to pterin oxidation. Allopurinol will stop any further 

fluorescence, thus confirming that fluorescence production is due to XOR. Finally 

IXPt o f  a known concentration is added which will serve as a reference standard to 

allow the calculation o f XOR activity in the sample, as follows:
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U = { dF  x [IXPt] /  FIXpt} x 0.001 x F c / (K*x T) ,

where U is the enzyme activity in jimol min _I g _1 tissue protein, dF  is the change o f 

fluorescence units per minute, [IXPt] is the final assay concentration o f IXPt, Fjxpt is 

the increase o f fluorescence units produced by the addition o f IXPt, Vc is total assay 

volume in the cuvette in ml, Vs is the sample volume added to the cuvette in ml, and 

T  is the tissue protein content per ml sample (as determined by the protein assay 

according to Bradford (Bradford MM, 1976)). Samples were measured in triplicate, 

unless otherwise stated. Inter- and intra-assay coefficients o f  variation were < 10% 

and < 5%, respectively.

This method is more sensitive than the previously used spectro-photometric method 

and can detect activities o f as little as 0.1 pmol m in _1 m l'1 cuvette volume. However, 

the sensitivity o f  the assay is diminished by increased haem oglobin concentrations. 

Moreover, peroxidases in samples (e.g. from inflamed tissue) may cause pterin 

oxidation, leading to overestimation o f  XOR activity (Beckman JS, et al., 1989).

4.3.4 3-NT measurements by GC/MS

The measurement o f  3-NT in jo in t tissues was done by gas chromatography - mass 

spectrometry (GC/ M S) as described earlier (see section 3.3.4).
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4.4 Results

4.4.1 3-NT is expressed in synovium and cartilage from NOS I, II 

and III knock-out mice

Mice, carrying a targeted gene deletion for NOS I, II or III, showed 3-NT 

immunoreactivity (3-NT-IR) in synovial vessels and articular hyaline cartilage cells, 

which was no different from control tissues. The findings are summarized in Tables 

4.4.1a for synovium. As in the previous experiments 3-NT-IR localised to the 

vascular smooth muscle layer o f synovial vessels (Fig. 4.4.1a).

Table 4.4.1a: 3-NT immunohistochemistry in knee synovium from NOS- 

deficient mice and controls.

Mouse Strain Animals /  

Knees (n)

Synovial Vessels 

median (range)

3-NT-positive Vessels 

median (range)

nNOS -/- 5/5 + + (+ - + + +) + + + (+ -  + + +)

Control (nNOS) 5/5 + (0 - + +) + + + (+ + +)

iNOS-A 2/4 +/+ + (0 - + +) + + ( + .  + + +)

Control (iNOS) 3/6 + +  (+ -  + +) +/++ ( + .  + + +)

eNOS-A 3/6 +/++ (0 - + + +) + +/+ + + (+ + - + + +)

Control (eNOS) 2/4 + +  (+ -  + +) + /+ +  (+ -  + + +)

Shown is the data of an immunohistochemical stain for 3-NT in each species (or intervention 

group). All sections were coded and scored as follows: the total number of synovial blood 

vessels, defined as having a lumen with endothelium and/or intra-luminal blood cells, seen in 

the whole section was expressed as: 0, nil; +, < 5 vessels; + +, 5-15 vessels; + + +, 1 6 -5 0  

vessels; + + + + ,>  50 vessels. All synovial vessels per section were then judged according to 

the number showing unequivocal staining for 3-NT in the vascular smooth muscle layer: 0, 

no vessels; +, few vessels (i.e. <25%); + +, moderate number of vessels (i.e. 25 - 75%); and 

+ + +, most vessels (i.e. >75%) stained.
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F/#. 4.4.1a: Immunohistochemical stain for 3-NT in normal knee joint tissue from mice 

deficient in specific NOS genes and controls, respectively. The photomicrographs show 

representative examples of 3-NT immunoreactivity (shown as red) in synovial vessels from 

the following species: A, nNOS -/- mouse, showing 3-NT-IR in the vascular smooth muscle 

layer of a synovial blood vessel; B, serial control section to image A using normal rabbit 

immunoglobulin; C, iNOS -/- mouse (low-power view); D, corresponding omission control 

to image C; E, high-power view of outlined area in image C; F, similar 3-NT-IR in synovial 

vessels of normal SV129 mouse, i.e. the control strain for iNOS -/-; G, eNOS -/- (low-power 

view); H, high-power view of outlined area in image G, showing distinct 3-NT-IR in the 

vascular smooth muscle layer.
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No obvious macroscopic or microscopic pathology o f joints or skin, liver, heart, gut, 

kidney or spleen was seen in any o f  the species. The relatively small number of 

synovial vessels was largely due to difficult sectioning o f the non-decalcified 

samples.

The findings in hyaline knee jo in t cartilage are shown in Table 4.4.1b and Fig. 

4.4.1b.

Table 4.4.1b: 3-NT immimo-localisation in knee hyaline cartilage from NOS- 

deficient mice and controls.

Mouse strain Animals/Knees (n) 3-NT Staining in Chondrocytes

median range

nNOS -/- 5/5 + + + + + - + + +

Control (nNOS) 5/5 + + + + + - + + +

iNOS-/- 2/4 + + - + + + + - + + +

Control (iNOS) 3/6 + + + + - + + +

eNOS-/- 3 /5 * + + + + + - + + +

Control (eNOS) 2/4 + + - + + + + + - + + +

Shown is the data o f immunohistochemical stains for 3-NT in each species (or 

intervention group). All sections were coded and scored as follows: 0, nil; +, few (i.e. 

<25%); + +, moderate numbers (i.e. 25 - 75%); and + + +, most chondrocytes (i.e. 

>75% )of the whole section showing immunoreactivity for 3-NT. * one knee 

specimen yielded no hyaline cartilage suitable for evaluation.

While the intensity o f  3-NT staining for individual chondrocytes was w eaker than in 

rat or calf hyaline cartilage, on average the majority o f chondrocytes stained positive 

for 3-NT.
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C

Fig. 4.4.1b: Immunohistochemical stain for 3-NT in normal knee joint tissue from mice 

deficient of specific NOS genes and controls, respectively (see Table 4.3.1.1 for details of 

strains and animals). The photomicrographs show representative examples of 3-NT 

immunoreactivity (shown as red) in hyaline cartilage chondrocytes sections from the 

following species: A, nNOS -/- mouse showing 3-NT-1R in the majority of chondrocytes; B, 

serial control section to image A using normal rabbit immunoglobulin; C, iNOS -/- mouse; 

D, corresponding omission control to image C; E, Normal SV129, i.e. the control strain for 

iNOS -/-; F, corresponding omission control to image E; G, eNOS -/-; H, serial control 

section to image G using normal rabbit immunoglobulin.
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4.4.2 Progeny of tungsten-fed rats thrive and have suppressed 

XOR activity in plasma and liver

The offspring o f  rats, w hich had been fed on a tungsten-supplem ented chow from 10 

days pre term and then maintained on this chow after weaning, thrived as well as the 

control anim als on standard chow. Fig. 4.4.2a shows the increase o f  animal weight in 

time. There was no significant difference betw een the two diet groups (p = 0.33 for 

difference o f  mean w eight at day 56; M ann-W hitney test).
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20 50 6030 40
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Fig. 4.4.2a: M ean anim al weight for tungsten- and control-fed experim ental groups 

over time. Bars represent SEM.

In the tungsten-fed group XOR activity o f plasm a and liver was suppressed to < 3.0 

% (m edian 0.5%) and < 2.5 % (median 1.9 %), respectively, o f  the activity in the 

standard-fed group up to the age o f 56 days (.Figures 4.4.2b and 4.4.2c).
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Fig. 4.4.2b : M ean XOR activity, as measured by the pterin assay, in plasm a of 

tungsten- and control-fed W istar rats (n=3 for each time point). Bars represent SEM.
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Fig. 4.4.2c: M ean X OR activity, as measured by the pterin assay, in liver

hom ogenates o f tungsten- and control-fed W istar rats (n=3 for each time point). Bars 

represent SEM.
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4.4.3 XOR inactivation by dietary tungsten does not alter 3-NT 

levels in rat jo int tissue

Similar to the observation in NOS gene ‘knock-out’ mice, the immunohistochemistry 

for 3-NT in W istar rat jo in t tissue did not appear in any way reduced by dietary 

tungsten-supplementation (Table and Fig. 4.4.3a). For semi-quantitative scoring o f 

3-NT in synovium and articular cartilage, tissue from 35 and 56 day old animals was 

used.

Table 4.4.3a: 3-NT immunohistochemistry in knee joints from tungsten- 

and control-fed W istar rats.

Diet Animals/ 

Knees (n)

Synovial Vessels 

median (range)

3-NT+ve 

Vessels 

median (range)

3-NT+ve 

Chondrocytes 

median (range)

Tungsten 5/5 + + + (+ + +) + + + (+ + +) + + + (+ + +)

Control 5/5 + + + (+ + - + + +) + + + (+ + - + + +) + + + (+ + +)

Shown are the semi-quantitative scores for synovial vessel number (0 - + + + +) and 

proportion o f 3-NT-positive vessels or chondrocytes (0 - + + +) o f coded sections o f 

one representative IHC stain for 3-NT. Animals were 35 and 56 days o f  age. See 

section 4.3.2 for further details on the definition o f the scores
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Fig. 4.4.3a: Immunohistochemical stain for 3-NT on knee joint tissue from 35- and 56-day 

old Wistar rats, deficient of XOR activity due to dietary tungsten treatment, compared with 

tissues from standard-fed rats. The photomicrographs show representative examples of 3-NT 

immunoreactivity (shown as red) in synovial blood vessels and hyaline cartilage 

chondrocytes. A, synovial vessel of a tungsten-treated rat, displaying 3-NT in the vascular 

smooth muscle layer of a synovial vessel; B, serial section to that in image A, using normal 

rabbit immunoglobulin (rIG) as negative control; C, synovial vessel of a standard-fed rat; D, 

corresponding section to that in image C, using rIG; E, hyaline cartilage of a tungsten-treated 

rat, showing marked 3-NT in chondrocytes; F, serial section to that shown in image E, using 

rIG; G, hyaline cartilage of a standard-fed rat; H, negative omission control of a 

corresponding section to that in image G.
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The quantitative analysis o f protein-bound 3-NT by GC/MS (Figure 4.4.3b) was 

consistent w ith the im munohistochemical findings. There was no significant 

difference o f  m edians between tungsten- and control-fed animals for synovium, 

patella or liver tissue hom ogenates (p>0.05; Kruskal-W allis test w ith D unn’s post 

test). The different sam ple sizes were a result o f  lim ited single assay capacity o f 

GC/MS.
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O Control

U)
|  500- 
a

L_
>*
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z 250-

Synovium LiverPatella

Fig. 4.4.3b: N T / Tyrosine ratios o f tissue hom ogenates from W istar rats (n=5), fed 

on either tungsten-supplem ented (■) or standard (o) chow. Values represent single 

measurem ents o f  sam ples by GC/MS and bars represent medians.
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4.5 Discussion

Using rodent models, deficient in the NO-generating enzymes nNOS, iNOS, eNOS 

and XOR, these studies showed that the immunohistochemical presence o f  3-NT in 

synovial vessels and articular hyaline cartilage appeared undiminished compared to 

corresponding normal control tissues. Since NO can be expected to be an essential 

precursor to tyrosine nitration (Halliwel! B, 1997), these results would imply that 

more than one mechanism is involved in physiological protein nitration or that 

inhibition o f  the responsible NO-generating enzyme can be fully compensated for by 

increased activity or expression o f other enzymes. This suggests further that nitration 

o f tyrosine residues may be an important physiological phenomenon.

Vascular smooth muscle cells (VSMC) are known to express nNOS (Boulanger CM, 

et al., 1998) and XOR (Hellsten-Westing Y, 1993) and, in response to pro- 

inflammatory stimuli, iNOS (Nathan C and Xie QW, 1994). eNOS is expressed in 

the vascular endothelium and in smooth muscle cells o f  the corpus cavemosum 

(Boulanger CM, et al., 1998). However, while endothelial eNOS causes VSMC 

relaxation, there is no evidence o f  eNOS expression in VSMC. In articular cartilage 

chondrocytes, gene expression o f iNOS (Maier R, et al., 1994) and also nNOS 

activity (Amin R, et al., 1995) have been demonstrated, but only in an inflammatory 

setting. There is to date no evidence to show expression o f  eNOS or XOR by 

articular cartilage.

Compensatory increased activity for a missing NOS enzyme has been described. For 

instance, eNOS and nNOS who both cause vasodilatation in meningeal arteries, will 

each compensate for each other (Meng W, et al., 1996). Such redundancy is thought 

to be common in biological systems, and could explain the findings o f the present 

study.

There are several im portant limitations to these studies. The immunohistochemical 

method to demonstrate 3-NT will not allow the detection o f partial reduction in 3- 

NT expression in the selectively NO-deficient rodent species. Due to restriction of 

resources, it was only possible to assess 3-NT quantitatively in one o f the animal 

models. The XOR-deficient model was chosen, because o f  the potentially sub-total
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degree o f  pharm acological inhibition o f  this NO-generating system in comparison to 

the NOS-gene knock-out models. Although not all samples o f XOR-deficient and 

control rats could be analysed (due to m axim ally feasible assay sample size), specific 

nitrotyrosine content was not different in patella and knee synovium homogenates o f 

tungsten-reared animals and controls.

The absence o f  NOS activity in the ‘knock-out’ animals was not confirmed. It is 

therefore possible that residual NOS iso-enzym e expression, e.g. by splice variants 

that have been described for nNOS (Huber A, et al., 1998), may have masked the 

correct enzym atic source o f NO for tyrosine nitration. Since this work was completed 

we also becam e aware that the iNOS ‘knock-out’ species used in this work may 

continue to express up to 10% o f active iNOS protein [F.Y.Liew, Glasgow; personal 

communication].

I f  com pensatory NOS expression exists, increased protein expression o f an 

alternative N OS could be indirect evidence for the inhibited/deleted enzyme as 

source o f  NO. It was therefore attempted to look for increased iNOS protein staining 

in jo in t tissue from tungsten-fed rats, com pared to normal controls. Rabbit polyclonal 

anti-mouse iNOS antibody (BD Transduction Laboratories, UK) was used in a 

standard immunohistochemical stain following enzymatic antigen retrieval by 

incubation w ith pronase E (according to (Veihelmann A, et al., 2002)) on paraffin- 

embedded sections from 56 days-old tungsten- and control-treated rats. However, 

staining was sparse and weak in synovium and chondrocytes even in the positive 

technical control tissue (carrageenan-induced acute rat knee arthritis). There were no 

discernible differences between the two diet groups to allow any conclusions from 

this work.

This study has provided interesting observations on the expression o f 3-NT in jo in t 

tissues and its relationship to NOS and XOR enzyme expression/activity. However, a 

single enzym atic source for 3-NT formation in jo in t tissue was not identified. In the 

absence o f  specific methods to modulate 3-NT (e.g. enzyme inhibition, selective de

nitration) the progression o f this line o f  investigation was terminated.
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Chapter 5: Xanthine oxidoreductase activity in normal rat 

joints

5.1 Introduction

The previous chapter provided evidence that 3-NT formation in normal joints is not 

due to XOR activity alone. However, this does not mean that XOR is not capable o f 

nitrating proteins in joints.

A number o f  observations would suggest that XOR remains a strong candidate 

enzyme as a ‘3-NT generator’ in joints. Firstly, it has been shown in vitro that XOR 

does not only produce O2 ’’ during xanthine metabolism, but also NO from 

nitrite/nitrate under condition o f hypoxia , using either NADH or xanthine as electron 

donors (Godber BJL, et al., 2000; Li H, et al., 2001; M illar TM, et al., 1998; Zhang 

Z, et al., 1998). Using SOD as a O 2 *’ scavenger, XOR-mediated nitrite reduction to 

NO* has been demonstrated under normoxia in vivo (Godber BJL, et al., 2000). This 

suggests that, under normoxia, nascent NO is ‘mopped up’ by simultaneously 

generated O2 *". The most likely product from a reaction o f  O2 ’' and NO would be 

ONOO' (Kissner R, et al., 1998; Pryor WA and Squadrito GL, 1995) which can lead 

to nitration o f tyrosine residues under physiological conditions (Ischiropoulos H, 

1998). However, while there is evidence that XOR activity in breast milk may be an 

important anti-bacterial agent as a peroxynitrite synthase in the neonatal gut (Stevens 

CR, et al., 2000), the production o f NO or other RNS by XOR has not yet been 

proven to occur in vivo. Secondly, XOR immunocalisation has been described in 

human synovium vessels. XOR activity to convert xanthine to uric acid has been 

demonstrated in rheumatoid synovium by radio-isotope assay (Allen RE, et al., 

1987). By immunohistochemistry XOR protein localized predominantly to the 

endothelial cells in both rheumatoid and normal human synovium (Stevens CR, et 

al., 1991a). A literature survey did not reveal any reports o f XOR expression by 

articular hyaline chondrocytes.

It remains unclear to what extent XOR protein and activity is expressed in normal 

mammalian jo in t tissue. Furthermore it is not known whether XOR contributes NO 

as well as superoxide radicals (Allen RE, et al., 1989) during synovial inflammation.
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In order to further investigate the potential role o f XOR in 3-NT formation, it was 

important to characterize the distribution o f XOR activity in normal jo in t tissue. If 

XOR activity could be demonstrated in jo int tissues where immunolocalisation o f 3- 

NT had been found, then XOR would remain a potential candidate for 3-NT 

formation in joints.
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5.2 Aims and objectives

• To look for the presence and distribution o f XOR activity by allopurinol- 

suppressible oxidative activity in homogenates and fresh unfixed frozen 

section from rat joints.
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5.3 Materials and methods

5.3.1 XOR activity assay

XOR activity in rat jo in t tissue homogenates was determined by the spectro- 

fluorimetric m ethod (Beckman JS, et al., 1989), described in Section 4.3.3 and 

Appendix IV. This yielded enzyme activity for XO and XO + XDH as nmol min -1 

g -1 tissue protein, w ith protein concentrations in samples measured according to 

Bradford et al (Bradford MM, 1976) (see Appendix II).

Three healthy male W istar rats, aged 4-6 weeks (ca. 250 g), were sacrificed by CO2 

overdose. The following tissues were sampled (in buffer containing proteinase 

inhibitors) by dissection from each animal: liver, knee synovium, patellar bone, 

patellar cartilage and quadriceps muscle. Each sample was measured for XOR 

activity in triplicate.

5.3.2 XOR histochemistry

The localisation in situ o f  XOR activity in rat jo int tissue was based on the XOR- 

mediated reduction o f  tetra nitro blue tetrazolium (TNBT) to form a dark formazan 

dye in unfixed cryo-stat sections (Kooij A, et al., 1991). This histochemical assay 

demonstrates both the oxidase (XO) and dehydrogenase (XDH) activity o f XOR. It 

uses polyvinyl alcohol (PVA) as a tissue protectant and methoxyphenazine 

methosulfate (M PM S) as an electron carrier. The principles o f  the method as 

employed for this study are described here. A detailed protocol, listing all 

concentrations, can be found in Appendix V.

Wistar rats, aged 4-6 weeks, were continued on standard chow (n=3) or fed a diet, 

supplemented w ith sodium tungstate (0.7 g/ kg chow; Harlan-Teklad, Oxford, UK) 

(n=3) for six weeks before euthanasia by CO 2 overdose. Patella with adjacent 

synovium and liver was dissected immediately and cryo-embedded in on cork as 

described earlier (see section 3.3.3.1.3). 8 pm serial sections were cut using a 

cryostat, mounted on glass slides and used without fixation. All sections were 

covered with an incubation medium o f 5 mM TNBT and 0.45 mM  MPMS in 

phosphate-buffered 18% PVA plus 0.5 mM  hypoxanthine as the reducing substrate.
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For each specimen, the following controls were employed: omission o f hypoxanthine 

to determine background staining; addition o f the specific XOR inhibitor allopurinol 

(1 mM) to confirm enzymatic specificity o f staining; and addition o f 10 mM sodium 

azide to inhibit mitochondrial cytochromes as a source o f  O2 ’’ that could interfere 

with TNBT reduction (Halliwell B and Gutteridge JMC, 1999). The liver sections, 

known for their rich XOR activity, served as positive technical controls. After 

incubation for 30 m in at 37°C the viscous incubation medium was washed o ff in 60 

°C, pH 5.3-buffered 0.1 M sodium phosphate and sections rinsed briefly with acetone 

to fix the sections and remove free monoformazans. The sections were then mounted 

in glycerol je lly  and protected from excessive light exposure until microscopical 

analysis.

Sections were exam ined qualitatively and descriptively for the localisation o f  dark 

purple staining o f  reduced TNBT that could be suppressed by allopurinol, to indicate 

XOR activity in situ. Experiments included in the evaluation were repeated three 

times.
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5.4 R esu lts

5.4.1 XOR activity in normal patellar bone, cartilage 

and synovium is high, compared to muscle

Patellar bone o f  normal jo in ts showed enzyme activities for XO and total XOR (i.e. 

XO plus XDH) o f  the same magnitude as liver (Fig. 5.4.1). M ean enzym e activities 

were about 20-fold that o f quadriceps muscle (p < 0.001; ANOVA, B onferroni’s 

/?os/-test). M ean XOR activity o f  cartilage and synovium was between that o f liver 

and sm ooth muscle, but, probably due to the high standard error, not significantly 

different from the low activity o f muscle.

XO
XO+XDH

Cartilage Synovium Patella Muscle Liver

Fig. 5.4.1 : M ean activity o f  XO (dark columns) and com bined XO + XDH (light 

columns) in tissue hom ogenates o f normal, male, 4- 6 week old W istar rats (n=3), as 

m easured by the pterin assay, in liver hom ogenates o f tungsten- and control-fed 

W istar rats (n=3 for each time point). Bars represent SEM. * p < 0.001 for difference 

to muscle, p < 0.05 for difference to cartilage and synovium (ANOVA, B onferroni’s 

post-test).
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5.4.2 Normal hyaline chondrocytes display XOR activity 

in situ, suppressible by dietary tungsten

X O R  activ ity  in liver (positive con tro l)

Fig. 5.4.2a shows representative photom icrographs o f  histochem ical staining for 

XOR activity in liver from standard-fed rats.

D (allopurinol)

E (azide)

Fig. 5.4.2a: Histochemical staining for XOR activity shown as a TNBT reduction product 

(<dark purple) on corresponding, unfixed cryosections of liver from Wistar rats (n=3). 

Photomicrographs are representative of three separate experiments. Bars represent 50 pm. A, 

H&E stain of a liver lobule; B, weak staining in the absence of hypoxanthine (Hxt) as 

substrate; C, marked staining in the presence of 0.5 mM Hxt, especially around the central 

vein; D, conditions as in image C with added 1 mM allopurinol showing suppressed XOR 

activity; E, conditions as in image C with added 10 mM sodium azide, showing partial 

suppression of XOR activity; F, partial suppression of XOR activity in liver from a tungsten- 

fed rat, in the presence of Hxt.
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In the presence o f  hypoxanthine as substrate there was marked staining by reduced 

TNBT, especially around the central lobular vein {image C). Additon o f  10 mM 

allopurinol dim inished XOR activity to less than that seen in the absence o f 

hypoxanthine as a substrate {image D and B), confirming that a substantial amount 

o f staining reflects XOR activity. The inhibition o f mitochondrial cytochrome 

enzymes by addition o f  10 mM  azide resulted in partial loss o f staining {image E). 

Liver sections from rats, fed on tungsten-supplemented diet for six weeks, showed 

partial loss o f  XOR activity {image F ), but the effect appeared less than o f 

allopurinol.

XOR activity in hyaline cartilage

Rat patellar cartilage sections were stained in the same assay as liver sections. 

Figure 5.4.2 b shows representative photomicrographs o f  one o f three experiments. 

In the presence o f  0.5 mM hypoxanthine, the majority o f  chondrocytes showed 

marked XOR activity {image C). Staining was particular intense in the superficial 

cartilage layers and appeared as intense as in hepatocytes (see Figure 5.4.2 a). 

Staining was similar in both central cartilage and cartilage near synovium. In slight 

contrast to staining in liver sections, allopurinol and azide produced similar partial 

reduction in staining {image D and E), whereas cartilage from tungsten-fed animals 

achieved the best suppression o f XOR activity {image F).
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B (no Hxt)

C (Hxt)

• ( i  * % y  t

MJOI '  L c- . *  1  ■

D (allopurinol)

E (azide) F (tungsten)

Fig. 5.4.2 b : Histochemical staining for XOR activity shown as a TNBT reduction product 

(dark purple) on corresponding, unfixed cryosections of patellar cartilage from Wistar rats 

(«=J). Photomicrographs are representative of three separate experiments. Bars represent 50 

pm. A, H&E stain, arrows mark the Tide mark’, i.e. the border between calcified and apical 

non-calcified cartilage; B, weak staining in the absence of hypoxanthine (Hxt) as substrate; 

C, marked staining in the majority of chondrocytes, in the presence of 0.5 mM Hxt, 

especially in the superficial layers; D, conditions as in image C with added 1 mM 

allopurinol, showing suppressed XOR activity; E, conditions as in image C with added 10 

mM sodium azide, showing diminished staining; F, marked suppression of XOR activity in 

patellar cartilage from a tungsten-fed rat in the presence o f Hxt.

X O R  activity  in synovium

Strong staining for reduced TNBT was seen in the synovial lining and sub-synovial 

layer including skeletal muscle o f  normal W istar rats. Fig. 5.4.2 c shows
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representative photom icrographs o f one o f  three experiments. N otew orthy is the 

relative lack o f  staining seen in sub-synovial small arteries (image A). S im ilar to 

hyaline cartilage chondrocytes (see Fig. 5.4.2 b), dietary supplem entation with 

tungsten produced good suppression o f  XOR activity staining (image D ).

B (allopurinol)

C (no Hxt) 

*

 -_____

D (tungsten)

too JO

Fig. 5.4.2 c: Histochemical staining for XOR activity shown as a TNBT reduction product 

{dark purple) on corresponding, unfixed cryosections of knee synovium from Wistar rats 

(,n=3). Photomicrographs are representative of three separate experiments. Bars represent 

100 pm. A, marked staining of synovial lining layer and subsynovium in the presence of 0.5 

mM hypoxanthine (Hxt); note the relative weak staining in the media of small arteries 

(arrows); B, conditions as in image C with added 1 mM allopurinol, showing suppressed 

XOR activity; C, weak staining in the absence of Hxt; D, marked suppression of XOR 

activity in synovium from a tungsten-fed rat in the presence of Hxt.
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5.5 Discussion

These experiments showed that in normal rats, homogenates o f patellar bone - and to 

a lesser extent synovium and cartilage -  are high in XOR activity in comparison to 

skeletal muscle and liver. Enzyme histochemistry o f normal rat cartilage and 

synovium sections showed XOR activity localising strongly to hyaline cartilage 

chondrocytes and the synovial lining cells, but only weak to synovial vessels.

The finding o f  relative high activity o f XOR activity in rat liver by histochemistry 

and spectro-fluorimetric enzyme assay is concordant with the literature (Beckman JS, 

et al., 1989; Kooij A, et al., 1992a; Moriwaki Y, et al., 1998) and served as a 

positive technical control for the assay methods. Consistent with reports o f XO 

protein and XDH mRNA expression in skeletal muscle (M oriwaki Y, et al., 1996; 

M oriwaki Y, et al., 1997), the present study showed XOR histochemical activity in 

subsynovial striated muscle cells. However, rat quadriceps muscle showed only low 

XOR activity in tissue homogenates and the cause for this discrepancy is not clear.

In humans, inflamed joints showed increased XOR activity using radio-labelled 

substrate (A llen RE, et a!., 1987) and immuno-localisation o f XO protein has been 

reported in inflamed and normal synovial vessels (Stevens CR, et al., 1991a). 

However, no reports on localisation o f XOR protein or activity in synovial joints o f 

rats were found. W hile it would seem very likely that endothelial cells in synovium 

will express X OR as they do in other rat organs (Kooij A, et al., 1992a), in the 

present study histochemical XOR activity was weak compared to activity elsewhere 

in the joint.

The finding o f  X O R activity in hyaline cartilage chondrocytes, and at a level 

comparable to that in liver sections, was unexpected. Therefore I attempted to 

demonstrate X OR protein immunohistochemically in cartilage. A variety o f 

immunohistochemical conditions (i.e. paraffin- vs cryo-embedded specimen, 5-10 % 

normal goat serum and/or 10 % foetal calf serum to block non-specific binding, 

alkaline phosphatase/ Fast Red™  vs peroxidase/ diaminobenzidine as enzyme/dye 

combinations) were tested with a commercial polyclonal anti-(bovine buttermilk)XO 

primary antibody (Chemicon, Eastleigh, UK). However, no convincing XO staining 

could be dem onstrated in rat hyaline cartilage chondrocytes. Similarly, human
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cartilage specimen, obtained from subjects with osteoarthritis at the time o f joint 

replacement surgery, did not show specific immunohistochemical staining for XO 

protein. This m ay be due to bovine origin o f the immunogen against which the XO 

antibody was raised. A web search did not reveal any commercially available 

antibodies raised against XO o f rat origin. Nevertheless, there is one report using 

anti-rat X OR antibody (made by the investigators), but XO immunoreactivity in 

joints was not m entioned (Moriwaki Y, et al., 1996).

W hat is the purpose o f  XOR activity in articular chondrocytes? It could simply 

reflect the role o f  XOR in purine metabolism. However, the avascular and hence 

relatively hypoxic environm ent o f articular cartilage with a physiologically slow 

metabolic rate would appear unlikely to produce a purine load requiring a level o f 

XOR activity similar to that seen in liver. The potential and need for XOR as an O 2 *'- 

generator in norm al cartilage would appear similarly small. The distribution o f XOR 

activity in articular cartilage closely resembled the distribution o f 3-NT 

immunoreactivity (see Chapter 3.4.1 and Figure 3.4.1). Although co-localisation 

im munohistochemistry was not possible for reasons explained above, this similarity 

suggests that XOR activity remains a possible cause o f  3-NT and RNS formation. 

Whether this 3-NT/RNS formation serves to protect chondrocytes against microbial 

attack (Brunelli L, et al., 1995; Stevens CR, et al., 2000; Umezawa K, et al., 1997) 

or against the effects o f  low oxygen tension (Levick JR, 1979; Silver I A, 1975) 

remains speculative (see discussion 3.5).

There are limitations to this study. The histochemical evidence o f  XOR activity in 

cartilage is o f  a qualitative nature. Due to the heterogeneity o f tissue section 

morphology for anatomical and technical reasons (e.g. difficult sectioning across 

non-calcified patellar bone), jo in t tissue does not render itself readily suitable for 

com puter-assisted optical density image analysis, as it is possible for liver sections 

(Frederiks WM, et al., 1995). Because o f the difficulties in demonstrating 

corresponding X O R protein expression in cartilage, it may be be more feasible to 

investigate X O R mRNA expression.

In both humans and rats m ost XOR activity exists as XDH in vivo (Della Corte E, et 

al., 1969; W aud W R and Rajagopalan KV, 1976). The high proportion o f  XO in total 

XOR activity seen in homogenates o f all rat tissues in this study was therefore
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unexpected. However, this observation could reflect that, despite proteinase 

inhibitors and keeping samples cold, conversion o f  XDH to XO may not be 

preventable under in vitro conditions.

Finally, the distinct, yet apparently incomplete suppression o f  TNBT reduction in the 

presence o f allopurinol compared to the better suppression seen in tungsten-treated 

animal tissue suggests that a significant part o f the TNBT reductase activity could be 

provided by aldehyde oxidase (AO). Like XOR, AO is a molybdo-enzyme (and as 

such will be inactivated by a tungsten diet) which may share many o f  the substrate 

specificities and tissue distribution o f XOR in rats (M oriwaki Y, et al., 1996; 

Moriwaki Y, et al., 1998). However, to date AO has not been implicated in joint 

physiology or pathology.

The finding o f XOR activity in rat articular cartilage, mirroring the localisation o f  3- 

NT and suppressible by dietary tungsten, opened the way to study the possible 

contribution o f XOR activity to cartilage/ bone damage and 3-NT formation during 

experimental arthritis. This will be the subject o f the next chapter.
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Chapter 6: Pathogenesis of antigen-induced arthritis in 

xanthine oxidoreductase-deficient rats

6.1 Introduction

The previous chapters have described studies showing that normal rat patellar 

cartilage contains 3-NT, a marker o f in situ formation o f reactive species derived 

from NO (Halliwell B, 1997). Rodent models, lacking individual nitric oxide 

synthases I-III, did not abolish 3-NT expression in cartilage, indicating compensatory 

enzyme activity. As was shown by several investigators, XOR is capable o f 

generating both O 2 *' and NO from nitrates in vitro (Godber BJL, et al., 2000; Li H, 

et al., 2001; M illar TM, et al., 1998). However, inactivation o f XOR by a tungsten- 

supplemented diet (Johnson JL, et al., 1974) did not affect 3-NT in rat joints, 

arguing against XOR as the only source o f  RNS in vivo. Nevertheless strong XOR 

activity was found in articular cartilage chondrocytes o f normal Wistar rats, in a 

distribution resembling that o f 3-NT. This XOR activity was strongly suppressed by 

dietary tungsten. Therefore it remains conceivable that XOR may contribute to 3- 

NT/RNS formation in joints, under conditions o f  tissue stress, such as experimental 

arthritis.

There is considerable evidence that arthritis is associated with increased 3-NT 

formation in cartilage. This has been described in human osteoarthritis (OA) (Loeser 

RF, et al., 2002; Matsuo M, et al., 2001) and experimental canine (Pelletier JP, et 

al., 1999) and lapine (Hashimoto S, et al., 1998) OA models. It has also been 

reported in chondrocytes o f type II collagen- (Cuzzocrea S, et al., 2000) and 

zymosan-induced (Bezerra MM, et al., 2004) inflammatory arthritis in small rodents. 

In these experimental studies, diminished 3-NT expression was associated with less 

jo in t inflamm ation and cartilage damage.

I f  XOR contributes to 3-NT formation in cartilage in experimental arthritis, one 

would expect that inactivation o f XOR in rats through dietary tungsten suppresses 3- 

NT formation in jo in t tissue. One would further expect an associated reduction o f 

joint inflammation and damage. This is important, since if  true, it would point
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towards a role for XOR inhibition (e.g. with allopurinol) in the treatment o f 

inflammatory arthritis per se.

Antigen-induced arthritis (AIA) in Wistar rats was chosen for these studies. AIA is 

induced by intra-articular injection into the knee jo in t o f a defined antigen (e.g. 

methylated bovine serum albumin (mBSA)) in animals, previously sensitized to the 

antigen by immunisation. It was originally described in rabbits (Dumonde DC and 

Glynn LE, 1962) and shares many features with human rheumatoid arthritis (RA), 

e.g. synovial histopathology, chronicity, T-cell responsiveness, cytokine pattern and 

response to anti-inflammatory and anti-cytokine therapy . In mice (Brackertz D, et 

a!., 1977) and rats (Griffiths RJ, 1992) the initial acute arthritis is a localised, non

destructive, immune complex disease o f a few days duration. The development o f a 

chronic destructive arthritis depends on T-cell hypersensitivity and antigen-retention 

within the jo in t [reviewed in (Pettipher ER and Blake S, 1995)]. This model was 

chosen since most o f the present work on 3-NT had been carried out on Wistar rat 

knee joints. Furthermore, previous experience within our group had shown this 

model to produce a chronic, erosive arthritis in W istar rats by three weeks post 

induction (Mapp PI, et al., 2001). Three groups o f animals were studied: (a) animals 

fed on a tungsten-enriched diet from three weeks prior to systemic immunisation, or 

(b) on standard-diet throughout the experiment, and (c) animals on a standard diet 

treated with the XOR inhibitor allopurinol prior to arthritis induction. The main 

outcome measures were radiographic and histological analysis o f  knee joints, and 3- 

NT/tyrosine ratios by gas chromatography/ mass spectrometry (GC/MS) in 

patellar/synovium homogenates three weeks after arthritis induction.
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6.2 Aims and objectives

The hypotheses to be tested were:

• that XOR contributes to articular 3-NT formation; and

• that XOR inactivation is protective against antigen-induced arthritis(AIA).

The objectives were:

• to study the course o f methylated bovine serum albumin-induced knee 

arthritis in rat groups, treated with tungsten-enriched diet, normal control diet 

or the XOR inhibitor allopurinol;

• to study 3-NT/tyrosine concentration by GC/MS and radiographic and 

histological changes in rat knees three weeks after arthritis induction.
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6.3 Materials and methods

A list o f materials can be found in the Appendix VI. All concentrations are final, 

unless stated otherwise.

6.3.1 Animals

Male out-bred W istar rats o f weaning age (Charles River, M argate, UK) were mixed 

at random from different litters and housed in cages under standard conditions for 

one week before experimental interventions began. Procedures complied with the 

Animals (Scientific Procedures) Act 1986, UK and with Home Office (UK) licence. 

For all invasive interventions, animals were under 4% isofluorane/oxygen (2 1/min) 

anaesthesia, delivered in an anaesthetic chamber. Apart from dietary interventions, 

animals were kept under standard laboratory conditions with water ad lib.

6.3.2 Materials

Chemicals were obtained from Sigma, Poole, UK, unless stated otherwise. All 

concentrations are expressed as final concentration.

Normal protein rat chow, supplemented with sodium tungstate (0.7 g/kg; ICN, 

Basingstoke, UK); standard rat chow (SDS, Witham, UK); methylated bovine serum 

albumin (mBSA); complete Freund’s adjuvant (CFA); 0.9 % aqueous sodium 

chloride for injection (0.9 % NaCL; Braun, UK); allopurinol; sodium 

carboxymethylcellulose (medium viscosity).

6.3.3 Pharmacological inhibition of XOR and protocol of antigen- 

induced arthritis (AIA)

For reasons o f clarity the pharmacological inhibition o f  XOR and the protocol of 

AIA are described together (Fig. 6.3.3),
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Day 0: S tart

Day 20

Day 21: 1. Im m unisation

Day 28: 2. Im m unisation

Day 41

Day 42: Arthritis Induction

n=3 n=3

n=3 n=3

CFA
r=3

CFA
n=3

CFA
n=3

m BSA + CFA
n=31

m BSA  + CFA
n=17

m BSA  + CFA
n-17

m BSA + CFA
n=31

Standard Diet 
n=37

+ Ailopurinol
(AG )n=14

Standard Diet 
(SG )n=14

T ungsten Diet 
n=23

Tungsten Diet 
(TG )n=14

mBSA (vehicle) intra-artic. Right (left) knee

Outcome assessments:
i. knee diameter (all)

Day 63: End o f experim ent at Qay g j.

ii. knee radiology and histology (n=8, each group)
iii. nitrotyrosine/ tyrosine ratios (n=6, each group)

Fig. 6.3.3: Flow  chart outlining the experimental protocol o f  the antigen-induced 

arthritis in W istar rats. CFA, complete Freund’s adjuvant, t ,  animals sacrificed to 

determ ine XOR activity.

Rats were fed on either a standard diet (SG) or tungsten-enriched chow (TG). A 

subgroup o f  anim als o f  the SG group was treated with the XOR-inhibitor ailopurinol. 

AIA in the right knee was induced by a single intrci-articular (i.a.) injection o f 

mBSA in rats previously immunised with mBSA in com plete Freund’s adjuvant 

(CFA). CFA is a suspension o f heat shock-killed m ycobacteria in mineral oil, 

com m only used to enhance an immune response to achieve hypersensitivity in 

experim ental arthritis. The following protocol was previously described by M app et 

al. and know n to lead to a chronic erosive knee m onarthritis by three weeks (M app 

P.I., e ta l . ,  1993).

From Day 0 onw ards W istar rats (28 days old, mean weight ± SEM: 132 ± 2 gm) 

were fed on a tungsten or standard diet. After three weeks (Day 21) animals were 

im munised w ith 500 pg mBSA (as 100 pi o f  10 mg mBSA/ml in 0.9 % saline, mixed 

1:1 (v/v) w ith CFA) by subcutaneous (s.c.) injection into the shaved scruff. Three
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control animals in each diet group were injected with vehicle alone (i.e. saline/CFA). 

This im m unisation was repeated one week later (Day 28). One day before arthritis 

induction, a subgroup o f the standard diet group was started on ailopurinol (50 

mg/kg/day, suspended in 1 ml o f 1 % (w/v) carboxymethylcellulose in H 2 O/Q), 

adm inistered per os w ith a gavage. The following day (Day 42), all animals were 

injected with 500 p,g mBSA (as 100 pi o f 5mg mBSA/ml sterile 0.9% NaCl) and 

vehicle via i.a. injection into the right and left knee, respectively. Three weeks later 

(Day 63) all animals were sacrificed. A proportion o f animals in each treatment 

group (n=6) had blood removed for plasma and patella-synovium dissected from 

each knee under term inal 4% isofluorane/02 (2 1/min) anaesthesia. The remaining 

animals in each treatm ent group (n=8) and the sham-immunised animals o f the 

tungsten- and standard-diet group (n=3) were killed by CO 2  overdose, and knees 

were excised and put into formal saline for radiographic and histological assessment. 

All animals underw ent post mortem examination for macroscopic pathological 

changes.

6.3.4 Clinical Assessment

Animals were inspected daily for signs o f ill health and weighed once per week 

throughout the experiment.

M edio-lateral knee diameters o f both knees were measured on non-anaesthetised 

animals w ith digital electronic callipers (Mitutoyo, Andover, Hampshire, UK) before 

and 1, 2, 5, 7 and 14 days following i.a. mBSA/vehicle injection. Measurements 

were undertaken blinded to the intervention group, and recorded to the nearest 0.1 

mm. Baseline evaluation o f  the inter-observer agreement o f  transverse knee diameter 

m easurement w ith covered display was performed between my supervisor Dr. Paul 

M app (PIM; an experienced experimental pathologist) and m yself (RK) on the right 

knees o f  the Standard D iet animals (n=14) prior to arthritis induction. The result 

display o f  the digital callipers was covered during measurement. The level o f 

agreement was calculated as the intra-class correlation coefficient (ICC).
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6.3.5 Delayed-type hypersensitivity assessment

In order to determine whether the tungsten diet interferes with the hypersensitisation 

to mBSA, the development o f  T cell-dependent hypersensitivity (Type IV, according 

to the classification by Coombs & Gell (Roitt IM, et al., 1985)) had to be verified in 

each diet group. This was done by assessing the clinical signs o f  delayed-type 

hypersensitivity (DTH) to mBSA.

Seven days after the second mBSA immunisation (Day 35) , a subgroup o f animals 

(<n=5, from each tungsten- and standard-diet group) were injected intradermally into 

the pinna o f  the right and left ear with 2.5 pg mBSA (as 50 pi o f  0.5 mg mBSA/ml 

0.9% saline) and vehicle, respectively. After 48 hrs, local skin reaction was assessed 

in coded animals for redness and induration (i.e. firm swelling), using the following 

qualitative score: ‘O’, no redness or induration; ‘1’, redness only; ‘2 ’, redness and 

induration. Suffixes ‘a ’ and ‘b ’ (e.g. ‘ l a ’) denoted whether the changes were 

considered ‘m ild’ or ‘more than m ild’, respectively.

6.3.6 XOR activity assay

XOR analysis was measured in plasma (prior to s.c. mBSA immunization, prior to 

and three weeks after i.a. mBSA/vehicle injection; see Fig 6.3.3) and in homogenates 

o f snap-frozen patella-synovium (in PBS with 10 pg/ml aprotinin and 0.5 mM 

phenylmethylsulfonylfluoride). XOR activity was analyzed as xanthine oxidase 

activity using a fluorospectrometric method o f pterin oxidation (Beckman JS, et al., 

1989). Details o f sample preparation and the assay are described in Section 4.3.3 and 

Appendix IV . Samples were measured in triplicate and XOR activity was calculated 

and expressed as nmol m in '1 g '1 sample tissue protein, w ith protein concentration 

determined according to the method o f Bradford (Bradford MM, 1976) (see 

Appendix I I ) .

6.3.7 Quantification of nitrotyrosine

Nitrotyrosine and tyrosine content were measured in homogenates o f patella- 

synovium 21 days post arthritis induction by gas chromatography/ mass spectrometry 

(GC/MS), as previously described (Frost MT, et al., 2000). Sample preparation and 

protein extraction was performed by m yself and further analytical steps o f the

111



Chapter 6: XOR and 3-NT in Antigen-Induced Arthritis

method by Dr Ali R Mani, from the Centre for Hepatology, Department o f Medicine, 

Royal Free & University College Medical School, UCL, London, UK (see section 

3.4.3). Results were expressed as nitrotyrosine/ tyrosine [pg/pig]. This method avoids 

artefactual nitration o f tyrosine under the acidic conditions commonly employed.

6.3.8 Radiographic analysis

Knee joints were contact X-rayed in the medio-lateral and antero-posterior plane 

(Faxitron X Ray Systems, Field Emission Ltd., London, UK). Exposure was at 40 kV 

for 20 min, using a ‘Kodalith, Orthotype, Grade 3 ’ film (Sigma, Poole, UK). Blind- 

label X-ray films were examined with a magnifying glass (x 20) for bone changes o f 

inflammatory arthritis. X-rays were scored for erosions, defined as a cortical break, 

osteopenia and periosteal reaction, as described by Clark et al. (Clark RL, et al., 

1979). Results were independently verified by two experienced investigators (Drs 

Paul I. Mapp and Chris J. Morris) o f our group.

6.3.9 Histological analysis

After radiography knees were decalcified in 10% formic acid, (v/v) in formal saline. 

To accelerate the decalcification, specimen containers were under continuous motion 

on a rocker roller at room temperature, and the decalcifying solution was replaced 

twice a week. After six weeks decalcification was complete (as verified by X-ray). 

Sections were trimmed, processed and embedded in paraffin. 6 pm-thick sections 

were cut along the sagittal knee jo int plane and stained with haematoxylin and eosin 

(H&E). Blind-label sections were examined for intra-articular fibrin, cellular 

infiltrates and synovial proliferation, bone and cartilage destruction by pannus and 

periostitis and all scored individually on a semi-quantitative scale (ranging from 0 to 

3+ according to occurrence) (Kruijsen MWM, et al., 1983). Results were 

independently verified by my co-supervisor Dr Paul I. Mapp.

6.3.10 Statistical Methods

Continuous data was analysed by unpaired t-test or one-way analysis o f variance 

(ANOVA) to compare means between two or three groups, respectively. A repeated 

measures-ANOVA was used to compare changes within treatment groups from
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baseline. If  the ANOVA showed significantly different means (at p < 0.05), 

D unnett’s post-test was applied, comparing the Tungsten Diet and Ailopurinol group 

to the Standard Diet group or baseline, respectively. Statistical calculations and 

graphic display o f  results were carried out using the software program GraphPad 

Prism, version 3.02, 2000 (GraphPad Software, San Diego, U.S.A.).
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6.4 R esu lts

6.4.1 General observations

A nim als o f  all three groups thrived well throughout the duration o f the experiment 

(Fig. 6.4.1). A lthough there was a trend o f mean weight being higher in the Tungsten 

group com pared to the Standard Diet group just prior to arthritis induction, these 

difference becam e only significant from 7 days post  induction. Post-mortem 

exam ination did not reveal any macroscopic abnorm ality o f  internal organs in any 

animal.

500-i

400-

U)
300-

o>
‘a>
£  2 0 0 - Tungsten

S tan d ard
1 0 0 -

A lio p u rin o i

7 14 21 28 35 4 2 a 49 56 630

Day of Experiment

Fig. 6.4.1: M ean  w eigh t o f W is ta r  ra ts  over tim e o f the ex p erim en t (n > 14 per

experim ental group). Day 0 m arks the beginning o f experim ental diets, and Day 42 

(a) arthritis induction w ith i.a. mBSA. A ilopurinol dosing began on Day 41. Bars 

represent SEM. * p<0.05, *** p<0.001 for difference between tungsten- vs. standard- 

fed anim als (A N O V A  w ith D unnett’s /^osMest).
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6.4.2 Tungsten diet, but not ailopurinol, suppresses 

XO activity in joint homogenates.

The Tungsten D iet group had markedly suppressed activity o f plasm a XO activity 

from the first mBSA immunisation until the end o f the experiment (see Table 6.4.2), 

XO activity in patella-synovium homogenates from rats (n=3, right and left knee 

analysed

separately), sacrificed 21 days post arthritis induction (i.e. Day 63), showed < 0.9 % 

activity o f  jo in t homogenates o f the control Standard Diet group (p<0.001, ANOVA 

with D unnetf s post-test). In the Ailopurinol group m ean plasma XO activity 3 weeks 

post i.a. mBSA injection (i.e. Day 63) was decreased to 7.3 % (n=6; p < 0.001). 

However, XO activity in patella-synovium homogenates was not significantly 

different from control animals. Mean XO activity in plasm a o f  Standard Diet animals 

did not change significantly over time from Day 20 (ANOVA, D unnett’s post-test).

Table 6.4.2: XO activity in rat plasma, and patella-synovium homogenates.

Tungsten Diet Standard Diet Ailopurinol

Plasma

Day 20 0.3 ± 0.4 172 ± 16 * NA

Day 41 ND 219 ± 5 NA

Day 63 ND 162 ±  1 1 f 12 ± 2

Patella-Svnovium

Day 63 1.1 ± 3 .1 127 ±  22 p 160 ± 17

Values are mean XO activity (± SEM), as nmol x min'1 x g tissue protein'1, measured by 

spectro-fluorimetric pterin assay. Sample sizes were n=3 animals for each group, except for 

plasma of day 21 (n=6). Left and right patella-synovium samples were analysed separately. 

Each sample was measured in triplicate. Experimental days were: Day 20, after 3 weeks on 

experimental diet and prior to s.c. mBSA immunisation; Day 41, prior to i.a. mBSA 

injection; Day 63, three weeks after i.a. injection.

ND, not detectable; NA, not applicable. * p < 0.001 vs. Tungsten Diet (unpaired t-test);f p < 

0.001 vs. Ailopurinol and p p < 0.001 vs. Tungsten Diet (ANOVA with Dunnetf s posMest).

115



Chapter 6: XOR and 3-NT in Antigen-Induced Arthritis

6.4.3 Tungsten diet does not affect development of DTH to mBSA

On blind-label assessm ent, three out o f  five (60 %) animals tested in each diet group 

developed a positive DTH to mBSA. One animal showed mild redness and 

induration (score ’2 a ’) (see Fig. 6.4.3) and two had mild redness (score H a ’) in each 

dietary group. None o f  vehicle injected left ears showed a positive DTH reaction. 

Similarly, none o f four randomly interspersed animals, that did not have an intra- 

dermal mBSA challenge, were judged to have a positive DTH reaction.

Fig. 6.4.3: Delayed-type hypersensitivity reaction on the right pinna o f  a tungsten- 

fed W istar rat, 48 hours after intra-dermal mBSA (2.5 pg). Note the redness and 

swelling, in com parison to the vehicle-injected left side. The DTH score given was 

‘2a? (see section 6.3.5 for details).

6.4.4 Tungsten-fed, but not allopurinol-treated animals show  

greater acute jo in t swelling.

The inter-observer agreem ent between PIM, the experienced investigator, and RK 

was low, as signified by an ICC o f  r =0.16. As a result all further knee m easurem ents 

were taken by PIM.

Mean baseline diam eters ± SEM  o f  mBSA -injected knee jo in ts were com parable in 

the TG, SG and AG groups (,n=14 , each group) with 12.3 ± 0.2, 12.5 ± 0.2 and 12.5 

± 0.1 mm, respectively. At 24 and 48 hours after i.a. m BSA-injection, the mean right 

knee diameters o f  all treatm ent groups had increased from baseline (p < 0 .0 0 1 ; 

repeated measure ANOVA). At both these time points, knee diam eters showed a 

greater increase in the tungsten- compared with the standard diet group (Fig. 6.4.4).
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The mean differences (95%  confidence interval) were 1.3 (0.3, 2.4) mm and 1.2 (0.2,

2.1) mm, at 24 and 48 hours, respectively (p<0.05; ANOVA w ith D unnett’s post- 

test). There was no significant change in mean diam eter o f left (i.e. sham -injected) 

knees and m BSA -injected knees o f the CFA -im m unised animals. By five days post 

arthritis induction mean knee diameters had returned to norm al in all treatment 

groups.

Tungsten (n-14) 
Standard (n-14) 
Ailopurinol (n-14)

a -- CFA-im m unised (TG) (n=3) 

♦••• CFA-im m unised (SG) (n=3)

4 6 8 10 12

Day p o s t  i.a. mBSA injection

Fig. 6.4.4: M ean change o f transverse diam eter o f  m BSA -injected knees from 

baseline (i.e. prior to i.a. mBSA) over time. Bars represent SEM. * p < 0.05 vs . 

Standard D iet group (ANOVA with D unnett’s post-test). TG, tungsten diet; SG, 

standard diet; CFA, com plete Freund’s adjuvant.

6.4.5 Tungsten-fed, but not allopurinol-treated animals have 

higher 3-NT content in inflamed knee joints

At 21 days post arthritis induction mean nitrotyrosine-tyrosine ratios (±SEM ) o f right 

patella-synovium  hom ogenates were higher in the Tungsten D iet group, compared 

with the Standard D iet and Ailopurinol group: 12.3 ± 0.7 pg/pg, 9.6 ± 0.8 pg/pg and 

10.4 ± 0.5 pg/pg, respectively (p < 0.05, TG vs SG; ANOVA w ith D unnett’s post-
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test) (Fig. 6.4.5). There was no significant difference o f  3-NT/tyrosine ratios 

between right and left knee hom ogenates in the treatm ent groups (paired t-test).

15

o
H    o

a  i r d  o  £il l 10~ oo
>. O

o
Z

5

Tungsten Standard Ailopurinol

Fig. 6.4.5: N itrotyrosine-tyrosine ratios o f patella-synovium  hom ogenates (3 weeks 

post i.a. mBSA injection). Bars represent mean values. * p < 0.05 for difference o f 

means between tungsten- vs. standard-diet group (A NOVA with D unnett’s post-test).

6.4.6 Radiographic or histological features of arthritis were not 

detected at 21 days post i.a. mBSA injection

Close scrutiny o f  jo in t radiographs (n=8, each group; except sham-immunized 

animals: n=3) by two experienced experimental pathologists revealed no convincing 

signs o f bone changes in any o f  the treatment groups.

Similarly, histological analysis o f  H&E stains o f  sagittal knee jo in t sections (n=8, 

each group; except sham -im m unized animals: n=3) showed no convincing evidence 

o f chronic inflam m ation, bone erosions or periosteal reactions in any o f the treatment 

groups.
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6.5 Discussion

It had been hypothesized that XOR contributes to the formation o f  RNS and nitration 

o f  articular proteins during jo in t inflammation and that thus inhibition o f XOR would 

ameliorate the course o f  experimental arthritis. In contrast, here I have shown that 

inactivation o f  articular XOR activity by tungsten was associated with a significantly 

greater increase o f  knee swelling during acute mBSA-induced arthritis compared to 

controls. Furthermore, tungsten-treated animals showed increased nitrotyrosine 

formation in arthritic jo in ts compared with the animals on standard diet, as measured 

by a highly sensitive gas chromatographic-mass spectrometric method. Together, 

these observations suggested that inactivation o f  X OR enhanced jo in t inflammation 

early during the course o f  AIA. Although the effect is relatively modest, this is the 

first study to indicate that XOR may have a protective effect in immune complex- 

mediated disease, and supplements our previous observation that suggests a 

beneficial role for X OR in innate immune responses (Stevens CR, et al., 2000). The 

present study does not suggest XOR to be a significant source o f RNS in acute 

antigen-induced arthritis.

Tungsten-treated animals thrived well and their development o f immunity to mBSA 

was unaffected. M oreover, the tungsten-treated group showed marked suppression o f 

mean xanthine oxidase activity in plasma and jo in t tissue to < 0.9 % o f  controls. In 

contrast, ailopurinol achieved partial inhibition o f plasma, but not jo in t XOR activity, 

which may explain why jo in t swelling was not enhanced in the ailopurinol group.

A literature search revealed no published studies o f tungsten-induced XOR 

inactivation in antigen-induced arthritis. However, using the M.tuberculosis-adjuvant 

arthritis model in Lewis rats w ith dietary tungsten treatment or oral ailopurinol, our 

group has previously observed a reduction in radiographic erosion and bone 

demineralisation scores in the tungsten-treated animals compared to controls, 

suggesting that X OR contributes to joint damage in this model (Speden DJ, et al.,

2002). Pathogenetic differences between animal models may account for these 

contrasting results. A cute antigen-induced arthritis is a localised, non-destructive, 

immune complex disease o f  a few days duration (Griffiths RJ, 1992). T-cell 

hypersensitivity and antigen-retention within the jo in t are required for the
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development o f  a chronic, destructive arthritis. In contrast, adjuvant arthritis is a 

destructive, T-cell mediated disease from the outset, that affects primarily 

periarticular soft tissues and bone (Pearson CM and W ood FD, 1959). It may be that 

XOR has divergent effects on acute synovial inflammation and chronic 

bone/cartilage destruction in arthritis. Indeed, distinct anti-inflammatory activity is 

increasingly recognised as an integral part o f enzymes, such as iNOS (McCartney- 

Francis NL, et al., 2001; Veihelmann A, et al., 2001) and cyclooxgenase-2 (Gilroy 

DW, et al., 1999), previously thought o f as exclusively pro-inflammatory. This dual 

role o f enzymes, central to joint inflammation, may hold clues to explain the clinical 

observation o f  progressive joint damage despite inactive synovial inflammation in 

rheumatoid arthritis (McQueen FM, et al., 1999; M ulherin D, et al., 1996). 

Alternatively, the enhanced acute inflammatory response seen during XOR inhibition 

with tungsten m ay in part explain the common, but poorly understood, clinical 

observation o f  exacerbation o f gout when treatment with ailopurinol is started 

(McLean L, 2003).

How may XOR limit protein nitration and acute AIA inflammation?

Uric acid, the final oxidation product o f XOR-mediated purine metabolism, is 

a potent inhibitor o f  peroxynitrite-induced tyrosine nitration under physiological 

conditions in vitro (W hitemann M and Halliwell B, 1996). Furthermore, 

endogenously generated uric acid was identified as an inhibitor o f protein tyrosine 

nitration in rat heart homogenates (Teng RJ, et al., 2002). Pharmacological 

administration o f  uric acid has been shown to reduce both tissue damage and 3-NT 

tissue levels in experimental chronic autoimmune encephalitis, an animal model o f 

multiple sclerosis, (Hooper DC, et al., 1998) and acute zymosan-induced rat knee 

arthritis (Bezerra M M, et al., 2004). However, uric acid does not inhibit all 

peroxynitrite-induced reactions. For instance, peroxynitrite-induced inactivation o f 

a j- antiproteinase (W hitemann M and Halliwell B, 1996), oxidation o f sulfhydryl 

groups and lipid peroxidation (Santos CX, et al., 1999) in vitro are not suppressed 

and may even be enhanced by uric acid (W hitemann M, et al., 2002). This suggests 

that protein tyrosine nitration itself could be an important mediator o f tissue 

inflammation and damage. This may occur via the nitration o f  specific tyrosine 

residues in proteins, leading, for example, to the alteration o f enzyme function and 

cell signalling [reviewed in (Ischiropoulos H, 2003)]. One could therefore speculate
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that in the present experiment, inhibition o f  XOR led to reduced generation o f uric 

acid, w ith an increase o f  protein nitration and acute jo in t inflammation as a 

consequence. Future studies will have to incorporate the measurement o f serum and 

tissue uric acid during the acute phase o f  AIA to examine this possibility further.

This study has im portant limitations.

Firstly, it lacks histological evidence o f enhanced acute inflammation in the XOR- 

inactivated animals. This is due to the fact that study design and power 

considerations were aimed at the detection o f a difference in the development o f 

chronic destructive arthritis, as the outcome m ost relevant in comparison to 

rheumatoid disease in humans. Although a majority o f animals developed delayed- 

type hypersensitivity to mBSA, radiographic and histological analysis 21 days after 

intra-articular arthritis induction did not reveal any convincing destructive or chronic 

inflammatory jo in t damage in any o f the animals. This was in contrast to earlier 

experience by our group, using the same AIA induction protocol (Mapp P.I., et al., 

1993). It is possible that subtle strain variation in Bath out-bred Wistar rats may 

account for this observation. Increased 3-NT formation in joints can be taken as 

strong indirect evidence that increased inflammation has occurred, but future studies 

should include histological data during the early phase o f  AIA. They should also 

consider using an alternative rat species, shown by other investigators to be more 

prone to developing chronic AIA, e.g. Lewis rats (Griffiths RJ, 1992). Secondly, 

tungsten is not a specific XOR inhibitor, but will inhibit all three molybdenum- 

enzymes known to exist in rat and man. Apart from XOR, these are sulfite oxidase 

(SO) and aldehyde oxidase (AO) [reviewed in (Moriwaki Y, et al., 1997)]. SO is a 

ubiquitous, mitochondrial enzyme whose only known function is the oxidative 

degradation o f  sulphur dioxide and bisulfite. As discussed in the previous chapter, 

AO has been shown to share substrates and localisation in rat tissues with XOR. 

However, neither o f  these enzymes is known to play a role in arthritis to date. It 

would therefore appear reasonable to attribute the observed effects o f  tungsten- 

supplementation in our experiment to the suppression o f XOR.

In conclusion, it has been shown that inactivation o f  XOR by dietary tungsten was 

associated with increased acute joint swelling and increased nitration o f articular
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proteins, indicating increased joint inflammation during acute antigen-induced 

arthritis. This suggests that XOR may have a novel protective role in immune 

complex -mediated arthritis, which requires further clarification.
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Chapter 7: General discussion and future work

Nitric oxide (NO) exerts both beneficial and deleterious effects on healthy and 

inflamed jo in t tissue (see section 1.3). Reactive species that derive from the 

interaction o f NO and oxygen or superoxide ((V ') , however, are known to have 

adverse effects in arthritis, but no beneficial role in jo in t physiology. For instance, 

NO and O2 ’" react rapidly to form the highly reactive peroxynitrite (ONOO') (Pryor 

WA and Squadrito GL, 1995), which is implicated in tissue damage o f  a wide variety 

o f diseases. ONOO' may lead to nitration o f tyrosine to form the relatively stable 3- 

nitrotyrosine (3-NT) (Ischiropoulos H, et al., 1992b; Reiter CD, et al., 2000). There 

is increasing evidence that 3-NT is not only an in situ marker o f ONOO' 

(Ischiropoulos H, et al., 1992b) and other RNS (Halliwell B, 1997; van der Vliet A, 

et al., 1996), but that its formation is a specific process to regulate protein function 

(see section 1.1.4.3).

The work described in this thesis was developed from the striking observation o f 3- 

NT immunoreactivity in synovial vessels o f apparently normal human joints, but not 

in other vascular beds (Mapp PI, et al., 2001). The present work sought to 

investigate the distribution o f 3-NT in normal mammalian jo in t tissue, its enzymatic 

origin and its im plications for inflammatory jo int disease. Since the enzyme xanthine 

oxidoreductase (XOR), present in synovium (Allen RE, et al., 1987; Stevens CR, et 

al., 1991a), can generate both NO and O2 *' during purine metabolism in vitro (Li H, 

et al., 2001; M illar TM , et al., 1998), a specific hypothesis to be tested was that 

XOR contributes to 3-NT formation in joints.

Main findings

The studies presented here have shown that synovial vessels from knee joints o f 

healthy rodent species {i.e. Wistar rats and Sv 129 mice) also display 

immunoreactivity to 3-NT, not found in vessels o f  other organs {e.g. skin, small 

intestine, colon, liver, heart, kidney, spleen and brain). M oreover, even stronger 3- 

NT immunoreactivity was seen in hyaline cartilage chondrocytes o f healthy, young 

rodents and cattle. This 3-NT immunoreactivity developed within 10 days after birth 

in rats and perfusion-fixation did produce similar findings, compared with 

immersion-fixation o f  animals/tissues. In normal rats 3-NT content, measured by a
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highly sensitive gas chromatography-mass spectrometry (GC/MS), was significantly 

higher in patella/cartilage, compared to synovium and liver. Electrophoretic and 3- 

N T im munoblotting studies o f normal rat jo in t tissue suggested that tyrosine nitration 

o f proteins is not a random process. Immunohistochemistry (IHC) on small rodents, 

lacking functional individual nitric oxide synthases (NOS) 1, 2 or 3 (by targeted gene 

deletion) or X OR (by dietary tungsten-supplementation) showed unchanged articular 

3-NT distribution. Tungsten-supplementation starting in utero achieved substantial 

inactivation o f  XOR, but GC/MS did not show reduced articular 3-NT content. 

Histochemistry for X OR activity showed marked activity in hyaline cartilage 

chondrocytes, suppressible by tungsten, and resembling the distribution o f 3-NT 

immunoreactivity. In order to test whether XOR could contribute to articular 3-NT 

formation in ‘stressed’ animals, antigen-induced arthritis (AIA) was induced in 

Wistar rats on tungsten diet or standard diet (with or without ailopurinol from 

arthritis induction onwards). Unexpectedly, XOR inactivation by tungsten led to 

increased jo in t swelling during the acute arthritic phase and increased 3-NT content 

in knee jo in t homogenates.

Implications

These findings provide evidence for tyrosine nitration o f specific proteins in cartilage 

and synovial vasculature o f  healthy mammalian joints The 3-NT formation appears 

exclusive to the synovium as far as vasculature is concerned, and o f higher 

magnitude than liver, an organ characterized by high metabolic activity. This 

articular tyrosine nitration does not appear to be a consequence o f  perimortal anoxia 

or aging. It seems secured by several enzymatic pathways, suggesting a protected 

physiological function. XOR is active in healthy articular chondrocytes, but is not 

involved in articular 3-NT formation in healthy rats or in rats, stressed by antigen- 

induced arthritis. XOR may, however, be protective in the acute phase o f antigen- 

induced, immune com plex-mediated arthritis.

General discussion

This work challenges the widely held opinion that NO, but not more reactive 

chemical species derived from NO, occur in significant amounts in healthy joints. 

Studies that have looked at the immunohistochemical distribution o f  3-NT in normal 

joint tissue have done so by comparing pathological or aged tissue with normal
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controls in primates (Loeser RF, et al., 2002), dogs (Pelletier JP, et al., 1999) or rats 

(Cuzzocrea S, et al., 2000). Consistent with physico-chemical methods o f 3-NT 

quantitation (Kaur H and Halliwell B, 1994), these studies found that 3-NT is 

increased in diseased or aged joints compared to normal joints. By design, however, 

immunohistochemical studies o f this kind aim to contrast the abnormal tissue with 

the normal one, and this is technically achieved by terminating reactions when the 

positive control becom es positive while the negative technical and normal tissue 

controls rem ain negative. Therefore these studies are not helpful to draw conclusions 

on 3-NT in normal jo in t tissue. When investigating 3-NT in normal tissue, several 

issues need consideration. Firstly, how normal is normal tissue? Normal human 

tissue from asymptomatic donors is difficult to obtain for ethical reasons, and the 

absence o f  macro- and microscopical tissue abnormalities in post mortem incidental 

samples does not equate normality. But even when tissue is derived in a controlled 

fashion from animals, hypoxia occurring until tissue fixation may alter the in vivo 

situation. Perfusion-fixation o f  animals is one way o f minimizing this problem, and 

my studies showed no significant reduction o f 3-NT staining in jo in t tissue, sampled 

in this way. Secondly, there is potential for bias by ‘creating’ immunoreactivity by 

prolonged assay incubation, in particular during the final chromogenic reaction. 

Negative normal immunoglobulins or isotype controls guard against this source o f 

bias, and such controls were employed in this work. The finding that newborn and 10 

day-old tissue were stained in the same assay but produced a marked difference in 3- 

NT staining o f synovial vessels and cartilage indicates that articular 3-NT indeed 

develops during animal ontogeny. The increasing sensitivity o f  highly specific 

methods o f 3-NT m easurem ent has also been helpful here. Clearly, it would have 

been desirable to com pare the relatively high 3-NT content o f  patella bone and 

cartilage, measured by gas chromatography/ mass spectrometry, to more tissues than 

synovium and liver. This was not possible due to logistic constraints. It is intriguing 

to note how a range o f normal can now be estimated for free 3-NT in plasma o f 

healthy human volunteers, using gas chromatographic tandem mass spectrometry 

(i.e. mean 2.8 nM, range 1.4 -  4.2 nM) (Schwedhelm E, et al., 1999).

However, even w hen the definition o f what should be regarded as normal for healthy 

joint tissue has been verified, the bigger problem is to determine what, if  any, 

difference this makes to the function o f joints. This question requires first the 

identification o f  a m ethod to alter 3-NT in joints both substantially and specifically.
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In principle, 3-NT content could be altered by preventing new  3-NT synthesis, or by 

accelerating the metabolism o f existing 3-NT. Since there was no known mechanism 

to increase metabolism, e.g. by denitration o f 3-NT, the origins o f 3-NT were 

examined. A part from the extreme acidic gastric environment (where dietary NO 2 ’ 

may directly nitrate tyrosine), endogenous NO is usually considered the necessary 

precursor for 3-NT (Halliwell B, 1997). It seemed therefore appropriate to look at 

animal models deficient in the NO-producing enzymes NOS 1, 2, 3 and XOR, but 

these did not show altered 3-NT immunoreactivity in joints compared to their wild- 

type/ normal controls. This was not too surprising, given that phenotypically these 

animal models have not been reported to display any spontaneous jo in t problems 

(Johnson JL, et al., 1974; M cKusick VA, 2005a; M cKusick VA, 2005b; McKusick 

VA, 2005c; M cKusick VA, 2005d). These observations also indicated a degree o f 

redundancy o f  articular 3-NT formation in healthy joints. However, I did not assess 

whether compensatory over-expression o f the remaining NO-generating enzymes 

occurred in these enzyme-deficient animals to investigate the possibility o f 

redundancy further.

While the role o f  enzymes and biological phenom ena may not be obvious during 

healthy normal function, they may become unmasked during environmental or 

experimental stress. For instance, iNOS-deficient mice are not particularly prone to 

develop spontaneous infection, but their inoculation with infective agents reveals a 

disposition to increased m orbidity and mortality (M clnnes IB, et al., 1998).

Several experimental arthritis studies have shown reduced NO production in iNOS- 

deficient animals, although this was not always associated with less inflammation or 

tissue damage (see section 1.3.1 and 1.3.2). While in vitro studies have shown that 

XOR can generate N O  under physiological conditions (Godber BJL, et al., 2000; Li 

H, et al., 2001) there was only indirect evidence that this may be an essential part o f 

the anti-microbial activity in human breast milk in vivo (Stevens CR, et al., 2000). 

At the same time there was good evidence for XOR as a good candidate for 3-NT 

generation in cartilage chondrocytes and synovial vessels: (1) XOR is present in 

human normal and rheum atoid synovium (Allen RE, et al., 1987); (2) XOR localizes 

to the synovial endothelium (Stevens CR, et al., 1991a); (3) XOR can generate both 

NO and 0 2" (Godber BJL, et al., 2000; Li H, et al., 2001; M illar TM, et al., 1998). 

This study has added to this evidence by showing that XOR actvity is present in
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normal hyaline cartilage chondrocytes and in a distribution resembling that o f 3-NT 

immunoreactivity.

Nevertheless, as I have discovered, acute antigen-induced arthritis in Wistar rats with 

substantially inactivated XOR activity did not show the expected suppression o f 

articular inflammation and 3-NT content compared to animals with normal XOR 

activity.

W hat could be the biological role o f 3-NT in normal mammalian jo in t tissue?

Two o f the best documented beneficial functions o f highly reactive NO- 

derived species, such as ONOO', are tissue protection in animal models o f cardiac 

ischemia-reperfusion injury/ pre-conditioning (Laude K, et al., 2002; Lefer DJ, et 

al., 1997; Nossuli TO, et al., 1998) and superior anti-microbial properties compared 

to NO and O2 ' (Brunelli L, et al., 1995; Fang FC, 1997; Umezawa K, et al., 1997). 

The avascular cartilage that depends nutritionally on the synovium has to function at 

low oxygen levels (estimated to be 1 kPa or less) (Silver IA, 1975). Intra-articular 

pressure fluctuations during joint movement (Levick JR, 1979; Nade S and Newbold 

PJ, 1983) may cause cycles o f hypoxia-reoxygenation. M itochondrial proteins from 

rat liver have recently been shown to undergo rapid and selective cycles o f tyrosine 

nitration and denitration synchronous with alternating normoxia and hypoxia/anoxia 

in vitro (Koeck T, et al., 2004). In this study, Koeck et al. identified a number o f 

respiratory chain enzymes undergoing nitration/denitration, and it was suggested that 

protein nitration forms a mechanism to adjust cellular respiration to a variable 

oxygen supply. Consistent with this, my studies did not show 3-NT in cartilage from 

newborn rats, presumably due to their limited weight-bearing jo in t activity. Other 

mechanisms o f chondrocyte protection can be considered. Articular chondrocytes 

have been shown to generate glutathione (GSH) in vitro (Carlo MD and Loeser RF,

2003). A t millimolar concentrations, nitrosylated GSH (GSNO) induces chondrocyte 

apoptosis in vitro, whereas pretreatment with micromolar GSNO can reduce 

chondrocyte death (Turpaev KT, et al., 1997). One could therefore speculate that 

cycles o f hypoxia-reoxygenation in healthy joints induce ONOO' generation in 

articular chondrocytes which may nitrosylate the prevalent anti-oxidant GSH to form 

a slow NO donor. The slow release o f NO would then serve to maintain the
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regulatory and protective functions o f NO, ultimately securing chondrocyte survival 

and function.

Clinical observations and anatomical factors illustrate the need for an effective anti

microbial defence system within joints. Septic involvement is uncom mon in relation 

to the frequency o f  septicaemia. This is surprising considering the heavily 

vascularised nature o f  the normal synovium (Stevens CR, et al., 1991b). Having no 

basement membrane, it could be expected that bacterial spread to the synovial cavity 

is facilitated (M iller ML, 1998). The avascular and relatively hypoxic cartilage 

would then be a vulnerable target to direct microbial attack. Ribosomal RNA of 

Chlamydia trachomatis, suggesting metabolically active organisms, have been found 

in the synovium o f some asymptomatic human subjects (Schumacher HR, et al., 

1999). This indicates that microbial joint invasion may not always be clinically 

apparent and may be more common than generally thought. It would therefore be 

conceivable that 3-NT represents RNS formation to counteract local microbial 

invasion.

How can we explain that, contrary to expectation, XOR protected against tyrosine 

nitration and acute antigen-induced, immune complex-mediated jo in t inflammation?

In the M.tuberculosis-adjuvant arthritis model in Lewis rats our group had 

previously observed a reduction in radiographic erosion and bone demineralization 

scores in the tungsten-treated animals compared to controls, suggesting that XOR 

contributes to jo in t damage in this model (Speden DJ, et al., 2002). Pathogenetic 

differences between animal models may account for these contrasting results (see 

section 1.2.2.3). While acute antigen-induced arthritis is a localised, immune 

complex disease o f a few  days duration (Griffiths RJ, 1992), adjuvant arthritis is a 

destructive, T-cell mediated disease from the outset, affecting prim arily periarticular 

soft tissues and bone (Pearson CM and Wood FD, 1959). Therefore it may be that 

XOR has divergent effects on acute synovial inflammation and chronic 

bone/cartilage destruction in arthritis, i.e. suppressing the former and mediating the 

latter. XOR has indeed been shown by our group to mediate cytokine-induced bone 

loss, as occurs during inflammatory arthritis (Kanczler JM, et al., 2003), but it is not 

known whether this requires NO generation. Such divergent activity for acute jo int 

inflammation and cartilage/bone destruction would not be unique. It is increasingly
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recognised as an integral part o f enzymes, such as iNOS (McCartney-Francis NL, et 

al., 2001; Veihelmann A, et al., 2001; Veihelmann A, et al., 2002) and 

cyclooxgenase-2 (Gilroy DW, et al., 1999), previously thought o f  as exclusively 

adversarial in jo in t disease. This dual role o f enzymes, central to jo in t disease, may 

hold clues to explain the clinical observation o f  progressive jo in t damage despite 

inactive synovial inflammation in rheumatoid arthritis (McQueen FM, et al., 1999; 

Mulherin D, et al., 1996). Alternatively, the enhanced acute inflammatory response 

seen during XOR inhibition with tungsten may in part explain the common, but 

poorly understood, clinical observation o f exacerbation o f  gout when treatment with 

ailopurinol is started (McLean L, 2003).

By what mechanism may XOR limit protein nitration and acute AIA inflammation?

The main catalytic products o f XOR in vitro are NO, 02*’ and uric acid (see section

1.1). Although N O  is generated during AIA, iNOS-derived NO may be protective in 

acute AIA (Veihelmann A, et al., 2001; Veihelmann A, et al., 2002). XOR-derived 

NO could be similarly protective, but the present studies do not indicate that XOR is 

a relevant source o f  NO/RNS in this inflammatory in vivo model. Transfer o f extra

cellular SOD and catalase genes, which will scavenge O 2 *" and hydrogen peroxide, 

has been shown to ameliorate AIA in Wistar rats (Dai L, et al., 2003). This indicates 

that reactive oxygen species contribute pathology in AIA. However, if  XOR were to 

be a relevant source o f O 2 *’ in AIA, one would have expected similar amelioration 

from XOR inactivation by tungsten.

Uric acid, the final oxidation product o f XOR-mediated xanthine metabolism, is a 

potent inhibitor o f  peroxynitrite-induced tyrosine nitration under physiological 

conditions in vitro (W hiteman M and Halliwell B, 1996). Furthermore, endogenously 

generated uric acid was identified as an inhibitor o f  protein tyrosine nitration in rat 

heart homogenates (Teng RJ, et al., 2002). Pharmacological administration o f  uric 

acid has been shown to reduce both tissue damage and 3-NT tissue levels in 

experimental autoimmune encephalitis, an animal model o f multiple sclerosis, 

(Hooper DC, et al., 1998) and zymosan-induced rat knee arthritis (Bezerra MM, et 

al., 2004). However, as previously stated, uric acid does not inhibit all peroxynitrite- 

induced reactions. For instance, peroxynitrite-induced inactivation o f  ai- 

antiproteinase (W hiteman M and Halliwell B, 1996), oxidation o f  sulfhydryl groups
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and lipid peroxidation (Santos CX, et al., 1999) in vitro are not suppressed and may 

even be enhanced by uric acid (Whiteman M, et al., 2002). This suggests that protein 

tyrosine nitration itself could be an important mediator o f  tissue inflammation and 

damage. This may occur via the nitration o f specific tyrosine residues in proteins, 

leading, for example, to the alteration o f enzyme function and cell signalling and/or 

to neo-epitope formation [reviewed in (Ischiropoulos H, 2003)]. One could therefore 

speculate that in the present studies, inhibition o f XOR led to reduced generation o f 

uric acid, w ith an increase o f protein nitration and acute jo in t inflammation as a 

consequence.

Limitations and future work

Studies that need to be addressed in future work arise in part from weaknesses o f the 

present work.

The largely immunohistochemical and descriptive evidence o f 3-NT in 

normal m am m alian jo in t tissue would benefit from further studies o f 3-NT 

measurements in tissues by GC/ MS. There are several rat tissues that would merit 

further investigation in this way: (1) cartilage, bone and synovial rat tissue, harvested 

by m icro-dissection, to determine the relative 3-NT content o f  cartilage vs. bone; (2) 

rat jo in t tissue in comparison to a wider range o f non-articular tissues; (3) jo in t tissue 

from rats at different stages o f development (including newborn rats that did not 

display articular 3-NT immunoreactivity); and (4) rat tissue, retrieved by perfusion- 

fixation vs. immersion-fixation (to assess a potential contribution o f  peri-mortal 

hypoxia/anoxia on 3-NT formation). Clearly more important is the question as to 

whether the present findings apply to human joints. Given the relative difficulty o f 

obtaining normal human jo in t tissue that has not been exposed to prolonged 

hypoxia/anoxia prior to sampling, it would seem more realistic and appropriate to 

obtain more inform ation from animal studies first.

Quantitative 3-NT estimation would also have been desirable for tissue o f the gene 

knockout models for iNOS, eNOS and nNOS, to see whether a partial suppression o f 

3-NT could be detected. In order to identify a more substantial reduction o f articular 

3-NT other strategies are required. For instance, double e,nNOS knockout mice (Wu
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HH, et al., 2000) or tungsten-feeding o f individual NOS knockout models may be 

more likely to achieve 3-NT suppression, provided there is no undue toxicity.

In order to approach the potential biological role o f  3-NT in normal articular 

cartilage more directly, it may be more promising to search for individually nitrated 

proteins in normal rat cartilage by more elaborate electrophoretic and mass- 

spectrometric techniques (e.g. two-dimensional gel electrophoresis and subsequent 

analysis o f  the 3-NT immunospots by matrix-assisted laser desorption ionization/ 

time-of-flight mass spectrometry) (Aulak KS, et al., 2001). It would be o f interest to 

see whether chondrocytes in suspension culture and exposed to cycles o f hypoxia 

and re-oxygenation show similar changes o f denitration and nitration o f  energy and 

anti-oxidant enzymes, as has recently been described for rat liver mitochondria 

(Koeck T, et al., 2004). A similar analysis could prove useful to compare jo int tissue 

from new born with weaning-age rats, to determine in what way protein nitration 

differs. A lthough a soluble factor denitrating protein tyrosine residues has been 

described in homogenates o f rat lung, spleen, brain and heart (Kamisaki Y, et al., 

1998; Kuo WN, et al., 1999), it may be some time before 3-NT formation in 

articular chondrocytes can be specifically reversed to assess its biological role.

The antigen-induced arthritis experiment on tungsten-fed animals did not follow the 

chronic-destructive course, expected from a previous study o f our group (Mapp P.I., 

et al., 1993), w hich may have been due to variations o f the out-bred ‘Bath’ Wistar 

strain. The experimental design and power calculations focussed on chronic 

destructive arthritis as the main end-point, and as a consequence, histological 

material was not available to assess whether acute jo in t inflammation had occurred. 

Clearly, this experim ent needs to be repeated before firm conclusions about the 

protective properties o f  XOR can be made. A repeat experiment that aims to produce 

a chronic destructive arthritis should use inbred Lewis rats as in the original 

description o f  AIA in rats (Griffiths RJ, 1992). It would also be important to 

analyse venous blood or better synovial fluid for XOR activity, nitrite and uric acid 

at key stages o f  the arthritis, to try and elucidate the role o f uric acid in this model.
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In conclusion, this work has produced evidence to suggest that cartilage and 

synovium o f normal joints contain relatively high amounts o f 3-NT/RNS in several 

mammalian species, ensured by multiple enzymatic sources o f NO, indicating a 

protective physiological function. XOR is not a significant source o f RNS during 

antigen-induced arthritis, but it may protect against RNS formation and acute 

antigen-induced jo int inflammation.

132



Appendices

Appendices

Appendix I: Materials and protocols for histological staining 

techniques, including immunohistochemistry and 

immunofluorescence 

Materials & solutions

Consumables were obtained from BDH, Poole, UK, unless otherwise stated.

Aquamount® (R.Lamb, UK),

bovine serum album in (BSA) (Sigma, UK),

eosin,

DPX mounting media,

DAPI (Sigma, UK),

• Stock solution: 10 mg/ml (w/v) in H 2 O/Q, stored light-protected at 4°C, 

formaldehyde,

goat anti-mouse IgG FITC conjugate (Sigma, UK; #F 5262),

Harris’ haem atoxylin, 

industrial m ethylated spirit (IMS),

M ayer’s haem atoxylin,

mouse monoclonal awfr-3-nitrotyrosine antibody, clone 1A6 (TCS Biologicals, UK, 

#05-233),

normal goat serum (Vector Labs, UK),

normal rabbit im m unoglobulin (Vector Labs, UK),

phosphate-buffered saline (PBS, diluted in H 2 O/Q),

rabbit polyclonal tf«fr'-3-nitrotyrosine antibody (TCS Biologicals, UK, #06-284), 

Sigma Fast® Red (Sigma, UK; containing TR/ naphthol AS-M X tablets including 

0.6 mM levamisole to inhibit endogenous alkaline phosphatase activity, and buffer 

tablets, dissolve 1 tablet each in 10 ml H 2 O/Q immediately prior use),

Triton X-100 (Sigma, UK),
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Vectastain® ABC-AP kit, for rabbit primary antibody, # AK-5001 (Vector Labs, 

UK),

Vectashield® anti-fade mounting medium (Vector Labs, UK), 

xylene.

Haematoxvlin-Eosin (H&E) Staining

i) Dewax in xylene for 30-60 sec (x2) (Omit for cryostat sections).

ii) Rehydrate in 70% IMS for 30-60 sec (x2).

iii) Immerse in running water for 3 min.

iv) Stain with H arris’ haematoxylin (1:3 dilution) for 5 min.

v) Immerse in running water for 5 min.

vi) Immerse in acid alcohol (1% concentrated hydrochloric acid (v/v) in 70%

IMS) for 1 min.

vii) Immerse in running water for 5 min.

viii) Stain with eosin for 30 sec.

ix) Immerse in running water for 5 min.

X) Dehydrate in 70% IMS for 30 sec (x2).

xi) Immerse in xylene (x2).

xii) M ount with DPX mounting media and a cover slip.

xiii) Dry at room temperature.

Indirect Immunohistochemical Staining

with example o f staining for 3-NT in brackets:

i) Dewax in xylene for 30-60 sec (x2) (omit for cryostat sections!).

ii) Rehydrate in 70% IMS for 30-60 sec (x2).

iii) Rinse sections in PBS for 5 min (x2).

iv) Apply blocking medium (e.g. 5 mg BSA, 333 pi normal goat serum in 10 ml

PBS) for 20 min at room temperature.

v) Discard excess medium.
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vi) Apply prim ary antibody at a pre-determined optimum dilution in blocking

medium (e.g. rabbit polyclonal anti-3-nitrotyrosine antibody; 1:100) and 

incubate in wet cham ber at 8 °C overnight.

vii) Discard and rinse sections in PBS for 5 min (x2).

viii) Apply biotinylated secondary antibody (e.g. goat anti-rabbit immunoglobulin 

1:100 in PBS) for 30 min at room temperature.

ix) Discard and rinse in PBS for 5 min (x2).

x) Apply avidin-bound enzyme probe (e.g. 2 drops from reagent A (i.e. avidin)

and B (i.e. alkaline phosphatase) in 10 ml PBS from Vectastain® kit, 

prepared 30 min prior use) for exactly 30 min at room temperature.

xi) Discard and rinse in PBS for 5 min (x2).

xii) Apply Sigma Fast ® chromogenic enzyme substrate to cover whole section.

xiii) Observe the developm ent o f  a red reaction product under the microscope and

stop reaction by im m ersion in F^O/dd.

xiv) Counterstain nuclei w ith M ayer’s haematoxylin for 1 min.

xv) Immerse in running water for 5 min.

xvi) M ount w ith Aquamount®  and coverslip.

xvii) Dry at room temperature.

Indirect Immunofluorescence Staining

with example o f staining for 3-NT in brackets:

i) Fix air-dried cryo-stat sections with 4% formaldehyde (v/v) in PBS for 10

min.

ii) Rinse sections in PBS for 5 min (x2).

iii) Permeabilize sections in 0.3% Triton-X (v/v) in PBS for 10 min.

iv) Rinse sections in PBS for 5 min (x2).

v) Apply blocking m edium (e.g. 5 mg BSA, 333 pi normal goat serum in 10 ml 

PBS) for 20 m in at RT.

vi) Discard excess blocking medium.
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vii) Apply prim ary antibody at a pre-determined optimum dilution in blocking 

medium (e.g. mouse monoclonal £W/f-3-nitrotyrosine antibody; 1:200) and 

incubate in wet chamber for 1 hr at RT.

viii) Discard medium and rinse sections in PBS for 5 min (x2).

ix) Apply FITC-conjugated secondary antibody (e.g. goat anti-mouse IgG FITC 

conjugate, 1:150 (v/v) in PBS) and incubate in wet chamber for 30 min at RT 

under light protection.

x) Discard medium and rinse sections in PBS for 5 min (x2).

xi) Counterstain nuclei with DAPI (diluted 1:5000 from stock in PBS) for 5 min 

at RT under continued light protection.

xii) Discard medium and rinse sections in F^O/dd (x2).

xiii) M ount with Vectashield® anti-fade mounting medium and store light- 

protected at 4°C until fluorescence microscopy.
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Appendix II: Materials and protocols for protein quantification 

according to Bradford (Bradford MM, 1976)

Materials & Solutions

dye reagent concentrate (Bio-Rad Labs, Hemel Hempstead, UK),

protein standard (1.4 mg BSA/ml; Bio-Rad Labs, Hemel Hempstead, UK),

96-well m icrotiter plates (Nunc, Fisher Scientific, UK),

microtiter plate reader (Dynex Revelation, US),

GraphPad® software programme (version 3.02, GraphPad Software Incorporated,

US).

Assay
i) Prepare nine serial dilutions (1:2), beginning with 100 pg BSA / ml (from 

BSA standard) in H 2 O/Q, in a 96-micro well plate (80 pi per well) for a 

standard concentration curve.

ii) Dilute test samples 1:100 or higher, if  required, in H 2 O/Q. Set up all

standards and samples in triplicates.

iii) Add 20 pi dye reagent concentrate to each well w ith a multi-pipette.

iv) Read optical density at 595 nm after 5-10 min.

v) Generate a standard curve, which should have an r > 0.95 on linear regression 

in the concentration range, relevant to the test samples. Calculate the assay 

protein concentration o f your samples from the mean absorbance. Consider 

any dilution factor, when calculating the protein concentration o f the 

original sample.
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Appendix III: Materials and protocols for SDS-PAGE 

electrophoresis and Western blot analysis

The method described is that for SDS- PAGE mini slab gels, followed by semi-dry 

protein transfer. Immunodetection uses primary antibody/ secondary antibody-HRP 

interaction, which is demonstrated by chemiluminescence on autoradiography.

Materials & solutions

Consumables were obtained from BDH, Poole, UK, unless otherwise stated.

Acrylamide (Bio-Rad Labs., Hemel Hampstead, UK),

Ammonium persulphate (AMPS; Sigma,UK),

autoradiography film (Hyperfilm™  ECL, Amersham Pharmacia Biotech Ltd, Little 

Chalfont, UK),

Bis (A/W -methylene-bis-acrylamide; Bio-Rad Labs.),

bromophenol blue (Sigma, UK),

butan-2-ol,

ECL™ Western blotting detection reagents (Amersham Pharmacia Biotech Ltd, 

Little Chalfont, UK; #RPN 2106), 

filter paper (Whatman, UK), 

glycine (Sigma, UK),

2-ME (2-mercaptoethanol; Sigma, UK), 

methanol (Sigma, UK),

nitrocellulose blotting paper (Hybond™  ECL, Amersham Pharmacia Biotech, UK), 

rabbit polyclonal a«ft'-3-nitrotyrosine antibody (TCS Biologicals, UK, #06-284), 

nitrotyrosine immunoblotting control (TCS Biologicals, UK, #12-354), 

non-fat, dried milk (Marvel™ , UK),

Ponceau S dye (red, Sigma, UK),

Rainbow™  molecular weight (MW) markers, range 10-250 kDa (Amersham Int., 

Little Chalfont, UK),

SDS (sodium dodecyl sulfate, Sigma, UK), 

sucrose,
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swine anti-rabbit immunoglobulin/horse radish peroxidase (HRP) conjugate (Dako 

Ltd, UK; #P0217),

TEMED (N,N,N’,N  ’-tetramethylenediamine; Sigma, UK),

Tris (tris(hydroxylmethyl)methylamine base; Promega, UK),

Tween-20 (polyoxyethylene (20) sorbitan monolaurate; Sigma, UK)

Hardware:

ATTO mini-PAGE chamber (Genetic Research Instr. Ltd, Rayne Braintree, UK), 

ATTO semi-dry blotting tank (Genetic Research Instr. Ltd, UK),

DC power supply, 

flat tweezers,

flat small plastic containers,

film cassette,

film developing facilities.

Stock solutions

All made in good water (at least hUO/dd) and kept at 4°C, unless otherwise stated.

Gel buffers:

Separating gel buffer: 1.5 M (w/v) Tris, adjusted to pH 8.8 with conc. HC1, 

Stacking gel buffer: 0.5 M (w/v) Tris, HC1, pH 6.8,

30 % acrylamide (29.2 g acrylamide plus 0.8 g Bis to 100 ml H 2 O),

10 % (w/v) AM PS/ H 2 O (prepare fresh!),

water-saturated butan-2-ol (i.e. 50 ml butan-2-ol plus 50 ml H 2 O, mixed well and left 

to settle),

Reducing sample buffer:

2.0 g SDS,

20.0 g sucrose,

5.0 ml 2-ME,

7.5 ml 0.5 M Tris/HCl, pH 6.8,

10 mg bromophenyl blue, 

in 67.5 ml H 2 O;
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Running buffer:

14.4 g glycine,

3.06 g Tris,

10.0 ml 10% (w/v) SDS in H20 , to 1,000 ml H20 ;

Blotting buffer:

200 ml o f 5 x conc. running buffer,

200 ml 100% methanol, to 1,000 ml H20 ,

Ponceau S protein staining solution (0.1% (w/v) in 1 % acetic acid),

TBS (Tris-buffered saline, 50 mM (w/v) Tris and 150 mM (w/v) NaCl in H20 , 

adjusted to pH 7.6 with conc. HC1),

TBS/0.5% Tween-20.

SDS-PAGE electrophoresis

Wear gloves during all procedures. Use acrylamide, Bis, 2-ME and AMPS under 

exhaust vent.

i) Thoroughly clean glass plates with detergent and de-grease with acetone.

ii) Assemble glass plates, rubber gasket and clips and stand plates vertically.

iii) Prepare separating gel:

8%  * 12.5%

30% acrylamide 6.65 ml 10.30 ml

Tris/HCl, pH 8.8 6.25 ml 6.25 ml

10% SDS 0.25 ml 0,25 ml

h 2o 8.00 ml 11.65 ml,

degas for 10 min and then add:

TEMED 15 pi 15 pi

10% AMPS 150 pi 150 pi.
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* used in this thesis, to separate proteins > 100 kDa.

iv) Pipette mixture between plate sandwich to about 2 cm from top avoiding air 

bubbles.

v) Overlay with water-saturated butan-2-ol (to remove gel meniscus) and leave 

at least 30 min to polymerize.

vi) Prepare 4% stacking gel:

30% acrylamide 2.6 ml,

Tris/HCl, pH 6.8 5.0 ml,

10% SDS 0.1m l,

H20  12.2 ml,

degas for 10 min and then add:

TEMED 15 pi,

10% AMPS 150 pi.

vii) Fill gel sandwich to the top with stacking gel and insert combs without 

trapping air and leave to polymerize.

viii) Pour running buffer into ATTO mini-PAGE chamber, carefully remove 

combs and rubber gaskets from gel plates and lower them into the chamber, 

avoiding trapped air bubbles. Fill up central chamber with running buffer.

ix) Prepare Rainbow™  MW markers, immunoblotting standards (i.e. 

nitrotyrosine immunoblotting control and 20 pg sample protein with an equal 

amount o f reducing SDS sample buffer (NB: Total volume per gel well must 

not exceed 25 pi). Seal and place in boiling water bath for 3 min.

x) Add samples and controls into wells immediately and put lid onto ATTO 

chamber.

xi) Connect to DC power source and apply constant current o f  20 mA/gel for 

approx. 2 hr or until the tracking dye bromophenol blue has reached the 

bottom o f the gel).

xii) After turning o ff power and disassembling the plates, the gel is carefully 

removed and marked.
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Western blot analysis

Wear gloves during all procedures.

Protein Transfer

i) Soak electrode pads in blotting buffer.

ii) Place gel carefully in blotting buffer.

iii) Cut gel-size pieces o f nitrocellulose (NC) (1) and filter paper (8) and soak in 

blotting buffer.

iv) Starting from the cathode side, assemble the blotting cassette in the following 

order:

cathode pad 

4 filter paper, 

gel,

NC membrane,

4 filter paper, 

anode pad,

avoiding air bubbles being trapped between layers.

v) Assemble semi-dry blotting apparatus and apply constant current 1 mA/ cm

gel for 2 hr.

vi) Disassemble apparatus and stain NC membrane for protein with Ponceau S 

solution for 1 min.

vii) Scan protein-stained NC and mark M W  markers on membrane with sharp 

pencil.

Immuno-detection

The protocol uses the immuno-detection o f 3-NT as an example.

i) Destain NC membrane in TBS/0.5% Tween-20.

ii) Block non-specific binding with 5% (w/v) dried milk/ TBS/0.5% Tween-20

for for 1 hr..

iii) W ash 10 min x 2 with TBS/0.5% Tween-20.
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iv) Incubate with primary antibody (i.e. rabbit polyclonal a«fr'-3-nitrotyrosine 

antibody, diluted 1:2000 in TBS/0.5% Tween-20) for 2 hr.

v) W ash 10 min x 2 with TBS/0.5% Tween-20.

vi) Incubate with secondary antibody/ HRP conjugate (i.e. swine anti-rabbit 

immunoglobulin/ HRP conjugate, 1:2000 in TBS/0.5% Tween-20) for 2 hr.

vii) W ash 10 min x 2 with TBS/0.5% Tween-20.

viii) M ix equal volume o f ECL™  detection solution 1 and solution 2.

ix) Drain excess TBS/Tween and place NC membrane on cling film with protein- 

side facing up.

x) Apply detection solution to cover the whole o f  the membrane and incubate 

precisely for lm in  at RT.

xi) Drain o ff  excess detection solution and wrap NC membrane in cling film, 

smoothing out any air pockets.

xii) Place the wrapped NC membrane in a film cassette protein-side facing up.

xiii) In the darkroom, place a sheet o f autoradiography film on top o f the wrapped 

NC membrane, close cassette and expose initially for ca. 15 sec.

xiv) Develop film and determine further exposure times based on the ‘signal-to- 

noise’ ratio o f  the initial exposure.
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Appendix IV: Materials and protocols for spectro-fluorimetric 

XOR activity assay (Beckman JS, etal., 1989) 

Material & solutions

Consumables were obtained from BDH, Poole, UK, unless otherwise stated.

Protease inhibitors:

aprotinin (from bovine lung, 7.8 IU/mg; Sigma, # A -l 153,Poole, UK), 

phenylmethylsulfonylfluoride (PMSF; Sigma; FW  174.2).

Reagent solutions:

allopurinol (Sigma, # A-8003; FW 136.1):

• Im M  solution in PBS, freshly prepared from a 10 mM  solution (i.e. 1.36 

mg/ml PBS after first dissolving allopurinol in small aliquot o f 1M NaOH 

first),

isoxanthopterin (IXPt; Sigma, # 1-7388, UK; FW  179.1):

• 10 pM  solution in PBS, freshly prepared from a 10 mM  solution (i.e. 1.79 

mg/ ml PBS after first dissolving IxPt in small aliquot o f 1M NaOH first),

methylene blue (Sigma, UK; FW 373.9):

• 1 mM solution in PBS (i.e. 3.74 mg /1 0  ml PBS), 

pterin (Sigma, # P-1132, UK; FW 163.1)

• 1 mM  solution in PBS, freshly prepared from 10 mM solution (i.e. 1.63 

mg/ml PBS after first dissolving pterin in small aliquot o f  1M NaOH first).

All solutions, except methylene blue, must be freshly prepared daily and kept on ice 

and protected from light until immediate use.

Hardware:

desktop centrifuge (Biofuge Fresco, Heraeus Instruments, Germany), 

quartz glass cuvettes (Fisher Scientific, UK),

polytron blender (Ultra-Turrax, Jenke&Kunkel, IKA Labortechnik, Germany), 

spectro-fluorimeter F4500 (Hitachi, UK).
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Sample preparation
Samples for the pterin assay were harvested from animals without delay in the 

following way:

Plasma: Add blood 10:1 (v/v) to tri-sodium citrate (8mg/ml in H 2 O/Q),

gently mix, centrifuge (4 min at 5,000 rpm) and pipette the 

supernatant plasma off.

Joint Tissue: Add dissected samples to ice-cold proteinase-inhibiting buffer 

(10 pg/ml Aprotinin, Im M  PMSF; in PBS) and homogenise 

with the polytron until easy to pipette. Short bursts o f 

sonication (< 5s, twice) may be used to achieve this.

Centrifuge (10 min at 12,500 rpm, 8 °C) and take o ff clear 

supernatant.

Liver: Prepare as jo in t tissue for comparative studies. Otherwise

dissected samples may be snap-frozen in liquid nitrogen and 

homogenised as above at a later date.

All samples were stored at -70 °C until further processing.

The Pterin Assay

i) Allow the spectro-fluorimeter to equilibrate to 37.0 °C with the following 

settings: X excitation/emission: 345/390 nm; photo-multiplier: 700 - 950 V, 

depending on sensitivity.

ii) Insert a quartz cuvette (cleaned in 1M HCL and rinsed in H 2 O/Q, containing 

a small magnetic flea) into the spectro-fluorimeter (SPF).

iii) Add 920 pi PBS and 10 pi o f the sample and the SPF will start to display 

graphically fluorescence over time.

iv) After stabilization o f background fluorescence, add the following solutions 

sequentially at intervals sufficient to reach a linear or static change o f 

fluorescence over time (1-3 min):
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(final concentrations in parenthesis; total volume 1.0 ml)

• 20 pi Im M  pterin ( 20 pM),

• 10 pi Im M  methylene blue (10 pM),

• 20 pi Im M  allopurinol (2 0  pM),

• 20 pi 10 pM IXPt (200 nM).

v) Terminate the measurement once a static reference standard o f fluorescence 

after adding IXPt has been reached. Generate a report via the software menu, 

showing fluorescence units for specific time points.

vi) Calculate from a mean o f at least triplicate measurements, the enzyme 

activity U as pmol min -1 g -1 tissue protein as follows:

U = { d F x [IXPt] / FIXpt} x 0.001 x Vcl (Vsx T).

dF  is the change o f fluorescence units per minute, [IXPtJ is the final assay 

concentration o f  IXPt in nM, Fixpt is the absolute increase o f  fluorescence units 

produced by the addition o f IXPt, Vc is total assay volume in the cuvette in ml, Vs is 

the sample volume added to the cuvette in ml, and T  is the tissue protein content in g 

per ml sample (as determined by the protein assay according to Bradford, see 

Appendix II).
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Appendix V: Materials and protocols for XOR activity 

histochemistry (Kooij A, eta/., 1991) 

Material & solutions

Consumables were obtained from BDH, Poole, UK, unless otherwise stated.

Except for phosphate buffer and buffered polyvinyl alcohol, which keeps in the

fridge for several weeks, all incubation solutions were prepared daily fresh.

• 0.1 M phosphate buffer (PB, NaH2P 0 4/N a2H P04 in H20 /Q ), 

pH 8.0 and pH 5.3,

• 18 % buffered polyvinyl alcohol (PVA; average FW  70,000-100,000; Sigma, 

# P-1763, Poole, UK) in 0.1 M PB, pH 8.0, dissolved by gentle heating,

• 50 mM tetranitro blue tetrazolium (TNBT, Sigma # T4000;FW  907.6; light- 

sensitive), supended in H20/Q ,

• 18 mM 1-methoxyphenazine methosulfate (MPMS, Sigma #M8640; FW 

336.4; light-sensitive), dissolved in H 20 /Q ,

• 20 mM hypoxanthine (HXT, Sigma #H9377, FW  136.1): dissolve HXT in a 

small aliquot o f 1 M NaOH and dilute in 0.1 M PB, pH 8.0,

• 20 mM allopurinol (Sigma #A8003, FW136.1): dissolve HXT in a small 

aliquot o f  1 M NaOH and dilute in 0.1 M PB, pH 8.0,

• 400 mM sodium azide (Azide; BDH #103692K, FW 65.01; highly toxic!), 

dissolved in. H20 /Q ,

Glycerol jelly.

Protocol

i) Prepare all solutions as above.

ii) Cut 8 pm serial sections on the cryotome and leave at -25 °C without fixation.

iii) Soften buffered PVA by heating to 37 °C and stir in the solutions in the 

following order (final concentrations in parenthesis):

TNBT: 1:10 (5mM)

MPMS: 1:40 (0.45 mM)

HXT: 1:40 (0.5 mM).
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Prepare separate control incubation media:

to determine background 

activity; 

to inhibit XOR; 

to inhibit mitochondrial 

cytochromes as a source o f 

interfering O 2 “ .

iv) Apply incubation medium onto the sections with a wooden applicator and 

incubate in the dark at 37 °C for 30 min.

v) W ash sections twice in 60 °C warm 0.1 mM  PB, pH 5.3 to terminate reaction 

and remove the viscous incubation medium.

vi) W ash in H 20/dd and rinse sections with acetone (to fix sections and remove 

unbound pink monoformazan).

vii) M ount sections with glycerol jelly  (liquified in a microwave) and protects 

from excessive light exposure until microscopy.

a) w ithout HXT,

b) with allopurinol: 1:20 (Im M ),

c) w ith azide 1:40 (10 mM),
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Appendix VI: Materials for experimental animal work

Consumables:

(from Sigma, Poole, UK, unless otherwise stated)

allopurinol (# A-8003),

complete Freund’s adjuvant (CFA; # F-5881),

methylated bovine serum albumin (mBSA; # A-1009),

normal protein rat chow, supplemented with sodium tungstate (0.7 g/kg; ICN,

Basingstoke, UK; # 960350),

standard rat chow (SDS, W itham, UK),

sodium carboxymethylcellulose (medium viscosity; # C-4888),

0.9 % sodium chloride (aqueous, for injection) (0.9 % NaCL; Braun, UK).

Hardware:

digital weighing scales (Sartorius BP 1200; BS Blance Service, Worthing, UK), 

digital calipers (Mitutoyo, Andover, Hampshire, UK).
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Localization of 3-Nitrotyrosine to Rheumatoid and
Normal Synovium
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Patrick J. G allagher,

Objective. To determine the localization of 
3-nitrotyrosine (3-NT), a footprint marker of peroxyni- 
trite (ONOO- ) and other reactive nitrogen species, to 
the inflamed human synovium and to compare this with 
normal synovial and nonsynovial tissue of human and 
animal origin.

Methods. Monoclonal and polyclonal antibodies 
were used to investigate for 3-NT, inducible nitric oxide 
synthase (iNOS), macrophage marker CD68, and the 
vascular smooth muscle marker a-actin by avidin- 
biotin immunocytochemistry.

Results. In the inflamed synovium, 3-NT was 
found in the vascular smooth muscle and macrophages. 
In normal human synovium, 3-NT was present in the 
vascular smooth muscle and some lining cells and was 
not associated with immunoreactivity for iNOS. Simi
larly, 3-NT could be demonstrated in the vascular 
smooth muscle cells of normal rats and iNOS knockout 
mice. It was not present in the vascular smooth muscle 
of healthy, nonsynovial tissue.

Conclusion. The synovial vasculature in histolog
ically normal human and naive rodent synovium was 
alone among the normal tissues studied in exhibiting 
iNOS-independent immunoreactivity for 3-NT. These 
findings suggest a physiologic role for ONOO-  in 
normal synovial vascular function.
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The reaction of nitric oxide (NO) with superoxide 
(0 2‘ - ) leads to the formation of the potent oxidant 
peroxynitrite (ONOO- ). The attack of ONOO- , or its 
decomposition products, acts upon aromatic amino ac
ids, leading to their nitration (1). One such reaction 
product, 3-nitrotyrosine (3-NT), is relatively stable, and 
its presence in tissues is strong evidence for the forma
tion of ONOO- in vivo (2). Investigators at our labora
tory have previously shown that there are increased 
concentrations of nitrite in the serum and synovial fluid 
of patients with rheumatoid arthritis (RA), and, to a 
lesser extent, osteoarthritis (OA), indicating that in
creased synthesis of NO is a feature of rheumatic 
diseases (3). Thus, localization of 3-NT to the synovium 
may give clues to the involvement of NO in the pathol
ogy of synovitis in RA.

Furthermore, 3-NT has also been found in the 
serum and synovial fluid of patients with RA; healthy 
subjects and patients with OA showed no detectable 
3-NT (1). In this study, we investigated the RA syno
vium, by immunohistochemistry, for the presence of 
3-NT residues and also the enzyme inducible NO syn
thase (iNOS), the macrophage marker CD6 8 , and the 
vascular smooth muscle marker a-actin. The pathologic 
RA specimens were compared and contrasted with both 
histologically normal arthroscopic and postmortem sy
novium and normal tissues obtained from other sites in 
the body. Additionally, corresponding tissues from 
healthy rats and iNOS knockout and wild-type mice 
were examined.

MATERIALS AND METHODS

Tissue origin, collection, and preparation. Human 
synovium was obtained at the time of joint surgery from 13 
patients (10 women and 3 men) satisfying the American 
College of Rheumatology (formerly, the American Rheuma
tism Association) revised criteria for RA (4). The mean age 
was 68 years (range 58-84 years), and the mean disease
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duration was 21 years (range 3-43 years). Six of the patients 
were receiving disease-modifying antirheumatic therapy and/or 
prednisolone up to 7.5 mg/day. Control synovia were obtained 
postmortem from subjects with no previous clinical history of 
arthritis (n = 3; all women) and patients undergoing knee 
arthroscopy for traumatic symptoms (n = 7; 3 women). The 
causes of death in the postmortem group were opportunistic 
bronchopneumonia and human immunodeficiency virus ne
phropathy in a 45-year-old patient, cerebral infarction in a 
48-year-old patient, and bronchopneumonia in an 87-year-old 
patient. The arthroscopy group had a mean age of 33 years 
(range 21-55 years). The arthroscopically biopsied knees were 
radiologically normal, and a tourniquet was not used in the 
operative procedure. Arthroscopic findings were as follows: 
meniscal lesions (4 subjects), ruptured posterior cruciate liga
ment (1 subject), and normal (2 subjects). At least 5 sections 
per specimen were examined.

Control normal human nonsynovial tissue was ob
tained from blocks held in the pathology department at the 
Royal London Hospital. The source of the normal specimens 
included skin, colon, small intestine, and kidney (5 specimens 
of each), heart (4 specimens), appendix, liver, spleen, striated 
muscle, tonsil, pituitary, and tongue (3 specimens of each), and 
adrenal and parotid glands (2 specimens of each).

Seven-week-old male Wistar rats (n = 5) and 10-week- 
old male 129SvEv, wild-type (n = 3), and iNOS“/iNOS~ mice 
(n = 2; Bantin & Kingman, Hull, UK) were killed by cervical 
dislocation, followed by dissection and fixation of knee syno
vium (total knee in the case of the mice), skin, small intestine, 
colon, and liver within 5 minutes of death. Twelve-week-old 
male Wistar rats (n = 3) were killed by ether overdose, and 
synovium was fixed by transcardiac perfusion with 500-ml 
formal saline.

Staining procedures. Paraffin-embedded 4-ju,m sec
tions were dewaxed, rehydrated, and washed in phosphate 
buffered saline (PBS). Primary antibodies were then applied at 
predetermined optimal dilutions in PBS. In the case of the 
rabbit primary antibodies (anti-3-NT; TCS Biologicals, Buck
ingham, UK, and anti-iNOS; Alexis, Nottingham, UK), the 
incubation was carried out overnight at 4°C. Mouse primary 
antibodies (a-actin, clone 1A4; Sigma, Poole, UK, and CD68, 
clone PGM1; Dako, Ely, UK) were incubated for 1 hour at 
room temperature. The sections were then washed and a 
biotinylated secondary antibody at a dilution of 1:100 in PBS 
was applied. After washing in PBS, the sections were stained 
using avidin-biotin-peroxidase/alkaline phosphatase (Vector, 
Peterborough, UK) and Sigma Fast to yield a red reaction 
product.

Immunocytochemical controls. Negative controls were 
provided by omission of the primary antibody, incubation of 
the specimens in nonimmune rabbit serum, preincubation of 
the rabbit antibody in 10 mM  3-NT, and incubation of the 
positive control specimens in 100 mM  sodium hydrosulfite 
prior to staining (5). Positive control samples (n = 4) were 
obtained from human coronary artery atheroma, as described 
by Beckman et al (2).

RESULTS
Findings in immunocytochemical controls. No

staining was observed on any of the negative control

slides. The staining obtained for 3-NT in the coronary 
artery atheroma, the positive immunocytochemical 
control, was concordant with that described by Beck
man et al (2). Briefly, positive 3-NT immunoreactivity 
was observed in the vascular smooth muscle and 
diffusely in the fibrous material of the lesion (Figure 
1A). Higher-power examination revealed that the 
foamy macrophages in the lesion showed strong 3-NT 
immunoreactivity (Figure IB).

Specimens from patients with RA. Intimal layer. 
A varying proportion of the lining cells in the RA 
specimens showed 3-NT immunoreactivity (Figure 
1C). Such cells were seen in all the specimens exam
ined. The proportion of positive cells varied according 
to the morphologic appearance of the tissue. Those 
specimens with an active appearance contained —50% 
positive lining cells, while those with a fibrotic, 
“burned out” appearance contained fewer positive 
cells (5-10%). The number of cells staining positively 
for the CD6 8  antigen paralleled those showing posi
tive 3-NT immunoreactivity.

Subintimal layer. In infiltrating cells, 3-NT immu
noreactivity was seen in the perivascular inflammatory 
infiltrates in the subintimal region (Figure ID). These 
cells had the morphologic characteristics of macro
phages and were also CD6 8 + and iNOS positive. Giant 
cells were positive for 3-NT immunoreactivity (Figure 
IE). 3-NT immunoreactivity was also seen in blood 
vessels in the synovium (Figure IF). The staining was 
restricted to vascular smooth muscle cells (VSMCs) and 
was not present in the endothelial cells (Figure 1G). 
Blood vessel 3-NT immunoreactivity was observed in all 
sections examined. In parallel sections, iNOS staining 
was seen in the vascular smooth muscle of those blood 
vessels showing 3-NT immunoreactivity.

Normal human synovial specimens. In both the 
postmortem and arthroscopic biopsy specimens (Figure 
1H), 3-NT immunoreactivity was seen in the vascular 
smooth muscle of blood vessels and in some lining cells. 
The majority of blood vessels showed positive 3-NT immu
noreactivity in VSMC. Inducible NOS protein antigen was 
not detected in these specimens. CD6 8  expression was very 
weak and limited to —30-40% of the normal lining cells. 
The weakness of the staining meant that we were unable to 
determine, with conviction, if 3-NT immunoreactive lining 
cells were also CD6 8 +.

Other normal human tissue specimens. In the 
other normal human specimens examined, staining was 
not seen in vascular smooth muscle. The presence of 
blood vessels was confirmed by positive staining for 
a-actin.
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Figure 1. Im m unohistochem ical staining for 3-nitrotyrosine (3-NT) im m unoreactivity in rheum ato id  and norm al hum an synovium, perfo rm ed  by the 
avidin-biotin  technique with alkaline phosphatase as the signaling enzym e and fast red as the chrom ogen. A  red reaction  product indicates positive 3-N T  
immunoreactivity. T he blue nuclear counterstain  is M ayer’s hematoxylin. A, A therosclerotic plaque, showing positive 3-N T im m unoreactivity (red). 
N eedle-shaped gaps in the  tissue show w here cholesterol crystals have been rem oved by the tissue-processing procedure. B, H igher-pow er view o f the sam e 
section illustrated in A, showing 3-NT im m unoreactivity in the foamy m acrophages associated with the  lesion (arrows). C, Intim al lining layer from  a patien t 
with rheum atoid  arthritis (R A ). Positive 3-N T-im m unoreactive cells (arrows) and negative cells are  p resen t in the sam e field o f view. D, A  perivascular 
accum ulation o f  inflam m atory cells, showing large num bers o f 3 -N T-im m unoreactive cells. E, H igh-pow er view o f m ultinucleated giant cells, showing 
positive 3-N T  im m unoreactivity. F, Blood vessels o f different sizes from  R A  synovium; vascular sm ooth  muscle shows 3-N T im m unoreactivity. G, Positive 
3-N T im m unoreactivity in vascular sm ooth muscle cells o f blood vessels in R A  synovium. N ote that the endothelial cells are not stained (arrow). H, Positive 
3-N T im m unoreactivity in a specim en o f norm al synovium. T he 3-N T im m unoreactivity is localized to  the vascular sm ooth  muscle o f blood vessels (arrows) 
and  to som e intimal cells (thin arrows). (O riginal m agnification X 150 in A and D; X 400 in B, C, F, and H; X 650 in E and G.)

Normal rat specimens. Both immersion- and was not found in the vasculature of o ther  rat tissues
perfusion-fixed rat synovium showed 3-NT im m unore- studied (i.e., skin, intestine, colon, liver, and [from rats
activity, confined to VSMCs (Figures 2A and B), which with perfusion-fixed synovium only] meningeal vessels).
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Figure 2. Im rnunohistochem ical sta in ing  o f  3 -n itro ty rosine  (3-N T ) im m unoreactiv ity  in synovium  
from  W istar rats, 129SvEv w ild-type m ice, and  inducible n itric  oxide syn thase-n eg a tiv e  ( iN O S - )/ 
iN O S -  m ice, p e rfo rm ed  by the av id in -b io tin  tech n iq u e  with alkaline p h o sp h a tase  as the signaling 
enzym e and fast red  as the ch rom ogen . A  red  reac tio n  p roduct ind icates positive 3-N T  
im m unoreactiv ity . T he b lue nuc lear co u n te rsta in  is M ayer’s hem atoxylin . A, Positive 3-N T 
im m unoreactiv ity  in vascu lar sm oo th  m uscle cells (V SM C ) in im m ersion-fixed knee synovium  o f a 
healthy  W istar rat. B, Positive 3-N T  im m unoreactiv ity  in V SM C  in perfusion-fixed knee synovium 
o f a norm al W istar ra t. N o te  the vessel free o f  3 -N T  im m unoreactiv ity  betw een  and  ad jacen t to  2 
o th e r  vessels show ing s tro n g  3-N T  im m unoreactiv ity . C, Positive 3-N T  im m unoreactiv ity  in V SM C 
in synovium  from  a 129SvEv m ouse. D, Positive 3-N T  im m unoreactiv ity  in V SM C  in synovium  from  
a 129SvEv iN O S /iN O S - m ouse. (O rig inal m agnification  X 650.)

Vessels were differentially immunoreactive for 3-NT, 
i.e., adjacent blood vessels could show strong or no 3-NT 
immunoreactivity.

Wild-type and iNOS knockout mouse knee tis
sue. Both the wild-type and iNOS knockout mice d em 
onstrated  3-NT immunoreactivity in VSMCs of the 
synovium (Figures 2C and D). In o ther  tissues from 
wild-type mice (skin, liver, small intestine, colon, and 
heart), 3-NT immunoreactivity was not seen in VSMC.

DISCUSSION

In this report, we describe the distribution of 
3-NT in the RA synovium and also its localization to 
histologically healthy human and naive animal synovium. 
The formation of  3-NT is widely believed to be a result 
of the attack on tyrosine by the strong oxidizing agent 
O N O O ' .  However, while the 0 2 /N O  interaction may

be the dominant mechanism of 3-NT formation, o ther  
pathways have been proposed. Therefore, it is safer to 
conclude that the formation of 3-NT is a result of  the 
generation  of reactive nitrogen species ra the r  than 
O N O O  specifically (6). In positive control coronary 
artery atherom a, the staining pa tte rn  seen was concor
dant with the findings of  Beckman et al (2). In the 
synovial specimens from patients with RA, the staining 
for 3-NT was predominantly  in macrophages, giant cells 
(including some with a foamy appearance), and in the 
vascular smooth muscle of  the larger, noncapillary blood 
vessels.

As previously shown by Grabowski et al (7), 
macrophages stained positively for CD68 and iNOS. The 
presence of 3-NT in the macrophages of  the RA syno
vium is consistent with previous reports that activated 
rat m acrophages can produce O N O O  (8). Experim en
tal in vitro studies show that more 0 7  is detec ted  when
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iNOS is inhibited and, conversely, superoxide dismutase 
(SOD) increases the measurable NO release from macro
phages. The generation of ONOO- in macrophages is 
thus probably via NO and 0 2‘ -  production from iNOS 
and NADPH oxidases, respectively.

In the inflamed synovium, 3-NT was localized to 
the vascular smooth muscle but not to endothelial cells, 
and corresponded with iNOS immunoreactivity. Expres
sion of iNOS in vascular smooth muscle under patho
logic circumstances has previously been demonstrated in 
chronic inflammation and septic shock. Among the 
functional consequences of ONOO- on rodent vascular 
smooth muscle under experimental in vitro conditions 
are cellular energetic and contractile failure, apparently 
due to impaired mitochondrial respiration (9). While 
chronically inflamed rat joints display much-reduced 
vasomotor responses (10), this has yet to be confirmed in 
human arthritis, and the relation to ONOO-  remains to 
be established. The formation of 3-NT in the RA joint 
may be enhanced by the prevailing acidotic and hyper- 
capnic conditions, both of which have been shown to 
favor the formation of 3-NT in vitro (11).

The finding of 3-NT immunoreactivity in VSMC 
of apparently normal human synovium was surprising. 
To our knowledge, NT immunoreactivity in nondiseased 
tissue has been previously identified only in human 
intestinal and bladder epithelium (5). We have consid
ered the possibility that this is due to pathologic or 
postmortem changes. Past synovial microtrauma in the 
arthroscopic synovial specimens may account for our 
findings, but the absence of such lesions found on 
microscopic examination would provide evidence 
against this. Furthermore, care was taken to keep 
ischemic/hypoxic stress to a minimum before and during 
arthroscopic synovial sampling by not using a tourniquet 
for the procedure.

Due to obvious problems in obtaining synovial 
tissue from healthy human subjects, we further investi
gated 3-NT immunoreactivity in naive rodents. In the 
rats, we compared tissue obtained by perfusion with that 
obtained by immersion fixation, the mode used on 
human specimens. We observed the same tissue distri
bution of 3-NT immunoreactivity by both fixation tech
niques, and this was identical to the findings in normal 
human tissue specimens. Furthermore, as in human 
specimens, 3-NT immunoreactivity was absent in rat 
VSMC of nonsynovial origin (e.g., vessels in the intes
tine, colon, and meninges), irrespective of fixation 
method. In the absence of iNOS protein, 3-NT immu
noreactivity could still be demonstrated in the normal 
human synovial specimens. To exclude the possibility of

previous iNOS expression as the source of 3-NT in 
synovial vessels, we examined tissue from immersion- 
fixed wild-type and iNOS knockout mice and found 
3-NT present in the synovial vascular smooth muscle in 
both strains. Taken together, these findings indicate that 
pathologic and/or early postmortem changes are unlikely 
causes for our findings.

We further considered the possibility of tyrosine 
nitration, resulting from endogenous peroxidase activity 
in the presence of nitrite (6). However, in animal as well 
as normal human synovium, we observed no specific 
histochemical peroxidase activity, except in erythrocytes 
(results not shown). Taken together with the low amount 
of nitrite expected to be present in normal synovium (3), 
this points once more to an ONOO- mediated mecha
nism of tyrosine nitration.

In the absence of iNOS protein in normal syno
vium, an alternative to NO (to explain the production of 
ONOO- ) is required. Obvious candidates are the con
stitutive forms of NOS, but it is unclear whether their 
lower magnitude of NO production is sufficient to lead 
to ONOO- formation. We have previously described 
that xanthine oxidase (XOD) produces not only Oz’ - , 
but also NO via reduction of nitrite in vitro under 
hypoxic conditions (12,13). Recently, we have shown 
that XOD is also capable of producing NO under 
physiologic oxygen tension in the presence of SOD (14), 
implying the formation of ONOO-  in the absence of 
enhanced dismutation of 0 2' - . Whether XOD or a 
constitutive NOS is the source of ONOO- in normal 
synovium requires further investigation.

We are unaware of a physiologic role for 
ONOO- , with the possible exception of an antimicrobial 
function in human breast milk, as we have recently 
illustrated (15). A similar host defense role of ONOO- 
may underlie its presence in normal human synovium. 
The exclusiveness of 3-NT in vascular smooth muscle of 
the synovium, compared with various other tissues, 
suggests a tissue-specific, physiologic role of ONOO- 
that requires further elucidation.

In conclusion, 3-NT has been localized to macro
phages and giant cells in the rheumatoid synovium, an 
observation in common with other inflammatory condi
tions. In addition, we have demonstrated the presence of 
iNOS-independent 3-NT in the inflamed and normal 
vasculature of human and rodent synovium. The syno
vial vascular smooth muscle 3-NT immunoreactivity is 
peculiar to this tissue and we did not see it in other 
normal tissues examined. Therefore, we propose a phys
iologic role for ONOO- in modifying synovial vascular 
function.
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Inactivation of xanthine oxidoreductase is associated with 
increased joint swelling and nitrotyrosine formation in acute 

antigen-induced arthritis
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2 Royal National Hospital for Rheumatic Diseases, Bath; JCentre for Hepatology, Department 
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Abstract
Objective

Arthritis is associated with increased articular formation o f  nitrotyrosine, which may contribute to injury. Nitrotyro
sine is fo rm ed  by nitration o f  tyrosine by reactive nitrogen species such as peroxynitrite, the form ation  o f which may 

be enhanced by xanthine oxidoreductase (XOR), since it can generate nitric oxide from  nitrite/nitrate, and superoxide 
during xanthine metabolism. We hypothesized that inactivation o f  XOR would protect against antigen-induced

arthritis (AlA) and decrease nitrotyrosine formation.

Methods
AIA was induced with m ethylated bovine serum albumin (mBSA) in three groups o f  Wistar rats: animals fe d  on ( I) 
tungsten-enriched chow (0.7 g/kg) (TG), which inactivates XOR, (2) standard chow (SG), and (3) rats treated with 

allopurinol (50 m g/kg/day; p .o j  (AG). Nitrotyrosine in patella-synovium  was quantified by mass spectrometry three
weeks after intra-articular f i .a .) antigen injection.

Results
Treatment with tungsten, but not allopurinol, suppressed plasma and articular XOR activity at < 0.9% o f  normal 

levels. XOR inactivation was associated with increased knee swelling 24-48 hrs post i.a. mBSA. compared with con
trols (mean increase ± S E M  o f  knee diam eter from  baseline o f  3.3 ±0.5, 2.0 ± 0 .3  and 1.9 ± 0 .2  mm in TG, SG and 
AG (n = 14 each group), respectively; p  < 0.05, TG vs SG, ANOVA). Mean ratio o f  articular nitrotyrosine-tyrosine 
( ±SEM)  was increased in the XOR-inactivated group, compared with controls: 12.3 ± 0 .7  9.6 ± 0 .8  and 10.4 ±0.5  

pg/pg in TG, SG and AG, respectively; p  < 0.05, TG vs SG.

Conclusion
Contrary to expectation, XO R inactivation was associated with increased jo in t swelling and articular tyrosine 

nitration in acute AIA, suggesting a novel, protective role fo r  XOR in inflammatory arthritis.

Key words
X an th in e ox id o red u cta se , arthritis, reactive nitrogen sp ec ie s , n itrotyrosine, tungsten, a llopurinol.
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Introduction
Both nitric oxide (NO) and superoxide 
( 0 2’~) are generated in increased am 
ounts in inflamed joints (1-3), but their 
precise role in pathogenesis remains 
unclear. NO and O,*' react rapidly with 
each other in vitro to form peroxynitrite 
(O N O O ') (4), a highly reactive nitrat
ing and oxidizing agent. O N O O ' in
duced modification o f proteins, DNA 
and other biomolecules can lead to a l
tered cell function, cell necrosis and 
apoptosis (5). The nitration o f tyrosine 
to the relatively stable 3-nitrotyrosine 
(3-NT) is one consequence o f O N O O ' 
exposure in vitro (6-8). O ther reactive 
nitrogen species (RNS) can also cause 
nitration of tyrosine in a peroxidase- 
dependent manner (9-11), but which of 
these pathways predominate in vivo is 
unknown. 3-NT is therefore best con
sidered a marker of RNS formation in 
general (12). ONOO" can induce ex
pression of cyclooxygenase 2 (COX2) 
in rheum atoid synoviocytes in vitro 
(13). We and others described the im- 
munolocalisation of 3-NT in the rheu
matoid synovium (14,15), suggesting 
that these reactions occur in vivo and 
contribute to disease pathology.
3-NT formation originates from endo
genous NO, generated from arginine by 
one of the three isoforms o f NO syn
thase (NOS). However, we and others 
have previously shown that xanthine 
oxidoreductase (XOR) can also gener
ate NO (16,17) in vitro. XOR is ex
pressed in the synovium (18) and best 
known for its house-keeping role in 
xanthine oxidation to yield uric acid 
and 0,*~. During xanthine oxidation 
XOR can also reduce nitrite to NO, 
suggesting that XOR may be a peroxy
nitrite synthase (19, 20).
We aimed to test the hypothesis that 
suppression of XOR activity in inflam
ed joints decreases nitration o f proteins 
and joint inflammation. This has poten
tially important implications, since if 
true, XOR inhibitors, such as allopuri
nol, m a y b e  useful therapeutically in 
inflammatory arthritis per se. In con
trast to our expectation we observed 
that XOR inactivation enhances acute 
experimental arthritis and nitration of 
articular proteins.

Materials and methods
Chemicals were obtained from (sigma, 
Poole, UK, unless stated otherwise and 
all concentrations are final.

Animals
M ale out-bred Wistar rats of weaning 
age (Charles River, UK) were housed 
under standard conditions for one week 
before experimental interventions be
gan. Procedures complied with the Ani
mals (Scientific Procedures) Act 1986, 
UK. All invasive interventions animals 
were performed under 4% isoflurane/ 
oxygen (2 1/min) anaesthesia.

Pharmacological inhibition o f  XOR  
and induction o f  antigen-induced  
arthritis (AIA)
Three groups o f animals were studied 
(Fig. 1): (1) rats treated with tungsten- 
enriched chow to inactivate XOR by 
replacing active-centre molybdenum 
with tungsten (21) ( ‘Tungsten D iet’; 
TG); (2) animals maintained on stan
dard diet ( ‘Standard D iet’; SG) and (3) 
mBSA-immunised animals on standard 
chow, treated with the XOR-inhibitor 
allopurinol ( ‘+A llopurinor; AG). AIA 
was induced as previously described 
(22). Briefly, from experimental Day 0 
(Fig. 1) animals (mean weight ±SEM  
132±2 gm) were fed for three weeks on 
tungsten-enriched (sodium  tungstate
0.7 g/kg chow; ICN, Basingstoke, UK) 
or standard chow (SG; SDS. Witham. 
UK) before subcutaneous (s.c.) immu
nisation with 500 jig mBSA [as 100 pi 
o f 10 mg mBSA/ml 0.9% saline, mixed 
1:1 (v/v) with complete Freund’s adju
vant (CFA)| on Day 21. Three control 
animals in each diet group were inject
ed with saline/CFA. This immunisation 
was repeated one week later (Day 28). 
One day before intra-articular (i.a.) an
tigen challenge, a subgroup of the stan
dard diet group was started on allopuri
nol (50 mg/kg/day, p.o., by gavage). 
The following day (Day 42). all ani
mals were injected with 500 pg mBSA 
(as 100 pi o f 5m g/m l sterile 0.9% 
saline) and vehicle via i.a. injection in
to the right and left knee, respectively. 
Three weeks later (Day 63) [when a 
previous study had shown destructive 
arthritis to be present (22)J all animals
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D ay 0: S ta r t

Day 20

mBSA + CFA
n*17

CFA
n=3 jD ay 21: 1. Im m u n is a t io n

mBSA ♦ CFA 
n=17

D ay 28: 2. Im m u n is a t io n

Day 41

Standard Diet 
(SG ) n - U

t Allopurinol 
(AG )n=14

D ay 42 : A r th r it is  In d u c t  ion

CFA
n=3

S ta n d a rd  Diet 
n=37

T u n g s te n  Diet 
n=23

Tungsien Diet 
(TG) n=14

mBSA + CFA
n=31

mBSA + CFA
n=31

mBSA (vehicle) in tra -a rtic . Right (left) knee

O u tco m e a s s e s s m e n ts :  
i. knee  d ia m e te r  (all)

D ay 6 3: E n d  o f  e x p e r i m e n t  at Qay 5 3 .

if. kn ee  rad io lo g y  a n d  h is to lo g y  (all, e x c e p t i h o s e  In iii.) 
iil. n itro ty ro s in e / ty ro s in e  ra tio s  (n=6, from  e a c h  T G .S G  an d  AG)

Fig. 1. Experim en tal design  o f  the an tigen-induced  arthritis, f ,  an im als sacrificed for m easurem ent o f  
XO ac tiv ity ; m B SA . m ethy la ted  bov ine serum  album in : CFA, com plete F reund 's  ad juvant.

were killed and blood, knee joints or 
dissected patella with adjacent synovi
um taken for further analysis.

CIin ica I assessmenr 
Animals were weighed weekly. Medio- 
latcral knee diam eters were measured 
on non-anacsthctised anim als with dig
ital callipers (M itutoyo, Andover, UK) 
before, 24, 48 hours, 5, 7 and 14 days 
after i.a. m BSA/vehicle injection. M ea
surements were undertaken blinded to 
the intervention group, and recorded to 
the nearest 0 .1 nun.

Delayed-type hypersensitivity (DTH)  
testing
One week after the second mBSA im
munisation (Day 35) . a subgroup of 
animals (n = 5, from each diet group) 
were injected intra-derm ally into the 
right and left ear with 2.5 pg  mBSA (as 
50 pi o f 0.5 mg/ml 0.9%  saline) and 
vehicle, respectively. Local skin reac
tion was assessed 48 hours later for 
redness and induration.

XOR activity assay
XOR activity was measured in ciliated 
plasma and mechanical homogenates 
of snap-frozen patella-synovium  (in 
phosphate-buffered saline (PBS) with 
10 pg/m l aprotinin and 0.5 nM phenyl- 
m ethylsulfonylfluoride). The analysis

used a sensitive fluorospectrom etric 
method (23), based on the XOR-medi- 
ated oxidation of pterin to isoxanthop
terin. Briefly, pterin (20 pM ) was add
ed to sample of pre-determined opti
mum dilution in PBS and increase of 
fluorescence (^. excitation/ emission = 
345/390 nm) measured (F4500. Hita
chi. UK). Addition of allopurinol (10 
pM ) verified the enzymatic specificity 
o f the reaction and isoxanthopterin  
(200 nM) provided a fluorescent stan
dard. Samples were measured in tripli
cate and XOR activity was calculated 
and expressed as nmol per min per g 
sample tissue protein, with protein con
centration determ ined according to 
Bradford (24).

Quantification o f  nitrotyrosine 
N itrotyrosine and tyrosine content was 
measured in patella-synovium by gas 
chrom atography/m ass spectrom etry 
(GCMS), as previously described (25). 
Briefly, snap-frozen tissues w’ere m ech
anically homogenised in PBS and chlo- 
roform-methanol (2:1) on ice. Centrifu
gation at 9000 g for 15 min yielded a 
protein precipitate middle layer, which 
was lyophilized. To avoid artefactual 
tyrosine ^nitration associated w ith 'the  
comm only employed acidic hydrolysis, 
1-1.5 mg o f protein was then hydro
lyzed in 4 M sodium  hydroxide at

120°C for 16 hrs containing 20 ng 1 Cv- 
nitrotyrosine and 10 pg D4-tyrosine as 
stable isotopic interval standards. Fol
lowing solid phase extraction, nitroty- 
rosine and tyrosine was quantified by 
gas chromatography/negative ion che
m ical ionization mass spectrom etry. 
Results were expressed as nitrotyro- 
sine/tyrosine [pg/pg|.

Radiographic and histological analysis 
Knee joints were x-rayed in two planes 
(Faxitron, Field Emission Ltd., Lon
don, UK) and coded radiographs evalu
ated independently by two experienced 
investigators (26). Knees were then 
decalcified, dehydrated and embedded 
in paraffin. Sagittal sections, stained 
with haematoxylin-eosin, were exam 
ined for inflammatory and destructive 
changes (27).

Statistical methods
Where appropriate, mean values were 
analysed by unpaired t-test, or one-way 
analysis o f variance (ANOVA) with 
Dunnett's post-test.

Results
A nim als o f al! three groups thrived 
well and there were no abnormal ma
croscopic findings at post mortem  
exam ination. Three of 5 anim als in 
each diet group demonstrated a posi
tive DTH reaction to mBSA.

Xanthine oxidase activity 
The activity o f xanthine oxidase in 
plasm a and jo in t hom ogenates are 
shown in Table 1. Mean XO activity in 
plasma or joint homogenates of tung
sten-treated (TG) animals was < 0.9% 
o f that of the control group (SG). In the 
allopurinol-treated (AG) animals mean 
XO activity in plasma was decreased to 
7%, but XOR activity was not signifi
cantly different in the patella-synovium 
compared to controls.

Joint swelling
Mean baseline diam eters ± SEM of 
mBSA-injected knee joints were com 
parable in the TG. SG and AG groups 
at 12.3 ± 0.2, 12.5 ± 0.2 and 12.5 ± 0.1 
mm, respectively. Twenty-four and 48 
hours after i.a. mBSA-injeetion, knee 
diam eters showed a greater increase
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Table 1. XO activity in rat plasma, and patella-synovium homogenates.

Tungsten  Diet S tandard  D iet A llopurinol

Plasm a
D ay 20 0.3  ±  0 .4 172 ±  16 NA
D ay 41 ND 219 ±  5 NA
D ay 63 N D 162 ±  I t  » 12 ±  2

P atella -Synnvium
D ay 63 1.1 ±  3.1 127 ±  22 ** 160 ± 17

V alues are  m ean  X O  ac tiv ity  ( ±  S E M ). as nm ol x m in -1 x g tissue  p ro te in -1. m easured  by spectro-flu- 
orim etric  p terin  assay. S am ple  sizes w ere n -  3 an im als for each group, excep t for p lasm a o f  day 21 {n 
=  6). Left and right p a te lla-synov ium  sam ples w ere analysed  separately. Each sam ple w as m easured  in 
trip licate . E xperim enta l days  w ere: D ay 20, after 3 w eeks on experim en tal d ie t and  p rio r to  s.c. m BSA  
im m unisation : D ay 41 , p rio r to  i.a. m B SA  injection; D ay 63, three w eeks after i.a. in jection . N D , not 
detec tab le ; N A , not app licab le . * p <  0.001 vs T ungsten  D iet (unpaired  t-test); ! p < 0.001 vs A llopuri
nol (unpaired  t-test) a n d 1' p <  0.001 vs Tungsten D iet (A NO V A  w ith D unnctt’s p o s t- test).

0)
0)
Era

Oo
c

- • — Tungsten (n=14)
- o — Standard (n = 1 4 )
—'•— Allopurinol (n~14)
—o—- CFA-immunised (TG) (n=3) 

—»■••• CFA-immunised (SG) (n=3)

Day after i.a. mBSA injection

Fig. 2. M ean change o f  tran sverse  d iam eter o f  m B S A -in jected  knees from baseline  (i.e. p rior to  i.a. 
m B SA ) o ver tim e. B ars rep resen t SEM . * p < 0.05 vs . s tandard  diet g roup  (A NO V A  w ith D unnett’s 
post-test).

15 -

a  1 0 -

Tungsten Standard Allopurinol

Fig. 3 . N itro ty ro sin e -  
tyrosine ratios o f  patella- 
s y n o v iu m  h o m o g e n a tes  
(3 w eeks post i.a. m BSA  
in jection). B ars represent 
m ean  values. * p < 0.05 
fo r d iffe re n ce  o f  m eans 
b e tw e en  tu n g s te n - vs. 
s ta n d a rd -d ie t g ro u p  
(A N O V A  w ith  D unnett’s 
post-test).

from baseline in the tungsten- compar
ed with the standard-diet group (n = 14, 
each group): mean difference (95%- 
confidence interval) were 1.3 (0.3, 2.4) 
mm and 1.2 (0.2, 2.1) mm. respectively 
(p<0.05; ANOVA with D unnett’s post- 
test) (Fig. 2). There was no significant 
increase in knee diam eter in the CFA- 
immunised animals.

Nitrotyrosine/tyrosine content 
Mean nitrotyrosine-tyrosine ratios (± 
SEM) of right patella-synovium homo
genates o f day 21 were significantly 
higher at 12.3 ± 0.7 pg/pg in the tung
sten group (n = 6) compared with con
trols (9.6 ± 0.8 pg/pg) (n = 6), and were 
unchanged at 10.4 ± 0.5 pg/pg in the 
allopurinol group (n = 3) (p < 0.05, TG

vs SG; ANOVA with D unnett’s post- 
test) (Fig. 3).

Radiographic and histological 
analysis
Radiological and histological analysis 
did not show chronic inflam m atory 
and/or destructive joint disease in any 
group (/i = 8. for each TG, SG and AG).

Discussion
We hypothesized that XOR contributes 
to the formation of RNS and nitration 
of articular proteins and that inhibition 
of XOR would ameliorate the course of 
experimental arthritis. In contrast, inac
tivation o f articular XOR activity by 
tungsten was associated with a greater 
increase of mean knee swelling during 
acute antigen-induced arthritis (AIA) 
com pared to standard-fed controls. 
Furthermore, tungsten-treated animals 
showed increased nitrotyrosine forma
tion in arthritic joints compared with 
controls, as measured by a highly sen
sitive gas chromatographic-mass spec- 
trometric method. This suggests that 
XOR inactivation enhanced joint in
flammation early during the course of 
AIA. Although the effect is relatively 
modest, this is the first study to indicate 
that XOR may have a protective effect 
in immune complex-mediated disease, 
and supplements our previous observa
tion that suggests a beneficial role for 
XOR in innate immune responses (19). 
We are unaw are of o ther published 
studies of tungsten-induced XOR inac
tivation in AIA. Using dietary tungsten 
in adjuvant arthritis in Lewis rats, our 
group has previously observed a reduc
tion in radiographic erosion and bone 
dem ineralization scores in tungsten- 
treated animals compared to controls, 
suggesting that XOR contributes to 
joint damage (28). Pathogenetic differ
ences between animal models may ac
count for these contrasting results. 
Acute AIA is a localised, non-destruc
tive, immune complex disease of a few 
days duration (29). T-cell hypersensi
tivity and intra-articular antigen-reten- 
tion are required for a chronic, destruc
tive arthritis to develop. In contrast, ad
juvant arthritis is a destructive, T-cell 
mediated disease from the outset (30). 
XOR could thus have divergent effects
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on acute synovial inflam m ation and 
chronic destructive arthritis. Indeed, 
distinct anti-inflam m atory activity is 
increasingly recognised as an integral 
part o f classical pro-inflamm atory en
zym es. such as iNOS (3 1 ,3 2 ) and 
COX2 (33) and may hold clues to ex
plain the progression o f joint damage 
despite inactive synovial inflammation 
seen in rheumatoid arthritis (RA) (34, 
35). Our findings may also partly ex
plain why acute gout arthritis is exacer
bated by XOR inhibition with allopuri
nol.
How may XOR limit protein nitration 
and acute jo in t in flam m ation?  Uric 
acid, the final oxidation product of 
XOR-medialed purine metabolism, is a 
potent inhibitor o f peroxynitrite-in- 
duced tyrosine nitration under physio
logical conditions in vitro (36). Endo
genous uric acid inhibits protein tyro
sine nitration in rat heart homogenates 
(37). A dm inistration o f uric acid re
duced tissue damage in experimental 
autoim m une encephalitis, an animal 
model of multiple sclerosis, (38) and 
zym osan-induced rat knee arthritis 
(39). Since oxidative effects of ONOO" 
seem unaffected (36) or even enhanced 
by uric acid (40), it is suggested that 
protein tyrosine nitration itself is an 
important mediator o f tissue inflamma
tion and dam age (4 1).
This study hits limitations. Although in
creased 3-N T concentration is good 
indirect evidence that increased inflam
mation occurred, we lack histological 
data o f enhanced acute inflammation in 
the XOR-inactivatcd animals. This is 
due to the fact that study design and 
power considerations were aimed at the 
detection o f a difference in the devel
opment of chronic destructive arthritis, 
as the outcom e most relevant in com
parison to RA. Although the majority 
of animals developed dclayed-type hy
persensitivity to mBSA, they failed to 
progress to a chronic destructive arthri
tis, contrasting our earlier experience 
with the same AIA induction protocol 
(22). Subtle strain variation in our out- 
bred Wistar rats may account for this 
observation. Secondly, tungsten is not a 
specific XOR inhibitor, but will also 
inhibit the two other molybdenum-en- 
zymes known to exist in rat and man,

i.e. sulfite oxidase (SO) and aldehyde 
oxidase (AO) (42). To our knowledge 
SO and AO have no reported relevance 
to inflammatory arthritis. Finally, sam 
ple sizes, especially for 3-NT measure
ments in the allopurinol group, were 
small. This was partly due to sample 
size limits o f the GCM S assay and, 
based on the better XOR inactivation 
by tungsten, samples were prioritized 
accordingly.
In conclusion, we have shown that in
activation of XOR by dietary tungsten 
was associated with increased acute 
joint swelling and increased nitration 
of articular proteins, indicating increas
ed jo in t inflam m ation during acute 
antigen-induced arthritis. This suggests 
that XOR may have a hovel protective 
role in im m une com plex-m ediated  
arthritis. Further studies are required to 
confirm these findings histologically 
and clarify the relevance of uric acid 
and allopurinol in this model.
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