
        

University of Bath

PHD

The Bernstein basis in set-theoretic geometric modelling

Berchtold, J.

Award date:
2000

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019



THE BERNSTEIN BASIS IN  
SET-THEORETIC GEOMETRIC 

MODELLING

Submitted by J. Berchtold 

for the degree of 

Doctor of Philosophy 

of the University of Bath 

2000

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. 
This copy of the thesis has been supplied on condition that anyone who consults 
it is understood to recognise that its copyright rests with its author and no 
information derived from it may be published without the prior written consent 
of the author.

This thesis may be made available for consultation within the University library 
and may be photocopied or lent to other libraries for the purposes of consultation.



UMI Number: U601561

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U601561
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346





Abstract

The main aim of computer-aided design and computer-aided geometric design 
is to provide techniques to model and to represent shapes. Not all the shapes of 
our surroundings can be described by using simple geometric shapes. Therefore 
free-form surfaces such as Bezier, B-spline, or NURBS surfaces were introduced 
which allow more complicated modelling.

This thesis deals with the use of the Bernstein basis in set-theoretic geometric 
modelling, and can be split into two main topics. At first the inclusion of Bezier, 
B-spline, and NURBS surfaces is investigated. Two different approaches are 
given. The first one determines an equivalent implicit equation for these surfaces 
by using the resultant method. The second approach shows then how the para
metric definition of these surfaces can be used directly. These two approaches 
are used to include free-form surfaces into the set-theoretic geometric modeller 
sVLls.

The second part of the research deals with the representation of geometric shapes 
in terms of the implicit Bernstein basis. This form has some advantages which 
make its use in geometric modelling advisable. The behaviour of the interval 
arithmetic technique used for the location of curves or surfaces is given when 
the method is applied to Bernstein-form polynomials. The results of these ex
periments also hold when the Bernstein basis is included as a new primitive 
representation into the set-theoretic geometric modeller sVLls.
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Chapter 1

Introduction

In recent years the use of free-form surfaces such as Bezier, B-spline or NURBS 
surfaces in computer-aided design (CAD) and computer-aided geometric design 
(CAGD) has become very popular. These surfaces allow us to model and to 
define curved shapes which exist in our surroundings. If, for example, the field 
of engineering is chosen, objects such as aerofoils, car bodies and ships’ hulls are 
very complicated to describe. However, the use of this more recent modelling 
technique allows us to represent these objects or parts of them. They then can 
be combined for building complicated shapes.

Since free-form surfaces are defined by parametric equations they are included 
in most geometric modellers based on the boundary representation. To keep up- 
to-date with these developments it is necessary also to provide the modelling of 
free-form surfaces in geometric modellers based on constructive solid geometry.

In general it can be said that a geometric modeller should meet necessary re
quirements such as robustness, numerical stability, and accuracy. These problems 
appear independently from the geometric representation chosen; both boundary 
representation and constructive solid geometry have their strengths and weak
nesses. With continuing developments in computer science and mathematics the 
handling of these problems has become an expanding subject.

In this thesis the following two points are addressed. Firstly, results of inves
tigations about parametric free-form surfaces in set-theoretic geometric mod
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elling are given. Secondly, research on the behaviour and the inclusion of im
plicit Bernstein-form polynomials in set-theoretic geometric modelling is shown. 
Research has shown that the Bernstein-form polynomials are more numerically 
stable and robust than their equivalent power-form ones.

In the following list the parts are given which will be studied and described in 
this thesis. They provide answers to the two queries given above and as far as 
the author is aware they have not been done anywhere before:

•  Calculation of an implicit equation for Bezier surfaces (as opposed to para
metric curves and surfaces, and Bezier curves) by using resultants generated 
in terms of the Bezier control points.

•  Inclusion of these surfaces into a set-theoretic geometric modelling system.

•  Applying Kapur’s method for the implicitization of Bezier surfaces for which 
the resultant determined is singular.

•  Inclusion of ordinary parametric surfaces into a set-theoretic geometric 
modelling system.

•  Introduction of an arithmetic for multivariate Bernstein-form polynomials.

•  Creating a set-theoretic geometric modelling system which also uses Bern
stein-form primitives.

For the tests and experiments in this thesis the set-theoretic geometric modelling 
system sVLls was used [11].

1.1 M athematical foundations

In this section mathematical terms are given which are needed to understand 
the following chapters. It is possible that other definitions or terms are used 
in the literature. However for this thesis these terms are consistent and their 
meaning is equivalent to the one given in this section (see also Bronstein and 
Semendjajew [14]).
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1.1.1 Boolean operations

Mathematically a set describes a collection of objects. The objects x  are called 
the elements of the set S  and following notation is used:

x e S.

The empty set is given by 0 and consists of no elements. The universal set is 
symbolised by 4/ and consists of all elements.

Given two sets A  and B. The four Boolean operators union U, intersection n, 
difference —, and symmetric difference A are defined as:

U nion: AU  B  =  {x \ x  G A  and x  £ B}

In te rsec tio n : A n B  = { x \ x e A  or x e B}

D ifference: A - B  = { x \ x € A  and x £ B}

S y m m etric  difference: A A B  = (A — B)  U (B — A)

Clearly, it can be shown that:

A U 0 =  A

A n 0 =  0

A u # =

A n ^ =  A.

These four statements are very useful and are the base for some methods that 
will be described in Chapter 2 .

1.1.2 Parametric and implicit polynomials

In their book [10], Bloomenthal et al. give the following definition:

14



‘Analytic geometry is the branch of mathematics that is devoted to 
the relationship between geometry and the mathematical expression 
of the coordinates of points in space.’

For the representation of geometric objects such as curves and surfaces in two- 
or three-dimensional modelling space polynomials can be used.

One approach is a parametric representation where each of the coordinates of 
the modelling space is expressed by a polynomial term. In a two-dimensional 
modelling space a curve has following form:

X\  =  fx 1M  

X2  =  f x 2 ( t )

where t £ [—00,00] is a parameter. In the same way a surface can be defined in 
a three-dimensional modelling space as:

Xl =  f x i ( s , t )

=  fx2{ s , t )

2 3  =  f xz(s,t)

where 5, t € [—00,00] are the parameters.

Another approach is the implicit representation. In this case the coordinates are 
treated as parameters rather than as functional values. In a two-dimensional 
modelling space the implicit function of a curve is given by:

f ( x  i , x 2) = 0 .

Similar to this is the implicit function of a surface in a three-dimensional mod
elling space which is defined by:

f ( x  i ,£ 2,£ 3) =  0 .

Example:
For example a circle with a radius r has the following parametric representation

15



in a two-dimensional modelling space:

/ \ 1 —t2

=  rgf.
Its equivalent implicit representation is:

x\  +  x\  — r 2 =  0 .

Another way to rewrite the implicit representation is to use the power basis. 
With this basis an implicit polynomial p(x i) of degree n € M  in the variable X\ 
is defined by:

P( x  i)  =  Y , a kx i ( 1 -1)
fc=o

where a* € 11 are called the power-form coefficients of the representation. The 
power basis is given by a collection of x\  where k =  0 ,1 , . . . ,  n. The equation 
p(xi) =  0  is the implicit equation corresponding to the polynomial p(x i).

The main difference between the two representations is that it is much easier 
to test the location of a point against a polynomial if it is given in its implicit 
representation. On the other hand points which lie on the polynomial can be 
generated more easily if its parametric representation is used.

1.2 Structure of the thesis

In this thesis a method for the implicitization of Bezier surfaces is introduced. 
This method is based on the resultant method which was initially developed 
to solve elimination problems. Further, the inclusion of a Bezier surface into 
a set-theoretic geometric modeller by using its parametric definition directly is 
shown. As far as the author is aware the methods for addressing these two 
problems have not been used before. Also new research on the use of the implicit 
Bernstein basis in constructive solid geometry is investigated. A new way of 
defining primitives in a set-theoretic geometric modeller using the Bernstein basis
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is given. To perform this it is necessary to define an arithmetic for Bernstein- 
form polynomials. Therefore a new arithmetic for multivariate Bernstein-form 
polynomials is given.

This thesis is structured in ten chapters. In Chapter 1 the motivation for the 
research done over the last three years is given and different mathematical defi
nitions are introduced.

Chapter 2  then gives an overview of geometric modelling. The three different 
modelling techniques—spatial decomposition, boundary representation, and con
structive solid geometry—are explained. One particular set-theoretic geometric 
modeller called sVLls is described in more detail.

Chapter 3 explains interval arithmetic. A method using it for the location of 
geometric objects and its use in geometric modelling is described. Further the 
chapter also investigates one of its drawbacks—the conservativeness problem.

In Chapter 4 the mathematical foundation for eliminating variables of a system 
of equations is given. Three different elimination methods—the Grobner basis 
method, the W u-Ritt method, and the resultant method—are described and 
explained.

Based on the results of Chapter 4 the theory of implicitization for a parametric 
curve or surface is introduced in Chapter 5. Although all the three elimination 
methods could be used for the implicitization only the resultant method is in
vestigated in more detail. The chapter also addresses the problem of singular 
resultant matrices.

In Chapter 6  the convex hull of a geometric object is defined. The calculation of 
the convex hull in two and three dimensions is described.

In Chapter 7 the definition of the Bernstein basis and a method to convert be
tween it and the well-known power basis is given. To take advantage of the 
properties given for the use of the Bernstein basis an arithmetic for multivariate 
Bernstein-form polynomials is introduced.

The following Chapter 8  deals with the inclusion of free-form surfaces such as
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Bezier surfaces into a set-theoretic geometric modeller. At first an approach 
which determines an equivalent implicit equation for a Bezier surface is given. 
Then the direct use of the parametric definition for Bezier surfaces is investigated.

Chapter 9 deals with the implicit Bernstein basis and its use in constructive solid 
geometry. It is shown that the location of geometric objects using interval arith
metic behaves better with the Bernstein basis than with the well-known power 
basis. It also investigates the replacement of the power basis by the Bernstein 
basis in the modelling system sVLls.

The thesis ends with Chapter 10 which summarises the conclusions of the research 
and gives an out-look on future work.

In this thesis mathematics will also be reproduced from cited references in order 
to make the mathematical explanations clearer and to gather different sources 
together in one place. In addition there are worked examples1 showing how the 
methods are employed in practice.

1This is something that is sometimes missing from the published literature.
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Chapter 2

Geom etric m odelling

Since about 1970 geometric modelling has become very popular in different appli
cations such as engineering and product design, computer-aided manufacturing, 
and motion planing. In his book [63], Mortenson defines geometric modelling as 
a technique which describes the shape and surface1 of an object.

He gives the following advantages of the technique:

•  It allows easy description of complicated shapes or surfaces as an arrange
ment of simple ones.

•  The description which is provided by geometric modelling is mathematical, 
analytical and abstract rather than concrete.

•  In many cases it is more convenient and economical to model an object or 
process and to substitute the model for the real object or process.

•  A geometric model can often be analysed more easily and more practically 
than performing the tests with the real object.

Clearly, to take advantage of this technique it is necessary to provide different 
methods and algorithms for surface interrogation. Geisow’s thesis [39] describes 
work in this field, e.g. surface intersections are investigated.

1 Usually, parametric or implicit polynomials are used to describe the shapes or surfaces of 
interest (see Section 1.1).
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In general, geometric modelling can be divided into two different disciplines:

Curved surface modelling: This discipline includes techniques to represent 
curved surfaces and shapes, to interpolate points and curves, and to ap
proximate surfaces. This is often called Computer Aided Geometric Design.

Solid modelling: This discipline includes techniques to construct, to design and 
to represent objects as solids.

In the first section of this chapter the three different approaches to represent 
geometric shapes known as spatial decomposition, boundary representation (13- 
rep), and constructive solid geometry (CSG) are briefly described. More details 
about the ideas can be found in Bloomenthal [10], Chiyokura [25], Hoffmann [41], 
Mantyla [59], or Mortenson [63]. The following section then explains one set- 
theoretic geometric modelling system called sVLls in more detail.

2.1 Geometric modellers

There are three main techniques which can be applied to describe a geometric 
object or processes (such as moving a robot arm). Depending on the application 
one can be more convenient than another. In the following spatial decomposi
tion, boundary representation, and constructive solid geometry2 are described 
and compared.

2.1.1 Spatial decom position

One possible representation is spatial decomposition, which is based on the divi
sion of the modelling space into cells3. In most cases this decomposition is done 
in a coordinate-aligned manner. However, other ways to decompose space are 
possible and so there are many different representations of the same geometric 
object.

2 Often the equivalent expression set-theoretic geometric modelling is used for this type of 
geometric representation.

3These cells axe usually boxes.
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In Figure 2.1 two different ways of spatial decomposition are shown for a planar 
shape. Whereas for the picture on the left-hand side a coordinate-aligned regular 
grid is used, the decomposition of the modelling space for the one on the right- 
hand side is done recursively.

Figure 2 .1 : Two possible ways to decompose the modelling space: coordinate- 
aligned grid or recursive decomposition.

Other examples of spatial decomposition can be found in Mantyla [59], Samet [70], 
or Voiculescu [84].

After the decomposition is performed for a geometric object the cells which con
tain a part of the object are stored either sequentially or in a hierarchical manner. 
If the hierarchical way is chosen the data structure for a two-dimensional object 
is a quad-tree4.

The generalisation of this idea into three dimensions is done by creating sub
boxes along the three axes of coordinates. In the case of a three-dimensional 
object the hierarchical storage of the data structure is an octree4.

Advantages

• Spatial decomposition is simple and general.

• Each valid cell decomposition completely represents a solid, although the 
representation is not unique.

4Other, less regular, recursive divisions are also possible, such as binary trees.
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Disadvantages

• It is hard to establish the contents of a cell; usually an intersection test has 
to be performed for each cell.

•  In most cases the storage of the information is not efficient.

•  For complex objects it is not easy to do spatial decomposition directly.

•  Since spatial decomposition is an approximation there are problems with 
the accuracy of this representation.

•  There is a loss of surface information so that normals, curvatures etc. can
not be computed so readily.

2.1.2 Boundary representation (B—rep)

Another modelling technique is called boundary representation or B-rep for short. 
The idea of this representation is to describe the oriented surface of a solid ge
ometric object as a structure composed of vertices, edges, and faces. It is also 
necessary to store topological information to define the relationship between the 
vertices, edges, and faces. The boundary representation is valid if it defines the 
boundary of a solid object.

The following Figure 2.2(a) to (d) illustrates the relationship between the different 
elements for a simple example (see also Mantyla [59]). Topological information 
allows a cuboid to be defined in the way given in (a). In (b) the cuboid is split 
into the six defining faces. Each face is then given by four edges and four vertices 
as shown in (c) and (d) illustrates the data which might be stored in the B-rep 
data structure.

As seen in Figure 2 .2  it is important to model the vertices and edges of the 
geometric object for the boundary representation. In Section 1.1 the parametric 
definition of geometric shapes was introduced. This representation both requires 
and allows one to calculate vertices (points lying on the curve or surface), edges, 
and faces very easily. Therefore, if a B-rep modeller is used to describe the 
shapes or surfaces of a geometric object the use of polynomials in parametric 
form is advisable.
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(a) (b)

(c) (d)

Figure 2.2: Boundary representation for a cuboid: (a) Topological information 
is used (b) Faces of the object (c) Faces are defined by edges and vertices (d) 
Stored data is vertices and edges

A wide range of curved shapes such as Bezier, B-spline, or NURBS curves and 
surfaces are defined by parametric equations. These shapes play an important role 
in most technical applications and they are included in the B-rep modellers that 
are at the heart of most available geometric modelling packages. For example, 
one very popular B-rep modeller which has the functionality to define, to handle 
and to display these kind of shapes is ACIS (see Corney [27] or [1]).

Advantages

•  Graphical display of geometric shapes is easy especially if a wireframe dis
play is chosen because the vertices and edges are explicitly stored.

• Topological relationships can be established by using formulae such as the 
Euler or Euler-Poincare formula.

• Most geometric operations are available and can be performed for the rep
resented objects of a B-rep modeller.
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Disadvantages

• In most case the boundary representation of geometric shapes such as 
Bezier, B-spline, or NURBS curves and surfaces leads to a very complex 
data structure mainly because of the topological information. The mainte
nance and manipulation of the stored data requires difficult procedures.

• Manipulations involve a very clear definition of the relationship between 
the different points, edges, and faces of the object.

•  The necessary topology can be inconsistent especially if modifications on 
the object are performed. It is therefore very important to update this 
information carefully.

• There are well-defined and common implicit shapes for which no closed 
parametric definition is available. A simple example is the unit sphere 
which can be almost be parameterized (see Hoffmann [41]) by:

1 -  s2 -  t2
1 1  “  1 +  s2 +  t2

2s
X2 ~  1 + s2 + t2

2 1
X} ~  1 + s2 + tr

However, this parameterization cannot represent the point (—1,0,0) unless 
s and t become infinite. A NURBS representation of a sphere would solve 
this problem but there are other implicit functions for which no NURBS 
representation can be found.

• Intersections of objects are difficult to calculate.

2.1.3 Constructive solid geom etry (CSG)

Another way to model and to represent geometric shapes is provided by construc
tive solid geometry (CSG). The idea which lies behind this modelling technique 
is to create complex models by applying Boolean operations (see Section 1 .1 ) 
to simpler primitives. In his book [41], Hoffmann classifies the parallelepiped 
(block), the triangular prism, the sphere, the cylinder, the cone and the torus as 
the standard CSG primitives in the three-dimensional modelling volume.
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As an alternative, a primitive is sometimes made equivalent to a half-space which 
can be defined by an implicit inequality (see Section 2.2.2). For the standard CSG 
primitives given above such an inequality or boolean combination of them can

given in Section 2.2.2).

In Figure 2.3 a very simple model is given as a constructive solid geometry model. 
The L-shaped object can be represented by an union (U) of two blocks and the 
difference of a cylinder (—)5.

Figure 2.3: Constructive solid geometry for an L-shaped block with a cylindrical 
hole: the CSG data tree is given by an union of two blocks and a difference of a 
cylinder.

The way the model in Figure 2.3 is illustrated already suggests a possible way to 
store the necessary geometrical information. A data tree can be used which has 
primitives as its leaves and Boolean operators as its nodes. Note tha t when using 
a CSG representation it is not necessary to store any topological information.

Section 2.2 below will describe the set-theoretic geometric modeller sVLls and

5In this case possible transformations are not included in the CSG data tree.

be found. The advantage of implicit inequalities is tha t they allow easy testing 
of the location of points with respect to the primitive defined (further details are

25



this modelling technique in more detail.

Advantages

•  In general, the data structure of a CSG model is simple and therefore the 
manipulation of the stored data is easy.

•  A CSG model always represents a valid solid which has a closed and ori- 
entable surface. Regularization ensures that the intersection of two solids 
with a common face does not result in a zero-thickness solid.

•  Modifications of the solid object are easy. For example, if the cylindrical 
hole in Figure 2.3 has to be moved to a different location the modification 
will only influence the primitive and its location and not the whole data 
tree.

•  It is possible in principle to find an implicit equation for parametric shapes 
(see also Section 8.2).

•  CSG modelling provides an easy way to model difficult shapes for the user 
because the mind of a human being thinks of shapes in a similar way.

•  Boolean operations represent an easy way to do, for example, intersections, 
so operations like cross-sections are simple.

D isadvantages

• Even if the implicitization of a parametric surface can be performed it is not 
straightforward and sometimes the use of the implicit equation calculated 
is not advisable. This problem arises especially if shapes such as Bezier, 
B-spline, or NURBS surfaces need to be represented in a CSG modeller 
(see also Section 8.2).

•  To generate and to display pictures of a CSG model more time is required. 
For example, if a wireframe picture of a model is requested the facets of the 
model have to be generated first.
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2.1.4 Further developments

In the last two sections some advantages and disadvantages of the two mod
elling techniques—boundary representation and constructive solid geometry— 
were given. Obviously, it it not possible to say which of the two techniques should 
be used. In most cases which technique is the more preferable one depends on 
the application.

At the moment there is a movement in geometric modelling which tries to combine 
the two representations. In Hoffmann’s book [41] this kind of modeller is called a 
dual-representation modeller. In Chapter 8 a possible way to include parametric 
surfaces such as Bezier surfaces into a CSG modeller is shown.

2.2 SvLis —  a set—theoretic geometric modeller

SvLls is a geometric modeller which uses the constructive solid geometry rep
resentation technique. This modeller is coded in C + +  and was written by A. 
Bowyer [11] and others including the author at the University of Bath.

The following sections describe the functionality of this modeller. Obviously it is 
not possible to explain all of its features here. However, further information and 
details can be found in [11].

2.2.1 Philosophy

The idea which stands behind the development of sVLls is to create a geometric 
tool which can be included as a geometric kernel into other user-defined applica
tions. Therefore, sVLls does not have any fancy user interface or any functionality 
for specific applications. SvLls just provides the necessary geometric algorithms 
and methods to model, to handle, to render, and to display geometric models.

All the sVLls procedures and functions are available as a library and can therefore 
be included very easily. User-specific applications then call the library functions
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and procedures6.

In Figure 2.4 the hierarchy of the major sVLls structures is given. In general, 
a complex sVLls model is created by a combination of different sets which are 
defined using primitives7 (see also Section 2.2.2). The standard sVLls primitives 
include all the usual geometric shapes such as planes, spheres, cylinders, cones, 
tori and cyclides and some more complicated surfaces such as blend surfaces.

Models

Sets

Primitives

Figure 2.4: The sVLls hierarchy: Models -  Sets -  Primitives.

In general, all simple sVLls elements have public data which can be changed and 
manipulated. However, if the element gets more complicated its data will be 
hidden and special functions allow the manipulation of the data. This is due to 
the need to keep the data as neat as possible. SvLls also aims to be consistent 
in its use of object orientation.

As said in Section 2.1.3 the CSG modelling technique always defines valid solids. 
However, sVLls also provides the handling and rendering of curved or flat sheets. 
Figure 2.5 illustrates a sVLls sheet for a transcendental function f ( x i , X 2 , x 3) =  
x3 +  sin(x  1) +  cos(x 2).

2.2.2 Defining shapes by using implicit equations

As described in Section 2.1.3 the representation of a complicated model is done
by combining simpler geometric shapes with Boolean operators. In this section
the definition of these shapes as done by sVLls is given.

6These functions and procedures are called the applications programming interface.
7Besides the primitives other geometric elements such as points and lines can be defined.
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b e d

Figure 2.5: A sVLls sheet generated by the function f ( x i , X2 ,Xs) =  x3-\-sin(xi) +  
COS (£ 2 )

Half—spaces and prim itives

In Section 1.1 implicit equations for polynomials were introduced. W ith an im

plicit equation it is possible to describe a surface i.e. all the points which satisfy 

the implicit equation lie on the surface. If an implicit inequality is considered 
the modelling volume can be separated into two or more regions corresponding 

to either side of the surface. These regions are called half-spaces. In general, a 

half-space can be defined as region of the modelling volume where the implicit 

inequality only takes either negative or positive values. By convention, the region 

where an equality takes only negative values is called the solid half-space; the air 

half-space is the region where an inequality takes only positive values.

For example, the following implicit equation describes the surface of a unit sphere:

x \  +  x\  +  £3 — 1 =  0 .

If a solid sphere has to be described the following implicit inequality can be used:

x\  +  x \  -I- x \  — 1 <  0 .

All the points which satisfy this inequality lie either inside or on the surface of 

the unit sphere. Obviously with the definition above the solid half-space of the 

sphere is described by all the points for which the inequality takes only negative
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values. The process of testing points against an inequality given is called point- 
membership testing. So far, only testing of points has been considered. However, 
it is also possible to test whole regions of points (for instance boxes) at once. 
Such a test performed for a box is called box-membership testing8.

To define sVLls primitives implicit inequalities could be used. However, sVLls 
does not use this representation for its standard primitives. It actually takes 
advantage of the so called planar basis. This idea is explained in the following 
example taken from the sVLls manual [11].

Consider a solid cylinder with its centre at (4,1), a radius of 2 and its axis in 
direction of the z-axis. The implicit inequality that represents this cylinder is:

(m -  4)2 +  (x2 -  l ) 2 -  22 < 0.

In Figure 2.6 an intersection of this cylinder with the £i:r2-plane is given.

Figure 2.6: Intersection of a cylinder with the Xia^-plane. LI and L2 represent 
two normalised perpendicular planes which intersect in the cylinder’s axis.

The lines L\ and L2 represent two normalised perpendicular planes which inter
sect in the cylinder’s axis and which have the following normalized equations:

_  -X i X2_ _3_
1 ~  7 2  +  V 2

_  Xi x 2 5
____________________________________ v 2 +  v 5 ~ V 2 '

8This test is of importance for the recursive division strategy described in Section 2.2.3 and 
for the classification process described in Section 3.2.1.
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For the point P  which lies on the cylinder’s surface the distances to the planes
L\ and L 2 are di and c?2 respectively. The values of d\ and c?2 are obtained
by substituting the coordinates of P  into the plane equations. If Pythagoras’ 
theorem is applied the following relationship must be true:

d\ +  d\ -  2 2 =  0 .

Therefore, the cylinder is represented by the two normalised perpendicular planes 
Li and L 2 and its new inequality in term of L\ and L 2 is:

L\ +  L\ -  22 < 0. (2.1)

By multiplying out this equation the same inequality for the cylinder as above is
obtained:

L \ +  L\ -  22
_  / ~ Xl , _̂ 2_ __ 3^n2 , / Xl 1 _£2_ _^ _ \ 2  _  cy2

~  K V2 V2 [V2 V2
/¥»2 ŷ»2 Q /v»2 /v«2 OC\
Jb  1 Jury «7 Jb 1 Jb<y &KJ .

— ——  2:1^2  +  3^i +  ——  3^2 +  2  "F "h x i x 2 — 5^1 +  ——  5x2 +  ——  4

=  x \ — 2x\ +  x \ — 8 x2 +  13

=  (X! -  4 )2 +  (x2 -  l ) 2 -  22 <  0.

Because sVLls allows one to apply arithmetic to planes and other primitives 
Equation 2.1 and other such relationships can easily be stored. It only needs the 
definition of the two planes L \  and L 2 which then have to be squared and added.

This definition of primitives has the following advantages (see also Bowyer [11]):

•  In most cases it is simpler to define geometric shapes in terms of planes 
than to determine the coefficients in expressions like that e.g. for a general 
quadric.

•  Transformations such as translations or rotations are easier for shapes de
fined in this manner since this only requires transformations of the planes.

•  This representation is more numerically stable than the ordinary power 
form (see Chapter 1 Equation 1.1).
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•  Testing of boxes against primitives is more efficient and more precise (see 
also Section 2.2.3 and Chapter 3).

Sets and set lists

The next sVLls element in the hierarchy is the set. In general, a set is obtained 
from a primitive. But not only single primitives are possible, a whole combination 
of primitives can be used to define a set. To create a combination of primitives 
Boolean operators are used. The symbols for the four operator in sVLls are: | for 
the union, & for the intersection, - for the difference, and * for the symmetric 
difference.

In Figure 2.7 a data tree for a sVLls set is illustrated. The primitives which create 
the set are placed in the leaves of the tree. The nodes of the tree are given by 
the Boolean operators which combine the primitives with each other.

Figure 2.7: Data tree for a sVLls set which is given by the expression: ((prim^a 
&; primJb) - (prim_c | prim_d) ~ prim_e).

For a sVLls set different attributes such as colour, name, or surface characteristics 
can be attached. If more than one set has to be represented all these sets can be 
joined in a sVLls set list.

The last and final step in the hierarchy is then the sVLls model. In general, 
a sVLls model consists of a set or set list and a model box which bounds the

A

prim_a prim_b prim_c prim_d prim_e

M odels
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modelling volume. This box contains everything which will be displayed on the 

screen or which can be used for further calculations.

In Figure 2.8 shows a com plicated sVLls model of the Roman B ath in Bath. In 

this case ray-tracing is use for the display. This picture is taken from the sVLls 

manual [11] and a picture of the whole Roman Bath can be found there.

Figure 2.8: R ay-traced picture of the Roman Bath in Bath modelled and dis
played by the set-theoretic geometric modeller sVLls.

2.2.3 R ecursive d ivision

In Section 2.1.1 spatial decom position was briefly explained, and sVLls uses a 

similar approach. However, to  create the cells or boxes a recursive division is 

applied. To explain the idea of recursive division the faceting of a sVLls model is 

used as an example. Faceting is one m ethod to display a model9. However, there 

are many strategies for division depending on the inform ation one is interested 

in obtaining from the model.

For each of the boxes resulting from a division a classification10 depending on the 

contents of the box is performed. In the case of faceting the division stops if one 

of the three situations is true and the box is then a leaf of the model tree:

9SVLlS also supports picture generation by ray-tracing.
10SVLlS uses interval arithmetic to determine a classification for a box (see also Chapter 3).
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1. The box lies entirely either in the solid or air half-space of the geometric 
object11.

2. The primitives which a box contains are nearly flat12 and therefore they 
can be approximated by polygons.

3. The volume of the box is less than a specified value. If the box does still 
contain parts of the surface it is necessary to approximate them as best as 
possible.

The following planar example shows how a set-theoretic expression can be sim
plified and then be used to find out the classification for a recursively divided 
box. The situation in Figure 2.9 is considered. The shaded part of the object is 
the shape of interest. This part is obtained by the set-theoretic expression A fi 
B n  C.

Figure 2.9: Box-membership test for the set-theoretic expression A fl B fl C is 
considered.

For the primitive C it is always true that the box lies on the solid side. This
condition can be replaced in the given expression which simplifies to: A fl B D
solid. In Section 1.1 it is said that an intersection of the universal set ^  (or in
this case solid) results just in the set. So the expression for the example given in
Figure 2.9 simplifies to A D B inside the box.

11SVLlS provides a function which returns a estimate of the range of potential values that a 
primitive might take in a box.

12The range of the primitive’s gradient inside the box tells how flat the primitive is.
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2.2.4 Handling of primitives and inclusion of new shapes

In order to handle sVLls primitives or to include any shape into sVLls it is nec
essary that the following five queries are supported:

1. Point-membership test (exact13)

2. Box-membership test (can be conservative)

3. Ray intersection

4. Gradient vector at a point (exact if the point is on the surface, can be 
approximate otherwise)

5. Range of gradient vectors in a box (can be conservative)

SVLls provides for all standard primitives an answer to these queries. The point- 
membership test is given by a function which returns the potential value of a 
primitive at the point14. Also there is a function which returns the gradient vector 
at a point. This gradient vector points in the direction of increasing potential. 
The box-membership test supported by sVLls returns a conservative estimate 
(usually this is an interval) of the range of potential values that a primitive 
might take in a box. Another sVLls function determines the range of the gradient 
vectors for the primitive in a box. This function returns a new box which is again 
a conservative estimate and which is possibly wider than the actual values of the 
gradient vectors. SvLls supports the ray intersection with all the primitives, too.

Since this thesis deals with the inclusion of Bernstein-basis shapes these queries 
will need to be supported by any implementation of such shapes into sVLls and 
this point will be repeatedly returned to later in this thesis.

13 Exact means accurate within the restrictions of floating point arithmetic.
14By convention negative values correspond to solid, positive values correspond to air.



Chapter 3

Interval arithmetic

Since the set-theoretic representation is unevaluated it is necessary to locate 
geometric objects such as curves and surfaces for this representation. Different 
location methods can be employed for the set-theoretic representation—one is 
the interval arithmetic technique.

In this chapter intervals are defined and introduced. Then arithmetic operations 
for intervals called interval arithmetic are explained. This interval arithmetic 
allows one to determine bounds for the values of a real function. In Section 3.2 
this is used to define a technique for locating a geometric shape.

3.1 Definition

In his book [62], Moore gives the following definition of an interval number or 
interval.

An interval number is an ordered pair of real numbers, [x1}xi], with 
X\ < x \ .  Degenerate intervals of the form [xx,x-^ are equivalent to 
the real number x Y.
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The real numbers x x and x\ are called the bounds of the interval. This definition 
also allowed Moore to define a set of real numbers (see [62]):

The interval number [x^xi]  is a set of real numbers xi  such that 
£ 1  <  £i <  xi  and is written as:

fei,zi] =  {xi  | & < x 1 < Xi}

and thus X\ € [xx, X\] means X\ is a real number in the interval [x^xi).
The symbols € , C , U, and fl are used in the usual senses of set theory.

3.1.1 Interval arithmetic

Moore defines an arithmetic for interval numbers:

If * is one of the symbols and /  arithmetic operations are
defined on intervals by:

[Xi,Xi] * [£25^ 2] =  { ^ 1  * %2 | £l < X\ < Xi ,X2 < Xi < X2 } (3.1)

except that [xl5 x-^H x^.x^  is not defined if 0  G [$2 ,^ 2]-

Milne [60] gives a consistent definition of division that includes this last case; it 
has to employ infinite intervals of course.

This definition can be extended for the n^-power operation. Of course, this 
operation can always be calculated with n — 1 multiplications. However, it will 
be shown later that the intervals obtained are different if n is even and the initial 
interval contains zero.

Obviously, these definitions of interval arithmetic operators make each give a 
new interval. The bounds of this interval are given by a set of sums, differences, 
products and quotients, respectively applied to a pair of real numbers, one from 
each of the two initial intervals.
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W ith Equation 3.1 the following rules for the five arithmetic operations can be 
formulated:

fel, Xl] +  [$2, Z2] =  [X\ +  X2, Xi +  X2]

[x1:Xi\ -  [x_2•> X2] = [x.1 - X 2, X i -  X2\

[2Li> Xi] • [x2, x 2] = [minfeio#, x{x2, X\X2, Xix2), m ax{xix2, XiX2, XiX2, x{x2)]

f e i ,^ i ] / f e 3̂ 2] =  [x.i,xi\ • [ l / x2i l / x 2]
[0, max(xi ,  Xi)} if n is even and 0 € [xi,x\]

[xu xi ]n =  < [xi , £?] if ft is even and x l5 £ 1  < 0

b f .a ? ] otherwise.

Of course, this rule for the division cannot be applied if 0 G [x2, x 2]—see Milne [60] 
for a solution to this difficulty.

Example
Given the two intervals [9,15] and [3,5]. By applying the different arithmetic 
operations the following intervals are obtained:

[9.15]+ [3,5] =

[9 .15]-[3 ,5] =

[9.15] • [3,5] =

[9 .15]/[3 ,5] =

In the following example the difference between the multiplication and the power 
operation is illustrated. Given the interval [—1,2]:

[—1 , 2 ] • [—1 , 2 ] =  [mm(l, — 2 , — 2 ,4), raa:r(l, — 2 , — 2 ,4)]

=  [-2,4]

whereas [—1,2]2 =  [—l 2,22]

=  [0,4].

[9 +  3,15 +  5]

[12, 20]

[9 -  5,15 -  3]

[4,12]

[min(27,45,45,75), m ax(27,45,45,75)] 

[27,75]

[9,15] • [i,J]
9 9

[m m (-, 3,3,5), max(~,  3,3,5)]
5 5
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From the definition given in Equation 3.1 it follows that the addition and multipli
cation of intervals is both associative and commutative. However, the distributive 
law does not always hold for interval arithmetic. This is shown by the following 
example:

[1>2]([1 , 2] — [1, 2]) =  [1, 2] ([ 1, 1]) =  [—2 , 2]

whereas
[1,2][1,2] -  [1,2][X, 2] =  [1,4] -  [1,4] =  [-3,3],

Making use of the fact tha t an interval is a set, the following relationship for the 
three intervals £ 1 , 3:2 and £ 3  can be derived:

£ i ' (£2 “b £3) C £1 • £2 +  £1 • £3- (3-2)

This property is called subdistributivity.

3.1.2 Range of values of real functions

In [3], Alefeld and Herzberger introduce an application of interval arithmetic for 
calculating bounds of a real function /(x )  =  / ( £ 1}. •. ,£ |) where I corresponds to 
the number of variables.

If the variables of the function / (x )  are replaced by intervals [x,x]z =  [£i,£i] x 
[x.2 ^ 2] x ••• x [2h,xi} respectively and interval arithmetic rules are applied to
evaluate the value of the function /(x )  a new interval is obtained. This new
interval bounds the real value for all the interval numbers of the initial intervals 
substituted into the function.

In general, the bounds given by this resulting interval are much wider than the 
actual value the function / (x )  would take for the input intervals given. However, 
the advantage of intervals is that they give a very easy way to bound the range 
of the function /(x )  for a whole area of interest. Also it guarantees that none of 
the initial interval numbers will give a value lying outside of these bounds when 
the function is evaluated.

To improve the interval bounds on the range of a function /(x )  (or in other words 
to reduce the interval width) the following can be used:
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• cancellation or reduction of the number of occurrences of a variable

• use of subdistributivity (see Equation 3.2)

Consider the two examples (see also Moore [62]):

1 . Given the following expression in the variable x \ m. 5^ 5 . This expression 
can be rewritten and this leads to:

X\ X\ — 2 2 „ 2
 ——-----------------  =  1 H------ .
X\ — 2 Xi — 2 x i  — 2 Xi — 2

In the obtained equivalent expression the variable x\ only occurs once. A 
substitution of an interval in this new expression will give a tighter interval 
than the one from the initial expression. In fact, in this case the range of 
the interval evaluated is the exact range of the values the expression takes 
over the initial interval (as long as it does not contain two).

2. Equation 3.2 describes the fact that an interval evaluated, by using a nested 
form of an expression1, is contained in the one produced by using the sum 
of powers2. This interval might be tighter. For example, if the interval [0,1] 
is substituted in the following two equivalent expressions3 x\ — x\ • X\ and 
Xi(l — Xi). The intervals obtained are not the same. Indeed,

[0 , 1] - [ 0 , 1 ] - [0 , 1] =  [0 , 1] -  [0 , 1 ] =  [ - 1 , 1 ]

whereas
[0, 1](1 - [ 0, 1]) =  [0, 1]([0, 1]) =  [0, 1].

In Section 3.2.3 this aspect is discussed further.

3.2 Intervals for surface location

In Section 1.1 it was said that parametric or implicit polynomials can be used to 
represent curves or surfaces in computer-aided geometric design. The computa

1This form is often called Horner form.
2This form is usually called the power form of a polynomial (see Section 1.1).
3The second expression is the nested or Horner form.
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tion of the range of implicit polynomials is of particular importance when using 
a CSG representation. By applying interval arithmetic it is possible to calculate 
bounds for the range a polynomial takes in a rectangular area of interest.

In the following section only implicit polynomials (which are mainly used in set- 
theoretic geometric modelling) are considered. Their definition can be found in 
Section 1 .1 .

3.2.1 Classification of space into SOLID, AIR and U N 
K NO W N

In general it can be said that an implicit trivariate expression defines a proper or 
degenerate surface in space. Obviously, this statement is true if and only if the 
expression has real roots for which the function of three variables vanishes.

As shown in Section 2 .2 .2  an implicit function not only represents a surface it 
also defines half-spaces corresponding to either side of the surface if an inequality 
is considered. Usually the regions where an implicit function takes only negative 
values is called the solid half-space. The air half-space is the region where the 
function takes only positive values.

This convention now allows the classification of a whole volume of interest. The 
classification is obtained by checking the sign of the function. Obviously, it does 
not make sense to test every single point of the modelling volume. Therefore it is 
necessary to be able to provide an analytical classification for an entire volume of 
interest. If axially-aligned boxes are used to describe such volumes then interval 
arithmetic technique can be employed (see also [9 ]):

An axially-aligned box can be described by three intervals [£.i,£i] x 
[x.2 ^ 2} x [£3 , £3]. For a given trivariate surface expression the three 
variables xi, £ 2  and £ 3  are replaced by the three intervals respectively.
This substitution yields a new interval expression and after applying 
interval arithmetic the evaluation of the surface expression gives a 
new interval (see also Section 3.1.2).

Depending on the range of this interval a classification of the initial
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box can be given. If the interval is all negative then the box contains 
only a solid part of the modelling volume and the box can be labelled 
as a solid box. On the other hand, if the interval contains only positive 
values then the box bounds an air part of the modelling volume and 
the box is classified as an air box. However, if the interval straddles 
zero, it is not possible to give a clear classification. In this case the 
box might contain a part of the surface. It is also possible that the 
box only contains solid or only air or surface, solid and air together.
The classification unknown box corresponds to such a box.

The classification for a box which has one single corner on the surface depends 
upon whether the box intervals are open or closed. However, with floating point 
arithmetic this situation becomes irrelevant and the box is classified as an un
known box.

Of course, this interval arithmetic technique introduced above can also be applied 
to more than trivariate problems. For example, one application is the multidi
mensional set-theoretic geometric modeller sVLlsm (see [8 6 ]). However, the work 
presented in this thesis is restricted to two- and three-dimensions.

The following example (see Figure 3.1) shows the interval arithmetic technique 
applied to the two-dimensional polynomial f ( x i, X2) = x^ — x\ +  x \ .

For the three boxes A =  [0.5,0.6] x [0.5,0.6], B =  [0.25,0.35] x [0.2,0.3] and 
C =  [0.5,0.6] x [0.0,0.1] following intervals are determined.
Box A:

/([0 .5 ,0.6], [0.5,0.6]) =  [0.5,0.6]-[0.5,0.6] + [0 .5 ,0.6]2

=  [-0 .1 ,0 .1 ]+  [0.25,0.36]

=  [0.15,0.46]

Box B:

/([0 .25,0.35], [0.2,0.3]) =  [0.2,0.3] -  [0.25,0.35] +  [0.25,0.35]2

=  [-0.15,0.05]+ [0.0625,0.1225]

=  [-0.0875,0.1725]
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0.75.

0.5

0.25

f(*i»x2)=x2“xi+xr

0.0

0.0 0.25 0.5 0.75

Figure 3.1: Application of the interval arithmetic technique to }{x  1 , 0:2) =  x 2 — 
Xi +  x\.

Box C:

/([0 .5 ,0.6], [0.0,0.1]) =  [0.0,0.1]-[0.5,0.6] + [0 .5 ,0.6]2

=  [-0 .6 ,-0 .4 ] +  [0.25,0.36]

=  [-0 .35,-0.04]

By the given convention above, box A is an air box, box B is a unknown box 
and box C is a solid box.

3.2.2 The conservativeness problem

A disadvantage of the interval arithmetic technique is:

•  In general the method generates a bigger range of values for a given im
plicit function than the function actually takes. Sometimes it is possible 
to obtain tighter bounds if the implicit function can be given in a much

43



compacter form (see Section 3.2.3). The method is thus afflicted with this 
conservativeness problem.

If exact (rational) arithmetic is used, then the following statement is true:

Whenever a rectangular box is classified by interval arithmetic as 
a solid or air box then all the points inside of the box either have a 
negative or positive value respectively, and the box really does contain 
only solid or only air.

This statement follows from Section 3.1.2. There it is said that the evaluation of 
a real function using intervals determines an output interval which bounds all the 
values of the function inside the input intervals. Therefore, if the output interval 
is all positive or all negative the tested box must be either solid or air.

However, if a box is classified as an unknown box it is not clear if this box actually 
contains a part of the surface, which should be located, or if it only contains solid 
or air.

The conservativeness problem is illustrated in Figure 3.2. The interval arithmetic 
technique is again used to locate the polynomial f ( x  1 , 2:2 ) = X2 — X\ + x\.

0.5

0.25

f(xi,X2)=X2-xi+xi:

0.0

0.0 0.25 0.750.5

Figure 3.2: Conservativeness problem: Box A is classified as unknown although 
it lies entirely in the solid half-space created by the polynomial f ( x  1 , 2:2) =  
%2 ~  x i +  x\.
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For box A  =  [0.25,0.5] x [0.0,0.125] the following output interval is obtained:

/([0 .25 ,0.5], [0.0,0.125]) =  [0.0,0.125] -  [0.25,0.5] +  [0.25,0.5]2

=  [-0.5, -0.125] +  [0.0625,0.25]

=  [-0.4375,0.125]

Although this box lies entirely in the solid half-space which is defined by the 
polynomial f ( x  1 , 2:2 ) the interval arithmetic classifies this box as an unknown 
box.

Unfortunately, it is not possible to get rid of the conservativeness problem. This 
problem arises irrespective of the polynomial form or the way the polynomial 
and its variables are ordered. However, there are some special cases for which 
intervals are exact (see for example Voiculescu [84]). The interval arithmetic 
will always produce unknown boxes for which it is never guaranteed that they 
actually contain surface. However, it is possible to improve the results of the 
location method.

One possible way to improve the interval arithmetic technique is given in Sec
tion 3.2.3. Another possibility is to test smaller areas of interest. For example, in 
Section 2.2.3 a recursive division of the modelling volume is described. By using 
such a method intervals of different sizes are created and as they get smaller a 
clear solid- or air-classification might be possible. Instead of the recursive di
vision a grid could also be used to create smaller intervals over the modelling 
space (see Section 9.1). However, the conservativeness problem cannot be solved 
completely by reducing the size of the interval either, though clearly in the limit 
a box reduces to a point, and membership testing of these is not conservative.

3.2.3 The form of a polynomial expression

In Section 3.1.2 it is shown that different polynomial expressions (e.g. the nested 
form) produce tighter intervals by applying the interval arithmetic technique than 
other ones. In this section two forms, the centred form and the standard form of 
a polynomial, are presented.

The following example shows what influence the form of the polynomial ex

45



pression has. Given the polynomial p(x i) =  x\ — x \ (see also Alefeld and 
Herzberger [3]), the following four equivalent expressions are considered:

Pl(Xi) = X\ x\

P2{X i) =  X i( l-X i)  
1 /

The evaluation of these four expressions for the interval [0,1] gives:

Pi ([0,1]) =  [0,1]-[0 ,1]
p2 ([0 ,l]) =  [0 , 1] -  (1  -  [0 , 1])

=  [ - 1 , 1] 
=  [0, 1]

P»([0,1]) = i -  ([0,1] -I) ([0,1]-!) = [0,1] 
w([0,l]) = | -([0,1]-I)2 = [0,1]

It is possible to define an expression which leads to tighter intervals in this way 
for other functions and the use of this expression automatically improves the 
interval technique and therefore the location method. This will now be discussed 
in more detail.

T h e  ce n tre d  form

In his book [62], Moore introduces a centred form of a polynomial which can 
produce tighter intervals:

Given a real rational function /(x )  and a particular set of interval 
numbers [x,x]z. There is a way of selecting a rational interval expres
sion F ([x ,x]z) over which the real variables range gives a narrower 
interval containing the range of values of /(x ) . This interval expres
sion .F([x,x]z) is called the centred form.

The following univariate example should illustrate this (see also Moore [62]). 
Given the real rational function f ( x i) =  X\ — x \  used above and an interval 
[x.i,xi]. Let x 2 = xi — ~1̂ Xl • If x 2 -I- iiiH i is substituted for xi in f ( x i) this
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expression is obtained:

~ \ 2

Rewriting the expression in nested form gives:

7F \ 2
f ( x i) =  X l * Xl -  +  z 2((l -  fei -  *i)) -  £2)

or, replacing x^ by (xi —

. . .  ^ i + X i  (X i+ X i\ (  X i + X i \  (  X 1 + X 1
/(*o  = -J-j—  J + (* 1  - -  V - )  ( a - f e  - * ! ) ) -  ^

This defines the rational interval function F([£ 1 ,xi]) which is called the centred 
form:

7 - , /r  -  $ 1 + ® 1  ( %  1 + ^ l V  f t  —  -i £ l + ® l

■Ffe^iD = =iT ^ _ V 2 J  + -  =i- 2—^

( ( 1  -  tei - s i ) ) -  ([£1,^1] -  2 X‘ ) )  • (3'3)

This centred form FQxxjXi]) might give a tighter bound for the function f ( x  1) 
over [xl 5Ti].

For the interval [0,1] Equation 3.3 gives:

/m  - H D ’d M -G M '-y -H -I
_  1 rZ i v  - 1 ,
”  4  +   ̂ 2 ’ 2  2 ’ 2  ^

1 r —1 h  
-  4 +  [T ’ 4]

=  [0 , | ] .

This interval is much tighter than the one obtained by using the initial power 
form of f ( x  1).

However, even if the centred form can give a tighter bound for the values of a 
polynomial f ( x  1) the disadvantage of this form is that it has to be calculated 
individually for each interval [xl 3Ti]. Also the centred form does not do as well 
as the equivalent expression p± =  |  — (x\ — | ) 2.
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The standard form

Another approach which might lead to tighter output intervals by evaluating a 
real rational function /(x )  is the standard form4 of a polynomial. The standard 
form is a compact expression for a polynomial and combines some of the aspects 
given in Section 3.1.2 such as a minimal appearance of the variables and the use 
of even power terms.

The following example gives the standard form of a circle c(x\ , x2) which is centred 
at P ( l ,  1 ) and which has a radius of 1 :

c(x 1, x 2) = {xi -  l ) 2 +  (x 2 -  l ) 2 -  1 .

By applying the interval arithmetic technique to the standard form a more accu
rate surface location is provided.

Familiar geometric objects such as spheres, ellipsoids, paraboloids, or tori can be 
defined by a standard form. Unfortunately, this standard form is not available 
for all curves and surfaces used in computer-aided geometric design. In the fol
lowing chapters this special form of geometric objects is not considered again. Its 
equivalent power-form expression is considered instead because of its generality. 
For more details of the ways in which rearranging a polynomial can affect interval 
arithmetic, see Berchtold et al. [9].

3.3 Conclusions

The interval arithmetic technique provides a method to evaluate a real function 
over a whole interval, independently of the number of variables.

The accuracy of the interval arithmetic technique for classifying a region of in
terest depends on the form of the representation. The centred form given in 
Section 3.2.3 evaluated to much tighter bounds for the values of a function over

4Sometimes this form is also called the canonical or factorized form and, for example, the 
standard form for a unit sphere is x \  +  x \  +  x \  — 1 =  0.
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given intervals than the power form. The disadvantage of this form is tha t it 
depends on the interval of interest. By using the standard form of a curve or sur
face given in Section 3.2.3 a more accurate location is obtained. Unfortunately, 
this standard form cannot be used to define all the geometric shapes of interest.

In Chapter 7 another way to represent a polynomial, the Bernstein form, is 
introduced. In Section 9.1 the behaviour of the interval arithmetic technique 
applied to Bernstein-form polynomials is investigated. The results of the location 
method by using the Bernstein form are compared with the ones using the power 
form.
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Chapter 4

Elimination m ethods

Elimination is a mathematical discipline for removing variables from systems of 
equations. It is founded on work done over the last few centuries. The results 
of this work again became very popular in the last 15 years. In his paper [42], 
Hoffmann classifies the resultant method, the Grobner basis method, and the 
W u-Ritt method as the most well-known and major competing approaches.

This chapter studies and summarises these three different methods for eliminating 
variables from a system of polynomials. In the book written by Cox et al. [28] the 
theory of elimination is explained. In [46], Kapur and Lakshman gave an intro
duction to the three elimination methods. Further information about the Grobner 
basis method can be found in papers written by Ajwa et al. [2 ] or Buchberger [15]. 
Additional investigations into the W u-Ritt methods are given in papers written 
by Canny [16], Kapur and Mundy [47], Ritt [69], and Wu [8 8 ]. In papers written 
by Chionh [17], [18], [19], Chionh et al. [20], Chionh and Goldman [23], [24], 
Collins [26], Dixon [30], [29], Kapur and Saxena [48], Kapur [45], Macaulay [54], 
Manocha [55], and Manocha and Canny [58] a more detailed description of the 
resultant method can be found.

Not all of these papers deal exclusively with the elimination of variables. Some 
investigate other applications of these elimination methods such as automated 
geometry theorem proving or implicitization (see also Chapter 5 and 8 ).

The first section of this chapter describes the Grobner basis method which is
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based on polynomial ideal theory. The next section describes an elimination 
method which is based on W u-R itt’s approach to find a characteristic set for 
a nonlinear system of equations. Since this method will not contribute to the 
further research done in this thesis the author will give only a brief summary of a 
possible algorithm to calculate such a characteristic set. The last method which 
is reviewed here is the resultant method. Different formulations of the resultant 
for a set of polynomials are given. In the last section of this chapter the problems 
which are generated by each of the three methods are briefly described (further 
details can be found in the literature given above).

4.1 Grobner basis

In his paper [45], Kapur describes the Grobner basis as:

A Grobner basis of a set of polynomials is a special basis of their 
ideal1 which has the property that:

1 . every polynomial in the ideal reduces to 0  with respect to the 
basis

2 . every polynomial has a unique normal form with respect to the 
basis.

In [15], Buchberger defined an algorithm for computing the Grobner basis of a 
polynomial ideal. This algorithm is given later in this section.

1For a commutative ring R, A with A C R  is called an ideal in R if the following two
conditions are true:

1. for all polynomials / ,  g € A, it is necessary that /  +  g €  A and

2. for all polynomials /  € A, it is necessary that f g e  A for any g e  R.

Let / i , . . . ,  fm  £ R- Consider an ideal I  that contains all of The set
f  =  {Y n L i9 if i \9 i  ^ R ) *s an ideal in R and it is the smallest ideal in R containing the
set { / i , . . . ,  f m}. This set is called a generating set or a basis for the ideal I.
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4.1.1 Ordering of the polynom ials

For the computation of the Grobner basis the ordering of the terms in a polyno
mial is essential. Of interest is a total ordering on terms which is denoted by -< 
and which has following properties (see also Kapur and Lakshman [46]):

1 . The ordering is compatible with a multiplication. For example, given the 
three terms t ,t i ,  and t2• If -< h  then tt\ -< tt2.

2. For finite polynomials there can be no strictly decreasing infinite sequence 
of terms such as t\ >- t2 >■__

The following two ordering schemas are the most common ones.

Lexicographic ordering

This method orders the terms as in a dictionary and its symbol is -<j. For example, 
given the two terms t\ and t2 which are made up with the two variables x\ and 
x 2 where x\ -<i x 2 the following lexicographic ordering results:

1 <1 -<i x\ -<i x \ <1 . ..  -<i x2 -<i x ix 2 -<i x \x 2 -<1 ... -<ix 2 -<i x ix l -<i xjxl  -<i ...

Sometimes a reverse lexicographic ordering is used, too.

D egree ordering

This method first orders the terms by their degrees and equal degree terms are 
then ordered lexicographically. The symbol for this ordering is -<d■ For example, 
two bivariate terms t\ and t2 are given. For the variables X\ and x2 the ordering 
xi -< x 2 is assumed. Applying a degree ordering then gives:

1 -<d xi -<d x2 -<d x \ -<d x 1x 2 -<d x \ <d -<d x \ <d x \x 2 -<d %ix2 -<d x\ <d • • •
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4.1.2 Reduction of the polynomials

For the calculation of the Grobner basis it is important to perform a polynomial 
reduction. Before the polynomial reduction can be performed an ordering -< of 
the terms has to be chosen. With the ordering -< the following components of a 
polynomial are defined (see also Ajwa et al. [2]):

Leading m onom ial of a polynomial:

For every polynomial f ( x  1, 2 2 , . . . ,  zn) leading monomial2 is given by the 
largest term in /  under -< which has a non-zero coefficient. This monomial is 
denoted by L M (f ) .

Leading coefficient of a polynomial:

The coefficient of the leading monomial is then the leading coefficient which is 
denoted by LC(f) .

Leading term  of a polynomial:

The leading term of a polynomial is given by the multiplication of leading mono
mial and leading coefficient and is denoted by LT(f):

LT(f) =  LCV)LM(f )

Tail o f a polynom ial

The tail term of a polynomial f ( x i , x 2, . . .  , x n) which is denoted by T T ( f )  is 
given by splitting the leading term from the polynomial / .

2 Often this term is called the head term of the polynomial.
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W ith the definitions above a polynomial f ( x  i , x 2, . . .  , x n) can be rewritten in the 
following manner:

/  =  L T ( f )  +  T T ( f )  = L C ( f ) L M ( f )  +  T T ( f )

Polynom ial reduction

Given two polynomials f ( x  1 , 0:2 , • • • i xn) and g (x i ,x 2, . . .  , x m), <7 reduces to an
other polynomial h with respect to / ,  if and only if the LT(g)  can be deleted by 
a subtraction of an appropriate multiple3 of the polynomial / .  This reduction is 
denoted by g — >f h.

Therefore, the reduction g — >f h is possible if and only if there exists a scalar 
b and a monomial u such that h =  g — buf  where b = LC (g ) /LC (f )  and u = 
L M (g ) /L M ( f ) .

A polynomial g reduces with respect to a set (or basis) of polynomials F  =  
{ f u  / 2 > • • • ? fr)  if 9 is reducible with respect to one or more polynomials in F. 
In this case the reduction of one polynomial can lead to a whole sequence of 
reductions which has to end after a finite number of reductions. It also can be 
shown that the subtraction of each polynomial gi in the sequence of reductions 
and the polynomial g itself is an element of the ideal ( / 1 , / 2, . . . ,  / r ).

The polynomial gi which is obtained after applying an i-tim es reduction to the 
polynomial g is called the normal form with respect to a set of polynomials F.

Example:
Given the following polynomial set F  =  { f u  f 21 h } •

F  ~  { /1  =  x i x 2 ~  5xix2x 3 +  3, f 2 = Ax\x2 -  x\  +  2xi , / 3 =  §x\x\xz -  xix$ +  5}.

Under the following sequence of reduction can be performed for the polyno
mial g =  2xlxl  4- x\  -I-1:

3In general, this multiple is given by a multiplication of a scalar and a monomial.
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g — >fx gi: b = 2 and u = x 2

Q l  =  2 x \ x \  +  x \  +  1 — 2 x 2 ( x \ x 2  —  5XiX2 3̂ +  3)

=  2^X2 H- rr| 4-1 — 2x^X3 +  10x1X2X3 — 6x2 

=  x \ +  l  +  IOX1X2X3 — 6 x 2

=  IOX1X2X3 +  X2 — 6x2 +  1

9i — >73 9 2 - b =  2  and u =  1

g2 =  IOX1X2X3 +  Xg — 6 x2 +  1 — 2 (5 xiX2X3 — X1X3 H-5)

=  1 0 x 1X3X3 + x \ — 6 x2 +  1 — 1 0 x 1X3X3 +  2 x 1X3 — 1 0  

=  x \ — 6 x 2  — 9 +  2x xx 3

=  X2 +  2x i x 3 — 6 x 2 — 9

It also would be possible to reduce the polynomial g = 2 x \x \+ x | +  l with respect
to f 2 G F. However, this does not lead to the same sequence as above.

g — g[z 6 = 1  and u =  x2

I
g[ =  2x^X3 +  X2 +  1 — - x 2 (4x^X2 — x\  +  2xi)

=  2 x^X3 +  X2 +  1 — 2 x^X3 +  ̂ 2X3 — X1X2

=  x\  + ^X2Xg -  XlX2 +  1 
£

This example shows that different normal forms for the polynomial g can be
determined depending on the polynomials chosen. In general, it is not possible
to avoid this effect for an arbitrary set of polynomials.

However, this ambiguity of the normal form of g with respect to F  can be resolved 
if the basis F  is augmented with the polynomial given by the subtraction of the 
resulting normal forms for g (for the example above this is: g2 — g[). The basis 
obtained does still generate the same ideal because the subtraction of the normal 
forms is an element of the basis F.
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S-polynom ials

This leads to another type of polynomial. These are called the S-polynomials 
(or, for short Spoly). In [2], Ajwa et al. define these polynomials as:

For two polynomials /  and g the S-polynomial is defined by

where J  denotes the largest common monomial of the leading mono
mial of the two polynomials /  and g (J  =  l .c .m.(LM(f) ,  LM(g))).

Spoly( f ,g ) is a linear combination with polynomial coefficients of /  and g and 
therefore belongs to the same ideal which is generated by /  and g.

Example:
Consider the two polynomials f i  = x \ x 2 — bx\X2X3 +  3 and = 5xix%X3 — 
X1X3 +  5 given above with L M (f i )  = x \ x 2 and LM (/s) =  X1X2X3 . For J  =
l.c.m.(x\x2 ->x 1X^X3) = x \ x \ x 3 the following Spoly is determined:

4.1.3 The Grobner basis and its properties

Kapur and Lakshman [46] give the following definition of a Grobner basis:

A basis G G Q[x\, x2, ■ ■ ■, xn\ where Q[xi, x 2, . . . ,  x n] denotes a poly
nomial ring with rational coefficients is called a Grobner basis for the

S p o l y ( f , g )

LTCa / 1 L T { f z) h

56



ideal it generates if and only if every polynomial in Q[xi, £2 , • • • > x n] 
has a unique normal form with respect to G.

In [46] the following equivalent properties are given:

1. G is a Grobner basis for the ideal I  with respect to a term order -<.

2. For every pair of polynomials pi, <72 € G , the normal form of the S -  
polynomial of gi, £2 with respect to G is zero.

3. Every polynomial /  € Q[xi ,x2, . . .  , x n] has a unique normal form with 
respect to G.

4. A polynomial /  is a member of the ideal I  if and only if its normal form 
with respect to G is zero.

4.1.4 Buchberger’s algorithm

The following algorithm for calculating a Grobner basis G for a polynomial set 
F  which generates an ideal I  was introduced by Buchberger [15]. With this 
algorithm the S-polynomial h for a pair of polynomials is determined. If h is not 
reduced to zero with respect to G the basis G is augmented by its normal form 
h'.

Algorithm :
G : = F
B  := {{/*, f j  e  G and ±  f j }  
while B  7  ̂ 0 do

{ / i , / 2 } := a pair in B  
B  : = B - { f u f 2} 
h := Spoly(fu f 2) 
h! := NormalForm(/i, G) 
if h' 7  ̂ 0  then 

B : = B u { { g :h ' } \g e G }
G := G  U {h'}

fi
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od
Return G.

Exam ple

Given the following polynomial set F  =  { /i, A}:

F  =  { /i =  -  7x2, / 2  =  x ix 2 +  3 x 1X3 }.

The polynomials f \  and are ordered by The initial Grobner basis G is 
given by G — F. Since there are only two polynomials in the set F  the set B  
contains one pair of polynomials B  = { /1? / 2}. Hence Spoly( / 1 , / 2) is :

h =  Spoly( 4 xjX3 — 7 X35X1X2 +  3xiXg)

=  X£ i ~  3 (4 l lX3 ~  7x2> ~  Xf T 3 (XlX2 +  3 Xl3:3)4xfx3 X!X2

=  - ^ 2 - 3 X iX̂ .

The normal form 7i' of h is obtained by reducing h with respect to F. 
h — h!:

h! = — 2>x\x\ — JX2 +  ~X3 (4 x^X3 — 7 X3)

— Z.3 Z i ^.2 4
— 4  2 4  2 3

= 3 X3X3 H-Xg.

Since h! can be reduced by f i  and h' /  0 the sets B  and G have to be augmented 
by h‘:

B  =  { / i , / 2 ,h'}

G — {4xiX3 — 7 x3 , X1X2 +  3 x 1X3 , 3 x3X3 +  X2 }.

For the two polynomial pairs in B  Spoly( / 1 , h!) and Spoly( / 2, h') are determined:

hi =  5po/y(4xiX3 — 7 X3 , 3 X3X3 +  X2 )

=  7X2 +  1 2 X1X3X3
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h2 =  Spoly (x\x2 +  3 x 1X3 , 3 X3X3 +  X2) 

=  0 .

Obviously it is only necessary to calculate the normal form for hi which is ob
tained by reducing it with respect to F. 
h\ hi'.

h\ — 7x\ +  1 2 X1X3X3 — 7 X3 (X2 +  3 X3X3)
,2„5 J2 0 1 J J=  1 2 X1X3X3 — 2 1 X3X5 .

h'l - > fl hiII.

h'[ =  1 2 X1X3X3 — 2 IX3X5 — 3x^x5 (4xjX3 — 7x^)

=  0.

Since polynomial hi can be reduced to zero the Grobner basis G for the set F  is 
given by:

G =  {4x^X3 — 7x5, X1X2 +  3xix5,3x5x5 +  x5}

In general, it has to be said that the algorithm generates different Grobner bases 
for an ideal depending on the term ordering. However, if the same term ordering 
is used the same Grobner basis should always be obtained for the ideal provided 
the reduced Grobner basis is considered. A Grobner basis G is called reduced if 
each polynomial in G is reduced with respect to all the other polynomials in G 
(see also [46]).

In [2], Ajwa et al. give an improved algorithm to determine the Grobner basis 
of a polynomial set F. This algorithm is modified by three criteria which detect 
unnecessary reductions in the construction of the Grobner basis.
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4.2 The Wu—R itt m ethod

This section gives a brief introduction to the theory of this method and an al
gorithm for the calculation of a characteristic set (see also Kapur and Laksh- 
man [46]). However, further investigations are not done by the author since this 
method will not be used for any research presented in the following sections of 
this thesis.

W ith the characteristic set method introduced by R itt [69] and extended by 
Wu [8 8 ] a given system of polynomial equations S  =  { /i, / 2, . . . ,  f m} is trans
formed into a triangular form S'. It is important to note that if the number n 
of variables is greater then the number of equations in a set S  (n > m)  then 
the variable set is divided into two subsets: the independent variables (denoted 
by u i , . . . ,  Uk) and the dependent variables (denoted by z/i,. . . ,  y{)4. For exam
ple, the variable set of a parametric surface (see Section 1 .1 ) is divided into the 
independent variables s and t and the dependent variables rci, x<i and x$. Each 
polynomial is treated as an univariate polynomial in its highest variable5 and a 
total ordering (-<) is assumed.

In [45], Kapur classifies the pseudo division of two multivariate polynomials as 
the key operation used in characteristic set computation. To perform the pseudo 
division the recursive representation of a polynomial which is considered as a 
univariate polynomial in its highest variable is used. This pseudo division defines 
a polynomial reduction.

A polynomial fi is reduced with respect to another polynomial f j  if

1 . the highest variable of fi is -< the highest variable of f j  or

2 . the degree of the highest variable in f j  is greater than the degree of the 
highest variable in fi.

If fi  is not reduced with respect to f j  then fi reduces to r  by pseudo-dividing by

f r _________________________
4The total ordering is: ui Uk -< yi -<•■•-< yi-
5The highest variable of f  is yi if f  is a element of the polynomial ring Q[ui, ... ,Uk,ya, • • • ,yi\ 

but not of Q[u\ ,... ,Uk,ya, • • •, yi-1]; i then denotes the class of /.
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Wu [8 8 ] defines a characteristic set <I> in the following manner (see also [46]):

Given a finite set £  of polynomials in i i i , . . . ,  uk, y i , . . . ,  yi, a charac
teristic set $  of X) is defined to be either

1 - {pi} where g\ is a polynomial in Ui, . . . ,  uk or

2 . a chain6 {gi . . .  gi), where gi is a polynomial in yi, u i , . . . ,  uk with
LC(gi)7, g2 is a polynomial in y2, yi, u u . . . , u k with LC(g2), . . . ,  
gi is a polynomial in t/i, U\ , . . . ,  uk with LC(gi), such that

• any zero of X) is a zero of and

•  any zero of $  that is not a zero of any of the leading coeffi
cients LC(gi) is a zero of

A lgorithm  for characteristic set com putation
In their paper [46], Kapur and Lakshman give an algorithm to calculate the 
characteristic set $  for a polynomial set F.

Algorithm :
set E  := 0 
set R  F  
while R  7  ̂ 0 do 

E  := E U R  
<£ := Basic-set(£, -<)
ft := {q\q = pseudo-divide-reduction(p, <£, -<),q ^  0 ,p € i? \  6 }

od
Return <£.

where the procedure Basic-set (5, -<) calculates a basic set which is contained 
in S  with respect to a variable ordering -<. The procedure pseudo-divide- 
reduction(p, -<) successively reduces (pseudo-divides) the polynomial p with 
respect to the polynomials in $  starting with the largest polynomial with respect 
to

6( / i :  • • • j fm)  is called a chain if (i) m  =  1 and / i  ^  0 or (ii) m  >  1 and the class of / i  >  0 
and for i >  j ,  f j  is of higher class than fi  and reduces with respect to fi .  The class of a 
polynomial /  is called i if the highest variable of f  is yi.

7L C ( f )  denotes the leading coefficient of the leading monomial in f .  This coefficient is also 
called the initial of a polynomial f .
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B a s ic -se t(S, -<): 
set B  := 0 
set T  := S  
while T  7  ̂ 0 do

p := a smallest polynomial with respect to ^  in T 
5  : = 5 U  {p}
^  := € T  \  {p}, q is reduced with respect to p}

od
Return B.

This algorithm for calculating a characteristic set for a given set S  is not very 
efficient because at first all possible remainders are computed and then the next 
basic set is determined. In [46] another more efficient algorithm for computing a 
characteristic set can be found.

4.3 Resultant method

The last elimination method which is described in this chapter is a method based 
on the resultant of a system of equations. This method is the oldest and best- 
known approach and was mainly developed in the nineteenth century and at the 
beginning of the twentieth century. In this section different formulations for the 
resultant of a set of polynomials are described.

This method again became very popular because of work done by Goldman et 
al. [40], Sederberg et al. [74], and [75]

In their paper [74], Sederberg et al. define the resultant as:

A resultant R  of a set of polynomials is an expression involving the 
coefficients of the polynomials such that the vanishing of the resultant 
is a necessary and sufficient condition for the set of polynomials to 
have a common nontrivial root.

In the following sections different ways are described for finding a resultant for a
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set of polynomials. At first approaches for a resultant expression for two polyno
mials are given. They are then extended to sets with more than two polynomials.

One application of this elimination method is presented in Chapter 5. There it 
is shown that an implicit equation for a parametric surface can be obtained by:

det(R) =  0.

4.3.1 Resultant expression for two polynomials

Given the following two polynomials8 in x \ :

f ( x i) =  CLmX™ +  am_i£™ 1 +  •.. +  aiXi +  a0 

g ( x i) =  bn X i  +  6n_iX i_1 +  . . .  +  b i X i  +  b0 .

Sylvester’s approach

The Sylvester matrix can be formulated by creating m +  n polynomials of degree 
at most m +  n — 1 from f ( x i) and g(x i). After this new set of polynomials is 
generated it is possible to rewrite the set in the following way9:

/ ^ra 1 • • • Al
Q>m— 1 • • • CL\

\

CL o

CLm CLm—1 • ■ • &0 

bn ^n—1 • • • ^1 b0
bn bn—i . . .  bi bo

bn bn—i >0 /  V

(  g . m + n —1 \

„m+n-2 
X1

X l

( * r 7 ( * i )  )
x"~2f ( x  i)

f ( x  l)
9{x i)~rn-l 

X 1

X
m—2 
1

9{xi) )

R

8 A multivariate polynomial f ( x  i , . . . , x n) is homogeneous of degree n if each term in /  has 
the degree n. If the polynomial is non-homogeneous it is possible to determine a homogeneous 
one by introducing a new variable (see [46]).

9The coefficient matrix does not contain the zero entries.
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The coefficient matrix R  which is of order m +  n is called the Sylvester matrix 
and the determinant of R  (written as: det(R) or \R\) is a resultant of /  and g.

B ezou t’s approach

In this approach the resultant is written as a matrix of order I =  max(m, n). In 
Chionh’s thesis [17] and in the paper [23] written by Chionh and Goldman a vector 
elimination technique is given for finding the Bezout matrix. This technique was 
originally introduced by Goldman et al. [40].

Let Vi denote the following vector:

where for I > i > 0 , a; =  0  if i > m, and bi =  0  if i > n.

Then the given two equations f ( x i) =  0 and g(x i) =  0 can be rewritten as the 
following vector equation:

h(xi) =  v tx[ +  vj.izJ-1 +  . . .  +  v iz i  +  v  =  0.

In [17] and [23] it is shown that the Bezout matrix R  for this vector equation is 
of the form:

The elements are obtained by:

m i n ( l , 2 l + l —i —j )

T i , j  ~~ 'y  > V k , 2 l + l —i —j —k-
k = m a x ( l —j + l , l —i + l )

where Vij denotes the scalar of the determinant given by the two vectors v* and

R  =

\  riti . . .  /



C ayley’s m ethod

The following method is based on Cayley’s statement about Bezout’s method. 
W ith this approach a much compacter expression for the resultant of two poly
nomials is obtained (see Sederberg et al. [74]).

The idea is that if two polynomials f ( x i) and g(x i) have a common root Xi = xo 
then the equation f (x i)g(a)  — f (a )g (x i) =  0  will be satisfied by that common 
root for any value of a. Since the equation will always be satisfied for x\  =  a  
(even if there is no common root), the expression must contain (xi — a) as a 
factor. If the expression f (x i)g(a)  — f (a )g (x i) =  0 is divided by (xi — a) a new 
polynomial is created which has monomial expressions in 1 , a, a 2, . . .  and where 
the coefficients of each monomial is a polynomial in x\.  Since at the common 
root x\  =  Xo the entire expression must vanish for any value of a , each of the 
coefficient polynomials in x\  must vanish at xo.

The method can easily be illustrated by the following example (see also [74]). 
Given the two polynomials }{x{) and g(x i):

f ( x  i) =  a2X i + a 1X i + a 0 

g(x  l) =  b2x\  +  b \ X \  +  bo.

W ith Cayley’s statement a new polynomial for / (x i )  and g{xi) is obtained as: 

f ( x i ) g { a )  -  f ( a ) g ( x i )
c(x  i , a )  = (xi -  a)

(<a,2x \  +  a iX i  +  ao)(b2a 2 +  bi a  +  bo) — ( a 2 a 2 +  a i a  +  oo)(62Xi +  biXi  +  b0)
(x i  -  a )

=  [(fl2&i ~  b2(ii)xi  +  (a2&o ~  &2O0)] ot +  [(a26o — b2Q>o)xi +  (a\bo — b\ao)]

For a common root X\ =  xo to exist the following is obtained:

/  (a2h  -  b2ai) (a2b0 -  b2a0) W  xx \  _  
I (a2bo — b2ao) {a\bo — b\ao) i l l y

R

In this case the resultant is the determinant of matrix R. The elements of R  
can also be interpreted as four combinations of the determinants of v 2 =  (a2, b2), 
v i =  (ai, 61), and v 0 =  (a0 ,&o)-
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Note, that an extraneous factor appears in the determinant of the resultant gen
erated by Beout’s approach or Cayley’s method (see also Chionh [17]).

4.3.2 Resultant expression for three polynomials

In this section methods for finding the resultant of a set with three polynomials 
are given. At first two different methods developed by Dixon [30] and [29] are 
given. Then an approach introduced by Macaulay [54] is shown.

The D ixon dialytic m ethod

In their paper [24], Chionh and Goldman give the Dixon dialytic method for the 
following set of three polynomial equations in the two variables x\  and x 2:

m n
f ( x  i , X 2) =  Y ^ J 2 CLi3X l X2 =  0

i = 0  j —0 
m n

g(x i, x 2) =  =  0
i = 0  j = 0  

m n
h ( x  u x 2 ) =  ^ ^ C i j x l x i  =  0.

i—0 j —0

In [24] it is said that the polynomials f { x \ , x 2), g (x i ,x2), and h (x i , x 2) are bide
gree (m, n) in (xi, x2) if they are of total degree m  +  n in x\ and x 2 but only of 
degree m  in x\  and degree n in x 2

To find the resultant for such a system of equations a similar method to the 
one developed by Sylvester (see Section 4.3.1) can be used. By multiplying 
the three bidegree polynomials by each of the 2 mn  monomial expressions XiXl2 
(0  <  k <  2m —1 , 0  < Z < n — 1 ), 6 m n  polynomials in the 6mn  monomial expres
sions x \ x l2 (0 < k < 3m —1 ,0 < / < 2n — 1 ) are obtained. The spawned equations 
can be represented by a matrix multiplication where the coefficient matrix R  is 
a square matrix of order 6mn  and the determinant of R  is a bidegree resultant.
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The D ixon 3 x 3  determ inant m ethod

In his paper [29], Dixon observed (see also Berchtold and Bowyer [5] or Sederberg 
et al. [74]) that if there exists an x\ = x\  and X2 = x'2 which will simultaneously 
s a tis fy /(x i ,^ )  =  g(xi,X2) = h(x 1 , 0:2) =  0 ? the following determinant will vanish 
for ( ^ i , ^ )  regardless of the values of a  and ft because the top row vanishes.

det(xi,X2i(x, /3) =
f { x i , z 2) g(xu x 2) h(xu x 2) 
f { a , x 2) g (a ,x2) h (a ,x2) 
f(a,/3) g ( a j )  h(a,/3)

Also, this determinant will vanish if either x\ =  a  or x2 =  fi since then two 
rows would be identical. Hence, (x\  — a) and (x2 — P) must be factors of the 
determinant. The following equation 7  can be defined:

j { x u x 2,a,/3) =
det(xi,X2,Oi, /3) 

( x i - a ) ( x 2 - P ) '

Considering 7  as a polynomial in a  and ft whose coefficients pij are polynomials 
in Xi and X2 the following is obtained:

2n—1 m—1
7 =  H  Pij{x2, x i ) a ll33.

f = 0  j —0

For 7 , 2mn polynomials have been generated, each of which has 2 m n  terms in x\  
and X2 since Xi appears to degree n — 1 and X2 to degree 2m — 1 . The resulting 
set of equations can be expressed as:

\  a 2 r l - 1 /3m _ 1  /
A ( 2 n  -  1, 

m  — 1, 0, 0)

A(0, 0, t, j )  

A ( i ,  j ,  k ,  I)

A { 2 n  -  1, 
m  — 1 , k , l )

.4 (0 ,0 , n  -  1 ,2 m  -  1) \  

A ( i , j , n  — 1, 2m  — 1)

A ( 2 n  — 1, m  — 1, 
n  — 1, 2 m  — 1) /

ck x l 2 1 =  0 .

V

The resultant of the polynomial set f ( x i, X2), g(xi, X2) and h{x\, x 2) is then given 
by the determinant of the coefficient matrix R.

The question which still has to be answered is how the elements A(z, j , k , I) of the
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matrix R  can be determined. Dixon [29]10 showed in his paper tha t A ( i , j , k , I) =  
]£(apq, ars, atw) where (apq, ars, atw) indicates a determinant of a 3 x 3 matrix 
of coefficients a^ and i , j , k , I are the degrees of a, (3, x \ , x 2.

To find the determinants belonging to one element of the matrix R  all possible 
combinations of (p, r, t') and (q, s', w) which satisfy the equations p +  r +  t' =  i 
and q +  s' +  w =  / must be found. Then for all these combinations the missed 
indices s and t are calculated by t  =  t' +  k +  1 and s =  s' +  j  +  1. The indices 
p , q, r, s, s', t, t' and u; are non-negative integers and smaller than or equal to the 
maximum of the degree m or n.

The sum of all these determinants can be simplified by crossing out those de
terminants which have two identical rows, or rows with identical elements in a 
different order, because these determinants add up to zero. Also, the coefficient 
A(l , k, j ,  i) can be written down when A(i, j, &, I) has been found because the in
terchange of the degree of x\  and (3 and x 2 and a  will only change (apq, ars, a tw) 
into (aqP, a sr, awt ).

If the determinant of the coefficient matrix R  is calculated the resulting poly
nomial will be of degree 2 mn  where m  is the degree in x \  and n the degree in 

x 2 .

Example:
Given is a parametric surface of (total) degree four (that means degree two in x± 
and x2). The resulting matrix R  has following form:

/ >4(0, 0 ,0 ,  0) >4(0,0, 1 ,0 ) >4(0,0, 0, 1) >4(0, 0, 1, 1) >4(0, 0 ,0 ,  2) >4(0, 0, 1 ,2 ) >4(0, 0 ,0 ,  3) >4(0, 0 ,1 ,3 ) \
A ( 0 ,  1 ,0 ,  0) >4(0, 1, 1 ,0 ) >4(0, 1, 0, 1) >4(0, 1 ,1 , 1) >4(0, 1 ,0 ,2 ) >4(0, 1, 1, 2) >4(0, 1 ,0 ,  3) >4(0, 1, 1, 3)
> 4 (1 ,0 ,0 ,0 ) >4(1 ,0 , 1 ,0 ) > 4 (1 ,0 ,0 , 1) >4(1, 0, 1, 1) >4(1, 0 ,0 ,  2) >4(1,0, 1 ,2 ) >4(1,0, 0, 3) >4(1,0, 1 ,3 )
>4(1, 1, 0, 0) >4(1, 1, 1 ,0 ) > 4 (1 ,1 ,0 , 1) >4(1, 1, 1, 1) >4(1, 1, 0, 2) >4(1, 1, 1, 2) >4(1, 1, 0, 3) >4(1, 1 ,1 , 3)
>4(2, 0 ,0 ,  0) >4(2,0, 1 ,0 ) >4(2,0, 0, 1) >4(2, 0 ,1 ,  1) >4(2, 0 ,0 ,  2) >4(2, 0, 1, 2) >4(2,0, 0 ,3 ) > 4 (2 ,0 ,1 ,3 )
>4(2, 1 ,0 ,0 ) >4(2, 1, 1 ,0 ) >4(2, 1 ,0 , 1) >4(2, 1, 1, 1) >4(2, 1 ,0 , 2) >4(2, 1, 1, 2) >4(2, 1, 0, 3) >4(2, 1, 1, 3)

V
>4(3 ,0 , 0 ,0 ) >4(3,0, 1 ,0 ) >4(3,0, 0, 1) >4(3 ,0 , 1, 1) >4(3, 0 ,0 ,  2) >4(3, 0, 1, 2) >4(3, 0 ,0 ,  3) >4(3, 0 ,1 ,3 )

J£ O o >4(3, 1, 1 ,0 ) >4(3, 1 ,0 , 1) >4(3, 1, 1, 1) >4(3, 1, 0, 2) >4(3, 1, 1, 2) >4(3, 1, 0, 3) >4(3, 1, 1 ,3 )

To get all the determinants for the matrix element A(2 ,1 , 1 , 1 ) all combinations 
of (p, r, t') and (q, s', w ) must be found which satisfy the equations p +  r  + 1' =  2 

and q -f s' +  w = 1. The combinations for (p, r, t') are (2,0,0), (0, 2,0), (0 ,0 ,2 ),

10In [74] this formula developed by Dixon is given, too. However, it is not clearly explained 
and therefore this formula is given here in more detail (see also [5]).
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(1 , 1 , 0 ), (1 , 0 , 1 ) and (0 , 1 , 1 ) and for (q,s' ,w ) are (1 , 0 , 0 ), (0 , 1 , 0 ) and (0 , 0 , 1 ). 
Now for all these combinations the missing indices s and t must be calculated by
using the equations: t =  t’ +  2  and s = s '+  2 . For t the following solutions to
this are possible:

(2 , 0 , 0 ) => 
(0 , 2 , 0 ) =» 
(0 , 0 , 2 ) =»

t = 2  

t = 2  

t = 4 «
(1 , 1 , 0 ) =* 
(1 , 0 , 1 ) =>

t = 2  

t = 3 w
(0 , 1 , 1 ) => t = 3 m

and for s :
(1 , 0 , 0 ) =» 
(0 , 1 , 0 ) =»

s =  2  

s =  3 w
(0 , 0 , 1 ) =► 8 = 2

In fact, the solutions which are marked (*) are not possible because the indices
must be smaller than or equal to the maximum of the degrees m  and n. Therefore 
the index combinations for (p, r, t) are (2 , 0 , 2 ), (0 , 2 , 2 ) and (1 , 1 , 2 ) and the ones 
for (q, s, w) are (1 , 2 ,0) and (0 ,2 , 1 ). These solutions must now be combined and 
for A{2,1,1,1) this sum is obtained:

^4(2,1,1,1) =  (&21, ao2, a2o) +  (a2o, &02, &2i) +  (aoi, a22j ^ 2 0 ) +

(aoo? a 22 j a2i) +  (an , a i2, a2o) +  (aio, a i2, a2i).

The first two determinants can be crossed out because the value of the second 
one will be the same as the value of the first one excepting the sign. So finally 
the element A(2 , 1 , 1 , 1 ) has following form:

A (2 ,1,1,1) =  (aoi, a2 2 , a 2o) +  (aoo, a 2 2 , a 2 i) +  (a n , a i2 , a 2o) +  (aio, a i 2 , a 2 i).

After finding the determinants for A( 2 , 1 , 1 , 1 ) the determinants for A(  1 , 1 , 1 , 2 ) 
are given by changing the indices:



M acaulay’s m ethod

In his paper [54], Macaulay introduced a simpler expression for the resultant of 
k homogeneous polynomials in k variables where k > 2. His method writes the 
resultant as a quotient of two determinants, where the denominator is a sub
determinant of the numerator (see also [17] or [24]). If the set of equations is 
linear the resulting Macaulay resultant is equivalent to the determinant of the 
system. If the number of the equations and the variables is two the Macaulay 
resultant is equivalent to Sylvester’s resultant. Note that in these two cases the 
denominator of the Macaulay method is 1.

In their paper [46], Kapur and Lakshman describe the Macaulay method. Given 
are n  homogeneous polynomials / i ,  / 2 , . . . ,  f n in %i, . . . ,  x n. For each poly
nomial fi  the degree is d*. The maximum degree is given by the following 
sum:

d*M =  1 +  ^2(di — 1 ). 
i

All terms of degree in Xi, X2 , . . . ,  xn are given by the set

T  = • •. , x ^n\oLi +  a 2 +  . . .  4- an = dM}-

The number of terms in T  is given by:

(  dM +  n — 1 \

A  " - 1 /

To generate t equations in t variables the original homogeneous polynomials 
f u  / 2 j • • • ? fn in xi,  x2, • • ., x n have to be multiplied with the appropriate terms 
i.e. terms which lead to the required system (see also Sylvester’s approach for 
two polynomials in one variable). The t variables are power terms of degree dM-

In [46] a general construction is given. First the appropriate terms are defined 
by:

T (0) =  {terms of degree dM — d\]

T ^  =  {terms of degree dM — d2 and prime to ref1}

T (2) =  {terms of degree dM — ds and prime to x f 1 or }
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j>(n i) _  |term s of degree dM — dn and prime to x f 1 or x%2 or . . .  or x%Li}

A matrix N  can then be constructed with t columns and rows11. The columns 
of N  are labelled by the terms in T. The first \ T ^ \  rows are labelled by the 
terms in T ^  and so on. After labelling the columns and rows, the coefficients 
of /i» / 2 > • • • > /n have to be arranged depending on the labels of the columns and 
rows.

This generated matrix N  is the numerator of the Macaulay resultant. The denom
inator D  (which is a sub-matrix of N)  can be obtained by deleting all columns 
labelled by terms which can be reduced in any n — 1 of the variables, and those 
rows which contain one of the coefficients of the deleted columns.

The Macaulay resultant R  is then given by:

det(N) 
det(D) '

Note, that this resultant R  is only defined if det(D) /  0.

In their paper [46], Kapur and Lakshman give an example of the Macaulay’s 
method. Another example for this method can also be found by Chionh et al [20].

4.4 Advantages and problems

All the elimination methods described above have their strengths and disadvan
tages. In this section some of the problems are described.

In general it can be said that these elimination methods are theoretically elegant 
and well-suited for implementation in symbolic mathematical systems. However, 
the methods given in this chapter are not numerically stable and their implemen
tation in floating point arithmetic is very difficult. Furthermore, their inefficiency 
in memory and processing time requirements makes their use unattractive (see

11 It is possible to show that the matrix N  is always a square matrix (see, for example, [46]).
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also Sherbrooke and Patrikalakis [80]).

Grobner basis

In theory, the Grobner basis can be used for all elimination problems. Very good 
results can be achieved if the set of equations results in a sparse system. However, 
the determination of the Grobner basis is usually very complicated. In most 
cases the augmentation of the basis (see Buchberger’s algorithm in Section 4.1.4) 
generates bigger sets which does obviously increase the computational load of the 
method.

Even though most algebra systems such as Maple or Mathematica provide the 
calculation of the Grobner basis sometimes no result is obtained because the cal
culation runs out of memory (see Chapters 5 and 8 ). In some of these cases a 
re-ordering of the terms might lead to a solution. However, this is not very sat
isfactory especially if, for example, the method is going to be used automatically 
as an in-built algorithm in a geometric modeller.

W u -R itt’s m ethod

The W u-Ritt method is subject to similar disadvantages to the ones given for 
the Grobner basis.

For this elimination method the computation of the characteristic set is very 
complicated. The result which is obtained depends very much on the polynomial 
set. Again it can be said that the method performs much better if the input set 
of equations is a sparse system. Additionally, this method is so far not integrated 
in most of the well-known computer algebra systems.

R esultant m ethod

In general, it is possible to generate the resultant m atrix for a set of polynomial 
equations. Usually, this matrix has a great number of rows and columns. Of
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course, this does increase the computational load.

Also, it has to be said that if the resultant method is used extraneous factors 
might be introduced. This depends on the way the resultant is formulated. Many 
papers give evidence of situations when this happens.

The main disadvantage of the resultant method is that in some cases the resultant 
of a polynomial set can become identically zero. This is due to the fact th a t the 
resultant matrix is singular12. Obviously, in these cases no information about 
a common nontrivial root for the system of polynomial equations is obtained. 
Different approaches have been investigated to overcome the situations when 
the resultant matrix becomes singular. Some of these approaches are given in 
Chapter 5.

12 One reason for a singular resultant matrix is the presence of base points of the parametri- 
sation (see also Chionh [17]).
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Chapter 5

U sing the resultant m ethod for 
im plicitization

This chapter will discuss how the resultant method given in Chapter 4 can be 
applied to finding the implicit equation for a surface given in a parametric form. 
This is a problem that has received a lot of attention in the literature—see for 
example Chionh and Goldman [2 2 ], Fix et al. [36], Gao and Chou [37], Gold
man et al. [40], Manocha and Canny [56] and [57], Sederberg [74] and [75]. The 
main new result in this chapter is an application of a method for circumventing 
the zero-determinant problem in implicitization. Since implicitization is a spe
cial application of the elimination methods it would also be possible to use the 
Grobner basis method or the W u-Ritt method (see Chapter 4). However, these 
two methods are not used for the implicitization in this thesis1.

It is a well-known fact that in general it is always possible to find an implicit 
equation for a surface given in its parametric form. However, the converse is not 
always true (see Hoffmann [42]).

In the first section of this chapter the implicitization of parametric curves and 
surfaces using the resultant method is described. The next section then deals 
with singular resultant matrices—one of the drawbacks of the resultant method

1To check some implicit equations obtained by using the resultant method the Grobner basis 
was calculated, too. Therefore the implementation of the Grobner basis in the algebra system  
Maple was used as a “black box” but no further investigations were done into this method.
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(see also Section 4.4). Different approaches are given to overcome this problem.

5.1 Implicitization of parametric curves and sur
faces

In Equation 5.1 a set of polynomial equations for a planar curve 9 is given:

/lOO =  a m t m  +  <2m— i t m  1 +  . . . +  a i t  +  flo

/2OO =  bm t m  4- bm - i t m  1 +  . . .  +  b i t  +  bo (5-1)

where m  gives the maximum degree of t .  By analogy, in Equation 5.2 a set of 
polynomial equations for a surface 4> in three-dimensional space is shown (see 
also Section 1.1):

/ i ( s , t )  =  a m n s m t n +  . . .  +  a n st +  a i o s  +  aoo

/2(s, t ) =  6mnsmtn +  . . .  +  b u s t  +  b i o s  +  b0Q (5-2)

f s ( s , t ) =  C m nSm t n +  . . . +  C u S t  +  CioS +  Coo

where m  and n  are the maximum degrees of s  and t  respectively. Note, that in 
general the parameters s  and t  are in [—oo, oo]. However, for some applications it 
is more convenient to restrict the parameters2 to a range which determines only 
a part of the surface.

If such a curve or surface has to be described by an equivalent implicit equation 

( f ( x i, £2) =  0 or f ( x i ,  X2 ,  £3) =  0 respectively) the resultant method can be used. 
For example, Equation 5.2 determines a point P°(xf,:r2,^3) on surface 0 for a 
parameter combination s  =  sq and t  =  t o .  Therefore it is possible to say that 
each point P ( x i , X 2 , X z )  on the surface is determined as:

1̂ =  a m n S m t n  +  . . . +  a n S t  +  G10S +  &00

x 2 —  bm n s m t n +  . . .  +  6x1 s t  +  610S +  boo (5-3)

£3 =  c m n s m t n +  . . . +  C u S t  +  C10S +  Coo

2 This does not affect the generality of the investigations done in this and the following
chapters.
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where s and t are a parameter combination in the defined range. Now the left 
hand side of Equation 5.3 can be subtracted and thus leads to a new set of 
equations in the following form:

0 =  CLrnnSmtn +  . . . +  CluSt +  <2ioS +  (floo — ^l)

0 =  bmnSmtn +  • . . +  bust  +  &10S +  (6()0 — ^ 2) (5-4)

0 =  CmnSmtn +  • • • +  Cn St +  CioS +  (Coo ~ £3)

If the implicit equation of the surface is required its form must be f ( x i ,  X2 , x 3) = 0
and for all points on the surface the equation must be satisfied. This last condition 
can also be viewed as a condition under which the set of the polynomial equations 
/i(s , t), / 2 (s,t) and f 3{s,t) is satisfied simultaneously. This is equivalent to the 
elimination problem given in Chapter 4. Therefore the resultant matrix R  of 
the set given in Equation 5.4 contains information about an implicit equation 
f ( x i , X 2 ,Xs) =  0  for the surface.

The resultant matrix R  for a set such as given in Equation 5.4 can be found 
by using one of the methods given in Section 4.3. Obviously, in this case the 
resultant matrix does contain the unknowns Zi, X2 and x 3. If the determinant of 
the resultant matrix R  is calculated the resulting polynomial equation will be an 
expression in x\, X2 and £3 .

Therefore the calculation of an equivalent implicit equation for a parametric curve 
or surface can be formulated by:

det(R) = f ( x  i ,x 2 , x3) =  0

where R  is the resultant matrix for the set of polynomial equations describing a 
parametric curve or surface in space.

In general, the degree of the resulting implicit equation is much higher than the 
degree of the original parametric surface. If m  and n represent the maximum 
degree of a parametric surface, the degree of the implicit equation determined by 
using the resultant method is 2 ran. Obviously, the number of coefficients for such 
an implicit equation is bigger, too. In [73] it is shown that an implicit equation 
of degree d =  2 m n  has ■Cdd.1.)(d,+2)(d+3) terms.
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In Chapter 4 different methods for the determination of the resultant R  for a set 
of equations are given. However, for finding the equivalent implicit equation of a 
parametric surface it does not matter in principle which approach is used. The 
implicit equations which are obtained from different methods will only differ by 
a constant factor.

5.1.1 Examples

In this section some examples for the implicitization of parametric curves and sur
faces are given. More examples can be found in the following papers: Chionh and 
Goldman [23] and [24], Kapur and Lakshman [46], Sederberg [72], and Sederberg 
et al. [74] and [75].

For the computation of the implicit equations the algebra system Maple was used.

Im plicitization  o f param etric curves

Consider the following planar curve:

f i(t)  =  t -  3 

/ 2 W =  t3 — 212 — 5.

This set of equations determines all the point P(x  1,^ 2 ) on a planar curve. By 
doing the step mentioned above a new set of equations results:

0 =  t — (3 +  x\)

0 =  tz — 2t2 — (5 +  X2).
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For this set of equations the following Sylvester matrix can be generated:

(3 4~ X\) 0 0
1 —(3 4- xi) 0
0  1 — (3 4~ X\)

- 2  0  - (5  +  x2)

The implicit equation for the parametric curve is obtained by the determinant of 
the Sylvester matrix R :

0 =  x3 +  7x\ 4- 15x1 — x2 4- 4. (5.5)

Obviously, in this case it would also be possible to find the implicit equation 
without generating the Sylvester matrix. For example, the first equation can be 
rewritten as:

t — 3 -f- X\ .

This relationship for t and x\  is then substituted into the second equation. This 
yields the following implicit equation:

0 =  (3 4~ Xi) 3 — 2(3 4- Xi) 2 — (5 +  X2)

which is equivalent to Equation 5.5.

5.1.2 Im plicitization of bilinear parametric surfaces

The following bilinear parametric surface is given:

/i(s , t) =  1 H" 2 s 4* 2 1 3st

f 2 {s,t) = l  +  3s +  4t — 3st

/ 2 (s,t) =  1 +  2s +  St — 4st.

After performing the steps mentioned above an implicit equation for the resulting 
set of polynomial equations below is required:

0  =  (1  — Xi) 2 s 4“ 2 1 ~\~ 3st

R  =
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0 =  (1 — x2) 4- 35 +  At — 3 st 

0 =  (1 — x3) 4- 2s 4- St — 4 st.

Sederberg et al. explicitly give in their paper [74] a formulation of the resultant 
for this kind of surface (see [74] also for the general case). If their result is used 
the given set of equations can be rewritten in terms of a matrix multiplication:

( 1 - X i ) 2 2 3 0 0 ^ f  1 ]Ts1r—1 3 4 - 3 0 0 s
(1 -  X 3 ) 2 8 - 4 0 0 t

0 (1 -  Xi) 0 2 2 3 st
0 ( l - z 2) 0 4 3 - 3 s2
0 (1 -  S3 ) 0 8 2 - 4 J \ S H )

R

The matrix R  is the resultant of the set of equations. If the determinant of R  
is calculated the following implicit equation for the given parametric surface is 
obtained:

0 =  —610 4- 356a;3 — 996x2 +  1404xi — 12x ix 3 — 732x2X3 

+270^1 — 8 OX1X2 4- 448x2 — 48xJ.

5.1.3 Im plicitization of parametric surfaces

The following example shows how the resultant method can be used for the 
implicitization of a more general parametric surface. Given following parametric 
surface:

/i(s , t) = 3s2t2 +  2 s2t — 5 st2 — t + 2 

/ 2 (s, t) = —s2t2 + 2st + ?>s — t2 + t — \

/ 3(5, t) =  2s2t2 +  s2t — 512 — st2 -  s + 212 — 2.
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Again, after subtraction of a general point a new set of equations is obtained:

0 =  3 s2t2 +  2 s2t — 5 st2 — t + (2 — xi)

0 =  —s2t2 +  2 st -f- 3s — t2 + 1 — (id* X2)

0  =  2 s2t2 +  s2t — 5s2 — st2 — s 4 - 2t2 — (2  +  £3 ).

As shown in Section 4.3.2 a Dixon matrix can be generated for this set of poly
nomial equations. The resultant matrix R  and the implicit equation obtained for 
the defined parametric surface ( f ( x i , ^ ^ )  =  det(R) =  0) is very large and is 
given in Appendix A.

It is obvious from this example that in general the resultant matrix can become 
very big. It also shows that the degree of an equivalent implicit equation is much 
higher than the original parametric surface. In this case the maximum degree of 
the implicit equation is 8 , whereas the parametric surface was given by a set of 
equation with a total degree of 4 (m = 2 and n = 2).

As said in the introduction to this chapter the Grobner basis can also be used 
for the implicitization of parametric surfaces. When the Grobner basis method3 

was used for this example the computation ran out of memory on a 256M virtual 
memory Pentiumll running Linux.

5.2 Singular resultant matrix

As said in Section 4.4, the main drawback of the resultant method used for the 
elimination or implicitization problem is that the resultant m atrix R  can become 
singular. In these cases it is not possible to obtain any information about the 
solution of the system or a possible implicit equation for a parametric curve or 
surface.

One of the reasons why the resultant matrix becomes singular is that the paramet- 
risation of a surface can contain base points. In [23], Chionh and Goldman defined 
a parameter point that produces the point whose coordinates are all zero as a

3For the calculation of the Grobner basis the algebra system Maple was used.
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base point. In one of their earlier papers [21] they mentioned that base points can 
always be removed by perturbations to generate a surface parametrisation which 
has no base points. However, to find the original implicit representation from the 
perturbed one it is necessary to undo the perturbations (see also Chionh [17]). On 
the other hand it is also important to say that each simple base point decreases 
the degree of the implicit equation (see Sederberg and Chen [76]).

In the following, different approaches are given which overcome this problem i.e. 
an implicit equation is obtained even though the resultant matrix R  becomes 
singular. The first method described here is given by Sederberg and Chen [76] 
and uses moving curves and surfaces for implicitization. The second approach 
is an extension to Dixon’s method and was introduced by Kapur et al. [49]. As 
far as the author can tell the work which follows is the first application of this 
method to implicitization.

Beside these two methods there are other approaches which were introduced by 
Canny [16] and Chionh [17]. In [17] a perturbation of certain coefficients is 
suggested to obtain non-zero conditions. The disadvantage of this method is 
that it is non-automatic and it requires human expertise. Canny [16] defined 
the Generalised Characteristic Polynomial for Macaulay resultants. This is a 
systematic way to perturb a system of polynomials so that non-zero conditions 
can be obtained. The same can be achieved for Dixon resultants but leads to a 
larger Dixon matrix.

5.2.1 Approach with moving curves and surfaces

This first approach which does not involve any resultant was first presented by 
Sederberg and Chen in their paper [76]. The main idea of this method for curve or 
surface implicitization is to generate a system of moving curves or surfaces which 
then lead to an equivalent implicit equation for a parametric curve or surface.
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Planar curve im plicitization

The general idea for curve implicitization using moving lines is described by 
Sederberg et al. [77]. This approach is based on a geometric interpretation of the 
resultant method.

In general, a pencil of lines in the plane can be defined by:

(fll^l +  b \X 2  +  Ci) (1 — t )  +  {o>2^1 H" +  C<2)t =  0 

where (ai^i +  b\X2 +  ci) and (0 2 ^ 1  +  ^2 ^ 2  +  C2) are two distinct lines.

Now consider two distinct pencils. For each value of t there exists a line from each 
pencil. These intersect in one point. All the points obtained by the intersection 
of the corresponding lines generate a part of a curve. It can be shown th a t the 
implicit equation of this part of a curve is given by the following determinant:

CL\X\ +  b \ X 2 +  Cl 0 2^ 1  “I" ^2^2 c 2

O ' Z ^ l  “I" b $ X 2 +  C3 CL4 X 1 +  6 4 X 2  +  C4
=  0

where a i^ i +  b\x2 +  Ci and c^zi +  6 2 ^2  +  C2 generate the first and a3Xi + 63X2 +  C3 

and 0 4 ^ 1  +  64X2 +  C4 the second pencil.

In Chapter 1 a planar parametric curve Q (t) was defined by its non-homogeneous 
equation. For the following investigations the homogeneous form is more conve
nient. This form is given by:

x i  =

x 2 =  fx2(t)

w = f w(t).

The Cartesian coordinates of a point on the curve are given by:

fx1 (̂ ) 
fw{t) 
fx2 {t)

Xl fw(t)

X2 fw{t)
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In [76] it was shown that a moving line is a parametric family of lines defined 
implicitly and can be formulated by:

XL(t)  := X £ Lj t j =  0
j =o

(5.6)

where Lj =  (aj,bj,Cj) and X  =  (xi,X2 ,w). For the case m  =  1 the moving line 
is a pencil.

A moving line follows a curve Q(t) =  (f Xl(t), / X2 (t), f w{t)) if

Q (t)L(t) =  0 . (5.7)

An equivalent meaning to Equation 5.7 is that for any value of t the point Q(t) 
lies on the line L(t).

There exist m  +  1 linearly independent moving lines Li(t )X = 0 where

m
Li(t) =

j = 0

with Lij =  (a,ij, bij, Cij) and i = 0 , . . . ,  m  such that

Q (t)Li(t) = 0

where i =  0 , . . . ,  m.

By selecting any set of m  +  1 linearly independent moving lines following Q (t) 
the following determinant can be defined:

/(X )  =

L qq . . . Lom 

Lmo • • • Lmm

The implicit equation of Q (t) is given by /(X ) =  0.

The idea of moving lines can be extended to moving curves. In [76] moving curves
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are defined by:

c(x,t) = ZM x) t j = o
J — O

(5.8)

where X  =  (x1, x 2,w) and f j (X )  is a polynomial of degree d. Again a moving 
curve is said to follow a parametric curve Q (t) =  ( /Xl(t), /x2W> fw(t)) if, for all 
values of t, the point P(t) lies on the moving curve:

C (x ,i)  =  =  o. (5.9)
j=o

If the degree of Q(t) is n  then there are at least j (li+3H”1+1) _  nc[ linearly inde- 
pendent moving curves of degree d in X  and degree m  in t following Q (t). Again 
it is possible to select m  +  1 moving curves:

Ci(X,t) = £ / y ( X ) f 3' =  0
j=0

where i = 0 , . . .  ,m. These curves follow the curve Q (t). The implicit equation 
of Q(t) is given by the following determinant:

/(X ) =

/oo(X) . . .  / 0m(X)

fmO (X) . . .  / mm(X)

Surface im plicitization

Although a parametric surface is introduced in Chapter 1 in a non-homogeneous 
form in this section it is more convenient to use its homogeneous form X (s , t )  
which is defined by:

=  fx  1 ( 5̂ f)

^2 =  f x 2 (^j

Z3 =  f x z ( s , t )

W  —  f y j  ( 5 , t )  •
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With this definition the Cartesian coordinates of a point which lies on the surface 
are given by the following division:

_  fx  i (s, t )
1 fw(s,t)

f x 2( s , t )

X2 f w(8,t)
fx*{s,t)

3

In [76] a moving surface is given as:

g(X ,s , t )  =  f ^ h i (X )y i ( s , t )  (5.10)
i=0

where hi(X ) define a collection of implicit surfaces and 7 i(s,t) define a collection
of polynomials in s and t. Such a moving surface is now said to follow a surface
X(s , t )  if:

g (X (s , t ) , s , t )  = 0. (5.11)

If the implicit equation of X(s, t) has to be found it is necessary to generate a 
set of a moving surfaces:

a
gj(X ,s , t )  = £ h j i (X)'yi(s,t) =  0

i —1

where j  = 1 , . . .  ,cr. Each of the moving surfaces follows the surface X(s, t). Then 
a determinant can be defined which has the following form:

/(X ) =
M X )  M X )

M X )  . . .  M X )

The implicit equation for X(s , t )  is given by /(X )  =  0.

The challenge of this method is to find such a collection of moving surfaces. In 
the paper [76], Sederberg and Chen sketch a trial-and-error automatic method 
for searching for such a set. However, the theory behind the method is not very
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easy to understand. Sederberg mentioned in a personal communication to the 
author [71] that they continue to study this problem and a few advances are going 
to be published in the near future. At the time when this thesis was written no 
further results were available.

E xam ple:
The following example may help to make the method using moving surfaces 
clearer.

Consider a surface given in its homogeneous form:

X i  =  s t  +  1

x 2 -  t  

x z =  s

w  =  s t  +  s +  t +  1.

In this case a set of three moving surfaces can be selected which have the following 
matrix form:

X3 - x 2 0
/ 'v

t

£1 - x \ - X 2 < s

—£3 W — X 1 £3  . 1

F

The determinant of the matrix F  is:

det(F) = x%xl — x^xs +  x2x^w — x i x 2x$ — x i x 2xl  

=  x 2x 3(x2xl — x2 -  Xi — x i x 3 +  w).

Since the implicit equation is equal to zero, a simpler form that det(F) = 0 can
be obtained. Thus the implicit equation /(X )  is given by:

/(X ) =  0 =  x 2x^ — x 2 — xi — x\Xs +  w

where w — x \ +  x 2 + £3 .
Note, that using this condition already for the generation of F  would have
changed the last moving surface in F  to —£31 +  (x2 +  £3)s — x\.

In [76] another example can be found which gives the implicitization of the Steiner 
surface by using the moving surface method.
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5.2.2 Kapur’s extension to D ixon ’s m ethod

This method was introduced by Kapur et al. [49]. In this section a brief review 
of their method is given. Kapur showed how Dixon’s method can be extended 
for cases where the Dixon matrix becomes singular.

The main advantage of Kapur’s method is tha t it does not involve any pertur
bation. Instead a condition on singular Dixon matrices is identified and proved 
under which the needed non-zero conditions for the existence of a common so
lution for a system of equations can be extracted. By using this extension most 
of the algebraic and geometric problems can be solved. Also the given extension 
does not introduce any new variables or terms into the system of polynomials. 
Another advantage of Kapur’s method is that it is fully automatic and does not 
require any human intervention.

G eneralisation o f D ixon’s m ethod

In Section 4.3.2 Dixon’s method for the determination of the resultant R  for three 
polynomials in two variables is given. This method is generalised in [49] and this 
is briefly explained here.

Given is a set F  of n +  1 generic4 n-degree polynomials in n variables. The 
maximum degree of each variable X{ is indicated by dmaXi. An (n -I- 1 ) x (n +  
1 ) determinant A can be created by replacing Xi by a new variable <%. This 
determinant vanishes for each Xi =  and so for all 1 < i < n  the terms (xi — on) 
are factors of the determinant and can be removed by dividing the determinant 
A by these. Let S be the following polynomial

c I  \  ^ ( * ^ 1  J •  ■ • 5 ̂ 7 1 )  ^ - 1  5 * * * 5  ^ n )
0  , . . . j X j 2 j  O L \ , . . . , O Cji) '} T T

(zi - a l ) . . . { x n - a n)

which is called the Dixon polynomial. For any common zero of F  the Dixon
polynomial vanishes regardless of the values of a i , . . . ,  a n. Let s' be the set of
all the polynomials in X\ , . . . ,  xn which are coefficients of the power products of

4In [49] n + 1 non-homogeneous polynomials pi, . . . ,  pn+i in x±,.. . ,  xn are said to be generic 
n-degree if there exist non-negative integers mi, . . . ,  mn such that each 
Pj = i ®I1 •••««" for all 1 < j  < n + 1 .
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a i , . . . ,  an in S. If the number of equations in the set s' is r, there are r power 
products in X i , . . .  , x n in the equations of s ' . If R  is an r x r coefficient matrix 
of s' then

s' = R

n?=1x;

1 ^ ( 0
Xi 0

X2 =

• 
o

i'Xdmaxi 1 V ° /

Again, R  is called the Dixon matrix and its determinant is the Dixon resultant. 
The vanishing of the Dixon resultant is a necessary and sufficient condition for 
the set s' to have a nontrivial zero.

K apur’s extension to D ixon’s m ethod

Above it was shown how the Dixon matrix can be found for generic n-degree 
polynomials. In the same way a matrix D  can be created for general non-generic 
n-degree polynomials. This matrix D  is called the extended Dixon matrix. In 
these general cases the extended Dixon matrix might be an ri x r2 matrix where 
r\ < r and r2 < r (r is the number of equations in the set s'). Of course, if 
7*1 /  7*2 then the extended Dixon matrix D  will be rectangular.

Again, after the extended Dixon matrix D is found the extended system of the 
equation s' can be rewritten in the following way:

(

s' = D

1
Xi

X2

\ / o \  
0  

0

HSU2*
i x d r .-1

V o /

where dmaXi indicates the maximum degree of the variable Xi in the original set 
of equations.



If each power product of Xi , . . . ,  x n is viewed as a new variable u;, then a new set 
e of homogeneous linear equations is created. Of course, if the extended Dixon 
matrix D  is not singular or rectangular then a non-zero determinant of the matrix 
implies a nontrivial solution of e.

In [49], Kapur et al. gave and proved an algorithm which deals with singular and 
rectangular matrices. The steps of this algorithm are:

1 . Find the extended Dixon matrix D  for the set of equations.

2 . Solve the matrix equation D u  =  0 using Gaussian elimination. The vector
u  =  ( ti>i,. . . ,  u n) denotes the solution of the system.

3. Find out if there exists an Ui in u  such that Ui =  0  and also C  =>
monom(rrii) =  0  where C is a set of constraints on the variables x i , . . . ,  xn 
of the form x^ /  0 A . . .  A Xik ^  0 and monom(mi) denotes the monomial 
corresponding to the column m* (mi being the first column of the extended 
Dixon matrix).

I f  such an Ui exists then

(a) Compute Drow (see below).

(b) Return the product of all the pivots of Drow. The existence of this 
product is a necessary condition for the solution of the system and 
describes a polynomial which is not identically zero but vanishes 
at all the roots of the system.

Else this algorithm fails 5.

Drow mentioned in Step 3a can be constructed from the extended Dixon matrix 
D by simple Gaussian elimination. In [49] the following properties of Drow are 
given:

1- Drow is row-reduced, i.e., each column of Drow which contains the leading 
non-zero entry of some row has all its other entries 0 .

5 Kapur mentions in his paper that this algorithm occasionally fails to find cu;, but he does 
not give the circumstances when no Ui can be found. The author has not yet been able to make 
the method fail.
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2. D row is row-equivalent to D , i.e., Dr(m} can be obtained from D  by a finite 
sequence of the following two steps:

(a) E lim ination step: Replacement of ith row of D  by the ith row plus d 
times the j thTOw, where d is any rational function in the parameters, 
and i ^  j .

(b) P ivoting  step: Interchange two rows of D.

The row Drow then gives a necessary condition that a set of equations has a 
nontrivial solution. If one is looking for an implicit equation it is also contained 
in Df-oxu •

K apur’s m ethod applied to surface im plicitization

An example will now illustrate how Kapur’s extension can be applied to surface 
implicitization. Consider a parametric surface generated by the following set of 
polynomial equations:

f i  =  1 +  4 s — 4 s2

= 1 +  6  s +  s2

fs = l  +  4 s  +  4 t +  3 t2 +  4 t 2 s2 — 4 s 2 +  4 t s  — I t s 2 — 6 t 2 s.

After performing the same steps as shown in Section 5.1 a new set of equations 
is obtained:

0 =  (1 — Xi) +  4 s — 4 s2

0  =  (1  -  x 2) +  6  s +  s2

0 =  (1 — £3 ) +  4s +  4 t +  3 t2 +  4 t2 5 2 — 4 s 2 + 4 t s  — 2 t s 2 — 6 t 2 s.
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For this set of equations a rectangular (8  x 4) extended Dixon matrix D can be 
generated:

D =

16x2 — 24xi ■+■ 8 

—18xi +  12x2 +  6 
28 — 28xi 

—36x2 4- 33xi 4- 3 

16 — 24x2 +  8x i 
40x2 — 18xi — 22 

8x2 + 2xi — 10 

—4xi -  16x2 + 20

—4xi — 16x2 4- 20 
—12x2 — 3xi +  15 

-1 6 x 2  +  132 — 4xi 
6x i 4- 54 +  24x2 

8x2 + 102 4" 2xi 
—4xi — 16x 2 — 148 

- 5 6  
112

— 18xi 4- 12x2 +  6 
0

—36x2 +  33xi 4- 3 
0

40x2 — 18xi — 22 
0

—4xi -  16x 2 4- 20 

0

— 12x2 -  3x i 4-15  
0

6x 1 4- 54 4- 24x2 
0

—4xi — 16x 2 — 148 
0 

112 
0

After using Gaussian elimination the following row is calculated:

 ̂ ^ ̂  9 x\  4-158 x\  +  8 x2 ^ 1  — 152 x2 — 31 4-16 re?
0  0  0  - -  —    —   -

8  3 x\ — 1 — 2 X2

and therefore the implicit equation obtained is:

x\  + 158 Xi 4- 8  X2 x\  — 152 x<i — 31 4-16 x\  =  0.

5.3 Conclusion

In this chapter it is shown how the resultant method introduced in Chapter 4 
can be applied to the implicitization problem. In general the generated resultant 
matrix becomes very big. In many cases the implicit equation determined by 
this method is of high degree and has a large number of terms. However, if the 
resultant does not become singular the method provides a solution to the implic
itization problem. The use of the Grobner basis method is not an alternative 
because for more complicated cases the computation takes too long or even runs 
out of memory.

This chapter also addresses the problem with singular resultant matrices. One 
approach is given which does not involve the determination of resultants. This 
is based on moving curves and surfaces and calculates an equivalent implicit 
equation for a parametric surface. One advantage of this method is tha t the 
generated determinants containing a set of moving curves or surfaces are smaller. 
A second approach is shown which can also be used to overcome the drawback 
of singular resultant matrices and which I have applied to provide the implicit
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equation for a parametric surface.

W ith the results of this chapter the inclusion of parametric surfaces in a CSG 
modeller can be performed. In Chapter 8  the inclusion of free-form surfaces 
defined by parametric equations will be further investigated and shown.
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Chapter 6

Convex hull calculation

In this short chapter the convex hull in two and three dimensions is introduced. 
For both dimensions a method for calculating the convex hull is given. The 
chapter finishes with advantages for its use in geometric modelling.

A convex hull can be defined as (see also Woodwark [87]):

A convex hull is a minimal convex region enclosing some geometry of 
interest. Most frequently, a convex hull is a convex polygon (in two 
dimensions) or convex polyhedron (in three dimensions) enclosing a 
discrete point set.

In the following a discrete point set is considered. Usually this point set defines 
a geometric object such as a free-form curve or surface (see also Chapter 8 ).

6.1 Two-dim ensional convex hull

As said in the definition of a convex hull, in two dimensions the convex hull of a 
collection of points is given by a convex polygon. An easy and pictorial way to 
illustrate the convex hull for a two-dimensional point set is by enclosing the set 
with a rubber band. Then the most outer points and the rubber band generate a
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Figure 6.1: Two dimensional convex hull for a set of 1 2  distinct points which are 
displayed as black crosses.

convex object which is equivalent to the convex hull. The two dimensional convex 
hull for a set of 12 points is illustrated in Figure 6.1.

This idea with the rubber band can be formulated in the following algorithm1. 
Let S  be the set of distinct two-dimensional points.
A lgorithm  1:

S tep  1 : Find a point P  with P  E S  which has the lowest rc-coordinate.

S tep  2 : Find a point Q with Q E S  which has the least polar angle with respect 
to P  as origin.

S tep  3: The line PQ  is one side of the convex polygon.

S tep  4: The next point R  on the convex polygon is the one which has the least
polar angle with respect to the point found before as origin; that means it 
is the angle with respect to the last side produced.

S tep  5: Repeat the construction in Step 4 until R  = P.

Further studies and discussions about the convex hull in two dimensions and more 
efficient algorithms for its construction can be found e.g. in Chapter 3 of the book 
written by Preparata and Shamos [67] or in the paper written by Eddy [32].

1This algorithm is very simple but is not the most efficient one.
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6.2 Three-dim ensional convex hull

Usually, the calculation of a three-dimensional convex hull leads to much more 
complicated algorithms than the ones for the two-dimensional case. In this sec
tion an algorithm introduced by Allison and Noga [4] is given. Another method is 
the one introduced by Johansen and Gram [43]. This is more or less an extension 
of the very simple algorithm given above. However, the algorithm given in [4] is 
more efficient2 and therefore given here.

Let S  be a set of distinct three-dimensional points. This algorithm can be for
mulated as follows (see also [4]):
A lg o rith m  2:

S tep  1 : Find two points O and P  with O, P  G S  which are extreme points of 
the set in the x direction.

S tep  2 : Find a third point Q with Q e S, Q ^  O and Q ^  P  which is an 
extreme point of the set in y direction3. The three points 0 ,P ,  and Q 
generate an initial facet.

S tep  3: Find a fourth point R  with R  € S  which is the highest point (in the z 
direction) above this facet. These four points then define an initial tetra
hedron with four facets.

S tep  4: All the points of S  which are interior to the tetrahedron can be deleted 
from the set S.

S tep  5: For each of the four facets find new highest4 points which generate 
new tetrahedra. Eliminate all the points of S  which are interior points to 
one of the new tetrahedra. A facet cannot be on the convex hull if there 
exists a point above this facet. Such a facet can be deleted from further 
consideration.

S tep  6 : Repeat Step 5 until there are no points left which are above the consid
ered facets.

2 In [4] it is said that performance tests for larger set sizes with uniform distributions in a 
cube indicated that the running time for sets of size n is O(n).

3If Q =  O  and Q =  P  then a point Q  is found whose projection onto the xy  plane has the 
furthest perpendicular distance above or below the projection of the line segment OP.

4In this case highest means in normal direction of the tetrahedron’s plane investigated.
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Figure 6.2: Three dimensional convex hull for a set of 25 distinct points which 
are displayed as black crosses.

The facets generated by Algorithm  2 are the faces of the convex hull or polyhe

dron.

This algorithm  is also im plemented in the set-theoretic geometric modeller sVLls. 
In Figure 6.2 a convex hull for a set of 25 distinct points is illustrated. The whole 

convex hull consists of 20 facets.

6.3 A p p lica tio n s  in g eom etric  m odelling

The convex hull has different applications in geometric modelling. F irst of all the 

convex hull is usually a much simpler geometric object than the one enclosed by 

it and it can also be used as a coarse approxim ation to the object lying inside. 

This feature is very useful especially for the intersection problem or the collision 

detection of two geometric objects. In these cases the convex hulls of the objects 

can be tested first for possible intersections or collisions. If there are none between 

the convex hulls then the objects cannot intersect or collide either. However, if 

intersections or collisions exist then further investigations are necessary.

A nother application of the convex hull is finding minimum distances between 

geometric objects. Again, it is much easier to select the objects lying closer to 

each other if the distances of their convex hulls are tested first (see also Pidcock
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and Bowyer [65]).

In Section 3.2 the use of interval arithmetic for object location is described which 
is also employed by the modeller sVLls. By using the convex hulls of objects a 
rough classification of the modelling volume can be performed first very quickly 
and efficiently. This application will be given in further detail in Chapter 8 . 
Again, only intervals5 for which an unknown classification is obtained have to be 
investigated further.

5In three dimensions the intervals define a box.
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Chapter 7

The Bernstein basis

The Bernstein polynomials were first introduced by S. Bernstein to give an espe
cially simple proof of Weierstrass’s approximation theorem (see Lorenz [53]).

These polynomials are still used in different areas such as approximation theory 
or as a basis to define different kinds of free form surfaces (Bezier, B-spline 
or NURBS surfaces). The latter application takes advantage of the parametric 
Bernstein form and the surfaces are widely used in B-rep geometric modelling 
systems (see Section 2.1.2).

In this chapter the use of Bernstein polynomials to represent implicit algebraic 
polynomials is reviewed and discussed. At first their definition and their proper
ties are given. Then methods for the conversion between power- and Bernstein- 
form polynomials are investigated. Although such a conversion usually has to be 
performed at least once, to make use of the advantageous properties of the Bern
stein polynomials frequent conversions between the two forms should be avoided. 
Thus an arithmetic for Bernstein-form polynomials is required. This chapter 
presents an arithmetic for both univariate polynomials and multivariate polyno
mials. At the time of writing, the latter techniques are in press at the CAD 
Journal [6 ].
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7.1 Definition

For a given n € M  the corresponding Bernstein polynomials of degree n  in a 
general interval [x,T] are defined by:

Sometimes it is more convenient to consider the Bernstein polynomials in a unit

However, this is not a real restriction because a bijection can always be found 
which maps the region of interest to the unit interval x' := (x — x)x  +  x.

For a polynomial p(x) given in its implicit power-form (see Equation 1 .1 ) an 
equivalent representation can be given in terms of the implicit Bernstein form by

where P£ are the corresponding Bernstein coefficients. In the following the terms 
polynomial in Bernstein form and Bernstein-form polynomial refer to such a 
polynomial p(x). The conversion between the power- and Bernstein-form repre
sentation is possible and can be performed regardless of the number of variables 
(see Section 7.3).

In this section only an overview of some properties of Bernstein polynomials is 
given. More detailed information can be found in the book [13] written by 
Bowyer and Woodwark, and the papers [34] and [35] written by Farouki and 
Raj an.

k =  0 , 1 , . . . ,  n (7.1)

interval [0,1] as the region of interest and the Bernstein polynomials of degree n 
then become:

k =  0 , 1 , . . . ,  n. (7.2)

n

7.2 Properties
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1. A recursive generation of the nth order basis from the (n — l)th  order basis 
is possible. For the Bernstein basis on the unit interval [0,1] the recursive 
generation is defined by

B k(x ) = (1 ~  x )B k (x ) +  x B k - i fa), A; =  0 ,1 , . . .  ,n.

2. All the terms of the Bernstein basis are positive on the interval where they 
are defined and their sum equals 1 :

£ j j ( z ) > 0 ,  A; =  0 , 1 , . . . ,  n and r) =  1.
k=0

Farouki and Raj an [34] point out that this gives a bound on the polynomial 
p(x) of degree n:

min P? < p(x) < max F?.0<k<n K — — 0<fc<n

A tighter bound is given by the convex hull which is determined by the 
Bernstein coefficients. In two dimensions the convex hull is given by a 
polygon; in three dimensions it is represented by a convex polyhedron (see 
also Chapter 6 ).

3. A polynomial p(x) of degree n  can be represented in terms of the Bernstein 
basis of degree n +  1 by a procedure known as degree elevation. If P£ are 
the Bernstein coefficients in the degree n basis, the coefficients P£+1 in the 
next higher basis are given by:

Pk+1 =  ^>kPk- 1  +  (1  -  u k)Pk where u k =  k
7 2 + 1

for k = 1 ,2 , . . .  ,n, and P0" +1 =  P0", Pn+  =  P".

4. Farouki and Raj an [34] and [35] show that a Bernstein-form polynomial 
is always better conditioned1 than a polynomial in the power form for the 
determination of simple roots on the unit interval [0,1]. Also for roots 
on an arbitrary interval [x,x], the root condition number is smaller in the 
Bernstein basis on this interval.

5. The Bernstein basis has a better numerical stability than the power form. 
In [81], Spencer gave the following definition:

1For a polynomial p(x) in Bernstein form the root condition number which estimates how 
much uncertainty in the initial data of a problem is magnified in a problem’s solution (see also 
Spencer [81]) is smaller than or equal to the one in the power form.
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Numerical stability is a property of an algorithm which measures 
its propensity for generating and propagating roundoff error and 
inherent errors in the input data.

However, if the conversion between the two forms is done frequently nu
merical instabilities can be reintroduced and the property is then obviously 
lost.

One way to measure this property is to perturb the coefficients of two 
representations of the same polynomial. Then for a polynomial in Bernstein 
form the value of this polynomial at a point has a smaller error bound than 
the error bound generated by the power form, often by many orders of 
magnitude.

7.3 Conversion between power— and B ernstein - 
form representation

In Section 7.2 it is said that the numerical stability of the Bernstein polynomials 
is lost if the conversion between the two different forms has to be performed 
frequently. However, in most cases this conversion has to be performed at least 
once and therefore is sometimes unavoidable.

In a combined project with my colleague Irina Voiculescu a method for the con
version between power-form polynomials and Bernstein-form polynomials was 
formulated. This method is described here (see Section 7.3.2) and further ex
planations can be found in our report [8 ]. However, in practice and for further 
investigations a method introduced by Garloff [38] (see Section 7.3.2) is used.

7.3.1 Univariate polynomials

The conversion for univariate polynomials can also be found in the paper written 
by Farouki and Rajan [34]. In Geisow’s thesis [39] such a conversion is also 
described.
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The unit interval [0,1]

Consider a polynomial p(x) of degree n 6  Af. Its equivalent power and Bernstein 
forms are:

p(x) = Y t akxk = Y ,P Z B l{x ) .
k=0 A;=0

(7.3)

Each set of coefficients (a* or Pg respectively) can be computed from the others. 
For example:

3=0

k (k)
Pk =  7n \aJ‘ 

3=0

(7.4)

(7.5)

Formula 7.5 provides the conversion of a univariate polynomial from its power 
form into the Bernstein form.

Consider the same polynomial as Equation 7.3. The calculation done above can 
also be written as a matrix multiplication. In the following, a formula equivalent 
to Equation 7.5 will determine the Bernstein coefficients matrix2 P  in terms of 
the power form coefficients matrix A.

Two other ways of writing the polynomial p(x) are:

n

p (x ) = H  a*xk =  ( 1 X  . . .  X
k=0

n )

f  aQ \  

ai

\  dn J

= X A

p(x) = E Pk S k (x) = ( B S ( x )  B?(x) . . .  Bl(x)  )
k= 0

2In the univariate case this is a vector.

f  i f  \
p n

\ P n  )

— B XP.
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Rewriting the vector B x  of Bernstein polynomials in terms of m atrix multiplica
tion:

BX =  ( BS(x) . . .  B g ( x ) )

= ( Q ( l - s ) "  ••• ( > n )

=  ( Q  ( i +  (?)(-*) +•■• +  (;:) (-* )n) ••• o * " )
t  1 o

0(?)(-!)* (?)(Y)(-do=  (  1 x ...  xn )

Vx
=  XUx , V i  € [ 0 , 1 ] .

So
p ( z )  =  =  XUx P.

Now compute the Bernstein coefficients matrix P.

X A  =  XUx P  

P  =  (Uxy ' A.

A  general in terv a l [x,x]

The constraint x  € [0,1] can be removed by extending the domain of the Bernstein 
polynomials to [x,2f] as already shown in Equation 7.1:

As above a polynomial p(x)  is written in Bernstein form as:

p(x)  =  BXP

where B x  is the vector of Bernstein polynomials and P  is the Bernstein coefficient 
matrix. This time the variable x  G [x,x\.
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Following a similar sequence of steps as above the vector B x  can be rewritten 
itself as a matrix multiplication3:

B x  = (  BJ(x) B?(x) . . .  B%(x) )

= ( 1 K  ••• ( £ f ) n ) u x

=  ^  1 X  —  X  . . .  ( x  —  x ) n  ^

\  0 (x

0 \

1 , 
- x ) n /

Ux

Vx

=  ̂ 1 x — x . . .  (x — x)n ' jVxUx

= ( EL, ©*‘(-2)°-* ELtM -z)1-' E « O'He)"-'
M  © ( - a ) 1 ( o ) ( - a ) 2 © ( - a ) "  \

o (J)(-a)l_1 © ( -a )2' 1 ••• © ( - a )"'1
= ( 1 X  . . .  X " )

\  o o

VxUx .

Wx

Hence

B x  =  X W x V x U x • (7.6)

The Bernstein coefficients m atrix P  for a general interval [z, re] can be determined 
in the following manner:

X A  =  X W x Vx Ux P  

P  =  (Ux)-1 (Vx)-1 ( W x ) ' 1 A.

7.3.2 Conversion m ethods for multivariate polynom ials

In the earlier report [8 ] written with my colleague, we give a method for finding 
the Bernstein form of a multivariate polynomial. Another approach is given in 
the papers written by Garloff [38], and Zettler and Garloff [89]. Garloff’s way of 
writing multivariate Bernstein-form polynomials is adopted for the derivation of 
the arithmetic for multivariate Bernstein-form polynomials (see Section 7.4.2).

3Note that Ux is a scalar matrix, so it stays the same as above, since it does not depend on 
the variable X.
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The bivariate case

The implicit expression of a bivariate polynomial in the power basis can also be 
rewritten by means of matrix multiplication:

p(x, y ) — aoo +  flio^ +  <2-oi2/ +  au x y  +  • • • +  Q'mnYrnyn — X A Y ,

where

X  =  ( 1 x . . .  x m ) Y  =

(  1 

y

\ y n }

A  =

a oo • • • CLOn

By analogy with the univariate case,

p(x, y) = X A Y  = B x P B y

where B x  and B y  are Bernstein vectors in the variables x  € [x, x] and y G [y, y\ . 
These vectors can be decomposed as shown in Section 7.3.1.

In the case of the Bernstein vector corresponding to the variable Y  the factors 
U ,  V  and W  in Equation 7.6 will appear in reverse order. This happens because 
B y  is a column vector (as opposed to B x  which is a row vector).

Hence

X A Y  =  X W x V x U x  P  U y V y W y Y  

P  =  {Ux ) - l (Vx ) - \ W x ) - 1 A  (Wy) - 1  W l (^ y ) - 1

Vrc G [x,x]

Vy € [y,y].
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The trivariate case

By analogy with the univariate and bivariate cases, the implicit expression of a 
trivariate polynomial in the power basis can also be rewritten by means of m atrix 
multiplication:

p(x, y, z)  =  aooo +  a io o ^  +  olqioV +  aooiz +  a i i o  xy + aioixz  +  aonyz  +  . . .  +  amnixmy nz l 

= Y ® y ( X ®x A) ®2 Z.

where Amxnxi is the three-dimensional coefficient tensor, and X , Y  and Z  are 
chosen such that the tensor multiplications are well-defined.

The following types of tensor multiplication have been chosen :

• Qqxm A mXnxl = Bqxnxl

• Qqxn A mxnxl =  Rmxqxl

• A mxnxl Qlxq = Bmxnxq•

If B x ,  B y  and B z  are Bernstein vectors in the respective variables, the Bernstein 
form of the polynomial p(x ,y ,z )  is:

p(x , y , z )  — Y  ®y ( X  (8>sc A) ®z Z  =  B y  ®y (Bx  ® x  P) <8>z B z-

The Bernstein vectors can be decomposed as shown previously (Equation 7.6). 
When the power form is made equal to the Bernstein form, the following relation 
is obtained:

Y  ® y  (X ®x A ) ® z Z = Y W y V y U y  ®y ( X  ®x (Wx  ®x (Vx ®x (iUx ®x P)))) Uz Vz Wz Z.

In this equation the three-dimensional tensor P  is being multiplied consecutively 
by each of the two-dimensional factors. At each stage another three-dimensional 
tensor is produced. After the ®x-multiplication with the vector X , the three- 
dimensional tensor is reduced to two dimensions. The rest of the multiplications 
are the usual two-dimensional ones.

Hence, the Bernstein coefficients tensor P  can be calculated by:

P =  ( U y ) - 1 (Vy ) —1 ( W y ) ” 1 ® y ( ( t/ * ) " 1 (V* ) " 1 ( ^ X ) _1 ® .  A ) ® z { WZ ) ~ 1 ® z ( V z ) " 1 ®z (U z ) " 1
'    '

V i  6 [ z , x ] , V y  €  [y, y] ,V z 6 [z, 2].
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In this equation the order of the multiplications is starting from the tensor A  
outwards (according to the orientation of the arrows).

GarlofF’s m e th o d  for th e  m u ltiv a ria te  case

The method described for the trivariate case uses a tensor to calculate the equiva
lent Bernstein form coefficients. This involves the definition of a tensor arithmetic 
and thus its use is not very straightforward. The following method uses a coef
ficient set instead which helps to give the conversion in a much more compact 
way.

Let I € Af be the number of variables and x =  (rzq,. . . ,  x{) € 1Z1. A multi-index 
I  is defined as I  =  (zi,. . .  , zj) € Afl. For two given multi-indices I, J  € N l we 
write I  < J  if 0 < i\ < j i , . . . ,  0 <  U < ji.

N o ta tio n : We set x 1 for the product of x li • . . .  • x)1.

N o ta tio n : The multi-index 0 only contains zeros.

N o ta tio n : The result of I  +  J  is a multi-index K  given by k\ =  i\ + j i , . . . ,  ki =  

k +ji-

N o ta tio n : The result of I  — J  is a multi-index K  given by ki = i\ — j i , . . . ,  ki =

U ~ ji-

N o ta tio n : We write for the product of (v j • . . .  • (vj.

N o ta tio n : The minimum function min(I,  J) returns a multi-index K  by taking 
hi =  A), . . . , k  = min(iiJi) .

N o ta tio n : The maximum function m a x( I , J) returns a multi-index K  by taking 
hi =  m a x ( i i , j i ) , . . . ,  kt = max{iu j{).

Let p{x) be a multivariate polynomial in I variables with real coefficients.

107



D efin ition : N  = ( n i , . . . ,  n{) is the multi-index of maximum degrees so that rik 
is the maximum degree of Xk in p(x).

D efin ition : The set S  =  { I  £ N l : I  < N }  contains all the combinations from 
7ll which are smaller than or equal to the multi-index N  of maximum 
degree.

Then an arbitrary polynomial p(x) can be written as :

?(x ) =  £ a j x / (7.7)
I€S

where a / G 71 represents the corresponding coefficient to each x 7. (Note that 
some of the a / may be 0 .)

T h e  u n it  box [0, l]1

As before a univariate Bernstein polynomial in the variable x  of degree n on the 
unit interval [0 , 1] is defined by:

B k (x) =  (' f y x k ( 1 “  x ^ ~ k & =  0 ,

For the multivariate case the unit box U =  [0, l ]1 is considered and the 7th 
Bernstein polynomial of degree N  is defined by:

Bf,(x) = BS*(*1)- ... •£”'(*,) x6[0,lf.

The Bernstein coefficients P j(U) of p(x) over U are given by:

m
P / W  =  £  7W\a j  1 e  5 - (7-8)

j <i  U J

And the Bernstein form of a multivariate polynomial p(x) is defined by:

p(x) =  £ P 7 ( t W ( x ) .  
ies
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T he general box [x, x]z

If Garloff’s method is extended to the general box G =  [x, x ]1 it is necessary to 
determine a new set of power-form coefficients a for the polynomial p(x) first. 
Then by using the coefficients a the Bernstein-form coefficients are obtained 
for the general box G =  [x,x]z. This calculation actually describes a bijection 
which maps the area of interest from the general box G =  [x, x ]1 to the unit box 
U =  [0, l]z. Note that the order of the calculation is important.

Let G =  [x,x]z =  [x^xi] x [x2:X2] x . . .  x [x/,xj]. In the first step a new set 
of power-form coefficients a is obtained by applying the following rule to the 
power-form coefficients a given in Equation 7.7:

£  ( ' f W ' " '
J £ S *  V  /

where x  =  (x1? x2, . . .  ,xj) and the set S* is given by S* =  { I  £ N l : I  < J  < N}.

In the next step this coefficient set a is scaled and another set of power-form 
coefficients a is obtained:

a7 =  a/(x  -  x ) 7

where I  € S  =  { I  € N l : I  < N }  and (x—x ) 7 =  (x \— x l )tl{x2 — £ 2)*2’- ■

A univariate Bernstein polynomial in the variable x  of degree n on the general 
interval [x,x] is defined by (see also Equation 7.1):

( n \  (x — x )k(x — x)n~k

For the multivariate case the Jth  Bernstein polynomial of degree N  on the general 
box G =  [x,x]z is defined by:

(x) =  ( * ! ) • . . . •  (*,) x  € [x, 5c]1.

The Bernstein coefficients P /(G ) of p(x) over G are given by:

P /(G) =  E  1  € 5. (7.9)
J<! U J
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And so the Bernstein form of a multivariate polynomial p(x) on the general box 
G =  [x, x ]1 is defined by:

p(x) = £ P 7(G)B7"(x).
I € S

Exam ples

The following two examples are considered in the unit box [0,1] x [0,1]. In [8 ] or 
in Chapter 9 further examples can be found.

Exam ple 1
A bivariate polynomial pg{xi ,x2) in power form is given by:

pg(x i ,x2) = xi + x 2 -  1 .

The maximum degree is TV =  (1 , 1 ) and the set S  is:

5  =  {(0,0) (0,1) (1,0) (1,1)}.

The Bernstein coefficients can be calculated by using Equation 7.8:

fyo.o) =  ~  1 6(o}i) =  0 

6 (i,o) =  0  and 6(1,1) =  1 -

In this case the multivariate Bernstein polynomials are given by:

Bjoo1} (X) = i 1 -  Xl)(1 “ x i) and B (01) (X) =  (1 ~  Xl ) X 2

B (10) (x ) =  X 1 i 1 -  X2) a n d  B (U ) (X ) =  X l X 2 .

Therefore the Bernstein form bg(xi,x2) of the given polynomial pg(x1: x2) is: 

bg(xu x 2) =  - ( 1  - £ i ) ( l  ~ x 2) + x i x 2.

Exam ple 2
A bivariate polynomial p f ( x i , x 2) in power form is given:

p f ( x  i, £2) =  x \ x 2 + 2̂ +  3.
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The multi-index N  is N  = (2,1) and this yields to the following set S:

S  =  {(0,0) (0,1) (1,0) (1,1) (2,0) (2 , 1 )}.

Using Equation 7.8 gives the Bernstein coefficients:

6 (o,o) =  3 6(o,i) =  4 6(1,0) =  3 

6(1,1) =  4 6(2,0) =  3 and 6(2,1) =  5.

The Bernstein polynomials are given by:

B (ooj(x ) =  (1  “  z i)2(l “  *2) and B ((̂ j (x) =  (1  -  x 1)2x 2 

B g g M  =  2 rri(l -  x i)( l -  x 2) and =  2 x ^ 1  -  x ^ x 2

B (2oj (x ) =  x \ (1  -  x2) and B$l] (x) =  x \ x 2

The Bernstein form b f ( x i , x 2) of the polynomial p f ( x i , x 2) is therefore:

b f ( x i , x 2) = 3 (1 -  x i ) 2 (1 -  x 2) +  3(2 xi  (1 -  Xi) (1 -  x2)) +  3 x\  (1 -  x 2) +  

4 ( 1 -  x i ) 2 x 2 + 4(2 Xi (1 -  £ 1) x 2) +  5 x\  x 2.

7.4 Arithm etic for Bernstein-form  polynomials

In Section 7.2 the numerical stability of the Bernstein polynomials is described. 
It was also mentioned that if conversion between the power and Bernstein form 
is performed frequently this property is lost and errors might be reintroduced. 
However, conversion cannot always be avoided and often it has to be done at 
least once.

In this section arithmetic manipulations are given which help to remove the need 
of conversion between power-form and Bernstein-form polynomials as much as 
possible.

The arithmetic and further manipulations of univariate Bernstein-form polyno
mials can be found in the paper [35] written by Farouki and Raj an. For multivari
ate Bernstein-form polynomials arithmetic operations are given in Section 7.4.2. 
That section will appear in a similar form as a paper [6 ].
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7.4.1 Univariate polynomials

In their paper [35], Farouki and Rajan give algorithms for univariate Bernstein- 
form polynomials. In this section these polynomial manipulations are sum
marised.

Given are two polynomials f (x )  and g(x) of degree m  and n  with Bernstein 
coefficients F™ and G on the unit interval4 [0,1 ]. W ithout loss of generality it 
is assumed that m > n .

Degree elevation and reduction

A given polynomial f (x )  of degree m  has also a non-trivial representation in a 
Bernstein basis of degree m  +  1 . The new coefficients are simply:

for k =  1 , 2 , . . . , m  and F0m +1 =  F™,F™+1 =  This follows from the fact 
that the Bernstein basis functions of degree m  can be written in terms of those 
of degree m +  1 :

for k =  0 , 1 , . . . ,  n.

After applying the degree elevation r times the coefficient F™+r can be obtained

for k = 0 , 1 , . . . ,  n +  r.

Unlike the power form, the minimum degree of a polynomial in Bernstein form is 
not obvious and therefore a method which is called degree reduction is required 
to determine whether a given set of Bernstein coefficients really represent the

4This is not a real restriction because of the bijection mentioned in Section 7.1.

by:
m in (m ,k )

I k )j = m a x ( 0 ,k —r )
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lowest degree.

The criterion for a polynomial p(x) with coefficients F™ in the ra-th order Bern
stein basis to be of actual degree m  — r is that the power coefficients given in 
terms of the F™ by (see also Equation 7.4)

for j  =  0 , 1 , . . . ,  n, should satisfy am — am_i =  . . .  =  am- r+i =  0 , but am_r ^  0 . 
Then the coefficients F™~r in the basis of degree m — r in terms of the coefficients 
F™ are obtained by:

k A - j + r - lN /m \

prr = E(-i)*~a  r;1 /v  -PT1-
j=» i  * )

for k =  0 ,1 , . . . ,  m  — r. Note that, unlike the degree elevation procedure, the 
degree reduction procedure cannot applied to arbitrary polynomials, but only 
those satisfying the condition am =  am_i =  . . .  =  am_r+i =  0 .

A ddition and subtraction

The sum or difference f (x )  ±  g(x) is a polynomial h(x) of degree m  at most, 
whose Bernstein coefficients H™ are obtained in the following manner.

•  If m  =  n, the sum or difference is H™ = F™ ±  GjJ1, k = 0 , 1 , . . . ,  m, of the
corresponding coefficients from f (x )  and g{x).

•  If n < m, degree elevation of g(x) a total of m  — n  times is necessary. The
new Bernstein coefficients H™ can be obtained by:

m in (n ,k ) ( m -n \ / n \
l im    rim _j_ \   ̂ V k—j J \  j j  ,-m
Hk -  ^k ±  2^  7m\ ’

j= m a x ( 0 ,k —m + n )  \ k  J

for k =  0 , 1 , . . . ,  m.
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M ultiplication

The multiplication of two Bernstein-form polynomials f (x )  and g(x) leads to 
a Bernstein-form polynomial h(x) of maximum degree m  +  n. The Bernstein 
coefficients H™+n of h(x) are calculated as:

m in (m ,k )  (  n  \  ( m>\
z j r n + n    \ k —j j \ j j  rnrn/^m

~  . 2s  3
j = m a x ( 0 , k - n ) \  k J

for k =  0 , 1 , . . . ,  m  +  n.

D ivision

A division of two Bernstein-form polynomials f ( x )  and g(x) can also be per
formed without doing a conversion to the power basis beforehand. Consider the 
determination of Bernstein coefficients for the quotient and remainder polynomi
als q(x) and r(x), defined by:

f{x)  =  q{x)g{x) +  r{x), (7.10)

when f ( x )  is divided by g(x). The degree of the quotient polynomial q(x) is 
given by m  — n, the degree of the remainder polynomial r(x) is n — 1 . For these 
two polynomials the number of terms is given by m — n +  1 and n — 1 +  1 and 
the Bernstein coefficients are given by Q™~n and respectively. Thus r a +  1 
unknown coefficients must be determined altogether.

Applying the multiplication procedure to the product of q(x)g(x) and performing 
an m  — n  +  1-times degree elevation of the remainder polynomial r(x) the whole 
equation can be expressed in the Bernstein form of degree m.  Equating the 
coefficients of each basis function B™(x) on both sides of Equation 7.10 thus 
generates a system of m  +  1 linear equations:

min(m—n,k) (m— ( n  ̂ min(n—\,k) (m—n+lN fn—l \
T?m   \  ' \  j  J \ k —j J  r\m —nrin , \  ' V k —j  )  \  j  J r>n—l

~  2 s   7 ^ \ ----------V j  ^ k - j  +  2 s  --------------7 ^ A  K J  >
j=max(0,k—n) ( fc J j —max(0,k—m+n—l) \ k )

for k =  0 ,1 , . . . ,  m, in the m  +  1 unknowns of Q™~n and B%~1- The Bernstein 
coefficients of q{x) and r(x) are now obtained by solving the linear system.
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In the special case of m = n, the quotient q(x) is just a constant q and the 
equations for the coefficients reduce to the simple form:

rpm____ ,,/om , nm-1r 0 — q Cz0 +  K q ,

FT  =  qG? + i-R T S , 1 + (1

F T  =  q G T  +  F C r \ -m  ̂ m 1 m—1

Multiplying the j -th equation by (— addi ng them all together, and us
ing Equation 7.4 gives then q =  ^  [i.e. the ratio of the leading power coefficients 
of f ( x )  and g{x)\ for the value of the quotient q(x). Substituting this value into 
the equations above allows one to compute the coefficients .RJ1-1, R ? ^ , . . . ,  R™Z} 
of the remainder r(x) directly.

Scaled Bernstein coefficients

The algorithms for addition, multiplication, and division of polynomials in Bern
stein form are similar to the ones for the power form. This is even more obvious 
given the use of the scaled Bernstein coefficients (see [35]) which are defined by:

/ ? =  * =  0 , 1 , . . . . n

Using scaled Bernstein coefficients leads to simpler rules for the calculation of the 
new Bernstein coefficients. They are also scaled, and for addition, subtraction 
and multiplication they are given in the following manner:

& =  0 , l , . . . , m ,

k =  0 , 1 , . . . ,  m  +  n.

For division a system of m  +  1 linear equations is formulated by:

min(m—n,k) min(n—l,k) /  , i \
F ? =  £  Q T nG l - j +  £

j=max(0,k—n) j=max(0,k—m-\-n—l) \  J /

for k =  0,1, . . .  ,m.  Again, this system must be solved for the scaled Bernstein 
coefficients of q(x) and r(x).

min(n,k) /
H ?  =  F ? ±  £  ( « - "

j=max(0,k—m+n) \  ■'
min(m,k)

ipmfp
k—j">

jjm + n    jpmQn

j=max(0,k—n)

3 \ r>m— 1
- ~ ) R 1m
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The arithmetic operations in Bernstein form are now almost identical to the
ones in power form. The principal difference arises from the necessity for degree
elevation in adding two polynomials of different degree, and in determining the 
remainder r(x) when dividing two polynomials f ( x )  and g(x).

Differentiation and integration of Bernstein polynom ials

It is easily verified that the derivatives of the n-degree Bernstein polynomials 
B%(x) are given by:

+ B ? (x )  =  n[B i l l (*) -  B r 1], k =  Q , l , . . . , n ,

with the convention5 B%(x) = 0 if k < 0 or k > n.

Summing the derivatives of B^+l, . . . ,  B%+} simply leads to (n +  1 )B%(x), 
and therefore the indefinite integral of B£(x)  is given by:

r 1 n+1
/  B£(z)dz =  — —  ^ 2  Bj +1(x )> k = 0 , l , . . . , n .

J  n  +  1  j = k + i

All basis functions B%(x) have the same definite integral over the interval [0,1], 
namely:

[  (x)dx =  — , & =  0 , l , . . . , n .
Jo n + 1

For a Bernstein-form polynomial p(x) its derivative and indefinite integral are
obtained by using these equations:

A p (a )  =  5 ; 1 D r 1B ?"1(*)
a x  k=0

where =  n[P£+1 — P£] for k =  0, 1 , . . . ,  n — 1, and

n+1r_ LP(x)dx = j2Jz+1B y1(x)
k=0

where J £ +1 =  J2j=o Bj \  Jo+1 = 0? and k =  0 , 1 , . . . ,  n +  1 . The definite
5This convention is given in [35] as B%(x) = 0 if k < 0 or k < n. However, this would mean 

that each B% would be identically zero.
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integral of p ( x ) on [0,1] is:

J  P(x )dx  =  — E  F£.
Jo n + l k= o

7.4.2 M ultivariate polynomials

I have extended Farouki and Rajan’s results above to the multivariate case. The 
derivations and the results are given in this section. The resulting arithmetic 
rules are more complicated than the ones for the univariate case. For the follow
ing formulae Garloff’s way of writing multivariate Bernstein-form polynomials is 
adopted (see also Section 7.3.2).

Degree elevation

A given multivariate Bernstein-form polynomial /(x )  of maximum degree N  has 
a non-trivial representation in a Bernstein basis of higher degree (N  +  E). The 
numbers in the multi-index E  are equivalent to the times a degree elevation has 
to be performed for the I variables of x. The new (N  +  E)  Bernstein coefficients 
p(v+E) can ^  obtained in the following way:

F r E) =  E  K  € 5 «eu, (7.11)
L^s * \  K  )

where the multi-index L € S* =  { I  : I  =  max(0 , K  — E ) , . . . ,  min(N, K )} and 
K  e Snew = { I  : I  = 0 , . . . , ( N  + E)}.

For a bivariate Bernstein-form polynomial f ( x \ , x 2) of degree (m, n) this formula 
can be rewritten in the following manner:

min(m,i) min(n,j) (m>\ /  r  ̂ f f
■p(m+r,n+s) _  V-'  \k  J \ i - k )  \ l j  \ j - l j  p

M f m+r\ (n+s\
k=max(0,i—r) l=max(0,j—s) \  i )  \  j  )

where i = 0 , . . . ,  m  +  r  and j  =  0 , . . . ,  ra +  s. The numbers r  and s give how often 
a degree elevation has to be applied to the variables x\  and x 2.
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Addition and Subtraction

The sum or difference of two multivariate polynomials /(x )  and g(x) in Bernstein 
form can be obtained in a similar way to the univariate case. If both polyno
mials have the same maximum degree N  in x  then the new coefficients of the 
resulting Bernstein-form polynomial h(x) are given by the sum or difference of 
the corresponding coefficient sets:

H #  =  F j ± G j  (7.12)

where F  contains the Bernstein coefficients of /(x )  and G of g(x).

If the polynomials do not have the same maximum degree N  degree elevations 
(see last section) have to be done beforehand6 and then Equation 7.12 can be 
used.

M ultiplication

The product of two multivariate Bernstein-form polynomials /(x )  with maximum 
degree N f  and p(x) with maximum degree Ng is a new Bernstein-form polynomial 
h(x). This new polynomial h(x) has a maximum degree of N  =  N f  +  N g. The 
Bernstein coefficients for h(x)  can be calculated by:

tt(N=Nf+Ng) _ ^  r (Ng) (7 , a \
K  “  ( N f + N g ^ b  L  ^ K - L  i 7 - 1 6 )

where F  and G  contain the Bernstein coefficients of the polynomials /(x )  and 
p(x). The set S* is given by S* = { I  : I  =  max(0 , K  — N g) , . . . ,  min(Nf,  K ) }  
and K  € Snew =  { / : /  =  0 , . . . ,  (Nf  +  Ng)}.

For two bivariate polynomials in Bernstein form f ( x  1 , 2:2) and g(x 1 ,^ 2) this for

6Note that it might be necessary to elevate the degrees of both multivariate Bernstein-form
polynomials because one may have a higher degree in, say, x i , and the other in, say, X2 at the  
same time.
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mula can be rewritten as:

m in (m ,a ) m in (n ,b ) ( m \  (   ̂  ̂ f   ̂ ^
t t m + p ,n + q  _  y '  O  V I )  \ a - l )  \ k j  \ b - k j  p m ,n p p ,g

a,b /rH-<A a —l,b—k
l= m a x (0 ,a —p ) k = m a x (0 ,b —q) \  a J I 6 J

where ra, n,p  and q are respectively the maximum degrees of the polynomials 
f ( x i , x 2) and g{xu x 2).

D ivision

Farouki and Raj an [35] showed that the division of two univariate Bernstein-form 
polynomials leads to a system of equations which has to be solved. The division 
of two multivariate Bernstein-form polynomials can also be performed by solving 
a system of equations. However, in this case the system is more complicated than 
in the univariate case.

If the multivariate Bernstein-form polynomial /(x )  is divided by g{x) the quo
tient and remainder polynomial g(x) and r(x) in Bernstein form have to satisfy 
following condition:

/(x )  =  q(x)g(x) + r(x). (7.14)

To divide two multivariate Bernstein-form polynomials a main variable has to 
be chosen first and then the division is performed for this main variable.

Whereas in the univariate case the degrees of the quotient and remainder poly
nomials are well defined, in the multivariate case the exact degrees of these two 
polynomials #(x) and r(x) are only well known for the main variable. However, 
it is possible to give upper bounds for the degrees of the other variables (see Ap
pendix B). If these bounds are used a division of two multivariate Bernstein-form 
polynomials can be formulated.

For the polynomials /(x )  and g(x) the sets of Bernstein coefficients are given by 
p (m ,M 2,...,Mi) anc[ Q(n,N2,...,Ni) w h e r e  (m } # ? a n c j N 2, . . . ,  Ni) are the

maximum degree of the polynomials in x. Let X\ be the main variable which has 
a maximum degree of m  in the polynomial / (x )  and n in the polynomial g(x) and 
for which the condition m >  n is satisfied. By using the bounds given the coeffi
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cient set for the quotient polynomial is given by Q(m- n>(m“n)M2+Jv2, ...,(m-n)Mi+Ni) 

and R(n- 1>(m- n+1)M2+^2,-,(m-n+i)Mt+Ni) jg coefficient set for the remainder 

polynomial.

The relation in Equation 7.14 can be expressed as:

_ Q(m-n , (m-n)M2+N2).. .,{m-n)Mt+Nl)Qi(n,N2,...,Ni)

_|_R(n-l.,(m—n+l)M2+./V2,...,(m—n+l)Mi+Ni)

_ Q̂Q"|(m,(m-n)M2+2iV2,...,(m-n)M/+2iV/)
_|_R(n—1, (m—n+i) M2+iV2 , (m—n+i) M;+iV/)

As said above, for the addition of two multivariate Bernstein-form polynomi
als it is necessary that the polynomials have the same maximum degree in each 
variable. For the equation above, this means that for the coefficient set (QG) a 
(0, M2, . . . ,  M/)-times degree elevation in x  and for R  an (ra — n + 1 , N 2, . . . ,  Ni)-  
times degree elevation in x has to be performed. Obviously, the sum of the Bern
stein coefficient sets (QG) and R  leads to the same degree in the main variable 
but to a much higher degree in the other variables. Therefore a (0, (ra — n)M 2 +  
2N2, . . . ,  (m — n)Mi -I- 2A/)-times degree elevation for the Bernstein coefficient 
set F  has to be determined, too.

The system of equations for the division of the two multivariate Bernstein-form 
polynomials can be created by the following relation:

/D i  w  Ei  \ ( D 2\ (  E2 \ ( D 3\ (  e 3 \

E \ L i ) \ K - L i )  t?Di  _  \ L 2 ) \ K - L 2) \ L 3) \ K - L 3) t > D 3 ^  ^
~7d 7+E~i \ ~ *  Li  -  2 s  ( D 2+ E 2\ ) l 2 +  2 s  ( T h + E s \ ~  L 3

L i e s *  \ k  ) L2e s $  v k  ) L3e s *  \ k  )

where the multi-index K  € Snew =  { / : / =  (0 , . . . ,  (m, . . . ,  (ra—n+l)M /+2A^)}. 
The multi-indices E\  =  (0, (m — n)M2 +  2N2, . . . ,  (m — n)Mi +  2Ni), E 2 =  
(0, M2, . . . ,  M{) and E$ =  (m—n + 1 , N 2:. . . ,  N{) give the degree elevation. The de
grees of the coefficient sets are given by the multi-indices D\ =  (ra, Af2, . . . ,  Mi), 
D 2 =  (ra, (m —n)M 2 +2N2, . . . ,  (m —ri)Mi+2Ni) and D 3 =  (n—1 , (ra—n + l ) M 2 +  
N 2, . . . ,  (ra — n +  I)Mi +  Ni). The three different sets of multi-indices are of the 
form S{ — { I : I  =  max(0 , K  — E \ ) , . . .  ,min(Di, K)} ,  S% = { I : I  =  max(0, K  — 
E 2) , . . . ,  m in { p 2, K )} and S% =  {/  : I  = max(0 , K  — E3 ) , . . . ,  ram (D 3, K)}.

Note tha t for the multiplication of the coefficient sets Q and G Formula 7.13 for
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the multiplication of multivariate Bernstein-form polynomials has to be applied:

fDl) ( D2/ r \r ' \ (m,(Tn- n)M2+2N2,...,(m-n)M[+2Ni) _  \  L ) \K -L j r\Dir^D2
~  2 s  " fD1+D2\ ^ K -L

L^S* \  K )

where K  6  Snew =  { / : / =  (m, (m — n)M 2 + 2N2, . . . ,  (ra — n)Mi +  2 Ni)}. 
The multi-indices D\ =  (m — n , (ra — n)M 2 +  N 2i. . . , ( m  — n)Mi +■ iVj) and 
D 2 =  (n, 7V2 , . . . ,  TV/) contain the maximum degree of the polynomials g(x) and 
p(x). The set S* is given as S* =  { / : I  = max(0 , K  — D2) , . . . ,  min(D\, K)} .

form polynomials derived in the examples of power-to-Bernstein conversion above. 
The main variable of the division is x\.  The polynomials b f ( x i , x 2) and bg(x 1, x 2) 
are given by:

bf{x  i , x 2) =  3 (1  -  x i ) 2 (1 -  x 2) +  3 (2 z i (1 -  x i)  (1 -  x 2)) +  3 x j  (1 -  x 2) +
4 (1 -  x i )2 x 2 +  4(2 xi  (1 -  £ 1) x 2) + 5 x j x 2  

bg(xi , x 2) =  ~ (1  — a?i)(l -  x 2) +  £ 1X2-

The coefficient matrix of polynomial b f ( x i , x 2) is given by:

By using the bounds for the maximum degrees given in Appendix B the coefficient 
matrix of the quotient q (x i ,x2) and remainder r ( x i , x 2) have the following form:

Exam ple
The following example demonstrates the division of the two bivariate Bernstein-

and for the polynomial bg(xi,x2) the coefficient matrix is:

Qoo Q01 902
Q10 9n 921
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and
R 03 =  ( Too Toi Toz T03 )

If the Bernstein multiplication for Q and G is determined the product (QG) has 
the following initial form:

(  - Qoo
- 3  q°‘ ~ 3 qos

(Q G )23 = ~ 2 qi° 6 q°° ~ 3 qu ^ qoi~ Q ^21 2 q°2

3 Ql° l qn Q21 /

For this product a degree elevation has to be performed which leads to this matrix:

( Q G )  =

/  1 1( 900 -  <100 — — 901
1 1 1 1  
— 910 ~ 900 — — 910 — -  9112 8 8 4

1

1 1 1 1  — 900 + “ 901 ~ ~ 911 ~ — 921 
12 6 6 12

1 1“ 910 + “ 911 
6 3

1 1 1
~ 901 +  — 902 — — 921
4 8 8

1 1
2 qil+~A q21

After an (ra — n + l)-tim es degree elevation in the main variable and an A^-times 
degree elevation in the other variable the coefficient matrix R  has the following 
form

1 3 1 1 3 1
TOO 7  Too  + 7  r01 4 4 2 roi + 2 r°2 4 ro2 + 5  tos r 03

1 3 1 1 3 1
TOO 7  Too  + 7  Toi 4 4 2 roi + 2 r°2 4 r02 + 4 t 03 T03

1 3 1 1 3 1
TOO 7  Too  + 7  Toi 4 4 2 roi + 2 r °2

7  T 02 + 7  T03 4 4 T  03

For the matrix F  an ((m — n)M  +  AQ-times degree elevation has to be performed 
which gives:

F 24 =

( 3  “  I  “  4 \4 2 4 '
3 i?  I  £  42 44

V3 \ 4 I  5

This leads to the following system of equations which has to be solved:
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3 =  —goo +  ôo
13 1 1 1 3
4 - ^ g o o - 2 ôi +  4 r°° +  4
7 1 1 1 1
2 ” 3 901" 6902 + 27*01 + 2

15 1 3 1
4 - | 9 0 2  + 4 r02 + 4 r03

4 =  r03

3 — — ~9io +  roo

13 1 1 1 1 3T  ”  8 900 -  g g i o  -  jqn + r̂oo + ^
7 1 1 1 1 1 1
2 ~ 1 2 900 + 6 901 "  6 911 "  1 2 921 + 2 7*01 + 2 r °2

15 1 1 1 3  1
T 4?01 +  ggo2 -  gg2i +  - r 02

1
4 = 2^02 +  r*03

3 = roo
7 1 1 3
2 ^gio +  4roo +  4 roi

1 1 1 1
4 = ^gio +  ^gn +  2roi +  2r°2
9 1 1 3  1
2 2?n +  4^21 +  ^r02 +  ^r03
5 = g2i +  r03.

The solution of this system of equations (obtained by Gaussian elimination) is 
given by:

goo =  0 , qoi =  ~zi Qo2 =  0 , Qio =  0 , qsi =  1, qn =  1,

i i  i iToo =  3 , T oi  =  -g -j  r 02  =  r 0 3  =  4 .

Therefore the coefficient matrices Q and R  for the quotient q(x 1 , £2) and remain
der r(x 1 , 2:2) are given by:

Q 12 =  ' 2
0 A 0 

. 0 1 1

and
R 03 =  ( 3 U 11 4 )
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Partial derivatives

The derivative of a univariate Bernstein polynomial defined on the unit interval 
[0 , 1 ] is given by:

where by convention Bjf (zi) =  0  if k < 0  or k > n.

For the 7th multivariate Bernstein polynomial of degree N  which is defined on

where by convention B%(xi) = 0  if k < 0  or k > n.

7.4.3 Com putational load

The examples in Section 7.3.2 show that for the Bernstein-form polynomials most 
of the coefficients are non-zero even if most of the coefficients of the equivalent 
power-form polynomial are zero. This, in many cases, means that a Bernstein- 
form polynomial has a larger number of terms (see also report [8 ]). In this section 
the amount of arithmetic which is involved if the different operations are applied 
to Bernstein-form and power-form polynomials is compared. The worst case 
situations are considered. Note that in these cases both representations have the 
same number of terms and all the coefficients are non-zero.

For the following comparison tables the number of variables in x  is three because 
the representation of surfaces with implicit equations needs three variables. Since 
the computational time is almost the same for all the different arithmetic opera
tions no distinction between addition and multiplication is made for the numbers 
given in the comparison tables. In all the given formulae a factor calculated from 
different binomial coefficients is necessary. I assume that a look-up table is used

k =  0 , 1 , . . . ,  n

the unit box U =  [0, l ]1 the partial derivatives for x are obtained by:

. . .  - B ? » ,

£ - B ?  (x ) =  B?/ (S l) ■ . . .  - n t [ B j t f f o )  -  BZ‘- \ x t) \ , x  € [0 , 1]!.

124



for the calculation of the binomial coefficients (which always involve seven mul
tiplications and one division); this number of operations is not included in the 
number given in the comparison tables.

Two multivariate polynomials /(x )  and g(x) are considered. The maximum de
grees of these polynomials are given by N f  = ( n ^ n ^ n ^ )  and N g = (nlg, n 2g,n zg) 
respectively. The maximum number of coefficients for the two polynomials is 
u =  (rif + 1 )(n2 +  l)(n^ +  1 ) and v = (nlg +  1 ){n2 +  1 )(ng -I-1). The multivariate 
polynomial h(x) is the result if one arithmetic operation is applied to the two poly
nomials. Obviously, the maximum degree Nh =  of this polynomial
h(x) depends on the arithmetic operator applied to /(x )  and g{x). For the new 
polynomial h(x) the number of the terms is given by w = (n^ + l ) (n ^ - l- l ) (n |- l - l ) .

Maximum degree 
of h(x)

Number of operations for
Bernstein form Power form

.E-times degree elevation N h =  N f +  E w(2u — 1) does not  exist

Addition/Subtraction Nh =  m a x ( N f , N g) w  -1- w{2u  — 1) +  w(2v — 1) w

Multiplication Nh =  N f  +  Ng w(3u — 1) 2 uv — 1

The arithmetic involved in a division is given in a second table. Let X\ € x  be the 
main variable with a maximum degree of n j and ng in /(x )  and g(x ) respectively. 
A multivariate polynomial for the quotient g(x) with

s =  (n) -  n] +  l)((n} -  n lg)n) + n2g + l)((n} -  n))n)  +  n 3g +  1 )

coefficients and the remainder r(x) with

t = (nj -  1 +  1 ){{n1f - n 1g +  l )n)  + n) +  1 )((n} -  n\ +  l )n )  +  n3g +  1 )

coefficients7 is obtained. In this case w is the number of terms obtained by 
the multiplication of q(x) and #(x). The maximum degrees of the polynomials 
involved are (Di +Ei) ,  (D 2 +  E 2 ) and (D3 +  E 3) and therefore (di + ei),(d2 + e2) 
and (dz +  63) correspond to the number of coefficients (see also Section about the 
division of two Bernstein-form polynomials).

The number in the table only gives the arithmetic which will be involved in

7The numbers s  and t are determined by the bounds for the maximum degree of g(x) and 
r(x) (see Appendix B).
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finding the system of equations. This system can be solved by using Gaus
sian elimination. In [6 8 ] the computational load for Gaussian elimination is 
given: ( | N 3 +  ^N 2M  +  \ N 2){one addition +  one multiplication) where N  
is the number of equations and M  the number of unknowns. Therefore another 
2 ( |( d x +  ex) 3 +  \(d\  +  ex)2(s + 1) +  \{d\ +  ei)2)-operations have to be performed 
to solve the system of equations.

Number of operations for
Bernstein form Power form

Division (di +  e i)(2u  — 1) +  (c?2 +  C2)(2(ry(3u — 1)) — 1)

+(c?3 + es)(2t — 1)

2(n} -  n]  +  l) (n j  +  2)

The two tables show that arithmetic for Bernstein-form polynomials involves 
many more operations than for the power form.

7.5 Conclusions

The properties of Bernstein polynomials given in Section 7.2 imply that their 
use in geometric modelling might be advantageous. This is especially true in 
set-theoretic geometric modelling, where interval arithmetic (see Chapter 3) is 
used to locate objects, as the Bernstein curve and surface representation could 
improve the accuracy of this location method.

If a conversion between a power-form and a Bernstein-form polynomial (see 
Section 7.3) has to be performed frequently the numerical stability which is gained 
by using the Bernstein polynomials is lost (see [35]). Therefore it is im portant to 
provide an arithmetic manipulation for multivariate Bernstein-form polynomials. 
Such an arithmetic is given in Section 7.4.2 and can be used for a more robust 
and numerically stable implementation.

As shown in Section 7.4.3 the computational load of an arithmetic for multi
variate Bernstein-form polynomials is higher and involves more operations than 
for power-form polynomials. However, to take advantage of the numerical and 
geometrical properties of the Bernstein polynomials this is the price which has 
to be paid.
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Chapter 8

Free—form surfaces and CSG

As mentioned in Chapter 1 , the surfaces of many objects found in our surround
ings cannot easily be described by simple shapes such as spheres or cylinders. 
The representation of these more complicated surfaces requires other modelling 
techniques.

Over the last 35 years free-form techniques have been developed. The use of these 
free-form curves and surfaces is very common in many technical applications such 
as engineering and architecture. Of particular importance are the Bezier, B-spline 
and NURBS curves and surfaces. All of them have a parametric definition (see 
Section 1 .1 ) which allows one to generate points on the curve or surface very 
easily.

As said in Section 2 .1 . 2  the parametric definition is advantageous if the bound
ary representation is used for modelling an object. Therefore most geometric 
modelling systems based on B-rep1 provide for the definition and handling of 
free-form surfaces. Since these free-form curves and surfaces became very im
portant for modelling complicated objects their inclusion into a modeller based 
on the CSG representation is highly desirable, too.

In this chapter two possible approaches for the inclusion of Bezier surfaces into 
a modelling system based on constructive solid geometry are described. The 
first approach given uses the resultant method to calculate an equivalent implicit

1ACIS is an example of such a geometric modelling system (see also [1]).
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equation for a Bezier surface (see also Sederberg and Wang [78] and Berchtold 
and Bowyer [5]). The second approach, in contrast, shows the inclusion of these 
surfaces into a CSG modeller2 by using their parametric definition directly. The 
parametric definition gives a point in space from a given parameter combination. 
The reverse—finding the parameter value for a point in space—is very difficult. 
However, this calculation has to be done for this method to work. These two 
approaches are also described and published in my paper [5], as well as here.

In the first section of the chapter the definition and the properties of Bezier 
surfaces are given. Then the calculation of an equivalent implicit equation by 
using the resultant method is shown, starting off with the implicitization of Bezier 
curves. This approach has its advantages and disadvantages which are given in the 
following section. The next section then gives more detail on how the parametric 
representation of Bezier surfaces can directly be used to define a CSG primitive. 
The chapter ends with the conclusion obtained from these investigations, and 
some weaknesses in the second approach are addressed.

8.1 Definition of Bezier surface

In his book [33], Farin gives the following definition for a Bezier surface s(u, v) 
of degree (m, n ):

m n
s(u, v) = Y ,  53 W \ B ^ { u ) B ^ { v )  u ,  V e  [0,1] (8.1)

k= 0 1=0

where b ki are the control points3 of the Bezier surface. B™(u) and B*(v) are the
Bernstein polynomials of degree m  and n in the variables u and v respectively
(see also Chapter 7).

2For all these experiments the set-theoretic geometric modeller SVLlS was used.
3In general, these points are points in three-dimensional space. Sometimes they are also 

called Bezier control points.
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8.1.1 Properties

In Section 7.2 the properties of the Bernstein polynomials which are used as
the basis function to define Bezier surfaces are given. From these properties the
following ones for Bezier surfaces can be derived:

In v a rian t u n d e r affine tran sfo rm atio n s: Bezier surfaces defined by Equa
tion 8 . 1  are invariant4 under affine transformations.

C onvex hu ll p ro p e rty : The surface lies inside the convex hull5 of the control 
points of the Bezier surface (see also Chapter 6 ).

D egree elevation: A Bezier surface of degree (m, n) can be represented by a 
Bezier surface of higher degree.

S m o o th  con tinu ity : Modelling of smooth shapes is possible because Bezier sur
faces can be joined continuously6.

S ubd iv ision  p ro p e rty : It is possible to divide a Bezier curve or surface at any 
value of the parameter range. The two parts can then be described by a 
new set of Bezier control points. It can be shown that the control points 
of the parts generated by the subdivision process converge to the curve or 
surface.

8.2 Implicitization of Bezier surfaces

As shown in Chapter 4 there are different methods for eliminating variables from 
a set of polynomial equations. In Chapter 5 it is argued that one method—the 
resultant method—can be applied to the implicitization problem. In the following 
section this method is used for finding the implicit equation for a given Bezier 
surface.

4Invariant means that it does not matter if the computation of a point on a surface occurs 
before or after an affine transform is applied (see [33]).

5 Sometimes the convex hull is also called convex polygon or polyhedron depending on the 
dimensions of the modelling volume.

6In his book Farin says: ’Two adjacent patches are C r across their common boundary if 
and only if all rows of their control net vertices can be interpreted as polygons of C r piecewise 
Bezier curves, i.e. it is possible to differentiate these curves r-tim es at their connection point.’
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At first it is shown how a resultant can be found for a planar Bernstein-form 
polynomial. Then the implicitization for a Bezier curve is explained which leads 
to a method for finding an equivalent implicit equation for a Bezier surface.

This equivalent implicit equation can be used for the inclusion of Bezier surfaces 
into a geometric modeller which is based on constructive solid geometry. This 
section will show their use in sVLls. Also advantages and disadvantages of the 
inclusion are given.

8.2.1 The resultant for polynom ials in Bernstein form

In Section 4.3 different ways for finding a resultant for a set of polynomial equa
tions are given. In this section a method is given to determine the resultant for 
planar vector polynomials in Bernstein form. This method was introduced by 
Goldman et al. [40].

As shown in Chapter 7 the Bernstein polynomials of degree n  on the interval 
[0 , 1 ] are defined as:

£j?(t)= r W -<)"-* * = 0 , l , . . . n t € [0,1].

Then a vector polynomial7 in Bernstein form can be described as: 

f (t) = C nBZ(t) +  . . .  +  C ^ i t )  +  CoBS(t) 

where Ck =  (a*:, &*) with k =  0 , 1 , . . . ,  n  defines a two-dimensional point.

Obviously, it would be possible to expand and to rewrite the polynomial f (t) in 
terms of the power basis t. In this form then the methods to generate a resultant 
given in Section 4.3 could be applied. However, it is also possible to calculate 
the resultant of such a vector polynomial in Bernstein form in another way. This 
way is advantageous especially if the loss of numerical stability by conversion is 
to be avoided (see Section 7.2).

Let u =  The Bernstein polynomials in t can be transformed into the power

7 T h i s  p o ly n o m ia l  i s  p la n a r .
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basis in u by dividing by ( 1  — t)n.

If the polynomial g(w) is defined as follows:

g (u) — D nwn +  . . .  +  Dq

where Dk =  (fc)Ck5 dearly:

In [40], Goldman et al. give the following rule to determine each element of 
the resultant matrix R  for a polynomial g (u):

p > max{n — i ,n  — j)  
p + q = 2 n — i — j  — 1

where ?, j  =  1, . . . ,  n  and C p x C q =  apbq — aqbp.

8.2.2 Im plicitization of Bezier curves

By using the result shown in the last section Sederberg and Wang [78] formulated 
a method for the implicitization of planar Bezier curves.

p > max{n — i ,n  — j)  
p + q = 2 n — i — j  — 1

Dp X D q.

By using the condition Dk =  (fc)Ck elements of the resultant matrix R  
for f(£) are obtained by:

E

131



A planar Bezier curve is defined as: 

c(t) =  £ b ,B ? ( t )
i= 0

=  b 0 +  b  +  . . .  +  (t) +  b nBZ(t)

where bi are the control points of the Bezier curve. After subtracting the left-
hand side (b =  (£1 , 2:2)) the following equation is obtained (see also Section 5.1):

0 =  bo-BJ(t) +  bi-B”(t) +  . . .  +  b n- 1B£_1(t) +  b nB%(t) — b

=  b 0 BS(t) +  b i B f W  +  . . .  +  b n +  b nBZ(t) -

b (B?(t) +  B?(t) +  . . .  +  B £ } (t)  +  B nn (t))
^       -

=  (b0 -  b )BS(t) + (bx -  b )B?(t) + . . .  +  (b» -  b )Bnn(t).

Now, let Ck =  bk — b for k =  0, 1 , . . . ,  n  which leads to:

0 =  C 0 B Z ( t ) + C 1B?(t) + . . .  + C n. 1 BZ_1 (t) + C nBZ(t).

Applying the result of the last section gives the following rule for the calculation 
of the elements of the resultant matrix R  for a given Bezier curve c(t):

„  , s . . O C b - 0*p > max{n — i ,n  — j)
p + q = 2 n — i — j  — 1

where

0 w CpxCq=0 CpxC h =0 (bp- b)xC)(bq- b) ( 8 -2 )

where bp and bq are two Bezier control points and a general point b =  (xi, x2)-

If the three points b, bp, and bq are extended by a third coordinate which is 
equal to 1, Equation 8.2 can be rewritten as a determinate of three points. Hence, 
the elements of the resultant matrix R  for a Bezier curve c(t) can be generated
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by:

T i j  =

p > max(n — i ,n  — j)  
p + q = 2 n — i — j  — 1

2  ^  ^ j d e t ( b ,b p,b q) i , j  = 0 , 1 , . . . , i V -  1

where det{b, b p, b q) is a 3 x 3 determinant of two given Bezier control points and 
a point b =  (xi, X2 , 1 ).

As said in Section 5.1 the implicit equation can be obtained by calculating the 
determinant of the resultant R. Therefore the equivalent implicit equation for a 
Bezier curve c(t) is given by:

det(R) =  0

8.2.3 Im plicitization of Bezier surfaces

With the results given in Section 4.3 and 8 .2 . 1  it is possible to formulate a method 
for the implicitization of Bezier surfaces.

As defined in Equation 8.1 a Bezier surface s(u, v) of degree (m, n) has the fol
lowing form:

771 71

s (u,v) = X ^ b kiB£(u)B?(v) u ,v  e  [0 , 1 ].
k= 0 1=0

Again, the left-hand side (b =  ( x i ,x 2 , x 3)) is subtracted and the following equa
tion is obtained:

m n

o =  £ £ b kli? r  ( « ) £ ? , » -  b
k=0 1=0
m n / m n \

= £  £  bu B T M B f t v )  -  b £  £  (« )A »
k=0 1=0 \k=0 1=0 J

= 1

= £  £(bki -  b)Bf (u)B,n(u).
k= 0 1=0

Now, let s =  and t = (pẑ y- Dividing the Bernstein polynomials B™(u) and
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B ^ v )  in u and v by (1 — u)m and (1 — v)n respectively allows us to transform 
them into the power basis in s and t :

In Section 4.3.2 it is shown how a resultant for a set of three polynomial equations 
can be found. Although in this section only the Dixon 3 x 3  resultant method 
is considered the other methods could also be applied. In particular, the next 
section will give an example which needs my application of Kapur’s method to 
resolve a vanishing determinant.

As shown in Section 4.3.2 the resultant R  of a set of three polynomial equations 
has following form:

Each element A ( i , j , k , l )  of the resultant R  is given as a sum of determinants 
which involve the coefficients of the polynomial equations.

For the transformed Bezier surfaces in Equation 8.3 the elements A ( i , j , k , l )  can

And by analogy:

This transformation then gives:

0 (8.3)

A(0 , 0 , 0 , 0 ) . . .  A(0 , 0 , k,l)  . . .  A(0 , 0 , n — 1 , 2 m  — 1 )

R
A(i, j ,  0,0) . . .  A ( i , j , k , l )  . . .  A(z, j , n  -  1 , 2 m -  1 )

A(2n — 1 , A(2n — 1 ,
m  — 1 , 0 , 0 ) m  — 1 , k, I)

A(2n — 1 , m  — 1 

n — 1 , 2 m  — 1 )
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be calculated by:

b p q  b , (8.4)

If the point b and the three Bezier control points b pq, b rs and b tw are extended 
by a fourth coordinate which is equal to 1 then the rule given in Equation 8.4 
can be expressed as a sum of 4 x 4 determinants:

m ;  c m : :k  x k (8.5)

where m  and n  are the degrees of the two independent parameters u and v of the 
Bezier surface s(u, v).

For a bilinear Bezier surface the determinant of the resultant can be written as:

det(A) = det(b ,b 0 0 ,b 0 i, b i0) det(b ,b 00, b 0 i, b n )  
det{b ,b 0 0 , b i0, b n )  det(b ,b 0 i, b i0, b n )

Note, that in this case the elements consist of only one 4 x 4  determinant and 
the sums of the binomial coefficients of the Bernstein polynomials are equal to 1 .

As shown in Section 5.1 the implicit equation of the Bezier surface is given by 
the determinant of the resultant R  being equal to zero:

det(R) =  0.

Exam ple 1:
For a bilinear Bezier surface given by the four control points

^ i  \  
i

v 1 /
2

v4;
4

V 1 /

and

the following implicit equation f ( x i , y , x 3) is obtained:

0 =  3 x\  — 15 £ 3  +  x 3 X2 — 2 £ 3  Xi — 40 X2 — 33 x\  +  25 +  83 x 2 X\ — 52 x\  +  30 x\.
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Exam ple 2:
This is an example for a Bezier surface given by the nine control points

By applying the Dixon 3 x 3  determinant method8 the following implicit function 
f ( x i , x 2 , z 3) is obtained:

0 =  —131332534272 xf x2 x 3 +  3999454260747264 x 2 +  13071649707749376 x 2

-  13914797859311616x3 +  757520252928x^xx x\  +  2318998781952x \ x x x 3 

+  92876046336 x\  x \  x 3 +  13060694016 x\  x \  x \  +  322163785728 x \  x 2 x \

+  1108707803136x \ x \  x 3 +  12093235200x \ x \  x 3 -  611569174081536x i x3 x 2 

+  78364164096 Xi x |  x 2 4- 22864921657344 x^x2 x\ — 17153044807680 X1X3 x 2 

+  22039195557888x^x3 x i -  916935966720x \ x 2 +  15934449807360x \ x 2 

+  14565576204288 x \  x3 +  18037382787072 x\  x \  +  114239095676928 x^xi 

+  560279586816x^3 +  3782159308800 x \ x \  +  241751269453824 x xx\

+  176319369216x3 +  8398026252288 x\  x \  +  2037468266496 x 2x \

+  14513817157632 x\  x 3 +  2170870087680 x^xi +  162694324224 x \  x \

-  2785958903808 x  ̂x \  +  608122853991936 x \  -  1605148047857664 i i x 3

+  1864522157432832 x 2x i -  3769962071777280 x 2x 3 +  1436024395450368 x \

+  3238299648 xj x\  +  462069080064 x\  x \  -  60197437440 x? x\

+  133147822934016 x \  -  12146982912 x } x 2 +  65704965488640xlx3 

+  139732011712512 x \  x 2 -  47533401538560 x^xi -  248657662328832 x \

+  10074948148224 x \  +  21447016704 x\  +  37536434601984 x\

+  1606465363968xi x^ +  8947086004224 x\  +  26873856 x\  x \

-  1644223667445504 +  967458816 x\  x \  x 3 -  429981696 xj x\

+  3762339840 x \ x \ .

8.2.4 Singular resultant matrix

In Section 5.2 the major problem of the resultant method was addressed. Again
as mentioned in Section 4.4 the resultant method gives problems with singular
matrices. This problem will also occur with singular matrices that may come
from an implicitization. As shown in Section 5.2 there are methods to overcome

8For the calculation of the elements A ( i , j , k , l ) of the resultant R  the rule given in Equa
tion 8.5 is used.
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Figure 8.1: P icture of a param etric Bezier surface which has a singular resultant 
m atrix.

this problem. K apur’s extension to  Dixon’s m ethod (see Section 5.2.2) can also 

be used to  find an im plicit equation for a Bezier surface.

This section gives first an exam ple which has a singular Dixon m atrix. Then it is 

shown how the m ethod is applied to  this problem and how an equivalent im plicit 

equation for a Bezier surface is obtained.

Exam ple of a singular D ixon m atrix

Consider the nine control points which define a Bezier surface of degree m =  n =  2 

in u and v :

The surface generated by this nine points is displayed in Figure 8.1. Using the 

m ethod mentioned in Section 8.2.3 an (8 x 8) Dixon m atrix  can be generated for 

this Bezier surface. However, it is not possible to  calculate its equivalent im plicit 
equation because the value of the determ inant is identically zero.

K a p u r’s ex tension  for B ezier surfaces

In Section 5.2.2 K apur’s extension for the Dixon 3 x 3  determ inant m ethod is 

given. This extension is a possible way to overcome the situation in which the
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determinant of the Dixon resultant is identically zero and a solution for the 
original elimination problem is obtained.

Clearly, Kapur’s method can also be applied to the problem of finding an implicit 
equation of Bezier surfaces. In these applications the row Drow mentioned in 
Section 5.2.2 contains the implicit equation. The following examples show how 
the method can be applied and how an implicit equation is obtained.

In the first example Drow contains the same (apart from a constant multiplier) 
equation at different positions. However, since the solution vector should repre
sent a nontrivial solution, the elements of Drow have to be equal to zero. This 
means all equations have to be equal to zero and thus represent the implicit 
equation for the given Bezier surface.

Exam ple 1
This example considers the Bezier surface which is defined by the nine control 
points given at the beginning of Section 8.2.4. There it was said that the deter
minate of the Dixon matrix is identically zero and therefore no implicit equation 
for this Bezier surface is obtained.

However, if the Kapur’s extension is applied the problem can be overcome. Using 
Gaussian elimination determines the following row D row:

2 4 2
0 0 0 — h 0 — h 0 — h 

49 49 49

where h =
x\ +  718 X\ +  1873 +  36 X\ x$ +  324 x% — 2952 x$

X\ — 1

The implicit equation to this Bezier surface is then given by:

0 — x j +  718 Xi +  1873 +  36 X\ x 3 +  324 x$ — 2952 x$.

Exam ple 2
In this example another Bezier surface is considered. This one is defined by the 
following nine control points:

( ° \
( 1

0 ’
311 J I 3

(  4 \
0

V 3 y

( 3  \  
2

\  3 )
and

/  10 
12 

V 3
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Again the Dixon matrix can be found by using Equation 8.5 given in Section 8.2.3.
As in the last example, the determinant of this matrix is identically zero. Once 
more, the problem can be overcome by applying Kapur’s extension. For the given 
Bezier surface the following equivalent implicit equation is obtained:

0 =  153092748 x \ x i +  6112660 x \ x z2 -  6967480 x \ x \ -  8389010444 x \ x x

+  1 2 6 4 2 5 0 8 6 4 x ix ^ 2  +  2004064 x 3 x \ x \  -  53932711634 x 2x i +  6377894965 x \

+  19696918 x \ x \ — 22936 x 3 x \  x i — 68098644 x i x5 x \ — 3261293 x \  x \  x 2 +  21863271694 x i

-  103346476 x \ x z3 x 2 -  2568002 x \  x \ x \  -  11406416570 xj +  96140726 x \ x \  x 3

-  2552816xg x2 x i +  1981168 x |  x \  -  522832980 x \  x 3 +  857396350 x \ x \  -  3329447 x\x%

+  26246324 x \ x \  x 3 +  242227 x 3 x \  x \  +  92736 x3 x \ -  373579490 x \  x x -  7697 x \ x \

-  1974308 x2 -  7241 x 2 +  261115052 x^x2 +  6067251159x5 +  19097760 x ? x 3

+  123823x | x \ -  104041416x \ x \  -  181968x \ x \  +  3735633246x5x5 -  3771970332x f x2

-  147998424 x \  +  3670292652 x \  x 3 -  637154710 x \ x \  +  94224668 x l x% x 22 -  92736 x \  x2 

+  312704x^x5 -  16928x5x5 -  4147268280 x5 x 3 +  3417408 x \  +  10368 xj

-  20248263x^x5 +  64312411140 x 2 -  66082118x5x5 -  2669821076 x 5 x 2

-  2594659353 x \  x 3 -  16x5 +  53410x5x5 +  15086765008 x5 x 2 +  15505844x5x5  

+  842391202x5x5 +  2402394375 x \  +  107703701565x5 -  21666436296x5

-  938448 x \ x \  +  2117709476 x \  +  816 x 3 x \  +  36231010312 x x x 3 x 2 +  3964629012 x5 x x

-  134795388x5 -  1782373x \ x \  +  207153548x \ x 2 -  43821233x \  +  272886x 5 x 3

-  2351808 x5 x2 +  552x 5 x i -4 1 1 8 6 5 2 4 x 5 x 5  x 3 +  40205468 x5 x 3 +  177632x5x5

+  400330x^x5 +  796102576x5 -  786621448x5x5 -  17809393292 x 5 x x +  46920328x^x5  

+  44126187 x \ x \  +  247328 x \ x \  -  44909671266 x2 x 3 +  8373647934 x x x 3 +  6874504 x \ x \  x x

-  12734218 x5 x 2 +  1858562566 x \  x \  x 2 +  6220580 x5 x \  x5 +  26292341607 xf  x2

+  26279648 x? x5 +  25918356 x \  x 3 +  62389676 x \ x \  +  73134760 x5 x5 +  15456462 x |  x 2 

+  3095575 x5 -  215481381372 x 3 -  176398528 x x x 3 x5 -  4941306 x 2 x 3 x \  +  35657852 x x x5 x5

-  805120 x 3 x? x 2 — 1128576 x 3 x5 x5 +  9359070 x |  x5 x5 — 68314274 x \  x i x2

-  10787996044 x i x 5 x 2 +  361296x5x2X1 — 4211984x5x5 x 2 — 2651040 x5x^ x2

+  1024352088 x5 x2 x3 — 11090742764 x5 x 2 x3 — 82226958 x5 x5 x5 +  2128632364 x5 x i x 3

-  18877120 x i  x 3 x2 — 990584 X3 x 2 x i — 65431972 x5 x5 x 2 +  507248 x |  x \  +  202662 x 2 x i 

+  127173421541.

A possible alternative— the Grobner basis

As said in Chapter 5, the Grobner basis is not considered here for the implic
itization of parametric surfaces. However, it should be mentioned that if this
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method is used for the first example the same implicit equation is obtained. Un
fortunately, for the second example the Grobner basis method did not return an 
implicit equation because the calculation ran out of memory. This confirms the 
results of the comparison given in the paper written by Kapur et al. [49]. In 
that paper five algebraic and geometric elimination problems are given and three 
methods (Kapur’s method, Grobner bases and the Macaulay resultant method) 
for elimination are compared. For two of the five examples the Grobner basis 
method went on for more than a day, or ran out of memory.

For Example 2 the calculation of the implicit equation of the given Bezier surface 
by using Kapur’s extension to Dixon’s method took nine seconds; but the calcu
lation for the same example by using Grobner bases ran out of memory on an SG 
Onyx 2000 with twenty 195 MHz R10000 processors, 6  GB of real memory, and 
a virtual memory of 24 GB.

It is also worth mentioning that if one of the integer coordinates of one point in 
the examples is changed to a rational one, the extended Dixon method still gave 
an implicit equation of the Bezier surface9. In this case for both examples the 
Grobner basis ran out of memory.

8.2.5 Advantages and disadvantages of im plicitization

In Section 2.1.3 the definition of CSG primitives using implicit inequalities is 
described. W ith the method given in Section 8.2.3 it is now also possible to 
include Bezier surfaces into a CSG modelling system such as sVLls (see also 
Section 2.2). In Section 8.2.4 it is shown that the drawback of the resultant 
method can be overcome by using Kapur’s extension to Dixon’s method. Thus 
it is possible to include Bezier surfaces even if the general resultant method fails.

In Figure 8.2 an object generated with sVLls is shown. The object consists of the 
union of a cylinder and the implicit Bezier surface given in Example 2.

Obviously, the inclusion of an implicit Bezier surface goes hand in hand with the 
modelling idea standing behind a CSG modelling system. However, the examples

9 Note that this implicit equation might be completely different from the one given in this 
section even if the coordinate chosen is perturbed only a small amount.
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Zoom

Figure 8.2: Union of a cylinder and a normalised version of a Bezier surface 
implicitized by the resultant m ethod and treated  as an inequality to make it into 
a solid.

given in the last section also show th a t im plicitization for Bezier surfaces and also 

for general param etric bivariate surfaces has some disadvantages.

As mentioned in Chionh and Goldman [24] the degree of the resulting implicit 

equation is 2mn  where m  and n are the degrees of u and v respectively. Clearly, 

the higher the degree of the im plicit equation becomes the bigger the number 

of coefficients will be. This can make the handling of implicit Bezier surfaces 

difficult.

Example 2 given in the last section also shows th a t the range of all the coefficients 

is big. Therefore numerical difficulties will arise, so th a t points which do not 

lie on the described surface may be classified as surface points or the other way 

round. To handle th is problem supernorm alization10 can be applied. The im plicit 

Bezier surface in Figure 8.2 was obtained by applying supernorm alization before 

rendering it.

Another disadvantage is th a t the surface defined by the resulting implicit equa

tion is infinite in extent and may contain self-intersections. Therefore the im

plicit equation m ust be examined for such situations and they must be treated 

in a special way. If only the p art of the surface which is defined by the Bezier

10The equation is divided by the square root of the sum of the squares of its coefficients.
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Figure 8.3: a) Implicit function is bounded by a box defined by the  control points, 
b) The same implicit function but in a bigger box.

param eters11 needs to be modelled, it is necessary to restrict the range in which 

the im plicit equation is defined. The easiest way to find such a restriction would 

be to  define a rectangular box using the control points. In Figure 8.3a a rectan
gular box restricts the implicit equation displayed in Figure 8.2 to a part of the 

surface. This part is identical to the Bezier patch described by a param eter range 
[0,1] x [0,1]. However, if the bounding box is not tight enough self-intersections 
afflict the surface. This situation is shown in Figure 8.3b. A nother possible way 

to  restrict the implicit equation would be to  use the convex hull generated by 
the control points of the given Bezier surface. In general this would give tighter 

bounds. Unfortunately, this m ethod does not guarantee th a t the function is re
stricted in the desired way either because there are still situations in which other 

parts of the implicit surface might lie inside the convex hull.

In Section 2.1.3 it is said th a t a prim itive is sometimes made equivalent to  a 

half-space which separates the modelling volume into two disconnected regions. 

In general, a Bezier patch does not meet this criterion because it ju s t describes 

a p art of a curved surface. For sVLls this means th a t the im plicit Bezier surface 

can be included as a curved sheet (see also Section 2.2.1). This sheet can then be 

combined with the sVLls standard  prim itives to  model more com plicated objects. 

Thus an advantage of an implicitized Bezier surface is th a t the user can choose 

to  trea t it as an im plicit inequality representing a solid, or as a zero-thickness 

sheet like the original param etric surface.

11 Usually it is given by the parameter area [0,1] x [0,1] for u and v.
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8.3 Inclusion by using the parametric equation

Since implicitization has some disadvantages it would be good if the inclusion 
of free-form surfaces (or parametric surfaces in general) into a set-theoretic ge
ometric modelling system could be provided in a different way. Approaches for 
inclusion are given by Krishnan and Manocha [51] and by Miura et al. [61]. In [51] 
efficient and accurate algorithms for Boolean combinations of solids are shown. 
These solids are represented as a collection of spline surfaces and a connectivity 
graph. Miura et al. give in [61] a functional clipping operation so that a free-form 
primitive can be treated as a traditional implicit one in set-theoretic modelling 
based on R-functions. However, these methods cannot be implemented very eas
ily in sVLls. Therefore another approach for the inclusion of free-form surfaces 
is given in this thesis which uses their parametric definition directly.

In Section 2.2.4 five queries were given which have to be supported in order to 
include any shape into the sVLls modelling system. This means that algorithms 
and methods have to be developed which provide the modelling system with this 
necessary information for parametric surfaces.

The following sections will describe an approach which accomplishes a possible 
inclusion and extends the existing sVLls primitive class. Clearly, this extension 
should not change any of the basic ideas12 developed in sVLls so far. It should be 
seen as a module which does not restrict but enlarges the functionality of sVLls.

The inclusion is illustrated by using Bezier surfaces as an example. To clarify 
the ideas of their integration and handling the faceting13 of a sVLls model is 
considered. Once again the resulting shape has to be understood as a thin curved 
sheet without an air or solid half-space (see Section 2 .2 .1 ) either side.

In the following sections some methods and algorithms14 will be shown which 
are essential for the inclusion of Bezier surfaces and which provide a possible 
means for implementation. Obviously, there might be different methods which 
could perform such an inclusion and which might be more efficient. However, the

12Some of these ideas can be found in Chapter 2. For further details the sVLls manual [11] 
should be consulted.

13As said in Section 2.2.3 there are many strategies for division in SVLlS, one of which is 
intended for faceting models.

14For the description some C++ terms and expressions will be used.
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primary aim of the research here is not so much efficiency, but to turn attention 
to a possible implementation which combines the CSG philosophy and free-form 
surfaces.

8.3.1 Definition of a parametric primitive

To describe a parametric primitive, five characteristic features are essential. The 
primitive is defined by a list of control points or coefficients contro l_p . The 
number of the control points is given by the degree m and n in the parameters 
u and v respectively. In most cases, it is necessary to restrict the range of the 
parameters; therefore two intervals ru  and rv  are introduced. Although this 
information is sufficient to define such a parametric primitive it is also convenient 
to store the convex hull h u l l15. All these features are collected in a new sVLls 
class called param etric . Besides a class constructor this class contains a function 
which calculates and returns the convex hull as a sVLls set16. Further there are 
a number of functions which support the five queries given in Section 2.2.4.

For the inclusion of this new class, the existing sVLls class p r im itiv e  (for details 
see [11]) was extended by a variable of type param etric . To create a parametric 
sheet primitive another constructor for a sVLls primitive was implemented. This 
constructor generates a sVLls primitive for a set of points, degree m  and n of the 
parameters and two intervals defining the range of the parameters.

8.3.2 Handling of a parametric prim itive

As mentioned in Section 2.2.4 it is necessary to provide the answers to five queries
for a new primitive to be included in sVLls. Four functions17 are provided dealing
with these queries; two for calculating the potential value for a point and a range
of potential values for a box and two functions for calculating the gradient vector
for a point and the range of the gradient vectors for a box. The boxes tested are
usually generated by the recursive division strategy which is employed by sVLls
to divide the modelling space.

15The convex hull calculation is performed by the method given in Section 6.2.
16Note this set consists of a number of planes which generate a convex polyhedron.
17Ray intersection can be performed if the others are supported.
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Figure 8.4: Classification of a boxes depending on their location to a parametric 
primitive (in this case a Bezier surface defined by the four points A, B  and C).

As said in Sections 2.2.4 these four functions are also provided for the standard 
sVLls primitive class. Since this class also has a reference to the type of paramet
ric primitive, this parametric case can easily be tested and handled separately. 
Thus, four new functions dealing with this issue are implemented in the class 
param etric .

Potential at a point
The aim of the function value is to determine the potential value18 of a point 
q for a parametric primitive p. As said earlier Bezier surfaces are included as 
sVLls sheets19. For a sheet a potential value of a point is strictly positive almost 
everywhere, but it becomes zero on the surface.

Range of potentials in a box
By applying the function range the range of values of all the points inside a box, 
b, is obtained. To perform this test more efficiently the calculation is performed 
first by using the convex hull. Since the convex hull is a sVLls set (which is a 
combination of a number of sVLls primitives) the range for the standard primitive 
class is employed (see also Section 2.2.2). If the range returned (represented by

18This value is the minimum distance of a point to the surface and is obtained by using the 
Newton-Raphson method.

19For the inclusion of parametric solids it is important to define the solid region first. However, 
this is not done here and needs further investigations.
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a sVLls interval) is all positive20 then the box b does not contain any part of 
the surface. In Figure 8.4 this situation is that for box 1. In the other cases 
(these correspond with boxes 2, 3, and 4) when this interval is all negative or 
straddles zero it is necessary to calculate the intersection of the box and the 
possible surface lying inside of the box. Note, an interval which is all negative by 
testing it against the convex hull21 needs further investigations since such a box 
b might either contain a part of the surface (e.g. box 4) or can be classified as 
an air box (e.g. box 2).

Clearly, the accuracy of the test with the convex hull depends on the quality of 
its approximation i.e. the closer the convex hull to the actual surface is the better 
the approximation will be. In general the quality of the approximation can be 
improved by making use of the degree elevation property or the subdivision prop
erty (see also Section 8.1.1). Both properties generate convex hulls or polyhedra 
which lie closer to the actual surface.

Gradient at a point and in a box
The function g rad .q  returns the gradient vector at a point q. For a box b the 
function grad_b calculates a range of gradient vectors for b. Obviously, it is 
not enough just to determine the gradient vectors at the intersection between 
the box and the surface since these vectors might not be representative for the 
whole part of surface inside the box. An additional calculation is necessary which 
determines the gradient vectors for a point grid. The range of gradient vectors 
is then obtained by finding a lower and upper bound for all the gradient vectors. 
Clearly this method gives only a heuristic range for the gradient vectors and 
might be not good enough if a surface with high curvature is considered.

So far the method for the calculation of the intersection between the box and the 
surface has not been described. For this the Newton-Raphson method has been 
used to calculate a solution for a set of nonlinear equations.

The N ew ton-R aphson  m ethod
The Newton-Raphson method is one of the most well-known iteration methods. 
It can be employed to determine a solution for a system of nonlinear equations. 
It can be shown that Newton-Raphson converges to the solution of the set of

20This is equivalent to an air box classification (see also Section 3.2).
21 The box tested lies entirely inside of the convex hull (see also boxes 2 and 4 in Figure 8.4).
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equations if an initial starting solution is given which is sufficiently good.

In general, the intersection of a box and a surface which passes through the box 
generates a number of intersection curves. This intersection can be interpreted 
as solving a set of nonlinear equations. However, in the case mentioned above 
a simpler intersection problem can be considered. Since the boxes which have 
to be intersected with the surface are generated by a recursive division, it is 
possible to argue that the surface inside each box is going to be locally reasonably 
flat22. Hence, the intersection problem can be reduced to a problem of finding 
the intersection between the box edges and the surface. Also, since only axially- 
aligned boxes are considered23 the set of nonlinear equations is less complicated 
than in a general case.

As said above one condition for the convergence of the Newton-Raphson method 
is the quality of the starting point chosen. There are different methods for find
ing such a starting point. In his paper [82], Toth describes an algorithm for 
finding a starting point for the Newton-Raphson method which employs interval 
arithmetic.

Obviously there are many more strategies. For example, in the case of the inclu
sion of Bezier surfaces into the modeller sVLls a starting point can be determined 
by using the surface’s parametric information. The idea is to generate a point 
grid and to test each point against the box for which the intersection with the 
surface is needed. If the point is inside the box then its parameter combination 
can be used as a possible starting solution. Clearly, the success of this method 
depends on the point density and the location of the box. To overcome a sit
uation in which no point is obtained as a good starting point a comparison of 
the minimum distance between the surface points and the box is applied. That 
means if no point is found which lies inside the box the parameter combination 
of the point which lies closest to the box is chosen as a starting point.

Although this method might seem to calculate a rather inaccurate starting point, 
tests have shown that this approximation is good enough to provide a solution.

22In the case of faceting the division of a box stops either if the box does not contain any 
part of the surface or if the part of the surface lying inside the box is almost flat. The range of 
directions of the gradients effectively decides how flat the surface is (see Section 2.2.3).

23Different ways of dividing the model boxes can be used; for instance: splitting the box 
along the longest direction or the direction to split the box is chosen depending on the contents 
of the model box investigated (see also [11]).
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Figure 8.5: Union of a cylinder and a param etric Bezier surface given in Example 
2. The Bezier surface is included in a similar m anner as sVLls sheets (see [11]).

In Figure 8.5 the union of a cylinder and the Bezier surface which was given in 

Example 2 is displayed. In this case the Bezier surface is included in sVLls by 

its param etric definition. For the calculation of the necessary intersection points 

the New ton-Raphson m ethod is used which employs the described m ethod for 

finding a good starting  point.

8.3.3 S trengths and w eaknesses o f such an inclusion

For the inclusion of free-form surfaces such as Bezier surfaces by using their 

param etric definition directly it is necessary to provide answers for the five queries 

given in Section 2.2.4. This requirem ent leads to an intersection problem which 

has been solved by using the N ew ton-Raphson m ethod.

The approach given has some disadvantages:

•  The performance of the N ew ton-Raphson m ethod depends very much on 

the chosen starting  point for the iteration. Finding a good starting  point 

for the iteration m ethod can sometimes be rather difficult.

•  For faceting the surface it is necessary to  find the vertices of each facet
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inside a box. If the Newton-Raphson method is used for their calculation 
it is not guaranteed that the same intersection points for two neighbouring 
boxes are obtained. This can lead to gaps in the surface displayed.

• For the calculation of the intersection points it is assumed that the part 
of the surface lying inside the box is reasonably flat. The test for this 
condition is performed by determining gradient vectors for a grid of surface 
points. Depending on the density of the grid it might happen that major 
changes in the curvature of the surface are not detected.

• The approach using the Newton-Raphson method is based on the idea that 
the intersection problem can be reduced to an intersection problem of the 
box’s edges and the surface. Clearly there are cases where the surface passes 
through the box without cutting any single edge of the box.

•  The Newton-Raphson method determines only one intersection point. How
ever it is possible that there is more than one intersection point.

Unfortunately, this list points out that the approach has some drawbacks and, 
in general, only determines approximations for the intersection between the sub
boxes and the surface of interest. This leads to not very precise answers to the 
queries which have to be supported if any shapes should be included in sVLls.

However, the main advantages of the Newton-Raphson method are that this 
method is very well-known, it has a good convergence order and its implemen
tation is straightforward. Further investigations could help to improve the ap
proach. For example the list above includes the problem that the surface dis
played might have gaps24. This problem is not only due to the fact of using this 
iteration method. The same effect happens whenever faceting is used to display 
a curved surface. SvLls already provides a mechanism which solves this problem 
by overlapping the boxes a little bit. The detection of the surface’s curvature 
could be improved if the grid were set up so that the maximum Euclidean dis
tance between the grid points is less than a certain value. This guarantees tha t 
all boxes down to a certain size would have a minimum number in. It is said that 
the Newton-Raphson method only determines one intersection point. However,

24 This happens if the Newton-Raphson method does not calculate the same intersection 
points for two neighbouring boxes.
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the number of possible intersections can be detected beforehand25 and further 
divisions of the sub-box tested would lead to the calculation of all the intersec
tion points. Also the interval Newton-Raphson method presented by Bowyer et 
al. [12] could be used for finding all intersection points (see also [85]).

The experiments shown in the sections above give evidence about the possibility 
for the inclusion of free-form surfaces into a set-theoretic modeller by using their 
parametric definition directly. The handling of parametric primitives and their 
combination with the standard sVLls primitives by applying Boolean operators 
is illustrated in Figure 8.5 and also in Figure 8 .6 .

8.4 Outlook

At the start of this chapter only the implicitization for Bezier curves and surfaces 
was presented. However, a same approach could also be used for B-spline and 
NURBS curves and surfaces. Usually the definition of these kind of shapes uses 
other basis functions instead of the Bernstein polynomials. For more details the 
book written by Piegl and Tiller [6 6 ] should be considered.

As said above in most cases the implicit equation for a Bezier curve or surface 
becomes a high-degree polynomial. This automatically leads to a big number 
of coefficients which make the handling of the surfaces in respect of numerical 
stability quite difficult26. Another approach which avoids the complexity of an 
equivalent implicit equation is to approximate the implicit equation of a paramet
ric surface such as a Bezier surface. Further details on this topic can be found in 
the work done by Dokken [31] and in the paper written by Sederberg et al. [79].

Further it was shown how an inclusion of Bezier surfaces by using their parametric
equation directly can be performed. The approaches can also be applied to other
free-form surfaces such as B-spline or NURBS surfaces.

25 Further information about detecting intersections of two parametric surfaces can be found 
in the papers written by Koparkar and Mudur [44] and Koparkar [50].

26To remedy this the supernormalization can be applied (see also Section 8.2.5 or Berchtold 
and Bowyer [5] for further details).
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8.5 C onclusion

In this chapter two different approaches for the inclusion of Bezier surfaces in 

the set-theoretic geom etric modelling system sVLls are investigated and imple

mented. For both ideas the advantages and disadvantages are presented. The 

disadvantages of the two approaches require further investigations.

However, the main result of the chapter is th a t it is possible, despite these prob

lems, to include free-form  surfaces such as Bezier surfaces in a set-theoretic ge

ometric modeller. The im plicitization of these surfaces and the inclusion of the 

resulting function in the modeller sVLls is shown. Also a way is presented for 

including this kind of surface directly by using its param etric equation. In both 

approaches the surfaces are represented as sVLls sheets (see also Section 2.2.1).

Figure 8.6 shows how the results can be used in engineering and architecture, 

fields of geometric modelling for which free-form surfaces were created and in 

which most applications of them  can be found.

Figure 8.6: An awning outside a building (plan view inset). The building and the 
pillars are ordinary sVLls im plicit-function sets and the awning is a param etric 
Bezier surface from which more im plicit sets have been subtracted.
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Chapter 9

The im plicit Bernstein basis and  
CSG

In Chapter 7 the Bernstein basis was introduced. There it was said th a t this 
basis is more numerically stable than the more commonly used power basis. In 
Chapter 3 an interval arithmetic technique was given which can be used to locate 
geometric objects in a modelling volume. One disadvantage of this method is the 
conservativeness problem which arises irrespective of the polynomial form used 
or the way the variables of the polynomial are ordered (though these can change 
the severity of the problem, see also Section 3.2).

In this chapter the influence of the Bernstein basis on interval calculations is 
investigated. As shown in Section 7.3, in general, Bernstein-form polynomials 
are more complicated than their equivalent ones in power form. This is due to 
the fact that in many cases the power-form coefficients become zero. However, it 
will be shown that the use of the more complicated Bernstein-form polynomial 
actually provides a better interval classification (i.e. a shape is better located in 
the modelling volume) than by using the equivalent power-form polynomial.

In the following sections the behaviour of Bernstein-form polynomials is exam
ined. These polynomials are used for the object’s location by means of the inter
val arithmetic technique. Then experiments are described which use the implicit 
Bernstein basis to define primitives for the CSG modelling system sVLls. The 
chapter finishes with a section on the advantages and disadvantages of the use of
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Bernstein-form polynomials in a CSG modelling system.

The experiments listed in Section 9.1 are the result of a combined project with 
my colleague Irina Voiculescu (see also our report [7]). The results will also be 
published as a paper [9]. Some of the pictures given here are taken form this 
paper and the report [7].

9.1 Bernstein-form  polynomials and interval 
arithmetic

In Section 3.2 a technique based on interval arithmetic is given which some CSG 
modelling systems employ for the location of shapes in the modelling space. The 
main disadvantage of this technique is its conservativeness. In Section 3.2.2 it was 
said that it is hot possible to eliminate this problem. However, the performance 
of interval arithmetic can be improved by decreasing the range of the interval 
tested or by changing the representation of shape-describing polynomials.

In this section the second approach—replacing the well-known power-form poly
nomials with their equivalent Bernstein-form ones—is investigated. The perfor
mance of the interval arithmetic technique is then measured by comparing its 
conservativeness when applied to polynomials in Bernstein and power form.

Although these tests were only performed for polynomials in these two forms it 
would be possible to do the same for other polynomial forms such as the Horner 
form. Further, the experiments (especially in the two-dimensional case) help to 
identify areas where the conservativeness problem appears more acute.

9.1.1 Comparison m atrix and graphical output

At first the study tools which are used to compare the behaviour of the two dif
ferent polynomial representations by applying interval arithmetic are described. 
To perform the experiments it was necessary to sub-divide the modelling vol
ume. Obviously it would have been possible to use an adaptive or recursive
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approach (see also Section 2.2.3). However, this would have introduced different 
sub-divisions for the same model depending on the representation used, and so an 
unbiased comparison would not have been possible. Therefore an axially-aligned 
grid with a fixed number of sub-boxes1 was used to carry out the classification 
and surface location of the object given in the two different representations. In 
most examples a total number of either 2500 or 625 sub-boxes per unit box was 
used.

Note that the equivalent Bernstein-form polynomial was calculated with respect 
to the whole modelling volume. Clearly, it would have been possible to determine 
an expression in Bernstein form for each of the sub-boxes but this would not have 
given a fair test. However, this approach is also performed in Section 9.1.4 and 
the result is discussed there.

The tests provided two different kinds of output. For their determination the 
algebra system Maple and an interval arithmetic package (see Langley [52]) was 
used. Firstly the type of the classification2 is presented in a comparison table. 
Secondly a quality graph is given which plots the box classification depending 
on the polynomial form used. These two outputs are explained by means of the 
following example.

Consider a circle which is centred at Q , and has a radius of | .  Its power form 
p f ( x i , x 2) is:

Pf  =  +  x\  -  xi  -  x 2 +  (9.1)oU

The corresponding Bernstein form3 b f ( x i, £2) in the rectangular box [0,1] x [0 , l ]4 

is:

bf  =  ( i (1 - * i)2 - ^ * i ( 1 - * i) +  S * ? ) (1 - * ’)a
/  4 33 4 \

+ 2  -  Zi) 2 “  25Xl(1 -  Xl) -  2 5 x i)  *2 (1  -  X2) (9.2)

 + ( i (1~ * i)2 - + I * 2) ^
1This term is used for both the tw o- and three-dimensional modelling volume, although the 

term sub-rectangle would be the correct one for the two-dimensional case.
2In Section 3.2 the three different types solid, air and unknown are given.
3The Bernstein form is calculated by the method given in Section 7.3.
4 The circle given lies entirely in this rectangular box and the area of interest can be restricted 

to it. The Bernstein form is calculated once for this rectangular box.
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The interval arithmetic technique is now applied to these two polynomial repre
sentations of the circle.

Com parison table

In Table 9.1 the resulting comparison table for the circle is given if the interval 
arithmetic is applied to its power form and its corresponding Bernstein form (see 
Equations 9.2 and 9.1).

B e r n s t e i n  
solid air unknown

p
0 solid 949 0 0 949
w air 0 919 0 919
e unknown 131 145 356 632
r

1080 1064 356 2500

Table 9.1: Comparison table for the circle given in Equations 9.2 and 9.1. The 
power form is worse than the Bernstein form for interval box classification as it 
generates more unknown boxes.

The rows of the table correspond to the number of sub-boxes which are classified 
as the same type by applying the interval arithmetic technique to the power-form 
polynomial. Respectively, the columns of the table represent the number of sub
boxes classified as solid, air or unknown5 by applying the method to Bernstein- 
form polynomials. The numbers at the end of each column and row give the total 
number of boxes which are classified as solid, air, or unknown for the Bernstein 
form and power form respectively. The elements of the table are specified by e.g. 
Cair,air (in this case 919) which stands for the number of boxes which are labelled 
as air from the power-form and as air form the Bernstein-form.

The table also allows to tell how many sub-boxes are re-classified. In Ta
ble 9.1, there are e.g. Cunknown,soiid — 131 sub-boxes which were classified as

5The term unknown either means that the sub-box contains a part of the surface or that 
the interval arithmetic cannot classify the box as air or solid because of its conservativeness. 
This problem exists regardless of the polynomial form.
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unknown by using the power-form polynomial but which are re-classified as 
solid by applying the interval arithmetic technique to the equivalent Bernstein- 
form polynomial. Although in the case of the circle the number of boxes for 
Csolid,■unknown = Cair,unknown is equal zero, there are cases for which such a re
classification happens.

In Section 3.2.2 it is said that a solid- or air-classification is consistent, i.e. if a 
box is classified as solid it is not possible that the same box can be classified as 
air by using another polynomial representation6. Therefore the number of such 
boxes in the comparison table must always be zero {Csoud,air — Cair ŝoud =  0).

In general, the performance of the interval arithmetic technique can be measured 
by comparing the number of sub-boxes classified as unknown for the two different 
representations. These two numbers are highlighted by a box in the table. Note 
tha t the distinction between solid and air classification is not essential for the 
quality of the classification. To measure the conservativeness problem it would 
be sufficient to compare the number of unknown boxes.

The example of the circle shows that the interval arithmetic applied to the 
Bernstein-form polynomials gives a better classification than by using the equiv
alent power-form polynomial. This is a surprising result especially if the com
plexity of Equation 9.2 is compared to the simplicity of Equation 9.1. This result 
is also confirmed by other examples in the following sections.

Q uality graphs

For most cases the comparison matrix is a good tool for studying the performance 
of the interval arithmetic technique. However, sometimes it is also important to 
know the location of the sub-boxes classified as unknown. Therefore a quality 
graph is introduced which plots the sub-boxes and colours them depending on 
the classification obtained by the interval arithmetic applied to one polynomial 
representation. All the sub-boxes which are classified as unknown are coloured 
green; the other sub-boxes which are classified as solid or air are coloured red or 
blue respectively.

6This is true if exact (rational) arithmetic is used, but floating-point rounding might occa
sionally cause a wrong classification in a conventional program.
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In Figure 9.1 the quality graphs for the circle are shown. The picture on the left 

is the actually polynomial of interest. In the middle the quality graph for the 

classification obtained by applying the location technique to  the power form (see 

Equation 9.1) is given. On the right the quality graph of the result is displayed 

for interval arithm etic applied to the Bernstein form (see Equation 9.2).

Function graph Power form Bernstein form

P
0 0.2 0 .$ 0.6 0.8

Figure 9.1: Interval arithm etic applied to the circle given in Equations 9.1 and 
9.2.

For the example of the circle it is shown th a t the classification using the B ernstein- 

form polynomial gives a more evenly spread area of unknown boxes7. Compared 
to this the classification using the power-form polynomial leads to a clustering 
of unknown boxes as further away from the origin. This effect will be confirmed 

in the following sections.

Unfortunately, in the three-dim ensional case the viewing of such a quality graph 
does not give much inform ation on the location of the different sub-boxes because 

only the outer boxes are visible. Making them  sem i-transparent does not really 

help, as the pictures then become very confusing.

9.1.2 T w o-d im ensional exam ples

In this section different two-dim ensional examples are studied. At first the s itu 

ation in the unit box [0,1] x [0,1] as the modelling volume is investigated. Then 

general boxes are considered as the modelling volume. For all the examples given 

here the equivalent Bernstein-form  polynomials (which are long) can be found in 

Appendix C.

7The area is also smaller, as would be expected from the matrix.
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E xperim ents in th e  un it box

Exam ple 1:
The first example in this section is a curve p f ( x  1, 0:2) given by the following 

power-form polynomial:

p f ( x  1,2:2) — § X \ X 2 — 9x1X2 +  2x ^ 2  +  5x1X 3.

If the interval arithm etic technique is applied the following comparison table is 

obtained:

B e r n s t e i n  
solid air unknown

p
0 solid 325 0 0 325
w air 0 1598 0 1598
e
r

unknown 93 66 418 577

418 1664 418 2500

Table 9.2: Comparison table for p / ( x i ,x 2) =  5xfx2 — 9x 1X3 +  2x^X3 +  5x 1X3.

As Table 9.2 shows using the Bernstein-form  polynom ial gives a better classifica

tion (93+66=159 unknown sub-boxes are re-classified) than  using the equivalent 
power-form polynomial. The corresponding quality graph is given in Figure 9.2.

Function graph Power form Bernstein form

0 4

0 2

Figure 9.2: Box classification for p f ( x i , x 2) =  5xfx2 — 9x 1X3 +  2x\x% +  5x 1X3. 

Exam ple 2
The second example in this section studies a curve given by the power-form
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polynomial p f ( x \ , x 2):

p f ( x l , x 2) =  x \ -  J x \ x 2 +  Zx\xl -  x \  +  x\  +  ^ ^ 1  -  ^ 2^ 1- 

In this example, Csondysurface and CairiSUrface are not equal to zero (see Ta-

B e r n s t e i n  
solid air unknown

p
0 solid 1483 0 14 1497
w air 0 523 9 532
e unknown 
r

56 26 389 I471

1539 549 412 2500

Table 9.3: Comparison table for p f ( x  1, 2:2) =  x\  — | ^ i ^2 +  Sx^x^ — x\  +  x \  +
111 r 4.r  _  8 1 ^ 4 ^ 3  
100 2 1 20 2 1 ‘

Function graph Power form Bernstein form

oa
U6-

04.

02

Figure 9.3: Box classification for Example 2.

ble 9.3). However, the overall performance given by comparing the to tal num 

ber of unknown sub-boxes (in this case 471 and 412) confirms again th a t using 

the Bernstein-form  polynomial leads to a be tte r classification. This is a very 

surprising result especially if it is considered how much more complicated the 

Bernstein-form  polynomial is (see Appendix C).

The quality graph for this example is displayed in Figure 9.3. It can be seen th a t 

the location m ethod using the power-form polynomial becomes less accurate in 

the top righ t-hand  corner.

159



E xperim ents in a general box

E x am p le  3
The next example again considers a circle. However, this time it is translated 
further away from the origin. It is centred at ( y ,  y )  and its radius is The 
power-form polynomial p f ( x  1 , 0:2) describing this circle is:

p f ( x  u x 2) =  x\  — llrci + x \  — 17x2 +
51)

The general box which encloses this circle is [5,6] x [8,9] and has unit length edges. 
In this example the interval arithmetic classifies all the sub-boxes as unknown

B e r n s t e i n  
solid air unknown

p
0 solid 0 0 0 0
w air 0 0 0 0
e unknown 1080 1064 356 2500
r

1080 1064 356 2500

Table 9.4: Comparison table for a circle translated to a general box.

if the power-form polynomial of the circle is used. However, if the equivalent 
Bernstein-form polynomial is used the shape of the circle can be located and 
a suitable classification is provided. The number of unknown sub-boxes deter
mined by the Bernstein form in Table 9.1 and 9.4 are the same which allows the 
conclusion that a translation of the area of interest does not affect the classifica
tion procedure or location method. This is not surprising, as the Bernstein basis 
is effectively independent of the origin. In Figure 9.4 the quality graph of the 
translated circle is given.

E x am p le  4:
So far, only examples enclosed by a box with unit-length edges have been con
sidered. In the next example a bigger box is chosen to enclose the shape of 
interest.
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Power form Bernstein form

92

5 2 5 4 5.6 5 8 5 4 5 6 5 8

Figure 9.4: Q uality graph for the circle given Example 3.

Consider the cardioid curve p f ( x  1, 0:2) in the box [2,6] x [4,9]8:

p f ( x i , x 2) =  -67608 Xi — 98820 x 2 -  6300x^X2 +  30699x2 +  984 x^x^

+  31968 xi X2 — 6336 Xi X2 -  36 x\ x 2 +  3 x\  x\  — 24 xi X2 

+  600 Xi x\  — 75 x\  X2 +  576 x^ x 2 — 48 x j X2 +  3 x\ x\  +  18243 x\  

+  345 x\ — 2960 x^ +  585 x\ — 5448 x \  +  x \  — 24 x\  +  x\ — 36 X2 

+  143019

In Table 9.5 the comparison table is given. It shows th a t the classification fails 
completely if the power-form polynomial is used. The change to the B ernstein- 

form polynomial helps to classify at least some of the air boxes. In Figure 9.5 the

B e r n s t e i n  
solid air unknown

p
0 solid 0 0 0 0
w air 0 0 0 0
e unknown 0 4826 7674 12500
r

0 4826 7674 12500

Table 9.5: Comparison table for a cardioid curve in a general box.

quality graph for this curve is given. Obviously, the graph in the middle which 

plots the result by using the power-form polynomial consists of unknown boxes 

only.

8In th is exam ple th e m odelling sp ace  is d ivided in to  12500 su b -b o x es  w hich is equivalent to  
25 su b -b o x es per un it length .
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Function graph Power form Bernstein form

Figure 9.5: Q uality graph for the cardioid curve in the box [2,6] x [4,9].

A lthough the performance of the interval arithm etic is much better if the Bern

stein-form  polynomial is used, it is still not satisfactory. In the next example it 

is shown how the result can be improved by cropping the box of interest.

Exam ple 4.1:

In this example the bounding box is cropped to a smaller box of interest [3,5] x 

[7,8]. Clearly, in this case the power-form polynomial is the same. However, the 

Bernstein-form  polynomial which depends on the interval box edges is different 

from the one in Example 4 and can be found in Appendix C.

As seen in Table 9.6 the use of the power-form polynom ial still (as would be 
expected) does not give a usable classification. However, if the bounding box is 

cropped the interval arithm etic technique applied to the Bernstein-form  polyno

mial provides a better classification than  before.

B e r n s t e i n  
solid air unknown

p
0 solid 0 0 0 0
w air 0 0 0 0
e unknown 344 672 234 1250
r

344 672 234 1250

Table 9.6: Comparison table for a part of the cardioid curve in the box [3,5] x 
[7,8].
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In Figure 9.6 the result for this example is displayed. In the graph on the right 

the shape of the curve given can be recognised, whereas the graph on the left 

consists of unknown sub-boxes only.

Power form Bernstein form

Figure 9.6: Quality graph for the part of the cardioid curve in the box [3,5] x [7,8].

9.1.3 T hree-d im ensional exam ples

W hereas in the last section only two-dim ensional examples were considered, this 

section will show th a t the results given above also hold in the three-dim ensional 

space. Unfortunately, for the examples given here it is not possible to display a 

quality graph because only the outer sub-boxes would be visible.

E xperim ents in th e  un it box 

Exam ple 5:
The first example in this section is a torus centred in the origin and its radii are 

|  and jL Its power-form polynomial p f {x \ ,  x2, £3) is:

p f ( x u x 2, x 3) =  X41 +  Zxfc l  +  2xf x l  -  +  x% +  2

209 ,  43681
-x\ +

200 * 160000

In Appendix C the corresponding Bernstein-form  polynomial for the part of the 

torus which lies in the unit box [0,1] x [0,1] x [0,1] can be found. This part is 

studied and in Table 9.7 the result of the classification is shown. The modelling 

volume is divided by 25 sub-boxes in each dimension. Again, it can be said tha t 

the performance of the classification is be tte r if the Bernstein-form  polynomial 

is used.
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B e r n s t e i n  
solid air unknown

p
0 solid 27 0 3 30
w air 0 12889 139 13028
e unknown 265 307 1995 2567
r

292 13196 2137 15625

Table 9.7: Comparison table for the part of a torus which lies in the unit box 
[0,1] x (0,1] x [0,1].

Exam ple 6:
In this example a heart-shaped object (see also Example 4) is considered. This
shape is given by the following power-form polynomial p f ( x i, X2 , x^):

p f ( x i , x 2 , 2:3 ) =  3 x 2 j/ 4 — 1 — 3 z 4 +  3 x 4 z2 +  3 y2 z4 — 6 a;2 z2 +  x 6 +  3 a;4 y2 

+3 x 2 +  3 y2 +  3 z2 +  6 x 2 y2 z2 — 3 yA — 6 y2 z2 +  z6 +  3 x 2 z4

+3 yA z2 — 6 x 2 y2 — 3 x A +  y6 -  \  x2 z3 — 5 y2 z3.
5

As in Example 5 the part of the object which lies in the unit box [0,1] x [0,1] x [0,1] 
is studied. Again, each dimension of the modelling volume is divided by 25 sub
boxes.

B e r n s t e i n  
solid air unknown

P
0 solid 2908 0 0 2908
w air 0 0 0 0
e unknown 8494 398 3825 12717
r

11402 398 3825 15625

Table 9.8: Comparison table for the part of a heart-shaped object which lies in 
the unit box [0,1] x [0,1] x [0,1].

In Table 9.8 the classification of the modelling volume is given. It is clear that 
the use of the Bernstein-form polynomials gives again a much better result than 
the use of its equivalent power-form polynomial.
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Experim ents in a general box

In this section now examples which lie further away form the origin are considered. 

E xam ple  7:
This example studies a torus centred at (16,7,4) and of radii |  and J. Its power- 
form polynomial p f ( x i , £2 ,^ 3) is:

p f ( x i ,x 2,xs) =  x + 2 x  y + 2 x  z + y  + 2 y  2T + z —64x — 2&x y

—16x2z — 6 4 x y 2 — 6 4 x z 2 — 28 yz — 16 y2 z  — 28 y z2 — 16 z i
119879 2 60263 2

x +  896 x y +  512 x z  -i— y +  224 y z
72

50887
72

72
* 2 -

184604
x  —

323057 
36 y -

46279 2130501025 
20736

The tested modelling volume is bounded by the box [15,17] x [6,8] x [3,5] which is 
divided by 25 sub-boxes for each dimension. In Table 9.9 the result of the classifi
cation is given. Again it is confirmed that the classification using the Bernstein-

B e r n s t e i n  
solid air unknown

p
0 solid 0 0 0 0
w air 0 0 0 0
e unknown 0 95310 29690 125000
r

0 95310 29690 125000

Table 9.9: Comparison table for a torus centred at (16,7,4) and of radii |  and | .

form polynomial is acceptable, although no solid sub-boxes were determined. 
Clearly, it would be possible to crop the bounding box to a smaller area of in
terest and this would improve the classification by using the new Bernstein-form 
polynomial. However, it would not affect the classification using the power-form 
polynomial which fails to locate any other sub-boxes than unknown ones (see 
also the results of the following example or [9]).

E xam ple  8:
This example studies the heart-shaped object again. It is now translated away 
from the origin and the new bounding box is given by [4,8] x [2,6] x [1,4]. The
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power-form polynomial p /(x i ,x 2,x 3) has following form:

835363
p f ( x i ,x 2 ,x 3) =  576 x\ x2 x \ — 2304X\ x2 x3 H   I-3x^ x? -  12x2 x3

5
15252

—48 x \  X3 +  192 x \ x3 ------ -—  x \ x3 — 6264 X\ x \  -I- 31680 X\ x2

22752 2 79344 2 2 ™ 2  — Xi X3 -I  —  xi x3 +  600 Xj X3 -  2148 Xj x3
0  0

—3264 x2 X3 -I- 11040 x2 x3 — 12 x \  x3 -  72 x \ x \ +  576 x^ x2 

—72 x \  X3 -1- 288 x^ x3 +  3 x \ x \  — 48 x\ x \ +  3 x \ x \  +  3 x^ x \ 

—24 x \  x2 +  3 xj X3 — 36 X i X2 +  576 x\ x \ — 36 X \  X3 

+ - ^ -  Xi X3 +  597 x \ — 5688 x \ +  357 X2 — 3152 x \ +  213 X3

~ ~ E ~  x 3 x i — ^  x \ + x \ — 24 Xj +  x® — 12 X3 +  6  x \ x \ X3 

—24 x \ x \ x3 — 48 x\ x2 X3 -I-192 x \ x2 x3 — 72 xi X2 X3 

+288 Xi Xj x3 +  3 Xj X3 — 24 x2 X3 +  232 x2 X3 +  — ■

+19675 Xg +  x 3 ~~ 29 x l x 3 +  954 x \ x \  — 6096 x \  x2

4056 2 2 544596 121 , 3 186732
-I— —  xf X3   —  xi -  72920 x2  — x \ X3   —  x3.

The result of the classification method for this example is given in Table 9.10. In 
this example each dimension of the modelling box is divided by 5 sub-boxes per 
unit length.

B e r n s t e i n  
solid air unknown

p
0 solid 0 0 0 0
w air 0 0 0 0
e unknown 0 1072 4928 6000
r

0 1072 4928 6000

Table 9.10: Comparison table for the heart-shaped object which lies in the general 
box [4,8] x [2,6] x [1,4]. Each unit length is divided by 5 sub-boxes.

Once more the classification method fails to identify any air or solid boxes if the 
power-form polynomial is used. Compared to this the use of the Bernstein-form
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polynomial allows the detection of some of the air boxes. However it has to be 
said that the performance of the Bernstein-form polynomial is not outstanding 
either. In the following example this performance is improved.

Exam ple 8.1:
In this example the area of interest is cropped to the smaller box [5, 7] x [4,6] X  

[3,4]. The corresponding Bernstein-form polynomial is given in Appendix C. The 
modelling volume is divided by 20 sub-boxes per unit length. Table 9.11 shows 
the result of the classification.

B e r n s t e i n  
solid air unknown

p
0 solid 0 0 0 0
w air 0 0 0 0
e unknown 2016 9827 4157 16000
r

2016 9827 4157 16000

Table 9.11: Comparison table for the part of a heart-shaped object which lies in 
the box [5,7] x [4,6] x [3,4].

The power basis fails again to classify any of the air or solid boxes. If the equiv
alent Bernstein-form polynomial is used a sufficient classification is obtained.

9.1.4 Influence of the definition interval

In the examples so far the Bernstein-form polynomial was calculated for the whole 
area of interest. As shown in some of the examples it is possible to improve the 
classification if the modelling volume is cropped to a smaller area of interest. For 
these new areas a Bernstein-form polynomial is determined and the classification 
resulting by using the adjusted Bernstein-form polynomial is much better (see 
Example 4.1 and 8.1). Clearly it would be possible to determine a Bernstein- 
form polynomial for each generated sub-box. However the following example will 
show tha t this might not always be advantageous.
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Exam ple 8.2:
In this example the heart-shaped object given in Example 8 is studied. Again, 
the area of interest is cropped to the smaller box [5,7] x [4,6] x [3,4] (see also 
Example 8.1). In this case the modelling volume is divided into 10 sub-boxes 
per unit length and a corresponding Bernstein-form polynomial is calculated for 
each sub-box9. In Table 9.12 the classification resulting by applying the interval 
arithmetic to the power-form and Bernstein-form polynomial is illustrated. The

B e r n s t e i n  
solid air unknown

p
0 solid 0 0 0 0
w air 0 0 0 0
e unknown 0 0 2000 2000
r

0 0 2000 2000

Table 9.12: Comparison table for the part of a heart-shaped object which lies 
in the box [5,7] x [4,6] x [3,4]. In this case the Bernstein-form polynomial is 
calculated for each sub-box.

table shows that in this case only unknown sub-boxes are detected even if the 
Bernstein-form polynomials are used. Comparing the result to the examples 
given above the Bernstein form performs no better than the power form. This 
effect is visible even more drastically in the following example.

Exam ple 8.3:
Exactly the same situation is given as in Example 8.2. However in this case the 
modelling volume is divided into 20 sub-boxes per unit length and for each sub
box a Bernstein-form polynomial is determined. The same number of sub-boxes 
is used for the classification in Example 8.1. Table 9.13 displays the result of the 
classification method.

As in Example 8.2 both representations fail to classify any of the air or solid 
boxes. Thus the classification is not suitable using neither the Bernstein-form 
polynomial nor the power-form polynomial.

9Note that in this case the Bernstein coefficients might be floating point numbers.
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B e r n s t e i n  
solid air unknown

p
0 solid 0 0 0 0
w air 0 0 0 0
e unknown 0 0 16000 16000
r

0 0 16000 16000

Table 9.13: Comparison table for the part of a heart-shaped object which lies in 
the box [5,7] x [4,6] x [3,4]. The modelling volume is divided by 20 sub-boxes per 
unit length and the Bernstein-form polynomial is calculated for each sub-box.

9.1.5 Results

The experiments in the last sections investigate the curve and surface location by 
using the interval arithmetic technique. This technique is described in Section 3.2 
and is applied here to two different representations—power-form and Bernstein- 
form polynomials. In most cases, the classification obtained by applying the 
interval arithmetic technique to Bernstein-form polynomials is much better than 
the one using the equivalent power-form polynomial. In the cases shown the 
number of unknown boxes was reduced by at least one fourth. Some of the cases 
even reduced the number of unknown boxes by two thirds.

From the examples which consider an object further away form the origin (see 
Example 3 or Example 4.1) the location method fails completely if the power 
form is used10. However, by using the equivalent Bernstein-form polynomial this 
does affect the classification only slightly or not at all (see e.g. the classification 
of a circle). This is caused by the fact that the representation in terms of the 
Bernstein basis adjusts the representation to the area of interest—it is effectively 
a local coordinate system, and the origin becomes irrelevant.

Further investigations have shown that the classification given by using the 
Bernstein-form polynomial can be improved by cropping the box of interest (see 
Example 4.1 or 8.1). In this case the Bernstein form is even better adjusted to 
the actual shape lying inside this cropped box. Thus the interval arithmetic tech
nique provides a much better classification. The cropping of the box obviously

10Though for simpler expressions it might succeed.
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does not affect the result obtained by using the power-form polynomial. How
ever this result is relevant to the question of when a recalculation of the Bernstein 
form polynomial is advisable i.e. when should the box of interest be cropped to 
a smaller box. As shown in Example 8.2 and 8.3 the advantage of the cropping 
method is obviously lost11 if the recalculation is done for each sub-box. This may 
be related to the floating point errors introduced into the classification (see the 
conservativeness problem given in Section 3.2.2). Also it has to be said that the 
calculation time of the classification for Example 8.2 and 8.3 was rather high.

In Chapter 3 it is argued that the interval arithmetic technique can be used for 
surface location in CSG modelling. Clearly, due to the results of the experiments 
given in the last sections, the use of Bernstein-form polynomials is preferable. 
However if such an implementation is performed it is also important to avoid 
a frequent conversion between the two representations. As said in Section 7.3 
such a conversion can reintroduce errors and the Bernstein form loses some of 
its positive characteristics. Thus it is necessary to provide an arithmetic for 
multivariate Bernstein-form polynomials such as the one given in Section 7.4.2.

In Section 9.2 a possible implementation of Bernstein-form polynomials in the 
set-theoretic geometric modeller sVLls is shown. Then similar experiments as 
the ones in the last sections are performed to test the behaviour of the location 
method applied to sVLls Bernstein-form and power-form primitives.

9.2 Implicit Bernstein-form  polynomials in s v l i s

Considering the results obtained in the last section the use of implicit Bernstein- 
form polynomials could lead to a more accurate surface location in a set-theoretic 
geometric modelling system. In this section a possible way for an inclusion of 
these implicit Bernstein-form polynomials into sVLls is shown. The new created 
primitive is called Bernstein-form primitive and defines a shape which is repre
sented in terms of the implicit Bernstein form. This requires the answers to the 
five queries which are given in Section 2.2.4.

11 In these cases the interval arithmetic technique fails using both the power-form polynomial 
and the equivalent Bernstein-from polynomial.

170



Since a frequent conversion between Bernstein-form and power-form polynomials 
reintroduces errors (see Section 7.2), it is necessary to provide an arithmetic for 
implicit Bernstein-form polynomials if they are used to define sVLls primitives. 
Such an arithmetic for multivariate Bernstein-form polynomials is introduced 
in Section 7.4.2. Clearly, this arithmetic allows sVLls to construct complicated 
objects by applying arithmetic operators.

The following first describes how Bernstein-form primitive are defined. Then the 
handling of these primitives is given. The methods are described by using some 
C + +  terms and expressions.

9.2.1 Definition of a Bernstein-form  primitive

As already shown in Section 8.3, it is necessary to change the existing sVLls 
primitive class to allow the inclusion of new primitive definition. For the inclusion 
of Bernstein-form primitives a similar approach was used. However, in the case 
of parametric primitives the surfaces included were represented only as sVLls 
sheets. In contrast to this, the Bernstein-form primitive can also be used for the 
representation of solids.

To describe a Bernstein-from primitive three characteristic features are essential. 
This primitive is defined by a list of Bernstein coefficients c o e ff . The number 
of coefficients can be obtained by considering the degrees of the variables12. This 
information is stored in an array called degree. Further it is important to be 
able to refer also to a box the Bernstein-form primitive is defined in. This box is 
called bern_box. All these features are then collected in a new sVLls class called 
b e rn s te in . This class also contains a class constructor, functions which return 
private information and functions which support arithmetic between different 
Bernstein-form primitives.

In a similar way to the inclusion of parametric primitives given in Section 8.3 the 
existing sVLls class sv_prim itive  was extended by a variable of type b e rn s te in . 
To create a Bernstein-form primitive as a sVLls solid, a friend function is provided 
in the primitive class. This function generates a sVLls primitive for a set of

12 Since in this chapter only curves and surfaces are considered there are at most the three 
variables xi ,  X2, and x z .
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Bernstein coefficients which are calculated by the conversion method given in 
Section 7.3.2. Further information is determined and stored, for instance three 
primitives are generated which describe the partial derivatives of the Bernstein- 
form primitive and the degree of the primitive is obtained as the maximum degree 
of the variables13.

9.2.2 Handling of a Bernstein-form  primitive

Similarly to the description in Section 8.3.2, the handling of implicit Bernstein- 
form primitives requires answers for the five queries mentioned in Section 2.2.4. 
However, in this case the Bernstein-form primitive is given as an arithmeti
cal combination of three standard sVLls primitives and therefore the standard 
s v .p r im itiv e  member functions value, range and grad can be used.

As mentioned in Section 7.4, it is important to provide an arithmetic for Bern
stein-form primitives to take advantage of the geometrical and numerical proper
ties of this basis. Thus, four procedures opt_plus, opt.m inus, o p t.tim es, and 
opt .d iv id e  are defined in the class b e rn s te in  which provide the arithmetic for 
Bernstein-form primitives. These procedures make use of the arithmetic given 
in Section 7.4.2.

For all the different arithmetic operations it is required that both primitives for 
which the operator is applied are of the type BERNSTEIN. If this condition is not 
satisfied a conversion of the primitive which is not given in its Bernstein form is 
necessary. Again, for the conversion the method given in Section 7.3.2 is used. 
The result of each procedure is then a new Bernstein-form primitive.

It is also important to test if both Bernstein-from primitives are defined for the
same box. If this is true, the calculation is performed depending on the operator
chosen. Obviously for the determination of the new Bernstein coefficients the
methods and rules given in Section 7.4.2 are applied. Further the degree of
the primitive resulting has to be determined e.g. if an addition is performed
the degree of the result is given by the maximum degree of the two Bernstein-
form primitives in each variable respectively. Also a box which defines the new

13For further details about the different members of the sVLls primitive class see the sVLls 
manual [11].
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Bernstein-form primitive has to be initialised14.

9.3 Experiments with implicit Bernstein-form  
polynomials in s v l i s

In this section some examples are given which show that the results deduced 
from Section 9.1 also hold for implicit Bernstein-form polynomials included in 
the geometric modeller sVLls. The difference between the experiments described 
before and these is that in the case of the modelling system sVLls the boxes 
classified are generated by a recursive division.

The heart-shaped object is again considered in the two- and three-dimensional 
modelling volume. The equations of the curve and surface tested here are given 
in Sections 9.1.2 and 9.1.3.

In Figure 9.7 the two-dimensional heart-shaped object is illustrated. In this 
case a shape extruded in the three dimension is examined.. However the third 
dimension does not vary and thus the equation defining this shape is the same 
as the one in Example 4. The classification for this shape is now performed for

Figure 9.7: Two-dimensional heart-shaped object included into sVLls as a 
Bernstein-form primitive. Shape is extruded in the third dimension but no vari
ation of this dimension is performed.

the part which lies inside the box [3,5] x [7,8] x [0, l]15. The result of the test
14In the cases investigated the two Bernstein-form primitives are defined for the same box. 

Thus the result is also defined in this box.
15The third dimension does not influence the result of the classification.
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is displayed in Figure 9.8. For the two pictures the perspective projection is 

switched off which helps (especially in the picture on the right) to visualise the 

recursive box division used in sVLls.

Power form Bernstein form

Figure 9.8: Parallel projection of the recursive division. On the left—clas
sification for the power form— and on the right—classification for the Bernstein 
form.

For this example a sVLls division report was printed. The model containing the 

primitive defined by a power-form polynomial (see the picture on the left) the 

to tal number of sub-boxes is 16384. All these boxes are classified as unknown 

which is illustrated also in Figure 9.8. All in all 1808 sub-boxes actually contain 

any graphics polygons i.e. any part of the surface. Compared with this the use 

of an equivalent Bernstein-form  polynomial (see the picture on the right) allows 

the classification of 2040 sub-boxes as solid and a ir16. The number of unknown 

sub-boxes is 5056; 1328 out of these contain polygons. In this case there are 7096 
sub boxes generated by the recursive division. Clearly this example shows th a t 

the Bernstein-form  prim itive gives a more accurate classification. However, the 

classification using the Bernstein-form  prim itive is slower than  the one using the 

power form.

The next example considers a three-dim ensional heart-shaped object which has 

the same equation as the one in Example 8 (see Section 9.1.3) and lies in the 

box [4,8] x [2,6] x [1,4]. In Figure 9.9 the picture on the left ju st illustrates the 

shape. The picture on the right then displays the result of the classification if 

the shape is defined as a B ernstein-form  primitive. Note th a t for this picture the 

perspective projection is switched off17 and th a t only the outer boxes are visible. 

The classification is performed for the power-form primitive and its equivalent 

Bernstein-form  primitive.

16For the experiments in this section no distinction between air and solid is made.
17The direction of the projection is the negative z-axis.
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Figure 9.9: Three-dim ensional heart-shaped  object (see picture on the left) in
cluded into sVLls as a power-form and Bernstein-form  primitive. The picture in 
the middle give the result of the classification by using the power-form, the one 
on the right shows th a t the classification is better if the Bernstein-form  prim itive 
is used.

A report which is generated by the geometric modeller sVLls allows the com par

ison of the classifications for the two primitives. In the case of the power-form 

prim itive the recursive division generates 16384 sub-boxes of which none are clas

sified as solid or air. The number of sub-boxes which actually contain the surface 

is 2764. If the interval arithm etic is applied to the Bernstein-form  prim itive only 

15489 sub-boxes are tested. The num ber of boxes classified as solid or air is 

475. 1846 out of the 15014 sub-boxes which are classified as unknown do ac tu 

ally contain a part of the surface. This example shows again th a t the use of a 

Bernstein-form  prim itive is preferable although the result of the classification is 

not much better than the one using the power-form primitive.

The last example of this section investigates ju s t a part of the three-dim ensional 

heart-shaped  object which lies in the box [5,7] x [4,6] x [3,4]. Again in Fig

ure 9.10 the picture on the left shows the shape. The one on the right gives 

the recursive division and the classification which is obtained by applying the 

interval arithm etic technique to the Bernstein-form  primitive. In this case the 

perspective projection is not switched off and it can be seen how the sub-boxes 

classified as unknown (coloured m agenta) enclose the three-dim ensional shape. 

The blue sub-boxes are classified as air or solid. The picture in the middle gives 

the classification of the same shape given as an equivalent power-form primitive.

Again a sVLls report can be generated and following comparison is obtained. 

In the case of the power-form prim itive the recursive division produces 16384
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Figure 9.10: Classification result for a part of the three-dim ensional heart-shaped 
object included: The picture in the middle uses a power-form prim itive and all 
the sub-boxes are classified as unknown; the picture on the right uses a B ernstein- 
form prim itive and a more useful classification is obtained. Note th a t the images 
are not in the same orientation to make them  clearer.

sub-boxes which are all classified as unknown. The number of sub-boxes which 

do contain a part of the surface is 1869. If the Bernstein-form  primitive is used 
the interval arithm etic determines 3151 air or solid sub-boxes and 8513 unknown 

sub-boxes. Thus the divided sVLls model consists of 11664 sub-boxes. 1720 
unknown sub-boxes do contain a part of the surface. This example also shows the 

advantage of using Bernstein-form  primitives for the surface location. W hereas 

the equivalent power-form prim itive fails to classify any sub-box as air or solid 
the Bernstein-form  prim itive provides a reasonable and acceptable classification.

9.3.1 E xperim ents w ith  the planar basis

In Section 2.2.2 the definition of sVLls primitives is described. This definition 

is performed in term s of the p lanar basis where the planes are given in power 

form. Clearly it would also be possible to replace these power-form planes by 

Bernstein-form  ones. The following two examples make use of this idea.

In the first example the circle used in Section 9.1.1 is considered. This circle is 

centred a t Q , and its radius is §. Using the planar basis the equation of this 

circle is given by:

(9.3)
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The same circle can be represented in term s of a planar Bernstein form 18. This 

form is obtained by replacing the two planes used to define the circle in Equa

tion 9.3 with their corresponding Bernstein form. Then the two Bernstein-form  

planes can be combined applying the arithm etic for m ultivariate Bernstein-form  

polynomials given in Section 7.4.2. This leads to:

6 / =  (t (1“ Xi) + ^ 1) + (t (1_X2) + 512) “ (I) (9'4)

The two Equations 9.3 and 9.4 were included in the modelling system sVLls. 

The two examples are extruded in an additional dimension in a similar way to 

the two-dim ensional examples given in Sections 9.3 and thus cylinders in the z  

direction are generated. In Figure 9.11 the recursive division of the created model 

is displayed. The model is enclosed by the model box [0,1] x [0,1] x [0,1]. For 

the picture on the left the s tandard  sVLls prim itive for a cylinder is used which 

is equivalent to Equation 9.3. Com pared to  this the picture on the right uses 

the planar Bernstein-form  prim itive which is defined by Equation 9.4. Again, a 

non-perspective view is used for the display.

Planar basis Planar Bernstein form

Figure 9.11: Classification for a circle centred at Q , and with a radius of | .  
The picture on the left uses the planar basis (standard sVLls primitive); the one 
on the right is generated by using an equivalent p lanar Bernstein-form  primitive.

The sVLls report generated allows to  compare the result of the classification. In 

the case of the standard  sVLls prim itive the recursive division generates 48 sub

boxes of which 8 are classified as solid or air. The num ber of sub-boxes which 

are classified as unknown is 40 and each of them  contains a part of the surface. If

18Since the circle is located in the unit box the unit interval [0,1] is used to define the Bernstein 
basis.
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the interval arithmetic is applied to the planar Bernstein-form primitive 56 sub
boxes are tested. The number of boxes classified as solid or air is 16. Each of the 
40 sub-boxes which are classified as unknown contains a part of the surface. So 
both forms result in a correct classification but the Bernstein form leads to the 
generation of slightly more boxes.

The next example investigates the classification of a similar circle which is trans
lated further away from the origin (see also Example 3 in Section 9.1.2). Its centre 
is at ( y ,  y )  and its radius is §. The corresponding standard sVLls primitive is 
defined by:

For an equivalent equation in the planar Bernstein form it is necessary to replace 
the two planes by their Bernstein forms defined in the box [5,6] x [8,9]. This 
leads to the following equation:

V = ( - 2- (6 _ :e i) +  2 X̂ l _ 5 ^) +  -  X2) +  2 ^ 2 _  ~~ ( 2 )

Equations 9.5 and 9.6 are again included into sVLls. The result is a cylinder with 
its axis in z direction and its centre at ( y ,  y ) -  The whole model is enclosed by 
the box [5,6] x [8,9] x [0,1]. In Figure 9.12 the result of the recursive division 
and the classification method is displayed. Again, for the picture on the left the 
standard sVLls primitive of a cylinder is used (see Equation 9.5). Compared to 
this the picture on the right uses the planar Bernstein-form primitive given in 
Equation 9.6.

A comparison can be done by using the sVLls report. In the case of the standard 
sVLls primitive the recursive division generates 72 sub-boxes; 16 of them are 
classified as solid or air. All of the 56 sub-boxes classified as unknown actually 
contain a part of the surface. If the location technique is applied to the planar 
Bernstein-form primitive 80 sub-boxes are tested. The number of boxes classified 
as air or solid is 24 and each of the 56 sub-boxes classified as unknown contains a 
part of the surface. Again, the classification using the Bernstein-form primitive 
determines more boxes but labels all of them correctly.

Comparing the two Figures 9.11 and 9.12 leads to the conclusion that in this case
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Planar basis Planar Bernstein form

Figure 9.12: Classification for a circle centred a t ( y , y )  and with a radius of | .  
The picture on the left uses the planar basis (standard sVLls primitive); the one 
on the right is generated by using the planar Bernstein form.

the translation of the object further away form the origin does not influence the 

location m ethod. This is due to the fact th a t both representations are indepen

dent of the origin and so both  representations allow a suitable and reasonable 

classification. Unfortunately, more complicated shapes do not have a closed form 

such as th a t for a circle and their representation in term s of the planar basis can 

become very tedious. Therefore the use of a Bernstein-form  prim itive will be 

better for these shapes.

9.3.2 R esults

The experiments done in this section use the implicit Bernstein basis to define 

sVLls primitives. For the location of objects defined in such a manner the interval 

arithm etic technique is applied. However, compared to the experiments done in 

Section 9.1 a recursive division of the modelling volume is performed to generate 

sub-boxes which have to be classified.

In general the location of a Bernstein-form  prim itive involves much more arith 

metic operations than the one using a power-form primitive. This is due to the 

complexity of the Bernstein-form  polynomial used to define the prim itive (see 

also C hapter 7 or the examples given in Appendix C). Clearly, the com putation 

tim e involved in the classification using a Bernstein-form  primitive increases and 

it would increase even more if the calculation of the Bernstein form were done
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for each sub-box separately19.

However, the main result of this section is that the use of Bernstein-form primitive 
allows a much better classification than the use of an equivalent power-form 
primitive. In all the examples given the location method produces reasonable 
results when using the Bernstein form whereas the same method sometimes fails 
to classify any of the air or solid sub-boxes when using the power form of a 
primitive. The results also confirm the results obtained when using the algebra 
system Maple. The main difference between the two sets of experiments is that 
sVLls uses a recursive division strategy instead of a regular grid.

Further, in Section 9.3.1 the behaviour of the classification method is investi
gated if the planar basis used to define standard primitives in sVLls is replaced 
by its equivalent Bernstein form. If the classification test is performed very sim
ilar results are obtained when using these two representations. In this case the 
definition of a Bernstein-form primitive involves the arithmetic for multivariate 
Bernstein-form polynomials given in Section 7.4.2.

9.4 Outlook

Although the results given in this chapter are very encouraging there are still 
some issues which need to be investigated further.

The examples have shown that the interval arithmetic technique performs much 
better when using the Bernstein-from polynomials. This result which is related 
to their numerical stability is still surprising especially if the complexity of poly
nomials is considered. Further enquires into the topic why this result is obtained 
and which influence the Bernstein-polynomials have would be very interesting.

In some of the examples the classification method was improved by cropping the 
original box of interest to a smaller one (see Example 4.1 and 8.1). However, it 
is also shown that it is not always advisable to recalculate the Bernstein-form 
polynomial for each sub-box (see Example 8.2 and 8.3). Further investigations 
are required to find out when a recalculation of the Bernstein-form polynomial is

19See e.g. the tests in 9.1.4 where such an approach was done.
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useful. This point leads automatically to an issue which has not been discussed 
so far. The implementation of the Bernstein-form primitive into sVLls shown in 
Section 9.2 does not contain any schema which would deal with a recalculation 
of the Bernstein form depending on the sub-box tested. However, this could be 
advantageous.

In Section 9.2.2 an implementation of the multivariate arithmetic for Bernstein- 
form primitives given in Section 7.4.2 is shown. For the determination of all the 
different arithmetic operations the same box for both Bernstein-form primitives is 
assumed. Obviously this restricts the use of this kind of primitives and therefore 
further investigations has to be done to provide an arithmetic for Bernstein-form 
primitive which are not defined in the same box.

In this chapter only the Bernstein basis is used to represent geometric shapes. 
Clearly it would be possible to use other bases (e.g. Hermite basis) for the 
representation of curves and surfaces in a geometric modeller. Similar tests on 
them could be performed and compared with the results given in this chapter.

9.5 Conclusions

In this chapter the behaviour of Bernstein-form polynomials used together with 
interval arithmetic is shown. First test are given which compare their behaviour 
with that of power-form polynomials. In general it can be argued tha t the perfor
mance of the interval arithmetic technique is much better if the Bernstein form is 
used instead of its power form equivalent. Whereas cropping the area of interest 
to a smaller region improves the classification by using the Bernstein form this 
does not improve the classification obtained with the power from. This behaviour 
is due to the fact that the recalculation adjusts the Bernstein-form polynomial 
to the area of interest.

The second part of the chapter deals with the inclusion and implementation of 
a Bernstein-form primitive into the set-theoretic geometric modeller sVLls. One 
approach for such an inclusion is shown which also involves the arithmetic for 
multivariate Bernstein-form polynomials given in Section 7.4.2. The experiments 
given in Section 9.3 confirm the results obtained by comparing the performance of
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the interval arithm etic applied to power-form and Bernstein-form  polynomials 

in Section 9.1. The main difference between the two sets of examples is tha t 

the geometric modeller sVLls uses a recursive division strategy to generate the 

sub-boxes tested instead of a regular grid.

m Combined Bernstein-form

Figure 9.13: This bicycle chain link is generated by sVLls. The grey bone-shaped 
object is a Bernstein-form  prim itive which is combined with sVLls standard  cylin
der and plane primitives by using Boolean operators.

A lthough there are some open questions left, the conclusion of the research is 

th a t if an interval arithm etic technique is employed for surface location the use 

of Bernstein-form  polynomials is preferable to the power-form ones. Thus for the 

geometric modeller sVLls the use of Bernstein-form  primitives is recommended 

in some cases. However, since no m ajor advantage is obtained by replacing the 

planar basis with the Bernstein form this definition should be kept for the sVLls 

standard  primitives such as planes, spheres or cylinders as it is more arithm eti

cally efficient. These two different representations can be combined by Boolean 

operators to generate geometric objects for applications in engineering and other 

fields. In Figure 9.13 a bicycle chain link is displayed. The grey bone-shaped 

object is defined by a B ernstein-form  polynomial. This geometric object is in

tersected with two sVLls planes and then two sVLls planar-basis cylinders are 

subtracted.
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Chapter 10

Conclusions

The research presented in this thesis addresses two different but related issues. 
The first is how free-form surfaces defined by a parametric equation can be 
included into a set-theoretic geometric modeller. The second issue deals with the 
use of the implicit Bernstein basis which can be employed as a possible alternative 
to the power basis for the definition of geometric shapes. The following list gives 
the parts which were studied in order to provide a possible answer to the two 
issues and which—as far as the author is aware—have not been done anywhere 
before:

• Implicit equations for Bezier surfaces (as opposed to parametric curves and 
surfaces and Bezier curves) were calculated by using resultants.

•  An inclusion of the resulting implicit surfaces in a set-theoretic geometric 
modelling system was performed.

•  It was shown tha t applying Kapur’s method provides a solution for the im- 
plicitization of Bezier surfaces for which the resultant determined becomes 
singular.

• The inclusion of complete ordinary parametric surfaces in a set-theoretic 
geometric modelling system was given by using the Bezier surfaces as an 
example.

• An arithmetic for multivariate Bernstein-form polynomials was introduced.
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• The definition of a set-theoretic geometric modelling system which uses 
Bernstein-form primitives was discussed.

The inclusion of free-form surfaces was shown using the example of Bezier sur
faces. Two different approaches were investigated and implemented in the set- 
theoretic geometric modeller sVLls. The first approach used the resultant method 
—one of the most well-known elimination methods—for finding an implicit equa
tion for this type of surface. This used Kapur’s extension to Dixon’s resultant 
for parametric elimination if the resultant determined became singular; as far as 
the author is aware this is the first time this has been used for surface implic- 
itization. The implicit equation obtained was then included into sVLls in the 
usual manner. Another possible way to provide the use of free-form surfaces in 
set-theoretic geometric modelling is to employ the parametric definition of Bezier 
surfaces directly. This required the calculation of the intersections between a box 
and a surface lying inside which was obtained by using the Newton-Raphson 
method. This inclusion represents the Bezier-surfaces as thin sVLls sheets, and 
different examples of their use were given.

Earlier work suggested that the use of the implicit Bernstein form in computer- 
aided design might be advantageous especially because of its numerical and ge
ometric properties. However, these properties are lost if frequent conversions 
between the power-form and the Bernstein-form polynomial are performed. To 
avoid this, an arithmetic for multivariate Bernstein-form polynomials was de
fined and introduced. Although the computational load of such an arithmetic 
was higher and involved more operations than for power-form polynomials the 
use of the Bernstein form was found to be worthwhile.

This result provided the foundation for the research done with the implicit Bern
stein form. Some CSG modelling systems employ an interval arithmetic tech
nique for surface location which allows the classification of the modelling space. 
At first experiments were given which tested the behaviour of the interval arith
metic applied to Bernstein-form and power-form polynomials. These tests were 
performed in the algebra system Maple and used a regular grid to divide the 
modelling volume. The results showed that the classification using the Bernstein 
form of a given curve or surface was better than the one obtained by using their 
equivalent power form. In some examples the location method classified all sub
boxes of the chosen gird as unknown, i.e. those sub-boxes might contain air, solid
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and a part of the surface, only air or only solid, if the power-form polynomial was 
used. However, the use of the equivalent Bernstein-form polynomial provided a 
suitable and reasonable classification especially if the original modelling volume 
was cropped to a smaller one.

Similar results were obtained if this classification test was performed for Bernstein- 
form and power-form primitives in the geometric modeller sVLls. Although sVLls 
uses a recursive division for dividing the modelling volume, the results, which 
were obtained by testing a regular gird, held. Therefore Bernstein-form primi
tives were implemented in sVLls. Although the definition with the planar basis 
used in sVLls could have been replaced by the Bernstein form, too, this was not 
performed since the classification tests applied to these two forms did not give 
any major advantages. However, it is recommended that the power form is only 
used as a last resort to define geometric shapes in sVLls.

All in all the work and results presented in this thesis extend the functionality 
of the existing set-theoretic geometric modeller sVLls. The new version allows 
the inclusion of Bezier surfaces either by an implicit equation or by the use of 
their parametric definition directly. It also provides the possibility of defining 
geometric shapes in terms of the implicit Bernstein basis. This modification which 
also involves providing an arithmetic for multivariate Bernstein-form polynomials 
automatically improves the accuracy of the location method and therefore the 
robustness of the geometric representation itself.

10.1 Further work

The work presented in this thesis gives possible approaches for the use of the 
Bernstein basis in set-theoretic geometric modelling. However, further investiga
tions in different fields are necessary to make the theory and practice shown here 
more effective; some points are mentioned in this last section.

In Chapter 5 the resultant method was used to determine an implicit equation 
for Bezier surfaces. In case where the resultant became identically zero Kapur’s 
method was used. Further work is necessary on a similar approach which would 
also include B-spline and NURBS surfaces in a set-theoretic geometric modelling
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system. In Section 5.2 a new method introduced by Sederberg and Chen [76] was 
also described. This method which uses moving surfaces for the implicitization 
of parametric surfaces could be the basis for a more intensive study.

The study showed that one main disadvantage of such an implicitization was 
the high degree of the equations obtained. This also affected the number of 
coefficients and their range which was very big. As a result, point membership 
tests did not calculate the right classification i.e. points were classified as surface 
points although they were not lying on the surface. To handle this numerical 
instability supernormalization was used (see also [5]). The result of this was a 
new implicit equation which still had a big number of coefficients but the range of 
its coefficients was reduced immensely. More work could show if the complexity 
of the equation can be reduced even further by deleting terms of the equation 
which do not influence the shape investigated. Also other approaches which 
avoid the complexity of an equivalent implicit equation by approximating the 
implicit equation of a parametric surface could be studied in more detail (see e.g. 
Dokken [31] and Sederberg et al. [79]).

This thesis also dealt with the inclusion of Bezier surfaces when using their para
metric equation directly. To perform this the Newton-Raphson method was used 
for obtaining the intersection between a box and a surface passing through this 
box. This approach has problems of its own. Therefore further investigations and 
the use of the interval Newton-Raphson method (see Bowyer et al. [12]) could 
contribute to its improvement. Additionally, finding another way for determining 
such an intersection could be advantageous. One possibility could be an approach 
based on subdivision. The research could also be extended to a similar inclusion 
of other free-form surfaces such as B-spline and NURBS surfaces.

In Chapter 9 it was described how shapes defined by the implicit Bernstein basis 
can be included in a set-theoretic geometric modeller. Although the results given 
were very encouraging some further investigations are still necessary.

A surprising result was that the interval arithmetic technique performs much 
better by using Bernstein-form polynomials (or primitives) especially if the com
plexity of these polynomials is considered. Further studies of the influence of 
the Bernstein basis and the reasons why this result is obtained would be very 
interesting.
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Some of the examples in Section 9.1 dealt with cropping the box of interest to a 
smaller one which improved the classification method. The same result held for 
the implementation of the Bernstein-form primitives in sVLls. So far this process 
has not been discussed or even automated. Additional work could be done to find 
a strategy for a possible recalculation of the Bernstein-form primitives depending 
on the sub-boxes generated by the recursive division implemented in sVLls.

The implementation of the multivariate arithmetic for Bernstein-form primitives 
(given in Section 7.4.2) considered the same box for both primitives. This is 
a major restriction for the use of this kind of primitives and therefore more 
investigations have to be done to provide an implementation of such a multivari
ate arithmetic for Bernstein-form primitives which will not depend on the same 
defining box.

For this thesis only the Bernstein basis was considered to define and represent 
geometric shapes. Obviously it would be possible to represent surfaces in terms 
of other bases (e.g. Hermite basis). Thus, similar tests could be performed 
and compared with the results obtained so far. Also further investigations into 
other location methods such as affine arithmetic could be done (see Voiculescu 
et al. [83], and Zhang and Martin [90]).
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A ppendix A  

8 x 8  D ixon m atrix

The 8 x 8  Dixon matrix R  for the example in Section 5.1.3 is given by:

— 5 — £1 — £2 — 3£3 10 — 5£i 9 — 7£i — 5£2 —51 +  8£ i - 5£2 — 15£3
5 — 5£ i — 5£2 —10 +  5£i 35 — 10£i - 2 5 - 25£2
6 — 2£3 — 5£i 3 — 4£ i — 58 +  9£ i — 4£2 — 17£3 — 1 +  £ l +  4£ 2 -  8£3

— 15 +  6£ i — 2£3 +  £2 15 — £1 4- 4£2 +  2£3 —42 +  2£ i — 4£3 — 25£2 18 +  3£2
19 — 5£i +  5£3 — £2 —26 +  £1 — 10£2 — 5x3 12 +  £1 +  6£2 34 +  6£2 4" 3£3

4 +  £1 +  6£2 7 +  6£2 +  3£3 — 35 +  4£i — 6£3 +  3£2 —7 — £1 4- 7x2 +  5£3
— 22 +  £1 — 10£2 — 5£3 11 37 +  6£2 +  3£3 14

12 +  6£2 +  3x3 - 6 4 -  £1 +  7X2 +  5£3 - 2 0

40 — 13£i +  2£2 +  6£3 6 — 5£i — 22£2 +  9£3 10 +  10£2 5 +  5£ i +  15£2

10 +  10£2 80 +  5£ i +  15£2 - 3 0 -4 5
—9 — 5£i — 22£ 2 +  9£3 40 -  4£ i +  6x 3 +  3£2 —5 +  5£i +  15£2 —3 -  £1 +  £2 4- 2£3

66 +  5£i +  15£2 38 — £1 +  £2 +  2£3 - 6 5 -3 1
7 - 4 7 0 13

- 1 5 - 9 - 3 0 23
- 4 0 - 9 15 - 3
- 1 - 1 7 25 - 3

The implicit equation for the parametric surface in Section 5.1.3 has following 
form before supernormalization:

im p .f  := —8411966834040X\ -  14487921272520x 2 4- 423079800 s i  x \

4- 252129200 x \ x \ x \  4- 43598800 x \ x f x \  — 465500 x% x \ X2 4- 389828210 £3 x \  x\

+  7230072125 x \ x\ x \ — 403064580 £3 x \  £ 2  4- 5208925880 £3 x \ x\ — 5178915870 £3 x \  £ 2  

4- 89667280 x \ x \ £ 2  -  7670400 £3 £1 x \ — 1156000 £3 x \  £ 2  +  5462388875 £3 x \
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+  61474726810 xf x \  +  8135067775 x \ x \  +  407441400 x \  x f -  8585100 x \  x f +  625 xf  

+  6409654880 x f x\ X2 +  455182360 xf x \ X2 +  31291200 xf x \ x \ +  9928000 xf xf X2 

+  1410242100 xf x i x \  +  38211800 xf xf x \  +  2730122003310 x \  +  202698700 xf xf

-  6650400 £3 x f +  832320 xf +  1732197252840 x i x 3 -  10045139420160 x 3

-  26808499015 Xi xf -  145894142170 x \ -  12826689090 x \ -  364355700335 x \  x 3

+  3451056220 x 3 x f +  57656522715 xf x 3 -  2056409637360 xf +  329771163740 x 1 x \

+  52035615720xix2 -  3014151181920- 9088977946080 x 3x 2 -  6431593495110 x \

+  11325721335 xf x 2 -  98062345205 x \  x3 -  171022771515 x fx i  +  579933474800 x f x 2

-  16693042095x^xi x 3 -  5422526245xf x 2 -  445762037500x i x \ -  110317931995x \ x \

+  1368452120 x fx i  -  724373368125 xf -  1951378265 x \  x2 x 3 -  241214050595 x f x 2 x x 

+  1462193465740xix2 x 3 +  1963515625 x f +  158903414440 xf +  59973778640 xf

+  11138302175X ixf -  96393935765x xxf -  10141677415xf xf -  153804460 xf x2

-  84322320 xf x \  +  1089134100 x 3 xf +  4000725 xf xf -  16997280 xf x : +  7063815 x f x f  

+  82012000 x f xf -  55120580 x fx f  -  2584601875 x jx f  -  84054980 xf

+  1564584691480 x \  xf +  2088875845725 x \  x 3 +  956779399325 xf -  9463835 x 3x \

+  105015120 x \  x 2 x \  -  14787500 xf x2 x3 -  450325 xf x2 -  5891125 xf x \

+  11790472200 x f x 3 x i +  10140197780 xf x f x i -  1892988760 xf x3 x \  +  588400 x f x f

-  13250 x \  x 2 +  77475 xf xf -  297615075 xf xf +  184494915775 x fx f

+  267794870900x f x 3 -  15483500x \ x \  -  22855935x \x \  +  1030764025x f  x f 

+  133120265 x \  x 3 x \ -  730678755 x \ x \ x \  -  1865260 x 3 x f +  20576073335 xf 

+  1225908600 xf xf x x +  1435774950 x f x 3 x i +  20515268490 x fx f  +  33644440515 x f x 3 

+  606441900x^xi +  183632125x fx f  -  1079653460x f x \  -  8220250x fx f  

+  6234396325 x% x x +  537974950 x \ x \ x 3 +  565388950 xf x f xf +  18417200 x f xf x 3 

+  166145778130 xf +  793857225 x \  xf +  15490515 xf -  359764205 x \ x \

-  1469916060 xf xf +  59030400 xf xf x \  — 871000 xf xf x 2 — 9299175 x \  x f xf

-  1012334560 xf xf x f +  60350 xf x f x 3 +  202750 xf x 2 x 3 — 521721460 xf x 3 xf

-  14351800 x \  x 3 xf -  72917640 x f +  519384100 xf +  191135 xf +  105000 x \  xf

-  425000 xf xf +  722500 xf x \ -  12500 x3 x f +  462400 xf x f -  10768480 x f x 2

-  13234745125 xf x 2 x 3 +  5786417615 x \  x 2 +  9172418850 x f xf +  9449254315 xf xf x 2

-  25221565470 xf x3 xf -  1000021330 xf x f x 3 +  1413262920 xf x f x3 -  4037361065 x f xf x f

-  131322438135 x ix f  x3 -  118175414670 x xxf xf -  1556787720 x f x 2 x 3 -  371453655 x f x f

-  1203483715 xf xf +  1652013990 xf xf +  9665478410 xf x f +  29682859290 x 1 xf

+  2912076800 xf x2 xf — 29591955795 x i x 2 x f 4- 593628505855 xf — 2745989695 xf x f x \

+  9670238465 x \  x3 x l +  1100911124630 xf x 3 +  781747973640 x fx f  +  263782239730 xf xf 

+  40470681605 xf x i +  500878714325 xf x 2 +  41289970760 xf x 2 +  203247510 xf x 2
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A ppendix B

Induction proof

The induction proof of the following theorem was kindly provided by Mulders [64].

T h eo rem  1 Let n > m  be non-negative integers and x, /o, / i , . . . ,  f n, go, <?i, • • •, 
gm be indeterminates. Let F  = f nx n +  f n- i x n~l +  • • • +  fo and G =  gmx m +
gm- ix m~l H hpo- Then there are polynomials q ,r  G Z[x, f 0, . . . ,  gQ, . . . ,  gm\
such that

1 g n -m + lF ^g O  + r ■

2. deg(r, x) < m

3. q is homogeneous in / 0, . . . ,  f n of degree 1

4- q is homogeneous in go, . . . ,  gm of degree n — m

5. r is homogeneous in / o , . . . ,  f n of degree 1

6. r is homogeneous in go, . . . ,  gm of degree n — m +  1

P roo f: By induction to n — m. Let

F  = gmF -  f nx n~mG

=  (9mfn- 1 -  fn9m-1 ) ^ " 1 +  • • • +  (^m/n-m ~  fn9o)xn~m + 

9mfn-m-\Xn m 1 +    h gmfo-
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I n  — m  — 0: Take q =  /„  and r =  F.

II ti — 771 > 0: Write F  =  f n_ ixn~l H------1- / 0. Using our induction hypothesis
on F  and G (deg(F, x) — deg(<3) =  n — m  — 1) we know that there exist

q,r £ Z[x, f n-u 9 o , • • •, 9m] such that

(a) g%rmF  = qG + r

(b) deg(f, x) < m

(c) q is homogeneous in fo , . . . ,  / n_i of degree 1

(d) q is homogeneous in g0, . . . ,  gm of degree n — m — 1

(e) f  is homogeneous in f o , . . . ,  / n_i of degree 1

(f) f  is homogeneous in go, ,9m of degree n — m

Now take q — g%fmf nxn~m +  9 and r =  r. Since the fi are homogeneous 
of degree 1 in f o , . . . , f n and homogeneous of degree 1 in g0, . . .  ,gm it now 
follows that q and r satisfy the conditions.

This proves the theorem. •

Note that for n < m  we have for q = 0 and r =  F,  that F  — qG + r and 
deg(r, x) < deg(G,z).

The division in the theorem is called pseudo-division, q is called the pseudo
quotient and r  the pseudo-remainder.

Note that when G is monic, i.e. gm = 1, the division in the theorem is ordinary 
division.

If now fo , .. •, f n are polynomials in y of degree < N  and go, . . .  , 9 m  are polyno
mials in y of degree < M  we see that q has y- degree < N  + (n — m ) M  and r  has 
y-degree < N  +  (n — m  +  1 )M.
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A ppendix C 

Different Bernstein—form  
polynom ials

In this Appendix the equivalent Bernstein-form polynomials for the Examples 
given in Section 9.1 are listed.

Exam ple 1:

b f ( x i ,x 2) = 5x5x2(l -  X2)3 + 15xiX2(1 -  x2)2 + 4 ^ x i ( l  -  xi)4

+ y X j ( l  -  X l ) 3 +  9 x 3 (1 -  X l ) 2 +  y s } ( l  -  * 1 ) +  x 2 ( !  ~  * 2 )

+ (—4xi(l -  x i)4 — 14xi(l — x i)3 — 18xj(l — xi)2 — 10x4(l — xi)
+3x3) X2.

Exam ple 2:

6/(x  i,x 2) = x? (1 - x 2)6 + 6 ( “ Jjxj (1 - x i )2 -  ^ x f  (1 - x i )  + x2

(1 -  x2)5 +  15 x \  (1 -  xi)2 -  5 x® ( i  -  x i) +  j^  x?) x *

(1 -  x2)4 + 20 (1 -  x i)9 -  ~  xi (1 -  x i)8 -  |  x? (1 -  x i)7

-  y  x l  ( i  -  X i ) 6 -  ^  x4 (J _  Xi j5 _  63 ^5 ^  _  Xi)4 _  21 x 6 ^  _  ^ 3

” % x?i (x ” Xl^  ~ Id x* ^  ^ + i d ^x* (x ~ X2̂ Z + 15 ( “ £
„ \9 863 „ ,0 826 2 „ x7 7499 3 ,6
(1“ Xl) ~~ 500 Xl  ~ Xl - i 2 5 * l(1_afl) " l0 0 ’X l(1“ Xl)
_ 5 ^  x{ (i _ Xl)5 _ 219! a-5 (1 _ )4 _ 2257 6 _ 3

250 1 V J 100 1  ̂ ; 125 lV ;
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Exam ple 3:

bf ( x  i , x 2)

Exam ple 4:

bf ( x  i , x 2) -



+ 688 x\  I +  144

(i - W 3 +15 (324 (^'  5Xl)6 + 1608 ( i11" 5) (
+  6332 +  6000

+  6332 +  1608

X\ I +  324

+  2808

+  7812 +  8720

+  7812

+2808 x i +  1404

bf ( x  i , x 2)
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Exam ple 5:

bf ( x i , x 2, x 3)
( „  >4 (  43681 „  v4 43681 ^  , 3 34643 2
I (1 — X2)  ( (1 — X i )  +  —— — X i ( l  — X i )  +  — — — X?
V \  *60000 v ' 40000 v ' 80000 1

x2 52719 N 10881 4\  „ „  , 3
( 1 _ X l )  _  40000Xl( 160000XlJ  + 412(1 _ l 2 )

(  itnn^i (! -  ®l)4 + -  *l)3 + ~ *l)2v 160000 v ' 40000 v ' 80000 1V '
_  52719 3 _  1 0 m  A  2 _  2 /  3 « 4 3 _  _  4

40000 1 ^  160000 V  2' \ 480000 ^
34643 „  n3 105271 2/, x2 174557

+ 120000Xl(1- Xl) -  240000I l(1 _ I l)  ~ 120000Xl(1 “  Xl)
, 32081 4\  , . 3/1 . / - 5 2 7 1 9  , 4 52719

160000XlJ X2^ \  160000  ̂ Xl  ̂ 400002:1
TrACC?  «Q110 7/MQ1 \

10UUUU /  \  IOUUUU wuuu
3 _ 174557 2 _ 2 _ 69119^ _ 7 4 m  4

^  80000 ^ ^ 40000 ^ 160000 \

4 (  10881 „ ,4 10881 ,3 96243 2/1 n2
+Xo  ( -----------(1 -  x i ) 4 H-----x i (1 -  x i ) 3 H x f ( l  -  x i )2 V160000  ̂ 1J 40000 u  1J 80000 u

74481 3/1 , , 298081 4\ \  „ ,4 , . , 4
+  40000X l ( 1 " X l ) +  160000Xv ) ( 3) + 4 ( ( 1 " X2)
(  43681 „ , 4 43681 „ , 3 34643 2,n n2
(,160000 _ Xl + 40000 ~ + 80000Xl(1“ Xl)

_  X l ) +  4 , x _  ) t  ( _43681_
40000 1 "  160000 V  \  160000 '

, 4 43681 „ n3 34643 2., , 2 52719 3/1
“ Xl) + 40000Xl(1- Xl) + 80000Xl(1_Xl) “  40000Xl(1 

, 10881 A „ 2„  , 2 (  34643
~ X l)+ i6OOOOX0 + 6X2(1 " l2) (iSOOOO (1 -  Xl)

34643 „  x3 105271 2„  n2 174557 3/1 ,
120000 X l  ̂ 240000 Xl  ̂ 1 2 0 0 0 0 ^  Xl ^
32081 4\  , 3,, , {  52719 „ , 4 52719

+  160000XlJ + 4X2(1 ” X2) ( -1 6 0 0 0 0  (1 " Xl) "  40000X1
.3 174557 n2 69119 3/i . 74481 4\

 ̂ Xl  ̂ 80000 Xl  ̂ 40000 Xl^+ 160000XlJ
4 (  10881 „ ,4 10881 „ N3 96243 n2

+X2(l60000 (1 " Xl) + 40000Xl(1" Xl) + 80000Xl(1” Xl) 
74481 3/, , 298081 4\ \  „ , 3 . , 4

+ 40000Xl(1' Xl)+ i60000XlJ /  Xs _ Xs + 6 « 1 - ^
( 2W643 n _ ,4 l  214643 n ^ 434729 ^  , 2

*tuuuu 1UUUUU /  /
/214643  „  ,4 214643 „  x3 434729 2/1 n2
\  480000 _  Xl + l20 0 0 0 X l(1 ' Xl) +  240000X>(1 “  Xl)

5443 3/1 , , 92081 4, , . n  , 3 . 214643 ,1 x4
"120000 “  Xl) +  160000 +  4X2(1 "  X2) 480000 "  Xl)
214643 „  ,3 434729 2„  , 2 5443 3/1 ,

"120000X i( I - X!) +  240000Xl _  Xl +  120000 _  Xl
92081 e 2/1 ,2 f  434729 „  , 4 434729 „

+  16OOOOX0 + 6X2(1 " X2) V1440000 _  Xl +  360000Xl(1
, 3 101843 2 /, n2 47129 3/1 . 1099529 4\

X l  ̂ +  80000 Xl  ̂ +  360000Xl Xl)  +  1440000XlJ 
, 3„  , /  5443 „  , 4 5443 „  x3 47129

+ 4 x 2 ( x 2) (̂ 480ooo  ̂ X l  ̂ +  12000QXl X l  ̂ +  240000

+
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2 /, , 2 12081 3 /, , 547043 A  4 /  92081 „*?(1 -  Xl Y  H---------- *?(1 -  * i)  H-------------x? I +  xi  I  (1
lV 1J 40000 lV i;  480000 V  V160000 V

, 4 92081 „  n3 1099529 2 /, .2 547043 3
—*i) H--------- * i( l  — *i) H------------ x i (1 — X \ )  H----------- *i

40000 u  1} 240000 lV 1J 120000 1
M , 1297843 4\ \  2„  , 2 A  ,4 /127281
( 1“ I l ) +  180000 j j l 3 ( 1 _ l 3 )  + 4 ( ( 1_I2 )  \  160000
_ I1)4 + U™ ±Xl(1 _ Il}s + 365443i?(1 _ )a + 110881 ?

40000 u  lJ 80000 lV l> 40000 1 
„  , , 254481 A  . „  ,3 (127281 „  ,4
( 1 - * * ) +  180000*1 J + 4*»(1" * » ) (l60000 ( -

127281 „  x3 365443 2 /, x2 H0881 3 /,
+ "40000" _  Xl + *80000" _  Xl + 40000-Xl(1- Xl)

254481 A  a 2/1 ,2 (365443 „  , 4 365443
+ 1 6 0 0 0 0 * 0  +  \  480000 Xl  ̂ +  120000Xl

(1_ , 0 3 + 1 ™ x2(1_ Xi)2 + 132081:c3(1_ Xi) 
v 1J 240000 u  ' 40000 lV '

907043 A  A 3/, x /110881 „ ,4 110881
+ 480000iClJ + \  160000 X l  ̂ +  40000 Xl
„ n3 396243 2/1 \ 2 174481 3/1 , 398081 A
(1 -  * i ) 3 4------------- * f ( l  -  x i ) 2 H--------------- * ? ( 1  -  Xi )  H---------------- *1
v 80000 u  40000 u  l) 160000 1)
, 4 /254481 „  ,4 , 254481 ^  ,3 907043 2/1 x2

2 V160000  ̂ Xl  ̂ 40000 Xl  ̂ +  80000 X l  ̂ X l^
398081 3/, . 701681 4\ \  3/1 , ,4

+ 40000-Xl(1 -  xi) + 160000x i )  )  X l ( 1  ~  x3) + ((1 -  x2)
/370881 „  ,4 370881 „  ,3 1176243 2„  n2
(ieoooo (1 -  Xl) + 7 o m Xl(1 ~ Xl) + ""soooo” -  Xl)

434481 3,, , , 658081 4\  , „ „ ,, /  370881,., , 4
40000 X‘ Xl  ̂ 160000 7  X?> \  160000 Xl'
370881 „ .3 1176243 ,, 434481 , , ,
"40000" ~ Xl + 1 oooo'x>(1" Xl) + looroXl(1" Xl)
658081 4\  „ , ,  /392081 . ,, 392081 „

+ l60000XlJ + 6X2(1 ” X2) (,160000 _ Xl + 40000-Xl(1" Xl) +
» « “ » , . ( !  _  * ,»  +  _  ai) + 2197843 N _
240000 u  1J 120000 u  u  480000 1)  2K }
(434481 ,4 434481 „  .3 1447043 2 /, x2 578081
\  160000 Xl  ̂ +  40000 Xl  ̂ +  80000 X^  X l  ̂+  40000
3/1 . 881681 4\  4 /658081 .4 658081 , 3

x‘(1 -  Xl) + 160000Xl)  +  X2 (ieoooo (1 -  Xl) + lOOM Xl(1 -  Xl)
2197843 2 /, x2 881681 3/1 , 1265281 4\ \  4

"* 80000~ — x  + "ioooo" — Xl l m o o x ' ) ) x >

Exam ple 6

b f { x i , x 2 , X 3 ) =  ( (1 -  X2 ) 6 -  (1 -  * i ) 6 -  6 * i  (1 -  * i ) 5 -  1 2 z 2 (1 -  X l ) 4 -  8 x 3 (1 -  * i ) 3 +  6 x 2 

(1 -  X2 ) 5 -  (1 -  x i ) 6 — 6 x 1 (1 -  x i ) 5 -  1 2 x 2 (1 -  x i ) 4 -  8 x 3 (1 -  x i ) 3 +  1 5 x 2 (1 -  x 2 ) 4

~  (1 -  X l ) 6 -  y  Xl  (1 -  X l ) 5 -  y  x 2 (1 -  XX) 4 -  y  X3 (1 -  X i ) 3 +  |  x }  (1 -  X i ) 2 +  2 0 x 2 

(1 -  X2 ) 3 ( - y  (1 -  X l ) 6 -  y  Xl (1 -  X l ) 5 -  y  x 2 (1 -  X i ) 4 -  |  x \  (1 -  XX ) 3 +  y  x }  (1
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-  X l ) 2 ) +  15X2 (1 -  X2) 2 ( |  x 2 (1 -  X l ) 4 +  (1 -  X l ) 3 + 3 x 4 (1 -  X i ) 2 -  |  x \  (1 -  X i ) )

+  6x2 (1 -  x2) ( - x 4 (1 -  xi)2 - 2 x 1 ( 1 -  xi)) +  x® xf)( l -  x3)6 +  6((1 -  x2)6 -  (1 -  xi)6 

—6x1 (1 — xi)5 — 12x2 (1 — xi)4 — 8xf (1 — xi)3 + 6x2 (1 — x2)5 — (1 — xi)6 — 6x1 (1 — xi)5

-  12x 2 (1 -  x i )4 — 8 xf (1 — x i )3 +  15x2 (1 — x 2)4 — t  (1 — z i )6 — x\  (1 — x i )50 0
- y  x f ( l  -  X i ) 4 -  y  X3 (1 -  X i ) 3 +  g  x \  (1 -  X i ) 2 +  20X2 (* “

( - |  (1 -  X l ) 6 -  ^  Xl  (1 -  X l ) 5 -  ^  x \  (1 -  X l ) 4 -  ^  x 3 (1 -  X l ) 3 +  ^  x 4 (1 -  X l ) 2 )
5 5 5 5 5

+  1 5X2  (1 -  x 2 ) 2 ( |  x \  (1 -  X l ) 4 +  y  x f  (1 -  X l ) 3 + 3 x }  (1 -  X i ) 2 -  |  X® (1 -  X i ) )

+  6 x 2 (1 -  x 2) ( —x {  (1 -  X i ) 2 -  2 x 5 (1 -  x i ) )  4- x 6 x 6 ) x 3 (1 -  x 3 ) 5 +  1 5 ( ( 1  -  x 2 ) 6

- g  (1 -  Z l ) 6 -  y  Xl (1 -  X l ) 5 -  y  x \  (1 -  X i ) 4 -  y  x \  (1 -  X i ) 3 +  ^  x \  (1 -  XX) 2

4  2 4  4 7  2 8
+  6 x 2 (1 -  x2)5 -  -  (1 -  x i )6 -  —  x i (1 -  x i )5 -  —  x \  (1 -  x i )4 -  — x 3 (1 -  x i )3

5 5 5 5

+  £  x \  (1 -  * l ) 2 +  153 2  (1 -  Z2 ) 4 ( - ^  ( I  -  X l ) 6 -  5 1  Xl  (1 -  X l ) 5 -  ^ y  x f  (1 -  X l ) 4

2 7 2  8 4  4  7
-  - y r  x f  (1 -  x i )3 +  —  xf (1 -  x i )2 -  —  x f (1 -  x i) )  +  20xg (1 -  z 2)3( -  —  (1 -  x x)6

“  %>Xl ^ ” Xl^  ~~ H x* ^  ~ Xl 4̂ + IEx* ^  ~ + % X*(1 ~ Xl^  ”  ^ ” Xl^
+  15X2 (1 -  * 2 ) 2 ( ^ t  ( i  — Z i ) 6 +  Z i  (1 -  X l ) 5 +  ^  x l  ( i  -  X l ) 4 +  X? (1 -  X l ) 3

+ M x4 ^  ~ xi 2̂ _ M x*^  ” xi>)+ h x ^ + 6x2 ^  ” X2̂

x i ( 1  -  x i ) A -  yjj x \  ( i  -  ^ l ) 3 -  |  x \  ( i  -  x i ) 2 -  Xl  0- -  ® i )  +  x i )

+  x 2 ( |  X 1 (1 -  X l ) 2 +  |  z f  (1 -  X l )  +  ^  x l ) ) x l  (1 -  x 3 ) 4 +  2 0 ( ( 1  -  Z 2 ) 6 ( - |  (1 -  Z i ) 6

-  y  Zi  (1 -  X l ) 5 -  x l  (1 -  X l ) 4 -  ^  x \  ( i  -  X l ) 3 +  y l  x 4 (1 -  X l ) 2 -  ^  x \  (1 -  X X)

1 2  1 2  421
-  x \ )  +  6 z 2 (1 -  x 2) 5 ( ~  (1 -  X l ) 6 -  y  Xl (1 -  X l ) 5 -  X2 (1 -  X l ) 4

21 1 1 7  1 1
-  H  x l ( 1  -  X l ) 3  +  ^  * }  ( 1  -  X l ) 2  -  ±  x ? ( 1  -  X l )  -  Y5 5  x l )  +  1 5 x 2 (1 -  x 2 ) 4 (

1 \ 6  / 1 \ 5  1 4 9  2 /i \4 4  3 / i  \3 2 1 7  4 . -2

_ 3 0 0  ~~Xl _  5 0 X Xl  5 0 " Xl _  Xl _  7 5 Xl + I o O X l ( 1 _ X l )

-  J q x \  ( i  -  x i )  -  ^  z f )  +  2 0 x 2 ( !  -  * 2) 3 ( - i 5 o  ^  “  X l ^6 “  %  Xl  ^  _  X l ^

~ M x2 ̂  " Xl̂4 + HX̂x _ Xl̂3 +1̂5 X̂x “ Xl̂2 ” SX̂x" Xl̂ “ ̂  x̂ + 15x2
^  ~ X2̂ 2^  ^  ”  Xl 6̂ + h Xl ^  ~ Xl 5̂ +  Tif i jx' ^  _ Xl 4̂ + % x3 ^  ”  Xl 3̂

8 4 4  7  1

+  2 5  x 4  ^  ”  X l ' 2 “  25  X^ X ~  X l ' “  10 0  X^  +  6 X 2  ^  _  X 2 ^ ~ 6  ^  ~  X l ^6 ~  Xl  ^  "  X l °̂
2 9 1  2 / ,  3 7 3  3 / ,  x3 1 3 4  4 /1 , 2  8 6  5 / 1  ,  7  g. 6 /

" T 0 0 X l ( l _ X l )  7 5 " Xl  ” Xl  2 5 " Xl _  X - 2 5 X l ( l _ X l )  +  3 0 0 X l ) + X 2 (

( I  -  Z i ) 6 -  ^  Zi  ( l  -  X l ) 5 -  ^  x \  ( l  -  X l ) 4 -  ^  x f  ( l  -  X l ) 3 -  x \  ( i  -  X l ) 2

-  ^  x \  ( i  -  X l ) +  ^  z f ) ) x i  (1 -  Z3 ) 3 +  1 5 (

( i  -  Z 2 ) 6 x \  ( !  -  X l ) 4 +  ^  x \  (1 -  X l ) 3 +  m x \  ( !  -  X l ) 2 -  x \  (1 -  X l )  -  ^  x f )  +  6
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X2 (1 “ X2f  x\ (1 -  X if  + ^  xl (1 _ Xl)3 + g  3.4 ^  _ Xi)2 _ 1|  g.5 ^  _ Xi) _ ^  x6) +

1 5 ^ 2  ( 1  -  x 2 ) 4 ( - ^  ( 1  -  x i ) 6 -  ^  * 1  ( 1  -  x i ) 5 +  ^  * 1  ( 1  -  ^ i ) 4 +  J j T  ®l ( 1  -  z i ) 3 

+  ^ x t  ( 1  -  X i ?  -  \ x \  ( 1  -  * 0  -  ^ * f )  +  2 0 ^  ( 1  -  * 2 ) 3 ( “  ( 1  -  x i ) 6 -  A Xi ( 1  _  X l )5

“ M “ Xl^  ~ x* ^ ” Xl 3̂ ”  1 !x* ^  ~ Xl 2̂ “  § x^ “ Xl  ̂~ \ x^  + 15x2
(1 -  X2 ) 2 ( "  (1 -  X l ) 6 -  5  Xl  ( 1  -  X l ) 5 -  x \  (1 -  X l ) 4 -  i j ?  x \  (1 -  X l ) 3

_ W  ~ Xl 2̂ ~ x* ^  ~ Xl  ̂~ l i  + 6x2 ^  “  X2̂ “ I£ ^  “  Xl 6̂
2 2  /1  ■> 5 2 9 1  2 / ,  , 4  1 2 9 2  3 /1 . 3  3 6 6  4 „  , 2
j r  x i  (1 — x i )  - — x ^ l - x i )  - ^ - ^ ( l - x i ) 3 - — x ^ l - x i )

~ ^ x i  ( !  ~ x i )  ~  ^ x i )  + a:2 ( - ( 1 - * i ) 6 - 6 x 1 ( 1  -  x i ) 5 - l ^ r x l  ( 1  -  x i ) 4

Xl^  ~ X̂ X “  Xl 2̂ “  S  ” Xl  ̂+ ^  X̂ ^ 3 ^  ” X3̂  +
(1 -  X2 ) 6 ( - ■ A  x l  (1 -  X l ) 4 -  ^  x \  (1 -  X l ) 3 -  |  x \  (1 -  X l ) 2 -  y  x f  (1 -  X l )  -  A  x 6 )

+  6  X2 (1 -  X2 ) 5 ( - ^ 1  (1 -  ^ l ) 4 -  \  x l  (1 -  * l ) 3 -  |  x \  (1 -  X l ) 2 - y x [ ( l - X i ) - i l ! )

+  1 5 x 2 (1 -  X2 ) 4 ( —^  (1 -  X l ) 6 -  Xl  (1 -  X l ) 5 -  ^  x 2 (1 -  X l ) 4 -  x 3 (1 -  X l ) 3 
b 15 15

~ 15 x* ^  ~ Xl 2̂ ~~15 x*^  ~ Xl  ̂~ Hx^  + 20x2 ^  ” X2̂ ~ 5  - X i )6 -  3x1(* -  Xi)5
~  8 x 1  (1 -  X l ) 4 -  1 2 x f  (1 -  X l ) 3 -  ~ j y  ( i  ~  ^ i ) 2 -  y  x \  (1 -  x i )  -  | x f )  +  1 5 x 2 

/1 \ 2 /  ^  /1 \g 3 2  . . 5  1 6 7  2 . . 4  3 6 2  3 , . 3
(1 -  x 2 ) 2 ( - —  (1 -  X l ) 6 -  y  Xl  (1 -  X l ) 5 -  —  Xl ( i  -  X l ) 4 -  —  x f  ( i  -  X l ) 3

4 4  17
-  2 0 x f  ( 1  -  x i ) 2 -  —  x \  ( 1  -  x i )  -  -  a:?) +  6 x 2 ( 1  - x 2 ) ( - 2 ( 1  -  x i ) 6 -  1 2 x x ( 1  -  x i ) 5

5 oil
9 1 3  2 . . 4  6 2 6  3 ,  . 3  1 58  4 ,  . 2 1 7 6  5 . . 13  6 . 6 /

— 3 Q- x ? ( 1  — x i )  ~  - j j  * 1  ( 1  “  * 1 ) -  - y  x \  ( 1  -  x i ) 12 -  —  x? ( 1  -  x i )  -  —  x f ) +  x 6 (

- |  ( 1  -  x i ) 6 -  1 5 x i  ( 1  -  x i ) 5 -  ( 1  — a n ) 4 -  ^ p x 3 ( 1  -  x i ) 3 “  ( !  “  x i ) 2

-  y  x \  ( !  -  x i )  +  \  x \ ) ) x l  ( !  ~  x s )  +  (

( 1  -  x 2 ) 6 ( - |  x l  ( 1  -  x i ) 4 -  |  x f  ( 1  -  x i ) 3 -  ^  x \  ( i  -  x i ) 2 -  |  x f  ( 1  -  x i )  +  |  x 6 )

+  6 x 2 ( 1  -  x 2 ) 5 ( - ^ a ; ?  ( 1  -  z i ) 4 -  ^ x f  ( 1  -  x i ) 3 -  | x f  ( 1  -  x i ) 2 -  \  x \  ( 1  -  x i )  +  \  x f )  +
5 5 5 5 5

1 5 x 2 (1 -  x 2 ) 4 ( - i  (1 -  x i ) 6 -  2 x i  (1 -  x i ) 5 -  ^ x f  (1 -  x i ) 4 -  T j ^ x f  (1 -  x i ) 3 
o 5 15

-  6 x f  (1 -  X l ) 2 -  y  x f  (1 -  X l )  +  | x f )  +  2 0 x 2 (1 - x 2 ) 3 ( - ( 1  -  X l ) 6 -  6 x 1 (1 -  X l ) 5

-  ^ x ?  (1 -  X l ) 4 -  i ^ x f  (1 -  X l ) 3 -  ~ x {  (1 -  X l ) 2 -  ^ x f  (1 -  X l )  +  ^ x f )  +  1 5 x 2 
5 5 5 5 5

(1 — X2 ) 2 ( —2 (1 — x i ) 6 — 1 2 x i  (1 — x i ) 5 -  3 0 x f  (1 — X i ) 4 — 4 0 x f  (1 — x i ) 3

144 48 1 1fl
 —  x {  ( 1  -  x i ) 2 -  y  x f  ( 1  -  x i )  +  -  x f )  + 6 x f  ( 1  - x 2 ) ( - y  ( 1  -  x i ) 6 -  2 0 x i  ( 1  -  x i ) 5

-  x l  ( i  -  X l ) 4 -  ^  x f  (1 -  X l ) 3 -  x f  (1 -  X l ) 2 -  y  x f  (1 -  XX) +  A  x f )  +  x \  (

- 4 ( 1  -  X l ) 6 -  2 4 Xi (1 -  X l ) 5 -  ^  x f  (1 -  X l ) 4 -  ^ x f  (1 -  X l ) 3 -  ^ A x f  (1 -  x x ) 2
5 5 5
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- y * ?  ( l -Zi )  + yx5))£ |

Exam ple 7:

b f ( x i , x 2, x 3) =  ( ( 4 -  irr2)4 D +  4 ( i x 2 -  3) (4 -  i x 2)3E +  6( i x 2 -  3)2 ( 4 -  i x 2)2

.79585 ,17 1 , 4 31489 _ 70753 _ 31489. 79585.1 15,4,
20736 ~2 2 X + ~5184~ +  "3456" "5184" 20736 2 Xl 2

+  4 ( |  x2 -  3)3 (4 -  |  x2) E +  ( |  x2 -  3)4 D ) ( | -  \  x3)4 +  4((4 -  \  x2)4 F

+  4 ( i  x2 -  3) (4 -  i  x2)3 G +  6( i  x2 -  3)2 ( 4 -  i x 2)2

, 5375 .17 1 , 4 11999 _ 41089 „  11999 A 5375 ,1 15,4,
(---------- (-------- x i ) ------------C H---------- B ----------- A ----------- ( -  x i -------) )
K 20736 2 2 5184 3456 5184 20736 2̂ 1 2 J )

+ 4 ( \ X2 -  3)3 (4 -  \  x2) G +  ( i  x2 -  3)4 F ) ( |  x3 -  | )  ( f  -  \  x3)3 +  6((4 -  |  x2)4

,30433 ,17 1 , 4 17663 _ 21601 „  17663 , 30433 ,1 15,4, ,(------- (----------x i )4 ------------ C-H--------- B ----------- A H---------- ( - x i  )4) +  4
20736 2 2 5184 3456 5184 20736 2̂ 2 , }

( | x 2 - 3 ) ( 4 - i x 2)3

, 17663 ,17 1 , 4 24287 28801 _ 24287. 17663 ,1 15,4,
 ̂ 20736 2 2 5184 +  3456 5184 20736 ^ 2 ^  2 ^  +

6 ( ^ 2  - 3 ) 2 ( 4 -  i x 2)2

,21601 ,17 1 , 4 28801 _ 86497 „  28801 , 21601 ,1 15,4, ,
20736 ~2 2 ~5184~ + "3456" ~5184~ 20736 2 Xl 2" } +

(^* 2  - 3 ) 3 ( 4 -  i x 2)
, 17663 ,17 1 4 24287 28801 24287 17663 1 15 4
( 20736 2 2 Xl 5184 +  3456 5184 20736^2 Xl 2 ) )  +

( ^ 2 - 3 )4

,30433 ,17 1 4 17663 21601 17663 30433 1 15 4
20736 2 2 5184 +  3456 5184 +  20736 ̂ 2Xl 2 ^

(^ 3 " ^  “  I  Xs)2 +  4((4 “  1 X2)4 F +  4 ( ^ 2  -  3) (4 -  i  x2)3 G +  6 ( i  *2 -  3)2

( 4 - i x 2)2

, 5375 ,17 1 , 4 11999 _ 41089 „  11999 , 5375 ,1 15,4,(---------- (---------x i ) ------------C 4---------- B ----------- A -----------( -  x i  ) )
K 20736 2 2 5184 3456 5184 20736 v 2 1 2 , J

+  4 ( i x 2 - 3 ) 3 ( 4 - i x 2)G +  ( i x 2 - 3 ) 4 F ) ( i x 3 - | ) 3 ( | - i x 3) + ( ( 4 - i x 2)4D

+  4 ( i x 2 - 3 ) ( 4 - | x 2)3E + 6 ( i x 2 - 3 ) 2 ( 4 - i x 2)2

,79585 ,17 1 , 4 31489 70753 „  31489 , 79585 ,1 15,4,
20736 "2 2 +  M 8 4 C +  W B + l l 8 4 - A +  20736( 2 I 1 - T ) )

+ 4 ( i  x2 -  3)3 (4 -  |  x2) E + ( i  x2 -  3)4 D )(i x3 -  | ) 4

. ,1 15,3,17 1 ,
A := ( -  Xi — —) (——  -  Xi) 

v2 2 2 2
,1 15,o,17 1B := - x i  -  — )2 (— -  - x i  2 
v2 2 2 2

_ ,1 15, ,17 1 , 3
C := ( -  xi — —) (——  -  xi)

2 2 2 2
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162145 ,17  1 , 4 58753 _ 79585^  58753 A 162145 ,1  15 n4
D : = ----------(  xi )  H C H B  A H-------------- ( -  x i ------- r

20736 2 2 w 5184 3456 5184 20736 v2 1 2 J
„  58753 ,17  1 n4 3167 _ 31489 „  3167 A 58753 ,1  15 x4
E : = --------(  X i )  C H B  A H (— x i  )

20736 v 2 2 1J 5184 3456 5184 20736 v 2 1 2 }
„  21889 ,17  1 x4 40031 ̂  5375 „  40031 A 21889 ,1  15 x4
F : = --------( X i ) ------------C ---------- B  A H----------(— x i  )

20736 2 2 5184 3456 5184 20736 v 2 1 2 J
40031 17 1 4 60479 11999 60479 40031 1 15 4
20736 2 2 5184 3456 5184 20736  ̂2 ^  2 }

Exam ple 8:

x „ 3  1 . 6,2664 , 1 608 9176^ 1984 -  9176 _
bf ( x i , x2, x s ) : = ( ( - -  - x 2) (——  ( 2 - - x i )  + — Eh —  DH  g- B

608 . 2664 ,1 in6. , . l  l w 3 1 ,5/ 112 , 0 1 , 6 4912 ^
+  -T -A  +  — ( - X ! - l ) 6) + 6( - x 2 - x 2)5(— ( 2 -
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