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Abstract

The generation of reactive oxygen species (ROS) by UVA radiation (320-380 nm) is 

responsible for damage to intracellular biological macromolecules, cytotoxicity and many 

other effects. Both the endogenous chromophore protoporphyrin IX (PPIX) and ‘free’ 

iron are potentially important sources of ROS after UVA irradiation in human cells. The 

aim of this study was to determine the importance of PPIX in the inactivation of human 

cells after UVA irradiation, and to determine what effect UVA irradiation had on 

intracellular ‘free’ iron levels.

By modulating levels of the intracellular chromophore PPIX in human cells by 

exogenous administration of the haem precursor S-aminolevulinic acid (ALA) and 

irradiating these cells with graded doses of UVA, it was determined that the basal content 

of PPIX in TK6 human lymphoblastoid cells is insufficient to make a significant 

contribution to the UVA-mediated inactivation of these cells. The basal content of PPIX 

was however found to make a significant contribution to UVA-mediated inactivation of 

the primary human fibroblast cell line, FEK4, which implicates PPIX as a critical UVA 

chromophore in this cell line.

We document in this study the development of a flow cytometry-based fluorescence 

assay system that is capable of determining membrane damage and changes in 

intracellular ‘free’ iron levels. By using this assay and the cytoplasmic aconitase assay, 

we have confirmed that UVA irradiation of human skin cells results in an increase in 

intracellular ‘free’ iron levels. We also demonstrate that while administration of ALA to 

FEK4 cells does lower the intracellular ‘free’ iron levels, this type of treatment strongly 

exacerbates the increase in ‘free’ iron levels observed after UVA irradiation.

The effects of ALA treatment and UVA irradiation on ferritin levels in FEK4 cells was 

also determined in this study using a polyclonal (anti-ferritin) antibody enzyme-linked 

immunosorbent assay. We demonstrate in this study that UVA irradiation of cells, and to 

a much greater extent, UVA irradiation of cells treated with ALA, results in the
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degradation of ferritin. This provides strong evidence for ferritin being a major source of 

the increase in intracellular ‘free’ iron levels observed after such treatments.

It is hoped that data obtained from this study will contribute to an advancement in the 

understanding of the intracellular effects of UVA irradiation and that this may help in the 

protection against, and prevention of, processes such as UVA-induced 

photocarcinogenesis and photoageing.
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Chapter 1: Introduction

1. Introduction

1.1 Physiology o f the Human Skin

The skin is the largest organ of the human body and it has many functions, the most 

important of which is to keep internal systems intact and to protect the body from 

harmful external factors such as chemical agents, physical agents (e.g. ultraviolet light), 

and microorganisms. Amongst other functions, the skin is also important in preventing 

the loss of body fluids, regulating temperature, vitamin D production and immune 

surveillance. The skin is composed of three layers: the epidermis, the dermis and the 

hypodermis. The epidermis is mainly composed of keratinocytes, Langerhans cells and 

melanocytes. Keratinocytes produce the protein keratin, which provides a strength and 

flexibility to the epidermis. Langerhans cells are antigen-presenting cells, and 

melanocytes synthesise melanin and re-distribute it to surrounding keratinocytes by via 

dendritic processes. Melanins act as UV radiation absorbers and scatterers as well as free 

radical scavengers (Chedekel and Zeise, 1997). Melanin granules form a protective cap 

over the outer part of the keratinocyte nuclei in the inner layers of the epidermis. In the 

stratum comeum (the outermost layer of the epidermis), they are uniformly distributed to 

form an UV-absorbing dispersion, which reduces the amount of radiation that can 

penetrate the skin. The dermis is a tough and supportive connective tissue matrix that is 

connected to the epidermis. The thin upper part of the dermis is known as the papillary 

dermis because it has small fingerlike projections (papillae) containing capillaries, which 

nourish the epidermis. The papillary dermis is composed of loosely interwoven collagen. 

The coarse and horizontally running bundles of collagen are found in the thicker, lower

1



Chapter 1: Introduction

part of the dermis, known as the reticular dermis. Collagen fibres constitute the major 

structural protein of the dermis and they provide strength and resilience. Elastin fibres 

are also found in the dermis and provide elasticity to the skin. The ground substance of 

the dermis is a semi-solid matrix of glycosaminoglycans (GAG) that provides viscosity 

and hydration, and allows dermal structures limited movement. GAGs exist as high 

molecular weight polymers with a protein core, these are known as proteoglycans. 

Embedded in the reticular layer are many blood and lymphatic vessels, nerves and nerve 

endings, oil glands and hair roots. The dermis consists of a number of different cell 

types, particularly fibroblasts (which synthesise collagen, elastin and GAG). Other cells 

found in the dermis include fat (adipose) cells and immunological cell types such as 

dermal dendrocytes, mast cells, macrophages and lymphocytes. The deepest part of the 

skin is the subcutaneous layer or hypodermis. It consists of mainly fibrous, loose 

connective tissue such as adipose tissue. This layer is richly supplied with lymphatic 

vessels, blood vessels, and nerves. The coiled ducts of sweat glands, and bases of hair 

follicles are also found in the hypodermis.
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Chapter 1: Introduction

1.2 Electromagnetic Radiation and the Laws o f Photochemistry

Electromagnetic radiation exhibits wave-particle duality, which means it possesses 

characteristics of both particles and waves. It is transmitted as discrete units known as 

either quanta or photons. The magnitude of the energy of a photon is governed by the 

following relationship:

E = hv

Where E = energy (in J), h = Planck’s constant (6.626 x 10'34 J-s), and v = frequency (in 

Hz or cycles per sec). An important physical relationship that governs the properties of 

electromagnetic waves, is described by the following equation:

v = c/X

where c = speed of light (3 x 108 m/s) and X = wavelength (m). By substituting the 

second equation into the first, we get the following equation that describes the energy of 

electromagnetic radiation at a defined wavelength:

E = hc/X

From this equation it can be seen that energy and wavelength have a reciprocal 

relationship. As the wavelength decreases, the energy associated with it increases and 

vice-versa. The effect electromagnetic radiation has on a biomolecule depends on two
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Chapter 1: Introduction

factors: the energy of the incident photons and the wavelength of electromagnetic 

radiation (rays) absorbed by a molecule. The latter constitutes the absorption spectrum of 

the molecule (and is determined by its molecular structure). Less energetic wavelengths, 

such as infrared, when absorbed by a molecule, result in both an increase in rotational 

energy, and an increase in the energy of vibration of the constituent atoms relative to each 

other (i.e. bending and stretching of bonds). As the incident wavelength becomes more 

energetic (e.g. UV and visible rays), electronic transitions may occur where an electron 

may pass from its ground state orbital to an excited energy state. Excited molecules show 

a greater probability of undergoing chemical reactions and it is this photon-induced 

chemistry that eventually gives rise to photobiological effects. At very short, energetic 

wavelengths, such as x-rays and y-rays, the predominant chemical effects are bond 

breakage and ionisation (loss of an orbital electron from the target molecule).

The Gotthus Draper law is the primary law of photochemistry (and photobiology). This 

law states that light radiation must be absorbed by a molecule to induce a photochemical 

reaction, and in turn, photobiological reaction. It is not correct to consider that all light 

absorbed results in a chemical change as some of the light may be emitted as 

fluorescence or heat. The second law of photochemistry (the Stark-Einstein Law) states 

that light absorbed does not necessarily need to result in a photochemical reaction, but 

that if it does, only one photon is required for each molecule affected. This suggests, in 

general, that a photochemical change will not be induced by every photon absorbed by a 

molecule, but that the efficiency of producing a photochemical reaction (the quantum 

yield of a molecule, O) is of importance.
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Chapter 1: Introduction

Quantum yield is defined by:

0 =  Number of molecules reacting chemically 

Number of photons absorbed

The greater the quantum yield of a molecule, the more efficient that molecule is at 

inducing a photochemical reaction after absorbing a photon.

1.2.1 The Solar Spectrum

The solar electromagnetic spectrum includes wavelengths that range from very short, 

high-energy cosmic rays (1 O’ m), to longer, less energetic radiowaves (10 m). Around 

30-40% of total solar radiation, including most of the harmful wavelengths (wavelengths 

below 290 nm), is absorbed and filtered out by the ozone layer and molecular oxygen of 

the stratosphere. Wavelengths below 190 nm such as vacuum UV, gamma rays, x-rays 

and cosmic rays are high-energy wavelengths that are able to displace electrons from 

incident molecules to form ions. These wavelengths are known as ionising radiation. 

Wavelengths above 190 nm are unable to do this, because they lack the energy, and are 

known nonionising radiation.

The ultraviolet wavelengths of the solar electromagnetic spectrum stretch from 10 nm to 

380 nm. The UV spectrum is divided into to different bands based on its biological 

effects, and also for convenience. The shortest, hence the most harmful wavelengths of
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Chapter 1: Introduction

the UV spectrum are those below 290 nm and are termed vacuum UV (10-190 nm) and 

UVC (190-290 nm). These wavelengths (and shorter wavelengths) do not reach the 

earth’s surface as they are absorbed and filtered out by ozone, molecular oxygen and 

other molecules in the stratosphere. The radiation that does penetrate through the 

stratosphere and thus reaches the earth’s surface is summarised in Table 1.1. This is 

composed of approximately 10% UV, 50% visible, and 40% infrared (IR).

Table 1.1. Wavelengths o f the solar spectrum that reach the earth’s surface.

Type Wavelength (nm)

UVB 290-320

UVA II 320-340

UVA I 340-380

Visible 380-760

Infrared 760-3000

The UV that reaches the earth’s surface is composed of approximately 10% UVB and 

90% UVA at midday. UVB intensity declines from the noontime apex, but UVA 

intensity usually remains relatively constant. The biological consequences of these two 

bands of the UV spectrum are discussed below.
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Chapter 1: Introduction

1.3 Deleterious Biological Events Induced by Solar UV Radiation

This section discusses some of the biological consequences of exposure to either UVB 

(290-320 nm) or UVA radiation (320-380 nm), as these are the most harmful solar 

wavelengths that reach the earth’s surface. UVB radiation is discussed very briefly, 

outlining mainly its pathological consequences. UVA radiation, on the other hand, is 

discussed in much greater detail because the investigation of certain molecular and 

cellular effects of UVA irradiation provides the basis of this project. Firstly, the 

generation of reactive oxygen species by UVA is discussed, followed by UVA-induced 

damage to particular biomolecules. The pathological consequences of UVA irradiation 

are also covered.

1.3.1 Pathological Consequences o f UVB Radiation (290-320 nm)

UVB radiation is also known as erythemal UV because of its ability to induce erythema. 

There is evidence to suggest that UVB is responsible for the induction of non-melanoma 

skin cancer in man (Fitzpatrick and Sober, 1985; Brash et al., 1991). UVB induced 

photocarcinogenesis appears to be affected directly by genetic mutation, and indirectly by 

the impairment of the immune response (discussed below). UVB is absorbed by most 

biological macromolecules (such as lipids, proteins and nucleic acids), DNA in particular, 

is one of the most prominent UVB absorbing chromophores. The most frequent 

photoproducts formed after UVB exposure are cyclobutane-type pyrimidine dimers and 

(6-4) photoproducts (Freeman et al., 1986; Freeman et al., 1989; Olsen et al., 1989). 

UVB has been found to cause a limited number of strand breaks and there is also 

evidence that it can induce 8-hydroxy-2’-deoxyguanosine formation in primary murine
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Chapter 1: Introduction

keratinocytes (Stewart et al., 1994). UVB is known to effect the immune system. 

Langerhans cells, for example, which are recognised as major antigen-presenting cells of 

the epidermis, have been shown using a mouse model, to have their antigen-presenting 

function impaired after UVB irradiation (Greene, 1979). UVB exposure has also been 

found to significantly deplete Langerhans cells in humans (Cooper et al., 1992). 

Tumours implanted into mice that had been UVB irradiated prior to implant, grew rapidly 

rather than being rejected, as was observed in non-irradiated mice (Kripke, 1974). This 

suggested that UVB exposure could result in immunosuppression. Within the past 25 

years, UV-induced immunosuppression has been the subject of intense investigation 

(reviewed by Beissert and Granstein, 1995). Several factors have been identified as 

being responsible for UVB induced immunosuppression. One such factor was the 

development of suppressor T lymphocytes in mice after UVB irradiation, which was 

followed by the appearance of skin cancers. Transfer of these suppressor cells to non- 

irradiated recipients resulted in the inhibition of tumour rejection (Fisher and Kripke, 

1982). In others studies, local and systemic immunosuppression has been demonstrated 

using contact hypersensitivity (CHS) in murine models after UVB exposure (reviewed by 

Ullrich, 1995). Urocanic acid (UCA), a molecule found in the stratum comeum, was 

found to absorb UV light in a similar range to DNA. Subsequent investigations on the 

action spectrum of UCA on the immune system revealed that UVB exerted an inhibitory 

effect, which occurred as a result of isomerisation of the molecule (reviewed by Norval et 

al., 1995, Noonan et al., 1988). It has also been observed that UVB contributes to 

photoaging. In experiments using hairless mice, UVB was shown to induce severe 

dermal elastosis (Kligman and Sayre, 1991), cause changes in collagen (an initial
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Chapter 1: Introduction

increase followed by a decrease after prolonged exposure), and an increases in GAG and 

proteoglycans (Kligman and Kligman, 1997).

1.3.2 UVA-induced Oxidative Stress - Formation o f ROS

Many biological macromolecules absorb UVA, which can invariably result in the 

generation of reaction oxygen species (ROS), reviewed by Tyrrell (1991). For example, 

two studies showed (Czochralska et al., 1984; Cunningham et al., 1985) that irradiation 

of an aqueous solution of NADH (or NADPH) with UVA resulted in the formation of 

both superoxide anion (O2*”) and hydrogen peroxide (H2O2). McCormick and co­

workers (1976) demonstrated that irradiation of an oxygenated solution of tryptophan 

with wavelengths between 300 and 400 nm resulted in the photochemical oxidation of 

typtophan, yielding the formation of H2O2 and V-formyl kynurenin (a typtophan 

product). Subsequent irradiation of TV-formyl kynurenin photoproduct with UVA 

irradiation was shown also to generate of H2O2 (Andley and Clark, 1989). H2O2 

generation, after irradiation of either typtophan or V-formyl kynurenin, was postulated to 

occur via intermediate production of the (V - (Andley and Clark, 1989). The production 

of these ROS in biological systems could potentially be very crucial, because in the 

presence of redox-active cations, such as iron, the highly reactive hydroxyl radical may 

be formed by Fenton and Haber Weiss chemistry (reviewed in Halliwell and Gutteridge, 

1999). Various aspects of intracellular iron and its significance in relation to UVA 

radiation are discussed in Chapters 3-5, therefore iron is only briefly mentioned in this 

chapter.
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Another major source of photochemical generation of ROS during UVA irradiation is 

that of endogenous photosensitisers. Absorption of a photon by a photosensitiser, at a 

defined wavelength, results in the excitation of the sensitiser to its singlet state. The 

excited singlet state can return to its ground state (accompanied by the emission of 

fluorescence) or it undergo a process known as intersystem crossing along with spin 

inversion, producing the longer lived, less energetic triplet state. The triplet state can 

react in one of three competitive mechanisms: a Type I photodynamic mechanism, which 

involves the interaction of the triplet state photosensitiser with another photosensitiser 

(involving energy transfer) or an organic substrate, producing free radical intermediates. 

Alternatively, a Type II mechanism may occur, which normally results in a direct energy 

transfer to ground state molecular oxygen. This produces either singlet oxygen ( ^ 2), or 

O2*”, and a ground state photosensitiser (less than 1% of Type II reactions result in O2*- 

formation (Foote, 1991). The third mechanism, by which a triplet state sensitiser may 

respond, is by relaxation back to its ground state resulting in concomitant 

phosphorescence emission. The mechanism that is favoured, and the products formed, 

are usually dependent on the environment of the reaction and the biochemical nature of 

the photosensitiser. For example, if the photosensitiser is bound to a substrate then a 

Type I mechanism might be favoured. Under aerobic conditions a Type II mechanism 

might be favoured. Another factor that influences the fate of the mechanism is the 

quantum yield and triplet lifetime of the photosensitiser. Photosensitisers with high 

quantum yields and longer triplet lifetimes have an increased chance of reacting with 

molecular oxygen, thus producing 1C>2 . Photosensitisers that lack these properties tend to 

favour fluorescence and are rather inefficient as a photosensitiser (reviewed by Ryter and
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Tyrrell, 1997). Molecules such as porphyrins (in particular protoporphyrin IX (PPIX) 

which is discussed in detail in Chapter 2), and flavins and quinones have all been 

postulated as being potential endogenous photosensitisers responsible for detrimental 

effects observed by UVA radiation.

1.3.3 UVA-induced DNA Damage

There are a number of different biological macromolecules that are affected as a result of 

exposure to UVA radiation (reviewed by Tyrrell, 1991, 1994). Despite DNA being a 

poor chromophore for the absorption of UVA radiation, various types of DNA damage 

have been observed. Damage to DNA after UVA irradiation is thought to occur 

primarily through the actions of sensitiser radicals and ROS. In particular, one DNA 

lesion that has been observed after UVA irradiation and highly documented in recent 

years is 7,8-dihydro-8-oxo-2’deoxyguanosine (also written as 8-oxo-dG, 8-hydroxy-2’- 

deoxyguanosine and 8-OHdG). UVA radiation dose-dependent increases in this lesion 

have been previously reported in cultured cells (Rosen et al., 1996;Kvam and Tyrrell 

(1997). An increase in 8-oxo-dG lesions was also observed after pre-treatment of cells 

with riboflavin or 5-aminolevulinic acid (ALA) followed by exposure to visible light 

(Pflaum et al., 1998). Singlet oxygen has been shown to mediate the formation of 8-oxo- 

dG resulting in strand breaks (Devasgayam et al., 1991), though the rate of induction of 

this lesion by UVA in mammalian cells has been reported to be 10-fold higher than single 

strand breaks (Pflaum et al., 1994). This lesion was first shown to be mutagenic by 

Kuchino and co-workers (1987) as it led to the misreading of DNA templates, both at the 

8-oxo-dG site and at adjacent residues in vitro. Further studies have indicated that DNA
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Fig. 1.1. Formation of 8-oxo-dG by oxidation at C8 of dG (deoxyguanine) causes structural and 

conformational alterations at dG that can result in mispairing of 8-oxo-dG with A (adenine), see text for 

details (source: Guyton and Kensler, 1993).
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polymerases selectively incorporate dC (deoxycytosine) and dA (deoxyadenine) opposite 

8-oxo-dG (Shibutanti et al., 1991). Chain extension past the dA 8-oxo-dG pair proceeded 

more efficiently compared to its dC counterpart indicating that once misincorporation 

occurs the stable G-A mispair is not recognised by proofreading and will persist. If the 8- 

oxo-dG lesion is not excised (e.g. by formamidopyrimidine glycosylase, also known as 

FAPyG) before DNA replication proceeds, or if dATP or 8-oxo-dGTP is mistakenly 

incorporated at the apurinic site that results from excision of the modified base, the 

mutation resulting from the 8-oxo-dG mispairing will be a G:C to T:A transversion (see 

Fig.l.1). Since a high frequency of G:C to T:A mutations in the ras oncogene have been 

observed in tumours of sun exposed skin, it has been postulated that 8-oxo-dG formation 

may contribute to some of these mutations and thus may be carcinogenic (Hattori- 

Nakakuki et al., 1994).

Pyrimidine photoproducts have been reported following UVA irradiation of E.Coli, but a 

6-fold greater energy input is required at 365 nm compared to 254 nm in order to achieve 

the same order of magnitude of lesions (Tyrrell, 1973). Pyrimidine dimer formation in 

keratinocytes has also been reported after irradiation with visible light between the 

wavelengths of 400 and 500 nm (Pflaum et al., 1998), these lesions were postulated to 

occur by direct absorption of light, rather than through other intermediates. Peak et al. 

(1987a, b) demonstrated the induction of DNA single strand breaks (SSBs) in human 

cells in vitro by UVA exposure.
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UVA irradiation of cells in a deuterium oxide (D2O) environment enhanced these SSBs. 

It is possible therefore, that singlet oxygen might be a mediator of these breaks as the 

decay of this ROS is slowed down by an order of magnitude compared with H2O. Roza 

and collegues (1985) also observed UVA-induced SSBs after irradiating human 

fibroblasts with UVA. However, it was shown that by adding catalase before irradiation, 

almost all of these breaks were eradicated, indicating that H2O2 is produced, and may be 

responsible for the induction of these lesions. The hydroxyl radical has also been 

implicated in the production of SSBs in isolated Bacillus subtilis DNA after 365 nm 

UVA irradiation (Peak and Peak, 1990), as hydroxyl radical quenchers such as acetate, 

mannitol, formate, and azide were shown to protect against these breaks. Finally, the 

requirement for oxygen in the light-mediated (380-490 nm) induction of DNA-protein 

cross-links (DPCs) was demonstrated in studies by Gantt et al. (1979). Peak et al. (1985) 

subsequently demonstrated that production of these DPCs by radiation at 405 nm could 

either be enhanced or reduced by irradiating in either D2O or hypoxic conditions 

respectively. DPC can result in the interference of chromatin unfolding, DNA repair, 

replication and transcription.

1.3.4 Lipid Peroxidation and UVA-induced Damage to Biological Membranes 

Lipid peroxidation is the oxidative deterioration of polyunsaturated lipids (reviewed by 

Bucala, 1996). Polyunsaturated fatty acids (PUFAs) contain two or more carbon-carbon 

double bonds. The major constituents of biological membranes (organelle and plasma 

membranes) are lipids and proteins, thus during lipid peroxidation it is possible that 

membrane proteins may also get damaged. Cell and organelle membranes tend to be
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(amphipathic) lipid bilayers with proteins inserted within them. The fluidity of a 

membrane is known to be essential for its proper functioning and usually it is determined 

by its unsaturated and PUFA side chains. These side chains lower the melting point of 

the interior of the membrane thus damage to PUFAs can result in a compromise of 

membrane function.

Any species that is sufficiently reactive to abstract a hydrogen atom (H) from a 

methylene (-CH2-) group of an unsaturated or PUFA can cause initiation of lipid 

peroxidation (Fig. 1.2). The more double bonds present in a fatty acid, the more prone 

that fatty acid is to H atom abstraction. The hydroxyl radical (OH*) can readily initiate 

lipid peroxidation and travel into the interiors of membranes producing a carbon radical 

(-C*H-) and H2O. Superoxide on the other hand is insufficiently reactive to abstract H 

atoms from PUFAs. The carbon radical formed by H atom abstraction is stabilised to 

form a conjugated diene and there are different reactions that can proceed. For example, 

if two carbon radicals collide, the side chains of fatty acids can become cross-linked. 

Under aerobic conditions the most likely fate of a carbon radical is it will combine with 

O2 to give a peroxyl radical (LOO*). This reaction is particularly favoured because O2 is 

a hydrophobic molecule that can concentrate in the interior of membranes. However, 

under low oxygen concentrations, alternative pathways may be favoured, such as reaction 

with protein thiols (-SH groups). The next stage of lipid peroxidation is called the 

propagation stage. This is where a peroxyl radical abstracts an H atom from another lipid 

molecule thus producing a lipid hydroperoxide (LOOH) and another carbon radical, thus 

allowing the chain of lipid peroxidation to continue.
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Fig. 1.2. The top part o f this diagram represents a lipid bilayer made up of phospholipids (grey cirlcles with 

black tails). Inserted in this bilayer is cholesterol (white circular structures) which is mostly found in the 

plasma membrane, and in and around the bilayer are proteins (spotted oblong structures). The dark grey 

structure is an a-tocopherol molecule. The schematic below the lipid bilayer picture shows an idealised 

representation of the initiation and propagation of lipid peroxidation of a fatty acid with three double bonds 

(source: Halliwell and Gutteridge, 1999).
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Iron plays a detrimental role in the process of lipid peroxidation. Not only can Fe 

catalyse the formation of the hydroxyl radical, it can also catalyse the decomposition of 

lipid hydroperoxides (LOOH) to produce the alkoxyl radical (LO#). Alkoxyl radicals are 

capable of abstracting H atoms from PUFAs and lipid hydroperoxides producing carbon 

radicals and peroxyl radicals, which can continue to propagate lipid peroxidation. 

Alternatively, Fe3+ can decompose peroxides to peroxyl radicals, which also can continue 

the propagation of lipid peroxidation. There are quite a number of iron chelates that can 

stimulate lipid peroxidation, some of which include simple chelates (e.g. Fe -ADP) and 

haemproteins (e.g. cytochromes) (Halliwell and Gutteridge 1999).

Singlet oxygen is capable of causing rapid lipid peroxidation, and the production of 

peroxides occurs via the reaction of singlet oxygen directly with carbon-carbon double 

bonds. This is known as an ene reaction. Within the hydrophobic interior of lipid 

membranes the lifetime of singlet oxygen is much greater than if it was in an aqueous 

solution. Production of singlet oxygen by excitation of photosensitisers, such as 

porphyrins, has been shown to induce rapid peroxide formation (reviewed by Girotti,

1990). Singlet oxygen can also be formed during lipid peroxidation e.g. by the reaction 

of two peroxyl radicals to form a cyclic intermediate, which subsequently decomposes to 

give singlet oxygen. This, itself, could form more lipid peroxides. There are a number of 

different peroxide decomposition products including epoxides, aldehydes, ketones and 

hydrocarbons. One of the more common products is malondialdehyde (MDA), which 

can attack proteins and introduce mutagenic lesions in DNA. 4-Hydoxy-2-£ra«5-nonenal 

(4-HNE) is another common product, which can inhibit DNA and protein synthesis. At
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high enough concentrations it can cause membrane blebbing followed by cell lysis (see 

Halliwell and Gutteridge, 1999, and references cited therein).

UVA has been shown to induce lipid peroxidation in a number of studies (reviewed by 

Tyrrell, 1994). UVA (365 nm) radiation was shown to lyse the membranes of isolated rat 

liver lysosomes, this was measured by protein release from these organelles (Desai, 

1964). Using an enzymatic assay with yeast, cell membrane damage was shown to occur 

after UVA irradiation (Ito and Ito, 1983). More recently, lipid peroxidation and 

membrane damage has been shown to occur in a number of cultured human cell lines 

such as fibroblasts and keratinocytes after UVA treatment (Morliere et al., 1991; Moysan 

et al., 1993; Gaboriau et al., 1993; Vile and Tyrrell, 1995; Applegate et al., 1995). Lipid 

peroxidation was determined from the level of thiobarbituric acid-reactive species 

(TBARS) and membrane damage was evaluated using the lactate dehydrogenase (LDH) 

leakage assay. In one of the studies (Gabroriau et al., 1993), fluorescence anisotropy of a 

membrane-bound probe demonstrated reductions in cell membrane fluidity as a function 

of UVA irradiation.

1.3.5 UVA Radiation and Oxidative Protein Damage

Oxidative damage to proteins can occur directly by ROS or indirectly by end products of 

lipid peroxidation such as MDA and HNE. Hydrogen peroxide and superoxide, at 

physiological levels, tend to have little or no direct affect on proteins. The hydroxyl 

radical and singlet oxygen, on the other hand, can generate a wide range of end-products 

upon attack of proteins, some examples of which are briefly discussed below (Halliwell
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and Gutteridge, 1999). Thiol groups of cysteine and methionine are easily oxidised by 

many ROS to form either thiyl radicals or disulphides. Methionine is readily oxidised to 

methionine sulphoxide. Oxidation of histidine can often cause inactivation of enzyme 

active sites, which appears to be important in protein cross-linking as well as ‘marking’ 

proteins for proteolysis. Tryptophan residues are powerful singlet oxygen scavengers and 

are sensitive to hydroxyl radical attack forming fluorescent products such as N- 

formylkynurenine. Tyrosine residues in proteins can be attacked by the hydroxyl radical 

to form dihydroxyphenylalanine (DOPA), this forms a part of melanin synthesis. 

Tyrosine radicals can end up crosslinking with one another to form bityrosine, which 

conceivably could inhibit signal transduction by blocking tyrosine phosphorylation. It is 

well known that damaged proteins become ‘marked’ for proteolytic degradation and the 

destruction of these unwanted proteins, in eukaryotes, mostly occurs in proteosomes 

which are multicatalytic protease complexes (some proteins are also degraded in 

lysosomes).

Relatively little attention has been paid to protein damage caused by UVA irradiation. 

This may be because proteins are readily re-cycled through degradation and synthesis. 

However, just from irradiating cultured cells with UVA and measuring protein content by 

the Bradford procedure (1976), it is clear that there is significant protein degradation 

occurring in a dose-dependent manner (R.D. Watkin, unpublished observation). There 

have been studies showing that UVA radiation is capable of inactivating certain enzymes, 

including catalase, pepsin, amylase and tyrosinase, in an oxygen dependent manner 

(reviewed by Tyrrell, 1991). Haem-containing antioxidant enzymes, such as catalase and
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peroxidases, are UVA absorbing chromophores (the absorption maximum of catalase is 

in the UVA range). Catalase was shown to be directly destroyed by solar simulated 

radiation in human fibroblasts (Shindo et al., 1994). Kramer and Ames (1987) showed 

that catalase is rapidly inactivated by UVA radiation in Salmonella typhimurium. They 

also showed that certain strains of this bacterium, which constitutively overexpress 

certain proteins such as catalase and alkyl hydroperoxide reductase (a flavin-containing 

protein that is a bifunctional catalase-peroxidase), are significantly more sensitive to 

UVA-induced cell killing compared to the wild type. In addition, an Escherichia coli 

strain that overexpresses catalase, by virtue of a kat G plasmid, is considerably more 

sensitive to UVA killing than the strain not carrying the plasmid, despite being more 

resistant to H2O2 (Eisenstark and Perrot, 1987). These studies suggest that catalase (and 

other UVA absorbing enzymes) may not only be inactivated by UVA radiation, but might 

also act as endogenous photosensitisers (reviewed by Tyrrell, 1991). More recently it 

was shown that UVA caused a dose-dependent oxidation of sulphydryl groups of bovine 

serum albumin and human y-globulin in vitro, and of proteins in primary human 

fibroblasts (Vile and Tyrrell, 1995). The in vitro studies showed that the UVA-mediated 

protein oxidation was iron-dependent and involved singlet oxygen and hydrogen 

peroxide, but not the hydroxyl radical. Similar observations were made for the 

fibroblasts.
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1.3.6 Patholgical Consequences of UVA Radiation (320-380 nm)

Until recently (the past 15 years), very little attention was paid to the harmful affects of 

UVA radiation (320-380 nm), which is very abundant in natural sunlight. In fact, UVA 

was considered to be innocuous and of little or no concern to dermatologists, because of 

its relative inability to cause noticeable effects such as erythema. In 1974, the 

development of a treatment that used psoralens plus UVA (PUVA) for the 

photochemotherapy of psoriasis and other skin diseases led to an increased interest in 

UVA radiation. The availability of high intensity UVA-emitting systems for use in 

PUVA treatment contributed to growth of the tanning industry. The industry blossomed 

throughout the Western world from the mid-1970s and early 80s, and it became 

increasingly evident that through recreational and cosmetic purposes, people were 

exposing themselves to much greater amounts of UVA radiation, without realising its 

potentially acute and chronic harmful effects. In the past 15 years, the understanding of 

the effects of UVA has increased rapidly, and it now evident that UVA is not safe and 

can produce many of the harmful effects that are produced by UVB. Ironically, UVA 

exposure has increased with the use of sunscreens. This is because some sunscreens are 

designed to reduce erythema (sunburn) essentially blocking out UVB, but not UVA to 

allow melanogenesis (tanning) to occur. People spend longer times in the sun because 

the discomfort of sunburn is no longer there as a deterrent. Additionally, most UVA 

sunscreens have complications making them unsuitable. This is because they are either 

an irritant, cosmetically unacceptable, photolabile (unstable), or block out only part of the 

UVA spectrum.
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The amount of solar UVA radiation that reaches the earth’s surface is significantly 

greater than that of UVB throughout the year. This is because, unlike UVB, UVA is not 

filtered or attenuated by stratospheric ozone, and is less affected by the solar zenith angle 

and seasonal variation. Of the total solar irradiance at sea level, approximately 5-7% is 

UV and greater than 90% of this is UVA (Pathak, 1997). Transmission of UVA into the 

dermis is much greater than UVB because it is absorbed less by biological 

macromolecules in the epidermis. UVA radiation can penetrate deep in to the skin to a 

depth of 160-250 pm, compared to UVB radiation that can only penetrate to a depth of 

17-49 pm (Pathak, 1997). In untanned, fair-skined people, approximately 50% of UVA 

rays reach the dermis. In pigmented people (people with darker skin), the amount of 

UVA rays that reach the dermis is less, but is still a significant amount (approximately 

30-35%). Physiologically, this means that UVB can induce structural and functional 

changes only as deep as the superficial papillary dermis, whereas UVA can exert its 

effects throughout the skin, deep into the reticular dermis. Therefore epidermal 

keratinocytes, melanocytes and Langerhans cells are affected by UVA, along with dermal 

components such as fibroblasts, structural fibres (collagen and elastin), lymph and blood 

vessels (and cells within them) and nerves (Kumakiri et al., 1977; Beitner, 1986; Lavker 

et al., 1995).

Some of the harmful, damaging effects observed after UVA exposure are similar to those 

observed after UVB exposure. UVA has been found to be photocarinogenic. In 

experiments using hairless mice, UVA radiation was shown to induce non-melanoma 

skin tumours (Sterenborg et al., 1990; Kelfkens et al., 1992; Bech-Thomsen and Wulf,
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1995; de Laat et al., 1997). It was hypothesised recently (Moan et al., 1999) that UVA 

may be also be responsible for melanoma induction in humans as it has been shown in the 

Xiphophorus fish (Setlow and Woodhead, 1994). There are lines of evidence that 

suggest that UVA radiation can be either immunosuppressive or immunoprotective 

(depending on irradiation conditions). In mice irradiated with chronic low-dose UVA, 

Bestak and Halliday (1996) showed that local suppression of contact hypersensitivity 

CHS, Langerhans cell depletion and T suppressor cell activation occurred. It has also 

been demonstrated, however, that UVA can be photoprotective at physiologically 

relevant doses. In experiments with mice, it was shown that UVA abrogated the 

immunosuppressive effects of UVB and UCA (Reeve and Tyrrell, 1999).

UVA radiation has been strongly implicated as a cause of photoaging. In a study by 

Kligman and collegues (1985), hairless mice irradiated with UVA over a 34-week period 

developed a significant degree of elastosis. Although the deposition of elastic fibres was 

less dense than that produced by UVB, the elastosis not surprisingly extended much 

deeper into the dermis. UVA irradiation with a light source that only emitted 

wavelengths between 340 and 380 nm (UVA I) failed to cause significant elastosis, even 

after huge doses. This suggests that it is the wavelengths of 320-340nm (UVA II) that 

are mainly responsible for this UVA-induced photodamage. In experiments with human 

models, irradiation of skin with UVA resulted in a decrease in elastic tissue whereas solar 

simulated UV (UVA and UVB) produced a slight increase (Lowe et al., 1995). In a study 

using hairless mice, Menter and colleagues (1996) showed that narrow-band UVA (320- 

355 nm) caused marked dermal collagen damage (but only moderate elastosis) and
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broadband UVA has been found to stimulate collagenase synthesis in human dermal 

fibroblasts (Petersen et al., 1992).

1.4 Defence Against UVA-induced Oxidative Stress

There are a number of different ways a cell is protected against oxidative stress. These 

include, antioxidant molecules, antioxidant enzymes, metal sequestering proteins and 

inducible responses such as haem oxygenase induction. In this section, some of the 

important components of cutaneous antioxidant defence will be briefly discussed.

1.4.1 Antioxidant Molecules

Glutathione (GSH), is an endogenous tripeptide that is the most abundant thiol found in 

most tissues. It plays an extremely important role in the cellular defence against 

oxidative damage and GSH depletion by D, L-buthionine-(S, 7?)-sulfoximine (BSO) 

treatment strongly sensitises cells to the lethal action of UVA and UVB radiations 

(Tyrrell and Pidoux, 1986). GSH is a powerful free radical scavenger and quenches 

radicals by hydrogen atom donation resulting in the formation of GSH disulphide (GSSG 

or oxidised glutathione), and is regenerated by glutathione reductase with NADPH acting 

as a hydrogen donor. GSH also functions as a hydrogen donor for several other 

antioxidants such as ascorbate, which in turn regenerates a-tocopherol (Shindo et al., 

1994). GSH has also been shown to protect calf thymus DNA and Chinese hamster ovary 

cells (CHO) against 8-OHdG formation after UVA exposure (Fischer-Neilsen et al., 

1992; Fischer-Neilsen et al., 1993).
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a-Tocopherol (vitamin E) is a lipophilic endogenous antioxidant that provides protection 

against UV-induced oxidative membrane damage. a-Tocopherol functions as a chain 

breaking antioxidant, is a scavenger of lipid peroxide radicals (see Halliwell and 

Gutteridge, 1999), and has been shown to protect against UVA-induced lipid 

peroxidation in cultured human fibroblasts (Morliere et al., 1990; Gaboriau et al., 1993) 

and keratinocytes (Djavaheri-Mergny et al., 1996). a-Tocopherol has also been shown to 

be a physical quencher and chemical scavenger of singlet oxygen, with the irreversible 

oxidation of a-tocopherol to its a-tocopheryl quinone (reviewed by Fryer, 1993).

Ascorbate (vitamin C) has been shown to protect against 8-OHdG formation in either, 

CHO cells after UVA irradiation (Fischer-Neilsen et al., 1992), or mouse keratinocytes 

after UVB irradiation (Stewart et al., 1996). The mechanism of ascorbate protection is 

thought to be two-fold. Either ascorbate directly quenches or reacts with singlet oxygen, 

hydroxyl radicals and superoxide anions (Njus and Kelley, 1991; Darr et al., 1992) or it 

restores the antioxidant properties of oxidised a-tocopherol by regenerating tocopheroxyl 

radicals (Leung et al., 1981; Njus and Kelley, 1991).

/2-carotene is a precursor for vitamin A and is a member of the carotenoid family of 

antioxidants. It is capable of quenching excited triplet states and singlet oxygen, and 

scavenging peroxide radicals (Krinsky et al., 1982). There are contrasting views on the 

effectiveness of /2-carotene as a photoprotectant. It would appear from most of the 

studies to date, that /2-carotene itself is limited in its protective effects, unless in the 

presence of other antioxidants (reviewed by Edge, 1998). In the presence of antioxidants
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(such as a-tocopherol, ascorbate and GSH), /^-carotene appears to reduce the induction of 

cancer development as determined by in vitro and in vivo studies (reviewed by Toma et 

al., 1995). There are many other antioxidants that have been shown to be 

photoprotective, including the endogenous molecule ubiquinol (coenzyme Q) and certain 

exogenous flavenoids, these however are not discussed here.

1.4.2 Antioxidant Defence Enzymes

In addition to antioxidants, the cell is also protected from oxidative stress by enzymatic 

antioxidants, some of which are briefly discussed. Glutathione peroxidase (GPX) is a 

selenium dependent enzyme that is active against H2O2 and lipid hydroperoxides by 

coupling the reduction of these compounds with the oxidation of reduced glutathione 

(GSH), forming water and an alcohol respectively. GPX is dependent on the presence of 

selenium in each of the four subunits of the enzyme a sufficient supply of GSH, which is 

the unique hydrogen donor for this enzyme. Selenium deficiency was found to cause a 

decrease in GPX activity and increased lipid peroxidation in cultured human fibroblasts 

after UVA exposure (Moysan et al., 1995). In human skin fibroblasts, Leccia and 

colleagues (1993) showed that incubation with selenium increased GPX and decreased 

UVA-induced lipid peroxidation. As mentioned above, glutathione reductase reduces 

oxidised glutathione (GSSG) back to GSH using NADPH, thus recycling GSH that is 

oxidised by GPX activity.

Catalase is another enzyme that scavenges H2O2 in the skin, but unlike other peroxidases, 

catalase catalyses the direct decomposition of H2O2 to ground state oxygen and water,
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without the use of another substrate. As discussed previously in this chapter, catalase 

activity is strongly reduced after UVA exposure, probably due to oxidative damage to the 

enzyme. Compared to GPX, catalase is thought to be less important as an antioxidant 

enzyme because fibroblasts deficient in catalase activity did not show decreased survival 

after a single dose of solar simulated UV (Shindo et al., 1994). However, catalase was 

found to reduce damage to other antioxidant enzymes (GPX and superoxide dismutase) 

and thus maintain their activity during chronic UV exposure (Shindo et al., 1994).

Superoxide dismutases (SODs) all essentially catalyse the same reaction, which is the 

reduction of superoxide anion to less reactive H2O2 . In the skin, the enzyme is present in 

forms such as Cu-Zn-SOD and Mn-SOD. SOD activity has been found to be reduced by 

solar simulated UV irradiation in human skin fibroblasts (Shindo et al., 1994) and by 

UVA irradiation in human keratinocytes (Punnonen et al., 1991). However, inactivation 

of this enzyme is thought to occur indirectly by ROS rather then directly as was found 

with catalase (Shindo et al., 1994). Zinc addition (one of the metals in the active site of 

Cu-Zn-SOD) to cultured human fibroblasts resulted in a reduction in lipid peroxidation 

and an increase in survival, yet no increasee in Zn-SOD activity was observed (Leccia et 

al., 1993). Similarly, Parat and colleagues (1995) found that addition of manganese (the 

metal in the active site of Mn-SOD) to cultured human fibroblasts protected these cells 

from oxidative injury by UVA irradiation; but this was not accompanied by an increase in 

Mn-SOD activity. In contrast to this however, it has recently been shown that cultured 

fibroblasts repetitively exposed to UVA radiation (200 kJ/m2 per day for three days) 

actually developed an adaptive response, marked by an increase in Mn-SOD mRNA
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levels and Mn-SOD activity after the third exposure (Poswig et al., 1999). Since the 

product of SOD activity is H2O2 (which is toxic), increases in SOD activity are ideally 

accompanied an increases in catalase and/or GPX (Amstad et al., 1991; Yohn et al.,

1991). However, if SOD activity exceeds that of H2 O2 scavengers, it has been shown that 

the toxicity of superoxide increases due to an accumulation of H2O2 formed by SOD 

activity (Amstad et al., 1991).

Haem oxygenase, the principal mammalian enzyme responsible for haem catabolism, is 

an enzyme that can either be inducible (HO-1) or constitutive (HO-2). The enzyme is 

involved in the breakdown of haem to biliverdin, which is then converted to bilirubin by 

biliverdin reductase, both of which are antioxidants (Stocker et al., 1987). UVA 

irradiation (and treatment with other agents that induce oxidative stress such as H2O2 or 

sodium arsenite) of cultured human fibroblasts and keratinocytes leads to induction of 

HO-1 activity (Keyes and Tyrrell, 1987,1989; Appelgate et al., 1991) suggesting that HO 

has some role in the protection of cells. Under conditions where the levels of cellular 

antioxidant systems are inadequate to cope with oxidative stress the levels of HO-1 are 

induced. For example, the depletion of GSH levels correlated with an increase in both 

the constitutive and oxidant-inducible accumulation of HO mRNA levels (Lautier et al.,

1992). The induction of HO-1 activity by UVA irradiation was linked to the induction of 

the iron storage protein ferritin (Vile and Tyrrell, 1993). Addition of the HO inhibitor 

tin-protoporphyrin IX prior to UVA irradiation prevented an increase in ferritin levels 

suggesting a HO-dependent mechanism. More recently, Kvam et al. (1999) showed that 

UVA irradiation resulted in the release of ‘free’ haem intracellularly and Pourzand et al.
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(1999) also showed that the levels of ‘free’ iron also increased immediately after UVA 

irradiation. The increase in free haem would explain HO-1 induction, and both free haem 

and free iron would account for an increase in ferritin to sequester potentially toxic ‘free’ 

iron in a relatively inert form, thus preventing the formation of the highly toxic hydroxyl 

radical (see Chapter 5). Sequestration of redox active metals is another line of 

antioxidant defence and other proteins that can bind potentially oxidant metals, such as 

transferrin and metallothioneins may also be considered to have antioxidant properties. 

After chronic UV exposure, the level of non-haem iron of skin has been found to be 

elevated (Bissert et al., 1991), an increase in ferritin might help reduce the potential 

toxicity of this iron increase. Ferris et al. (1999) showed that in murine cells either 

overexpressing HO-1 or that were HO-1 deficient, HO-1 activity regulated iron 

accumulation and efflux. In experiments where 55Fe was added to cells overexpressing 

HO-1 activity, iron uptake was reduced and iron efflux was increased compared to 

normal cells or HO-1 deficient cells, suggesting another possible cytoprotective role for 

HO.
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1.5 Objectives o f this Project

The objectives of each individual study are presented at the end of each chapter 

introduction (Chapters 2-5) so they will not be discussed in detail here. The overall aims 

and scope of this project are twofold. Firstly, to investigate the importance of 

protoporphyrin IX as an endogenous chromophore in the UVA-mediated inactivation of 

human cells. Identification of UVA absorbing chromphores that account for the radiation 

wavelength dependence of deleterious effects in the skin remains elusive. Several have 

been postulated, including porphyrins, flavins and quinones, though none have been 

proven to be the chromophore that is responsible for UVA-mediated damage.

It was recently demonstrated in our laboratories that exposure of cultured human 

fibroblasts to UVA radiation resulted in an increase in intracellular ‘free’ iron levels 

(Pourzand et al., 1999). In light of this, the second part of this project concentrated on 

gaining a better understanding into the changes in iron levels as a result of UVA 

irradiation, and to further investigate the source of iron release. Included in the iron 

studies was also the investigation into what effect UVA irradiation of cells with altered 

PPIX levels had on changes in intracellular ‘free’ iron. The purpose of this was to 

determine if PPIX was effective in promoting iron release in UVA irradiated cells.

Overall, the intention of this project was to enhance the current understanding and 

knowledge of the effects of UVA radiation. By achieving this, it is hoped that some 

contribution may be made, at least in the long term, to the prevention of the pathological 

consequences of UVA radiation such as photocarcinogenesis and photo-induced ageing.
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2. Study of the relationship between endogenous protoporphyrin IX 

concentration in human cells and inactivation by UVA radiation

2.1 Introduction

2.1.1. PPIX Biosynthesis and Cellular Distribution

Protoporphyrin IX (PPIX) is the immediate precursor of haem in the haem 

biosynthetic pathway (Fig. 2.1). In the first, and rate limiting, step of this pathway, 6- 

aminolevulinic acid (ALA) is formed from glycine and succinyl CoA by the pyridoxyl 

phosphate-requiring enzyme ALA synthase (ALAS). The last step in the formation of 

haem is the incorporation of iron into PPIX and it takes place in the mitochondria 

under the action of the enzyme, ferrochelatase. Administration of exogenous ALA 

effectively bypasses the rate limiting ALA synthesis step in this pathway in 

mammalian cells leading to the accumulation of the endogenous chromophore PPEX. 

PPEX also accumulates because of the limited capacity of ferrochelatase. The 

intracellular distribution (Peng et al., 1997 and references cited therein) of PPIX after 

ALA stimulation tends to follow a general pattern as a function of time, with an initial 

localisation in the mitochondria where it is formed. PPIX gradually migrates to other 

subcellular compartments and their membranes (including the perinulcear region, 

endoplasmic reticulum, and lysosomes) over time, eventually localising in the plasma 

membrane. There are a variety of factors that determine and affect the affinity of 

porphyrins for biological membranes and intracellular compartments. These factors 

include the hydrophobicity of the molecule, charge and aggregation state, pH, and the 

physicochemical properties of the microenvironment the porphyrin is in (Riccheli, 

1995, and references cited therein).
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Fig. 2.1. The haem biosynthetic pathway. The synthesis occurs partly in the mitochondria (as indicated 

on the left side of the figure) and partly in the cytoplasm. B6, pyridoxyl-5’-phosphate; ALA, a- 

aminolevulinic acid; PGB, porphobilinogen; URO’GEN, uroporphyrinogen; COPRO’GEN, 

coproporphyrinogen; PROTO’GEN, protoporphyrinogen; Ac, acetate; Pr, propionate; Vi, vinyl 

(source: Ponka, 1997).

SUCCINYL-CoA
coo-I
CH 2  IOH, 

OAs't\, | ALA-SVNTHASE|

B 6
HI

H - C -  NH2 I
COO"

GLYCINE

~ T ~
Co ASH

>
C02

c h 3

Pr Pr
HEME

2H FERRO­
CHELATASE

C H a

Pr Pr

PROTOPORPHYRIN IX

6H ■

Vi

PROTO'GEN III 
OXIDASE

CH3

. PrPr

COO"I
c h 2
I ___
CH2

c=o  I
H -C -N H 2

H
b ■ AMINOLEVULINIC 

ACIO

$  | ALA-OEHYDRATASE |

COO'I
COO" CH2 I I 
CM 2  CH2

Fe+-*-

COPROGEN III 
OXIDASE

~ r
2CO 2

~ r
2 H +

Fe (?)

PROTOPORPHYRINOGEN I

T “HaO nh2 N'
H

PORPHOBILINOGEN

PBG-DEAMINASE

1 -
4 N H 3

Ac

Ac

HO

Ac

PrAc
HYDRO XYMETHYLBILANE

UROGEN III 
SYNTHASE | HgO

UROPORPHYRINOGEN III

UROGEN III 
DECARBOXYLASE I N*- 4 C 0 21 t 4H*J  N - 4 C O ;

Pr Pr

C O P R O P O R P H Y R IN O G E N  III

32



Chapter 2: Study of the relationship between endogenous protoporphyrin EX concentration in human
cells and inactivation by UVA radiation

2.1.2 Intracellular Effects o f UVA Irradiation

UVA radiation (320-380nm) generates reactive oxygen species (ROS) by 

photochemical reactions which cause lipid peroxidation, DNA damage, protein 

oxidation and inactivation of enzymes, and cell death (Tyrrell, 1991 and references 

cited therein; Vile et al., 1995). UVA is also known to induce several genes in a 

variety of different cell types (reviewed by Tyrrell, 1994, 1996), in particular, the 

major stress protein HO-1 in human skin fibroblasts (Keyse and Tyrrell, 1987).

2.1.3 Intracellular Effects o f ALA-PDT

ALA based photodynamic therapy (ALA-PDT) is a clinical cancer treatment that is 

based on the administration of ALA to tumour tissues in order to generate 

photosensitising concentrations of PPIX. Activation of PPIX by light of an 

appropriate wavelength induces a photochemical reaction that is intended to destroy 

tumour cells and tissues (Kennedy and Pottier, 1992). It is generally accepted that the 

main activated oxygen species produced during PPIX photosensitisation is *02, 

though other ROS may also be involved (He et al., 1995). Singlet oxygen has only a 

limited range of action 0.01-0.02 pm because of a short lifetime of 0.01-0.04 ps 

(Moan and Berg, 1991), therefore initial sites of damage are generally restricted to the 

immediate locality of the photosensitiser that generates it (e.g. PPIX). PPIX is 

produced mitochondrially so it is not unexpected that mitochondria have been shown 

to be damaged after ALA-PDT. Some forms of damage that have been documented 

include swelling of the mitochondria (Iinuma et al, 1996); morphological alterations, 

decreases in cellular ATP levels, and disruption to various mitochondrial enzymes and 

functions (Salet and Moreno, 1990); inactivation of mitochondrial ferrochelatase (He 

et al., 1995); and reduced oxygen consumption (Shevchuk et al., 1996). Owing to
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PPIX localisation, ALA-PDT has been shown to damage other cellular compartments. 

Uberriegler and colleagues (1995) described endoplasmic reticulum decomposition, 

production of large cytoplasmic vacuoles, and the nucleus breaking down into several, 

partially compartmentalised smaller masses. Damage to lysosomes and release of 

acidic hydrolases induced by exogenous addition of PPIX and subsequent 

photosensitisation has been documented in mouse fibroblasts along with lipofuscin 

formation (Morliere et al., 1987). Gaullier et al. (1995) showed lysosomal damage, 

lipofuscin formation, and membrane blebbing in keratinocytes and fibroblasts that had 

been treated with ALA followed by exposure to targeted light. It was recently 

demonstrated that increasing the intracellular PPIX content of human skin fibroblasts 

by incubation with ALA significantly lowers the threshold for induction of HO-1 gene 

activation by UVA radiation (Ryter and Tyrrell, 1998). Neutrophils exposed to PPIX 

and UVA irradiation have exhibited inactivation of various soluble cytosolic enzymes 

and also exhibited leakage of potassium ions (K) and lactate dehydrogenase as a result 

of plasma membrane damage (Sandberg et al., 1981). Ionic alterations involving K 

leakage accompanied by Na, Cl, and Ca influx have also been observed in melanoma 

cells (Schoenfeld et al., 1995). Finally ALA-PDT has been also observed to cause 

cell inactivation by both apoptosis and necrosis and the type of death process depends 

on cell type (Noodt et al., 1996; Webber et al., 1996).

2.1.4 UVA Absorbing Chromophores and the Objectives o f this Study 

Identification of UVA absorbing chromophores that account for the radiation 

wavelength dependence of deleterious effects in the skin remains elusive. Riboflavin 

has been implicated as a critical chromophore by Sato and coworkers (1995; Minami 

et al., 1999). They have shown that addition of riboflavin (vitamin B2) to normal
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human fibroblasts significantly increases their sensitivity to UVA and the cytotoxic 

action of riboflavin is exerted primarily through the generation of H2O2 upon and after 

UVA irradiation. It is noteworthy however, that the concentration of riboflavin used 

in these studies was 100 pg/ml which is considerably higher than the level of 0.2 

jug/ml which they document has been measured in normal human whole blood (Sato 

et al., 1995). The same group has also investigated UVA-induced pyridoxine 

(vitamin Be) photosensitisation (Sato et al., 1993). This study showed that whilst a 

high concentration was used (100 pg/ml), the addition of pyridoxine also markedly 

enhanced the photosensitivity of normal human fibroblasts to UVA radiation. The 

mode of cytotoxicy of pyridoxine was reported to occur through photoproducts of this 

compound rather than through an intermediate such as H2O2 .

In our study we have tested the hypothesis that PPEX may be a critical chromophore 

in the UVA inactivation of the human lymphoblastoid cell line, TK6 and the primary 

human fibroblast, FEK4. To achieve this objective it was necessary to determine the 

rate of cell inactivation by UVA as a function of intracellular PPEX concentration. 

PPEX was extracted by a method of acid extraction (Schoenfeld et al., 1995) and the 

concentration determined by spectrofluorimetry. Inactivation of TK6 cells was 

measured by assaying for clone forming ability 14 days post-irradiation (Tyrrell et al., 

1984). Inactivation of FEK4 cells was measured by microscopically counting 

surviving populations 24 h post-irradiation (see methods), described by Gibson et al. 

(1997).
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The rate of inactivation was derived from the slope of the dose response curve. Since 

cell inactivation was close to exponential it can be expressed by the mathematical 

relationship:

N/N0 = e w

Where N/No is the surviving fraction after dose D, and k is the slope of the curve. The 

k value in this study is referred to as the inactivation rate constant.

2.1.5 The MTS Assay

The MTS (3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- 

sulphophenyl)-2H-tetrazolium, inner salt) assay was investigated as a possible method 

for determining ALA-induced phototoxicity. This particular method is more 

advanced, but effectively based on the same principle as the MTT assay, an assay that 

has and is being widely used to investigate the number of viable cells in proliferation 

or cytotoxicity assays. Mosman (1983) initially developed the MTT assay, based on 

the reduction of the tetrazolium salt, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- 

diphenyltetrazolium bromide) by actively growing cells to produce a blue formazan 

product. Despite its acceptance, the actual biochemical mechanisms or subcellular 

localisation of MTT reduction were actually unknown. For a period it was accepted 

that the cellular reduction of the MTT occurred in the mitochondria, the inner 

membrane mitochondrial enzyme succinate dehydrogenase being mostly responsible. 

In contrast to this, data produced more recently (Berridge and Tan, 1993) suggested 

most cellular MTT reduction occurred outside the inner mitochondrial membrane and 

involved pyridine nucleotide cofactors NADH and NADPH-dependent mechanisms,

36



Chapter 2: Study o f the relationship between endogenous protoporphyrin IX concentration in human

possibly occurring in microsomes and on the outer mitochondrial membrane. The 

MTS assay works on a similar principle to that of the MTT assay, but is more 

advanced. The MTS tetrazolium compound, when used with an electron transfer 

reagent such as phenazine methosulphate (PMS), has the advantage of producing a 

soluble coloured formazan compound when bioreduced by viable cells (Fig. 2.2). The 

corresponding MTT formazan product, on the other hand, is insoluble and requires an 

additional solubilisation step, which can be particularly inconvenient when using 

suspension cell lines. The solubilisation step involves removing the original reagent, 

washing the cells, then adding an organic solvent such as dimethyl sulphoxide to 

solubilise the insoluble MTT formazan crystals, before adding the solution to a 96- 

well plate for reading. The convenience of using the MTS reagent is that the cells and 

the reagents are placed in a 96-well plate and can be recorded directly on a plate 

reader after a specified period. Fig 2.2 shows the schematic of the metabolism of 

MTS to its chracteristic coloured formazan product.

Fig. 2.2. Reduction of MTS to its formazan product by metabolically active cells. Dehydrogenase 

enzymes are thought to generate reducing equivalents such as NADH and NADPH which can transfer 

their electrons to the electron transfer reagent (ETR) phenazine methosulphate (PMS). The reduced 

PMS, in turn can directly interact with and reduce the MTS tetrazolium compound producing the 

coloured formazan product detectable at 490 nm (source: Promega technical bulletin #TB169, 1996).

cells and inactivation by UVA radiation
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After testing the MTS method for suitability as a phototoxicity assay in response to 

UVA radiation, we became concerned that this type of assay might not be suitable for 

ALA-induced photosensitisation studies. This was because of a chemical reaction 

that occurs between ALA and MTT resulting in a characteristic blue formazan 

product (Campbell et al., 1996). In our study, we test for a similar reaction between 

ALA and MTS to determine if this assay is suitable for evaluating ALA-induced 

phototoxicity.
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2.2 Methods

2.2.1 Chemicals

All chemicals were from Sigma Chemical Co. (UK) unless stated otherwise. Cell 

culture materials were from Gibco (UK), except foetal calf serum (FCS) which was 

from PAA Laboratories (Australia) and isotonic phosphate-buffered saline (PBS) 

which was from Oxoid (UK).

2.2.2 Cell Culture

The human lymphoblastoid cell line TK6 (Thilly, 1979) was cultured in RPMI 1640 

supplemented with 10% FCS, L-glutamine, sodium bicarbonate, penicillin and 

streptomycin. Under these conditions the cells doubled approximately every 18-20h. 

Cultures were grown at 37°C in a 5% CO2 incubator and were maintained in 

exponential growth phase by diluting to 2 x 105 cells/ml every 1 or 2 days. For all 

experiments, TK6 cells were diluted to 2 x 105 cells/ml and grown for 24h. The 

primary human skin fibroblast cell line FEK4 (Tyrrell and Pidoux, 1986) was cultured 

in Earle’s modified minimal essential medium (EMEM) supplemented with 15% 

FCS, L-glutamine, sodium bicarbonate, penicillin and streptomycin. Cells were 

passaged by trypsinisation once a week and were used for experiments between 

passages 9 and 15. For all experiments, FEK4 cells were seeded into plastic culture 

dishes and grown for 3 days to approximately 80% confluency.

2.2.3 Induction o f PPIX Synthesis

PPIX levels in TK6 and FEK4 cells were modulated by addition of ALA to the 

culture media in concentrations up to 400 pM and 200 pM respectively, for 4 and 18 

hours in the dark. Subsequent handling of cells was performed under low light.

39



Chapter 2: Study o f the relationship between endogenous protoporphyrin IX concentration in human
cells and inactivation by UVA radiation

2.2.4 Extraction o f Porphyrins

After ALA incubation, porphyrins were extracted according to the method described 

by Schoenfeld et al. (1994) as follows: Approximately 1 x 107 cells were collected 

and centrifuged for 5 min at 1000 rpm. TK6 could be directly spun from their culture 

media, but FEK4 needed to be washed with PBS and trypsinised from the plates 

before being collected. After spinning down, cells were washed with PBS, 

centrifuged again, then re-suspended in 0.75 ml of glacial acetic acid. This 

suspension was briefly sonicated, after which 2.25 ml of ethyl acetate was added. The 

mixture was vortexed, centrifuged at 2500 rpm for 5 min and the supematent 

collected. PPIX was back extracted into 1ml of 1.5M HC1 by vortexing the 

supematent with the HC1 and centrifuging as before. The organic phase (top) was 

aspirated and the acid phase (bottom) containing the porphyrins was retained for 

spectrofluorimetric measurement.

2.2.5 Fluorimetric Determination o f Porphyrin Levels in the Extract

A commercial PPIX standard (Sigma Chemical Co., UK) was prepared for a 

calibration curve, which was measured using a spectrofluorimeter (Kontron SFM25, 

Switzerland). The PPIX (MW 606.6) was initially dissolved in DMSO at a 

concentration of 10 pg/ml and subsequently serially diluted in 1.5 M HC1 for 

calibration standards. Fluorescence of the extracts was measured at an excitation of 

404 nm and emission of 604 nm (maxima were determined by doing a wavelength 

scan of the excitation and emission spectra of the commercial PPIX standard, Fig. 

2.5). PPEX concentration of the extracts was determined in relation to the 

fluorescence of the PPIX standard.
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2.2.6 UVA Source and Irradiation Conditions fo r  TK6 and FEK4 Cells 

Irradiation was performed at a temperature between 20 and 24°C using a broad 

spectrum Sellas 4 kW UVA lamp (Germany), the spectral output of this lamp is 

shown in Fig. 2.3. The UVA dose rate was measured using an ELI700 radiometer 

(International Light, USA). TK6 cell suspensions were irradiated at a density of 5 x 

105 cells/ml in PBS supplemented with 0.01% Ca2+ and Mg2+(Keyse and Tyrrell, 

1989). Cells were irradiated in quartz vessels (Scientific Laboratory Supplies Ltd, 

England) that were agitated using a mixing platform (IKA Laboratechnik,Germany). 

Sham- irradiated cells were treated in the same manner. 80% confluent FEK4 cells 

were irradiated in the dishes they were cultured in. Prior to irradiation, media was 

removed and cells were washed with isotonic phosphate-buffered saline (PBS). Cells 

were then covered in PBS supplemented with 0.01% Ca2+ and Mg2+ and irradiated. 

Sham-irradiated cells were treated in the same manner.

Fig. 2.3. UVA lamp profile. The spectral output of the UVA Sellas lamp is divided in to two parts, 

200-400 nm (below) and 400-700 nm (p. 42). Note the relative emission intensity (y-axis) is in much 

smaller units in the second part o f the emission spectrum (p. 42).
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Fig. 2.3. continued.
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2.2.7 Determination o f Phototoxicity in TK6 Cells as a Result o f UVA Irradiation as 

Determined by the CellTiter 96® AQueous One Solution Cell Proliferation Assay 

The CellTiter 96® AQueous One Solution Cell Proliferation Assay (Promega, UK) 

was optimised for TK6 cells (data not shown) so that phototoxic effects of UVA could 

be investigated (the principle of this assay is described in section 2.1.5). A solution 

was made up in Milli-Q water (Millipore, UK) containing MTS tetrazolium 

compound at a concentration of 133 pg/ml and 25 pM phenazine methosulphate 

(PMS). The MTS/PMS solution was distributed in a 96-well plate (Helena 

Bioscience, UK), 20 pi per well. After irradiation (up to 500 kJ/m2 UVA), the TK6 

cells were collected, centrifuged for 5 min at 1000 rpm, then re-suspended at a density 

of 1 xlO6 cells/ml in serum free medium. 100 pi of this cell suspension was added to 

each well of the 96-well plate containing the MTS/PMS solution. The 96-well plate 

was then incubated for two hours at 37°C to allow formation of the soluble MTS
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formazan product. The reaction was stopped by adding 25 pi of 10% SDS to each 

well. Absorbance was recorded at 490 nm using a microplate reader and corrected 

using a blank (reagents minus cells). There was a linear response between number of 

viable cells and the amount of MTS formazan compound produced at 490 nm (Fig 

2.4). Absorbance of UVA irradiated cells was compared to those of sham-irradiated 

cells and expressed as percentage of viable cells.

Fig. 2.4. The effect o f cell number on absorbance at 490 nm using the CellTiter 96® AQueous One 

Solution Assay. Various numbers of TK6 human lymphoblastoid cells in 100 pi of RPM3 were added 

to wells of a 96-well plate each containing 20 pi o f the MTS/PMS solution (see text). After 2 h at 37°C 

in a humidified 5% C02 atmosphere, the absorbance was recorded at 490 nm using an ELISA plate 

reader. Each point represents the mean ± S.D. of 4 independent experiments. The correlation 

coefficient was 0.99938, indicating that there was a linear response between viable cell number and 

absorbance at 490 nm. The background absorbance for blank and cell number and was corrected for.
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2.2 8 Investigation o f the Interaction Between ALA and M TS

This investigation was performed using the method described in section 2.2.7. 

Instead of measuring absorbance of the MTS formazan produced by cells, absorbance 

of the MTS formazan produced as a result of interaction between the MTS 

tetrazolium salt and ALA was measured, as a function of ALA concentration. Results 

were displayed as fold increase in absorbance over control. The control used v/as 

reagents minus ALA. ALA was prepared in serum free media in concentrations up to 

120 pM.

2.2.9 Determination o f Phototoxicity in TK6 Cells Using the Cloning Assay 

The cloning assay was performed according to Tyrrell et al., (1984). TK6 cell 

suspensions were diluted in fresh complete media to a concentration of 10 cells per ml 

and were distributed in 96-well microtiter plates at a volume of 200 pi per well (i.e. 2 

cells/well). Cells were incubated at 37°C in a humidified 5% CO2 atmosphere and 

after a minimum of 14 days, colonies were scored microscopically. The original 

cloning efficiency was calculated assuming poisson distribution of the clone forming 

units over the wells using the formula:

Cloning efficiency = -lnPo/w

Where Pq is the fraction of wells with no clone present and n is the average number of 

cells originally distributed per well. Under our conditions, the cloning efficiency of 

TK6 human lymphoblastoid cells on the plastic microtiter plates was approximately 

70-80%. ALA-treated and UVA-irradiated cells as described above, and surviving 

fractions were calculated with reference to the sham-irradiated controls.
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2.2.10 Determination o f Phototoxicity in FEK4 Cells

Phototoxicity was determined in FEK4 cells according to a method described by 

(Gibson et al., (1997). After irradiation, the buffer was removed and conditioned 

media added to the plates. Cells were incubated for 24 h after which the conditioned 

media was removed and the plates washed with PBS. Cells were trypsinized and re­

suspended in 1 ml of complete media. Cell counts were performed microscopically; 

ALA-treated and UVA-irradiated surviving fractions were determined relative to the 

sham-irradiated levels.

2.2.11 Determination o f the Inactivation Rate Constant, k

The inactivation rate constant was determined as described in section 2.1.4.
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2.3 Results

2.3.1 PPIX Calibration fo r Spectrofluorimetry

The excitation and emission maxima were determined by running the appropriate 

wavelength scans of the commercial PPIX standard (Fig. 2.5a). These maxima were 

then used to measure the fluorescence of the serially diluted PPIX standard in order to 

construct the calibration curve (2.5b). The concentration of PPEX in prepared extracts 

was subsequently measured using identical conditions.
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Fig. 2.5. (a) Excitation and emission spectra of PPIX in HC1. (b) A typical calibration curve of a PPIX 

standard, measured using spectrofluorimetry.
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2.3.2 PPIX Biosynthesis in TK6 Human Lymphoblastoid Cells 

Porphyrin synthesis was stimulated by ALA treatment of the cells at concentrations 

between 100 and 400 pM for 4 and 18 hours (Fig. 2.6). No ALA dark toxicity was 

observed using these conditions (data not shown). PPIX was extracted from the cells 

and measured using spectrofluorimetry. The porphyrin accumulation in these cells 

appeared to be ALA dose dependent. Both incubation periods yielded similar 

quantities of intracellular PPIX with the range of ALA concentrations used. When 

porphyrin synthesis was stimulated (with ALA concentrations ranging from 100 to 

1000 pM) up to 18 hours and PPIX extracted at different times during this period, 

total intracellular PPEX content appeared to reach a maximum at approximately 8 h 

(Fig.2.7). Between 8 and 18 hours, total intracellular content of PPIX decreased due 

to efflux of the molecule from the cell.
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Fig. 2.6. Biosynthesis o f PPDC by TK6 cells as a function of ALA concentration in the culture 

medium. The graph shows the amount of PPDC in the cells after 4 ( • )  and 18 hours incubation (0) 

with ALA. Data represent the mean of 3-5 independent experiments (± S.D.).
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Fig. 2.7. Biosynthesis o f PPIX by TK6 cells as a function of incubation time and ALA concentration 

in the culture medium. The graph shows the amount of PPEX in the cells over time after incubation 

with either no ALA (T), lOOpM (V), 400pM ( • ) ,  or lOOOfiM (O) ALA. Data represent the mean of 3- 

5 independent experiments (± S.D.).
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2.3.3 PPIX Biosynthesis in FEK4 Primary Human Skin Fibroblasts 

Porphyrin synthesis was stimulated by ALA treatment of the fibroblasts at 

concentrations between 50 and 200 pM for 4 and 18 hours (Fig. 2.8). No ALA dark 

toxicity was observed using these conditions (data not shown). The porphyrin 

accumulation in these cells also appeared to be ALA dose dependent. Unlike TK6, 

the 18 h incubation yielded significantly higher intracellular PPIX concentrations 

compared to 4 h with the range of ALA concentrations used. As ALA dose increased, 

the PPIX ratio between the two incubations also increased. Incubation with ALA for 

18 h at a concentration of 50 pM produced a 1.765-fold higher intracellular PPEX 

concentration compared to the 4 h incubation, whereas 200 pM ALA produced a 

4.778-fold higher PPIX level after 18 h than after 4 h.
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Fig. 2.8. Biosynthesis of PPIX by FEK4 cells as a function of ALA concentration in the culture 

medium. The graph shows the amount of PPIX in the cells after 4 ( • )  and 18 hours incubation (O) 

with ALA. Data represent the mean of 3-4 independent experiments (± S.D.).
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2.3.4 M TS - A  Viability Marker to Quantify UVA-induced Phototoxicity 

TK6 cells were irradiated with UVA doses up to 500 kJ/m and then incubated with 

the MTS tetrazolium salt. Production of the soluble coloured MTS formazan product 

(as a result of bioreduction of the tetrazolium salt by viable cells), as measured at 490 

nm, is directly proportional to the number of living cells in culture (Fig.2.4) so this 

assay was employed to evaluate UVA-induced phototoxicity. Fig 2.9 shows the UVA 

dose response observed using this assay.
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Fig. 2.9. Percentage of viable cells at a series of UVA doses as estimated using the MTS assay. 

Following irradiation, 1 x 105 cells (were incubated for 2h at 37°C in (100 pi of) serum free media 

containing 133 pg/ml MTS formazan salt. Data represent the mean of 3 independent experiments (± 

S.D.).
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2.3.5 M TS Tetrazolium Salt and its Interaction with ALA

It was previously reported (Campbell et al., 1996) that the value of the colourimetric 

MTT (methyl-thiazol-tetrazolium) assay for use in evaluating phototoxicity as a result 

of ALA-induced photosenstisation was limited due to a chemical reaction between 

ALA and MTT resulting in a blue formazan product. The MTS and MTT are very 

similar reagents so the interaction of AL A and MTS was investigated to determine if 

this assay could be used for further phototoxic investigations involving cells treated 

with ALA. Fig. 2.10 shows the fold increases in absorbance over control (at 490 nm) 

as a result of an interaction between MTS and ALA as a function of ALA 

concentration in a cell-free system. From this graph, it is clear that somewhere 

between 7.5 and 15 juM ALA there is a sharp increase in the absorbance measured at 

490 nm.
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Fig. 2.10. Changes in absorbency measured at 490 nm as a result of the interaction between ALA and 

MTS formazan salt after 2h incubation at 37°C. The reaction was performed in a cell-free, serum-free 

medium. Data represent the mean of 3 independent experiments (± S.D.).
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2.3.6 UVA-induced Porphyrin Toxicity in TK6 Human Lymphoblastoid Cells 

Figs. 2.11 and 2.12 display the UVA dose response curves for TK6 cells with various 

intracellular PPIX concentrations. Cells were stimulated with ALA for 4 (Fig. 2.11) 

and 18 hours (Fig.2.12) then exposed to graded doses of UVA. Following irradiation, 

cells were assayed for colony forming ability (see methods). This data clearly shows 

that the degree of UVA-induced toxicity increases as a function of intracellular PPIX 

content in these cells. However, there is no simple correlation between total 

intracellular PPIX concentration and the rate of UVA-induced cell inactivation. The 

relative rates of cell inactivation appears to be more efficient after the 4 h ALA 

incubation than after 18 h (see Fig.2.16).
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Fig. 2.11. UVA dose-dependent inactivation of clone-forming ability of TK6 cells with ALA-induced 

PPDC. Cells were incubated with ALA for 4h followed by UVA irradiation, then assayed for clone- 

forming ability. The legend indicates the intracellular PPDC concentration as a result o f ALA 

treatment. Data represent the mean of 3-4 independent experiments (± S.D.).
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Fig. 2.12. UVA dose-dependent inactivation of clone-forming ability of TK6 cells with ALA-induced 

PPIX. Cells were incubated with ALA for 18h followed by UVA irradiation, then assayed for clone- 

forming ability. The legend indicates the intracellular PPEX concentration as a result o f ALA 

treatment. Data represent the mean of 3-4 independent experiments (± S.D.).
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2.3.7 UVA-induced Porphyrin Toxicity in FEK4 Primary Human Skin Fibroblasts 

Fig. 2.13 shows the dose response of 80% confluent untreated FEK4 cells to UVA 

after doses up to 500 kJ/m . As the graph shows, the highest UVA dose in this study 

resulted in a 50% survival 24 h post-irradiation. Figs. 2.14 (4 h ALA) and 2.15 (18 h 

ALA) display the UVA dose response curves for FEK4 cells with various intracellular 

PPIX concentrations. Cells were stimulated with ALA for 4 and 18 hours then 

exposed to graded doses of UVA. Following irradiation, cell survival was measured 

24 h later (see methods). Similar to TK6, this data shows that the degree of UVA- 

induced toxicity increases as a function of intracellular PPIX content in these cells. 

However, also like the TK6, there is no simple correlation between total intracellular 

PPIX concentration and the rate of UVA-induced cell inactivation (see Fig. 2.17).
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Fig. 2.13. UVA dose-dependent cell killing of FEK4 fibroblasts. Cells were grown to approximately 

80% confluency followed by UVA irradiation; survival was determined after 24 h. Data represent the 

mean of 4 independent experiments (± S.D.).
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Fig. 2.14. UVA dose-dependent cell killing of FEK4 fibroblasts with ALA-induced PPDC. Cells were 

incubated with ALA for 4h followed by UVA irradiation; survival was determined after 24h. The 

legend indicates the intracellular PPDC concentration as a result o f ALA treatment. Data represent the 

mean of 4 independent experiments (± S.D.).
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Fig. 2.15. UVA dose-dependent cell killing of FEK4 fibroblasts with ALA-induced PPIX. Cells were 

incubated with ALA for 18h followed by UVA irradiation; survival was determined after 24h. The 

legend indicates the intracellular PPIX concentration as a result of ALA treatment. Data represent the 

mean o f 4 independent experiments (± S.D.)
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2.3.8 Inactivation o f TK6 Cell Populations by UVA as a Function o f PPIX  

Concentration

Fig. 2.16 depicts the rate of inactivation of TK6 cell populations plotted as a function 

of intracellular PPIX concentration. This data shows that the rate of inactivation of 

these cells with modulated PPIX levels is generally higher after 4 h ALA incubation 

than it is after 18 h. By examining the relationship between the inactivation rate 

constants at different intracellular PPIX concentrations, an estimate of the basal 

content of PPEX that would be necessary to lead to significant cell death following 

UVA irradiation can be derived by back extrapolating the linear portion of the curve 

to the abscissa. The estimate of the appropriate concentration of PPIX after 4 and 18 

hours ALA incubation was approximately 20 and 40-45 pmoles/107 cells respectively. 

The estimated basal content of PPIX in the TK6 cells varied between 5.5 and 7 

pmoles/107 cells (see discussion).
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Fig. 2.16. Rates o f inactivation of TK6 cells by UVA radiation as a function of intracellular PPIX 

concentration. The graph shows the inactivation rate constants (k) o f cells incubated for 4 ( • )  and 18 

hours (O) with ALA followed by UVA irradiation, verses intracellular PPDC concentration. Data 

represent the mean o f 3-4 independent experiments (± S.D.).
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2.3.9 Inactivation o f FEK4 Cell Populations by UVA as a Function o f PPIX  

Concentration

Fig. 2.17 depicts the rate of inactivation of FEK4 cell populations plotted as a 

function of intracellular PPIX concentration. This data shows that the rate of 

inactivation of cells is greater as a function of intracellular PPIX concentration after 4 

h ALA incubation compared with 18 h incubation. Estimation of the basal content of 

PPIX that would be necessary to lead to significant cell death following UVA 

irradiation in FEK4 cells was performed in the same manner as it was for TK6 (see 

section 2.3.8). The estimate after 18 hours ALA incubation was approximately 10-20 

pmoles/107 cells. In contrast to the 18 h incubation (and to the TK6 data), the 

estimate for 4 h ALA incubation was within the linear portion of the curve. The 

measured basal content of PPIX in the FEK4 cells varied between 4.925 and 5.176
•j

pmoles/10 cells (see discussion).

66



Chapter 2: Study o f  the relationship between endogenous protoporphyrin IX concentration in human
cells and inactivatiorLby UVA radiation

Fig. 2.17. Rates of inactivation of FEK4 cells by UVA radiation as a function o f intracellular PPIX 

concentration. The graph shows the inactivation rate constants (&) of cells incubated for 4 ( • )  and 18 

hours (O) with ALA followed by UVA irradiation, verses intracellular PPEX concentration. Data 

represent the mean o f 3-4 independent experiments (± S.D.).
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2.4 Discussion

To determine if PPEX is a crucial chromophore in UVA-mediated inactivation of the 

human lymphoblastoid cell line TK6 and the primary human skin fibroblast cell line 

FEK4, we have studied how the rate of cellular inactivation by UVA radiation varies 

as a function of intracellular PPIX concentration. In TK6, although incubation with 

ALA for 18 h of ALA would be expected to yield higher cellular porphyrin content 

than incubation for 4 h, Fig. 2.6 shows that the two ALA incubation periods result in 

similar intracellular PPIX concentrations. This is probably explained by the efflux of 

PPIX from the cells which occurs through diffusion and is influenced by the level of 

serum protein in the culture medium (Iinuma et al., 1994), in particular albumin 

(Steinbach at al., 1995). With this cell line (under the conditions detailed in the 

methods section, which involves culturing the cells for 24 h in medium containing 

10% FCS, then adding ALA) we have demonstrated that total intracellular PPIX 

reaches a maximum after about 8 h (possibly indicating saturation) and then decreases 

between 8 and 18 hours (Fig. 2.4). This decrease suggests that between 8 and 18 

hours, the rate of porphyrin synthesis in TK6 may be lower than the rate of efflux. It 

was reported that mammalian epithelial cells which were cultured in media containing 

a high serum content (10% FCS), when stimulated with ALA, showed a considerably 

higher release of porphyrins into the medium compared with cells cultured in media 

containing a low serum content (1% FCS) (Fukuda et al., 1993). A similar result was 

observed using the same cell line, but comparing PPIX efflux from cells cultured in 

media containing 10% FCS with cells cultured in media that was serum-free 

(Washbrook et al., 1997). These two reports do however differ with regard to the rate 

of tetrapyrrole synthesis as a function of serum content in the culture medium. 

Fukuda and collegues (1993) showed that the rate of porphrin synthesis, with 10%
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FCS in the culture medium, was over twice that which occurred when the serum 

content was 1% serum after incubation with 0.6 mM ALA for 6 h. Reasons for this 

are not clear, but they suggest either stimulation of enzymes in tetrapyrrole synthesis 

or a transport mechanism (presumably involving ALA) playing a role. In contrast, 

Washbrook and collegues (1997) showed that the rate of porphyrin synthesis was 

approximately 30% lower in 10% culture media compared to that of serum free 

medium. They argue that serum in the medium decreases ALA uptake by either 

inhibiting influx of ALA or increasing its efflux.

Unlike TK6, incubation of FEK4 with ALA for 18 h leads to a considerably higher 

content of intracellular PPIX compared with incubation with ALA for 4 h (Fig. 2.8). 

The reason for the discrepancy between the two cell lines is probably explained by the 

large volume of the fibroblast compared with the lymphoblastoid cell, which would 

permit a larger amount of intracellular PPIX to accumulate after the longer incubation 

period. When comparing the two cell lines after 4 h ALA incubation, the intracellular 

content of PPIX appears similar in both cell types (under the 100 and 200 fiM 

conditions). This comparison can only be made loosely though, as the serum content 

may be different in the media when the cells were drugged with ALA. The study 

undertaken here was aimed at looking at intracellular PPIX content after ALA 

stimulus and not extracellular porphyin levels as a result of efflux. However, in 

retrospect, studying porphyrin efflux would have been useful to ascertain and 

compare the rate of porphyrin production in the two cell lines.

MTS was initially investigated to use a simple but rapid assay for obtaining 

phototoxicity data to compliment the clonogenic assay. The MTS technique was
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optimised for the lymphoblastoid cells and then used to obtain dose response data for 

irradiation with UVA up to 500 kJ/m2 (Fig. 2.9). It was then intended to use this 

assay to investigate the response of cells that had different porphyrin levels to 

irradiation with UVA radiation. However, in a previous study, Campbell and 

colleagues (1996) reported that the MTT tetrazolium salt could interact with ALA to 

produce a characteristic blue formazan product. Based on this observation, a cell free 

system was devised to investigate the reaction, if any, MTS had with ALA. Fig.2.10 

clearly shows that at low ALA concentrations a formazan product is produced, which 

is detectable at 490 nm. This suggests that ALA leads to the reduction of the MTS 

tetrazolium salt. It has been demonstrated in vitro that ALA can cause iron release 

from ferritin (Otieza et al., 1995). In the presence of iron and under aerobic 

conditions, ALA can be oxidised to 4,5-dioxovaleric acid (DOVA) (Carvalho et al., 

1997). This reaction may be responsible for the MTS reduction. In conclusion, 

neither MTS tetrazolium salt or the MTT tetrazolium salt would appear to be suitable 

for use in determining ALA-induced photosensitisation effects because of the 

coloured formazan compound produced as a result of the interaction between the 

tetrazolium salt and ALA.

Fig. 2.13 illustrates the dose response of untreated FEK4 cells to UVA radiation after 

doses up to 500 kJ/m . This particular method of determining phototoxicity (Gibson 

et al., 1997) had not been previously investigated in our laboratories, so this 

preliminary study was carried out to test the sensitivity of this technique. From this 

result, it was concluded that this method was suitable to carry out further 

phototoxicity studies.
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Figs. 2.11-2.12 and 2.14 -  2.15 show that while an increase in intracellular PPIX 

concentration does increase the sensitivity of the TK6 and FEK4 cell lines to UVA- 

induced phototoxicity, there is no absolute correlation between intracellular PPIX 

content and UVA inactivation. This observation is consistent with data produced by 

other groups (Iinuma et al., 1994; Gibson et al., 1997). Despite this, Iinuma and 

colleagues (1994) concluded that there might be a threshold of intracellular PPIX 

necessary before ALA-induced phototoxicity was observed. The 4 h ALA incubation 

in our study resulted in a greater efficiency of cell killing by UVA radiation compared 

to that with 18 h incubation in both cell lines (Figs.2.11-2.12 and 2.14-2.15). This 

observation may have implications for the optimisation of ALA-PDT, but why should 

this shorter incubation lead to greater phototoxicity? Malik et al. (1996) have 

demonstrated using fluorescence and spectral imaging and mapping that after 

incubation with ALA, the monomeric fraction of PPIX was primarily in the plasma 

membrane and the membranes of cytoplasmic organelles. On the other hand, 

aggregated species of PPIX were located in the cytoplasm and vesicular 

compartments including the mitochondria and endoplasmic reticulum. It was also 

shown that dimerisation may be induced after excess PPIX is produced by ALA 

induction. In another study, it has been shown that compared with longer incubation 

periods, shorter incubation times with exogenously added PPIX produce a larger 

fraction of the rapidly bleached monomeric form of PPIX, as measured by 

fluorescence decay measurements (Strauss et al., 1998). A concomitant dramatic 

effect on cellular phototoxicity was also observed using these shorter incubations. 

Bezdetnaya and colleagues (1996) demonstrated that photobleaching of monomers is 

more likely to occur compared with the aggregated species when solutions of both 

PPIX and HpD are irradiated. In the aggregated species fluorescence and intersystem
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crossing is reduced due to an increased internal conversion, which is the nonradiative 

pathways of energy loss within a molecule. This appears consistent with the 

observation that the fluorescence and triplet state yields are much reduced in the 

aggregated form of Hp compared to the monomeric component (Smith, 1985). 

Finally, aggregation of the photosensitiser Hp has been found to reduce the singlet 

oxygen yield and thus, essentially it’s phototoxic capacity (Tanelian and Heinrich, 

1995).

One other factor that may play a role in the ability of PPIX to inactivate cells is its 

localisation after ALA treatment. There are several studies that have used 

fluorescence microscopy to monitor PPIX localisation ALA treatment (reviewed by 

Peng et al., 1997, and refs, cited therein), and it would appear that the localisation 

pattern is primarily affected by the time that cells are incubated with ALA. The 

majority of these studies document a similar pattern that changes with time, which is 

the initial appearance of PPIX in the mitochondria (where it is formed), followed by 

its localisation in the membranes of organelles and eventually the plasma membrane. 

Some groups have also observed PPIX staining in the cytoplasm (Gaullier et al, 1995; 

Uberriegler et al., 1995). Thus, the primary sites of PPIX photosensitisation may be 

restricted by the pattern of PPIX localisation and accumulation, which in turn may 

affect the inactivation of cells. In conclusion, distribution of the porphyrin, 

concentration, and aggregation state may all have crucial effects on the ability of 

PPIX to sensitise cells to UVA.

Finally, an estimation of the basal content of PPIX necessary to mediate significant 

cell killing by UVA was made from the relationship between the inactivation rate
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constants and the intracellular PPIX concentration in both cell lines (Figs. 2.16 and 

2.17). The method used to estimate the basal content necessary to contribute to 

significant cellular inactivation is derived by back extrapolating the linear portion of 

the curve, which is produced by plotting inactivation rate constants against PPIX 

concentration, back to the abscissa. The estimated value essentially indicates a 

threshold of intracellular PPIX required, after a particular incubation, before a 

significant contribution is made to UVA-induced cell killing. This threshold does not 

necessarily indicate the total concentration of intracellular PPIX, but rather a 

concentration of PPIX species (monomeric, dimeric and aggregated forms) that are 

able to generate a sufficient amount of ROS in order to result in significant cell 

inactivation after UVA irradiation. The slow rate of increase in inactivation over the 

non-linear part of the curve (Figs. 2.16 and 2.17) shows that an increase in PPIX 

concentration is not accompanied by a significant relative increase in the rate of 

inactivation. This suggests that, either insufficient ROS species are generated because 

of a lack of total PPIX, insufficient quantities of an efficient photosensitising fraction 

of PPDC (i.e. monomers) to generate these ROS, or that the antioxidant capacity is 

sufficient to protect the cell. When this threshold is reached, the rate of inactivation 

increases in a linear manner and at a much greater rate. This is because whatever 

limiting factor or factors were effective before the threshold was reached, are no 

longer inhibiting the increase in rate of inactivation, as a function of PPDC 

concentration.

Under our conditions, it was determined that the basal content of PPDC is insufficient 

to make a significant contribution to UVA-mediated inactivation of the human 

lymphoblastoid cell line TK6 and therefore it is unlikely to be a critical UVA
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chromophore in this cell line under normal conditions (Fig. 2.16). Whilst incubation 

of FEK4 cells with ALA for 18 h cells would appear to give a similar result as that for 

TK6 cells, the incubation of FEK4 with ALA for 4 h appears to produce quite a 

different outcome (Fig. 2.17). The basal content of these cells lies within the back 

extrapolate of the linear portion of this curve, suggesting that it is sufficient to make a 

significant contribution to UVA-mediated cell inactivation. We conclude from this 

study that the basal content of PPIX in FEK4 fibroblasts appears to implicate this 

molecule as a critical chromophore in the UVA-mediated inactivation of this cell line.
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Chapter 3. Study of the effects of 5-aminolevulinic acid-induced protoporphyrin IX 

and UVA irradiation on the cytoplasmic aconitase activity of iron regulatory 

protein-1 in human skin cells

3.1 Introduction

3.1.1 Iron Homeostasis

Iron is an essential nutrient and is important for a variety of cellular processes including 

respiration and cell division. Despite iron playing a critical role in such processes, when 

in excess, it is potentially highly toxic because it can catalyse the formation of free 

radicals through mechanisms such as the Fenton and Haber Weiss reactions (Halliwell 

and Gutteridge, 1999). In mammalian cellular systems, there is a tightly regulated system 

that is responsible for acquisition, utilisation, and storage of iron. The genes that 

comprise this system are themselves modulated by levels of intracellular iron.

Cellular iron homeostasis in non-erythroid mammalian cells is maintained primarily 

through the co-ordinated regulation of the synthesis of the two proteins, transferrin 

receptor (TfR) and ferritin. Iron acquisition (reviewed by Richardson and Ponka, 1997) 

occurs through the binding of di-ferric transferrin (Tf) to the cell-surface transferrin 

receptor (TfR). This complex is internalised within enclosed endocytic vesicles. 

Acidification of the endosome results in release of the Tf bound iron; the apo-Tf/TfR 

complex is returned to the cell surface where it dissociates for recycling of the same 

process. This released iron is subsequently exported to the cytoplasm where it is either 

incorporated into a number of iron-containing/requiring proteins, transported to the
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mitochondria for haem synthesis, or stored in the cytoplasmic iron storage protein 

ferritin. Ferritin is composed of 24 subunits encoded by two highly homologous genes, 

in which up to 4500 iron atoms can be stored in the Fe form (reviewed by Bridges, 

1990; Harrision and Arosio, 1996; see Chapter 5).

Two cytoplasmic RNA-binding proteins known as iron regulatory protein-1 and -2 (ERP- 

1 and IRP-2) control the rate of ferritin and TfR synthesis through the regulation of 

translation, and through the stabilisation of their mRNAs (Henderson and Kuhn, 1995). 

Under conditions of iron deprivation the IRPs are capable of binding to stem-loop 

structures, known as iron-responsive elements (IREs), in the 5’-untranslated region (5’- 

UTR) of the ferritin mRNA and in the 3’-untranslated region (3’-UTR) of the TfR 

mRNA. Binding of the IRPs to the 5’-UTR of the ferritin mRNA results in repression of 

translation of the ferritin protein (Gray and Hentze, 1994). In contrast, binding of the 

IRPs to the 3’-UTR of the TfR mRNA results in its stabilisation, thus allowing translation 

to proceed (Casey et al., 1989). When iron supply to cells is increased IRP-1 becomes 

post-transcriptionally inactivated and IRP-2 is degraded. Intracellular iron levels affect 

the rate of synthesis of both IRPs, through the activity of IRP-1 and through the stability 

of IRP-2. Thus, when the intracellular iron level is low, the production of ferritin is low 

while the production of TfR is high. On the other hand, when the intracellular iron level 

is high the production ferritin is high, whilst the production of TfR is low (reviewed by 

Hentze and Kuhn, 1996; Haile, 1999). Purification of the human IRP-1 protein led to the 

discovery that it displays a marked homology with mitochondrial aconitase (Rouault et 

al, 1991; Hentze and Argos, 1991). Mitochondrial aconitase is an iron sulphur protein

76



Chapter 3: Study of the effects o f 8-aminolevulinic acid-induced protoporphyrin IX and UVA irradiation
on the cytoplasmic aconitase activity o f iron regulatory protein-1 in human skin cells

that catalyses the reversible isomerisation of citrate to isocitrate via czs-aconitate in the 

citric acid cycle. A cubane sulphur-cluster ([4Fe-4S]), like that of the mitochondrial 

aconitase, was found in the IRP-1 (Kennedy et al., 1992) and analysis of recombinant 

IRP-1 led to the observation that the protein functioned as a cytosolic aconitase in iron- 

replete cells (holoprotein), inactive in IRE-binding. In iron-deficient cells however, the 

apoprotein (without the cluster) accumulates and binds to IREs exhibiting no aconitase 

activity. Thus, IRP-1 is a bifunctional regulator possessing the two mutually exclusive 

functions, RNA-binding and aconitase activity, depending on the levels of intracellular 

iron (Henderson and Kuhn, 1995). An IRE element has been also been identified in the 

5’-UTR of mammalian mitochondrial aconitase (Kim et al., 1996). The level of 

translation of this protein has been shown to be regulated by ERP/IRE-binding so that iron 

levels may regulate mitochondrial aconitase, and hence the function of the citric acid 

cycle.

3.1.2 What is the Function o f Cytoplasmic Aconitase Activity?

While the role of the mitochondrial aconitase (m-aconitase) functioning as one of the 

enzymes of the Kreb’s cycle is well characterised and understood, the role of the of the 

cytoplasmic aconitase (c-aconitase) in the metabolism of cytoplasmic citrate remains 

largely unclear. Philpott and colleagues (1994) confirmed that the enzymatic activity is 

not necessary for cluster assembly/disassembly or regulated RNA binding as previously 

suggested by Klausner and colleagues (1993). Philpott and colleagues suggested that the 

cytoplasmic aconitase function and concomitant citrate metabolism are directly regulated 

by iron. Hence, the role of citrate (and its metabolism) in intracellular iron trafficking
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may provide the key to the cytoplasmic aconitase function. Paraskeva and Hentze (1996) 

also postulate a relationship between citrate and iron transport. They suggest that a co- 

regulatory function of both the mitochondrial and cytoplasmic aconitases in response to 

iron levels may exist, and that iron level may affect the catalytic turnover of citrate. 

Since citrate can bind iron and might serve as intracellular iron transporter, both the 

RNA-binding and the enzymatic activity of IRP-1 may collaborate in the regulation of 

intracellular iron transport. Gray and colleagues (1993) discussed the possibility of a link 

between the two aconitases, again with reference to citrate. They speculate that in iron 

starved cells repression of both aconitases may lead to preservation of citrate which is an 

intracellular carrier of iron to the mitochondria (Frausto da Silva, 1991). This may also 

aid the liberation of iron stored within cells (O’Connell et al., 1989). Alternatively, iron 

overload in cells may be aided by reduction in citrate levels from increased aconitase 

activity, thus reducing iron mobilisation from iron stores. Clearly the elucidation of the 

role of cytoplasmic aconitase requires further experimental investigation.

3.1.3 Response o f IRPs to Oxidative Stress

In the attempt to understand how the iron-sulphur-cluster may function as a sensor of 

intracellular iron levels, the influence of oxidants on the iron-sulphur cluster of IRP-1 

assembly, as well as iron availability, must also be understood. The iron-sulphur cluster 

of IRP-1 is positioned in a solvent filled cleft where it may be susceptible to oxidant 

destabilisation. The nature of the nitric oxide (NO) interaction with aconitase is 

controversial, some groups suggest peroxynitrite is the reactive species (Hausladen and 

Fridovich, 1994; Castro et al, 1994), whereas others have suggested that NO itself is
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sufficient to destabilise the cluster (Kennedy et al., 1997; Gardner et al., 1997; for a 

review see Cooper, 1999). Treatment of cells with NO or NO producing reagents has 

been shown to result in ERE-binding (Weiss et al., 1993; Drapier et al., 1993). Treatment 

of cells with hydrogen peroxide leads to activation of RNA-binding activity and 

concomitant loss of cytoplasmic aconitase activity, as would be expected if oxidative 

stress was responsible for cluster disassembly (Martins et al., 1995; Pantopolous and 

Hentze, 1995; Gardner et al., 1995). It is tempting to assume direct chemical attack on 

the iron sulphur cluster of the IRP-1 protein resulting in the reduction of cytoplasmic 

aconitase activity, as has been postulated (Rouault and Klausner, 1996; Hentze, 1996). 

However, there is evidence that suggests ROS may also play a signalling role in the 

induction of IRP-1 (Pantopoulos et al., 1997). Although the level of iron might have 

negligible influence on iron-sulphur cluster disassembly, iron level does determine 

whether the cluster can be assembled and thus will control the transition from apoprotein 

to holoprotein. The holoprotein can function as a sensor of oxidants, while the 

apoprotein can function as a sensor of iron levels. The actual mechanisms of assembly 

and disassembly of the dynamic iron-sulphur clusters are still poorly understood and 

remain to be delineated. In turn, this will provide the understanding of how iron-sulphur 

proteins can serve as sensors of both iron and oxidants (for reviews see Rouault et al., 

1996; Haile, 1999).

3.1.4 The Basis and Objectives o f This Study

In this study we investigate the effects of ALA and UVA on cytoplasmic aconitase 

activity (other consequences of UVA and/or ALA treatment are discussed in previous
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chapters). There is only a sparse amount of data in this particular area, with no data 

existing to the knowledge of this author connecting both ALA and UVA treatment with 

cytoplasmic aconitase activity. In human keratinocytes exposed to UVA, Giordani and 

colleagues demonstrated UVA inactivation of cytoplasmic aconitase activity by UVA 

radiation alone (Giordani et al., 1997), although they were uncertain as to what led to the 

inactivation. Carvalho and colleagues (1997) have shown (in a variety of different cell 

lines) an ALA-induced activation of IRP-1/IRE binding. They propose that ALA alone 

affects the IRP-1 activity and not through other indirect mechanisms such as production 

of ROS or synthesis of PPIX or haem. The concentration range of ALA used in this 

study was between 0.5 and 8mM. Exogenous addition of PPIX to erythroleukemic cells 

has been shown to activate IRP-1 RNA-binding (Coccia et al., 1997). This group 

suggested that PPIX acts through a similar mechanism to that exerted by an iron chelator. 

Our work investigates the effect of UVA on the cytosolic aconitase activity in human 

fibroblasts and keratinocytes. We also study the effects of ALA treatment on the 

cytosolic aconitase activity in the fibroblasts, both before and after UVA irradiation 

(controls are included in the form of haemin and desferal treatment). This assay was 

developed with the intention not only to compliment data obtained using the IRP-1 RNA- 

binding assay, but also to help gain a better understanding of the mechanisms occurring 

during the transition from holoprotein to apoprotein (and vice-versa) after various 

treatments such as UVA irradiation.
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3.1.5 Measurement o f Cytosolic Aconitase Activity

The cytoplasmic aconitase assay has been performed in many different ways 

(documented within references cited in this chapter). All the different variations of this 

assay effectively measure the same thing, which is the activity of the cytoplasmic enzyme 

in response to intracellular iron and oxidant levels. The method used in this study 

(Giordani et al., 1998) measures spectrophotometrically the aconitase activity in the 

cytoplasmic fraction as a function of substrate disappearance/consumption (i.e. cis- 

aconitate) at 240 nm. The addition of the substrate marks the start of the reaction. Cis- 

aconitate acid is the substrate intermediate in the aconitase-catalysed conversion of citrate 

to isocitrate (source: Stryer, 1988):

COO- H COO-

H C— H h20 “OOC—C h2° H—C— OH

-OOC— C— OH ^  ' -OOC—C —̂  » 'O O C—C— H

c h 2 c h 2 c h 2

COO- COO- c o o -
Citrate c/s-Aconitate Isocitrate

Subcellular fractionation was achieved using centrifugation and a special method of lysis 

involving the compound digitonin. Digitonin was used to selectively permeablise the 

plasma membrane since it is cholesterol-rich compared to the mitochondrial membrane. 

Digitonin reacts specifically with cholesterol so that the plasma membrane is damaged 

while the mitochondrial membranes remain intact (Zuurendonk and Tager, 1974). The
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quality of the cytosolic fraction was tested for using succinate dehydrogenase as the 

mitochondrial marker enzyme.
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3.2 Methods

3.2.1 Cell Culture

The human lymphoblastoid cell line, TK6, and the primary human fibroblast cell line, 

FEK4, were cultured as described in section 2.2.1. The immortalised human keratinocyte 

cell line HaCaT (Boukamp et al., 1988) was cultured in Dulbecco’s minimal essential 

media high glucose (Gibco, UK), supplemented with 10% FCS, L-glutamine, sodium 

bicarbonate, penicillin and streptomycin. Cells were trypsinised once a week. For all 

experiments HaCaT cells were seeded into plastic culture dishes for 3 days to 

approximately 80% confluency.

3.2.2 Chemical Treatments and Irradiation Conditions

FEK4 cells were treated with ALA as described in section 2.2.3. Positive controls for the 

modulation of the cytoplasmic aconitase activity were prepared for the FEK4 in the form 

of the haem analogue haemin and the iron chelator desferal. Solutions of 50 pM haemin 

or 100 pM desferal (Ciba Geigy, Switzerland) were made using conditioned cell culture 

media. These solutions were added back to the cells, which were incubated at 37°C for 

either 2 h with haemin or 18 h with desferal. Both FEK4 and HaCaT cells were UVA- 

irradiated as described in section 2.2.6.

3.2.3 The Cytoplasmic Aconitase Assay

The cytoplasmic aconitase assay was performed according to Giordani and co-workers 

(1998). After irradiation (or treatment with either haemin or desferal), cells were 

collected. The TK6 cells were centrifuged for 5 min at 1000 rpm, washed with PBS and
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centrifuged again. The FEK4 and HaCaT cells were washed with PBS, then scraped 

from the plates and collected in 3 ml of PBS and centrifuged for 5 min at 1000 rpm. 

Pellets from all cell types were re-suspended in 10 ml of ice-cold buffer containing 0.25- 

M sucrose, 100 mM Hepes and 0.007% digitonin (Bouton et al., 1997). The digitonin 

stock solution was stored in dimethyl sulphoxide (DMSO) at room temperature. Cell 

lysates were centrifuged for 10 min at 1500 g. The supernatant was transferred to a fresh 

tube and centrifuged for 10 min at 12500 g with a Beckman J-25 centrifuge (Ireland). 

Aconitase activity was immediately assayed in the cell-free extracts at 25°C in the 

presence of 0.02% BSA after the final centrifugation using the method described by 

Drapier and Hibbs (1986). The reaction was started with the addition of 0.2mM cis- 

aconitic acid and the disappearance of cis-aconitic acid was measured at 240 nm using 

absorption spectrophotometry with a Kontron Uvikon 922 spectrophotometer 

(Switzerland). A typical reaction measurement is shown below in Fig. 3.1:

Fig. 3.1 A typical aconitase activity measurement using spectrophotometry. This kinetic study shows the 
disappearance of the substrate cw-aconitate measured at 240 nm. Absorbance was set to zero at the start of 
the reaction, which explains the negative absorbance values observed during the reaction as the substrate is 
consumed.

0.02

0 .5 2 .5 3 .5 4 .5 5 .5|  -0.02 

2 -0 .0 4

T  -0 .0 6

c  -0 .0 8  
(0
■8 -o.i -
I  -0.12 - 
<

-0 .1 4

-0.16

Time (min)

84



Chapter 3: Study o f the effects o f 5-aminolevulinic acid-induced protoporphyrin IX and UVA irradiation
on the cytoplasmic aconitase activity of iron regulatory protein-1 in human skin cells

Both the BSA and cis-aconitic acid stock solutions were made up using the Hepes- 

sucrose buffer described above. A molar absorption coefficient of 3410 cm'1 mJVr1 was 

used for cis-aconitic acid (Henson and Cleland, 1967). Under the experimental 

conditions described here, one unit of IRP-1 aconitase activity is defined as 1 jimol cis- 

aconitate consumed min*1 mg protein'1 (Sigma catalogue). Enzyme activity was 

calculated using the following equation (Segel, 1976):

Activity = (AO.D.W341Q) x (V)

(pg protein) x (t)

Where AO.D.240 is the change in optical density measured at 240 nm, 3410 corresponds 

to the molar absorption coefficient for czj-aconitic acid (cm'1 mM*1), v is volume of the 

reaction mixture (ml), and t is time (min). Protein concentration was determined using 

the method described by Bradford (1976) with the BioRad reagent kit (UK). BSA was 

used for calibration and adsorption measurements were obtained using a microplate 

reader at 595 nm.

3.2.4 Succinate Dehydrogenase Activity - Test fo r Mitochondrial Contamination o f the 

Cytoplasmic Fraction

Succinate dehydrogenase (SDH) activity was assessed by the ability of the cytoplasmic 

fraction and total homogenate to reduce 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-phenyl- 

tetrazolium chloride (INT) in the presence of the electron coupling reagent phenazine 

methosulphate (PMS) (Porteous and Clark, 1965). The incubations (1 ml) contained (in
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pmoles) sodium phosphate, 50; sodium succinate, 10; INT, 0.4; PMS, 0.33; and Triton X- 

100, 0.0001%. The cytoplasmic fraction and the total homogenate were assayed. The 

electron acceptors (INT and PMS) were added after a 6 min pre-incubation at 30°C. 

Absorbance increase was followed at 540 nm (reaction proceeded at 30°C) using a 

Kontron Uvikon 922 spectrophotometer (Switzerland). The reference incubation 

contained 10 pmoles sodium malonate instead of sodium succinate. Mitochondrial 

contamination of the cytoplasmic fraction was expressed as a percentage of the activity of 

SDH in the total homogenate.
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3.3 Results

3.3.1 Basal Cytoplasmic Aconitase Levels

The basal cytoplasmic aconitase activity in the FEK4 primary human fibroblasts and the 

HaCaT immortalised human keratinocytes is shown in Fig 3.2. The fibroblast cell line 

displayed over 2-fold higher basal cytoplasmic aconitase activity compared to the 

keratinocyte cell line (0.825 ± 0.093 and 0.3935 ± 0.054 U/mg protein respectively). 

Mitochondrial contamination of the cytoplasmic fraction was determined by comparing 

the activity of the mitochondrial enzyme succinate dehydrogenase in both the 

cytoplasmic fraction and the total cell homogenate (section 3.2.4). Contamination was 

tested for after all the treatments discussed in this chapter. Succinate dehydrogenase 

activity was never greater than 10% that of the total activity in the cell homogenate.
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Fig. 3.2. Basal cytoplasmic aconitase activity of FEK4 primary human fibroblasts and HaCaT 

immortalised human keratinocytes. Data represent the mean of 3-6 independent experiments (± S.D.).
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3.3.2 Effects o f UVA Irradiation on the Cytoplasmic Aconitase Activity o f FEK4 

Primary Human Fibroblasts and HaCaT Immortalised Human Keratinocytes 

The cytoplasmic aconitase activity of the FEK4 primary human fibroblasts and HaCaT 

immortalised human keratinocytes in response to graded doses of UVA radiation are 

shown in Tables 3.1 and 3.2 respectively. The response to UVA is similar for both cell 

lines, but the changes observed are greater in the fibroblasts compared with the 

keratinocytes. As the tables show, the cytoplasmic aconitase activity rises steadily up to 

about 250 kJ/m2 UVA where the activity peaks. The activity then decreases between 250 

and 500 kJ/m2 UVA. After a UVA dose of 500kJ/m2, the cytoplasmic aconitase activity 

measured had dropped to below the control levels. Concerning the modulation of 

cytoplasmic aconitase activity by UVA radiation, both the results for the FEK4 

fibroblasts and the HaCaT keratinocytes contrast sharply with those obtained by Giordani 

et al. (1998) with NCTC 2544 keratinocytes.
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Table 3.1. Dose response o f cytoplasmic aconitase activity o f FEK4 primary human fibroblasts exposed to 

UVA radiation. Data represent the mean of 4-6 independent experiments (± S.D.).

Treatment Aconitase Activity 
(U/mg protein)

% Activity (Relative to 
Control)

Sham-irradiated 0.825 ± 0.093 100

50 kJ/m2 UVA 0.867 ± 0.025 105.125 ±3.112

100 kJ/m2 UVA 0.961 ± 0.039* 116.5 ±4.795

250 kJ/m2 UVA 1.2 ±0.051* 145.515 ±6.293

500 kJ/m2 UVA 0.615 ±0.044* 74.6 ± 5.396

Statistical analyses were made using an unpaired t test. *, Significantly different from non-irradiated 
control (p < 0.05 level).

Table 3.2. Dose response o f  cytoplasmic aconitase activity o f HaCaT immortalised human keratinocytes 

exposed to UVA radiation. Data represent the mean o f 3-4 independent experiments (± S.D.).

Treatment Aconitase Activity 
(U/mg protein)

% Activity (Relative to 
Control)

Sham-irradiated 0.3935 ± 0.054 100

50 kJ/m2 UVA 0.399 ±0.0181 101.6 ±4.615

100 kJ/m2 UVA 0.441 ±0.012* 112 ±3.162

250 kJ/m2 UVA 0.506 ±0.0216* 128.68 ± 5.505

500 kJ/m2 UVA 0.339 ± 0.0239* 86.2 ± 6.039

Statistical analyses were made using an unpaired t test. *, Significantly different from non-irradiated 
control (p < 0.05 level).
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3.3.3 Effects o f ALA Treatment and UVA Irradiation on the Cytoplasmic Aconitase 

Activity o f FEK4 Primary Human Fibroblast Cells

The cytoplasmic aconitase activity of FEK4 cells in response to treatment with ALA for 4 

and 18 hours was investigated (Table 3.3). As one can see from the table, after both 

incubation times, the aconitase activity decreases in a dose-dependent manner. The 

maximum decrease in aconitase activity after ALA treatment was approximately 35%, 

and this was observed after a treatment of 200 pM for 4 h. Application of graded doses 

of UVA to the ALA treated populations had a dramatic effect on the cytoplasmic 

aconitase activity in these cells compared to their untreated (without ALA) counterparts 

(Tables 3.1 and 3.2). As Table 3.3 shows, all irradiated ALA treated populations 

expressed a marked increase in cytoplasmic aconitase activity. Interestingly, the 50 

kJ/m2 UVA dose showed an increase in cytoplasmic aconitase activity that correlates 

with an increase in intracellular PPIX concentration (Fig. 2.8). In contrast to this, a 100 

kJ/m2 UVA dose appears to indicate a saturation of the cytoplasmic aconitase activity 

measured, as there is no significant difference between the activities of the samples 

irradiated with this dose. The maximum activity observed under our conditions was just 

over 200% higher that of the untreated control; this was measured after an incubation 

with 200 pM ALA for 18 h followed by a 100 kJ/m2 UVA dose. Mortality of the cells 24 

h after ALA treatment and UVA irradiation are shown in Figs. 2.14 and 2.15.

91



Chapter 3: Study of the effects o f 5-aminolevulinic acid-induced protoporphyrin IX and UVA irradiation
on the cytoplasmic aconitase activity o f iron regulatory protein-1 in human skin cells

Table 3.3. Dose response o f cytoplasmic aconitase activity o f FEK4 primary human fibroblasts exposed to 

ALA and UVA radiation. Data represent the mean o f 4 independent experiments (± S.D.).

Treatment Aconitase Activity 
(U/mg protein)

% Activity (Relative to 
Control)

Non-ALA treated, non-irradiated 0.825 ± 0.093 100

4 h 100 |jM ALA, non-irradiated 0.639 ± 0.068 77.5 ± 8.109

4h 100 (iM ALA50 kJ/m2 UVA 1.237 ±0.198* 150 ±24.055

4 h 100 (iM ALA 100 kJ/m2 UVA 2.345 ±0.197* 284.25 ±23.894

4 h 200 (iM ALA, non-irradiated 0.545 ± 0.055 66.124 ± 6.733

4 h 200 mM ALA 50 kJ/m2 UVA 1.536 ±0.1845* 186.25 ±22.369

4 h 200 pM ALA 100 kJ/m2 UVA 2.369 ± 0.1787* 287.25 ±21.156

18 h 100 pM ALA non-irradiated 0.665 ± 0.0543 80.63 ±6.113

18 h 100 pM ALA 50 kJ/m2 UVA 1.886 ±0.297* 228.641 ± 36.039

' 18 h 100 pM ALA, 100 kJ/m2 UVA 2.43 ±0.189* 295.5 ±23

18 h 200 pM ALA non-irradiated 0.561 ± 0.082 68 ±10

18 h 200 pM ALA 50 kJ/m2 UVA 2.161 ±0.229* 262 ±27.779

18 h 200 pM ALA 100 kJ/m2 UVA 2.602 ± 0.2138* 315.515 ± 25.926

Statistical analyses were made using an unpaired t test. *, Significantly different from non-irradiated 
control (p < 0.05 level).
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3.3.4 The Effects o f Haemin and Desferal on the Cytoplasmic Aconitase Activity o f the 

FEK4 Primary Human Fibroblasts

Positive controls were used to test the efficacy of the cytoplasmic aconitase activity in 

FEK4 cells. Table 3.4 shows the effects of haemin and desferal incubation on the 

cytoplasmic aconitase activity of FEK4 cells. Haemin incubation resulted in an 

approximate 20% increase in activity compared to untreated cells, and desferal 

approximately a 50% decrease.

Table 3.4. Effect o f haemin, and desferal on the cytoplasmic aconitase activity o f FEK4 primary human 

fibroblasts. Data represent the mean o f 3 independent experiments (± S.D.). The activity is expressed as a 

percentage o f a sham-treated control.

Treatment Aconitase Activity % Activity
(U/mg protein)

50 pM Haemin, 2 h 0.995 ± 0.029 120.6 ±3 .6

100 pM Desferal, 18 h 0.402 ± 0.055 48.8 ± 6.7
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3.4 Discussion

The cytoplasmic aconitase assay was developed for this investigation not only to 

compliment data obtained using the IRP-1 RNA-binding assay (and other assays that may 

monitor levels of intracellular iron entities e.g. the calcein assay), but also to gain a better 

understanding of the mechanisms that occur during the transition from IRP-1 holoprotein 

to apoprotein (and vice versa) after various treatments such as UVA irradiation. The 

physiological function of the cytoplasmic aconitase is not clear, although several 

functions have been postulated (section 3.1.2) none have been thoroughly tested. It is 

well accepted and documented that UVA radiation leas to the production of ROS and 

these species are responsible for a variety of modifying and damaging affects (Tyrrell, 

1991). We investigated in this particular study how UVA (and ALA treatment followed 

by UVA) affects iron metabolism in human skin cells through the use of the cytoplasmic 

aconitase assay.

The basal cytoplasmic aconitase activities of FEK4 primary human dermal fibroblasts 

and HaCaT immortalised epidermal keratinocytes are shown in Fig. 3.2. From the graph 

it is clear that the fibroblasts exhibit a much higher activity than the keratinocytes 

(approximately 2-fold higher). This is consistent with measurements of the free iron pool 

using the iron assay and ferritin levels (Chapters 4 and 5). When comparing different 

parameters that are involved in iron regulation between the two cell lines, it is interesting 

to find that the basal HO-1 activity in HaCaT cells is barely detectable compared with the 

FEK4 value. However, the basal HO-2 activity of HaCaT is 2-3-fold higher compared 

with FEK4 (Noel, 1995). Overall HO enzyme activity was found to be approximately
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2.5-fold higher when comparing epidermal keratinocytes to their matched dermal 

fibroblasts (Applegate et al., 1995). Applegate and colleagues (1995) found that the basal 

concentration of ferritin in the keratinocytes was also approximately 2 - 3  times higher 

when compared with the fibroblasts. This is consistent with evidence that levels of 

ferritin are closely linked to HO activity (Applegate, 1995 and references cited therein). 

However, when comparing the fibroblast (FEK4) and the keratinocyte (HaCaT) cell lines, 

we found that the ferritin levels (Chapter5) and iron levels in the keratinocytes, whether 

measured by aconitase activity or the iron assay (Chapter 4), are much lower than in the 

fibroblasts. The reasons for this may to be connected with the expression of H-ferritin 

observed within the keratinocytes. HaCaT cells have been found recently to only express 

the H-ferritin subunit (C. Pourzand, unpublished observation), and it has been 

documented that the expression of this subunit downregulates intracellular ‘free’ iron 

levels because of its ferroxidase activity (Beaumont and Cabantchik, 1999).

Tables 3.1 and 3.2 show the modulation of cytoplasmic aconitase activity by UVA 

radiation in the FEK4 primary human fibroblast cell line and the HaCaT immortalised 

keratinocyte cell lines respectively. In both cell lines we found an increase in 

cytoplasmic aconitase activity in response to UVA irradiation. This increase appeared to 

peak around 250 kJ/m UVA and the activity dropped below the control level at the 

higher dose of 500 kJ/m . In FEK4, the aconitase response correlated with a reciprocal 

decrease in IRP-1 RNA-binding in doses up to 250 kJ/m2 UVA (Pourzand et al., 1999). 

At 500 kJ/m2, like the cytoplasmic aconitase activity, the IRP-1 RNA-binding was lower 

than the control levels suggesting damage to the protein. Under circumstances such as
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these, the advantages of measuring both functions of the IRP-1 protein become obvious. 

The increases observed in cytoplasmic aconitase activity with these two cell lines would 

appear to be due to iron mobilisation as a result of UVA irradiation (Pourzand et al., 

1999; Watkin and Tyrrell, unpublished data). The source of this iron is not completely 

clear, but two possibilities arise from observations made in our laboratories (Pourzand et 

al.,1999; Kvam et al., 1999). It has been postulated that UVA causes oxidative damage 

to lysosomal membranes. In turn this allows leakage of lysosomal proteases into the 

cytosol where the proteolysis of ferritin occurs resulting in the immediate release of ‘free’ 

iron (Pourzand et al., 1999). Another source of iron that is also liberated immediately 

after UVA irradiation is that of haem from microsomal haem proteins (Kvam et al., 

1999). The study of Kvam et al. (1999) demonstrated that haem was released as a result 

of microsomal haem protein degradation in a process that appeared to be mediated by 

cyclooxygenase (COX). The subsequent release of haem leads to the induction of HO-1, 

which in turn causes the release of ‘free’ iron as a result of haem catabolism. Other 

sources of iron may also be responsible for the affects observed on the activity of IRP, 

but they are as yet unidentified. Attempts at elucidating what form of iron the IRP-1 

protein senses has been controversial. Iron may be either sensed directly or indirectly. 

Though it now widely accepted that chelatable iron has a regulatory affect on the IRP, 

there is still uncertainty as to what role, if any, compounds such as haem or haemin (the 

compound most investigated) have on IRP regulation in vivo (Rouault at al., 1993). 

Addition of 50 pM haemin for 2 h led to a 20% increase in the cytoplasmic aconitase 

activity in FEK4 (Table3.4). This increase could have been due to liberation of iron from 

the breakdown of haemin, though it is not definite that this effect was not caused by
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haemin itself. As has been suggested (Kvam, 1999), haem added to cells, or indeed haem 

released from haemproteins, is conceivably chemically distinct from haemin and thus 

may have a different regulatory affect on IRPs in comparison to haemin. If haem 

(released from haemproteins) does directly regulate IRP-1 cytoplasmic aconitase activity, 

then this could explain why there was only partial recovery of the UVA-induced 

reduction of IRP-1 RNA-binding when ferritin degradation was prevented using protease 

inhibitors (Pourzand et al., 1999). Recognition of haem by IRPs may be of benefit to a 

cellular system since this could assist in the prediction of, and help manage, potentially 

harmful changes in the chelatable iron pool.

Previously, it has been documented (Giordani et al, 1998) that UVA radiation leads to the 

inhibition of cytoplasmic aconitase activity in NCTC 2544 human skin keratinocytes. 

Despite using various approaches (including antioxidants and iron chelation), the nature 

or source of this inhibition was not elucidated. In contrast to the findings of Giordani et 

al. (1998) we have observed quite a different response to UVA radiation in the two 

human cell lines, FEK4 primary fibroblasts, and HaCaT immortalised keratinocytes 

(Tables 3.1 and 3.2 respectively). There are a number of factors which may explain why 

our results differ from previous observations (Giordani et al., 1998). These factors 

include differences in the UV source, the dose range, the temperature of irradiation, and 

the exact cell lines used. Unless experimental conditions are identical, it may not be 

appropriate to make direct comparisons. The UVA source used in our study (for spectral 

output see Fig. 2.3) is composed primarily of wavelengths in the UVA I range (340-380 

nm) and also some visible wavelengths up to approximately 420 nm. The source used by
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Giordani et al. contained both UVA I and UVA II (320-340 nm) wavelengths. It is 

possible that these shorter wavelengths may result in the inactivation of the cytoplasmic 

aconitase activity. Determining how UVB, or a combination of UVA and UVB, affect 

cytoplasmic aconitase activity might also help in the understanding of the different results 

observed.

Table 3.3 shows the affect of ALA treatment on the cytoplasmic aconitase activity of 

FEK4 cells, both alone and in combination with UVA radiation. ALA treatment alone 

appears to drive down the aconitase activity to a similar extent after both 4 and 18 hours 

incubation. The treatment of cells with 100 pM desferal for 18 h was considerably more 

effective at reducing the cytoplasmic aconitase activity compared with a similar treatment 

with ALA (Tables 3.4 and Fig. 3.3). One possible explanation is that desferal chelates 

iron from both ‘free’ iron and other sources such as ferritin (Bridges, 1990) effectively 

removing iron for cellular functions and thereby stimulating IRP-1 RNA binding so that 

more TfRs are produced. ALA on the other hand, may lead to an initial sequestration of 

iron by stimulating haem synthesis, however this iron might be recycled through the 

activity of HO thus leading to a less dramatic effect on IRP regulation.

Carvalho and colleagues (1997) postulated that ALA alone is able to regulate IRPs. This 

was based on the observation that adding ALA or allowing its accumulation by adding 

the ALA dehydratase inhibitor succinyl acetone methyl ester (SAME), leads to the 

stimulation of IRP-1 RNA-binding intracellularly. The use of SAME leads to ALA 

accumulation but not haem synthesis suggesting that haem is not important in IRP
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regulation. Carvalho et al. propose that ALA regulates IRP either by direct interaction of 

the ALA enoyl radical with the IRP iron sulphur cluster causing its disassembly, or by 

indirect interaction through ROS generation. This may indicate a role for ALA beyond 

that of an (indirect) iron chelator. However the concentrations of ALA used in the study 

(0.5-8 mM) and those that accumulate intracellularly were very high. When the ALA 

concentration is high, it is cytotoxic (Ortel et al., 1993) and capable of generating ROS 

(Monteiro, 1989; Fraga, 1994). It has also been shown to cause release of iron from 

ferritin (Oteiza et al., 1995), lipid peroxidation (Oteiza and Bechara, 1993), and DNA 

damage induction (Fraga et al., 1994). With such events occurring many factors may 

affect IRPs.

Table 3.3 also shows what happens to the cytoplasmic aconitase activity of FEK4 cells 

that have been treated with ALA (up to 200 jiM) and subsequently irradiated with UVA 

(up to 100 kJ/m2). From the data it clear that induction of PPEX, followed by UVA 

irradiation, has a dramatic affect on stimulating the cytoplasmic aconitase activity in 

FEK4 cells with a peak in activity approximately 200% higher than the control. There 

appears to be a degree of saturation of enzyme activity at the higher UVA dose (100 

kJ/m2), with the lower dose (50 kJ/m2) demonstrating an increase in enzyme activity that 

correlates well with an increase in intracellular PPEX concentration (Fig. 2.8). The effect 

PPEX has in combination with UVA on the cytosolic aconitase activity would appear to 

complement the scenario postulated by Pourzand et al. (1999). PPEX is a hydrophobic 

molecule that locates preferentially deep within lipid membranes (Richelli, 1995). Upon 

photosensitisation by UVA, it is conceivable that membranes containing PPEX will be
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subjected to lipid peroxidation (Girrotti, 1985; Korytowski et al., 1992; Oschner, 1997, 

and refs cited therein; see Chapter 2). Damage to lysosomes and release of acidic 

hydrolases induced by exogenous addition of PPIX followed by UVA irradiation has 

been documented in mouse fibroblasts (Morliere at al., 1987). It is possible that the huge 

increase in cytoplasmic aconitase activity after PPIX induction, followed by UVA 

irradiation, is a result of proteolytic degradation of ferritin. The release of these enzymes 

may be significantly enhanced under these conditions thus leading to a greater 

degradation and liberation of ‘free’ iron. Studies of ferritin in cells that have been treated 

with ALA and exposed to UVA radiation show that ferritin is significantly damaged 

(Chapter 5). It has not been determined if this damage occurs through degradation by 

proteolytic enzymes or directly by ROS. In experiments with horse spleen apoferritin 

(Precigoux et al., 1994; Michaux et al., 1996; Crichton et al., 1997), it has been shown 

that PPIX is able to locate within hydrophobic pockets of ferritin leading to a 

concomitant increase in the UVA-absorbing region (peak 370 nm). Considering the 

photosensitising capacity of PPIX, it is not inconceivable that upon UVA irradiation, 

ROS are generated within the ferritin molecule through the excitation of PPIX. This 

could also be responsible for the liberation of iron from ferritin. An increase in 

cytoplasmic aconitase activity might also occur as a result of ‘free’ haem release from 

microsomes. PPIX may localise in the membranes of microsomes, and upon 

photosensitisation, aid the liberation of haem into the cytoplasm by rupturing microsomal 

membranes. If IRPs do sense haem, this may also explain the huge increase observed 

after PPIX photosensitisation by UVA.
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It is generally accepted that UVA radiation alone, and PPIX upon photosensitisation are 

able to produce singlet oxygen intracellularly (Tyrrell and Pidoux, 1989; Ryter and 

Tyrrell, 1999), along with other ROS. Various ROS and reactive nitrogen species (RNS), 

including H2O2 and NO, have been shown to modulate IRE binding activity and 

dissociate the iron sulphur cluster of the IRP holoprotein (see introduction of this 

chapter). We postulate that the iron release observed under our conditions is more 

effective in dictating the fate of the IRP under moderate doses of UVA (up to 250 kJ/m2) 

than ROS or RNS. This may reflect a defence mechanism that has adapted/evolved to 

help cells cope better under oxidative stress. Maintenance of the integrity of the cluster 

prevents RNA binding and thus allows the synthesis of ferritin, which in turn leads to the 

sequestration of the dangerous ‘free’ iron species. UVA irradiation of cells with altered 

levels of PPEX would also appear to have little or no direct inhibition of cytosolic 

aconitase activity, despite these conditions being highly cytotoxic (under the more severe 

treatments). The inability of the ROS that have been generated by photosensitisation to 

inhibit or inactivate cytoplasmic aconitase activity is conceivably related to the inability 

of PPIX to locate near to (or within) the cytoplasmic aconitase and also to the restricted 

range of action of the ROS generated, particularly singlet oxygen (Moan and Berg, 1991).
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4. Flow cytometry-based method of determining membrane damage and changes in 

the intracellular chelatable iron pool, after ALA treatment and UVA irradiation

4.1 Introduction

The average human body contains about 4 g of iron and because of its low solubility in 

biological mileu, there is a necessity for iron-binding proteins. The functions of these 

proteins are not only to bind iron in a soluble, and in some cases in a form that is can be 

assimilated in cells, but also to prevent the iron from catalysing unwanted, potentially 

cytotoxic reactions intracellularly. Iron that is not bound and kept in a relatively inert 

form, can generate the highly toxic hydroxyl radical (OH) by Fenton and Haber-Weiss 

chemistry:

(Fenton reaction) Fe2+ + H2O2 —> Fe3+ + OH* + OH”

(Haber-Weiss reaction) Fe3+ + O2*” —» Fe2+ + O2

Fe2+ + H?Q, -> OH* + OH~ + Fe3+

Iron catalyst
Net: 0 2*'  + H20 2 -» OH* + OH” + 0 2

(Source: Halliwell and Gutteridge, 1999)

A variety of iron-binding proteins have been identified, with a wide variety of functions. 

These include proteins that are involved in the transport and storage of iron such as 

transferrin and ferritin (discussed in Chapters 3 and 5); iron-containing electron-transfer
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proteins of the mitochondrial respiratory chain such as cytochrome c and cytochrome 

oxidase; dioxygenases and mono-oxygenases which incorporate oxygen into substrates or 

use oxygen in hydroxylation reactions such as lipoxygenase and cytochrome P-450 

respectively; catalase and peroxidases such as glutathione peroxidase, enzymes which 

reduce H2O2 to H2O. Many other iron proteins exist, but most possess iron in forms such 

as haem and iron-sulphur clusters that mediate a range of essential biochemical processes 

in the mammalian cell through the versatile co-ordination and redox biochemistry of iron 

(reviewed by Cammack et al., 1990).

4.1.1 The Low Molecular Weight Iron Pool (LMW-Fe Pool)

A small amount of iron not bound to iron binding proteins has been postulated to be 

present in the cytosol. This pool provides the cell with a relatively accessible form of 

iron for incorporation into cytosolic enzymes and proteins. The constituents of this low 

molecular weight iron pool (LMW-Fe pool), are still unclear, but probably consist of both 

Fe2+ and Fe3+ ligands (reviewed by Crichton and Ward, 1992). Early studies (Bartlett, 

1976, Konopka and Szotov, 1972) indicated that this LMW-Fe pool was associated with 

nucleotides such ATP and GTP. Evidence confirming the importance of nucleotides as

9+ligands for the LMW-Fe pool was presented by the finding of receptors for ATP-Fe and 

ATP-Fe3+ on mitochondria (Weaver and Pollock, 1990) which would supply iron for 

haem biosynthesis. Many other ligands have also been suggested as possible components 

of the LMW-Fe pool. These include pyrophosphates, nucleic acids, lipids, glycogen, 

riboflavin, ascorbate, sugars, amino acids, polypeptides, proteins, and uncharged growth 

factors (Crichton and Ward, 1992; and references cited therein), but none of these ligands
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have been universally accepted as the major ligand for iron in the LMW-Fe pool. In a 

review by Richarson and Ponka (1997), it was observed that many of the studies involved 

in the identification of iron ligands were flawed for a variety of reasons including 

inappropriate and non-physiological conditions, as explained by the authors. More 

recently, using isolated rat liver nuclei, Gurgueira and Meneghini (1996) reported ATP- 

dependent uptake systems for iron-citrate and iron-ATP chelates suggesting that these 

may be of physiological importance.

4.1.2 Determination o f Low Molecular Weight-Fe Pool

Attempts to quantificate and assess the LMW-Fe pool have, in the past, relied on methods 

that homogenise cells and tissues and the iron content is then determined using electron 

paramagnetic resonance (EPR) with iron chelators (Yegorov et al., 1990; Koslov et al., 

1992), or used Mossbauer spectroscopy of chelated iron (St Pierre et al., 1992). All the 

physicochemical methods used, either required cell disruption or relatively large amounts 

of tissue because of the low sensitivity of the method. None of these methods involve 

dynamic measurements of changes in the iron pool (Epsztejn et al., 1997). One method 

designed to assess the LMW-Fe pool involved addition of an iron chelator, nitrobenz- 

furazan-desferrioxamine (NBD-DFO), that was also a fluorescent probe (Lytton et al., 

1992). The method was based on the capacity of NBD-DFO to enter and extract iron 

from cells causing physical disruption. Binding of iron to this fluorescent probe 

quenched its fluorescence, and subsequent removal restored fluorescence which, in turn, 

could be used to provide a quantitative determination of iron content. Problems 

associated with this method, however, were that the probe had a low quantum yield, poor
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of its high affinity for iron (Epsztejn et al., 1997).

It was recently shown recently (Breuer et al., 1995; Breuer et al., 1995a) that calcein 

(CA), a fluorescein molecule with two ethylenediamine diacetate-like moieties (Fig 4.1)

iron. This is because, upon stoichiometric binding (1:1) of an appropriate metal (i.e. 

iron), CA’s fluorescence is quenched. CA, which has a high quantum yield, can be easily 

loaded into cells by its esterified, non-fluorescent analogue, calcein-AM (acetoxymethyl 

ester). Calcein-AM (CA-AM) crosses intact cell membranes and is cleaved by 

intracellular esterases to produce CA, a polar highly fluorescent molecule, that is retained 

in healthy cells, but can leak from cells with damaged membranes (Haugland, 1992).

Fig. 4.1. The chemical structure o f (a) calcein (CA) and (b) salicylaldehyde isonicotinoyl hydrazone (SIH).

By adding a permeant chelator, such as salicylaldehyde isonicotinoyl hydrazone (SIH) 

(Fig.4.1), the concentration of iron that is bound to CA can be revealed (Breuer et al., 

1995; Cabantchik et al., 1996). Changes in fluorescence, evoked by SIH addition,

chelatable iron pool, after ALA treatment and UVA irradiation

cell tolerance, and it was difficult to assess the amount of iron bound to the probe because

can serve as a metallo-sensitive probe in solution and in cells, particularly with respect to

(a) (b)

o
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provides a basis for the dynamic monitoring of cytosolic iron in living cells using
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spectrofluorimetry (Breuer et al., 1995a). These fluorescence changes can be translated, 

by means of calibration, to provide an estimate of the chelatable iron pool within cells 

(Breuer et al., 1996; Epsztejn et al., 1997) which is also known as the labile iron pool. 

This pool is comprised of all chelatable, rapidly exchangeable forms of iron. The
a  I ^  i

liganded form of iron is in dynamic equilibrium between the Fe and Fe forms, though 

Fe2+ is the only soluble free-form of iron. The levels of LIP can be raised artificially by 

adding iron in different forms, such as diferric transferrin or ferrous ammonium sulphate. 

Conversely, it can be decreased artificially by the addition of iron chelators such as 

desferal. Addition of CA to cells will shift the equilibrium of the LIP to CA-bound forms 

of iron resulting in the quenching of CA fluorescence. CA has two metal binding 

moieties with affinity constants for Fe2+ and Fe3+ identical to EDTA, 1014 and 1024 M*1 

respectively (Breuer et al., 1995a), and it has been deduced (Epsztejn et al., 1997) that the 

Fe2+ bound form of CA is in rapid equilibrium with Fe2+. SIH is a fast (cell) permeating, 

high affinity (tridentate) iron chelator, which can chelate both Fe2+ and Fe3+ forms of iron 

and has a binding constant for Fe3+ of 1029 NT1 (Tsafack et al., 1996). Addition of excess 

SIH to cells rapidly shifts the equilibrium to the chelator bound form. This evokes a rise 

in CA fluorescence and gives a direct reflection of the amount of iron bound to CA.

After the development of this assay a number of different studies were performed to 

assess changes in the chelatable iron pool after various treatments. It was shown in 

human erythroleukemia cells (Breuer et al., 1996) that brief exposure to the Fe2+ salt, 

ferrous ammonium sulphate (FAS), caused a rise in the chelatable iron pool. Oxidative 

treatment in the form of hydrogen peroxide (H2O2), or reductive treatment in the form of 

P-mercaptoethanol (ME), both caused rises in the chelatable iron pool. These rises were
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attributed to reductive iron release from ferritin. Similarly, a different study (Breuer et 

al., 1997) using erythroleukemia cells that were treated with diferric transferrin, and 

subsequently treated with the oxidants f-butyl hydroperoxide (TBHP) or H2O2 , showed 

increases in the chelatable iron pool. The source of this increase of chelatable iron, 

normally undetectable using this assay, was suggested as being Fe3+ tightly bound to 

ligands such as ferritin, nucleotides, or polypetides that may be susceptible to reductive 

release. The viability of cells in these studies was determined using the trypan blue 

exclusion assay, an assay which gives an indication of cell membrane damage.

4.1.3 Calcein as an Indicator o f Membrane Damage

The fluorescent probe CA has recently been used to assess viability in cells exposed to 

aminolevulinic acid (ALA), followed by exposure to light (Campbell et al., 1996). As 

mentioned above, CA-AM added to cells can be converted to fluorescent CA by cells 

with functional intracellular esterases (located on the plasma membrane) and is retained 

in healthy cells with intact membranes. Treatment that causes injury to cells may result 

in a reduction of CA fluorescence of those cells because either a lower quantity is 

produced by damaged esterases, or CA has leaked from the cell through a damaged 

plasma membrane.

4.1.4 Objectives o f this study

In a recent study (Pourzand et al., 1999) it was demonstrated using the calcein assay, that 

treatment of primary human fibroblasts with UVA radiation resulted in an increase in the 

chelatable iron pool. UVA has also been shown to cause membrane damage and reduce 

the survival of cultured human fibroblasts (Gabroriau et al., 1993; Applegate et al.,

107



Chapter 4: Flow cytometry-based method o f determining membrane damage and changes in the
intracellular chelatable iron pool, after ALA treatment and UVA irradiation

1994). The objective of this present study was to develop a method that could measure 

simultaneously both changes in the intracellular chelatable iron pool, and also a 

parameter of viability, such as membrane damage, of cells that had been treated with 

ALA and/or UVA irradiation. We demonstrate in this study a flow cytometry based 

method that can measure both of these parameters, using the fluorescent probe calcein.
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4.2 Methods

4.2.1 Cell Culture

The primary human fibroblast cell line, FEK4, and the immortalised human keratinocyte 

cell line, HaCaT, were cultured as described in sections 2.2.2 and 3.2.1 respectively.

4.2.2 Chemical Treatment and Irradiation Conditions

FEK4 cells were treated with ALA as described in section 2.2.3. Both FEK4 and HaCaT 

cells were treated with desferal by preparing a 100 pM solution using the appropriate 

conditioned cell culture media. These solutions were then added back to the cells, which 

were incubated for 18 h at 37°C. Prior to irradiation, 80% confluent cells were washed 

with PBS and removed by trypsinsation (0.25%, 10 min). Cells were collected, spun for 

5 min at 1000 rpm, then re-suspended in PBS supplemented with 0.01% Ca2+ and Mg2+ 

(Keyse and Tyrrell, 1989) at a density of 5 x 105 cells/ml. Irradiation conditions are 

described in section 2.2.6. Cell suspensions were UVA irradiated in quartz vessels 

(Scientific Laboratory Supplies, UK) that were agitated on a mixing platform (IKA 

Laboratechnik, Germany). Sham-irradiated cells were treated in the same manner.

4.2.3 Loading o f Cells with Calcein for Analysis using Flow Cytometry 

Immediately after irradiation, cells were collected and centrifuged for 5 min at 1000 rpm. 

The supematent was then removed and cells were re-suspended at a density of 1 x 105 

cells/ml with 0.05 pM calcein-acetoxymethyl ester (CA-AM) (Molecular Probes, USA) 

for 15 min at 37°C in bicarbonate-free, serum-free medium containing 1 mg/ml BSA 

(bovine serum albumin), 20 mM Hepes, pH 7.3 (CA-AM was added from a concentrated
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stock solution in DMSO). After CA-AM incubation, cells were washed of excess CA- 

AM using PBS, re-suspended in CA-AM free loading medium at a density of 5 x 105 

cells/ml, and maintained on ice until flow cytometry analysis.

4.2.4 Analysis o f Calcein-Loaded Cells using Flow Cytometry

For analysis of damage to intracellular esterases and determination of the chelatable iron 

pool within cells using flow cytometry, a specific set-up was designed so that during 

analysis, cells were stirred using a magnetic stirring bar (Merck, UK) whilst maintained

at 37°C (see Fig 4.2).

Fig 4.2. Flow cytometer set-up to keep cells stirred and incubated at 37°C for analysis o f damage to 

intracellular esterases and changes in the chelatable iron pool.
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Immediately prior to measurement, 1 ml of calcein(CA)-loaded cells (5 x 105 cells) were 

centrifuged for 1 min at 3000 rpm, then re-suspended in 1 ml of pre-warmed Hepes 

buffered saline solution (HBS buffer), composed of PBS with 20 mM Hepes and 150 mM 

NaCl, pH 7.3. The cell suspension was placed in flow cytometer tube (Becton Dickinson, 

UK) and cells were analysed using a FACS (fluorescence activated cell sorter) Vantage 

flow cytometer (Becton Dickinson, UK). The flow cytometer used an argon ion laser at 

488 nm (100 mW) for excitation, and measured emission fluorescence at 525 nm with a 

band pass filter (± 30 nm).

4.2.5 Determination o f Intracellular Esterase and Membrane Damage

The mean CA fluorescence of 10000 cells after addition 100 pM of the cell permeant iron 

chelator salicylaldehyde isonicotinoyl hydrazone (SIH) (which was kindly provided by P. 

Ponka, Canada) was obtained for each sample. Membrane damage and intracellular 

esterase inactivation of UVA-irradiated cell populations was determined by comparing 

the fluorescence of these populations to that of the sham-irradiated controls, and 

expressing it as a percentage.

4.2.6 Estimation o f the Intracellular Chelatable Iron Pool

The mean fluorescence of 10000 CA-loaded cells was obtained. The highly cell 

permeant iron, chelator SIH (100 pM), was then added and the increase in fluorescence 

(as SIH de-quenched CA fluorescence by chelating iron bound to CA) was monitored 

until a steady signal was obtained (usually within 2 min). The mean fluorescence of 

10000 cells was obtained once more, and the mean change in fluorescence was
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determined by subtracting the mean fluorescence of the cells pre-SIH treatment from the 

mean fluorescence of the SIH treated population. To convert this fluorescence change to 

a quantitative determination of intracellular chelatable iron, it was necessary to calibrate 

the system using iron. CA-loaded cells were prepared as mentioned above. A stock 

solution of ferrous ammonium sulphate (FAS) was prepared by dissolving the compound 

in Milli-Q water (Millipore, UK) and maintaining the solution under argon to prevent 

oxidation. The liquid was also bubbled with argon before use. By monitoring the 

fluorescence of CA-loaded cells (using flow cytometer, as described above), the 

calibration was performed by first adding 1 pM of the divalent metal ionophore A23187 

(from a concentrated stock solution in DMSO). This substance increases the 

permeability of cell membranes to divalent metal ions and when the metal is added, 

equilibration (of the metal) occurs between the cell and the medium. Sequential additions 

of aliquots of FAS were added to obtain 0.25 pM step increases of metal concentration, 

and the discrete decreases in fluorescence elicited were monitored and recorded. The 

fluorescence recording of 10000 cells was not taken until a stable fluorescence signal was 

obtained after each FAS addition (1-2 min). Addition of 100 pM SIH results in 

restoration of CA fluorescence.
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The data obtained by FAS titration can be fitted by a first order exponential decay 

function (Fig. 4.9) relating the two variables y  and x which are fluorescence and FAS 

concentration respectively:

y  = yo + Ae (x//)

Where yo, A and t are constants. By adding SIH to CA-loaded cells, de-quenching of CA 

fluorescence occurs which is a measure of the amount of iron that was bound to CA. By 

inserting this fluorescence change value into the function described above, an estimation 

of the concentration of chelatable iron pool was derived.

4.2.7 Statistical Analysis

Results are expressed as the mean ± one standard deviation. Significant differences (p< 

0.05) were determined by an unpaired t test.
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4.3 Results

4.3.1 Comparison o f Size and Granularity o f FEK4 Primary Human Fibroblasts and 

HaCaT Immortalised Human Keratinocytes using Flow Cytometry 

Fig 4.3 shows the forward scatter and side scatter of FEK4 and HaCaT cells as 

determined by flow cytometry. A laser beam is directed at a tight stream of fluid 

containing a dispersion of cells. As the laser beam hits the cells, the light is scattered and 

is registered by detectors positioned in front of (forward scatter, FSC), and perpendicular 

(side scatter, SSC) to the flow of cells. Forward scatter gives a measure of size and side 

scatter gives a measure of granularity of cells. Figs. 4.3a and b are dotplots of forward 

scatter verses side scatter of HaCaT and FEK4 respectively. Frequency histograms (and 

their mean values) are also depicted showing the forward scatter (Fig. 4.3c) and side 

scatter (Fig. 4.3d) of the two cell lines (HaCaT histograms are grey and FEK4 histograms 

are black). From this data, it can be concluded that FEK4 is a larger, more granular cell 

than HaCaT. From observation under a light microscope, FEK4 certainly appears larger. 

One thing that should also be noted is, that after trypsinisation, cells sometimes do not 

detach completely from one another (this is particularly noticeable with HaCaT cells). 

Some of the scatter picked up may therefore be from cell aggregates, thus contributing to 

a larger mean scatter value.
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Fig. 4 3 . Flow cytometry dotplots (a and b) and frequency histograms (c and d) o f HaCaT immortalised 
human keratinocytes (a) and FEK4 primary human fibroblasts (b). Data shows the forward scatter (FSC) 
and side scatter (SSC) obtained from these two cell lines, which reflect size and granularity respectively. 
Grey histograms indicate HaCaT data and black histograms indicate FEK4 data. The mean FSC (c) and 
SSC (d) values of the two cell lines are also included.
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4.3.2 Effects o f UVA Irradiation on Cell Size and Granularity

Fig. 4.4 shows forward scatter verses side scatter dotplots of a sham irradiated population 

of FEK4 primary human fibroblasts (Fig. 4.4a), and a population irradiated with 500 

kJ/m UVA radiation (Fig. 4.4b). Figs. 4.4c and d show the forward scatter (Fig. 4.4c) 

and side scatter (4.4d) frequency histograms of both cell populations (sham-irradiated cell 

histograms are black and 500 kJ/m UVA irradiated cell histograms are grey). A 

threshold is normally set on the forward scatter, which means that any cells or particles 

that fall below this threshold size are not recorded. This effectively gates out debris and 

fragmented cells. From this data it is clear that UVA causes the cells to shrink and' 

reduces their granularity. Although this is an extreme example of what happens to cells 

after UVA irradiation, the example is used to clearly show the point. Cells probably 

shrink and express reduced granularity because of damage to the cell membrane, which 

concomitantly results in leakage of intracellular components.
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Fig. 4.4. Flow cytometry dotplots (a and b) and frequency histograms (c and d) FEK4 primary human 
fibroblasts either sham-irradiated (a) or treated with 500 kJ/m2 UVA radiation. Black histograms and 
dotplots indicate sham-irradiated cells and grey histograms and dotplot indicate UVA treated cells data. 
The mean FSC (c) and SSC (d) values of the two cell lines are also included.
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4.3.3 An Example o f the Effect o f ALA Incubation and UVA Irradiation on the 

Production o f Fluorescent Calcein by Intracellular Esterases

As discussed in the introduction, cells with functional intracellular esterases can convert 

exogenously added CA-AM to fluorescent CA. This CA is retained in healthy cells with 

intact membranes. Treatment of cells that results in inactivation of intracellular esterases 

and damage to cell membranes can affect the ability of cells to produce and retain CA. 

Acquired intracellular fluorescence is probably the most important parameter determined 

by a flow cytometer. In the example shown here (Fig 4.5), cells are treated with either 

ALA alone, or ALA followed by UVA. The two populations are then incubated at 37°C 

for 15 min with CA-AM. This allows cells with functional esterases to cleave CA-AM 

producing fluorescent CA, and in turn, gives an indication of how healthy a population is. 

Intracellular CA fluorescence is measured using flow cytometry and Fig. 4.5 shows an 

example of fluorescence frequency histograms of cells treated with 200 pM ALA alone 

for 18 h (black histogram), and cells treated with ALA followed by a dose of 100 kJ/m2 

UVA (grey histogram). On the diagram, FL-1 is fluorescence intensity detected at 525 

nm (± 30 nm), and calcein fluorescence emission peaks at 535 nm. The higher the FL-1 

value, the greater the intracellular CA fluorescence intensity is. It is clear from the 

example depicted (Fig. 4.5) that ALA incubation (200 pM, 18 h) followed by UVA 

irradiation (100 kJ/m2) results in a marked decrease in the mean fluorescence intensity 

(i.e. CA production and retention).
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Fig. 4.5. Flow cytometry frequency histograms o f FEK4 primary human fibroblasts treated with 200 jiM  
ALA for 18 h and either sham-irradiated (black histogram) or irradiated with a dose of 100 kJ/m2 UVA 
(grey histogram). FL-1 is a measure o f calcein fluorescence intensity of the cells. The mean calcein 
fluorescence of the two cell populations is included.
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4.3.4 Effects o f UVA Irradiation on Calcein Fluorescence in FEK4 Primary Human 

Fibroblasts and HaCaT Immortalised Human Keratinocytes

Fig.4.6 shows the detrimental effect of graded doses of UVA radiation on the CA 

fluorescence in both FEK4 fibroblasts and HaCaT keratinocytes. CA fluorescence of 

UVA treated cells is expressed as a percentage of the CA fluorescence observed in sham- 

irradiated controls. The amount of CA produced intracellularly (after 15 min CA-AM 

incubation) in both cell lines is clearly reduced as a function of UVA dose, suggesting 

either that damage has occurred to intracellular esterases or that CA is lost from the cells 

as a result of damaged plasma membranes. The observed effect appears to be more 

pronounced in the fibroblasts than the keratinocytes, suggesting that the FEK4 are more 

sensitive to UVA-induced damage. All data that was obtained by measuring intracellular 

CA fluorescence reductions as a result of (ALA and/or) UVA treatment was determined 

after the addition of the cell permeable iron chelator, SIH, to the cells being analysed. 

The purpose of this was to remove any artifactual quenching of CA fluorescence by 

intracellular ‘free’ iron (see below for details).
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Fig. 4.6. UVA dose-dependent reduction in calcein fluorescence reduction in FEK4 fibroblasts and HaCaT 
keratinocytes, as a result of intracellular esterase inactivation and loss o f calcein through damaged 
membranes. Fluorescence is measured using flow cytometry. Data represent the mean of 3-4 experiments 
(± S.D.)
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4.3.5 Effects o f ALA Incubation and UVA Irradiation on the Production o f  

Fluorescent Calcein by Intracellular Esterases in FEK4 Primary Human Fibroblasts 

The effects of either 4 and 18 hours ALA incubation, followed by UVA irradiation (of 

doses up to 100 kJ/m ) on the CA fluorescence in FEK4 cells is shown in Fig. 4.7a and b 

respectively. From the graphs, reduction in intracellular CA fluorescence appears to be 

dose dependent with respect to ALA concentration and UVA dose. The results obtained 

after 4 and 18 hours ALA incubation followed by UVA irradiation are not significant. 

Dark toxicity of ALA was tested and found to have no affect on CA levels detected 

compared to non-treated controls (data not shown).

122



Chapter 4: Flow cytometry-based method o f determining membrane damage and changes in the
intracellular chelatable iron pool, after ALA treatment and UVA irradiation

Fig. 4.7. UVA dose-dependent reduction of calcein fluorescence in FEK4 fibroblasts treated with ALA for 
either 4 (a) or 18 (b) hours. Data represent the mean of 3-4 experiments (± S.D.).
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4.3.6 Determination o f  the Chelatable *Free' Iron Pool using the Cell Permeable Iron 

Chelator Salicylaldehyde Isonicotinol Hydrazone (SIH)

Calcein not only gives an indication of the state of health of a cell population, it also 

serves as a metallo-sensitive probe. Its fluorescence is quenched due to stoichiometric 

(1:1) binding of iron. Addition of the cell permeable chelator SIH results in the de- 

quenching of CA fluorescence, by the removal of iron, because of SIH has a greater 

affinity for iron than CA. This, in turn, can give an indication of CA-sensitive iron levels 

in the cytosol, which we refer to as chelatable ‘free’ iron levels. Fluorescence changes 

can be monitored using a flow cytometer, thus changes in chelatable ‘free’ iron as a result 

of a specified treatment, such as UVA irradiation, can be estimated using this system. 

Fig.4.8 shows an example of the frequency histograms of CA fluorescence intensity 

produced by HaCaT cells after either sham-irradiation (Fig.4.8a), or after a UVA dose of 

250 kJ/m (Fig.4.8b). The black histograms represent the two cell populations before 

SIH treatment, and the grey histograms represent cells treated with 100 jiM SIH. The 

mean fluorescence of each histogram is also included for clarification. From this data it 

is clear that SIH can de-quench CA fluorescence by chelating iron (seen by the increase 

in CA fluorescence intensity) and that UVA increases this chelatable iron pool.
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Fig. 4.8. Calcein fluorescence frequency histograms o f HaCaT keratinocytes either sham-irradiated (a) or 
have been irradiated with a dose 250 kJ/m2 UVA radiation (b). Black histograms indicate fluorescence 
before SIH treatment and grey histograms indicate fluorescnce after 100 fiM SIH treatment. Mean 
fluorescent values are included.
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4.3.7 Estimation o f  Chelatable * Free* Iron Levels

In order to translate the apparent change in fluorescence by the addition of SIH, to a 

quantitative estimate chelatable ‘free’ iron, it was necessary to calibrate CA-loaded cells 

with iron. Fig.4.9 shows an example of a typical calibration of CA-loaded cells (FEK4 

fibroblasts in this example) by titration with ferrous ammonium sulphate. Sequential 

additions of (0.25 juM) FAS added to CA-loaded cells resulted in decreases in 

fluorescence and this was monitored using flow cytometry. The data obtained by the 

titration can be fitted by a first order exponential decay function (see 4.2.5). This 

function, in turn, is used to estimate of the pM concentration of the intracellular ‘free’ 

iron pool (see 4.2.5).
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Fig. 4.9. Typical calibration of calcein-loaded cells (FEK4 primary human fibroblasts) with sequential 
(0,25 pM) aliquots of ferrous ammonium sulphate (FAS). Calcein fluorecence is monitored using flow 
cytometry.

2000 -

r  1 5 0 0 -

1000 -

5 0 0 -

0.0 0.5 1.0 1.5 2.0 2.5

pM FAS

127



Chapter 4: Flow cytometry-based method o f determining membrane damage and changes in the
intracellular chelatable iron pool, after ALA treatment and UVA irradiation

4.3.8 Effect o f UVA Irradiation on the Concentration o f Chelatable Iron Pool o f FEK4 

Primary Human Fibroblasts and HaCaT Immortalised Human Keratinocytes 

Tables 4.1 and 4.2 show the effects of graded doses on the chelatable iron pool of FEK4 

and HaCaT respectively, measured using flow cytometry. UVA radiation appears to 

cause a dose dependent increase in the chelatable iron pool in both cell lines. Relative 

increases appear lower in FEK4 compared to HaCaT, e.g. after 500 kJ/m2 UVA, FEK4 

showed approximately a 210% increase in the chelatable iron pool when compared to 

non-irradiated controls. A 420% increase was observed in the HaCaT cells after the same 

UVA dose. However, FEK4 possess a chelatable iron pool that is approximately 3 times 

bigger than that of the HaCaT, 0.08024 pM compared to 0.02727 pM. The absolute 

increases in chelatable iron that are observed in the FEK4 and HaCaT after 500 kJ/m 

UVA, are approximately 0.16843 pM and 0.11415 pM respectively (calculation of these 

values is described in 4.2.5). Treatment of both cell lines with the iron chelator desferal 

for 18 h (100 pM) removed all chelatable iron so that there was no change in CA 

fluorescence after 100 pM SIH addition.
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Table 4.1. The concentration o f chelatable iron in the FEK4 primary human fibroblasts after UVA  

irradiation or desferal treatment. Measurements were performed immediately after irradiation. Data 

represent the mean o f 3-4 independent experiments (± S.D.).

Treatm ent Chelatable iron (jliM )

Non-irradiated 0.08024 ±0.01747

100 kJ/m2 UVA 0.11179 ±0.0126*

250 kJ/m2 UVA 0.19903 ±0.01612*

500 kJ/m2 UVA 0.24867 ±0.01629*

18 h Desferal (100 jiM) 0.000 ±  0.000*

Statistical analyses were made using an unpaired t test, 

control ip < 0.05 level).

*, Significantly different from non-irradiated

Fig 4.2. The concentration o f chelatable iron in the HaCaT immortalised human keratinocytes after UVA  

irradiation or desferal treatment. Measurements were performed immediately after irradiation. Data 

represent the mean o f  3-4 independent experiments (± S.D.).

Treatm ent Chelatable iron (jiM )

Non-irradiated 0.02727 ± 0.0645

100 kJ/m2 UVA 0.04717 ±0.01244

250 kJ/m2 UVA 0.09259 ±0.01489*

500 kJ/m2 UVA 0.14142 ±0.02216*

18 h Desferal (100 joM) 0.000 ±  0.000*

Statistical analyses were made using an unpaired t test. *, Significantly different from non-irradiated 

control ip < 0.05 level).
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4.3.9 Effects o f ALA Incubation and UVA Irradiation on the Concentration Chelatable 

Iron Pool o f FEK4 Primary Human Fibroblasts

Table 4.3 shows the effects of incubation with ALA and irradiation with UVA, on the 

concentration of chelatable iron in FEK4 cells, measured using flow cytometry. 

Compared to the non-treated control, incubation with ALA concentrations up to 200 pM, 

for either 4 or 18 hours, led to a reduction in chelatable iron of up to 25%. The longer 

incubation reduced chelatable iron levels more effectively. Cells that were treated with 

100 pM ALA for 4 h, followed by UVA irradiation of either 50 or 100 kJ/m2, showed 

increases of 80% (0.06202 pM) and 130% (0.10124 pM) respectively compared to the 

sham-irradiated control. In contrast, cells treated with 200 pM ALA for the same period 

showed only an increase of approximately 20% (0.01323 pM) after 50 kJ/m2 UVA, and a 

decrease of almost 40% (0.02655 pM) after 100 kJ/m2, compared to the sham-irradiated 

control. The 18 h ALA incubations resulted in similar trends to those observed after 4 h, 

though the changes were less dramatic. For example, the 18h, lOOpM ALA incubation 

resulted in a dose dependent increase in chelatable iron levels up to 70% (0.05 pM) after 

100 kJ/m2 UVA, compared to the non-irradiated control. The 200 pM ALA treatment 

showed an increase of only approximately 8% (0.00485 pM) after 50 kJ/m2 UVA, and a 

decrease of around 12% (0.00697 pM) after 100 kJ/m2. The lowest absolute level of 

chelatable iron measured was after 4h, 200 pM ALA treatment, which resulted in a level 

of 0.04454 pM.
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Fig 4.3. The concentration of chelatable iron in the FEK4 primary human fibroblasts after ALA treatment 

and UVA. Measurements were performed immediately after treatment. Data represent the mean o f 3-5 

independent experiments (± S.D.).

ALA Treatment Chelatable Iron (fiM)

Non ALA-treated, non-irradiated 0.08024 ±0.01747

4 h 100 jiM non-irradiated 0.07736 ±0.01077

4 h 100 nM 50 kJ/m2 UVA 0.13938 ±0.01061*

4 h 100 |iM 100 kJ/m2 UVA 0.1786 ±0.02746*

4 h 200 |iM non-irradiated 0.07109 ±0.00806

4 h 200 nM 50 kJ/m2 UVA 0.08432 ±0.0115

4 h 200 nM 100 kJ/m2 UVA 0.04454 ± 0.009*

18 h 100 jiM  non-irradiated 0.07388 ± 0.00958

18 h 100 nM 50 kJ/m2 UVA 0.103432 ±0.02396*

18 h 100 pM 100 kJ/m2 UVA 0.12389 ±0.00743*

18 h 200 juM non-irradiated 0.05924 ± 0.00457

18 h 200 (J.M 50 kJ/m2 UVA 0.06409 ± 0.00778

18 h 200 jiM 100 kJ/m2 UVA 0.05227 ± 0.00682

Statistical analyses were made using an unpaired t test. *, Significantly different from the corresponding 

non-irradiated control ip  < 0.05 level).
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4.4 Discussion

The purpose of the study presented in this chapter was to provide an assay that could 

measure simultaneously two important parameters that appear to be affected by UVA. 

These parameters are a reduction in the viability of a cell population as reflected by 

damage to the plasma membrane, and changes in intracellular ‘free’ iron levels. We 

initially expected to use a combination of two totally different assays, which use entirely 

different approaches. However, we are able to combine two assay systems that were 

developed independently to provide both pieces of data in a single procedure based on the 

measurement of calcein fluorescence by flow cytometry.

Campbell and co-workers (1996) used an assay involving two fluorescent probes, calcein 

(CA) and ethidium homodimer-1 (EthD-1), that they claimed could measure and 

determine cell survival after treatment with ALA and graded doses of 600-700 nm light 

(i.e. an in vitro method to study the effects of ALA-PDT). These two fluorescent probes 

were part of a kit known as the Live/Dead Eukolite Viability/Cytotoxicity Kit (Molecular 

Probes, USA). The principle behind this kit was that it could provide reciprocal 

(fluorescent) staining of treated cells that could be measured by flow cytometry to 

indicate viability of those cells, i.e. high CA fluorescence and low EthD-1 fluorescence 

indicated a viable (or healthy population), and vice versa. Changes in chelatable iron 

have been performed previously using an assay developed and optimised by Cabantchik 

and co-workers (Epsztejn et al., 1997). This assay, also known as the calcein assay, 

monitored changes in calcein fluorescence in response to changes in chelatable iron as 

measured by spectrofluorimetry.
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By combining various aspects of these two assays and using one fluorescent probe, 

calcein, we have developed an assay that can provide an indication of viability, such as 

membrane damage (following a specified treatment), and concomitantly measure 

changes in the intracellular chelatable iron pool of that population. In showing the 

development stages of this assay (in the results section), the conditions shown in each 

example are varied (i.e. cell line and treatment). This was done mainly to emphasise a 

point more clearly, but all the information, including size (forward scatter, granularity 

(side scatter) and acquired calcein fluorescence is obtained and recorded for each sample 

measured using flow cytometry.

Fig. 4.3 shows the size and granularity of the two cell lines (FEK4 primary human 

fibroblasts, and HaCaT immortalised human keratinocytes) as measured by flow 

cytometry. Consistent with observations made using a light microscope (mentioned in 

the results), HaCaT are approximately 10% smaller than FEK4 (indicated by forward 

scatter), as determined by flow cytometry. The apparent lower granularity of HaCaT 

cells (indicated by side scatter) may also be, to some extent, related to HaCaT being 

smaller a cell. However, side scatter is an indication of specific structures within a cell 

(i.e. granularity), such as organelles, large proteins or anything within the cell that can 

cause the target laser to scatter light perpendicularly to its trajectory. The greater side 

scatter exhibited by FEK4 would suggest that it contains a greater quantity of such 

structures. As an example, FEK4 contains approximately a 4-fold higher level of the iron 

storage protein ferritin (see Chapter 5), which may contribute to side scatter because of 

the iron stored within it.
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An example of the effect of UVA radiation (500 kJ/m2) on cell size (FSC) and granularity 

(SSC) is shown in Fig. 4.4. It was observed by light microscopy that cells appear to 

shrink after UVA treatment. This is also clear when comparing the FSC frequency 

histograms of sham-irradiated cells and those irradiated with 500 kJ/m UVA. 

Presumably damage to the plasma membrane as a result of UVA irradiation may cause 

leakage of intracellular contents. From the comparison of the SSC frequency histograms, 

it would appear that intracellular components are also either leaking out of the irradiated 

cells, or are degraded, as reflected by the reduction in SSC. UVA can cause membrane 

damage (reviewed by Tyrrell, 1991). For example, and in a study using human skin 

fibroblasts and lactate dehydrogenase (LDH) release as the marker (Gabroriau et al., 

1993), it was shown that plasma membranes were damaged by UVA irradiation.

It has been mentioned previously in this chapter that injury to cells can reduce the amount 

of fluorescent CA produced by a cell population by either, inactivation of intracellular 

esterases, or by rupturing the cell membrane and thereby allowing the leakage of 

intracellular CA. Fig. 4.5 shows the most extreme treatment used in this study, 200 pM 

ALA treatment for 18 h followed by 100 kJ/m2 UVA irradiation. Also shown is the 

sham-irradiated control. CA fluorescence intensity is denoted FL-1 Height on the 

frequency histogram. It is quite clear in this example that the population (ALA treated, 

then) irradiated have a marked reduction in mean intracellular CA fluorescence. For the 

presentation of our results using intracellular CA levels as an indicator of viability, we 

have not represented decreases in CA fluorescence in terms of percentage survival, as has
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been the case previously (Campbell et al., 1996). The results herein are presented in 

terms of CA fluorescence of treated cells as a percentage CA fluorescence of non-treated 

controls. This represents inactivation of intracellular esterases and membrane damage 

and this can be interpreted as a measure of viability following treatment.

Fig.4.6 shows the effect of UVA alone on the reduction of intracellular CA content in 

both FEK4 fibroblasts and HaCaT keratinocytes. CA content is effectively reduced in a 

UVA dose-dependent manner in both cell lines, but FEK4 appeared to be more sensitive 

to the UVA treatment as compared with the HaCaT keratinocytes. In previous 

experiments with keratinocytes and fibroblasts (Applegate et al., 1995: Leccia et al.,

1998), keratinocytes have been shown to be more resistant to UVA-induced cell 

membrane damage. This has been attributed to higher antioxidant content in these cells 

as compared with fibroblasts (Leccia et al., 1998). In our study, an additional factor that 

may play a role in the HaCaT’s resistance to UVA, is its low iron content. The low 

chelatable iron concentration and also the lower UVA-induced levels of iron release 

observed in the HaCaT cells may limit the damaging affects observed in this cell line 

after UVA irradiation, such as iron-catalysed hydroxyl radical formation and lipid 

peroxidation (Halliwell and Gutteridge, 1999).

Comparison of the CA fluorescence levels as measured after 4 and 18 hours ALA 

incubation, followed by UVA irradiation, reveals that there is not a significant difference 

between the damaging affects observed after the two incubations (Fig. 4.7). This is in 

contrast to the survival studies performed in Chapter 2 (Figs. 2.14 and 2.15) and which
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was consistent with the possibility that suggest that the 4 h incubation results is a greater 

rate of cytotoxicity after UVA irradiation than 18 h ALA incubation.

It has been previously reported that UVA irradiation of FEK4 fibroblasts results in an 

increase in the chelatable ftee iron pool as measured by the calcein assay and 

spectrofluorimetry (Pourzand et al., 1999). In our study we tested the hypothesis that 

UVA-induced iron release could not only be detected and measured through monitoring 

CA fluorescence by flow cytometry, but that viability measurements could be undertaken 

in the same assay system. This was effectively achieved by adding the cell permeant iron 

chelator (SIH) which had two consequences. Firstly, it removed any iron from CA 

(which quenches its fluorescence), thus removing any artifactual quenching of 

fluorescence for the viability studies. Cells that had high intracellular iron levels after a 

specified treatment would appear to be less healthy then they actually were, if the iron is 

not removed from CA. Secondly, removal of this iron that caused artifactual quenching 

of CA fluorescence, in turn, provides a measure of intracellular chelatable iron in terms 

of a fluorescence increase (Fig. 4.8). The fluorescence increase observed could be 

translated to an estimate of intracellular chelatable iron by calibrating CA-loaded cells 

with FAS (section 4.3.7 and Fig. 4.9). Tables 4.1 and 4.2 show the affects of UVA 

irradiation on the intracellular chelatable iron pool in FEK4 fibroblasts and HaCaT 

keratinocytes respectively. Both cell lines show a dose dependent increase in chelatable 

iron levels as a function of UVA irradition, with FEK4 releasing a greater amount of iron 

compared to the HaCaT at the same dose. FEK4, on the other hand, has a chelatable iron 

pool around 3 times larger than the HaCaT cells. This difference, including a greater iron
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release after UVA, observed in FEK4 compared to HaCaT, was also evident in aconitase 

measurements (see Chapter 3). FEK4 cells also possess a much higher ferritin content 

(see Chapter 5). In a previous study (Pourzand et al., 1999), the author postulated that 

ferritin is a major source of this chelatable iron increase. In Chapter 5, the results are 

consistent with the conclusion that UVA leads to ferritin degradation, particularly in the 

FEK4 cells and this provides an explanation as to why there is a greater increase in 

chelatable iron observed in FEK4 as compared with HaCaT.

Incubation of FEK4 fibroblasts with ALA appears to have a modest effect on the 

reduction of the level of chelatable iron (Table 4.3). Stimulating the biosynthesis of 

PPIX may cause ALA to exert a chelative effect because the penultimate step in the 

production of haem is the insertion of iron into the tetrapyrrole ring of PPIX. This, in 

turn, could contribute to the lowering of the chelatable iron pool. Addition of the iron 

chelator desferal (100 juM, 18 h) effectively abolished the chelatabe iron pool in FEK4 

(Table 4.1), suggesting that the effect exerted by ALA as an iron chelator is minor 

compared to that of desferal. A decrease in aconitase activity was also observed after an 

identical ALA incubation (Chapter 3), as was a concomitant reduction in ferritin levels.

PPEX has been shown to locate within the ferritin molecule (Precigoux et al., 1994; 

Michaux et al., 1996) and it is also known to localise in hydophobic environments, 

particularly cell membranes (Ricchelli, 1995). Therefore, it is conceivable that UVA 

irradiation of PPIX in either of these locations could induce photosensitisation and 

aggravate damage to ferritin, resulting in concomitant iron release. PPIX located in
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ferritin could cause direct damage to the protein shell upon photosensitisation, or it could 

damage lysosomal membranes causing hydrolytic enzymes to spill out into the cytosol, 

which in turn, could degrade ferritin (Pourzand et al., 1999). We intended to show in this 

study whether or not ALA-induced PPIX could induce, or exacerbate the release of 

chelatable iron after UVA irradiation.

ALA treatment of cells followed by UVA irradiation appeared to result in two different 

phenomena depending on the concentration of ALA administered. UVA dose-dependent 

increases in the chelatable iron levels were observed with 100 pM ALA after both 4 and 

18 hours incubation. The absolute increases were higher after 4 h incubation, suggesting 

that the longer incubation had diminished the source of chelatable iron increase to some 

degree. In contrast, the 200 pM ALA incubation after both incubations showed a slight 

increase in the chelatable iron pool after 50 kJ/m2 UVA, but a decrease (below non- 

irradiated controls) after 100 kJ/m UVA irradiation. This would suggest that iron bound 

to CA is able to leak from cells with damaged plasma membranes, and that PPIX 

produced after incubation with ALA may contribute to this effect. The level of reduction 

of intracellular CA fluorescence after the higher ALA dose and irradiation with UVA 

(Fig. 4.8) would appear to support this hypothesis. In order to confirm this, extracellular 

CA levels would need to be determined, along with the bound iron. This could be done 

by performing similar spectrofluorimetric measurements on the supernatants of these 

cells after CA-AM incubation.

We report here that the flow cytometer can be used to detect changes in the chelatable 

iron pool of a population of cells, and concomitantly provide an indication of viability (as
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assessed by membrane damage) using the fluorescent probe calcein. This assay has an 

added advantage over the calcein assay because it can measure changes in intracellular 

‘free’ iron levels (similar to the calcein assay) and viability in the same procedure. The 

flow cytometer determines intracellular fluorescence, so loss of CA from cells provides 

part of the basis of determining membrane damage. The reduction in CA fluorescence, 

through inactivation of esterases, is also another indication of cell damage. With the 

calcein assay, this method of determining ‘viability’ is not possible as it measures both 

intracellular and extracellular fluorescence (i.e. total fluorescence). CA loss from cells 

with damaged membranes would therefore not be detected. To combat this, an anti- 

calcein fluorescence quenching antibody has been used with this method (Breuer et al., 

1995), which is intended to quench the fluorescence of any CA leaking from cells. 

However, in the same study it was shown that addition of this antibody to cells with 

permeabilised membranes resulted in 90% quenching in total CA fluorescence. The 

disadvantage of flow cytometry in only being able to detect intracellular fluorescence is 

manifested when chelatable iron measurements are made with cells that have damaged 

membranes. If iron bound to calcein leaks from these cells (which does appear to happen 

under certain conditions, see Table 4.3), then quantification of the total increase in 

chelatable iron by this method is not possible. However, this problem may be overcome 

using spectrofluorimetry, by either measuring extracellular CA loss and the iron bound to 

it, or by performing the iron measurements using the calcein assay.
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5. Study of the effects of ALA incubation and UVA irradiation on ferritin in human 

cells

5.1 Introduction

Iron is an essential nutritional element for most organisms and it plays a critical role in 

cellular processes such as electron transport and respiration, cell proliferation and 

differentiation, DNA synthesis and the regulation of gene expression. These major 

functions of iron rely on its ability to catalyse oxidation and reduction reactions by virtue 

of its ability to change valence states. Most iron present in organisms is complexed in 

proteins although some may also be present in a soluble pool of low molecular weight 

complexes such as ferric citrate and Fe3+ ATP (Weaver and Pollock, 1989). Despite iron 

being an essential element, excess ‘free’ iron can be toxic as in the presence of 

superoxide and hydrogen peroxide it can catalyse the formation of the highly reactive 

hydroxyl radical through the Fenton and Haber-Weiss reactions (Halliwell and 

Gutteridge, 1999). In turn, the hydroxyl radical can cause damage to a variety of 

biomolecules, and in particular, cause lipid peroxidation (see Chapter 1). Thus it is 

crucial for organisms to be able to protect against the toxic effects of iron and this is 

achieved be the sequestration of iron by two highly specialised iron-binding proteins, the 

extracellular transferrin and the intracellular ferritin (both binding iron in a relatively safe 

Fe3+ form). Potentially, iron can have a very damaging effect intracellularly, so the 

regulation of iron trafficking and iron storage is of major importance (discussed in 

Chapter 3).
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5.1.1 Ferritin

The ferritin molecule is a cytosolic hollow protein shell made up of 24 polypeptide chains 

(subunits) of two types, H (heavy) and L (light), with slightly different molecular weights 

of 21,000 and 19,000 respectively (for most animal species). The ferritin molecule is 

capable of storing up to 4500 Fe3+ atoms in a cavity as an inorganic complex where its 

weight can vary from approximately 450,000 (depending on H- and L- subunit 

composition) to approximately 900,000 depending on iron content. All ferritin molecules 

contain approximately an 8 nm iron-storage cavity within which an iron-core structure 

composed of an insoluble structure known as hydrated ferric oxide or ferrihydrite 5 Fe2 0 3  

• 9 H2O is formed (Towe, 1981). Normally, ferritin is only about 20% iron-saturated 

(Reif, 1992). There is a wide variation of the number of ferritin genes found between 

different species. The human genome, for example, contains 15 H-copies and 5-L-copies 

of the ferritin genes. The rat genome, in contrast, contains more than 20 L-copies and 

only 5 H-copies. Most copies are processed pseudogenes and it has been concluded that 

there is probably only one expressed copy of each type in both genomes (Munro, 1993). 

Various vertebrate ferritin amino acid sequences have been extensively characterised 

including those from human, horse, sheep, pig, rabbit, rat, mouse, chicken, and tadpole. 

The mammalian H- and L-ferritin polypeptide chain sequences show about 54% identity 

and approximately 90% of H-chain residues, and 85% of L-chains, are identical amongst 

mammals (Harrison and Arosio, 1996). Ferritins isolated from mammalian tissues 

consist of a mixture of isoferritins that range in iron content and subunit composition 

(Arosio et al, 1978). Twenty-five possible isoferritin compositions have been defined, 

made up of variations in subunit rations of H- and L-polypeptide chains. Generally,
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organs that store iron (liver and spleen) tend to be rich in L-rich ferritins that usually have 

a relatively high average iron content of 1500 Fe atoms/molecule or more (Harrison and 

Arosio, 1996). H-rich ferritins have a relatively low iron content of less than 100 Fe 

atoms/molecule and are more characteristic of organs such as the brain and heart.

The ferritin three-dimensional structures are more highly conserved than their primary 

structures. Each of the 24 subunits consists of a bundle of 4 long helical segments and 

one short helical segment that confer rigidity, with the remainder of the subunit 

consisting of non-helical segments connecting the helices. Apoferritin (ferritin devoid of 

iron) is assembled from 24 structurally equivalent subunits. In heteropolymers (mixed 

subunit molecules), H- and L-subunits have the same conformations enabling the 

formation of heteropolymers with a complete range of subunit compositions because 

there are many similar or identical residues in the subunits. It has been proposed that like 

chains cluster preferentially within the polymer (Luzzago et al., 1986). The large number 

of intra- and inter-subunit bonds (salt bridges and H-bonds) contributes to the apparent 

stability of apoferritin to heat. In the assembled apoferritin molecule, the 24 subunits are 

related by a 4-, 3-, and 2-fold symmetry axes. Subunits pack tightly together except, at 

the 3-fold axes where there are narrow channels traversing the shell. It has been 

proposed that these 3-fold channels are the main entry route of iron and are also Fe2+ 

oxidation sites (Wardwska et al., 1986; Stefanini et al.,1989;Yablonski et al., 1992; 

Teffry et al, 1993).
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5.1.2 Iron Storage Processes

When a dose of 59Fe (as labelled ferric ammonium citrate or iron dextran) is injected into 

a rat, part of the dose will be found in the liver as soluble cytosolic ferritin (Drysdale and 

Munro, 1966; Kohgo et al., 1980; Bomford et al., 1981; Treffry et al., 1984). The steps 

by which this occurs have not been fully elucidated though it is known that transferrin 

delivers much of this iron by receptor mediated endocytosis (reviewed by Richardson and 

Ponka, 1997). After iron is liberated from transferrin into in the cytosol, the fate of iron 

is less clear. It is not known what the intracellular donor is in vivo, or the chemical form 

in which iron is delivered to ferritin. It is however known, that storage involves gradual 

accumulation by binding of iron to ferritin iron-core particles (Treffry and Harrison, 

1984). Ferric citrate is probably one of the low molecular weight iron complexes of the 

cytosol. However, attempts to load apoferritin with this compound (or other Fe3+ 

compounds) in vitro have been unsuccessful (Treffry and Harrision, 1979) unless a 

reductant such as ascorbate is present (Lauhere and Briat, 1993).

Though not fully understood, there appears to be a generally accepted mechanism by 

which Fe becomes oxidised and deposited within ferritin (reviewed by Harrison and 

Arosio, 1996 and refs, cited therein). It would appear that Fe2+ is first bound and
<5-1

oxidised at catalytic centres on the protein. Fe then migrates to form clusters in the 

cavity of ferritin yielding stable nuclei (or iron-cores) of crystalline structure 

(ferrihydrite). Finally, the nuclei that are formed provide a secondary growing surface

04-onto which Fe can be deposited and oxidised, nucleated molecules are able to deposit
o  I

iron faster than those devoid of nuclei. When adding Fe to apoferritin, most of the iron
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is found on the protein and little in iron-core clusters. However, as more iron is added 

and becomes oxidised by ferritin, the Fe3+ greatly favours attachment to the iron-core 

compared to the protein. After the early production of Fe3+ clusters the rate of Fe3+ 

deposition greatly increases.

Much attention was paid to the oxidation of Fe by apoferritin and some of the work 

undertaken used recombinant ferritins composed of only one subunit type. This led to the 

discovery that the catalytic ferroxidase activity of ferritin (i.e. oxidation of Fe2+ to Fe3+) 

was associated with H-chains and not L-chains. Additionally, a metal centre was 

identified in human H-chain homopolymers that was not found in L-ferritin. Mutational 

studies indicated that removal of these metal centres could remove ferroxidase activity in 

H-chains. This opens the question as to what function do L-chains have in ferritin and 

iron storage, and why have heteropolymers at all? Horse spleen ferritin has a high 

average percentage of L-chain (85%), it also has a relatively high iron (average 2700 Fe 

atoms/molecule), yet the L-chain fraction extracted from horse spleen ferritin was found 

to be devoid of iron (Ishitani and Listowsky, 1975). Despite L-chains being unable to 

take up a significant amount of iron in vivo themselves as subunits, there is clearly an 

important function of the L-chain when in heteropolymers.

Human L-chain homopolymers are able to produce iron-cores using Fe2+ and this led to 

the suggestion that L-chains may possess an alternative Fe2+ oxidation site (Levi et al., 

1992). However, this does not happen as quickly or efficiently as the H-chain 

homopolymer. H-ferritins, on the other hand, are comparatively poor iron-core-formers
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(Levi et al., 1992; Levi et al., 1994). The L-chain iron-cores of homopolymers and native 

heteropolymers have been found to be more regular and slightly larger than those of the 

H-chain homopolymers, which has led to the view that L-chains may be more efficient at 

ferrihydrite nucleation (Wade et al., 1991; Levi et al., 1992). It would thus seem that H- 

chains are essential for rapid Fe2+ oxidation and thus removal of potentially toxic iron. L- 

chains appear to be efficient in nucleation and iron-core formation, hence provide the iron 

storage capacity of ferritin. This would explain why tissues that store iron tend to be rich 

in L-ferritin. It is therefore advantageous for ferritin molecules to be composed of both H 

and L-subunits because of functional and complimentary differences.

5.1.3 Liberation o f Iron from Ferritin

Mechanisms by which iron is liberated from ferritin for intracellular use are also poorly 

understood. Experimentally, iron stored within ferritin can be mobilised by the use of 

iron chelators such as desferal. This has been demonstrated in perfused rat liver (Baker et 

al., 1980) and in cultured rat hepatocytes (Laub et al., 1985). In vitro, iron can be readily 

mobilised from ferritin by small reductants such as ascorbate, cysteine and glutathione, 

assisted by an Fe2+ chelator such as ferrozine (Boyer et al., 1988). A variety of 

physiological reducing agents have been found to be effective, or at least partially 

effective in releasing iron from ferritin. Reduced flavins such as riboflavin, FMNH2 and 

FADH2 were found to be very effective (Sirivech et al., 1974), with superoxide found to 

be partially effective (see below). Dognin and Crichton (1975) tested in vitro a wide 

variety of biological reductants for possible mobilisation of iron from ferritin. Some of 

the more effective reductants included cysteine, ascorbate and glutathione, however all
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were very slow compared to reduced flavins and none of these agents has been clearly 

implicated in iron mobilisation from ferritin in vivo. From experiments performed using 

liver homogenates (Topham et al., 1989), it was proposed that xanthine and NAD(P)H- 

dependent ferriductase activity promotes the mobilisation of ferritin iron (and transferrin 

iron within the endosome) using a reduced flavin nucleotide (FAD or FMN) to apparently 

shuttle electrons from reduced enzymes to the iron contained within the ferritin molecule 

(Topham et al, 1989). In rat hepatocytes, iron has been shown to be mobilised as a 

consequence of the uptake of extracellular ferritin and subsequent degradation by 

lysosomes (Sibille et al., 1989). Ferritin is known to be degraded in secondary lysosomes 

and this is usually preceeded by ferritin aggregation and auotphagic engulfment by 

vacuoles. These vacuoles fuse with secondary lysosomes where ferritin is slowly 

degraded to a non-specific complex containing iron, partially degraded protein, and lipid 

(Bridges, 1990; Harrison and Arosio, 1996)). This material is known a haemosiderin and 

is very prominent in cells heavily loaded with iron. Iron is released by controlled 

interactions with enzyme generated reducing agents, where presumably it is available to 

enter the cytosol for intracellular use. However, little is known about the mechanisms by 

which this occurs (Bridges, 1990).

5.1.4 Ferritin and Oxidative Iron Mobilisation

In addition to the iron storage role of ferritin, it has long been considered that ferritins are 

also able to detoxify iron. This toxicity is mainly related to ability of ‘free’ iron to induce 

the formation of ROS, which in turn, causes oxidative damage (Halliwell and Gutteridge,

1999). Whilst stored in ferritin, iron is relatively inert as a promoter of ROS formation,

146



Chapter 5: Study o f the effects o f ALA incubation and UVA irradiation on ferritin in human cells

however it becomes active as a catalyst when it is released by reducing agents. 

Superoxide, a physiological reductant, is produced intracellularly from a number of 

different sources including enzymes like peroxidases and xanthine oxidase and by haem 

proteins as well as through auto-oxidation of various biomolecules (Halliwell and 

Gutteridge, 1999). UVA radiation of NADH and NADPH also produces superoxide 

(Czochralska et al., 1984;Cunningham et al., 1985). In 1974, Williams and co-workers 

reported that superoxide (generated by xanthine/xanthine oxidase) in vitro was capable of 

mobilising iron from ferritin. Since that report, the list of free radicals and toxicants also 

capable of releasing iron from ferritin has increased (reviewed by Reif, 1992) and will be 

briefly discussed. The efficiency of superoxide-dependent iron mobilisation that has 

been reported has been variable. In general, the release of iron by the xanthine oxidase is 

around a range of 5%. The amount released has been shown to decrease after repeated 

cycles of the xanthine/xanthine oxidase reaction (Bolann and Ulvik, 1990). In contrast to 

the xanthine oxidase method used to induce iron release from ferritin, Reif and colleagues 

(1988) showed that repeated bursts of superoxide generated radiolytically (using 137Cs y 

radiation) could release up to approximately 70% of iron from ferritin. It is not known 

why the two systems of producing superoxide vary so greatly in the relative efficiency of 

releasing iron from ferritin, although factors such as size and age of the ferritin iron cores 

used in these experiments seem to have some bearing on the amount that is released 

(Bolann and Ulvik, 1990). Despite the small amount of iron release from ferritin using 

the xanthine oxidase method of producing superoxide, the amount has been shown to be 

sufficient to promote lipid peroxidation of phospholipid liposomes (Thomas et al., 1985).
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The reduction potential of a compound appears to be the primary indicator of the ability 

of that compound to reductively mobilise iron from ferritin. Toxicant xenobiotics with 

redox cycling capacities such as paraquat (lung toxicant), adriamycin (heart toxicant) and 

alloxan (pancreatic toxicant), have high reduction potentials and have been shown to 

mobilise ferritin iron which, in turn, stimulates lipid peroxidation (Thomas and Aust, 

1986; Vile and Winterboum, 1988; Reif et al., 1989). Iron is mobilised by these 

xenobiotics either indirectly by the production of superoxide, or directly by the free 

radical form of these agents. Other mechanisms of iron release from ferritin have also 

been documented, particularly that of photoreduction. It is well known that some Fe3+ 

complexes can be photoreduced by UV light. Aubailly and colleagues (1991) 

demonstrated that in vitro UVA (and visible) radiation could photoreduce (thus release) 

approximately 4% of the ferric ions stored in ferritin. Laulhere and colleagues (1990) 

also demonstrated iron release from pea seed ferritin using UVA and visible wavelengths. 

They showed that it was the iron-core that was the site of photoreduction. It has also 

been demonstrated in vitro that ALA can cause the release of iron from ferritin and 

concomitantly initiate liposome lipid peroxidation (Oteiza et al, 1995).

5.1.5 The Objectives o f this Study

Recently, it was demonstrated in this laboratory (Pourzand et al., 1999) that UVA 

irradiation of cultured primary fibroblasts could result in an increase in the intracellular 

‘free’ iron pool as determined by assays based on IRP/IRE binding, cytoplasmic 

aconitase activity, and calcein fluorescence. It was proposed that the release of
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proteolytic enzymes from UVA-damaged lysosomes resulted in ferritin degradation 

(measured by immunoprecipitation) and the concomitant immediate release of ‘free’ iron. 

Previously, Cairo and colleagues (1995) had also shown intracellular iron release by 

adding the glutathione-depleting drug Phorone. This was similarly attributed to ferritin 

degradation.

The objective of our study was to quantitatively determine the level of ferritin after 

specified treatments using a polyclonal (anti-ferritin) enzyme-linked immunosorbent 

assay kit known as the Enzymun-Test® Ferritin kit (Roche, UK). The basic principles of 

this method are depicted in Fig. 5.1. In brief, a cytosolic extract is prepared which is 

added to a streptavidin tube along with biotinylated anti-ferritin antibodies and 

peroxidase (POD)-labelled anti-ferritin antibodies (the incubation solution). The 

antibodies bind to specific ferritin epitopes present on ferritin and the biotin part of the 

biotinylated antibody binds to streptavidin, thus anchoring the ferritin/antibody 

complexes to the tube. Excess antibodies are removed by washing them with the 

substrate-chromogen solution, ABTS® (di-ammonium 2, 2’-azino bis (3- 

ethylbenzothiazoline-6-sulphonate), is added. ABTS® is a peroxidase substrate and is 

cleaved by the peroxidase to produce a characteristic green coloured product, which is 

measured spectrophotometrically. This is intended to provide a quantitative 

determination of ferritin present in the sample extract.
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Fig. 5.1. Enzyme-immunoassay for the quantitative determination o f ferritin in vitro (Source: Enzymun- 

Test® Ferritin fact sheet provided with the kit)

Test principle: ELISA/1 -step sandwich assay using streptavidin technology
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It was the intention of our study to determine ferritin content in FEK4 primary human 

skin fibroblasts and HaCaT human immortalised epidermal keratinocytes after UVA 

irradiation. Previous unpublished data, using the cytoplasmic aconitase assay (see 

Chapter 3), suggests that there is a large increase in detectable iron levels after ALA 

treatment followed by UVA irradiation. It has been previously reported that PPIX can 

localise within lysosomal membranes (Morliere et al., 1987) and also within horse ferritin

Absorbance

Concn. 
Measurement/evaluation
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(Precigoux et al., 1994; Michaux et al., 1996; Crichton et al., 1997). PPIX is known to be 

a potent photosensitiser (see Chapter 2). Using the enzyme-immunoassay kit, the 

hypothesis that ALA treatment followed by UVA irradiation could cause ferritin 

degradation in FEK4 cells was tested. In turn, ferritin degradation would result in the 

concomitant release of iron release in these cells. This may occur by either rupturing 

lysosomal membranes allowing proteolytic enzymes to spill into the cytosol, in turn 

degrading ferritin, or by PPIX causing direct damage to the ferritin shell itself.
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5.2 Methods

5.2.1 Cell Culture

The primary human fibroblast cell line, FEK4, and the immortalised human keratinocyte 

cell line, HaCaT, were cultured as described in sections 2.2.2 and 3.2.1 respectively.

5.2.2 Chemical Treatment and Irradiation Conditions

FEK4 cells were treated ALA as described in section 2.2.3. Positive controls for the 

modulation of ferritin levels were prepared for both FEK4 and HaCaT cells. Solutions of 

50 pM haemin or 100 pM desferal (Ciba Geigy, Switzerland) were prepared using the 

appropriate conditioned cell culture media. These solutions were added back to the cells, 

which were incubated for 18 h at 37°C. Preparation and irradiation conditions of both 

FEK4 and HaCaT cells are described in section 2.2.6.

5.2.3 Preparation o f Cytoplasmic Extracts fo r Ferritin Analysis

Immediately after treatment, plates were placed on ice. Media was removed and cells 

were washed with ice-cold PBS. Ice-cold PBS containing 1 mM EDTA (Merck, UK) and 

the protease inhibitors Pefabloc® at a concentration of 50 pg/ml (Roche, UK), 

chymostatin at a concentration of 50 pg/ml (Roche, UK), and leupeptin at a concentration 

of 20 pg/ml(Roche, UK), was added and cells were scraped using a rubber policeman. 

Cells were collected and centrifuged at 4°C for 5 min at 1500 rpm. The supernatant was 

removed and cells re-suspended in 1 ml of the fresh ice-cold buffer containing the 

protease inhibitors. Cells were counted and centrifuged as before. The supematent was 

aspirated and the cells were re-suspended in ice-cold (lx) Munroe lysis buffer containing
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10 mM Hepes (pH 7.5), 3 mM MgCfe, 40 mM KC1 and 5% glycerol. The buffer also 

contained 50 pg/ml Pefabloc®, 50 pg/ml chymostatin, 20 pg/ml leupeptih, 0.3% Nonidet 

P-40 (Merck, UK), and 1 mM phenylmethlsulphonylfluoride (PMSF) (Sigma, UK). 

These were added to the lysis buffer just before use. Cell pellets were re-suspended and 

lysed on ice, using 250 pi per 1 x 107 cells of the buffer. Lysates were centrifuged at 4°C 

for 7 min at 2500 rpm. The cell extract (supematent) was removed and placed in a 1.5 ml 

tube then flash frozen in a dry ice/95% ethanol mixture. Extracts were stored at -70°C.

5.2.4 Determination o f Ferritin Content in Cell Extracts

Cell extracts were prepared for the measurement of ferritin content using a polyclonal 

enzyme-linked immunosorbent assay (ELISA) known as the Enzymun-Test® Ferritin Kit 

(Roche, UK). All components of this kit were brought to room temperature before use. 

The extracts were thawed and protein concentration was determined using the method 

described by Bradford (1976) with the BioRad reagent kit (UK). Bovine serum albumin 

(BSA) was used for calibration and absorption measurements were obtained using a 

microplate reader at 595 nm. Ferritin standards and cell extracts, to be measured, were 

added to separate streptavidin-coated tubes. Incubation buffer (containing the anti­

ferritin antibodies) was added to each tube and incubated at room temperature for 30 min. 

The tube contents were aspirated, washing solution was added, then the tubes were 

incubated for a further 30 min. The washing solution was aspirated then the chromogen- 

substrate solution was added to each tube. The tubes were incubated for 15 min at room 

temperature and the absorbance was determined immediately at 420 nm using a 

spectrophotometer. The concentration of ferritin protein in each extract was determined
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against the ferritin standards. This value was then normalised using total protein content 

obtained from the Bradford assay and expressed as nanograms (ng) of ferritin per 

milligrams (mg) of protein.

5.2.5 Statistical Analysis

Results are expressed as the mean ± one standard deviation. Significant differences (p< 

0.05) were determined by an unpaired t test.
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5.3 Results

5.3.1 Effects o f either UVA Irradiation, Haemin, or Desferal Treatment on the Ferritin 

Content o f the HaCaT Immortalised Human Keratinocytes

The ferritin content of HaCaT keratinocytes, in response to graded doses of UVA 

radiation, is shown in Table 5.1. Immediately after irradiation, cell extracts were 

prepared for the measurement of cytosolic ferritin content using a polyclonal enzyme 

linked immunosorbent assay (ELISA) kit (see section 5.2.3). After 100 kJ/m2 UVA there 

was approximately a 1.25-fold increase in the ferritin content. Increasing the dose of 

UVA led to a drop in the ferritin content. After 250 kJ/m2 UVA the ferritin level was not 

significantly different to that of the control. After 500 kJ/m2 UVA the ferritin level 

appeared to drop slightly below that of the control (5-10%), though this was, again, not 

significant. Positive controls, desferal and haemin, were used to test the efficacy of the 

ELISA kit (Table 5.1). Incubation of HaCaT cells with the iron chelator desferal (18 h, 

100 pM) resulted in a 5-6-fold decrease in ferritin compared to control levels. 

Incubation with haemin (18 h, 50 pM), on the other hand, resulted in a 10—11-fold- 

increase in ferritin.
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Fig.5.1. Effect o f various treatments on the ferritin content o f HaCaT cells. Ferritin levels were measured 

using an enzyme-linked polyclonal immunosorbent assay kit. Data represent the mean o f 4-6 independent 

experiments (± S.D.).

Treatment Ferritin Content (ng mg protein'1)

Non-irradiated 26.45 ±2.082

100kJ/m2UVA 32.96 ± 1.357*

250 kJ/m2 UVA 27.2 ± 0.989

500 kJ/m2 UVA 24.715 ±1.414

18 h Desferal (100 gM) 4.682 ± 0.350*

18 h Haemin (50 juM) 278.8 ± 7.636*

Statistical analyses were made using an unpaired t test. *, Significantly different from non-irradiated 

control ( p , 0.05 level).
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5.3.2 Effects o f either UVA Irradiation, Haemin, or Desferal Treatment on the Ferritin 

Content o f the FEK4 Primary Human Fibroblasts

Table 5.2 shows the effect of graded doses of UVA radiation on the ferritin content of the 

FEK4 fibroblasts. After irradiation with a UVA dose of 100 kJ/m2, the level of ferritin 

appears to rise to almost 1.2-fold above that of the control level. The ferritin level 

appears to peak around 250 kJ/m2, approximately 1.4-fold above the control. After a 

UVA dose of 500 kJ/m , the ferritin content had dropped to approximately 1.5-fold below 

that of the control level. The significance of this result, and how it compares with data 

from immunoprecipitation studies of ferritin after the same treatment (Pourzand et al., 

1999), is detailed in the discussion of this chapter. Positive controls, desferal and 

haemin, were also used for FEK4 (Table 5.2). Incubation with desferal for 18 h (100 

pM) resulted in approximately a 5-fold decrease in ferritin compared to control levels. 

Haemin treatment (50 pM, 18 h) resulted in approximately a 6-fold increase in ferritin 

levels. Compared to the HaCaT cells (Table 5.1), FEK4 possess a 3.5-4-fold higher 

basal content of ferritin.
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Fig.5.2. Ferritin content in FEK4 cells after various treatments measured using an enzyme-linked 

polyclonal immunosorbent assay kit. Data represent the mean o f 4-6 independent experiments (± S.D.).

Treatment Ferritin Content (ng mg protein'1)

Non-irradiated 99.828 ± 7.63

100kJ/m2UVA 117.95 ±7.141*

250 kJ/m2 UVA 140.69 ±22.641*

500 kJ/m2 UVA 65.646 ± 1.578*

18 h Desferal (1G0 gM) 19.605 ±2.623*

18 h Haemin (50 nM) 572.43 ± 13.534*

Statistical analyses were made using an unpaired t test. *, Significantly different from non-irradiated 

control ( p , 0.05 level).
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5.3.3 Effects o f ALA Incubation and UVA Irradiation on the Ferritin Content o f the 

FEK4 Primary Human Fibroblasts

Table 5.3 shows the effects of ALA treatment (4 and 18 hours) and UVA irradiation on 

the ferritin content of the FEK4 fibroblasts. Treatment of cells with 100 or 200 pM ALA 

for 4 h resulted in a decrease in intracellular ferritin content of 1.035- and 1.25-fold 

respectively, compared to the non-treated control. When these ALA-treated cells were 

irradiated with UVA, increases of 3 -  3.5-fold in ferritin content were detected compared 

to the non-irradiated controls (Table 5.3). After irradiation, ferritin levels were higher in 

the 100 pM ALA treated sample compared to those of the 200 pM treatment (Table 5.3).

Treatment of cells with ALA for 18 h resulted in a decrease in ferritin content of 

approximately 2.5 -  3-fold, with both 100 and 200 pM concentrations (the effect was not 

significantly different comparing the two concentrations). Irradiation of these ALA- 

treated cells led to increases in ferritin levels compared to the non-irradiated controls. 

The irradiated 100 pM and 200 pM ALA treated populations showed approximate 

increases in detectable ferritin over the non-irradiated controls of 1.2 -  1.4-fold and 1.6 -  

1.7-fold respectively. Comparison of the 50 kJ/m2 and 100 kJ/m2 UVA doses, shows 

there is no significant difference between the two, after incubation with either 100 or 200 

pM ALA.
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Fig.5.3. Ferritin content in FEK4 cells treatments with ALA then exposed to UVA radiation. Ferritin 

content was measured using an enzyme-linked polyclonal immunosorbent assay kit. Data represent the 

mean o f  4-6 independent experiments (± S.D.).

ALA Treatment Ferritin Content (ng mg protein'1)

Non ALA-treated/non-irradiated 99.828 ± 7.63

4 h 100 jiM non-irradiated 96.475 ± 8.308

4 h 100 (jM 50 kJ/m2 UVA 313 ±18.129*

4 h 100 nM 100 kJ/m2 UVA 307.2 ±14.119*

4 h 200 jiM non-irradiated 78.685 ± 4.546

4 h 200 |iM 50 kJ/m2 UVA 274.1 ±24.748*

4 h 200 nM 100 kJ/m2 UVA 232.75 ± 19.771*

18 h 100 fiM non-irradiated 36.355 ±5.154

18 h 100 |iM 50 kJ/m2 UVA 46.11 ± 1.569*

18 h 100 nM 100 kJ/m2 UVA 48.91 ±3.493*

18 h 200 fiM non-irradiated 33.68 ± 1.244

18 h 200 fiM 50 kJ/m2 UVA 55.49 ±2.135*

18 h 200 |liM 100 kJ/m2 UVA 54.1 ±3.818*

Statistical analyses were made using an unpaired t test. *, Significantly different from non-irradiated 

control ( p , 0.05 level).
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5.4 Discussion

The basis of this study was the data produced in this laboratory by Pourzand and 

colleagues (1999) who demonstrated that UVA treatment of FEK4 fibroblasts resulted in 

an increase in the intracellular ‘free’ iron pool. One of the possible sources of this iron 

was postulated to be ferritin. In the Pourzand et al. study it was shown using 

immunoprecipitation that ferritin degradation occurred and that the level of degradation 

was a function of UVA dose. At least some of this degradation appeared to be a result of 

the release of proteolytic enzymes from lysosomes whose membranes had been damaged 

by UVA radiation. Quantification of ferritin degradation is difficult using 

immunoprecipitation, so the purpose of this study was to quantify this apparent ferritin 

degradation in FEK4 fibroblasts using a polyclonal enzyme-linked immunosorbent assay 

kit (Roche, UK). This method was also used to assess ferritin content in FEK4 

fibroblasts treated with ALA and UVA radiation, and in HaCaT immortalised human 

keratinocytes exposed to UVA radiation.

Analysis of the basal ferritin content of FEK4 fibroblasts and HaCaT keratinocytes 

(Tables 5.1 and 5.2) reveals that the basal content of ferritin in FEK4 cells is 

approximately 3.5 -  4-fold that of HaCaT cells. This is in contrast to previous results 

with primary fibroblasts and primary keratinocytes. Applegate and co-workers (1995) 

showed that ferritin levels were 2 -  3-fold higher in keratinocytes compared with 

matching fibroblasts (i.e. from the same biopsy). The difference between these two 

studies was that our study involved a comparison of a primary fibroblast cell line, FEK4, 

with the fast growing immortalised keratinocyte cell line, HaCaT. Primary keratinocytes
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grow slower than primary fibroblast cell lines. Recently it has been observed (C. 

Pourzand, unpublished data, this laboratory) that HaCaT cells possess little or no 

detectable L-ferritin as measured by immunoprecipitation. Detection of the ferritin that 

was present (i.e. H-ferritin) was difficult to detect because of the low levels.

In previous chapters, it has been reported that irradiation of FEK4, and to a lesser extent 

HaCaT cells, results in an increase in the intracellular ‘free’ iron pool. Quantification of 

ferritin content in HaCaT cells, in response to UVA radiation (Table 5.1), suggests that 

UVA has little or no effect on the ferritin content of these cells. With a dose of 100 kJ/m2 

UVA, there appears to be an increase in ferritin levels of approximately 1.25-fold. Doses 

above 100 kJ/m2 result in a decrease in ferritin levels to just below the control level (after 

500 kJ/m2 UVA), but this is not significant. In HaCaT cells, the response observed in 

ferritin levels as a result of UVA-irradiation is not significant.

When FEK4 cells were irradiated with graded doses of UVA, an apparent increase in the 

level of ferritin (Table 5.2) was observed up to a dose of 250 kJ/m2, where it peaks at 

approximately 1.4-fold above that of the control level. Between 250 and 500 kJ/m2 UVA 

the level of ferritin decreases. After 500 kJ/m UVA the ferritin level is approximately 

1.5-fold below that of the control. This would appear to contradict the result seen with 

the UVA-mediated degradation of ferritin as measured using immunoprecipitation 

(Pourzand et al., 1999). In the study by Pourzand et al. (1999) it was shown that UVA 

irradiation resulted in degradation of ferritin in a dose-dependent manner. However, 

ferritin levels measured in both our study and the study by Pourzand et al. (1999)
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employed cell extracts that were prepared immediately after irradiation (and both used a 

mouse polyclonal antibody to detect ferritin). This means that it is unlikely that the cell 

is capable of synthesising new ferritin. The reason and the significance of the different 

responses observed using the two methods may be explained. For analysis of ferritin 

using immunoprecipitation, cell extracts are subjected to a number of freeze-thaw cycles 

to dissociate (radioactively labelled) ferritin into its H and L subunits. The purpose of 

this procedure is so that H- and L-ferritin subunits are seen as discrete bands (21,000 and 

19,000 Da respectively) when run on a Western gel, as revealed by autoradiography. 

UVA-induced degradation of these subunits results in the disappearance of these distinct 

bands, presumably because the degradation products are random and varied so that 

discrete bands are not formed when run on a gel. The ferritin assay (ELISA kit method), 

on the other hand, does not employ the deliberate dissociation of ferritin into its subunits. 

This, in part, may explain why an increase in the apparent level of ferritin (in FEK4 cells) 

is observed after UVA irradiation using the ferritin assay. Allen and colleagues (1997 

and 1999) have documented, using an anti-ferritin mouse polyclonal antibody and atomic 

force microscopy, that ferritin possesses many antibody-antigen binding sites, i.e. it is 

polyepitopic. We believe that the some of the apparent increases observed in ferritin 

levels after UVA irradiation, measured using the ferritin assay, may occur as a result of 

fragmentation of the ferritin molecule into its subunits. Some of the increases may also 

be due to degradation of subunits, which in turn, might liberate more detectable epitopes. 

After a dose of 500 kJ/m2 UVA, the level of ferritin that can be measured by the ferritin 

assay drops to below that of the control (Table 5.2). This presumably occurs because so
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much damage has occurred to the protein that, either fragments are produced that contain 

one epitope or less, or the epitopes are no longer recognisable by the antibody.

To directly compare data from immunoprecipitation and the ferritin assay, the extracts 

prepared for the ferritin assay would have to be subjected to freeze thaw cycles to 

dissociate the subunits before analysis. This would remove any apparent increases in 

ferritin levels measured due to the ferritin molecule breaking up into its subunits as 

function of UVA radiation. Any changes in ferritin levels detected after this procedure 

must be due to changes other than subunit dissociation. Changes in ferritin levels that are 

then observed after UVA irradiation, as measured using the ferritin assay, could be 

interpreted in one of two ways. If the levels of ferritin decrease after UVA treatment, this 

might be interpreted as degradation of the ferritin subunits. This would be convenient as 

quantitative measurements of ferritin subunits could be made, which could be compared 

with the immunoprecipitation data. The results would have to be expressed as ng of 

ferritin subunits per mg of protein rather then ng of ferritin per mg protein (as the ferritin 

kit specifies). On the other hand, if the apparent level of ferritin increases after UVA 

treatment, it is possible that degradation of ferritin subunits is occurring, but is liberating 

more detectable epitopes in the process (or more fragments that contain two or more 

epitopes). The quantitative measurement under this scenario would have to be defined as 

number of ferritin epitopes recognised per mg of protein. One very important point does 

need to be addressed however, and that is certain experimental treatments might cause 

ferritin damage that results in subunits to dissociate from the ferritin molecule. This 

would probably induce iron release, as iron-cores may be exposed to the cytosol (and
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thus a reducing environment), but may not necessarily require significant damage to the 

subunits, just breaking of intermolecular bonds. Therefore, iron release from ferritin 

could occur, but a method that involves dissociating subunits in order to analyse them 

(i.e. immunoprecipitation) would not detect this form of damage, which in turn could 

prevent the identification of ferritin as the source of iron release. Under such 

circumstances, dissociating ferritin into its subunits for analysis would be inappropriate 

and exemplifies one advantage the ferritin assay may have over immunoprecipitation (if 

freeze-thaw cycles are not used).

One option may be to perform both assays as originally described i.e. dissociation of 

subunits with immunoprecipitation, but not with the ferritin assay. If a reduction in 

ferritin subunits is observed after immunoprecipitation, then an increase observed in the 

ferritin assay would indicate that subunits are being degraded, but are exposing more 

epitopes in the process (or more fragments with two or more epitopes). Under this 

circumstance, a quantitative measurement could be made with the ferritin assay, but 

would have to be expressed in arbitrary units as the number of epitopes recognised by the 

anti-ferritin antibody per mg of protein, which otherwise, may not reflect the true level of 

ferritin. This emphasises the importance of using both techniques, as without the 

knowledge of the degradation of ferritin, as observed with immunoprecipitation, an 

incorrect interpretation may be made of results obtained using the ferritin kit. 

Alternatively, the ferritin assay may measure increases in ferritin levels that occur 

through the production of more protein e.g. by haemin treatment (Table 5.2). Again, this 

could be confirmed by performing immunoprecipitation ferritin. The hypothesis that
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treatment causes fragmentation of ferritin and the increased recognition of epitopes, could 

be an explanation for the increased ferritin levels observed in HaCaT cells after UVA 

irradiation. Because there is a much lower basal level of ferritin in the HaCaT cells, the 

response to UVA was less than that with the FEK4 cells.

Desferal (an iron chelator), and haemin (ferric haem) treatments were used in this study 

as controls to show modulation of ferritin levels. HaCaT and FEK4 cells showed a 5 -  6- 

and 5-fold reduction in the ferritin level respectively in response to desferal treatment 

(lOOfiM, 18 h), and 10-11- and 5 -  6-fold increase respectively in response to haemin 

treatment (50 pM, 18 h). The desferal treatment and resultant ferritin down-regulation 

indicates iron starvation within the cell and the apparent lack of need for iron storage, as 

expected. After the haemin treatment, on the other hand, the large up-regulation of 

ferritin protein suggests a protective response by the cell that enables the cell to sequester 

and store the potentially hazardous influx of iron absorbed in the form of haemin.

Treatment of FEK4 cells with ALA for 4 and 18 hours resulted in a decrease in ferritin 

levels, as measured using the ferritin assay (Table 5.3). The effect observed was much 

greater for the longer incubation time (see below). This decrease in ferritin levels would 

appear to occur as a result of the iron chelator properties ALA-induced PPEX. The 

penultimate step of haem biosynthesis is catalysed by the enzyme ferrochelatase. This 

event involves insertion of iron into the tetrapyrrole ring of PPIX producing haem and 

effectively chelating iron at the same time. The reduction in ferritin content by ALA 

would suggest that iron could be mobilised from ferritin to produce haem. Cells treated
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with ALA show reductions in the ‘free’ iron pool and aconitase activity, supporting the 

hypothesis that ALA-induced PPEX can function as an iron chelator (see Chapters 4 and 2 

respectively).

Irradiation of ALA-treated cells with UVA resulted in an increase in the detectable 

number of ferritin epitopes (Table 5.3). Irradiation of cells after 4 h ALA incubation 

caused a huge increase in the detectable number of ferritin epitopes (between 3 -  3.5-fold 

above that of the non-irradiated control). This increase far exceeded that observed by 

UVA alone, suggesting that ALA treatment, followed by UVA irradiation may be more 

effective in damaging ferritin and act by a different mechanism. The fold increase in the 

number of ferritin epitopes measured after 4 h, 100 and 200 pM ALA treatment, are 

comparable after UVA irradiation. However, the number of epitopes detected after the 

200 pM treatment, followed by irradiation, is lower compared with that of the 100 pM 

ALA treatment. This is consistent with the observation that the higher ALA 

concentration results in greater ferritin depletion. The number of epitopes detected after 

4 h ALA treatment appeared to go down after the larger dose of 100 kJ/m UVA 

compared to the 50kJ/m2 dose. This would suggest that the degree of damage caused to 

the ferritin is more severe.

After incubation of cells with ALA for 18 h (100 and 200 pM), the ferritin content of 

FEK4 cells had decreased by 2.5 -  3-fold below that of the control level (Table 5.3). 

This was a much greater decrease than that observed after treatment with ALA for 4 h. 

Cells that were treated with ALA for 18 h followed by irradiation showed an apparent
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increase in ferritin levels as observed for the 4 h treatment, but the fold increases in the 

number of ferritin epitopes detected were much lower. The fold increases after 

irradiation, compared to non-irradiated controls, ranged from 1.2 -  1.7-fold depending on 

the concentration of ALA treatment and the dose of UVA administered (Table 5.3). This 

low level of ferritin modulation is consistent with the level of ferritin originally present.

The results presented in this study that involved treatment of cells with ALA and UVA 

would appear to support the hypothesis that ALA-induced PPIX can exacerbate 

degradation of ferritin by virtue of a photosensitisation mechanism. Whether this 

degradation process occurs as a result of proteolytic enzymes from damage to lysosomes, 

as proposed by Pourzand and colleagues (1999), or whether it is due to direct 

photosensitisation of the ferritin molecule by PPIX, is not clear from this study. As 

mentioned in the introduction, PPIX has been shown to locate within ferritin (Precigoux 

et al., 1994; Michaux et al., 1996). If PPIX located within the ferritin molecule is 

exposed to UVA during irradiation, this could result in direct photosensitised damage to 

the ferritin protein shell. Clarifying the precise mechanisms involved may be difficult. 

PPIX added to cells and then irradiated has been shown to damage lysosomes and result 

in the spillage of proteolytic enzymes into the cytosol (Morliere et al, 1987). Thus, it 

would seem reasonable to expect proteolytic enzyme spillage from lysosomes (as a result 

of ALA treatment and UVA irradiation) to be responsible for at least some ferritin 

degradation. However, if PPIX is located within the ferritin molecule and is able to cause 

direct photosensitised damage, then this would probably occur before any protease could
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reach the ferritin molecule. The action of proteases may be a secondary event, but would 

still be important.

In conclusion, this study supports the hypothesis that UVA irradiation of human cells 

results in damage to the ferritin protein. This, in turn, causes an increase in the ‘free’ iron 

pool. Treatment of cells with ALA reduces the basal level of ferritin. UVA irradiation of 

these ALA-treated cells would appear, under the appropriate conditions, to exacerbate 

damage caused to ferritin.
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6. Conclusions and Future Work

This project was divided into two areas. One was to determine the importance of PPIX 

as an intracellular chromophore in UVA-mediated damage and a second to establish a 

clearer understanding of the fate of intracellular iron after UVA irradiation. The latter 

part of the project was investigated using three techniques. These included the direct 

measurement of intracellular iron by the flow cytometry-based iron assay, indirect 

measurement of intracellular iron by the cytoplasmic aconitase assay, and measurement 

of the iron storage protein ferritin as measured by the ferritin assay.

One of the main purposes of this project was to test the hypothesis that the basal content 

of PPIX may be critical in the UVA-mediated inactivation of human cells. To examine 

this, PPIX levels were modulated in the human lymphoblastoid cell line, TK6, and the 

primary human fibroblast cell line, FEK4, by incubation with ALA for 4 and 18 hours. 

At known intracellular PPIX concentrations (measured by spectrofluorimetry), cells were 

irradiated with graded doses of UVA radiation to produce dose response curves. The 

slope of each dose response curve provides the rate of inactivation of a cell population at 

each particular intracellular PPIX concentration. By examining the relationship between 

inactivation rate constants at different intracellular PPIX concentrations, an estimate of 

the basal content of PPIX necessary to lead to significant cell death following UVA 

irradiation was made (see Chapter 2). From this study it was deduced that the basal 

content of PPIX in TK6 cells was insufficient to make a significant contribution to UVA- 

mediated inactivation. In contrast, the basal content of FEK4 cells appears to be critical 

in the UVA-mediated inactivation of these cells. PPIX therefore, may be an important
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UVA absorbing chromophore responsible for inactivation of certain cell types, but not 

others. This theory would have to be tested further by performing similar studies on 

other cell lines such as keratinocytes. Other information derived from this study was that 

the MTS reagent-based assay is an unsuitable method for determining viability after 

treatment with ALA as we have documented a reaction between the MTS tetrazolium salt 

with ALA producing a coloured formazan product (Fig. 2.10)

The results measuring the different parameters of intracellular iron including aconitase 

activity, free iron levels and ferritin levels, all showed that FEK4 cells possess greater 

intracellular iron levels and ferritin levels than HaCaT cells. It has been observed that 

HaCaT cells only possess H-ferritin (C. Pourzand, unpublished observation, this 

laboratory). A recent publication showed that the level of H-ferritin, which possesses 

ferroxidase activity, appears to have an inverse relationship with the level of intracellular 

free iron (Beaumont et al., 1999). This may suggest why low free iron levels are 

observed in HaCaT cells. The lower levels of as membrane damage measured by flow 

cytometry and calcein fluorescence could be a reflection of the fact that, after UVA 

irradiation, as lower basal ‘free’ iron concentration and iron release in HaCaT cells could 

limit the degree of lipid peroxidation and membrane damage observed in these cells 

(Fig.4.6). A future study in this area would be to determine whether a correlation exists 

between intracellular ‘free’ iron levels of different cell types, and UVA-induced 

membrane damage. Other factors also need to be considered such as intracellular 

antioxidant concentration, as this can vary and may affect the results obtained in such a 

study (Leccia et al., 1998).
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UVA irradiation of the two cell lines FEK4 and HaCaT generally resulted in similar 

trends in the responses measured by the cytoplasmic aconitase assay, the iron assay, and 

the ferritin assay. The difference between the two cell lines was mainly that the response 

observed by the FEK4 cells was much greater, in all respects, compared to the HaCaT 

cells. The results did not provide conclusive evidence that there was a change in ferritin 

levels of HaCaT cells after UVA irradiation, as measured by ferritin assay.

Treatment of FEK4 cells with ALA reduced the ‘free’ iron pool as measured by aconitase 

activity, the iron assay and the ferritin assay. Irradiation of ALA-treated cells produced 

some very significant results using these three assays. There was a huge increase 

measured by aconitase activity, much larger than UVA alone (see Chapter 3). Using the 

ferritin assay, as described herein, there appeared to be fragmentation of ferritin (see 

below and Chapter 5), but on a considerably greater scale than UVA irradiation alone. 

The iron assay showed increases in chelatable iron after less severe treatments with ALA 

and UVA. Treatment of cells with higher ALA concentrations and UVA doses resulted 

in comparatively lower levels of measurable chelatable ‘free’ of iron (accompanied by 

greater increases in membrane damage) and in some cases these levels were below 

control levels (Chapter 4 and see below). Taking the results together, we speculate that 

ALA treatment of cells followed by UVA irradiation results in severe damage to ferritin 

and other cellular targets. This, in turn, results in a huge release of intracellular iron, 

which is detected by the decrease in binding activity of the IRP and concomitant increase 

in cytoplasmic aconitase activity. However, the level of damage can be so severe (with 

the more detrimental experimental conditions) that the cell membrane is damaged
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allowing the leakage of cytosolic components including iron and iron bound to CA. This 

is evident by the damage to the plasma membrane and the drop in iron levels, as 

measured by the flow cytometry-based iron assay (Chapter 4). The reason why the 

aconitase activity does not also drop after the more severe treatments that result in loss of 

iron from the cell is not clear. It is possible that the way the assay is designed does not 

allow enough time for the IRP to respond to the loss of iron from the cells. Alternatively, 

there may an additional source of iron such as ‘free’ haem or another form of iron that is 

released into the cytosol after treatment that might be recognised by the IRP but not 

bound by calcein. It is possible that the IRP is responding to forms of iron in the cell that 

the iron assay cannot detect and that this causes this large change in response in aconitase 

activity after treatment of cells with ALA followed by UVA irradiation. Future work in 

this area may lead to the identification of a form of iron that is liberated after oxidative 

stress and is recognised by the IRP, but not detected by the iron assay.

Concerning the effects of UVA irradiation on the modulation of cytoplasmic aconitase 

activity of the two cell lines, FEK4 fibroblasts, and HaCaT keratinocytes (Chapter 3), it 

was observed that these results sharply contrast with those documented in another study 

that measured the effect of UVA irradiation on the cytoplasmic aconitase activity of 

NCTC 2544 cultured human keratinocytes (Giordani et al., 1998). The cytoplasmic 

aconitase activity in the study by Giordani et al. (1998) showed a dose-dependent 

decrease after UVA irradiation. In contrast to this, both of the cell lines used in our study 

showed an increase in cytoplasmic aconitase activity up to 250 kJ/m UVA irradiation. 

Between 250 and 500 kJ/m2 UVA the aconitase activity decreased. The UVA source
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used in our experiments doe not emit the UVA II (320-340 nm) part of the UV spectrum 

(fig. 2.3), which could be crucial in explaining the differences between the results 

obtained in our study and the results obtained by Giordani et al. (1998) as the UVA 

source used by Giordani et al. (1998) emitted the more powerful UVA II wavelengths. 

Future studies in this area should focus on more discrete wavelength bands of UV 

radiation and their application to cultured cells to determine if the affect of UV on 

aconitase activity is wavelength dependent. Similar studies using the flow cytometry- 

based iron assay should also be run in parallel to confirm if iron release is induced.

The polyclonal (anti-ferritin) enzyme-linked immunosorbent assay (the ferritin assay) 

was originally employed to quantify ferritin levels after UVA irradiation because 

quantification of ferritin using immunoprecipitation is difficult. Using 

immunoprecipitation Pourzand et al. (1999) showed that ferritin was degraded by UVA 

irradiation in a dose-dependent manner. We have shown using the ferritin assay that an 

apparent increase in the level of ferritin occurs after UVA irradiation. The significance 

and explanation for this (see Chapter 5 for detailed discussion) is that the ferritin protein 

is polyepitopic and when exposed to UVA radiation degradation occurs resulting in the 

exposure of more epitopes. This appears as an increase in ferritin protein as measured by 

the ferritin assay.

It is clear that both immunoprecipitation and the ferritin assay need to be employed to 

assess ferritin status. The ferritin assay can provide a quantifiable method of determining 

ferritin levels, however, the method of expressing the result may need to be modified
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depending on the treatment applied to the cells. For example, the kit specifies that 

measurements made using this method should be expressed as ng of ferritin per mg 

protein, which is acceptable if treatments that induce the production of ferritin (such as 

haemin treatment) are used. However, treatments that result in the degradation of ferritin 

(which should be initially investigated using immunoprecipitation) should be expressed 

as number of epitopes recognised per mg of protein. This may go up initially as the 

protein is degraded (and more epitopes are exposed), but may also decrease if treatment 

results in the destruction of epitopes or the degradation and production of fragments 

containing one or no epitopes. Future studies in this area, using the ferritin assay, should 

ideally concentrate on the initial elucidation of what increase in epitopes measured is 

contributed by dissociation of ferritin into its subunits, and what increase in epitopes 

measured is contributed by the degradation of subunits into smaller fragments. This can 

be done by freeze-thawing extracts, which dissociates ferritin into its subunits. The 

purpose of this step would be to determine what level of dissociation of subunits is 

induced by a particular treatment before subunits are themselves degraded. This may 

provide information on the release of iron from ferritin that is induced by subunit 

dissociation, but that is not detected by immunoprecipitation.

The mechanisms that result in such large increases in ferritin epitopes as measured by the 

ferritin assay after treatment of cells with ALA followed by UVA irradiation should be 

investigated. It would appear that damage caused to ferritin by UVA irradiation of cells 

with altered PPIX levels does not occur in an identical way to that in cells that are treated 

with UVA alone. Release of proteolytic enzymes into the cytosol from cells with UVA-
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damaged lysosomes has been demonstrated by Pourzand et al. (1999) which were 

proposed to be responsible for the degradation of ferritin. Release of these proteolytic 

enzymes should be investigated after treatment of cells with ALA and UVA irradiation in 

order to determine if there is any difference after this treatment, compared with treatment 

of cells with UVA alone. If a large increase in the release of these enzymes was 

observed, this may be correlated with the damage observed to ferritin after such a 

treatment. If, however, such an increase was not observed after ALA treatment and UVA 

irradiation, then it would appear that the increase in epitopes observed using the ferritin 

assay would be attributable to an alternative mechanism, possibly by direct 

photosensitised damage of the ferritin molecule by PPIX.

The iron assay, detailed in Chapter 4, represents the development of a method that can 

measure both intracellular chelatable iron and membrane damage in the same assay 

system based on the fluorescence measurements of calcein by flow cytometry. The 

method is not complete, as a procedure of evaluating CA bound iron loss through 

damaged membranes needs to be established because the flow cytometer is only capable 

of measuring intracellular fluorescence. This procedure would probably involve the use 

of a technique such as the calcein assay (Epsztejn et al., 1997), which uses 

spectrofluorimetry to obtain fluorescence measurements. As described in Chapter 4, the 

iron assay has been used to estimate values of the chelatable iron pool. There is however, 

a more accurate process of obtaining the intracellular ‘free’ iron concentration that could 

be employed in this system. This more accurate method also includes the determination 

of chelatable iron that is not bound to CA. Previously Epsztejn et al. (1997) have
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described this method for the calcein assay. To obtain the total chelatable ‘free’ iron 

concentration using our system, some additional measurements are required. The total 

intracellular CA concentration needs to be determined by calibrating the cell system with 

known concentrations of CA. The concentration of iron bound to calcein, [CA-Fe], is 

also needed. This is obtained by the measuring the change in fluorescence evoked by 

adding the fast permeating iron chelator, SIH, which is then translated into a CA 

concentration using the CA calibration. CA binds Fe stoichiometrically (1:1) so this 

reveals the concentration of Fe bound to CA. The ‘free’ cell iron concentration [Fe2+] 

that is not bound to CA, but is chelatable, can be derived from experimentally determined
^  i

values of CA-Fe dissociation constant {Kj) in the particular cell lines used. The Kj  is 

obtained by titrating CA-loaded cells with Fe2+ (i.e. FAS) and measuring the concomitant 

fluorescence changes. The [Fe] value is calculated from application of the mass law 

equation using the experimentally derived Kj  value of [CA-Fe], the [CA-Fe] value and 

the intracellular CA concentration:

Kd = [C A] • [Fe]/[C A-Fe]

The total intracellular chelatable ‘free’ iron is defined as the sum of [CA- Fe] and [Fe]. 

Derivation of this value is the next step in the development and refinement of the iron 

assay.

In conclusion, we provide evidence in this study to implicate PPIX as an important UVA 

absorbing chromophore that may be crucial in the UVA-mediated inactivation of certain 

cell types. We also document the development of a flow-cytometry-based fluorescence
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assay system that is capable of determining membrane damage and intracellular ‘free’ 

iron levels. Using this system and also measuring cytoplasmic aconitase activity, we 

show that UVA radiation induces an increase in intracellular ‘free’ iron levels which is 

augmented by ALA treatment prior to irradiation. We also show using the ferritin assay 

that UVA irradiation results in the degradation of the iron storage protein ferritin (which 

is also augmented by ALA pre-treatment), providing evidence that ferritin is a major 

source of iron release after such treatment.
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