
        

University of Bath

PHD

First principles calculations of the interaction of rare-gas atoms with transition metal
surfaces

Betancourt, Angel E.

Award date:
2000

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019



FIRST PRINCIPLES CALCULATIONS 
OF THE INTERACTION OF 
RARE-GAS ATOMS WITH 

TRANSITION METAL SURFACES

/

Submitted by Angel E. Betancourt 
for the degree of 

Doctor of Philosophy 
of the University of Bath 

2000

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author. 
This copy of the thesis has been supplied on condition that anyone who consults it is 
understood to recognise that its copyright rests with its author and no information 
derived from it may be published without the prior written consent of the author.

This thesis may be made available for consultation within the University library 
and may be photocopied or lent to other libraries for the purposes of consultation.



UMI Number: U601564

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U601564
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



Preface

This dissertation describes work done between April 1997 and September 2000 in 
the condensed matter theory group at the University of Bath, under the supervision 
of Professor David Bird. This dissertation is the result of my own work and has 
not been submitted in whole or in part for degree or diploma at this or any other 
university before.

/

Angel E. Betancourt 
Bath, September 2000



Dedicated to my wife Novelty and our child Rafael



Acknowledgements

I thank my supervisor Professor David Bird for his enthusiasm and interest in my 
work and for having introduced me to one interesting field of condensed matter 
physics.

I am grateful to the Venezuelan Research Council (CONICIT) and the Universidad 
de Oriente for a Ph.D studentship.

I acknowledge Dr. Simon Crampin for providing copies of the Troullier-Martins 
pseudopotential and Murnaghan fit programs.

I thank Professor Mats Persson for providing the data for the Barker and Rettner 
potential shown in Figure 4.11.

Thanks are due to John Ipe and John Trail for sharing offices with me and creating 
a friendly and pleasant workplace.

Finally, I thank my family for their love and support during this long and sometimes 
difficult time.



Abstract

We have studied the interaction between rare-gas atoms and transition metal sur
faces for the systems Xe/Pt, Ne/Rh and He/Rh. All the calculations were carried 
out using models supported by first principles. Pseudopotentials for each element 
were constructed using the Troullier-Martins scheme and they were carefully tested 
by calculations of equilibrium geometry properties. The exchange-correlation ef
fects were described with local density approximation (LDA) and generalised gra
dient approximation (GGA). A pseudopotential-mixed basis method was used as 
the main model to obtain the ground-state energy. For all studied systems, the 
binding mechanism was studied in terms of the projected density of states, which 
allows a determination of the charge transfer between the adsorbate and the metal 
surface. In the case of Xe adsorbed on the P t( l l l )  surface, we found a remarkable 
difference in the interaction potential curves between the exchange-correlation ap
proximations. The results obtained with the LDA are in better agreement with 
experiment than the GGA, which contrasts with the observation that the GGA 
usually improves the LDA’s results. Both approximations predicted that the on- 
top site is the most favourable place for adsorption of an Xe atom. For the cases 
of He and Ne on Rh(llO), the GGA provided a better description of the adsorp
tion parameters (well depth, vibrational energy and equilibrium adsorption height). 
Our results reproduce the anticorrugating effect observed experimentally for He.

Also we have studied the interaction of a molecule of CO with the Pt(llO) sur
face, in this case an ultrasoft potential scheme was used due to the difficulty of 
constructing efficient norm-conserving potentials for the elements that form the 
carbon monoxide molecule. Adsorption was studied as a function of the coverage 
of CO at the high symmetry sites and two possible structures for the Pt substrate 
were considered (an unreconstructed structure and a missing row structure). The 
equilibrium geometry structure was calculated which allowed us to determine the 
distortion of the clean substrate due to the adsorption of CO. Our estimations of 
the binding energies are larger than those reported in the literature.
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Chapter 1

Introduction

First principles theory provides a framework for understanding the complexities as

sociated with surface phenomena. Typically, first principles calculations on adsor- 

bate-metal systems provide information as a function of the adsorption site and 

adsorbate geometry on the total energy, adsorption energy, wave functions, elec

tronic charge distribution, projected density of states, work function, vibrational 

frequency and dipole moment. On the other hand, knowledge of the energy as 

a function of the atomic coordinates allows the determination of the equilibrium 

geometry, minimum energy reaction pathway and transition state energy. In gen

eral, a first principles formalism is quite demanding, but within density functional 

theory (DFT) (Kohn & Sham, 1965) high quality solutions can be obtained.

Any fundamental understanding of the microscopic properties of a solid surface 

requires a reasonably detailed model of the atomic geometry. Generally, the sim

plest structural model is usually chosen. It is assumed that the surface geometry 

is that which would result from a truncation of the bulk with no other changes. 

In general, the truncation model will not represent the most stable configuration 

(Masel, 1996). Rearrangements of the surface atoms and of the electronic charges
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may occur for a real surface. If the rearrangement leads to changes in the interlayer 

spacing perpendicular to the surface, it is referred to as a relaxation, but if it results 

in a different two-dimensional geometry of one or more surface layers, it is called a 

reconstruction. Traditionally, the supercell geometry approximation has provided 

the most powerful way to represent these changes and to study the interaction 

between adsorbate atoms and a metal clean surface. The use of a slab enables us 

to obtain reliable results not only because it represents a real system more accu

rately than a small cluster, but also because the calculated results converge well 

with respect to the number of surface layers in the slab and the separation between 

slabs.

When atoms or molecules are adsorbed on an ordered crystal surface, they usu

ally are assembled in ordered surface structures over a wide range of tempera

ture and coverage (Lundqvist, 1990; Somorjai, 1994). By considering separately 

adsorbate-adsorbate interactions and adsorbate-substrate interactions, two well- 

defined features are distinguished. In the first case, the adsorbate-adsorbate forces 

are smaller than the adsorbate-substrate bonding, in this situation the bond in

volves a significant sharing of electrons between the adsorbate and the substrate 

(chemisorption). However, the adsorbate-adsorbate interaction can still control the 

long-range ordering of the over-layer. In the second case, the adsorbates do not 

create strong chemical bonds with substrate atoms. This situation is called phys

ical adsorption or physisorption. For these adsorbates, the adsorbate-adsorbate 

interactions can dominate the adsorbate-substrate interactions, and in some cases 

incommensurate structures are formed, where the over-layer and the substrate have 

independent lattices. From an energetic point of view, the phenomena described 

above (chemisorption and physisorption) are usually defined in term of an arbi

trary binding energy \Eb\ = 0.5 eV/atom, which is accepted as the upper limit for 

physisorption and as the lower one for chemisorption (Spanjaard & Desjonqueres,

1990).
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The surface coverage of an adsorbate is another important parameter for under

standing the geometry of the adsorbed layer. At very low coverages, some ad

sorbates gather together into two-dimensional islands. This effect is caused by 

short-ranged, attractive adsorbate-adsorbate interactions combined with easy dif

fusion along the surface. Other adsorbates repel each other, leading to disordered 

over-layers, where atoms or molecules are adsorbed in a series of distinct sites on 

the surface but the sites do not form any particular order. When the coverage is in

creased, the mean inter-adsorbate distance decreases, and the mutual interactions 

often strongly influence the ordering, favouring certain adsorbate configurations 

over others (Masel, 1996).

Physical adsorption is frequently found for rare-gas atoms and saturated molecules. 

The interaction potential of a physisorbed atom with a surface presents two well- 

defined regions (see Bruch et al (1997)). First, at distances not far away from 

the surface («  5 A), the incoming atom is attracted by a van der Waals force. 

This force is a product of fluctuations in the dipole moment of the incoming atom 

that induces an image charge in the metal surface. Second, closer to the surface, 

there is a strong and repulsive interaction as a result of the overlap between wave 

functions of the impinging atom and the atoms of the surface. A fundamental 

aim of physisorption theory is to develop a unified framework that can completely 

describe the interaction potential energy for an impinging particle at any distance 

as it approaches the surface. Often, these potentials are constructed from em

pirical models which are parametrised to reproduce the binding energy and other 

observable properties.

The first attempt to calculate the interaction of rare-gas atoms with a surface 

in a direct manner that follows a more rigorous theoretical model was made by 

Zaremba &; Kohn (1977). They used the Hartree-Fock approximation to describe 

the repulsive part of the potential and added an asymptotic van der Waals potential
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for the long-ranged part. With such a scheme, only a rough description of the 

interaction could be obtained. Following Zaremba and Kohn’s ideas, Holmberg & 

Apell (1984) endeavoured to find a better estimation of the attractive part of the 

potential by taking into account multipolar expansions for the dielectric response 

of the metal. However, the success obtained with these developments was limited 

in comparison with the results obtained with empirical methods (Hoinkes, 1980).

There have been relatively few attempts to calculate the interaction potential from 

first principles. One problem here is that it is not clear how to model the rare-gas 

surface interaction within DFT. The first works were made by Lang (1981) and 

Lang & Nprskov (1983), who reported that the local density approximation (LDA) 

provides a reasonable description of the interaction potential energy between rare- 

gas atoms and metal surfaces, although it does not give the correct asymptotic van 

der Waals tail. Liebsch (1987) made a time-dependent extension of the density 

functional approach in order to calculate the response function of the metal, but 

only a rough estimation of the metal response can been obtained using a local di

electric function. New functionals have recently been developed in order to include 

the van der Waals interaction within a density functional formalism (Andersson 

et at., 1998; Dobson et al., 1998; Hult et al, 1999). However few calculations have 

been carried out with such schemes and these are limited to simple systems. Their 

application to complex systems (for instance an atom or molecule interacting with a 

surface) is still not clear, due to the difficulty of defining the electrodynamic effects 

within an unified treatment for different sizes of interacting objects (Lundqvist 

et al., 1998).

On the other hand, Petersen et al. (1996) using a full-potential linear augmented 

plane wave method found that the generalised gradient approximation (GGA) pro

vides a good description of the interaction of Ne and He with the Rh(110) surface 

and that LDA results are in worse agreement with experiment. Recently Trioni
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et al. (1998b), using an embedding method, found that the LDA reproduces in a 

reasonable way the interaction of He and Ne over a surface of Ag. Our study of 

X e /P t( lll)  has demonstrated that the LDA gives more accurate potentials than 

the GGA (Betancourt & Bird, 2000). It seems that it is still not clear which ap

proximation is the best for describing the interaction between rare-gas atoms and 

metallic surfaces. It is now well established that chemical bond energies calculated 

with the LDA have been improved systematically with the GGA (Hammer et al., 

1999; Perdew et al, 1999; Patton et al., 1997; Bird & Gravil, 1997; Hammer k. 

N0rskov, 1997; Garcia et al., 1992; Ortiz & Ballone, 1991). However for systems 

with weak interactions, such as the van der Waals force between rare-gas diatomic 

molecules, the improvement of GGA over LDA is not completely successful. Here, 

the GGA reduces the over-binding of the LDA but the results still show a sub

stantial deviation from experiment (Zhang et al., 1997; Patton & Pederson, 1997). 

In principle, it is not expected that either the LDA or GGA should give an ac

curate description of the long-ranged part of the van der Waals interaction. This 

is because the LDA considers the charge density as a homogeneous distribution 

and therefore any possible effect between separated charge densities is removed. 

In the GGA, the long-ranged contributions are removed in the cut-off procedure 

that restores the exact conditions in the exchange-correlation hole (Burke et al, 

1998). Despite these shortcomings, the LDA and GGA are still used for studying 

the interaction of gas-rare atoms with metallic systems (Montalenti et al., 1996; 

Petersen et al., 1996; Trioni et al., 1998b; Clarke et al., 1998; Betancourt & Bird, 

2000) and often show good agreement with experiment.

It is well-known that the description of the electron-ion interaction by ab-initio 

pseudopotentials has been become a powerful tool in many areas of condensed 

matter physics (Ihm, 1988; Fuchs et al., 1998). The separation of core and valence 

states allows balancing different length and energy scales making it possible to sim

plify many types of calculations. Additionally, the formalism of density functional
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theory has played an important role in pseudopotential methods for electronic 

structure schemes, providing efficiency for large-scale calculations. However, it is 

surprising to find few rare-gas systems studied with this technique. This situation 

has encouraged us to undertake a study of the interaction of rare-gas atoms with 

transition metals using pseudopotentials. In particular, the systems X e /P t(lll) , 

He/Rh(110) and Ne/Rh(110) are studied.

Xe is one of the rare-gas atoms whose interaction with metallic surfaces has been 

widely studied both theoretically and experimentally (Kiippers et al., 1979; Lang, 

1981; Lang et al., 1982; Kern et al., 1988; Barker & Rettner, 1992; Malafsky, 1992; 

Perez et al., 1994; Kulginov et al., 1996; Bertel, 1996; Clarke et al., 1998) and 

therefore provides a good test for different theoretical approaches. The Xe shows a 

significant degree of chemisorption which implies that the description of the bond 

cannot be explained only in terms of a van der Waals force (Ishi & Viswanathan,

1991). Large changes in the work function of the metal surface have been observed, 

which suggests a possible charge transfer mechanism for the adsorption of Xe atoms.

In the specific case of the system Xe/Pt there has been a long-running discussion 

of the adsorption site. Gottlieb (1990) found experimental evidence that indicated 

that the adsorption of Xe on P t( l l l )  occurs at the on-top site, which was con

firmed by Muller (1990) using an LDA cluster calculation. However, his calculation 

shows a strong tendency for the clustering of Xe, which introduces doubts about 

whether the cluster used by Muller is adequate to describe the lateral interactions. 

Studies based on spin-polarised low-energy electron diffraction have questioned the 

on-top site, favouring the hollow site but with large adsorption height of 4.2 A 
(Potthoff et al., 1995). This contrasts with the value of 3.1 A reported by Black 

& Janzen (1988). More recently, another low-energy electron diffraction (LEED) 

study (Seyller et al., 1999) has favoured top-site adsorption.
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In order to help clarify this point, we have studied the interaction between Xe 

and P t( l l l )  in the commensurate (y/3 x V/3)R30° structure. Basically, our aim 

is to extend Muller’s work by considering the interaction of the adsorbate with 

the substrate through the supercell approximation, which should provide a more 

reliable description of the lateral interactions. Additionally, we are interested in 

whether the standard approximations used to describe the exchange-correlation 

effects (i.e. LDA and GGA) are able to provide a reasonable model of the adsorption 

of Xe atoms.

In the last few years there has been a considerable interest for understanding the 

interaction of light rare-gas atoms with crystalline surfaces (see Farias &; Rieder 

(1998) for a recent review of the subject). In the case of the light rare-gas atoms (He 

and Ne), their importance is due to the development of the scattering of low-energy 

neutral particles as a technique for studying the structural characteristics of clean 

and adsorbate-covered surface. Here, the interaction potential energy is the funda

mental quantity that is needed to provide an accurate interpretation of diffraction 

measurements and it is important to construct potentials that accurately reflect 

the details of the atom-surface potential. Few first principles calculations of the 

interaction potential for He and Ne have been made for understanding the anti- 

corrugating effect observed from diffraction experiments (Rieder &, Garcfa, 1982; 

Rieder et al., 1993). The corrugation profile shows that He atom got closer to 

the top position than to the bridge position with respect to the distance obtained 

from Ne diffraction. Petersen et al. (1996) using all-electron calculations explain 

this phenomenon in terms of the hybridisation between rare-gas orbitals and the 

d-band states of the metal (Petersen et al., 1996). We have selected the systems 

He/Rh(110) and Ne/Rh(110) in order to confirm the results reported by Rieder 

et al. (1993) and also to reveal the accuracy of the ab-initio pseudopotentials for 

these rare-gas atom systems.
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All calculations for Xe/Pt, He/Rh and Ne/Rh were carried out using models based 

on first principles, which are free of phenomenological parameters. Pseudopoten

tials were constructed following the Troullier-Martins model (Troullier & Martins,

1990). All information about the rare-gas surface potential was obtained with to

tal energy calculations (Ihm, 1988) within the DFT formalism (Kohn & Sham, 

1965). The Kohn-Sham equations were solved by expanding the electronic wave 

function in terms of a mixed basis set, that consists of localised orbitals and plane 

waves (Louie et al., 1979; Giilseren et al., 1998). We will demonstrate that the 

mixed basis set can compete in accuracy with more familiar plane wave methods, 

while additionally having the advantage of using a chemical language (Mulliken, 

1955). Another point that will be emphasised is related to the question of which 

exchange-correlation approximation provides the best description for the interac

tion of rare-gas atoms.

We now turn to the chemisorption case, which can be classified in two areas: atomic 

and molecular chemisorption (Nprskov, 1990). Atomic chemisorption is the sim

plest, where a single atom binds to the metal surface. It is perhaps less important 

than molecular chemisorption, but the main features of our current understanding 

of chemisorption have been extracted from single-atom adsorbates. General trends 

have been determined, concerning the variation of binding energy with the nature of 

the adsorbate and the substrate (Hammer & N0rskov, 1997). In the case of molec

ular chemisorption, when molecules impinge upon a surface molecular bonds may 

be broken (dissociative chemisorption), or not (associative adsorption). Therefore, 

it is important to know whether a molecule approaching a surface will dissociate or 

not. But this question is a complicated problem and its answer will depend on the 

dynamical motion of the impinging molecule at the surface and on energy trans

fer between the molecule and substrate (Darling k  Holloway, 1995). In general, 

the adsorption of diatomic molecules on a surface is a more complex process than 

the adsorption of simple atoms, but it represents a key step for understanding the
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behaviour of more complex molecular adsorbates.

The adsorption of CO molecules on a variety of metal surfaces has been intensively 

studied both experimentally and theoretically (Whitten & Yang, 1996; Hammer 

et al., 1996, 1997; Pacchioni et a l , 1997; Ma et a l , 1998; Scheffler & Stampfl, 

1999; Lynch & Hu, 2000, and reference therein). However, there are still many 

outstanding issues relating to the favoured adsorption site, the structure of the CO 

layer at high and low coverage, the interpretation of the spectroscopic properties, 

and the type of bonding of CO on different metals.

The bonding of CO to metal surfaces has usually been understood in term of 

Blyholder’s model (Blyholder, 1964). Within this model the bonding is assumed 

to be derived from the donation of 5a orbital (completely full in the gas phase) to 

the metal and the back donation of the metal to the 27r orbital (originally empty). 

Hammer et al (1996) have developed a more quantitative model than that also 

considers the importance of the metal d and sp states. They have claimed that 

the interaction with the metal sp electrons causes a down shift and broadening of 

both 2 n and 5a states, while the coupling to the metal d states causes bonding and 

anti-bonding states below and above the two original states.

In the particular case of CO on Pt surfaces, the general interest in the adsorption 

is due to its importance in understanding catalytic CO oxidation (Tappe et a l , 

1997; von Oertzen et a l , 1998; Scheffler &, Stampfl, 1999; Patchett et a l , 2000). 

Although in the literature there are several works about adsorption of CO on Pt 

surfaces, the Pt(110) surface has not received so much attention. One problem with 

this system, that it is disordered for most coverages, making it difficult to apply the 

usual surface structure techniques for exploring the adsorbate structure (Schweg- 

mann et al, 1995). The CO/Pt(110) system is also important as a prototype of 

the adsorbate-induced structural transformation. The clean Pt(110) substrate is

A.E. Betancourt 9



Introduction

(2x1) reconstructed, but undergoes a transition into a ( l x l )  structure when CO is 

adsorbed on it (Comrie & Lambert, 1976; Gritsch et al., 1989; Schwegmann et al., 

1995).

The CO/Pt(110) system shows features that are quite different to the rare-gas 

atom systems described above, due to the strong chemisorption bond between CO 

and the metal which can induce a reconstruction of the Pt surface. Also C and 

O pseudopotentials are deep and although the Troullier-Martins scheme provides 

optimised pseudopotentials these are not really suitable for these elements, because 

of the very large computational effort that is required to calculate of the equilibrium 

geometry of the CO/Pt(110) system. Because of this, all the calculations for the 

CO/Pt(110) system were made with ultrasoft pseudopotentials (Vanderbilt, 1990).

The thesis is organised as follows. Chapter 2 provides the theoretical background 

used throughout the present work. An outline of the density functional formalism 

and the most widely used exchange-correlation approximations (LDA and GGA) is 

presented, together with ab-initio pseudopotential theory and strategies for solving 

the Kohn-Sham equations in term of plane wave basis sets, and mixed basis sets. 

In Chapter 3 we describe how the pseudopotentials were constructed and tested. 

The adsorption of Xe atoms over the surface (111) of platinum is analysed in Chap

ter 4. Different adsorption sites are considered and comparisons made between the 

interaction potentials for the local and the non-local exchange-correlation function

als. The binding mechanism is studied in term of induced charge density and the 

projected density of states. In Chapter 5, the interaction between light rare-gas 

atoms (He and Ne) and the Rh(110) surface is considered. A similar study to the 

previous chapter is made, finding in this case that the non-local functional seems 

to give a better description of the interaction, in contrast to the results found for 

X e /P t(lll) . In Chapter 6, the adsorption of CO over the Pt(110) surface is treated 

using ultrasoft pseudopotentials. The binding energy is studied as a function of
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the coverage of CO for the unreconstructed and the missing row surfaces. Finally, 

a summary of the main conclusions are presented in Chapter 7.
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Chapter 2

Theoretical Background

2.1 Introduction

The theoretical study of the properties of materials through electronic-structure 

calculation is a very active area in condensed matter field. Much of the progress is 

a consequence of the success of the density functional theory (Kohn &, Sham, 1965) 

as an approach to describe many-electron systems using the electron charge density 

as the natural variable. The Kohn-Sham idea has been extended to multicompo

nent systems, to electronic and magnetic fields, to superconductors, and has been 

generalised to various ensembles include the thermal ensemble (Callaway & March, 

1984; Gross et al., 1995; Rajagopal, 1998; Heinonen et al., 1998; Gidopoulos, 1998). 

The theory has not only provided a theoretical framework for discussing the many- 

electron problem but also has been developed as an effective computational tool 

widely used in condensed matter systems.

The Kohn-Sham approach leads to a one-body problem, where each electron moves 

in an effective potential that is calculated self-consistently. The exact form of the
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exchange-correlation potential is not known, therefore an approximation is needed. 

The simplest is the local density approximation that assumes each inhomogeneous 

point of the electron density as being homogeneous (Parr & Yang, 1989). Surpris

ingly, this approximation has given accurate results for many real systems (Jones 

& Gunnarsson, 1989). By taking as a starting point the local density approxima

tion, systematic improvements have been developed for the exchange-correlation 

functional by incorporating inhomogeneous effects. One of the most important and 

widely used is the generalised gradient approximation given by Perdew & Wang 

(1986).

One of the most effective techniques for performing self-consistent electronic-struc- 

ture and total energy calculations is based on the use of pseudopotentials for de

scribing the electron-ion interaction and the expansion of Kohn-Sham eigenfunc

tions in terms of a plane wave basis set (Kresse & Furthmiiller, 1996a; Fuchs & 

Scheffler, 1999). The plane wave basis set allows the use of Fourier transforms to 

increase the efficiency of calculating the action of the Hamiltonian on the wave 

function. For example, the local potential part of the Hamiltonian is diagonal in 

real space while the kinetic energy part is diagonal in reciprocal space. It follows 

that the evaluation of the action of the Hamiltonian is fast if the wave function is 

transformed from reciprocal space to real space and back using Fourier transforma

tions, an operation which fits very naturally within a plane-wave basis. Normally 

the evaluation of Fourier transforms is more efficient with the fast Fourier transform 

than the straightforward calculation. To determine the discrete Fourier transform, 

a total of N 2 operations are required (N  is the number of grid points) while fast 

Fourier transformation reduces the work to N\og(N) (Press et al., 1992). This is 

an important difference for large N. Additionally, the plane wave basis set is pre

ferred because in the evaluation of the atomic forces the Pulay contribution (Pulay, 

1969) is avoided. It follows that the electronic, structural and dynamic properties 

of a material can all be evaluated at the same time.
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The introduction of ab-initio pseudopotentials by Hamman et al. (1979) leads to 

the creation of a new family of optimised pseudopotentials (Troullier &; Martins, 

1990; Rappe et al., 1990; Lin et al., 1993) that have allowed a major development 

in electronic structure calculations. However there are still difficulties in perform

ing calculations on materials containing first-row and 3d transition metal elements 

because a large number of plane waves are required to describe the localised va

lence states in these systems. An improvement in the evaluation of the Kohn-Sham 

equations can be obtained if a scheme using a mixed basis (plane waves and atomic 

orbitals) set is adopted (Louie et al., 1979; Giilseren et al, 1998). Within this 

model, the Kohn-Sham equations are transformed into a generalised eigenvalue 

problem but with a dimension much smaller than for its pure plane-wave counter

part. Recently, Vanderbilt (1990) has introduced a new concept of pseudopotentials 

(ultrasoft), within these novel pseudopotentials no more than 50-100 plane waves 

per atom are required, even in the difficult cases of 3d transition metal and first-row 

elements.

For a condensed matter system, the calculation of the total energy presents two 

distinct minimisation problems that must be addressed. The first is related to 

the requirement of the variational principle in density functional theory; that for 

each geometry the charge density must be found that minimises the total energy. 

The second problem involves the determination of the structure that is energet

ically most favourable. Therefore, an efficient method will allow us to calculate 

the ground state electron density distribution and the structural geometry at the 

same time. Car & Parrinello (1985) showed that molecular dynamics and density 

functional theory can be combined to give a parameter-free method for evaluat

ing the ground state with no assumption about the ground state geometry. Car 

and Parrinello’s method has opened new perspectives in the physics of complex 

systems: liquids, clusters, solids and complicated surface reconstructions. Direct 

methods to calculate the electronic ground states for systems with a large number
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of non-equivalent atomic site in the unit cell also have been developed, which pro

vide a more efficient way to determine the ground state than molecular dynamics 

(Teter et al., 1989; Kresse & Furthmiiller, 1996b).

The present chapter presents an introduction to all of the theoretical methods that 

will be used in later chapters. It is organised as follows. Section 2.2 gives an 

outline of the density functional theory and the most important approximations 

used to describe the exchange-correlation effects (the local density approximation 

and the generalised gradient approximation). Norm-conserving pseudopotentials 

are discussed in section 2.3. In this section we will concentrate on the principles 

that underpin ab-initio pseudopotentials, the procedure of their generation, and 

we briefly explain how a Troullier & Martins pseudopotential is defined. Addi

tionally, we discuss the importance of generating fully non-local pseudopotentials 

within the Kleinman & Bylander form and the improvement in the transferability 

of the pseudopotential through the inclusion of the core charge density. In sec

tion 2.4, various aspects of the total energy calculations for periodic systems are 

discussed, such as the expansion of the Kohn-Sham equations in terms of a plane 

wave basis set, integration in reciprocal space, difficulties with metallic systems, 

the free energy scheme and the supercell approximation. In section 2.5, the mixed 

basis method is presented as an alternative technique for solving the Kohn-Sham 

equations. Ultrasoft pseudopotentials are briefly discussed in section 2.6.

2.2 D ensity functional theory

The problem of N  interacting particles in an external potential is very difficult, its 

solution, necessarily approximated, is commonly expressed by a 3AT-dimensional 

Schrodinger equation for the wave function ^ ( r i , r 2, . . .  ,Tn )- Although methods
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based on wavefunction construction work well for systems with few electrons, these 

become practically impossible for large systems. Within the density functional 

theory (DFT) formalism, calculations are made without the need to construct the 

many-body wave function, all the required information is provided by the electronic 

charge density (Parr & Yang, 1989).

Hohenberg k, Kohn (1964) showed that for a system of interacting particles in an 

external potential, Vrext(r), (e.g. arising from nuclei) there is a universal functional 

F[p] of the density, p, independent of the external potential, such that the ground 

state energy and the density can be obtained by minimising the energy functional

E{p] =  F[p] +  J  Vezt(r)p(T)d3T, (2.1)

with respect to charge density variation and subject to the constraint that the 

number of particles is constant. Therefore, in principle, the ground state density 

is sufficient to determine the many-body energy. The functional F  is not known 

and depends on the type of interaction existing in the system, the dimensionality of 

space, and on the parameters of the Hamiltonian. F  is defined as the kinetic energy 

plus the electron-electron interaction energy, which consists of a combination of its 

quantum and classical part

F\p\ = T,[p) + i  j  j  d3rd3r' + Exc[p}- (2-2)

The first term is the kinetic energy of non-interacting electrons of density p, the

second term is the classical mean-field inter-electronic Coulomb energy, and the

third term is an universal functional of p and represents the non-classical many- 

body effects of exchange and correlation (xc). The many electron ground state
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energy for a given external potential is given by

E[Vext, p ]= T a[p] + \ j  J + E M  + J Vext(r)p(r)d3r. (2.3)

To evaluate equation (2.3), it is necessary to determine the self-consistent charge 

density p which minimises E[Vext,p]; in addition the evaluation of Ts[p] is not 

straightforward just with knowledge of the charge density. These difficulties are 

overcome by minimising equation (2.3) with respect to single-particle wave func

tions V'iM which leads to a set of single-particle equation, known as the Kohn-Sham 

equations (Kohn & Sham, 1965):

-5V *  +  V„/(r) tpi( r) =  c<̂ <( r). (2.4)

The €{ are Lagrange multipliers that ensure the normalisation of the orbitals ipi 

during the variational procedure. The effective one-electron potential is given by

Ve/f(r) = Vext(r) + J  ^  rfV +  Vic[/>(r)], (2.5)

where the exchange-correlation potential Vxc is the functional derivative of the 

exchange-correlation energy

tr ^-^xc[p(r)] to a\
VaMt)] = Sn( r) ’ (2-6)

and p(r) is defined as
N

p(r) = 'Ef> IV>i(r ) I , (2.7)

which requires that the solution be self-consistent. /* is the occupancy factor. Once 

some kind of approximation is assumed for the exchange-correlation energy, solu

tions of 'ipi, the charge density, equation (2.7), and the effective potential, equation 

(2.5), are determined and then a new value of is calculated by re-solving equa
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tion (2.4). This cycle is repeated until the input and output solutions are identical. 

We have to emphasise that the energy eigenvalues do not correspond to elemen

tary excitations so the band structure of e* is of interest for arguments concerning 

bonding, alloying, phase stabilities, etc., but not for optical spectra (Sutton, 1996).

2.2.1 Exchange-correlation energy

Within the density functional theory formalism, the exchange-correlation func

tional is unknown and an approximation is required. In the literature, several 

approximations for the exchange-correlation energy are available (Wigner, 1933; 

Kohn & Sham, 1965; Hedin & Lundqvist, 1971; Slater, 1974; Ceperly & Alder, 

1980; Langreth & Mehl, 1983; Perdew & Wang, 1986; Becke, 1988; Lee et al., 1988; 

Perdew & Wang, 1992; Perdew et al., 1996b). The exchange-correlation energy 

consists of physical effects due to the electron-electron potential and the kinetic 

energy. The exchange energy component reduces the Hartree potential energy, the 

antisymmetry of the wave function causes electrons with the same spin orientation 

to avoid each other. The correlation energy has two contributions: a negative part 

due to the Coulomb potential which arises because electrons of either spin avoid 

each other, and a positive part associated with an increase in kinetic energy due to 

the reduction in space because of the mutual avoidance. In applications to atoms, 

molecules and condensed matter, the local density approximation is the simplest 

and most widely used approximation for the exchange-correlation energy (Jones & 

Gunnarsson, 1989)

E x c A \ p \  =  / p ( T ) t x c ( p ( r ) ) d 3 T , (2.8)

where exc is the exchange-correlation energy per particle in an uniform gas  of density 

p. exc is accurately known from Monte Carlo calculations (Ceperly &; Alder, 1980), 

and it has been fitted to an analytic representation (Perdew & Zunger, 1981) which
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allows practical calculations to be made. The LDA is, by definition, exact when 

the density is uniform, and accurate when it varies slowly. For real electronic 

systems, where these conditions are violated, the LDA still retains a useful degree 

of accuracy. The LDA gives the geometry of molecules and solids with an accuracy 

of about 1% but the dissociation energy of molecules and the cohesive energy 

of solids are wrong by about 10-20% (Kohn, 1999). The unexpected success of 

LDA is attributed to the LDA exchange-correlation hole satisfying the exact hole 

normalisation conditions. Even though the LDA hole is a poor approximation to 

the exact hole, the exchange-correlation energy depends on the angular averaged 

hole and with this average much of the error of the LDA is cancelled (Parr &; Yang, 

1989).

For slowly-varying densities, improvements over the LDA have been made by a 

gradient expansion approximation (GEA) (Kohn & Sham, 1965). Although gra

dient expansions provide an accurate correction for densities with a small density 

gradient, this is not the case for atoms and molecules. In general it has been 

demonstrated that a GEA does not predict better results than the LDA for real 

densities (Perdew, 1995). The main reasons is that the GEA-hole is poorly damped 

and oscillatory at large separation and it violates the hole normalisation and nega

tivity conditions (Burke et al., 1998). Perdew et al. (1992) constructed a gradient 

expansion that fulfils the hole normalisation condition. They used a real-space 

cut-off procedure for removing the unphysical behaviour of the gradient expansion, 

generating a short-ranged hole that is much closer to the exact hole. This has 

improved the binding energy of finite systems. Within this generalised gradient 

approximation, the exchange-correlation energy is written as

E°cGA[p] =  /  /(/>( r), Vp(r))d3r, (2.9)

where /  is an analytic function. Several GGAs have been proposed by different
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authors (Langreth & Mehl, 1983; Perdew & Wang, 1986; Becke, 1988; Lee et al., 

1988), most of them are semi-empirical, depending upon parameters which are 

fitted to energies of known systems. Perdew & Wang (1992) have developed a 

more general GGA functional which satisfies limiting properties of a homogeneous 

gas and which has no fitting parameters. Recently Perdew, Burke and Ernzerhof 

have introduced a simplification of this GGA (Perdew et al., 1996b) which is almost 

the numerical equivalent of PW91(see Appendix A). Zhang & Yang (1998) have 

calculated a new value of the parameter that controls the large gradient limit of 

the PBE exchange energy; this modification is known as rev-PBE, and leads to an 

improvement in the atomisation energy of small molecules. Hammer et al. (1999) 

have also claimed that rev-PBE leads to better chemisorption energies of atoms 

and molecules on transition metal surfaces. Although the atomisation energy is 

improved with rev-PBE, it provides a worse estimate for the bond length (Perdew 

et al, 1998).

The improvements of the GGA are significant in many fields of atomic, molecular 

and condensed matter physics (Perdew et al., 1992; Lee & Martin, 1997). The 

GGA has improved the cohesive energy of a large number of molecules (Ortiz 

& Ballone, 1991) and solids (Garcia et al., 1992). Also, there is a considerable 

improvement for surface binding energies and barrier heights (Hammer et al, 1999; 

Bird & Gravil, 1997). However for the structural properties of semiconductors 

(Juan & Kaxiras, 1993) and transition metals belonging to the Ad and 5d series, 

GGA provides no improvement over the LDA (Khein et al, 1995). In general, it 

is found that the GGA tends to underestimate the bulk modulus and over-corrects 

the lattice constant when compared with the LDA.
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2.3 Pseudopotentials

A solid is a collection of ion cores and valence electrons. Ion cores contain a nucleus 

and tightly bound electrons (core electrons). Core wave functions are well localised 

about lattice sites while valence electrons can be found with a high probability in 

the interstitial region. Although these states can be expanded in term of a plane 

wave basis set, plane waves are unsuitable to describe the oscillatory behaviour of 

the wave function in the core region, due to the large number of plane waves that 

are required. However, many physical properties of solids are controlled to a large 

part by their valence electrons rather than the core electrons. Within the pseudopo

tential approximation, the properties of solids are calculated by assuming that ion 

cores are not perturbed by the rearrangement of the valence electrons. Therefore 

with this approximation, it is possible to remove the participation of the core elec

trons in an atomic calculation, by considering the nucleus plus the core electrons as 

an inert or “frozen” core. All electrostatic and “quantum-mechanical” interactions 

are incorporated as angular dependent pseudopotentials which are identical to the 

true potential outside of the core region but are weaker inside it. The valence 

electrons are represented by “smooth” pseudo-orbitals which are in identical to the 

real wave function in the valence region but which have no nodal points near the 

nucleus.

In earlier times, pseudopotentials were applied to the electronic structure and 

ground states properties of solids and they were represented by analytic poten

tial models with parameters fitted to experimental data (Abarenkov & Heine, 1965; 

Schliiter et al., 1975). Phillips k  Kleinman (1959) derived the first pseudopotentials 

from atomic core and valence wave functions without experimental information. In 

this scheme, the pseudo wave function and the real wave function have the same 

shape, but they differ in their amplitudes outside the core region, which causes
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serious trouble in the calculation of the Coulomb potential during a self-consistent 

procedure. Hamman et al. (1979) avoided this problem by adopting a scheme of 

norm-conserving ab-initio pseudopotentials, which describe accurately the valence 

electrons in different atomic and solid-state environments.

2.3.1 Norm -conserving pseudopotentials

The concept of norm-conserving pseudopotentials has allowed a major development 

in the field of electronic state calculations. Pseudopotentials can be constructed 

from a self-consistent, all-electron calculation for the atom in a reference configu

ration. The construction is defined by a set of fundamental conditions which must 

be completely fulfilled by the pseudo wave function, with the purpose of produc

ing a faithful wave function in the valence region (Hamman et al., 1979). These 

constraints are as follows:

1. The pseudo wave function, ^ f p , and the all-electron wave function, ^ f E, are 

identical beyond a core radius rd

y pp = y f E for  r > rd . (2.10)

The value of rd is taken greater than the last nodal point of '&fE.

2. For the same atomic configuration, ^fpp and have the same eigenvalue

eAE  =  eP P  ( 2

3. The pseudo charge enclosed within the sphere of radius rd is the same as for
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the all-electron wave function (norm conservation)

[ Cl \ ^ i P\2r2dr = f 1 \ V f E\2r2 dr. (2.12)
Jo Jo

This normalising of the pseudo wave function assures that the electrostatic 

potential is identical for both charge distributions outside the core radius.

4. At the same reference energies, the pseudo and all-electron logarithmic deriva

tives agree for r > rd- The total charge inside the sphere is related to the 

first energy derivative of the logarithmic derivative of the wave function at 

the sphere boundary by the identity

jfV w ,,)*- (, 13)

where ^i(d ,r)  is the solution of the Schrodinger equation at energy e' (not 

necessarily an eigenfunction) for either the all-electron potential or the pseu

dopotential. The scattering properties of the pseudopotential and the full 

potential have the same energy variation to first order. However, there is no 

guarantee that the logarithmic derivatives match over a useful range. The 

energy range over which the logarithmic derivatives of pseudopotentials are 

equal to those of the full potential is a measure of the range over which the 

pseudopotentials are accurate.

2.3.2 Pseudopotential generation

A standard procedure for generating ab-initio pseudopotentials starts by solving 

self-consistently the all-electron problem, in order to find eigenvalues efE, wave 

functions ^ ffE and the electron screening potential, Vh +  Vxc, for a chosen ref

erence configuration. Inside the core radius, the valence wave functions are then
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replaced by parameterised analytical expressions whose parameters are defined by 

imposing continuity of the wave function and its derivatives at the core radius, and 

the norm-conserving constraints (see subsection 2.3.1). As a result, the screened 

pseudopotential will be an analytic function which is obtained by inverting the 

radial part of the Schodinger equation

Vi%(r) =  e< 2r2 +  2r R f p (r) dr5 ( rR ‘>P̂ ) ' (2‘14)

We note that each angular momentum component of the pseudo wave function 

will feel a different potential. The full ionic pseudopotential is then generated by 

removing the screening effect of the valence electrons

V ,Z (r )  = V Z ( r )  ~ VS*(r) -  V ? ( r ) .  (2.15)

In general, this potential can be used in a self-consistent procedure to determine the 

electronic structure in another environment. Several pseudopotential models have 

been developed following the procedure outlined above (Kerker, 1980b; Bachelet 

et al., 1982; Vanderbilt, 1985; Troullier & Martins, 1990, 1991) by implementing 

different functions for the wave function inside the core region and adding additional 

constraints in the pseudopotential construction which have allowed the construction 

of more rapidly convergent pseudopotentials. In some cases, a separate optimisation 

procedure has  been applied after generating the pseudopotential (Rappe et al., 

1990; Lin et al., 1993). In the next section, a brief outline of Troullier and Martins’ 

scheme (Troullier & Martins, 1990, 1991) will be given. These pseudopotentials 

are widely used and provide accurate and well optimised potentials for plane-wave 

expansions.
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2.3.3 Troullier and M artins pseudopotentials

Kerker (1980b) carried out a parameterisation of the radial pseudo wave function 

inside the core region using an exponential of a polynomial function

R f p (r)
R f E(r) r > r d

(2.16)
rl exp(p(r)) r < rd

where R f E is the radial part of the all-electron wave function and p(r) is a fourth 

order polynomial whose coefficients are chosen to give a smooth, non-singular pseu

dopotential which obeys the constraints given in subsection 2.3.1.

Troullier &; Martins (1990, 1991) generalised Kerker’s method by increasing the 

order of the polynomial to eight which allows the freedom to explore properties 

which increase the smoothness of a parametrised family of pseudopotentials. Ad

dition to the restrictions used by Kerker, Troullier & Martins forced the continuity 

of the wave function and its first four derivatives at the core radius, together with 

the analyticity and zero curvature of the pseudopotentials at the origin. These 

properties improve the softness of the potential, whereby a lower cut-off energy is 

required for well-converged results in total energy calculations using a plane wave 

basis.

2.3.4 Kleinm an-Bylander form

The ionic potential calculated by equation (2.15) is semi-local, in other words, 

non-local in the angular coordinates and local in the radial coordinate

(r> r') =  V££locol(r)S(r -  rl) + s (r -  r>) J2  AVI(r ) I Yim(f))(Vlm(fO I, (2.17)
l,m
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where Yim are the spherical harmonics , V££iocai(r) is the local potential part which, 

in principle, is chosen arbitrarily and AVi(r) is defined by

With this semi-local dependence, V ^ ^ r )  is inconvenient for total energy calcu

lations using a plane wave basis because a huge number of integrals need to be 

calculated during the construction of the matrix elements. Kleinman & Bylan

der (1982) proposed a fully separable form which allows for a substantial saving 

in computational demand, by requiring the evaluation of a number of integrals 

approximately equal to the number of the plane waves needed:

In this form of the non-local potential each component of the pseudo wave function

identical results to the semi-local form, independent of local potential part. How

ever, in another environment, the wave function does not project onto a radially

Bylander approach, the transferability of the pseudopotentials can be altered due 

to the appearance of accidental spurious states (ghost states) (Gonze et al., 1990,

1991). Therefore it is important to consider the transferability of the pseudopo

tentials in the Kleinman-Bylander form in order to ensure that fully non-local 

pseudopotentials do not present ghost states.

W ( r )  =  O r ) -  V^,iccai(r)- (2.18)

non
|A V K Q f t r ( r ) ) ( f l r > ) A V i( r ) l

local,i\'} (R fp (r)\AVi(r)\Rpp(r)) ' (2.19)

is projected onto a single basis state. When it is applied to pseudo-atoms it gives

complete set of spherical harmonics. It has been found that with the Kleinman-
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2.3.5 Core-valence exchange-correlation

Although the exchange-correlation is a non-linear functional of the electron density, 

the complete linearisation of its core-valence contribution is the most common 

approximation and it has proven to be accurate in a great number of applications 

with both the LDA and GGA approximations. However, an explicit account of 

the core-valence non-linearity of Exc is sometimes required, for instance in the 

study of materials with few valence electrons such as alkaline metal atoms, or for 

spin-density functional theory (Louie et a/., 1982; Fuchs et ol., 1998). Instead 

of a full core density, it suffices to add a so-called partial core density 35

suggested Louie et al. (1982). Therefore the effect of core electrons on the exchange- 

correlation energy is described by a partial core given by

Ppartial =  \

pcore f Q r r  >  r

(2 .20)
^sin(6r) for  r < r0

where pcore is the core density, tq is a cut-off radius and a and b are constants 

which guarantee the continuity of and its first derivative at r0. This proce

dure removes the sharply peaked structure near the nucleus and allows for smooth 

exchange-correlation potentials to be obtained for both the LDA and GGA approx

imations. A frequently used choice of the cut-off radius is to take the value where 

the core density is from one to two times larger than the valence charge density 

(Louie et al., 1982). We have selected a radius where the densities are equal.

2.4 Total crystal energy for periodic system s

Before starting to apply density functional theory to finding the ground state of 

electrons moving in a crystalline field, a difficulty must be overcome. There is a
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large number of electrons in the crystal whose wave functions are extended through

out the whole crystal. As a consequence, a direct solution of the Kohn-Sham equa

tion is impossible. Fortunately, if the translation symmetry of the solid is exploited, 

the size of problem is reduced. Bloch’s theorem allows us to represent the electronic 

wave function of the zth state as the product of a plane wave with wave vector k 

inside the first Brillouin zone, modulated by a periodic function, u*, (Ashcroft & 

Mermin, 1976)

^ik(r) =  exp(ik • r)^ (r) . (2.21)

As consequence of equation (2.21), knowledge of the wave function within one unit 

cell determines it throughout space in a periodic material.

Ihm et al. (1979) have derived a formalism for performing self-consistent total 

energy calculations for periodic systems using a plane wave basis set within the 

pseudopotential method. This can also be extended to a mixed basis set (combi

nation of plane wave and localised orbitals, see section 2.5). The application of the 

total energy method to solids allows the prediction of a wide variety of properties 

of materials including the cohesive energy, lattice constant, bulk modulus, crystal 

structure and its phase transitions, phonons, surface properties, chemisorption, in

terfaces, and defects which can be compared with experimental results (Ihm, 1988). 

The total crystal energy of a system whose nuclei are located at {R/} is defined as 

the sum of the electronic energy, E , and the lattice (ion-ion) energy, E ion- ion,

E to ta l \Pi V ext\ =  E [ p ,  V ex t\ “k i o n ( { R / } ) -  ( 2 .2 2 )

Using equation (2.3), we obtain

E to ta l \.Pi Fext] ~  Ts + j  p(r)Vext(r)d3r +  EH[p\ +  Exc[p] +  E io n —ion ({R,}) (2.23)
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where the kinetic energy term is given by

T’ = E f  M ( r )  ( - 5V2)  i>i{r)d3r, (2.24)

where E h is the Hartree energy and the lattice energy or the Madelung energy of 

the ions is given by

Eim- ion =  \  E  1 J ' \ - v  (2-25)

where Zi and Z j  are the effective charges of the ion cores.

The integral of pVext represents the interaction energy between ions and electrons. 

As was indicated in section 2.3, an important simplification can be made if it is 

assumed that only the valence electrons contribute to the physical properties. Then 

the effect of the cores on the valence electrons can be replaced by pseudopotentials. 

For crystalline systems, the potential Vext is constructed as lattice sum of the 

individual pseudopotentials

Kxt(r) =  £ E  V "„(r -  R  -  rn), (2.26)
R n

where R  are the lattice vectors and rn is the position of an ion within the unit 

cell. The pseudopotential is normally divided into a local and a non-local, but 

separable, part. See subsection 2.3.4.

2.4.1 Plane wave basis sets

A plane wave basis set gives a natural representation for periodic systems and it has 

been used successfully to calculate the ground state properties of materials. The use 

of plane waves for expanding the electronic wave function provides a homogeneous 

basis set, independent of the atomic positions, giving an unbiased description of
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the simulation which avoids the Pulay term (Pulay, 1969) in the calculation of 

ionic forces. Additionally, the accuracy of results can be improved by a single 

parameter, the cut-off energy, E ^ .  The expansion of the Bloch function in terms 

of plane waves leads to the following representation for the electronic wave function

V’ik(r) = - 7= 2  b'G exp(?(k +  G) • r), (2.27)
v SZ G

where G are reciprocal lattice vectors; k is a wave vector in the first Brillouin 

zone, Q is the crystal volume and bG are the expansion coefficients. In principle an

infinite number of plane waves are needed to expand the electronic wave function.

However, in practical calculations the sum is truncated, including only plane waves 

with a kinetic energy defined by 1/2 | G -I- k |2< Ecut(Hartree), where the cut-off 

energy E ^t  determines the convergence of the calculations.

2.4.2 Brillouin zone integration

Total energy calculations involve integrations of quantities (charge density, total 

energy, etc.) over the Brillouin zone (BZ). By Bloch’s theorem, the average of a 

quantity Q can be written as (Ashcroft & Mermin, 1976)

Q = W r L ° ‘ A - ( 2 - 2 8 )

where Q is the unit cell volume. This integral requires knowledge of the function 

Qk at a set of k-points in the entire BZ but symmetry arguments can be used to 

justify sampling only inside the irreducible part of BZ. Several methods have been 

developed (Chadi & Cohen, 1973; Cunningham, 1974; Monkhorst & Pack, 1976; 

Moreno & Soler, 1992; Hama & Watanabe, 1992) for determining a special set of 

k-points in the BZ, which allow us to calculate the average Q with an arbitrary

A.E. Betancourt 30



2.4 Total crystal energy for periodic systems

degree of accuracy with a given number of sampled k-points. Each of these schemes 

provide a homogeneous set of k-points which depend on the lattice unit cell and its 

symmetry. The most widely used method is the Monkhorst-Pack scheme. Within 

this model a uniform mesh of k-points is defined by a set of 3 integers Ni, AT2, 

and N 3 which determine the density of k-points in each primitive reciprocal-lattice 

direction. A general k-point is given by

krst =  UirGi + C/2sG2 +  UstGs (2.29)

where G* are the reciprocal lattice vectors and UiP are weighting factors defined by

2 p — N{ — 1 . .
U* = 2Nt

where p runs from 1 to Ni. The mesh defines N 1N2 N3 k-points in the entire 

Brillouin zone and the integration in equation (2.28) is replaced by a sum over a 

discrete set of k-points

Q = N j ^ N 3 ^ l Qkr’‘' 2̂'31^

It often occurs that some members of the k-point set are symmetry-related by 

a point group operation of the crystal. If several k-points are symmetry-related, 

then the Kohn-Sham equations need to be solved only for a single member of the 

symmetry-related set.
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2.4.3 Kohn-Sham Hamiltonian w ithin a plane wave basis 

set

By solving the Kohn-Sham equations using equations (2.27), we can show that the 

expansion coefficients 5q+k satisfy the following eigenvalue problem

^GG'^G'+k =  î,k&G+k> (2.32)
G'

where the momentum-space Hamiltonian matrix elements are defined by

Hgg- =  ^(k + G)2<5g g - +  Vh (G -  G') +  VXC(G -  G') +  C f ( k  +  G ,k +  G') 

(2.33)

where the Hartree potential, Vh(G — G'), the exchange-correlation potential, 

14c(G — G'), and the ion-electron potential, VT£(k -I- G, k +  G'), are expressed in 

term of their Fourier components.

The size of the secular equation (2.32) is defined by the number of plane waves. A 

conventional scheme of diagonalisation it is not the best way to solve the Hamilto

nian especially when a large system is treated. The computational demand depends 

on the third power of number of the plane waves while the storage requirement is 

approximately the square of the number of plane waves (Press et al., 1992). This 

restricts the application of exact diagonalisation for a plane wave basis to very 

small systems. Because of this, new iterative diagonalisation approaches have been 

developed that allow the minimisation of the total energy in a more efficient man

ner (Car & Parrinello, 1985; Stich et al., 1989; Teter et al., 1989; Gillan, 1989; 

Kresse & Furthmiiller, 1996b).
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2.4.4 Conjugate gradients

It is well-known that direct methods for determining the minimum of the Kohn- 

Sham energy functional are more efficient than those based on diagonalisation 

(Teter et al., 1989). The simplest way to perform the minimisation is by changing 

the approximated wave function along the gradient. However by moving the trial 

wave function towards the minimum there is no guarantee that the lowest energy 

point can be reached in a finite number of steps. The search can be improved by 

using information from previous steps to calculate the best minimisation route, this 

strategy is known as the conjugate gradient method (Gillan, 1989). In principle, 

this scheme could update all the electronic wave functions simultaneously, but a 

large amount of data must be stored between iterations to ensure the conjugacy 

of the search. Due to this difficulty, the search is normally carried out for a single 

band at a time (band by band method) and moving in a direction orthogonal 

to all the other bands. Although a small storage is required, the charge density 

and the potential must be recalculated after each single band update. The wave 

function components with large momentum will have a large gradient, and the 

kinetic energy in the Hamiltonian will be dominated by these states. In order to 

remove this problem a preconditioned gradient vector is used (Payne et al., 1992).

2.4.5 Sym m etrised charge density

Another advantage of a plane wave basis set is that the fast Fourier transform 

(FFT) can be applied to transfer quantities from real space to reciprocal space and 

vice versa. For instance, within the self-consistent approach, the charge density is 

an important quantity to be calculated, and its form in the reciprocal space is very 

computationally demanding. An efficient way to evaluate it is by performing the 

calculation of the charge density in real space (on a grid of points r*) and then to
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calculate its reciprocal space representation by a Fourier transform

P(G) = X^exp (—iG • rs) p(ri). (2.34)

The charge density in real space, p(r), is calculated by

/>(r) =  2 > k, P k j s j r )
k, N T a€T

(2.35)

where is the weighting factors of the special ka-vectors, the factor in brackets 

represents the symmetrised charge density in real space with respect to the space 

group of the crystal, and Nt  is the number of operations a  in the point group T.

2.4.6 M etallic system s and free energy

For systems with completely filled bands, the substitution of the integral over the 

Brillouin zone, equation (2.28), by the sum over a mesh of k-points, equation (2.31), 

is an efficient approximation. However, for metallic systems the convergence with 

respect to the number of k-points becomes slow and instabilities can arise in the self- 

consistent procedure. This is due to the occupancies changing discontinuously from 

1 to 0 at the Fermi level. One way to improve the convergence with respect to the 

number of k-points is to allow the occupation number to vary continuously through 

the Fermi level. When a broadening method is adopted, it is more convenient 

to work with a scheme of non-zero temperature (Mermin, 1965; Gillan, 1989). 

Therefore the electron density of the ground state does not minimise the functional 

of the total energy, equation (2.23), but the functional of the free energy, F , at 

finite temperature, which can be written

F =  EMal- T ' £ S ( f i). (2.36)
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Here S  is the entropy of non-interacting electrons associated with the i-orbital 

with occupation number fi at temperature T. Normally, it is convenient to use 

an artificially high temperature (typically k^T =  0.25 eV ) since a broadening of 

the occupation number improves the stability and speeds up the convergence of 

the calculations. The entropy function can be chosen with some arbitrariness (it 

depends on the distribution function adopted). We have used a spline of Gaussians 

(White et al., 1996), which allows the occupancy to fall off more quickly with energy 

than a Fermi-Dirac distribution. Our final plane wave code is that described in 

White et al. (1996).

2.4.7 Supercell approximation

This approximation allows a system of any dimensionality to be studied. For in

stance, a molecule in a box can be treated as a periodic system. In principle, there 

are no limitations on the shape of the unit cell used (Bird & Gravil, 1997). The 

supercell approximation has been shown to be an useful tool for modelling the 

adsorption of atoms or molecules on clean surfaces. The semi-infinite crystal is re

placed by a slab with two surfaces. To model static adsorption, a two-dimensional 

array of adsorbate atoms is set on one of the two surfaces. In this way, we have 

a two-dimensional lattice which is finite in the direction perpendicular to the sur

face. To recover periodicity in this direction, the slabs are repeated and a vacuum 

region is added between them. In order to avoid interactions between different 

slabs, the vacuum region must be wide enough. On the other hand, to obtain the 

electronic structure representative of the real system, the slab should be sufficiently 

thick so that all relevant quantities will be independent of thickness. In summary, 

the supercell approximation allows us to study an aperiodic system using Bloch’s 

theorem.
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2.5 M ixed basis approach

Although the pseudopotential-plane-wave method has allowed us to study systems 

containing 3d transition or first row-elements, it is still inefficient due to the large 

number of plane waves needed to represent the localised states in these systems. 

An alternative method to solve this problem is to expand the Kohn-Sham eigen

functions in terms of a combination of localised functions and plane waves, (Louie 

et al., 1979; Giilseren et al., 1998). We write

^ik(r) =  J2  “j.X/'W + ^  L  °g  exp(i(k +  G) • r) (2.37)

where i is the band index; p is a combined index which represents the orbitals and 

the atomic sites, and ac  are coefficients of the pseudo-atomic orbitals and plane 

waves respectively, G are reciprocal-lattice vectors, and 17 is the crystal volume. 

The localised part of equation (2.37) is defined by a Bloch sum

XM(r ) =  XmW = X  exp(«k • (R  +  Tn))0m(r -  R  -  r„), (2.38)
R

where m  represents the orbitals; rn is the position of an atom within the unit cell, 

and <j>m are the pseudo-atomic orbitals.

Inserting (2.37) into the Kohn-Sham equations leads to the following matrix eigen

value problem for each k vector,

(H -  ES)U =  0, (2.39)

where H and S represent the Hamiltonian and overlap matrices respectively. E is a 

diagonal matrix containing the eigenvalues of H, the eigenvector U contains the 

expansion coefficients and alG. Within the mixed basis scheme, the Hamiltonian
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matrix and overlap matrix have the following structure

[A^J [A^g]

A^g [Agg]

where [A^], [Amg ] and [Agg] are the parts based on atomic-orbital-atomic-orbital 

representation, atomic-orbital-plane-wave representation, and plane-wave-plane-- 

wave representation respectively.

The adoption of the momentum space approach facilitates the evaluation of the 

matrix elements of H  and S. Here, the localised part of equation (2.37) is expanded 

in terms of plane waves, which leads to the electronic wave function to be written 

as follows

^tk(r) =  - 7=  a^(k )exp(-iG -r„)/g (k )exp(i(k  +  G) - r )
vM  i,m,G

£  aG exp(i(k +  G) • r) (2.40)

where the Fourier integral of the atomic orbitals is given by

ISfk) =  ^  /  exp(-z(k +  G) • r)<£m(r)dfl (2.41)

The first term on the right hand side of the equation (2.40) needs a much big

ger number of plane wave than the second one. Although the dimension of the 

Hamiltonian and overlap matrices is not increased, the construction of the matrix 

elements consumes a considerable amount of computing time. Note that plane 

wave cut-off in the first term in equation (2.40) is the same as in the corresponding 

pure plane wave calculation.
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The overlap matrix is not diagonal; its elements are

Sg .G'O*) =  ^g ,g'? (2.42)

Sm,g (k) =  e x p H G  • rn)/g (k ) (2.43)

and

S ^ '(k )  =  £ e x p ( iG  ' f a  -  rn))/S",(k)/g(k). (2.44)
G

The Hamiltonian matrix elements are defined by

* W (k )  =  exp(-iG ' • r„/) exp(z'G • T„)/G? '(k )/g (k )H G>G/ (2.45)
G,G'

and

H M>G(k) =  £ e x p H G ' • rn)/g ,(k)H G>G,, (2.46)
G'

where H g,g; is given by equation (2.33). Within the mixed basis scheme the size 

of the secular equation (equation (2.39)) is approximately equal to the number of 

atoms per unit cell times the number of orbitals, plus the plane wave part, which 

is roughly twenty plane waves per atom. For the systems studied in the present 

work, the Kohn-Sham Hamiltonians were less than 103 x 103 in size and they were 

solved following a standard diagonalisation procedure (Press et al., 1992). This has 

been combined with a charge density mixing scheme, providing an efficient way to 

achieve self-consistency. More details about this methodology will be presented in 

the following subsections.

2.5.1 Self-consistent field

In total energy calculations based on a density functional theory formalism, the 

charge density and the band energy E^  are obtained by solving self-consistently
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the Kohn-Sham equations for different k-points in the first Brillouin zone. By 

taking into account the symmetry present in the problem, the number of k-points 

can be reduced during the evaluation of the valence charge density

p(t) = ]E wk/i.klV’ik(r)|2, (2.47)
i,k

where are weighting factors of the k-points in the irreducible part of the first 

Brillouin zone. The charge density computed from equation (2.47) depends non- 

linearly on the effective potential, equation (2.5), and the solution must be found 

by using iterative techniques. For many cases, the iterative procedure can diverge, 

indeed it is possible to obtain an oscillating charge density with a growing ampli

tude. Therefore in order to achieve convergence, such oscillations must be damped. 

The most common damping procedure combines a portion of the input and output 

charge density of the last iteration (Bendt & Zunger, 1982). At each iteration step 

n, a new charge density for the (n + l)th  iteration is obtained by mixing the input 

and the output charge density as follows:

Pinput — Pinput +  a (Poutput Pinput) (2.48)

By a suitable choice of the mixing parameter, a, between 0 and 1, convergence 

usually can be achieved. However there are cases where this is not true or where 

the iteration process converges slowly and many iterations are needed. Normally 

each iteration requires a lot of computing time, therefore it is important to find 

methods to accelerate the convergence. Several efforts have been made to improve 

the convergence of iteration schemes based on simple mixing (Ferreira, 1980; Akai 

& Dederichs, 1985). However, the results have not been satisfactory in compari

son with methods based on a quasi-Newton Raphson scheme, where a significant 

reduction in the number of iterations can be obtained (Vanderbilt &; Louie, 1984; 

Johnson, 1988; Eyert, 1996).
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2.5.2 Broyden’s m ethod

In general, an iterative procedure is defined by a non-linear operator which is 

applied to nth charge density input vector |Pinput) and produces the output vector 

IPoutput)' h  self-consistency is achieved, the residual vector

l*"> =  IPlutvui) -  \plnput) (2-49)

vanishes. The length of the residual vector is used as a measure of the convergence 

reached, so then a norm in the space spanned by the input and output is defined. 

Within the quasi-Newton Raphson approximation, the residual vector is expanded 

in term of input vector and the subsequent residual vector is calculated by (Eyert, 

1996)

|iT +1) =  |i?"> +  J" (|p"+l) -  |/>")) , (2.50)

where the Jacobian matrix is defined as J I f  the left-hand side of equation 

(2.50) vanishes, the new input density is given by

\pn+1) = \pn) -  Gn\Rn). (2.51)

where G n =  (Jn)_1. In the Broyden approximation one tries to find an approxima

tion of the inverse Jacobian matrix by updating it at each iteration. The Broyden 

method has a serious problem for large systems, due to the need to store the Gn 

matrix (Vanderbilt &; Louie, 1984).

Johnson (1988) proposed an efficient way to calculate the inverse Jacobian matrix 

that avoids the requirement to store it, and where the updating of the inverse 

Jacobian matrix, Gn+1 is calculated by a least-square minimisation of

m
E  = uiol|Gn+1 -  G "||2 +  £ w 2|| | Ap") +  Gn+1|Aii">||2. (2.52)

n =  1
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The parameters lj are considered free parameters and they are fitted in order to 

achieve an optimal convergence. \\A\\2 — {A \ A). | Apn) and | ARn) are defined as 

I Apn+1)— | Apn) and | ARn+1)— | AR n) respectively. Minimisation with respect 

to the inverse Jacobian matrix leads to the updated inverse Jacobian given by 

(Johnson, 1988; Kresse & Furthmiiller, 1996b)

The efficiency of the scheme depends on providing a good starting approximation 

to the charge density. One way to do this involves the use of the Kerker’s charge 

mixing scheme (Kerker, 1980a) for the first few self-consistent steps and then to 

continue the minimisation with Broyden method. This scheme was used to min

imise the total energy with the mixed basis set method.

m
G n+1 = G n _  J2 pkn (G n|AR k) + |Apn)) <Aii*|. (2.53)

k,n=l

Writing Gn+1 in term of G 1, we obtain

m
G -+i = g 1 -  £  \Z%){&Rk\ (2.54)

where
m m—1

\Z?) = E A m l  IT) +  £  / U 3 T 1). (2.55)
n=l

\Un) = G^A/J") +  |Ap") (2.56)

(2.57)

and

dij =  uiiUjj\ARl)(AR:i (2.58)
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2.5.3 Kerker’s mixing scheme and preconditioning

As pointed out in previous section, for total energy calculations based on the mixed- 

basis approach, we have adopted a self-consistency process based on the modified 

Broyden scheme (Johnson, 1988) combined with a scheme of Kerker charge mixing 

(Kerker, 1980a) for the first few iterations

p Z + 1( G )  =  p Z ( G )  +  a
G2

G2 +  G2n pZt(G) -  pTJG) (2.59)

Within this scheme, the oscillations in low-G components of the charge density 

are damped. For small wave vectors, a small amount of the output charge density 

is mixed while at high-G, a simple linear mixing with a mixing parameter, A, is 

carried out.

A reduction in the number of iterations is important especially for large systems 

where a great amount of computational time is required for each iterative step. 

Kresse & Furthmiiller (1996b) have introduced a metric, gij, for the evaluation of 

the dot products present in Broyden’s mixing scheme;

(2.60)

The idea is to try to find a metric that decreases the number of iterations re

quired. We have tested the metric given by Kresse & Furthmiiller (1996b) in the 

calculations of the total energy of the Xe/Pt system, see section 4.3.
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2.5.4 Projected density of states

A way of studying bonding is via the projected density of states. This is defined 

as the density of states associated with the eigenstate | tpi)

<r(E) = ' £ \ { A \ ' M \ 2S ( E - E k). (2.61)
k

The sum runs over all the states of the system, and the 5-function picks out those 

states with energy E. In the case where | ipi) is part of a plane wave basis set, this 

does not provide an efficient way to quantify the local atomic population. Sanchez- 

Portal et al. (1996) have derived a formalism for projecting plane waves onto atomic 

orbitals, which has allowed a description of the properties of the system in terms of 

a chemical language (Sanchez-Portal et al., 1996; Segall et al., 1996; Bornsen et al., 

1999).

To analyse the bonding in our molecule-surface systems we need to calculate the 

population of the atomic orbitals using the mixed basis set (see equation (2.37) 

and (2.38)). We find that the projected density of states that is equivalent to that 

reported by Sanchez-Portal et al. (1996) becomes

cf(£) =  £ $ > “* S}ia f S ( E - E ak), (2.62)
ak j

where a are the coefficients of the pseudo-atomic orbitals and plane waves, i and j  

label the basis functions in equation (2.37) (i.e. either a pseudo-atomic orbital p, 

or a low-energy plane-wave G), a  runs over the electronic energies and Sfi is the 

overlap matrix connecting basis functions. With this definition, the total density 

of states is exactly the sum of dl(E) over all basis states, and so the total charge
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associated with any basis function can be defined by

Q' = f  d?(E)dE. (2.63)

This is equivalent to the charge of the orbital i within Mulliken’s analysis (Mulliken, 

1955). In practice, we will be most interested in projections onto the pseudo-atomic 

orbitals, but within the mixed-basis approach the plane-wave parts are also present. 

A description of the binding mechanism of an Xe atom on the P t( l l l )  surface is 

given in subsection 4.6.1.

2.6 Ultrasoft pseudopotentials

Norm-conserving pseudopotentials are accurate, but for the elements of the first 

row and 3d transition metals they need high cut-off energies. Vanderbilt (1990) has 

overcome this difficulty by relaxing the norm-conserving condition, which allows us 

to define a much softer pseudo wave function within the core region. The electronic 

charge density is divided into a hard part localised in the core region and a smooth 

contribution outside. Inside the core region the charge density is augmented in 

order to recover the full electronic charge density. The augmented part appears in 

the density only, not in the wave function, so that pseudopotentials are softer than 

in the norm-conserving case. Similarly to other ab-initio pseudopotential schemes, 

the construction of the ultrasoft potential starts with an all-electron calculation for 

the free atom in some reference configuration, in order to obtain the eigenvalues e fE 

and eigenfunctions ipAE for a screened potential V AE. For each ipAE, a pseudo wave 

function fa is constructed with the only constraint that it joins smoothly to rpAE 

at a cut-off radius and no norm-conservation constraint is explicitly imposed.
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The pseudo wave function fa satisfies the secular equation

/  V 2 \
~  + VloaU + V NL\ I fa) =  £(S I fa). (2.64)

The overlap operator S is given by

S =  l  +  E9nml/3n)(i3m| (2.65)
nm

with qnm =  f  Qnmdr, Qnm being the augmentation charge density defined by

Qnm(r) =  ^ AE(r)ipAB(r) -  </>;(r)^ro(r). (2.66)

The functions satisfy the orthogonality relation ((f)j | ffn ) =  6 j n , and are defined 

as

I Pn) =  I Xi) (2-67)
3

where

B j n  =  (<f>j I \ n ) • (2.68)

For each pseudo wave function fa one defines a function xi by

I X(> =  (e, +  ?  -  v ' ^ ' )  I fa), (2.69)

where the local potential V local matches smoothly to V AE at a cut-off radius r 1̂ 00,1

and consists of a local ion-electron potential, V ^ ai, the Hartree potential and the

exchange-correlation potential

t /-local j/local t f  p(r )dr  ̂ ^V  (r) =  Vi<m (r) +  J  (2.70)

A.E. Betancourt 45



2.6 Ultrasoft pseudopotentials

The term V NL in equation (2.64) represents a fully non-local potential defined by

V N L ( t ) =  E  A i m  | P n ) { P m  I. ( 2 .7 1 )
nm

where

f^nm — f^nm “1“ £mQnm• (2.72)

The numbers n and m  run over the number of ft functions. Typically, for each angu

lar momentum channel, two reference energies are included. This implies that the 

number of projections is twice as large as for a corresponding Kleinman-Bylander 

norm-conserving pseudopotential. The inclusion of more than one reference energy 

e per quantum state allows a good transferability over a wide energy range even 

for larger cut-off radii (Vanderbilt, 1990).

Within the ultrasoft pseudopotential scheme the total crystal energy is given by 

(Laasonen et al., 1993; Fujiwara & Hoshi, 1997)

E tota l[p , {R/}] — Y A 4>i -T + E E C M  0nV)(0*ri2 nm Rt ,
<f>i) +  E h [p ]

+Exc[p] +  J  V ^ ( v ) p { r ) d v  +  £,<m-i<m({R/}) (2.73)

where the charge density, p, is defined by

P(r) =  E  [ I A W  I2 + E E ® W ( *  I I A>], (2.74)
i nm  RTj

where R  are the lattice vectors and Tj is the position of an ion within the unit cell. 

The functions ARlj(r) depend on R  and Tj through A Krj (r) =  ^4(r — R  — Tj ) .  The 

local part of the potential is constructed as a sum of the individual local atomic 

potentials

V firV ) =  E  ^ r ' ( r  -  R  -  Tj ) .  (2.75)
R Tj
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Chapter 3

Validation of the pseudopotentials

3.1 Introduction

Ab-initio pseudopotentials are useful tools in the simulation of condensed matter, 

faciliting the evaluation of a wide range of properties of solids and molecules with a 

high level of accuracy and a relatively low computational effort. In addition to the 

basic constraints (subsection 2.3.1) that define an ab-initio pseudopotential, other 

criteria are included in the construction process in order to improve the transfer

ability and the efficiency of the pseudopotential (Kerker, 1980b; Rappe et al., 1990; 

Troullier & Martins, 1991; Lin et al, 1993). In the present chapter, we concentrate 

the discussion on those aspects present in the construction of pseudopotentials that 

could affect their transferability and softness.

Pseudopotentials for He, Ne, Cu, Rh, Xe, and Pt atoms were constructed follow

ing the model of Troullier & Martins (1990, 1991). We have adopted this scheme 

because it provides efficient pseudopotentials for a variety of elements and is one of 

the most widely-used, norm-conserving pseudopotential models at the present time.



3.1 Introduction

For the elements Cu, Rh, Xe, and Pt, semi-relativistic pseudopotentials were con

structed. It is important to take these relativistic effects into account especially for 

atoms with a large atomic mass because they significantly influence the electronic 

behaviour of the atom (Elsasser et al., 1990). Another important consideration is 

what type of approximation should be used for describing the exchange-correlation 

effects. We have used both the local density approximation as parametrised by 

Perdew & Zunger (1981) and the generalised gradient approximation in its forms 

PW91 and PBE (Perdew & Wang, 1992; Perdew et al., 1996b), allowing us to 

compare the quality of the pseudopotentials given by both approximations.

The transferability of the pseudopotentials was studied within the Kleinman-Bylan- 

der form, checking for the presence of any “false” states. Calculations of the lattice 

constant and bulk modulus in crystalline structures, and bond length and binding 

energy for rare-gas atom dimers were carried out to test the reliability of the atom

ically constructed pseudopotentials in predicting the equilibrium geometry in new 

environments.

As we pointed out in subsection 2.3.5, an approximation frequently used in an ab- 

initio pseudopotential procedure is to assume the linearity between the valence and 

core states. However, the outermost core states can have an important overlapping 

in the valence region, which affects the transferability of the pseudopotentials in a 

new environment (Fuchs et al., 1998). Within the present study, it is important to 

show the effects of core-valence exchange correlation on the selected elements. For 

Pt, Rh, and Xe atoms, these corrections were included during the construction of 

the pseudopotential and the calculated structural properties were compared with 

results without core-valence exchange-correlation corrections.

The present chapter is organised as follow: In section 3.2, aspects of the con

struction of the pseudopotentials, including electronic configuration, the choosing
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of core radii, the semi-relativistic approach used, and tests on the transferability 

of pseudopotentials with the Kleinman & Bylander form are discussed. The ef

fects of the GGA functionals (GGA-PW91 and GGA-PBE) and the core-valence 

exchange-correlation energy on the pseudopotentials are presented in section 3.3. 

In section 3.4, the transferability of the pseudopotentials is studied by calculating 

the structural properties such as lattice constant and bulk modulus for the crys

talline structure of Cu, Rh, and Pt and the bond length and binding energy for 

the dimers of He, Ne, and Xe. The calculations were carried out using the pseu

dopotential plane wave method and the pseudopotential mixed basis method. This 

section also includes further tests of the pseudopotentials, especially those related 

to the choosing of core radii and the effects of the exchange correlation on the cal

culated structural properties. Finally the conclusions of the chapter are presented 

in section 3.5.

3.2 Pseudopotential construction

3.2.1 Electronic configuration

Ab initio pseudopotentials are constructed from all-electron calculations for the 

atom in a reference configuration. In general, the construction of pseudopotentials 

for a bound, occupied electronic state is made from the neutral configuration. 

However when the atom’s environment changes, its electronic configuration can also 

change as unoccupied states in the atom become occupied. Hence, valence states 

that could promote the creation of new bonding should be introduced into the 

pseudopotential construction. In the case of non-bound states, we have generated 

them from a separate atomic calculation using an ionised configuration. Table 3.1 

shows ionic and neutral configurations used for each element considered.
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Ground state Ionic state
He Is2 ls ° 'V -2o, 1 S°-W-2&
Ne 2 s2 2p6 2s12p2 5 3(P-25

Cu 3d104s14p° 3d94s°-254p0-75
Rh 4d85s15p° 4d75s°-255p0-75
Pt 5d?6s16p° 5d86s°-256p0-75
Xe 5s25p65d° 5s15p4,755d0,25

Table 3.1: Electronic configurations used to generate pseudopotentials for He, Ne, 
Cu, Rh, Pt, and Xe atoms. The ionic configuration was taken from Bachelet et al. 
(1982). a for I = 1, b for I = 2.

3.2.2 Core radii

In this section, we explain in detail the scheme adopted, which produced reliable, 

highly transferable pseudopotentials without the need for carrying out a large num

ber of tests. The most important parameter within any ab-initio pseudopotential 

scheme is the core radius. Choosing core radii is in principle arbitrary; one just 

takes into account values greater than the last nodal point of the all-electron wave 

function, although care must be taken not to select too small a radius which will 

produce wiggles leading to poor pseudopotentials. On the other hand, core radii 

that are too large yield softer pseudopotentials which converge more rapidly with 

a plane wave basis set, but they will become less transferable. Between both ex

tremes, there is a wide range for the core radius which produces fairly small changes 

in the transferability of the pseudopotentials, and it is important to have a criterion 

that allows us to find a balance between these extremes. In subsection 3.4.3, we 

will return to this point and with a particular example show how the equilibrium 

geometry of P t can be altered depending on the core radius used.

When choosing the core radius the method adopted aims to optimise the pseu

dopotential with respect to the scattering properties of the all-electron potential. 

The scattering of an atomic field is closely linked with the logarithmic derivative 

of the wave function (Schiff, 1968), therefore a pseudopotential with a high trans
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ferability should present the same scattering as the all-electron potential around 

the atomic eigenvalues. With the aim of choosing core radii which provide an opti

mum transferability of the pseudopotentials, we have determined core radii which 

provide the best match between the logarithmic derivatives of the pseudo and the 

all-electron wave functions. The sum of the quadratic difference between pseudo 

and all-electron logarithmic derivatives was adopted as an error estimator

\ (3.1)

e represent a discrete set of energy points (we have chosen steps of 0.01 eV) which 

were taken around one Rydberg either side of the eigenvalues ej. Such an energy 

range is quite wide and includes valence bands and lower conduction bands in solids, 

and it should provide a useful range to study the quality of the pseudopotential 

in a new environment (Fuchs & Scheffler, 1999). In principle the evaluation of the 

logarithmic derivative could be done using an arbitrary radius greater than the 

core radius, but normally the Wigner-Seitz radius, rws, is used, which is a scaled 

length of the interatomic separation in a metal (Sutton, 1996).

In the cases of Cu, Rh, Pt, and Xe atoms, where semi-relativistic pseudopoten

tials were constructed, logarithmic derivatives were calculated using the following 

relation (Bachelet & Schliiter, 1982)

|  =  M  _  * ± I ,  (3.2)
s  s  r

where S =  F /r  and f  =  G/r. F  and G correspond to minor and major pseudo 

wave function solutions of the Dirac equation respectively, f  is the fine structure 

constant, and A; is a non-zero integer quantum number, whose values are defined 

as k =  / for j  =  I — 1/2 and k =  —(/ +  1) for j  =  I +  1/2. Figure 3.1 shows the 

logarithmic derivative obtained for Rh. For each angular momentum component a
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Figure 3.1: Relativistic logarithmic derivatives in (Bohr radii)-1 for Rh wave func
tions around the atomic eigenvalues. Solid lines represent all-electron wave func
tion results; dashed lines represent pseudo-atom results. Bullet symbols indicate 
the position of the eigenvalues.

different core radius was used. This can improve the optimisation when the wave 

function presents a noticeable difference of phase in the valence region, as in the 

case of Pt 6 p wave function (Figure 3.2). In fact we find a significant difference 

between the optimised core radius for these p components, see Table 3.2.

Following the variation of <7* as a function of the core radius in the cases of Rh and 

Xe, Figure 3.3, it is observed that there is a core radius that minimises the function 

<j/, which we have taken to be the optimised core radius. Due to the asymptotic 

behaviour of the logarithmic derivative curves, Figure 3.1, comparisons were made 

for a range between —2.0 Ry and +1.0 Ry for the energy and —20 (Bohr radii)-1 

and 20 (Bohr radii)-1 for the values of the logarithmic derivative (although the 

Figure 3.1 only shows the results around the eigenvalues). This range was chosen 

arbitrarily but other selections do not significantly change the final results for the 

core radii. The optimised core radii calculated for each element are shown in Table 

3.2 as are the Wigner-Seitz radii used in the logarithmic derivative calculations.
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Figure 3.2: Pseudo (solid line) and all-electron (dashed line) for Pt 6 p valence wave 
functions.

Atom s \ / 2 Pl/ 2 P3/2 ^3/2 d$/ 2 f'ws
Pt 2.30 2.60 2.90 2.45 2.30 2.90
Rh 2.45 2.50 2.70 2.15 1.95 2.81
Cu 1.93 2.35 2.40 2.20* 2.20* 2.60
Xe 1.73 1.90 2.00 3.80 3.90 4.57

Table 3.2: Core radii optimised from relativistic logarithmic derivative calculations 
for Pt, Rh, Cu, and Xe atoms. Core radii denoted with an asterisk were not 
optimised with equation (3.1). The Wigner-Seitz radius rws was taken from Moruzzi 
& Sommers (1995). Units are in Bohr radii.

We have found that this procedure provides optimum core radii for the transition 

metal atoms studied (Rh and Pt) and the Xe atom. For these elements, o\ presents 

a minimal point, which we take as the optimum value of the core radius. However, 

such a minimum was not found for the Cu 3d pseudopotential component. A similar 

failure occurred for Ne 2p and He Is. In these cases, oi decreased monotonically as 

the core radius was decreased and a minimum point was not reached. Figure 3.4 

shows the case of Cu. Note that for the s component (left panel), it was possible 

to obtain an optimised core radius but not for the d parts. The selection of the 

d core radii for Cu was instead made by first optimising the s and p core radii as 

described above. The d core radii were then varied and the lattice constant and
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Figure 3.3: o in (Bohr radii)-1 as a function of the core radius for S\ / 2  (upper 
left) and d^/ 2 (upper right) pseudopotentials for Rh and S\ / 2  (lower left) and p \ / 2  

(lower right) pseudopotentials for Xe. The solid line represents a fitted curve using 
a fourth degree polynomial and the calculated values are denoted by diamond 
symbols.

the bulk modulus were calculated. In subsection 3.4.1, we will show the results 

obtained that justify the d core radius given in Table 3.2.

By comparing our core radii in Table 3.2 with those reported by Bachelet et al. 

(1982), we find that our core radii are systematically larger. For s, the differences 

are between 0.6 Bohr radii and 0.9 Bohr radii. For p the differences are smaller 

(between 0.1 and 0.2 Bohr radii) while for d the difference are between 1.3 and 2.5
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Figure 3.4: o in (Bohr radii)-1 as a function of the core radius for the S1/ 2 (left 
panel) and d3/2 (right panel) pseudopotential of Cu. Solid line represents the fitted 
curve using a fourth degree polynomial and the calculated values are denoted by 
diamond symbols.

Bohr radii. In this last case the largest difference corresponds to Xe while for the 

transition metals the difference with respect to the Bachelet-Hamann-Schliiter core 

radii is, on average, 1.4 Bohr radii.

In the case of Ne a similar procedure was adopted, the core radius for 2s was 

obtained with the relation (3.1) while the remaining components were fixed in 

accordance with the bond length and binding energy. In the case of He, it was not 

possible to fix any pseudopotential components with equation (3.1). Therefore all 

its components were chosen from those values which provided the best agreement 

with similar all-electron results, see subsection 3.4.6.

3.2.3 Sem i-relativistic pseudopotentials

Relativistic effects on the valence electrons are important for heavier elements. 

Normally these are incorporated in pseudopotentials by the scalar-relativistic ap

proximation given by Kleinman (1980). Within Kleinman’s scheme, the ionic pseu-
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Figure 3.5: Relativistic ionic pseudopotential for Rh. 

dopotential is given by (Bachelet & Schliiter, 1982)

Vim(r) = EM> [* T »  + vr(r )L • s] (i |, (3.3)
I

where V̂ °n(r) is defined by the average pseudopotential, weighted by the different 

degeneracy of I ±  |

K“> )  =  [ t t£ |( r )  +  (/ +  l ) t £ j ( r ) ] , (3.4)

and V*°(r) is given by

vr{x) = 2TTT ^+1(r)" y'-1 (r)l • (3'5)

The pseudopotential calculated using equation (3.4) contains the whole scalar part 

of a relativistic potential and can be used for self-consistently solving the Schrodin- 

ger equation within a semi-relativistic framework. For Cu, Rh, Pt, and Xe semi- 

relativistic pseudopotentials were constructed from relativistic results. Figure 3.5 

shows the relativistic pseudopotentials in the case of Rh, where the difference be
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tween the spin-split p and d states can be clearly seen. Having obtained the rel

ativistic pseudopotentials with the Dirac equation, the averaged pseudopotential 

was calculated with equation (3.4) and the spin dependent part was not used. Fi

nally, the non-relativistic Kohn-Sham equation was solved self-consistently in order 

to calculate the new wave function and from this the averaged pseudopotential was 

obtained.

3.2.4 Testing the Kleinm an-Bylander form

As indicated in subsection 2.3.4, Kleinman & Bylander (1982) have pointed out 

that the computational load can be significantly reduced if the non-locality of the 

pseudopotential is expressed with equation (2.17) or equation (2.19) when using a 

plane wave basis set. Sometimes, however, the transformation of the pseudopoten

tial into such a form creates problems, especially the appearance of wrong states, 

which are known as “ghost states”. In principle, there is no standard procedure 

to predict the presence of such states, although Gonze et al. (1990, 1991) have 

suggested that the problem can be overcome by adopting certain rules, such as the 

correct choice of the local pseudopotential or by increasing the core radius of the 

local component.

We have tested the transferability of pseudopotentials within the Kleinman-Bylan

der form for the semi-relativistic and non-relativistic pseudopotentials studied. 

Fuchs & Scheffler (1999) have pointed out that a ghost-free Kleinman-Bylander 

pseudopotential can be obtained with d as the local component except for “two 

shell” situations of transition metal elements where the s component is used com

monly as the local potential. We have adopted Fuchs & Scheffler’s rule for the 

transition elements studied. Figure 3.6 shows a comparison between the average 

pseudopotential and the transformed one for the case of Rh using s as the local
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Figure 3.6: Comparison of the logarithmic derivatives in (Bohr radii)-1 of Rh 
between the average pseudopotential (solid line) and the Kleinman-Bylander form 
(dashed line). Arrows indicate the position of the eigenvalues.

component. The comparison between the curves shows an excellent agreement, 

which is an indication of the high transferability of the pseudopotentials in the 

Kleinman-Bylander form and of the absence of “ghost states” .

In the case of rare-gas atoms the s component was also used as the local part. Tests 

were carried out with d as the local component but no significant differences were 

found. In summary, for all the pseudopotentials transformed into the Kleinman- 

Bylander form used in the present work, the s component was used as the local 

component.

tentials present wiggles. We have found such oscillations and strong irregularities

3.3 Exchange-correlation energy

Ortiz & Ballone (1991) have reported that the inclusion of gradient corrections 

introduces oscillations in the exchange-correlation potential making the pseudopo-
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Figure 3.7: The average ionic pseudopotentials in real space for P t using the GGA 
approximation. Left corresponds to GGA-PW91 results and right to GGA-PBE. 
In both cases, the strongest oscillations close to the nucleus (small panel) were 
removed.

inside the core radius in all pseudopotentials constructed with the non-local approx

imations (GGA-PW91 and GGA-PBE). These oscillations were less strong in the 

case of GGA-PBE than GGA-PW91, Figure 3.7. The mathematical representation 

of GGA-PBE (see Appendix A) not only makes the evaluation of the exchange- 

correlation energy simple but also improves the quality of the pseudopotentials by 

reducing wiggles and strong oscillations at the origin. However, we have found that 

these peaks do not lead to a significant change in the total energy or structural 

properties such as the lattice constant and bulk modulus, at least in the case of Pt, 

see subsection 3.4.4. For this reason we have removed only the strongest oscillations 

close to the nucleus. In the case of P t, these oscillations were located for values 

less than 0.1 Bohr radii (see Figure 3.8). The peaks were removed by flattening 

the pseudopotential curves around each oscillation with a linear interpolation.
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Figure 3.8: s pseudopotential in real space for P t close to the nucleus using GGA- 
PBE and GGA-PW91.

3.3.1 Core-valence exchange-correlation correction

The short-ranged oscillations present in the ionic pseudopotentials constructed 

with GGA-PW91 and GGA-PBE were removed when the core-valence exchange- 

correlation correction was included in the pseudopotential construction procedure 

(see Figure 3.9).

The oscillations caused by the gradient expansion are connected with the large 

contribution of the gradient at low density in the valence region. The inclusion 

of core states increases the density in this region which stabilises the exchange- 

correlation potential (Ortiz & Ballone, 1991). We have included just a partial 

pseudo core charge density (see subsection 2.3.5). The inclusion of the partial core 

charge introduces an additional term in the atomic total energy, which becomes

oo
E->  Ta[pval] + /  (pvcU + P ™ eUal)V extd r 3 Exc[(p”al # £ « ) ] .  (3.6)

0

For a total energy calculation in a crystal a representation of the partial core charge
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Figure 3.9: s and d components of the ionic pseudopotential for Pt without (so
lid line) and with (dashed line) the non-linear core-valence exchange-correlation 
correction. The exchange-correlation energy was calculated with the GGA-PW91 
approximation.

density in the G space is needed. This was determined by

A °°
G) = ^ J  r2j 0 (\G\r)p™°(r)dr, (3.7)

0

where Q, is the cell volume and j Q is the spherical Bessel function of order zero 

(Arfken k  Weber, 1995).

3.4 Testing pseudopotentials

Pseudopotentials for He, Ne, Cu, Rh, Pt, and Xe were tested by calculating equi

librium structural properties. Tests on Cu, Rh, and Pt pseudopotentials were made 

with the plane-wave method while the mixed-basis method was used for He, Ne, 

Rh, Pt, and Xe. The application of both schemes for Pt and Rh allows us to 

compare the calculated structural properties. All the calculations were carried out
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consistently, in other words, the same approximation for the exchange-correlation 

energy was used for both the pseudopotential construction and in the total energy 

calculations. The Brillouin zone for the bulk metallic systems was sampled with a 

8 x 8 x 8  Monkhorst & Pack mesh (leading to 28 k-points in the irreducible wedge) 

while one k-point was used for dimer calculations. For the metallic systems, the 

Fermi surface was broadened with a smearing of 0.25 eV and the total energy 

was extrapolated to zero temperature (Gillan, 1989; de Vita & Gillan, 1991). Self 

consistent iterations were carried out until the total energy was stable to 10-5 eV.

For fee Cu, Rh, and Pt the total energy was calculated at eight different lattice con

stants around their equilibrium value and these results were fitted to Murnaghan’s 

equation of state (Murnaghan, 1944; Anderson, 1966; Fu h  Ho, 1983):

E(V) = E{Va) + M . J + i J  _  (3.8)

where V  is the cell volume, and B0 and B f0 are the bulk modulus and its pressure 

derivative at the equilibrium volume Vo-

The interaction potential energies for He2, Ne2, and Xe2 dimers were obtained by 

calculating the total energy difference between the dimer at different bond lengths 

(approximately 16 points) and its isolated atom, keeping in both cases the size 

of the box, number of k-points and cut-off energies constant. For He and Ne the 

molecule was put into a rectangular box of size 8 A  x 8 A x l 3 A  and for Xe, a 

box o f 9 A x 9 A x l 5 A  was used. We have found that boxes of this size are 

large enough to avoid any interaction with neighbouring molecules.
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3.4.1 Core radius for Cu

In subsection 3.2.2, it was shown that it is not possible to obtain a minimal point 

in equation (3.1) for Cu d components. In order to find d core radii for Cu which 

allow us to reproduce structural properties which agree with the all-electron or 

experimental results, we have varied the d core radius, while the s and p components 

were kept at the optimised values calculated with equation (3.1). The values of the 

d core radius were chosen taking into account the position of the maximum of the 

3d orbital. Table 3.3 shows the calculated lattice constant and bulk modulus for 

Cu as a function of the d core radius and the plane wave cut-off energy.

From the results shown in Table 3.3, we can see that there is no significant change 

in the lattice constant for all the chosen core radii; most converge to a value of 

3.55 A, a result which agrees well with the value of 3.52 A obtained by Khein 

et ol. (1995) using all-electron calculations and the local density approximation. 

In the case of the bulk modulus, the variation was less than 5 GPa, although with 

a value of 1.6 Bohr radii it is not clear if convergence is reached by 1300 eV or if 

a higher cut-off energy is required. However, with a core radius between 2.0 Bohr

E«,t (eV)

Lattice constant (A)
Core radius (Bohr radii)

1.6 1.8 2.0 2.2 2.4

Bulk modulus (GPa)
Core radius (Bohr radii) 

1.6 1.8 2.0 2.2 2.4
500 3.423 3.463 3.490 3.516 3.541 139 730 422 277 213
600 3.501 3.447 3.500 3.530 3.548 205 281 250 209 189
700 3.527 3.552 3.554 3.553 3.556 210 176 175 178 180
800 3.489 3.523 3.542 3.549 3.554 314 221 187 181 180
900 3.517 3.543 3.547 3.550 3.554 179 173 177 179 180
1000 3.517 3.539 3.546 3.550 3.554 209 181 178 179 180
1100 3.542 3.544 3.547 3.550 3.554 179 178 178 179 180
1200 3.546 3.546 3.547 3.550 3.554 176 177 178 179 180
1300 3.547 3.546 3.547 3.550 3.554 171 176 178 179 180

Table 3.3: Calculated lattice constant and bulk modulus for Cu using the local 
density approximation as a function of the plane wave cut-off energy and the d 
core radius.
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radii and 2.4 Bohr radii the pseudopotentials require a much lower cut-off energy 

and provide a calculated lattice constant and bulk modulus in good agreement with 

previously reported results. In principle, we could use any value of the core radius 

inside the given interval. Our final selection for the Cu d core radius was 2.2 Bohr 

radii.

3.4.2 Pseudopotential-plane-wave results

When performing a total energy calculation based on a plane wave basis set, the 

physical properties depend on the cut-off energy used. In order to test the conver

gence of the lattice constant and the bulk modulus with respect to the plane wave 

basis set, the cut-off energy was varied over a wide range taking into account what 

kind of transition metal was under consideration. For instance, 3d transition met

als present deeper d pseudopotentials because they contain no d electrons in their 

cores, therefore a calculation with a plane wave basis requires of a larger cut-off en

ergy to reach convergence than the 4d and 5d series, Similarly, the pseudopotentials 

for 5d transition metals are softer than for the Ad.

Table 3.4 shows the results calculated for the lattice constant and bulk modulus for 

Cu, Rh, and Pt as a function of the plane wave cut-off energy with both the local 

and non-local approximations used for the exchange-correlation energy. In general 

the convergence of the lattice constant and bulk modulus was satisfactory for all 

the elements considered. With the GGA approximation, the plane wave cut-off 

energy required for convergence was similar to that for the LDA. For all elements, 

we notice that the simplified GGA-PBE provides similar results to PW91, which 

confirms the equivalence of the approximations.

Table 3.5 summarises the results of Table 3.4, using plane wave cut-off energies of
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Ecut (eV) Lattice constant (A) 
LDA PW91 PBE

Bulk modulus (GPa) 
LDA PW91 PBE

700 3.553 3.719 3.713 178 167 166
800 3.549 3.659 3.650 181 131 141
900 3.550 3.657 3.665 179 135 139

Cu 1000 3.550 3.659 3.666 179 135 139
1100 3.550 3.660 3.666 179 136 140
1200 3.550 3.660 3.666 179 136 140
400 3.860 3.931 3.926 390 391 391
450 3.764 3.862 3.856 379 271 278
500 3.781 3.901 3.894 285 208 214

Rh 550 3.802 3.912 3.901 287 234 236
600 3.802 3.908 3.902 296 243 244
650 3.798 3.906 3.901 297 241 243
700 3.798 3.906 3.901 297 241 243
400 3.934 4.022 4.018 299 272 268
450 3.917 4.015 4.012 290 240 236

Pt 500 3.924 4.021 4.018 287 237 235
550 3.925 4.022 4.019 287 241 236
600 3.925 4.022 4.019 287 241 236

Table 3.4: Calculated lattice constant and bulk modulus for Cu, Rh, and Pt us
ing the local density approximation, and the gradient generalised approximations 
(GGA-PW91 and GGA-PBE) as a function of the plane wave cut-off energy.

900 eV (Cu), 600 eV (Rh), and 500 eV (Pt). Also a comparison with experiment 

and the results of previous calculations for Cu, Rh, and Pt are shown. The agree

ment with previous all-electron calculations and full potential calculations is very 

good. In the case of Cu, comparison with experiment shows that the equilibrium 

lattice constant is underestimated by 1.7 % with LDA whereas PW91 and PBE 

overestimate it by 1.4 % and 1.6 % respectively. The bulk modulus is underesti

mated by PW91 while PBE gives results only slightly above experimental values. 

GGA results are closer to the experimental value than LDA. The error in the bulk 

modulus is reduced from 28.3 % to 2.2 % by PW91 and 0.7 % by PBE. Comparing 

our Cu results with those obtained by Troullier & Martins (1991), we found that 

our lattice constant differed by only 0.02 A, which could be due to the slightly dif

ferent core radii used in the pseudopotential construction by Troullier & Martins, 

(s =  2.08 Bohr radii, p =  2.30 Bohr radii and d =  2.08 Bohr radii).
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Lattice constant (A) Bulk modulus (GPa)
LDA PW91 PBE Expt. LDA PW91 PBE Expt.

Cu 3.55 3.66 3.67 3.61/ 177 135 139 142®
(-1.7) (+1.3) (+1.5) - (+28.3) (-2.2) (+0.7)

PP-PWa 3.57 - - 174 - -

PP-MB6 3.62 - - 150 - -

AEC 3.52 3.62 - 192 151 -
Rh 3.80 3.91 3.90

l-H°oCO 296 243 244 267e
(-0.3) (+2.5) (+2.4) (+10.9) (-9.7) (-9.0)

AE d 3.74 - - 346 - -

USd 3.75 - - 344 - -

FPe 3.76 3.84 - 313 257 -

Pt 3.92 4.02 4.02 3.92e 287 237 235 283e
(+0.1) (+2.6) (+2.5) (+1.4) (-16.2) (-15.2)

AEC 3.90 3.97 - 307 246 -

FPe 3.89 3.97 - 306 263 -
° Pseudopotential-plane wave, PP-PW, from Troullier & Martins (1991).
6 Pseudopotential-mixed basis, PP-MB, from Morrison et al. (1989). 
c From Khein et al. (1995).
d Ultra soft pseudopotential , US, from Stokbro (1996).
e Full potential linear muffin tin orbitals, FP LMTO, from Ozoliijs & Korling
(1993).

From Lide & Frederikse (1997).
9 From van’t Klooster et al. (1979).

Table 3.5: Calculated lattice constant and bulk modulus for Cu, Rh, and Pt 
the with local density approximation and the gradient generalised approximations 
(GGA-PW91 and GGA-PBE). Numbers in parentheses indicate the percentage 
error relative to experiment.

The reverse was found in the cases of Rh and Pt, where the lattice constant calcu

lated by LDA was in closer agreement with experiment than for GGA schemes. In 

the case of Rh, the lattice constant calculated with LDA differs from experiment 

by only —0.3 % whereas PW91 and PBE over-corrected it to 4-2.4 % and 4-2.5 

% respectively. Although our LDA calculated lattice constant was slightly larger 

than those reported in other theoretical calculations (Ozoliqs & Korling, 1993; 

Stokbro, 1996) ours is closer to the experimental result. With respect to the bulk 

modulus, we found a slight improvement with GGA, but a worse estimation of the 

lattice constant. For Pt, the LDA results are in good agreement with the exper

iment. Similar results have been reported by Ozoli^s & Korling (1993) using the
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full potential linear muffin tin orbital method, these authors have concluded that 

the GGA does not improve the structural properties of the 5d transition metals. 

Although the structural properties (lattices constant or bond length) can be worse 

with the GGA than the LDA, in general the binding energy is significant improved 

with the GGA (Perdew et a/., 1992; Fuchs et al., 1998).

3.4.3 Testing core-radii

For transition metals, the convergence of total energy calculations is determined 

by the d pseudopotential component. In order to test how the transferability and 

the plane wave cut-off energy are affected by the depth of the d pseudopotential, 

the bulk modulus and the lattice constant for Pt were calculated at different d core 

radii. The core radii for s and p potentials were kept constant and were taken from 

the values given in Table 3.2. Figure 3.10 shows the d pseudopotential for Pt at 

different core radii, which were chosen to ensure an appreciable difference of depth 

between two consecutive curves. The presence of wiggles in a curve (green line) is 

due to too small a radius being chosen. Table 3.6 shows the results obtained for the 

lattice constant and bulk modulus of Pt as a function of the core radius. All cal

culations were performed using the LDA to approximate the exchange-correlation 

energy.

Despite the wide range used for the d core radius, the lattice constant showed 

only a slight variation with respect to the results of the optimised core radius (see 

section 3.2.2). It is clear that the plane wave cut-off energy required to reach a 

convergent solution decreases as the core radius is increased but with a evident loss 

of transferability. The changes in the calculated bulk modulus were more sensitive 

as a consequence of its dependence on the second derivative of the energy. A better 

agreement was obtained for the bulk modulus as the core decreased, when compa-
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Figure 3.10: d pseudopotential for P t at a selected set of core radii, (a) rc =  1.17,
(b) r 1 . 2 0 ,  (c) 2 ..00, (d) rc = 3.00 and i(d) rc = 4.00., Units are Bohr radii.

rc ( B o h r  r a d i i ) 4 0 0  e V 4 5 0  e V 5 0 0  e V 5 5 0  e V 6 0 0  e V
1 . 1 7 3 . 9 4 4  ( 1 .1 ) 3 . 9 2 8  ( 0 .7 ) 3 . 9 3 5  ( 0 . 9 ) 3 . 9 3 6  ( 0 .6 ) 3 . 9 3 6  ( 0 .3 )
1 .2 0 3 . 9 3 4  ( 0 .8 ) 3 . 9 1 2  ( 0 .3 ) 3 . 9 2 3  ( 0 .6 ) 3 . 9 2 4  ( 0 .6 ) 3 . 9 2 3  ( 0 .6 )

o(A) 2 . 0 0 3 . 9 3 4  ( 0 .8 ) 3 . 9 1 2  ( 0 .3 ) 3 . 9 2 3  ( 0 .6 ) 3 . 9 2 4  ( 0 .6 ) 3 . 9 2 4  ( 0 .6 )
3 . 0 0 3 . 9 3 4  ( 0 .8 ) 3 . 9 3 3  ( 0 .8 ) 3 . 9 3 3  ( 0 .8 ) 3 . 9 3 3  ( 0 .8 ) 3 . 9 3 3  ( 0 .8 )
4 . 0 0 4 . 0 1 7  ( 3 .0 ) 4 . 0 1 7  ( 3 .0 ) 4 . 0 1 7  ( 3 . 0 ) 4 . 0 1 7  ( 3 .0 ) 4 . 0 1 7  ( 2 .3 )
1 .1 7 3 1 8  ( 3 .9 ) 2 9 7  ( 2 .3 ) 2 8 7  ( 6 .2 ) 2 9 0  ( 5 .2 ) 2 9 1  ( 4 .9 )
1 .2 0 3 1 1  ( 1 .6 ) 2 9 4  ( 3 .4 ) 2 8 5  ( 6 . 8 ) 2 8 7  ( 6 .2 ) 2 8 7  ( 6 .2 )

B ( G P a ) 2 . 0 0 3 1 1  ( 1 .6 ) 2 8 4  ( 7 .2 ) 2 8 6  ( 6 .5 ) 2 8 7  ( 6 .2 ) 2 8 7  ( 6 .2 )
3 . 0 0 2 8 6  ( 6 .5 ) 2 8 6  ( 6 .5 ) 2 8 6  ( 6 .5 ) 2 8 6  ( 6 .5 ) 2 8 6  ( 6 .5 )
4 . 0 0 2 8 1  ( 8 .2 ) 2 8 2  ( 7 .8 ) 2 8 2  ( 7 .8 ) 2 8 2  ( 7 .8 ) 2 8 2  ( 7 .8 )

Table 3.6: Calculated lattice constant, a, and bulk modulus, B, for P t as a function 
of the core radius, r c, and the cut-off energy. Numbers in parentheses indicate 
percentage relative error with respect to all-electron results (Khein et al., 1995).

red with all-electron results, but at the expense of a worse estimation of the lattice 

constant. In summary, it seems tha t the core radius optimised with equation (3.1) 

provides the best estimate for both structural properties for Pt.

A.E. Betancourt 68



3.4 Testing pseudopotentials

3.4.4 GGA pseudopotentials

As was pointed out in section 3.3, it is not expected that the strong oscillations 

produced by the generalised gradient approximation close to the nucleus cause a 

substantial change in the calculated bulk properties. We have calculated the lattice 

constant and the bulk modulus for fee Pt for a fully GGA-PW91 pseudopotential. 

In the first case, the oscillations near to the nucleus were kept and in the second 

case they were removed (see section 3.3). Table 3.7 shows the total energy as a 

function of the lattice constant. The change of the total energy was about 0.01 

eV, so the change the lattice constant and bulk modulus will be small. Indeed, the 

differences in the lattice constant and the bulk modulus were only 0.003 A and 0.2 

GPa respectively.

"Lattice constant (A) EtotaX (eV) Etotai (eV)
3.6 -709.2073 -709.2043
3.7 -710.1694 -710.1720
3.8 -710.7648 -710.7651
3.9 -711.0835 -711.0786
4.0 -711.1896 -711.1872
4.1 -711.1603 -711.1488
4.2 -711.0163 -711.0058
4.3 -710.8009 -710.7897

Table 3.7: Total energy, EtotaU as a function of the lattice constant for Pt using the 
GGA-PW91 approximation and a plane wave cut-off energy of 550 eV. The first 
column corresponds to a pseudopotential with oscillations at the origin while the 
second one corresponds to a pseudopotential with oscillations removed (see section 
3.3). In the first case, the calculated lattice constant and the bulk modulus were 
4.026 A and 237.0 GPa respectively whereas in the second, they were 4.023 A and 
237.2 GPa.

3.4.5 Pseudopotential-m ixed-basis results

In contrast to the plane wave method, the accuracy of calculations based on the 

mixed basis method on two cut-off energies, (see equation (2.37)). The first term

A.E. Betancourt 69



3.4 Testing pseudopotentials

Ecutpw (eV) Lattice constant (A) Bulk modulus (GPa)
40 3.814 301
50 3.801 299
60 3.801 298
70 3.804 298
80 3.804 298

Table 3.8: Calculated lattice constant and bulk modulus for Rh as a function of 
the plane wave cut-off energy.

corresponds to the expansion of the atomic orbitals in terms of plane waves and the 

second one corresponds to the delocalised part of the wave function. It is important 

to establish how the low-energy plane wave component could affect the structural 

properties in a transition metal. We have tested the structural properties of Rh as 

a function of the cut-off energy for the delocalised part. The localised part of the 

wave function, equation (2.37), was expanded using the same cut-off energy as in 

its equivalent full plane wave calculation and the additional plane wave cut-off was 

varied between 40 eV and 80 eV. The remaining parameters (k-points, smearing, 

etc.) were kept equal to those used in section 3.4. Table 3.8 shows the lattice 

constant and the bulk modulus for fee Rh as a function of the cut-off energy. We find 

that the structural parameters converge rapidly for a cut-off above 50 eV. Similar 

results were found in the case of Pt and the rare-gas elements studied. We have 

repeated calculations of the structural properties for Rh and P t using the same cut

off energy for the orbital expansion as in the equivalent full plane wave calculations 

and with the additional plane wave cut-off fixed at 60 eV. Table 3.9 shows the 

calculated lattice constant and bulk modulus obtained with the pseudopotential- 

mixed-basis method. For both elements the lattice constant was very similar to 

those obtained with the plane wave method, with a maximum difference of only 0.01 

A (see Table 3.5). A very slight difference was observed in the bulk modulus, but 

this was always less than 0.1 %. From these results, we conclude the mixed-basis 

set allows the calculation of physical properties with the same accuracy as the plane 

wave basis set but with a significantly lower computational load. For these tests,
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LDA LDA-CC PBE PBE-CC Expt
Pt Lattice constant (A) 3.93 3.92 4.02 4.02 3.92°

Bulk modulus (GPa) 285 283 243 235 283°
Rh Lattice constant (A) 3.80 3.81 3.90 3.90 3.81“

Bulk modulus (GPa) 298 294 241 236 267“
Xe2 Bond length (A) 4.05 3.99 4.65 4.74 4.3h

Binding energy (meV) 43.6 43.7 7.8 8.9 23.46
“ From Ozoliqs & Korling (1993). 
b From Barker et al. (1974).

Table 3.9: Calculated lattice constant and bulk modulus for Pt and Rh and cal
culated bond length and binding energy for the Xe dimer using a pseudopotential- 
mixed basis approach. CC denotes results for which non-linear core corrections are 
included.

the mixed basis method provides results about four times faster than the plane 

wave method. The effect of the non-linear exchange-correlation core correction on 

some elements was studied using the mixed basis method. Results are given in 

Table 3.9. With both the LDA and GGA-PBE approximations we find that core 

corrections produce only a small effect on the lattice constant. The effect on the 

bulk modulus is larger, with the GGA producing an increased underestimation 

with respect to the experimental value.

Table 3.9 also shows the bond length and binding energy for the Xe2 dimer, calcu

lated by placing Xe2 in a rectangular box of size 9A  x 9 A x l 5 A  and varying 

the distance between Xe atoms from 3 A to 6 A. The cut-off energies were fixed at 

500 eV and 60 eV for the expansion of the localised and delocalised wave function 

parts respectively, and the Brillouin zone was sampled with l x l x l  Monkhorst &; 

Pack mesh.

It can be seen in Figure 3.11 that the LDA and GGA functionals predict interaction 

potentials that are remarkably different. The LDA predicts a significantly more 

attractive interaction between the Xe atoms than the GGA. Table 3.9 shows that 

the binding energy is overestimated with the LDA while the GGA predicts too 

low a value. Similar behaviour with the GGA have been reported by Perez et al.
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Figure 3.11: Interaction potential energy for Xe2 calculated with the LDA (solid 
line) and GGA-PBE (dashed line) approximations. Diamond symbols represent 
the calculated points.

(1994), who found the interaction potential to be quite flat around the equilibrium 

position of the Xe2 dimer. In general, neither the LDA nor GGA-PBE provides a 

good description of the interaction.

3.4.6 He and N e core radii

The optimisation scheme used for obtaining core radii in Pt, Rh, and the Xe atom 

was not completely successfully for Ne and He. For Ne, the procedure used for 

Cu was followed, the core radius for the 2s pseudopotential was calculated using 

equation (3.1) and the core radius for 2p was determined by exploring the variation 

of the structural parameters (bond length and binding energy) of the Ne2 dimer 

for different core radii.

Table 3.10 shows the binding energy for the Ne2 dimer as a function of the 2p core 

radius, which was varied from 2.2 Bohr radii to 1.7 Bohr radii. We find that the
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ECut (eV) 2.2
Core radius (Bohr radii) 
2.1 2.0 1.9 1.8 1.7

600 -7.5 -8 .2 -8.2 -4 .6 -5 .3 -7.2
700 -8.0 -8 .5 -5.2 -4 .0 -3 .8 -6 .4
800 -8.6 -7 .8 -5.5 -3 .5 -3 .9 -5 .4
900 -8.5 -7 .4 -5 .6 -3 .7 -4 .2 -5 .3
1000 -8.6 -7 .7 -5 .6 -3 .6 -4 .0 -5 .3
1100 -8.6 -7.8 -5 .7 -3 .7 -4.1 -5 .4
1200 -8.6 -7 .8 -5 .7 -3 .6 -4 .2 -5 .4

Table 3.10: Calculated binding energy (meV) for Ne2 as a function of the p core ra
dius using the mixed basis method. Exchange-correlation effects were approximated 
with the GGA-PBE.

p / Core radius (Bohr radii)
“ * ^  '  1.00 1.25 1.50 1.75 2.00

600 -3 .7 -3.4 -3.2 -3 .2 -3 .4
700 -4 .0 -4.2 -3.4 -3 .4 -3.2
800 -3 .7 -3.3 -3.3 -3.5 -3.2
900 -3.6 -3.2 -3.2 -3.2 -3.2
1000 -3.1 -3 .2 -3 .2 -3 .2 -3.1
1100 -3.2 -3.2 -3.2 -3.2 -3.1
1200 -3.2 -3.2 -3.2 -3 .2 -3.1

Table 3.11: Calculated binding energy (meV) for He2 as a function of the s core 
radius using the mixed basis method. Exchange-correlation effects were approxima
ted with the GGA-PBE.

binding energy is quite sensitive to the p core radius while the equilibrium bond 

length is much more stable around 3.1 A (this value was practically constant for 

each p core radius used, with the greatest deviation being only 0.02 A). We find 

that the binding energy calculated with a core radius of 2.0 Bohr radii agrees well 

with the value of 5.6 meV obtained by Patton & Pederson (1997) using all-electron 

calculations.

In the case of He2, it was more difficult to obtain optimised core radii as no compo

nent could be calculated using equation (3.1). In this case, the p and d components 

were chosen by taking a value close to the maximum of the 2p and 3d wave func

tions. The Is core radius was then varied from 1.0 Bohr radii to 2.0 Bohr radii. In 

contrast to Ne, the calculated binding energy of He2 was not sensitive to the value
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LDA PBE Expt° MP2/AE 6 AE/LDAC AE/PBEC
He2 Bond length (A) 2.40 2.80 2.96 3.08 2.40 2.76

Binding energy (meV) 9.3 3.1 1.0 1.4 9.4 3.2
Ne2 Bond length (A) 2.66 3.11 3.03 3.23 2.64 3.09

Binding energy (meV) 18.9 5.2 3.9 5.4 19.9 5.6
° Prom Gordon & Kim (1972).
6 Prom Burda et al. (1996). (MP2/AE) M0ller-Plesset perturbation theory/all-e

lectron.
c Prom Patton & Pederson (1997).

Table 3.12: Calculated bond length and binding energy for He and Ne dimers using 
the LDA and GGA-PBE approximations.

the core radius (see Table 3.11). Only a very small variation of the binding energy 

was obtained over the selected range. By comparing our result with all-electron re

sults, we find an excellent agreement with the value of 3.2 meV obtained by Patton 

& Pederson (1997). The s core radius for He was taken as 2.0 Bohr radii because 

this provides a softer pseudopotential.

For both atoms (He and Ne), we find that the equilibrium geometry of the dimer 

is better described with the GGA-PBE than the LDA, Table 3.12. An impor

tant difference in the binding energy was found between the exchange-correlation 

functionals. The LDA gives a large overestimation of the binding energy for both 

dimers. Although GGA-PBE also overestimates the binding energy, it is closer to 

experimental results. Our results are in excellent agreement with those of Patton 

&; Pederson (1997) who used an all-electron DFT approach. Models based on the 

Hartree-Fock approximation (Burda et al., 1996) show that MP2 is very accurate 

in describing the binding of the He dimer but provides a similar result for the Ne 

dimer to models based on a density functional formalism.
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3.5 Conclusions

Using first principles total energy calculations and ab initio pseudopotentials, we 

have studied the equilibrium structure of the transition metals Cu, Rh, and Pt. The 

results showed that the lattice constant and bulk modulus are in good agreement 

with all-electron calculations and with other theoretical models.

In the case of light rare-gas atoms (He and Ne) the properties of their dimers were 

better described by the GGA, while for Xe neither LDA nor GGA gives a good 

description of the bonding, with both showing a large deviation from experimental 

results.

The results obtained with the GGA show clearly the equivalence between the PW91 

and PBE functionals. Additionally, we have found that the GGA-PBE reduces 

substantially the oscillations produced by the GGA during the pseudopotential 

construction.

The optimisation of the core radius through the logarithmic derivative allows us to 

to find a balance between the high transferability of a small cut-off radius and the 

lower plane wave cut-off energy of a large one. However for He, Ne, and the d Cu 

component the optimisation process was not possible for every component.

For the elements Xe, Pt, and Rh the core-valence exchange-correlation correction 

has a small effect on the structural properties, tending to improve the results using 

the LDA. Additionally, an improvement in the quality of the pseudopotential was 

obtained with the GGA, especially the removal of the oscillations close to the 

nucleus.

The results obtained with the mixed basis method are found to be equivalent to
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those obtained with the plane wave method, but with a substantial reduction in the 

computing time required. This suggests that the mixed basis method is a useful 

tool in the study of more complicated systems.
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Chapter 4

Interaction of Xe atoms with the 

P t ( l l l )  surface

4.1 Introduction

The adsorption of rare-gas atoms is frequently discussed in terms of the Van der 

Waals force. Within this description the bonding is due to charge density fluctua

tions in the adsorbate interacting with their induced image charge inside the metal. 

But doubts about the general validity of the Van der Waals approximation appear 

when large changes in the work function upon rare-gas adsorption are observed 

(Flynn & Chen, 1981). This has encouraged consideration of the possibility of 

charge transfer mechanisms for these kind of systems. In fact, Ishi & Viswanathan 

(1991) reviewing experimental data from work function measurements and electron 

spectroscopies for Xe on metals have found that the chemical bonding contribution 

plays a significant role in Xe adsorption.

Many phases of adsorbed layers arise due to the competing lateral interaction



4.1 Introduction

Figure 4.1: Phase diagram of X e /P t( ll l)  from Kern et al. (1988). C, SI, HI, and 
HIR denote the commensurate (\/3  x \/3)R30o, the striped incommensurate, the 
hexagonal incommensurate and the hexagonal incommensurate rotated phase. G 
and L denote the two-dimensional gas and liquid phases respectively. Tr is the 
critical temperature, Ts is the substrate temperature and 9 \ e is the coverage of Xe.

between adatoms and the adsorbate-substrate interaction (Bruch et al., 1997). 

Experimentally, it has been found that the two-dimensional adsorbed layers can 

exist in several phases, some of which have a counterpart in three-dimensional 

systems but some of which do not. In the particular case of Xe adsorption on 

P t ( l l l )  at least six phases have been observed (Figure 4.1). At low coverage, a 

transition from gas to solid occurs. At temperatures between 62 K and 99 K and a 

coverage less than 0.33 monolayers (ML), a commensurate ( y / 3  x \/3)R30o phase 

exists. At Qxe =  0.33 ML, or by cooling below 62 K, the commensurate phase 

suffers a transition into a striped incommensurate phase, where the Xe adlayer is 

uniaxially compressed along the T M x e direction. For Qxe >  0.38 ML, the striped 

incommensurate phase is transformed into a hexagonal incommensurate phase. 

The hexagonal incommensurate phase shows a continuous transition from R30° to
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a rotated R30° ±  3.3° orientation when the coverage is increased to 0.39 ML. It is 

surprising that the smooth P t( l l l )  surface seems to be one where a diversity of 

monolayer phases of Xe has been observed. In fact, the Xe/Pt system has the out

standing property of providing a demonstration of commensurate-incommensurate 

phase transitions in two dimensions (Kern et al., 1988).

The preferential adsorption site for Xe has been subject of more controversy. On 

the basis of diffraction from the uniaxial incommensurate phase, Gottlieb (1990) 

found the top site to be the most stable. This was supported by Muller’s LDA 

cluster calculation (Muller, 1990). However, Muller’s result can be questioned due 

to the fact that he used two Xe atoms adsorbed on a 25 atom Pt cluster, which 

raise the question of whether such a configuration is sufficient to describe the full 

surface interaction. Barker & Rettner (1992) found in construction of their empir

ical potential that a consistent fit with a wide range of dynamical and equilibrium 

data could be obtained only by placing the Xe atom at the top site. However, 

this assignment was challenged by Zeppenfeld et al. (1992), and a later spin po

larised LEED experiment indicated a hollow-site adsorption (Potthoff et al., 1995) 

(although the determined adsorption height of 4.2 A appears to be unphysically 

large). More recently the pendulum has swung back towards the top site, with 

Bruch et al. (1998) showing that this is consistent with their high-resolution He- 

atom scattering data, and a new LEED study favouring top-site adsorption with 

an adsorption height of 3.4 A (Seyller et al., 1999). Although top-site adsorption 

might at first sight seem unlikely, there is experimental evidence that this is indeed 

the case for several Xe-metal system (Seyller et al, 1999; Narloch &; Menzel, 1998, 

and reference therein).

There is also a considerable discrepancy between different estimations of the diffu

sion barrier. Barker & Rettner (1992) reported a value of 24 meV, which is closed 

to the experimental estimates of 30 meV given by Kern et al. (1988) and 31 meV
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given by Horch et al. (1995). However, a more recent experimental determination 

using quasielastic helium-atom scattering at low Xe coverage puts an upper limit 

on the diffusion barrier of 9.6 meV (Ellis et al., 1999), indicating that there remains 

some uncertainty regarding this quantity.

In this chapter, the interaction energy between Xe and P t( l l l )  is analysed with 

total-energy calculations based on a mixed-basis approach within density functional 

theory and using a pseudopotential formalism (Chapter 2). The slab approximation 

is used to represent the static adsorption between the Xe atom and the Pt surface. 

The substrate is modelled by a repeated slab with the metal layers separated by a 

vacuum region. Xe is absorbed only on one side of the slab, and a dipole correction 

is included to compensate for the polarisation of the slab. Brillouin zone integration 

is performed using the special k-points given by Cunningham (1974). Exchange- 

correlation effects are treated within the LDA (Ceperly & Alder, 1980; Perdew & 

Zunger, 1981) and GGA-PBE approximations (Perdew et al., 1996b). The binding 

mechanism is studied in terms of the charge density and the local density of states.

The chapter is organised as follow. In the next section, the commensurate 

(y/S x \/3)R30o structure is shown. Tests of convergence of the total energy as 

a function of the mixing parameters are discussed in section 4.3. In section 4.4, 

the convergence of the interaction potential is studied as a function of the cut

off energies, the number of special k-points, the super cell parameters (number of 

substrate layers and size of the vacuum gap), and the fitting procedure for the inter

action potential is discussed. In section 4.5, we present the interaction potential of 

X e /P t( lll)  obtained using the LDA and GGA-PBE approximations. Additionally, 

some aspects of the calculation that could affect the results are presented, namely 

the effect of non-linear core corrections, the lattice constant of the substrate and 

the self-consistency of the calculations. Adsorption mechanism on the top and 

hollow sites is considered in section 4.6. Adsorption at the hollow site is included
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in order to show the low polarisation charge found there, which could explain the 

preference for Xe atoms to bind at the on-top site. Work function changes of the 

P t substrate due to the adsorption of Xe are discussed in section 4.7 and finally, 

in section 4.8, the conclusions of the chapter are presented.

4.2 The com m ensurate (\/3 x V3)R30o structure

As was pointed out in the previous section, the adsorption of Xe atoms on the 

P t ( l l l )  surface displays at least six phases depending on the substrate temperature 

and coverage (Kern et al., 1988). At temperatures between 62 K and 99 K and at 

coverage of 6xe =  1/3, a commensurate (\/3  x \/3)R30o structure exists (Figure 

4.2). The nearest neighbour spacing in the adlayer lattice is y/3 times greater than 

the surface lattice constant and the adlayer lattice vectors ( a ia and a 2a) are rotated 

by 30° with respect to substrate lattice vectors (a is and a 2s).

on-top

bridge
hcp-nollow
fcc-hollow

Figure 4.2: Real space commensurate (\/3  x \/3)R30o structure of Xe on the 
P t ( l l l )  surface and the sites available for adsorption. The subscript s denotes 
the substrate lattice vectors and a denotes the adlayer lattice vectors. Red circles 
represent the Xe atoms. White, yellow and green circles represent top, second, and 
third layers of the P t substrate respectively.
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4.3 Convergence of total energy

Before calculating the interaction potential energy for Xe on P t( l l l ) ,  the conver

gence of the total energy was tested as a function of Kerker’s mixing parameters A 

and Go (equation (2.59)). The aim of these tests is to find the parameters which 

optimise convergence of the total energy. Basically, the self-consistency procedure 

consisted of two steps. First, a Kerker mixing was used until a variation in the 

total energy less than a given tolerance was reached and then successive approxi

mations for the charge density were determined with the Broyden mixing scheme 

(subsection 2.5.2). For each mixing scheme (Broyden and Kerker), it was necessary 

to calculate the best mixing parameters. In order to do this, the convergence of 

the total energy for a (\/3 x \/3)R30o X e /P t( lll)  structure with 5 Pt layers and 

9 vacuum layers (approximately 20 A) was tested. Cut-off energies of 400 eV and 

50 eV were used for the localised part and plane wave part of the electronic wave 

function (equation (2.37)) respectively. The irreducible Brillouin zone was sampled 

with one special k-point (Cunningham, 1974). Note that these calculations are not 

well converged because of the low cut-off energies and the coarse k-point sampling 

but this should not matter for testing the mixing scheme.

For a fixed value of Go, A was varied between 0.05 and 0.8 and the changes in 

the total energy, AE, and the charge density, Ap, were followed through the self- 

consistent calculation. These changes were defined as the difference between two 

successive iterations, AE =  En+1 — En, Ap =  ||/9n+1(Cj) — p” (<^)||- Kerker mixing 

(equation (2.59)) was used until AE < 0.1 eV. Subsequent approximations for the 

electronic charge density were obtained by using Broyden’s method.

Figure 4.3 shows the convergence of total energy and charge density for a self- 

consistent calculation for selected values of A. Note that large values of A  (0.8
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Figure 4.3: Convergence of the charge density (left) and the total energy (right) for 
(\/3  x v/3)R30° X e /P t( l l l )  for a selected set of values of the A  parameter within 
a self-consistent calculation. Go = 1.5 A-1.

and 0.4) did not damp the electronic charge density and so the iterative procedure 

failed. For small values, a damping in the charge density was achieved for the first 

few iterations, but the value of 0.05 led to a slow convergence for the total energy. 

Although the value of 0.05 in Kerker’s scheme damped the electronic charge density, 

this charge density was not a good approximation for starting the Broyden scheme 

because many iterations were required. The damping obtained with 0.2 and 0.1 

was similar for the first few iterations, but with A = 0.2 less than 30 iterations 

were needed to reach a convergence of AE =  10-5 eV. In this case the value of 0.2 

worked nicely for Kerker mixing and provided a good approximation of the charge 

density which gave a rapid convergence in the Broyden scheme.

The second series of tests consisted of fixing the value of A  at 0.2 while Go was 

varied between 0.5 A-1 and 4.0 A-1. Figure 4.4 shows the results obtained for 

this case. For Go = 0.5 A-1 the iterative procedure failed after the third iteration. 

W ith Go = 1.0 the charge density was damped for the first six iterations, but then 

Ap started to grow and stayed nearly constant, so tha t a value for AE of less 

than 0.1 eV was not reached during the first fifty iterations, and as a consequence
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Figure 4.4: Convergence of the charge density (left) and the total energy (right) 
for (\/3  x \/3)R30o X e /P t( l l l )  structure for a selected set of values of the Go 
parameter within a self-consistent calculation. A = 0.2.

the Broyden mixing did not start. The values of 1.5 A-1, 2.0 A-1, and 4.0 A-1 

damped the charge density with Kerker mixing, but faster convergence to AE =  

0.1 eV was reached with the values of 1.5 A-1 and 2.0 A-1. Using the value of 

1.5 A-1 provided a converged solution in less than 35 iterations with an accuracy 

better than 10-6 eV within Broyden mixing.

As was discussed in subsection 2.5.1, the convergence of the self-consistent proce

dure could be improved with the inclusion of an appropriate metric to evaluate the 

scalar product. We have used the scalar product defined by equation (2.60) and 

the metric given by Kresse &; Furthmiiller (1996b)

_  x  ( A 1 \
9 i j  — $ i j  • ( 4 - 1 )

Figure 4.5 shows the convergence of the total energy as a function of G i, which 

was varied between 0.05 A-1 and 4.0 A-1. Note tha t with small values such as 0.05 

A-1 or 0.5 A-1, the number of iterations needed to reach convergence in the total 

energy of better than 10~6 eV was reduced when a comparison is made with no
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Figure 4.5: Convergence of the total energy for the (\/3  x \/3)R30o X e /P t( l l l )  
structure with the inclusion of a metric in the evaluation of the scalar products for 
self-consistent calculations. Black line represents the results without precondition
ing.

metric being used (black line). In general, it was observed that the correct choice 

of mixing parameters provides an important reduction in the number of iterations 

needed for reaching a required precision. The final choice of the mixing parameters 

was as follows: A  =  0.2, G0 =  1.5 A-1 and G\ — 0.05 A-1.

4.4 Convergence of the interaction potential

The interaction potential energy was defined as

where E Xe/pt{m)0&) *s the ground state total energy of the P t ( l l l )  slab with an 

adsorbed Xe atom at height 2 , and EPgm) and E x e are the ground state total

V(z) — E xe/Pt { \ \ \ ) (z ) ~ Ept( 111) — E x e (4.2)
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energies of the P t( l l l )  slab and the Xe atom respectively. The energies of the clean 

Pt surface and Xe/Pt were calculated within identical super-cells and keeping all 

parameters of the calculation (cut-off energies, number of k-points, dimension of 

the supercell, etc.) constant. In order to guarantee a good level of accuracy, the 

convergence of the interaction potential energy was carefully checked as a function 

of the cut-off energies, the number of special k-points, the number of Pt layers and 

the size of the vacuum gap.

4.4.1 Testing the cut-off energies

Within the formalism of the mixed basis scheme, there are two cut-off energies 

which need to be determined: the cut-off energy corresponding to the expansion 

of the pseudo-atomic orbitals, Ecutao (first term of equation (2.37)), and the en

ergy corresponding to the additional plane waves, Ecutpw (second term of equation 

(2.37)). In this subsection, we will show how these cut-off energies affect the in

teraction potential energy for an Xe atom located at a height of 3 A above the 

top site of the P t( l l l )  surface. The cut-off energy of the expansion of the pseudo 

orbitals was varied between 400 eV and 600 eV while the additional plane wave 

cut-off was varied between 40 eV and 80 eV. Around these values we found that the 

structural properties of bulk Pt are well converged (see subsection 3.4.5). Table 4.1

ECutpw (eV) Ecutao (eV) V (meV)
40 500 264
60 400 268
60 500 270
60 600 270
80 500 271

Table 4.1: Interaction potential energy, V, for a Xe atom located at a height of 
3 A above the top site of the P t( l l l )  as a function of cut-off energies Ecutpw and 
Ecutao' The super cell consisted of five Pt layers and a vacuum gap equivalent to 
nine layers. Exchange-correlation effects were treating using the LDA.
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summarises the results for a selection of cut-off energies. Note that E ^tao of 500 eV 

provides a well converged solution and by using a bigger cut-off energy (for instance 

600 eV), the interaction potential energy did not change significantly. In the case 

of the plane wave part, Ecutpw, well converged results were obtained with 60 eV. 

We note that an increment from 60 eV to 80 eV caused a change in the potential 

energy of just 1 meV, but the required computing time was approximately twice 

as long per iteration. In accordance with the results obtained for the structural 

properties of Pt (see Table 4.1), we have fixed the cut-off energies at 500 eV and 60 

eV for the expansion of the atomic orbital and the plane wave part of the electronic 

wave function respectively.

4.4.2 Testing k-point sampling

Within a electronic structure calculation, the most demanding computational part 

involves a series of separate calculations for each k-vector. However when several 

k-vectors are equivalent by symmetry, it is necessary to perform calculations only 

for one of them, which drastically reduces the computational load. In the case 

of the adsorption of Xe on a P t( l l l )  surface, depending on the adsorption site, 

an important reduction in computational time can be achieved if the point group 

symmetry is taken into account. The largest reduction was obtained for adsorption 

on the top, fee hollow and hep hollow sites. Here, due to the C3W symmetry, one just 

needs to consider ^ th  of the full Brillouin zone (the irreducible wedge is shown 

in Fig. 4.6). For adsorption at the bridge site, the symmetry is reduced and a 

great portion of Brillouin zone must be considered. For this case, the symmetry 

corresponds to C2v and 1/4 of the Brillouin zone was used (see Figure 4.6, TKK’MT 

area). In order to test the accuracy of the interaction potential as a function of 

the number of k-points, we have calculated the potential for an Xe atom at the 

on top site and at a height of 3.0 A above the P t ( l l l )  surface, by sampling the
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Figure 4.6: Two-dimensional Brillouin zone for a hexagonal lattice. The irreducible 
wedge (rK M r area) was used in the total energy calculation at the top, fcc-hollow, 
and hep-hollow sites while a 1/4 of the Brillouin zone (TKK’MT area) was used 
for the bridge site.

irreducible Brillouin zone using 3, 6, and 18 k-points within Cunningham’s scheme 

(Cunningham, 1974). According to the results shown in Table 4.2, it appears that 

the interaction potential energy oscillates with respect to the number of k-points, 

but with 6 k-points well converged results were reached.

4.4.3 Testing the super cell parameters

A slab geometry was used to represent the adsorption of Xe atoms on the P t( l l l )  

surface. We have studied the interaction potential as a function of the parameters 

that define the super cell. Table 4.3 shows the potential as a function of the number 

of Pt layers and the vacuum gap. The number of Pt layers was varied between 3,

k-points in IBZ k-points in WBZ V (meV) 
3 18 256
6 54 270
18 162 268

Table 4.2: Interaction potential energy for a Xe atom located at a height of 3 A 
above the top site of the P t( l l l )  surface as a function of the number of special 
k-points in the irreducible Brillouin zone (IBZ). The calculations were performed 
using Ecutao = 500 eV and Ecutpw = 60 eV. WBZ represents the number of k-points 
in whole Brillouin zone. The super cell consisted of five Pt layers and a vacuum 
gap equivalent to nine layers. Exchange-correlation effects were treated using the 
LDA.
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5 and 7 layers and we observed that the potential energy changed by 3 meV for an 

increment from 5 and 7 layers. A similar change was obtained when the vacuum 

gap was varied from 7 to 11 equivalent layers. The results show that five layers 

of Pt and a vacuum gap of nine layers are big enough to obtain a well converged 

potential with respect to the super cell parameters.

Pt layer vacuum layer V (meV)
3 9 242
5 7 267
5 9 270
7 11 271

Table 4.3: Interaction potential energy, V, for an Xe atom located at a height of 3 
A above the top site of P t( l l l )  surface as a function of the number of P t layers 
and equivalent vacuum layers. The irreducible Brillouin zone was sampled with 
6 k-points. The LDA was used for describing exchange correlation effects. The 
calculations were performed using Fc«tao = 500 eV and Ecutpw = 60 eV.

4.4.4 F itting the potential data

Previously, we have presented results for the interaction potential as a function of 

the main parameters that affect the accuracy of a self-consistent calculation using a 

mixed basis set and a super cell geometry. In this subsection, we discuss the fitting 

procedure used to plot the interaction potential. First, the potential was calculated 

for a set of points uniformly distributed between 2.0 A and 5.0 A (nine points in 

total). This data was then least-squares fitted to an interpolating polynomial given 

by

P (x ) =  a0 +  d\x +  a2x2 +  a>zx3 +  a4x4 +  a5x5 H  (4.3)

where x  =  \ /z .  In order to test the selection made of the independent variable in 

equation (4.3), we have compared curves generated with x = 1 j z  and x = z, see 

Figure 4.7. We find that using the inverse of z as the independent variable in a 

fifth degree polynomial (blue line) gives a better fit than z = x  for a polynomial of
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Figure 4.7: Interaction potential energy for the (v^3 x \/3)R30o X e /P t( l l l )  struc
ture at the top site fitted to fifth degree polynomial. Blue line corresponds to the 
case with x  = 1/z  used as the independent variable in equation(4.3) while the red 
line corresponds to a fifth degree polynomial with x  = z. The LDA was used to 
describe exchange-correlation effects. Diamond symbols represent the calculated 
points.

the same degree (red line).

Before calculating the interaction potential at different adsorption sites, we tested 

the efficiency of the fitting using x  =  l / z  for the potential curves obtained with the 

LDA and GGA-PBE. Figure 4.8 shows the potential obtained with both exchange- 

correlation approximations as a function of the order of the interpolating poly

nomial. We found that a polynomial of fifth degree provided a good fit for the 

potentials for both cases, see Table 4.4.

The perpendicular vibrational energy

Ev = hu,  (4.4)

was obtained using the harmonic approximation with the angular frequency calcu-
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Figure 4.8: Interaction potential energy for the (v ^  x \/3)R30o X e /P t( l l l )  struc
ture as a function of the height above the first surface layer, fitted to different orders 
of polynomial equation (4.3). Left panel corresponds to calculations made with the 
LDA and right with the GGA-PBE. Diamonds correspond to the calculated points; 
the solid lines represent curves obtained with polynomials of order 4 (green line), 
5(blue line), and 6(red line) respectively. For both cases the inverse of z was used 
as the independent variable.

lated by

u =
k

M X e
(4.5)

where M x e is the mass of the Xe atom and the constant k was obtained by cal

culating the second derivative of the potential energy evaluated at the equilibrium 

position.

Finally, an additional test was made on the estimation of the well depth and equi-

Degree
LDA GGA-PBE

V0 (meV) Z0 (A) Ev (meV) V0 (meV) Z 0 (A) E v (meV)
4 335 3.06 6.5 42 4.20 1.8
5 332 3.11 5.6 41 3.82 2.1
6 333 3.12 5.7 40 3.80 2.0

Table 4.4: Calculated well depth, Vo, equilibrium height, Z0, and vibrational energy, 
E v, for Xe atoms adsorbed on the P t ( l l l )  surface as a function of the interpolating 
polynomial.
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Figure 4.9: Fitted interaction potential energy around the equilibrium point.

librium height. The use of fairly widely spaced points could have an effect on the 

calculated value of the equilibrium well depth, and its height above the surface. We 

have therefore re-calculated the equilibrium height by using a set of eight points in 

the range between 2.75 A and 3.50 A (Figure 4.9). It is found that the well depth 

differed from the results shown in Table 4.4 by just 1 meV.

4.5 Interaction potential

In section 4.4 the main parameters involved in a total energy calculation using a 

mixed basis set and a super cell approximation were determined. In summary, the 

final choice of parameters was as follows: 500 eV for the expansion of the pseudo 

orbitals, 60 eV for the extra, low-energy plane waves, the surface Brillouin zone 

was sampled by 6 k-points for C3V or 15 k for Civ in the irreducible wedge, and 

the supercell contained five Pt layers and nine equivalent layers of vacuum (which 

is approximately 20 A). In general, we have found that such parameters provide 

a precision of order 5 meV in the interaction potential for the (y/S x V^3)R30o
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X e /P t( lll)  system, taking as a reference calculations based on the LDA.

The energy of an isolated Xe atom was calculated in a (15 A)3 box with the same 

cut-off energies as for the slab calculations. Because the reference is taken to be an 

isolated Xe atom, our calculated potentials include the lateral interaction energy 

of a layer of Xe atoms in the (y/S x v^3) structure. This energy is found to be —59 

meV and —17 meV for the LDA and GGA-PBE respectively, where the minus sign 

indicates that the interaction is attractive. The equivalent value for the Barker- 

Rettner potential is —56 meV, and, on the basis of fits to thermal desorption data, 

Widdra et al. (1998) estimate a value of —33 meV.

The interaction potential curves were calculated for Xe at the on-top, fcc-hollow, 

hep-hollow and bridge sites on the P t( l l l )  surface (see Figure 4.2), and using both 

the LDA and GGA-PBE approximations. In each case, the lattice constant used 

for the Pt slab is given in Table 3.9. The most striking feature of the calculated 

potentials is the weakness of the interaction obtained with the GGA-PBE form 

(Figure 4.10). Our results show that the GGA-PBE predicts a potential with a 

binding energy of 41 meV (Table 4.5) that is much lower than values reported in 

the literature (Kern et al., 1988; Muller, 1990; Barker & Rettner, 1992; Widdra 

et al., 1998). In contrast, the LDA gives a value of 332 meV which is in reasonably 

good agreement with the most recent experimental estimate of 286 meV (Widdra 

et al., 1998). The equilibrium LDA adsorption height of 3.11 A is also in fairly 

good agreement with Barker and Rettner’s (Barker & Rettner, 1992) value of 3.35 

A and the recent LEED measurement of 3.4 A (Seyller et al, 1999). However, 

there is a considerable discrepancy in the vibrational energy for both the LDA and 

GGA-PBE. By comparing our estimates of the vibrational energy with the value of 

3.7 meV reported by Hall et al. (1989), we find that both results differ by a factor 

of about 2. Both the LDA and GGA-PBE predict that the Xe-surface binding is 

strongest at the on-top site.
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Figure 4.10: Interaction potential energy for the (\/3  x \/3)R30o X e /P t( l l l )  
structure at selected adsorption points over the surface (see Figure 4.2). Left 
corresponds to results with LDA approximation and right with GGA-PBE approx
imation.

Our DFT-based potentials were compared with the experimentally derived poten

tials of Barker & Rettner (1992). The parameterisation of Barker and R ettner’s 

potential is the same as that used by Kulginov et al. (1996). Although the Barker- 

Rettner potential curves cannot be regarded strictly as experimental results, the 

fact that they reproduce a wide range of experimental data means that they should 

be at least qualitatively correct. Results for the on-top, fcc-hollow and bridge sites 

are shown in Figure 4.11. The interaction potential energy at the hep-hollow site 

(not shown) is very similar to the fcc-hollow site, see Figure 4.10. It is clear that in 

the case of the GGA results are in qualitative as well as quantitative disagreement

LDA GGA-PBE
V0 (meV) Z0 (A) Ev (meV) V0 (meV) Zo (A) Ev (meV)

on-top 332 3.11 5.6 41 3.80 2.0
hep-hollow 292 3.17 4.8 35 3.94 1.9
fcc-hollow 287 3.18 4.8 34 3.97 1.7
bridge 299 3.17 4.8 36 3.94 1.8

Table 4.5: Calculated well depth, Vo, equilibrium height, Z 0, and vibrational energy, 
E v, for Xe atoms adsorbed on the P t ( l l l )  surface in different adsorption sites.

A.E . Betancourt 94



4.5 Interaction potential

600

-200

2.0 2.5 3.0 3.5 4.0 4.5

600

400

200

-200

-400
2.0 2.5 3.0 3.5 4.0 4.5

Distance to surface (A) Distance to surface (A)

600

-200

2.0 2.5 3.0 3.5 4.0 4.5
Distance to surface (A)

Figure 4.11: Interaction potential energy as a function of height from the first 
surface layer. Left at the on-top, centre fcc-hollow and right bridge site.

with experiment. However, the LDA potentials agree reasonably well with the 

Barker-Rettner curves in the near-surface region, particularly for the hollow and 

bridge sites. The discrepancy observed in the longer-ranged, attractive part of the 

well in Figure 4.11 is expected as it is well known that the LDA fails to describe 

the asymptotic Van der Waals interaction (Lang & Nprskov, 1983).

4.5.1 Dependence of the interaction potential with param

eters of the calculation

Figure 4.12 shows a comparison between the interaction potentials calculated with 

and without the core-valence correction for Xe atoms adsorbed at on-top site. There 

is no significant variation in the results when non-linear core corrections were taken 

into account. In the case of the LDA there is a small shift up of the potential curve 

when non-linear core corrections are included while for GGA-PBE the changes are 

more noticeable around the equilibrium point. The well depth is slightly changed 

(8 meV for LDA and 2 meV for GGA-PBE, see Table 4.6) while the equilibrium 

adsorption height and the vibrational energy are almost constant.

On the other hand, we found that the potential well depth, equilibrium adsorption
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Figure 4.12: Effect of non-linear core-valence exchange-correlation corrections on 
the interaction potential energy. Left corresponds to results obtained with the LDA 
and right with the GGA-PBE. Solid line represents results without non-linear core
valence corrections and dashed line including non-linear core corrections.

height and vibrational energy are quite sensitive to changes in the lattice constant. 

For example, the potential well depth can be altered by more than 10 % if the Pt 

atoms are placed at the GGA lattice constant for a LDA calculation (see the third 

row of Table 4.6).

Another situation that could affect the estimation of the interaction potential is 

related to the self-consistency of the calculations. We observed that the potential 

energy curves are sensitive when non-consistent calculations are made, in other

V0 (meV) Z 0 (A) Ev (meV)
LDA-NLCC
PBE-NLCC
LDA with GGA-PBE lattice constant

324 (8) 
39 (2) 

374 (42)

3.11 (0.00) 
3.79 (0.01) 
3.01 (0.10)

5.8 (0.0) 
2.0 (0.0) 
6.7 (0.5)

Table 4.6: Calculated potential well depth, Vo> equilibrium height, Z0, and vibra
tional energy, Ev, for Xe atoms adsorbed on the P t ( l l l )  surface at the on-top site. 
Lattice constant used for LDA calculations was 3.93 A and for GGA-PBE, 4.02 A. 
Numbers in parentheses indicate the absolute error with respect to result without 
non-linear core corrections (NLCC).
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Figure 4.13: Interaction potential energy for the (\/3  x \/3)R30o X e /P t( l l l )  
structure for consistent and non-consistent calculations. The first acronym before 
the dash indicates the approximation used for the exchange-correlation energy in 
the pseudopotential construction and the second one corresponds to that used in 
the total energy calculation. The lattice constant used for all case was the value 
obtained with LDA approximation, 3.93 A.

words, when the approximation used for the exchange-correlation energy in the 

pseudopotential construction is different from that in the mixed basis set calcula

tion. Figure 4.13 shows that there is a significant change in the potential well depth 

and the equilibrium height with both the LDA and GGA-PBE approximations. In 

addition, it is noticeable that there is a change in the repulsive part of potential. 

In the case of the combination PBE-LDA, the potential is more attractive while 

the opposite occurs for LDA-PBE.
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4.6 B inding m echanism

4.6.1 Adsorption at the top site

We now turn to an analysis of the binding mechanism for Xe on P t ( l l l ) .  All the 

results in this subsection refer to LDA calculations at the on-top site and at the 

calculated equilibrium adsorption height. Figure 4.14 displays a slice of the charge 

density difference

Ap =  p(slab -I- X e)  — p(slab) — p{Xe) (4.6)

induced by the adsorption of Xe atoms. The slice is along the [112] direction (see 

Figure 4.15). According to Figure 4.14, it can be seen tha t the adsorption causes 

a re-organisation of the electronic charge around both the Xe and the P t surface 

atoms, which produces an im portant change in the work function (see section 4.7).

Figure 4.14: Electronic charge density difference induced by the adsorption of Xe 
atoms at the on-top site. Positive values are shown by solid lines and negative values 
with dashed lines. The contour lines represent densities given by ±2" x 10_3e A-3 
with n = 1,.., 5. The position of the Xe and P t atoms are shown by the cross and 
bullet symbols respectively.
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Figure 4.15: Adsorption of Xe on P t( l l l )  and some key directions in the (111) 
surface. Xe atoms are represented by dashed circles and the P t atoms in the first 
layer by full circles.

The information that one can obtained from Figure 4.14 is just a qualitative descrip

tion of the adsorption. In order to obtain further information, we have calculated 

the induced charge in each orbital by using the projected density of states (see 

subsection 2.5.4). We find that the integrated charges defined by equation (2.63) 

for the pseudo-atomic orbitals sum to a value somewhat greater than the total 

number of electrons in the system, and the plane-wave components compensate for 

this overcounting. Overcounting is more significant for the metallic system; in the 

case of bulk Pt, the magnitude of the plane-wave charge component is about 1.5e 

per atom, while for the Xe atom, as a result of the well-localised orbitals, it is only 

0.02e per atom.

To investigate the charge redistribution further we have calculated the total charge

s P x P y P z d Xy d y Z d Zx d x  2 _ w2 d z 2 Total
Xe +0.01 +0.03 +0.02 -0.91 +0.02 +0.12 +0.11 +0.01 +0.18 -0.41
Pt -0.26 +0.13 +0.10 +0.64 +0.08 +0.14 +0.11 +0.09 -0.54 +0.49

Table 4.7: Difference of the charge Qx (in 10_1e) upon Xe adsorption at the on-top 
site for Xe and P t orbitals. For Xe and Pt we refer to the 5s, 5p, 5d and 6s, 6 p, 5d 
orbitals respectively. The Pt atom was directly below the adsorbed Xe.

A.E. Betancourt 99



4.6 Binding mechanism

associated with particular orbitals. Table 4.7 shows the charge upon Xe adsorption 

in the integrated charge Q% in the Xe orbitals and for the orbitals of the Pt atom 

directly below the adsorbed Xe. These orbitals are singled out because they show 

by far the largest changes. The Xe atom transfers approximately 0.05e to the Pt 

surface. However, there is also an internal reorganisation within the Xe atom, 

consistent with the bonding charge density shown in Figure 4.14, with a small 

occupation of 5d orbitals at the expense of the 5pz state. It is interesting to note 

that the equivalent change in the charge associated with the low-energy plane-wave 

component in equation (2.37) is — 0.021e. This is significant, because the adsorption 

of Xe on metal surfaces has frequently been discussed in terms of an interaction 

with the Xe 6s resonance (Eigler et al., 1991; Buldum & Ciraci, 1996; Narloch 

& Menzel, 1998). Because the 6s orbital is not included explicitly in our basis, 

we would expect its effects to observed in the low-energy plane-wave component. 

The fact that the change in the plane-wave occupancy is negative implies that 

the plane waves contribute less in the combined adsorption system than in the 

component systems. Although one has to be careful not to over-interpret these 

small occupancy changes, our results indicate that it is the bd resonance, rather 

than the 6s resonance, which has the most significant effect in the binding.

This picture is supported by the projected density of states, as defined by equation 

(2.62). Figure 4.16 shows the density of states projected onto the orbitals of three 

Pt atoms. A comparison is made between the two inequivalent Pt atoms in the top 

layer of the slab and an atom in the bottom layer, which is essentially unaffected 

by Xe adsorption. The adsorption of a Xe atom is seen to make little difference 

to the Pt atom in the top layer further away from the adsorbate. However, for 

the P t atom directly below the Xe atom, there is a distinct feature around 4.5 

eV below the Fermi energy for the bd?z orbital (this orbital has the largest effect), 

which is associated with the interaction with the Xe bp orbitals (mainly bpz). This 

interaction also causes a broadening of the bp states of the Xe atom, as shown in

A.E. Betancourt 100



4.6 Binding mechanism

0.6

0.5

0.4

0.3

0.2

0.1

0.0
■10 -5 0 5

Energy(eV)

0.6

0.5

0.4

0.3

0.2

0.1

0.0
-510 0

0.6

0.5

0.4

0.3

0.2

0.1

0.0■10 ■5 0 5

0.6

0.5

0.4

0.3

0.2

0.1

0.0 10 5-5 0

Energy(eV)

0.6

0.5

0.4

0.3

0.2

0.1

0.0 10 -5 0 5

0.6

0.5

0.4

0.3

0.2

0.1

0.0
510 •5 0

0.6

0.5

0.4

0.3

0.2
0.1

0.0 10 -5 0 5

Energy(eV)

0.6

0.5

0.4

0.3

0.2

0.1

0.0
-5 510 0

0.6
0.5

0.4

0.3

0.2
0.1
0.0 10 -5 0 5

Figure 4.16: Local density of states projected onto the orbitals of selected P t 
atoms; the P t atom directly below the Xe atom is represented by a red line, the 
inequivalent P t atom in the top layer is represented by green line and a P t atom 
in the bottom layer is represented by a blue line.

the left panel of Figure 4.17. A weak mixing of the 5p and 5d states of Xe is 

observed around the Fermi level (Figure 4.17, right panel) which is consistent with 

the occupancy changes shown in Table 4.7 and the bonding charge density shown in 

Figure 4.14. The equivalent plot for the low-energy-plane wave component shows 

no obvious feature around the Fermi level, again indicating that the 6s resonance 

plays little part in the binding.
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Figure 4.17: The local density of states projected onto Xe orbitals (left panel). 
5s, 5p and 5d are represented by green, blue and red lines respectively. Close-up 
around the Fermi level (right panel).

4.6.2 Adsorption at the hollow site

We have also analysed the adsorption at the hep-hollow site, in order to find any 

reason for the preference for binding at the on-top site. Figure 4.18 shows the 

electronic charge density difference induced by Xe atoms at the hep-hollow. In 

contrast with adsorption at the top site, adsorption at the hep-hollow produces a 

smaller polarisation of the Xe atom. Table 4.8 shows that the charge transfer from 

the Xe atoms is —0.031e. The variation of charge observed on the P t atoms be

longing to the top and second layers was +0.009e and -l-0.001e respectively. While 

the change in the charge associated with the low-energy plane-wave component is

s Px Pv Pz 4 Xy dy z dzx dx 2 _ w2 dz 2 T o t a l
X e + 0 . 0 3 - 0 . 0 6 - 0 . 0 7 - 0 . 5 2 + 0 . 0 2 + 0 . 0 9 + 0 . 0 8 + 0 . 0 2 + 0 . 1 0 - 0 . 3 1
P t * i - 0 . 0 8 + 0 . 0 3 + 0 . 0 3 + 0 . 2 0 - 0 . 0 5 + 0 . 0 5 + 0 . 0 5 - 0 . 0 6 - 0 . 0 8 + 0 . 0 9
P t * / - 0 . 0 1 + 0 . 0 1 + 0 . 0 1 + 0 . 0 5 - 0 . 0 2 + 0 . 0 1 - 0 . 0 1 + 0 . 0 1 - 0 . 0 4 + 0 . 0 1

Table 4.8: Difference of the charge Ql (in 10_1e) upon Xe adsorption at the hcp- 
hollow site for Xe and P t orbitals. For Xe and P t we refer to the 5s, 5p, 5d and 
6s, 6p, 5d orbitals respectively. Pt*/ and P ts/ represent P t atomic in the top layer 
and second layer respectively.
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Figure 4.18: Electronic charge density difference induced by the adsorption of Xe 
atoms at the hep-hollow site. Positive values are shown by solid lines and negative 
value with dashed lines. The contour lines represent densities given by ± 2n x 10_3e 
A-3 n =  0, ..5. The position of the Xe and P t atoms are shown by the cross and 
bullet symbols respectively.

—0.012e. These results show a smaller charge transfer in comparison with adsorp

tion at the top site. We might therefore speculate tha t this smaller polarisation at 

the hollow site could explain why adsorption at the on-top site is favoured.

4.7 Work function change

As was discussed in subsection 4.6.1 the adsorption of Xe causes a redistribution 

of the charge density which in turn  leads to a charge in the work function of the 

P t surface. In general, the work function of a surface is very sensitive to the 

redistribution of charge caused by the adsorption of atoms or molecules. Changes 

in the work function have been reported both in chemisorption and physisorption 

(Somorjai, 1994; Bruch et a/., 1997). For chemisorption, it is attributed to charge 

transfer between adsorbate and substrate, and for physisorption to the process of 

polarisation.
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Figure 4.19: Planar-averaged potentials as a function of the distance perpendicular 
to the surface. Red curve corresponds to the potential produced by five P t layers, 
blue curve is the potential of the P t slab with an adsorbed Xe and the green curve 
is the difference between the curves.

We have calculated the work function change using two different procedures. In 

the first, we analyse the change of the potential in the vacuum region. W ithout 

an adsorbate on the surface, the potential in the vacuum gap is flat if the vacuum 

region is wide enough, see Figure 4.19 (red line). When Xe is adsorbed a small 

electric field appears in the vacuum region due to the polarisation of the surface. 

This is compensated in the standard way by adding an effective dipole layer in the 

vacuum gap. From this we calculate a change in the work function of —1.25 eV. 

The inclusion of a dipole correction leads to an additional energy given by

Edip = ^ 1 Qi^dipj î) (4*7)
i

where qi is the charge of the zth atom at the position and V<np is the induced dipo

lar potential. Although the results of the well depth, equilibrium adsorption height 

and vibrational energy presented in previous sections were obtained without this 

contribution, the incorporation of a dipole correction does not significantly change 

those results. For example, we have re-calculated the well depth and equilibrium
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Figure 4.20: Work function change as a function of the adsorption height.

height for adsorption at the top site and have found the same values as those given 

in Table 4.5.

The second procedure used to determine the work function change involves calcu

lating the dipole moment produced by the charge induced by Xe adsorption on the 

metal surface,

A$ =  —47re J  z 6 p(r)dr. (4.8)

Here Sp is the change in the planar-averaged charge density and z represents the 

coordinate perpendicular to the surface. This procedure allows a direct evaluation 

of the work function change from the charge density. The value of work function 

change obtained at the equilibrium position was A<3> =  —1.27 eV, which is in good 

agreement with Figure 4.19. However, our estimate of the work function change 

is inconsistent with the value of —0.6 eV obtained by Cassuto & Erhardt (1988) 

using angle-resolved photoemission. The cause of this discrepancy is not clear, but 

it is partly due to the fact that our LDA equilibrium adsorption height is lower 

than that reported in the literature. In order to find a better agreement with the 

work function change observed by Cassuto & Erhardt (1988), we have calculated
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the work function as a function of the adsorption height (see Figure 4.20). The 

work function change is found to depend very sensitively on the height, and if it 

is calculated at the experimental adsorption height of 3.4 A rather 3.11 A, we 

obtain A<£ =  —0.9 eV, which is closer to the experimental value.

4.8 Conclusions

First principles calculations of the interaction potential for Xe atoms on the P t( l l l )  

surface have been presented. Neither LDA nor GGA-PBE potentials are in excel

lent agreement with the experimentally derived potentials of Barker & Rettner

(1992) but the LDA potential is considerably closer. This is in contrast with the 

observation that the GGA usually gives substantially better adsorbate binding en

ergies than the LDA. It is probably accidental that the LDA gives better agreement 

with experiment in this case, and our results should not be taken to imply that 

the general improvement in chemical binding energies provided by the GGA is in

valid. However, they do show that a thoughtless application of DFT methods in 

less common situations, like rare-gas interactions, can lead to incorrect conclusions 

and that a careful benchmarking with respect to experiment is vital.

Although the LDA potential is closer to experiment, there are still significant errors 

in the well depth and adsorption height, and this overbinding is reflected in a sub

stantial overestimation of the work-function change. The long-ranged part of the 

LDA potential, as expected, also shows a considerable deviation from experiment.

The binding mechanism of the X e /P t(lll)  system has been analysed via the density 

of states projected onto the atomic orbital and plane-wave basis functions of our 

mixed-basis method. A significant element of chemisorption is found, with the 

interaction with the Xe 5d resonance appearing to have the greatest effect in the
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binding. The larger polarisation of the Xe atom at the on-top site could explain 

why Xe is adsorbed preferentially at this site.
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Chapter 5

Interaction of light rare-gas atoms 

with the R h(llO ) surface

5.1 Introduction

The main advantages of using low energy rare-gas atoms as the probe in diffraction 

are their non-destructive nature and their lack of reaction with the substrate. This 

allows the study of any kind of material: metals, semiconductors and insulators 

(Farias & Rieder, 1998). When probe atoms with a constant kinetic energy impact 

on an surface, each incoming particle will experience a different turning point (for 

example, closer at the bridge site than at the top site). Therefore a periodic mod

ulation of the repulsive part of the potential is produced. The resulting scattering 

surface is known as the corrugation surface which can be deduced from an analysis 

of atom diffraction data. In principle, knowledge of the surface corrugation allows 

the arrangement of the surface atoms to be determined provided that a simple 

relationship exists between the structure and the corrugation. In general the the

oretical construction of the surface corrugation is difficult, but the use of simple
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models has allowed useful information to be obtained from diffraction patterns.

For example, helium atom scattering (HAS) has been demonstrated to be a use

ful tool in the study of physisorbed layers of polar molecules. This is because it 

does not alter the surface structure and charging effects do not occur, allowing the 

determination of the orientation of the molecules with respect to the substrate in 

non-destructive way; as demonstrated by studies of CH3F, CH3Br, CH3C1, HC1 

and NH3 on surfaces of graphite (Ruiz-Suarez et al., 1988; Rowntree et al., 1990). 

The high sensitivity of He to adsorbed hydrogen structures has allowed the deter

mination of structures not previously observed with LEED studies (Witte et al., 

1995; Graham et al., 1995, 1998).

The first Ne diffraction from a low-index metal surface was observed by Rieder & 

Stocker (1984) and Salanon (1984). Ne diffraction from (110) surface of Ni, Cu, 

Rh and Pd show a large corrugation amplitude (Rieder & Stocker, 1984, 1985; 

Parschau et al., 1989) which indicates that Ne could provide better details of the 

surface atomic structure than He. In fact, it has been reported that Ne diffraction 

shows clearly the structure of NiAl(llO) while He diffraction does not (Farias & 

Rieder, 1998).

Using an effective medium approach, Esbjerg k, Nprskov (1980) found that the 

repulsive part of the potential energy for an He atom is proportional to the unper

turbed electron density of the substrate at the position of the He atom. However, 

comparisons made with He scattering measurements on the Ni(110) surface (Rieder 

& Garcia, 1982) showed that the relationship between the repulsive part of the po

tential and the substrate electronic charge density is more complex than pointed 

out by Esbjerg & Nprskov (1980). In order to resolve the difference between these 

results, Annett & Haydock (1983, 1984) introduced a gradient correction term 

which reduces the corrugation of the potential. By carrying out local density cal
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culations, Harris & Zaremba (1985) found that the anticorrugating contribution 

should be at least one order of magnitude smaller than the value given by Annett 

& Haydock (1984). In response, Annett & Haydock (1986) used first principles 

calculations to support their initial conclusions. Prom He and Ne scattering from 

Ni(llO) and Rh(llO), Rieder et al. (1993) found that He atoms approach metal 

surfaces more closely at the on-top site than the bridge site (anticorrugating ef

fect). In the case of Ne, the opposite effect was found. These results provide strong 

support for the Annett-Haydock model. Again using ab initio density functional 

theory calculations and solving the Kohn-Sham equations using the full-potential 

linear augmented plane wave method, Petersen et al. (1996) have calculated the 

interaction potential energy for He and Ne at the on-top site and at the short bridge 

site for the Rh(llO) surface. They found the anticorrugation effect for He and Ne 

reported by Rieder et al. (1993). They claimed that the difference between these 

probe atoms is determined by the surface wavefunction at the Fermi level, where 

and dxz orbitals play an important role in the scattering process. Recently, Trioni 

et al. (1998a) have shown that anticorrugating effects may also arise because of the 

different polarisations of He and Ne.

In order to continue our tests of the pseudopotential-mixed basis scheme applied 

to rare-gas atoms, we have used this scheme to calculate the interaction energy 

for He and Ne in the same way as was done for Xe/Pt. Our interest is focused 

on the question of whether such a procedure can provide an acceptable interpre

tation of the interaction between light rare-gas atoms and a metal surface. The 

exchange correlation effect will be approximated using both the LDA and GGA- 

PBE (see Chapter 2). It is not well established which approximation provides a 

better description of the interaction of light rare-gas atoms with a metallic surface. 

For instance, Trioni et al. (1998b) have claimed out that the LDA reproduces the 

interaction of He and Ne over the surface of Ag. However, Petersen et al. (1996) 

claimed that LDA results are in worse agreement with experiment in the case of
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He and Ne over a Rh surface. Additionally, as was shown in Chapter 4, our study 

of X e /P t( lll)  demonstrated that the LDA gives a more realistic potential than 

the GGA. The Rh(llO) surface has been chosen in order to compare our results 

with previous calculations based on an all-electron scheme (Petersen et al., 1996). 

Although pseudopotentials for Rh are quite soft, those for He and Ne are very hard 

which may make it troublesome to use pseudopotentials in this kind of system. 

However we found (subsection 3.4.5) that pseudopotentials constructed for both 

rare-gas atoms provide results for their dimers which are in good agreement with 

previous all-electron calculations (Burda et al., 1996; Patton & Pederson, 1997).

The chapter is organised as follow. In the section 5.2 full computational details are 

presented. Calculations of the relaxation of Rh(llO) and tests of convergence for 

the interaction potential as a function of the cut-off energies, the number of special 

k-points, super cell parameters (number of substrate layers and vacuum gap) and 

the fitting polynomial are discussed. The interaction potential of He/Rh(110) and 

Ne/Rh(110) obtained with the LDA and GGA-PBE and the corrugation of the 

potential are studied in section 5.3. The polarisation charges are presented in 

section 5.4 and finally, in section 5.5, the conclusions of the chapter are presented.

5.2 Computational details

Any fundamental understanding of the microscopic properties of a solid surface 

requires a reasonable model of the atomic geometry. In the simplest model, it 

is assumed that the periodicity of the outermost layers is identical to that of an 

equivalent parallel layer in the bulk, and the spacing between neighbouring layers 

in the surface region is the same as in the inside of the crystal. However, this 

model in general does not represent the most stable structure. The coordination
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of the surface atoms and the electronic structure in the selvedge region are not 

equal to the bulk, and some changes in the atomic geometry may take place for 

a real surface. If the rearrangement leads to a change in the interlayer spacing 

perpendicular to the surface, it is called relaxation. If the rearrangement results 

in a different two-dimensional geometry of one or more surface layers, it is called 

reconstruction. For the Rh(llO) surface, reconstruction has not been reported but 

relaxation has. We have therefore calculated the interaction potential energy for He 

and Ne atoms on a Rh(llO) surface by taking into account a surface with its first 

and second layers fully relaxed. The relaxation of the third layer was considered 

negligible (it is generally less than 1 % (Eichler et al., 1996; Attard & Barnes, 

1998)).

Another point emphasised in this section, as in the case of Xe/Pt, is a discussion 

on aspects of the calculations that could affect the accuracy of the interaction 

potential energy of light rare-gas atoms with a metallic surface. For this kind of 

system, the interaction potential energy is very weak and it is important to ensure 

that the main parameters that could affect our final results have been carefully 

controlled. Therefore, the convergence of the interaction potential energy was 

tested as a function of the number of special k-points, the cut-off energies, the 

substrate thickness and size of the vacuum gap, etc., in order to determine the 

minimal computational requirements that guarantee precise results for the systems 

He/Rh and Ne/Rh.

5.2.1 Relaxation of the R h(llO ) surface

The (110) surface atoms of fee Rh have seven nearest neighbours while bulk atoms 

have twelve. To balance this loss of bonding, the surface undergoes an oscillatory 

change in the interplanar spacing. The surface relaxes such that the first atomic
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(ixl)[HO] ,(ix2;

[001]

Figure 5.1: Schematic diagram of the (110) surface showing the unit cell used for 
(1x2) and ( l x l )  structures and the high symmetry sites available for adsorption. 
T : on-top, SB : short bridge, LB : long bridge, and H : hollow.

layer moves toward the second one to increase its coordination, the third atomic 

layer responds by expanding away from the second layer, hence compensating for 

the over-coordination of the second one. We have calculated the relaxation of 

Rh(110) using the procedure described below.

The relaxation of the Rh (110) clean surface (Figure 5.1) was simulated using a 

( l x l )  surface cell, and the slab approximation. The super cell consisted of 5 Rh 

atomic layers separated by 10 A of vacuum gap. The k-space integration was done 

using a 12x8 special point mesh (Monkhorst & Pack, 1976) with 24 points inside 

the irreducible Brillouin zone. The number of special k-points was chosen by taking 

into account the following criterion: the area of unit cell (A2) times the number 

of k-points in whole surface Brillouin zone should be approximately equal to 1000 

(Bird, 1997). We have observed that a k-point set chosen with this criterion is 

large enough to provide well-converged results.

The total energy was calculated as a function of the distance between two succes

sive layers. The separation between the first and second atomic layers was varied
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Figure 5.2: Variation of the total energy for the ( l x l )  Rh(110) structure as a 
function of the first interplanar spacing using the GGA-PBE approximation. The 
lattice constant used was 4.02 A, Table 3.9.

around its bulk equilibrium value (see Table 3.9), keeping other layers at their bulk 

equilibrium positions. Figure 5.2 shows the total energy as function of the inter

planar spacing for selected cut-off energies corresponding to the localised orbital 

expansion, equation (2.37). The results show that a cut-off energy of 700 eV is 

large enough to provide a well-converged total energy, so this cut-off energy was 

used to calculate the surface relaxation. Once the equilibrium position of the first 

atomic layer was determined it was fixed at the calculated value, and the second 

atomic layer was varied by around 10% of the bulk equilibrium value, with the 

remaining atomic layers kept fixed. This procedure was iterated until the forces on 

the top two layers were negligible (less than 0.05 eV/A).

The calculated surface relaxation could be sensitive to the underlying lattice con

stant of the Rh slab, and we know that the theoretical lattice constant depends 

on the exchange-correlation approximation used (subsection 3.4.5). Therefore, we 

have calculated the relaxation of the Rh(110) surface using both the LDA and the 

GGA-PBE in a consistent way; the results are summarised in Table 5.1. Both 

approximations give the expected behaviour, with the first atomic layer relaxing
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Adi2 /do(%) Ad23/do(%)
LDA -10.7 +3.3

GGA-PBE -11.7 +3.6
US-LDAa -9.8 +2.6

Exp6. -6.9 +1.9
° Prom Eichler et al. (1996). 
6 Prom Nichtl et al. (1987).

Table 5.1: Contraction/expansion of the separation of two subsequent atomic lay
ers for the Rh (110) surface using the LDA and GGA-PBE. Ad is the change in 
the distance between two consecutive atomic layers, do is the interlayer distance 
in the bulk. US-LDA represents an LDA calculation based on the ultrasoft pseu
dopotential method.

inwards while the second one relaxes outwards. When a comparison is made with 

results obtained by a LEED analysis (Nichtl et al., 1987), we find that both approx

imations appear to overestimate the experimental relaxation. However our results 

are in good agreement with similar ab-initio calculations (Eichler et al., 1996).

5.2.2 Testing convergence

Before calculating the interaction potential energy of He and Ne atoms on the 

Rh(110) surface at selected adsorption sites, Figure 5.1, convergence tests were 

carried out. Calculations were made for a (1x2) structure using five layer slabs, 

separated by 16 A of vacuum (approximately twelve equivalent vacuum layers). 

The Brillouin zone was sampled with a 6x8 Monkhorst-Pack mesh, with 12 k- 

points in its irreducible wedge. The exchange-correlation energy was described 

with the GGA-PBE. Changes of the interaction potential were tested as a function 

of the cut-off energies corresponding to the pseudo-atomic orbital expansion and the 

additional plane wave part, equation (2.37). Figure 5.3 shows the potential energy 

around the equilibrium height position for an He atom approaching the Rh (110) 

surface. It is again observed that a cut-off energy of 700 eV in the pseudo-atomic 

orbital expansion is large enough to obtain well-converged results. A difference of
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Figure 5.3: Interaction potential energy for the He/Rh(110) structure at the top 
site as a function of the cut-off energy for the pseudo-atomic orbital expansion 
(equation 2.37). The additional plane-wave cut-off energy was fixed at 60 eV. The 
exchange-correlation energy was approximated with the GGA-PBE.

only 0.1 meV was found for the potential well depth calculated with cut-offs of 700 

eV and 800 eV. The same difference of 0.1 meV was also obtained when the cut-off 

energy corresponding to the additional plane waves was varied from 60 eV to 80 

eV.

Additionally we have observed that if the Rh slab thickness is increased to seven 

layers, the interaction potential energy around the minimum of the well changes 

by only 0.1 meV. In this test, the vacuum region between Rh slabs was fixed at 16 

A; we have also found tha t an increment in the vacuum gap leads to a very small 

change in the interaction potential energy. For instance in the case of Ne/Rh(110), 

we found when the vacuum gap is increased from 16 A to 20 A the interaction 

potential energy changes by just 0.2 meV.

In summary, the final choice of parameters was as follows: 700 eV for the expansion 

of pseudo-atomic orbitals, and 60 eV for the extra low-energy plane waves. The 

irreducible surface Brillouin zone was sampled using 12 k-points (Monkhorst &
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Degree Z 0 (A) Vo (meV)
3 3.844 4.96
4 3.786 4.92
5 3.782 5.01
6 3.784 5.00
7 3.784 5.00

Table 5.2: Equilibrium height and potential well depth for He atoms interacting 
with the Rh(llO) surface as a function of the degree of the interpolating polynomial.

Pack, 1976), and the super cell consisted of five Rh layers, separated by 16 A of 

vacuum gap.

Because the interaction potential is quite weak for He and Ne, the accuracy of 

the fitting was checked by monitoring changes in the potential well depth and the 

equilibrium adsorption height. The potential was calculated from 1.5 A to 5.5 A 
(nine points) and least-squares fitting was used in the same way as described for 

Xe/Pt (see subsection 4.4.4). The calculated equilibrium height and potential well 

depth for He/Rh(110) as a function of the degree of the interpolating polynomial 

are shown in Table 5.2. Note that the changes in the potential well depth are quite 

small but the equilibrium height is a little more sensitive. A polynomial of low 

degree (four of five) is sufficient to obtain well-converged results. Similarly to the 

Xe/Pt case, we have re-calculated the interaction potential around the equilibrium 

point in order to check if the separation of the selected points has an important 

effect on the results presented in Table 5.2. By using seven points in the range 

from 3.4 A and 4.0 A and fitting with a fifth degree polynomial, we found that the 

equilibrium well depth changed by only 0.1 meV. The results shown in the next 

section were all calculated using a fifth degree polynomial fit.
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5.3 He and N e interacting w ith the R h(llO ) sur

face

The energy of an isolated He and Ne atom was calculated in a (12 A)3 box with the 

same cut-off energies as for the slab calculations. Because the reference is taken to 

be an isolated atom, our calculated potentials include the lateral interaction energy 

of a layer of He (or Ne). These energies are found to be —4.8 meV and —0.5 meV 

for the LDA and GGA-PBE respectively for He. The equivalent figures for Ne are 

—7.8 meV and —2.6 meV respectively.

Figure 5.4 shows the calculated interaction potentials for He and Ne. For both 

atoms, the LDA predicts an interaction potential considerable more attractive than 

the GGA-PBE. In the case of He/Rh(110), we find that the LDA gives a well 

depth at both the long and short bridge sites which are quite similar at around 

20 meV (see Table 5.3) while at the top site the well is deeper by about 20 meV. 

On the other hand, with the GGA-PBE we also find the lowest energy at the 

top site but with a difference of less than 1 meV in comparison with the bridge

He Ne
■Zo (A) V0 (meV) (A) Vb (meV)

T 2.43 42.2 2.86 65.4
LDA LB 2.88 20.5 2.93 55.1

SB 3.01 21.6 2.64 62.4
T 3.75 5.0 3.61 13.0

PBE LB 3.67 3.7 3.64 12.4
SB 3.82 4.5 3.42 14.2

Exp.
Rh(110)(lx2)H6

8.2a
2-3 8

° From Parschau et al. (1989). 
6 From Rieder et al. (1993).

Table 5.3: Potential well depth, Vo, and equilibrium height, Z0, for He and Ne 
interacting over the Rh(110) surface. Rh(110)(lx2)H corresponds to a hydrogen 
covered (110) surface of Rh.
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Figure 5.4: Interaction potential energy of He/Rh(110) (top right and top left) and 
Ne/Rh(110) (bottom right and bottom left) at on-top (green line), short bridge 
(blue line) and long bridge (red line) sites. Left LDA and right GGA-PBE.

sites. Selective adsorption experiments of He on the clean Rh(llO) surface have 

provided an estimated potential well depth of about 8 meV (Parschau et al., 1989). 

Consequently, the GGA seems to be in better agreement with experiments than 

the LDA. The large over-estimation of the well depth given by the LDA is a typical 

feature of the local approximation, although this is quite different from the results 

obtained for the heavier rare gas atom, Xe, in Chapter 4. By comparing our GGA- 

PBE calculated well depth with the value of 13 meV reported by Petersen et al. 

(1996), we find our result is closer to the experimental result (Parschau et al., 

1989).

2 3 4 5
Distance to surface (A)

2 3 4 5
Distance to surface (A)
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In the case of Ne, there is no experimental information on the well depth for a 

clean Rh(llO) surface, but we can obtain a rough estimate from results of a Rh 

surface covered with hydrogen, Rh(110)(lx2)H, with a coverage equal to 0.5 ML. 

(Table 5.3). By supposing that H atoms have a similar effect on Ne atoms as on 

He atoms, we can deduce that the potential well depth of Ne is around the value 

given by the GGA-PBE. Our result obtained with the GGA-PBE approximation 

is lower than the well depth value of 18 meV reported by Petersen et al. (1996).

5.3.1 Corrugation of the potential

We now turn to an analysis of the repulsive part of the potential curves in Figure 

5.4. For high kinetic energies, it is expected that probe atoms penetrate deeper 

into the electron density therefore the corrugation amplitude of the potential should 

increase with an increment of the probe’s kinetic energy. However in some cases it 

has been found that the corrugation amplitude remains constant or even decreases 

with an increase in the kinetic energy, (Rieder &; Garcia, 1982). Figure 5.5 shows 

the calculated corrugation amplitude of the interaction potential of He and Ne 

on Rh(110) as a function of the kinetic energy of the impinging particles. These 

curves were obtained from the fitting polynomial. This was done by calculating the 

potential difference between the bridge and on-top sites, using the on-top site as 

a reference point. Calculations were concentrated in the energy range between 20 

meV and 200 meV, as this corresponds to the kinetic energy normally used in HAS 

techniques (Farias & Rieder, 1998). All calculations were made using the results 

obtained with the GGA-PBE approximation.

In the case of He, the corrugation amplitude increases with kinetic energy at the 

long bridge site (i.e. perpendicular to the closed-packed row) reaching a maximum 

at around 100 meV and decreases for higher energy. This behaviour is similar to
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Figure 5.5: Corrugation amplitude of the potential for He (left) and Ne (right) 
atoms over the Rh(llO) surface, using the GGA-PBE approximation. The blue 
line corresponds to the corrugation along the closed-packed rows while the red line 
corresponds to the perpendicular direction, see Figure 5.1.

that found by Rieder k  Garcia (1982) for He on Ni(llO). At the short bridge site, 

we note that the potential is anticorrugated; the anticorrugation of the potential 

increases slowly with kinetic energy and becomes nearly constant at higher ener

gies. In the case of Ne at the long bridge site, the corrugation grows linearly with 

energy until reaching a plateau around 140 meV. Along the closed-packed rows, 

the potential shows a very small anticorrugating effect which reverses as the kinetic 

energy is increased beyond 60 meV.

Making a comparison between He and Ne, we observe that the corrugation am

plitude is larger in magnitude for Ne than for He, which is in agreement with 

experimental findings. Analyses of diffraction intensities from metal surfaces have 

shown that the interaction potential of Ne over a metal surface has a larger corru

gation than for He (Lapujoulade k  Perreau, 1983; Rieder & Stocker, 1984; Salanon, 

1984; Parschau et al., 1989). Table 5.4 shows that the measured Ne corrugation is 

up to twice that of He, which is in agreement with our results.

In the literature there is little information about the energy dependence of the
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He Ne
60 (A) foi (A) fio (A) foi (A)

Parschau et al. (1989) +0.06 +0.15 - +0.29
Rieder et al. (1993) -0.06 +0.12 +0.04* +0.15*
Petersen et al. (1996) -0.04 - +0.09* -
present work - - +0.01* +0.27*
present work -0.14 +0.18 -0.01 +0.32

Table 5.4: Comparison of amplitudes of corrugation from the interaction potential 
of He and Ne with Rh(llO). fio corresponds to the amplitude of corrugation parallel 
to the closed-packed rows and £01 to the perpendicular direction. Kinetic energy 
of the incoming atom is 64 meV except the values marked with an asterisk that 
correspond to 34 meV.

corrugation amplitude for He and/or Ne over Rh as a function of the kinetic energy 

of the probe atoms. However, a comparison can be made with specific kinetic energy 

values, see Table 5.4. We find that the amplitude of the corrugation perpendicular 

to the closed-packed rows is in better agreement than along the parallel direction 

when a comparison is made with the results given by Parschau et al. (1989). For He 

atoms with a kinetic energy of 64 meV, we find a value of +0.18 A while for Ne with 

the same kinetic energy the corrugation amplitude is calculated to be +0.32 A. For 

these cases, Parschau et al. (1989) have reported corrugation amplitudes of +0.15 

A and +0.29 A respectively while Rieder et al. (1993) reported values of +0.12 A 
and +0.15 A respectively, but the result for Ne was obtained with a kinetic energy 

of 32 meV. For this energy, we have calculated a corrugation amplitude of +0.27 

A. Probably, the disagreement with the results of Rieder et al. (1993) is due to the 

fact that their measurement was performed for an H-covered surface.

Along the closed-packed rows, in the case of He, we find a corrugation amplitude 

of —0.14 A which contrasts with the value of +0.06 A given by Parschau et al. 

(1989) and overestimates the values of —0.06 A and —0.04 A given by Rieder et al.

(1993) and Petersen et al. (1996) respectively. In the case of Ne, we obtain a value 

of —0.01 A while Rieder et al. (1993) and Petersen et al. (1996) report +0.04 A 
and +0.01 A respectively.
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5.4 Induced charge density

We have calculated the electronic charge density induced by He and Ne atoms over 

the on-top site of Rh(llO) at three selected heights: a t 5.0 A, where the interaction 

is negligible, at the equilibrium height, and at the repulsive part of the potential 

for a turning point corresponding to a kinetic energy of 150 meV. The main reason 

to consider the latter with a strong interaction point is because for He and Ne the 

changes induced in the charge density at the equilibrium height are very small. 

Additionally, the kinetic energy of 150 meV was chosen in order to compare with 

the results given by Petersen et al. (1996).

In Figures 5.6 and 5.7 we present the electronic charge density induced by He

Figure 5.6: Electronic charge density difference induced by an He atom over the 
on-top site at three different heights from the topmost surface layer. The cut is 
along [110], see Figure 5.1. Left panel at 5.0 A, middle panel at 3.75 A (equilibrium 
height) and right panel at 2.16 A (corresponds to a turning point of 150 meV). 
Positive values are shown by solid lines and negative values with dashed lines. 
Contour lines represent electronic charge densities given by ±2" x 10_4e A-3 
n  =  1 , . . . ,  5, except for the right panel where each contour is multiplied by 10. 
The position of the He and Rh atoms are shown by the cross and bullet symbols 
respectively.
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Figure 5.7: Electronic charge density difference induced by a Ne atom over the 
on-top site at three different heights from the topmost surface layer along [110], see 
Figure 5.1. Left panel at 5.0 A, middle panel 3.61 A (equilibrium height) and right 
panel at 2.51 A (corresponds to a turning point of 150 meV). Positive values are 
shown by solid lines and negative values with dashed lines. Contour lines represent 
electronic charge densities given by ±2" x 10~4e A-3 n = 1 , . . . ,  5, except for the 
right panel where each contour is multiplied by 10. The position of Ne and Rh 
atoms are shown by the cross and bullet symbols respectively.

and Ne on a Rh(110) surface. These results are those obtained with the GGA- 

PBE approximation. It can be observed tha t the interaction of He and Ne involves 

only a small change of the charge density at the equilibrium height, but at the 

selected turning point the changes are more noticeable. In general, we observed 

tha t each rare-gas atom produces a similar polarisation of the Rh surface but there 

are different polarisations on the atoms themselves. According to the calculated 

induced electronic charge density, it seems that the main change in the surface 

atoms takes place for d electrons.

In order to identify in more detail which orbitals are affected by the impinging 

atom, we have calculated the projected density of states, equation (2.62), for the 

Rh atom below the He and Ne atoms at the three above-mentioned positions. Only
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Figure 5.8: Projected density of states for 5s, 5p and 4d for the Rh atom below the 
incoming He atom. Green line corresponds to a He atom placed at a height of 5.0 
A, blue line corresponds to a turning point of 150 meV (He at a height of 2.16 A).

the projected densities of states for the interaction of the probe atoms located at a 

height of 5.0 A and the turning point corresponding to 150 meV are shown (Figure 

5.8 and Figure 5.9) because there are no significant differences between the results 

for the height of 5.0 A and the equilibrium height.

In the case of He interaction, Figure 5.8, the projected densities of states shows 

tha t the main changes on the Rh surface take place on the 5s, 5p2, 4dyz, 4dzx and
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Figure 5.9: Projected density of states for 5s, 5p and 4d for the Rh atom below the 
incoming Ne atom. Green line corresponds to a Ne atom placed at a height of 5.0 
A, blue line corresponds to a turning point of 150 meV (Ne at a height of 2.51 A).

4dz2 orbitals. The interaction with the He Is  state (at about —13 eV, see Figure 

5.10) can be observed on the 5s, 5pz and 4d2z orbitals.

In the case of Ne (Figure 5.9), we find results similar to those for He, but the 

interaction is with the Ne 2p orbitals (at about —10 eV, see Figure 5.10 left panel). 

There is a very small participation of Ne 2s (at about —32 eV, it is not shown) 

particularly with Rh 5s and the Rh 5pz orbitals.

-5 0 5
Energy(eV)
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Figure 5.10: Projected density of states for He (left panel) and Ne (right panel).

By summing the projected density of states, we have calculated the charge associ

ated with each orbital using equation (2.63). The change induced in each orbital 

was determined by taking the difference between the turning point corresponding

the metal surface by both probe atoms was very small. Table 5.5 summarises the 

charge associated with the top layer Rh atoms for interaction with Ne and He at 

the on-top and short bridge sites.

For interaction at the on-top site, He and Ne produce an increase in the occupancy 

of the dyz, dzx and pz orbitals with a decrease in the dz 2 orbital. This is in agreement 

with our qualitative description given by Figure 5.6 and Figure 5.7. Similar to the 

X e/P t system, we find that the total charge of the system is somewhat greater 

than the total number of electrons but such over-counting is compensated for by 

the plane wave charge component. The charge difference associated with all the

System s Px Pv Pz dXy dyz dz.T dx 2_„2 dz 2 Total
H e/R h  (T ) - 0 .3 9 + 0 .13 + 0 .15 + 0 .6 5 +  0.01 + 0 .3 3 + 0 .6 6 + 0 .0 5 -0 .7 1 + 0 .88
N e/R h  (T ) -0 .2 1 + 0 .06 + 0 .0 6 + 0 .2 4 - 0 .0 2 + 0 .1 9 + 0 .3 3 + 0 .01 - 0 .4 9 + 0 .1 7
H e/R h  (SB) - 0 .1 5 + 0 .0 6 -0 .0 1 + 0 .0 2 -0 .0 4 + 0 .0 4 + 0 .11 - 0 .0 2 -0 .0 6 - 0 .0 5
N e/R h  (SB) -0 .0 8 + 0 .05 0.00 + 0 .0 5 - 0 .0 2 + 0 .0 6 + 0 .1 3 + 0 .01 -0 .0 5 + 0 .1 5

Table 5.5: Difference of the charge in 10 xe associated with the 5s, 5p and 4d 
orbitals of the Rh atom at the on-top (T) and short bridge (SB) sites.

to 150 meV and a reference position at 5.0 A. In general, the change induced over
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orbitals of He and Ne was less than the change in the charge associated with the 

plane wave component which makes it difficult to determine accurately the real 

induced charge on the probe atom. However, the larger change of occupancy of 

metal states occurs for He at the top site and for Ne at the short bridge site, which 

correlates with the lowest energy sites for both atoms (see Table 5.3).

5.5 Conclusions

The interaction of light rare-gas atoms (He and Ne) with Rh(llO) has been calcu

lated using first principles DFT calculations. The results show that the interaction 

potential energy obtained with the LDA is more attractive than that given by the 

GGA-PBE. In comparison with estimates of the potential well depth made with 

selective adsorption, the GGA-PBE is better for describing the interaction of He 

over the Rh(llO) surface.

Both the LDA and GGA-PBE approximations show that the potential of He is 

anticorrugated. Although the results obtained with the GGA-PBE show a better 

correspondence with experiment still there are discrepancies with the amplitude 

of corrugation, especially with He along the closed-packed rows. Our calculations 

reproduce the anticorrugating effect observed experimentally for He, but still a 

large deviation from the results reported by Rieder et al. (1993) is found. On 

the other hand, along the direction perpendicular to the closed-packed rows, the 

calculated amplitude of corrugation is in good agreement with experiment, when 

a comparison is made with the results given by Parschau et al. (1989) for a clean 

Rh(llO) surface.

We find that each probe atom induces a similar polarisation in the Rh surface but 

that each rare-gas atom suffers a different polarisation. Full analysis of the polar-
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isation charge on the He and Ne was impossible to carry out using the projected 

density of states because the charge induced in each atom is smaller than the change 

in the plane wave component. However, we find in the case of He, its Is orbital 

shows a strong interaction with Rh 5s and Rh 5pz and a moderate interaction with 

Rh 4dz2. In the case of Ne, the main contributions are given by the interaction of 

its 2p orbital with Rh 5s and Rh 4c^, and a moderate interaction with the Rh 5px 

and Rh 5py orbitals. In conclusion, these results suggest that the interaction with 

each rare-gas atom is defined by the changes in the electronic distribution of the 

substrate.
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Chapter 6

Chemisorption of CO on the the 

P t(llO ) surface

6.1 Introduction

Pt is one of the most widely used heterogeneous metal catalysts (Somorjai, 1994). 

The clean Pt(llO) surface is a (2x1) reconstructed structure. The reconstruction 

is the so-called missing-row structure (see Figure 6.1) where every second atomic 

row along the [110] direction is missing in the top layer. X-ray diffraction (Vlieg 

& Robinson, 1990) and low energy electron diffraction (LEED) (Sowa et al., 1988) 

reveal a surprisingly high contraction of about 0.3 A in the top layer spacing and 

further relaxations in the deeper layers have been also observed, especially a pairing 

in the second layer and a buckling in the third layer.

An essential effect of CO adsorption on Pt(110) is that it can lift the reconstruc

tion back to its bulk terminated ( lx l)  structure, depending on the adsorption 

temperature and coverage (Comrie & Lambert, 1976; Freyer et al., 1986; Imbihl



6.1 Introduction

et al., 1988). At low coverages the (2x1) reconstructed phase coexists with islands 

of CO on P t ( lx l) .  As the coverage is increased, this phase transition is com

pleted. Gritsch et al. (1989), using direct imaging by STM have claimed that the 

mechanism consists of an adsorbate-induced nucleation which breaks up the initial 

atomic configuration, followed by single atoms or even chains of atoms that move 

into free sites of the top layer. Additionally, the shape and the size distribution of 

the domains of the new phase depends on temperature. Schwegmann et al. (1995) 

have found evidence that the lifting of the (2x1) missing-row reconstruction begins 

with a remarkable change of the Pt substrate relaxation.

The main experimental information about CO-Pt surface bonding has been de

duced from vibrational spectroscopy (Freyer et al., 1986; Sharma et al., 1998), 

but recently this technique has been shown to be oversimplified (Bradshaw, 1997) 

because a large shift observed in the C-0 vibrational frequency as the coverage 

increases may be from dipole-dipole coupling and not from a change in the adsorp

tion position. At low coverage, RAIRS (Reflection Absorption InfraRed Spectra) 

experiments (Bare et al., 1984) show that CO is adsorbed at the on-top site while 

for high coverage, greater than 0.5 ML, the CO is adsorbed on a bridge site. On the 

other hand, different values of the initial heat of adsorption have been reported. 

The microcalorimetric experiment carried out by Wartnaby et al. (1996) deter

mined a value of the initial heat of adsorption of 183 kJ mol-1 (1.90 eV), rather 

than the lower value of 150 kJ mol-1 (1.55 eV) reported by Fair & Madix (1980) 

and Engstrom & Weinberg (1988).

Few ab-initio calculations have been carried to model the CO/Pt(110) structure 

(Pacchioni et al., 1997; Curulla et al., 1999; Ge &; King, 1999) and the majority of 

them use a cluster model to describe the adsorption. It is found that adsorption 

parameters are very sensitive to the surface cluster size. This situation encourages 

us to study the adsorption of CO on Pt(110) using a more realistic model to describe

A.E. Betancourt 131



6.1 Introduction

the surface. We will concentrate on determining the equilibrium geometry structure 

and will calculate the distortion on the clean surface due to the adsorption a CO 

molecule. All the calculations were made at a relatively high coverage due to the 

excessively large computational effort required at lower coverages.

In this chapter we present results for CO chemisorption on both the unreconstructed 

and reconstructed Pt(llO) surfaces at different coverages. We have selected cover

ages of 1 ML (monolayer) and 0.5 ML for the unreconstructed surface, and cover

ages of 0.5 (ML) and 0.25 (ML) for the reconstructed surface. For all cases studied, 

the relaxation of the Pt substrate due to the adsorption of CO molecules was con

sidered. In general, this type of calculation is very demanding, particularly the 

determination of the equilibrium structure, because well-converged results for the 

atomic forces are required. Additionally, the elements that form the CO molecule 

present deep pseudopotentials and, even with optimised pseudopotential schemes, 

for instance Troullier & Martins’ method (Troullier & Martins, 1990), the calcu

lation of the equilibrium structure requires a heavy computational load. For this 

reason, we have used an ultrasoft pseudopotential method (see section 2.6) which 

provides a more efficient scheme to calculate the total energy for the CO/Pt sys

tem. Non-local corrections to the exchange-correlation functional in the form of 

the GGA have been used (Perdew & Wang, 1992).

The chapter is organised as follow: in section 6.2, we present computational details 

of the total energy calculation, together with results for the equilibrium geometry 

of the CO molecule and the relaxation of the missing row and unreconstructed 

Pt(110) surface. Chemisorption of CO on both the unreconstructed and missing 

row structure are treated in section 6.3, where we also discuss the distortion of the 

Pt substrate due to the adsorption of CO. Finally, the conclusions of the chapter 

are presented in section 6.4.
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6.2 Computational details

All calculations were carried out using an ultrasoft pseudopotential scheme (see 

section 2.6) with the CASTEP package (an acronym for CAmbride Sequential 

Total Energy Package). Electronic relaxation was reached by using Pulay’s density 

mixing scheme. The integration over the Brillouin zone was made by using a 

symmetrised Monkhorst-Pack mesh and a Fermi smearing of 0.2 eV was used. 

The force on the atoms are calculated according to the Hellman-Feymann theorem 

(Grosso & Parravicini, 2000). Exchange-correlation effects were described by the 

GGA-PW91 (Perdew & Wang, 1992).

6.2.1 CO molecule

Previous studies have showed that the GGA approximation is more reliable than 

the LDA for describing the bond of a CO molecule (Hu et al., 1994; Hammer et al., 

1996). In order to verify this statement, we have compared results obtained with 

the LDA and GGA. Calculations were performed for a CO molecule in a box of 

size 10 A x 10 A x 15 A and sampling the Brillouin zone with 2 x 2 x 1  k-points. 

The Kohn-Sham eigenfunctions were expanded with a plane wave basis set with an 

energy cut-off of 380 eV. The equilibrium bond length was calculated by relaxing 

the molecular coordinate until the force was less than 0.01 eV/A. In contrast to 

rare-gas dimers, the CO bond length was not sensitive to the exchange-correlation 

approximation used. We found bond lenghts of 1.144 A and 1.146 A with the 

LDA and GGA respectively. However, a significant difference was found in the 

binding energy, 12.5 eV with the LDA and 11.2 eV with the GGA. The GGA value 

is in better agreement with the experimental result of 11.1 eV (Huber & Herzberg, 

1979) and with the value of 10.9 eV given by Hammer et al. (1996) using the LMTO
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Figure 6.1: Top view of a fcc(llO) (2x1) missing row structure and its high sym
metry sites. The red circles represent the top layer of atoms, the green circles the 
second layer and the yellow circles the third. T: atop site, SB: short bridge site, 
LB: long bridge site and H: four-fold hollow site.

(linear muffin tin orbital) method.

6.2.2 Missing row and unreconstructed (110) surface

Before studying the interaction of the CO molecule on the P t surface we have 

calculated the equilibrium geometry of the substrate. These calculations were 

made for both the missing row and unreconstructed (110) surfaces. In the case of 

the missing row structure, the surface was represented by a (2x1) structure (see 

Figure 6.1) with slabs consisting of seven atomic layers separated by a vacuum 

gap equivalent to another seven layers («  10 A). The equilibrium structure was 

determined by allowing the relaxation of the atomic coordinates for the first four 

layers while the remaining layers were fixed at their equilibrium bulk position. The 

GGA-PW91 lattice constant calculated with ultrasoft pseudopotentials was 3.97 

A. The cut-off energy was fixed at 180 eV and the Brillouin zone was sampled with
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Figure 6.2: Convergence of the total energy (top left), displacement (top right), 
force on the movable atoms (bottom left), and the contraction/expansion of the 
separation of three subsequent atomic layers (bottom right) for the P t(llO ) missing 
row structures. For the bottom right panel, green line: contraction of the first 
atomic layer; blue line: contraction of the second layer and red line: expansion of 
the third layer. The relaxation was defined as the percentage distortion of the layer 
divided by the bulk interlayer spacing.

a by 4 x 12 Monkhorst-Pack mesh (i.e. 12 k-points in the irreducible wedge).

The iterative procedure was stopped when an error of 1.0 x 10-5 eV in the total 

energy was reached and the average displacement and force of the movable atoms 

reached values of 0.005 A and 0.1 e/A respectively. We have found that with 

these values the geometry relaxation is well-converged, see Figure 6.2. Note that
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[110]

— ► [001]

Figure 6.3: Relaxed missing row structure of Pt(110). dy represents the perpendic
ular distance between the atoms i and j  and 1* is the lateral distance between two 
equivalent atoms in the same layer. di2 = 1.145 A, d23 =  1.268 A d3'4 =  1.223 A, 
d34 =  1.515 A, d45 =  1.420 A, 12 =  4.032 A and I4 =  4.117 A. The atoms move 
in the direction indicated by the arrows.

for the first iterations there is an important variation in the total energy, force and 

displacement which is clearly reflected in the relaxation of the first (green line) 

and second (blue line) atomic layers. From the sixteenth iteration, a stabilisation 

of the structural parameters was reached, except for the atomic forces which are 

sensitive to small changes in the atomic displacements. The calculated equilibrium 

geometry shows that the separation between the first and second layers is 1.145 

A, that corresponds to a contraction of —0.26 A with respect to the bulk value 

of 1.405 A, (see Figure 6.3). Atoms in the second layers relax inwards by —0.137 

A and also suffer a lateral displacement of —0.057 A with respect to the bulk 

value of 3.974 A. The third atomic layer is buckled, atoms in this layer show 

separations of 1.223 A and 1.515 A, which correspond to relaxations of —0.182 

A and 4-0.110 A respectively. For the fourth layer, the lateral displacement was 

determined to be —0.071 A and it relaxes outwards by 0.015 A. In general, our 

results reproduce experimentally observed features of a missing-row structure; a 

large inward relaxation of the top two layers, row-pairing in the second layer and 

buckling in the third layer. We find a good agreement with results from experiment
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Adi2 (A) A ^23 (A) P 2 (A) P a (A) b 3 (A)
This work -0.26 -0.14 0.06 0.07 0.29
X-ray diffraction0 -0.27 - 0.11 0.05 0.04 -

LEED6 -0.26 -0.18 0.07 0.12 0.32
MEISC - 0.22 0.06 0.04 - 0.10
Embedded method^ -0.25 -0.07 0.05 0.08 0.11
° From Vlieg & Robinson (1990).
b From Sowa et al. (1988).
c Medium-energy ion scattering (MEIS) from Fenter & Gustafsson (1988).
d From Foiles (1987).

Table 6.1: Distortions of atomic positions for the Pt(110) (2x 1) missing row struc
ture. Adij is the change in the layer spacing between the ith and j th layers, Pi 
represents pairing in layer i and 63 represents buckling in the third layer.

and previous theoretical work, see Table 6.1.

For the unreconstructed Pt(110) surface, the equilibrium geometry was calculated 

for a ( lx l)  structure (see Figure 6.4). The surface was represented by seven atomic 

layers separated by a vacuum gap equivalent to another seven layers. The cut-off 

energy was equal to that used in the case of the mixing row structure (180 eV) but 

the Brillouin zone was sampling with 8 x 12 Monkhorst-Pack mesh (24 k-points 

in the irreducible wedge). The equilibrium geometry was calculated by allowing 

the relaxation of atomic coordinates for the first three layers and the remaining 

layers were kept fixed. The iterative process was stopped when the total energy, 

force and atomic displacement reached the same error as in the case of the missing 

row structure. The equilibrium separation for the top layers was calculated to be 

di2 =  1.195 A, d23 =  1.521 A, and d34 =  1.385 A. This represents distortions 

relative to the bulk lattice of —0.21 A, + 0.12 A, and —0.02 A (or —14.9 %, +8.3 

% and —1.5 %) respectively. Due to the fact that the unreconstructed Pt(110) is 

unstable, there are no experimental results for the structural parameters. However 

a comparison with theoretical calculations of Ge et al. (1999) can be made. They 

used the GGA with norm-conserving pseudopotentials and calculated the distortion 

of the first and the second layers to be —14.7 % and + 6.6 % respectively. Although
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Figure 6.4: Top view of a fcc(llO) unreconstructed surface and its high symmetric 
sites. The red circles represent the first layer of atoms and the green circles the 
second one. T: atop site, SB: short bridge site, LB: long bridge site and H: four 
hollow site.

Ge et al. also used seven atomic layers, they allowed the relaxation of only the two 

first layers, which could explain the smaller distortion they found for the second 

layer.

6.3 C hem isorption of CO

At the high symmetry sites and for selected coverages of CO, we have calculated the 

binding energy, C -0  bond length, C-Pt bond length and the substrate reconstruc

tion for the adsorption of CO molecules on clean P t(llO ) surfaces. Two surfaces 

of P t(llO ) were selected; an unreconstructed structure with coverages of 1.0 ML 

and 0.5 ML and a missing-row structure with coverages of 0.5 ML and 0.25 ML. 

All calculations were made using a cut-off energy of 380 eV and the GGA-PW91 

approximation for the exchange-correlation energy.
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The binding energy was calculated using

E b _ _  Eco+pt(no) ~ EPt{no) — N co  x ^  ^

\  Nco )  ’

where Eco+Pt( 110) is the total energy of Pt(110) slab with adsorbed CO molecules, 

Ept( 110) is the total energy of a bare slab of Pt(110) with its topmost layer relaxed 

(so that the binding energy includes substrate relaxation), Eco is the total energy 

of a free CO molecule and Nco is the number of CO molecules per supercell. The 

energy of an isolated CO molecule was calculated in a (10 A ) 3 box with the same 

cut-off energy as for the slab calculations and sampling the Brillouin zone with a 

2x2x2 Monkhorst-Pack mesh.

For all the cases studied, two situations were considered for CO adsorption on 

the Pt(110) substrate. First, all the Pt atoms were kept at their relaxed, clean- 

substrate positions. In the second case a full relaxation of the Pt substrate was 

allowed. In the case of the missing row structure, relaxations of the first four 

layers were allowed while for the unreconstructed structure the first three layers 

were allowed to relax. For all calculations of the distortion or relaxation of the 

substrate due to the CO adsorption were calculated using the clean relaxed surface 

as a reference.

6.3.1 Adsorption at the unreconstructed surface

Table 6.2 summaries binding energies, C-0 bond lengths and the C-Pt bond lengths 

corresponding to the adsorption of CO molecule on an unreconstructed Pt(110) 

surface. These calculations were made for coverages of 1 ML and 0.5 ML. The 

supercell consisted of seven Pt layer slabs separated by a vacuum gap ( 14 A)
equivalent to nine layers. The Brillouin zones of the ( lx l) ,  (2x1) and (1x2)
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site Eb (eV) dco (A) dptc (A)
T 1.881 1.157 1.857

(1.818) (1.156) (1.859)
SB 1.956 1.171 2.033

( lx l) (1.808) (1.170) (2.041)
1.0 ML LB 0.887 1.175 2.275

(0.778) (1.174) (2.260)
H -0.107 1.153 3.011

(-0.137) (1.152) (3.060)
T 1.907 1.156 1.853

(1.843) (1.156) (1.854)
SB 2.002 1.173 2.027

(2x1) (1.824) (1.172) (2.041)
0.5 ML LB 1.582 1.183 2.051

(0.977) (1.185) (2.189)
H -0.079 1.153 2.993

(-0.121) (1.152) (3.061)
T 2.166 1.156 1.851

(2.078) (1.158) (1.852)
SB 2.231 1.176 2.001

(1x2) (2.107) (1.176) (2.024)
0.5 ML LB 1.163 1.180 2.821

(0.957) (1.174) (2.811)
H 0.743 1.179 2.585

(0.645) (1.180) (2.561)

Table 6.2: Calculated adsorption properties of CO chemisorbed on the unrecon
structed Pt (110) surface. Numbers in parentheses refer to calculations with sub
strate atoms fixed at their clean surface relaxed positions. The CO molecule is 
upright on the surface with the C end down. Eb denotes the binding energy, dco 
represents the C-0 bond length and dptc denotes the C-Pt bond length, that is 
measured from the nearest Pt atom underneath the C atom (see Figure 6.5).

structures (see Figure 6.4) were sampling with 8 x 12, 4 x 12, and 8 x 6  Monkhorst- 

Pack meshes respectively. The lateral CO-CO energy is found to be -1-133 meV, 

+137 meV and +10 meV for the ( lx l) ,  (2x1) and (1x2) structures respectively.

For a coverage of 1 ML and assuming a static substrate, the on-top site becomes 

the most favourable adsorption site, but when the relaxation of the substrate is 

allowed, the short bridge site is preferred with an energy difference of 75 meV. On 

the other hand, the substrate relaxation does not induce significant changes in the
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6.3 Chemisorption of CO

Figure 6.5: Side view of stationary Pt (2 x 1) substrate and the CO adsorbate. 
dco is the distance between C and O, dptc  denotes the distance between Pt and 
C.

bond lengths. In both cases (static or relaxed substrate), the CO cannot bind at 

the hollow site, due to the large lateral interaction energy present in the binding 

energy.

For the case of a 0.5 ML coverage, we have considered both the (2x1) and (1x2) 

structures (see Figure 6.4). The latter structure reduces by more than 120 meV the 

lateral interaction between CO molecules, which allows us to determine whether the 

lateral forces affect the adsorption site. It was observed that the binding energies at 

the long bridge show a large difference when a comparison is made between relaxed 

and inert substrates. We found a difference of about 0.6 eV with the (2x1) structure 

and 0.2 eV with (1x2) structure, which indicates that an important reconstruction 

occurs in the substrate due to the adsorption of the CO molecule. For these cases, 

we have calculated the reconstruction of the Pt substrate with respect to the relaxed 

clean surface (see Figure 6.6). For the (2x1) structure (see Figure 6.6, top), we 

find that the atoms of the first layer relax outward approximately 0.24 A and also
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0.31 A

0.24 A

0 .44 A
* H

0 13
*:0 09A

0.14 A

A...0.17 a ; : 0.04 A

0.02 A

Figure 6.6: A schematic diagram of the relaxation of the P t(llO ) unreconstructed 
surfaces ((2x1) structure top and (1x2) structure bottom) when a CO molecule 
is adsorbed at the long bridge site. The atoms move in the direction indicated by 
the arrows.

move a distance of 0.31 A in the lateral direction (x axis). The positions of the 

P t atoms in the second layer also suffer im portant distortions, particularly the P t 

atom located below the CO, that moves a distance of 0.44 A. This could to be 

explained as a consequence of the increase in the number of coordinations, each 

one this P t atom feels the interaction of two CO molecules. In the case of the 

(1x2) structure (see Figure 6.6, bottom), we find a more moderate distortion in 

comparison with the (2x1) case. The most im portant distortion occurs for the Pt 

atom below of C, this relaxes outwards by 0.17 A.
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6.3 Chemisorption of CO

Figure 6.7: A schematic diagram of the relaxation of the P t(llO ) unreconstructed 
surface (1x2) when a CO molecule is adsorbed at the top site (left) and short 
bridge site (right). The atoms move in the direction indicated by the arrows.

Similar to 1 ML case, for a coverage of 0.5 ML, the short bridge site remains the 

most favourable adsorption site. Also we find that the CO does not bind at the 

hollow site with a (2x1) structure but with the (1x2) structure it does. This 

a consequence of the large lateral energy which is substantially reduced with the 

(1x2) structure.

In the case of the (1x2) surface and considering the most stable sites (on top site 

and short bridge site), we found tha t the substrate suffers a small distortion in 

comparison with the distortions calculated for the long bridge (see Figure 6.7). 

The relaxation decreases the energy by 88 meV and 124 meV at the on top site 

and short bridge site respectively. When CO is adsorbed at the on top site, we 

find that the P t below the CO relaxes outwards by approximately 0.05 A while 

the neighbouring P t in the same layer relaxes inwards by 0.06 A . The atoms in the 

second layer relax outward by 0.07 A with a small lateral distortion of 0.02 A.

Decreasing the CO coverage from 1.0 to 0.5 ML, the binding energy at the short- 

bridge site increases by 46 meV for the case of the (2x1) structure and 275 meV 

for the (1x2) structure, indicating an im portant effect of the lateral repulsive in

teraction on the binding energy. Also we find tha t the diffusion barrier between 

the bridge and on-top sites decreases from 95 meV for the (2x1) structure to 65
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Eb (eV) dco  (A) dptc (A)

top
from Pacchioni et al. (1997) 
from Curulla et al. (1999) 
from Ge & King (1999) 
present work

1.46
1.555
2.153
2.166

1.16
1.155 
1.157
1.156

1.87
1.863
1.847
1.851

from Pacchioni et al. (1997) 1.30 1.18 2.02
bridge from Curulla et al. (1999) 0.705 1.179 2.008

from Ge & King (1999) 2.129 1.173 2.005
present work 2.231 1.176 2.001

experiment from Wartnaby et al. (1996) 1.51 - -

Table 6.3: Comparison of adsorption properties: binding energy, E C-0 bond 
length, dco> and C-Pt bond length, dptc , for.CO chemisorbed on the Pt (110) 
unreconstructed surface at a coverage of 0.5 ML.

meV for the (1x2) structure. On the other hand, the calculations made with (1x2) 

structure do not show a site-switching from bridge to on-top, i.e., CO in bridge site 

is still the most energetically most favourable.

Table 6.3 shows a comparison of our results with previous results. In general it is 

observed that there is a very good agreement with the values of the bond lengths, 

but large differences in the binding energies. Our estimations of binding energies 

are higher than those reported by Pacchioni et al. (1997) and Curulla et al. (1999) 

using a cluster model and the experimental value of 1.51 eV given by Wartnaby 

et al. (1996) but is in good agreement with the results reported by Ge & King 

(1999). Although the value of 1.555 eV is in good agreement with experiment, this 

corresponds to the adsorption at the top, which is in contrast with the experimental 

fact that for coverage of 0.5 ML the adsorption of CO occurs at short bridge (Bare 

et a l, 1984).

6.3.2 Adsorption at the missing-row surface

Table 6.4 summaries the binding energy and the geometrical parameters of the CO 

molecule for adsorption at the missing-row surface for coverages of 0.5 ML and

A.E. Betancourt 144



6.3 Chemisorption of CO

site Eb (eV) dco (A) dptc (A)
T 1.694 1.156 1.866

(1.650) (1.156) (1.877)
SB 1.857 1.171 2.024

(2x1) (1.599) (1.170) (2.019)
0.5 ML LB 1.598 1.183 2.037

(0.843) (1.175) (2.711)
H -0.194 1.150 3.131

(-0.286) (1.147) (3.249)
T 1.955 1.152 1.864

(1.897) (1.155) (1.855)
(2x2) SB 2.054 1.177 2.005

0.25 ML (1.962) (1.178) (2.013)
LB 1.872 1.184 1.876
H 0.084 1.148 4.084

Table 6.4: Calculated adsorption properties (binding energy, C-0 bond length 
and C-Pt bond length) of CO chemisorbed on the Pt (110) missing row surface. 
Numbers in parentheses refer to an unrelaxed Pt substrate.

0.25 ML. The Brillouin zone of the (2x1) and (2x2) structures were sampled with 

4x12 and 4x6 Monkhorst-Pack meshes respectively. The CO-CO lateral energy 

for the (2x2) structure is found to be less than 1 meV.

For a coverage of 0.5 ML, we found that binding energies are lower than those 

energies obtained with the unreconstructed surface. The short bridge site is again 

the most favourable adsorption place. The diffusion barrier between the short 

bridge and the on-top sites was calculated to be 163 meV, a value larger than that 

calculated for the unreconstructed structure.

Similar to the (2x1) unreconstructed structure, we find a large difference between 

the binding energy for frozen substrate and a fully relaxed one. Again, this seems 

to be due to large distortion in the second atomic layer (see Figure 6.8). This 

produces a significant shift in the atomic positions, where the atoms (second layer) 

relax outwards by approximately 0.2 A and suffer a lateral distortion of nearly 0.3 

A with respect to the clean relaxed surface. Also we find a significant change in 

the binding energy due to the reconstruction of the substrate for adsorption at the
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0.27 A

Figure 6.8: A schematic diagram of the relaxation of the Pt(110) (2x1) missing 
row structure when a CO molecule is adsorbed at the long bridge site.

short bridge site. The relaxation increases the binding energy by approximately 

258 meV. Here, we find P t atoms in the top layer move towards the C atom by 0.18 

A, while the P t atoms in the second layer relax inwards only by 0.01 A, and suffer 

a lateral distortion of 0.07 A. In the case of the on-top site, the reconstruction only 

reduces the energy by 44 meV. Here the distortion of the substrate is small, the 

P t atoms in the first layer relax outwards by 0.04 A and the atoms of the second 

layer move towards the topmost layer by 0.03 A with a small lateral distortion of

0.01 A.

In the case of 0.25 ML coverage, we find a similar behaviour to the previous cases, 

with the short bridge site still preferred as the adsorption site with an energy 

barrier to the top site of 99 meV. Here we only calculated the effect of the substrate 

relaxation for the on-top and short bridge sites. In these cases, we find that the 

reconstruction increases the binding energy by 58 meV and 92 meV for adsorption 

at the on-top and short bridge sites respectively. When CO is adsorbed at the top 

site, the P t atom below the C atom moves 0.05 A while the P t atom in the next 

layer relaxes inwards by 0.09 A and laterally by 0.04 A. In the case of the short 

bridge site the P t atom in the first layer relaxes outwards by 0.17 A while the P t in
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the second layer relaxes inwards and laterally by 0.05 A and 0.04 A respectively.

When we compare results obtained with structures with a lower lateral interaction 

potential (i.e. the (1x2) structure for the unreconstructed surface and the (2x2) 

missing-row structure), we find that the relaxation induces a change in the binding 

energy of about 100 meV for adsorption at the most favourable sites (on-top and 

short bride sites). For both cases, we find a larger relaxation at the short bridge 

site which is due to the increased coordination of the topmost Pt atoms. On the 

other hand, the relaxations of these Pt atoms are quite similar for both structures.

By comparing the (2x1) and (2x2) missing row structures (see Table 6.4), we 

find a difference in the binding energy for the on-top, short bridge and long bridge 

sites of 0.261 eV, 0.197 eV and 0.274 eV respectively. The difference between 

CO-CO repulsion energy for these cells is 0.137 eV, which implies a significant 

extra repulsion energy due to the substrate. On the other hand, according to the 

results obtained for both the unreconstructed and missing row surface (Table 6.2 

and Table 6.4), the general trend is that CO adsorption on the unreconstructed 

surface is more energetically favourable than on the missing row structure. This 

suggests an explanation for the adsorbate-induced reconstruction from a missing 

row to a bulk terminated structure as the CO coverage is increased. It is important 

to point out that our results show that for low coverage the CO adsorption still 

takes place at the short bridge, which contrasts with the experimental fact that 

for a coverage less than 0.2 ML the on-top site is the more favourable adsorption 

site. We note that several cases have been reported for CO adsorption on metal 

surfaces where the preferred adsorption site obtained by DFT calculations differs 

from experiment, for a recent review see Feibelman et al. (2000).
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6.4 Conclusions

Using ultrasoft pseudopotentials and the GGA we have calculated the adsorption 

parameters for CO molecules binding to Pt(llO) surfaces. Two possible surface 

structures were considered: an unreconstructed (110) surface and a missing row 

structure. The study was limited to relatively high coverages.

For both structures (unreconstructed and reconstructed) the short bridge is the 

most stable adsorption site for CO on Pt(110), but the largest binding energy 

was found to be for the unreconstructed structure. The atop site is the next most 

stable site, followed by the long-bridge site and the hollow site. Our binding energy 

is larger than those reported by experiment and previous theoretical estimations 

(Engstrom & Weinberg, 1988; Wartnaby et al., 1996; Curulla et al, 1999) using a 

cluster scheme but is in good agreement with similar ab initio calculations (Ge & 

King, 1999).

For the unreconstructed structure and a coverage of 0.5 ML, the energy difference 

between the bridge and on-top sites is approximately 95 meV for the (2x1) and 65 

meV for the (1x2) structure, indicated a small barrier for CO diffusion.

CO adsorption induces significant changes in the substrate. Relaxations are dif

ferent for each adsorption site. In general, CO tends to expand the layer spacing, 

back towards the value for bulk Pt. At the long bridge a large expansion of the 

second layer occurs with significant changes in the third, which explains the very 

large change observed in the binding energy. In the cases of adsorption at the on- 

top and short bridge sites, the relaxation leads to a smaller change in the binding 

energy and the main structural changes occur in the two first layers.

For the missing-row structures studied, the binding energies obtained are smaller
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than those calculated for the unreconstructed structures. However, we find that the 

short bridge is the most favourable adsorption site for the CO molecule and a there 

is larger diffusion barrier than that calculated for the unreconstructed surface.
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Chapter 7

Conclusions

The interaction of the systems X e /P t(lll) , He/Rh(110), Ne/Rh(110) and

CO/Pt(110) have been treated using first principles total energy calculations and 

ab-initio pseudopotentials. Before studying the above-named systems, we have 

carefully tested the pseudopotentials constructed for the elements He, Ne, Cu, 

Rh, Pt and Xe, evaluating equilibrium structural properties for their crystalline or 

molecular form. A good agreement was found with all-electron calculations and 

experimental results. The key point of the pseudopotential construction procedure 

consisted of the optimisation of the core radius through the logarithmic derivatives. 

With such a procedure, we can balance the high transferability due to a small radius 

and the lower cut-off energy of a large core radius. However, the optimisation of 

those pseudopotential components without the same component present in the core 

was not possible. This was the case of Is for He, 2p for Ne and 3d for Cu. In these 

cases the selection of the core radii was made by taking into account the best 

reproduction of the equilibrium structural properties.

The exchange-correlation energy was approximated by the LDA and GGA and the 

effect of both approximations on the structural properties was determined. Both



Conclusions

were included in the pseudopotential construction procedure and all calculations 

were made in a self-consistent manner. The equivalence of the GGA-PW91 and 

GGA-PBE functionals was confirmed. It was also found that oscillations intro

duced by the GGA-PW91 are substantially reduced with the GGA-PBE. Addi

tionally, an improvement of the transferability of the pseudopotentials was made 

by the incorporation of core-valence exchange-correlation corrections. For the ele

ments Xe, Pt and Rh, the improvements obtained on the structural properties were 

small. However, a substantial improvement on the quality of the pseudopotentials 

constructed with GGA was obtained with the core-valence exchange-correlation 

correction, which completely removed the oscillations. In the cases of He and Ne, 

we found that the structural properties of their dimers were better described by the 

GGA approximation although the binding energies are still overestimated, however 

our results are in good agreement with all-electron calculations. For Xe neither the 

LDA nor GGA gave a complete description of the bonding, with the binding energy 

showing a large deviation from the experimental result.

For the system X e /P t(lll)  we have found that the LDA provides adsorption pa

rameters (binding energy, equilibrium adsorption height and vibrational energy) 

are in reasonably good agreement with experimental results. On the other hand, 

the GGA approximation gives a very weak binding. The two approximations also 

show an important difference in the repulsive part of the potential, predicting a 

difference in the turning point of almost 0.5 A for a kinetic energy of about 100 

meV. Additionally, both approximations predict that the on-top site is the most 

favourable adsorption site. Calculations of the projected density of states show that 

there is an important level of chemisorption. The calculated work function change 

is greater (—1.27 eV) than the value measured using angle-resolved photoemission 

(—0.6 eV); this discrepancy seems to be a consequence of the overbinding of the 

LDA.
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In contrast with the results obtained for X e /P t(lll) , the interaction of He and Ne 

on Rh(llO) was better described with the GGA approximation. Both the LDA 

and GGA show that the potential for He is anticorrugated, with the corrugation 

amplitude of the potential calculated for Ne being in better agreement with the 

experimental results than for He. Due to the small change of the polarisation 

charge and the large change of the charge associated with plane wave component, 

a full analysis of the polarisation could not be make. However, we find that the 

interaction of He/Rh(110) and Ne/Rh(110) is not only defined by the interaction 

of He and Ne orbitals with Rh 5s and Rh 5p, in addition the Rh Ad orbitals have 

a moderate contribution.

The interaction of a CO molecule on Pt(llO) was treated using ultrasoft pseudopo

tentials and the GGA. Two possible structures were considered for the Pt substrate: 

an unreconstructed surface and a missing row structure. For both structures the 

short bridge is found to be the most stable adsorption site which is in conflict 

with the experimentally determined site. We observed that the relaxation of the 

substrate can increase the binding energy by as much as 0.5 eV. Also we find that 

the lateral repulsive energy can significantly affect the binding energy. The unre

constructed structure was found to provide a higher CO binding energy that the 

missing rowr structure for the all adsorption sites considered. This could provide 

an explanation for the adsorbate-induced reconstruction observed in this system.
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Appendix A

Generalised Gradient Functionals

In this appendix the generalised gradient approximation functionals used in the 

present work are presented. The GGA exchange energy is written as

E M  =  - f i l  I  Fx(s)pid3r, (A.l)

where p is the electron charge density; s is reduced density gradient defined by

<A2»

and kp is the Fermi vector given by

kp =  (A-3)

The enhancement factor Fx(s) within GGA-PW91 has an analytic parametrisation 

given by (Perdew & Wang, 1992)

si _  1 +  0.19645s sinh-1 (7.7956s) +  s2 (0.2743 -  0.1508 exp(-100s2)) 
x “  1 +  0.19645s sinh-1 (7.7956s) +  0.004s4 ’ ( • )



Appendix A. Generalised gradient approximation

where

sinh 1 (x) =  In [a; +  VT+™5 (A.5)

The GGA correlation energy functional is defined by (see Burke et al. (1998))

Ec[p]= f  [ec(r3) + H(p,s,t)]pdr, (A.6)

where ec(rs) is the correlation energy per particle. For an unpolarised system it is 

given by

ec(r8) =  -0.0621814 (1 +  0.21370ra) Q, (A.7)

with

Q = In 1 +
0.0621814 (7.5957,/r7 +  3.5876r, + 1.6382^/rj +  0.49294r2) 

where the local Seitz radius, rs, is defined by

(A.8)

r, =
47rp

(A.9)

The non-linear contribution H (n , s, t) has the following analytic representation

R2n{p,s,t) =  ^ lri
' a /  e  +  A f ‘

/? V l  +  A <2 +  A 2l 4 

+15.75592 (Cc(p) -  0.003521) t2 exp(-100s2), (A.10)

where t is

t = IVH
2fc,p’

(A. 11)

the Thomas-Fermi screening vector, is given by

ka = y i T ’
(A.12)
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A = 2 - (A.13)

and

Cc(p) =  0.001667 +
— 6„20.002568 +  0.023266rs +  7.386 x 10“V  

1 + 8.723r« +  0.472r2 +  7.389 x 10~2r* '
(A.14)

In the case of GGA-PBE exchange-correlation, (Perdew et al., 1996b) the enhan

cement factor and the non-linear contribution for the correlation energy, H(p, s, t), 

have new representations. The enhancement term is given by

Fxp b e  =  l  +  k -
k

(A.15)

where k and p, are numerical constants, whose values are 0.804 and 0.21951 respec

tively. H PBE(p,s,t) is defined by

H PBE(p, s ,  t) =  7  In 1 + - t
/ ^ 2 1 + A t2

7 1 +  A t2 +  A 2 t4
(A.16)

where the parameter A is given as

A = P
7 (exp(^) -  l)  ’

(A.17)

P is defined by

and 7 =  0.031091.

7T
(A.18)

The exchange potential is the functional derivative (Perdew & Wang, 1986)

SEX _  —3 JSp 
Sp(r) 4 V tt 3 s ds V 3 )  ds \

d £
ds (A.19)
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where
_  V 2p 

(2kF)2 p

and
r; Vp-VlVpj

(2kFfp> '

Finally, the correlation potential is given by (Perdew et a/., 1996a)

SEC
Sp{r)

r_l d2R  
3 ^drsdt

1 ( I  d H \
t dt

(A.20)

(A.21)

(A.22)
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