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A bstract

A basic model is presented for parallel folding of two flexible layers under compres­
sion, obliged by the presence of overburden pressure to remain in contact along 
their length. The nonlinear effect of friction is fully explored via a quasi-energy 
formulation, using a simple Galerkin approximation obtained from experimental 
analysis. The calculus of variations leads to a representation of the model as an 
ordinary differential equation. The outcomes of both theoretical and numerical 
modelling are compared with the Galerkin approximation. The significance of 
friction-induced jamming is explored. Comparisons between the linearized differ­
ential equation under the nonlinear boundary conditions, and the full nonlinear 
formulation, indicate that the linearization captures most of the significant be­
haviour.

To embrace serial buckling behaviour, cubic B-splines are introduced into the 
linearized two-layer model. The stationary solutions of the quasi-energy formula­
tion are then shown to correspond to the equilibrium states of practical interest, 
under conditions of both controlled load and controlled end-shortening. Consis­
tent with Morse theory, under experimentally viable loading, non-periodic saddle 
points describing localized solutions are found to converge with unstable maxima 
representing periodic behaviour, until at a critical stage in the evolution only pe­
riodic solutions exist. This shift from localized to two-hump periodic behaviour 
is seen as a primitive exposition of the more general theme of serial or sequential 
fold formation.

Extending the two-layer model to a full multilayer formulation for n identical 
layers, the general behaviour of the multilayer is again characterized using a si­
nusoidal Galerkin approximation. When substituted into the linearized potential 
energy function, equations for the wavelength and critical load are found and
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the limitations of the model axe highlighted. Comparisons with experiments con­
ducted on layers of paper constrained between two sheets of foam rubber show 
that the trend of the load-amplitude plots is in good agreement with that pre­
dicted. Excellent correlation is also achieved between the wavelengths calculated 
by the linearized buckling analysis and those seen experimentally.
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Chapter 1

Introduction

“...the theoretical analyses already discussed place a disproportionate emphasis 
upon the viscous models. As will have become apparent to the reader, this 
emphasis merely reflects the dominance of such analyses in the literature. It is 
the authors’ current conviction that they do not correctly model rock behaviour 
during fold initiation. Other aspects relating to buckling tend to be ignored or 
neglected, especially for those folds in the upper levels of the crust. For example, 
major folds are ramified by fractures, some of which certainly developed while 
the fold was developing and may supply evidence of how finite folds develop.” 
Price &; Cosgrove (1990)

1.1 The parallel fold

D efin ition  1 Parallel fold

A parallel fold (also sometimes known a concentric fold) is a geological phe­
nomenon that occurs when a multilayered structure composed of a stiff (more 
competent) material is embedded in a soft foundation (less competent matrix) 
and is buckled by a load parallel to the layering. The resulting wave pattern 
has the property that the thickness of the layers orthogonal to the orientation of 
the layers remains constant throughout. Examples are seen in many geological
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Figure 1.1: Parallel fold in Beekmantown limestone, Rheems Quarry, Pennsylva­
nia. (After Donath & Parker 1964)

outcrops (Donath Sz Parker, 1964; Ramsey, 1967; Hobbs et al., 1976; Price Sz 

Cosgrove, 1990), see Fig. 1.1.

The name parallel fo ld  was given by Van Hise (1894) who originally described 
it, noting tha t each layer takes a different form to those above and below it and 
tha t the folding eventually dies out. Mistakenly assuming that the more closely 
folded layers are in a position where friction gives less resisting power, Van Hise 
did realize tha t the difference in the curvature of each layer could be attributed 
to friction.

Friction is inherent to the process, as rocks often deform at depths in the Earth’s 
crust where the pressures are large—of the order of 1-5 kbars (Price, 1970)—and 
the slip planes are areas of natural weakness (Donath, 1962; Donath Sz Parker, 
1964). Layer slippage under large overburden pressures has led us to believe that 
an elastic, frictional model for parallel folding, where buckling is cellular rather 
than synchronous, would accurately follow the real situation.

However, multilayer buckling, and more specifically parallel folding, has been 
studied in several different ways: theoretically, including elastically (Currie et al., 
1962; Johnson Sz Honea, 1975a) and viscously (Biot, 1961; Biot, 1965b; Ramberg, 
1961; Ramberg Sz Stromgard, 1971); or through simple experiments (Kuenen Sz
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de Sitter, 1938; Blay et al., 1977). To simplify the modelling, much of this work 
concentrates on perfectly adhered to or freely sliding layers or even ignores the 
layering altogether and uses shearing as the deformation process.

As well as a purely academic interest, understanding parallel folding has a com­
mercial use to mining companies. If the deformation process is understood then 
it is possible to find large amounts of minerals quickly and easily in outcrops by 
recognizing where any voids, cracks, gaps or faults are likely to be created as these 
are likely to be filled with mineral deposits (Hunt et a l , 1997). Also, although 
mainly found in geology, as is shown by experiments later, parallel folding may 
also occur in other layered structures. This type of deformation could be found in 
composites, especially if they have a combination of stiff and soft material. The 
concept of parallel folding is also of use to anyone interested in delamination, as 
from energy considerations, under conditions of high pressure, delamination or 
the appearance of voids between layers is unlikely.

1.2 Outline of thesis

With the concept of parallel folding introduced together with some of the ideas 
surrounding it in a geological context, we give here a summary of the content 
that is contained in the remainder of the thesis.

1.2.1 Technical term inology

Firstly, the rest of this chapter is dedicated to giving a more technical introduction 
to mathematical, engineering and geological terms and theory required for the 
rest of the thesis.

1.2.2 Literature review

Chapter 2 looks at the literature relevant to the subject area. The hope is to 
prove that an elastic, frictional model for parallel folding is not only valid, but
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also that such work has not been undertaken before. The history of geological 
folding and buckling theory breaks down nicely into three sections. The first 
section concentrates on the early ideas of geological folding. This predominately 
involves the buckling of a single elastic layer, although does stretch to some theory 
and experimentation into multilayer concentric waves. The second part describes 
the revolution to geology caused by Biot, who threw out the notion of elasticity, 
proclaiming that viscosity dominated the deformation of rocks and introduced 
concepts taken from thermodynamics to model strata. This section also shows 
the beginnings of non-synchronous buckling theory that would negate some of 
the major assumptions of Biot’s work. The final part leads up to this thesis by 
showing the development by structural engineers, particularly Michael Thompson 
and his contemporaries, of a general theory of buckling leading eventually to 
localization and cellular theories. This would subsequently be used by Giles 
Hunt and collaborators to look at geological phenomena.

1.2.3 Two-layer parallel folding w ith  friction

Chapter 3, starts the main body of the thesis. We begin by introducing the most 
simple case, that of just two elastic layers confined in a matrix and subjected to 
axial loading. The behaviour of this system is studied using the total potential en­
ergy which consists of strain energy of bending, foundation energy, work done by 
load and most importantly the work done by friction included as a quasi-energy 
contribution. This model is influenced by the notion that in nature, energy will 
often be minimized and in a layered material, under large overburden pressure, 
the frictional resistance as strata slip relative to one another to stop voids, be­
comes non-trivial. Using Fourier analysis, a sinusoidal single degree-of-freedom 
Galerkin approximation is shown to be a justified first estimate. Hence the sta­
tionary values of the total potential axe explored, giving expressions for both the 
critical load and wavelength. The bifurcation diagram has the appearance of the 
symmetric imperfect strut, and thus the effects of adding an extra small bias 
are easily assessed, more importantly it presents us with the visualization of a 
jammed region.
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1.2.4 T he nonlinear differential equation

Chapter 4 follows on from the previous chapter by finding the stationary solutions 
of the potential energy over all monotone admissible functions from the calculus 
of variations. This results in a fourth order ordinary differential equation for the 
response of the two-layer system and boundary conditions in the third derivative 
represent a step-change in the shear force. Initially removing the foundation, the 
differences (and similarities) between the linearized differential system and the 
Galerkin model are explored. A phase plane representation highlights the effect 
of the third derivative, which changes direction as the jammed region is traversed 
allowing further deflection of the buckle. Re-introducing the foundation stiffness 
leads to a critical load that agrees with the Galerkin analysis of Chapter 3 and to 
two methods of wavelength selection. The chapter finishes with a description of 
the numerical continuation code AUTO (Doedel et al., 1997), which when used 
to find solutions to the linearized and full nonlinear model shows that, over much 
of the post-buckle range, the discrepancies between the two are slight. The work 
from Chapters 3 and 4 has been published in the 2003 paper (Budd et a l , 2003).

1.2.5 Sequential buckling

Cubic B-splines have continuous derivatives up to second-order, but allow dis­
continuities of third derivative. In much the same vein as the Galerkin approxi­
mation, in Chapter 5 cubic B-splines axe introduced into the two-layer potential 
energy functional developed in Chapter 3. W ith inherent destabilization already 
present in the formulation, a restabilizing nonlineaxity is added to the founda­
tion; this has the effect of making the wavelength dependent on both the load 
and the amplitude. The single spline (one hump) model is very similar to the 
Galerkin; however, the two-spline model allows for serial folding as the two humps 
can have different amplitudes. Thus, we obtain primitive localized and periodic 
solutions. By studying the stationary values of the superposition and of the po­
tential energy, it is possible to follow the development of a single hump through 
to a second, with increasing end-shortening. The work described in Chapter 5 
has been submitted to the Journal o f Structural Geology (Hunt et al., 2005).
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1.2.6 M ultilayer parallel folding and conclusions

Chapter 6 completes the main body of work of the thesis by finding the full 
elastic, frictional, multilayer energy function. When compared with the first in­
stability of experimental load-deflection plots gathered from paper multilayers 
embedded in a foam matrix, constrained laterally and compressed axially, there 
is very good agreement. The chapter begins with an explanation of the test pro­
cedure and an analysis of the data obtained from experiments. The multilayer 
model is formulated in terms of a single thick layer, which is divided into an even 
number of identical substrata and follows closely the method shown in the third 
chapter. As in Chapter 5 a restabilizing nonlinearity is added to the foundation. 
The constraints of the model encourage linearization and the previous Galerkin 
analysis gives the potential energy and wavelength explicitly. After Chapter 4, 
the linear ordinary differential equation and boundary conditions are obtained 
via the calculus of variations and again the physically of the system is explored. 
Lastly, the multilayer model is compared with experimental results; a fairly detail 
discussion as to how the relevant parameters are extracted from the results, shows 
that friction, overburden, and compressive load axe simple to obtain. However, 
the foundation stiffness, which has an influence on the post-buckle response and 
wavelength is more difficult. This work has recently been submitted for publi­
cation in the Journal of the Mechanics and Physics of Solids (Edmunds et al., 
2005)

Finally, Chapter 7 brings the thesis to a close, by summarizing the conclusions to 
be drawn from the research and remarking on possible further work that could 
be undertaken as a result of the findings.

1.3 G eology fundam entals

In order to bring together the physicality of the real situation and the modelling 
theories that axe applicable, we start by introducing the different subject areas 
separately, concentrating on the terminology and ideas that will prove useful in 
building up this body of work.

As parallel folding is predominantly found in geological outcrops—it is what
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first brought this form of buckling to the author’s attention—we shall take the 
studies in this direction. Hence, to this end, the following section begins by listing 
popular definitions used by geologists to describe the common natural phenomena 
they encounter. This is then followed by a brief look at the arguments as to 
the make-up of the E arth’s crust and how and where geological folding might 
occur. Some of this discussion will be expanded on in Chapter 2, where a more 
comprehensive review of the literature is given.

1.3.1 G eological definitions

The following are fairly precise geological descriptions that are fundamental to 
the more technical geological concepts mentioned throughout this thesis. Un­
less otherwise stated, many of these definitions are adapted from the textbook 
“Analysis of Geological Structures” (Price h  Cosgrove, 1990).

D efin ition  2 Folds

Folds are a commonly occurring structure in deformed rock; they axe formed when 
planar features or linear features are deflected into curviplanar or curvilinear 
structures. They develop on interfaces, single layers, multilayers and rock fabrics 
and come in a wide variety of geometries and sizes. A common feature is that 
they show marked periodicity and a number of folds occurring together form a 
train of folds. The two surfaces that enclose a fold are called the enveloping 
surfaces.

D efin ition  3 Bending

Bending is the term  used to describe the flexuring of a layer induced by compres­
sion acting at an high angle to the layering.

D efin ition  4 Layers
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Layers are two adjacent surfaces. A single layer is usually a vein in a massive 
host. However, if adjacent competent layers in a sedimentary sequence develop 
different wavelengths and amplitudes, this is term ed disharm onic folding and the 
layers axe still isolated.

D efin ition  5 M ultilayer

Multilayers are sedimentary sequences and are encountered more often than single 
layers. Despite differences in thickness and mechanical properties, if all layers 
buckle with the same wavelength and amplitude, this is term ed harmonic folding  

with the layers behaving mechanically as a multilayer. This occurs if the strains 
associated with each competent layer developed in the m atrix during buckling, 
called the zone o f contact strain , are compatible and overlap. Ramsey (1967) 
determined that this zone is at less than one percent of its original value by a 
single wavelength away. Experiments and fieldwork support this notion and layers 
very close together act effectively as a single anisotropic layer, the geometry of 
which is decidedly rounded.

D efin ition  6 Fold profile

Figure 1.2: Profile of fold: h and i are hinge and inflection points; c and t denote 
the crests and troughs of the fold; the dashed line is the median surface; a  is 
the interlimb angle and A and L are the amplitude and wavelength of the fold. 
(After Price h  Cosgrove 1990)

The intersection of the folded surface on a plane normal to the fold axis is known 
as the fold profile. The geometrical features of a fold profile are shown in Fig. 1.2. 
Goguel (1962) highlighted the importance of choosing the fold profile when clas­
sifying folds, by pointing out that parallel folds cut at an oblique look like sim ilar 

folds (see Definition 10 below and §2.2).
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D efin ition  7 Hinge and Inflection points

The hinge points axe those of maximum curvature and inflection points occur 
where the curvature is zero (Fig. 1.2). The crest and trough are the highest and 
lowest points of the fold respectively (Fig. 1.2). It is generally considered that 
two adjacent inflection points mark the limits of the fold, which is divided into 
a hinge zone and fold limbs. These are defined by Ramsey (1967) respectively 
as the areas with curvature greater than, and less than, the circular arc drawn 
with i i i2 as the diameter. Of course this definition is unhelpful if the curvatures 
are equal or small. The surface joining the inflection points is called the median 
surface (Fig. 1.2).

D efin ition  8 Interlimb angle

The interlimb angle is the minimum angle between the limbs in profile (Fig. 1.2). 

D efin ition  9 Amplitude and Wavelength

The amplitude is the perpendicular distance between the median surface and fold 
hinge and the wavelength is the distance between alternating inflection points or 
twice the distance between adjacent ones (Fig. 1.2).

D efin ition  10 Dip isogons

The orientation of a fold’s axial plane can be defined by a dip and strike value. 
These are the angle of the plane with respect to the horizontal, and the horizontal 
direction at right angles to the dip, respectively. By joining points of equal dip 
value on a profile section, we obtain the method of dip isogons which can be used 
to classify folds. To construct for a fold profile, a series of tangents axe drawn 
to each folded surface, and the dip isogons are then formed by connecting the 
points of equal dip on adjacent surfaces (Fig. 1.3).

Ramsey (1967) gave a classification of folds based on the curvature of the arcs 
and the convergence of the dip isogons. The folds axe divided into five classes on
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0°
0°Dip isogon

Figure 1.3: Construction of dip isogons. (After Price Sz Cosgrove 1990)

3

Figure 1.4: Classification based on dip isogon patterns: 1(a) Strongly convergent, 
1(b) Parallel, 1(c) Weakly convergent, 2 Similar and 3 Divergent. (After Ramsey 
1967)
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the basis of the dip isogon patterns (Fig. 1.4). For Class 1 folds, the dip isogons 
converge from the outer to inner arc. Hence, Class 1 folds have deformed by 
bending only with no shearing. There are three types of Class 1 fold: 1(a) and 1(c) 
have strongly and weakly converging patterns respectively. The parallel fold is 
given a specific class of 1(b) where the isogons are normal to the boundary surface. 
Ramsey stated that competent folds are usually of Class 1, closely approximating 
a parallel fold. Class 2 are similar folds, where the isogons are parallel to each 
other and Class 3 are diverging. For the latter two categories shear deformation 
becomes the prevalent folding process and can be compared to the buckling at 
the core of a loaded sandwich panel (Hunt &; Wadee, 1998; Wadee, 1998; Wadee, 
2000). The power of this technique is that often folds change type throughout a 
multilayer and hence each layer can be classified separately.

D efin ition  11 Flexural flow/slip folds

Many sedimentary strata  have a well-developed plane parallel strati­
fication, and this inherent weakness in the rocks controls the type of 
internal buckling. The individual rock layers are flexed and the out­
ermost layers slip over the inner layers toward the fold hinge zones.
The folds developed in this way have a true parallel form and are 
sometimes known as flexural folds. Ramsey (1967).

From the above definition flexural folds develop in layers with high anisotropy; 
for example, they can be produced by compressing a pack of paper parallel to the 
layering. As the pack buckles, sheets slide over each other, with the maximum 
slip on the limbs at the inflection points and decreasing towards the hinges where 
it is zero. The maximum strain is found at the inflection points, with no strain 
on the hinges (Fig. 1.5). Another important feature of flexural folds is that the 
layers maintain their initial thickness (Hobbs et al, 1976).

If the slip planes are close together, layer-parallel shear is uniformly distributed 
across the folded layer on a granular scale, this is a true flexural flow fold. If 
more widely spaced then layer-parallel shear is not uniformly distributed, but 
concentrated on the bedding planes and is thus discrete, these are flexural slip 
folds.
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Original rectilinear markers 
distorted to sigmoidal shape

Figure 1.5: Strain distribution of flexural flow/slip. (After Ramsey 1967) 

D efin ition  12 Tangential longitudinal strain

Tangential longitudinal strain  is the strain pattern that develops when an ho­
mogeneous, isotropic layer is buckled; it has maximum strain at the hinges and 
none at the inflection points. The outer arc (the extrados) of the hinge is in 
extension and the maximum principal extension is parallel to the layer bound­
ary. The inner arc is compressed and the minimum principal extension is also 
parallel to the layer boundary. These two states are separated by a line with no 
strain—the neutral axis and strain increases normal to the neutral plane. If the 
extrados fractures, the neutral axis moves downwards, as the effective thickness 
of the layer is altered (Price & Cosgrove, 1990).

Some of the more pertinent features of tangential longitudinal strain were men­
tioned by Hobbs et al. (1976), the most im portant being that whilst the neutral 
surface maintains its initial area and the layer maintains its initial thickness, 
there is extension on the outer arc where the area is increased and shortening 
on inner arc where the area decreases. This corresponds to engineering bending 
theory.

Real folds often show features of both flexural slip and tangential longitudinal 
strain and Ramsey (1967) stated tha t in nature both tangential longitudinal 
strain and flexural slip generally proceed together.

D efin ition  13 Decollement (detachment along a basal shearing plane)
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Decollement is the detachment of the upper cover from its substratum (i. e. de­
lamination), both of which may then deform independently and, in fact, the latter 
may not be deformed at all (de Sitter, 1964). This process is not restricted to any 
particular surface; there could be several possible places for detachment, but it 
does depend on the competency contrast of the cover. Basal detachment is very 
common in parallel folding as concentricity cannot be sustained below a certain 
point (often where the material forms a cusp), here incompressibility means that 
the layers crumple or fault.

1.3.2 E lasticity  and viscosity

Rocks often deform through either elastic bending or through shearing, which 
can be elastic or viscous in nature. The elastic properties of rocks is a subject 
studied in greater detail in Chapter 2 , where evidence from previous literature 
will be highlighted in order to validate the modelling ideas used throughout the 
remainder of the thesis. However, before proceeding to a discussion on elastic 
buckling theory, it is useful here to have some elucidation as to why this theory 
might be applicable. Except where referenced otherwise, much of the following 
has been influenced by Price &; Cosgrove (1990). It is clear from reading their 
textbook tha t although there has been much debate in geological circles as to the 
deformation mode of folds, viscosity advocates have tended to dominate the field, 
to the point where even when evidence points to the contrary, viscous modelling 
techniques have been used.

D efin ition  14 Elastic

A body is perfectly elastic if when the stress is removed deformation completely 
and instantly disappears. The limit of the distortion, by bending or stretching, 
that a body can undergo and still return to its original form is called the elas­
tic limit. Usually elasticity is a linear response described by Hooke’s law and 
so within the elastic limit the strain e is directly proportional to the stress a 
producing it, i. e.

E = 1  (1.1)
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Here E  is the Young’s modulus (also know as the modulus o f elasticity or elastic 
modulus), which is a measure of the stiffness of the material and characterizes its 
(tensile) strength.

If an elastic body is undergoing deformation by shearing or twisting, then the 
shear strength of the material is given by the shear modulus (or rigidity modulus) 
G. G is defined as the ratio of the shear stress r  and (engineering) shear strain 7

G = - ,  ( 1. 2)

7

i. e. the shear modulus is the initial linear elastic slope of the shear stress-strain 
curve.

D efin ition  15 Newtonian fluids and Viscosity

For many liquids the relationship between shear stress r  and shear strain rate 
d7 /d t is linear

"  = d ^ -  ™

Liquids obeying this are Newtonian and if the relationship is nonlinear, the liquid 
is non-Newtonian. The viscosity 77 is analogous to the elastic shear modulus G.

Although the stress-strain relationship of rocks is not always linear, the deviation 
is usually so small that a single value is given for the elastic modulus E. Strong 
rocks (i. e. those with an higher yield point) tend to exhibit high values of elas­
tic modulus and a three-fold increase in strength is accompanied by a ten-fold 
increase in E. Experimental values of E  for different rocks when subjected to 
low and high overburden pressure are shown in Table 1.1 (de Sitter, 1964). As 
can be seen from Table 1.1, the limits of the elastic rigidity are rather small and 
Biot (1961) argued that because the range of the coefficient of viscosity of rocks 
is much larger, this must account for the large number of fold types seen.

Biot implied that deformation occurs at such large depths and pressures that 
rock are likely to liquefy and hence viscosity is the primary influence on the 
deformation mode. This is contentious as often folds, particularly parallel folds, 
develop in the uppermost levels of the crust (de Sitter, 1964), and at these levels
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Rock type
E  (GPa)

P r = 0.1 GPa Pr = 400 GPa
Granite
Diabase
Schist

Sandstone
Limestone
Dolomite

0.24-0.61
1.02-1.07

0.71
0.64

0.58-0.63
0.71

0.45-0.84
1.14

0.96
0.63

Table 1.1: After de Sitter (1964), the elastic modulus E  of different rocks at low 
and high overburden pressures Pr.

the layers will be solid and competent. The deformation of the beds is thus most 
likely to be elastic or elastic-plastic (Van Hise, 1894; Goguel, 1962; de Sitter, 
1964; Price &; Cosgrove, 1990). Price Sz Cosgrove (1990) stated that folding 
tends to be more rounded if a material has elastic-plastic behaviour and strain 
hardening.

There is no denying that pressure has an influence on the elastic modulus, as 
shown in Table 1.1, and hence plays a role in deformation. Below a limiting 
pressure rocks often break before they permanently deform, although, under high 
confining pressure the same material deforms smoothly (Hobbs et al., 1976). 
Hence, the solid does not rupture, but flow and the pressure raises the elastic limit 
and changes the competency (de Sitter, 1964). Such changes even suggest that the 
rich variety of folds, that Biot feels are not feasible using elastic considerations, 
are possible, especially when localization and spatial chaos theories are introduced 
(see §1.6.1, 1.6.2 and 2.4).

1.3.3 Pressure and friction

The importance of overburden pressure to the deformation of rock has already 
been mentioned above, but it also has a secondary role in the folding process. 
Under pressure an elastic sedimentary sequence subjected to axial compression 
implies that frictional sliding will cause shear stresses parallel to the layering 
and strain results from the frictional resistance to slip (Price Sz Cosgrove, 1990). 
Hence the conclusion that rocks are elastic solids, under reasonable pressure, 
means that friction becomes of vital importance to the folding mechanism.
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A reasonable estimate for the confining pressure is given by simply looking at the 
lithostatic pressure—the hydrostatic pressure generated at a depth due to the 
weight of the rocks (Price, 1970; Hobbs et al., 1976)

0Z =  Pbgz, (1-4)

where is the bulk density, g acceleration due to gravity and z  the depth. Rea­
sonable values for the bulk density and depth are «  2.5kg/m3 (Price Sz Cosgrove, 
1990) and «  10km (Van Hise, 1894) respectively, using these values we find that 
the lithostatic pressure is «  2.5 kbars.

Values for the coefficient of friction of rock sliding on rock axe stated by various 
sources and shown in Table 1.2. In practically all cases (Price Sz Cosgrove, 1990;

Source P Situation/Rock type
Price Sz Cosgrove 0.577 

0.75 
0.5-1.0 

0.27

Sandstone 
Frictional sliding on faults 

Shear induced pseudotachylite 
Clay

Rudnicki Sz Rice 0.4-0.9 Shear banding
Price 0.42-0.84 Fault movement

McClintock Sz Walsh 0 .9-1.0 
0.7-0.8

Marble 
Berea sandstone and shale

Table 1.2: Various values of friction cited for differing situations.

Rudnicki Sz Rice, 1975; Price, 1970; McClintock Sz Walsh, 1962) it can be seen 
that the value for the coefficient of friction is in the range 0.4 <  p <  1, and the 
consistency of the values means it is safe to assume that they are realistic. The 
exception to the above range is clay, which has a much lower friction coefficient 
as a result of its incompetency.

In many cases friction is measured in cold, dry rocks in a near surface environ­
ment. However, the crust is a porous solid, and hence liquid is present throughout. 
The liquid at each point has a different pressure, which varies with depth and 
pressure losses occur as the liquid moves through the rock from areas of high to 
low pressure (Goguel, 1962). The fluid and more specifically fluid pressure has 
an effect on the friction coefficient.

Bayly (1992) calculates how the friction is altered by introducing the effective 
coefficient o f friction. After a dry material has failed, if slip occurs on a single
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fracture plane

Shear stress for slip =  //(normal stress on fracture plane) (1*5)

where //, the coefficient of friction, is constant over a wide range of normal stresses. 
If the material carries pore fluid then

Shear stress =  //(normal stress — fluid pressure)
=  //(effective stress)
=  //(norm al stress) (1-6)

where / /  is the effective coefficient of friction.

Hence as the fluid pressure is increased the effective coefficient of friction gets 
smaller and the values given in Table 1.2 might be considered to be slightly high 
in real geological folding.

1.3.4 Synchronous and non-synchronous buckling

A further fact used to suggest that viscous deformation dominates is that the time 
scales involved in geological folding axe huge. This is based on the notion that all 
folds are formed at the same time. Hence it is necessary to give consideration as 
to how periodic folding patterns are formed: either simultaneously in a wavetrain 
or by some non-synchronous process whether random or sequential.

The latter, where each wave forms one after the other in sequence (Fig. 1.6) is 
known by several names: sequential amplification (Price &; Cosgrove, 1990) and 
serial folding (Blay et al., 1977) are both popular in the geology field, whereas 
cellular buckling (Hunt et al., 2000b) is the usual terminology in structural engi­
neering.

Whichever term is adopted, the important underlying point is that serial buckling 
is a phenomenologically different process to that of the wavetrain. If we consider 
that folds are initiated individually, then a single fold is formed in a significantly 
shorter period than the few million years usually stated (Price, 1975); this adds 
weight to the argument that folding is elastic in nature. Also, from a structural
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Figure 1.6: Serial buckling of a viscous multilayer. (After Blay et al. 1977)

viewpoint, as will be shown later, the wavelengths of the two types of folding are 
very different (Budd &; Peletier, 2000).

1 .4  B e n d in g  th e o r y  a n d  th e  e la s t ic  s tr u t

We now turn  our attention to the bending of a beam. The theory developed to 
find the deflection of an axially loaded strut will prove to be at the core of the 
techniques we need to model a sequence of elastic strata. In general the equations 
governing the behaviour of a beam will need little adaptation to be extended to 
extra layers as the friction on the bedding planes adds only one additional term to 
the potential energy formulation described in this section. In fact in linearization 
of the problem to small deflections, it will be shown that the friction only affects 
the boundary conditions; however, this still changes the response of the system 
to a remarkable degree.

In this section we slowly build up the solution of a buckled beam, beginning 
with the fundamentals of simple bending theory. Under small deflections this
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simplifies the problem of finding the curvature, as it can be assumed that the 
horizontal distance and the distance around an arc are the same. Moving on 
to more exact theory under large deflections, we can then find the curvature for 
the elastica and, using the total potential energy and stability arguments, follow 
Euler’s method of solution for modelling the wave-profile of the axially loaded 
strut. We finish by mentioning how imperfections might affect the system.

1.4.1 Simple bending theory of a beam  

P u re  bending

Consider a portion of a beam of rectangular cross-section, in pure bending (i. e. with 
no shear). Bending is to a circular shape over this region. For a symmetric cross- 
section, the middle layer or Neutral Axis (N. A. ) is unstressed, the top is in 
compression and the bottom  is in tension. Consider a longitudinal fibre, depth y 

from the Neutral Axis (Fig. 1.7). As the length is proportional to the radius

.'V./ V i \
;  l \

R

Figure 1.7: Pure bending of a single layer.

N.A.

L + 6L
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C urvature

▲ w

d w

Figure 1.8: Curvature over a small angle.

D efinition 16 Curvature

For a curve C, the curvature k is defined as

where 6(s) denotes the angle which C  makes with some fixed reference axis as a 
function of the path length s along the curve.

Under small deform ations, the curvature at a point can be given in terms of 
orthogonal naturally scaled coordinates (x ,w ) (as shown in Fig. 1.8). We have 
tha t



If the x-axis is tangent to C at the point, then tan 6 —> 6 as dx —> ds, hence the 
curvature can be equivalently defined in terms of x and w as

d2w
K =  d ^ -  <L1°)

The sign convention for curvature is dependent on the coordinate axes direction 
(Timoshenko & Gere, 1973) and using Fig. 1.8, the curvature of the beam axis is 
positive when bent concave upwards. The sign convention also says that positive 
moment M  produces compression on the top of the beam and hence positive M  
implies that the curvature is also positive

« = f v  (m i )

where E  is the Young’s modulus of the beam and I  is the second moment of area. 
Hence E l  is the bending stiffness of the beam.

Thus, using (1.10), if we assume small deflections

d 2w M

(1.12) is the basic differential equation for the deflection curve and is only valid 
when Hooke’s law applies, the deformation is small and is by pure bending.

From Fig. 1.8, with large deformations, we have that

dw 
ckT’

sin0 =  ^ ,  (1.13)

and also that

1 d6
R - d s -

Using the chain-rule, from the the expression (1.13), we get that

d 6 d2w
cos* d 7 =  d ? -  (1-15)
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Hence, using simple trigonometry,

and substituting (1.13) back into this and rearranging, we obtain an equation for 
the curvature over large slopes

d6 w"

ds [1-(U)')2]1/2’

where ' denotes differentiation with respect to the arclength s.

1.4.2 The elastica

The exact differential equation describing the shape of an elastic curve ( elastica) 
will now be formulated. It was first solved by Euler (1744), using his now famous 
calculus o f variations.

ElP

7 7 7 7 7 7 7 / / / / / rr / /

Figure 1.9: A pin-ended Euler strut. (After Thompsom h  Hunt 1973)

After Thompson h  Hunt (1973), to set up this problem consider a pin-ended strut 
of length I and bending stiffness E l ,  simply supported and subjected to a load P  

acting in the axial direction (Fig. 1.9). The strut is assumed axially inextensible; 
thus the change in length of the column due to compression (i. e. pure squash) 
is neglected. Point A  of the strut, originally a distance s from the left-hand side,
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is displaced to Ar with vertical component w. The centreline of the inextensible 
arclength is equal to s and the strut is specified by a function tu(s), 0 <  s <  /.

There exists a load at which the beam starts to deflect; we call this the critical 
load and denote it P ° . If the load exceeds the critical value, P > P ° , then a 
large deflection is produced. If the arclength s is measured from the origin along 
the strut, we can find an exact solution for the curvature dO/ds from (1.17). 
The bending moment of the bax equals the flexural rigidity multiplied by the 
curvature, hence

(1.18)

1.4.3 Solving the elastica

To find the exact differential equation in order to solve the elastica, we follow 
Euler (1744) by considering the stationary solutions of the potential energy using 
the calculus of variations.

Potential energy function

The potential energy V  of the loaded elastic beam is defined as:

Total potential energy =  Strain energy stored - Potential lost by loads, 

hence

V = U - P S , (1.19)

where £  is the end-shortening.

If the moment M  is constant, the beam is bent into a circular arc of curvature 
M /E I , and the angle subtended is 6 = M l/E l .  The maximum strain energy U

d6
M  =  E l — . 

ds
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stored in the beam is (Timoshenko h  Gere, 1973)

u  = f  = ^ f -  <1J»)
If M  varies along the length of the beam, then U is obtained by considering an 
element of length ds and integrating. W ith the curvature given as in (1.17), the 
strain energy functional is therefore

U = I k2 dsE l  r

= t / o/

f  ( w " 2 + w " 2w ' 2 +  w " 2w "* +  . . . ) ds. (1.21)
Jo

EI_ ' l
T

The deflection of P  is

dse = i — / (i -  w'2fi2
I

= I ( l / 2w' 2 +  l / 8tu", +  l/16u)'6 +  . . . ) d s .  (1.22)
Jo

Hence we have the total potential energy V  =  U — P S  to which we apply the 
calculus of variations.

The calculus of variations

The potential energy has the form V  = F(w", w') ds, and we can apply the
calculus of variations by taking a small increment of V

SV == I ( ^ "Jo \ d w "
d F  C /  I 1+ Q—j6w ) ds.

Integration by parts yields

(1.23)

6V =

+

dF
dw'

U

8w +
dF

8wf

d2 dF
dw" 

d dF

d dF
ds dw"

8w

ds2 dw" ds dwf
8w ds. (1.24)

When 8V  =  0 for all 8w , the last term is zero. The brackets are then eliminated by 
appropriate boundary conditions as follows: the first and third brackets vanish 
as u;(0) =  w(l) =  0 and as the second bending moment is zero at both ends,
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u/'(0) =  w"{l) = 0, hence the second bracket also vanishes. Thus the analysis 
has found the Euler equation for a pin-ended strut and justified the boundary 
conditions. Performing the differentiations the equation becomes

u/"'(l -  w'2) - 1 +  4it//,u //it/(l — w,2)~2 -f u/,3(l — 3u/2)(1 — w,2)~3
+  P /E Iw "{  1 -  w,2) - 3/2 =  0. (1.25)

Under suitable rescaling of parameters, when linearized (1.25) is the same as the 
Swift-Hohenberg equation (Bensimon et al., 1988; Nepomnyashchy et al., 1994).

Solution and stability

We axe interested in the initial post-buckling solution. To study this we use the 
potential energy to look at the stability of the static equilibrium paths. More 
specifically, there is a loss of stability of the pre-buckling state bifurcating to a 
buckled configuration. Static equilibrium here is as defined by Liapunov (Thomp­
son &; Hunt, 1973): an equilibrium is stable if and only if all motions of the system 
close to the equilibrium state remain close for all time.

A simple way to think about stability is given by Timoshenko & Gere (1961) who 
consider a ball in a potential well. A ball:

(a) On a concave surface is in stable equilibrium;

(b) On a convex surface is in unstable equilibrium;

(c) On an horizontal plane is in neutral equilibrium.

For (a), displacement of the ball will raise its centre of gravity, work is needed 
to produce this displacement and the potential energy increases. For (b), dis­
placement of the ball will lower its centre of gravity and the potential energy 
decreases. Thus for stable equilibrium the energy is a minimum  and for unstable 
equilibrium it is a maximum.

The above follows directly from the two basic axioms of stability which say that 
stationary values of the potential energy with respect to each parameter is neces­
sary and sufficient for equilibrium and also that if the stationary value is a relative
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minimum, then this is necessary and sufficient for stability (Thompson & Hunt, 
1973). These ideas are used in what Timoshenko & Gere call the energy method 
(Timoshenko & Gere, 1961): a small lateral deflection of the system, means an 
increase in the strain energy AU] also the load P  moves a small distance to do 
work, A T . The system is stable if A U > A T , unstable if AU  < A T  and the 
critical value P c  is found when they are equal.

A method of solution of the elastica, that will prove useful later, is by harmonic 
analysis. This involves assuming the shape of the resulting wave-profile and 
substituting this shape into the potential energy. Following the energy method, 
the closer the assumed curve is to the exact one, the better the approximation of 
the true critical load.

For harmonic analysis, the change in deflection from the fundamental path is 
written as

oo nirs
w =  X > s i n ^ .  (1.26)

71=0

The Fourier harmonics represent the buckling modes of the strut and by varying 
Qn various shapes of the curve are obtained, with more terms meaning a better 
solution. A U , A T  and hence P  are thus functions of Qn and to find P c , we need

dP
=  0 Vn, (1.27)

dQn

which defines the shape of the curve by giving Qn.

Thus to first order the harmonic analysis yields that the resulting waveshape is 
sinusoidal and hence the critical load P c is just the Euler buckling load

E l * 2P °  =  — . (1.28)

This is correct for small deviations of a perfect strut, free to deflect with no dis­
turbances and if the load-amplitude bifurcation diagram is studied, Fig. 1.10(a), 
under static equilibrium the strut is stable until P c  is reached when the equilib­
rium becomes unstable and the strut deflects left or right in an half-wave. Such 
buckling only begins to stabilize at large amplitudes, Fig. 1.10(b), and this is 
always the case unless imperfections or a foundation are added.
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Figure 1.10: The bifurcation diagram for the (a) Linear and (b) Nonlinear perfect 
strut, where Q is the maximum amplitude of the deflection.

1.4.4 Im perfections

Manufacture of structural systems is never precise and inherent geometrical and 
material defects, mean that inevitable imperfections usually exist which can dras­
tically alter the response. If there is a loss of stability of the imperfect system, 
this can lead to catastrophic consequences. By introducing a perturbation or 
imperfection parameter e ^  0 into the potential energy function V(e), we create 
a family of imperfect systems. When e =  0 we have the perfect system.

For different types of bifurcation, an imperfection will cause a different response. 
For the problem of a buckling strut the bifurcations are usually symmetric, unless 
a particularly large bias is introduced; thus we look more closely at the stable 
and unstable symmetric bifurcation point (Thompson h  Hunt, 1973).

With a stable symmetric bifurcation point, Fig. 1.11(a), imperfections play no 
significant role, with e > 0 and e < 0 the equilibrium paths are continuously 
stable and rising. There is no failure load and the buckling is rapid as the critical 
load P c  is approached.
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Figure 1.11: Families of imperfect systems for the (a) Stable symmetric and (b) 
Unstable symmetric bifurcation. (After Thompson & Hunt 1973)
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In contrast, for the unstable symmetric bifurcation point, Fig. 1.11(b), whether 
the imperfection e is positive or negative, failure occurs at the limit point with a 
reduced value of the load. The path plotting how the maximum load P M changes 
with e follows a two-thirds power law which yields a cusp.

1.5 A dding a foundation

Sedimentary sequences of competent layers are often embedded in a matrix of 
less competent (less stiff) material. In parallel folding, such a foundation is vital 
to the mode of deformation as it demarcates the limit of the folding, where the 
layers cusp, and also allows some lateral movement. The foundation may also 
take up some of the overburden pressure, allowing the folds to be more rounded.

The buckling of an elastic strut on a foundation is a subject that has been studied 
extensively in structural engineering and in order to attain the correct response 
from the foundation, many different models have been suggested. Although we, 
at least initially, choose a simple elastic foundation, for completeness it is useful 
to highlight the properties of those available. The section is concluded by briefly 
mentioning the energy formulation when an elastic matrix is added.

1.5.1 Foundation m odels

A good review of some of the various elastic and viscous foundation models 
is given by Kerr (1964). The simplest is the Winkler foundation consisting of 
closely spaced independent linear springs (Fig. 1.12). However, this model is often 
considered unrealistic as outside of the loaded region there is no displacement. 
To get around this the more complicated semi-infinite elastic continuum is an 
alternative. But as Kerr points out, many materials do not behave like either 
of the above and so models tend to proceed in one of two ways. Either it is 
assumed that there is interaction between the springs of the Winkler foundation; 
or assumptions are made as regards displacements and stresses of the continuum 
foundation.

Remarkably, Kerr stated that all extensions to the foundations mentioned turn
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Figure 1.12: An elastic strut on a Winkler foundation under loading.

out to be essentially the same model, the Pasternak foundation. The Pasternak 
foundation assumes shear interactions between the springs, by connecting the 
ends of the springs to an incompressible beam. If dashpots and parallel dashpot- 
springs are added to the Pasternak foundation visco-elastic foundations can also 
be modelled.

From the above, the Winkler foundation is a linearized simplification of an elastic 
foundation; it provides resistance against lateral deflection, but not shear. Apart 
from the initial stiffness, the linearization removes much of the characteristics 
of the foundation and these need to be reintroduced. This is done by adding 
a nonlinear component that can either soften, stiffen or a combination of both 
(Hunt, 2005). Real foundations usually have a natural destiffening effect for small 
deflections followed by a strong restiffening for large deformations, especially as 
often the material is squashed by bends which exerts a large force in the opposite 
direction (Peletier, 2001b).

This is shown to be the case in Hunt h  Wadee (1998) which importantly talks 
about the material properties of a sandwich structure core. This is similar in na­
ture to foam rubber which will later be used to represent the foundation in exper­
iments (Chapter 6). It is found experimentally that the foam behaves nonlinear 
elastically when compressed, resulting from the cells making up the material at 
microscopic level. From Fig. 1.13, at first the foam is linearly elastic, then the 
cell walls buckle elastically causing loss of stiffness (which can even be negative); 
finally the opposite walls come into contact and the stiffness rises to close to the 
linear elastic value.
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Figure 1.13: Foundation behaviour in compression at cell level. (After Hunt & 
Wadee 1998)

1.5.2 T he strut on an elastic foundation

The situation is as shown in Fig. 1.9 and described in §1.4.2, with the inclusion 
that the strut rests on an elastic foundation of stiffness k per unit length. The 
foundation consists of a large number of springs tied to the strut and anchored at 
infinity, so that they remain perpendicular to the centre-line. The strain energy 
stored is (Thompson & Hunt, 1973)

= - /  2 Jo
Uf — ~ I w2 ds. (1.29)

Using the harmonic analysis of §1.4.3, by substituting in (1.26), the same method­
ology is followed, adding that

A UF
kl

£ < & (1.30)
n=l
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In finding P G, we set all coefficients to zero except one Qm, and hence the de­
flection and critical loads are (Timoshenko h  Gere, 1961)

_ . TflTTS . IT2E l  (  o k l 4 \
w = Qm sm —  and P = —  (m  +  ^ e i )  • U-31)

respectively, where m  is the number of half-sinewaves in which the beam buckles. 
To first order

£ / t t 2 k l 2
p c = —  + ^  ( )

and finding the stationary value of the critical load with respect to the wavelength 
Z, we find that / is given by

» = * V t - (1-33)

1.6 M athem atical and engineering technical def­
initions

The following descriptions axe of a mathematical nature and axe predominantly 
from the dynamical systems field. Important to many nonlinear structural engi­
neering problems, as will be shown at the end of the section, they are necessaxy 
for an understanding of the post-buckling solutions resulting from fourth order 
ordinary differential equations. Such equations were formulated in the last sec­
tion when using potential energy methods to model the deflection of an elastic 
strut. In both the previous material on related subjects presented in Chapter 2, 
and the rest of the thesis, the Euler strut will prove to be a very helpful paradigm.

Unless otherwise cited, the definitions are amalgamated from a combination of 
sources: “Nonlinear Ordinary Differential Equations” (Jordan &; Smith, 1977), 
“Nonlinear Dynamics and Chaos” (Strogatz, 1994), “Nonlinear Dynamics and 
Chaos” (Thompson &; Stewart, 1986) and “Stability, Instability and Chaos: An 
Introduction to the Theory of Nonlinear Differential Equations” (Glendinning, 
1994).
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1.6.1 D ynam ical system s definitions

D efin ition  IT Manifold

The stable manifold or inset of a fixed point is a set such that the first returns 
from points in the set approach the point as time tends to infinity.

The unstable manifold or outset of a fixed point is a set from which the first 
returns approach the point when time is reversed, i. e. time tend to minus infinity.

D efin ition  18 Homoclinic

(a) (b)

Figure 1.14: (a) The homoclinic bifurcation (After Glendinning 1994), (b) Top: 
An homoclinic wave-profile and Bottom: A wavepacket. (After Thompson &; 
Virgin 1988)

An homoclinic orbit or homoclinic connection is a trajectory that approaches the 
same equilibrium (a saddle) as time tends to minus infinity and infinity. In other 
words a branch of the unstable manifold coincides with the stable manifold of 
the saddle. The behaviour of solutions near the homoclinic axe dominated by the
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behaviour near the stationary point and solutions slow down in a neighbourhood 
of this point. Hence an homoclinic connection may be thought of as a limit cycle 
of infinite period; by increasing the controlling variable, the attracting limit cycle 
oscillation has slowed down and ceased to oscillate.

A saddle loop or homoclinic bifurcation is an infinite period bifurcation that 
occurs when part of a limit cycle moves closer and closer to a saddle point. At 
the bifurcation the cycle touches the saddle point and becomes an homoclinic 
orbit, (Fig. 1.14(a)). This is structurally unstable; any perturbation will mean 
that the homoclinic does not exist, and reducing the controlling variable, the 
connection is broken and the periodic orbit disappears.

The resulting waveshape is shown in the top figure of Fig. 1.14(b). Often in 
geological folding we study localized periodic solutions. These take the form 
of an homoclinic orbit modulated by a sine function and are called homoclinic 
wavepackets (bottom figure of Fig. 1.14(b)).

D efin ition  19 Heteroclinic orbit

W

- 1

(b)(a)

Figure 1.15: (a) An heteroclinic connection and (b) An heteroclinic wave-profile.

Twin saddle points joined by a pair of trajectories are called heteroclinic tra­
jectories or saddle connections (Fig. 1.15(a)). Heteroclinics are often found in 
reversible or conservative systems where they take the solution from the flat
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state to a periodic solution. The waveshape of an heteroclinic orbit is shown in 
Fig. 1.15(b).

Definition 20 P itch fo rk  bifurcation

The p itch fo rk  bifurcation  involves only stationary points and is found in systems 
equivariant under the transformation x —> —x  (i. e. with the system x  = G ( x , p ) ,  

—G ( x ,  p )  =  G ( —x,  p) ) .  The sytem must satisfy the following conditions: G(0, p) ,  

Gm(0,//) and G xx( 0 , p )  are zero for all p,  and G xxx and G Xfl are always non-zero. 
A simple example is G( x ,  p)  =  p x  — x 3.

The bifurcation is su percritica l if the pair of stationary points is stable (Figs 
1.16(a) and (d)), otherwise it is su bcritica l (Figs 1.16(b) and (c)).

(b)

Figure 1.16: (a) Stable supercritical, (b) Stable subcritical, (c) Unstable sub- 
critical and (d) Unstable supercritical pitchfork bifurcation. (After Glendinning 
1994)

The pitchfork occurs in two distinct forms, stable (Figs 1.16(a) and (b)) and 
unstable (Figs 1.16(c) and (d)). The stable bifurcation is the cusp in which a 
stable equilibrium at the origin becomes a saddle and in the supercritical form 
two symmetric attractors. The catastrophic bifurcation is subcritical where two 
saddles shrink to a single stable saddle at the origin, i. e. the attractors and 
saddles are interchanged in the stable form.

Definition 21 L agrangian  m echanics
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The Lagrangian L(q(t), q(f),t); where q (t) and q (t) are the position and velocity 
at instant t , is given by

L = T  — V. (1.34)

T  is the kinetic energy and V  is the potential energy of the system. Conservation 
of energy in terms of L , comes when L does not depend explicitly on t] the 
position and the velocity of the system determines the same value of L, whatever 
the time.

D efin ition  22 Hamiltonian system

Hamiltonian systems are differential equations for p € q G which (canon­
ically) take the form

dq _  dH  dp _  dH
dt dp  dt d q ' ' ’

for the Hamiltonian function, H (p ,q ,t) .  This has zero divergence and so an 
Hamiltonian system preserves volume and is non-dissipative; hence (1.35) is as­
sociated with reversible, frictionless systems. If when calculated (1.35) has a 
divergence less than zero then the system is dissipative.

The system arises from the general form of Newton’s laws of motion, where p  is 
the general momentum and q  is the general coordinate of a mechanical system 
with n degrees-of-freedom. H  is usually the sum of the kinetic and potential 
energies. If the system is stationary, then H  is constant. As H  is often the total 
energy of the system, this implies conservation of energy.

D efin ition  23 Snap-back

When an initial instability appears as a jump phenomenon under controlled end- 
displacement, it is so unstable that so-called snap-back behaviour is observed. 
The load can drop significantly as the system moves suddenly from a flat unde­
flected state to that of large localized displacement (Hunt et a/,, 2000a).

D efin ition  24 The Maxwell load
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The Maxwell load Pm , is the load at which the energy levels in the unbuckled and 
periodic post-buckled states are the same. No localized solutions exists below Pm  
and hence the Maxwell load marks the limit of appearance of localized solution 
(Hunt, 2005). For a linear elastic beam on a nonlinear foundation which stabilizes, 
destabilizes then restabilizes, propagation begins at the Maxwell load (Chater 
et ai, 1983).

D efin ition  25 The Maxwell criterion

When a system has an infinite critical load, the slightest disturbance can trigger 
snap-back. In this highly unstable situation the Maxwell stability criterion is 
sometimes adopted, where stability rests with global minimum of potential en­
ergy. This is commonly used in thermodynamics for modelling phase transitions 
(Hunt et al., 2000a).

P

Figure 1.17: Finding the Maxwell displacement. (After Hunt et al. 2000)

The criterion gives the lower bound, with respect to the control parameter, at 
which the physical system has the potential to jum p from a stable equilibrium 
state with higher load, to another different stable state at a lower load. Stability 
rests only with the lower energy state and if the end-displacement £  is controlled, 
when (£ =  £m ), the Maxwell displacement, the minimum swaps at the same value 
of end-displacement (Wadee &; Edmunds, 2005).
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Referring to Fig. 1.17, to calculate Sm the energies of interest axe represented 
by areas A \—the energy to be overcome for the jump to occur—and A 2— the 
released energy once the jump occurs—which need to be equal. The predictive 
power of the criterion depends on level of external disturbances (initial imperfec­
tions) being sufficient to cause the jump.

1.6.2 Localization and cellular buckling

Structures often buckle in a localized manner, where the buckle is confined to a 
specific region, rather than with the periodic form associated with the critical 
load. By considering static-dynamic analogies (replacing time with space), the 
definitions given in §1.6.1 can be used to show spatial chaos and localization. For 
example, if the critical load of an elastic strut on a foundation is studied using 
such analogies, it shows that the system is Hamiltonian. Spatial equations like 
the strut are reversible (although reversibility says there is no spatial analogy to 
damping), x  can be replaced with —x  without changing the equation or solution 
and hence the Hamiltonian is conserved as x  is varied (Hunt, 2005). The corre­
sponding Lagrangian, represents the local contribution in x to the total potential 
energy of structure.

Adding a softening nonlinearity, the localized buckle pattern is seen as an ho­
moclinic orbit when the critical load is approached (Thompson &; Virgin, 1988). 
Looking at the two-dimensional portraits of an inverted stable cusp, the sec­
ondary path of which is the periodic solutions, below the critical load spatial 
localization corresponds to an homoclinic leaving and return to the phase-space 
origin (Fig. 1.18).

Thus, for a strut on a destabilizing-restabilizing foundation, far away from the 
critical load the solution has an homoclinic waveshape; but as the end-shortening 
increases and the load drops towards the critical load, we see a lengthening homo­
clinic connection from the fundamental equilibrium state to itself. In the limit 
this leads to heteroclinic connection from the unbuckled to post-buckled state 
and the solution changes to a periodic waveshape. Specifically this happens as 
the load approaches the Maxwell load (Budd et al., 2001) and it has been argued 
that it is the minimum energy density periodic solution, picked out at Maxwell 
load, that governs the final buckle pattern (Hunt, 2005).
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Figure 1.18: Phase-plane portraits of an Hamiltonian Hopf bifurcation. (After 
Thompson & Virgin 1988)
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1.7 Friction theory

In concluding this introductory chapter, we make a study of friction theory. This 
includes the effects of high pressure and lubrication, both of which have relevance 
to the geological situations examined here. Although throughout the remainder 
of the thesis, the parallel folding model developed uses basic Coulomb friction, it 
is worth being aware of the wider body of research that surrounds this area. This 
is not only to validate the assumptions that we make, but also to be informed as 
to the possible pitfalls and limitations that such simplifications might make. This 
allows in the future, the possibility of adding more complicated and, in theory, 
more accurate frictional models to the system.

1.7.1 Laws o f friction

Friction is defined as the resistance encountered by one body moving (sliding or 
rolling) over another (Fig. 1.19(a)). There are two basic laws of friction, which 
are often called Amonton’s laws; however they were discovered much earlier by 
da Vinci (Bay, 1976). The basic laws of friction are described as follows:

(i) The friction force F  is proportional to the normal load W \

(ii) The friction force between two solids is independent of the apparent area 
of contact.

Sometimes added to these is a third law by Coulomb:

(iii) If the velocity is non-zero, the friction force is independent of the sliding 
velocity (as shown in Fig. 1.19(b)).

Both sliding and rolling require a tangential force F  to move the upper body over 
the lower, and the Amonton’s 1st law says that the ratio of this and the normal 
load W  is constant, i. e.

fj, = F /W . (1.36)
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Figure 1.19: (a) A mass subjected to a frictional force F  and normal load W , (b) 
How the friction force alters with sliding velocity.

The constant of proportionality fi is known as the coefficient of friction and it 
should be noted that fi is typical of two materials, similar or dissimilar under given 
surface and environmental conditions (Arnell et aL, 1991). For most materials 
sliding in air 0.1 <  fi <  1 and although Amonton’s laws were originally formulated 
under low normal pressure it has been shown that the coefficient of friction is often 
constant even when the load is varied by a factor of 106.

It is usually seen that the static friction force Fs—the force to start a body 
moving—is a lot higher than the kinetic friction force Fk—the force to keep it 
moving (Fig. 1.19(b)). Both of these situations have corresponding coefficients 
of friction fts and fik respectively; from (1.36) it is apparent that fia > fik in 
general (Bowden &; Tabor, 1973). However, once sliding has started, the latter is 
independent of sliding velocity over a large range and hence, although not strictly 
valid in all situations, justifies the inclusion of the 3rd basic law.

In summary, from (1.36), we have that, if v =  0 then

y y  £ [— (1*37)

which is equivalent to

77} = XVs X £ [ 1,1]- (1-38)
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It is this latter notation (1.38) that we will later use to describe the direction- 
dependant friction in the parallel folding model. Between x  =  ~  1 and X — 1 a 
body is static and will sit in equilibrium, in this situation we will say that the 
system is “jammed”.

If v > 0 then

w  =  /**• (L39)

and if the coefficient of friction is just stated, it is usually taken to mean 
(Arnell et al., 1991).

1.7.2 True contact area

Early investigators decided that the major contribution to the frictional force was 
from the mechanical interaction between rigid surface roughnesses. Coulomb in 
particular, felt friction was due to the work done in dragging one surface up the 
wedge-shaped surface roughness of the other. In the Coulomb model, the lower 
surface consists of a single roughness making an angle 7  to the horizontal and 
the upper surface resting on it carries load W , the horizontal force F  needed to 
pull the upper surface up the slope is then calculated in terms of work (Bowden 
& Tabor, 1973) (Fig. 1.20).

w

F

Figure 1.20: Interaction of wedge shaped surface roughness. The coefficient of 
sliding friction fis = tan 7  is calculated using energy considerations.
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There are two principles involved:

(i) Work done is equal to the force multiplied by the distance the object moved. 
Using Fig. 1.20, if, in moving from point A  to B , the top body moves an 
horizontal distance AC  then the work done by the force F  is F.A C . At the 
same time the load W  moves from C to B  and the work done in overcoming 
gravity is W .B C .

(ii) When energy is not lost, the work done is independent of the path. There­
fore F.AC — W .BC  implying that F  =  W B C /A C  =  W  tan 7 . Hence

F /W  = fi = tan 7 , (1-40)

and thus we have the famous incline plane test for finding pa (Arnell et al., 
1991).

The problem with the above is that the surfaces move apart as they slide; the 
normal load then does work on the system and with the downward and upward 
slopes averaging zero, the potential energy is recovered i. e. there is no energy 
dissipation.

At the microscopic level surfaces are always rough and hence two surfaces will 
only touch at the highest points; these discrete points are known as asperities. 
Over the rest of the apparent area there are gaps of 100 A or more and as atomic 
forces act over only a few atomic diameters the gaps completely separate the 
surfaces at these points (Bowden & Tabor, 1973). Thus the real (or true) area 
of contact is much smaller than the apparent, especially at low load. However, 
individual asperities deform according to elastic and plastic deformation laws, 
and with increasing load the real area of contact approaches the apparent in 
order to carry the load (Bay, 1976). Thus the true area of contact depends on 
both the geometry and the way that the asperities are deformed.

In fact the real area of contact A  does not depend on the size, shape or number 
of asperities (Nellemann et al., 1977), but is a material property proportional to 
the normal load W

A = qW , (1.41)
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where q is the constant of proportionality and is comparable to the indentation 
hardness of the material (Arnell et a l, 1991). This is only justified if the surfaces 
contain both elastic and plastic contacts and (near-)Gaussian topographies. As 
this is true in most cases the law is taken to be valid.

1.7.3 A dhesion and deform ation forces

From the work of Bowden & Tabor (1973) the friction force has two sources:

(i) An adhesion force developed at asperity junctions from attractive forces;

(ii) A deformation force to plough the harder surface through the softer.

Although not strictly independent, they are usually assumed so and hence the 
force is the sum of the two contributions.

The first stems from the surfaces being in close proximity at the asperities and 
thus within the range of strong attractive forces. To separate the surfaces, these 
forces must be overcome and the junctions formed at the real contact areas need 
to be sheared for sliding to occur. Hence, there is friction, and the contribution 
from the adhesive forces is

~  j j ,  (1.42)

where s is the shear strength of the junctions (approximately the shear strength 
of the weaker material) and H  is the indentation hardness of the softer material.

Secondly, if one surface is much harder, it may plough a groove (or a number 
of fine grooves) into the softer material. This adds an additional grooving or 
ploughing term to the friction. In some cases the attachment is so strong that 
small fragments of the softer material are plucked out. In most cases this is 
small compared to the force required to shear junctions and may be ignored; 
thus a low value of y, generally means poor adhesion and vice-versa (although 
the latter can be due to surface contamination and the release of elastic stresses). 
It is obvious that other effects are also likely to be involved, for example work- 
hardening (which will raise s) and junction growth.
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1.7.4 H igh pressure

At low normal pressure the deformation zones of asperities are isolated; however, 
at high normal pressures the deformation zones interact (Bay, 1976).

Figure 1.21: (a) Orowan’s and (b) Shaw et al. frictional model. (After Wanheim 
&; Bay 1978)

This added complication has meant that friction at low pressure has been stud­
ied extensively whereas the latter less so. Two early models for friction at high 
pressure were by Orowan and Shaw et al. (Wanheim h  Bay, 1978). The former 
suggested that at low pressures friction stress and normal pressure are propor­
tional and at high pressures the friction stress is equal to the yield stress k in pure 
shear (Fig. 1.21(a)). The latter was more precise and stated that with increas­
ing pressure the ratio between the real and apparent areas of contact increases 
approaching the yield stress asymptotically (Fig. 1.21(b)).

If the relationship between the normal pressure W  and the ratio of the real and 
apparent areas of contact a  for static contact is examined, proportionality exists 
for low pressures whereas for high pressures it becomes more difficult to flatten the 
surface due to the asperity interaction; a  =  1 is thus approached asymptotically 
(Bay, 1976). This is shown graphically in Fig. 1.22 for metallic friction between 
a smooth tool and a workpiece, where m  is the ratio between the friction force 
and shear yield stress.

Also, from Fig. 1.23, at low pressures, friction F  and normal stresses W  are 
proportional and hence Amonton’s law is valid, but at high pressures the friction 
stress approaches a constant as the pressure increases and the coefficient of friction 
becomes pressure dependent. The maximum coefficient of friction is given by

F  = aW

+W

k

(b)
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Figure 1.22: A plot showing how a  changes with W . (After Wanheim &; Bay 
1978)

08
0-7

W

Figure 1.23: A plot showing how F  changes with W . (After Wanheim & Bay 
1978)
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(Wanheim &; Bay, 1978)

/ W  =  (1.43)

1.7.5 Lubrication

A trapped lubricant results in a superimposed hydrostatic pressure acting on the 
valleys of the asperities (Wanheim &; Bay, 1978); it implies an increase pf of the 
normal pressure necessary to obtain the same contact area as when no lubricant 
is present (Nellemann et al., 1977)

W =  P f  + W*,, (1.44)

where Wdry is the pressure necessary to obtain the same a  without lubrication.

If the normal load is supported by the pressure within a thick film of fluid sepa­
rating the surfaces, where the pressure exists due to viscous forces resulting from 
the relative motion between the surfaces, then this is called hydrodynamic lubri­
cation. However, under very high contact pressures or at very low sliding speeds,
hydrodynamic forces are insufficient and direct contact between asperities occurs.

This last statement has particular importance when looking at fluid forced into 
the interfaces between rock strata. As both the above conditions hold, the pres­
ence of the fluid is likely to have very little effect on the interaction between 
adjacent surface and so frictional contact can be assumed to exist.
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Chapter 2

Literature review

2.1 Introduction

This chapter gives an historical overview of the literature on geological folding 
and also includes many works on the buckling of beams which are relevant to 
the problem. There has been very little written on the specific subject of par­
allel folding, but after an extensive search, the major contributors are hopefully 
represented.

From a timeline viewpoint, the work breaks down nicely into three sections:

Section 2.2: Immediately after the discovery of parallel folds in multilayers, only 
experiments and speculation based on field observations as to the involved pro­
cesses were performed, there was little actual modelling. Elastic single layer 
models were considered, however, mainly using Euler beam theory, and this is 
the real birth of the subject of geological folding.

Section 2.3: Geological models in the 1960’s and 70’s were heavily influenced by 
the work of Biot, developed from thermodynamics concepts and mathematical 
tools for the deformation of elastic and viscous materials embedded in matrices. 
This work was then applied to geological situations, with Biot coming to the 
conclusion that rock deformation, in the main, is driven by viscosity and that 
exponential growth of waves leads to a dominant wavelength.
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Whilst many embraced these ideas and added to the body of work, others chose to 
disregard it and stick to elastic assumptions or realized that certain aspects, such 
as the importance of layering, were missing. Later, however, from experimental 
evidence and strain rate analysis, certain geologists came to accept that periodic 
wavetrains, so typical of Biot’s work, are less common in nature than localized 
serial buckling.

Section 2.4: At about this time, completely independently, structural engineers 
were primarily concerned with elastic stability theory. The development of this
area, often using elastic struts on different foundations as a model, led to the
concept of localization. Amongst others, the theory was progressed by Thompson, 
Hunt and their subsequent students and collaborators, using ideas of dynamic 
phase space analogies. The subsequent realization that these techniques could be 
applied to geological situations, leads to the work investigated in this thesis.

From the work contained in these sections, the hope is to demonstrate:

(i) That elasticity is a viable model for the behaviour of rocks;

(ii) The importance of the layers as regards folding;

(iii) That friction has largely been ignored and certainly not studied in parallel 
folding;

(iv) That often rocks fold sequentially, making the wealth of localization theory 
useful in the study of such problems.

2.2 Elastic single layer solutions

If a given bed in the centre of a rock formation be plicated and the 
layers above and below be folded in a strictly parallel manner, in 
passing away from the central bed in either direction those on either 
side are less closely folded, and finally the crenulations become slight.
Van Hise (1894)

Above is the definition that in 1894 Van Hise gave to the parallel fold (Fig. 2.1(a)),
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the first of two forms of folding found to be prevalent in his study of geological 
formations and of enough importance to be given specific terminology. The sec­
ond, the similar fold (Fig. 2.1(b)), folds in such a way that all of the layers are 
required to do the same thing and so material must be redistributed from the 
limbs to the hinges.

Figure 2.1: (a) Parallel folds and (b) Similar folds. (After Van Hise 1894)

Whilst realizing that these were very idealized forms of what could be seen in the 
field—in fact many geologists had drawn sections that were somewhere between 
the two forms—and although very much a field geologist, Van Hise felt that a lot 
could be learnt by understanding the mechanisms through which they occurred. 
Although no qualitative attempts were made to do this, Van Hise did make 
observations as to the processes involved in parallel folding and the conditions 
needed for folding in general. Firstly, he stated that rocks buried at a depth such 
that they are in a zone of plasticity and flowage, are most likely to fold. When 
forces are applied, these rocks obey hydrostatics laws and approach equilibrium. 
At the depths at which this happens, the pressure is high enough (it is claimed 
that at 10km, under gravity alone, the pressure is 2550 kg/cm 2) that it may turn 
rocks crystalline. This would presumably increase the friction between layers.
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It is suggested that to bend without fracture, parallel folding is by tangential 
longitudinal strain. Differential movement is needed as all of the layers are origi­
nally the same length and this movement is at a maximum at the mid-limbs and 
minimized at the crests and troughs.

A mechanism for serial buckling was even mentioned by Van Hise. This is sum­
marized as follows:

The first fold forms where the differential thrust is greatest, eventually 
the increased thickness of the material resists deformation and stress 
is transmitted to the thinner strata in advance, hence the second fold 
then forms.

Perceptively, it was revealed that it is not necessary for one fold to be completely 
formed before others develop. The thickening is found to be favourable for forward 
transmission of the stress.

Whilst Van Hise hinted that rocks behave in an elastic manner and that friction 
plays an important role in multilayer buckling, the first attempt at mathemati­
cally modelling the folding of rocks negated friction by concentrating on a single 
layer. In 1909 Smoluchowski closely followed Euler beam theory (Euler, 1744) 
by looking at a single layer buckling elastically, where a resistive force is given 
by the weight of the layer, i. e. the lithostatic pressure (§1.3.3). Using Kirchoff’s 
equation for thin disks, when linearized, the (familiar) governing fourth order 
equation was found (Smoluchowski, 1909)

E I'w  +  Pw  +  pgw =  0. (2.1)

By looking for exponential solutions, Smoluchowski showed that the character­
istic equation leads to a critical value of P. Below P c , with simply supported 
boundary conditions, the solution decayed whereas above P °  the solution was 
sinusoidal. By setting the waveshape as sin(A;7r//), the critical load is

P °  = E l ( ^ ) \ p g ( ± ) \  (2.2)

Smoluchowski then considered the stability of approximately sinewave solutions
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by searching for an energy minimum of the potential energy, U +  V  — W , where

E l f l - 2  7u  = /  w dx
~2~ Jo

V  = El f w2 dx
2 ,Jo

w  =
P /  w2 dx.2 Jfo

(2.3)

A purely sinusoidal half-wave gave equation (2.2) with k =  1, otherwise P  < P c 
and the stable length was found to be

l = ^ — . (2.4)

When extended to k half-waves equivalent results were found.

In 1926, Goldstein repeated to a large extent the calculations made by Smolu­
chowski. The stability of a strut when the deflection is resisted linearly was 
explored; however, added to this was the difference between clamped and pinned 
end conditions (Goldstein, 1926). For both there was a critical load below which 
the strut is always stable, and above this value the beam length determined 
the load at which instability first occurred. By assuming either symmetric or 
asymmetric sinusoidal behaviour, the auxiliary equation was used to predict the 
wavelength and number of nodes. From this analysis, it was shown that a pinned 
strut buckles before a clamped strut of the same length.

Single layer elastic buckling, was again the subject of a 1937 paper by Gunn to 
model the Earth’s crust. Gunn used the idea of isostatic equilibrium, i. e. that 
small deformations are unstable and will tend towards equilibrium. In describing 
the crust several important points were mentioned (Gunn, 1937); the first was 
that evidence leads to the conclusion that the crust is composed of individual 
unbonded layers, and the second was that at very low depths there is only faulting 
or fracture and at large depths there is only plastic flow. Gunn also thought about 
energy considerations in the context of mountain building; the calculations were 
approximate as Gunn points out there would be a lot of work overcoming friction. 
Whilst this contribution was not estimated, a “factor” was added to say that the 
compressing energy must be greater than that given and the reader is assured 
that this static calculation is consistent with those based on dynamics.
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The buckling of a section of the crust was modelled using a beam of thickness T  

under compressional stress S. The weight of the m aterial below the layer provided 
a resistive force as well as the sediment deposited above it. The equilibrium equa­
tions adm itted a similar fourth order equation to Smoluchowski and again when 
solutions were in the form of linear combinations of exponentials, there was a crit­
ical value of the stress. Strangely, below this value the profile was quasi-periodic 
and according to the researcher “represents an upward or downward fold in the 
crust which is believed to be of considerable geological im portance” , the actual 
shape and im portance were not actually alluded to. Above the critical stress, the 
solution was periodic and again rather oddly, by making some assumptions as 
to the typical values of the quantities Gunn concluded tha t the periodic solution 
cannot exist.

In 1938, over forty years after Van Hise looked at natural geological examples of 
multilayers and first defined parallel folding, the topic was revisited by Kuenen 
h  de Sitter. Having studied many geological structures de Sitter decided that in 
most simple cases folding was approximately concentric; unable to get a m ath­
ematical solution, the mechanisms involved were instead investigated. The end 
product was an experimental paper, the first to show the two ways that paral­
lel folding can occur: flexural folding  (slip and flow) and tangential longitudinal 

strain  (Kuenen &; de Sitter, 1938).

Figure 2.2: Sketches showing the results of experiments by Kuenen & de Sitter 
(After de Sitter 1964); (a) Folded rubber plate, (b) Thickened and folded paraffin 
cake floating on water, (c) Folded pack of paper sheets and (d) Folded unstratifed 
clay cake.
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Folding by tangential longitudinal strain was shown by homogeneous single lay­
ers of both rubber (Fig. 2.2(a)), exhibiting a purely elastic deformation, and the 
plastic buckling of a paraffin-vaseline-mineral oil mixture. The latter was very 
dependent on the horizontal load speed. In representing stratification planes, an 
elastic multilayer—a block of thin sheets of paper (Fig. 2.2(c)), glued at the ends 
to stop slipping—and a plastic multilayer—a layered paraffin cake (Fig. 2.2(b))— 
also showed tangential longitudinal strain as the fold mechanism. Although it 
was not mentioned, the experimental photographs suggest that the plastic mul­
tilayer buckled in a serial manner. Whilst expecting simple shear, Kuenen &; de 
Sitter found that deformation was usually governed by internal friction, and so 
concluded that both are methods for real geological folding.

Lastly an unstratified cake consisting of very wet clay was tested and showed fold­
ing by flexural slip (Fig. 2.2(d)). Concentric shearing planes had formed almost 
exactly with the same frequency and movement as in the paper experiment. This 
showed that a solid material can develop zones of slip equivalent to a multilayered 
structure, where the spacing of the layers and the amount of slip appear to have 
remarkable similarities.

. . .  nearly all the deformations in which we are interested lie in a 
zone between the plastic and elastic fields . . .  de Sitter (1964)

De Sitter indicated more about the elastic properties of rocks in the 1964 book 
“Structural Geology” , stating tha t even though rocks have permanent deforma­
tion, it is possible to apply a modified elasticity theory by assuming that deform­
ing rocks are partially in elastic strain, becoming permanent with changing shape 
(de Sitter, 1964). De Sitter supported this by saying that deformation experi­
ments have shown that not only are elastic properties maintained, but also that 
it is impossible to detect whether the deformation in rock is elastic or viscous. 
Evidence of the elastic properties of rock even at large depth is shown by purely 
elastic shockwaves, which are still present at 700km below the crust. The proof of 
elasticity is vital as de Sitter went on to say that the elastic stresses in the folded 
competent rocks govern deformation; the incompetent layers follow the shape of 
the competent layers passively. The conclusion from this was that the foundation 
will have different stress conditions from the layers in general.

Finally, as shown previously from his work with Kuenen (Kuenen &; de Sitter,
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1938), parallel folding is a common natural phenomenon and hence de Sitter 
studied the subject in some detail in “Structural Geology” . Points of note are 
(de Sitter, 1964):

(i) Competency and elasticity concepts are highly relevant to parallel folding 
as they commonly appear in the competent layers of bilaminates and that 
“concentric folding . . .  is typical of the smallest possible excess of stress 
over the elastic lim it”;

(ii) As the last experiment in Kuenen & de Sitter (1938) shows, the elastic 
stresses inside a layer folded parallel to the surface can result in shear 
planes dividing the sheet into two. Further folding repeats the process 
and the elastic state of the rock is preserved allowing continuous bending 
without an increase in stress.

Unfortunately the author’s knowledge of French is not up to the standard where 
justice can be done to the work of Goguel (1943); however, it is clear that a 
section was dedicated to the idea of elastic folding in rocks. Goguel performed 
calculations for similar folding, but suggested that thickness variations are not 
often seen and it is more usual to find that layers have preserved their thickness 
and folded in a parallel manner. Folding of this nature was said to be especially 
important for a limited body of layers, sliding at a foundation, and that the 
amount of sliding between two layers was equal to the product of the average 
thickness and the angle through which they have rotated. For a very large body 
it was stated that it is very difficult to do a complete geometric analysis as on 
the concave side the layers become very angular and may break and dislocate in 
various manners.

In his 1952 book on plate tectonics (translated into English in 1962), Goguel 
maintained that rocks have elastic or visco-elastic properties as they often break 
before permanently deforming (Goguel, 1962). It was stated that as speeds are 
slow (inversely proportional to the log of time), potential energy is very small; 
hence the type of deformation is dependent on the least amount of effective work 
being absorbed. Effective work was defined as the sum of the resistant work of 
deformation (pressures and friction) and the work of gravity. As such work was 
minimized through bending, rather than thickness variations, Goguel claimed 
that parallel folding is a common geological phenomenon.
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2.3 The influence of B iot

2.3 .1  B iot and R am berg

. . .  in the mechanism of folding, the viscous properties of the rock 
will tend to overshadow the effect of elasticity. Biot (1961)

Our study of Biot’s work starts in the late 1930’s with two papers extending 
classical elasticity theory. In the first (Biot, 1937), Biot stated that bending 
an infinite beam on an elastic continuum under lateral load was more realistic 
than on a Winkler foundation. By applying a sinusoidal load to the continuum, 
this causes a sinusoidal deflection and the load is dependent on the amplitude 
and wavelength. For a sine-like concentrated load, the bending moment and 
deflection close to the load were found to agree well with a Winkler foundation 
having the same maximum bending moment. In the second paper (Biot, 1938), 
large displacements and rotations were included for an elastic body under two- 
dimensional strain and the stability of a buckling plate was then considered; here 
a sinusoidal solution was obtained together with a critical stress equal to the 
Euler load.

In 1961, with a deep understanding of the deformation of elastic and viscous 
materials, Biot changed geologists’ thinking by writing a seminal paper (Biot, 
1961). Based on earlier work (Biot, 1957)—where the buckling instability of a 
single (elastic, plastic and viscous) layer in an infinite medium was studied using 
ideas taken from non-equilibrium thermodynamics—Biot presented the notion of 
the dominant wavelength and bandwidth selection for visco-elastic media, con­
cluding that viscosity is the primary driving force in tectonic folding. Arguing 
that elastic rigidities of rock are too similar to explain folding and that defor­
mation happens over a very long time frame, Biot surmized that in most cases 
viscosity will predominate. The theory is applicable to elastic and non-elastic 
media, if the viscosity coefficient is replaced by the rigidity modulus, through the 
correspondence principle.

To prove this, Biot studied elastic and viscous layers embedded in a viscous 
matrix with initial imperfections. The rate of growth was highly dependent on 
the wavelength of the folds and Biot contends that the fastest growing wavelength,
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the so-called “dominant” wavelength, is that eventually seen as sinusoidal waves. 
The viscous plate differed to the elastic plate in that for the former the dominant 
wavelength is independent of the load and all wavelengths were amplified. Biot 
also stated that for well-defined folding the viscosity of the layer needs to be 100 
times that of the matrix.

Adding gravity effects to the viscous layer, the dominant wavelength Ld became 
dependent on the compressive load P

I 9 P
<M>

where h is the thickness of the layer, g is the acceleration due to gravity and pi 
is the density of the matrix.

Biot also extended the work to multilayers; for n equal viscous layers with perfect 
lubrication, the dominant wavelength was given by

U =  2 (2.6)

where h is the thickness of an individual layer and v and Vi are the viscosities 
of the layers and matrix respectively. A similar elastic multilayer was said to 
equivalent to a single layer in a medium of viscosity V\ fn \ in doing this the 
wavelength was unchanged, but the rate of deformation was increased.

Biot admitted that, by assuming perfect slip, this treatm ent was approximate, 
but that bilaminate viscous materials or buckling under hydraulic lifting are 
comparable to this situation. It was also claimed that if friction was added to 
the viscous case, then the wavelength falls to somewhere between (2.6) and that 
of a single layer of thickness nh.

In concluding, it was remarked that as the modelling is linear, it only represents 
the initial stages of buckling and limits the geometry. Nonlinearity is needed to 
account for the very regular folding seen in reality, but the theory is extendable 
to nonlinear media.

In later publications, Biot extended the ideas presented in the 1961 paper to the 
following:
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(i) Internal buckling. Firstly for an homogeneous, incompressible, elastic, infi­
nite or rigid bound medium under hydrostatic pressure and horizontal load 
(Biot, 1963a), and then for a viscous, perfect-slip, bilaminate multilayer 
confined vertically and subjected to horizontal compression, (Biot, 1964). 
The incompetent layers were said to act as a lubricant and have little effect 
on the dominant wavelength. Biot declared that friction can be included 
and that the methods encompassed all situations with no restrictions placed 
on the layers.

(ii) Multilayer stability. Biot used previous results to study the stability of 
an incompressible, elastic multilayer under initial strain, where the layers 
were orthotropic, isotropic or anisotropic (Biot, 1963c). When embedded in 
an infinite or semi-infinite medium, the stresses parallel and perpendicular 
were examined under conditions of perfect adherence and perfect slip. Later 
visco-elastic and gravity effects were added (Biot, 1963b).

FIRST KIND

SECOND KIND

Figure 2.3: Similar folding of the first and second kind. (After Biot 1965b)

(iii) Similar folding of the first and second kind. In 1965 a more relevant and 
interesting use of Biot’s theory was given, where similar folding of the first 
kind is equivalent to parallel folding (Biot, 1965b). The model used a bil­
aminate multilayer, subjected to a lateral load (overburden pressure) by 
a surrounding soft foundation and having potentially large deformations. 
W ith layers of approximately the same viscosity, the wavelengths were large, 
the cross-sectional planes were normal to the layers and behaved almost as 
a single layer would in the same situation. Biot called this similar folding 
of the first kind (parallel folding) and although not mentioned the folding 
was by tangential longitudinal strain (Fig. 2.3). Through the correspon­
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dence principle, Biot asserted that everything was the same for the elastic 
situation.

Biot’s work culminated in 1965, by bring together all of his ideas into the book 
“Mechanics of Incremental Deformation” (Biot, 1965a).

There is no denying the contribution that Biot made to the field of geology; 
the influence of his work was fax reaching and still initiates much debate today. 
However, there are several problems with Biot’s research, some of which this thesis 
hopes to address. The largest problem is that, probably to simplify analysis (and 
the lack of high speed computers), all of Biot’s work is linear, and hence only 
involves sinusoidal, small-amplitude, deflections. This periodic analysis only then 
really applies to wavetrains, which, as we will see shortly axe not necessarily the 
normal method of buckling.

The viscous nature of rocks is not convincing; whilst deformation may not be 
strictly elastic, permanent deformation is more likely to be plastic rather than 
through the fluidity of the layers. The use of such ideas seems especially strange 
when Biot points out that rocks are initially elastic before viscosity dominates 
and that his studies are only relevant for infinitesimal amplitudes. The author 
finds the dominant wavelength notion difficult to believe, especially as it will 
be shown to be dubious in §2.4. There is also a feeling that the method overly 
complicates fairly trivial situations and whilst the correspondence principle may 
be correct, it produces long and involved equations.

Ramberg was more of an experimentalist than Biot, but had similar ideas, con­
sidering rocks to be viscous and insisting that the ideas can be transferred to 
the elastic case. Starting with theory and experiments in 1959 and 1960 on the 
buckling instability of a single viscous layer, Ramberg developed models close to 
those of Biot (Ramberg, 1959; Ramberg, 1960).

Seeing that, more commonly, folding is found in multilayers, where the competent 
layers interfere, Ramberg then looked at contact zones of competent layers and 
the corresponding wavelengths (Ramberg, 1961). Free and embedded bilaminate 
multilayers with no-slip conditions were considered and Ramberg pointed out 
that although rare to find a number of thin, identical, evenly spaced competent 
layers, the problem was still of interest. Strangely although all of the theory was
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expressed in terms of viscosity, the experiments used to confirm the features were 
elastic, as they used layers of rubber.

For a single layer, by looking at the resistive forces and finding the stationary 
solution with respect to the wavelength, the wavelength A was given by

A =  (2.7)
V 6/22

where 2h0 is the layer thickness and fii and fi2 are the viscosities of the layers 
and medium respectively.

Like Biot, it was predicted that the fastest growing wavelength is the one seen in 
reality and (2.7) agrees with a similar formulation by Biot (1957). In fact, Biot 
stated that Ramberg’s theories do not depart from work already undertaken by 
himself and also that by separating the rigid boundaries with a softer material, 
as Ramberg does, a dominant wavelength would not exist (Biot, 1964).

To study how the critical load and wavelength of the bilaminate multilayer was 
affected by altering the spacing of the competent layers, Ramberg introduced 
the ratio of the thickness of incompetent to competent layers n =  h fh Q. For 
both elastic and viscous materials, with n > 12 a minimum wavelength existed 
dependant on n. Ramberg also proved, using elastic experiments, that, under 
no-slip, an embedded bilaminate multilayer buckles with a larger wavelength- 
thickness ratio than a similar single layer, in agreement with his developed theory. 
W ith small spacing between the competent layers, the wavelength is determined 
by the surrounding medium.

In 1971, to validate Ramberg’s Newtonian visco-elastic modelling and to prove 
the possibility of more than one dominant wavelength, Ramberg and Stromgard 
tested multilayers of alternating competencies and differing thickness (Ramberg 
& Stromgard, 1971). From Ramberg’s theory the layers are welded together and 
bounded by infinite half-spaces, rigid walls or free flexible surfaces. As before 
(Ramberg, 1961), the experiments were elastic, using layers made of gelatine and 
rubber, the outer layers of gelatine being significantly larger than the wavelengths, 
and hence could be regarded as infinite.

Whilst the experiments and theory had wavelengths and amplitudes in agreement,
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there is no proof that the dominant wavelength methodology is correct. With 
increased deformation, the contact zones interferred, and the thin layers were 
forced to have the same wavelength as the thicker ones, proving that the theory 
is only correct for relatively small amplitudes.

2.3 .2  V iscosity  argum ents

Whilst being an advocate of Biot’s as regards the behaviour of rock, Chappie 
(1968), was one of those to point out the limitations of Biot’s infinitesimal treat­
ment. Chappie stated that linear approximations stop the analysis being useful 
beyond limb-dips of 5° and that the multilayer case gave unclear results. Jus­
tifying viscous behaviour, by saying that rocks usually have a threshold stress, 
Chappie then used elastic strain energy variational principles, stating the math­
ematical equivalence of a slow moving linearly viscous fluid and the deformation 
of an incompressible elastic body.

By numerically modelling a single linearly viscous layer embedded in a less viscous 
medium, Chappie extended Biot’s analysis to finite amplitude folds, with limb- 
dips of up to 15°. For dips greater than 15°, the deviation from the theory is 
“explained” using nonlinear stress-strain relations, which lower the viscosity. It 
is claimed tha t this is why the dominant wavelength, which should be the most 
common, is not seen in reality. As with Biot and Ramberg, it is assumed that 
the layer buckled into a symmetric wavetrain.

Like Chappie, Bayly (1974), also studied Newtonian viscous finite buckling. But 
unlike Chappie, the research was of bilaminate multilayers, looking at the energy- 
consumption for different wave-profiles, to discover if there is a relationship be­
tween the profile geometry and mechanical properties. By finding the roundness 
of folds for known properties and reverse engineering the hope was to predict 
limits on the attributes of observed lithologies.

The folds considered were similar, with straight limbs and arched hinges and 
Bayly used the hinge/wavelength ratio as the parameter for determining the 
properties. It was assumed that the limbs and hinges of the layers adapt, such 
that they are in the least energy configuration, with the most energy consumed in 
changing of curvature of the hinges of the competent layers. Unfortunately, when
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the layers have similar competences the analysis fails to hold and for parallel 
folding, where the hinge fraction is 0.6 or more, the changing profile and quick 
cusping stop the theory being valid.

Again no elasticity was involved in work by Smith in 1975 , who tried to tie up 
several types of deformation into one model using a single layer of Newtonian 
fluid embedded in a matrix of different viscosity (either higher or lower) (Smith, 
1975). The layer is unstable and depending on whether the load is horizontal 
or vertical either folding or pinch and swell phenomena is observed. Hence the 
same mechanism caused four distinct cases. Like Biot, only the initial stages of 
the deformation were explored and even though the results correspond exactly 
to Biot, Smith cited Biot’s work and that of Chappie to outline the limitations 
of many Euler beam based models. The primary objections were: only long 
wavelengths and large viscosity ratios are applicable; the initial instabilities are 
not really considered and that phenomena such as boudinage is not predicted.

In a later paper (Smith, 1977), Smith used non-Newtonian fluids to try and 
correct the discrepancies between the theory in his previous work (Smith, 1975) 
and reality. Smith turned to non-Newtonian flow after allowing slip between the 
layer and m atrix and thus introducing an interface friction coefficient, did not 
overcome the shortcomings of his model.

2.3.3 Im portance o f layering

The importance of layering to fold development was discussed in two papers 
by Donath, the first in 1962, and then jointly with Parker in 1964. Donath 
stated that geologists were too interested in the geometry of folds and not the 
mechanisms that created them. To rectify this, layered rock deformation by 
brittle fracture and ductile flow was researched as well as the conditions that 
affected these states (Donath, 1962; Donath h  Parker, 1964).

The assertion was that all folding occurs by either continuous or discontinuous 
flow (Fig. 2.4) and that anisotropy controls the geometry of the deformation. 
Discontinuous flow, called slip, is a graduation between shear fracture and flow. 
The ductility of the rock alters the influence of the layering, but if flow or slip is 
restricted to the (less cohesive) layer interfaces, the layers bend producing either
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(a)

(b)

Figure 2.4: (a) Continuous and (b) Discontinuous flow. (After Donath 1962)

flexural slip or flexural flow  folds. Although these axe sometimes called flexural 
slip of the competent and incompetent layers respectively, Donath felt the use of 
the word “competent” is unclear as it can have several meanings from strength 
to ductility to the elasticity of the rocks.

Donath proclaimed that geometrically, flexural slip folds (Fig. 2.5) are parallel 
or concentric folds. They axe found in moderately brittle to moderately ductile 
layered rocks—i. e. at low to medium pressures and low temperatures—occurring 
when sheax stresses exceed the friction on the layer boundaries. By introducing 
the term mean ductility, defined to represent the behaviour of the most abundant 
rock type, Donath showed that low mean ductility suggests that flexural slip will 
occur.

2.3 .4  E lasticity  argum ents

Not everyone followed the viscous or elastico-viscous line that was so heralded 
by Biot and Ramberg. In 1962 Currie et a l presented a mathematical model for 
stratified rock based on multilayered elastic behaviour. This strongly followed
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Figure 2.5: Concentric folding by flexural slip. (After Donath 1962)
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Euler beam theory and builds up to the multilayered model in stages, firstly con­
sidering the elastic stability of an unconstrained beam with hinged ends (Currie 
et a/., 1962). In contrast to most elastic studies, they did, however, introduce the 
critical wavelength-thickness ratio

<28»

where E  is the Young’s modulus of the beam and ap is the proportional limit of 
compressive stress. Elastic sinusoidal buckling up to large curvatures is reported 
to be seen above this value and below it the beam buckles non-elastically or 
crushes.

To represent a medium or lithostatic weight, the elastic continuum used by Biot 
(1937) was added. Via the correspondence principle one can see that this gave 
formulations for the critical load and wavelength of the same structure as Biot’s 
analysis for the dominant wave of a viscous beam embedded in a viscous foundar 
tion. Similarly, for elastic instability to occur it was concluded that E  «  lOOEb, 
where Eq is the elastic modulus of the foundation. It was also stated that, in 
agreement with Ramberg (1961), if the height of the medium at least equals the 
wavelength in magnitude, then an infinite foundation is a very good approxima­
tion.

The multilayer formulation was obtained by replacing the single layer of thickness 
T  by n layers of thickness t (T = nt). The boundaries were frictionless, and the 
energy found by simply summing the bending energy contributions. W ith a 
sinusoidal deflection, the critical load and wavelength were given by

iC nir2E t3 EqL 31 nE
po = ^ - + i 7 i (2-9)

To compare the models with reality Currie et al. undertook two studies, the first 
experimental using gum rubber strips embedded in gelatine, and the second using 
natural examples. For the latter, a log-log graph of dominant layer thickness and 
wavelength, showed remarkable agreement with the theory. However, the test 
results—examples of which axe shown in Fig. 2.6—emphasized several flaws in 
the modelling: primarily that after limb-dips of just 5°, the outside competent 
layers cannot be considered sinusoidal and also that only at high curvature was 
the neutral axis near the centre of the layers; before this the layers were mostly
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in compression.

Figure 2.6: (a) Three competent layers with wide spacing and (b) W ith close 
spacing, (c) A sequence with identical layering. (After Currie et al. 1962)

A set of seven papers by Johnson attem pted to put to rest arguments on how 
different fold shapes occur by using elastic theory. The four of interest here are: 
Johnson &; Ellen (1974), Johnson &; Honea (1975b; 1975a) and Honea & Johnson 
(1976). Some of the the ideas conveyed in these papers axe repeated in the book 
“Styles of Folding” (Johnson, 1977). The justification for using elastic theory, 
was tha t rock theory generally assumes small strains linearly related to stresses; 
it is only later th a t these become permanent. Also the belief tha t rocks fold 
high-up in the E arth ’s crust and so behave more elastic (-plastic) contributed to



the argument.

The first paper gave a general introduction to the subject area (Johnson &; Ellen, 
1974), showing examples from nature and the different types of folding that can 
occur: small-amplitude sinusoidal folds giving way to concentric and eventually 
chevron folds. Kink banding is the only fold-type mentioned in terms of fric­
tional contact. Johnson k  Honea (1975b) then developed, via elasticity theory, 
linearized equilibrium equations for compressible elastic materials and found si­
nusoidal solutions, which are then used by Johnson k  Honea (1975a) and Honea 
k  Johnson (1976) to describe the transition of a multilayer from sinusoidal-to- 
concentric-to-chevron folding. It was also shown how changing the properties of 
the layers can lead to kink banding. For the former, the premise was (Johnson k  

Honea, 1975a) tha t as sinewaves are unstable in multilayers, concentric folding 
is the stable form and so typical. W ith further shortening, concentric folding is 
replaced by chevron folding.

Figure 2.7: Experimental elastic multilayer deformation. (After Johnson k  Honea 
1975a)

Surprisingly, a large proportion of Johnson k  Honea (1975a) is dedicated to 
showing tha t the linearized elastic theory developed by Johnson k  Honea (1975b) 
over-complicated m atters. The wavelengths resulting from their modelling, for 
several different situations, when compared to those from more simple methods 
requiring much less calculation, are in excellent agreement. It is even remarked 
by the researchers tha t there is little point in using their elastic theory.

When conducting the same elastic experiments used by Ramberg k  Stromgard 
(1971) to prove viscous arguments (Fig. 2.7), it is suggested tha t if confined by 
rigid media, B iot’s wavelength would be found; in the author’s opinion in such a 
situation the layers would not deform sinusoidally. One thing of note is that the
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more intense folding seen in Fig. 2.7 at one end of the multilayer appears to be 
serial buckling.

Lastly the transition from sine-to-concentric-to-chevron folding at the crux of this 
work is summarized below (Johnson & Honea, 1975a):

Imagine a bilaminate multilayer embedded in a confining medium is 
subjected to axial compression. The layers shorten until the critical 
load is reached, when the straight layers become unstable producing 
a sinusoidal wavetrain of Biot wavelength. Sinewave growth results in 
higher order effects which change the wavelength of the stiff layers due 
to normal stresses, decreasing in the core and increasing in the crests.
The sinusoid is unstable as it grows and becomes concentric. W ith 
thick layers, the multilayer is more sinusoidal throughout; thin layers 
means more concentric looking folds. The layers eventually undergo 
elastic yielding resulting in chevron folding (Fig. 2.8).

There are several problems with the above, the main one being that concen­
tric folding was explained by none of the theory given in these works, as it is a 
“higher order effect”. The linearized theory does not give reasons for the chang­
ing wavelengths within the multilayer that characterize the folds. The notion of 
an unconfined medium and layers going from straight to buckled are unrealistic. 
Honea h  Johnson (1976) rectified the last point by having rigid boundaries and 
almost frictionless layers which have initial, low amplitude perturbations approx­
imated by a Fourier series.

2.3.5 Serial buckling

One may often observe in model experiments relating to the devel­
opment of fold series that the folds develop serially and in packets 
rather than simultaneously throughout the folded unit. If it assumed 
that this mode of fold development is followed in nature (and I cannot 
envisage how the many thousands of folds in a fold belt could have de­
veloped simultaneously), then this probable mode of fold development 
. . .  Price (1970)
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Figure 2.8: The transition of folding from sinusoidal-to-concentric-to-chevron. 
(After Johnson and Honea 1975a)
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In 1970, for the first time since Van Hise, Price (1970) entertained the notion 
that folds form in a sequential manner rather than all at once in a wavetrain, 
contradicting much of the previous theory on folding, especially Biot. Price 
also stated that rocks axe solid when deforming, coming from solid time-strain 
analysis fitting every rock type Price had tried; this was also justified given that 
rock near the Earth’s crust has the ability to store residual stresses for very 
large times. Evidence of elastic deformation was shown from experimental cyclic 
loading, where several samples behaved in an elastic manner. An interesting 
point is made that a layer of material is often under horizontal compression even 
though no tectonic compression has taken place, purely through the geometry of 
the Earth, which is not flat in section as is usually drawn, but curved.

A later discussion of geological deformation rates by Price (1975) repeated several 
of these points and the reader is told that the three phases of fold development 
for a layer in the upper crust are:

(i) Initial elastic deformation;

(ii) Inelastic deformation, once the elastic limit is reached;

(iii) Fold locking and flattening.

By thinking about the strain rates for this process and considering serial rather 
than instantaneous buckling, it was seen that folding can occur at a far faster 
rate than was normally quoted in geological literature up to that point.

The experimental evidence of serial buckling mentioned by Price was highlighted 
by Blay et al. (1977), when looking to model fold development in sedimentary 
strata. Focusing at the base of a gravity glide, horizontal layers of visco-elastic 
gelatine, able to support large elastic strains, were compressed axially using a 
motorized slow moving piston. Whilst occasionally the folding was in the form 
of uniform sinusoidal buckle trains, it was stated that more common was non- 
synchronous fold development, with amplification of individual folds at different 
times. This was either in a sequential manner, once the multilayer was fully 
axially loaded as shown in Fig. 1.6, or by isolated fold growth where arresting of 
the stress front allowed localized concentric folding.

Cobbold (1975), also tried to show that serial buckling does occur, firstly dis­
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cussing met amorphic natural examples with homoclinic profiles and then con­
ducting single layer experiments with “similar rheological properties”. Sedimen­
tary inclusions were said to be the imperfection mechanism initiating geological 
folding which were modelled by introducing central deflections of varying magni­
tude. When buckled, a single fold was initiated, sequentially propagating, lead­
ing to a wavepacket and eventually periodic waveshape. The layers deformed by 
tangential longitudinal strain and hence there was no change in the orthogonal 
thickness. This last point is at odds with the usually held geological theory that 
modulated homoclinic profiles axe the result of thickness changes within the layer.

2.3.6 Shear banding

In determining the structure of the Earth’s crust and hence whether elastic or 
viscous modelling is appropriate, it is useful to recognize phenomena particular to 
different areas of the strata. Higher up in the lithosphere, it is generally accepted 
that rocks are solid, behaving in a brittle manner, and so frictional considerations 
are usually more common. Shear bands, zones of localized deformation, are 
abundant in brittle rocks that have failed under compression and it is worth 
mentioning a couple of the more famous publications from this area.

Rudnicki and Rice (1975), produced a quasi-static formulation of the localiza­
tion conditions and proposed a constitutive model. Here the compressed brittle 
rocks were seen as isotropic elastic bodies, with random fissures having frictional 
resistance to sliding. Localization occurs due to an instability in the constitu­
tive description and inelastic strain arises from the sliding friction, making the 
relations pressure-sensitive.

For rocks close to the E arth’s surface, the mechanical behaviour is often described 
by elasto-plastic models. Maier &; Hueckel (1979), showed however, that this is 
not totally adequate as rocks differ to metals and therefore characteristics need 
to be added or revised. To this end elasto-plastic constitutive laws were studied 
where the direction of the plastic strain rate vector does not depend on stress 
rates. In particular, it was shown that:

(i) The plastic strain rate is not normal to the yield surface due to internal
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friction;

(ii) There is a coupling of elastic and plastic deformations;

(iii) Yielding may be hardening, softening or not change at all.

2.4 Localization and buckling

Before starting this section, it is worth pointing out that there are several good 
reviews on elastic buckling, bifurcation, and cellular buckling theory when study­
ing the elastic buckling literature post 1970. The first three mentioned below, in 
particular, give a good background of elastic stability research before 1970.

In 1970 Hutchinson &; Koiter (1970), gave a review of postbuckling theory up to 
that point, with many references to previous work done on the subject. Whilst 
concentrating on the theory and applications for continuum thin-shell buckling, 
everything is applicable to the problems posed in this thesis. The bulk of the 
paper studied the loss of stability of a pre-buckling state, bifurcating to a buckled 
configuration, and also how load-deflect ion curves show the stability of a perfect 
and imperfect system.

Two articles by Hunt (1983; 1986) gave brief, but excellent, historical precis of 
bifurcation theory and conservative elastic buckling. The former also looked at 
the large deflection strut model, which was used to discuss an axially loaded plate 
and local and overall mode interaction of a stiffened plate.

As will be seen below, by 1989, localization had become a popular area of in­
terest. Hunt et al. (1989), illustrated the buckling localization found in elastic 
structures, one of which was the strut on a nonlinear foundation, viewed from 
three perspectives including the dynamic phase-space analogy. Lastly, connected 
to this, Hunt et al. (2000a), used the strut on a nonlinear foundation, cylin­
drical shell, sandwich structure, geological folding and link models to look at 
destabilization-restabilization processes, localized buckles and sequential lockup.
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2.4.1 Localization

Softening foundations

An early investigation into localization was conducted in 1980 by Tvergaard Sz 
Needleman (1980), who showed that a bifurcation at (or close to) the maximum 
load is vital for localization, using an axially loaded linear elastic column, with 
an initial imperfection, on a (piecewise linear) softening foundation. Similar 
localization behaviour was later found by Hunt Sz Bolt for an elastic link model, 
analogous to a strut on an elastic(-plastic) matrix, which was visualized in the 
form of a “hooking response” in the bifurcation diagram (Hunt Sz Bolt, 1986; 
Bolt, 1989).

Tvergaard Sz Needleman (1983) applied the same idea to several other static 
loading examples. For an elastic column on a softening foundation with both 
periodic, nonperiodic and mixed initial deflections and for thermal buckling of 
railway lines, identical localized behaviour were found. However, this was not 
the case for an elastic column under dynamic loading, considered to be on an 
elastic-plastic or bilinear softening foundation, and impact loaded by an infinite 
mass.

Potier-Ferry (1983), again obtained localized behaviour for a linear elastic beam 
on a softening foundation; but also proved that the localization involved nonlinear 
interactions between instability modes whose wavelengths were in a narrow band.

In 1988, the study of localization phenomena was advanced significantly in an 
article by Thompson Sz Virgin (1988), who used static-dynamic analogies to show 
spatial chaos and localization in a strut, by replacing time with space in nonlinear 
dynamical theory. Such ideas were taken further by Hunt Sz M. K. Wadee (1991), 
showing that the linear elastic strut on a softening foundation is a Hamiltonian 
system that follows Lagrange’s equations; by reworking the equations into fast 
and slow space, modulated and localized modes were possible. Importantly they 
proved that the upper and lower bounds of localized buckling are given by the 
critical and Maxwell loads respectively. Later, in conjunction with Shiacolas, 
similar results were shown for a nonlinear beam and linear foundation (Hunt 
et al., 1993).
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The slow-space variable wets also used by Whiting (1997), who conducted Galerkin 
analysis to find localized buckle patterns for a strut on a softening foundation 
and determined the modes using perturbation analysis near the critical load.

Destabilizing-restabilizing foundations

By 2001, the literature had moved on to more realistic destabililizing-restabilizing 
foundations. Budd et al. (2001), showed that for an elastic strut on different 
Winkler foundations with such characteristics, the solution changes from an ho­
moclinic (localized cellular post-buckle state) far away from the critical load to 
a periodic solution as the load approaches the Maxwell load via an heteroclinic 
connection. M. K. Wadee et al. (2002) looked more closely at how such wave 
patterns are seen, by modelling multi-packet localization solutions for a similar 
situation. As the localized solutions tend towards the periodic, two homoclinic 
wavepackets moving towards one another will meet and the solution then spreads 
outwards.

The year 2001 also saw Peletier publish an in-depth paper on the “localized 
buckling and spreading deformation of an axially loaded long elastic Euler strut 
on a destabilizing-restabilizing nonlinear elastic Winkler foundation” (Peletier, 
2001b), recognizing the geological implications of such a model. The localization 
and delocalization were investigated using the “partially” linearized minimum 
strain energy profile for a particular end-shortening. After proving the existence 
of minimizers for the problem and the appearance of the periodic section, nu­
merical solutions were obtained using finite elements. W ith global minimization 
difficult, Peletier used random sets of initial data, considering the stationary solu­
tion with the lowest value as the global minimizer. The solutions fall on the odd 
and even load-deflection curves of the ordinary differential equation, the jumps 
then being explained by equal energy arguments.

To prove the existence of bifurcation branches such that the Hamiltonian is zero 
along each solution on the branch, a more general fourth order, reversible Hamil­
tonian system was the subject in Beardmore et al. (2005). Depending on the form 
of the foundation term, the differential equation possessed periodic, homoclinic 
and heteroclinic solutions and is applicable to geology problems and buckling 
theory, especially cellular buckling.
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2.4 .2  G eological applications

One of the first papers to apply the localization theory and concepts given above 
to geological folding, and hence study such notions in a structural engineering 
context, was that published in 1997 by Hunt et al. (1997). Whilst stating that 
multilayer effects axe important, they concentrated on a single (visco-)elastic 
layer in visco-elastic medium, and although they felt that a half-space is more 
realistic than a Winkler foundation, the latter was used as “it is good for finite 
depth supporting media” . Pointing out the flaws of Biot’s work, different types of 
nonlinearity were introduced to the foundation, including the hardening model—a 
realistic geological situation if it follows softening—and localized solutions sought.

The companion paper by Whiting &; Hunt (1997) modelled the initiation and 
development of the folding of an elastic layer on a visco-elastic foundation, and 
highlighted the effects of the geometric and material nonlinear terms. Two models 
were used; the first included geometrically nonlinear terms and was capable of 
large deflections and the second used a linear beam on a nonlinear foundation, 
and was hence valid for small, finite deflections. Unlike Hunt et al. (1997) the 
foundation consisted of independent spring-dashpot elements with continuity due 
to the layer. The initial elastic deformation admitted localized buckling which 
during the evolution allowed nonperiodic waveforms ignored by linearity.

A slightly different problem was posed by Waltham (1997): how can the move­
ment of the overburden initiate and affect buckling? Opposing the usual ideas of 
a medium as the overburden, here the overburden was modelled using an elastic 
plate on a viscous medium. Although familiar equations were formulated, the 
shear stress between layer and medium was also taken into account. Inserting 
values into the model, the wavelength X is given by:

/  D \ 1/4

’ ( 2 i , )

where D is the flexural rigidity of the plate, g is the acceleration due to gravity
and ps and pw are the density of the salt and water respectively. This can be
thought of as a strut embedded in two materials of different viscosity, which is 
an entirely reasonable proposition (de Sitter, 1964).

A pair of complementary papers by Budd &; Peletier (1999; 2000), the former with
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Hunt, looked at localized solutions of a single elastic layer embedded in both time 
dependent no-slip Winkler and viscous half-space foundations. Showing the evo­
lution of folds from straight layers up to infinite time periods, they controlled 
this using constant and linearly increasing end-shortening. The solutions were 
shown to be approximately self-similar; hence they stay localized and are inde­
pendent of the initial disturbances. The long-time behaviour was elasto-piastic 
or visco-elastic, even though the material is deformed past the plastic limit; this 
was justified by stating that wavelength selection is at the first increments of fold­
ing. Very importantly was shown that, as time increases, the wavelength alters 
proving that

no dominant wavelength is valid over all times,

the load tended towards Biot’s load, but over excessively long time frames; hence 
Biot’s analyses are not a good representation of reality.

So far all of the geological applications had been for a single layer. This changed 
when kink banding in multilayered structures was the subject of three papers by 
Hunt, Peletier &; M. A. Wadee (Hunt et al., 2000b; Hunt et a/., 2001; Wadee 
et al., 2004). Two follow-up articles have been recently submitted by Wadee h  
Edmunds (Wadee h  Edmunds, 2005; Edmunds &; Wadee, 2005) extending the 
kink band model developed by Wadee et al. Kink banding, like parallel folding, 
has localization and sequential lockup behaviour, but differs in that it is a discrete 
process, with rigid boundaries, and that all of the layers have the same defor­
mation. Initial imperfections and applied end-shortening mean that the system 
gives a nonlinear response, and by studying the total potential energy, the sys­
tem seeks a stable global minimum. Using the Maxwell stability criterion the 
problem of having an infinite critical load is removed by saying that buckling 
has occurred once the compression is sufficient to overcome the internal friction. 
The later model (Wadee et al., 2004) adds a Pasternak foundation, as opposed 
to a Winkler, and allows compressibility within the multilayer. When compared 
to experiments on sheets of paper, representing the stratified medium, there was 
remarkable agreement, proving that elastic, frictional energy models are able to 
imitate geological processes of this nature.
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2.4 .3  O ther in teresting and connected  areas

When conducting an in-depth study of this type, it is inevitable that one finds 
literature that whilst relevant and interesting, is not directly associated with any 
of the larger bodies of work. For completeness these are included below.

Imperfections

There are many different types of imperfection that can exist within a system. 
Amazigo et a l (1970), concentrated on three types of initial displacement per­
turbations, using an infinitely long elastic strut on a softening foundation, and 
made an attem pt to find asymptotics for a small imperfection in each case. The 
three chosen were: harmonic, dimple (localized and decaying exponentially) and 
random. Harmonic initial displacement was found to cause the greatest loss in 
buckling strength of the column, followed by random and finally dimple. For 
harmonic and dimple perturbations the analysis gave an asymptotically exact so­
lution agreeing with the linearized solution. However, the multivariate Gaussian 
perturbation resulting from linearization of a random displacement, cannot be 
checked against a perturbation scheme and it was stated, that it is unlikely to be 
asymptotically exact. The dimple imperfections are also applied to cylinders in 
a follow-up paper (Amazigo &; Fraser, 1971).

Elastic struts

Elastic struts, with and without foundations, have also been used in the following 
situations:

(i) Thompson &; Hunt (1983) modelled an arch as a simply supported beam 
with a central point load and analysed this using a sinusoidal Galerkin 
approximation;

(ii) Sandwich structures: a single face and core can be modelled as strut on a 
foundation and the calculus of variations used to find the energy minimum 
(Hunt h  Wadee, 1998; Wadee, 1998; Wadee, 1999; Wadee, 2000);
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(iii) The phenomenon of Arnold tongues was studied by Hunt Sz Everall (Hunt 
Sz Everall, 1999; Everall, 1999) using an elastic strut on a stiffening foun­
dation;

(iv) Domokos Sz Holmes looked at two situations with constrained Euler buck­
ling. The first in 1997 with Royce, (Domokos et al., 1997), investigated the 
elastic buckling of a beam, with mixed pin and clamped end displacements, 
laterally constrained by rigid, frictionless sidewalls. Formulated as a non­
linear Euler strut and numerically analysed, the results were then compared 
to experiments. The second in 2000 with Hek (Holmes et al., 2000) involved 
thin rods confined to the plane, where buckling resulted from a force field, 
linearly dependent on distance, distributed along the rod. Equilibrium 
equations derived from the Euler-Lagrange equations are Hamiltonian in 
nature, and although the bifurcation diagram is complicated in structure, 
it is composed of pitchfork bifurcations and thus equilibrium approaches 
homoclinic and heteroclinic connections at large loads (and large lengths).

Pipelines

In 1983, both Kryiakides Sz Babcock (1983) and Chater et al. (1983) looked 
at buckle propagation along a pipeline, the former in confined and unconfined 
pipelines due to external pressure. The latter used a laterally loaded beam on 
a foundation which stabilizes, destabilizes then restabilizes and hence there are 
three static equilibrium states: collapsed, uncollapsed and transitional. Propa­
gation begins at the Maxwell load, but for a weak foundation, the load never 
reaches this and the buckling arrests.

Finally, an interesting buckling problem of an axially loaded cable in a blocked 
duct was studied by Rivierre et al. (2001). Dependent upon the load, the cable 
is straight or can take a sinusoidal or helical mode-shape. Included in the model 
are lockup and friction. Initially ignoring friction, using energy considerations, 
where the weight of the cable provided a resistive force, results from classical 
theory were found. However, including friction via Coulomb’s law, the moving 
axial load for the sinusoidal case was presented as

= l i  ( ^ ( a ( x ) ) u ) e +  ^ y ) ,  (2.11)
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where P, E l  and // are defined as usual, r is the clearance radius between the 
duct and the beam, we is the beam weight and a  is an angular perturbation. The 
terms on the right correspond to the weight of the contact force and the sinusoidal 
configuration respectively and an increase in //, increases the sinusoidal buckling 
load.

2.5 Concluding remarks

Having had an extensive look at the previous research connected to the ideas of 
geological folding, it has become obvious that the crust is usually made up of 
layers. The levels of the crust close to the Earth’s surface are solid and brittle; 
permanent deformation is most likely to be by shear banding which under such 
conditions is a frictional process.

As we descend further down, the rocks become more ductile, the layer boundaries 
become indistinct, and eventually will deform very smoothly by flowage. At this 
point the orogenies could be thought of as having more liquid properties and 
viscosity enters into the scheme. However, at these sort of depths one does not 
see parallel folding.

Between these two extremes, somewhere in the upper regions of the crust, the 
strata are reasonably ductile, but still solid and elastic(-plastic); here folding is 
the dominant mode of deformation and because of the layered nature and the 
high pressures, friction is still involved in the process. Even with interlayering 
of less competent material or the pressure forcing fluid between the boundaries, 
friction would not be negated completely, just reduced, and the slipping planes 
would be more prominent.

Hence slippage between layers almost certainly occurs and is vital to the folding 
process; the seams are unlikely to be adhered and shearing is only of interest in 
very thick single layers folding in a parallel manner. Possibly due to the added 
complication in modelling, even though friction has been recognized in many 
articles as a probable phenomenon, its effects have not really been considered or 
investigated properly for more concentric-looking folding.
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In some respects, it could be argued, that the fact as to whether layers are more 
solid or liquid during deformation seems fairly irrelevant, as all of the theories 
give similar values for wavelengths, thickness ratios etc. The simple elastic models 
give results comparable to much more complicated elastic and viscous models. 
If one is adding more complex behaviour, it seems foolish not to use the classic, 
although maybe more basic, techniques. This is especially true, if it is accepted 
that the layers often fold in a serial manner, as there is a whole host of theory and 
concepts deeding with localization, leading to periodicity, in the elastic buckling 
field.
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Chapter 3

The two-layer frictional parallel 
folding m odel

3.1 Introduction

Geological folding due to tectonic compression is likely to occur under conditions 
of high overburden pressure (Price, 1970; Price &; Cosgrove, 1990). In multi­
layered structures as formed from sedimentary rocks, the appearance of voids 
between layers is then either denied, or at the very least subject to severe energy 
penalties.

If identical layers of finite thickness fold in identical fashion, without voids they 
can fit together only by choosing straight limbs and sharp corners; this leads to 
the phenomenon known as kink banding (Hunt et al., 2000b; Hunt et al., 2001; 
Wadee et al., 2004). Alternatively, layers can bend with finite curvature about 
the same centre, implying that each layer differs from its neighbour and leading 
to parallel folding.

A simple compression test on layers of paper constrained by clamps between foam 
faces that deforms in such a way is shown in Fig. 3.1(a). Related experiments 
showed kink bands forming when the foam foundations were replaced with stiffer 
materials, and overburden pressures were elevated (Wadee et al., 2004; Wadee & 
Edmunds, 2005) (Fig. 3.1(b)).

103



(a)

(b)

Figure 3.1: (a) Parallel folding in layers of paper. For visual clarity, approxi­
mately every tenth  layer has been edged in black, (b) Kink banding in layers of 
paper. (After Wadee &; Edmunds 2005)

104



Whether kink bands or parallel folds are formed, one key characteristic of fold­
ing in the absence of voids is that layers will slip relative to one another. The 
simultaneous presence of overburden pressure means that friction then becomes 
of primary importance. If the deflected shape is periodic, the direction of fric­
tion reverses as the slope changes sign, and this introduces a strongly nonlinear 
effect to what otherwise might be a linear model. Chapters 3 and 4 examine 
fully solutions of a simplified two-layer bending model in the presence of such a 
nonlinearity.

This chapter starts by introducing a two-layer, axially-rigid, flexural model and 
summing the contributing energy terms which comprise strain energy of bending, 
foundation energy and work done by load. Friction is also included as a quasi­
energy contribution. The expected phenomenology is then explored using a single 
degree-of-freedom Galerkin approximation, obtained from a Fast Fourier Trans­
form analysis of experimental samples, which allows description of the important 
jammed region. The effects of small imperfections are assessed, and similarities 
with the corresponding unfolding of a bifurcation point in the absence of friction 
are explored.

3.2 Pseudo potential energy

3.2.1 N onlinear form ulation

Consider two axially and transversely incompressible layers of thickness t , formed 
from a material of bending stiffness E l ,  embedded in a soft foundation of trans­
verse stiffness k per unit length, and compressed longitudinally by a load P  such 
that they remain in contact along their length, as shown in Fig. 3.2. The coordi­
nate system for this model is taken as the arclength, x, and the vertical deflection, 
w.

To fit snugly (without voids), the layers must bend about the same centre of 
curvature. If centrelines axe to remain unchanged in length, differential stretching 
at the interface generates slip, s , between the layers as illustrated. The work 
done against friction during slip will be taken into account as a quasi-energy
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Figure 3.2: Slip between incompressible layers constrained to remain in contact, 

contribution to the total potential energy.

B ending energy

If the interface bends to a radius of curvature R , the centreline of the inner layer 
must bend to a radius R — t/2 while that of the outer layer takes a radius of 
R + t / 2. The bending energy from both layers dUb over an incremental length 
dx  is then,

A U b  =  \ : E I  (   7 +  - y) dx.  (3.1)
2 \ ( R  -  t/2)

If t2 «  4R 2 this can simply be rewritten as dUb =  E I /R ? dx  and the total 
bending energy contribution over a length L, written in terms of deflection w 

becomes (Thompson &; Hunt, 1973),

" - " j £ ‘ ( r ^ ) fc ,321
where dots denote differentiation with respect to x. Subject to the above restric­
tion on t , this expression holds over large deflections.
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Foundation energy

For a linear Winkler foundation of stiffness k per unit length, the foundation 
energy is simply

JJp = \:k f  w2 d r. (3-3)
2 Jo

Whilst a foundation consisting of independent springs might be considered geo­
logically unrealistic, we assume that continuity is maintained along the length of 
the layers.

Work done by load

If the compressive load P  moves inwards by the shortening of the interface, the 
corresponding deflection £  of the load P  over large deflections is (Thompson h  
Hunt, 1973)

*L
w2 d r£ = L — f  \ / l  — w

L
— f (1 — \ / l  — w2) d r. (3.4)

Jo

Hence the work done by the load is

P £  = P  fL(l -  V l -  w2) d r. (3.5)
Jo

Work done against friction

Over the incremental length d r  seen in the inset to Fig. 3.2, if the centreline of 
each layer is to remain unchanged in length, there must be a difference in length 
between the outermost fibre of the inner layer and the innermost fibre of the 
outer layer.

From simple bending theory, it follows that, over a small change in angle d0, this
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difference is

ds = R R
dx =

Rt
dx.

R - t / 2  R  + t / 2 )  R 2 - ( t / 2 ) 2

If, as for the bending energy, it is assumed that t 2 «  4R 2, this reduces to,

(3.6)

ds =  — dx =  t d0. 
R

(3.7)

Alternatively, for two layers of thickness t, the amount of slip over a change 
in angle d0, is approximately the difference in length between the Neutral Axis 
(N. A. ) of each layer (Fig. 3.3). From Fig. 3.3, R^  and R i2 the radius of curvature

R h

Figure 3.3: Two layers bent through a small angle dO.

for the first and second layer respectively; dxi and dx2 are the corresponding 
arclengths. Basic trigonometry tells us that for small enough dQ

d9 =

Now Rix — R i2 — t, hence

dx'

dxi dx2 
Ri% R 12

dxi

(3.8)

R i  2 R i 2

(3.9)
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which implies that

dzi =  j ^ - ( R i2 ~  t)Ui2
A dX2 +

=  ax2 -

= dx2 - d  el (3.10)

Thus the amount of slip between two adjacent layers is dOt, in agreement with 
(3.7).

As slip at position x is cumulative, the total slip s at x is given by,

5 =  f  d s =  f  t\d9\ = t\9\. (3.11)
J o  Jo

Here a modulus sign is included to ensure that for 6 positive or negative the work 
done is maintained as positive. Integrating as before over the range 0 < x < L  
the total work done against friction is then,

Uft =  fiqt f \0\dx = fiqt f | sin-1 ii>| dx, (3-12)
Jo  Jo

where (i is the coefficient of friction and q is the overburden pressure. (3.12) uses 
the relationship 9 =  sin-1 w ,  which can seen from the inset in Fig. 3.2.

3.2.2 P otentia l energy function

The total potential energy function comprises the bending energy minus the work 
done by the load (Thompson h  Hunt, 1973), together with the contribution from 
the work done against friction. The sign of this friction term can be either 
positive or negative, depending on whether the friction acts to resist the release 
of strain energy or in the opposite sense. To allow for all possibilities we therefore 
introduce a f r i c t i o n  i n d i c a t o r  (Brogliato, 1999) x  =  i l  on the friction energy. 
Here: x  =  +1 implies that friction opposes the external force and gives a positive 
friction energy contribution; alternatively, x =  — 1 implies that friction acts in 
the same sense as the external force, giving a negative friction energy contribution 
(see Fig. 3.4). We can then write the total potential energy function, valid over
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Figure 3.4: Slip directions for x  =  +1. Top: Q positive. Bottom: Q negative, 

large deflections, as follows

V =  Ub +  Uf - P S  +  x Uh

=  E l  (  f ™ j dx +  \ - k  (  w 2 d x  +  P  f  (1 — V l — w 2) d x  
J o  \ l  — w j  2 J0 Jo

+  XPft f  I sin-1 w\dx. (3.13)
Jo

The solutions of the system are then stationary points of this energy functional. 

Sm all deflection  p o te n tia l energ y  fu n c tio n

If w  is assumed to be small, then the first derivative w  is also small. This allows 
us to replace

w
1 — w;,2 by w2, (3.14)

1 — \ / l  — w2 by ^-w (3.15)

and

sin-1 w  by w . (3.16)
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Thus, the energy function (3.13) reduces to,

V = J  ( e Iw2 -  P da:- (3-17)

3.3 A useful Galerkin approxim ation

The behaviour of the system can usefully be seen in the context of an unfolded 
bifurcation plot. To develop such a description, let us assume a deflected shape,

w(x) = Q cos , (3.18)

so that Q = ((w(0)—w(L))/2.  The rational behind such a assumption is explained 
next.

3.3.1 T he Fast Fourier Transform (F F T )

We suppose that the waveshape of any layer making up part of a parallel fold is 
27r-periodic and composed of a combination of sinewaves. We can then say that 
the vertical deflection in/, written in terms of the horizontal distance along the 
layer x/, is given by

N

w,(x , )=  Y ,  (3-19)
m = - N

where the coefficients cm can take any complex value and the greater N  is, the 
more accurate the resultant waveshape. Here i2 =  — 1 as usual.

The coefficients cm can be determined using the MATLAB function f ft  (The 
Math Works, 2001), which returns the Discrete Fourier Transform (DFT) of a 
vector (Solymar, 1988) computed using a Fast Fourier Transform (FFT) algo­
rithm (Press et al., 1986). Given a vector of vertical displacements W  of length 

the function C =ff t(W)  implements a one-dimensional Fast Fourier Transform
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by

Ck  = Y .  Wmu ^ - 1)lK~1\  (3.20)
m=1

where

u N = e(-2’r<)/JV, (3.21)

is an Nth. root of unity. If w\ is a real function then we have that Ck  =  Cn - k +i-

From “Numerical Recipes: The Art of Scientific Computing” (Press et al., 1986), 
Fast Fourier Transform algorithms tend to work using the following methodology. 
A DFT of length N  can be w ritten as the sum of two DFTs, each of length N/2,  
one formed from the even-numbered points and the other the odd-numbered 
points,

Ck  — C eK T Cj(, (3.22)

where C ^  (C^)  is the K t h  component of the DFT with length N/2  formed from 
the even (odd) components of the function.

The idea is then used recursively, i. e. C ^  is reduced to the transform of its N/A  
even-numbered ((7Jf)  and odd-numbered (Ck ) data. It is easiest to do the above 
if N  is an integer of power 2, if it is not then pad with zeros. The process is 
continued until Ck  is subdivided into transforms of length 1, and then for every 
pattern of e’s and o’s there exists a single point transform that is just one of the 
input numbers’ function.

Although this sounds complicated the practicalities are far more simple, we just 
need to supply the fft  function with a vector of length N  showing how the vertical 
deflection of a layer alters over a single wavelength. For reasons that axe apparent
from the description of the FFT  above let N  =  32. To get the points Wm, a
rather basic, but effective, technique was employed using the spreadsheet package 
EXCEL. A photograph, cropped to a typical experimental wave, can be set as the 
background of an (x , iu)-scatter plot in EXCEL; the points on the plot can then be 
moved to follow the curve of a particular layer (Fig. 3.5). Wm alter automatically 
and whilst the values themselves are irrelevant, the difference between them is of
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X
Figure 3.5: Fitting points along deformed experimental layers.
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importance when tracing each path. W  can then be exported to the f ft  command 
in MATLAB to obtain C.

As in Fig. 3.1, every tenth layer in Fig. 3.5 is blackened to highlight the defor­
mation and the fft  routine was performed on each of the visible black layers. 
Fig. 3.6(a) shows how the magnitude of the initial coefficient ci, associated with 
cos x\ , changes throughout the multilayer. It is immediately obvious that towards 
the centre of the multilayer the layers become much more sinusoidal in shape. 
This result is made even stronger when studying the relative sizes of Ci and C2; it 
can be seen from Fig. 3.6(b) that in the central region of a parallel fold the first 
coefficient dominates the subsequent ones. It is worth noting that not only does 
Fig. 3.6(b) show the sinusoidal nature of the central layers, but also emphasizes 
the non-sinusoidal behaviour of the layers on the extremities.

Hence it is natural, as a first approximation, to assume that the central interface 
is a single cosine of the form given in (3.18). We then consider the energy V(Q, L ) 
of the solutions of this form and look for stationary solutions in this restricted 
class. In Chapter 4 we extend the analysis to the full class of solutions via the 
calculus of variations, but this simple analysis leads to considerable insights. The 
deflection is illustrated in Fig. 3.4 over the range — L <  x <  L, for Q positive 
at the top and Q negative at the bottom. When Q > 0 the function iu(x) is 
decreasing on the interval [0, L] so on this interval we could write |tb| =  aw 
where a  =  — 1. Similarly when Q < 0, the function iu(x) is increasing on the 
interval [0, L] so we could again write |ty| =  aw  but with a  =  1. This alternative 
notation will prove useful when we look at the more general solutions by means 
of the calculus of variations in the next chapter.

When the ansatz (3.18) is substituted into the linearized potential (3.17) the 
resulting energy is given by

V  = l-E IL  ( £ )  V  -  \ p L { £ )  Q2 + \ k L Q 2 +  2xftqt\Q\. (3.23)

Here the modulus on w , and hence on Q , ensures that for positive x, the energy 
contributions from all four quadrants of Fig. 3.4 are always positive as illustrated.
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Figure 3.6: (a) How the magnitude of c\ alters throughout the multilayer and (b) 
Comparing |c2 1 to |ci| throughout the multilayer.
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3.3.2 Bifurcation diagram

The combination of the coefficient of friction // and the friction indicator x  now 
can be seen in exactly the role of an imperfection, “unfolding” the bifurcation 
point at Q =  0 and P  =  P G (see §4.3.3) as shown in Fig. 3.7. To derive this 
figure we look at the stationary values of V  with respect to variations in Q, so 
tha t we solve the equation d V /d Q  =  0. This gives

Q = ± P * V L - S * 7 » = k L '  ^

where the ±  term  in this expression arises from the modulus sign in the expression 
(3.23) for V , so that we take the +  sign if Q is positive and the — sign if Q is 
negative. Indeed, the presence of the modulus sign |Q| gives the unfolding a rich 
and novel structure, extending the more usual classical picture.

p

Min. Instability load
Jammed region

X =  + l

X =  - 1

Figure 3.7: Bifurcation diagram indicating jam m ed region for constant //.
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3.3 .3  C ritical loads and w avelength selection

There is a critical value of P  = P °  at which \Q\ =  oo. From (3.24) this is given 

by

nC 2E I tt2 kL2
P 0 = - j T -  + ^ -  (3.25)

Conventionally, this is obtained by minimizing P c  over all possible values of L. 
It is easy to see that this occurs when

L  =  , (3.26)

and

P °  =  2V2EIk .  (3.27)

This expression corresponds to the classical result for a strut on a linear elastic 
foundation of bending stiffness 2E l  (Hunt et al., 1989), and allows us to deter­
mine the critical wavelength at which we expect to see the unfolded bifurcation 
structure.

Alternatively, we may determine L from the condition that the energy per unit 
length should be stationary with respect to changes in L (Peletier, 2001a), so 
that

d(V /L ) /d L  = 0.

This leads to the condition

- 2 E I  g)V  +  \ p  ( y ) * Q 2 -  2X M ^  =  0. (3.28)

Combining the expressions (3.24) and (3.28) it is easy to see that the critical 
wavelength is again given by (3.26). Thus the alternative conditions on T, for 
the minimum critical load and for the energy to be stationary with respect to 
changes in L, lead to identical values for the wavelength.
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3.3.4 Stability o f the solution paths

Stability of equilibrium under dead load is governed in the first instance by the 
second derivative (Thompson &; Hunt, 1973),

W  = E I * _ 1 P *  I
dQ2 L3 2 L 2 v '

If d2V / d Q 2 > 0 there is a relative minimum of V  and the solution is stable. 
Conversely, if d2V/dQ2 < 0 there is a relative maximum and it is unstable. 
Clearly, with P c given by expression (3.25), if P < P c  we have stability and if 
P > P °  we have instability.

3.3.5 Jam m ing

At constant load P , points in the region between the two curves defined by 
X = — 1 (or +1) are stationary positions where the system can be considered 
to be “trapped” or “jammed” between the two critical slip conditions with Q 
positive and negative and the frictional forces acting in opposite senses (as in the 
top and bottom of Fig. 3.4). Anywhere within the jammed region the system 
sits in equilibrium. The finite area of the region therefore replaces the infinites- 
imally thin equilibrium paths of a perfect (bifurcating) system without friction 
(Thompson &; Hunt, 1973). Placed outside the jammed region, at constant load 
the system would move horizontally towards it until being brought to a halt at 
its boundary.

From Fig. 3.7, a typical sequence under changing load might then be as follows. 
At zero load, the system can rest in equilibrium anywhere along the Q-axis within 
the jammed region. To get to the intersection with a x  =  — 1 line f°r example, a 
|Q| value greater than that at the intersection can be input, whereupon the system 
will slip back to the boundary. This reverses the direction of the frictional arrows 
from those shown in Fig. 3.4. Application of positive load P then moves the 
system into the jammed region, following the dashed line, until the equivalent 
critical state for x  =  +1 1S met. Instability then occurs, i. e. the system will 
suddenly deflect with |Q| increasing, and continue to deflect. In the presence of 
a suitable nonlinearity there may be restabilization at some other larger value of
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|Q |, but for the linear system this would never happen.

Note that symmetry of the curves about the value P  =  P c suggests that the 
minimum instability load is always at P = 2 P c =  Ay/2 E l k ,  independently of 
the value of /z 0). This suggests that, as /z vanishes, there would be a sudden 
drop in the load to cause instability, from 2P °  to P c . The effect is lost with the 
introduction of a small imperfection, as described in the following section.

3.3 .6  In itial im perfections

An imperfection e in the sense of Q , implying that the system has a natural bias 
towards buckling in the positive Q direction, would be expected to appear in the 
energy function as a term in eQ with a negative coefficient (Thompson h  Hunt, 
1973). Hence from (3.23)

V, =  \ e I l (j )* Q2 - I j » z ( J ) 2 Q* + \kLQ* + 2XM t \ Q \ - e Q  

=  ( A - P B ) Q 2 + 2Xn q t \Q \ - e Q .  (3.30)

The imperfection has the effect of shifting the jammed region as shown in Fig. 3.8, 
which can be seen by minimising (3.30) over all Q. If Q > 0 then

=  2(A -  PB)Q  +  (2X M t -  e) =  0,

giving

If Q < 0 then

leading to

- ( 2 xnqt -  e)
Q 2( A - P B )  ' ^

| |  =  2 ( A -  PB )Q  -  (2 x w t  +  e) =  0,

o - g & w t  (“ 2>
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Let threshold value eth =  \2x^qt\. Then if 0 < e < eth we get Fig. 3.8(a) and if 
e > eth? Fig. 3.8(b). If the magnitude of t  is greater than that of eth5 the bias

P

x = + i

(a)

X =  +1 X =  - l

X =  + l

0>)

Figure 3.8: Jamm ing in the presence of a positive initial imperfection e: (a) 
0 < e <  eth, (b) e >  eth.

is strong enough to push the critical slip curve for x  =  +1 and Q > 0 into the 
region where P  < P G, as shown in Fig. 3.8(b). The jammed region then divides 
into two and misses the bifurcation point altogether. As eth depends linearly on 

eth “ ► 0 as fi —*■ 0. The sudden drop in minimum instability load described in 
the previous section is therefore destroyed by the presence of a vanishingly small 
imperfection.

3 .4  C o n c lu d in g  rem ark s

This chapter presents a basic model for the concentric folding of two competent, 
elastic layers surrounded by a less competent medium, under layer parallel com­
pression. The presence of overburden pressure obliges the layers to remain in 
contact along their length and suggests that frictional slip along the layer bound­
aries is the driving force behind the mode of deformation. This is in stark contrast 
to previous work in this field, which either concentrates on predominantly viscous 
effects or assumes perfect adherence or slip.
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Simple bending theory allows us to formulate a quasi-energy formulation that 
includes the energy contribution of the frictional resistance to slippage, and in 
opposing the direction of sliding, the work done may be positive or negative. Us­
ing a simple Galerkin approximation, that is justified from experimental results, 
the nonlinear effect of friction is fully explored and shown to act like an imper­
fection. Equations for the critical load and wavelength are found to be consistant 
with classical results; however the existence of a “jammed” region means that 
the former is in most cases unobtainable.

The model given in this chapter forms the foundation for the rest of the thesis. 
It is remarkably powerful and with relatively little extension, all of the pertinent 
behaviour associated with parallel folding are shown to exist in the following chap­
ters. The next chapter will compare the conclusions of this fundamental regime 
to the more general case using the calculus of variations. Linearization of the 
resulting differential equation, simplifies this analysis, allowing the distinctions 
between the models to be highlighted.
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Chapter 4

Num erical analysis for the  
general case

4.1 Introduction

In the previous chapter we presented a two-layer parallel folding model, the inclu­
sion of friction in this model being the fundamental difference to previous investi­
gations into concentric geological buckling. A sinusoidal waveshape inserted into 
the quasi-energy formulation highlighted the effects of including the frictional 
force and allowed us to find equations for the critical load and wavelength.

In this chapter a nonlinear differential equation for the response of the two-layer 
model is developed from the calculus of variations. When the energy is linearized 
to simplify the analysis, we still have a nonlinear system, due to the direction- 
dependant friction term. Solutions of this differential equation are found in the 
absence of the foundation and the subtle differences between it and the Galerkin 
model are explored using a phase plane representation.

When the foundation is introduced, the solution technique is outlined and equa­
tions are found for the wavelength and critical load. The chapter finishes by 
giving a description of the numerical continuation code AUTO (Doedel et al., 
1997), which is then used to plot a few comparisons between the linearized and 
fully nonlinear model produced by consideration of the full set of possible geo­
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metric effects. It is shown that the nonlinearity changes the behaviour very little 
for the majority of the range of feasible amplitudes.

4.2 Calculus of variations

The Galerkin analysis of the previous chapter has constructed a stationary solu­
tion of V  over the class of cosine functions. We now extend this analysis to find 
the stationary solutions of V  over the class of all admissible functions. We will 
continue to consider solutions which have a half wavelength of L  so that they are 
monotone over the interval [0, L] and

ii>(0) =  w(L) = 0. (4.1)

We initially assume that L is known. Later we consider two alternative mecha­
nisms for finding L, either that the critical load P c  is minimised (equivalent to 
the calculation in (3.27)), or that V /L  is stationary with respect to changes in 
the length scale. (Both mechanisms have been seen to be equivalent for the space 
of cosine functions).

Over a half-wave of length L , the total potential energy of the system has the 
form

f LV = I F(w,w ,w)  dx,
Jo

where F,  the total potential energy per unit length, is given by

*• 2 2

F  =  EI-~ ^  2 -  V l  -  w2) +  k ^ -  +  sin_1(ti;), (4.2)

where a — ±1. As L is half a wavelength, w does not change sign and thus a  is 
fixed at either +1 or — 1 and F  is a smooth function of w , w and w. Here, as in 
Chapter 3, a = +1 if w is increasing over the half interval [0, L\ and a  =  — 1 if w 
is decreasing over the same half interval.

Applying the calculus of variations by taking a small increment Sw of the function 
w , we have that the perturbation to the energy V  is given to leading order by
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the expression ((Thompson &; Hunt, 1973))

ct, t L ( d F c~ d F c . d F c \ ,
c v  — I -ttttow  +  77 -ro w  - f  t t - o w  d x .  

J q y  UW UW UW J
(4.3)

The order of differentiation in this expression may be reversed, for example the 
second term  may be written as

6wdx.
r d F c . , [ L dF  d

Jo M SwiX = j 0 M T x

Hence integration by parts of the expression (4.3) yields

dF
SV  =  | ^ - 6 wow +

d F c . ] L
-^rOiv 
OW

d d F c 1L

+ L /  d2 d F  d dF  d F \  c ,
  i TTT +  7T— OW CiX.i ( dx2 dw dx dw dw 

For SV = 0 for all Sw we require that both the ordinary differential equation

(4.4)

d2 d F  d dF  dF
dx2 dw dx dw dw (4.5)

should be satisfied, and that each of the expressions in the square brackets should 
be zero. This leads to a new set of boundary conditions for the function w. The 
boundary conditions (4.1) force all admissible perturbations to satisfy

6u>(0) =  6w(L) =  0,

and hence terms in the second square bracket vanish identically. The first and 
third terms in the square brackets also vanish for all Sw if, at x  =  0 and L , we 
have

_ 0
dw dx dw (4.6)

Substituting from the explicit form (4.2) for F,  and making use of the boundary 
conditions (4.1), this reduces to,

~  2E Iw  =  0,
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at x = 0 and L. We thus find the additional boundary conditions

i»(0) =  &■(£) =  (4.7)

The new boundary conditions (4.7) represent a step change in the shear force 
at the boundaries, and requires some explanation. Frictional traction on a layer 
sums to a force of magnitude fiqL, acting along an outermost fibre as shown in 
Fig. 3.4. Each is reacted at one end of the region in question by an equal and
opposite force acting at the neutral axis of the layer. This sets up an out-of-
balance moment in each layer, of magnitude fiqLt/2, which in turn is resisted 
by a couple comprising lateral point loads at the ends of the region. It is these 
reactive point loads tha t appear as the boundary conditions (4.7).

Performing the necessary differentiations on the explicit form of F , from the 
Euler-Lagrange equation (4.5) we obtain the nonlinear differential equation

2 E l [ w ’(l — ib2)-1 +  {Awww -f tb3}(l — tb2)-2 +  4u>3ib2(l — ib2)-3] 

+ P tb (l — ib2)-1/2(l -f ii>2(l — ib2)-1) — x/^?ti<;|tb|(l — tb2)-3/2 T kw — 0. (4.8)

The associated linear differential equation for small displacements is given by

2 EI 'w  +  Pib +  kw = 0, (4-9)

with the same boundary conditions as before. This equation corresponds to
taking the stationary values of the energy resulting from the ‘linearized’ energy 
density given by

?b2 up
F = EIib2 - P —  + k—  +  x M t H ■ (4-10)

It is interesting that the only way that friction enters the linear differential equa­
tion (4.9) is as the boundary term (4.7). Although friction acts along the length, 
bending theory is based on the assumption that plane sections remain plane, and 
thus at first order is unable to account for a distributed shearing effect like that 
being imposed here. However, it is important to note that through the inclusion 
of (4.7), even though we have linearized the differential equation, the system is 
still inherently nonlinear. This is due to the friction being direction-dependent.

The linearity of (4.9) simplifies the analysis and allows us to deduce some results
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immediately without solving the differential equation explicitly. In particular we 
have the following.

L em m a 1 I f  k > 0 then

•L
f w  dx =  0. (4-11)

Jo

Proof  From (4.9) it follows that

w = -^-(2 E I ’w +  Pib).
K

Thus

I b 1 I L 1
I w (x ) dx =  — — I (2E I ’w +  Pib) dx =  — — [2E I ’w +  Pw]% =  0,

Ja k J0 k

using (4.1) and (4.7). For consistency, when k =  0, we insist that w d x  =  0.

L em m a  2 The function w depends linearly on the friction.

Proof. Suppose that the function u{x) satisfies the equation plus boundary con­
ditions,

2 E I u  +  Pil +  ku = 0, 
u(0) =  u(L) =  0,

«(0) =  « ( i )  =  | f

Let w =  pu, then
dw d(/zu) du
dx dx ^ d x ’

etc. Substitution leads to an identical equation,

2EI'w  +  Pib +  kw =  0,

with the boundary conditions,

u>(0) =  w(L) =  0,
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and,

axvqtiu(0) =  w(L) =
2E I

4.3 A n analysis o f the linear equation

The linearity of the differential equation (4.9) makes analysis straightforward, as 
seen in this and the next section. This analysis gives considerable insights into 
the non-classical role played by the modulus term  representing the friction. A 
fuller numerical investigation of the nonlinear equation (4.8) is given later. The 
case of k =  0 is technically easier and is given first.

4.3.1 T he solution for k  =  0

When k =  0 the ordinary differential equation (4.9) becomes

2 EI 'w  +  Pw  =  0,
w (0) =  w(L) = 0,

iS(0 ) = W(L) =  (4.12)

Integrating once, and using the boundary conditions to determine the constants
of integration we have

2 E I w  + Pw = Z Z f f - .  (4.13)

In the phase space describing (w , w) the solutions of this equation give trajecto­
ries, which are piece-wise elliptical arcs centred on the point

(» .* )  =  ( ^ * . 0

Hence (4.13) has the solution

“ (z) =  ^ P ^ x  + Acos + B s i n [ y ^ ] x ) + C - (4-14)
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To find the constants A  and B  we apply the boundary conditions to give the 
solution

clxmt y/2EIaxpqt 
W = — x  + ----- ^ -----

s m , , / 2
+  C. (4.15)

(Note: (4.15) uses the relation

I , 1 ( 4 16)
1 v  2 E I  2 )  sm (y /P j2EIL)

which comes directly from the double angle formulae). The free constant of 
integration C  can be fixed by insisting (following Lemma 1) that the mean of w 
should be identically zero.

Alternatively, the same result can be found by seeing that the auxiliary equation 
for the differential equation is

*2(? + A) = 0- (417>
The solutions of this equation axe <j> =  0 (twice) and <j> =  P f 2 E h  and from
the superposition theorem

w(x) =  Dx  +  A cos [ \ /  +  B sin  +  C. (4.18)

As before, to find the constants D , A  and B , we use the boundary conditions 
which leads to (4.15).

For the solution of (4.15) to be consistent with the earlier analysis, we require 
that w(x) should be monotone over the interval [0,L]. This imposes a restriction 
on P  and it is easy to see that for monotonicity we require that P  should lie in 
the interval

P  e [0 ,  P m a x \  =

8tt2E I
5 L2

(4.19)
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Here, Pmax is the value at which

u)(0) =  w(L ) =  0, (4.20)

and we have that

- - M ' - i ' / S n ) " -

Thus ta n (y /P /2 E IL /2 )  = 0, implying that either y /  P  / 2 E I L / 2  =  Oor y /P j2 E I L f2  =  
7r and yielding (4.19) above.

Consistent with the Galerkin analysis of Chapter 3, we define

Q = i(uj(0) -  w(L)),  

so that, after some manipulation, we have

which is directly comparable with the expression (3.24).

We see from (4.22) that |Q| becomes infinite when t3 n (y /P /2EIL /2 )  =  oo. This 
occurs when y j P / 2 E I L / 2  =  7t/2  and thus the critical value of the external load 
is given by

_c 27t2E I
P °  = (4.23)

This is precisely the value obtained by the Galerkin analysis given earlier in (3.25) 
when k = 0. However, a consequence of setting k = 0 is that L  must be fixed a 
priori. As L  increases, P c  drops, until for a two-layer specimen of infinite length, 
P c  =  0 and L = oo. Hence whilst the above analysis gives insight into the form 
of the solutions of the problem, it highlights the importance of the foundation 
stiffness in selecting the value of L, and we return to this point presently.
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4.3.2 B ifu rca tion  d iagram s for k =  0

Using the expression (4.22) we may plot the (Q , P ) bifurcation diagram and the 
resulting solutions described by (4.15). There are two cases to consider here.

Case 1: slipping

In this case the friction indicator is fixed at one of the two critical values of 

X =  ±1. The value of Q for each value of P  is then given by (4.22). There 
are four quadrants to the resulting figure, obtained by taking x  =  i l  and a  = 

±1, as shown in Fig. 4.1. This picture is very similar, both quantitatively and 
qualitatively, to tha t given in Fig. 3.7, although now the external load P  is 
restricted to be less than Pmax.

0.1 0.1

- 0.1 - 0.1

a  = +1

-0.5 -0.4 - 0.1 0.4 0.5
- 0.1 - 0.1

Figure 4.1: Plot of load P  against amplitude Q , for k = 0 , E I  =  0.5, L =  1 and 
[Lqt — 0.1.

If x  =  +1 we have a positive energy contribution due to friction, which in this 
case acts like strain energy of bending in resisting the external load. If x =  — 1 we 

have a negative energy contribution due to friction which now acts in the opposite
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sense, to resist the release of strain energy. Examples of these two extremes are 
given in the (ti?, ib) phase plane in Fig. 4.2, along with a third solution well within 
the equivalent of the jammed region of Fig. 3.7, at x = 0.032.

w

a = -1 a  = +1
0.8

0.6

0.4

0.2

- 0.3 - 0.1 0.2- 0.2
- 0.2

- 0.4

- 0.6

- 0.8

1

Figure 4.2: Phase plane trajectories plotted for k =  0, E l  =  0.5, L = 1 and 
fiqt =  0.1.

Over most of the trajectory these solutions appear very similar, with the only 
significant differences arising at the ends of the sample. This reflects the difference 
in w  which comes about as the directions of the point load reactions reverse with 
the change in sign of X-

Case 2: jam m in g

Some nonlinear work against friction is experienced in moving between the two 
solutions given by x  =  — 1 and X =  +1 through the equivalent of the jammed 
region of Fig. 3.7. However, in the linearized equation (4.9), the total work done 
against friction over one half wavelength is

aXM * [  w dx  = 2 x f iq t \Q l  (4.24)
Jo
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Hence, there is no difference in the work done against friction between any two 
solutions with the same Q. A path of jammed solutions in the jamming region can 
then be described by fixing Q in the expression (4.22) and letting x  varY between 
— 1 and +1. This in turn implicitly determines the value of P  corresponding to 
each such value of x- Note that if x —► 0 then we have P —> P c and the solution 
approaches the pure sinusoid function iu(:r) =  Q c o s ( t t x / L ) ,  as considered in the 
Galerkin analysis.

4.3 .3  T he solution for k  /  0

The solution of (4.9) for k > 0 can be obtained along similar, although more com­
plex, lines to that for k =  0. This analysis allows a value of L  to be determined.

Seeking a solution of (4.9) of the form iy(x) =  e%{px we obtain

2EI<p a -P<p2 + k = 0. (4.25)

This is a quadratic in <p2 and hence

^  =  m  ±  m v p 2  ~ S E I k - (4-26)

Observe that if p> is real, then the minimum value of P  over all values of p> is 
given when

P  = 2v'2£/fc and . (4.27)
AEI

Let = p>2_ and where <p± are given in (4.26). Then,

w(x) =  Ai  cos(o;ix) +  Bi  sin(o;ia;) +  A 2 cos(co2x) +  B 2 s i n ^ z ) .  (4.28) 

From the boundary conditions given in (4.1) and (4.7), at x =  0 we have

uj\ B\ d2 B 2 — 0,
3o  3o—US{D\ — 6^2-D2 = 2 E l  ’
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and hence,

_ -a -x m i  i o a XM t
1 l E l w ^ u l - w l )  2 2 E Iu 2{ u l - u l ) '

At x =  L  we have similarly that

—ujiAi sm(ujiL) -f ^ \B \  cos(o;iL) — UJ2 A 2 s in ^ L )  +  LO2 B 2 cos(u;2L) =  0?
axpqt

ujfAi sin(u>iL) — uĵ B i cos(u>iL) +  ijj\A2 sin(u;2-L) — w \B2 c o s ^ L )  =  .
2 h/1

Solving this simultaneous system, provided that

u>iu>2{wi — ^ 2) sin(u;iiy) s in ^ L )  7̂  0, (4.29)

Ai and A2 are obtained uniquely.

Loss of solvability occurs when either or is a multiple of 7r. The cor­
responding value of P  =  thus arises when (p± from (4.26) equals 7x/L  so 
that,

nC 2 E In 2 kL2 
p  = — + ^ '  ^

This result corresponds with the value (3.25) given by the Galerkin analysis.

4.3 .4  W avelength selection

For a particular foundation stiffness k , the length of the half-wave will determine 
the value of the bifurcation point P c . The question we now ask is: how is the 
wavelength and hence P c selected?

As in the Galerkin analysis, we may choose L either to minimise the critical 
load P c , or to seek the value of L such that d(V /L )/dL  = 0. For the Galerkin 
approximation these two approaches give the same answer, but in this more 
general case the answers axe different, although very similar.
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M inim isation  of th e load

To find the half-wavelength associated with the minimum critical load we can 
minimise p c over all values of L.  Fig. 4.3 shows how P c  changes with L  for 
various values of k. Differentiating (4.30) with respect to L  and setting the result

k=10 k=5
10

9

8

7

6

O - Q. 5

4

3

2

1

00 2 5 6 71 3 4
L

Figure 4.3: Variation of P c  with L for different values of k.

to zero leads to

J ' - ' V l T '  (4'31)

corresponding to (3.26) of the Galerkin analysis. Substituting into (4.30) again 
gives the classical expression (3.27) for the minimum value of P °  for the strut on 
linear elastic foundation (Hunt et al., 1989).

Let y  = k l !4x  and P  =  P k ~1̂ 2. Then the linear differential equation (4.9) rescales 
to,

2EIWyy yy  + PWyy  +  W =  0. ( -̂32)
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Also, if we have L as given in (4.31), then w satisfies the boundary conditions,

iuy(0) =  wy(7C‘V2E I)  =  0, (4.33)

and

“w ( 0 )  =  wm (z V 2 E I)  = (4.34)

Let fik~3/4 =  p,. Then we have,

« W > )  =  wm ^ ^ 2 E i )  = Ĉ .  (4.35)

We deduce that all solutions of (4.9) for general k , with the boundary conditions 
satisfied when L is given by (4.31), are rescalings of the solution when k — 1.

Stationary values of energy density

Alternatively we may consider the problem of finding stationary values of the 
energy per unit length (Peletier, 2001a). To do this we set x =  and express 
all derivatives with respect to £. This allows us to rescale the linearized energy 
so that all calculations are over the length [0,1]. We then have

V /L  =  j f  ( / r 4£ / K ) 2 -  I - 2| k ) 2 +  +  £ - W K l )  df, (4.36)

where primes refer to derivatives with respect to £.

Differentiation with respect to L  gives,

d {V /L )/dL  = -  f  (4L~5E I(w ")2 -  L~3P(w')2 + L - 2X^ W \ )  d f . (4.37)
Jo

For a stationary solution, d (V /L ) /d L  =  0. Thus, after a rescaling of the above in­
tegral to be an expression in the original variables, it follows that for d (V /L ) /d L  =  
0 we must augment the ordinary differential equation (4.9) plus the boundary
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conditions (4.1, 4.7), with the integral condition

/  (AEIib2 — P w 2 +  x /^ I H )  da: =  0- (4.38)
Jo

The equation (4.38) implicitly defines the length L.

Now, the linearized ordinary differential equation for w is given by

2 E I w  +  Pib -f- kw  =  0,

with u>(0) =  ib(L) =  0 and tii(0) =  ib(L) =  axi^qt/2EI. Multiplying by w,
integrating by parts over [0, L\, and applying the boundary conditions, we have

rL
[axiiqtw]o +  I (2EIib2 — Pib2 +  kw2) d r  =  0. (4.39)

Jo

But

so that

f L[ a x f i q t w ]  o =  /  x ^ l ^ | d x ,  
Jo

f  (2EIib2 — Pib2 +  kw2 +  da: =  0. (4.40)
Jo

Combining the two equations (4.38) and (4.40) gives the following two results. 

L em m a 3 I f  w and L are such that 6V/6w = 0 and d (V /L ) /d L  = 0 then

p L  pL

2 E I I w2 dx = k I w2 d r, (4-41)
J o  Jo

or, the strain energy of bending equals the energy stored in the foundation.

L em m a  4 The critical value of L defined by Lemma 3 is independent of the 
friction p.

Note that if we approximate u;(r) by Q cos(7r x / L)  and u)(r) by —(tt/L)2Q c o s (tt  x / L)  

then (4.41) gives that L «  t t(2 E I/k )1/4, which is precisely the expression obtained 
earlier. However, for fi ^  0, the result for L differs slightly from that of (4.31), 
as shown in Fig. 4.4.
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3.1,

—  x = -1 
- -  x  =  + 1

0.2 0.4 0.6 0.8 1.2

Figure 4.4: Difference in wavelength prediction between equations (4.31) and 
(4.42), plotted for E l  =  0.5, A: =  l , a = l  and nqt  =  0.1.

If as before we rescale the identity (4.41) by setting x  = L £  we have,

2 E I
L 4

f  w " 2 d«£ = k  f  w 2 d£. 
Jo Jo

Thus

L =
2E l  f 0 w"2 d£

k Jo
(4.42)

But from Lemma 1, w  d^ =  0, and also io^(0) =  to^(l) =  0. It therefore follows 
from repeated applications of the Poincare inequality (Smoller, 1983; Marti, 1986) 
tha t

/  w"2 d ^  >  7r4 /  w2 d<̂ .
Jo Jo

Combining results we have that for all solutions

(4.43)

L >  7T
* 2 E I

k  ’
(4.44)

as seen in Fig. 4.4.
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4.3 .5  P oincare’s inequality

Before proceeding to the numerical solutions of the fourth order differential equa­
tion. A brief interlude is necessary, to give an overview of the Poincare inequality 
and hence explain the result given in (4.43).

Suppose tha t, over the interval [0,1], we wish to minimize a system of the form

/o ' w '2

fo w‘‘ d£ ’

with either the boundary conditions,

iu(0) =  iu(l) =  0, (4.46)

or the integral condition that

/  wd£ =  0. (4.47)
Jo

Then, the minimum is obtained if w satisfies the ordinary differential equation

w" -f Aw =  0, (4.48)

and (4.45) takes the value of A.

This implies that if (4.46) holds then w =  sin(7r£), or if (4.47) holds then w =  
cos(7t£ ) . In both cases w is sinusoidal and A =  7r2.

Proof. Follows from the fact tha t the minimum value of

f o 'S 2#

(4.45)

fo W'1 d£ ’
(4.49)

over all functions w is (by scaling) the minimum of w'2 d£ over functions such 
that / 0 w2 d£ =  1. Hence, if A is a Lagrange multiplier, it is the minimizer of

j  w,2d £ - \ ^ J  w2 d£ — 1^ (4.50)

138



Applying the calculus of variations to (4.50), the minimum is achieved when w 
satisfies the Euler-Lagrange equations so that

w" +  \w  = 0. (4.51)

If tn(0) =  u;(l) =  0 or =  0 then the only solution of this arises when
A =  7r2 and depending on the conditions w =  sin(7r£) or w =  cos(7r£).

The Poincare inequality effectively says that because the minimum of (4.45) is 
equal to 7r2, when w is sinusoidal, then for any other function where (4.46) or 
(4.47) holds

1° W ^  >  r*. (4.52)

The closer that the function is to a sinewave, the closer that the ratio given by
(4.45) approximates 7r2.

4.4 Num erical results

4.4 .1  N um erical solutions: A U TO

Primarily AUTO is used to solve either algebraic systems

f(u ,p ) =  0, (4.53)

or systems of ordinary differential equations (ODEs) of the form

u ' =  f(u ,p ) =  0, (4.54)

where f  and u are n-dimensional vectors in real space and p denotes one or
more free parameters used to see how the initial solution evolves through the nu­
merical continuation process and are termed continuation parameters. The code 
discretizes problems using orthogonal collocation (de Boor &; Swartz, 1973) and 
for each problem automatically adapts the mesh in such a way as to distribute the 
local discretization error evenly (Russell h  Christiansen, 1978). Whilst AUTO
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is designed for autonomous systems, non-autonomous systems can be solved by 
introducing an extra variable transforming an n-order non-autonomous system 
into an (n +  l)-order autonomous system.

For boundary value problems (BVPs) on [0,1]— (4.54) expressed with boundary 
conditions—AUTO can compute solution curves subject to both general nonlinear 
boundary and integral conditions. The boundary conditions can be separated or 
non-separated— i.e . where both ends are involved in a single equation. Different 
types of critical point can be detected including: folds, bifurcation points, period- 
doubling bifurcations, torus bifurcations and Hopf bifurcations. In addition with 
the HOMCONT package, the detection of homoclinic and heteroclinic global 
bifurcations is possible.

The continuation routines use predictor-corrector methods, which, for starting 
values u =  u0 and p = p0, find the next point along the solution path by first 
taking a prediction as to the values—(u i,p i). To correct this initial guess, a 
modified Newton-Raphson method is used by the code to iterate until it finds 
the actual solution—(u i,p i) to a specified tolerance. However, correction by this 
method fails at limit points and folds; hence pseudo-arclength continuation is 
used in conjunction with Newton-Raphson (Riks, 1972), such that computations 
are performed past where a fold is encountered by p. Thus, a new parameter 
using the norm of u, T, is introduced in combination with p where

f ( u ( r ) ,P(r))  =  o | |u ( r ) | |2 + p ( r ) 2 =  i, (4.55)

and a component of the norm of u is given by

f  u2 dx. (4.56)
o

For BVPs, pseudo-arclength continuation is given by

f(u i,pi) =  0 (ui -  u0)Tu 0 +  (pi ~  Po)po =  A r, (4.57)

which is put into Newton’s method, with Ui and pi found iteratively.

This procedure works well for fold detection, but poorly for bifurcation points.
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To get around this, Crisfield and Wills (1986) discovered, tha t by examining 
the negative pivots of the tangential stiffness m atrix, they could tell the differ­
ence between folds and bifurcation points in nonlinear finite element techniques 
such as the modified Newton-Raphson. Doedel (1997) outlines the details of the 
numerical algorithm used to detect bifurcation points in AUTO.

Numerical solutions to the governing differential equations (4.9) and (4.8) subject 
to boundary conditions (4.1, 4.7), have been obtained using the numerical con­
tinuation code AUTO (Doedel et al., 1997). In accordance with the convention 
of this package, the output that follows is given over the rescaled length £ =  [0,1] 
discussed earlier.

4.4.2 L inear equa tion

Numerical solutions to the linear equation (4.9) are presented in Fig. 4.5. Cor­
responding wave shapes and phase portraits are given in Figs. 4.6 and 4.7, for 
the two different values of Q =  —0.082 and Q = —0.42 respectively, at the two 
extremes of slip represented by x  =  ±1.

P

(4.5

3.5z  = +1 
a = +1

2.5

X = -1
a = -10.5

Q
0.1 0.2 0.3 0.4 0.5-0.5 -0.4 -0.3 -0.2 -0.1 0

Figure 4.5: Bifurcation plot for the linear differential equation (4.9) plotted for 
E l  =  0.5, k =  1, fiqt =  0.1 and L = tt.
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0.06
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-0.08

- 0 .1,
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Figure 4.6: Waveshapes and corresponding phase portraits for the case of Fig. 4.5 
at Q =  -0.082.

0.4   P=1.85
 P=2.16
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- 0.1

- 0.2
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Figure 4.7: Waveshapes and corresponding phase portraits for the case of Fig. 4.5 
at Q =  -0 .42 .
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4.4.3 N o n lin ear equation

Numerical solution of the full nonlinear equation (4.8) for a typical set of parame­
ter values is given in Fig. 4.8. Waveshapes and the corresponding phase portraits 
are given in Figs. 4.9 and 4.10, for the two different values of Q = —0.082 and 
Q =  —0.42 respectively, at the two extremes of slip represented by x  =  ±1.

P

4.5

a = -1

2.5

X = -1 
a = -1

Q0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 11

Figure 4.8: Bifurcation plot for the nonlinear differential equation (4.8) plotted 
for E l  — 0.5, k  =  1, fiqt =  0.1 and L = tt.

4 .5  C o n c lu d in g  rem ark s

This chapter compares the outcomes of both theoretical and numerical modelling 
with the simple Galerkin approximation of Chapter 3 and the significance of 
friction-induced jam m ing is explored. Comparisons between the solutions of the 
linear and nonlinear equations are presented in Fig. 4.11 for two different values 
of fx, one small and one large. These, along with the plots of Figs. 4.5 to 4.10, 
dem onstrate th a t little of phenomenological significance is added by including 
the full set of geometric nonlinearities.
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Figure 4.9: Waveshapes and corresponding phase portraits for the case of Fig. 4.8 
at Q = -0.082.
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Figure 4.10: Waveshapes and corresponding phase portraits for the case of 
Fig. 4.8 at Q =  -0 .42.
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Figure 4.11: Comparisons of linear and nonlinear solutions (a) fiqt =  0.1 and (b) 
fiqt =  1.

Fig. 4.8 indicates a slight overall downwards curvature to the // =  0 response in 
contrast with the linear view of Fig. 4.5 for example, but the related fi ^  0 curves 
show little difference of consequence. By contraposition, the nonlinearity that is 
brought in by the modulus change at the boundaries has a profound phenomeno­
logical effect on the system, as demonstrated most clearly in the Galerkin plots 
of Figs. 3.7 and 3.8, found in Chapter 3.

Analysis throughout has concentrated on a single half-wave of buckling, no indi­
cation being given of how the pattern continues into further waves. The unstable 
nature of the final buckle (see Fig. 3.7) suggests that homoclinic (Budd et a i , 
1999; Budd & Peletier, 2000) or localized behaviour is to be expected, which in 
this case might manifest itself as the formation of a single half-wave, with the 
remainder of the layers remaining jammed in the straight configuration. Then, if 
a tendency to restabilize is found over large deflections, a form of cellular buck­
ling would be expected (Hunt et a/., 2000a), with half-waves forming and then 
locking-up in sequential fashion. In such circumstances, a heteroclinic orbit that 
connects the flat state to a periodic configuration defined by Maxwell considera­
tions (Budd et al., 2001), becomes the dominant characteristic. This is explored 
in the next chapter.
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Chapter 5

A prim itive m odel for serial 
parallel folding using cubic 
B -splines

5.1 Introduction

When a periodic folding pattern is observed in the field, the exact mechanism 
of formation is unlikely to be immediately apparent. Fig. 5.1 shows a recent 
series of experiments on layers of A4 size paper held together transversely under 
an applied overburden pressure, and compressed in the longitudinal direction to 
initiate a serial buckling sequence of parallel folds propagating from the loaded 
edge.

Serial folding differs in fundamental ways from its spontaneously-occurring coun­
terpart (Hunt, 2005). For instance, the resulting wavelengths of these two generic 
forms of instability are likely to be quite different (Budd et ai, 2001). While that 
of the spontaneous buckle would be expected to be picked up at the classical 
critical load and remain with effectively the same wavelength until well into the 
post-buckling range, cellular buckling is liable to pick up the wavelength asso­
ciated with an underlying periodic shape at the Maxwell load (Peletier, 2001a). 
Interest thereby is shifted from linear buckling studies to information obtained 
only from the advanced post-buckling regime.
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Figure 5.1: Parallel folding in layers of paper, showing the serial buckling be­
haviour.
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In Chapters 3 and 4 an elementary two-layer model for parallel folding in the 
presence of friction was developed, with the aim of identifying the important gov­
erning parameters. A Galerkin sinewave representation of the interface between 
the layers compared well with the exact solution of the underlying differential 
equation. The formulation was based on a linear representation of the bending of 
the layers, with an additional nonlinearity linked to discontinuities in the third 
derivative (related to jumps in shear force) at points along the length where the 
frictional force switches direction.

The introduction of extra layers to the model will be described in Chapter 6 
and is relatively straightforward; however, the need to accommodate amplitude 
modulation means the extension to serial folding is not. In this chapter we in­
troduce a two-layer, two-hump, model of serial folding, employing the concept of 
cubic B-splines. These have continuous derivatives up to second-order, but allow 
discontinuities of third derivative as required. The representation allows for two 
successive humps of different amplitude, and thence provides a primitive form of 
a homoclinic solution (Champneys et ai, 1999) representing a localized buckle 
over only a part of the available spatial regime. Primitive periodic solutions axe 
also found, where the amplitudes of the humps axe the same. Tracking the de­
velopment of serial folding with increasing end-shortening, we successfully mirror 
the sequence seen in Fig. 5.1, from buckling into a single hump through to the 
development of the two-hump “periodic” form.

5.2 Two-layer m odel

Consider the two-layer set-up described in Section 3.2.1. From §3.2.2 recall that 
the total potential energy function, over small vertical deflections w is

y  = J  ( e i w 2 -  P y  + k Y  + x/^M ^ dab (5.1)

where dots denote differentiation with respect to the axial coordinate x.

Serial buckling implies that an unstable localized response is followed by resta­
bilization and eventual lockup (Hunt et al., 2000a), and hence in addition to the
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term s in (5.1) a nonlinearity is included via the extra term ,

1 f L
- C  /  w4 d x , (5.2)
4 Jo

where C  adds a stiffening nonlinear component to the linear foundation stiffness 
k.

W ith this extra term, using the same Galerkin approximation as Chapter 3, the 
bifurcation diagram is shown in Fig. 5.2.

P

Min. Instability load

Jammed region
X  =  + 1

Figure 5.2: Bifurcation diagram indicating jam m ed region for constant fi.

The falling equilibrium paths in the upper two quadrants on the edge of the 
jam m ed region are likely to be stable under conditions of rigid loading (parametric 
variation in end-shortening), and restabilize anyway when the path starts to curve 
back up as \Q\ increases. Remember tha t with a linear foundation (C  =  0) this 
restabilization never takes place, the paths simply approaching asymptotically 
a flat (horizontal) path tha t crosses the P-axis at the critical bifurcation load 
P  = P C (see Chapter 3).
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5.3  M o d e llin g  w a v esh a p es  u s in g  c u b ic  B -sp lin e s

5.3.1 T h e  cubic B-spline

To avoid discontinuities in slopes and bending moments, the shape function w 

should be continuous in both first and second derivatives. The cubic B-spline 
(Wait &; Mitchell, 1985; Lancaster &: Salkausas, 1987), B$, (see Fig. 5.3) has this

0.7

0.6

0.5

0.4

b3W
0.3

0.2

X

Figure 5.3: The cubic B-spline.

necessary property, but allows discontinuities in third derivative to give the step 
changes in shear force seen in Chapter 4. A single cubic spline £ 3(x) has the 
deflected shape

£ 3(x) =  <

0
|  +  2x +  X 2 +
2 _  r 2 _  xf.
3 2

1  - X 2 +3 X ^  2

0

X  <  - 2  
- 2  <  x  < - 1  

- 1  <  x  < 0
0 <  x  < 1
1 <  x  < 2

x > 2.

(5.3)

Note that, unlike the sinusoidal waveshape approximation used in Chapter 3, the 
deflection of the cubic B-spline together with its first and second derivatives are 
zero at both ends. Thus it can be smoothly m atched to the flat (undeflected) 
state as in a classical homoclinic or localized solution (Champneys et al., 1999).
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5.3.2 Single B -spline form ulation

Following the Galerkin approximation of Chapter 3, the deflection, w , can be 
modelled with a single cubic B-spline. To remain consistent with the earlier 
work, jE?3 is rescaled to the range 0 <  x < L, and an amplitude variable, Q, is 
introduced on the waveshape.

w = Q <

4 I 4(2x —L) , 4(2x —L)2 . 4 (2x—L)3 I") <  r  <  —
3 L ^  L2 ^  3L3 U — X — 4
2 _  4 (2 s -L )2 _  4(2x - L ) 3 L <? <  L
3 L2 L3 4 — — 2
2 4(2x—L)2 ■ 4(2x—L)3 L <  <  3L
3 L2 L3 2 -  X -  4
4 4(2x—L) , 4(2x—L)2 4 (2 x -L )3 3L ^  ^  t
3 L ' L2 3 L3 4 — X — ■L'*

(5.4)

If w is substituted into the nonlinear total potential energy function, V, this can 
then be written explicitly as

K (0 , L) =  -  g Q ’ +  ^ 0 2 +  ^ 1 0 1  +  J g j CQ*L. (5.5)

T h e  linearized  so lu tion  (C  =  0)

When (7 =  0 the nonlinearity in the foundation is absent and we can directly 
follow the Galerkin analysis of Chapter 3. The optimum buckle length is obtained 
by minimizing V  with respect to T, giving

/48^1225P 2 +  84560fc£7 -  1680P 
i» Pl =  y  ------------------- ^ --------------------. (5.6)

Note that L0pt does not depend upon Q in this case.

Equilibrium states (which necessarily correspond to functions with w ,w  and w 
all zero at the ends) are found by seeking stationary values of V with respect to 
Q (dV/dQ  = 0) to give,

Q =  , _________\ m x n q t L 3_________ 7,
V 3360PI2 -  430080£/ -  15UL4 ' K ' ’

Combining these two results gives the equilibrium states of Fig. 5.4, which are 
very close in form to those in Chapter 3, but relate inherently to a single hump 
rather than periodic response.
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El =1/2, (iqt = 1 , k =1, P =3 .3919 , L = 6.1431
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Figure 5.4: Bifurcation diagram for one-spline model, linear foundation.

The critical load P c and related length L°  can be found by substituting Lopt 
into the second derivative of V  with respect to Q and setting the result to zero 
(<d2V/dQ2 =  0) (Thompson h  Hunt, 1973) to give

P °  = (5.8)

T he non linear so lu tion  (C ±  0)

The same sequence of arguments can be applied to the case of C ^  0, although 
the presence of the nonlinearity makes solution more difficult. First minimizing 
V  with respect to L gives

/192^/15015 (15015P2 +  1036464E/A; +  163412£/CQ2) -  2882880P 
op‘ -  V 259116* + 40853C<32

(5.9)

which we note is now a function of both P  and Q. The equilibrium equation 
dV/dQ = 0 becomes,

dV  1024ET 8 P „  151k L „  , 4   ̂ 40853CL^3 /K
dQ ~ 3 L3 ®3i  1260 1081080 '  ̂ ^
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For P  > P c  and each L , there are three possible solutions of equation (5.10) 
for Q. The solutions of equations (5.9) and (5.10) can be found by iteration of 
L and Q using the algebraic manipulation package MAPLE (Heck, 1996). The 
linear approximation for Topt given by (5.6) is first substituted into (5.10), and 
then each of the three possible solutions for Q thus obtained is substituted in 
turn into equation (5.9) to update the approximations for L opt. The process is 
continued until convergence is achieved.

Fig. 5.5 shows the variation of buckle length L and amplitude Q with load P , far

El = 1/2, pqt = 1, k = 1, C = 1

  P = 9.7697, L = 4.6169
- -  • P = 7.0828, L = 5.2073

P = 6.2000, L = 5.3018
—  P = 7.4283, L = 4.6251

  P = 9.7313, L = 3.9777
2.5

0.5

X

Figure 5.5: Wave-profiles for one-spline model, nonlinear foundation.

into the post-buckling range. Also, the upper right quadrant of the bifurcation 
diagram for several values of C  is seen in Fig. 5.6, detailing how the restabilization 
is affected by the degree of nonlinearity.

5 .4  T w o  B -sp lin e  fo r m u la tio n

In serial folding, humps are observed to form sequentially. To explore this multiple 
hump scenario in the simplest manner, we next consider a two-spline formulation 
allowing for two independent maxima/minima. We take values of C  > 0 for loads 
above P c , such that restabilization of the foundation and the consequent lockup 

in amplitude can successfully model the response of the experiments of Fig. 5.1.
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El = 1/2, (iqt = 1, k = 1
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Figure 5.6: Bifurcation diagram for the nonlinear one-spline model when P  > P c , 
for differing C  values.

The wave pattern is represented by two rescaled cubic B-splines Wi and w 2 with 
amplitudes Q\  and Q2 and lengths L\  and L 2 respectively. The full deflection 
w along the wave is then found by superposition of W\ and w2. Both primitive 
periodic (Q2 = —Q\)  and localized (Q2 ^  —Qi)  solutions are found to co-exist 
(see Fig. 5.7).

(a)

Figure 5.7: Schematic representation of primitive modeshapes from the two B- 
spline model: (a) homoclinic (Q i ^  —Q 2); (b) periodic (Q\  =  — Q 2).

5.4.1 O verlap

If the wave is modelled in this way, then it is necessary to consider how much Wi 

and w2 should interfere. To this end we introduce an overlap variable, 0 <  Q < 1, 
such tha t ClLi represents the position along the first spline where the second spline
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starts: ft =  0 thus implies complete overlap and ft =  1 implies no interference 
at all. For the intervals 0 <  ft <  1/4, 1/4 < ft < 1/2, 1/2 <  ft <  3/4 and 
3/4 <  ft <  1 different sections of Wi are superposed with w2 and the total length, 
(ftZq -f- L 2), must be split up accordingly. Later we will minimize the maximum 
total potential energy with respect to ft.

5.4.2 Galerkin m odel

The two-spline model has a total of five degrees-of-freedom, amplitudes Qi (i =  
1,2), their corresponding lengths Li, and overlap ft. Ideally, energy minimiza­
tion should be carried out with respect to each of these variables independently. 
However, the resulting process was considered unnecessarily cumbersome, and 
for the present descriptive purposes it was found more instructive to reduce the 
description to the two underlying variables Q i and Q2) such that the contour 
plots of the following section could be drawn.

This was done by minimizing only once at each load value with respect to ft, 
under the periodic assumption Q\ =  —Q2. Whilst noting that the localized 
solutions Qi ^  — Q2 could possibly lead to slightly different overlap values if 
complete freedom were allowed, the two sets of results were not expected to differ 
to any great extent. In searching over Qi — ft and Q\ — Q2 space, with P  and Qi 
known at each point, the spline lengths were taken directly from the nonlinear 
single spline result (5.9).

5.4.3 R esu lts

Having reduced the potential energy to two degrees-of-freedom, the energy func­
tion at any particular load level can be visualized as a two-dimensional surface 
V(Q i ,Q 2). The stationary values of this surface then correspond to states of equi­
librium. Although it is possible for a system to get stuck in a local minimum, in 
the following it shall be assumed that equilibrium states with the lowest energy 
will provide the preferred modeshapes. Taking the parameter values = 
E l  = 1/2, k =  1 and (7 =  1, the equilibrium solutions can be found either 
by varying P  or by varying the end-shortening S. In Fig. 5.8 we present the
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Figure 5.8: Changes in preferred modeshape as the load drops and the end- 
shortening increases.
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results of a series of such calculations, taking an initally large load P  and succes­
sively reducing it in value. This shows an interesting transition in the preferred 
modeshape.

For P  greater than a value of P  ~  6.5 the preferred modeshape is a localized 
solution with effectively just one hump, whereas for P  less than this value a 
second hump starts to develop. Localized solutions are found to be favoured at 
high load levels, much like the single spline solution, with a transition taking 
place to the periodic solutions as the load level falls. This therefore successfully 
models the early stages of the experimental sequence seen in Fig. 5.1.

We can understand the nature of this transition by studying the way that the 
contour surfaces of V  change as P  (or £) is altered. For P  > 6.5 the contour 
surface has four saddle points and two maxima, corresponding to co-existing 
periodic and localized solutions, of which the localized solutions have the lowest 
energy. At P  w 6.5 these maxima and saddle points start to coalesce, so that 
for P  < 6.1 only two saddle points remain, corresponding now to the existence 
of low energy periodic solutions.

Fig. 5.9 shows the energy contours for a high load level, P  =  8. This shows 
both saddle points and maxima, all of which are stationary solutions. It can be 
observed that at this constant load, all non-trivial equilibrium states have the 
same value of end-shortening, £  =  0.098, illustrated by the thick elliptical line.

Apart from the apparent minimum of energy in the flat state Q\ = Q2 = 0, 
which lies within the jammed region of Fig. 5.2 and hence is of no practical 
significance, there are two equilibrium states of immediate interest. We have first 
the maximum of energy V  ~  0.444 lying in two positions on the Q1 =  —Q 2 line 
at Q1 «  ±0.4, representing the primitive periodic solution. Secondly there are 
the saddle-points at V  «  0.3915 occurring in four positions at Q\ «  ±0.6 with 
Q2 very small, and again with Q2 ~  ±0.6 and Q 1 very small. These are the 
primitive homoclinic solutions.

Interestingly, as both the maxima and the saddle points appear on the same end- 
shortening contour, at this value of £  the release of strain energy suggested by 
the different energy levels takes place without any change in load.

157



P = 8, Q = 0.32617

Figure 5.9: Energy, V , and end-shortening, £, contour plot for Q\ — Q2 space 
when P = 8.
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Fig. 5.10 shows the energy contours for P  =  6.1265 and an end-shortening contour

P = 6.1265, Q = 0.33826

0 .2!

0.5

Q

0.55
-0 .5

0.5-0 .5

Figure 5.10: Energy, V,  and end-shortening, £, contour plot for Q i — Q 2 space 
when P  =  6.1265.

for £  =  0.25. This has the same topological features as Fig. 5.9, except that two 
saddle points have converged on each maximum to the point where all three are 
about to become a single saddle on the Q\  =  —Q 2 line. Note that the three 
states now take slightly different values of £  at this load level, indicating that an 
instability would be accompanied by a drop in load.

The conjunction of the three states of equilibrium is seen to take place at just 
about the same load level as the single-spline model for C  = 1 starts to restabilize 
(see Fig. 5.6). At this stage in the loading sequence, the system is starting to 
find it easier to take the periodic rather than the localized shape.

Fig. 5.11 is the plot when P  =  4.6, close to the minimum possible load, or nadir, 

of the equilibrium path. Here the single remaining saddle point is in the process
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Figure 5.11: Energy, V,  and end-shortening, £, contour plot for Q i — Q 2 space 
when P  =  4.6.
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of converging with the minimum of V  that represents the far-field restabilized 
periodic buckled state, appearing outside the illustrated range of the earlier two 
plots. The eventual restabilization for the periodic state thus takes place very 
much like that of Fig. 5.6 for the single spline, only at lower load levels.

The sequence described in the contour plots, taking place under falling load but 
increasing applied end-shortening, involves the preferred modeshape changing 
from localized to periodic as seen experimentally. This is further illustrated in 
the plots of Fig. 5.8 which shows this smoothly varying sequence over almost 
the complete range of the contour plots of Figs. 5.9 to 5.11. The sequence could 
clearly be extended to further humps of buckling with the inclusion of extra 
splines.

It must be noted that fixing the overlap ft in this way, although making the prob­
lem more manageable, is bound to lead to errors. It can be seen that calculating 
the lengths of Qi and Q2 for each point from (5.9), perfect symmetry is lost in 
the Qx — Q2 contour plots. This is because away from the lines of (a)symmetry, 
where ± Q i =  ± ^ 2, L 2 +  (ft^ i) ^  L x +  (ClL2).

However, in general, especially for the regions of interest, the errors are very 
small and the total lengths are so close that they are virtually indistinguishable. 
Whilst there is a noticeable difference in Fig. 5.9 either side of the Q\ =  Q2 
line, this area of the plot takes no part in the analysis of this chapter. Here, the 
critical points vanish almost immediately as the load drops, leaving a topology 
that is—to all intensive purposes—symmetric.

5.5 M orse theory for a surface

The Euler number x s  of a mountainous landscape built on a closed surface S  is 
given by

Xs =  Maxima — Saddles +  Minima, (5-IT)

and we therefore have family of smooth (differentiable) height functions on S. 
Xs is a differential invariant—if the height of S  is measured in different ways,
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Xs  is always the same (Griffiths, 1981). (5.11) is sometimes referred to as the 
“mountaineer’s equation” and its influence in topology is due to Marston Morse.

(a) P  8

0
(c) P  4.6

(b) P« 6 .1

Figure 5.12: Schematic showing the evolution of the topology of V  as the load 
drops, the extrem a are denoted by crosses.

Fig. 5.12 shows a schematic of the topology of the potential energy V  at the 
three load levels in Figs. 5.9-5.11 of the previous section. Adding the number 
of maxima and minima in each case and then subtracting the number of saddle 
points, we find tha t in all cases the Euler number x s  =  1* This is what is 
predicted by Morse theory.
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Morse theory is a general theory describing the topology of the level surfaces of 
a nonlinear function of two (or more) variables. When related to the surfaces 
shown in Fig. 5.12, resulting from an analysis of the potential energy, the theory 
says that as you vary the parameters smoothly then you see a conservation of 
index, where the index is defined to be the Euler number.

To ensure that x s  is always constant for the surface, it is important to realize that 
if x s  is non-zero, then there must be some critical points on 5; critical points 
cannot be destroyed without others (not necessarily of the same type) being 
created. However, Morse theory shows that saddles and extrema can combine in 
such a way that the Euler number is conserved. As is observed from Figs. 5.9- 
5.11 and Fig. 5.12, with falling load, at certain points there is coalescence of a 
saddle with two extrema to give a minimum.

A mathematically precise description of Morse theory is given by Nash &; Sen 
(1983) and by Hirsch (1976), both of which discuss the Morse inequalities. These 
place restrictions on the number of non-degenerate critical points that a smooth 
real valued function /  can have can have due to the topology of a closed differ­
entiable surface S  with dimension n.

5.5.1 Prim itive periodic solution  ( Q 2 =  — Q i )

The primitive two-spline periodic solution, given by Q2 =  —Qi, has been seen on 
the contour plots of Figs. 5.9 to 5.11. We next explore these particular solutions 
in more depth, starting with a description of the selection process for the value 
of used in the plots.

Figs. 5.13 to 5.15 show contours of Q i against H for this solution, at the three load 
levels used earlier. For the highest two loads, a single saddle point in V,  specif­
ically a minimum with respect to 11 and a maximum with respect to Q\{—Q2), 
is clearly visible. The final contour plot for P  =  4.6, at the minimum possible 
post-buckling load, shows this saddle point in the process of combining with the 
minimum energy state from the restabilized path, and vanishing.

Fig. 5.16 plots the energy variation with respect to Q\ across the saddle point, at 
the three load levels. This illustrates again the transition from an energy shape
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Figure 5.13: Energy contour plot in Q\ — space when Q 2 =  —Q\ for P  =  8.
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P = 6.1265, Q = -Q
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Figure 5.14: Energy contour plot in Q\ — 0  space when Q2 = —Q1 for P =  6.1265.
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P = 4.6, Q = -Q
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Figure 5.15: Energy contour plot in Qi — 0  space when Q2 =  —Q\ for P  =  4.6.
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Figure 5.16: Energy profile when Q 2 = —Q \  for P = 8, P  =  6.1265 and P  =  4.6.
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with both a maximum and minimum, to one where there is no stationary point 
or equilibrium state.

The position of the saddle points can be determined numerically by transforming 
them into minima as follows. We start by reducing energy function V = V (Q i, 17) 
to just two degrees-of-freedom, by setting Q2 =  —Q\ and the load to be constant. 
If we then define the function,

(5.12)

it becomes a relatively simple exercise to demonstrate that saddles in V  convert 
to minima in Fq (Hunt et al., 2004), a schematic of which is shown in Fig. 5.17.

F a

Figure 5.17: Schematic representation of transformation from ^($1,17) to Fq.

Using the MATLAB command fminsearch, which performs unconstrained non­
linear optimization (The Math Works, 2001), with an educated initial guess for 
the values of Q1 and 17 at P  =  8 from Fig. 5.13, we can converge to the correct 
values at the saddle point. These can then be used for the initial guess at the 
next load level.

fminsearch (The Math Works, 2001) finds the local minimum x of a scalar func­
tion /  of n real variables, starting at an initial estimate xq. The general syntax
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IS

x =  fminsearch(f,xo,opt]ist, P,I, (5-13)

where p is one or more function parameters and opt^t is a list of optimization 
parameters to alter values such as the termination tolerance etc. x0 can be a 
scalar, vector, or matrix.

It uses the simplex search method. In n-dimensional space, a simplex has n -j- 1 
distinct vectors that make up its vertices, e. g. in three-dimensional space, the 
simplex is a pyramid. At each search step, by comparing the function values 
at the vertices with a new point, in or close to the simplex; a new simplex is 
generated if the point replaces one of the vertices. This is repeated until the 
diameter of the simplex is less than the specified tolerance.

Q , = -Q.

7.5 7.5

6 5 6.5

5.5 5.5

4 5
0.5 0.37 0.380.33 0.34 0.35 0.36
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0.2 0.4 0.6

€
Figure 5.18: Variations of amplitude Q i, overlap fi, and end-shortening £, with 
load P , for the Q2 =  —Q1 solution.

Fig. 5.18 shows variations of amplitude, overlap and end-shortening for the Q2 =
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—Q i solution, over the post-buckling regime where the load falls while the end- 
shortening increases; this is the regime of negative overall stiffness.

5.5.2 Primitive localized solution ( ^  —Q 1)

W ith H found at each load level, using Fig. 5.9, initial estimates for the values of 
Q i and Q 2 at the saddle points when P  =  8 can be made. To locate the saddle 
points of V  =  V ( Q \ ,Q 2 ), the same method used in the previous subsection to 
search Q\ — space is adopted, with the role of 0  replaced by Q 2, i- e. we 
minimize

(5.14)

Fig. 5.19 shows variations of the spline amplitudes Q i and Q 2, and the maximum

7.5 7.5 mm max

6.5

5 5 5.5

-0.5 0.5 -0.5 0.5
Amplitude

Figure 5.19: Variations of amplitudes Qi and Q2, and maximum and minimum 
displacements u>max and with P , for the Q 2 ^  —Q\ solution.

and minimum displacements along the length (combinations of Q i and Q 2) over 
the same post-buckling load range as Fig. 5.18. Both plots show a fall in the 
greater of the two values accompanied by an increase in the smaller value, as the 
chosen equilibrium state changes from localized to periodic.

This process is examined further in Fig. 5.20, which compares the energy lev­
els and the end-shortening values in the two possible equilibrium states. The 

comparative energy levels show that where the two curves differ, the localized
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  Saddles
—  Maxima
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—  Maxima
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0.5 0.2 0.4 0.8 1.2 1.6

Figure 5.20: Comparative variations of total energy V , and end-shortening £, 
with P  for both the Q 2 =  — Qi, and the Q 2 ^  —Q \  solutions, noting the coales­
cence of these curves at P  «  6.1.

solution is clearly favoured. However, the stiffness of the localized solution, al­
though negative, has a slightly higher numerical value than that of the periodic. 
This contrasts with other structural situations, where a lower post-buckling stiff­
ness often indicates the preferred solution (Hunt, 1989).

Fig. 5.20 has one other distinctive feature. At P  «  6.4, part of the falling saddle 
point curve apparently turns back on itself, accompanied by a drop in the value 
of Q\. Such behaviour would not normally be obtainable experimentally, even 
under conditions of controlled end-shortening. The actual response would be 
marked by a sudden downwards drop in load, at the constant value of S  marked 
by the point of vertical tangency of the load/end-shortening curve. This same 
phenomenon is familiar from a number of related structural problems, and has 
been termed snap-back behaviour. It is often, even in paper samples, marked by 
an audible bang (Wadee et al., 2004) as significant strain energy is released.

5 .6  C o n c lu d in g  rem ark s

The nonlinear model for twolayer parallel folding presented in the previous two 
chapters is extended to find a primitive form of serial buckling behaviour, using 
two cubic B-splines. Investigating the stationary solutions of the linearized total 
potential energy, the associated wave-profiles are shown to follow those seen in
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real experimental situations. Controlled under loading or end-shortening, the 
saddle points corresponding to localized solutions converge with unstable max­
ima representing periodic behaviour. Eventually only periodic solutions exist, as 
described by Morse theory.

However, in earlier work detailing the transition from highly localized to periodic 
modeshapes, the formation of additional cells in sequence takes place through 
a snaking sequence of equilibrium behaviour, marked by the load periodically 
falling and rising (Hunt et al., 2000a; Budd et al., 2001; Wadee et al., 2004). 
This contrasts with the present case, where localization is lost and (primitive) 
periodicity imposed while the load is still falling.

Of course, the present formulation of just two cells would clearly be inadequate 
to model the continuing sequence, and the increasing complexity of adding extra 
cells make this impractical. However, even with this extension, there are sev­
eral properties of natural propagation that are unexplored, including the lockup 
process. We therefore forego such studies at the present time in preference to 
extending the two-layer frictional model for parallel folding to the more realis­
tic case of a multilayer. This then allows comparison with experimental results 
to highlight the accuracies of the model and where further development may be 
necessary.
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Chapter 6

Comparing the multilayer 
formulation w ith experim ents

6.1 Introduction

Layer slippage under large overburden pressures has led to an elastic, frictional 
model for two-layer parallel folding (Chapters 3 and 4). Formulated using poten­
tial energy considerations, the assumption that the least energy configuration is 
that seen in nature negates the formation of voids and deformation is by primar­
ily by buckling. Extension to a restabilizing nonlinear foundation, allows, using 
cubic B-splines, the possibility of localized homoclinic solutions which approach 
the periodic waveform as the load drops (Chapter 5).

In this chapter we extend the energy formulation of the model given in Chapter 
3 to the deformation of a multilayer of n equal layers. Then, by finding values 
of the involved parameters from laboratory experiments on layers of paper, the 
load-displacement curves for the model and experiments are compared.

Following the work of Wadee et al. (2004) on kink banding in multilayered struc­
tures, laboratory experiments on layers of paper embedded in a less competent 
foam rubber medium are used to highlight the mechanisms involved. Parallel 
sheets are constrained transversely in a test rig to simulate overburden pressure, 
and then compressed in the layer parallel direction at a controlled (slow) rate
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of displacement. The resulting load-displacement curves are then available for 
comparison with the multilayer model developed from the two-layer formulation. 
Measures of the Young’s modulus, friction coefficient and linear and nonlinear 
components of the foam bedding material, are evaluated independently of the 
test, whilst the overburden pressure and in-plane compressive load axe measured 
directly by load cells. The first instability, associated with the formation of the 
first hump in each sequence of localized buckles, and subsequent lockup, are 
compared with the model formulation and excellent agreement is found.

The chapter starts by showing how the test rig was set up and gives an explana­
tion of the typical data obtained from an experiment. Adding a nonlinearity to 
the foundation as in Chapter 5, the next section then uses a similar total poten­
tial energy procedure as Chapter 3 to formulate the multilayer model in terms of 
a single layer with the same total thickness. Linearization of the functional and 
substitution of a sinusoidal Galerkin approximation gives an explicit formulation 
for the potential energy and hence the expected wavelength. Finally, the predic­
tions from the multilayer model are compared with the results from four separate 
experiments, along with an explanation as to how the relevant parameters are 
extracted from the results.

6.2 Experim ental procedure

The experiments were conducted in the Department of Civil and Environmental 
Engineering at Imperial College London using the rig developed by Wadee et 
aL (2004) to study kink banding, a photograph of which is shown in Fig. 6.1. 
The rig allows application of both axial and transverse loading to an experimental 
sample, the first of these is applied using a motorized piston the direction and 
speed of which can be controlled; the latter is slightly more crude as it is applied 
manually. The piston face can be removed and replaced with one of different 
width, depending on the depth of the sample. However, for the tests carried 
out here, a depth of 20.2mm was sufficient in all cases. The magnitude of the 
parallel and lateral loads and displacements can be measured using lOOkN load 
cells and in-plane transducers, respectively, at 1 second intervals. The values are 
monitored and recorded with a dedicated data logger connected to a stand-alone 
computer using the DALITE software package.
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Manual transverse loading |

Transducers
lOOkN Load Cells

20.2mm motorized 
piston__________

Figure 6.1: Experimental test rig.
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To perform the investigation into parallel folding, layers of paper (105mm x 
297mm) were used to represent the multilayer, each side of which was then placed 
a piece of foam (w 110mm x 298mm x 25mm). Hence the multilayer was em­
bedded in an elastic foundation, held transversely under the rigid screw device 
and compressed in the layer-parallel direction by applying end-shortening at a 
constant rate over the layers and a proportion of foam. A schematic of this is 
shown in Fig. 6.2.

p a ra lle l to  m e a su re  d isp la ce m e nt

Rubber foam

30mm 120mm

Load applicators: Transducers in

Figure 6.2: Schematic of loading an experimental sample.

There are several constraints as to the magnitude of the loads and displacements. 
Firstly, the parallel folding model is a static formulation; therefore it is necessary 
to ensure that the speed of the axial loading applicator is slow enough to reflect 
this in a quasi-static sense. Secondly, overburden pressures can only be moderate, 
otherwise the phenomenon of parallel folding could give way to kink banding. 
An associated consideration is that the rigid boundaries must not interfere with 
layers; hence it is unwise to have a large numbers of layers. In fact, previous 
work (Ramberg, 1961) has suggested that the thickness of the foundation should 
at least be of the same order as the wavelength of the layers. Finally, the foam 
must be allowed sufficient time to recover after each experiment, or else the elastic 
properties can change.

The output from a typical experiment is shown in Fig. 6.3, and a photograph 
of the deformation in Fig. 6.4. As Fig. 6.3 shows, the loading behaviour can be 
followed throughout an experiment. Initially the transverse overburden pressure 
is set and held rigid, after which the axial displacement is applied at a slow but
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Figure 6.3: O utput of axial and transverse compressive forces, plotted against 
axial end-shortening.

Figure 6.4: Parallel folding of 120 sheets of paper.
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constant speed. After an initial phase during which both the layers and foun­
dation are in the process of taking up the load, the in-plane load increases in a 
fairly linear fashion. During the axial displacement, before any instability, the 
transverse load stays moderately constant. Nearly always at the loaded end, an 
instability occurs and the first hump forms (sometimes two humps appear al­
most simultaneously) and the load drops smoothly, restabilizing and eventually 
increasing again as the hump locks-up (Hunt et a/., 2000a). Once the initial in­
stability is triggered the transverse load begins to increase in a nonlinear fashion. 
As the next hump forms the load drops slightly, although the effect is consider­
ably less pronounced than for the first hump. The sequence then continues in 
a similar way—stiffening followed by instability in sequence. Moreover, as the 
axial displacement continues to be applied, there is an overall restabilization of 
the system observed by the axial load showing an underlying tendency to rise.

6.3 Total potential energy

6.3.1 Single layer

In order to set up the multilayer model, let us first imagine a single layer of thick­
ness T , with flexural rigidity E l  and compressed axially by a load P.  Following 
Chapter 5, we assume that the layer is embedded in a nonlinear hardening foun­
dation with linear stiffness k per unit length and nonlinear hardening coefficient 
C. The coordinates for this system are the arclength x and the vertical deflection 
w.

Using the definition of / ,  the second moment of area, we find that

=  (6 .1)

where cq is the width of the sample and will be kept constant throughout the 
modelling.
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The bending energy, Ub , is given by

E l  [ L w2 ,
UB = ^ J 0 T ^ d x ’ ( 6 2 )

where L, els in the two-layer model, is the length over which the resulting de­
flection is monotone, i. e. over the interval [0, L\, the wave is either increasing or
decreasing.

The foundation energy, Uf , is

Uf = -z f  io2d r  + j  /  w4 d x , (6.3)
* J o  4 J0

and the work done by the load, P S , is

P S  =  P f (1 — \ / l  — w2) da;. (b-4)
Jo

6.3.2 M ultilayer form ulation

If we now have n layers where n =  2m, m  G N, and the total thickness is T, then 
each layer has thickness t =  T/n.  Let the top layer be Zi, the second I2 •. • and 
the bottom layer Zn. w is now the vertical deflection of the interface between 
lm and lm+1. Then following the procedure used in Chapter 3, the nonlinear 
pseudo-potential energy can be formulated.

Bending energy

If I  is the second moment of area associated with each layer, then

E a iT 3 E l  , x

The central interface bends with radius of curvature R , hence each layer Zt- has a 
radius of curvature R^:

The centreline of Zi has radius R  —
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The centreline of l2 has radius R — (n ;

The centreline of lm has radius R  — 
The centreline of /m+i has radius R  +

The centreline of Zn_i has radius R  +  2̂ T;
The centreline of ln has radius R  +  ~^T.

Hence

f t ,  =  -  [n -  (2i -  1)] £ .

Note that we assume here that Ri{ is always greater than zero.

Thus, the change in bending energy over a small change in x is

_ E? (  1 1 
B ~  2n3 \ ( R - ( n - l ) T / n * ) 3 + ( R - ( n - 3 ) T / n 2)2

+ (R + (n -  3)T /n 2)2 +  (R  +  (n -  1 )T /n 2)2)  d:E’ 

which is equivalent to

j=i •»

If T 2 «  series is evaluated, (6.8) can be rewritten as

dUB = 2 ^ d x - 

The total bending energy over L written in terms of w is thus



It should be noted that as the number of layers n becomes very large, the contribu­
tion of the bending energy Ub becomes small and in the limit as n —>00, Ub —> 0. 
This is predominantly to do with the scaling and, as will be shown in §6.3.5, when 
reformulated in terms of I,  the bending energy remains finite in the differential 
equation. It does have a physical explanation though, as in this situation the sys­
tem stops acting as a multilayer and behaves like a continuum. Folding then is by 
flexural flow, where shearing, rather than layer slippage, becomes the dominant 
deformation mechanism, smearing the solution throughout the body.

F o u n d a tio n  energ y  and  w ork done by load

The foundation energy Uf and work done by load PS  are the same as those in 
§6.3.1, (6.3) and (6.4) respectively.

W ork  done ag ainst fric tion

For the layers to remain unchanged in length, there must be differential stretching 
at the interfaces. From bending theory, over a small change in angle d0, the 
differences in length between the interfaces are

ds, , =  R l' R h  ( _________ -______________________ - ) dz-
llh 2 ( R - ( n - 3 )T / n 2)2J  ’

j  Ri2 +  R 13 (  R  R  \  j
^ --------  I 77,----- -d '. ' -  77----- ~  r w n , . . , v  ) dx>

_  Rh +  Ri2 ( 1 V

Ri2

2 V
+  Rla (

1 
1 

N CS £1 
05 

1 (fl -  (« -  3 ) r /n 2)2 )  
R  \

2 I (R — (n — 3)T /n 2 ) 2 ( R - ( n -  5)T /n 2 ) 2 J
R u - 1  +  Rln (  R

R
2 V(fl +  ( n - 3 ) T /n 2)2 (R + (n — l ) T / n 2 ) 2

 1  I 77-777 -----7777777; -  777777-----77^,7771 ) d *-

Hence

dsWi+i =  ( ^ -  -  ) dz. (6-1!)

where
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is the average of the radii of curvature.

The total difference is the sum of these

n—1

ds = ^ 2  dsWn•+1
j=1

R T 2 R T ^ _____ 1_
rt  —  ( rt. —  —n (R 2 ~ { n - l ) 2T 2/4n2) n R? -  (n -  (2; -  l ) )2T 2/4n

Again, if T 2 «  > ^ i s  rec ûces t°

dx.

(6.13)

. (n — l )T  (n — l )T  . x
ds =  -̂----- r -  da; =  -̂---— d0. (6.14)

nR n v '

The total cumulative slip s at x is given by

(n -  1)T
5 = 1*1, (6.15)

and hence the total work done against friction is

•L
Ufj, =  —— —pqT f  I si*1 1 dar. (6.16)

n Jo

6.3.3 R adius o f  curvature versus multilayer thickness

From the previous section we find that in order to simplify the bending energy 
Ub and the work done against friction U the following relationship between 
the radius of curvature of the central interface R , and the total thickness of the 
multilayer T , is assumed to hold

4n2R 2
T2«  (jrijr <6-17)

As the number of layers within the multilayer n tends to infinity, we find that the
fraction n2/(n  — l)2 tends to unity and hence for large n the inequality reduces
to

T 2 «  4R 2, (6.18)
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and it is fairly obvious that over large deflections this condition becomes less valid 
with increasing n.

Figure 6.5: An experimental photograph, reduced to a schematic, to emphasize 
the concentricity of the folds.

Experimental results highlight this fact as is shown in Fig. 6.5. From this figure 
we can see tha t the folds have become almost concentric and tha t the centre of 
curvature is at the point of the cusp, meaning tha t the radius of curvature at 
the core of the multilayer is approximately half the thickness of the multilayer. 
Thus R t t T / 2  and equation (6.18) tells us tha t T  «  T .  This would seem like 
a paradox, in reality it just highlights that the experiment has gone beyond our 
theoretical model. The singularity created at the cusp (Fig. 6.5) is not covered 
by the present model.

However, under small deflections, (6.17) is an acceptable assumption, even for 
large n. It was shown in Chapter 4 that linearization of the two-layer problem 
changes very little of the post-buckle response over the majority of the range of 
amplitudes Q. The same methodology will be adopted here for the case of the 
multilayer and hence, as a consequence, the approximation resulting from (6.17) 
is justified.
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6.3 .4  Linearized potential energy functional

It is interesting to note that the bending energy UB and the work done against 
friction U^ can also be obtained from the corresponding energy contributions of 
the central two layers lm and lm+1- For these two layers in the multilayer, the 
bending energy is given by

j Q ( i  - w * )  dX*

If this is representative of the multilayer with n layers, then there are n f  2 pairs 
of layers. Hence

........

Also, the work done against friction at the interface between lm and lm+i is

= - f iqT  f  | sin-1 u;| dx. (6.21)
n Jo

Again, if this is representative of n layers, there are n — 1 such interfaces and

U n ( h ,  • • • , / „ )  =  ^ - ^ - n q T  fL | s in -1 tii| d x .  (6.22)
71 Jo

Now, with Chapter 3 in mind, if w is assumed to be small, the geometrical 
nonlinearities become unimportant and the potential energy function becomes

[ L { E l  ..2 P . 2 k 2 (n -  l)xf iqT l \
V  = I  ( 2 ^  -  2 “ + 2“ +  n J dX’ (6'23)

with x  =  i l  as defined in Chapter 3.

At initiation, it is valid to assume a fold has a sinusoidal shape and if the layer 
is made up of independent sheets, then it is likely to become a concentric fold 
(Ramsey, 1967). Hence, assuming a sinusoidal deflected shape for the middle
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interface as given in Chapter 3,

w (z) =  Q cos , (6.24)

this behaviour then is representative of the whole multilayer. Note that whilst 
using (6.24) as an approximation of the waveshape gives a somewhat “smeared” 
solution, it was shown in Chapter 5, using cubic B-splines as a more sophisticated 
curve-fitting technique, that a single hump analysis gives similar results.

A simple linear eigenvalue analysis yields the critical load thus

p0 = §S + ̂ ’ <6-25)
and minimizing the critical load, with respect to the length L,

(6.26)

We again recognize that as n —> oo, L —► 0. As before, this is due to the scaling 
of the model and when reformulated does not turn out to be an issue of concern.

Unfortunately, linearization also removes the nonlinear characteristics of the foun­
dation. As will be shown in §6.4.3 real foundations often have a strong natural 
restiffening under large transverse loading (Fig 6.6(a)). Hence we wish to retain 
the stiffening behaviour in our model and to this end, before we compare the the­
ory with experimental output, we re-introduce the nonlinear energy contribution 
of the foundation to obtain the “partially” linearized potential energy function 
(Peletier, 2001b)

[ L ( E l  ..2 P  , 2 , k 2 C  4 ( n - l ) x n q T  ^
v  =  I  [  -  T W +  2 W +  T "  +  n H  j  d*' (6-27)

Before leaving this section, we compare (6.25) and (6.26) with the equations given 
by Currie et al. (1962) for a multilayer of n equal layers each having thickness 
i, where the boundaries of the individual component members are frictionless 
(see §2.3.4). When recalculated using (6.24), to be consistent with the model
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presented here, the critical load and wavelength become

L=5rvS- (6-28)

The latter agrees with the equation given by Biot (1961) for the dominant wave­
length Ld of a viscous multilayer, with perfect lubrication, within a viscous matrix
(via the correspondence principle). The discrepancies between the current for­
mulation and those given by (6.28) lie with the foundation energy. Currie et 
al. (1962) calculate this term using the force required to deflect a plate a distance 
w at x in an elastic continuum, as stated by Biot (1937)

F  =  w J ,  (6.29)

and hence get that the foundation energy is

UF =

_  kir f
2 L J0

\  L J  2
L

2W dx. (6.30)

Note that (6.29) and (6.30) are again reformulated in order to make the compar­
isons easy.

6.3.5 C alculus o f  variations

Although the resulting linearized differential equation will not be analysed here, 
for completeness, we repeat the calculations undertaken for the two-layer model in 
Chapter 4 in order to get stationary solutions of V  over all admissible functions. 
As mentioned in §6.3.1, the solutions are monotone over [0,L] and hence the 
boundary conditions

to(0) =  w(L)  =  0, (6.31)

hold as before.

We also re-introduce a  =  ±1 to indicate whether w is increasing (a  = +1) 
or decreasing (a  =  —1). Using this notation, the “partially” linearized energy
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density—the total potential energy per unit length— F  is given by

„  .... - ... -  ^ a (n — l)a y p q T  .
F  =  —  u /  -  —wl +  -w *  +  — w* +   ------------------ w.

2 n2 2 2 4 n
E l  „2 P  -2 i ^...2 i ^...4 (6.32)

F, and therefore, V, have the same form as in Chapter 4, hence performing the 
calculus of variations leads to the same expression for SV

OF
6V  =  I ^rrSw  

ow + dFe:
ow

d d F c 
—  ——ow 
dx dw

iL

L /  d2 dF  d dF  dF
L (+  1 [ d ^ d ^ - ^  + d ^ ] S w d x -

(6.33)

Setting this equal to zero, the second bracket is automatically zero from the 
boundary conditions above and the Euler-Lagrange equation resulting from the 
integral yields

E l
——w +  Pw  +  kw  +  Cw3 =  0. 
nl

(6.34)

Substituting 7, as defined in §6.3.2, into (6.34), we are able to compare the above 
with (4.9)

nE I'w  +  Pw  +  kw  +  Cw3 =  0, (6.35)

and we see that the term  resulting from the bending energy dominates the dif­
ferential equation.

Again, following Chapter 4, the first and third brackets vanish if, for all Sw at 
x =  0 and L

d £ _ d
dw  dx dw  ’ 

which leads to the boundary conditions

n(n  — 1 )axpqt (n — l)a xp q t

(6.36)

ib'(0) =  iv(L) =
E l n E I

(6.37)

As above, when (6.37) are reformulated using the definition of 7, comparison 
with the two-layer model becomes more obvious. As in Chapter 4, the bound­
ary conditions are due to a step change in the shear force at the ends of the 
monotone section [0, L\. However, for the strata embedded within the multilayer,
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the moments cancel at the boundary interfaces and an out of balance moment 
of magnitude iiqLt/2  is only to be found on the first and last layers, i. e. those 
in contact with the foundation. This couple has a lever arm equal to t{n  — 1), 
the distance between the neutral axes’ of l\ and /n, and as before is resisted by 
lateral point loads at the limits. Even though (6.37) are related to the deflection 
of central interface, physically, the point loads would have an overall effect felt 
throughout the multilayer and hence the inclusion of the terms.

6.4 Comparison w ith experim ents

Data for four separate experiments from the rig of Fig. 6.2 is given in Table 
6.1. Here Experiment 1 is that with the response given in Fig. 6.3. Paper of 
grade 80 g /m 2 was used in each case. Direct comparison with the model requires 
independent estimates of E , q, //, k and C, obtained in the following manner.

Quantity
Experiment

1 2 3 4
a\ (mm) 105 105 105 105
a2 (mm) 297 297 297 297
t (mm) 0.1 0.1 0.1 0.1

n 120 140 160 180
T  (mm) 12 14 16 18

E  (kN/mm2) 1.56 1.42 1.55 1.26
I  (mm4) 15120 24010 35840 51030

q (kN/mm) 0.0092 0.0096 0.012 0.013
k (kN/mm2) 0.0063 0.0046 0.0070 0.0036
C (kN/mm4) 0.0136 0.0084 0.0186 0.0149

Table 6.1: Experimental configurations.

6.4.1 Y oung’s m odulus and second m om ent o f  area

Given the stiffness layers of the paper, the in-plane Young’s modulus is obtained 
from
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where ai and a2 are the width and length of the layers and T  is the total thickness 
of the layered sample.

The in-line spring stiffness, for the layers plus a proportion of the foundation, 
is given by the initial slope of the £  — P  plot, as seen in Fig. 6.3. Whilst we 
recognize that the section of the sample under axial loading acts as three springs 
in parallel and hence

Mayers =  M otal -  2/jfoam j ( 6 .3 9 )

the paper is inherently stiffer than the foam. Therefore we take Mayers to be equal 
to the gradient of the load versus end-shortening plot. Wadee (1999) stated that 
the Young’s modulus of the foam is Efoaxa =  0.0004 kN /m m 2, several orders of 
magnitude lower than the values given in Table 6.1, justifying this assumption.

As shown in (6.1) of §6.3.1, the second moment of area for the multilayer is simply

? =  ( 6 - 4 0 )

6.4.2 Overburden pressure and coefficient o f  friction

The overburden pressure q, per unit length of the multilayer is simply given by 
dividing the total transverse load at the first instability by the length a2.

As in Wadee et al. (2004), the experimental coefficient of friction is determined 
by the critical slope at which an inclined stack of the paper begins to slide. The 
coefficient of friction //, is then given as (see §1.7.2)

/ /=  tan 7 , (0-41)

where 7  is the angle at which the inclined paper slips. The value of fi =  0.57
found by Wadee et al. (2004) is assumed in all cases as the same paper was
used. This corresponds to a slip angle of 7 «  tt/6  radians and is comparable to
sandstone (Price & Cosgrove, 1990).
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6.4.3 Foundation stiffness

—  Experimental data 
 Cubic curve-fit

0.4

£0.3
*  1.75 
rt 1.50 
5  1 ,5 .3 0.2

0.75
0.1

0.00
22

0.2 0.6 0.8 
Transverse Displacement (mm)

0.4Transverse Displacement (mm) Transverse

(a) (b)

Figure 6.6: (a) Transverse load (Pt ) versus displacement (A) response for Ex­
periment 2, where X marks the load at the first instability (see Fig. 6.9(a)). (b)
Curve-fit in the neighbourhood of the point X. (Note that the curve is rescaled
to start at the origin).

The linear and nonlinear foundation stiffnesses, k and C  respectively, are more 
difficult to obtain, but can be estimated from the pure transverse load versus 
displacement plot resulting from each experiment. Using Experiment 2 as an 
example, from Fig. 6 .6(a), the loading response is seen to first soften, and then 
restiffen, when compared with its initial stiffness. For the foam used in the 
experiments, this is in agreement with Wadee (1999), who added a destiffening 
term to the foundation energy; an explanation for this behaviour is given by 
Hunt & Wadee (1998). However, for these tests, when the axial end-shortening is 
applied, the foundation has already been compressed until well into the stiffening 
region and the curve is replaced by a linear stiffness combined with a cubic 
stiffening coefficient.

To determine the linear and nonlinear constants from the pre-stressed—but oth­
erwise undeformed—foundation, we study the Pt  — A plot for each experiment at 
the appropriate load level, i. e. that associated with the first instability. We then 
use the MATLAB function fminsearch (The Math Works, 2001) (see Chapter 5) 
to find a curve-fit with both linear and cubic terms (Fig. 6.6(b)). This leads to 
an equation of the form

PT =  /CA +  CA3, (6.42)
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where A is measured from the pre-compressed state.

The curve of Fig. 6.6 represents transverse load plotted against the corresponding 
displacement, and involves the paper sample as well as a layer of foam top and 
bottom. If we take the paper as much stiffer than the foam, the measured stiffness 
K and nonlinear coefficient C result from the two layers of foam acting in series. 
The stiffness of a single layer is therefore obtained by doubling the measured 
stiffness as

K fC
(6.43)

spring

Moreover, as the paper starts to deflect into the foam, the combined effect of the 
two layers on the paper lying between them is as two springs acting in parallel, 
and again the measured stiffness must be doubled. To see this, imagine that the

P t

N \ \ \ \ \ \ \
(a)

2A0

p

GO

Figure 6.7: Diagram of the interaction of two springs acting either side of the 
layers when: (a) h  (b) the pre-compression is added causing displacement Ao in 
each spring, and (c) the axial load forces one spring to compress and the other 
to release by an amount 8.

foundation consists of just two springs and that under the transverse loading Pt 
(Fig. 6.7(a)) the springs have both compressed by a distance Ao (Fig. 6.7(b)). 
W ith P  applied parallel to the layering, when a fold forms at the first instability, 
the material moves further into one side of the matrix an amount 8 whilst releasing 
the other side by the same amount (Fig. 6.7(c)).
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Pt

Aq — S Aq Aq +  6
Figure 6.8: Schematic of the Pt  — A plot when increasing and releasing the 
pre-compression.

When under extra compression 6, the first spring gives a positive energy contri­
bution Uf+ (Fig. 6.8), which is calculated as

•A o+6

UF+ =  /  dA
J  A 0

=  2 +  ~  +  4" +  -

=  ^ ( 6 2 + 2 8 A 0) + j(<S4 + 4 £ 3A0 +  6<52A2 +  4<5A3). (6.44)

The negative energy contribution Uf- , due to the second spring releasing some 
of its pre-compression by the amount <5, is given by (Fig. 6.8)

UF-  =  r °  ( k A  + C A 3) dA
J A o - S

=̂  [A„ -  (Ao -  « )2] +  [AS -  (A o -  * )4)]

=  ^(2(5A0 -  A2) +  -̂(4<53A0 — 662A j +  46A„ — 64). (6.45)

Thus the to tal foundation energy Uf  for the two springs is found from the differ­
ence of (6.44) and (6.45)

Uf  —  U f+ — U f -
C
2

= kS2 +  % 6 4 + (6.46)

The la tter term  is an higher order effect and can be ignored as we are finding 
the curvature of a particular slope. The first two term s show that, under in­
plane loading, when each hump is formed, the foundation acts as though the two
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springs are in parallel, doubling the linear and nonlinear coefficients.

Therefore, from (6.43) and (6.46), to determine the stiffness per unit length of 
the foundation, the measured stiffness of Fig. 6.6 must first be multiplied by a 
factor of four, and then divided by the length ct2 - The same goes for the nonlinear 
coefficient C, and we can write,

k  =  % (6.47)
a  2 CL 2

Results from this process are given in Table 6.1, where it is seen that the values 
of k found experimentally are of the same order of magnitude as that stated by 
Wadee (1999) for the linearly elastic compression of the foam.

6.4.4 Graphical comparisons

For the four experimental set-ups shown in Table 6.1, direct comparisons are 
now made between the results from these experiments and the solutions of model 
given in (6.23). This has been done using the algebraic manipulation package 
MAPLE (Heck, 1996).
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(a) Experiment 2

193



5.00

4.50
Transverse Load

4.00

3.50

Z  3.00

2.50

2.00
Axial Load

1.50

1.00

0.50

0.00
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Axial Displacement (mm)

(b) Experiment 3
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(c) Experiment 4

Figure 6.9: Axial and transverse loads (P  and Pt ), plotted against end-shortening 
S  for the three further experiments (in addition to that of Fig. 6.3).
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Figure 6.10: Comparison of model and experiment showing axial loads, plotted 
against end-shortening S.
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For Experiment 1, the raw data for the transverse and axial loads against end- 
displacement, were given in Fig. 6.3 to exemplify the loading sequence; similar 
output for the other three experiments is presented in Fig. 6.9. Fig. 6.10 shows 
plots of the experimental axial load versus displacement curves against the cor­
responding theoretical ones.

Table 6.2 contrasts the minimum post-fold load level Pmin and the wavelength L;

Theoretical values Experimental values % Difference
Expt L p  .mtn p u L p  .1 mtn Q L Pmin

(mm) (kN) (kN) (mm) (kN) (mm)
1 12.61 0.6877 0.2036 11.45 0.7316 11.44 -9 .2 6.4
2 13.84 0.7098 0.1790 13.45 0.8855 13.80 - 2.8 24.8
3 13.19 1.0485 0.2468 11.99 1.0824 13.89 -9 .1 3.2
4 15.24 1.2336 0.1681 15.31 1.0867 15.35 0.46 -11.9

Table 6.2: Experimental values compared against model predictions.

as well as stating the theoretical critical load P c  and experimental amplitude Q 

for completeness. As we are using a harmonic Galerkin approximation, for the 
theoretical curves, Pmin is the minimum load associated with a periodic deflected 
shape. For the experiments, this is compared with the minimum load reached 
when the first hump forms. Note however that for experiments 2 and 3 the 
first two humps form simultaneously or nearly so. In this case therefore Pmin is 
associated with the formation of the first two humps.

For the experiments, L  was measured for the first full fold, as often the initial 
hump was irregular in shape and therefore difficult to determine. The experi­
mental estimates of wavelength are in very good agreement with the theoretical 
predictions, to within 10% in all four cases. In two of the tests the correspon­
dence is remarkable and, interestingly, where the wavelengths are well matched, 
the Pmin comparisons are less so and vice-versa. However, no real conclusion can 
be drawn from these data as the sample size is so small.

What is clear from the graphical comparisons of Fig. 6.10 is that, where a single 
hump forms distinctly on its own, the theoretical and experimental curves axe 
consistent over both the initial formation and restabilization (Experiments 1 and 
4), whereas if two humps form simultaneously, or nearly so, the match is less good 
(Experiments 2 and 3). The reasons for this difference in response are presently 
unclear, although the presence of initial imperfections is expected to have some
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bearing on the m atter, as is the speed of the axial loading.

It it worth re-iterating that the theoretical wavelength calculated here is that 
found from minimization with respect to the critical load. Thus L  is associated 
with a wavetrain and not buckling in sequence, where it is expected that the 
solution at the Maxwell load would pick out the wavelength (Budd et a/., 2001).

6 .5  C o n c lu d in g  rem ark s

This chapter has taken the nonlinear model for parallel folding in two-layers 
formulated in Chapters 3 and 4 and extended it to a system of n  layers, by 
dividing a single body into an even number of identical strata. The limitations 
of such a formulation are highlighted. The linearized potential energy admits 
expressions for the critical load and wavelength by characterizing the general 
behaviour using the Galerkin approximation of Chapter 3; these are found to be 
consistent with other such analyses. Applying the calculus of variations to the 
linearization, the differential equation and boundary conditions are found.

Figure 6.11: Experiment 4: Foundation caught in the folds increasing the foun­
dation stiffness and wavelength of the fold.

The energy functional is validated with simple physical experiments conducted 
on layers of paper constrained between two sheets of foam rubber. Comparison 
emphasizes the non-triviality of finding the parameters, but shows tha t the trend 
of the load-displacement plots and the wavelengths are in very good agreement
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with those predicted. However, unlike kink banding (Wadee et al., 2004), the 
current model for parallel folding has no lockup criterion.

The fact that the lockup of the humps is not particularly marked on the exper­
imental axial loading plots could be attributed to the foundation not acting as 
a true basal layer (de Sitter, 1964) and obstructing the folds (Fig. 6.11). The 
effect of the foundation becoming “trapped” in the cusps is to raise the founda­
tion stiffnesses (Peletier, 2001b) at these points and hence stop the waves from 
closing. It can also be seen from flattening of the waves that the rigid interfaces 
of the rig are possibly interfering with the deformation. To reduce both of the 
above effects another set of experiments, using a thicker foundation, would be of 
interest.

198



Chapter 7

Conclusions and further work

7.1 Concluding remarks

This thesis has presented a nonlinear elastic model for multilayer parallel folding 
with the inclusion of friction at the bedding interfaces. Although taking a solid, 
elastic approach is in contrast with much of the previous work on multilayer 
buckling, it is the addition of the friction, that makes this research a novel study 
of geological concentric folding.

Concentrating the analysis on the buckling of a single half-wave of two layers, 
under high overburden pressure, energy considerations penalize delamination and 
lead to a formulation for the total potential energy using simple bending theory. 
The work done by the direction-dependent friction is found from the slip between 
the layers and a friction indicator is need to show whether this contribution 
is positive or negative. A sinusoidal approximation gives a visualization of the 
bifurcation diagram similar to the classical plot for a strut on an elastic foundation 
with an imperfection (Fig. 3.7). Importantly, in the area between the stationary 
paths, expressed as the jammed region, the system sits in equilibrium. However, 
as the system passes through the region, the direction of the friction reverses 
until the layers axe able to slip relative to one another.

Extension of the analysis to the class of all admissible monotone functions, results 
in a nonlinear differential equation and boundary conditions. The boundary
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conditions in the third derivative represent the step change in shear force at the 
ends of the layers; these terms literally “fall out” of the calculus of variations and 
suggest that some of the physicality is captured by the model. In linearizing the 
differential equation, nonlinearity is not lost as friction enters the system via the 
boundary conditions. Phase space plots highlight the importance of this in subtly 
altering the system as it passes through the jammed region (Fig. 4.2). When the 
numerical continuation code AUTO (Doedel et al., 1997) is used to compare 
the solutions of the linear and nonlinear equations, little of phenomenological 
significance is added by including the full set of geometric nonlinearities. Over 
much of the loading there is little deviation of the solution paths; thus analysis 
of the more simple linear system is used to extend the model.

There is nothing in the model up to this point to show how the pattern continues 
into further waves. Localized behaviour is suggested by the unstable nature of the 
buckling and with a nonlinearity added to the foundation such that the system 
restabilizes over large deflections, cellular buckling is predicted, with half-waves 
forming and then locking-up in sequential fashion. By adding a restabilizing term 
to the foundation and curve-fitting the wave-profiles using two cubic B-splines, 
such ideas were explored by studying the stationary solutions of the two-layer 
potential energy functional. As the splines may take different amplitudes we get 
the possibility of primitive serial folding. Surprisingly, following the development 
of a single hump through to a second, with increasing end-shortening, we find 
that localization is lost and (primitive) periodicity imposed while the load is still 
falling. This is in major contrast to earlier work (Hunt et al., 2000b; Budd & 
Peletier, 2000; Wadee et al., 2004), where the addition of another cell in the 
transition from a homoclinic to heteroclinic connection is seen by equilibrium 
behaviour where the load falls and rises periodically.

Finally, we see that extending the nonlinear two-layer model for parallel folding to 
a multilayer of n identical layers, is a relatively straightforward exercise. Several 
of the limitations of the model are brought to light in doing so and we find that as 
the number of layers increases, over large deflections, some of the simplifications 
begin to break down. However, when compared to the work of Currie et al. (1962), 
the critical load and wavelength are fairly consistent and the calculus of variations 
shows that again the boundary conditions are physically sound; both of these 
points lend some credibility to the methodology. The simplest comparison of 
the model with experiments comprising paper multilayers embedded in a foam
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matrix, uses first order harmonic analysis of the linearized potential and shows 
a very good agreement between the theoretical and actual load-amplitude plots 
and wavelengths.

The fact tha t so-called serial buckling is inherent to the model, and that there 
is good comparison with an experimental investigation using layered structures, 
highlights the power of the applied techniques and makes us confident that the 
paradigm improves our understanding of the real physical situation. Moreover, 
using the techniques introduced in this thesis, the following extensions should be 
considered.

7.2 Further work

The research presented in this thesis only models the central interface of a multi­
layer body undergoing parallel folding. Everything else is assumed to follow from 
the geometry of this bedding plane, through the definition that the orthogonal 
thickness of the layers must be maintained at all points. However, this is not 
as straightforward as it appears; the geometry eventually gets more complicated, 
due to the reduction of the radius of curvature. For example, let us assume that 
at the core of the fold the wave is sinusoidal. As Fig. 7.1(a) shows, if the envelope 
of constant normal thicknesses is followed from the sinewave the layers eventually 
fold through themselves.

Of course, in reality this does not occur; the multilayer usually dies out by forming 
a cusp and then the subsequent strata form a corner. In many geological outcrops, 
this situation is accompanied by faulting or zones of crumpling (crenulations), as 
shown in Fig. 7.1(b) (Goguel, 1962; de Sitter, 1964). Such behaviour needs more 
study and modelling by accurately tracing wavefronts.

Related to this is the idea of lockup and here we have no lockup criterion. As 
shown for kink banding, a lockup criterion would enable us to model the propaga­
tion of the fold and if successful allow more direct comparison with experimental 
results (Wadee & Edmunds, 2005). In an ideal situation the lockup is governed 
by the geometry of the layers cusping; therefore geometrical lockup happens when 
the extreme layers are in contact with themselves. In reality, as soon as it more
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Figure 7.1: (a) Tracing envelopes of constant thickness of a sinewave, (b) Crum­
pling at the base of a fold. (After Goguel 1962)

favourable for a new hump to be formed then the stress is passed on to the un­
deformed material. Geometrical lockup, in general, may not happen until much 
further down the post-buckling path, if it occurs at all; especially if the m atrix 
interferes with the cusps.

Finding solutions to the linearized multilayer differential equation and boundary 
conditions, given in Chapter 6, using a numerical package such as AUTO may also 
lead to better comparisons with the experiments, as this would not be restricted 
to purely sinusoidal deflections. Although the applicability is questionable due 
to the simplifications, the full nonlinear model could also be examined.

To aid in all of the above, some more experiments are needed, where the foun­
dation is increased in thickness to stop the rigid boundaries interfering with the 
humps. Hopefully this would give better comparisons with the multilayer model 
and allow a more careful study of the propagation sequence.

The propagation process from the splines formulation should ideally be extended 
to more humps; however, the equations get increasingly complicated and the 
computational time increases rapidly. It would be easier and more productive to 
assume that n — 1 humps have already formed and model the process of devel­



opment of the nth cell. This should be possible with just a slight modification of 
boundary conditions at one end of one of the splines, from homoclinic to periodic 
boundary conditions.

Finally, having studied kink banding (Wadee &; Edmunds, 2005; Edmunds &; 
Wadee, 2005) and parallel folding, it would be of interest to see if a process 
exists that would take one from the former to latter. The overburden pressure is 
certainly involved as it is considerably higher in the former case and is related to 
the foundation. There are also similarities between kink bands and parallel fold 
limbs and it may be that in the limbs, like a kink band, in order for friction to 
be released, the orientation and rotation angles must be the same.

A study of chevron folding is also a possibility as, in the author’s opinion, this 
might be considered as a middle ground between kink bands and concentric folds. 
Chevron folds have small sharp hinges and long limbs almost forming a corner. 
If a wavefront is extended outward from a corner, it becomes more rounded, as 
seen in Fig. 7.1; if extended inwards the confinement means that kink bands 
appear. In preliminary experiments by Hunt et al. (2000b), it was shown that 
chevron folding could be obtained from kink banding (Fig. 7.2), by making certain 
adjustments. Whether the same could be done from parallel folding remains to 
be seen and experiments altering different parameters would be needed.

203



Figure 7.2: Chevron folds obtained from kink bands. (After Hunt et al. 2000b)
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