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SUMMARY

Interleukin-3 (IL-3) is a pleiotropic cytokine which binds to a heterodimeric 

receptor composed of a cytokine-specific a  chain and a p  chain, common to the IL-5 and 

granulocyte macrophage-colony stimulating factor (GM-CSF) receptors. Although both 

receptor chains lack intrinsic tyrosine kinase activity, stimulation of haemopoietic cells 

with IL-3 induces tyrosine phosphorylation of a number of cellular protein substrates 

including the IL-3 receptor p  subunit itself, the protein tyrosine phosphatases (PTPases) 

SHP-1 and SHP-2, the p52 and p46 isoforms of the adaptor protein She, the inositol 

polyphosphate-5-phosphatase SHIP, and the mitogen activated protein (MAP) kinases erkl 

and erk2. Using glutathione S transferase (GST) fusion proteins, it was demonstrated that 

both the PTPases, SHP-1 and SHP-2, associate with the tyrosine phosphorylated p  chain of 

the IL-3 receptor following IL-3 stimulation. This interaction was direct and mediated by 

the SH2 domains of the PTPases. Phosphopeptide competition analyses, using peptides 

based on p  chain tyrosine residues, identified the major site of interaction at tyrosine 612. 

Similarly, the interaction of She with the IL-3 receptor p  chain was also determined to be 

direct and could be mediated by both the SH2 and PTB domains of She. The SH2 domain 

of She also interacted with residues surrounding tyrosine 612 of the p  chain, whereas the 

PTB domain associated with residues surrounding tyrosine 577. Further investigation into 

IL-3-induced association of She with other phosphoproteins revealed that the SH2 domain 

of She also associated with a novel 100 kDa protein. In addition, the PTB domain of She 

interacted with a tyrosine phosphorylated 145 kDa protein which was determined to be 

SHIP. To investigate the functional importance of these interactions mediated by She in 

regulating IL-3-induced signalling events, expression of various She mutants in a murine 

IL-3-dependent cell line, Ba/F3, and analyses of the functional consequences of their 

expression was investigated. Clones were generated exhibiting high levels of inducible 

expression and low basal levels of expression of full length (FL) She and the following She 

mutants: the PTB domain alone, the SH2 domain alone; and a variant with tyrosine 317 

(the Grb2 SH2 binding site) mutated to phenylalanine. The profile of IL-3-induced 

tyrosine phosphorylation of cellular substrates, IL-3-induced Erkl and Erk2 activation and 

IL-3-induced proliferation were examined. Expression of the individual SH2 or PTB 

domains had no detectable effect on any IL-3-induced events investigated. Expression of 

FL or Y317F resulted in a consistent decrease in endogenous She phosphorylation. Erk 

activation was enhanced in cells expressing FL She and reduced in cells expressing the 

Y317F mutant. However, little effect on IL-3-induced proliferation was observed in cells 

expressing these She variants.
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Chapter One

I.A Haemopoiesis

In adult life, all circulating blood cells originate from a common pool of pluripotent 

haemopoietic stem cells in the bone marrow (Metcalf, 1989). This stem cell gives rise, 

after a number of cell divisions and differentiation steps, to a series of myeloid and 

erythroid progenitor cells, as well as to a common lymphoid stem cell. The earliest 

detectable myeloid precursor gives rise to granulocytes, erythroid, monocytes and 

megakaryocytes and is termed CFUqemm (CFU= colony-forming unit in agar culture 

medium; GEMM= granulocyte, erythroid, monocyte, macrophage). More mature and 

specialised progenitors are termed CFUgm (granulocytes and monocytes), CFUe0 

(eosinophils), CFUe (erythroid), CFUBaso (basophils) and CFUMeg (megakaryocytes). BFUe 

(burst-forming unit, erythroid) refers to an earlier erythroid progenitor than the CFUe (see 

Fig. 1.1).

The stem cell has the capacity for self-renewal, so that, although the marrow is a 

major site of new cell production, its overall cellularity remains constant in a normal 

healthy steady state. The progenitor cells are, however, capable of responding to 

haemopoietic growth factors with increased production of one or other cell line when the 

need arises. This complex process of haemopoiesis needs to be tightly regulated in order 

to maintain steady state conditions in health and to meet the requirements for increased and 

rapid production in infectious states or after blood loss.

The process that maintains steady state levels of blood cells under the influence of 

the haemopoietic inductive microenvironment is termed constitutive haemopoiesis and is 

regulated by growth factors as well as cell-to-cell interaction (Miyajima et al., 1988; Arai 

et al., 1990). Specialised stromal cells (macrophages, fibroblasts, endothelial cells, fat 

cells and reticular cells) are embedded in an extracellular matrix of collagen containing 

adhesive proteins (laminin, haemonectin and fibronectin) and proteoglycans. The stem 

cells are immobilised in the extracellular matrix by their cell surface adhesion molecules 

(CAMs) and receptors for the attachment peptide arginine-glycine-aspartic acid (RGD) 

expressed on the adhesive proteins. As the stem cells differentiate, they lose some of these 

CAMs and receptors for RGD; these changes may be important in allowing the cells to 

leave the marrow and enter the circulation. In addition, growth factors, produced locally by 

stromal cells, bind to the extracellular matrix and are presented to immobilised stem cells. 

The direction in which stem and progenitor cells differentiate depends largely on the
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Chapter One

spectrum of growth factors to which they are exposed. This local stromal control seems to 

maintain stem cell numbers and the production by stem cells of progenitor cells committed 

to the formation of cells of a particular lineage. The co-ordinated interaction of 

haemopoietic growth factors further stimulates the proliferation of progenitor cells and 

their progeny and initiate the maturation events necessary to produce fully mature cells 

(Metcalf, 1989).

The haemopoietic system must also respond to acute situations such as infection or 

bleeding. This is accomplished by elaborating growth factors that promote rapid expansion 

and maturation of specific sets of haemopoietic cells at the affected site. The major source 

of haemopoietic growth factors that trigger this inducible haemopoiesis are activated T 

cells and macrophages (Miyajima et a l, 1988; Arai et a l, 1990). Mast cells, endothelial 

cells, and fibroblasts also produce overlapping and distinct sets of factors. These growth 

factors are collectively called cytokines (cyto meaning cell and kine meaning movement). 

Some of them were discovered because of their ability to stimulate colony-formation in 

semisolid cultures of bone marrow cells and were therefore termed colony-stimulating 

factors (CSFs) (Metcalf, 1989). Others were first defined by their actions on lymphocytes 

and consequently named interleukins (IL) (reviewed by Arai et a l, 1990).

I.B. The cvtokine superfamilv

The cytokine family is now known to consist of a diverse group of acidic 

glycoproteins with polypeptide molecular masses ranging from 14-39 kDa. There appears 

to be little amino acid sequence homology between the proteins in this group but analyses 

of their three- dimensional molecular structures indicate that many exhibit similar 

structural conformations consisting of four a-helical bundles, in which two helices 

combine to produce the active binding domain (Bazan, 1990). To date, multiple cytokines 

have been identified and include: IL-1 to IL-20, granulocyte macrophage CSF (GM-CSF), 

granulocyte CSF (G-CSF), macrophage CSF (M-CSF; or CSF-1), steel factor (SLF; or 

stem cell factor, SCF), and erythopoietin (Epo). Extensive research has enabled some of 

their roles in haemopoiesis to be unravelled and Figure 1.1 shows a schematic diagram of 

haemopoiesis, indicating the different cytokines involved at each stage of development of

3
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FIGURE LI
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the various lineages. However, this model is an oversimplification of haemopoiesis. This 

is largely because cytokines are generally pleiotropic, i.e., influencing more than one cell 

type, and many cytokines have overlapping activities (i.e., redundancy). A single cytokine 

can interact with more than one type of cell through receptors expressed on many cell 

types. Conversely, the same effect on a particular haemopoietic lineage can be elicited by 

several cytokines (Arai et al., 1990).

I.C Interleukin 3 (IL-3)

I.C.l Identification

Interleukin 3 (IL-3) was one of the earliest characterised cytokines because of its 

profound effects on cells at multiple stages of haemopoietic development (Schrader et a l ,

1986). IL-3 was therefore discovered independently by a number of laboratories studying 

different biological activities and went under a variety of names, including: persisting cell 

stimulating factor (PSF); mast cell growth factor (MCGF); haemopoietic cell growth factor 

(HCGF); histamine-producing cell-stimulating factor; CFUs stimulating activity; Thy-1- 

inducing factor; burst promoting activity (BPA), which stimulates the production of 

erythroid colonies in the presence of erythropoietin; and multi-colony-stimulating factor 

(multi-CSF), which stimulates multilineage colony formation in vitro from bone marrow 

cells (reviewed by Arai et a l , 1990). It was only with biochemical purification (Ihle et a l , 

1983; Clark-Lewis et a l , 1984), molecular cloning and expression (Yokota et a l , 1984; 

Fung et a l , 1984) and chemical synthesis (Clarke-Lewis et al 1986) that it was established 

conclusively that a single protein mediated all of these bioactivities.

I.C.2 Structure

The primary structures for murine (Yokota et a l, 1984; Fung et a l, 1984), human 

(Yang et a l, 1986), and gibbon (Yang et a l, 1986) IL-3 have been deduced from the 

sequences of cDNA clones. IL-3 has broad structural similarities with other interleukins 

and haemopoietic growth factors. The murine IL-3 gene encodes a protein of 166 amino 

acids; the first 26 amino acids encode a typical hydrophobic leader sequence required for 

secretion. The human IL-3 gene encodes a protein of 152 amino acids, including a leader 

sequence of 19 amino acids. Consistent with the lack of biological cross-reactivity
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between murine and human IL-3, there is little sequence homology between the genes and 

at the amino acid level, human and murine IL-3 show only 29% homology. The murine 

gene contains four sites of potential N-glycoslyation, while the human gene contains two 

potential sites. Natural IL-3 occurs in a diversity of glycoforms generated by the addition 

of carbohydrate groups. Purified, native murine IL-3 exists as a monomer with an apparent 

molecular size of 28 kDa and contains approximately 38% carbohydrate. Carbohydrate on 

IL-3 of murine T cell origin is exclusively N-linked (Ziltener et a l , 1988). Human IL-3 

has an apparent molecular size of 15-30 kDa reflecting heterogeneity in the carbohydrate 

component. The function of these extensive carbohydrate modifications of the IL-3 

polypeptide is unknown. The biological activity of glycosylated IL-3 does not differ in vivo 

when compared with a chemically synthesized, non-glycosylated IL-3, when injected into 

mice (Ziltener et al., 1994).

I.C.3 Physiological role

IL-3 has the broadest target specificity of any cytokine. The range of target cells 

can be summarised as including progenitor cells of every lineage derived from the 

pluripotential haemopoietic stem cells, with the exception of cells committed to the T and 

B lymphoid lineages. Thus, IL-3 is capable of stimulating the generation and 

differentiation of macrophages, megakaryocytes, mast cells, eosinophils, neutrophils, 

basophils and erythroblasts (summarised by Ihle, 1992).

The question of whether IL-3 has a key role in regulating the production of T or B 

lymphocytes has been controversial. IL-3 was discovered as a factor in supernatants of 

activated T lymphocytes that enhances the production of the enzyme 20-a-hydroxysteroid 

dehydrogenase (20-oc-SDH) in spleen cells from athymic (nu/nu) mice (Ihle et a l , 1981). 

20-a-SDH was thought to be a specific marker of mature T cells and only low levels of 

enzyme activity are found in the spleens of athymic nude mice. Thus, IL-3 was thought to 

play a critical role in T-lymphocyte development, inducing differentiation of splenic 

lymphocytes from nu/nu mice to become 20-a-SDH positive. In fact, the induction of 20- 

a-SDH formed the basis of the assay for the first purification to homogeneity of IL-3 (Ihle 

et a l , 1983). However, the notion that this enzyme was restricted to T lymphocytes was 

disproved by the demonstration that IL-3 induced this enzyme in cells of a number of 

myeloid lineages, including mast cells (Hapel and Young, 1988). Another piece of
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evidence in favour of the notion that IL-3 acted on T cells or their precursors was the claim 

that purified IL-3 promoted the growth of clones of helper T cells which express Thy-1 

antigen (Hapel et al., 1981). However, the cells misidentified as helper T lymphocytes 

were in fact contaminating cells of the myelomonocytic leukaemia WEHI-3B line which 

had been used as a source for the purification of the IL-3. At the time, the Thy-1 antigen 

was thought to be a specific marker for T lymphocytes among lymphohaemopoietic ceils in 

the mouse; however, WEHI-3B cells also express Thy-1 antigen. There is some evidence 

that IL-3 may play a role in the proliferation or differentiation of early lymphoid lineages, 

largely based on the properties of IL-3-dependent cell lines isolated from foetal liver, bone 

marrow or spleen. With regard to T lymphocytes, the strongest evidence for an effect of 

IL-3 has been the identification of IL-3-dependent pro-T cell lines (Sideras and Palacios,

1987). Palacios et al (1984) reported that IL-3 promotes the growth of a population of 

mouse B lymphocyte precursors, but not of mature B lymphocytes and that IL-3-responsive 

clones of pre-B lymphocytes could be obtained with high frequency from foetal liver 

(Palacios et a l , 1984). Palacios and Steinmetz (1985) have also reported the generation of 

a small number of IL-3-dependent cell lines that have the capacity to give rise to B 

lymphocytes in irradiated animals. Therefore, it appears that IL-3 supports, alone or in 

combination with other factors, the proliferation of early pluripotent stem cells prior to 

commitment to the lymphoid lineages. Once committed to the T or B cell lineage, or 

shortly after commitment, the cells lose the ability to respond to IL-3.

IL-3 may play a more critical role in the development, survival and function of 

tissue mast cells and blood basophils. These cells are thought to be important effector cells 

in immunity to parasites and other immunological responses, such as allergic reactions. It 

has recently been shown using IL-3-deficient mice that IL-3 contributes to the 

overproduction of mast cells and enhanced basophil development observed in mice 

infected with the nematode Stroglyoides venezuelensis (Lantz et al., 1998). In the IL-3'7' 

mice inoculated with S. venezuelensis, a decrease in basophil and mast cells levels, 

compared to wild type mice, were observed, suggesting that one of the functions of IL-3 in 

host defence against infection is to expand populations of these haemopoietic effector cells 

(Lantz etal.y 1998).

The major physiological source of IL-3 in both mice and humans is the activated T 

lymphocyte (Schrader and Nossal, 1980; Schrader, 1981; Niemeyer et a l , 1989). It has
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also been shown that mast cells can produce IL-3 in response to cross-linking of IgE 

receptors (Wodnar-Filipowicz et a l, 1989; Burd et a l, 1989). This has considerable 

importance since it can be envisioned that with antigenic stimulation, the production of IL- 

3 could serve to activate or prime other cells in the vicinity of an allergic response, 

including the mast cells themselves, as well as other haemopoietic cells.

The largely exclusive production of IL-3 by activated T cells has led to the concept 

that IL-3 may only be involved in immunological regulation of haemopoiesis and serves as 

a link between the immune system and the haemopoietic system which generates the 

phagocytic and granulocytic cells that mediate defence and repair. There is little evidence 

that IL-3 is involved in the steady-state production of blood cells, despite its potent ability 

to stimulate almost all phases of haemopoiesis. Consistent with this concept, IL-3 is not 

produced by foetal tissues (Azoulay et a l, 1987) or by bone marrow stromal cells under 

conditions that support haemopoietic stem cell differentiation (Naperstek et a l, 1986; 

Gualtieri et a l, 1987). In addition, IL-3 is absent in the serum of normal animals (Crapper 

et a l, 1984). Thus, IL-3 appears to be primarily important for the expansion of 

haemopoietic cells in an inflammatory response.

I.D Cvtokine Receptors

Cytokines exert their biological functions through specific receptors expressed on 

the cell surface of target cells. Cloning of the individual receptors have revealed their 

multicomponent nature and shown that different receptors share individual receptor 

components, providing a potential explanation for some of the remarkable functional 

pleiotropy and redundancy observed among the activity of several of the cytokines.

I.D.l The protein tyrosine kinase receptor family

The receptor tyrosine kinases (RTKs) are a family of more than 50 different 

transmembrane polypeptides with a protein tyrosine kinase domain in their intracellular 

portion. Receptors for growth factors such as: epidermal growth factor (EGF), platelet 

derived growth factor (PDGF), fibroblast growth factor (FGF) and Steel factor (SLF) are all 

members of this family. RTKs, with the exception of the insulin receptor, are all composed 

of a single polypeptide chain and all share common structural and functional features: a
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large extracellular ligand-binding domain, a single membrane spanning domain and a large 

cytoplasmic domain with tyrosine kinase activity (Ullrich and Schlessinger 1990).

I.D.2 Class I cytokine receptors or the Cytokine receptor superfamily

Unlike the receptor protein tyrosine kinases, receptors of the cytokine receptor 

superfamily do not have kinase domains, and only a limited similarity is found in their 

cytoplasmic domains. The majority of cytokines regulating the immune and haemopoietic 

systems associate with class I cytokine receptors. These receptors include IL-2R (P-chain), 

and the IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-11, IL-12, erythropoietin (Epo), G-CSF, GM- 

CSF, prolactin, and growth hormone receptors. The high affinity receptors for IL-3, IL-5, 

GM-CSF, and IL-6 are composed of two subunits, both of which are members of this 

receptor family. The receptors for IL-3, IL-5 and GM-CSF are composed of a cytokine- 

specific a-chain and a signal transducing component shared between the receptors, pc. 

The signal transducing component shared between the receptors for IL-6 and IL-11 is 

gpl30. Members of the cytokine receptor superfamily contain a conserved domain of 

around 200 amino acid residues in their extracellular domains, as well as two or three short 

conserved motifs in the cytoplasmic region. The conserved 200 amino acid extracellular 

domain is composed of two fibronectin type III modules, each of which consists of seven 

p-strands positioned anti-parallel so as to form a barrel-like shape (Bazan, 1990). A trough 

formed between two barrel-like modules is believed to function as a ligand binding pocket 

and is where the carboxy-terminal WSXWS motif is located. In addition, four positionally 

conserved cysteine residues are located in the amino-terminal part of the extracellular 

domain (reviewed by Bagley et al, 1997). The cytoplasmic domains of these receptors do 

not contain a consensus catalytic domain and only limited sequence similarity is found. 

However, two motifs, box 1 and box 2, are relatively well conserved in the cytoplasmic 

membrane-proximal region of most receptors of this family (Murakami et a l , 1991). This 

region has been shown to be required for mitogenic activity of the growth hormone 

receptor (Colosi et al., 1993), the GM-CSFR (Ziegler et a l , 1993) and the EpoR (Miura et 

a l , 1993). Box 1 comprises a Pro-X-Pro sequence and a preceding cluster of hydrophobic 

amino acids. Box 2 is only conserved in about 50% of the members of this family: it 

begins with a cluster of hydrophobic amino acids, followed by negatively charged residues
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and ends with one or two positively charged amino acids, which shares limited similarity 

among most cytokine receptors.

Despite the absence of kinase domains in their receptors, cytokines that utilise 

receptors of the cytokine receptor superfamily rapidly induce tyrosine phosphorylation of 

cellular substrate proteins as well as of the receptors. Mutagenesis of several of these 

receptors has demonstrated that the ability of the receptor to couple ligand binding to 

protein tyrosine phosphorylation requires the membrane proximal cytoplasmic domain 

(containing the box 1 motifs), which is also required for mitogenesis (Sato et al, 1993; 

Sakamaki et al, 1992). The rapid induction of tyrosine phosphorylation, the 

phosphorylation of the receptors and the detection of protein tyrosine kinase activity in 

receptor immunoprecipitates have all led to the hypothesis that a protein tyrosine kinase 

physically associates with the receptor and becomes activated following ligand binding.

I.D.3 Class II cytokine receptors

The class II cytokine receptor family consists of receptors for interferon (IFN)-a, 

IFN-y and IL-10. These receptors are multimeric and share overall structural features with 

the class I cytokine receptors, being distantly related, but more divergent and contain an 

additional conserved cysteine pair and several conserved prolines and tyrosines.

I.E The IL-3 receptor

The high affinity receptor for IL-3 is composed of two distinct subunits, the a  and p 

subunits (see Fig. 1.2). Both a  and P subunits belong to the cytokine receptor superfamily 

and both are required to transduce a signal across the membrane. The a  subunit is a 70 

kDa glycoprotein responsible for cytokine-specific binding and alone can bind its ligand 

with low affinity (Miyajima et al., 1992). The p subunit, a 120-140 kDa glycoprotein, 

cannot alone bind IL-3 but instead forms a high affinity complex with the a  subunit. The 

human IL-3R p subunit, called pc, is shared with the IL-5 and GM-CSF receptors, which 

each have their own specific a  subunits (IL-5Ra and GMRa) (see Fig. 1.3). In mice the 

situation is complicated by the existence of two different P subunits (Miyajima et a l , 1992) 

(see Fig. 1.3). By using an antibody, anti-Aic2, that partially blocks IL-3 binding 

(Yonehara et a l , 1990), a mouse cDNA, Aic2A, was isolated (Itoh et a l , 1990). A second
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FIGURE 1.2
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The human high affinity IL-3 receptor.
The extracellular domain of the a  subunit of the IL-3 receptor possesses the conserved 

motif of the haemopoietic growth factor receptors, containing four conserved cysteine 

residues (CCCC) and the conserved sequence WSXWS (WS). The extracellular 

domain of the p subunit has two repeats of this conserved motif. The intracellular 

domain of the p subunit contains several tyrosine residues and a conserved box 1 

domain (shaded region).
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FIG U RE 1.3
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shown as A and B, respectively.
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cDNA, Aic2B, was also isolated that was 91% identical to Aic2A at the amino acid level 

and had all the common features of the cytokine receptors (Gorman et a l , 1990). The 

human pc cDNA (KH97) was subsequently isolated by hybridisation using the Aic2A 

cDNA as a probe (Hayashida et al., 1990). Aic2B is the murine counterpart of the human 

pc and with the respective a  chain, can form high affinity receptors for murine IL-3, GM- 

CSF and IL-5 (Kitamura et a l, 1991; Devos et a l, 1991). The alternative p subunit, 

Aic2A, is specific for IL-3 and associates only with IL-3Ra to generate a high-affinity IL- 

3-specific receptor (Itoh et a l, 1990). Cloning of the murine IL-3R a  subunit and 

reconstitution of high affinity IL-3 receptors has showed that the murine IL-3R a  subunit 

forms high affinity receptors with either Aic2A or Aic2B and no functional difference has 

been found between these two different forms of the high-affinity murine IL-3 receptor 

(Hara and Miyajima, 1992).

The Pc subunit, because of its considerably larger cytoplasmic domain, is believed 

to perform the greater role in signal transduction and is required for a number of 

intracellular signals, including: tyrosine phosphorylation of a set of cellular proteins, 

induction of immediate early genes, proliferation and activation of components of the 

Ras/MAP kinase pathway. Detailed analysis of GM-CSFR Pc (GMRp) deletion mutants 

have identified at least two distinct functional domains within the cytoplasmic region of 

GMRp that are important for signal transduction (Sato et a l, 1993; Sakamaki et a l, 1992; 

Quelle et a l, 1994). A membrane proximal region (amino acids 456-517), containing a 

conserved box 1 (amino acids 458-465) motif, was shown to be essential for proliferation, 

activation of Jak2 and induction of c-myc (Quelle et al, 1994). A second domain (amino 

acids 627-763) was found to be necessary for activation of She, Ras, Raf-1, and MAP 

kinase as well as induction of c-fos and c-jun (Sato et al, 1993).

Although neither of the IL-3R subunits possess intrinsic tyrosine kinase activity, 

one of the earliest events to occur after IL-3 binding to its receptor is induction of protein 

tyrosine phosphorylation. Many proteins, including the receptor itself (Sakamaki et a l, 

1992; Duronio et a l, 1992a) become tyrosine phosphorylated in response to IL-3, and 

much effort has been directed towards identifying both these tyrosine phosphorylated 

substrates and the kinases responsible. The src-like kinases lyn, fyn and hek have been 

shown to be activated in response to IL-3 (Anderson and Jorgensen, 1995). There is some 

evidence that fyn and hek associate with pc (Burton et al, 1997). However, lyn appears to
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be the prominent src-like kinase associated with Pc. A Pc receptor truncated at amino 

acids 517 has been shown to bind lyn (Rao and Mufson, 1995) and recently, lyn has been 

shown to associate with the membrane proximal region of Pc between amino acids 457 

and 465, the box 1 domain (Adachi et a l, 1999). In addition, a non-Src-like kinase, Jak2, 

has been shown to be activated by IL-3 (Silvennoinen et al, 1993) and GM-CSF (Quelle et 

al, 1994) and the box 1 region of pc was shown to be essential for GM-CSF-dependent 

Jak2 activation (Watanabe et a l, 1996). Thus, lyn and Jak2 kinases may be responsible for 

the IL-3-induced tyrosine phosphorylation of cellular substrates, many of which have been 

identified and include: p42erk2 and p44erkl (Welham et a l, 1992), p i20 Jak2 (Silvennoinen 

et a l, 1993), p90 STAT5 (Mui et a l, 1995), p70 SHP-2 (Welham et a l, 1994b), p46 and 

p52 She (Welham et a l, 1994a), and p i45 SHIP (Damen et a l, 1996). The p subunit of 

the receptor itself also becomes tyrosine phosphorylated upon IL-3 stimulation (Sakamaki 

et a l, 1992; Duronio et a l, 1992a); the 8 potential intracellular tyrosine phosphorylation 

sites may provide crucial docking sites for signalling molecules containing SH2 or PTB 

domains.

I.F SH2. SH3 and PTB domains 

I.F.l SH2 domains

SH2 domains are noncatalytic regions of approximately 100 amino acids, originally 

identified as a non-kinase domain conserved between the v-Jps and v-src cytoplasmic 

tyrosine kinases; hence the name src-homolgy domain (Sadowski et a l, 1986). SH2 

domains are found in many cytoplasmic signalling molecules including kinases, 

phosphatases and adaptor molecules (see Fig. 1.4). Those molecules with enzymatic 

activity which contain SH2 domains include the p60c'src family protein tyrosine kinases, 

PLC-y, the p21ras GTPase activating protein, pl20GAP, and the protein tyrosine 

phosphatases (PTPases) SHP-1 and SHP-2. Adaptor proteins with no enzymatic activity 

such as the p85 subunit of phosphoinositol 3’ kinase (PI3-K), She, Grb2, and IRS-1 also 

contain SH2 domains (Pawson and Gish, 1992; Pawson, 1995).

SH2 domains have been shown to directly recognise phosphotyrosines embedded 

within a specific amino acid sequence. Using a degenerate phosphopeptide library, the 

specificity of individual SH2 domains were determined (Songyang et a l, 1993, 1994).
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Generally, most SH2 domains fall into one of two broad categories. Group I SH2 

domains, which include those of the src family kinases, prefer phosphopeptides with the 

general amino acid motif pY-hydrophilic-hydrophilic-hydrophobic and make specific 

contacts with the residues immediately following the phosphotyrosine (pY) at the +1 and 

+3 positions. Group II SH2 domains, including those of phospholipase C -yl (PLC-yl) and 

SHP-2 protein tyrosine phosphatase, and select phosphopeptides with the general amino 

acid motif pY-hydrophobic-X-hydrophobic but also make contacts with residues out to the 

+5 position. The specific motifs recognised by some different SH2 domain containing 

proteins, as determined by degenerate phosphopeptide libraries (Songyang et al, 1993,

1994), are listed in Table 1.1. SHP-1 and SHP-2 both show broad selectivity for 

pY-hydrophobic-X-hydrophobic amino acid motifs. However, Val and lie were found to 

be the preferred hydrophobic residues at the +1 and +3 positions of SHP-2, whereas Phe 

was slightly preferred by SHP-1 at +1 and +3 (Songyang et a l , 1994). In addition, the 

involvement of residues more carboxy-terminal to these, especially a hydrophobic residue 

(Leu, Phe, or Pro) at position +5 has also been suggested for high affinity binding in the 

case of SHP-2 (Huyer et al., 1995). Grb2 is unusual in that it has very weak selectivity at 

the +3 position and selects primarily on the basis of Asn at +2 (Songyang et a l , 1994).

TABLE 1.1 
Recognition specificities of SH2 domains

SH2 domain Recognition sequence
Src family members pY-Glu-Glu-Ile
SHP-1 p Y-hydrophobic-X-hydrophobic
SHP-2 p Y -V/I/T-X-V/L/I-X-L/F/P
She p Y-I/E/Y/L-X-I/L/M
p85 N-terminal pY-X-X-M
Grb2 pY-X-N-X

The structure of the SH2 domain, as determined by X-ray crystallographic analysis 

of the Src SH2 domain complexed with phosphopeptide-containing pentapeptides, is 

formed from two anti-parallel p sheets, surrounded by two a  helices, forming a two pocket
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hydrophobic core (Waksman et a l, 1992). The residues conserved between different SH2 

domains are involved in forming the hydrophobic core structure and are involved in 

phosphopeptide recognition. The substrate peptides themselves bind to a fairly flat surface 

formed by the central p sheet, with the phosphotyrosine protruding into the first pocket 

which contains an invariant arginine residue (Arg-175, numbered according to v-src) which 

is located in the FLVERS sequence, the most highly conserved region among all SH2 

domains (Koch et a l , 1991). This arginine residue is crucial for the ability of SH2 

domains to distinguish phosphotyrosine-containing residues from those with phosphoserine 

or phosphothreonine. Only the phosphotyrosine side chain extends far enough into the 

pocket to achieve optimal binding with the arginine residue which forms hydrogen bonds 

with two of the phosphotyrosine phosphate oxygens (Pawson and Gish, 1992). For the 

group I SH2 domains, the +1 residue makes hydrophobic contacts with the p strand while 

the second binding pocket encompasses the residue in the +3 position (Waksman et al,

1993) (Fig. 1.5 A). This second binding pocket is composed of an invariant tyrosine 

residue and nonconserved hydrophobic residues, variations of which may regulate the 

binding at the +3 position and confer specificity of the SH2 domain (Pawson and Gish,

1992). However, the second binding pocket of group II SH2 domains, from proteins such 

as SHP-2 and PLC-yl, forms an extended shallow hydrophobic groove structure which 

makes contacts out to the +5 position of phosphopeptides (Lee et al., 1994; Pascal et al,

1994), (Fig. 1.5 B).

Transmission of signals by the binding of SH2 domains to a tyrosine 

phosphorylated protein occurs via two mechanisms. First, the binding may alter the 

subcellular localisation of the protein, bringing it closer to its substrate, or closer to a 

protein that modifies it. Secondly, binding may induce a conformational change which 

may alter the catalytic activity of the protein (Cohen et al., 1995).

I.F.2 SH3 domains

SH3 domains are small regions of approximately 55-70 amino acids found in many 

intracellular signalling proteins including enzymes and adaptors (Koch et al., 1991; 

Pawson and Gish, 1992; Cantley et al., 1991). These domains are also involved in 

mediating protein-protein interactions and are frequently present in signalling molecules 

which also contain SH2 domains as in p60c‘src, PLC-y, Grb2, pl20GAP and the p85 subunit
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FIGURE 1.5
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SH2 domain binding pockets.
SH2 domains recognise phosphotyrosine (pTyr)-containing amino acid motifs. (A) Group 

I SH2 domains have a pTyr-binding pocket and a hydrophobic pocket encompassing the 

residue +3 from the pY. The src SH2 domain is an example of a Group I SH2 domain 

which binds with high affinity to peptides with the sequence pTyr-Glu-Glu-Ile. (B) The 

peptide pTyr-Ile-Ile-Pro-Leu-Pro binds to the carboxy-terminal SH2 domain of PLC-yl, 

an example of a Group II SH2 domain, which possesses an extended shallow 

hydrophobic groove which associates with residues extending to the +5 position from the 

pTyr.
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of PI3-K (Pawson and Gish, 1992) (refer to Fig. 1.4). SH3 domains recognise short proline 

rich peptide motifs of approximately 10 amino acids (Ren et a l , 1993) composed of a X-P- 

p-X-P core motif, where X tends to be an aliphatic residue and the two conserved prolines 

(P) are crucial for high affinity binding. The intervening scaffolding residue (p) also tends 

to be a proline (Cohen et a l, 1995; Pawson, 1995). The interaction of an SH3 domain with 

its ligand does not depend upon modification such as phosphorylation and are therefore 

usually constitutive associations. (Pawson, 1995). The structure of SH3 domains is well 

conserved and consists of five anti-parallel p strands that pack to form two perpendicular p 

sheets (Cohen et a l, 1995). This forms three pockets with which the ligand interacts. Two 

hydrophobic pockets, sites 1 and 2, are formed by the conserved SH3 aromatic residues and 

bind each of the X-P pairs. Site 3 frequently binds an arginine residue but is more variable. 

The specificity of the SH3 domains is conferred by the non-proline residues in the ligand, 

interacting with two variable loops of the SH3 domain flanking the hydrophobic binding 

sites (Pawson, 1995). SH3-mediated protein-protein interactions function primarily to 

localise signalling molecules within the cell (Koch et a l, 1991).

I.F.3 PTB domains

The more recently defined phosphotyrosine-binding (PTB) domain was originally 

identified as a 186 amino acid amino-terminal segment of the signalling molecule She 

(Kavanaugh and Williams, 1994). This domain bound specifically to an unknown tyrosine 

phosphorylated protein of 140 kDa but was not structurally similar to members of the SH2 

domain family (Kavanaugh and Williams, 1994). Simultaneously, the She amino-terminus 

was also shown to bind specifically with the autophosphorylated EGFR by probing an 

expression library with the carboxy-terminus of the autophosphorylated EGFR (Blaikie et 

al, 1994). Using a yeast two hybrid system, a region of IRS-1 that resembles the She 

amino-terminus, in addition to the She amino-terminus, were also both shown to bind the 

autophosphorylation site of the insulin receptor (Gustafson et a l , 1995).

PTB domains, like SH2 domains, mediate protein-protein interaction by binding to 

phosphotyrosine residues; however, unlike the SH2 domain, the specificity of the PTB 

interaction resides within the amino acids N-terminal to the phosphotyrosine. Expression 

cloning (Kavanaugh et a l, 1995) and phosphopeptide libraries (Songyang et a l, 1995) 

have revealed that PTB domains bind to phosphotyrosines within a sequence motif N-X-X-
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pY, where X is any amino acid and pY represents the phosphorylated tyrosine residue. 

Additionally, the amino acid in the -5 position, relative to the phosphotyrosine, has been 

reported to be important for PTB domain recognition, with aliphatic residues 

predominating in this region (Trub et a l , 1995; Zhou et al., 1995a). Data derived from 

examining the binding of the She PTB domain to sequence motifs derived from growth 

factor receptors and oncoproteins has defined the minimal She PTB binding motif as N-X- 

X-pY and suggest a high affinity motif hydrophobic-(D/E)-N-X-X-pY-(W/F) (Laminet et 

a l , 1996). The nuclear magnetic resonance structure of the She PTB domain complexed to 

a phosphopeptide revealed that the PTB domain forms a complex globular structure 

consisting of a p sandwich, capped by an a  helix (Zhou et a l , 1995a).

I.G Proteins involved in IL-3 signalling

I.G.l Protein tyrosine phosphatases (PTPases)

In haemopoietic cells, most receptor-mediated signalling pathways involved in 

physiological processes such as growth, differentiation, metabolism and cell cycle 

regulation, involve a cascade of protein phosphorylation and dephosphorylation catalysed 

by kinases and phosphatases (Tonks and Neel, 1996). A proportion of this phosphorylation 

occurs at tyrosine residues. Initially, protein tyrosine kinases (PTKs) were believed to be 

the key enzymes controlling phosphorylation in vivo, with a small number of protein 

tyrosine phosphatases (PTPases) playing largely housekeeping roles and down-regulating 

signalling. However, with the ever increasing number of PTPases being cloned and the 

subtleties of regulation and diversity of their functions being determined, the importance of 

PTPases in the regulation of signalling pathways has been heightened. In fact, PTPases not 

only play negative regulatory roles but also exert positive effects on cellular signalling. 

Both transmembrane and cytosolic PTPases exist and are defined by a conserved catalytic 

domain of 240 residues characterised by the unique signature motif 

[I/V]HCxAGxxR[S/T]G (Barford et a l , 1995). A subgroup of intracellular PTPases 

contain two SH2 domains amino-terminal to their catalytic phosphatase domain (see Fig 

1.6). Both SHP-1 and SHP-2 are members of this subgroup and have been shown to be 

important in controlling proliferation and survival in haemopoietic cells.
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FIGURE 1.6
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Schematic representation of a subgroup of intracellular PTPases 
containing two SH2 domains amino-terminal to their phosphatase 
domain.

I.G.la SHP-1

The first intracellular PTPase of this subgroup identified was PTP-1C (Shen et a l,

1991), also referred to as HCP (Yi et a l, 1992), SH-PTP1 (Plutzkey et a l, 1992) and SHP 

(Matthews, 1992), which is now referred to as SHP-1 for SH2 domain containing 

phosphatase 1. SHP-1 is a 64 kDa cytoplasmic protein expressed almost exclusively in 

haemopoietic cells but has also been detected in epithelial cells (Plutzky et a l,  1992). 

Mutations within SHP-1 are responsible for the phenotype of the motheaten (me/me) or 

motheaten viable (mev/mev) mouse strains (Shultz et a l, 1993; Tsui et a l, 1993). The 

me/me mutation results from a single nucleotide deletion (at position 228), leading to 

abberant splicing and production of an early ffameshift; thus no translated SHP-1 protein 

is produced in me/me mice (Tsui et al., 1993). The mev/mev mutation results from a 

thymidine to adenine transversion, resulting in either a 15 base-pair in-frame deletion or a 

69 base-pair in-frame insertion within the sequence encoding the SHP-1 catalytic domain. 

Thus, the mev/mev mice express two SHP-1 proteins that together retain a small amount 

(10-20%) of catalytic activity (Tsui et al., 1993). SHP-1 appears to act predominantly as a 

negative regulator of growth factor signalling as these motheaten mice die soon after birth 

due to the overproliferation and accumulation of macrophages and granulocytes in the 

lungs (Van Zant and Shultz, 1989). Haemopoietic cells from motheaten mice are 

hyperproliferative in response to Epo (Van Zant and Shultz, 1989), CSF-1 (Chen et a l, 

1996) and GM-CSF (Jiao et a l, 1997). Further evidence for SH P-l’s negative regulatory 

role has been demonstrated in IL-3-dependent cells by examining the effects of increasing 

and decreasing SHP-1 levels by expressing SHP-1 cDNA in sense and antisense
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orientations (Yi et a l , 1993). An increase in SHP-1 expression resulted in suppression of 

IL-3-induced cell growth whereas a slight increase in growth rate resulted from decreased 

SHP-1 levels (Yi e ta l, 1993).

SHP-1 has been shown to associate with a number of haemopoietic growth factor 

receptors including the EpoR (Klingmuller et al., 1995; Yi et a l, 1995), c-kit (Yi and Ihle,

1993), and the murine IL-3 receptor (3 subunit, Aic2A (Yi et a l, 1993) following activation 

with their respective ligands. Association occurs via the amino-terminal SH2 domain of 

SHP-1 which binds to phosphotyrosine sites in the cytoplasmic regions of the receptors. 

This has been shown to occur via tyrosine 429 of the EpoR (Klingmuller et a l, 1995; Yi et 

al, 1995). However, the site at which SHP-1 interacted with Aic2A was not mapped. In 

addition, SHP-1 has also been shown to associate with other receptor complexes, such as 

FcyRHBl (D’Ambrosio et a l, 1995), CD22 (Doody et a l, 1995), the natural killer cell 

inhibitory receptor (KIR) (Burshtyn et a l, 1996), the B-cell antigen receptor (Pani et al, 

1995), the receptor for interferon cx/p (David et a l, 1995) and a member of the signal- 

inhibitory regulatory proteins (SIRPs) (Fujioka et a l, 1996; Kharitonenkov et a l, 1997).

Studies using phosphopeptides corresponding to potential phosphorylation sites on 

the EpoR (Y429) and Aic2A (Y628), have indicated that occupancy of the amino terminal 

SH2 domain of SHP-1 by these phosphotyrosine residues leads to increases in the catalytic 

activity of SHP-1 (Pei et a l, 1994). Since truncation of SHP-1, either by deleting the SH2 

domains or the carboxy-terminus, leads to activation of the PTPase, this suggested that the 

SH2 domains of SHP-1 interact with the catalytic domain, serving to autoinhibit the 

phosphatase activity (Pei et a l, 1994). However, the two SH2 domains of SHP-1 appear to 

have different functions. Phosphopeptide analyses in combination with SHP-1 truncation 

mutants revealed that the amino terminal SH2 domain was necessary and sufficient for 

autoinhibition and ligand induced activation of SHP-1 while the carboxy-terminal SH2 

domain played little role (Pei et a l, 1996). Thus, it appears that while the amino-terminal 

SH2 domain serves both as a regulatory and recruiting domain, the carboxy-terminal SID 

domain acts solely as a localisation domain (Pei et a l, 1996).

The mechanism by which SHP-1 negatively regulates signalling pathways has been 

shown to be via dephosphorylation of key substrates. Recent studies have shown that 

dephosphorylation of receptor-associated Jak family kinases may be one general 

mechanism by which SHP-1 negatively regulates signals from cytokine receptors. Cells
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expressing mutant Epo receptors which were unable to associate with SHP-1, showed a 

sustained Jak2 phosphorylation in response to Epo, suggesting that inhibition of SHP-1 

binding to the receptor prevented it from dephosphorylating Jak2 (Klingmuller et al., 

1995). In addition, in COS-7 cells transfected with Jak2 and SHP-1, a direct association of 

SHP-1 with Jak2 was demonstrated. This interaction was SH2 domain-independent and 

lead to SHP-1 activation and dephosphorylation of Jak2 (Jiao et a l , 1996). Jak kinases in 

macrophages from motheaten mice, which lack functional SHP-1, were shown to be 

hyperphosphorylated following a/p interferon-treatment (David et al., 1995) and GM-CSF 

stimulation has been shown to induce a modest and transient Jak-2 hyperphosphorylation 

(Jiao et al., 1997). SHP-1 has also been shown to be involved in the dephosphorylation of 

receptors following activation, such as the murine IL-3 receptor, Aic2A, as increased SHP- 

1 levels have lead to a reduction in the levels of IL-3-induced tyrosine phosphorylated 

Aic2A (Yi et al., 1993). In addition, it has also been suggested that SHP-1 

dephosphorylates the CSF-1R as the CSF-1R has been shown to become 

hyperphosphorylated following CSF-1 stimulation of macrophages from motheaten mice 

(Chen et al., 1996). Finally, SHP-1 may also be responsible for the dephosphorylation of 

additional proteins. This is thought to be mediated through Grb2, which associates via its 

SH2 domain with SHP-1 following CSF-1 stimulation of normal macrophages. The 

purpose of this interaction appears to be recruitment of substrates for SHP-1 since a 

number of proteins which associate with the SH3 domains of Grb2 were found to be 

hyperphosphorylated in macrophages from motheaten mice (Chen et al., 1996).

I.G .lb SHP-2

Another member of this SH2 domain containing PTPase subgroup is Syp (Feng et 

al., 1993), also referred to as SH-PTP2 (Freeman et al., 1992), SH-PTP3 (Adachi et al., 

1992), PTP-1D (Vogel et al., 1993) and PTP-2C (Ahmad et a l, 1993), which is now 

known as SHP-2. SHP-2 appears to be ubiquitously expressed and is likely to be the 

mammalian homologue of the Drosophila csw gene, the gene product of which positively 

transmits signals downstream of the torso receptor protein tyrosine kinase (Perkins et al.,

1992). SHP-2 becomes phosphorylated on tyrosine and threonine residues following 

stimulation with a number of ligands, including those for receptor tyrosine kinases such as 

EGF and PDGF and c-kit (Feng et al., 1993; Vogel et al., 1993; Lechleider et al., 1993a;
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Tauchi et al., 1994) and for cytokine receptors such as Epo (Tauchi et al., 1995), IL-3 and 

GM-CSF (Welham et a l , 1994b), INFa/p (David et al., 1995), prolactin (Ali et al, 1996) 

and ciliary neurotrophic factor (CNTF) (Boulton et a l, 1994). Although not tyrosine 

phosphorylated in response to insulin, SHP-2 binds to tyrosine phosphorylated IRS-1 

(Kuhne et al., 1993) and acts as a positive mediator of PDGF, insulin and prolactin signals 

(Bennett et a l , 1994; Xiao et al., 1994; Milarski and Saltiel, 1994; Ali et al 1996).

Several reports suggest that SHP-2 is a positive regulator of mitogenic signal 

transduction pathways. Microinjection of either anti-SHP-2 antibodies, or a SHP-2-SH2- 

GST fusion protein, into Rati fibroblasts overexpressing human insulin receptors blocks 

insulin- stimulated DNA synthesis (Xiao et al., 1994). The phosphatase activity of SHP-2 

has been shown to be critical for SHP-2 to act as a positive regulator. Expression of a 

catalytically inactive mutant SHP-2 (Cys 459-Ser), or expression of the SHP-2 SH2 

domains alone have.been shown to lead to a reduction in insulin-stimulated DNA synthesis 

and MAP kinase activation (Milarski and Saltiel 1994; Noguchi et al., 1994; Yamauchi et 

al., 1995). In addition, overexpression of catalytically inactive SHP-2 has been shown to 

inhibit MAP kinase activation following EGF stimulation (Bennett et al., 1996) and SHP-2 

phosphatase activity has been shown to be required for fibroblast growth factor (FGF)- 

induced MAP kinase activation in Xenopus embryos (Tang et al., 1995). In addition, SHP- 

2 has been shown to be required in Xenopus embryonic development, as microinjection of 

catalytically inactive SHP-2 into Xenopus embryos blocked FGF mediated mesoderm 

induction and, in particular, caused severe posterior truncation (Tang et al., 1995). 

Interestingly, a similar defect in mesodermal patterning was also observed at the early stage 

of mouse gastrulation in mice homozygous for a SHP-2 mutation containing an internal 

deletion of 65 amino acids in the amino-terminal SH2 domain (Saxton et a l, 1997). These 

mice die between days 8.5 and 10.5 of gestation with multiple defects in the patterning of 

the axial mesodermal tissues and posterior development. Shp-2 null mutant mice also die 

around the same time of mid-gestation (Arrandale et a l, 1996), suggesting that the intact 

amino-terminal SH2 domain of SHP-2 is required for its physiological function in cells. 

Using homozygous SHP-2 mutant embryonic stem cells (ES) in in vitro ES cell 

differentiation assays, it was further demonstrated that the deletion mutation in SHP-2 

resulted in severe suppression of the development of erythroid progenitors and completely 

blocked differentiation into myeloid lineages (Qu et a l, 1997). Thus, SHP-2 appears to
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play a positive role in signalling pathways and to be an essential component for mediating 

haemopoiesis in mammals.

Many groups have demonstrated the association of SHP-2 with growth factor 

receptors. The SHP-2 SH2 domains have been shown to associate with the PDGFR, 

EGFR, c-kit (Feng et al., 1993; Vogel et a l , 1993; Tauchi et a l, 1994) and the EpoR 

(Tauchi et al., 1995). The amino-terminal SH2 domain of SHP-2, like SHP-1, appears to 

have a higher affinity for activated receptors than the carboxy-terminal SH2 domain 

(Lechleider et al., 1993a). Specifically, SHP-2 has been shown to associate with residues 

surrounding tyrosine 1009 of the PDGFR (Lechleider et al., 1993b; Kazlauskas et al.,

1993) and tyrosine 425 of the EpoR (Tauchi et al., 1996).

During its interaction with the activated receptors, SHP-2 is itself tyrosine 

phosphorylated and its catalytic activity is stimulated. However, it has not been determined 

whether binding to an activated receptor is a prerequisite for SHP-2 phosphorylation. 

Studies using phosphotyrosine-containing peptides derived from IRS-1 have indicated that, 

like SHP-1, occupancy of the SH2 domains by phosphotyrosine residues within a specific 

motif leads to an increase in the catalytic activity of SHP-2 (Sugimoto et al., 1994; Pluskey 

et al., 1995). In addition, deletion of the SH2 domains or truncation of the carboxy- 

terminus has lead to significant increases in phosphatase activity, suggesting an 

autoinhibitory mechanism similar to that of SHP-1 (Zhao et al., 1994).

Phosphorylation of SHP-2 may be mediated by Jakl and/or Jak2 as co-transfection 

studies in COS cells have demonstrated that SHP-2 can associate with Jakl and Jak2, 

resulting in phosphorylation of SHP-2 at tyrosine 304 and 327 (Yin et al., 1997). 

Phosphorylation of SHP-2 at either tyrosine 304 (pYINA) or 542 (pYTNI) creates potential 

Grb2 SH2 recognition motifs (pYXNX) (Songyang et a l, 1994). In response to PDGF, 

SHP-2 becomes phosphorylated on tyrosine 542 and associates with Grb2 (Bennett et al., 

1994; Li et al., 1994). Thus SHP-2 may play a positive role in signal transduction by 

functioning as an adaptor molecule, linking Grb2 to the activated PDGFR, providing a 

mechanism for activation of the Ras/MAP kinase pathway (see section I.H.ld). SHP-2 has 

also been reported to participate in similar interactions in response to Epo (Tauchi et al.,

1995) and SLF (Tauchi et al., 1994) where tyrosine phosphorylated SHP-2 has been shown 

to directly associate with both Grb2 and the activated receptors. Grb2 has also been shown 

to associate with tyrosine phosphorylated SHP-2 in response to IL-3, therefore suggesting a
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similar adaptor function for SHP-2 in this system (Welham et al., 1994b). In addition, 

SHP-2 has also been linked with the PI3-K pathway. SHP-2 and PI3-K can be co

precipitated after IL-3 stimulation (Welham et a l, 1994b). This association has been 

shown to be mediated by a 100 kDa protein which can directly interact with both the SH2 

domains of the p85 subunit of PI3-K and SHP-2 in response to IL-3 (Craddock and 

Welham, 1997) and M-CSF (Carlberg et a l , 1997). This p i00 protein has recently been 

cloned and is now referred to as Gab2 (Gu et al., 1998). Thus, SHP-2 may function as an 

adaptor, localising the plOO:PI3-K complex to the plasma membrane.

I.G.2 She

In the search for new SH2 domain-containing genes to help define the mechanisms 

through which tyrosine kinases regulate normal cell growth and induce transformation, a 

DNA probe representing the c-fes SH2 domain was used to screen a human cDNA library 

prepared from Burkitt lymphoma mRNA and She was isolated (Pelicci et al., 1992). This 

SH2 domain-containing molecule was found to also contain an adjacent glycine/proline- 

rich motif similar to that of a  1-collagen, hence the name She (src homolgy and collagen

like). The She gene encodes three different She isoforms of 46, 52 and 66 kDa which 

contain an amino-terminal PTB domain, a central collagen homolgy domain (CHI), and a 

carboxy-terminal SH2 domain (See Fig. 1.7). The two main forms, p46shc and p52Shc, are 

ubiquitously expressed and result from alternative translational start sites from the same 

message, resulting in proteins which differ at their amino-terminus which contains a PTB 

domain. The p46shc isoform lacks the first 45 amino acids of the PTB domain. The p66shc 

isoform is expressed from a distinct transcript, derived through alternative splicing, and 

contains an additional region of collagen homology in its unique amino-terminal region, 

termed the CH2 domain (Migliaccio et al., 1997). p66 is less widely expressed than the 

other isoforms, found primarily in epithelial cells and not detected in most human 

haemopoietic cell lines (Pelicci et al., 1992).
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FIGURE 1.7
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The different isoforms of She.
p46shc and p55anc are expressed from alternative translational start sites from the same 

message, resulting in proteins which differ at their amino-terminal PTB domain. The 

p66Shc isoform is expressed from a distinct transcript.

•She

Tyrosine phosphorylation of She proteins has been shown to occur following 

activation of receptor tyrosine kinases by growth factors including EGF (Pelicci et a l,

1992), PDGF (Yokote et al., 1994), insulin (Pronk et a l,  1993; Skolnik et a l ,  1993) and 

nerve growth factor (NGF) (Borrello et al., 1994; Stephens et al., 1994). In addition, She 

has been shown to be tyrosine phosphorylated by non-receptor tyrosine kinases in response 

to cytokines, including: IL-3, IL-5, GM-CSF, SLF, and Epo (Cutler et al., 1993; Damen et 

al., 1993; Welham et al., 1994a; Matsuguchi et al., 1994; Dorsch et al., 1994; and 

Lanfrancone et al., 1995). She is also phosphorylated in cells transformed by v-src, v-fps 

(McGlade et al., 1992) and polyoma virus middle T (mT)-antigen (Dilworth et al., 1994), 

suggesting that She may participate in the transforming activity of oncogenic tyrosine 

kinases. Phosphorylation of She occurs predominantly at tyrosine 317 in the motif 

pYVNV within the collagen-like domain, providing a high affinity binding site for the SH2 

domain of the adaptor protein Grb2 (Salcini et al., 1994).

She proteins have been shown to associate with activated receptors. This 

association is mediated by the She SH2 and/or PTB domains. The SH2 domain of She has

27



Chapter One

been shown to recognise phosphorylated tyrosine residues in the context 

pY[I/E/Y]X[I/L/M], where X is any amino acid (Songyang et a l, 1994), whereas the PTB 

domain binds phosphotyrosine residues in the motif NXXpY (Laminet et a l, 1996). The 

PTB domain has been shown to direct the association of She to activated EGF, HER2/neu 

and TrkA receptors (Blaikie et a l, 1994; Dikic et a l, 1995), the insulin receptor 

(Gustafson et a l, 1995) and the IL-3R Pc subunit (Pratt et a l, 1996). Alternatively, She 

has also been shown to bind to the activated EGFR (Pelicci et a l, 1992) and PDGFR 

(Roche et a l, 1996; Yokote et a l, 1994) through its SH2 domain. She has also been 

shown to associate via its SH2 domain with the GM-CSFR pc subunit (Lanfrancone et al,

1995), and the EpoR (Damen et a l, 1993).

The binding of She to the EGFR via its PTB (Blaikie et a l, 1994) and SH2 (Pelicci 

et a l, 1992) domains has been shown to result in significant relocation of Shc-Grb2-Sos 

complexes to the plasma membrane following, EGF treatment (Ruff-Jamison et al, 1993), 

and hence to the vicinity of Ras. Therefore, it has been suggested that She is important in 

mediating protein-protein interactions leading to the activation of Ras (see section I.H.ld). 

Additional studies also support this role of She. In 3T3 fibroblasts, overexpression of She 

has lead to transformation of mouse fibroblasts and formation of tumours in nude mice 

(Pelicci et a l, 1992), a function found to depend on the presence of the Grb2 SH2 binding 

site at tyrosine 317 of She (Salcini et a l, 1994). Mutation of tyrosine 317 to phenylalanine 

not only resulted in She losing the capacity to be highly tyrosine phosphorylated and to 

bind Grb2, but also to induce transformation (Salcini et a l, 1994). Neuronal 

differentiation of PC 12 cells induced by overexpression of She was prevented by the co

expression of a dominant inhibitory Ras (N17Ras) mutant, again indicating that She is 

involved in Ras activation (Rozakis-Adcock et a l, 1992).

I.G.3 SHIP

She has also been shown to associate, via its PTB domain, with a tyrosine 

phosphorylated 145 kDa protein from fibroblasts stimulated with PDGF (Kavanaugh and 

Williams, 1994). This 145 kDa protein becomes tyrosine phosphorylated and associates 

with She in response to multiple cytokines in haemopoietic cells including IL-3, SLF, or 

Epo stimulation of erythroid cells and megakaryocytes (Cutler et a l, 1993; Damen et al, 

1993; Lioubin et a l, 1994; Liu et a l, 1994). The cDNA for this 145 kDa protein was
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obtained by using a yeast two-hybrid system based on the affinity of the PTB domain of 

She (Lioubin et al., 1996) and was concurrently cloned by Damen et a l (1996). Based on 

its predicted amino acid sequence, p i45 contains an amino-terminal SH2 domain, two PTB 

binding consensus sequences (INPNY and ENPLY), several proline-rich SH3 binding 

regions and two motifs highly conserved among inositol polyphosphate 5-phosphatases 

(see Fig. 1.8), hence, this protein was termed SHIP for SH2-containing inositol phosphatase 

(Damen et al., 1996; Lioubin et al., 1996). SHIP was shown to selectively hydrolyse the 

5’-phosphate from inositol 1,3,4,5-tetrakisphosphate and phosphoinositide 3,4,5- 

trisphosphate (PI(3,4,5)Ps) (Damen et al., 1996; Lioubin et al., 1996).

FIGURE 1.8
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Schematic representation of the various domains of SHIP.
SHIP contains an amino-terminal SH2 domain, two PTB binding consensus sequences

(INPNY and ENPLY), several proline-rich SH3 binding regions and two motifs highly 

conserved among inositol polyphosphate 5-phosphatases (indicated by 5-ptase).
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I.H Signalling pathways activated bv IL-3

The cytokine IL-3 is an important regulator of haemopoiesis through the 

modulation of proliferation, differentiation and survival of various haemopoietic lineages 

and their precursors. These effects are mediated through activation of various signalling 

pathways. The binding of IL-3 to its receptor rapidly induces activation of multiple 

signalling pathways, most notably, the Ras/MAP kinase, PI3-K and Jak/STAT pathways.

I.H.l The Ras/MAP kinase pathway

The Ras/Raf/MEK/ERK pathway is the classical example of what are generically 

termed mitogen-activated protein kinase (MAP kinase) pathways. MAP kinase pathways 

have as their “core” a three-component protein kinase cascade consisting of a 

serine/threonine MAP kinase kinase kinase (MAPKKK), which phosphorylates and 

activates a dual-specificity MAP kinase kinase (MAPKK). MAPKK subsequently 

phosphorylates, at both tyrosine and threonine residues, and activates the serine/threonine 

protein kinase, MAP kinase. These pathways serve to link signals from the cell surface to 

cytoplasmic and nuclear events.

In addition to the classical MAP kinase cascade leading to activation of the MAP 

kinases erkl and erk2 (discussed below), there exist cascades leading to activation of two 

additional members of the MAP kinase family: c-Jun amino-terminal kinase (JNK) and p38 

MAP kinase (see Fig. 1.9). Briefly, JNK, also known as stress-activated protein kinase 

(SAPK), is activated in response to environmental stress, including changes in osmolarity, 

UV radiation, heat shock and DNA damage, as well as growth factors and pro- 

inflammatory cytokines (reviewed by Ip and Davis, 1998). JNK activation is mediated by 

dual phosphorylation on threonine and tyrosine residues, within a Thr-Pro-Tyr motif, by 

two MAPKKs, MKK4 and MKK7. Acitvated JNK, in turn, phosphorylates and activates 

transcription factors including c-Jun, ATF-2 and Elk-1 (Whitmarsh and Davis, 1996). 

Both c-Jun and ATF-2 form functional heterodimers or homodimers at AP-1 consensus 

binding sites, thereby facilitating the activation of gene transcription (Kallunki et al.,

1996). Like JNK, p38 MAP kinase is activated by cellular stress as well as the pro- 

inflammatory cytokines tumor necrosis factor a  (TNF-a) and IL-1. Activation is mediated 

by dual phosphorylation at the Thr-Gly-Tyr motif by the MAPKKs, MKK3 and MKK6.
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FIGURE 1.9
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Mitogen-activated protein kinase cascades.
The MAP kinase cascades leading to activation of the MAP kinases erk, JNK/SAPK, and 

p38 are illustrated schematically. The MAPKKs MEK1 and MEK2 activate the erk sub

group of MAP kinases, typically in response to growth factors. The MAPKKs MKK4, 

MKK7, MKK3, and MKK6 activate the JNK/SAPK and p38 MAP kinases, as indicated, 

in response to stress signals. Once activated, the MAP kinases can activate transcription 

factors (Elk-1, c-Jun, ATF-2), other kinases (p90rsk S6 kinase, MAPKAP kinase), 

upstream regulators (Sos), and other regulatory enzymes (PLA2). These downstream 

targets then control cellular responses including growth and differentiation.
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Activated p38 subsequently phosphorylates and activates transcription factors, including 

ATF-2 and Elk-1. In addition, p38 activates MAPKAP kinase-2 which, in turn 

phosphorylates the small heat shock proteins Hsp25 and Hsp27 (Rouse et a l , 1994).

The classical Ras/Raf/MEK/Erk pathway is activated in response to cytokine 

stimulation. As will be discussed below, cytokine binding to a cell surface receptor leads 

to activation of Ras, facilitated by promotion of guanine nucleotide exchange on Ras. Ras 

activation subsequently leads to activation of the MAPKKK, Raf, followed by activation of 

the MAPKKs, MEK1 and MEK2, and finally to activation of the MAP kinases Erkl and 

Erk2.

I.H.la Ras

The mammalian genome consists of at least three ras proto-oncogenes, designated 

c-H-ras, c-K-ray, and c-N-ray. All three cellular ras genes have pronounced oncogenic 

potential. The ras genes were first identified as the transforming agents of the Harvey and 

Kirsten rat sarcoma viruses (Harvey, 1964; Kirsten and Mayer 1967). These viral ras 

oncogenes (v-H-ray and v-K-ray) have the ability to transform fibroblasts in cell culture 

and induce sarcomas and erythroleukemias in susceptible mice. c-N-ray was identified as 

a dominant transforming gene of a human neuroblastoma cell line (Shimizu et al., 1983). 

In fact, nearly one third of human tumours have been shown to express activated versions 

of the ras family of genes, suggesting a role for Ras in regulating cell proliferation. The 

ras gene products are collectively referred to as p21ras (Barbacid, 1987; Lowry and 

Willumsen 1993). The Ras proteins are 21 kDa plasma-membrane associated proteins 

which bind guanine nucleotides and have intrinsic GTPase activity. Association of Ras 

with the inner side of the plasma membrane requires a post-translational modification that 

involves acylation of Cys186 by palmitic acid (Buss and Sefton, 1986).

Ras proteins act as regulatory switches whose activity is controlled by cycling 

between an active guanosine triphosphate (GTP)-bound and an inactive guanosine 

diphosphate (GDP)-bound state (see Fig. 1.10) (Polakis and McCormick, 1993). In this Ras 

GTPase cycle, Ras-GDP is converted to Ras-GTP by the exchange of bound GDP with 

GTP, while hydrolysis of bound GTP to GDP regenerates Ras-GDP from Ras-GTP. Thus, 

Ras proteins are regulated in two ways. Guanine nucleotide exchange factors (GNEF; or 

guanine nucleotide release factors), such as Sos and Ras-GRF, accelerate the exchange of
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GDP for GTP and hence activate Ras (reviewed by Feig, 1993). While Ras GTPase 

activating proteins, such as pl20GAP (Trahey and McCormick, 1987) and neurofibromin 

(NF-1) (Xu et a l, 1990), increase the intrinsic GTPase activity of Ras, thereby negatively 

regulating Ras function.

Ras functions as a crucial mediator of many biological responses, including 

proliferation and differentiation, stimulated by both receptor and non-receptor tyrosine 

kinases (reviewed by Satoh et al., 1992). Ras has been shown, by both direct and indirect 

approaches, to be involved in events downstream of tyrosine kinases. Microinjection of the 

neutralising anti-Ras monoclonal antibody YI3-259 into fibroblast cells inhibited DNA 

synthesis induced by serum, PDGF and EGF (Mulcahy et a l, 1985) and inhibited 

transformation by tyrosine kinase encoding oncogenes (Smith et a l, 1986). Expression of 

a dominant inhibitory mutation in the c-H-ras gene, which changes Ser-17 to Asn-17 in the 

gene product (N17-Ras), inhibits proliferation of NIH 3T3 cells (Feig and Cooper, 1988). 

Dominant negative mutants of Ras also blocked DNA synthesis or gene expression induced 

by EGF and insulin (Cai et a l, 1990; Medema et a l, 1991). Several studies have 

implicated Ras in signal transduction pathways stimulated by both non-receptor and 

receptor tyrosine kinases in lymphoid and myeloid cell lines as measured by an increase in 

the amount of Ras having bound GTP compared to GDP. An accumulation of Ras'GTP 

was observed after stimulation of various B cell, T cell and mast cell lines with cytokines 

including IL-3, SLF, GM-CSF (Duronio et a l, 1992b; Satoh et a l, 1991), EGF (Satoh et 

a l , 1990a), PDGF (Satoh et a l , 1990b), insulin (Burgering et a l, 1991) and T cell receptor 

cross linking (Downward et a l, 1990).

I.H .lb Son of Sevenless (Sos)

Activation of Ras is accomplished by GNEFs which accelerate the exchange of 

GDP for GTP. The first guanine nucleotide exchange factor for Ras, CDC25, was 

identified in yeast Saccharomyces cerevisiae and was shown to be essential for activation 

of Ras proteins (Broek et al., 1987). In Drosophila, the protein encoded by the son o f 

sevenless gene, Sos, contained a domain that showed sequence similarity to the catalytic 

domain of CDC25 (Simon et al., 1991; Bonfini et al., 1992). Sos was shown to function 

downstream from both the sevenless receptor tyrosine kinase and the Drosophila EGF 

receptor homologoue (DER) (Simon et al., 1991; Rogge et al., 1991). Two related murine
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FIGURE 1.10
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Cycling of p21ras between GTP and GDP bound states.
In its inactive state, Ras is bound to GDP. Guanine nucleotide exchange factors (GNEF)

accelerate the exchange of GDP for GTP, activating Ras to its GTP-bound state. GTPase 

activating proteins (GAPs) increase the intrinsic GTPase activity of Ras, converting the 

active GTP-bound Ras, back to the inactive GDP-bound state.

34



Chapter One

genes, designated mouse Son of sevenless 1 and 2 (mSosl and mSos2), with extensive 

homology to Sos were later identified (Bowtell et a l, 1992). Both mSosl and mSos2 are 

widely expressed during development and in adult tissues (Bowtell et a l, 1992). The 

human cDNA, encoding a widely expressed human protein hSosl, was further isolated and 

was also closely related to Sos (Chardin et a l , 1993).

In fibroblasts, the mSosl protein was shown to act as a specific guanine nucleotide 

exchange factor for Ras (Buday and Downward, 1993a). mSosl can increase GTP loading 

on mammalian Ras (Egan et a l , 1993). However, the guanine nucleotide exchange activity 

of mSosl was not affected by EGF treatment (Buday and Downward, 1993a; Gale et al,

1993), even though growth factor treatment had been found to increase the rate of 

nucleotide exchange on Ras (Buday and Downward 1993b). The Grb2 adaptor protein (see 

section I.H.lc) was also found to associate with mSosl and the EGFR following EGF 

stimulation (Buday and Downward, 1993a). Thus, it was suggested that stimulation of the 

receptor serves to translocate a Grb2-Sos complex to the receptor and into the proximity of 

its target, membrane-bound Ras. In support of this mechanism is the observation that 

targeting of Sosl to the plasma membrane is sufficient for the activation of the Ras 

signalling pathway (Quilliam et a l, 1994; Aronheim et a l, 1994).

Growth factor stimulation also induces phosphorylation of Sos on serine and 

threonine residues (Cherniak et a l, 1994; Rozakis-Adcock et a l, 1993). Phosphorylation 

occurs predominantly at the carboxy-terminus and is mediated by the MAP kinases erkl 

and erk2. This phosphorylation appears to result in its dissociation from Grb2 and may 

constitute a negative feedback mechanism to control Ras activity (Corbalan-Garcia et al,

1996).

I.H.lc Growth factor receptor-bound protein 2 (Grb2)

Grb2 was cloned whilst screening for proteins that bound tyrosine phosphorylated 

EGF receptors. The tyrosine-autophosphorylated carboxy-terminus tail of the EGFR was 

used to probe a bacterial cDNA expression library for novel EGFR-binding proteins 

(Lowenstein et a l, 1992). Grb2 is a 23 kDa, widely expressed protein whose entire 

sequence is composed of a single SH2 domain flanked by two SH3 domains (see Fig. 1.4). 

Grb2 is the mammalian homologue of the Caenorhabditis elegans protein sem-5 which 

functions downstream of the Let-23 receptor tyrosine kinase and upstream of the Let-60
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Ras protein (Clark et a l, 1992). Drk is the Drosophila protein that is identical in structure 

to sem-5 and Grb2, and functions downstream of the sevenless receptor tyrosine kinase 

(Simon ef al, 1993).

Since Grb2 has no intrinsic catalytic activity, it functions as an adaptor protein, 

linking other signalling molecules together. In most cells, Grb2 is constitutively associated 

with Sosl. This association is mediated through binding of the two Grb2 SH3 domains to 

the proline-rich carboxy-terminal tail of Sosl which contains the consensus sequence 

VPVPPPVPP (Rozakis-Adcock et a l, 1993; Li et al, 1993; Egan et a l, 1993). Point 

mutations in either SH3 domain of sem-5 resulted in loss-of-function alleles (Clark et a l ,

1992). Similar SH3 mutations in human Grb2 SH3 domains also impaired its function, 

resulting in loss of Sosl binding (Lowenstein et a l, 1992), indicating that high-affinity 

binding to Sosl requires both Grb2 SH3 domains.

I.H.ld Protein-protein interactions controlling Ras activation

Regulation of Ras activation is largely mediated through translocation of the Grb2- 

Sos complex to the plasma membrane and hence the vicinity of Ras (see Fig. 1.11). A 

number of important protein-protein interactions have been characterised which are 

responsible for this relocalisation. Grb2 can directly or indirectly associate with activated 

growth factor receptors. The SH2 domain of Grb2 can directly associate with amino acids 

surrounding tyrosine 1068 of the EGF receptor (Lowenstein et a l, 1992; Rozakis-Adcock 

et a l, 1993; Buday and Downward, 1993a). However, for many receptors Grb2 does not 

bind directly but instead associates with an adaptor protein which is directly bound to the 

activated receptor, thus providing a link between the Grb2-Sos complex and the receptor. 

One such adaptor protein is She. Grb2, via its SH2 domain, has been shown to associate 

with residues surrounding tyrosine 317 of She (Salcini et al, 1994). She itself can 

simultaneously associate with activated receptors via its SH2 and/or PTB domain 

(discussed in section I.G.2), thereby linking the Grb2-Sos complex to the activated 

receptor. In the case of the EGF receptor, as well as interacting directly, Grb2 can also 

indirectly associate with the EGF receptor via She. In response to EGF, significant 

relocation of Shc-Grb2-Sos complexes to the plasma membrane have been observed, 

mediated by such interactions (Ruff-Jamison et a l, 1993). The PTPase SHP-2 also acts as 

an adaptor molecule, facilitating the localisation of Grb2-Sos complexes to activated
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receptors. The Grb2 SH2 domain has been shown to associate with tyrosine 

phosphorylated SHP-2 and SHP-2, itself, can also directly associate, via its SH2 domain, 

with activated receptors (see section I.G.lb). Thus, the direct binding of adaptor proteins 

such as She and SHP-2 to activated receptors, and the simultaneous association with Grb2, 

via its SH2 domain, with these adaptor proteins, provides a means of localising Grb2-Sos 

complexes to the plasma membrane and hence to the vicinity of Ras, leading to its 

activation.

FIGURE 1.11
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Association of Grb2-Sos complexes with activated receptors.
Regulation of Ras activation is mediated through translocation of the Grb2-Sos complex 

to the membrane. This is accomplished through either (1) direct association of Grb2 with 

activated receptors, or (2) association with an adaptor protein, such as SHP-2 or She, 

which directly associates with the receptor.
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I.H.le Raf-1

Raf-1 is a ubiquitously expressed 72-76 kDa cytoplasmic protein with intrinsic 

serine/threonine kinase activity. The raf-1 gene was first identified as the normal cellular 

counterpart of v-raf the transforming gene of murine sacroma virus 3611 (Rapp et al., 

1983). v-Raf is expressed as a myristylated Gag-Raf fusion protein consisting of the 

amino-terminal 384 amino acids of Gag and the carboxy-terminal 323 residues of Raf 

(Rapp et a l, 1983). Two closely related members of the Raf family are also expressed in 

mammalian cells: A-Raf (Beck et a l, 1987) and B-Raf (Eychene et a l, 1992). In

mammalian cells, Raf-1 has been shown to function downstream of Ras, as expression of a 

dominant inhibitory mutant or anti-sense mRNA of Raf-1 inhibits v-ras-induced 

transformation of fibroblasts (Kolch et a l, 1991). In addition, v-raf transformed cells are 

unaffected by injection of an inactivating anti-Ras antibody (Smith et a l, 1986).

The Raf-1 protein is composed of three conserved domains: CR1, CR2 and CR3 

(Fig. 1.12). The CR1 region, located in the amino-terminal portion of the molecule (amino 

acids 62 to 194), is rich in cysteine residues and contains a putative zinc binding region 

(Berg et a l, 1986). CR2, also located in the amino-terminal portion of the Raf protein 

(amino acids 254 to 269), is a region rich in serine and threonine residues. CR3, in the 

carboxy-terminal portion of the protein (amino acids 330 to 627), contains the protein 

kinase domain. Experimental evidence suggests that the amino-terminal domain, 

containing CR1 and CR2, functions to regulate the catalytic activity of Raf-1 as deletion or 

mutation of this region activates Raf-1 transforming activity (Stanton et al, 1989; 

Heidecker et a l, 1990). In addition, the integrity of the CR1 domain is crucial for normal 

regulation of Raf-1 function, and for the ability of the amino-terminal domain (amino acids 

1-257) to act as a dominant inhibitor of Ras (Bruder et a l, 1992). Using the yeast two 

hybrid system and in vitro binding assays, it has been demonstrated that the amino-terminal 

CR1 domain of Raf-1 can directly interact with the Ras effector domain (amino acids 32- 

40 of Ras) and is dependent on Ras being in its GTP-bound state (Van Aelst et al, 1993; 

Vojtek et a l, 1993; Zhang et a l, 1993). Interestingly, Raf-1 and the two Ras GTPase- 

activating proteins, pl20GAP and NF-1, probably compete for Ras-GTP in the cell since 

they all bind to the same effector region. However, this direct association with Ras does 

not lead to Raf-1 activation. Instead, it appears that recruitment to the plasma membrane is 

necessary to activate Raf-1, suggesting that the role of Ras is to recruit Raf-1 to the plasma
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membrane. Experiments suggest that Ras-mediated translocation of Raf-1 to the 

cytoplasmic membrane is a crucial step in Raf-1 activation (Leevers et al., 1994; Stokoe et 

al., 1994). However, localisation to the membrane is necessary but not sufficient for the 

stable activation of Raf-1.

FIGURE 1.12
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Schematic representation of Raf-1.
The three regions that are highly conserved among Raf proteins, namely conserved 

region (CR) 1, CR2, and CR3 are shown. CR1 is rich in cysteine residues; CR2 is rich in 

serine/threonine residues; and CR3 is the kinase domain. Ser43, Ser259, and Ser621 are in 

vivo sites of serine phosphorylation and Ser259and Ser621 each constitute part of the 

consensus motif for 14-3-3 binding. Phosphorylation of Tyr340/341 enhances the catalytic 

activity of Raf.

The 14-3-3 proteins have been implicated in the regulation of Raf. 14-3-3 proteins 

are 30 kDa phosphoserine-binding proteins which recognise the sequence motifs 

RXSXpSXP (where X is any amino acid and pS is the phosphorylated serine) (Muslin et 

al., 1996). 14-3-3 protein were isolated in a yeast two-hybrid screen for Raf-1 kinase 

domain binding proteins (Li et al., 1995). How 14-3-3 protein regulate Raf-1 activity is 

poorly understood and there are differing reports as to the effect these proteins have on 

Raf-1. The interaction between 14-3-3 and Raf-1 appears to be functional as
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overexpression of 14-3-3 in fibroblast cells resulted in Raf-1 activation (Li et a l, 1995). 

However, 14-3-3 proteins have been shown to be bound constitutively to Raf-1 in 

unstimulated cells (Li et al., 1995) and were found to associate in part via a sequence 

surrounding phosphorylated Ser-621, a Raf-1 site which is constitutively phosphorylated 

(Muslin et a l , 1996). There is also evidence that Ser-259, whose phosphorylation is only 

induced after growth factor stimulation, is also a 14-3-3 binding site (Michaud et a l,

1995). Thus, binding of 14-3-3 does not directly activate Raf-1 as Raf-14-3-3 complexes 

are present in unstimulated cells (Li et a l, 1995). However, mutation of serine 621 in Raf- 

1 inhibits the association of 14-3-3 (Michaud et a l, 1995) and renders Raf-1 inactive. 

Therefore, 14-3-3 binding to serine 621 may be required for Raf-1 kinase activity. 

Recently, a model has been proposed for the role of 14-3-3 in the regulation of Raf activity 

(Tzivion et a l, 1998). Raf is maintained in an inactive state by the binding of a 14-3-3 

dimer to a single Raf polypeptide at two sites, phosphorylated Ser 259 and Ser 621. Ras- 

GTP subsequently displaces 14-3-3 from phosphorylated Ser 259. Finally, half of the 14-3- 

3 dimer displaced from phosphorylated Ser 259 by Ras-GTP rebinds to a putative new 

phosphoserine site, thereby stabilising an active conformation that no longer requires Ras- 

GTP. However, the exact mechanism by which 14-3-3 activates Raf is not fully 

understood and is still under investigation.

Another protein which may be involved in Raf-1 activation is the kinase suppressor 

of Ras (Ksr). Ras activation has been shown to induce translocation of Ksr from the 

cytoplasm to the membrane where it activates Raf-1 activity (Therrien et a l, 1995). 

Interestingly, Ksr enhancement of Raf-1 activity is independent of Ksr kinase activity. 

Yeast two-hybrid analysis using mouse Ksr as bait showed interactions of Ksr with both 

MEK and ERK (Yu et a l, 1997), thus Ksr might also have a scaffold function, bringing 

together specific components of the MAP kinase cascade, in regulating the Raf-MEK-ERK 

pathway.

The observation that Raf-1 becomes hyperphosphorylated in response to many 

signalling events (Morrrison et al., 1993) has suggested that phosphorylation plays a role in 

regulating Raf-1 activity. Mechanisms by which phosphorylation could regulate Raf-1 

function include directly altering Raf-1 intrinsic kinase activity and mediating critical 

protein-protein interaction, such as with 14-3-3. In mammalian cells, the major sites for 

serine phosphorylation are Ser43, Ser259, and Ser621 (Morrison et a l, 1993). Both Ser43 and
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Ser621 are phosphorylated in unstimulated and PDGF stimulated cells and mutation of 
601Ser , which is located in the CR3 kinase domain, inactivates the biochemical activity of 

the kinase (Morrison et a l , 1993). Ser259, which is located in the serine/threonine rich CR2 

region, was phosphorylated only after stimulation with PDGF and mutation resulted in an 

activated Raf-1 protein, suggesting that this residue functions in a negative regulatory way 

(Morrison et a l , 1993). Phosphorylation of tyrosine residues 340 and 341 has been shown 

to enhance the catalytic activity of Raf-1 (Fabian et a l , 1993; Marais et a l , 1995).

Downregulation of Raf activity may be a result of a feedback phosphorylation by a 

downstream component of the pathway, the MAP kinases erkl and erk2. Erks have been 

shown to phosphorylate Raf-1 and it has been suggested that this may play a negative 

regulatory role (Anderson et a l , 1991; Lee et a l , 1992; Williams et a l , 1993; Samuels et 

a l , 1993).

I.H .lf MEK

Raf-1 has been shown to phosphorylate and activate MEK (MAP kinase/Erk- 

activating kinase). At least two isoforms of MEK, MEK1 and MEK2, exist in mammalian 

cells, and these catalyse the dual phosphorylation on threonine and tyrosine residues of the 

MAP kinases erkl and erk2 (see section I.H.lg) (Crews et a l , 1992; Zheng and Guan, 

1993; Wu et a l , 1993). Phosphorylation of MEK by Raf occurs on serine residues at 

positions 217 and 221 which are conserved between MEK1 and MEK2 (Alessi et a l ,

1994). Activation of MEK appears to require phosphorylation of either serine residue. 

However, inactivation of MEK requires dephosphorylation of both serine 217 and 221 

residues (Alessi et a l , 1994). These serines lie bewteen protein kinase subdomains VII 

and VIII, the same region where the activating phosphorylations for a number of other 

protein kinases are located (Hanks et a l , 1988). The activation of MEK by Raf-1 was 

demonstrated by three groups who reported that when MEK preparations are inactivated by 

treatment with a serine/threonine phosphatase, MEK activity can be restored by either 

oncogenic Raf or cellular Raf proteins from stimulated mammalian cells (Dent et a l , 1992; 

Howe et a l , 1992; Kyriakis et al., 1992).

MEK1 and MEK2 contain a proline-rich sequence (PRS) in their carboxy-terminal 

domains spanning residues 270-307 between kinase subdomains IX and X. Deletion of the 

PRS from MEK1 impairs its activation by Raf-1 in transfected cells, suggesting that the
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insert may be involved in the coupling of MEK 1 to components of the MAP kinase cascade 

(Catling et a l, 1995). Recently, using a yeast two-hybrid screen, a protein called MP1 

(MEK Partner 1) was identified that bound specifically MEK1 and erkl and facilitated 

their activation (Schaeffer et a l, 1998). The PRS sequence within MEK1 was shown to be 

necessary for its association with MP1. It has been suggested that MP1 functions to 

increase the efficiency of Raf activation, as addition of MP1 to an in vitro assay with 

purified recombinant B-Raf and MEK1 enhanced MEK phosphorylation (Schaeffer et al, 

1998).

MEK1 and MEK2 exhibit considerable similarity within the PRS. However, there 

are two potential phosphorylation sites unique to MEK1 at threonine 286 and 292 (Wu et 

a l, 1993a,b). Threonine 292 is likely to play an important role in directing protein-protein 

interactions as a mutant MEK1 protein (T292A) was unable to bind Ras suggesting that 

phosphorylation on threonine 292 controls the binding of MEK1 to the Ras signaling 

complex (Jelinek et a l, 1994) and is likely to be involved in binding MEK1 to MP1. 

Interestingly, the MAP kinase, erkl, has been shown to be able to phosphorylate MEK1 on 

threonine 292 as well as threonine 386 which is conserved in MEK2. (Brunet at al, 1994; 

Saito et a l, 1994). Phosphorylation on threonine 386 has been suggested to serve as a 

negative feedback control, reducing MEK1 activity (Brunet et a l, 1994).

I.H.lg Extracellular-signal-regulated kinases (Erks)

Activation of a family of intracellular serine/threonine kinases referred to as the 

mitogen activated protein kinases (MAPKs) or extracellular-signal-regulated kinases (erks) 

has long been associated with regulation of proliferation and differentiation. Among the 

MAP kinases found in mammalian cells are two highly homologous MAP kinases which 

are expressed ubiquitously: p42mapk, or erk2 and p44mapk, or erkl (Boulton et a l, 1991). 

MEK1 and MEK2 activate erkl and erk2 by phosphorylation on both threonine 183 and 

tyrosine 185 within a conserved MAP kinase sequence motif Thr-Glu-Tyr adjacent to 

subdomain VIII of the kinase domain (Payne et a l, 1991; Hanks et a l, 1988). Growth 

factor stimulation of cells results in the translocation of both erkl and erk2 to the nucleus 

approximately 15 minutes after stimulation and growth factor removal rapidly reverses this 

process of nuclearisation and abolishes erk activation (Lenormand et a l, 1993). Thus, erks
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provide a physical link in the signal transduction pathway from the cytoplasm to the 

nucleus.

MAP kinases are proline-directed protein kinases that phosphorylate the consensus 

sequence Pro-X-Ser/Thr-Pro (Gonzalez et a l, 1991). Erkl and erk2 have many potential 

substrates including further downstream kinases as well as transcription factors. Substrates 

phosphorylated and subsequently activated by erks include the cytoplasmic phospholipase 

A2 (CPLA2) (Lin et a l, 1993) and the ribosomal S6 kinases rskl and rsk2 (p90rsk) (Sturgill 

et a l, 1988) (see Fig. 1.9). CPLA2 represents an important target of the MAP kinase signal 

transduction pathway. Phosphorylation at Ser505 causes an increase in the enzymatic 

activity of CPLA2 , resulting in increased arachidonic acid release and formation of 

lysophospholipids from membrane phospholipids (Lin et a l, 1993). Activation of p90rsk 

phosphorylates the 160 kDa glycogen binding (G) subunit of protein phosphatase I (PP-I). 

This phosphorylation increases the binding of the catalytic subunit of PP-I to the glycogen 

bound G subunit and results in increased glycogen synthase phosphatase activity (Dent et 

al, 1990). This results in an increase in glycogen synthase activity, leading to glycogen 

synthesis.

Transcription factors are a key target of erk phosphosphorylation. Most notably, 

the ternary complex factor (TCF), Elk-1, which is involved in c-fos induction, is 

phosphorylated by erks on sites essential for transactivation. Phosphorylation of Elk-1 

results in formation of a complex with the serum response factor (SRF), which together 

bind the serum response element (SRE) on the c-fos promoter (Marais et a l, 1993). c-fos 

is an immediate early gene involved in cellular growth and differentiation. Thus, erk 

activation is a key event leading to transcriptional activation of c-fos, and regulating cell 

growth and differentitation.

Additional erk substrates include protein kinases that form the cascade that leads to 

erk activation: c-Raf-1 (Anderson et a l, 1991; Lee et a l, 1992) and MEK (Matsuda et al, 

1993; Brunet et a l, 1994), suggesting that this MAP kinase cascade may be regulated by 

the erks themselves. In addition, Sos has been shown to be phosphorylated by erk, 

resulting in its dissociation from Grb2 and possibly constituting a negative feedback 

mechanism (Corbalan-Garcia et a l, 1996). Furthermore, following activation of erk, new 

transcription can lead to the production of specific phosphatases which could act as a timer 

to turn off MAP kinase activity. The phosphatase CL 100 is regulated at the transcriptional
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level by growth factors and stress and specifically inactivates MAP kinase in vivo (Keyse et 

al., 1992; Charles et a l, 1992; Alessi et a l, 1993). More recently, activation of this MAP 

kinase cascade was shown to promote the induction of two members of a recently 

described family of dual specificity phosphatases, MKP-1 and MKP-2, which are capable 

of dephosphorylating MAP kinase and may attenuate MAP kinase-dependent events in an 

inhibitory feedback loop (Brondello et a l, 1997).

I.H.2 Phosphoinositide 3-kinase (PI3-K)

Phosphoinositide 3-kinase (PI3-K) activity has been implicated in the regulation of 

a number of different cellular responses including growth. PI3-K is a lipid kinase capable 

of phosphorylating phosphoinositides at the 3’ position of the inositol ring (Stephens et al,

1993). The primary isoform of PI-3K, class LA, become activated in response to 

stimulation with growth factors, including IL-3, IL-4, SLF, GM-CSF and IL-5 (Gold et al,

1994), and are capable of phosphorylating PI, PI(4)P, and PI(4 ,5 )P2 , converting them to 

PI(3)P, PI(3 ,4 )P2 and PI(3 ,4 ,5 )P3 respectively. However, their preferred substrate is 

thought to be PI(4 ,5 )P2 . The class LA PI3-K are heterodimeric enzymes consisting of an 

85 kDa regulatory subunit (p85a or p85p) and a 110 kDa catalytic subunit. Three pi 10 

isoforms, pi 10a, pllOp and pi 108 have been described (Vanhaesebroeck et a l, 1997a), 

with p i005 expression largely restricted to leukocytes (Vanhaesebroeck et a l, 1997b). 

pi 1 0 a  and pi 1 0 p appear to be ubiquitously expressed and have previously been shown to 

be coupled to IL-3 signalling (Vanhaesebroeck et a l, 1997b; Gold et a l, 1994). The p85 

subunit (see Fig. 1.4) contains a number of domains that mediate protein-protein 

interactions including an SH3 domain, two proline rich regions, two SH2 domains and a 

region with similarity to the break point cluster gene (BCR homology region). The two 

SH2 domains are separated by the inter-SH2 (iSH2) region. Part (amino acids 478-513) of 

the iSH2 domain mediates the interaction of p85 with amino acids 20-108 of the amino- 

terminus of pi 1 0  and this interaction is required for regulation of the enzymatic activity of 

pi 10 (Klippel et a l, 1994; Holt et al, 1994; Dhand et al, 1994).

Regulation of PI3-K activity not only requires interaction of the two subunits, but 

also membrane localisation. The two SH2 domains of the p85 subunit bind phosphorylated 

tyrosine residues specifically within a pYXXM motif (Cohen et al., 1995). The tyrosine 

residues on receptors or associated signalling molecules phosphorylated in response to
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ligand binding form the docking sites for the SH2 domains of the p85 subunit. This 

adaptor-mediated translocation of PI3-K to the activated receptor is likely to help position 

the catalytic subunits close to the membrane which contains their lipid substrates.

In addition, activation of PI3-K may also require interaction with Ras in a GTP- 

dependent manner. GTP-bound Ras has been shown to bind the catalytic pi 10 subunit of 

PI3-K, resulting in stimulation of PI3-K activity (Kodaki et a l , 1994; Rodriguez-Viciana et 

al.9 1994,1996). Co-expression studies of PI3-K with various Ras mutants indicate that 

Ras can regulate PI3-K in vivo (Rodriguez-Viciana et al., 1994; Marte, et al., 1997). 

Expression of a dominant negative Ras mutant inhibited the ability of NGF and EGF to 

elevate PI(3 ,4 ,5 )P3 lipid levels in PC 12 cells and the co-expression of Ras with p85 and 

pi 10 in COS cells also resulted in increased cellular 3’phopshorylated phospholipids, 

implicating Ras in the regulation of PI3-K (Rodriguez-Viciana et a l, 1994). Evidence 

from experiments using PDGF-receptor mutants also suggests that accumulation of GTP- 

bound Ras is required for activation of PI3-K by PDGF (Klinghoffer et al., 1996). Taken 

together, these data indicate that PI3-K may be another class of Ras effector molecules and 

position Ras as an upstream regulator of PI3-K. The interaction of Ras with PI3-K might 

result in allosteric activation, or contribute to PI3-K recruitment to the plasma membrane. 

It has been demonstrated that targeting of pi 10 to the membrane is sufficient for activation 

of the p70S6K and PKB/Akt, but not MAP kinase, in COS cells (Klippel et al., 1996). 

However, it should also be noted that data have been reported that position Ras 

downstream of PI3-K (Hu et a l , 1995). Expression of a consitutively activated PI3-K 

mutant, pi 1 0 *, in fibroblasts induced transcription of the fos promoter which was blocked 

by expression of dominant negative Ras (Hu et al., 1995). In addition, expression of pi 10* 

in Xenopus oocytes resulted in an elevated level of GTP-bound Ras, providing direct 

evidence that PI3-K can activate the Ras pathway (Hu et al., 1995).

The precise mechanism of PI3-K signalling is not known but studies indicate that 

this enzyme is linked to several pathways. PI3-K is involved in the activation of the 

serine/threonine kinase p70 which is important for mitogenic signals leading to serum- 

induced protein synthesis, c-fos induction and entry into S phase of the cell cycle (Lane et 

al., 1993; Weng et a l, 1995). Another putative downstream effector of PI3-K is the 

serine/threonine protein kinase PKB/Akt (Burgering and Coffer, 1995; Franke et a l, 1995). 

Activation of PKB/Akt protects certain cells from apoptosis and the mechanism by which
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this occurs is currently under intensive investigation. The best candidate mechanism to 

date is through the phosphorylation of Bad, a pro-apoptotic member of the Bcl-2 family, 

resulting in its binding to 14-3-3 as an inactive complex (Zha et a l, 1996; Del Peso et al, 

1997; Dattaef <z/., 1997).

PI3-K may also play a role in activation of the MAP kinases erkl and erk2. Several 

reports have demonstrated inhibition of MAP kinase activation by wortmanin, a potent 

inhibitor of PI3-K (Cross et al., 1994; Ferby et a l , 1994; Welsh et al., 1994; Von 

Willebrand et al., 1996; Grammer and Bleni, 1997; Jascur et al., 1997). Importantly, 

wortmannin was shown to partially inhibit MEK-dependent activation of MAP kinase in 

response to various cytokines including PDGF, IL-2 and insulin (Grammer and Blenis, 

1997). Activation of erkl by GM-CSF and IL-3 was also shown to be attenuated by PI3-K 

inhibitors; however, the inhibition of MAP kinase activation did not directly correlate with 

the ability of these inhibitors to inhibit PI3-K activity, suggesting that enzymes other than 

PI3-K, that function upstream of MAP kinase, may be inhibited instead (Scheid and 

Duronio, 1996). However, expression of dominant negative PI3-K mutants has also been 

shown to affect activation of MAP kinase. Erk2 activation in response to T cell receptor 

engagement was inhibited by overexpressing a mutated form of p85 (Von Willebrand et 

al., 1996; Jascur et a l, 1997). This p85 mutant lacks the iSH2 pi 10 binding site and has 

previously been shown to act in a dominant negative manner by blocking catalytic 

activation of the pi 10 subunit (Hara et al., 1994). In addition, adenovirus-mediated 

transfer of the p85N-SH2 domain inhibits activation of erkl and erk2 in response to insulin 

in 3T3-L1 adipocytes, despite elevation in GTP-bound Ras, suggesting that PI3-K may be 

required for activation of MAP kinase at a step independent of and downstream of Ras 

(Sharma et al., 1998).

I.H.3 The Jak-STAT pathway

I.H.3a The Janus kinase (Jak) family

The Jak family of kinases in mammalian cells consists of Jakl, Jak2, Jak3, and 

Tyk2 (reviewed by Schindler and Darnell, 1995). This family was identified independently 

by low stringency hybridisation (Firmnach-Kraft et al., 1990) and a polymerase chain 

reaction (PCR) approach (Wilks et al., 1989; Partanen et al., 1990) designed to identify
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novel protein tyrosine kinases. Jak was originally an acronym for just another kinase, but it 

has also been proposed as an acronym for Janus (the Roman God of gates and doorways) 

kinase. Jakl, Jak2 and Tyk2 are expressed ubiquitously in many tissues whereas Jak3 

appears to be predominantly expressed in myeloid cells, natural killer cells and activated T 

lymphocytes (Rane et al., 1994; Johnston et al., 1994).

Jak kinases share an overall structural pattern with seven conserved domains 

designated JH segments JH1 to JH7 (see Fig. 1.13 A). Notable features include the absence 

of SH2 and SH3 domains and the presence of two tandem tyrosine-kinase domains. Only 

the most carboxy-terminal kinase domain, JH1, is believed to be functional, containing all 

the motifs associated with protein tyrosine kinases (Hanks et al., 1988). The pseudo kinase 

domain JH2, immediately amino-terminal to JH1, contains kinase motifs but some of these 

lack several residues that are essential for catalytic activity and its function is yet to be 

established.

FIGURE 1.13
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Structure of Jaks and STATs.
(A) The overall organisation of Jak family members. The seven conserved domains, 

designated JH 1 to JH 7 are indicated. The carboxy-terminal kinase domain, JH 1, is the 

functional kinase domain. The pseudokinase domain, JH 2, lies immediately amino- 

terminal to JH 1. (B) The functional domains of the STATs are indicated, including a 

conserved region in the amino terminus (Con), the DNA-binding domain, a SH3-like 

region (SH3), the highly conserved SH2 domain (SH2), the critical site of tyrosine 

phosphorylation (Y), and the carboxy-terminal transcriptional activation domain (Tr).
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In general, Jak kinases are catalytically inactive in resting cells but are associated 

with the cytoplasmic domains of cytokine receptors. They are rapidly activated by a 

ligand-stimulated phosphorylation on a tyrosine within the kinase domain and all cytokines 

which interact with the type I cytokine receptor family activate member(s) of the Jak kinase 

and STAT proteins. Jak2 is phosphorylated and its kinase activity stimulated in response 

to many cytokines including GM-CSF (Quelle et a l , 1994), IL-3 (Silvennoinen et al.,

1993), Epo (Witthuhn et a l, 1993), IL- 6  (Narazaki et al, 1994) and growth hormone 

(Artgetsinger et a l, 1993). Several lines of evidence using receptor mutants have shown 

that boxl (see section I.E)-a conserved motif of the cytokine receptor superfamily located 

in a membrane proximal region- is required for activation and interaction of Jak2 with pc 

(Quelle et a l, 1994), growth hormone receptor, Epo receptor, and gpl30 (Witthuhn et al, 

1993; Tanner et a l, 1995). Jak2 is known to associate with the GM-CSF receptor pc chain 

through its amino-terminal domain (Zhao et a l, 1995). In the case of receptors that contain 

single chains (Epo, growth hormone, prolactin and G-CSF), Jak is activated by receptor 

aggregation which induces its own trans-phosphorylation. Thus, after ligand stimulation, 

dimerisation of cytokine receptor subunits follows, which then induces the dimerisation of 

associated Jaks and results in cross-phosphorylation of the autophosphorylation site, 

resulting in activation of kinase activity. A similar mechanism is envisioned for receptors 

with multiple chains including those for IL-3 and GM-CSF . The mechanism by which Jak 

signals are downregulated involves the PTPase, SHP-1 (see section I.G.la). Initially, it 

was shown that Epo-induced activation of its receptor negatively regulates Jak2 by SHP-1, 

which binds to the phosphorylated tyrosine residue in the carboxy-terminal region of the 

receptor and subsequently dephosphorylates and inactivates Jak2 (Klingmuller et al,

1995). A similar mechanism is also predicted for regulation of Pc, but it remains to be 

proven whether or not activities of all Jak family members are regulated negatively by 

SHP-1.

In cytokine receptor systems, the function of Jak in signalling is not limited to 

STAT activation and is believed to be responsible for the tyrosine phosphorylation of 

cytokine receptors as well as of several SH2-containing signalling molecules. 

Phosphorylation of receptor tyrosine residue(s) by Jak2 allows SH2-containing signalling 

molecules, including STAT and adaptor proteins, to bind to the receptor. Experiments 

carried out using dominant negative Jak2 revealed that Jak2 mediates tyrosine
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phosphorylation of pc in response to GM-CSF (Watanabe et a l, 1996). In addition, it was 

shown that activation of c-fos and c-myc promoters and cell proliferation induced by GM- 

CSF were mediated by Jak2 (Watanabe et a l, 1996). Jakl and Jak2 have also been shown 

to associate with and phosphorylate SHP-2 (Yin et al., 1997). Thus, it is likely that Jak2 is 

responsible for tyrosine phosphorylation of pc, phosphorylation of SH2 containing 

proteins, including SHP-2, and for c-fos activation through the MAP kinase cascade in 

response to IL-3.

I.H.3b Signal Transducers and Activators of Transcription (STATs)

These proteins were recognised for their dual functions in signal transduction in the 

cytoplasm and activation of transcription in the nucleus, hence the name STAT. To date, 

six members of the STAT family with similar structural features have been identified 

(reviewed by Ihle, 1996) and each functions in the signalling pathways of specific 

cytokines. STAT proteins vary in size from 734 to 851 amino acids with the principle 

differences occurring at the carboxy-terminus. They are composed of an amino-terminal 

DNA-binding domain, and an SH3-like region and an SH2 domain located in the carboxy- 

terminal end (Ihle, 1996) (see Fig. 1.13 B). The SH3-like region may play a role in binding 

to proline rich motifs but as yet has an undetermined role. The SH2 domain is the most 

highly conserved region and is virtually identical to the core SH2 domain of src. The SH2 

domain plays three important roles. It is critical for the recruitment of STATs to the 

activated receptor complexes. It is required for the interaction with Jaks, which 

phosphorylate the STATs. Finally, the SH2 domain is required for STAT dimerisation and 

the associated ability to bind DNA (Ihle, 1996). There is also a conserved tyrosine residue 

within the carboxy-terminal region that is essential for dimerisation of STAT proteins and a 

conserved serine residue, the phosphorylation of which is essential for maximal trans

activation. Thus, phosphorylation of a cytokine receptor provides a binding site for the 

SH2 domain of STAT. The recruited STAT is phosphorylated at its carboxy-terminal 

tyrosine by Jak and can then dimerise through the phosphorylated tyrosine residue and the 

SH2 domain of another STAT protein and is further phosphorylated at a carboxy-terminal 

serine residue. The dimerised STAT proteins then translocate to the nucleus where they 

bind to DNA sequences, most of which are related to the gamma interferon activated site 

(GAS), a regulatory element in the promoter of IFN-y-inducible genes (Darnell et al,
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1994). It is not known whether or not STAT proteins are involved in cytokine-induced cell 

proliferation. However, using dominant negative carboxy-terminal truncated STAT 5, 

partial suppression of IL-3-induced proliferation is observed (Mui et al., 1996).

IL-3, GM-CSF, and IL-5 have been shown to activate STAT 5 (Mui et al., 1995). 

In the case of STAT 5, several isoforms have been identified. Two variants occur in mice, 

which arise from distinct genes (Mui et a l, 1995; Azam et a l, 1995). These closely related 

isoforms of STAT 5, termed STAT 5a and STAT 5b, have been shown to be highly 

homologous (>90% identical) at the protein level, varying mainly in their carboxy-terminal 

regions. Both molecules are ubiquitously expressed at comparable levels in all tissues 

examined and appear to be activated equally by IL-3, GM-CSF, and IL-5 (Mui et al.,

1995). These two proteins can either homo or heterodimerise, thus acquiring the ability to 

bind to specific DNA sequences (Mui et a l, 1995). STAT 5 activation has been shown to 

result in the induction of many genes, including c-fos (Mui et a l, 1996; Watanabe et a l,

1996). The study by Mui et al., (1996) showed that IL-3 stimulation of Ba/F3 cells induced 

to express a dominant negative STAT 5, constructed by carboxy-terminal truncation, 

resulted in a significant reduction in the expression of cis, pim-1, osm, Id-1 and c-fos, 

suggesting that these five genes are regulated by STAT 5-dependent pathways. 

Importantly, overexpression of wild-type STAT 5 restored the gene induction pattern. The 

sensitivity of cis, pim-1, osm, and Id-1 to expression of dominant negative STAT 5 is 

consistent with studies which mapped the region of IL-3/GM-CSF receptor p chain 

responsible for their induction (Sato et a l, 1993) to the same membrane proximal region 

required for Jak2 (Quelle et a l, 1994) and STAT 5 (Mui et a l, 1995) activation. In 

contrast, although this membrane proximal domain is also responsible for c-myc induction, 

c-myc levels were not affected by expression of dominant negative STAT 5, dissociating c- 

myc induction from STAT 5 activation (Mui et al., 1996). However, as c-myc induction is 

sensitive to tyrosine kinase inhibitors (Kinoshita et a l, 1995), this suggests that c-myc is 

induced by either a tyrosine kinase distinct from Jak2, or alternately, through a Jak2- 

dependent pathway which is distinct from that responsible for STAT 5 activation.
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1.1 Overview of IL-3 signal transduction

1.1.1 General

IL-3, produced by activated T lymphocytes and mast cells, is a pleiotropic cytokine 

that acts as a potent growth factor for mast and other myeloid progenitor cells (Ihle, 1992). 

IL-3 has also been shown to be important for basophil and mast cell mediated immunity to 

parasites (Lantz et al., 1998). Therefore, IL-3 plays an important role in mediating immune 

and inflammatory responses. The IL-3 receptor is composed of a 70 kDa specific a  chain 

and a 125-135 kDa p chain, both of which are members of the cytokine receptor 

superfamily. The human IL-3R p subunit is shared with the GM-CSF and IL-5 receptors 

and is termed pc. Two different p subunits, Aic2A and Aic2B, exist in mice but Aic2A is 

specific for IL-3. Neither of the subunits of the IL-3R possess intrinsic tyrosine kinase 

activity. However, IL-3 has been shown to induce activation of both Jak2 (Silvennoinen et 

a l , 1993) and Src family (Anderson and Jorgensen, 1995) tyrosine kinases which correlate 

with the rapid tyrosine phosphorylation of a number of cellular proteins including: p42erk2 

and p44erkl (Welham et a l, 1992), p i20 Jak2 (Silvennoinen et al., 1993), p90 STAT 5 

(Mui et al., 1995), p70 SHP-2 (Welham et al., 1994b), p46 and p52 She (Welham et al., 

1994a), pi 45 SHIP (Damen et a l, 1996) and the P subunit of the receptor itself (Sakamaki 

et a l, 1992; Duronio et al., 1992a). This results in the activation of intracellular signalling 

cascades, including the Ras/MAP kinase and PI3-K pathways, and leading to cellular 

proliferation and survival.

1.1.2 Involvement of SHP-1 and SHP-2 in IL-3 signalling

Phosphorylation of the IL-3 receptor p subunit, which contains 8  potential 

intracellular tyrosine phosphorylation sites, provides possible binding sites for molecules 

containing SH2 and PTB domains such as SHP-1, SHP-2 and She (see Fig. 1.14). SHP-1 

appears to act as a negative regulator of IL-3 signalling, as increased SHP-1 levels have 

been shown to suppress cell growth in response to IL-3 (Yi et al., 1993). This may be 

accomplished through association with the IL-3 receptor as SHP-1 was shown to associate 

with the murine IL-3 receptor p subunit, Aic2A, although the sites of interaction were 

unknown (Yi et a l, 1993). SHP-2 is thought to act as a positive regulator of growth factor 

signalling. SHP-2 becomes tyrosine phosphorylated in response to IL-3 (Welham et al,
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1994b). This phosphorylation of SHP-2, on Tyr 304 and Tyr 542, creates docking sites for 

the SH2 domain of Grb2 (Welham et a l , 1994b). Thus, SHP-2 may function as an adaptor 

protein, localising the Grb2-Sos complex to the receptor and so to the vicinity of the 

plasma membrane associated Ras. In addition to SHP-2’s possible role in the regulation of 

the Ras-MAP kinase pathway, SHP-2 has also been shown to co-precipitate with PI3-K 

following IL-3 stimulation (Welham et al., 1994b). This association has been shown to be 

mediated by a 100 kDa protein which directly interacts with both the p85 subunit of PI3-K 

and SHP-2 in response to IL-3 (Craddock and Welham, 1997). Thus, SHP-2 may also 

function in localising the pl00:PI3-K complex to the receptor and hence to the vicinity of 

the plasma membrane. This p i00 protein has now been cloned and is known as Gab2 (Gu 

et al., 1998). However, although SHP-2 has been shown to associate, via its SH2 domains, 

to the activated PDGFR, at tyrosine 1009 (Lechleider et a l , 1993b; Kazlauskas et al., 

1993), the EpoR at tyrosine 425 (Tauchi et a l , 1996), and to the EGFR (Feng et a l, 1993; 

Vogel et a l, 1993), no such association has been demonstrated with the IL-3 receptor in 

either murine or human cells.

I.I.3 Involvement of She in IL-3 signalling

The p52 and p46 isoforms of She become highly tyrosine phosphorylated upon IL-3 

stimulation of haemopoietic cells, correlating with activation of p21ras and the MAP 

kinases erkl and erk2 (Welham et a l, 1994a). Functionally, She proteins have been 

implicated in regulating the activation of the Ras-MAP kinase pathway via a series of 

protein-protein interactions coupling the SH2 domain of Grb2 with tyrosine 317 of She, 

resulting in translocation of Shc-Grb2-Sos complex to the plasma membrane via 

interactions of She with activated receptors. Thus, She may be a key signalling molecule 

involved in the activation of erk kinases, which are themselves involved in the regulation 

of cell growth and differentiation (see Fig. 1.14).

She has also been shown to associate with a 140-150 kDa inositol polyphosphate-5- 

phosphatase termed SHIP (Damen et a l, 1996). SHIP is tyrosine phosphorylated in 

response to IL-3 (Damen et a l, 1996; Lioubin et a l, 1996) and the association between 

SHIP and She is mediated by the interaction of both the SHIP SH2 domain binding directly 

to the motif surrounding tyrosine 317 of She, together with the NPXpY motifs of SHIP 

associating with the PTB domain of She, to form a high affinity Shc-SHIP complex (Liu et
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a l , 1994; Liu et al., 1997a). SHIP has been proposed to be a negative regulator of cell 

signalling because of its ability to dephosphorylate the primary in vivo product of PI3-K, 

phosphoinositol 3 ,4 ,5 -P3 (Lioubin et a l , 1996). Therefore, She may also play an 

important role in localising SHIP to the plasma membrane in response to IL-3.

With respect to localisiation to the receptor, She has been shown to associate via its 

SH2 domain with pc following GM-CSF treatment, but the site of interaction was not 

determined (Lanfrancone et a l , 1995). Also, in a COS cell, non-ligand dependent system, 

Jak2 induced constitutive phosphorylation of pc tyrosine 577, which resulted in the binding 

of She to Pc via its PTB domain (Pratt et a l, 1996). The association of She with pc in 

response to IL-3 has not been investigated. Interestingly though, upon IL-3 stimulation, no 

mass translocation of She to the plasma membrane has been observed as was after EGF 

stimulation (Ruff-Jamison et a l, 1993) and only a small increase in tyrosine 

phosphorylated She at the plasma membrane has been detected (Welham et a l, 1994a). 

Therefore, in response to IL-3, She may not simply function as an adaptor molecule, 

localising signalling molecules to the membrane, and may have alternative roles in the 

cytoplasm.

I.J Rationale and Specific Aims

Upon stimulation of haemopoietic cells with IL-3, the PTPase SHP-2 and the 

adaptor protein She become highly tyrosine phosphorylated, suggesting an important role 

for these signalling molecules in mediating IL-3 signalling events, ultimately leading to cell 

growth, survival and differentiation. Both the SH2 domain containing PTPases, SHP-1 and 

SHP-2, have been implicated in IL-3 signalling. SHP-1 has been implicated as a negative 

regulator of IL-3-induced growth responses and has been shown to associate with the 

murine IL-3 receptor p subunit, Aic2A, although the sites of interaction were not mapped 

(Yi et a l, 1993). SHP-2 is thought to act as a positive regulator of growth factor 

signalling, possibly by acting as an adaptor molecule, localising the Grb2-Sos complex 

(Welham et al., 1994b) and/or PI3-K (Craddock and Welham, 1997) to the plasma 

membrane. However, the association of SHP-2 with the IL-3 receptor, facilitating 

localisation of these signalling molecules to the membrane, has not previously been 

investigated.
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She has been implicated as a key component in the regulation of the Ras/MAP 

kinase pathway. Tyrosine phosphorylation of She at position 317 creates a binding site for 

the SH2 domain of Grb2. Thus, the binding of She to activated receptors, results in 

localisation of the Grb2-Sos complex to the plasma membrane in the vicinity of Ras. 

Activation of Ras results in activation of a signalling cascade, ultimately leading to 

activation of the erk kinases which are involved in regulation of cell growth and 

differentaition. She has also been shown to associate with the inositol polyphosphate-5- 

phosphatase, SHIP, which has been proposed as a negative regulator of cell signalling 

because of its ability to dephosphorylate the primary in vivo product of PI3-K, PI(3 ,4 ,5 )P3 . 

The importance of She in regulating these signalling pathways relies on the association of 

She with the activated IL-3 receptor, yet this has not previously been studied.

Therefore, using a combination of biochemical, cellular and genetic techniques, this 

study attempted to investigate the roles of SHP-1 , SHP-2 and She in haemopoietic cells in 

response to IL-3. Specifically, the protein-protein interactions mediated by SHP-1, SHP-2 

and She in response to IL-3 were investigated, with an emphasis placed on interactions of 

these signalling molecules with the IL-3 receptor itself. The functional significance of the 

interactions of the various domains of She in integrating IL-3-mediated signalling events 

were explored further. How these interactions mediate IL-3 signal transduction with 

respect to activation of the Ras/MAP kinase pathway and cell proliferation was addressed.

55



Chapter Two

CHAPTER II 

Materials and Methods
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II.A. Molecular Biology Techniques.

II.A.1. Phenol/Chloroform extractions

The supernatant containing the DNA was first extracted with an equal volume of 

buffer-saturated phenolxhloroform (1 :1 ) and centrifuged for 1 minute at full speed in a 

Heraeus microfuge. The aqueous phase was then transferred to a clean tube and re

extracted with an equal volume of chloroform. After centrifugation for 1 minute, the 

aqueous phase was transferred to a clean tube, ready for ethanol precipitation.

II.A.2. Ethanol precipitation of DNA

To the solution containing the DNA to be precipitated, 0.1 volume of 3 M sodium 

acetate, pH 5.5, and 2 volumes 100% ethanol was added. The solution was mixed by 

inversion, cooled on ice for 1-5 minutes and the precipitated DNA pelleted in a Heraeus 

centrifuge at 4°C for 10 minutes at full speed. For precipitation of some DNA fragments, 

the solution was first incubated in a dry ice/ethanol bath prior to pelleting. The ethanol was 

aspirated off and the pellet washed once in 70% ethanol. The pellet was dried briefly under 

a vacuum or left to air dry at room temperature. The pellet was then resuspended in TE (10 

mM Tris-HCl pH 8.0, 0.1 mM EDTA pH 8.0) or water and stored at -20°C

II.A.3. Preparation of competent E. coli

A frozen stock of XL-1BL (Stratagene) was streaked onto a 2 x YT agar plate (16 g 

bacto-tryptone, 10 g yeast extract, 10 g NaCl, 15 g bacto-agar, adjusted to pH 7.5 with 

potassium hydroxide and made up to 1 L), inverted and incubated overnight at 37°C. A 

single colony was then used to inoculate 5 ml 2 x YT broth (same as 2 x YT agar, without 

the bacto-agar) which was then incubated overnight at 37°C in a shaking incubator. The 

following day, the bacteria were subcultured 1:100 in 100 ml 2 x YT broth and grown until 

an OD550 of 0.48 was reached. The culture was then chilled on ice for 5 minutes and 

centrifuged in Beckman M5 centrifuge with a JA-14 rotor at 5000 rpm at 4°C for 10 

minutes. The supernatant was removed and the bacteria resuspended in 0.4 volume (40 ml) 

of Tfbl (30 mM KC1, 100 mM RbCl, 10 mM CaCl2, 50 mM MnCl2, 15% (v/v) glycerol, 

adjusted to pH 5.8 with 0.2 M acetic acid and filter sterilised), incubated on ice for 5 

minutes and centrifuged at 5000 rpm for 5 minutes at 4°C. The sedimented bacteria were
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then resuspended in 0.4 volume (5 ml) cold Tfbll (10 mM MOPS, 75 mM CaCb, 10 mM 

RbCl, 15% (v/v) glycerol, adjusted to pH 6.5 with KOH and filter sterilised) and incubated 

on ice for 15 minutes. Aliquots of 200 pi were snap frozen in 1.5 ml eppendorf tubes 

placed in a dry ice/ethanol bath and stored at -80°C.

II.A.4. Transformation of E. coli

Competent cells were thawed at room temperature and placed on ice for 10 

minutes. DNA was added at a concentration of < 100 ng/ 200 pi cells, mixed gently and 

left on ice for 30-45 minutes. The cells were heat shocked at 37°C for 2 minutes, returned 

to ice for 2 minutes and 4 volumes 2 x YT broth added. The cells were incubated for 1 

hour at 37°C and the appropriate volume plated out onto 2 x YT agar plates containing 

appropriate antibiotic (100 pg/ml ampicillin). When ligations were transformed, the whole 

transformation was plated out by first spinning down the cells and then resuspending them 

in 100 pi 2 x YT broth, all of which was plated; otherwise, 100 pi of the total 

transformation was plated. The plates were then inverted and incubated at 37°C overnight.

II.A.5. Small scale plasmid preparation

A single bacterial colony was used to inoculate 3 ml 2 x YT broth containing 100 

pg/ml ampicillin. The culture was incubated overnight at 37°C with vigorous shaking. 

The following day, 1 ml of culture was removed into an eppendorf tube and cells pelleted 

for 1 minute at full speed in a Heraeus microfuge. The pellet was resuspended in 100 pi 

solution I (50 mM glucose, 10 mM EDTA, 25 mM Tris-HCl pH 8.0) to which 200 pi fresh 

solution II ( 0.2 M NaOH, 1% (w/v) SDS) was added and the suspension incubated on ice 

for 5 minutes. 150 pi cold solution III ( 3 M potassium acetate, 2 M acetic acid) was 

added, the samples vortexed and incubated on ice a further 5 minutes. The precipitate was 

sedimented by centrifugation at full speed for 10 minutes at 4°C in a Heraeus microfuge, 

after which the supernatant was removed and transferred to a clean tube. The supernatant 

was extracted with phenol and chloroform as described in section II.A. 1 and the DNA 

ethanol precipitated as described in section II.A.2. The DNA was finally dissolved in 30 pi 

water and stored at -20°C.
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II.A.6. Large scale plasmid preparation

Large scale plasmid preparations were performed using the QIAGEN Plasmid Midi 

Preparation protocol (QIAGEN) which is based on a modified alkaline lysis procedure. 

Briefly, 100 ml 2 x YT broth with lOOpg/ml ampicillin was inoculated with a culture 

carrying the appropriate plasmid and incubated overnight at 37°C with vigorous shaking. 

The bacteria were pelleted by centrifugation in a Beckman M5 centrifuge with a JA-14 

rotor at 5000 rpm for 10 minutes. The supernatant was discarded and the pellet 

resuspended in 4 ml buffer PI. 4 ml buffer P2 was then added, the solution mixed and 

incubated at room temperature for 5 minutes, after which 4 ml chilled buffer P3 was added, 

mixed and incubated on ice for 15 minutes. The majority of the precipitated material was 

removed by centrifugation in the JA-14 rotor at 4°C for 5 minutes at 5000 rpm. The 

supernatant was transferred to 12 ml Beckman tubes for a further centrifugation in the JA-

20.1 rotor at 4°C for 30 minutes at 15 500 rpm. The supernatant was applied to a 

QIAGEN-tip 100 that had been equilibrated with 4 ml of the low salt buffer, QBT. The tip 

was washed 2 times with 10 ml buffer QC, a medium salt buffer used to remove RNA, 

proteins, dyes and low molecular weight impurities. The DNA was then eluted with 5 ml of 

the high salt buffer, QF. Finally, the DNA was concentrated and desalted by ethanol 

precipitation as described in section H.A.2.

II.A.7. Restriction enzyme digestion

New England Biolabs recommendations were followed with respect to appropriate 

buffers for each of the enzymes. The 10 X concentrated buffers supplied were aliquoted 

and stored at -20°C. A typical reaction was carried out in a volume of 20 pi, containing 2 

pi 10 x restriction buffer, 1 pi (2 mg/ml) RNase (for mini prep DNA), 1-5 pi (approx. 1-5 

pg) DNA, and 1 pi restriction endonuclease, made up to 20 pi with water. The reaction 

was mixed gently by flicking the side of the tube and then centrifuged briefly before being 

incubated at 37°C (room temperature for Smal digestions) for 1-4 hours or overnight for 

linearization with Pvul before transfections (section II.B.3).

II.A.8. Conversion of 5’ protruding ends to blunt ends

To the 20 pi restriction enzyme digestion (containing 1-5 pi DNA), 3 pi 10X 

Klenow buffer was added and the reaction made up to 30 pi with water. 1.5 pi each dNTPs
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(2 mM) were added along with 2 j j ,1 Klenow and incubated at room temperature for 15 

minutes. The reaction was then terminated by the addition of 1 pi 0.5 M EDTA and heat 

inactivated at 75 °C for 10 minutes prior to gel purification (section II.A.12) or 

phenol/chloroform extraction and ethanol precipitation (sections II.A. 1 and II.A.2).

II.A.9. Treatment of plasmid DNA with Calf Intestinal Phosphatase (CIP)

The appropriate plasmid was restriction enzyme digested with the required 

enzyme(s) (section II.A.7). The reaction was then set up as follows: 10 pi 10X low salt 

restriction enzyme buffer, the 2 0  pi restriction digest, distilled water to 1 0 0  pi and 1 pi ( 1 0  

U) Calf Intestinal Phosphatase (CIP). The reaction was incubated at 37 °C for 30 minutes. 

To stop the reaction, 1 pi EDTA, pH 8.0 was added. The CIP was heat inactivated at 70 °C 

for 10 minutes. The solution was then phenol/chloroform extracted and ethanol 

precipitated (sections II.A. 1 and II.A.2). The phosphatase treated plasmids were stored in 

distilled water at -20°C.

II.A. 10. Ligations

Ligations were carried out in 10 pi volumes, typically containing 1 pi 10 x T4 DNA 

ligase buffer, 1-4 pi DNA insert, 1-2 pi DNA vector, distilled water to 9 pi and 1 pi T4 

DNA ligase. The mix was briefly centrifuged in the Heraeus microfuge and ligations 

incubated overnight at room temperature.

II.A.11. Agarose gel electrophoresis

Agarose gel solutions were prepared by boiling the appropriate quantity of agarose 

(for 1-2 % (w/v) gels) in 1 x TAE buffer (50x stock: 242 g Tris, 57.1 ml glacial acetic 

acid, 100 ml 0.5 M EDTA pH 8.0). Once cooled, the gel was cast on a gel tray with ends 

sealed in masking tape and comb positioned a few mm from the bottom. Once set, the 

comb and tape were removed and the gel and tray submerged in a tank containing 1 x TAE 

buffer. 1/6* volume of a 6 x gel loading buffer (30% (v/v) glycerol, 0.05% (w/v) 

Xylene/Cyanol, 0.05% (w/v) bromophenol blue) was added to the samples, centrifuged 

briefly and loaded on the gel. Electrophoresis was performed at 80 V. The gel was then 

submerged in a solution of approx. 0.5pg/ml ethidium bromide in lx TAE buffer for
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approximately 1 0  minutes, visualised under ultra violet light and photographed using a 

Polaroid camera.

II.A.12. Gel purification of DNA fragments

DNA fragments were isolated from agarose gels using the QLAquick gel extraction 

kit (QIAGEN). Briefly, restricted DNA was separated by agarose gel electrophoresis and 

the ethidium bromide stained gel visualised under ultraviolet light (sec. H.A.11). The 

required DNA fragment was excised from the agarose gel with a clean, sharp scalpel and 

transferred to an eppendorf tube. Approximately 800 pi buffer QX1 was added to the gel 

slice and incubated at 50°C for approximately 10 minutes, until the agarose was completely 

dissolved. The sample was then loaded onto the QLAquick spin column and centrifuged for 

1 minute at full speed in a Heraeus microfuge. The column was washed once in 0.75 ml 

buffer PE and centrifuged in the microfuge for 1 minute. Residual wash buffer was 

removed with a further 1 minute spin. The DNA was eluted with 30-50 pi distilled water.

II.A.13. Polymerase chain reaction

PCR reactions were carried out in 50 pi volumes, containing 5 pi 10 x Vent buffer, 

1 pi 10 mM dNTPs, 1 pg sense oligonucleotide, 1 pg antisense oligonucleotide, 1 pi 100 

mM MgSC>4 , 1 pi template, made up to 48 pi with sterile distilled water and 2 pi Vent 

DNA polymerase. The reaction was carried out in Perkin Elmer GeneAmp PCR System 

2400 for 25 cycles with a denaturation temperature of 94°C for 45 seconds, and annealing 

temperature of 47°C for 30 seconds and a polymerisation temperature of 72°C for 2 

minutes.

II.B. Tissue Culture Techniques.

II.B.l. Cell culture

Mammalian cells were cultured in humidified incubators at 37°C, 5% CO2 (v/v), in 

RPMI 1640 medium supplemented with 10% (v/v) foetal calf serum, 20 pM 0- 

mercaptoethanol, 100 units penicillin-streptomycin, and 2 mM glutamine. TF-1 is a human 

erythroleukemic cell line (Kitamura et al., 1989) and was maintained in the above medium 

supplemented with 10% (v/v) gibbon IL-3 (gIL-3) conditioned medium derived from
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AgX63/gIL-3 cells (section II.B.2). TF-1 cells respond to IL-3, GM-CSF, Epo, IL-4, IL-13 

and insulin (Zurawski et al., 1993; Kitamura et a l, 1989). Ba/F3 is a murine pro-B cell 

line that is dependent on IL-3 for proliferation (Palacios and Steinmetz, 1985). Ba/F3 cells 

were cultured in 5% JWW3 conditioned medium as a source of IL-3 (section n .B .2 ) .  

Ba/F3 cells expressing the tetracycline transactivator (tTA) from the plasmid pUHD15-l, 

containing a puromycin selectable marker (Ba/F15-1) were a kind gift from Dr. A. Mui, 

DNAX, Palo Alto, California (Mui et al., 1996). Ba/F15-1 cells were cultured as for Ba/F3 

cells with the addition of 2 pg/ml tetracycline. Each week, all cells were passaged 1:5 in 5 

x 5 ml falcon dishes.

II.B.2. Preparation of conditioned media

AgX63/gIL-3 cells expressing gIL-3 or JWW3 cells expressing murine IL-3 (mIL- 

3) were cultured in 175 cm tissue culture flasks for approximately 1 week, until the media 

began turning yellow. The media was then filtered through a glass fiber filter (Whatman) 

to remove cells and cell debris and then sterilised through a 0 . 2  pm bottle top filter 

(Nalgene). Sterilised conditioned media was stored in 200 ml bottles and frozen at -20 °C 

until required.

XTT dye reduction assays, as outlined in sec. II.B.5, were performed with Ba/F3 or 

TF-1 cells to test the JWW3 and gIL-3 conditioned media respectively. Briefly, a serial 

dilution series of conditioned media in RPMI 1640 was prepared across a 96 well tray. 

Washed cells were resuspended at 1 x 105 cells per ml and 50 pi added per well (5000 

cells). Cells were incubated for 72 hours at 37°C before developing with XTT. The 

concentration of conditioned media required for maximum growth was determined and for 

future work, the media was supplemented with that concentration of conditioned media: 

typically 5% JWW3 for Ba/F3 cells and 10% gIL-3 for TF-1 cells.

II.B.3. Transfections

The DNA to be transfected, pUHD10-3neo vector containing cDNA of interest (see 

section III.C), was linearized overnight at 37°C (section II.A.7) in a 30 pi reaction 

containing 10 pg DNA and 3 pi Pvul. After digestion, the reaction was made up to 100 pi 

with water and the DNA purified by phenol/chloroform extraction (section II.A.l) and 

ethanol precipitation (section II.A.2). The DNA pellet was resuspended in 10 pi sterile
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electroporation buffer ( 25 mM HEPES, pH 7.2, 140 mM KC1, 10 mM NaCl, 2 mM 

MgCh, 0.5% Ficoll 400, filtered through 0.2 pM). Ba/F315-1 cells were washed twice by 

resuspending in 10 ml electroporation buffer and then pelleting at 1500 rpm for 5 minutes 

in a Jouan CR412 centrifuge. The washed cells were then resuspended in electroporation 

buffer at lx l0 7 cells / 0.8 ml. In a sterile 0.4 cm electroporation cuvette (gap 50, BioRad), 

0.8 ml cells plus 10 pi (10 pg) DNA was added. Cells were electroporated in a BioRad 

Gene Pulser at 960 pF and 450V. The cells were left to stand at room temperature for 20 

minutes, before being plated out into 20 ml RPMI 1640 with 5% (v/v) JWW3 conditioned 

medium, and 1 pg/ml tetracycline and incubated at 37°C. After 48 hours, a viable cell 

count, using trypan blue, was performed and cells made up at a concentration of 5x10s 

viable cells / ml in RPMI 1640 with 5% (v/v) JWW3 conditioned medium, 2 pg/ml 

tetracycline, 1.5 pg/ml puromycin, and 1 mg/ml active G418. The cells were plated into 3, 

96 well flat bottomed trays (Nunc) with 100 pi (5xl04 cells) per well. The remaining cells 

were plated into a falcon 100 x 20 mm dish as a polyclonal population. After 

approximately 10 days, G418 and puromycin resistant clones from the 96 well trays were 

apparent and picked into 1 ml of the same selective media in a 24 well tray (Nunc). Clones 

were then expanded and screened for inducible expression of the introduced cDNAs 

(section II.B.4). Each subsequent week, selected clones were passaged (section n.B.l) in 

RPMI 1640 with 5% JWW3 conditioned medium and 2 pg/ml tetracycline only.

II.B.4. Screening for tetracycline-regulated expression

G418 and puromycin resistant clones were expanded in RMPI 1640 with 5% (v/v) 

JWW3 conditioned medium in the presence of 2 pg/ml tetracycline. Cells were then 

washed twice by resuspending in 1 X Hanks buffered saline solution containing 20 mM 

HEPES and pelleting at 1500 rpm for 5 minutes in a Jouan CR412 centrifuge, to remove all 

traces of tetracycline. The washed cells were resuspended at 1 x 105 cells/ml in the 

presence or absence of 2pg/ml tetracycline. At various intervals, samples were 

subsequently removed, washed once in phosphate buffered saline (PBS) and cell extracts 

prepared at approximately 5 x 105 cells per 50 pi solubilisation buffer (section n.C.l). 

Bradford assays (section II.C.9) were performed on the cell extracts and 15 pg of protein 

loaded into each well of the acrylamide gel (section II.C.6 ).
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II.B.5. XTT dye reduction proliferation assay

Recombinant mIL-3 dilutions were set up in Nunc flat bottomed 96 well trays in 

triplicate. In column 1, 100 pi of 4 ng/ml rmIL-3 (twice the desired starting concentration) 

in serum free AIM-V media was added with columns 2-12 containing 50 pi AIM-V media 

alone. A serial dilution series was prepared across the plate by removing 50 pi from wells 

in the first column and mixing gently with wells in the next column with a multichannel 

pipette, repeating to column 12. Cells expressing the various mutant She proteins were 

expanded in the presence of 2 pg/ml tetracycline to repress expression. Cells were then 

washed three times with 1 X Hanks buffered saline solution containing 20 mM HEPES and 

resuspended at 2 x 104 cells per ml in AIM-V media in the absence or presence of 2 pg/ml 

tetracycline. 50 pi of cells (1000 cells) were then added per well. Cells were incubated 

for 72 hours at 37°C. To harvest the assay, 25 pi of a solution containing 1 mg/ml XTT 

(sodium 3,-[l-[(phenylamino)-carbonyl]-3,4-tetrazolium]-6w(4-methoxy-6-nitro)benzene- 

sulphonic acid hydrate) and 25 pM phenazine methosulphate (PMS acts as an electron- 

coupling reagent and is used to potentiate XTT bioreduction) was added per well and 

incubated at 37°C for 4 hours (Roehm et al., 1991). The soluble formazan product was 

measured at 450 nm on a Dynatech MR5000 plate reader.

II.B.6. Cell storage

Cells were pelleted at 1500 rpm for 5 minutes in a Jouan CR412 centrifuge. The 

cell pellet was resuspended in 90% (v/v) foetal calf serum and 10% (v/v) DMSO at a 

concentration of greater than 2xl06 cell / ml. 1 ml aliquots were transferred into 1 ml Nunc 

cryotubes, wrapped in tissue, placed in a polystyrene box and incubated at -80°C. After 24 

hours, the vials were transferred to liquid nitrogen.

II.C. Protein Chemistry Techniques.

II.C.l. Cell stimulation and growth factors

Gibbon IL-3 expressed in AgX63 cells is fully bioactive on human cells and was 

used as a source of IL-3 for stimulation of TF-1 cells. Ba/F3 cells and Ba/F15-1
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transfectants were stimulated with recombinant mIL-3. Prior to stimulation, Ba/F15-1 

transfectants were washed twice in 1 X Hanks buffered saline containing 20 mM HEPES to 

remove the tetracycline, plated at 1 x 105 cells per ml in 175 cm2 flasks and incubated in 

the absence or presence of 2  pg/ml tetracycline for 16 hours to induce protein expression. 

All cells were washed 3 times in Hanks buffered saline solution and starved of serum and 

IL-3 by resuspending the cells at a concentration of lx l0 7 cells/ ml (TF-1) or 2 x 107 cells/ 

ml (Ba/F3 and Ba/F15-1 transfectatnts) in serum free RPMI 1640 + 20 mM HEPES and 

incubating in a 37°C water bath for 20 minutes (TF-1 cells) or 45 minutes (Ba/F3 cells and 

Ba/F15-1 transfectants). TF-1 cells were then stimulated with gIL-3 conditioned medium 

(33% (v/v) final concentration) for 10 minutes to induce maximal levels of tyrosine 

phosphorylation of cellular substrates. Unless otherwise stated, Ba/F3 and Ba/F15-1 

transfectants were stimulated with 20 ng/ml recombinant mIL-3 for 10 minutes to induce 

maximal levels of tyrosine phosphorylated cellular substrates. After stimulation, all cells 

were then pelleted at 4°C in a Heraeus microfuge for 20 seconds, supernatant removed by 

aspiration, and cells solubilised at 2x10 cells / ml in ice cold solubilisation buffer (50 mM 

Tris-HCl pH 7.5, 10% (v/v) glycerol, 1% (v/v) Nonidet P-40 (NP-40), 150 mM NaCl, 5 

mM EDTA, 10 mM sodium fluoride, 40 pg/ml phenylmethylsulphonyl fluoride, 10 pg/ml 

aprotinin, 10 pg/ml soybean trypsin inhibitor, 10 pg/ml leupeptin, and 0.7 pg/ml pepstatin). 

The solubilised cells were pelleted at 4°C for 2 minutes at full speed in a Heraeus 

microfuge to pellet cell debris and the supernatant transferred to a clean tube.

II.C.2. Immunoprecipitations

Cell extracts, typically from the equivalent of 1 x 10 cells, were incubated with 

antibody on ice for 30 minutes. The antibodies and quantity used are outlined in Table H.I. 

Protein A-Sepharose beads or Protein G-Sepharose beads (30 pi of a 50% (v/v) slurry) 

were then added to the immunoprecipitate and samples incubated at 4°C on a rotator for 1 

hour. Immunoprecipitates were centrifuged for 1 minute at full speed in a Heraeus 

microfuge at 4°C and then washed 3 times by adding 1 ml solubilisation buffer (section 

II.C.l) and pelleting for 1 minute at full speed in a Heraeus microfuge at 4°C. After the 

final wash, the bound protein was eluted by boiling in 20 pi 1 x SDS-PAGE sample buffer 

(5x stock: 10% (w/v) SDS; 50% (v/v) glycerol; 0.2 M Tris-HCl, pH 6 .8 ; 5% (v/v) P- 

mercaptoethanol; bromophenol blue to colour). The samples were boiled for 2-5 minutes

65



Chapter Two

and the beads pelleted by centrifugation in a Heraeus microfuge for 1 minute. The entire 

20 pi sample was loaded onto an SDS-PAGE acrylamide gel (section II.C.6).

Precipitations using GST fusion proteins were performed in a similar manner. The 

following amounts of GST fusion protein were used per precipitation: 15 pg SHP-1(SH2)2- 

GST, 5 pg SHP-2(SH2)2-GST, 10 pg Grb2SH2-GST, and 10 pg/ml all Shc-GST fusion 

proteins. Bound proteins were extracted using 30 pi (of a 50% (v/v) slurry) glutathione 

Sepharose.

II.C.3. Bacterial expression and purification of GST fusion proteins

Escherichia coli strain XL-1BL (Stratagene) transformed (section II.A.4) with 

pGEX2T plasmid (Pharmacia Biotech) carrying the DNA of interest (section III.B) were 

grown overnight in 10 ml 2 x YT broth containing ampicillin (100 pg/ml) at 37°C. The 

culture was then subcultured 1:50 in 500 ml 2 x YT with ampicillin and grown at 37°C to 

an OD600 of 0.6-0.8. The culture was then induced with 0.1 mM isopropyl-P-D- 

thiogalactoside (IPTG) at 27°C overnight. The bacteria were harvested by centrifugation at 

4 000 x g for 10 minutes at 4°C in a Beckman centrifuge with a JA-14 rotor and the 

sediment resuspended to 15 ml in buffer TBN150 (25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 

10 mM p-mercaptoethanol) containing protease inhibitors (10 pg/ml leupeptin, 1.4 pg/ml 

pepstatin, 10 pg/ml soybean trypsin inhibitor, 40 pg/ml PMSF, 5 pg/ml aprotinin) on ice. 

The cells were lysed with lysozyme at a final concentration of 0.1 mg/ml for 10 minutes at 

25°C and subsequently subjected to three cycles of alternating freeze-thaws in a dry 

ice/ethanol bath and 37°C water bath. The crude lysate was adjusted to 10 mM MgCl2 and 

50 pg/ml DNase and incubated at 25°C for 15 minutes before EDTA, pH 8.0 and NP-40 

were added to a final concentration of 20 mM and 2.5% (v/v), respectively, and extracts 

incubated for a further 15 minutes at 25°C. After centrifugation at 30 000 x g for 30 

minutes at 4°C, in a Beckman centrifuge with a JA-20.1 rotor, the supernatant was 

immediately decanted into a clean falcon tube and frozen at -80°C in 1 ml aliquots (= crude 

extract). Protein was purified by incubating 1.0 ml of the crude extract with 500 pi packed 

glutathione Sepharose beads at 4°C, rotating for 2 hours, after which the beads were added 

to a column. The beads were washed 1 x 10 ml PBS, 2 x 10 ml PBS + 0.5% NP40, and 1 x 

10 ml PBS. The GST fusion proteins were then eluted off the column batchwise with 5 x
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0.5 ml aliquots of 20 mM glutathione, pH 7.5 (for 5 ml: 0.0307g glutathione, 1.5 ml Tris- 

HCl, pH 7.5,2.5 pi each of the protease inhibitors) with each addition left to incubate with 

the beads for 10-20 minutes prior to elution. The purified GST fusion proteins were 

dialysed over night in 1 L PBS at 4°C, the PBS being changed 3 times. Protein 

concentration was then determined by Bradford assay (section II.C.9).

II.C.4. Phosphopeptides

The synthesis, purification and mass spectroscopic analysis of the synthetic 

phosphopeptides corresponding to the tyrosine residues within 0c was performed by Dr. 

Ian Clark-Lewis (Biomedical Research Centre, Vancouver, British Columbia, Canada) and 

has been described elsewhere (Dechert et al., 1994; Harder et al., 1994). Phosphopeptides 

corresponding to the tyrosine residues within Aic2A were synthesized by Alta Bioscience 

(University of Birmingham, Birmingham, U.K.). Table H.2 lists the phosphopeptides used 

in this study. Throughout the text, the phosphotyrosine-containing peptides are referred to 

by the relative position of the tyrosine residue in pc, lacking the 14 amino acid signal 

sequence and pY indicates the position of the phosphotyrosine.

II.C.5. Phosphopeptide competition assay

5-20 pg of the GST-fusion proteins were pre-incubated with 100 pM 

phosphopeptide (or the appropriate concentrations for titration experiments) and 30 pi 

(50% (v/v) slurry) glutathione Sepharose and rotated at 4°C for 60 minutes. Cell extracts 

from 1 x 107 cells, also containing 100 pM (or the indicated concentration) of the relevant 

phosphopeptide, were then added to the preincubation mixture and rotated at 4°C for a 

further 60 minutes. The beads were then washed and eluted as described in section II.C.2.

II.C.6. SDS polyacrylamide gel electrophoresis

The BioRad mini-Protean II gel electrophoresis system was used and a procedure 

similar to that of Laemmli (1970) followed. Glass plates were cleaned in 70% ethanol and 

apparatus assembled as per manufacturers instructions with 1 mm spacers. The running gel 

was prepared at the desired percentage of acrylamide (for 15 ml at 7.5% (v/v): 3.75 ml 4 x 

lower gel buffer [1.5 mM Tris-HCl, pH 8 .8 , 0.4% (w/v) SDS], 3.75 ml 30% (w/v) 

acrylamide/bis solution, 37.5:1, 7.45 ml water), and 50 pi 10% (w/v) ammonium
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persulphate, and 15 pi TEMED were added to catalyze polymerization of the acrylamide. 

The separating gel was cast by pouring 4.5 ml of the acrylamide solution between the two 

plates, which was then overlaid with water and allowed to polymerised for approximately 

15 minutes. After polymerisation, the water was removed, the stacking gel (for 7.5 ml at 

5% (v/v) acrylamide: 1.875 ml 4 x upper gel buffer [ 0.5 mM Tris-HCl, pH 6 .8 , 0.4% (w/v) 

SDS], 1.25 ml 30% (w/v) acrylamide/bis solution, 37.5:1, 4.35 ml water, 50 pi 10% (w/v) 

ammonium persulphate, and 15 pi TEMED) poured on top and a 15 well, 1 mm comb 

inserted to form wells. After polymerisation the comb was removed and the wells washed 

with water and filled with 1 x SDS-PAGE running buffer (25 mM Tris base, 192 mM 

glycine, 0.1% (w/v) SDS). Once the samples were loaded, the gels were set in a tank with 

1 x SDS-PAGE running buffer in both the top and bottom reservoirs. The gels were then 

run at 80V through the stacking gel and 180V through the separating gel. When the dye 

had reached the bottom of the gel the gel was removed and placed in a box containing 1 x 

semi-dry transfer buffer (39 mM glycine, 48 mM Tris base, 0.0375% (w/v) SDS, 20% (v/v) 

methanol).

II.C.7. Immunoblotting (“Western Blotting”)

Gels were transferred to nitrocellulose by semi-diy transfer on a Pharmacia LKB 

NovaBlot. Four pieces of 3 MM Whatman paper, cut to the size of the gel and dampened 

with semi-dry transfer buffer, were placed one on top of each other on the bottom (positive) 

graphite electrode, to form a sandwich. Buffer saturated nitrocellulose was then placed on 

top of the stack, followed by the gel. Four more 3 MM Whatman papers were built up on 

the stack and the upper electrode placed on top. The gel was transferred for 60 minutes at 

0.8 mA per cm2. After transfer, the membranes were stained with Ponceau S to check for 

even loading and to mark the molecular weight standards. The blots were then transferred 

to TBS (20 mM Tris-HCl, pH 7.5,150 mM NaCl) to remove the Ponceau S stain and then 

incubated in blocking buffer ( 5% (w/v) BSA, 1% (w/v) ovalbumin, and 0.05% (w/v) 

sodium azide in TBS) overnight. Before addition of the primary antibody the blots were 

washed once in TBS. Primary antibodies were prepared in a 1:5 dilution of blocking buffer 

and used at the concentrations outlined in Table II.l. The blots were incubated for 3 hours 

with all primary antibodies except for the anti-pc antibody and anti-phosphospecific 

p44/p42 MAPK antibody which were incubated overnight. The blots were then washed 1 x
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10 minutes in TBS, 3 x 1 0  minutes in TBSN (TBS with 0.05% (v/v) NP-40), and 1 x 10 

minutes in TBS. The blots were subsequently incubated for 1-2 hours with the secondary 

antibody. Both goat anti-rabbit and goat anti-mouse horseradish peroxidase-conjugated 

secondary antibodies (Dako, Dimension Laboratories, Mississauga, Ontario) were used at a 

concentration of 0.05 pg/ml (1:20 000 dilution) in TBSN. The secondary antibody was 

then washed from the blots as for the primary antibody. After the final washing, the blots 

were placed in a clean container and developed in ECL solution (Amersham), a 

chemiluminescent detection system, for 1 minute. Kodak XAR-5 film was used for 

detection of ECL signals. The films were scanned by a BioRad GS-670 imaging 

densitometer for presentation in this thesis.

II.C.8 . Stripping of immunoblots

Blots were stripped completely of antibodies by incubation with stripping solution 

(62.5 mM Tris-HCl, pH 6.7, 2% (w/v) SDS, 100 mM P-mercaptoethanol) at 55°C for 60 

minutes with periodic aggitation. After extensive washing in TBSN, blots were reblocked 

prior to reprobing with antibody as described above (section n.C.7).

II.C.9. Bradford protein estimations

BSA of known concentration or samples of cell lysates were added to 0.5 ml 

aliquots of water in Eppendorf tubes. 0.5 ml of the Bradford reagent (200 mg Coomassie 

Blue G-250 in 200 ml 85% (v/v) H3PO4 , made up to 1.0 L with water and then filtered) 

was then added to each tube and vortexed. 100 pi was then added to wells in a 96 well 

round bottom tray (Falcon) and the optical density at 595 nm was determined on a 

Dynatech MR5000 plate reader. A standard curve was constructed from the BSA standards 

and the protein concentrations of the cell lysates determined. Adapted from Bradford, 1976.

II.C.10. Immune complex in vitro MAP kinase assays

Cell extracts were prepared (section H.C.1) and immunoprecipitations carried out as 

described in section II.C.2 using extracts from the equivalent of 5 x 106 cells using 25 pi 

(50% (v/v) slurry) of either anti-erkl or anti-erk2 agarose conjugated beads. 

Immunoprecipiates were washed two times in solubilisation buffer and once with kinase 

assay buffer (20 mM HEPES, 5mM MgCL, ImM EGTA, 5mM P-mercaptoethanol, ImM
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PMSF, 2 mM sodium orthovanadate, 10 pg/ml aprotinin). The bead pellet was then 

resuspended in 13 pi kinase assay buffer and 4 pi 5 mg/ml MBP (1 mg/ml final 

concentration). 5 pCi [y-32P]ATP diluted in kinase assays buffer (so adding 3 pi to the 

reaction in a total volume of 20 pi) was then added to the tubes in 20 second intervals and 

incubated at 30°C for exactly 10 minutes. The reaction was stopped by adding 6 pi of hot 5 

x SDS sample buffer (section II.C.2). After boiling for approximately 4 minutes, samples 

were centrifuged for 1 minute in a Jouan A14 centrifuge at maximum speed and the entire 

20 pi reaction separated on a 15% acrylamide gel by SDS-PAGE (section II.C.6). After 

transferring to nitrocellulose and staining with Ponceau S, the top half of the blot was cut 

off and immunoblotted (section II.C.7) with anti-erkl antibodies to show even precipitation 

of erkl and erk2, and the bottom half was exposed to X-ray film to detect the incorporation 

of 32P into MBP.
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II.D. Materials.

II.D.1. Antibodies

TABLE II.1 
Antibodies used for blotting and precipitation.

Antibody Source Usage
4G10 (monoclonal, anti- 
phosphotyrosine)

UBI, Lake Placid, New York, 
U.S.A. (cat. # 05-321)

Blot: 0.1 pg/ml

9E10 (monoclonal anti-myc-tag) ATCC hybridoma line Blot: 0.5 pg/ml 
I.P.: 5 pg/sample

anti-Pc (monoclonal, 3D7) Pharmingen, Cambridge 
Bioscience, Cambridge, U.K. 
(cat.# 18801D)

I.P.: 20 pg/sample

anti-Pc (rabbit polyclonal, JS5) gift of Dr. Vince Duronio, 
formerly of Biomedical Research 
Centre and now at Jack Bell 
Research Centre, Vancouver, 
B.C., Canada

Blot: 0.5 pg/ml

anti-erkl (C-16) (rabbit 
polyclonal)

Santa Cruz (cat. # sc-93) Blot: 0.1 pg/ml

anti-erkl (C l6) AC (rabbit 
polyclonal)

Santa Cruz (cat. # sc-93-G) I.P.: 25 pl/sample

anti-erk2 (C-14) AC (rabbit 
polyclonal)

Santa Cruz (cat. # sc-154-G) I.P.: 25 pl/sample

Anti-phosphospecific p44/p42 
(Thr 202/Tyr 204) MAPK (rabbit 
polyclonal)

New England Biolabs (cat. # 
9101S)

Blot: 1:2000

anti-p85(PI3K) (polyclonal 
rabbit antiserum, JS14.2)

Prepared by M.J.Welham at 
Biomedical Research Centre, 
Vancouver, B.C., Canada

I.P.: 2 pi

anti-Shc (rabbit anti-serum 
against the SH2 domain of She)

UBI, Lake Placid, New York, 
U.S.A. (cat. # 05-321)

Blot: 1:5000 
I.P.: 2 pg/sample

anti-SHIP (5340) Gift of Dr. L. Rohrschneider, 
Dept, of Pathology, University of 
Washington, Seattle,
Washington, USA

Blot: 1:5000

anti-SHIP Gift of Dr. K.M. Coggeshall, 911 
Biosciences Building, 484 W. 
12th Avenue, Columbus, OH, 
USA

I.P.: 4 pi

anti-SHPl (SHPTP1) Santa Cruz (cat. # sc-287) Blot: 0.5 pg/ml 
I.P.: 1 pg/sample

anti-SHP2 (SHPTP2) Santa Cruz (cat. # sc-280) Blot: 0.5 pg/ml 
I.P.: 0.4 pg/sample
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II.D.2 Phosphopeptides

TABLE II.2
Synthetic phosphopeptides corresponding to tyrosine residues within Pc and Aic2A

Position of Y Species Sequence Sequence of 
phosphopeptide

750 Human/pc KSGFEGpYVELPPI EGpYVELP
745 Mouse/Aic2A PPGFEDpYVELPPS PGFEDpYVELP
695 Human/pc PGVASGpYVSSADL SGpYVSSA
612 Human/pc PPGSLEpYLCLPAG LEpYLCLP
610 Mouse/Aic2A LPGSLEpYMCLPP PGSLEpYMCLP
577 Human/pc FDFNGPpYLGPPHS GPpYLGPP
575 Mouse/Aic2A FDFNGPpYLGPPOS FDFNGPpYLGPPO
452 Human/Pc F CGI Y Gp YRLRRKT YGpYRLRR

II.D.3. Reagents

TABLE II.3 
List of Reagents

Reagents Supplier*
1 Kb DNA ladder Life Technologies
P-mercoptoethanol Bio-Rad
ry-32P l  ATP NEN
Acetic acid (glacial) BDH
30% Acrylamide/Bis solution 37.5:1 Bio-Rad
agarose (electrophoresis grade) Life Technologies
AIM-V Life Technologies
Albumin, Chicken Egg (Grade III) SIGMA
Ammonium persulphate Fisons Scientific
Ampicillin SIGMA
Aprotinin Boehringer Mannheim
Bactoagar Difco Laboratories
Bactotryptone Difco Laboratories
Bovine Serum Albumin (BSA) Boehringer Mannheim
Bromophenol Blue Fisons Scientific
Calcium chloride (CaCL) Fisons Scientific
Calf intestinal phosphatase (CIP) New England Biolabs
Chloroform BDH
Coomassie brilliant blue G-250 Bio-Rad
Diaminoethanetetra acetic acid (EDTA) SIGMA
Dideoxy nucleotide triphosphates New England Biolabs
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(dNTPs)
Dimethyl sulphoxide (DMSO) SIGMA
DNase I Boehringer Mannheim
ECL Amersham
Ethanol (99.6%) BDH
Fetal calf serum Autogen Bioclear
Ficoll 400 SIGMA
Geneticin (G418) Life Technologies
Glucose Fisons Scientific
Glutathione SIGMA
Glutathione Sepharose 4B Pharmacia Biotech
Glycerol SIGMA
Glycine SIGMA
HANKS buffered saline (lOx) Life Technologies
HEPES Life Technologies
IPTG Life Technologies
Klenow New England Biolabs
L-Glutamine (100X) Life Technologies
Leupeptin SIGMA
Lysozyme SIGMA
Magnesium chloride (MgCL) SIGMA
Magnesium sulphate (50X) New England Biolabs
Manganese chloride (MnCL) SIGMA
Methanol BDH
MOPS SIGMA
Myelin basic protein (MBP) SIGMA
Nitrocellulose BDH
NP-40 SIGMA
Oligonucleotides Pharmacia Biotech
Penecillin-Streptomycin Life Technologies
Pepstatin A Boehringer Mannheim
Phenazine methosulphate (PMS) SIGMA
Phenol (buffer-saturated) Life Technologies
Phenylmethylsulphonyl fluoride 
(PMSF)

SIGMA

Phosphate Buffered Saline (PBS) Life Technologies
Phosphoric Acid (85% (v/v)) H3PO4 SIGMA
Ponceau S SIGMA
Potassium acetate (KAc) SIGMA
Potassium Chloride (KC1) SIGMA
Potassium Hydoxide (KOH) SIGMA
Protein-A Sepharose Pharmacia Biotech
Protein-G Sepharose Pharmacia Biotech
Puromycin Calbiochem
Recombinant mouse IL-3 (rmIL-3) R&D Systems
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Restriction Endonuleases New England Biolabs
RNase A Boehringer Mannheim
RPMI 1640 Life Technologies
Rubidium chloride SIGMA
SDS-PAGE standards (broad range) Bio-Rad
Sodium acetate (NaAc) SIGMA
Sodium azide Fisons Scientific
Sodium chloride (NaCI) SIGMA
Sodium dodecyl sulphate (SDS) BDH
Sodium hydroxide (NaOH) Fisons Scientific
Sodium fluoride (NaF) SIGMA
Sodium molybdate BDH
Sodium orthovanadate SIGMA
Soybean Trypsin Inhibitor SIGMA
T4 DNA ligase New England Biolabs
Tetracycline SIGMA
Tetramethylethylenediamine (TEMED) Bio-Rad
Trizma base (Tris) SIGMA
Vent DNA polymerase New England Biolabs
X-ray film (XAR-5) Kodak
XTT SIGMA
Xylene/Cyanol SIGMA
Yeast extract Difco Laboratories

*Full name and location of Suppliers:

Amersham Pharmacia Biotech, Herts, U.K. 

Autogen Bioclear, Wilts, U.K.

BDH Chemicals Ltd., Poole, U.K.

Bio-Rad, Richmond, California, USA 

Boeringer Mannheim Ltd., East Sussex, U.K. 

Calbiochem, Nottingham, U.K.

Difco Laboratories, Detroit, Michigan, USA 

Eastman Kodak Company, Rochester, NY, USA 

Fisons Scientific, Leiscester, U.K.

Life Technologies Ltd., Paisley, U.K.

NEN Life Science Products, Holland 

New England Biolabs Inc., MA, USA 

R&D Systems Europe Ltd., U.K.

Sigma Chamicals, Poole, U.K.
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CHAPTER III

Protein-Protein interactions mediated by the protein tyrosine phosphatases (PTPases)
SHP-1 and SHP-2
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III.A. Introduction and Aims.

Relatively little is known about the action of IL-3 on protein tyrosine phosphatases. 

SHP-1 is expressed and constitutively tyrosine phosphorylated in haemopoietic cells and 

appears to negatively regulate IL-3-induced cell proliferation (Yi et a l, 1993). The related 

PTPase, SHP-2, is more ubiquitously expressed and is thought to act as a positive mediator of 

growth factor signals. It has been shown previously that IL-3 induces tyrosine phosphorylation 

of SHP-2, creating a docking site for the SH2 domain of Grb2 (Welham et a l, 1994b). In 

addition, IL-3 treatment of cells has been shown to result in the co-precipitation of 

phosphoinositol 3’-kinase (PI3-K) with SHP-2, as well as increasing the phosphatase activity 

of SHP-2 (Welham et al., 1994b). By determining the protein-protein interactions mediated by 

SHP-1 and SHP-2 in response to IL-3, the possible roles for these PTPases in haemopoietic 

cells could be investigated.

III.B. Tvrosine phosphorvlated Be co-precipitates with SHP-1 and SHP-2 after IL-3 

stimulation.

A 135 kDa protein identified as the human IL-3 receptor p subunit (pc) and a 70 kDa 

protein identified as the PTPase SHP-2 (Welham et a l, 1994b), become tyrosine 

phosphorylated after IL-3 stimulation of haemopoietic cells. It has been demonstrated 

previously that SHP-2 can associate, via its SH2 domain, to activated receptors including the 

EGFR and PDGFR (Feng et a l, 1993; Vogel et a l, 1993; Lechleider et al , 1993b). SHP-1 

has been shown to associate with the murine IL-3R p subunit, Aic2A, via an unmapped site 

(Yi et al., 1993) but no such association has been demonstrated in human cells for SHP-1 or 

SHP-2. Since SHP-2 had previously been shown to associate with Grb2 and co-precipitate 

with the p85 subunit of PI3-K (Welham et al., 1994b), it was investigated whether SHP-1 and 

SHP-2 were able to bind to pc and thereby possibly function as adaptor molecules in IL-3 

signalling. TF-1 cells were left untreated as a control (C) or stimulated with IL-3 (3). The 

cells were then lysed and the resulting extracts precipitated with either a monoclonal anti-IL-3 

receptor P subunit antibody (anti-pc) or polyclonal anti-SHP-1 or anti-SHP-2 antibodies. The
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precipitates were separated by SDS-PAGE, transferred to nitrocellulose and subsequently 

blotted with 4G10 anti-phosphotyrosine antibodies. The results are shown in Figure III. 1.

A tyrosine phosphorylated 135-140 kDa protein was immunoprecipitated with the anti- 

pc monoclonal antibody after IL-3 stimulation (Fig. III.l A). Reprobing this same blot with a 

polyclonal anti-pc antibody confirmed this to be pc (Fig. III.l B). The anti-SHP-1 antibodies 

precipitated three tyrosine-phosphorylated proteins of 135, 105, and 60 kDa (Fig. III.l A) 

following IL-3 treatment. The 60 kDa phosphoprotein was present in SHP-1 precipitates from 

both control and IL-3-stimulated cells and blotting with anti-SHP-1 antibodies confirmed that 

this protein was SHP-1 (Fig. III.l C). SHP-1 is constitutively phosphorylated in other 

haemopoietic cells (Yi et al., 1993), and this also appears to be the case in TF-1 cells. The 

identity of the 105 kDa protein is unknown. The 135 kDa species co-migrated with the 

tyrosine phosphorylated pc precipitated by the anti-pc antibodies in IL-3 stimulated cells (Fig. 

III.l A), suggesting that tyrosine phosphorylated pc co-precipitates with SHP-1. Reprobing 

this same blot with polyclonal anti-Pc antibodies (Fig. III.l B) could not confirm that this 

protein was indeed Pc. This was probably because the amount of tyrosine phosphorylated 135 

kDa species precipitated by the anti-SHP-1 antibodies was considerably less than that 

precipitated by the anti-pc antibodies (Fig. III.l A) and so below the limits of detection.

The SHP-2 antibodies precipitated four tyrosine phosphorylated proteins of 70, 72, 90, 

and 135 kDa from IL-3 stimulated TF-1 cells (Fig. III.l A). The lower 70 kDa protein 

corresponds to SHP-2, as confirmed by immunoblotting with the SHP-2 antibody (Fig. III.l 

D). The upper tyrosine phosphorylated 72 kDa protein is thought be a hyper-phosphorylated 

form of SHP-2, but this was not formally demonstrated here. The identity of the broad 90 kDa 

protein is unknown. The 135 kDa protein co-migrated with tyrosine phosphorylated Pc 

precipitated by the anti-pc antibodies (Fig. III.l A) and its identity as pc was confirmed by 

reprobing the blot with the polyclonal anti-pc antibodies (Fig. III.l B). In reciprocal 

experiments, in which blots of material precipitated by anti-pc antibodies were reprobed with 

antibodies specific for either SHP-1 or SHP-2, neither were detectable. (Fig. III.l C and D). 

The monoclonal antibody precipitates only 10-20 % of the Pc expressed in TF-1 cells (M.J.
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FIGURE III.l

SHP-1 and SHP-2 associate with tyrosine phosphorylated pc after IL-3 stimulation.

TF-1 cells were either left untreated as a control (C) or treated for 10 minutes with IL-3 

(3). 1 x 107 cells per sample were lysed and a sample of the lysate retained (Pre). The 

remaining lysates were incubated with either a monoclonal anti-IL-3R pc antibody, anti- 

SHP-1 antibodies, or anti-SHP-2 antibodies. Samples were separated through a 7.5% 

acrylamide gel by SDS-PAGE. (A) Immunoblotting was performed with 4G10 anti- 

phosphotyrosine antibodies. (B), the same blot as in A was stripped and reprobed with 

polyclonal anti-pc antibodies. (C), the same blot as in B was stripped and reprobed with 

the polyclonal anti-SHP-1 antibodies. (D), the same blot as in C was stripped and reprobed 

with polyclonal anti-SHP-2 antibodies. The positions of Pc, SHP-1 and SHP-2 are 

indicated. The molecular mass standards are shown and expressed in kDa. These data are 

representative of two separate experiments, with similar results observed in individual 

single immunoprecipitations from TF-1 cells from other experiments.
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Welham, unpublished data), only a portion of which is likely to be phosphorylated at the 

appropriate sites and will hence interact with downstream signalling 

molecules. Thus, the failure to detect SHP-1 and SHP-2 in the anti-pc precipitates most likely 

reflects the fact that the amounts of SHP-1 and SHP-2 present were below the limits of 

detection. In addition, tyrosine phosphorylated proteins of SHP-1 and SHP-2 size were also 

not observed in the anti-pc immunoprecipitates (Fig. III.l A). However, these results do 

suggest that both SHP-1 and SHP-2 associate with the tyrosine phosphorylated Pc after IL-3 

stimulation.

III.C. SHP-1 and SHP-2 associate with Be through their SH2 domains after IL-3 

stimulation.

To determine whether the SH2 domains of the two PTPases directed their interaction 

with Pc, fusion proteins containing either the SHP-1 SH2 domains or the SHP-2 SH2 domains 

fused to glutathione S transferase (GST) were used in precipitation analyses. The SHP-1 SH2 

domains and the SHP-2 SH2 domains cloned into the pGEX2T vector (Pharmacia Biotech) 

were constructed by Ute Dechert (formerly of Biomedical Research Centre, Vancouver, B.C., 

Canada). These constructs were transformed into XL-1BL (section H.A.4) and large scale 

cultures were induced overnight with isopropyl p-thiogalactopyranoside (IPTG) and GST 

fusion proteins purified on glutathione Sepharose beads (section n.C.3). Figure III.2 depicts 

the structure of these GST fusion proteins.

The SHP-1 (SH2)2-GST and SHP-2(SH2)2-GST fusion proteins were used for direct 

precipitation analyses from extracts of TF-1 cells that had either been left untreated as a 

control (C) or stimulated with IL-3 (3). The precipitates were resolved by SDS-PAGE, 

transferred to nitrocellulose and immunoblotted with 4G10 anti-phosphotyrosine antibodies. 

The results are shown in Figure III.3 A and are representative of three separate experiments. 

Both the SHP-1 (SH2)2- and SHP-2(SH2)2- GST fusion proteins precipitated a tyrosine 

phosphorylated 135 kDa protein from extracts stimulated with IL-3 but not from control 

samples. This same blot was then stripped and reprobed with a polyclonal anti- pc antibody 

(Fig. III.3 A, lower panel) which reacted with the same tyrosine phosphorylated protein
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precipitated by the SHP-1 (SH2)2- and SHP-2(SH2)2- GST fusion proteins. These results 

clearly demonstrate that the SH2 domains of SHP-1 and SHP-2 associate in vitro with tyrosine 

phosphorylated pc following IL-3 stimulation.

FIGURE III.2

Schematic representation of the SH2 domains of SHP-1 and SHP-2 expressed as GST

fusion proteins.

100 110 213 247

N - |g H 2 i PTPase

595

- C SHP-1

1 4 
F*

GST

100 110 F^ 213FFW
ttSH2cK SHP-1 (SH2)2-GST

1 6 105 112

N -K S H 2nK  tfsH2<
213 247 525 593

PTPase ■C SHP-2

213

SHP-2(SH2)r GST

To ascertain whether the interaction between pc and the SH2 domains of SHP-1 and 

SHP-2 were direct, sequential immunoprecipitations were performed. Sequential 

precipitations are used to determine whether the interaction between two proteins is direct in 

vitro. After boiling and denaturing a primary precipitation, the secondary precipitating agent is 

added, e.g., GST fusion proteins. Any re-precipitated proteins are likely to be a result of a 

direct interaction with the secondary agent since any intermediary molecule(s) will no longer 

be bound to the primary precipitated proteins (although formally renaturation could occur but 

would be unlikely). TF-1 cells were either stimulated with IL-3 (3) or left untreated as a
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FIGURE III.3
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SHP-1 and SHP-2 directly associate with tyrosine phosphorylated pc through their SH2 

domains.

TF-1 cells were either left untreated as a control (C) or stimulated for 10 minutes with IL-3 (3). 

(A), cell extracts from the equivalent of 1 x 107 cells per sample were precipitated using eithei 

SHP-1 (SH2)2-GST or SHP-2(SH2)2-GST. “Pre” indicates samples removed prior to 

precipitation whereas “Post” indicates samples removed after precipitation. (B), cell extracts 

from the equivalent of 4 x 107 cells per sample were precipitated with 20 pg of monoclonal 

anti-pc antibody. Primary anti-pc precipitates were eluted and denatured by boiling in SDS 

sample buffer and 1/10 of the sample saved for the primary anti-pc immunoprecipitation 

sample. Secondary precipitations were prepared with either SHP1(SH2)2-GST or SHP- 

2(SH2)2-GST. All samples were separated on 7.5% acrylamide gels by SDS-PAGE and 

immunoblotted with 4G10 anti-phosphotyrosine antibodies. The same blot in A was stripped 

and reprobed with polyclonal anti-pc antibodies (lower panel). The positions of the molecular 

mass standards are shown and expressed in kDa and the position of pc is indicated.
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control (C). The extracts were immunoprecipitated first with monoclonal anti-pc antibody 

(3D7) and after extensive washing the precipitated material boiled and denatured in the 

presence of SDS and p-mercaptoethanol, effectively denaturing any associated proteins. The 

resulting extracts were diluted 1:10 (so the concentration of SDS was <0.1% (w/v)) and then 

re-precipitated with either the SHP-1 (SH2)2- or SHP-2(SH2)2- GST fusion proteins. The 

results are shown in Figure III.3 B and are representative of two individual experiments. The 

primary anti-pc immunoprecipitation precipitated tyrosine phosphorylated pc from cells 

treated with IL-3, but not from control cells as would be expected. The secondary 

precipitations with either the SHP-1 (SH2)2- or the SHP-2(SH2)2- GST fusion proteins re- 

immunoprecipitated tyrosine phosphorylated pc from the IL-3 stimulated cell extracts. Similar 

experiments were also performed by first precipitating with the GST fusion proteins and then 

performing a secondary anti-pc immunoprecipitation. Again, tyrosine phosphorylated pc was 

precipitated in both primary and secondary precipitations in IL-3 treated samples (results not 

shown). These results suggest that in vitro both SHP-1 and SHP-2 can bind directly to Pc 

through their SH2 domains after IL-3 stimulation.

III.D. Binding of SHP-1 and SHP-2 to Be is inhibited bv a phosphopeptide based on 

sequences surrounding tvrosine 612 of Be.

To confirm that the observed associations involved interactions of the SHP-1 and SHP- 

2 SH2 domains with phosphotyrosines on Pc and to provide an indication as to which of the 

potential tyrosines on pc was responsible for mediating the interactions with the SH2 domains 

of SHP-1 and SHP-2, peptide competition assays were performed. The tyrosines within Pc 

which become tyrosine phosphorylated upon IL-3 stimulation have not been biochemically 

mapped, so phosphopeptides corresponding to sequences surrounding 5 tyrosine residues 

within Pc (see Table II.2) were tested for their ability to block precipitation of tyrosine 

phosphorylated pc by the SHP-1 (SH2)2- and SHP-2(SH2)2- GST fusion proteins. 

Phosphopeptides representing tyrosines 806 and 856 were not tested as Pc truncation mutants 

up to residue 763 retain normal functions in response to IL-3 such as: growth, tyrosine
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phosphorylation of pc and She, Ras activation and MAP kinase activation (Sakamaki et a l , 

1992; Quelle et a l , 1994). The GST fusion proteins (15 pg SHP-1-(SH2)2-GST and 5 pg 

SHP-2-(SH2)2-GST) were first preincubated with the phosphopeptides before being added to 

the TF-1 cell extracts from control (C) and IL-3 (3) stimulated cells. Precipitates were 

separated by SDS-PAGE, transferred to nitrocellulose and immunoblotted with 4G10 anti- 

phosphotyrosine antibodies. The results of these competition analyses are shown in Figure

III.4. The phosphopeptide corresponding to the residues surrounding tyrosine 612 (pY612) 

inhibited the precipitation of tyrosine phosphorylated pc by SHP-1(SH2)2-GST (Fig. III.4 A). 

Some inhibition was also consistently observed with phosphopeptide pY750, but not 

consistently with the other phosphopeptides. Only phosphopeptide pY612 consistently 

inhibited the precipitation of tyrosine phosphorylated Pc by SHP-2(SH2)2-GST (Fig. IH.4 B). 

Reprobing this same blot with polyclonal anti-pc antibodies confirmed that the presence of 

phosphopeptide pY612 had inhibited precipitation of Pc by SHP-2(SH2)2-GST (Fig. in.4 B, 

lower panel). Competition required tyrosine phosphorylation of the peptide as 

unphosphorylated peptide did not inhibit precipitation of Pc by either SHP-1(SH2)2- or SHP- 

2(SH2)2- GST fusion proteins (results not shown).

SHP-1 and SHP-2 each contain two SH2 domain which appear to differ in their 

functions (Pei et al , 1996). Therefore, combinations of phosphopeptide pY612 with other 

phosphopeptides were tested to examine the possibility that the latter might make a secondary 

contribution to the binding of SHP-2 to Pc. As seen in Figure IH.4 C, pY612 almost 

completely inhibited precipitation of tyrosine phosphorylated Pc by the SHP-2(SH2)2-GST 

fusion protein at a concentration of 100 pM. At 50 pM phosphopeptide pY612, inhibition was 

approximately 80%. When 50 pM pY612 and 50 pM of the other phosphopeptides were 

combined (Fig. III.4 C), the reduction in the amount of tyrosine phosphorylated Pc precipitated 

by SHP-2(SH2)2-GST was similar to that observed in the presence of 50 pM pY612 alone. 

Therefore, it appears that the SH2 domains of SHP-2 interact solely with residues surrounding 

tyrosine 612 of Pc. Technical difficulties have prevented clear-cut results from being obtained 

in similar experiments with SHP-1.
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FIGURE III.4

Phosphopeptide pY612 inhibits binding of SHP-1 and SHP-2 to pc.

TF-1 cells were either left untreated as a control (C) or stimulated for 10 minutes with IL- 

3. (A, B), cell extracts from the equivalent of 1 x 107 cells per sample were incubated in 

the absence (-) or the presence of 100 pM of the indicated phosphopeptides and SHP- 

1(SH2)2-GST (A) and SHP-2(SH2)2-GST (B) precipitates prepared. “Pre” indicates 

samples removed prior to precipitation. The results in A and B are representative of three 

and four individual experiments respectively. ( C), cell extracts from the equivalent of 1 x 

107 cells were incubated in the absence (-) or the presence of 100 pM and 50 pM 

phosphopeptide pY612 or a combination of 50 pM phosphopeptide pY612 and 50 pM 

pY750, pY695, pY577, or pY452, and SHP-2(SH2)2-GST precipitates prepared. These 

results are representative of 3 experiments. (D), cell extracts from the equivalent of 1 x 107 

cells were incubated in the absence (-) or the presence of 500 pM of the indicated 

phosphopeptides and anti-SHP-2 immunoprecipitates prepared. These results are 

representative of two separate experiments. All samples were separated on 7.5% 

acrylamide gels by SDS-PAGE and immunoblotting was performed with 4G10 anti- 

phosphotyrosine antibodies. The same blot as in B was stripped and reprobed with 

polyclonal anti-pc antibodies (lower panel). The same blot as in D was stripped and 

reprobed with polyclonal anti-SHP-2 antibodies (lower panel). Molecular mass standards 

are shown in kDa and the positions of pc and SHP-2 are indicated.
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Phosphopeptide competition analyses of anti-SHP-2 immunoprecipitates from control 

and IL-3-treated TF-1 cells were also performed to investigate whether endogenous SHP-2 

could also be inhibited from binding to tyrosine phosphorylated pc by phosphopeptide pY612. 

A phosphopeptide incorporating the residues surrounding tyrosine 1009 within the PDGFR 

(DTSSVLpYTAVQPN; Dechert et a l, 1995a) has previously been shown to be the binding 

site for SHP-2 (Lechleider et a l, 1993b; Kazlauskas et a l, 1993) and was used as a control. 

Cells were lysed in the presence of 500 pM phosphopeptide pY612 or pY750 or 100 pM 

pY1009 and precipitations prepared with the anti-SHP-2 antibody. Phosphopeptides pY612 

and pY1009 significantly reduced the co-precipitation of endogenous SHP-2 with tyrosine 

phosphorylated Pc from IL-3 stimulated cells, whereas pY750 did not (Fig. III.4 D). Figure 

ffl.4 D lower panel shows the blot to be evenly loaded with respect to SHP-2. Higher 

concentrations of phosphopeptide were required to inhibit co-precipitation of pc by anti-SHP-2 

antibodies compared with the fusion proteins, perhaps reflecting a high affinity complex 

between SHP-2 and pc. Competition experiments were attempted using the anti-SHP-1 

antibody, but proved technically challenging. The anti-SHP-1 antibody appears to be much 

less efficient in immunoprecipitating and the amount of tyrosine phosphorylated Pc Co

precipitated was often low. This could be explained if the association between SHP-1 and the 

receptor is of low affinity or transient in nature.

Localisation of the PTPases SHP-1 and SHP-2 to pc in response to IL-3 may provide a 

means of positively or negatively regulating cell growth and differentiation resulting from the 

dephosphorylation of key signalling molecules located at or near the membrane. As SHP-2 

has previously been observed to be associated with Grb2 and the p85 subunit of PI3-K after 

IL-3 stimulation (Welham et a l, 1994b), the PTPases may also function as adaptor proteins 

and perform multiple functions in IL-3 signalling pathways.
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III.E. Discussion.

The data presented here demonstrate that the tyrosine phosphatases SHP-1 and SHP-2 

can both inducibly bind to pc following IL-3 stimulation. This association appears to be 

directly mediated by interactions between the SH2 domains of SHP-1 and SHP-2 and 

phosphotyrosine residues within Pc. A phosphotyrosine-containing peptide based on 

sequences surrounding tyrosine 612 of pc was able to compete the binding of both SHP- 

1(SH2)2-GST and SHP-2(SH2)2-GST fusion proteins to tyrosine phosphorylated pc in in vitro 

assays and also the binding of endogenous SHP-2 to pc in immunoprecipitation studies. These 

results strongly suggest that the SH2 domains of both SHP-1 and SHP-2 bind to residues 

surrounding tyrosine 612 of Pc.

Tyrosine 612 of pc, to which the SH2 domains of SHP-1 and SHP-2 have been 

demonstrated in this study to bind, is located within the motif LEYLCLP, which has 

similarities to motifs previously identified for SHP-1 and SHP-2 SH2 interactions. The 

amino-terminal SH2 domain of SHP-1 showed a broad selectivity for pY-hydrophobic-X- 

hydrophobic motifs from a phosphopeptide library (Songyang et a l , 1994). In addition, 

tyrosine 429 of the EpoR, which lies in the pYLYL motif, has been shown to be essential for 

the SHP-1 binding (Klingmuller et a l , 1995a). Pei et al (1994) have previously shown that a 

phosphopeptide based on the sequence surrounding tyrosine 612 of pc (referred to as tyrosine 

628, which includes the 14-amino acid signal peptide) bound the amino-terminal SH2 domain 

of SHP-1, activated the phosphatase, and acted as a substrate for SHP-1. They suggested this 

tyrosine may be the binding site for SHP-1 to Pc (Pei et a l , 1994), and the results presented 

here show a similar peptide does compete with SHP-1 for binding to pc. A weaker inhibition 

of precipitation of Pc with SHP-1 (SH2)2-GST by phosphopeptide 750 was observed. Tyrosine 

750 is located in the sequence pYVEL, which also conforms to the predicted SHP-1 SH2 

binding motif.

The selectivity of the amino-terminal SH2 domain of SHP-2, determined using a 

degenerate peptide library, was shown to be pY(V/I/T)X(V/L/I) (Case et a l , 1994). 

Experiments using both mutant receptors (Kazlauskas et a l , 1993) and peptide competition
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assays (Lechleider et a l, 1993b) demonstrate that tyrosine 1009 of the PDGFR, in the motif 

pYTAV, is required for SHP-2 binding. In addition, using EpoR mutant receptors, it has been 

shown that SHP-2 binds, via its SH2 domains, to the activated EpoR at tyrosine 425, in the 

motif pYTIL (Tauchi et a l, 1996). The residues surrounding tyrosine 612 (YLCL) of pc are 

similar to these previously described binding motifs for SHP-2.

The effects of mutagenesis of tyrosines 612 and 750 of pc on tyrosine phosphorylation 

of substrates in response to GM-CSF have been reported (Inhom et a l, 1995; Durstin et al, 

1996). In these transfectants, normal levels of SHP-2 tyrosine phosphorylation were observed 

(Durstin et a l, 1996). However, the association of SHP-2 with Pc was not examined in these 

mutant Pc-expressing cells. An interesting point relating to this is whether stable association 

of SHP-2 with pc is required for its tyrosine phosphorylation. The data presented here suggest 

that in the presence of phosphopeptide pY612 and pY1009, which compete for the binding of 

SHP-2 to pc, the levels of SHP-2 tyrosine phosphorylation are not diminished and actually 

appear to increase (Fig III.4 D), supporting the notion that SHP-2 does not need to be bound to 

pc to become phosphorylated. In fact, it appears that PDGF-stimulated tyrosine 

phosphorylation of SHP-2 does not require SHP-2 to stably associate with the receptor as 

PDGF receptor mutants that associate poorly with SHP-2 were able to mediate tyrosine 

phosphorylation of SHP-2 (Kazlauskas et al., 1993). The increased SHP-2 tyrosine 

phosphorylation observed may be caused by activation of a kinase involved in phosphorylation 

of SHP-2. However, one can not rule out the possibility that SHP-2 associates transiently with 

pc and that this is all that is required for its phosphorylation. The apparent decrease in tyrosine 

phosphorylation of the p90 protein and the appearance of an additional tyrosine 

phosphorylated protein of 97 kDa in the anti-SHP-2 immunoprecititaions incubated with 

phosphopeptide 612 (Figure III.4 D) are difficult to explain at present. Perhaps a 

conformational change in SHP-2 induced by the peptide, reduced SHP-2’s affinity for the 

tyrosine phosphorylated p90 protein and increased its affinity for the 97 kDa protein. 

Additional mutational analyses of Pc have implicated two regions of pc which appear to 

influence SHP-2 tyrosine phosphorylation (Itoh et a l, 1996). Mutation of tyrosine 577 in 

conjunction with a truncation up to residue 589 resulted in greatly reduced levels of SHP-2
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tyrosine phosphorylation in response to GM-CSF, although either mutation alone had no effect 

(Itoh et a l, 1996). The results presented here suggest that tyrosine 577 is not involved in SHP- 

2 binding to pc and tyrosine 612 is the major site of interaction. Since tyrosine 612 is removed 

in the 589 pc truncation mutant, but SHP-2 is still tyrosine phosphorylated, it may be that 

association of SHP-2 is not required for its tyrosine phosphorylation, and the data presented 

here are consistent with this possibility.

As a part of this study, the same synthetic phosphopeptides used in the competition 

experiments were tested by Dr. Ute Dechert (formerly of Biomedical Research Centre, 

Vancouver, B.C., Canada) in phosphatase assays to investigate whether they could also serve 

as substrates for SHP-1 and SHP2 (Bone et a l , 1997). Interestingly, phosphopeptide pY612, 

which competed the binding of both SHP-1 and SHP-2 to Pc was also determined to be the 

best substrate for SHP-1 and SHP-2 catalytic activities (Ute Dechert; Bone et al., 1997). It has 

been shown previously that SHP-1 and SHP-2 prefer substrates that have acidic residues to the 

amino-terminus of the phosphotyrosine (Dechert et a l, 1995; Sugimoto et a l , 1993), and this 

is the case for the residues surrounding tyrosine 612. Whether this site is an in vivo substrate 

remains to be determined, although Yi et a l , (1993) reported the SHP-1-catalysed 

dephosphorylation of Aic2A. Therefore, the same site that appears to be recognised by the 

SH2 domains of these phosphatases also appears to be utilised as a substrate. In experiments 

using full-length recombinant SHP-2 and peptides for substrates, Sugimoto et al (1993) 

found SHP-2 to have preference for tyrosine 1009 (to which the SH2 domain of SHP-2 binds, 

leading to its activation (Lechleider et a l, 1993b)) and tyrosine 1021 of the PDGFR, 

suggesting that tyrosine 1009 may both regulate and act as a substrate for the PTPase activity 

of SHP-2. Similar substrate specificities were observed with PDGF receptor peptides (Dechert 

et a l, 1995), and the results with SHP-2 and pc suggest a similar mechanism may be used in 

IL-3 signalling. However, using immunoprecipitated phosphorylated PDGFp receptor and 

recombinant full-length SHP-2, phosphotyrosines 771 and 751, followed by tyrosine 740, were 

dephosphorylated preferentially, while tyrosine 1021 and tyrosine 1009 were reported to be 

very poor substrates (Klinghoffer et a l, 1995). These discrepancies could arise from 

differences in using the intact PDGF p receptor, which contains multiple potential 

phosphorylation sites, which may bind other proteins and mask potential binding sites, instead
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of using peptides as substrates. In the in vitro assay system used to determine the best 

phosphopeptide substrate for SHP-1 and SHP-2 as a part of the study presented here, the SHP- 

1 and SHP-2 recombinant enzymes used lacked their SH2 domains, thus removing any 

potential “activating” effects of the various phosphopeptides (Ute Dechert; Bone et al., 1997).

As demonstrated in this study, both SHP-1 and SHP-2 can directly associate with Pc in 

an IL-3-dependent manner. However, it is likely that SHP-1 and SHP-2 have different roles 

when localised to the IL-3 receptor. SHP-1 is thought to be a negative regulator of growth and 

functions to terminate signals. It appears to negatively regulate signals in different ways. SHP- 

1 has been shown to directly dephosphorylate receptors following activation. Overexpression 

of SHP-1 in DA3 cells has lead to a decrease in Aic2A tyrosine phosphorylation (Yi et a l ,

1993). Additionally, in studies on macrophages from me/me mice, which are hyper-responsive 

to CSF-1, the CSF-1R becomes hyper-phosphorylated upon CSF-1 stimulation, suggesting that 

SHP-1 dephosphorylates the CSF-1 R (Chen et al., 1996). Alternatively, SHP-1 has also been 

shown to inactivate the receptor-associated tyrosine kinases. The binding of SHP-1 to the 

EpoR has been shown to activate the PTPase, leading to dephosphorylation Jak-2, and 

resulting in the termination of proliferative signals (Klingmuller et al., 1995). SHP-1 has also 

been shown to interact directly with Jak-2, leading to its dephosphorylation (Jiao et al, 1996). 

IL-3 also induces activation of Jak-2 (Silvennoinen et a l, 1993), so SHP-1 may function in a 

similar manner in IL-3-signal transduction.

Also competing for the same binding site on pc is SHP-2, which is thought to act as a 

positive mediator of growth factor signals. SHP-2 has been hypothesised to play a positive role 

in signal transduction by serving as an adaptor protein between the receptor and Grb2. The 

SH2 domain of Grb2 is predicted to bind to a consensus sequence pYXNX (Songyang et al.,

1994) of which there are two in SHP-2: tyrosine 304 (pYINA) and tyrosine 542 (pYTNI). 

Tyrosine 542 has been reported to be the major in vivo site of tyrosine phosphorylation on 

SHP-2 in response to PDGF (Bennett et a l, 1994). SHP-2 has been shown to associate with 

Jak-1 and Jak-2, which results in phosphorylation of tyrosine 304 of SHP-2, leading to the 

creation of a Grb2 SH2 domain recognition motif (Yin et al., 1997). It has been shown 

previously that tyrosine-phosphorylated SHP-2 associates with the adaptor molecule Grb2 

following treatment of cells with PDGF (Li et al., 1994; Bennett et al., 1994), Epo (Tauchi et
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a l, 1994 p25206), and SLF (Tauchi et a l, 1995) and can itself also bind to the respective 

receptors (PDGFR, EpoR and c-kit). In response to IL-3, tyrosine phosphorylated SHP-2 has 

been shown to associate with the SH2 domain of Grb2 and phosphopeptides based on 

sequences surrounding tyrosine 304 and 542 were shown to almost completely inhibit binding 

of a Grb2SH2-GST fusion protein to SHP-2 (Welham et a l, 1994b). The results presented 

here suggest that SHP-2 can associate directly with pc. Thus SHP-2 may act as an adaptor in 

IL-3 signalling by associating with Pc and Grb2, thereby leading to activation of the Ras/MAP 

kinase pathway, known to be activated by IL-3 (Duronio et al, 1992b; Welham et a l, 1994b) 

(see Fig. III.5).

Additionally, it has been shown previously, in murine cells, that the p85 subunit of PI3- 

K can be co-precipitated with SHP-2 after activation of cells with IL-3 (Welham et al., 

1994b). The interaction between SHP-2 and p85(PI3-K) appeared complex and was suggested 

not to be mediated directly by the SH2 domains of the p85 subunit. A major tyrosine 

phosphorylated 100 kDa protein that directly interacted with SHP-2 in IL-3-stimulated murine 

cells was also shown to directly interact with p85(PI3-K) (Craddock and Welham, 1997). 

Thus, SHP-2 may be involved in activation of the PI3-K pathway by recruiting a pi 00- 

p85(PI3-K) complex to the IL-3 receptor and hence facilitate translocation of PI3-K to the 

vicinity of its lipid substrates (see Fig. III.5). The 100 kDa protein was also found to be a 

substrate for SHP-2 (Craddock and Welham, 1997). Therefore, SHP-2 may also function to 

regulate these interactions. Thus, modulation of SHP-2 activity and adaptor function could 

also affect PI3-K activation.

Recently, this 100 kDa protein has been cloned from Ba/F3 cells and has been termed 

Gab2 (Gu et a l, 1998). It has been shown that Gab2 associates with SHP-2 and the p85 

subunit of PI3-K, consistent with the results presented here. Gab2 is a scaffolding molecule 

distantly related to Drosophila Daughter of Sevenless (DOS), a substrate for the Drosophila 

SHP-2 homologue Corkscrew (CSW) which acts downstream of the receptor tyrosine kinase 

Sevenless and upstream of or in parallel to the Ras pathway, and mammalian Gabl (Gu et al, 

1998). Gabl was originally isolated as a binding protein for Grb2 and is tyrosine 

phosphorylated and interacts with SHP-2 and PI3-K in response to various growth factor 

stimuli. Gab2, like Gabl and DOS, contains an amino-terminal PH domain, proline-rich
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sequences, and multiple tyrosine residues (Gu et al., 1998). Expression of Gab2 mutants 

unable to bind SHP-2 blocks cytokine-induce c-fos promoter activation but does not inhibit 

MAP kinase activation. However, expression of dominant negative SHP-2 inhibits IL-3- 

induced MAP kinase acitvation and c-fos activation in Ba/F3 cells in response to IL-3 (Gu et 

al., 1998). Thus, SHP-2 appears to act at two or more sites in IL-3 signalling: (1) the 

requirement for SHP-2 for MAP kinase activation is mediated through a Gab2-independent 

mechanism, whereas (2) the association of SHP-2 with Gab2 is a requirement for 

transcriptional activation (Gu et al., 1998).

SHP-2 has also been shown to bind the inositol polyphosphate 5-phosphatase SHIP 

whose catalytic activity can act to dephosphorylate the primary PI3-K product, PI(3,4,5)P3> to 

PI(3,4)P2 (Damen et a l, 1996; Liu et a l, 1997b). The association of SHP-2 with SHIP has 

been shown to occur through the direct association of the SH2 domain of SHIP with a 

pYXN(I/V) sequence within SHP-2 which also serves as a Grb2 binding site (Welham et a l, 

1994b; Liu et a l, 1997b). Thus, SHP-2 could also function in localising SHIP to the IL-3 

receptor, in the vicinity of its lipid substrates (see Fig. III.5). SHIP has also been suggested to 

play a negative role in growth factor mediated signalling (Lioubin et a l, 1996; Chacko et a l, 

1996; Liu et a l, 1997a). One could speculate that SHIP could act as a negative regulator by 

competing with Grb2 for binding to SHP-2. This could result in localisation of SHIP to the 

vicinity of its substrates, possibly leading to down-regulation of PI3-K-induced proliferation 

and survival signals. Since SHP-2 acts as a positive regulator, the binding of SHP-2 to SHIP 

may serve to dephosphorylate and inactivate SHIP.

In summary, the results presented here demonstrate that in response to IL-3, SHP-1 and 

SHP-2 bind through their SH2 domains to tyrosine 612 of pc. The regulation of signalling 

pathways by SHP-1 and SHP-2 is complex and a proposed model is outlined in Figure III.5. 

The association of SHP-2 with pc may function in localising signalling molecules to the 

plasma membrane. The recruitment of Grb2 by SHP-2 may lead to activation of the Ras/MAP 

kianse pathway whereas localisation of a pl00-p85(PI3-K) complex may function in activating 

pathways mediated by PI3-K. Alternatively, SHP-2 may recruit SHIP to the receptor, possibly 

leading to the down-regulation of PI3-K activated pathways, due to the catalytic activity of 

SHIP, or lead to the down-regulation of the Ras/MAP kinase pathway by competing with Grb2
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FIGURE III.5
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for binding to SHP-2. Binding of SHP-1 to Pc may lead to the dephosphorylation and 

inactivation of Jak-2 kinase, resulting in the termination of proliferative signals. Although 

both SHP-1 and SHP-2 associate with tyrosine 612 of pc, it is likely that only a portion of the 

receptors are associated with SHP-1 and SHP-2 at any one time. In addition, both SHP-1 and 

SHP-2 appear to be able to regulate their own binding to the receptor as phosphopeptide 

pY612 also served as a substrate for the catalytic domain of both the PTPases. Therefore, the 

activation/deactivation of each phosphatase likely leads to a complex modulation of signalling 

pathways regulated by phosphorylation/dephosphorylation events and any shifting of the 

equilibrium between the two phosphatases would result in either a positive or negative effect 

on IL-3-induced signals.
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CHAPTER IV

Protein-Protein Interactions Mediated by She in response to IL-3
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IV.A Introduction and Aims.

p52Shc and p46Shc are two of the major substrates for IL-3-induced protein tyrosine 

kinases and it therefore seems likely that She would be involved in controlling signalling 

pathways stimulated in response to IL-3. Tyrosine phosphorylation of She at position 317 

creates a binding site for the SH2 domain of Grb2, linking She with the activation of the 

Ras/MAP kinase pathway. She has been shown to associate with the tyrosine phosphorylated 

EGFR via its PTB (Blaikie et a l , 1994) and SH2 (Pelicci et al, 1992) domains following EGF 

stimulation, resulting in significant relocalisation of Shc-Grb2-Sos complexes to the plasma 

membrane and hence to the vicinity of Ras (Ruff-Jamison et a l , 1993). However, no mass 

translocation of She to the plasma membrane after IL-3 stimulation has been observed, 

although, a slight increase in tyrosine phosphorylated She at the membrane has been detected 

(Welham et a l , 1994a). Therefore, She may have functions other than as an adaptor protein 

involved in localising Grb2 to the membrane in response to IL-3 and may play important roles 

in other signalling pathways.

She, via its PTB domain, has also been shown to associate with a tyrosine 

phosphorylated 145 kDa protein, now known to be the inositol phosphatase SHIP (Lioubin et 

a l, 1996; Damen et al., 1996) SHIP has been shown to selectively hydrolyse the 5’- 

phosphate from inositol 1,3,4,5-tetraphosphate and phosphatidylinositol 3,4,5-trisphosphate 

(PI(3,4,5)P3) (Damen et a l, 1996; Lioubin et a l, 1996). Thus, She may also play a role in 

pathways involved with regulation of lipid metabolism.

One way to investigate the roles of She in IL-3 signal transduction is to examine the 

protein-protein interactions mediated by the various domains of She and this was the primary 

aim of this part of the study. This may provide information into the possible mechanisms of 

She activation of the Ras/MAP kinase pathway, She regulation of lipid metabolism or other 

functions of She in response to IL-3.
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IV.B Preparation of Shc-GST fusion proteins.

Using a human p52 cDNA containing plasmid (plasmid B15: human She cDNA in 

pGEM3 vector, a gift of Dr. Tony Pawson, Toronto, Canada) as a template, DNA fragments 

corresponding to various She domains were synthesised by polymerase chain reaction (PCR) 

(section II.A.13). The oligonucleotide primers (Pharmacia Biotech) used in the synthesis of 

FL She and the individual She PTB domain are outlined in Figure IV. 1 Bglll and EcoRI sites 

were engineered into the oligonucleotide primer for ease of cloning the amplified She 

fragments into pGEX2T. The amplified DNA was isolated, digested with Bglll and EcoRI and 

cloned into BamHI and EcoRI restricted pGEX2T (Pharmacia Biotech). The SH2 domain 

(amino acids 366-473) of She cloned into pGEX2T (pGSTShcSH2) was a gift of Dr.Tony 

Pawson (Toronto, Canada). Ligations were transformed into XL-1BL (section II.A.4) and 

recombinants screened for the presence of the correct insert by restriction enzyme mapping. 

Large-scale cultures of XL-1BL containing the vectors with the correct inserts were grown, 

induced overnight with isopropyl p-thiogalactopyranoside (IPTG) and the GST fusion proteins 

purified on glutathione Sepharose beads (see section II.C.3). Figure IV.2 depicts the various 

She GST fusion proteins constructed and used for the following experiments.
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FIGURE IV.l

Oligonucleotides used for the cloning of various domains of She

PTB CHI SH2

Met1Met46 238

82
220

Bgl

796 

79f

366

1180

520 PTBShc
I top EcoRI

473 a.a.

— She

1501 b .p . 

1501

523
top EcoRI

520: 5’ sense oligonucleotide with Bgl II site for cloning, beginning at bp 85 of She.
y85

5’ TAG AGA TCT AAC AAG CTG AGT GGA 
B glll

PTBShc: 3’ antisense oligonucleotide with Stop site and EcoRI site for cloning.

Ends at bp 796 of She
p96

Gin Stop EcoRI

523: 3’ antisense oligonucleotide with Stop and EcoRI site for cloning. Ends at bp 1501 of

She
^1501

3’ CAC CTC GCC TTT GAC ACT CTT AAG GAT
Leu Stop EcoRI
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FIGURE IV.2

Schematic representation of p52Shc domains expressed as GST-fusion proteins.
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IV.C Precipitation of tvrosine phosphorylated proteins from IL-3 stimulated cells bv 

Shc-GST fusion proteins.

Using GST fusion proteins of the various domains of She, interactions between She 

and other phosphoproteins were investigated. The various GST fusion proteins (Fig. IV.2) 

were used for direct precipitation analyses from TF-1 and Ba/F3 cells that had either been left 

untreated as a control (C) or stimulated with IL-3 for 10 minutes (3). The precipitates were 

resolved by SDS-PAGE, transferred to nitrocellulose and immunoblotted with the 4G10 anti- 

phosphotyrosine monoclonal antibody. The results are shown in Figure IV.3.

In TF-1 cells stimulated with IL-3, the anti-Shc antibody precipitated what appeared to 

be two distinct tyrosine phosphorylated proteins: a protein appearing as a broad 135-140 kDa 

band and a sharper, higher molecular weight 145 kDa protein (Fig IV.3 A). The full length 

(FL) Shc-GST fusion protein precipitated a similar pattern of proteins from IL-3 stimulated 

cell extracts as did the PTB domain alone. However, only the single broad 135-140 kDa 

tyrosine phosphorylated band was precipitated by the SH2Shc-GST fusion protein in addition 

to a broad 120 kDa protein of unknown identity. Reprobing this same blot with anti-Pc 

antibodies confirmed that one of the proteins precipitated by the FLShc-, PTBShc- and
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FIGURE IV.3
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Shc-GST precipitations from TF-1 and Ba/F3 cells.

(A) TF-1 cells and (B) Ba/F3 cells were deprived of factor and serum then either left 

untreated as a control (C) or treated for 10 minutes with IL-3 (3). Cell extracts from the 

equivalent of 1 x 107 cells/sample were precipitated with either the polyclonal anti-Shc 

antibody, or the FL-, PTB-, or SH2- Shc-GST fusion proteins. Bound proteins were 

eluted and separated by SDS-PAGE through a 7.5% acrylamide gel. Immunoblotting was 

performed with 4G10 anti-phosphotyrosine antibodies. The same immunoblot in A was 

stripped and reprobed with antibodies against Pc (lower panel). The molecular mass 

standards are shown in kDa and the positions of the 130-145 kDa proteins, pc, plOO and 

FLShc-GST are indicated by the arrows. These data are representative of 3 individual 

experiments.

loi



SH2Shc- GST fusion proteins was the human IL-3 receptor P subunit, Pc (Fig. IV.3 A, lower 

panel). It is difficult to discern pc in the anti-Shc immunoprecipitates due to cross-reactivity 

between the rabbit precipitating and blotting antibodies. The Pc band is also difficult to detect 

in FLShc-GST precipitates, most likely due to lower amounts of pc precipitated by the FLShc- 

GST fusion protein. These results are representative of three separate experiments.

In IL-3-stimulated Ba/F3 cells, a similar scenario was observed (Fig. IV.3 B). After IL- 

3 stimulation, the FLShc-GST fusion protein appeared to precipitate at least two distinct 

tyrosine phosphorylated proteins: a broad 135-145 kDa band and a sharper, slightly lower 

molecular weight 130 kDa protein (see Figure IV.5 B for a shorter exposure of a similar 

experiment highlighting the different protein species precipitated in this region). Again, the 

She PTB domain alone precipitated both these proteins from IL-3-stimulated Ba/F3 extracts 

but the She SH2-GST fusion protein only precipitated the broad 135-145 kDa band. This 

broad band is most likely Aic2A, the mouse IL-3 receptor p subunit. Aic2A is a glycoprotein 

of 135 kDa and appearance of a broad band on an acrylamide gel is characteristic of a highly 

glycosylated protein. These data are representative of four individual experiments. 

Unfortunately, the two anti-Aic2A antibodies that were available to us were not sensitive 

enough to confirm the identity of this protein and were not suitable for blotting. In addition, 

both the FLShc-GST and SH2Shc-GST fusion proteins, but not the PTBShc-GST fusion 

protein, precipitated a tyrosine phosphorylated 100 kDa protein from IL-3-stimulated cell 

extracts.

Collectively, these results suggest that after IL-3 stimulation, FL She can associate with 

tyrosine phosphorylated pc and a 145 kDa protein in a human cell line and a broad 135-145 

kDa protein, believed to be Aic2A, and a 130 kDa protein in a mouse cell line. Therefore, 

both the PTB and SH2 domains of She appear to associate in vitro with Pc/Aic2A, whereas the 

PTB domain, but not the SH2 domain, of She also appears to be able to associate with the 

sharper 145/130 kDa band in both human and murine cells respectively. Additionally, the SH2 

domain of She appears to interact with unknown proteins of 120 kDa in TF-1 cells and 100 

kDa in Ba/F3 cells.
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IV.D Interaction of She with SHIP.

Since the FLShc- and PTBShc- GST fusion proteins precipitated, in addition to the 

broad receptor-like band, a distinct sharper band of 145/130 kDa in human/murine cells, it was 

next investigated whether this protein was the pl45smp protein. Initially, Shc-GST 

precipitations from IL-3-stimulated TF-1 and Ba/F3 cells were immunoblotted with anti-SHIP 

antibodies (Fig. IV.4). In TF-1 cells, the anti-SHIP antibody reacted with appropriately sized 

bands from whole cell lysates (Pre) and PTBShc-GST precipitates (Fig. IV.4 A). SHIP was 

also detected in PTBShc-GST precipitations from Ba/F3 cells (Fig. IV.4 B). In both TF-1 and 

Ba/F3 cells, SHIP was absent from SH2Shc-GST precipitations and very little was detected in 

FLShc-GST precipitations. It is interesting to note that in both TF-1 and Ba/F3 cells, SHIP 

was precipitated by the PTBShc-GST fusion protein from both EL-3 stimulated and control 

cells and in fact there appears to be more SHIP precipitated from unstimulated TF-1 cells than 

IL-3 stimulated. Therefore, it appears that perhaps SHIP is constitutively bound to the PTB 

domain of She but then becomes tyrosine phosphorylated after IL-3 stimulation. These results 

were observed in at least two separate experiments.

To further investigate the interactions of She with SHIP, a series of anti-SHIP 

immunoprecipitations were performed. However, the anti-SHIP antibody available to us only 

precipitated SHIP from Ba/F3 cells and not from TF-1 cells. In Ba/F3 cells stimulated with 

IL-3, along with p52Shc and p46Shc, anti-Shc antibodies precipitate two distinct proteins of 130 

and 140 kDa (Fig. IV.5 A). To determine if SHIP was a constituent of these bands, a 

sequential immunoprecipitation was performed. The primary anti-Shc immunoprecipitation 

was boiled and denatured in the presence of SDS and 2-mercaptoethanol, effectively 

denaturing any associated proteins. The resulting extracts were diluted 1 in 10 (so the 

concentration of SDS was <0.1% (w/v)) and secondary precipitations with anti-SHIP 

antibodies were performed (Fig. IV.5 A). Both the 130 and 140 kDa bands were reprecipitated 

by the anti-SHIP antibody, suggesting that both tyrosine phosphorylated 130 and 140 kDa 

proteins precipitated by the anti-Shc antibody were SHIP. These results were observed in two 

separate experiments.
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FIGURE IV.4
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SHIP is detected in TF-1 and Ba/F3 cells.

Factor deprived TF-1 cells (A) or Ba/F3 cells (B) were either left untreated as a control 

(C) or stimulated with IL-3 for 10 minutes (3). Extracts from the equivalent of 5 x 106 

cells were precipitated with 10 jig of the indicated Shc-GST fusion protein. Samples were 

separated on a 7.5% acrylamide gel by SDS-PAGE and immunoblotted with anti-SHIP 

antibodies. The positions of the molecular mass standards are shown and expressed in 

kDa and the position of SHIP is indicated.



FIGURE IV.5
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SHIP interacts with the PTB domain of She.

Factor deprived Ba/F3 cells were either stimulated with IL-3 for 10 minutes (3) or left 

untreated as a control (C). Cell extracts from the equivalent of 2 x 107 cells/sample were 

precipitated with (A) 4 pg anti-Shc antibodies or with (B) 20 pg of either the FL-, PTB- 

or SH2- Shc-GST fusion proteins. Primary precipitates were eluted and denatured by 

boiling in SDS sample buffer and 1/10 of the sample reserved for the primary 

immunoprecipitation sample. After dilution, secondary precipitations were carried out 

using 4 pi anti-SHIP antibody. Samples were separated on 7.5% acrylamide gels and 

immunoblotted with the monoclonal 4G10 anti-phosphotyrosine antibody. Molecular 

mass standards are shown in kDa and the position of SHIP is indicated.



In Ba/F3 cells, since the FLShc- and PTBShc- GST fusion proteins precipitated 

proteins in the region of 130 and 145 kDa, but one appeared to be a broad 135-145 kDa 

protein, thought to be Aic2A, (Fig. IV.3 B), sequential immunoprecipitations were again 

performed to determine if SHIP was a constituent of the tyrosine phosphorylated 130-145 kDa 

proteins precipitated in the Shc-GST fusion protein precipitations. The results are shown in 

Figure IV.5 B and were observed in two separate experiments. Primary FLShc-, PTBShc- and 

SH2Shc- GST fusion protein precipitations were first performed on Ba/F3 cells which had 

either been left untreated as a control (C) or stimulated with IL-3 for 10 minutes (3). The 

precipitated material was boiled and denatured. The resulting extracts were diluted and 

secondary precipitations with anti-SHIP antibodies were performed (Fig. IV.5 B). Two 

distinct sharp bands of 130 and 140 kDa were precipitated in the secondary precipitations by 

the anti-SHIP antibody from the initial FL and PTB Shc-GST fusion protein precipitations but 

not from the SH2Shc-GST precipitation. Therefore, FL She and the PTB domain of She 

precipitate SHIP which appears as two distinct, sharp 130 and 140 kDa bands. Thus, the broad 

135-145 kDa band precipitated by FL She and the PTB domain of She is a composite of at 

least two proteins: the diffuse receptor band and the sharp SHIP band. The broad 135-145 

kDa receptor-like band precipitated in the initial FL-, PTB, and SH2- Shc-GST precipitations 

was not precipitated by the anti-SHIP antibody, further evidence that this protein is Aic2A and 

will be referred to as thus from here on. Since these Shc-GST fusion proteins all appeared to 

interact with Aic2A, it seems unusual that the anti-Shc antibody only appeared to precipitate 

the 2 sharp SHIP band and not the broad Aic2A band (Fig. IV.5 A). This may be due to the 

low level of Aic2A receptors expressed on Ba/F3 cells or more likely caused by a blocking, 

effect of the anti-Shc antibody (see section IV.E.l)

Another set of sequential immunoprecipitations were performed to show that the PTB 

domain of She can directly interact with tyrosine phosphorylated SHIP in IL-3 stimulated 

Ba/F3 cells. Primary anti-SHIP immunoprecipitations from control (C) and IL-3 stimulated 

(3) Ba/F3 cells were boiled, denatured, diluted and reprecipitated with the PTB or SH2 Shc- 

GST fusion protein (Fig. IV.6). These results are representative of three separate experiments. 

The PTB, but not the SH2, She GST fusion protein reprecipitated SHIP, indicating that the 

PTB domain of She can directly interact with SHIP in IL-3-stimulated Ba/F3 cells.
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FIGURE IV.6
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The PTB domain of She directly interacts with SHIP.

Factor deprived Ba/F3 cells were either left untreated as a control (C) or stimulated with 

IL-3 (3). Cell extracts from the equivalent of 2 x 107 cells/sample were precipitated with 4 

pi anti-SHIP antibodies. A sample of the eluted and denatured primary precipitate was 

reserved for the primary immunoprecipitation sample. The remaining sample was diluted 

and reprecipitated with 10 pg if either the PTB- or SH2- Shc-GST fusion protein. 

Samples were separated on a 7.5% acrylamide gel and immunoblotted with 4G10 anti- 

phosphotyrosine antibodies. The same gel was stripped and reprobed with anti-SHIP 

antibodies (lower panel). The positions of SHIP and the molecular mass standards 

expressed in kDa are indicated.

i o i



In summary, the results described above suggest that in IL-3 stimulated TF-1 cells, one 

of the tyrosine phosphorylated proteins precipitated by the PTBShc-GST fusion protein 

appears to be SHIP, therefore suggesting that the two tyrosine phosphoryated 135-140 kDa and 

145 kDa bands interacting with She are Pc and SHIP respectively. In IL-3 stimulated Ba/F3 

cells, SHIP appears as a sharp 130 and 140 kDa doublet which can directly interact with the 

PTB domain but not the SH2 domain of She. Mulitple forms of SHIP have also been observed 

in B-cells (Kavanaugh et al., 1996) and in murine cells (Damen et al., 1998), some of which 

appear to be C-terminal truncations of the full length SHIP protein (Damen et a l, 1998). The 

underlying broad 135-140 kDa band precipitated by FL She and the individual PTB and SH2 

domains in IL-3 treated Ba/F3 cells was not SHIP and is most likely Aic2A.

IV.E Interaction of She with pc/Aic2A.

Previous reports suggest that both the SH2 and PTB domains of She can bind to the 

GM-CSFR pc subunit, which is shared, in humans, with the IL-3R (Lanfrancone et a l, 1995; 

Pratt et al., 1996). The tyrosine residues phosphorylated on Pc in response to GM-CSF or IL-3 

have not been biochemically mapped and although both cytokines activate JAK2, it is not 

known if they both induce identical patterns of pc tyrosine phosphorylation upon receptor 

ligation. Therefore, the interactions mediated by the distinct domains of She, specifically in 

response to IL-3 stimulation, rather than GM-CSF, which had been used in previous studies, 

were examined in more detail.

IV.E.l She binds pc directly through both its PTB and SH2 domains.

Having established that in a human cell line, tyrosine phosphorylated pc is present in 

anti-Shc immunoprecipitations and Shc-GST precipitations (Fig. IV.3 A), sequential 

immunoprecipitation analyses were performed to determine if these interactions were direct. 

Extracts were prepared from TF-1 cells that had either been left untreated as a control (C) or 

stimulated with IL-3 (3) and immunoprecipitated with a monoclonal anti-Pc antibody. The 

resulting boiled and denatured primary immunoprecipitation was diluted and secondary
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She directly associates with tyrosine phosphorylated pc through both its SH2 and 

PTB domains.

Factor deprived TF-1 cells were either left untreated as a control (C) or stimulated with 

IL-3 for 10 minutes (3). Cell extracts from the equivalent of 2 x 107 cells/sample were 

precipitated with 20 pg monoclonal anti-fc antibody. Primary anti-pc precipitates were 

eluted and denatured by boiling in SDS sample buffer and 1/10 of the sample reserved for 

the primary immunoprecipitation sample. After dilution, secondary precipitations were 

prepared with either 10 pg of the FL-, PTB- or SH2- Shc-GST fusion proteins. The blot 

was probed with 4G10 anti-phosphotyrosine antibodies. Molecular mass standards are 

shown in kDa, and the position of pc and FLShc-GST is indicated.



precipitations with FLShc-, PTBShc-, or SH2Shc- GST fusion proteins were performed. The 

results are shown in Figure IV.7 and were observed in two separate experiments. Tyrosine 

phosphorylated pc from cells treated with IL-3 was precipitated in the primary anti-pc 

immunoprecipitation. The secondary precipiations with either FLShc-, PTBShc-, or SH2Shc 

GST, all resulted in reprecipitation of tyrosine phosphorylated pc from the IL-3 stimulated cell 

extracts. No tyrosine phosphorylated pc was precipitated from either the primary anti-pc 

immunoprecipitation from unstimulated cell extracts or the secondary, unstimulated Shc-GST 

precipitations. The 70 kDa protein present in FLShc-GST precipitations is the FLShc-GST 

fusion protein itself. These results suggest that like GM-CSF (Lanfrancone et a l , 1995), IL-3 

can induce association of She with tyrosine phosphorylated pc. This interaction appears to be 

mediated by both the SH2 and PTB domains of She. The analogous experiment in Ba/F3 

cells could not be performed due to lack of an effectively precipitating anti-Aic2A antibody. 

However, since the SH2 domain of She can, by analogy, directly interact with Aic2A, this 

provides a reason why anti-Shc antibodies did not appear to precipitate the broad 135-145 kDa 

tyrosine phosphorylated Aic2A band from IL-3 stimulated Ba/F3 cells (Fig. IV.5 A) as the 

antibody is raised against the SH2 domain of She and may therefore effectively block the 

interaction of She with Aic2A.

IV.E.2 Binding of the She SH2 domain to tyrosine phosphorylated Pc/Aic2A is inhibited 

by a phosphotyrosine containing peptide based on sequences surrounding tyrosine 612 of 

Pc / tyrosine 610 of Aic2A.

In order to provide an indication as to which of the potential tyrosines on pc/Aic2A 

was responsible for mediating the interaction with the SH2 domain of She following treatment 

with IL-3, phosphopeptide competition analyses were performed. The tyrosine residues within 

pc/Aic2A which become phosphorylated upon IL-3 stimulation have not been biochemically 

mapped, so phosphopeptides corresponding to the sequences surrounding 5 of the tyrosine 

residues within pc/Aic2A were tested for their ability to block precipitation of the tyrosine 

phosphorylated pc/Aic2A by SH2Shc-GST fusion protein. Table II. 1 outlines the 

phosphopeptides used in this study. Phosphopeptides corresponding to the residues 

surrounding tyrosine 806 and 856 of pc (and the corresponding Aic2A tyrosines) again were
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Phosphopeptide pY612 inhibits binding of the SH2 domain of She to tyrosine 

phosphorylated pc.

Factor deprived TF-1 cells were either left untreated as a control (C) or stimulated for 

10 minutes with IL-3. (A) Cell extracts from the equivalent of 1 x 107 cells were

incubated in the absence (-) or the presence of 100 pM of the indicated 

phosphopeptides and SH2Shc-GST precipitates prepared. (B) Cell extracts from the 

equivalent of 1 x 107 cells were incubated in the absence (-) or the presence of lpM, 

10 pM, 25 pM, 50 pM, or 100 pM of phosphopeptide pY612 and SH2Shc-GST 

precipitates prepared. The precipitates were separated by SDS-PAGE through a 7.5% 

acrylamide gel and immunoblotted with 4G10 anti-phosphotyrosine antibodies. 

Immunoblot A was stripped and reprobed with polyclonal antibodies against Pc 

(lower panel). The positions of the molecular mass standards are shown and 

expressed in kDa and the position of Pc is indicated.
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not tested, as mutants of pc that were truncated at residue 763 or beyond retain normal 

functions in response to IL-3 (Sakamaki et a l , 1992). In TF-1 cells, only the phosphopeptide 

representing residues surrounding tyrosine 612 of Pc completely inhibited the precipitation of 

tyrosine phosphorylated pc by the SH2Shc-GST fusion protein (Figure IV.8 A). The 

phosphopeptide representing residues surrounding tyrosine 750 also appeared to partially 

inhibit precipitation of pc (Figure IV.8 A). Reprobing this blot with polyclonal anti-pc 

antibodies (Figure IV.8 A lower panel) confirmed the precipitation of tyrosine phosphorylated 

pc by the SH2Shc-GST fusion protein and the inhibition of this precipitation by 

phosphopeptide pY612. These results are representative of three separate experiments. 

Titration of phosphopeptide pY612 (Figure IV.8 B) indicated that at 25 pM peptide the 

association between SH2Shc-GST and tyrosine phosphorylated pc was almost completely 

inhibited as observed in two experiments. Again, the SH2Shc-GST fusion protein also 

appeared to precipitate an unknown tyrosine phosphorylated 120 kDa protein whose 

association was also blocked by phosphopeptide pY612.

In Ba/F3 cells, the phosphopeptide representing residues surrounding tyrosine 610 of 

Aic2A also completely inhibited the precipitation of tyrosine phosphorylated Aic2A by the 

SH2Shc-GST fusion protein (Figure IV.9 A, the results are representative of three separate 

experiments). The phosphopeptide representing residues surrounding tyrosine 612 of pc, 

where the only difference in amino acid sequence from mouse is a Methionine instead of a 

Leucine in the +1 position from the phosphotyrosine, also completely inhibited precipitation of 

tyrosine phosphorylated Aic2A by the SH2Shc-GST fusion proteins (results not shown). 

Phosphopeptide pY745 also partially inhibited precipitation of Aic2A (Fig. IV.9 A). The 

corresponding Pc peptide pY750 also partially inhibited the precipitation of Aic2A, while pc 

peptides pY452, 577, 695 did not (results not shown). Again, association between SH2Shc- 

GST and tyrosine phosphorylated Aic2A was almost completely inhibited with 25 pM 

phosphopeptide pY610, as observed in two experiments (Figure IV.9 B). The interaction 

between the 100 kDa protein and the SH2 domain of She was also inhibited by 

phosphopeptide pY610. Thus, these peptide competition analyses suggest that the SH2 

domain of She interacts with the residues surrounding tyrosine 612 of pc and the
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FIGURE IV.9
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Phosphopeptide pY610 inhibits binding of the SH2 domain of She to tyrosine 

phosphorylated Aic2A.

Factor deprived Ba/F3 cells were either left untreated as a control (C) or stimulated for 

10 minutes with IL-3. (A) Cell extracts from the equivalent of 1 x 10 cells were

incubated in the absence (-) or the presence of 100 pM of the indicated 

phosphopeptides and SH2Shc-GST precipitates prepared. (B) Cell extracts from the 

equivalent of 1 x 107 cells were incubated in the absence (-) or the presence of lpM, 

10 pM, 25 pM, 50 pM, or 100 pM of phosphopeptide pY610 and SH2Shc-GST 

precipitates prepared. The precipitates were separated through 7.5% acrylamide gels 

by SDS-PAGE and immunoblotted with 4G10 anti-phosphotyrosine antibodies. The 

positions of the molecular mass standards are shown and expressed in kDa and the 

position of Aic2A is indicated.



corresponding residues surrounding tyrosine 610 of Aic2A while the residues surrounding 

tyrosine 750/745 of pc/Aic2A may make some contribution to the interaction.

IV.E.3 Binding of the She PTB domain to tyrosine phosphorylated pc/Aic2A is inhibited 

by a phosphotyrosine containing peptide based on sequences surrounding tyrosine 577 of 

pc / tyrosine 575 of Aic2A.

Given the observed association of the PTB domain of She with two phosphotyrosine- 

containing proteins, one of which was identified as pc in human cells, and by analogy Aic2A 

in murine cells, the site on Pc/Aic2A which might be responsible for this interaction was 

investigated. PTB domains recognise phosphotyrosines in the motif NPXpY (Kavanaugh et 

al., 1995; Songyang et a l , 1995; van der Geer and Pawson, 1995). Amino acids in the -5 

position relative to the phosphotyrosine are also reported to be important for PTB domain 

recognition and aliphatic residues predominate in this region ( Trub et a l, 1995; van der Geer 

et a l, 1995; Zhou et a l, 1995a). Tyrosine 577 of Pc and tyrosine 575 of Aic2A lie in the 

motif NGPY which loosely conforms to this predicted PTB-binding consensus sequence. 

Therefore, phosphopeptides containing additional amino acids amino-terminal to the critical 

phosphotyrosine were synthesised based on sequences surrounding tyrosine 575, 610 and 745 

of Aic2A but which have identical sequences amino-terminal to tyrosine 577 and 612 of pc 

and differ by 2 amino acids to tyrosine 750 of pc. These phosphopeptides were used in 

competition analyses and results are shown in Figures IV. 10 (representative of two to three 

individual experiments) and IV. 11 (representative of three separate experiments). The 

phosphopeptide pY575 completely inhibited the precipitation the 130-145 kDa tyrosine 

phosphorylated proteins by the PTBShc-GST fusion protein in TF-1 cells (Fig. IV. 10 A) and in 

Ba/F3 cells (Fig. IV. 11 A). Titration of phosphopeptide pY575 indicated that at only 1 pM 

peptide the association between PTBShc-GST and tyrosine phosphorylated proteins were 

almost completely blocked in TF-1 cells (Fig. IV. 10 B) and in Ba/F3 cells (Fig. IV. 11 B).

The 145 kDa polyphosphate-5-phosphatase SHIP, has also been shown to interact with 

the PTB domain of She (Lioubin et a l, 1996). In the studies presented here, SHIP has been 

shown to be present in the PTBShc-GST precipitations (Fig. IV.4 A) and also appears to be 

competed by the phosphopeptide pY575 (Fig. IV. 10 A). Therefore, in order to specifically
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FIGURE IV.10

Phosphopeptide pY575 inhibits binding of the PTB domain of She to tyrosine

phosphorylated pc.

TF-1 cells were factor deprived and left untreated as a control or stimulated with IL-3. (A) 

Cell extracts from the equivalent of 1 x 107 cells were incubated in the absence (-) or the 

presence of 100 pM of the indicated phosphopeptides and PTBShc-GST precipitates 

prepared. (B) Cell extracts from the equivalent of 1 x 107 cells were incubated in the 

absence (-) or the presence of lpM, 10 pM, 25 pM, 50 pM, or 100 pM of phosphopeptide 

pY575 and PTBShc-GST precipitates prepared. (C) Cell extracts from the equivalent of 2 

x 107 cells/sample were precipitated with 20 pg monoclonal anti-pc antibody. Primary 

anti-pc precipitates were eluted and denatured by boiling in SDS sample buffer and 1/10 of 

the sample reserved for the primary immunoprecipitation sample. Secondary 

precipitations were prepared with the PTBShc-GST fusion protein. All samples were 

separated through 7.5% acrylamide gels by SDS-PAGE and immunoblotted with 4G10 

anti-phosphotyrosine antibodies. The molecular mass standards are expressed in kDa and 

the position of Pc is indicated.
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FIGURE IV .ll
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Phosphopeptide pY575 inhibits binding of the PTB domain of She to tyrosine 

phosphorylated Aic2A.

Ba/F3 cells were factor deprived and left untreated as a control or stimulated with IL-3. 

(A) Cell extracts from the equivalent of 1 x 107 cells were incubated in the absence (-) or 

the presence of 100 pM of the indicated phosphopeptides and PTBShc-GST precipitates 

prepared. (B) Cell extracts from the equivalent of 1 x 107 cells were incubated in the 

absence (-) or the presence of lpM , 10 pM, 25 pM, 50 pM, or 100 pM of 

phosphopeptide pY575 and PTBShc-GST precipitates prepared. All samples were 

separated through 7.5% acrylamide gels by SDS-PAGE and immunoblotted with 4G10 

anti-phosphotyrosine antibodies. The molecular mass standards are shown and expressed 

in kDa and the position of Aic2A is indicated.
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examine competition for Pc binding, sequential immunoprecipitation analyses were performed 

in TF-1 cells to assess whether phosphopeptide pY575 was blocking the PTB domain of She 

binding specifically to tyrosine phosphorylated Pc. TF-1 cell extracts were initially 

immunoprecipitated with the anti-pc monoclonal antibody. The precipitated material was 

diluted and incubated with the appropriate phosphopeptide. A secondary precipitation with the 

PTBShc-GST fusion protein that had been preincubated with the phosphopeptide was then 

performed. The results are shown in Figure IV. 10 C. Tyrosine phosphorylated pc from cells 

treated with IL-3 was precipitated in the primary anti-pc immunoprecipitation. The secondary 

precipitation using the PTBShc-GST fusion protein preincubated without phosphopeptide or 

with phosphopeptide pY610 and pY745 resulted in re-precipitation of tyrosine phosphorylated 

Pc from IL-3 stimulated cell extracts. However, incubation of the phosphopeptide pY575 with 

the PTBShc-GST fusion protein was able to completely block re-precipitation of tyrosine 

phosphorylated pc from IL-3-stimulated cell extracts. Thus, taken together, these results 

suggest that the PTB domain of She interacts with the amino acids surrounding tyrosine 577 of 

Pc and tyrosine 575 of Aic2A. These results are consistent with results of Pratt et al (1996) 

where tyrosine 577 was shown to be sufficient for the binding of the PTB domain of She to pc 

in a non-ligand-dependent system.

IV.E.4 Binding of FL She to tyrosine phosphorylated Pc/Aic2A is inhibited by a 

phosphotyrosine containing peptide based on sequences surrounding tyrosine 577 of pc / 

tyrosine 575 of Aic2A.

Having shown that both the SH2 and PTB domains of She interact with residues 

surrounding distinct tyrosines within Pc/Aic2A, albeit with apparently differing affinities, it 

was next investigated whether one of these domains played a dominant role in mediating the 

interaction of She with pc/Aic2A. To test this, phosphopeptide competition analyses were 

performed using the FLShc-GST fusion protein. These results are shown in Figure IV. 12 and 

are representative of two to three separate experiments. At 100 jiM, the phosphopeptide 

representing residues surrounding tyrosine 612 of Pc was unable to inhibit the precipitation of 

tyrosine phosphorylated pc by the FLShc-GST fusion protein in TF-1 cells, whereas
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Phosphopeptide pY575 inhibits binding of FL She to tyrosine phosphorylated 
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Factor deprived (A) TF-1 cells and (B) Ba/F3 cells were either left untreated as a control 

(C) or stimulated with IL-3 (3). Cell extracts from the equivalent of 1 x 107 cells were 

incubated in the absence (-) or the presence of 100 pM of the indicated phosphopeptides 

and FLShc-GST precipitates prepared. The samples were separated through 7.5% 

acrylamide gels by SDS-PAGE and immunoblotted with 4G10 antibodies. The positions 

of the molecular mass standards are shown and expressed in kDa and the positions of pc 

and Aic2A are indicated.
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phosphopeptide pY575 was able to inhibit this association (Fig. IV. 12 A). In Ba/F3 cells, the 

phosphopeptide representing residues surrounding tyrosine 610 of Aic2A was unable to inhibit 

the precipitation of tyrosine phosphorylated Aic2A by the FLShc-GST fusion proteins whereas 

phosphopeptide pY575 completely inhibited this association. Additionally, it also appears that 

phosphopeptide pY577 was also capable of inhibiting the precipitation of tyrosine 

phosphorylated SHIP.

Taken together, these peptide competition analyses suggest that She interacts with 

tyrosine phosphorylated pc/Aic2A primarily via its PTB domain and the sequences 

surrounding tyrosine 577 of pc/ 575 of Aic2A, whereas the She SH2 domain interacts with 

residues surrounding tyrosine 612 of Pc/ 610 of Aic2A with lower affinity and therefore may 

play a secondary or stabilising role.

IV.F Interaction of She with a tvrosine phosphorylated 100 kDa protein in Ba/F3 cells.

In Shc-GST precipitates from IL-3 stimulated Ba/F3 cells, a tyrosine phosphorylated 

100 kDa protein was precipitated by the FLShc- and SH2Shc- GST fusion proteins, but not by 

the PTBShc-GST fusion protein (Fig. IV.3 B). A tyrosine phosphorylated 100 kDa protein has 

also been shown to be precipitated by Grb2-GST, anti-p85 PI3-K antibodies, the isolated SH2 

domains of p85 and anti-SHP-2 antibodies in IL-3 stimulated FD-5 cells (Welham et a l , 

1994b). This 100 kDa protein has now been shown to directly interact with the p85 subunit of 

PI3-K and SHP-2 (Craddock and Welham, 1997) and has been recently cloned and has been 

called Gab2 (Gu et al.} 1998) (see section in.E).

To determine if the Shc-GST fusion proteins could also directly bind to this tyrosine 

phosphorylated p i00 protein which associates with SHP-2, sequential immunoprecipitations 

were performed in Ba/F3 cells which had either been left untreated as a control (C) or 

stimulated with IL-3 for 10 minute (3). Cell extracts were initially immunoprecipitated with 

anti-SHP-2 antibodies. The precipitated material was boiled and denatured with SDS and P- 

mercaptoethanol and the resulting extracts reprecipitated with the FLShc-, SH2Shc-, or 

PTBShc- GST fusion proteins. As would be expected, the primary anti-SHP-2 antibodies 

immunoprecipitated a major tyrosine phosphorylated p i00 protein from IL-3 stimulated Ba/F3
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FIGURE IV. 13

A.

Blot:
4G10

1°
2° I.P. B.

a-SHP2 c  IL^  M 
C 3 g! Eu *  fc

200-

<«Aic2A

^SHP-2rW t

1°

a-p85 
C 3

2°

SH2 
C 3

200 -

1 1 6 -
97“

66-

The SH2, but not the PTB, domain of She binds directly to plOO.

Factor deprived Ba/F3 cells were either left untreated as a control (C) or stimulated with 

IL-3 (3). (A) Cell extracts from the equivalent of 2 x 107 cells/sample were precipitated 

with 1 pg anti-SHP-2 antibody. Primary anti-SHP-2 precipitates were eluted and 

denatured by boiling in SDS sample buffer and 1/10 of the sample reserved for the primary 

immunoprecipitation sample. After dilution, the samples were re-precipitated with 10 pg 

of either the FL-, PTB- or SH2- Shc-GST fusion proteins. (B) Cell extracts from the 

equivalent of 2 x 107 cells were precipitated with anti-p85 antibodies. The primary 

precipitation was eluted, denatured and diluted before a secondary precipitation with 10 

pg SH2Shc-GST fusion protein. All samples were resolved by SDS-PAGE through 7.5% 

acrylamide gels and immunoblotted with 4G10 antibodies. The positions of Aic2A, p i00 

and SHP-2 are indicated and the molecular mass standards are shown and expressed in 

kDa.
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cells (Fig. IV. 13 A). A faint band of around 135 kDa was also precipitated. This is most 

likely Aic2A, as it has already been shown that SHP-2 associates with pc in human cells (see 

Chapter IE). The secondary precipitation with the FLShc- and the SH2Shc- GST fusion 

proteins re-precipitated the tyrosine phosphorylated p i00 protein from IL-3 stimulated cells, 

but the PTBShc-GST fusion protein did not, paralleling the results seen initially in the direct 

FLShc-, PTBShc- and SH2Shc- GST precipitations (Fig. IV.3 B). The tyrosine 

phosphorylated 135 kDa Aic2A protein was not observed to be re-precipitated by the Shc-GST 

fusion proteins as would be expected. This was probably due to detection limit problems as 

only a faint tyrosine phosphorylated 135 kDa band was observed in the initial anti-SHP-2 

immunoprecipitation. Alternatively, SHP-2 may not precipitate the same subset of tyrosine 

phosphorylated Aic2A that She is able to bind. These results were observed in two separate 

experiments and suggest that the SH2 domain of She can directly interact with the same 

tyrosine phosphorylated p i00 protein precipitated by SHP-2 in IL-3 stimulated Ba/F3 cells.

To investigate whether the p i00 protein precipitated by the She SH2 domain was the 

same protein observed to interact with the p85 subunit of PI3-K (Craddock and Welham, 

1997), sequential immunoprecipitations in which p i00 was first precipitated by anti-p85 

antibodies and then reprecipitated by the ShcSH2-GST fusion protein were performed (Fig.

IV. 13 B). A tyrosine phosphorylated 100 kDa protein was precipitated by anti-p85 antibodies 

from Ba/F3 cells which had been stimulated for 10 minutes with IL-3 (3). This protein was 

reprecipitated by the SH2Shc-GST fusion protein suggesting that She can bind directly via its 

SH2 domain to the same tyrosine phosphorylated protein co-precipitated by anti-p85 

antibodies (these results were observed in two individual experiments). Thus it appears that 

She can associate, via its SH2 domain, with the same p i00 protein which directly associates 

with both SHP-2 and the p85 subunit of PI3-K and is therefore likely to be Gab2.
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IV.G Discussion.

The data presented here demonstrate that following IL-3 stimulation, the adaptor 

protein She can inducibly associate with pc/Aic2A, via both its PTB and SH2 domains, with 

the inositol polyphosphate-5-phosphatase SHIP via its PTB domain, and with a murine 100 

kDa protein and human 120 kDa protein via its SH2 domain. Mapping studies, based on 

phosphopeptide competition analyses, suggest residues surrounding tyrosine 612/610 of 

pc/Aic2A are the predominant site of She SH2 interaction and residues surrounding tyrosine 

577/575 of pc/Aic2A are the predominant site for She PTB-mediated association. These 

results extend previous studies which had reported GM-CSF-induced association of She with 

pc (Lanfrancone et a l , 1995) but had not mapped the site of association. Also, in COS cells, 

non-ligand-dependent, JAK2 phosphorylation of pc at tyrosine 577 had been shown to be 

sufficient for the binding of the PTB domain of She to Pc (Pratt et a l, 1996). This is now 

shown to be an IL-3-regulated event, which is important, given that there is evidence which 

suggests that GM-CSF and IL-3 can regulate signalling pathways differently (Scheid et ah,

1995).

Association of She with transmembrane receptors is believed to be crucial in activation 

of the ras-MAP kinase pathway (Bonfini et a l, 1996). The SH2 domain of She has been 

shown to associate with transmembrane receptors, such as the EGFR (Pelicci et a l, 1992, 

Blaikie et a l, 1994), the PDGFR (Yokotoe et a l, 1994) and with gpl30 in response to IL-6 

(Gioradano et a l, 1997) but the precise binding sites have not been determined. The sequence 

surrounding tyrosine 612 of pc (LEYLCLP) and tyrosine 610 of Aic2A (LEYMCLP) broadly 

conform to the predicted consensus recognition sequence for the She SH2 domain of 

pY[I/E/Y/L]x[I/L/M] (Songyang et a l, 1994) and based on the results presented here, it would 

appear tyrosine 612/610 of Pc/Aic2A is the primary ShcSH2-binding site of reasonable 

affinity. A partial inhibition of precipitation of Pc/Aic2A with the SH2Shc-GST fusion 

protein by phosphopeptide pY750/pY745 was also observed. The sequence surrounding 

tyrosine 750/745 in pc/Aic2A is YVEL which also loosely conforms to the She SH2 domain 

consensus binding motif. Work by Inhom et al (1995) has shown a reduction in She tyrosine 

phosphorylation in response to GM-CSF when tyrosine 750 of pc is mutated to phenylalanine
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but binding of She to this residue was not investigated. Interestingly, Pratt et al (1996) did 

not see an association of pc with the SH2 domain of She using a SH2-CH-GST fusion protein. 

However, they used a non-ligand dependent system relying solely on transfected JAK2 for 

phosphorylation of transfected pc, so perhaps an additional kinase is required to associate with 

the receptor to phosphorylate tyrosine 612.

In response to IL-3, the PTB domain of She was also shown to interact directly with 

tyrosine phosphorylated Pc at sequences surrounding tyrosine 577. Other receptors, including 

the EGFR (Blaikie et a l , 1994) and the NGFR (van der Geer et a l , 1995; Dikic et a l , 1995) 

have previously been shown to interact with the PTB domain of She. Data derived from 

examining the binding of the She PTB domain to sequence motifs derived from growth factor 

receptors and oncoproteins has defined the minimal She PTB binding motif as N-X-X-pY and 

suggest a high affinity motif as hydrophobic residue-(D/E)-N-X-X-pY-(W/F) (Laminet et al,

1996). The only residues within the Pc/Aic2A cytoplasmic domain that fits such a recognition 

motif are surrounding tyrosine 577/575 (SFDFNGPpYLGP). Mutation of tyrosine 577, in pc, 

to phenylalanine is reported to lead to abolition of detectable tyrosine phosphorylated She in 

response to GM-CSF (Durstin et a l, 1996). However, this study did not address the direct 

binding of She to tyrosine 577 of pc.

The interaction of the PTB domain with residues surrounding tyrosine 577/575 of 

Pc/Aic2A appears to be of higher affinity when compared to the association of the SH2 

domain of She with residues surrounding tyrosine 612/610 of pc/Aic2A, as only lpM pY575 

was sufficient to inhibit the association of PTBShc-GST with pc/Aic2A (Fig. IV. 10 B and

IV. 11 B), whereas 25 pM pY612 was required to inhibit the association of SH2Shc-GST with 

pc/Aic2A (Fig. IV.8 B and IV.9 B). These findings are consistent with reports that the binding 

affinities of the She PTB domain to tyrosine phosphorylated peptides are as much as 100 times 

greater than those of the She SH2 domain (Kavanaugh et a l, 1995; Zhou et a l, 1996b). In 

response to EGF, the PTB domain of She is also reported to bind with higher affinity to the 

EGF receptor when compared to the affinity of the SH2 domain (Sakaguchi et a l, 1998). 

Additionally here, only phosphopeptide pY575 was able to inhibit the IL-3-induced 

association of FL She with pc/Aic2A and not phosphopeptide pY612/610 (Fig. IV. 12). This 

would suggest that She primarily binds via its PTB domain to the sequences surrounding
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tyrosine 577/575 of pc/Aic2A. It is possible that after this association, She may then bind via 

its SH2 domain to the sequences surrounding tyrosine 612/610. This secondary binding may 

induce a functionally important conformational change important for mediating downstream 

signalling events, perhaps by making tyrosine 317 accessible to the SH2 domain of Grb2.

She is one of the primary targets of IL-3-induced tyrosine phosphorylation (Welham et 

ah, 1994a). The majority of tyrosine phosphorylated She resides in the cytosol and it is still 

not clear whether She needs to be recruited to Pc in order for it to become tyrosine 

phosphorylated. It has previously been shown that Ba/F3 cells expressing a tyrosine to 

phenylalanine mutation at tyrosine 577 of pc are defective in GM-CSF-induced 

phosphorylation of She but the binding of She to pc was not examined (Durstin et ah, 1996). 

Itoh et al (1996) and Okuda et al (1997) also show that tyrosine 577 is essential and sufficient 

for She phosphorylation but again the association of She with pc was not examined. In 

mutants expressing a tyrosine to phenylalanine mutation at 612, normal She phosphorylation 

was reported (Durstin et a l , 1996) and in mutants expressing only tyrosine 612, with all others 

tyrosines mutated to phenylalanine, no phosphorylation of She was observed (Okuda et a l ,

1997). Taken together with the results presented here, these data suggest that She does not 

need to bind to residues surrounding tyrosine 612/610 in order to become tyrosine 

phosphorylated. Rather, the initial binding of the She PTB domain to tyrosine 577/575 of 

pc/Aic2A may be sufficient to localise She so that it can be tyrosine phosphorylated, if this is 

indeed required. However, one cannot exclude the possibility that the tyrosine 577 to 

phenylalanine mutants fail to recruit/activate a critical kinase or kinases required for She 

phosphorylation, thus explaining the lack of She phosphorylation in such mutant receptor 

expressing cells.

The PTB domain of She also appeared to be directly interacting with tyrosine 

phosphorylated proteins of 130-145 kDa which were identified as the inositol polyphosphate- 

5-phosphatase SHIP in Ba/F3 and TF-1 cells (section IV.D). Both the 130 and 140 kDa 

proteins in IL-3 stimulated Ba/F3 cells immunoreacted with anti-SHIP antibodies. Kavanaugh 

et al (1996) also showed the PTB domain of She interacting with tyrosine phosphorylated 130 

and 145 kDa proteins which were determined to be alternative products of the same gene. 

Additionally, antiserum generated against the SH2 domain of SHIP has been shown to

125



recognise the 145-, 135-, 125-, and 110 kDa proteins in many haemopoietic cell lines (Liu et 

a l, 1997 a, b) and some of the lower molecular weight proteins have recently been identified 

as C-terminal truncations of the full-length SHIP protein (Damen et al 1998). Therefore, both 

the tyrosine phosphorylated 130 and 140 kDa proteins interacting with the PTB domain of She 

are most likely SHIP and a C-terminally truncated full length SHIP protein.

SHIP has been shown to interact with She via two mechanisms: i) the PTB domain of 

She can bind NPXpY motifs of SHIP and ii) the SH2 domain of SHIP can bind via tyrosine 

317 of She in vitro (Liu et a l , 1997a). The PTB domain of She has been shown to be 

necessary and sufficient for its association with tyrosine phosphorylated SHIP during T cell 

receptor signalling and the carboxyl terminal NPXpY motifs of SHIP appear to be required for 

the in vivo association of She with SHIP (Lamkin et a l , 1997; Liu et a l, 1997a). However, 

there are conflicting reports on the association of the SH2 domain of SHIP with She. One 

study has reported that a functional SHIP SH2 domain was also required for association with 

She as SHIP mutants lacking a functional SH2 domain did not precipitate She and were not 

detectably tyrosine phosphorylated (Liu et a l, 1997a). They suggest that the SH2 domain of 

SHIP is required to bind to a tyrosine kinase directly or bind to She via residues surrounding 

tyrosine 317 to be translocated to the vicinity of a tyrosine kinase. The subsequent 

phosphorylation of SHIP would allow the PTB domain of She to bind to SHIP. However, this 

may be an indirect effect as mutation of the SH2 domain of SHIP abrogated SHIP tyrosine 

phosphorylation in these experiments and thus would preclude the binding of the She PTB 

domain to SHIP. This alternate interpretation is supported by Lamkin et al (1997) who 

observed that the SH2 domain of SHIP was dispensable for Shc-SHIP interaction as a She 

construct containing a mutant PTB domain failed to interact with SHIP. In addition, a CH- 

SH2 domain construct (which contains tyrosine 317) also failed to co-precipitate SHIP 

(Lamkin et al, 1997). This does not rule out the possibility that the SH2 domain of SHIP 

interacts with tyrosine 317 of She, but may suggest that this interaction is not of high affinity 

or is a secondary interaction.

Phosphopeptide pY575 not only inhibited PTBShc- (Fig. IV. 10 and IV. 11) and FLShc- 

GST (Fig. IV. 12) from interacting with the tyrosine phosphorylated IL-3 receptor, but also 

inhibited the precipitation of tyrosine phosphorylated SHIP. Binding of pY575 to the She PTB
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domain would prevent tyrosine phosphorylated SHIP from interacting with the PTB domain of 

She. Since pY575 inhibited both the PTB domain alone and FL She from precipitating 

tyrosine phosphorylated She, this would suggest that tyrosine phosphorylated SHIP primarily 

interacts with the PTB domain of She and that the interaction with the SH2 domain of SHIP 

and tyrosine 317 of She is a secondary or lower affinity interaction. SHP-2 has also been 

shown to associate with SHIP following IL-3 stimulation. The association has been shown in 

vitro to occur through a direct interaction of the SH2 domain of SHIP with a pYXN(I/V) motif 

within SHP-2 (Liu et a l , 1997b). Thus, prevention of SHIP binding to the PTB domain of FL 

She by pY575 may alternatively weaken the affinity of SHIP for She and result in the binding 

of SHIP to SHP-2. This could subsequently lead to the dephosphorylation of SHIP by SHP-2.

SHIP has been shown to play a negative role in growth factor signalling. 

Overexpression of SHIP has been shown to induce an apoptotic effect in DA-ER cells which is 

mediated by the SH2 domain of SHIP (Liu et a l , 1997a) and retroviral expression of SHIP has 

been shown to result in inhibition of cell growth in response to M-CSF and IL-3 in FD cells 

(Lioubin et a l , 1996). In B cells, co-clustering of the B cell receptor and FcyR, an early event 

linked to the down-regulation of proliferation induced by antigen receptor stimulation, is 

required for optimal SHIP tyrosine phosphorylation and its association with She (Chacko et 

a l, 1996) and it has been proposed that SHIP may function to inhibit early activation events 

like calcium influx (Ono et a l , 1996). SHIP has inositol polyphosphate-5-phosphatase activity 

and can hydrolyse PI(3,4,5)P3, the primary product of PI3K, to PI(3,4)P2 (Damen et a l , 1996; 

Lioubin et a l, 1996). Thus, localisation of SHIP to the vicinity of its lipid substrates could 

lead to down-regulation of PI3-K-induced proliferation and survival signals (Yao and Cooper, 

1995). Alternatively, SHIP may act as a negative regulator by competing with Grb2 for 

binding to SHP-2 or She and thereby down-regulate the Ras/MAP kinase pathway.

The SH2 domain of She also appeared to interact with a 120 kDa protein in IL-3- 

stimulated TF-1 cells and directly interact with a tyrosine phosphorylated 100 kDa protein 

following IL-3 stimulation of Ba/F3 cells. The precipitation of both p i00 and p i20 by the 

SH2Shc-GST fusion protein were also inhibited by phosphopeptides pY610 (Fig. IV.9) and 

pY612 (Fig. IV.8) respectively. In Ba/F3 cells, this protein appeared to be the same 100 kDa 

protein which had previously been shown to directly interact with both the SH2 domains of the
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p85 subunit of PI3-K and SHP-2 (Fig. IV. 13) (Craddock and Welham, 1997). It has now been 

shown by Gu et al (1998) that this 100 kDa protein is Gab2 and the results presented here are 

consistent with their findings that Gab2 associates with SHP-2, She and the p85 subunit of 

PI3-K. Since Gab2 was found to be expressed in many haemopoietic cell lines (Gu et al.,

1998), it is likely that the 120 kDa protein associated with the SH2 domain of She in TF-1 

cells is the human Gab2 protein. It has been previously proposed that direct binding of SHP- 

2 to the IL-3 receptor p subunit would allow for recruitment of a pl00:p85(PI3K) complex and 

hence translocate PI3-K to the vicinity of its lipid substrates (Craddock and Welham, 1997). 

Thus, She may function in a similar manner, allowing translocation of the pl00:p85(PI3-K) 

complex to the plasma membrane. Additionally, the pi 10 catalytic subunit of PI3-K has been 

shown to directly interact with Ras (Rodriguez-Viciana et al., 1994); however, it is not clear 

whether PI3-K acts as an effector or regulator of Ras. While evidence strongly suggests that 

PI3-K can stimulate Ras-dependent cellular processes, importantly activation of the MAP 

kinases erkl and erk2 ( Ferby et al., 1994; Welsh et al., 1994; Hu et a l, 1995; Jascur et al., 

1997; Kauffmann-Zeh et al., 1997; Sharma et a l, 1998), other data also suggests that Ras can 

regulate PI3-K (Rodriguez-Viciana et a l, 1994; Kauffmann-Zeh et a l, 1997). Therefore, She 

may function in translocating a Gab2:p85(PI3-K) complex to the plasma membrane 

transmitting signals resulting in conversion of PI(3,4)P2 to PI(3,4,5)P3, or resulting in 

Ras/MAP kinase regulation.

Based on the observations presented here, the following model can be proposed (see 

Fig. IV. 14). The primary association between pc/Aic2A and She is mediated by binding of the 

PTB domain of She with tyrosine 577/575 of pc/Aic2A, which may lead to phosphorylation of 

tyrosine 317 of She, possibly by JAK2. The subsequent binding of the SH2 domain of She to 

tyrosine 612/610 of pc/Aic2A may then induce a conformational change in She, exposing 

phosphotyrosine 317 to which the SH2 domain of Grb2 could then bind, thereby leading to the 

localisation of Sos to the plasma membrane where it could activate Ras. Alternatively, the 

binding of the PTB domain alone to pc may be sufficient for the binding of the SH2 domain of 

Grb2 to tyrosine 317 of She. She may also function in localising SHIP to the plasma 

membrane. The SH2 domain of SHIP has been shown to associate with She via tyrosine 317 

and the NPxY motifs within SHIP associate with the PTB domain of She (Liu et a l, 1997a).
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Therefore, the association of the SH2 domain of She with pc/Aic2A could function in 

localising SHIP to the plasma membrane. SHIP may also be localised to the membrane by 

association with SHP-2, as SHP-2 can also bind to residues surrounding tyrosine 612/610 of 

pc/Aic2A and SHIP has recently been shown to interact via its SH2 domain to one of the 

pYXN(I/V) motifs within SHP-2 (Liu et a l , 1997b). The localisation of SHIP to the 

membrane could function in the down-regulation of the PI3-K pathways as SHIP has the 

ability to dephosphorylate the primary product of PI3-K, PI(3,4,5)P3, to PI(3,4)P2. 

Alternatively, its binding to the Grb2 SH2 binding sites on She and SHP-2 could down- 

regulate the Ras/MAP kinase pathway. Finally, She can also bind, via its SH2 domain, to 

pl00/Gab2. Therefore, binding of the She PTB domain to Pc/Aic2A may function in 

localising p i00 and hence PI3-K to the plasma membrane where it could catalyse the 

conversion of PI(3,4)P2 to PI(3,4,5)P3 or be involved as an effector or regulator of Ras.

The data presented here suggest that She may play a complex role in integrating 

intracellular signalling pathways from the IL-3 receptor (see Fig. IV. 14). Evidence has been 

provided that She can, in an IL-3-dependent manner, directly interact with pc/Aic2A via its 

PTB domain and tyrosine 577/575 of pc/Aic2A and/or via its SH2 domain with tyrosine 

612/610 of Pc/Aic2A. These interactions provide not only a mechanism for localising the 

Grb2-Sos complex to the plasma membrane and so to the vicinity of Ras, but also potentially 

translocate SHIP and a pl00:PI3-K complex to the plasma membrane. The functional role of 

these interactions in IL-3 signalling events are the subject of the following chapter.
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CHAPTER V 

Expression of She Mutants in Ba/F3 cells.
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Chapter Five

V.A. Introduction and aims.

By examining the protein-protein interactions mediated by the various domains of 

She using GST fusion proteins, She has been shown to directly interact with the IL-3 

receptor p subunit in both human (pc) and mouse (Aic2A) cell lines in response to IL-3 

(section IV.E). In addition, She has also been shown to bind via its PTB domain to SHIP 

(section IV.D) and via its SH2 domain to a tyrosine phosphorylated 100 kDa protein 

(section IV.F). Thus, She may function as an adaptor molecule, regulating not only the 

Ras/MAP kinase pathway but may also be involved in regulating other pathways involving 

PI3-K and lipid metabolism (see Fig. IV. 14). To investigate the importance of She in 

integrating the complex network of IL-3-induced events, expression of various She mutants 

in the murine IL-3-dependent cell line, Ba/F3, and analyses of the functional consequences 

of their expression was next investigated. The effects of the She variants on IL-3-induced 

tyrosine phosphorylation of cellular substrates, activation of the MAP kinases erkl and 

erk2 and proliferation were examined.

V.B. The tetracycline-regulated expression system.

The choice of the appropriate in vivo expression system was deemed to be crucial to 

the potential success of these studies as expression of potentially dominant negative She 

mutants in IL-3-dependent cells may have detrimental effects on cell survival and 

proliferation, making derivation of stable clones constitutively expressing such variants 

difficult. Therefore, tight control of gene expression was essential. The expression system 

used in this study is a two vector system which utilises a tetracycline-sensitive regulator 

and is based on repression rather than induction (Gossen and Bujard, 1992; Gossen et a l , 

1993) (see Fig. V.l). Classical regulatable expression systems rely on induction, rather 

than repression, often making it difficult to determine whether the effects observed are due 

to expression of the gene of interest or due to nonspecific effects of the drug used for 

induction (such as dexamethasone). The two vectors used in the tetracycline-regulated 

gene expression system are the regulator plasmid (pUHD15-lpuro) and the response 

plasmid (pUHD10-3neo). The regulator plasmid encodes the tetracycline-sensitive 

transactivator, tTA, which is under control of the CMV promoter/enhancer, and followed
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by the SV40 polyA signal and puromycin resistance marker for selection of transfected 

cells (Mui et a l , 1996). The response plasmid carries the neomycin resistance marker and 

has a tTA-dependent promoter upstream of the MCS for insertion of ones gene of interest. 

In this system, the presence of tetracycline represses the activity of the tetracycline- 

sensitive transactivator and prevents it binding to the promoter so the gene of interest from 

the response plasmid is not expressed. Removal of tetracycline allows tTA to bind to the 

promoter in the response plasmid and drive expression of the cDNA of interest.
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FIGURE V.l
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A tetracycline sensitive transactivator, tTA, is encoded by the regulator plasmid pUHD15- 

lpuro. In the presence of tetracycline, the tTA is inactive and so is prevented from binding 

to the tTA-dependent promoter of the response plasmid, pUHD10-3neo, and the gene of 

interest is not expressed. Upon removal of tetracycline, tTA can bind to the promoter, 

resulting in expression of the gene.
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V.C. Construction of pUHD10-3neo expression vectors.

The plasmids used for the multi-step construction of pUHD10-3neo vectors, 

expressing the She variants, are listed in Table V.l, with the cloning strategy outlined in 

Fig. V.2. FL and PTB She domains were synthesised using PCR with oligonucleotides 

bordering the domains of interest, as outlined in section IV.B for the preparation of the 

Shc-GST fusion constructs, and containing appropriate restriction sites (Bglll and EcoRI). 

The SH2 domain (amino acids 366-473) of She was excised from pGSTShcSH2 (a gift of 

Dr. Tony Pawson (Toronto, Canada)) by restriction endonuclease digestion with BamHI 

and EcoRI. To enable direct detection of She variants, all cDNAs of interest were tagged, 

at the amino-terminal end, with a sequence encoding the decapeptide epitope recognized by 

the anti-c-myc monoclonal antibody, 9E10. Therefore, the domains were cloned into the 

BamHI/EcoRI site of pSSBSmyc2 (Craddock et al., 1999) creating an amino-terminal in- 

frame fusion with the myc tag. Before blunt end cloning into the Xbal site of pUHDlO- 

3neo, the Sail fragment of SH2pSSBSmyc2 was further subcloned into the Sail site of 

pl015Astop. Stop codons were engineered into the 3* antisense oligonucleotides used to 

amplify the FL and PTB domains. The pUHD10-3neo response plasmid (Gossen and 

Bujard, 1992; Gossen et al., 1993) was restriction endonuclease digested with Xbal and 

Klenow filled to create a blunt end. The Sail fragments of FL and PTB pSSBSmyc2 and 

SacII fragment of SH2pl015Astop were also Klenow filled and finally blunt end ligated 

into the Xbal site of pUHD10-3neo. pUHD10-3neo containing the Y317F She mutant, was 

a gift of Dr. Mike Gold (Department of Microbiology, University of British Columbia, 

Vancouver, B.C., Canada). The She amino acids and predicted myc tagged size of the 

expressed She variants are outlined in TableV.2.
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FIGURE V.2

Cloning steps involved in construction of She pUHD10-3neo expression vectors.
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TABLE V.l

Plasmids used for construction of pUHD10-3 neo expression vectors

Plasmid Features

pSSBS pBluescript (Stratagene) + 2 Sail sites in MCS

pSSBSNmyc2 Vector containing tandem copies of the cDNA ecoding the 10 amino 

acid myc tag epitope recognised by the monoclonal antibody, 9E10 

(Evan et al., 1985), with a short Gly-Ser linker following the second 

epitope, cloned into the Notl sites of the pBluescript based vector, 

pSSBS (Craddock et a l , 1999)

pl015Astop pBluescript based vector used to introduce in frame stop codons (gift 

of Dr. Paul Orban, EMBL, Heidelberg)

pUHD10-3neo pBR322 based vector with a hCMV minimal promoter containing 

heptemerised tet-operators upstream in two different orientation as 

described by Gossen and Bujard (1992), multiple cloning site 

containing SacII, EcoRI, and Xbal sites, and a SV40 polyadenylation 

sequence downstream of the multiple cloning site. The neomycin 

resistance gene was cut out of PGKNeo with EcoRI, Klenow filled 

and blunt end ligated into the PvuII site of pUHD10-3 (gift of M. 

Gossen, Heidelberg)

TABLE V.2

Summary of She variants expressed from pUHD10-3neo

Construct She amino acids Predicted myc tagged size 

of expressed protein (kDa)

FLShc 1-473 58

Y317FShc 1-473 58

PTBShc 1-238 32

SH2Shc 366-473 18
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V.D. Expression of She mutants in IL-3 dependent Ba/F3 cells.

To investigate the role of She in mediating IL-3-induced signalling events, various 

She mutants were expressed in IL-3-dependent Ba/F3 cells. Ba/F3 cells already expressing 

tTA from the plasmid pUHD 15-1 puro (Mui et al., 1996) were electroporated with the 

response plasmid (pUHD10-3neo) encoding the amino-terminally myc-epitope-tagged She 

variants: full length She (FL); full length She with a mutation at tyrosine 317 (the Grb2 

binding site) to phenylalanine (Y317F); the PTB domain alone (PTB); or the SH2 domain 

alone (SH2) (see section II.B.3). The She variants were tagged with a myc-epitope for easy 

detection of the expressed protein and for precipitation of these She variants from the cell. 

Transfectants were selected in the presence of tetracycline, G418 and puromycin and 

selected clones were assessed for inducible expression of the introduced cDNA by 

performing tetracycline removal time-course analyses (see section II.B.4). Initial 

screenings seemed to suggest that expression by the clones was very unstable and variable. 

After a couple of weeks, clones which initially had high inducible levels of expression 

showed only low constitutive levels. Continuing work by others in the lab eventually 

determined that the density at which the cells were set up was crucial to the level of 

induction observed. Reproducibly high levels of induction were observed when cells were 

cultured at a density of 1 x 105 cells per ml or less. However, at densities which cells were 

routinely cultured, of approximately 5 x 105 cells per ml, induction was more variable and 

often poor. This may be because if induction relies on removal of tetracycline from cells 

and the cells are growing more slowly due to their higher density, the levels of intracellular 

tetracycline may be depleted more slowly and induction may only occur at minimal levels. 

Therefore, cells were subsequently set up at 1 x 105 cells per ml for selection and the 

following analyses of the clones.

For each She variant, at least 100 clones were screened for inducible expression of 

the various She mutants and two clones of each variant which showed low basal levels of 

expression in the presence of tetracycline and high inducible expression levels when 

tetracycline was removed were selected for further detailed analyses. Initial screenings 

involving extensive tetracycline removal time-courses showed expression occurring within 

7 hours and maximal expression 16-24 hours after removal of tetracycline (results not 

shown). Expression was sustained over a 72 hour period and the half life of the proteins
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were at least 12 hours (work done by H. Bone and Charlotte Jago; results not shown). 

Figure V.3 shows typical expression levels of the FL (A), Y317F (B), SH2 (C), and PTB 

(D) She variants upon removal of tetracycline after approximately 24 hours. Transfectants 

were incubated at 1 x 105 cells per ml and extracts were prepared 24 hours after removal of 

tetracycline and assayed for protein content, by Bradford assay, to ensure even loading of 

the gels. The proteins were separated by SDS-PAGE, transferred to nitrocellulose and 

immunoblotted with 9E10 antibodies to detect the myc tagged expressed She proteins (Fig. 

V.3 upper panels). The blots were stripped and reprobed with anti-Shc antibodies to 

compare the levels of expressed She variants to endogenous She (Fig. V.3 lower panels). 

FL She proteins were expressed 5 -20 fold that of endogenous p52Shc and Y317F and SH2 

She proteins were expressed 10-50 fold that of endogenous p52shc, as determined by 

densitometric analysis. However, the anti-Shc antibody was raised against the SH2 

domain of She and hence will not detect the expressed PTB domain; therefore, comparison 

of the levels of expressed PTB protein to endogenous She cannot be determined using this 

antibody. The clones, shown in Fig. V.3, were used for subsequent analyses and are as 

follows: FL She 3E and 6G; Y317F She 8D and 8H; SH2 She 2A10 and 3C11; PTB She 

4C and 4F.

V.E . The expressed She variants interact with tvrosine phosphorvlated proteins in 

response to IL-3.

In order to determine if the expressed She proteins interact with a similar set of IL- 

3-induced tyrosine phosphorylated proteins as endogenous She and to confirm the 

interactions determined by in vitro analyses (see Chapter IV), precipitations using the anti- 

myc epitope antibody (9E10) from IL-3 stimulated transfectants expressing the various She 

constructs were performed. Tyrosine phosphorylated proteins which co-precipitate with 

She following treatment with IL-3 in murine cells have been identified in vitro using GST 

fusion proteins (see Chapter IV). These are proteins of 135-145 kDa, which represents the 

murine IL-3 R chain, Aic2A, as well as proteins of 130 and 140 which appear to be the 

inositol polyphosphate 5’-phosphatase, SHIP.

Cells were incubated at 1 x 105 cells per ml in the presence of tetracycline or the 

absence of tetracycline for 16 hours to induce expression, and then either left untreated as a
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Figure V.3 

Expression of myc-tagged She proteins.

Ba/F3 clones expressing FL She (A), the Y317F She mutant (B), the SH2 domain alone 

(C), or the PTB domain alone (D) were plated at 1 x 105 cells per ml in the presence (+) or 

absence (-) of 2 pg/ml tetracycline and cell extracts prepared after 24 hours. 15 pg of 

protein was loaded in each lane and separated through 7.5% (A,B)» 15% (C), or 12% (D) 

acrylamide gels by SDS-PAGE. The gels were transferred to nitrocellulose and 

immunoblotted with the 9E10 monoclonal antibody which recognises the myc tagged 

expressed She proteins (upper panels). The same immunoblots were then stripped and 

reprobed with anti-Shc antibodies (lower panels). Molecular mass standards are shown 

and expressed in kDa and the positions of the expressed and endogenous She proteins are 

indicated. The clones shown here, FL3E, FL 6G, Y317F 8D, Y317F 8H, SH2 2A10, SH2 

3C11, PTB 4C and PTB 4F, were used for subsequent analyses.
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control (C) or stimulated with IL-3 (3) for 10 minutes. 9E10 immunoprecipitations were 

subsequently performed on the resulting cell extracts. The experiments were repeated 

twice and the results of one clone expressing each of the She variants are shown in Figure 

V.4, although similar results were observed with the other clone in each case. Anti-Shc 

immunoprecipitates from Ba/F3 cells (Fig. V.4 A) are shown for comparison. Anti-Shc 

antibodies precipitate the tyrosine phosphorylated proteins of 135-145 kDa and 130 and 

140 kDa (which are Aic2A and SHIP (see section IV.E)) from Ba/F3 cells after IL-3 

stimulation. (Fig. V.4 A). It appears that the FL (Fig. V.4 B), Y317F (Fig. V.4 C) and PTB 

(Fig. V.4 D) expressed She proteins are able to interact with similar tyrosine 

phosphorylated proteins. In addition, the expressed SH2 domain appears to be able to 

interact weakly with a tyrosine phosphorylated 135 kDa protein (Fig. V.4 E), likely to be 

Aic2A since the SH2 domain of She does not interact with SHIP (Liu et a l, 1994). It is 

interesting to note that the expressed She SH2 domain does not appear to interact with an 

IL-3-induced tyrosine phosphorylated protein of 100 kDa that was observed in ShcSH2- 

GST precipitations from IL-3-stimulated Ba/F3 cells (see section IV.F), suggesting that the 

interaction does not occur at detectable levels in this in vivo system. These results suggest 

that the expressed She proteins are capable of binding to a similar set of tyrosine 

phosphorylated proteins as endogenous She and confirm that the interactions of She with 

Aic2A and SHIP determined in vitro likely occur in vivo: the expressed FL, Y317F and 

PTB She proteins appear to be able to interact with both tyrosine phosphorylated Aic2A 

and SHIP whereas the expressed SH2 domain only binds one tyrosine phosphorylated 

protein of the size of Aic2A.

V.F. Effects of expression of She variants on IL-3-induced tvrosine phosphorylation 

of cellular substrate.

To determine if expression of any of the She variants has a dramatic effect on both 

the levels of IL-3-induced tyrosine phosphorylation and the substrates inducibly tyrosine 

phosphorylated in response to IL-3, the patterns of tyrosine phosphorylated cellular 

substrates induced by IL-3 was investigated in the various transfectants in both the 

presence and absence of induced expression. IL-3 time-course analyses, as well as specific 

immunoprecipitations, were performed.
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Figure V.4

Association of the expressed She variants with tyrosine phosphorylated proteins.

(A) Ba/F3 cells were either left untreated as a control (C) or stimulated with 20 ng/ml 

rmIL-3 for 10 minutes (3). Cell extracts from the equivalent of 1 x 10 cells were then 

precipitated with 2 pg anti-Shc antibodies. Clones FL 3E (B), Y317F 8D (C), PTB 4F (D), 

and SH2 3C11 (E) were plated at 1 x 105 cells per ml in the presence (+) or absence (-) of 

2 pg/ml tetracycline and incubated for 16 hours. Cells were washed and factor deprived 

for 45 minutes, then either left untreated as a control (C) or stimulated for 10 minutes with 

20 ng/ml rmIL-3 (3). Cell extracts from the equivalent of 1 x 107 cells were precipitated 

with 5pg 9E10 antibodies. All samples were separated through 7.5% acrylamide gels by 

SDS-PAGE and immunoblotted with 4G10 anti-phosphotyrosine antibodies. Molecular 

mass standards are shown in kDa and the positions of the 130 and 135 kDa proteins are 

indicated. These data presented in this figure are representative of two separate 

experiments with similar results observed for the other clone in each case.
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Chapter Five

V.F.l Effects on overall IL-3-induced tyrosine phosphorylation.

IL-3 induces tyrosine phosphorylation of a number of cellular proteins including 

Aic2A, SHIP, pl20JAK2, p90STAT5, plOO, SHP-2, p46shc, and p52shc (see Introduction). In 

whole cell lysates from cells expressing the She proteins incubated in the presence or 

absence of tetracycline, IL-3 induces tyrosine phosphorylation of a number of proteins (Fig. 

V.5). As would be expected, in the presence of tetracycline (i.e.; no expression of She 

proteins), transfectants showed a very similar profile of tyrosine phosphorylated proteins as 

seen in normal Ba/F3 cells stimulated with IL-3 (see Fig. IV.3 B and IV.5 A). When FL 

She was expressed (Fig. V.5 A), there was a marked IL-3-induced tyrosine phosphorylation 

of the expressed FL She proteins but there also consistently appeared to be a reduction in 

IL-3-induced tyrosine phosphorylation of endogenous p52shc and p46Shc which was 

observed in three separate experiments in both FL She expressing clones. A mean 2.9 fold
CLp

reduction in endogenous p52 phosphorylation in cells overexpressing FL She was 

determined by densitometry and statistical analysis (presented in Appendix I; p=0.1153). In 

addition, there also appeared to be a slight decrease in IL-3-induced tyrosine 

phosphorylation of SHP-2, but this was not observed consistently. Expression of the FL 

She protein was greater than 10 fold that of endogenous p52Shc (as determined by 

densitometer readings of an anti-Shc re-probe; results not shown).

In cells expressing the Y317F mutant She protein (Fig. V.5 B), the Y317F She 

protein was only moderately tyrosine phosphorylated in response to IL-3 owing to the fact 

that the major site of phosphorylation, tyrosine 317, was mutated to phenylalanine. 

However, this results implies that there are other tyrosine(s) within She capable of being 

phosphorylated in response to IL-3. An apparent slight decrease in IL-3-induced 

endogenous She phosphorylation was observed in clones expressing the Y317F mutant She 

protein. The time-course analyses were performed three times and similar results were 

observed for both clones with the levels of Y317F She expression 10 fold that of 

endogenous p52 (as determined by densitometer readings; results not shown). A mean 

1.8 fold reduction in endogenous p52shc phosphorylation in cells overexpressing Y317F 

She was determined by densitometry and statistical analysis (presented in Appendix I; 

p=0.1223). Decreases in endogenous She phosphorylation were also consistently observed

145



FIGURE V.5
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Chapter Five

in FL and Y317F She expressing cells in pre-immunoprecipitation extracts from other 

experiments.

Expression of the SH2 domain (Fig. V.5 C) or PTB domain (Fig. V.5 D) alone 

appeared to have no detectable effect on IL-3-induced tyrosine phosphorylation of cellular 

substrates over a period of 20 minutes, even though the SH2 She protein was expressed up 

to 50 fold that of endogenous p52Shc. All time-course analyses were performed at least 

twice and similar results were also observed in whole cell extracts from other experiments. 

Therefore, the only consistent detectable effects seen on IL-3-induced tyrosine 

phosphorylation of protein substrates from whole cell extracts of cells expressing the 

various She mutants appeared to be a moderate reduction in endogenous She 

phosphorylation in cells expressing FL She and a slight reduction in endogenous She 

phosphorylation in cells expressing the Y317F mutant She.

V.F.2 Effects of expression of She variants on endogenous She phosphorylation.

Having observed a slight reduction in IL-3-induced endogenous She 

phosphorylation in cells expressing FL She and Y317F She, this was investigated further. 

Assuming that She is required to bind to the IL-3 receptor in order to become tyrosine 

phosphorylated, expression of these She mutants may inhibit phosphorylation of 

endogenous She by competing with endogenous She for the binding to activated Aic2A. 

Anti-Shc immunoprecipitates were performed and then immunoblotted with 4G10 anti- 

phosphotyrosine antibodies to specifically observe the effects of expression of the She 

variants on endogenous She phosphorylation (Fig. V.6 upper panels). As was seen in the 

whole cell lysates, there appeared to be a reduction in IL-3-induced endogenous She 

phosphorylation in cells expressing FL (Fig. V.6 A) and Y317F (Fig. V.6 B) but not in 

cells expressing the PTB domain alone (Fig. V.6 D). However, in these anti-Shc 

immunoprecipitates, there also appeared to be a pronounced reduction in endogenous She 

phosphorylation in cells expressing the SH2 domain (Fig. V.6 C). Gotoh et al (1996) had 

also observed a similar reduction in endogenous tyrosine phosphorylated She in Ba/F3 cells 

expressing the SH2 domain in an inducible manner. However, when the blots in Figure
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Figure V.6

IL-3-induced endogenous She phosphorylation in cells expressing She variants.

Clones FL 3E (A), Y317F 8D (B), SH2 2A10 (C), and PTB 4C (D) were plated at 1 x 105 

per ml in the presence (+) or absence (-) of 2 pg/ml tetracycline for 16 hours. Factor 

deprived cells were then either left untreated as a control (C) or stimulated with 20 ng/ml 

rmIL-3 for 10 minutes (3). Cell extracts from the equivalent of 5 x 106 cells were 

precipitated with 2 pg anti-Shc antibodies. All samples were separated through 7.5% 

acrylamide gels by SDS-PAGE and immunoblotted with 4G10 antibodies (upper panels). 

The blots were then stripped and reprobed with anti-Shc antibodies (middle panels). To 

detect the expressed proteins, samples of the total cell extracts were removed prior to 

precipitation and separated through 7.5% (A and B lower panels), 15% (C) or 10% (D) 

acrylamide gels and immunoblotted with 9E10 antibodies. Molecular mass standards are 

shown in kDa and the positions of the expressed proteins, p52Shc, and p46Shc are indicated. 

These data presented in this figure are representative of two-four separate experiments with 

similar results observed for the other clone in each case.
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Chapter Five

V.6 were stripped and reprobed with anti-Shc antibodies (middle panel), an interesting 

phenomenon was observed. In cells expressing FL (A), Y317F (B), or the SH2 domain 

alone (C), there was a marked reduction in the amount of endogenous She being 

precipitated from the cells in both unstimulated and IL-3-stimulated samples. Therefore, it 

appeared that the expressed protein was competing with endogenous She for a limited pool 

of anti-Shc antibodies resulting in less endogenous She being precipitated from the cell. 

This was not observed in cells expressing the PTB domain alone as the antibody is directed 

towards the SH2 domain of She and therefore cannot bind to the PTB domain alone. 

Gotoh et al (1996) failed to perform this extra re-probing step and therefore the reduction 

they saw in endogenous She phosphorylation resulting in expression of the SH2 domain 

was most likely due to this phenomenon and not due to the SH2 domain specifically and 

competitively inhibiting tyrosine phosphorylation of endogenous She.

To overcome the anti-Shc antibody problem, Grb2SH2-GST precipitations were 

performed on cells expressing FL, Y317F and the She SH2 domain (Fig. V.7). The 

Grb2SH2-GST fusion protein should only precipitate She tyrosine phosphorylated at Y317 

and therefore not bind significantly to the expressed Y317F She mutant or to the She SH2 

domain alone. Additionally, at 10 pg/ml the Grb2SH2-GST fusion protein should not be 

limiting so even though it can bind to the expressed FL She protein there ought to be 

excess remaining to precipitate endogenous She. In cells expressing FL She (Fig. V.7 A), 

there was a reduction in IL-3-induced tyrosine phosphorylated endogenous p52shc and
«L_

p46 precipitated by the Grb2SH2-GST fusion protein. Densitometric analysis of three 

individual experiments indicated a mean 2.4 fold decrease in endogenous p52shc 

phosphorylation in cells expressing FL She (statistical analysis presented in Appendix I; 

p=0.2012). The Grb2 SH2 domain can also interact with tyrosine phosphorylated SHP-2 

(Welham et al., 1994b). Expression of FL She did not appear to affect the amount of IL-3- 

induced tyrosine phosphorylated SHP-2 precipitated by the Grb2 SH2 domain. In cells 

expressing the Y317F mutant, there was also a reduction in IL-3-induced tyrosine 

phosphorylated endogenous p52Shc and p46shc precipitated by the Grb2SH2-GST fusion 

protein (Fig. V.7 B). A mean 2.2 fold decrease in endogenous p52shc phosphorylation in 

cells expressing Y317F She was determined by densitometric analysis of three separate 

experiments (statistical analysis presented in Appendix I; p=0.1347). There was a small
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Figure V.7

IL-3-induced endogenous She phosphorylation is decreased in cells expressing FL

and Y317F She but not the SH2 domain alone.

Clones FL 3E (A), Y317F 8D (B), and SH2 3C11 (C) were plated at 1 x 105 per ml in the 

presence (+) or absence (-) of 2 pg/ml tetracycline for 16 hours. Factor deprived cells were 

then either left untreated as a control (C) or stimulated with 20 ng/ml rmIL-3 for 10 

minutes (3). Cell extracts from the equivalent of 5 x 106 cells were precipitated with 10 pg 

Grb2SH2-GST fusion protein. All samples were separated through 7.5% acrylamide gels 

by SDS-PAGE and immunoblotted with 4G10 antibodies (upper panels). To detect the 

expressed proteins, samples of the total cell extracts were removed prior to precipitation 

and separated through 7.5% (A and B lower panels), or 12% (C lower panel) acrylamide 

gels and immunoblotted with 9E10 antibodies. The positions of the molecular mass 

standards are shown and expressed in kDa and the positions of the expressed proteins, 

p52Shc, p46shc, and SHP-2 are indicated. These data presented here are representative of 

two-five separate experiments with similar results observed for the other clone in each 

case.
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Chapter Five

amount of tyrosine phosphorylated expressed Y317F She protein precipitated by Grb2SH2- 

GST, suggesting that other tyrosine phosphorylated site(s) on She could interact with the 

SH2 domain of Grb2 in vitro. Again, there was no reduction in tyrosine phosphorylated 

SHP-2 precipitated by Grb2SH2-GST fusion protein in cells expressing the Y317F mutant. 

However, expression of the She SH2 domain alone (Fig. V.7 C) had no effect on 

endogenous IL-3-induced tyrosine phosphorylated p52Shc and p46shc precipitated by 

Grb2SH2-GST, contrary to what was initially observed in the anti-Shc immunoprecipitates 

(Fig. V.6 C). Again, no effect on IL-3-induced tyrosine phosphorylated SHP-2 precipitated 

by GrbSH2-GST was observed in cells expressing the SH2 domain alone. Therefore, it 

appears that expression of the FL and Y317F mutant She proteins caused a reduction in IL- 

3-induced endogenous She tyrosine phosphorylation whereas expression of the SH2 or 

PTB domain alone had no effect on IL-3-induced She tyrosine phosphorylation.

V.F.3 Effects of expression of She variants on SHP-2 tyrosine phosphorylation.

A slight reduction in IL-3-induced SHP-2 tyrosine phosphorylation was observed in 

whole cell lysates from cells expressing FL She (Fig. V.5 A) but a similar reduction was 

not seen in Grb2SH2-GST precipitates (Fig V.7 A) (or in cells expressing Y317F or SH2). 

In human cells, SHP-2 appears to bind to residues surrounding the same Pc 

phosphotyrosine (Y 612) as the SH2 domain of She. Assuming SHP-2 is required to bind 

to Aic2A in order to become phosphorylated, it is possible that the expressed She variants 

could compete with SHP-2 for binding to Aic2A and hence affect SHP-2 phosphorylation. 

To examine total cellular IL-3-induced SHP-2 tyrosine phosphorylation (instead of only 

that associated with the SH2 domain of Grb2), anti-SHP-2 immunoprecipitates were 

performed on cells expressing the She variants (Figure V.8). There did not appear to be a 

significant effect on DL-3-induced SHP-2 tyrosine phosphorylation upon overexpression of 

FL (A), Y317F (B), SH2 (C) or PTB (D) She variants. Expression of the She variants also 

had no significant effect on tyrosine phosphorylation of the 100 kDa protein co- 

precipitating with SHP-2. The 130 kDa protein precipitated in the anti-SHP-2 

immunoprecipitates is most likely Aic2A since it has been shown that SHP-2 can bind 

directly via its SH2 domain to Pc in TF-1 cells (section III.C). The precipitation of tyrosine
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Figure V.8

IL-3-induced SHP-2 phosphorylation is not significantly affected in cells expressing

She variants.

Clones FL 3E (A), Y317F 8D (B), SH2 3C11 (C), and PTB 4F (D) were plated at 1 x 105 

per ml in the presence (+) or absence (-) of 2 pg/ml tetracycline for 16 hours. Factor 

deprived cells were then either left untreated as a control (C) or stimulated with 20 ng/ml 

rmIL-3 for 10 minutes (3). Cell extracts from the equivalent of 5 x 106 cells were 

precipitated with 0.4 pg anti-SHP-2 antibodies. All samples were separated through 7.5% 

acrylamide gels by SDS-PAGE and immunoblotted with 4G10 antibodies (upper panels). 

The blots in A and B were stripped and reprobed with 9E10 antibodies to detect the 

expressed proteins (lower panels). Samples from the same whole cell extracts were 

separated on separate 12% gels (C and D lower panels) and immunoblotted with 9E10 

antibodies. The molecular mass standards are shown and expressed in kDa and the 

positions of the expressed proteins, SHP-2 and pi 00 are indicated. These data depicted in 

this figure are representative of 2 separate experiments with similar results observed for the 

other clone in each case.
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Chapter Five

phosphorylated Aic2A from the unstimulated cells probably reflects inadequate starvation 

of the cells prior to preparation of the cell extracts.

V.G. Effects of expression of She variants on IL-3-induced MAP kinase activation.

IL-3 has been shown to induce activation of ras, erkl and erk2 (Duronio et a l , 

1992b; Welham et a l, 1992) and She has been implicated as an adaptor molecule involved 

in controlling protein-protein interactions important in the activation of the Ras/MAP 

kinase pathway by its ability to associate with the Grb2 adaptor molecule (Rozakis-Adcock 

et a l, 1992). Phosphorylation of She at tyrosine 317 provides a high affinity binding site 

for the SH2 domain of Grb2 (Salcini et a l, 1994). Given the ability of She to bind to the 

activated the IL-3 receptor via its PTB and SH2 domains in vitro (see section IV.E), this 

could provide a means of localising the Grb2-Sos complex to the plasma membrane where 

activation of Ras could occur and subsequently activate the MAP kinases erkl and erk2. 

Therefore, expression of the Y317F She mutant or the SH2 or PTB domains may have an 

inhibitory affect on IL-3-induced activation of the MAP kinases erkl and erk2. To 

determine the functional importance of She in regulating IL-3-induced activation of these 

MAP kinases, the ability of the cells expressing the She variants to activate erkl and erk2 

in response to IL-3 was examined.

V.G.l Expression of FL She.

To examine the effects of expression of FL She on IL-3 activation of the erkl and 

erk2 members of the MAP kinase family, in vitro kinase assays were first performed (Fig. 

V.9). Cells were incubated at 1 x 105 cells per ml with or without 2 jig/ml tetracycline for 

16 hours then stimulated with 20 ng/ml IL-3 (concentration required for maximum tyrosine 

phosphorylation of cellular substrates) for 5, 10, or 20 minutes or left untreated as a 

control. Erkl and erk2 kinases were immunoprecipitated from cell extracts from the 

equivalent of 5 x 106 cells and in vitro kinase assays performed on immunoprecipitations 

with MBP as an exogenous substrate (see section II.C.10). Assays were performed twice 

and similar results were obtained for both FL clones. There appeared to be no significant 

effect on EL-3-induced erkl (Fig. V.9 A, upper panel) or erk2 (Fig. V.9 B, upper panel)
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FIGURE V.9
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Expression of FL She does not have a significant effect on IL-3 induced MAP kinase 
activation in in vitro kinase assays.
Clone FL 6G was incubated at 1 x 105 cell per ml in the presence (+) or absence (-) of 2 
pg/ml tetracycline for 16 hours. Factor deprived cells were then either left untreated as a 
control or stimulated with 20 ng/ml rmIL-3 for the indicated times. Cell extracts from the 
equivalent of 5 x 106 cells were precipitated with either anti-erkl (A) or anti-erk2 (B) 
agarose conjugated beads and in vitro kinase assays were performed in the presence of 
MBP. The samples were separated on a 15% acrylamide gel by SDS-PAGE and 
transferred to nitrocellulose. The bottom half of the blot was subjected to 
autoradiography and the incorporation of 32P into MBP is indicated (A and B upper 
panels). Immunoblotting the top half of the blot with anti-MAP kinase antibodies (A and 
B lower panels) confirms equal precipitation of erkl and erk2 (indicated). Samples of the 
total cell extracts were removed prior to precipitation and separated through a 7.5% 
acrylamide gel and immunoblotted with 9E10 antibodies for detection of the expressed 
FL She protein ( C upper panel). The blot was then stripped and reprobed with anti-Shc 
antibodies (C lower panel). The positions of the expressed protein and p52Shc are 
indicated. Similar results were obtained with clone FL 3E.
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FIGURE V.10
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Activation of erkl and erk2 in response to IL-3 is moderately accelerated in FL She 
expressing cells.
Clone FL 3E was plated at 1 x 105 cells per ml in the presence (+) or absence (-) of 2 
pg/ml tetracycline for 16 hours. (A) Cells were treated for 5 minutes with the indicated 
concentration of rmIL-3 or (B) stimulated with 5 ng/ml rmIL-3 for the indicated periods 
of time. Samples were separated through 10% acrylamide gels and immunoblotted with 
an antibody specific for the activated forms of p44erkl and p42erk2 MAP kinases (upper 
panels). The same blots were stripped and reprobed with anti-MAP kinase antibodies to 
demonstrate equal precipitation of erkl and erk2 (middle panels) and further reprobed 
with 9E10 antibodies for detection of the expressed protein (lower panels). The positions 
of the expressed FL She protein, erkl and erk2 are indicated. These data presented in this 
figure are representative of two separate time-course and dose-response experiments.
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Chapter Five

activation upon expression of FL She, even though there was significant expression of FL 

She (Fig. V.9 C) which was determined to be 15 fold that of endogenous p52shc 

(determined by densitometer readings). Equal amounts of erkl (Fig. V.9 A, lower panel) 

and erk2 (Fig. V.9 B, lower panel) were precipitated in each case.

IL-3 dose-response and time-course analyses and subsequent immunoblotting with 

anti-active MAP kinase antibodies were next performed to investigate in more detail if 

expression of the FL She protein was having any effects at sub-maximal concentrations of 

EL-3 or on the kinetics of MAP kinase activation. Again, cells were set up at 1 x 105 cells 

per ml for 16 hours with or without 2 pg/ml tetracycline and then either stimulated for 5 

minutes with varying concentrations of IL-3 (Fig V.10 A) or stimulated with 5 ng/ml IL-3 

for varying times (Fig. V.10 B). Cell extracts were immunoblotted with antibodies specific 

to threonine and tyrosine phosphorylated erkl and erk2 to specifically detect activated 

forms of the two enzymes. No significant change in erkl or erk2 activation was observed 

over an IL-3 dose-response at the 5 minute time point when FL She was expressed (Fig. 

V.10 A), even though there was good inducible expression (Fig. V.10 A, lower panel). 

However, expression of FL She appeared to cause a slight increase in erkl and erk2 

activation after stimulation with 5 ng/ml rmIL-3 for 2 minutes, which was equivalent to 

cells not expressing FL She after 5 minutes. (Fig. V.10 B, upper panel). These results were 

observed in two separate experiments. This may suggest a slight enhancement in the rate 

of activation of erkl and erk2 upon expression of FL She. However, expression of FL She 

did not detectably effect the maximal level of erkl and erk2 MAP kinase activation.

V.G.2 Expression of Y317F She.

To examine the effects on IL-3 activation of erkl and erk2 upon expression of the 

Y317F She mutant, in vitro kinase assays were first performed. Similar results were 

obtained for both Y317F She clones and the results from one clone are shown in Figure 

V .ll. In vitro kinase assays were performed as for the FL expressing clones (see section 

V.G.l). At 20 ng/ml, over times ranging up to 20 minutes, no significant effect on IL-3- 

induced activation of the erkl (Fig. V.l 1 A) and erk2 (Fig. V.l 1 B) kinases were observed 

when the mutant Y317F She was expressed, although there were high levels of expressed 

protein (Fig. V .ll C) which was determined to be 10 fold that of endogenous p52shc (as
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FIGURE V .ll

A. I.P.: a-erk-1 B. I P : a-erk-2

1 0 ’ 2 0 ’10’  20 ’

In vitro
kinase
assay

Blot:
a-erk-1

C. Pre I P.

Blot:
9E10 -  — — — -< Y 3 1 7 F

Blot:
a-Shc

Y317F

Expression of Y317F She does not have a significant effect on IL-3 induced MAP 
kinase activation observed in in vitro kinase assays.
Clone Y317F 8H was plated at 1 x 105 cells per ml in the presence (+) or absence (-) of 2 
pg/ml tetracycline for 16 hours. Erkl (A) and erk2 (B) in vitro kinase assays were 
performed as described in the legend to Fig. V.9. A and B upper panels show 
incorporation of 32P into MBP. Immunoblotting with anti-MAP kinase antibodies 
confirms equal loading (A and B lower panels). Samples of the total cell extracts prior to 
precipitation were separated through a 7.5% gel and immunoblotted with 9E10 antibodies 
for detection of the expressed protein (C upper panel), then stripped and reprobed with 
anti-Shc antibodies (C lower panel). The positions of erkl, erk2, p52Shc and the expressed 
Y317F She protein are indicated. Similar results were obtained with clone Y317F 8D.
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FIGURE V.12
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Activation of erk l  and erk2 in response to IL-3 is decreased in Y317F She  
expressing cells.
(A )  IL -3  d o se  r e s p o n s e  an d  (B) t im e  c o u r s e  a n a ly se s  w e r e  p e r f o r m e d  o n  c lo n e  Y 3 1 7 F  8D 
as d e s c r ib e d  in the  le g e n d  to F ig u re  V .1 0 .  T h e  p o s i t io n s  o f  the e x p r e s s e d  Y 3 1 7 F  S h e  
p ro te in ,  e r k l  a n d  e r k 2  are  in d ic a te d .  T h e  d a t a  d e p ic te d  h e re  is r e p r e s e n ta t iv e  o f  tw o  
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determined by densitometer readings). Equal amounts of erkl (A, lower panel) and erk2

(B, lower panel) were precipitated in each experiment. However, more detailed dose-

response and time-course analyses and immunoblotting with the anti-active MAP kinases

antibody revealed an apparent modest decrease in EL-3-induced MAP kinase activation

upon expression of the Y317F mutant (this was observed in two separate time-course and

dose-response experiments) (Fig. V .l2). IL-3 dose-response analyses (Fig. V .l2 A)

revealed a slight decrease in erkl and erk2 activation after stimulation with 5 and 10 ng/ml

IL-3 for 5 minutes when the Y317F mutant She protein was expressed. Only a very slight

decrease was observed in Y317F expressing cells stimulated with 20 ng/ml rmIL-3 (this

was the concentration used in the in vitro kinase assay). Re-probing the same blot with

anti-erk antibodies revealed that the gel was evenly loaded (middle panel) and the 9E10

immunoblot shows good inducible expression of the Y317F protein (lower panel). A

consistent decrease in IL-3-stimulated erkl and erk2 activation was also observed in the

time-course analysis (Fig. V.12 B) after stimulation with 5 ng/ml IL-3 for 5 and 10 minutes
%

in cells expressing Y317F She. Re-probing the same blot with anti-erk antibodies 

demonstrated equal loading (middle panel) and again there was good inducible expression 

of the Y317F She protein (lower panel).

V.G.3. The expressed Y317F She mutant does not interact well with the SH2 domain 

of Grb2.

Since it has been thought that the major role for She is in activation of the 

Ras/MAP kinase pathway, by the virtue of the SH2 domain of Grb2 binding Y317 of She, 

it was somewhat surprising that a more pronounced reduction in IL-3-induced MAP kinase 

activation was not observed in cells expressing the Y317F She mutant. One of the reasons 

could be because the mutant was able to interact with the SH2 domain of Grb2 via different 

phosphotyrosine(s). To investigate this, Grb2SH2-GST precipitations were performed on 

cells expressing FL She or the mutant Y317F She and immunoblotted with 9E10 to detect 

the precipitated expressed proteins (Fig. V .l3 A).
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FIGURE V.13
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Interaction o f  the expressed FL and Y317F She proteins with the SH2 domain of  
G rb2.
Clones Y317F 8D and FL 3E were plated at 1 x 105 cell per ml in the presence (+) or 
absence (-) of 2 pg/ml tetracycline for 16 hours. Factor deprived cells were then either 
left untreated as a control (C) or stimulated with IL-3 for 10 minutes (3). (A) Cell extracts 
from the equivalent of 5 x 106 cells were precipitated with 10 pg Grb2SH2-GST fusion 
protein. Samples were separated on a 7.5% gel and immunoblotted with 9E10 antibodies.
(B) Samples of the total cell extracts were removed prior to precipitation (“Pre”), run on a 
separate 7.5% gel and immunoblotted with 9E10 antibodies. The positions of the 
molecular mass standards are shown and expressed in kDa and the positions of the 
expressed FL and Y317F She proteins are indicated. The results shown here are 
representative of three separate experiments.
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In IL-3 stimulated cells expressing the Y317F mutant, 6-10 fold less expressed 

protein was precipitated by the SH2 domain of Grb2 than in cells expressing FL She (Fig. 

V .l3 A), even though relatively equal amounts of Y317F She and FL She proteins were 

expressed (Fig. V .l3 B). A small amount of Y317F She protein was precipitated by the 

Grb2SH2-GST fusion protein suggesting perhaps that She has other tyrosine(s) which can 

be inducibly tyrosine phosphoiylated by IL-3 and that can interact with the SH2 domain of 

Grb2. However, even with this small amount of interaction, if the Ras/MAP kinase 

pathway was primarily and entirely activated by She binding to the receptor and 

subsequently localising Grb2 to the membrane by Y317 of She binding to the SIC domain 

of Grb2, expression of the Y317F She mutant should substantially block this activation to a 

greater extent than was observed. This suggests that alternative pathways, not involving 

She, may function in activating the Ras/MAP kinase pathway in response to IL-3.

V.G.4. Expression of the SH2 domain alone.

Similar in vitro kinase assays as performed above (section V.G.l) were used to 

assess the effects of expression of the She SH2 domain on IL-3-induced activation of erkl 

and erk2. Similar results were obtained for both SIC expressing clones and the results 

from one clone are shown in Figure V .l4. Expression of the SIC domain alone had no 

apparent effect on IL-3-induced erkl (Fig. V .l4 A) or erk2 (Fig. V .l4 B) activation, even 

though there was high expression of the SIC protein (Fig. V.14 C) which was determined 

to be 50 fold that of endogenous p52shc. More detailed dose-response (Fig. V .l5 A) and 

time-course analyses (Fig. V .l5 B) and immunoblotting with the anti-active MAP kinases 

antibody did not detect any effect on IL-3-induced erkl or erk2 activation as a result of 

expression of the SIC domain alone (as observed in two separate time-course and dose- 

response experiments), although good inducible expression was observed (lower panels).
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FIGURE V.14
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FIGURE V.15
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Activation of erkl and erk2 in response to IL-3 is not affected in cells expressing the 
SH2 domain alone.

(A) IL-3 dose-response analyses were performed in clone SH2 3C11 and (B) time-course 
analyses were performed in clone SH2 2A10 as described in the legend to Figure V.10, 
except that samples were run on 12% acrylamide gels and immunoblotted with 9E10 
antibodies to detect the expressed SH2 protein (A and B lower panels). The positions of 
the expressed SH2 protein, erkl, and erk2 are indicated. The data depicted here is 
representative of two separate time-course and dose-response experiments performed in 
both SH2 clones.
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V.G.5. Expression of the PTB domain alone.

Finally, effects of expression of the She PTB domain alone on IL-3-induced erkl 

and erk2 activation was investigated. In vitro kinase assays revealed no detectable effect on 

erkl (Fig. V .l6 A) or erk2 (Fig. V .l6 B) activation upon expression of the She PTB 

domain. Good inducible expression of the PTB She protein was observed (Fig. V .l6 C). 

No effect on IL-3-induced erkl or erk2 activation were observed either after detailed dose- 

response (Fig. V .l7 A) and time-course (Fig. V .l7. B) analyses (as observed in four 

separate dose-response and two separate time-course experiments). Therefore, expression 

of the PTB domain alone also appears to have no detectable effect on IL-3-induced MAP 

kinase activation.
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FIGURE V.16
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FIGURE V.17
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Activation of erkl and erk2 in response to IL-3 is not affected in cells expressing the 
PTB domain of She alone.

(A) IL-3 dose-response and (B) time-course analyses were performed on clone PTB 4F as 
described in the legend to Figure V.10, except that samples were run on 12% acrylamide 
gels and immunoblotted with 9E10 antibodies (A and B lower panels). The positions of the 
expressed PTB protein, erkl and erk2 are indicated. The data depicted here is 
representative of at least two separate experiments and similar results were observed for 
clone PTB 4C.
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V.H. Effects of expression of She variants on proliferation in response to IL-3.

She is thought to couple activated receptors to the Ras/MAP kinase pathway which 

regulates the proliferation of mammalian cells. She has been shown to have positive 

growth promoting activities, as constitutive overexpression of She in NIH3T3 mouse 

fibroblasts promotes a transformed phenotype in culture and the formation of tumours in 

nude mice (Pelicci et a l, 1992). Additionally, overexpression of She proteins has been 

shown to increase the response of TF-1 cells to GM-CSF (Lanfrancone et a l , 1995).

The biochemical changes observed in cells expressing the She variants in response 

to IL-3 were only moderate in the experiments performed. A decrease in endogenous She 

phosphorylation and minor effects on erkl and erk2 activation were observed in cells 

expressing either FL or Y317F She. To assess what effects expressing the She variants 

have on the biological response to IL-3, the growth properties of the cells expressing the 

different She variants were investigated. The dose-response characteristics of the 

transfectants to IL-3 was measured using XTT assays. These assays are based on the 

reduction of XTT by NAD/NADPH oxidoreductases and are a measure of cellular 

metabolic activity and growth (Mosmann, 1983; Roehm et al., 1991). The assays were 

performed in serum-free conditions, using AIM-V media, and used purified recombinant 

IL-3 so that only the effects specific to IL-3 were measured. The results of the XTT assays 

are depicted graphically in Figure V .l8 along with the corresponding 9E10 immunoblots of 

whole cell lysates to show expression of the She variants over the 72 hour time period.

All proteins were inducibly and stably expressed at high levels through the duration 

(72 hr) of the XTT assays (see inserts to Fig. V.l 8 A-D). However, expression of FL She 

(Fig. V .l8 A), the Y317F mutant (Fig. V .l8 B), the SH2 domain alone (Fig. V .l8 C), or 

the PTB domain alone (Fig. V .l8 D) did not consistently have a significant effect on IL-3- 

induced proliferation as measured by these assays. Therefore, the biochemical effects 

observed with expressing the various She mutants (a decrease in endogenous She 

phosphorylation and changes in erkl and erk2 activation) did not appear to detectably 

affect IL-3-dependent proliferation of the cells.
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Figure V.18

Expression of the She variants has no affect on IL-3 responsiveness in XTT dye

reduction assays.

Recombinant IL-3 was set up at the doses shown in serum-free AIM-V media in triplicate. 

Clones FL 3E (A), Y317F 8D (B), SH2 3C11 (C) and PTB 4C (D) were plated at 1000 

cells per well of a 96 well tray in the presence (diamonds) or absence (squares) of 2 pg/ml 

tetracycline. Cells were incubated for 72 hours with XTT being added to the cultures for 

the last 4 hours. Plates were read at 450 nm and the absorbance readings obtained equated 

to cellular metabolic activity. The mean values with standard deviations are plotted for 

each point. At the same time, clones were also set up at 1 x 104 cells per ml (same 

concentration as the XTT assay) in the presence (+) or absence (-) of 2 pg/ml tetracycline 

and cell extracts prepared after 24, 48, and 72 hours. 15 pg of protein was loaded in each 

lane and separated through 7.5% (A and B), 12% (C) or 10% (D) acrylamide gels by SDS- 

PAGE and immunoblotted with 9E10 antibodies to detect the expressed protein 

(indicated). A representative experiment is shown in each case as the assays were repeated 

at least 3 times using both clones.
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V.l Discussion

Following IL-3 treatment of factor-dependent myeloid cells, the p52 and p46 

isoforms of She are two of the proteins which become most highly tyrosine phosphorylated 

(Cutler et al., 1993; Welham et a l , 1994a). She proteins have primarily been implicated in 

controlling protein-protein interactions important for activation of the Ras/MAP kinase 

pathway (Rozakis-Addcock et al., 1992; Salcini et al., 1994). Evidence has been provided 

here that She can associate with the IL-3 receptor p subunit in human (Pc) and in murine 

(Aic2A) cells, via both its SH2 and PTB domains (section IV.E), providing two possible 

mechanisms for localising the Grb2-Sos complex to the plasma membrane, leading to 

activation of Ras. However, She can also bind via its PTB domain to SHIP (section IV.D) 

and via its SH2 domain to a tyrosine phosphorylated 100 kDa protein (section IV.F), thus 

potentially linking She to other signalling pathways involving PI3-K and lipid metabolism. 

Hence, to address the specific involvement of She in IL-3-dependent cell signalling, FL 

She, the Y317F mutant She, and the She SH2 and PTB domains individually were 

expressed in the IL-3-dependent Ba/F3 cell line.

The requirement of She in mediating IL-3-induced activation of the Ras/MAP 

kinase pathway could be investigated by comparing the effects of expressing full length 

She with a tyrosine to phenylalanine mutation at position 317 (the Grb2 SH2 binding site) 

with that of expressing FL She. Expression of the SH2 domain alone could block the 

interaction of endogenous She with other tyrosine phosphorylated signalling proteins, like 

p i00, or block endogenous She from binding Aic2A which could have multiple 

consequences on IL-3 signalling events. Finally, expression of the She PTB domain alone 

could potentially block endogenous She from interacting with SHIP and/or the IL-3 

receptor p subunit. The results presented here show that expression of both the FL She and 

the mutant Y317F She result in a consistent decrease in IL-3-induced endogenous She 

phosphorylation but, whereas expression of FL She appeared to slightly enhance erkl and 

erk2 activation, expression of the Y317F mutant slightly decreased erkl and erk2 

activation. However, these biochemical changes did not appear to have in any detectable 

effects on IL-3-induced proliferation. Expression of the individual SH2 and PTB domains 

of She had no detectable effect on IL-3-induced tyrosine phosphorylation of endogenous
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She or SHP-2, nor did their expression effect IL-3-induced erkl or erk2 activation, or 

proliferation.

V.I.1 Endogenous She phosphorylation is reduced upon FL and Y317F She 

expression

There is still some uncertainty as to whether She is required to bind to activated 

receptors in order to become tyrosine phosphorylated. Expression of the various She 

mutants had the potential to block endogenous She from binding to the IL-3 receptor and 

possibly result in a decrease in IL-3-induced endogenous She phosphorylation. Expression 

of the individual She SH2 or PTB domains had no detectable effect on IL-3-induced 

endogenous She phosphorylation but expression of FL She and the mutant Y317F She did 

result in a decrease in endogenous She tyrosine phosphorylation in response to IL-3. There 

is some evidence that tyrosine 577 of pc (the She PTB binding site) is required and 

sufficient for She phosphorylation (Durstin et al., 1996; Itoh et a l, 1996; Okuda et al., 

1997) whereas phosphorylation of tyrosine 612 (the She SH2 binding site) is not required 

and not sufficient for She phosphorylation (Durstin et al., 1996; Okuda et al., 1997). These 

data are consistent with the view that the PTB domain of She is required to bind Pc in 

order for She to become tyrosine phosphorylated. However, since the binding of She to pc 

was not examined in any of these studies, it still does not rule out the possibility that a 

kinase(s) needs to be recruited to tyrosine 577 of pc to phosphorylate She without requiring 

She itself to bind to the receptor. There is some evidence for this in EGF signalling as it 

appears that the binding of She to the EGFR is not required for phosphorylation of She as 

EGFR mutants lacking all autophosphorylation sites still induce tyrosine phosphorylation 

of She (Gotoh et al., 1994; Soler et a l, 1994; Sasaoka et a l, 1996). Work by Gotoh et al.

(1995) using Shc-GST fusion proteins in in vitro kinase assays with immunoprecipitated 

EGFR suggested that the She SH2 domain may regulate the phosphorylation of She by the 

EGFR tyrosine kinase. They suggest that the SH2 domain could inhibit phosphorylation of 

She through a mechanism of steric hindrance or local conformational change. Subsequent 

binding of the SH2 domain to a tyrosine phosphorylated protein could then release this 

hindrance, allowing for She to become tyrosine phosphorylated. Therefore, the reduction 

in IL-3-induced endogenous She phosphorylation observed when FL She and the Y317F 

mutant She protein were expressed may be due to the expressed proteins competing with
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endogenous She for binding to Aic2A or alternatively competing for binding to other 

signalling molecules involved in pathways leading to She phosphorylation. The data 

presented here appears to support the notion that She does not need to bind to the receptor 

in order to become tyrosine phosphorylated as expression of the SH2 and PTB domains 

alone did not inhibit endogenous She phosphorylation. Work by Gotoh et al (1996) had 

shown a reduction in IL-3-induced endogenous She phosphorylation when the SH2 domain 

of She was expressed, but this was most likely due to the expressed protein competing with 

endogenous She for a limited pool of anti-Shc antibodies, resulting in less endogenous She 

being precipitated from the cell, which they had not evaluated (see section V.F.2). 

However, there is also a possibility that the affinities of the SH2 and PTB domains 

individually are not high enough to displace or prevent endogenous She binding to the 

receptor and it has been previously shown that expression of the PTB and SH2 domains of 

She individually in NIH 3T3 cells overexpressing EGFR failed to inhibit endogenous She 

association with the activated EGFR (O’Bryan et a l , 1998).

SHP-2, like She, appears to interact via its SH2 domain with residues surrounding 

tyrosine 612 of Pc. As with She, it has not been determined whether SHP-2 is required to 

bind to the receptor in order to become tyrosine phosphorylated. Expression of the She 

SH2 domain alone did not result in a decrease in IL-3-induced tyrosine phosphorylated 

SHP-2. If the She SH2 domain alone did not have high enough affinity to compete with 

SHP-2 for binding to Aic2A, one would perhaps expect that the FL She or Y317F mutant 

might have a high enough affinity. By stably binding to Aic2A via their PTB domains first 

and then binding, via their SH2 domains, to sequences surrounding tyrosine 610 of Aic2A, 

FL She and Y317F She could compete with SHP-2 for binding to Aic2A, therefore 

blocking SHP-2 phosphorylation. However, this was not observed, suggesting either that 

binding of SHP-2 to Aic2A is not a prerequisite for SHP-2 phosphorylation or that SHP-2 

has a much higher binding affinity to Aic2A than She.

V.I.2 Involvement of She in IL-3-mediated activation of the Ras/MAP kinase pathway

She has been implicated in regulating the activation of the Ras/MAP kinase 

pathway by mediating protein-protein interactions. Tyrosine phosphorylated She has been 

shown to form a complex with Grb2-Sos through the interaction of the SH2 domain of 

Grb2 with phosphorylated tyrosine 317 of She. This has been shown to be involved in
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regulating activation of Ras, leading to erkl and erk2 MAP kinase activity (Rozakis- 

Adcock et al., 1992; Cutler et al., 1993; Egan et al., 1993; Skolnik et a l, 1993; Gotoh et 

al, 1994; Salcini et al., 1994). Therefore, it was somewhat surprising that a more 

pronounced effect on erkl and erk2 activation, in response to IL-3, was not observed in 

cells expressing the She mutants. Expression of FL She slightly increased the rate of erkl 

and erk2 activation by IL-3 at sub-maximal doses but did not affect the maximum levels 

(Fig. V.10). This is similar to what was seen in GM-CSF-stimulated TF-1 cells when p52 

and p46 She were 5-fold overexpressed by retroviral-mediated gene transfer (Lanfrancone 

et a l, 1995). However, the effects observed in the TF-1 cells were more pronounced as 

overexpression of She increased the sensitivity to, enhanced the rate of, and prolonged 

GM-CSF induced MAP kinase activation (Lanfrancone et al., 1995). However, constitutive 

overexpression of She could result in selecting out a population of cells, whereas with the 

tetracycline-regulated system, one would hope to avoid this since cells are normally grown 

in tetracycline to repress expression.

Tyrosine 317 of She is the primary site of phosphorylation and the binding site for 

the Grb2 SH2 domain. Thus, expression of the Y317F mutant She protein would 

potentially interfere with activation of the Ras/MAP kinase pathway. However, expression 

of the Y317F She mutant resulted only in a slight decrease in IL-3-stimulated erkl and erk2 

activation (Fig. V .l2). However, in agreement with the results presented here, activation of 

MAP kinase was not observed to be affected in GM-CSF-stimulated TF-1 cells 

constitutively expressing a Y317F She mutant (Lanfrancone et a l, 1995). In addition, only 

a slight down-regulation in EGF-induced MAP kinase activation was also reported in 293 

T cells transiently expressing Y317F She (Thomas et al., 1997). This is contradictory to 

what was observed by Gotoh et al. (1997) where expression of Y317F She caused a 

dramatic decrease in EGF-stimulated MAP kinase activation in NIH 3T3 cells expressing 

autophosphorylation site-defective mutant EGFR. This mutant EGFR was truncated after 

residue 1011, thus removing the major autophosphorylation sites, and a minor 

phosphorylation site, Y992, was mutated to phenylalanine (Gotoh et a l, 1994). This 

receptor mutant was previously shown to induce EGF-stimulated tyrosine phosphorylation 

of She, resulting in complex formation with Grb2 and activation of MAP kinase (Gotoh et 

al., 1994). Thus, in this system, it appears that phosphorylation of She on tyrosine 317 is
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required for activation of the Ras/MAP kinase pathway, but direct binding to the EGFR is 

not necessary.

Recently, two novel tyrosine phosphorylation sites in She, Y239/240, have also 

been shown to become phosphorylated in response to IL-3 (Gotoh et a l, 1996), EGF 

(Gotoh et a l, 1997) and mT-transformation (Blaikie et a l , 1997) and may be involved in 

coupling She to Grb2. Sequence alignment of She proteins with other adaptor proteins 

displaying a high level of identity in their PTB and SH2 domains have revealed that 

tyrosines 239 and 240 are well conserved (Nakamura et a l, 1996; O’Bryan et a l, 1996; 

van der Geer et a l, 1995). In Drosophila, She lacks a tyrosine at the position comparable 

to tyrosine 317 in mammalian She (Lai et a l, 1995) and phosphorylation of tyrosine 239 of 

She does create a potential consensus sequence (pYYND) for the binding of the SH2 

domain of Grb2. There have been reports that Grb2 can bind to the sites surrounding 

tyrosine 239 of She. In EGF-stimulated 293 T cells it has been shown that a GST- 

ShcY317F fusion protein was strongly tyrosine phosphorylated and associated with Grb2 

following EGF stimulation whereas a GST-Y239/240F She fusion protein (in which 

tyrosines 239 and 240 had been changed to phenylalanine residues) was only weakly 

tyrosine phosphorylated and only weakly bound Grb2, suggesting that tyrosines 239/240 

are the major site of tyrosine phosphorylation and Grb2 binding (Thomas et a l , 1997). 

Furthermore, in mT-transformed fibroblasts, Y239/240 were also found to be the major 

tyrosines phosphorylated and created a Grb2 binding site whereas tyrosine 317 of She was 

not detectably tyrosine phosphorylated (Blaikie et al., 1997). However, IL-3-stimulated 

MAP kinase activity has been demonstrated to be enhanced in cells expressing Y239/240F 

mutant but was slightly decreased in Y317F expressing cells, suggesting that Y239/240 are 

not involved in activation of the Grb2/mSos/Ras pathway by IL-3 (Gotoh et a l, 1996). 

Additionally, EGF-induced erkl and erk2 activation was efficiently activated to similar 

levels in cells expressing a Y239/240F mutant compared with cells expressing FL She 

(Gotoh et al., 1997). In cells expressing the Y317F She mutant, a weak binding of Grb2 to 

the Y317F She protein was observed by Gotoh et al (1997), similar to what was observed 

in this study (Fig. V .l3). However, this low level of Grb2 binding did not contribute to 

EGF-induced Ras/MAP kinase activation as erkl and erk2 activation were dramatically 

decreased to undetectable levels in cell expressing the Y317F She mutant (Gotoh et al

1997), contrary to the only slight decrease in IL-3 stimulated erkl and erk2 activation
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observed in this study. Thus, the low level of Grb2 binding to the Y317F She protein (see 

Fig. V .l3) was unlikely to contribute significantly to the activation of erkl and erk2. It is 

possible that in some systems tyrosines 239/240 may be the major tyrosine phosphorylation 

and Grb2 binding site, whereas in other systems, tyrosine 317 is the major player. 

However, since little tyrosine phosphorylation or binding to the Grb2 SH2 domain of the 

expressed Y317F She mutant was observed here and Y239/240 have been shown not to be 

involved in activation of the Ras/MAP kinase pathway in response to IL-3 (Gotoh et a l ,

1997), this seems to imply that phosphorylation of She in IL-3 stimulated Ba/F3 cells 

occurs primarily at tyrosine 317, providing the major Grb2 binding site.

Since the PTB domain of She appears to have a higher affinity for Aic2A than the 

SH2 domain (section IV.E), binding of She via its PTB domain to the receptor may play a 

more significant role in localising Grb2-Sos complex to the membrane than the She SH2 

domain. However, expression of the PTB domain alone also did not lead to a reduction in 

IL-3-stimulated erkl or erk2 activation (Fig. V.l 6 and V.l 7). The PTB domain of She has 

been shown to bind with higher affinity to the activated EGFR compared with the SH2 

domain (Sakaguchi et a l , 1998) and expression of the PTB domain alone also did not 

inhibit EGF-activated erk2 phosphorylation (O’Bryan et a l , 1998). This again raises the 

possibility that perhaps the affinities of the expressed SH2 and PTB domains alone were 

not high enough to displace or compete with endogenous She or that the cells can utilise 

alternative signalling pathways towards IL-3 activation of the MAP kinases erkl and erk2. 

Alternatively, the expressed She PTB domain could bind to SHIP and therefore prevent 

endogenous She from binding SHIP which may result in a more pronounced effect on 

SHIP phosphatase activity and lipid metabolism in response to IL-3. However, this was 

beyond the scope of the work presented here.

She may not be the primary pathway towards activation of Ras in haemopoietic 

cells in response to IL-3. Indeed, recently She has been shown to be dispensable for B cell 

antigen receptor (BCR)-induced erk activation in DT40 B cells (Hashimoto et al., 1998). 

BCR stimulation stimulation has also been shown to lead to tyrosine phosphorylation of 

She and to the assembly of Shc-Grb2-Sos complexes. However, Shc-deficient DT40 B 

cells exhibit normal BCR-induced erk activation, whereas this erk activation was inhibited 

by loss of Grb2 or expression of dominant negative Ras (Ras N17) (Hashimoto et al,

1998). Thus, alternative, Shc-independent pathways may be responsible for activation of
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the Ras/MAP kinase pathway in response to IL-3. SHP-2 is tyrosine phosphorylated in 

response to IL-3 and can associate with Grb2 (Welham et a l , 1994b). SHP-2 has been 

shown to bind pc (Chapter III and Bone et a l , 1997) suggesting that SHP-2 could act as an 

adaptor between activated pc and Grb2, thus leading to activation of the Ras/MAP kinase 

pathway. Since both SHP-2 and She have been shown in these studies to interact via their 

SH2 domains with residues surrounding tyrosine 612 of Pc, expression of the She SH2 

domain alone could potentially compete with both endogenous She and SHP-2 for binding 

to Aic2A and therefore potentially block two pathways leading to the activation of Ras and 

subsequently erkl and erk2. However, a reduction in IL-3-induced erkl and erk2 

activation was not observed in cells expressing the She SH2 domain (Fig. V.14 and V .l5). 

Gotoh et al (1996) also reported only a moderate inhibition of IL-3-stimulated MAP 

kinase activity upon expression of the She SH2 domain alone in Ba/F3 cells. However, 

overexpression of the She SH2 domain has been shown to block 50-70% of EGF-induced 

MAP kinase activation (Thomas et a l, 1997; O’Bryan et al 1998). The regulation of the 

Ras/MAP kinase pathway by SHP-2 has been suggested in other systems where SHP-2 acts 

as an adaptor between Grb2 and c-kit (Tauchi et a l, 1994), the EpoR (Tauchi et a l, 1995) 

and the PDGFR (Li et a l, 1994; Bennett et al 1994). In response to insulin, expression of 

a catalytically inactive mutant SHP-2 (Noguchi et a l, 1994) or dominant interfering 

mutants of SHP-2 (Yamauchi et a l, 1995) were also found to inhibit MAP kinase 

activation. Recently, SHP-2 was demonstrated to perform an essential role in EGF- 

stimulated MAP kinase activation (Deb et a l, 1998). The enzymatic activity and both the 

nSH2 and cSH2 domains of SHP-2 were found to be required for MAP kinase activation as 

transfection of a truncated form of SHP-2 containing only the two SH2 domains or 

transfection of a catalytically inactive SHP-2 blocked EGF-stimulated activation of 

transfected MAP kinase in COS7 cells (Deb et a l, 1998). However, these dominant 

negative forms of SHP-2 had no effect on EGF-stimulated interaction of Grb2 with the 

EGFR or She, nor did they influence phosphorylation of She or Shc-EGFR association 

(Deb et a l, 1998). Therefore, SHP-2 function, but not She, appears to be essential for 

EGF-induced MAP kinase activation, which may also be the case in response to IL-3. 

Indeed, recently it has been shown that expression of a dominant negative SHP-2 mutant, 

with a deletion in the catalytic domain, in Ba/F3 cells inhibits IL-3-induced MAP kinase 

activation (Gu et al., 1998).

180



Chapter Five

In addition to SHP-2, PI3-K has also been shown to be involved in activation of the 

Ras/MAP kinase pathway. The pi 10 catalytic subunit of PI3-K has been shown to directly 

interact with Ras (Rodriguez-Viciana et a l, 1994). Initially, the PI3-K inhibitor, 

wortmannin, was shown to inhibit activation of the MAP kinases erkl and erk2 in response 

to T cell receptor stimulation (Von Willebrand et a l , 1996) and insulin (Welsh et a l , 1994; 

Cross et ah, 1994). More recently, expression of dominant negative PI3-K mutants which 

lack the pi 10 catalytic subunit binding site (Ap85), have been shown to inhibit erkl and 

erk2 activation after T cell receptor stimulation (Jascur et a l , 1997) and in response to EL-3 

(Craddock, personal communication). Therefore, there appears to be multiple pathways 

leading to the activation of erkl and erk2 and disruption of one of these pathways may not 

significantly affect activation of erkl and erk2 as another pathway could take over. Thus 

the importance of the Ras/MAP kinase pathway in cellular proliferation and survival could 

be reflected in the adaptation of redundant pathways.

V.I.3 Requirement of She for IL-3-dependent proliferation

Expression of the She mutants only had small effects on the biochemical events 

studied. However, She has been shown to be important for stimulating the intracellular 

transmission of growth and differentiation signals. Overexpression of She proteins in 

cultured fibroblasts has been shown to induce a transformed phenotype in culture and form 

tumours in nude mice (Pelicci et a l, 1992) and when overexpressed in PC 12 cells, She has 

been shown to induce neurite outgrowth which is dependent on Ras activation (Rozakis- 

Adcock et a l, 1992). However, in this study, none of the She mutants expressed had a 

significant effect on IL-3-induced proliferation, again suggesting the possibility of 

redundant pathways. EGF-stimulated growth has been shown to be inhibited by expression 

of the Y317F She mutant (Gotoh et a l, 1997) as well as by expression of the She SH2 and 

PTB domains alone (O’Bryan et a l, 1998). Other investigators have microinjected various 

Shc-GST constructs to probe She function in fibroblasts. Microinjection of the isolated 

She SH2 domain inhibited DNA synthesis induced by both EGF (Gotoh et a l, 1995; 

Ricketts et a l, 1996; Sasaoka et a l, 1996) and PDGF (Roche et a l, 1996) but not insulin 

(Ricketts et a l, 1996; Sasaoka et a l, 1996). Insulin-induced DNA synthesis was inhibited 

by microinjection of the She PTB alone (Ricketts et a l, 1996; Sasaoka et a l, 1996). The 

PTB domain of She also inhibited EGF-induced mitogenic signals but not as efficiently as
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the SH2 domain (Ricketts et a l, 1996; Sasaoka et a l, 1996). However, the levels of 

protein microinjected into the cells is likely to be very high and many of these experiments 

were performed in fibroblasts overexpressing the appropriate receptors, questioning the 

physiological relevance of these experiments. The experiments presented in this thesis 

utilise an inducible expression system, which results in 10-50 fold expression of the She 

mutants compared with endogenous p52Shc. IL-3-dependent haemopoietic cells were also 

used which do not overexpress IL-3 receptors, thus making this system more 

physiologically relevant.

V.I.4 General Observations

Several possibilities exist for the limited effects observed on IL-3-induced 

signalling upon expression of the She mutants, particularly the individual PTB and SH2 

domains. Firstly, the SH2 and PTB domains individually may not be able to bind with high 

enough affinity individually to compete with endogenous She for binding to the receptor or 

other downstream signalling molecules. However, expression of the individual She SH2 

domain has been shown to be able to block EGF-induced MAP kinase activation and 

growth and expression of the She PTB domain alone was also able to inhibit EGF- 

stimulated growth (Thomas et a l, 1997; O’Bryan et a l, 1998). Alternatively, the 

expression level of the She mutants may be an important factor in inhibiting signalling 

pathways. In microinjection experiments, Gotoh et a l, (1995) observed a decrease in 

EGF-stimulated DNA synthesis when cells were injected with 4-8 mg/ml She SH2 but 

noted at 0.5 mg/ml there was only a marginal effect on DNA synthesis. However, the 

expression level of the She mutants here were almost identical to Ap85 mutants expressed 

in Ba/F3 cells where clear effects on IL-3-induced signalling pathways were observed 

(Craddock et a l, 1999). Thus, the 10-50 fold overexpression of the She variants typically 

seen in the experiments presented here should be substantial enough to block Shc- 

dependent IL-3 signalling pathways. In addition, the expressed She proteins could be 

detected interacting with tyrosine phosphorylated proteins (see Fig. V.4) and the expressed 

She proteins were stably expressed (see section V.D). Therefore, the most likely reason 

for the moderate effects observed on IL-3-induced signalling pathways upon 

overexpression of the She mutants is that Shc-mediated pathways are not essential for IL-3- 

induced activation of the Ras/MAP kinase pathway or for IL-3-induced signals leading to
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proliferation in haemopoietic cells, emphasising redundancy and cross-talk within the 

system.

The data presented here do not support the premise that She is an essential and 

indispensable protein important in the generation of signalling events downstream of the 

IL-3 receptor, despite She proteins being one of the major tyrosine phosphorylated 

substrates in response to IL-3. She may play a role in a signalling pathway leading to erkl 

and erk2 activation. However, there appears to be redundancy in the signal transducing 

pathways leading to activation of the Ras/MAP kinase pathway and ultimately to growth 

and differentiation in IL-3-dependent signalling in haemopoietic cells, highlighting the 

importance of this pathway in proliferation due to the existence of multiple pathways 

leading to its activation.

183



Chapter Six

Chapter VI 

General Discussion
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The cytokine IL-3 is an important regulator of haemopoiesis by acting as a growth, 

survival, and differentiation factor for a broad range of haemopoietic cells including 

pluripotent stem cells and progenitors, mast cells, megakaryocytes, macrophages, 

neutrophils, and basophils (Arai et a l , 1990; Ihle et a l , 1992). Although both a  and p 

subunits of the IL-3 receptor lack intrinsic tyrosine kinase activity, IL-3 treatment induces 

tyrosine phosphorylation of the p subunit of its receptor on multiple tyrosine residues 

which are potential sites of interaction for the SH2- and PTB- domain containing proteins. 

A number of signalling proteins including SHIP (Damen et a l, 1996), Jak-2 (Silvennoinen 

et a l, 1993), STAT5 (Mui et a l, 1995), SHP-2 (Welham et a l, 1994b), the MAP kinases 

erkl and erk2 (Welham et a l, 1992), and the two She isoforms p52Shc and p46shc (Cutler et 

a l, 1994; Welham et a l, 1994a) are also inducibly tyrosine phosphorylated in response to 

IL-3 stimulation. However, the functional significance of many of these events in IL-3- 

induced proliferation, survival, and differentiation of haemopoietic cells has not been 

determined.

In this study, the functional role of the PTPases, SHP-1 and SHP-2, and the adaptor 

protein, She, in IL-3 signalling was examined. This was accomplished using a 

combination of biochemical, genetic, and cellular techniques. The protein-protein 

interactions mediated by SHP-1, SHP-2, and She and their various domains individually, 

identified potential roles for these signalling molecules in integrating IL-3 signals. In vitro 

binding studies demonstrated that the SH2 domains of SHP-1, SHP-2 and She all bound 

directly to the phosphorylated IL-3 receptor p subunit via residues surrounding tyrosine 

612/610. She was also able to directly interact with residues surrounding a different 

tyrosine within the p subunit of the IL-3 receptor (Y577 in pc and Y575 in Aic2A) via its 

PTB domain. Thus, these results suggested that these molecules may have regulatory roles 

at the receptor itself or may function as adaptor molecules, localising other signalling 

molecules to the receptor and so to the plasma membrane and the vicinity of their 

substrates. Indeed, both SHP-2 and She have been implicated in regulation of the 

Ras/MAP kinase pathway. The binding of Grb2 to SHP-2 and/or She and the association 

of SHP-2 and She with the IL-3 receptor p subunit could provide a means of localising 

Grb2-associated Sos to the plasma membrane where it could activate Ras. Alternatively, 

both SHP-2 and She appear to also associate with a 100 kDa protein which binds the p85 

subunit of PI3-K, so localisation of SHP-2 and/or She may function in activating pathways
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mediated by PI3-K. However, SHP-2 and She may also function in localising SHIP to the 

plasma membrane, possibly leading to the down-regulation of PI3-K activated pathways, 

due to the ability of SHIP to dephosphorylate the primary product of PI3-K, PI(3,4,5)P3, or 

down-regulate the Ras/MAP kinase pathway by competing with Grb2 for binding to She 

and/or SHP-2. Complicating the matter still, SHP-1 and SHP-2 may be able to control 

these interactions themselves as they both appear to be able to dephosphorylate the receptor 

at tyrosine 612/610, the binding site for the SH2 domains of SHP-1, SHP-2 and She.

Recently, the physiological functions of SHP-2 have been investigated in mammals 

by introducing a targeted mutation into the murine SHP-2 locus resulting in an internal 

deletion from amino acid 46 to 100 in the amino-terminal SH2 domain (Saxton et al, 

1997). Homozygous mutant (SHP-2'7') mice died mid-gestation with severe defects in 

mesodermal patterning (Saxton et a l, 1997). A similar phenotype was also observed in 

Xenopus embyros through microinjection of catalytically inactive mutant mRNA of SHP-2 

(Tang et a l, 1995). By isolating mutant SHP-2'7' ES cell lines, the effect of the SHP-2 

mutation on haemopoietic cell differentiation of ES cells was assessed (Qu et a l, 1997). 

The mutation introduced into the SHP-2 locus resulted in severe suppression of 

development of erythroid progenitors and completely blocked production of progenitor 

cells for granulocytes-macrophages and mast cells (Qu et a l, 1997). Interestingly, MAP 

kinase activity induced by SLF, which serves as a growth factor for erythroid and myeloid 

cells, was blocked in homozygous (SHP-2'7') mutant ES cells (Qu et a l, 1997). 

Additionally, in SHP-2’7' mutant embryonic fibroblast cell lines, erk activation by EGF and 

PDGF was attenuated and IGF-1-induced erk activation was also completely blocked (Shi 

et a l, 1998). Therefore, these results suggest that physiologically, SHP-2 plays an 

important role in the development of haemopoietic cells and acts as a positive regulator in 

mitogenic signalling pathways leading to erk activation.

Given that She is thought to play an important role in controlling activation of the 

Ras/MAP kinase pathway, the physiological significance of the protein-protein interactions 

mediated by She were determined in this study by expressing She mutants in an I n 

dependent cell line and examining their effects on IL-3-induced MAP kinase activation and 

proliferation. Expression of FL She only slightly enhanced the rate of erkl and erk2 

activation and expression of a She mutant with tyrosine 317, the Grb2 binding site, mutated 

to phenyalanine only slightly reduced IL-3-induced MAP kinase activation. Additionally,
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expression of none of the She mutants had detectable effects on IL-3-induced proliferation. 

Thus, even though She becomes highly tyrosine phosphorylated in response to IL-3, it does 

not appear to be an essential and indispensable protein important for generating signalling 

events downstream of the IL-3 receptor. Perhaps this is not surprising considering the 

pleiotropic activity of IL-3 and the importance of the Ras/MAP kinase pathway in 

controlling proliferation. Therefore, it would make sense for the cell to have more than one 

mechanism for controlling activation of the Ras/MAP kinase pathway. Indeed, in this 

system, SHP-2 also appears to have similar adaptor-like functions as She and may also be 

involved in regulation of this pathway.

She may have an alternative role in maintaining cell viability. It has been suggested 

that She may be involved in the anti-apoptotic activity of IL-3 (Kinoshita et a l, 1995). 

Phosphorylation of She at tyrosines 239/240 appears to have a role in induction of c-myc, 

in a Ras/MAP kinase-independent manner, leading to suppression of apoptosis (Gotoh et 

a l, 1996). Under two conditions in which cells are prone to be apoptotic, in the absence of 

IL-3 but with sufficient serum and in the presence of IL-3 but with low serum, Ba/F3 cells 

expressing FL She and the Y317F mutant She survived longer than Y239/240F Shc- 

expressing cells (Gotoh et a l, 1996). Therefore, She may have a role in anti-apoptoic 

pathways and in combination with activation of the Ras/MAP kinase pathway may lead to 

optimum IL-3-induced mitogenic signalling. Mutation of tyrosines 239/240 to 

phenylalanine alone, or in combination with mutation of tyrosine 317, would be interesting 

to explore in the system. Perhaps She plays a more important role in survival in Ba/F3 

cells.

Since both SHP-2 and She may have similar roles as adaptor proteins in integrating 

IL-3 signalling events leading to activation of the Ras/MAP kinase pathway, the 

contribution each of these pathways makes towards activation of the Ras/MAP kinase 

pathway should be investigated. Initially, the effects of expressing various SHP-2 mutants, 

including a catalytically inactive mutant and mutants expressing the two SH2 domains or 

the individual SH2 domains alone, on IL-3-induced MAP kinase activation would be 

interesting to explore. If a dramatic effect on erk activation was observed with these 

mutants, it could suggest that the SHP-2 plays a dominant role in regulating IL-3 signalling 

pathways leading to activation of MAP kinase. Alternatively, if only moderate effects were 

observed on erk activation in cells expressing SHP-2 mutants, it would be interesting to

187



Chapter Six

also express the She mutants in the SHP-2 mutant expressing cells and examine if this has 

a more dramatic effect on IL-3-induced erk activation and proliferation.

Since both SHP-2 and She appear to bind to residues surrounding the same tyrosine 

within Pc/Aic2A, the specific roles of tyrosine 612/610 as well as tyrosines 577/575 and 

750/745 in mediating IL-3 signalling events could also be investigated. By mutation of 

these tyrosine residues, not only could the association of SHP-2 and She with the mutant 

IL-3 receptors be investigated but also the consequences on downstream signalling events 

such as tyrosine phosphorylation of SHP-2 and She themselves, activation of the Ras/MAP 

kinase pathway and SHIP activity. I have generated these mutants and they are ready to be 

transfected into cells already expressing the mouse IL-3 receptor a  chain.

Clearly, the signalling events following IL-3 stimulation, leading to activation of 

the Ras/MAP kinase pathway and ultimately cell proliferation, and survival are becoming 

increasingly complex. The observations presented in this study that expression the She 

mutants showed little IL-3-induced biochemical or biological effects strongly emphasises 

the cell’s adaptation of redundancy and cross-talk between signalling pathways to ensure 

propagation of signals important for cell survival and proliferation. Indeed, it is suggested 

in this study that SHP-2 may also function in a similar pathway, leading to erkl and erk2 

activation, since it associates with the same phosphotyrosine residue, tyrosine 612/610 of 

Pc/Aic2A, as does She, and can also act as an adaptor protein, linking Grb2-Sos complexes 

to the receptor. Thus, expression of receptor mutants, lacking critical tyrosine residues 

together with studies examining the effects of expressing SHP-2 mutants will help to 

determine the requirement or redundancy of the various pathways leading to erk activation 

and ultimately cell proliferation and survival in response to IL-3.
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Analysis can be performed on biochemical results to determine the statistical relevance 

of the particular observations. This usually involves scanning and densitometric analysis of 

immunoblots from at least three different experiments. Here, the fold decrease in endogenous 

p52Shc tyrosine phosphorylation upon expression of FL She and Y317F She in whole cell 

extracts after 10 minutes of IL-3 stimulation (refer to Fig. V.5 A and B) and precipitated by 

Grb2SH2-GST (refer to Fig. V.7 A and B) were calculated and the statistical significance 

determined.

Immunoblots were developed by the ECL chemiluminescent detection system and 

Kodak XAR-5 film was used for the detection of ECL signals. The film from three individual 

experiments were then scanned on a BioRad GS-670 imaging densitometer and volumes of the 

tyrosine phosphorylated p52Shc bands determined. The ratio of p52shc band intensity from 

cells not expressing FL or Y317F She (+ tetracycline sample) compared to those expressing 

the She contructs (- tetracycline samples) were calculated. The volumes and ratios determined 

from the various experiments are outlined in Tables VII. 1 and VII.2

Table VII.l

Volumes and calculated ratios of endogenous p52Shc tyrosine phosphorylated bands in

whole cell extracts

FL She Y317F She
ExpJl Exp.#2 Exp.#3 Exp.#l Exp. #2 Exp.#3

Vol. +Tet 
-Tet

41.35 78.09 59.71 33.10 58.70 60.35
11.46 21.91 40.29 14.09 41.30 39.65

Ratio 3.61 3.56 1.48 2.35 1.42 1.52
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Table VII.2

Volumes and calculated ratios of endogenous p52Shc tyrosine phosphorylated bands

precipitated by Grb2SH2-GST

FL She Y317F She
Exp.#l Exp.#2 Exp.#3 Exp.#l Exp.#2 Exp.#3

Vol. +Tet 
-Tet

54.39 40.50 23.17 28.63 21.24 55.96
14.08 19.03 17.93 8.89 13.60 29.62

Ratio 3.86 2.1 1.3 3.22 1.56 1.89

The three ratios from each of the four experiments were then subjected to a One Sample t-test. 

This test assumes a normal sample distribution and tests the theory that the mean of the ratio is 

greater than a hypothesized mean of 1; i.e., the ratio would be 1 as the +Tet and -Tet samples 

would have equal volumes. The results of the test are shown in Table VII. 3

Table VII.3

Results of One Sample t-test

Hypothesized Mean = 1

Mean DF t-value P-value
whole cell 

extracts
FL She 2.420 2 1.878 0.2012
Y317F 2.223 2 2.411 0.1374

Grb2SH2- 
GST pptn’s

FL 2.883 2 2.684 0.1153
Y317F 1.763 2 2.590 0.1223

The results demonstrate that even though the mean values indicate that there is 

generally a 2 fold decrease in endogenous p52shc tyrosine phosphorylation upon expression of 

FL She and Y317F She, technically, the results are not statistically significant (p value not less 

than 0.05). Expression of FL She resulted in a mean 2.420 fold decrease in endogenous p52Shc 

phosphorylation in whole cell extracts after IL-3 stimulation for 10 minutes. Similarly, 

expression of the Y317F She mutant resulted in a mean 2.223 fold decrease in endogenous 

p52Shc tyrosine phosphorylation. Biochemically, these changes appear significant but when 

subjected to statistical analysis, are proved not to be significant. This has a lot to do with the
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number of experiments performed and if another one of two experiments were performed, 

bringing the total number of experiments to 4 or 5, the results would most likely be 

statistically significant. Similar results was also observed in experiments where the fold 

decrease in tyrosine phosphorylation endogenous p52shc precipitated by Grb2SH2-GST was 

determined in cells expressing FL and Y317F She. Expression of FL She and Y317F She 

resulted in a mean 2.883 and 1.763 fold decrease in tyrosine phosphorylated p52shc 

precipitated by the Grb2SH2-GST fusion protein, but again the One Sample t-test found this to 

not be statistically significant.
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