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Summary

This thesis describes a new method for the detection of instability within large 

interconnected power systems. A novel feature extraction technique is used to provide 

inputs to a connectionist system which classifies the stability of the power system 

subject to a set of disturbances (contingencies). This method has been used to 

develop stability screens for use within on-line dynamic security assessment systems. 

At the core of a dynamic security assessor are functions to provide fast contingency 

screening for power system instability. A database of several thousand contingencies 

must be screened to detect those which may cause stability problems so that a more 

detailed evaluation of their effects can be presented to the power system operators. 

Such screens must be conservative and always detect those contingencies which 

will lead to stability problems even at the expense of mis-classifing some stable 

contingencies as potentialy unstable. Those contingencies which are detected by the 

stability screens as potential problems are then evaluated in detail, usually by a time 

domain simulation, and then ranked according to their severity. Future developments 

in this field will lead to the development of tools to advise the operators as to possible 

preventative or corrective control actions.

These screens are shown to be highly suited to on-line operation by integration within 

OASIS 1 , a state of the art dynamic security assessor which has been developed at 

the University of Bath. The overall improvement in the performance of OASIS using 

snapshots of the UK national grid system is shown to represent a significant step 

forward towards achieving full on-line dynamic security assessment of large power 

systems.

1 Online Algorithms for System Instability Studies
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Chapter One

Introduction

ightning flashed, thunder rolled and pre-historic man gazed up into the 

heavens in wonder, and in those few split seconds began his fascination 

with electricity. Although such natural manifestations of electrical 

energy are virtually impossible to control, electricity is one of the key components of 

a modern industrial society as it can be easily generated, transported and converted 

into usable energy. There is a clear link between the energy consumption per head of 

population and the standard of living[l], and as we approach the 215t century even 

more of this energy is being supplied in the form of electricity.

The pioneering work undertaken by Oersted, Ampere, Faraday, Tesla and Maxwell to 

mention but a few names has been well documented[2,3] and has given rise to one of 

the most convenient forms of energy known to man. From the humble beginnings of 

the strange behaviour of current carrying wires has come the technological revolution 

that has seen the development of widespread interconnected power systems, factory 

automation, the micro-computer era and the age of space travel[4,5]. All of these 

developments have arisen through the cheap [6], safe and secure transport of electrical 

power from generators through the transmission and distribution systems [7] to

1
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consumers. The equipment involved in the generation, transmission and distribution 

of electrical power form what is usually referred to as a power system.

1.1 Electrical Power Generation

W ith the exception of water driven turbines, virtually all prime movers used in 

the generation of electricity are heat engines and subject to the so-called Carnot 

Limitation[l]. This arises from the second law of thermodynamics which states that 

a temperature difference is essential before heat energy can be converted into work. 

This leads to the conclusion that the maximum possible thermal efficiency for any 

heat engine is:

'max

where T\ is the temperature of the working fluid, normally steam, and T2 is the 

minimum (condenser) temperature. In this case T\ is limited to about 550°C,,823/lT 

and T2 to 100°C,373K. This gives a maximum possible efficiency of only 55%, but 

in practice the efficiency is usually only about 40% due to other losses.

In the UK, electrical power generation comes from four main sources [8-11]. Coal 

has historically been the greatest contributor, but the exhausting of seams and the 

consequent need for deeper mines has led to a reduction in the economics of using this 

method. In recent years, the tight environmental controls have led to the closing of 

some coal fired power stations as the cost of cleaning up has been too costly. Nuclear 

power was conceived as the successor to coal and is fairly economic to operate. 

However, the high development and de-commissioning costs as well as the serious 

problem of the processing of nuclear waste has stunted its growth. Over recent years 

there has been a considerable growth in the number of gas turbine based power 

stations. These stations are useful to supply power during peak loading and have
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run-up times of only two to four minutes. Pump storage stations, such as those 

at Ffestiniog and Dinorwig in North Wales, provide a feist and economic method 

for providing peak loading power. During light loading conditions, water is pumped 

from a low to a high reservoir and this can be reversed to provide generation in about 

one minute. Other renewable sources of generation are continuously being sought, 

but have so far not been practical on a large scale. Of these tidal and wind power 

are the most promising methods. Research on using fusion power for electric power 

generation will, when successfully completed, lead to an almost inexhaustible supply 

of safe, clean energy.

1.2 Electrical Transmission and D istribution

The interconnection of power systems within the UK started in the North East and 

spread to the rest of the country through the National Grid. The motivation for this 

was to create economy by reducing the amount of spare machinery at power stations, 

to make use of diversity in times of maximum load and to provide an alternative 

source of supply in the event of failure of equipment at a power station. It is this 

last reason that ensures that an interconnected power system is operationally more 

secure than many separate power systems. Recently, it has enabled the operators of 

the power system to use generators in Merit Order, ie use the cheapest generation 

most of the time and bring in expensive generation to meet peak loading or security 

requirements.

The need for high voltage transmission systems arises from the fact that the per-unit 

loss of power transmission is inversely proportional to the transmission voltage. The 

maximum safe voltage for utilisation of electrical power has been considered to be 

240V to earth, 415V three phase. For economic transfer of power between these
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different voltage levels, the use of AC transformers, and hence an AC power system 

is essential[12].

In the early days of electrical power generation, separate systems used different 

frequencies of generation. W ith the advent of an interconnected power system it 

was clearly necessary to standardise on a frequency and by an Act of Parliament in 

1926, 50Hz was chosen, primarily because it was high enough to power lights with 

no observable flicker.

The choice between overhead transmission lines and underground cables has been 

traditionally made on economic grounds. Underground cables are approximately 

20 times as expensive as overhead lines for the same distance, and suffer from 

capacitative problems, usually requiring shunt reactors for compensation. Overhead 

lines are naturally more exposed and frequently suffer from lightning strikes but due 

to the high degree of interconnection of the transmission system, and the development 

of protection relaying, these effects are minimised. However, with current planning 

laws it is becoming increasingly more difficult to obtain planning permission for 

overhead transmission lines and because underground cables are able to protect the 

aesthetics of the environment it is expected that their use will increase.

The protection of transmission lines, generators and transformers from damage due 

to faults on the transmission system is very important if one considers the capital 

cost of such items of plant and the operational costs involved of operation without 

these items in service[13].
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1.3 U sing Electrical Energy

Electrical energy can easily be converted into light, heat, or motive power. The work 

of Thomas Edison has led to the modern day light-bulbs, the work of Graham Bell 

has led to the worldwide communications breakthrough that has happened over the 

last few decades, and people such as Maxwell and Hertz began the developments into 

electrical machines.

For modern polyphase systems[14] there are two types of commonly used electric 

motor. The induction motor[15,16] is the more simple of the two but its speed 

of rotation is not synchronised with the supply. The synchronous machine[17] is 

more complex but is synchronised to the electrical supply and is widely used for 

motors and generators. If synchronism is lost between the machine and the supply 

then a condition known as pole-slipping occurs which results in large electrical and 

mechanical stresses being exerted on the machine. This condition is labeled instability 

and must be avoided at all costs, due to the high capital cost of large synchronous 

machines and the potential for severe damage to occur.

Direct current machines are still used in certain applications, but the complex 

circuitry required to provide the direct current [18] make this an expensive option.

1.4 M odern Power Systems

The UK transmission system comprises of approximately 800 busbars and 1300 

transmission lines, and 240 generating units. The system voltage is mainly 400KV, 

but falls to 275 or 132KV in places. There are some 11000 switches and circuit 

breakers on the system and protection systems on all items of equipment.
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As the economic constraints on power utilities continue to increase [6], power 

systems are being operated ever closer to their stability boundaries. In addition, as 

sources of generation become more concentrated, often with large areas of generation 

geographically separated by large distances from centres of load, the stresses on the 

transmission network are increasing. In response to these pressures, extensive work 

is being carried out across the world to provide power system operators with tools 

within their energy management systems, EMSs, to enable them to operate the power 

systems securely.

One of the key functions within EMSs is security assessment, where the vulnerability 

of the power system to outside events, such as lightning strikes on the transmission 

network, are analysed. Several hundred of these events, or contingencies as they are 

known, have to be analysed within the constraints of real-time operation of the EMS.

One of the most widely used examples of a severe power system security problem 

occurred in the area of New York in 1963 and resulted in a complete blackout of the 

city[19]. This problem was caused by the maloperation of a relay on a transmission 

line from Canada, due to an incorrect setting, and led to cascade tripping of other 

lines into the New York area. Since that time considerable effort has been directed 

at determining the optimum relay settings for transmission lines as well as sympathy 

tripping. A smaller black-out occurred in Seattle in 1984 during a severe storm. 

In this case the hardware protection, ie the relays, functioned correctly but the 

result was similar. Japan has one of the most vulnerable power systems as regards 

lightning strikes, due to long transmission lines crossing mountainous areas. In the 

UK, transmission lines in the North Wales area are also vulnerable to lightning strikes 

although the effects are far less severe due to the more robust power transmission 

network.

Of the security problems caused by contingencies that of the stability of the power
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system is the most crucial. Loss of stability within the power system will invariably 

lead to loss of load with the appropriate associated industrial and social problems. 

Stability assessment of electric power systems is a highly computationally demanding 

task and considerable effort has been directed at realising fast methods for on-line 

stability assessment.

1.5 A bout this Thesis

Operator decision and control actions are hard to quantify in terms of numerical 

algorithms but the range of tools, that fall into the category of artificial intelligence, 

can be used to model human learning, reasoning and decision. The principle methods 

that are employed are expert systems[20], genetic algorithms[21], fuzzy logic[22] and 

connectionist techniques, such as artificial neural networks [23,24].

The work described in this thesis details a new method for fast detection of power 

system stability problems using artificial neural networks. Information contained in 

the pre- and immediate post-contingency state vectors of the power system is used 

to construct an input pattern to an artificial neural network which has been trained 

to use this information to quickly identify potential stability problems in the power 

system. Using an approach such as this, on-line stability assessment can become a 

reality and the electric power utility can expect to be able to operate their power 

network closer to the stability limits with considerable economic savings through the 

use of less out of merit generation.

Chapter 2 provides a broad overview of the operation of a modern power system, 

and is followed by a detailed investigation into dynamic security assessment, the 

process by which the security of a power system is determined within the constraints
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of on-line operation. Chapter 4 describes the contingency screening process and the 

various approaches that have been used’

Neural networks are explained in chapter 5 together with some of the successful 

application areas both in the field of electric power systems and other practical 

areas.

Chapter 6 discuss the details of the new contingency screening method. This includes 

all aspects from the broad approach to the novel features and details of the neural 

network model. This is followed in chapter 7 by details of the implementation of this 

neural network stability screen into a dynamic security assessor.

The results of various laboratory simulations on a 20 machine 100 busbar reduced 

model of the UK National Grid System are presented in chapter 8. This is followed 

by simulation results obtained from real system snapshots of the full UK National 

Grid system, comprising approximately 920 busbars and 100 to 150 large generating 

units.

Conclusions and further work are given in chapters 9 and 10 respectively.



Chapter Two

Power System Operation

he operation of an electric power system presents a wide variety 

of technical challenges to the engineering profession. The planning, 

construction, maintenance and operation of such systems requires a 

highly skilled workforce, who must increasingly rely on ever more powerful design 

and analysis tools. This chapter concentrates on explaining the engineering aspects 

involved in power system operation, in particular the tools used by the power system 

operators to maintain safe and economic operation.

2.1 Introduction

The real-time operation of an electric power system is a highly complex task, as 

the operators must control the system, with many thousands of states, reliably and 

economically. The electric power utility must strive to maintain a reliable supply to 

customers even in the event of possible contingencies, due to internal failures such 

as insulator breakdown or the loss of a large generating unit, and possible external 

effects such as lightning strikes.

9
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An inter-connected power system is more robust to contingencies because there are 

multiple paths from areas of generation to load centres. A primary requirement 

for an interconnected power system is that the frequency of the AC generation is 

synchronised , at 50Hz in Europe and 60Hz in the USA.

The primary aim of the operators must be to supply the consumer demand for 

electricity. From the operational perspective, this requires the prediction of the 

probable demand so that generating sets are on-line to meet the demand changes 

as they occur. Historical records of demand over similar periods forms the basis of 

demand prediction and are used in day ahead studies to plan the generation patterns 

as well as for on-line operation as many stations have startup times of many hours.

Generating sets are becoming increasingly large and 2000MW capacity stations 

are normal. Such stations are often more efficient than smaller stations and 

hence, regardless of geographic position, it is more cost effective use these stations 

continuously and to transmit energy over large distances than it is to use less efficient 

local stations. For this reason the main base load is met by these large stations which 

must be inter-connected so that they feed into the system as a whole, as opposed to 

a particular load[25].

In order to meet the sudden increases in load a certain amount of generating capacity, 

known as spinning reserve is required. This consists of a number of generators, 

running at less than their full capacity, ready to supply more power at very short 

notice. Stationary generating units cannot be used to supply these fast changes 

in demand due to the long start-up times, approaching one hour for steam turbo

generators.

In order to maintain the security of supply, the power system must be operated in a 

manner that makes it robust to contingencies. Almost all utilities operate their power
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system to at least a security of N  — 1, ie to an extent that a single failure will not 

result in loss of load or damage to the system. Increasing the security level to N  — 2 

and beyond results in a more secure power system but often at the expense of less 

economic operation. The trade-off between security and economy has to be chosen 

based on the cost of a serious problem versus the likelihood of such an occurance and 

is the subject of much debate within electric utilities.

2.2 UK  national grid system

The UK national grid system is a highly interconnected transmission system with in 

excess of 7000 kilometres of overhead transmission lines and cables, 21,600 towers, 

280 sub-stations and up to 200 large generating units operating at any time. There 

are two major power interconnections: the first a 275 and 400kV AC link to the 

Scottish power system and the second a 2000MW DC link with France[26,27].

Figure 2.1: The UK national grid system
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Figure 2.1 shows a schematic of the UK National Grid system. The transmission 

system is operated at voltages up to 400kV and is currently controlled through four 

Area Control Centres (ACCs) and the National Grid Control Centre (NGCC)[28].

The nodes on the transmission system where power is supplied to the customers, such 

as Regional Electricity Companies (RECs), are known as Grid Supply Points (GSPs) 

and such interconnected power systems have multiple paths from the generation areas 

to the GSPs, ensuring a high reliability of supply.

There are three main generating companies; Power Gen and National Power which 

operate the majority of the fossil fuelled stations and Nuclear Electric which runs 

the nuclear stations. The National Grid Company pic (NGC) are responsible for 

the maintenance, development and operation of the transmission system and also 

administer the poo/[27]1 . Beyond the GSPs the responsibility for the electrical power 

distribution rests with the RECs, and is largely radial in nature.

NGC schedule and dispatch generation plant in England and Wales and power from 

Scotland and France according to a merit order based on bid prices submitted by 

the generating companies. Under the current system, NGCC instructs each of the 

four ACCs to maintain a defined import/export of power until a new instruction is 

given. This is known as the Inter-Area-Transfer System [29]. These power flows are 

initially calculated off-line and then modified on-line by the operators at NGCC to 

meet the actual operating condition. These flows can be adjusted by the ACCs in 

proportion to system frequency error and to reinforce the effect of governor control 

action. In addition, some of the generating sets at Dinorwig and Ffestiniog (pumped 

storage) usually operate an active low frequency relay. These sets will then start 

up automatically to maximum generation if there is a serious fall in the system 

frequency.

1The market place for buying and selling electrical power



Two Power System Operation 13

2.2.1 D em and

48000

46000

44000

42000

c 40000

38000

o 36000

34000 t ... ....T

32000

30000 — t .

28000
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time of Day (hours)

Figure 2.2: Typical Winter Weekday Load Curve

Figure 2.2 shows a typical winter weekday loadcurve on the UK National Grid 

System. In this example, the total demand ranges from 28GW to 48GW which 

requires between 100 and 160 separate generating sets to be operating: under summer 

nighttime conditions the demand falls to about 17GW.

2.2 .2  G eneration  C apability

The generation capability within England and Wales encompasses fossil and nuclear 

fuelled plant, hydro electric schemes and pumped storage stations. Over recent years, 

with the introduction of fierce market forces into power generation, a large number of 

Open Cycle Gas Turbines (OCGTs), Combined Cycle Gas Turbines (CCGTs) and 

standard gas turbine plant have been commissioned which are used to meet peak 

demand.
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Generation Type No Of Stations Registered Capacity (MW)
Nuclear 13 10633
Small Coal 7 1432
Meduim Coal 5 4306
Large Coal 12 22991
CCGT 29 8891
Oil 6 8489
OCGT 23 1938
Hydro 2 2100
Scotland - 1200 (max)
France - 1976 (max)
Total 97 63956

Table 2.1: 1994/95 Generation Capability

Table 2.1 shows the contribution to the total generating capacity from the various 

types of power station[ll]. In general, the nuclear and some of the coal stations 

are used to meet the base load and the expensive gets turbines are used under peak 

loading conditions.

2.2.3 Economics

NGC facilitate the operation of the electricity market place, known as the pool [27] 

where power is bought from the generating utilities. At 10am every day all the 

generating companies who wish to trade the following day bid in their per MW hour 

prices for each of their available generating sets. They also declare the maximum 

output and operating parameters of each generator for security studies. Customers or 

‘demand side bidders’ also submit bid prices at which they will reduce their demand. 

All of these bids are taken together to form the merit order of generation. This places 

the cheapest generating unit at the top and the most expensive at the bottom which 

then allows NGC to decide which units to run to meet the demand throughout the 

day. The generation cost passed onto the regional electricity companies and large
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commercial plant is comprised of the pool purchase price (basically determined by 

the most expensive generating unit being run) and uplift costs. This uplift cost 

takes into account factors such as system reserve, transmission constraints, demand 

forecast accuracy, generation availability and the cost of additional services such as 

voltage and frequency control.

As a consequence of the opening up of the electricity market place, the generator 

bid prices may vary considerably from day to day. This has a major effect on 

the constraint, or uplift costs as they are referred to within NGC, and is the key 

motivation behind moves to supply the power system operators with on-line stability 

information. This information will be provided by dynamic security assessors, which 

are described in chapter 3.

2.2.4 The Future

Submissions made by the RECs to NGC indicate that the winter peak demand in 

England and Wales is set to grow at an average rate of some 1.3% a year[ll] over 

the next seven years; on this basis the peak demand will increase from 47.8GW in 

the winter of 1993 to about 53.3GW by 2000/2001.

The life expectancy of the aging Magnox (nuclear) station are unknown. In March 

1993 a government white paper indicated that they would look closely at any requests 

from Nuclear Electric for approval of capital investment designed to extend the life 

of such stations.
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2.3 Power System  Controls

From a power system operator’s perspective, their task is to alter the generation 

level to meet the load demand whilst keeping the system voltages and frequency 

within acceptable limits. In the UK, the NGC are bound by statutory regulations 

to operate the power system at ±5% of the nominal voltage level and ±2% of the 

system frequency, even under fault conditions.

As a consequence of these requirements and the need for continuous supply of 

electricity to consumers, both the transmission system and the generating units must 

remain stable. Maintaining a stable operating point requires good co-ordination of 

control actions, and the general topic of on-line security assessment is covered in 

detail in chapter 3.

To maintain the operation of the system within these constraints requires a 

combination of good planning, operator action and automatic control actions. In 

addition, coordinated protection schemes are needed to protect items of plant, such 

as lines and transformers, from damage under fault conditions.

2.3.1 Frequency

The power system frequency perturbations from nominal provide a clear indication 

of the imbalance between the real power generation and demand. A time history 

plot of the system frequency is one of the main tools used by a loading engineer in 

an Energy Management Centre (EMC) to alter the current generation level. Should 

the system frequency fall then there is a current shortfall in generation and vice 

versa. Due to the often rapid changes in system frequency some automatic frequency
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controls are present on the power system to control the short term, ie less than one 

minute, perturbations with the operators generation dispatch meeting the longer 

term generation requirement. One such automatic frequency control is provided by 

governor control action.

Steam

Valve settings

f\
Turbo-Generator

Electrical Power
Steam Turbine to Transmission

Network

Governor Shaft Speed Signal

Figure 2.3: A Governor Control System

Figure 2.3 shows a schematic diagram of a speed governoring control system for a 

steam turbine. The function of the governor is to regulate the shaft speed of the 

turbine by controlling the high and low pressure steam valves on the turbine. The 

nature of the coupling between the steam turbine and the turbo-generator means that 

the frequency of the generator depends on the rotor speed of the turbine. Therefore, 

by trying to regulate the turbine speed the governor also has the effect of regulating 

the generator frequency. During normal operation some generating sets will not be 

operating at full load but will instead be operating on free governor action. As the 

system frequency changes the governors will strive to restore the frequency and the 

generating sets will alter their output power accordingly. In order for this to be 

effective, the generators must not be operating at full power because there will be 

no margin to increase the output power to restore the frequency

Low frequency relays (LFRs) are frequently used on large hydro generating units, 

such as Dinorwig and Ffestiniog in the UK, to provide emergency frequency control. 

A typical LFR setting of 49.85Hz, with a dead-time of 2.75 seconds, means that 

the relay will operate if the frequency drops below 49.85Hz for 2.75 seconds. This 

operation would then instruct its generating set to go to full generation, typically in 

less than ten seconds. This type of control action provides a rapid arrest of frequency
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fall in a time scale shorter than that possible by telemetered operator actions from 

an Energy Management System (EMS).

In the UK several 2000MVA, 400kV quadrature boosters have been installed to aid in 

the distribution of power across the transmission system. Although the generators 

constitute the only source of power in the system, the distribution of this power 

around the network can be influenced by the provision of phase changing equipment, 

namely quadrature booster transformers.

Phasor DiagramCircuit Diagram
Wnon

J

Figure 2.4: Connections for one phase of a Quadrature Booster

Figure 2.4 shows the connections in a quad-booster for the voltage injection into 

one of the three phases. Such devices produce a voltage phase change by adding a 

proportion of the voltage difference between two phases to the third. This is repeated 

for each of the phases and produces the net voltage phase change shown in the phasor 

diagram. By altering the tap ratio the level of voltage added to each phase can be 

adjusted and hence the voltage phase shift and real power flow can be controlled.

2.3.2 Voltage

With voltage levels constrained to be within 5% of nominal, even under fault 

conditions, the control of the voltage levels on the transmission system is of great 

importance. The effect of limiting the voltage ranges on busbars also provides a crude
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control to prevent voltage instability which is explained in detail in the following 

chapter. The main voltage controls are explained below:-

A u to m a tic  V oltage R eg u la to rs  — AVRs are used to regulate the terminal 

voltage of a turbo-generator by setting the appropriate field voltage. The input 

signal is the desired terminal voltage, and the actual terminal voltage is used 

as the controlling feedback signal.

S ta tic  V ar C o m p en sa to rs  — SVCs are used to provide MVar injection in suscept

ible areas of many power systems. With a positive increase in MVar injection at 

a busbar, the voltage level will rise. Mechanically Switched Capacitor (MSC) 

banks provide this injection by the mechanical switching in and out of capa

citor banks as the voltage level alters. Modern thyristor based SVCs switch 

capactitors on a frequency much greater than that of the AC system. This 

allow for a much finer grain control, but is a more expensive option.

Synchronous C o m p en sa tio n  — This source of voltage control is again provided 

by a MVar injection. An over excited synchronous machine generates MVars 

while an under excited machine absorbs MVars[19] so by controlling the level 

of excitation the MVar injection, and hence voltage, can be controlled.

Tap C hang ing  T ran sfo rm er — By altering the tap ratio of the generator and 

transmission system transformers, the voltage level on the secondary side can be 

controlled. This constitutes the most popular and widespread form of voltage 

control at all voltage levels.

When overhead transmission lines are fully loaded they absorb MVars; with a current 

I  amperes for a line reactance per phase of X  ohms, the vars absorbed are I 2X  per 

phase. On lightly loaded lines the shunt capacitances become predominant and the 

lines become Var generators. This effect is amplified in cables where, due to the large
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susceptances, the Var generation becomes very large under light loading conditions. 

In the case of the UK system, this effect is significant in the London area where cables 

are sometimes taken out of service overnight to prevent high voltage problems.

2.3.3 Protection

W ith items of plant often costing many millions of pounds it is of paramount 

importance that they are protected from damage due to operation outside the normal 

ranges. Power system protection forms a highly complex engineering field in its own 

right, using modern computing hardware and fast communication links to achieve 

the desired security.

Transmission lines are usually protected by distance protection schemes and/or unit 

protection methods. Transformers are almost always covered by a unit protection 

system. For generators there are usually protection schemes for over current, under 

and over voltage as well as for under and over frequency. In addition there are 

protection systems to cover internal faults within the generator such as a stator 

earth fault.

2.4 Energy Management System s

An Energy Management System (EMS) is a complex hardware and software system 

used by the power system operators to control the power system within the 

constraints of real-time operation[30,31]. The modern EMS is the power industry’s 

response to meeting the demands of running an economic and secure power system.

Figure 2.5 shows a schematic of how an EMS is related to the rest of the power
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Figure 2.5: The place of an Energy Management System

system. It is based at the power utilities main Energy management Centre (EMC) 

and performs functions such as extensive on-line monitoring, security assessment and 

dispatch optimisation to minimise operational problems whilst maintaining economy 

of operation.

At the U.K. National Grid Control Centre[28] the EMS is based on a Cyber 960 dual 

computer system, with a third Cyber as an emergency backup. The Cyber computers 

support state estimation, security assessment software as well as retrospective data 

access. They are linked to and receive data from Cyber 960 computers at each of 

the ACCs. A Vax 6420 computer, with a Vax 6620 on standby, provides additional 

and complementary displays such as predictive demand and reserve management and 

provides advice for generation dispatch.

Figure 2.6 shows a typical block diagram of an EMS based on the UK system[28]. 

Each of these blocks is described in more detail in the following sections.



Two Power System Operation 22

State Estimation

External Estimat

— r ~
State Estimator

I
Scada Interface

JPerhxn.
KVMt

V,., ,,

iTriggers

Security Assessment

Contingency
Screening

Contingency
Evaluation

Dispatch

Load
Forecast

Voltage
Schedule

Contingency
Ranking

Generation
Dispatch

Network
Dispatch

(ST
Security Desk

Operator
Displays

Load Desk

Figure 2.6: Block Diagram of an EMS

2.4.1 SC A D A  Subsystem

SCADA (Supervisory Control And Data Acquisition) is a generic term usually 

applied to the interface between an industrial plant and its control. Its primary 

function is to relay information on the state of the system back to the control centre 

and to dispatch control messages to the plant.

The SCADA subsystem of the EMS telemeters busbar voltage information, line 

power flows and switch statuses, relaying them back to the EMC. This telemetered 

information is often inconsistent due to noise and drift errors on the measuring 

devices, errors introduced in the analogue to digital conversion and communication 

errors. This problem is somewhat alleviated by incorporating redundancy into the 

system measurements; measurements are made at many points on the power network 

so that at the EMC although the received data is noisy there is sufficient redundancy 

such that the state estimation software can try to obtain a consistent power system 

state vector for the EMS functions.
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2.4.2 State Estim ation

As power systems become even more stressed it is essential for the power utilities to 

know the current power system state as EMS functions such as security assessment 

and generation dispatch rely on this information to maintain a secure and economic 

supply. The function of the state estimation subsystem of the EMS [32,33] is to take 

the SCADA data, noise and all, and produce an accurate and consistent state vector 

that matches the power system state as closely as possible.

Real-tune 
data from 

SCADA

Bad Real-time 
model to
EMS functions

Figure 2.7: Steps in State Estimation

The function of a state estimator can be broken down into five separate stages 

as shown in figure 2.7. The topology processor picks out the statuses of the 

switches from the real-time data and determines the present network topology. 

Since the availability of real-time measurements can change, because of metering 

or communication failures, an observability check is made. This check normally only 

examines the observable areas of the network and identifies those busbars which may 

have become temporally unobservable. These busbars can then be made observable 

by adding pseudo-measurements or taken out of the state estimation calculation and 

added into the external network model.

The most common approach for the state estimation algorithm is to formulate the 

problem as a nonlinear weighted least squares minimisation[34,35]. This problem is 

then solved for the observable part of the network in an iterative manner until the 

best system state vector is obtained. If any bad data is detected then it is removed 

from the input, marked as an anomoly, and the state estimation algorithm is re-run. 

The external estimator then adds in the most likely state of the external part of the
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network into the solution before the EMS real-time model of the power system is 

updated.

2.4.3 Dispatch

Given the current operating state of the power system and historical records, the 

total system load over the next few hours can estimated[36,37]. The aim of the 

dispatch subsystem of the EMS is to set the generator MW and MVar outputs in 

order to meet this predicted load demand in as economic way as possible. Optimal 

dispatch[38,39] software performs this task in real-time aiming to achieve a balance 

between economy and security of supply.

Optimal power flow (OPF) programs are often used in planning studies as well as for 

on-line operation. There have been a number of techniques employed[40,41], but the 

most reliable method is based on a Quasi-Newton approach[42] although techniques 

based on fuzzy-expert systems seem promising[43]. Such optimisations must include 

constraints on busbar voltage limits, transformer and quad-booster tap positions, 

SVC and synchronous compensation limits as well as cost factors for each generating 

set.

2.4.4 Security Assessm ent

The aim of security assessment is to determine what effects certain contingencies will 

have on the power system should they occur[44,45]. The selection of contingencies 

requires detailed knowledge of the power system concerned[46,47] and varies 

depending on the loading and generation patterns. The selected contingencies are 

then screened to remove those contingencies which produce no violations [48]. The
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remaining contingencies then undergo detailed evaluation to determine the extent 

of the violations. Lastly, the contingencies are ranked in order of severity [49] and 

displayed to the operator.

Until recently the security monitoring software available with an EMS has only 

been able to perform static security analysis due to the computational restrictions 

on on-line algorithms. Static Security Analysis (SSA) is concerned with the post

contingency steady state condition of the power system. SSA is usually based on 

two main tools: DC and AC load-flows or neural networks[50-52].

DC load-flows, based purely on Kirchoffs Laws[53,54], are often used to calculate line 

MW flows. The computational simplicity of such algorithms make it ideal for on-line 

use and its robustness to inconsistencies in the state estimation output make it a 

very reliable tool. Results from a DC load-flow can show if lines will be overloaded 

in the post-contingency state and if all the load can still be supplied.

Off-line studies are carried out in the planning stages to set maximum MW transfers 

across critical boundaries so that the operators can maintain system stability[55]. If 

results from the DC load-flow indicates that the post-contingency state will violate 

these stability limits then the system operators are warned so that they can plan 

preventative or corrective actions.

An AC load-flow provides information on both the line MW flows and busbar voltages 

in the post-contingency steady state condition. As an operational tool it may suffer 

from convergence problems if the state estimated solution is inconsistent. When 

functioning properly, it allows the post-contingency busbar voltages to be checked 

for limit violations.

In figure 2.8, Stott et al[44] have proposed a formal classification of power system



Two Power System Operation 26

security which they believe is necessary to define the relevant EMS functions. The 

normal mode of operation is at ‘level one’ where there are no problems on the system. 

Should the power system operating point change such that the current operating 

point is secure but a contingency may lead to an insecure condition then ‘level two’ 

has been reached. Should the situation become worse and loss of load is required to 

correct violations caused by a contingency then the system is in the alert state. The 

point of no-return occurs when the current operating limits are violated and loss of 

load is the only option. Following this loss of load the system operators will try  to 

restore all loads and return to a secure operating condition.

Full on-line security assessment should look at the stability of the power system when 

subject to contingencies. Due to the highly computationally demanding nature of 

this problem, current on-line security assessors do not consider stability problems, 

but rely on planning studies to set MW transfer limits, often very conservatively, to 

ensure the system remains stable. Current research into full on-line dynamic security 

assessment, outlined in detail in the following chapter, aims to assess the stability 

implications of contingencies and to provide the power system operators with advice 

as to how to operate the system closer to the desired economic-security level.

2.5 Chapter Summary

The progression of electric power systems towards interconnection coupled with the 

ever increasing size of generating sets has led to more systems becoming limited by 

stability constraints.

The secure and economic operation of such power systems requires extensive on

line computer based tools to both assess the system security and to provide secure
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economic dispatch to meet all the load demand at all times.

The following chapter describes the new area of dynamic security assessment, where 

the stability of the power system subject to contingencies is determined within the 

constraints of on-line operation and operator advice is determined.
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Figure 2.8: Power System Security Levels



Chapter Three

Dynamic Security Assessment

he trends in modern interconnected power systems have resulted in 

heavier transmission loadings and hence operation closer to the steady- 

state limits. Increasing geographical dislocation of generation from load 

coupled with more unpredictable economic constraints sometimes means that large 

amounts of power are imported from external systems across weak boundaries which 

have made many power systems stability limited, i.e. the stability limits are reached 

prior to the steady state limits. A consequence of this is that the derivation of the 

on-line operational limits is crucial to allow the power system operators to operate 

the system closer to these limits and hence in a more economic manner. The aim of 

dynamic security assessment (DSA) is to provide the operators with information to 

enable them  to run the power system closer to these limits in a secure manner.

3.1 Introduction

Over the last few years considerable effort has been and is being made to provide 

the power system operators with tools to enable the power systems to be operated

29
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closer to their stability limits. DSA tools will provide the operators with enough 

information on the power system stability to enable power system operators to run 

the power system closer to its stability limits with confidence. This has considerable 

economic benefits when less out of merit generation has to be used to meet stability 

limits. Cauley[56] gave an example where accurate knowledge of stability limits 

allowed 500MW of generation costing $50/MWh was replaced by remote generation 

costing only $20/MWh. The potential economic benefit to the utility, in this example 

of approximately $360,000 per day, is the main driving motivation for DSA. In the 

year 1993/4 the total cost due to all constraints[57,58] on the UK national grid 

system was approximately £189M and therefore even a small percentage reduction 

in these constraint costs would lead to a substantial financial reward.

At the heart of a DSA system are the algorithms which analyse the transient 

and oscillatory responses of the power system for a set of credible contingencies. 

Of particular interest is the nature of the transition between the pre and post

contingency steady states in particular any potential instability problems. Also, 

during the transition between operating points, checks are made to ensure that 

the limits on busbar voltage fluctuations, transient line overloading and machine 

frequency limits are not violated.

The computational requirements for DSA are approximately three orders of mag

nitude greater than that required for static security analysis[44], which have made it 

infeasible to implement on-line dynamic security analysis until recently. DSA is one 

of the main areas of power systems research at the current time. EPRI[59] are un

dertaking a thorough investigation into the feasibility of implementing on-line DSA, 

and have proposed a route for the development of operator tools to meet this ob

jective. Their perceived plan is to use an expert system based contingency selector, 

a neural network based contingency screen and transient stability analysis using the 

Transient Energy Function (TEF).
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The recent application of artificial intelligence techniques to the field of dynamic 

security assessment has resulted in DSA moving from a theoretical tool to practical 

application. The application of expert systems to DSA is receiving a great deal 

of attention [60-66] and this seems to be the most promising way forward for 

contingency selection and on-line operator advice [43,67-69]. Research into using 

neural networks for DSA[70-74] has been successful for small power systems, and 

currently much work is going into the application of this technology to larger power 

systems.

A recent collaborative venture between the University of Bath (U.K.) and the 

National Grid Company (U.K.) has led to the development of OASIS (On-line 

Algorithms for System Instability Studies), a state-of-the-art dynamic security 

assessor. OASIS has undergone recent field trials at the National Grid Control Centre 

with promising results.

3.2 Power System  Stability

Dynamic Security Assessment aims to allow power system operators to run the 

system closer to its stability limits, whilst maintaining secure and economic 

operation. What do we mean by power system stability? The Oxford English 

Dictionary definition of stability is:

Stability: In physical senses (a) Power of remaining erect; freedom from 

liability to fall or be overthrown, (b) Fixity of position in space; freedom 

from liability to changes of place, (c) Ability to remain in the same 

relative place or position in spite of disturbing influences; capacity for 

resistance to disturbance; the condition of being in stable equilibrium, 

tendency to recover the initial position after displacement, also, of a
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body in motion: Freedom from oscillation, steadiness, (d) Fixedness 

not fluidity, (e) Of a system of bodies: Permanence of arrangement; 

power of resisting change of structure, (f) Of a chemical compound or 

combination: Capacity to resist decomposition or disruption. Also of an 

atomic nucleus or sub-atomic particle, (g) Something fixed or settled.

This definition of stability [75] highlights many of features of the required dynamic 

response of a power system to a contingency. First and foremost the power system 

must be capable of surviving (a,c,e) the transition from the pre- to post-contingency 

operating condition. Ideally, all the load should remain supplied (b) and voltage 

and frequency within the statutory limits (d). The post-contingency operating point 

should be free from oscillations (g) and itself stable for further contingencies.

Power system operators need to know three aspects of the power system stability 

for every contingency. Firstly, will the power system survive the transition to the 

post-contingency operating point. If so the system is transiently stable. Secondly, 

is the transition to the post-contingency operating condition going to be sufficiently 

damped, i.e. is it oscillatory stable. Both of these forms of stability are electro

mechanical and are determined by the nature of the electro-mechanical oscillations 

between the transmission network and the machines connected to it.

The traditional concept of dynamic instability is not used in this work as it leads to 

confusion [75]. The concept of steady state stability concerns small fluctuations about 

the operating point of the system. In practice, if the post-contingency operating point 

has a poor degree of steady state stability, the pre- to post-contingency operating 

point will be characterised by poor damping or increasing oscillations and hence will 

be detected as oscillatory unstable.
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The final stability aspect, voltage instability, is a pure transmission network 

phenomenon concerned with widespread busbar voltage collapse. If there is a sudden 

increase in load then the busbar on the transmission network where the power is being 

drawn from will fall slightly. Under certain conditions this fall may be self-sustaining 

resulting in voltage collapse at the busbar. Rapid automatic or manual response is 

then required to shed load so that the transmission system voltage levels can be 

restored.

3.2.1 Transient Instability

Transient stability studies are carried out to examine the transient behaviour of the 

power system when moving from the pre to post-contingency operating point. The 

transient stability is then determined by the energy imbalances between the machines 

and the transmission system. Transient stability can be considered as the short term 

stability (< 5 seconds) of the system when subject to a large disturbance.

If a machine is unable to inject sufficient electrical power into the transmission system 

then its rotor will accelerate as the mechanical input power to the rotor will remain 

largely constant due to the relatively slow governor response. When the fault is 

removed, the machine rotor will experience oscillations and if these are too large 

then the machine will move towards pole-slipping. At this point the machine pole- 

slipping protection schemes will operate and trip the generator to prevent any serious 

damage from occurring. Figure 3.1 shows the rotor angle plot for a machine with a 

contingency applied which causes the machine to pole-slip after half a second.

A recent conference [56] outlined the accomplishment of EPRI research projects and 

gave details of an actual on-line transient stability system at the Ontario Hydro 

Clarkson System Control Centre and contingency screening and ranking of these
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Figure 3.1: Example of Transient Instability

problems at Northern States Power. Transient instability problems are localised by 

nature and can usually only be solved by either the activation of an intertripping 

scheme or by transmission re-enforcement.

3.2.2 O scillatory Instability

This is concerned with the nature of the post-contingency electro-mechanical 

oscillations between the machines and the transmission system. It is operationally 

desirable is these oscillations are fairly small and decay away within one minute [76].

Within the UK national grid system, such instability problems were known to exist 

when a large increase in demand was met by a large increased power import from 

the Scottish Power system. Figure 3.2 shows a simulation, using the laboratory scale 

model described in chapter 8.1, of a rotor angle of a generator in Scotland which 

is dynamically unstable when a 100ms busbar fault is applied to busbar DEES4.
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Figure 3.2: England Scotland Oscillatory Instability

The primary cause of the instability is because too much power is being transferred 

down two weak 275kV transmission lines to England. Simulations of this effect have 

shown that if control actions are not taken by the power system operators then the 

interconnection lines will be tripped and the UK power system split into two islands. 

This problem has been reduced by the recent addition of two 400kV transmission lines 

between the two systems. However, recent re-enforcement of this interconnection has 

considerably reduced this problem.

From an operational perspective, the system is operated in the oscillatory stable 

region by the application of MW transfer limits across critical boundaries in the 

system[58,77]. Traditionally, these limits are calculated at the day ahead planning 

stage and are conservative to allow for variations between the actual and expected 

operating states of the power system. The use of these conservative limits leads to 

the running of out-of-merit generation and hence a large financial penalty. One of 

the aims of dynamic security assessment is to provide the power system operators 

with a better idea of the on-line transfer limit and hence reduce the economic penalty
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incurred as a result of such instability problems.

3.2.3 Steady State Stability

Steady state stability analysis concentrates on the stability of the power system when 

subject to small perturbations about its operating point [78,79], i.e. its small signal 

stability. The transition to such an operating condition may lead to increasing long 

term oscillations and limit cycles, which if are not arrested will impair the power 

system security and may lead to islanding. From the practical perspective, this form 

of instability violation is alleviated by ensuring that the system is oscillatory stable.

3.2.4 Voltage Stability

Unlike transient, oscillatory and steady-state instability problems, voltage stability 

is not an electro-mechanical phenomena but a purely network phenomenon[80]. 

Consider the circuit shown in the upper right of figure 3.3. If the sending end 

voltage, Vs is fixed, say at the nominal 1.0 per unit (pu) then as the power factor 

of the load varies, we obtain voltage versus MW transfer graphs of the form shown. 

The fact that there are two solutions of voltage for each MW supply can be thought 

of as by either a high voltage and low current or a low voltage and high current 

transmission.

The seasonal thermal ratings for the line are also shown and it is apparent that for 

power factors of less than unity the possibility exists that before the thermal limit is 

reached the operating power may be on that part of the characteristic where small 

changes in load cause large voltage changes. Under these conditions the system 

experiences voltage instability.
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Figure 3.3: Relationship between power supplied and receiving voltage

Great caution has to be exercised in these conditions and depending on the type of 

load voltage collapse may occur. If the load is basically constant power (eg induction 

motors) the collapse is aggravated. For softer loads, i.e. those where the power drops 

off as the voltage drops, the situation is alleviated. The power factor across the line 

is a critical quantity and it is shown that a lagging power factor will precipitate 

voltage collapse. For long lines, it is therefore necessary to operate the system at 

above approximately 0.97pf, and the use of Var injection at the receiving end by 

SVCs or other devices becomes economically justifiable.

3.3 Current Operating Practice

Unacceptable stability conditions arise if any generator or group of generators falls 

out of synchronism with the remainder of the power system or if power/frequency 

oscillations do not decay within a time constant of typically 12 seconds[ll].

The NGC operating standard, OM3, requires the power system to be stable following 

secured outages[57]. It is the practice of NGC to consider the following contingencies
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at the operating stage:-

(D Three phase faults followed by a secured outage (i.e. single or double circuit 

faults perhaps with a circuit already out of service due to a planned outage).

(D A fault clearance time assuming pessimistic operating times for both 1 st main 

and 2 nd main protection channels (the fastest of which will initiate tripping) 

plus the trip relay and circuit breaker operating time.

© the worst fault location in terms of stability performance given the topology of 

the network and fault clearance time.

From an operational perspective, intertripping schemes are widely used to trip those 

generating sets that will go unstable as a result of transient instability problems. 

MW transfer limits, calculated in the day ahead planning stage are used to ensure 

that the system remains oscillatory stable.

3.4 Dynamic Security Assessors

At the heart of a modern on-line dynamic security assessment system (DSAS) is the 

ability to be able to evaluate the security implications of a set of contingencies on the 

current operating state of the power system. The operating state that is used by the 

DSAS is an approximation of the power system’s operating state produced by the 

state estimation software[28] within the EMS. The reliability of the state estimator’s 

output is highly dependent on both the accuracy of telemetered data from the power 

system, obtained by the SC AD A system[28,81,82] and on the observability of the 

power system[83]. Hence it is vital that this issue is addressed before an on-line 

dynamic security assessor can be reliable.
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The recent introduction of high performance low cost workstations has influenced 

the archetecture and design of EMS more than any other development [84]. The 

traditional aproach of using a single large computer to form the core of energy 

management systems is dogged by the problem of obtaining extra computing 

power for EMS applications without substantial alterations to the EMS computers. 

Energy management systems are being augmented with heterogeneous distributed 

computing systems[85] to perform the new EMS applications, such as dynamic 

security assessment. The flexibility and cost effectiveness of this approach is the 

driving motivation coupled with the minimal disruption to the existing EMS. The 

latest state estimation output is farmed out to the distributed computers which 

perform the evaluation. The results are sent back to the EMS for displaying through 

the standard EMS displays.
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Figure 3.4: DSAS Block Diagram

Figure 3.4 shows a generic block diagram for a DSAS based on research being 

conducted at the University of Bath[8 6 ] and other work by CEGELEC ESCA[87-90]. 

In order that a large number of contingencies can be used it is vital to include some 

form of contingency screening to filter out those contingencies which cause little 

or no degradation of the system security. The remaining contingencies can then 

undergo detailed on-line evaluation for security violations such as line overloads, 

voltage violations and instability problems. These results are then presented to the



Three Dynamic Security Assessment 40

power system operators in a clear and unambiguous manner to enable them to take 

preventative, or plan corrective, actions.

The continuous fluctuation of power system load in conjunction with the topology 

changes have a large effect on the ability of the power system to withstand 

contingencies. It is therefore vital that DSA tools should provide the system 

operators with up to date information. This requires the following conditions to 

be met.

(D The DSA should be performed at a rate commensurate with the rate of change 

of system state. Hence, the DSAS should be triggered after any switching 

operations, after a new state estimation update or upon operator request.

<D The DSAS cycle time should be short enough for the results to be still 

meaningful when the evaluation is completed. Cycle times of the order of 

10 to 15 minutes were considered to be the aim for OASIS, but faster cycle 

times are obviously more desirable.

(D The DSAS should provide full diagnostics to the operator in the event of a 

failure of an algorithm. Typically, the failure of an AC loadflow to converge for 

a contingency should be reported to the operator as even the odd infrequent 

quirky result will reduce operator confidence in the DSAS.

The only aspects of stability that will be covered in the remainder of this discussion 

concentrate on transient and oscillatory instability problems -  i.e. the nature of 

the electro-mechanical oscillations. This broad approach adopted for the electro

mechanical stability aspects can be expanded to cover voltage stability, although 

this is outside the scope of the current research associated with OASIS, which 

concentrates on the interaction between the EHV transmission system and the 

generating units.
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3.4.1 Contingency Selection

The selection of the contingencies to be evaluated by a DSAS can be performed in one 

of two ways. Firstly, a static list of contingencies may be used, which encompasses all 

contingencies that may lead to potential instability problems under various operating 

conditions of the power system.

This approach leads to a large number of contingencies being selected and therefore 

increases the computational requirements for the DSAS and does not take into 

account valuable operator experience. This experience can form the basis of 

dynamic contingency selection, where only those contingencies that are likely to 

cause potential instability problems for the current operating condition are chosen.

This encompassment of power system performance and operator knowledge seems to 

be ideally suited to an expert system implementation [46,91-94] as explicit rules can 

be developed to cover most of the operating conditions. In this way an automatic 

contingency selection can be implemented and augmented with other contingencies 

that the power system operators request.

3.4.2 Contingency Screening

For large power systems, such as the UK national grid system, it is possible that 

several thousand contingencies may be selected for evaluation. If a full time domain 

simulation is used to perform the detailed evaluation of each contingency, then even 

using a state of the art power system simulator, such as PowSim [9 5 ], it is not 

possible to meet the DSAS update time of 1 0  to 15 minutes without investing in 

substantial computing power. For example, performing a time domain simulation
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of 5000 contingencies using PowSim for 30 seconds each on the full NGC system 

takes approximately 11.5 hours using one DEC Alpha. To meet the desired update 

frequency would require approximately 70 DEC Alpha’s.

Contingency screening aims to quickly filter out those contingencies which are very 

stable, only passing those unstable, or close to unstable, contingencies through for 

detailed evaluation. These screens must be lightweight computational processes so 

that as larger a speedup as possible can be obtained.

Contingency Selection

5000 Selected Contingencies

Transient Stability 
Screen (Filter)

Dynamic Stability 
Screen (Filter)

4993 Contingencies 
OK

2 Probably 
Transiently Unstable

5 Probably 
Dynamically Unstable

Contingency Screening 

Contingency Evaluation

q  I 7 Contingencies 
^ ^ 1 ^  for Evaluation

Figure 3.5: Contingency Screening - The Filtering Process

Figure 3.5 shows a typical case where the use of transient and oscillatory contingency 

screens filter out 4993 out of 5000 contingencies, and this approach can yield overall 

speedups in the DSAS operating time of 20 or more. The contingency screening 

process is explained in detail in chapter 4. Chapter 6  describes the design of the new 

artificial neural network based instability screens.
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3.4.3 Contingency Evaluation

The detailed evaluation of the effect on a power system of one or many contingencies 

allows the severity of the contingencies to be assessed. The most accurate method for 

contingency evaluation uses a electro-mechanical time domain simulation with high 

order machine, AVR and governor models[96-98]. The effects of SVCs, quadrature 

boosters and other devices can be incorporated into the simulation to provide a 

realistic simulation.

A time domain simulation of approximately 30 seconds will detect any transient 

instability problems and will provide information on the decay of machine rotor 

angle oscillations following the contingency[99]. From an operational perspective, 

an acceptable transition from the pre to post contingency state occurs if the system 

remains (transiently) stable and if the rotor oscillations decay away in under one 

minute. Bearing the latter decay conditions in mind, we can conclude that the 

envelope of the decay of acceptable oscillations has a time constant of approximately 

1 2  seconds. If the post contingency operating point of the system is steady-state 

unstable then it is highly likely that the decay time constant will exceed the required 

1 2  seconds, and it is the author’s opinion that this decay rate may be used as an 

indicator of an acceptable dynamic post contingency operating state.

3.4.4 Contingency Ranking

The aim of contingency ranking is to sort the selected contingency list into a severity 

order, with the most severe contingency at the top. In this way the power system 

operators can quickly see what the worst contingencies are and what instability 

problems would be caused.
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Numerous contingency ranking algorithms have ben developed[49,100] but most of 

them deal with the aspects of voltage and thermal overloads investigated by SS A. The 

contingency ranking algorithm used within OASIS[8 6 ] has been shown to produce 

good results for transiently unstable contingencies and those with a poor oscillatory 

response.

3.4.5 Limit Calculations

Traditionally the MW flow limits, which are set to ensure that the system remains 

oscillatory stable, are calculated by an off-line trial and error process and are made 

conservative to take into account possible changes in the operating point of the 

system.

The natural conservativeness of these limits leads to large constraint costs which 

will hopefully be reduced when dynamic security assessment systems are used. The 

development of on-line algorithms to calculate the actual safe MW transfer limits is 

an area for future research.

3.4.6 Operator Interface

The operator interface for a DSAS should appear in a similar format to the other 

EMS displays and be developed in conjunction with power system operators. The 

inclusion of the end users into the design process at the earliest opportunity is to 

be encouraged as this will tend to reduce the amount of time and effort spent in 

tailoring the displays to the operators requirements during the commissioning of the 

DSAS.
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Typically the displays are window based, and of the application technologies 

available, the X-Window system[101] is the most popular. Most of the displays 

at NGCC are based on the X-Window system, and the future DSAS displays will 

almost certainly be the same.

Mahadev[102] and others have investigated various methods for envisioning power 

system security information. The author has developed a simple method for 

envisioning the current stability problems on a power system, which is explained 

later in 7.1.

3.5 OASIS

OASIS[86,103,104] is a state-of-the-art dynamic security assessor developed in 

a collaborative project between the Power and Energy Systems Group, in the 

University of Bath School of Electronic and Electrical Engineering (U.K.), and 

the NGC (U.K.). This work is also funded by EPSRC. W ithin NGC, the on-line 

static security assessment software within EMSs[28] is triggered on completion of the 

state estimation and concentrates on line overloads and voltage problems following 

contingencies on the system. The OASIS project was motivated by NGCs future 

requirement of an on-line dynamic security assessor and was to concentrate on the 

detection of transient and oscillatory instability problems.

3.5.1 Client-Server Approach

Contingency evaluation is at the heart of a dynamic security assessment system and is 

parallelisable at the contingency level[105] and therefore ideally suited to distributed 

processing. The seperate cases in the contingency list can be shared between multiple
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inexpensive processors. A client-server architecture therefore lends itself to this type 

of application where a single client task can control a large number of server processes, 

each of which performs contingency evaluation.

Online EMS Data Manual Control Actions

Server Task Server TaskServer Task

Snapshots Database Real-time Power 
System Simulator

Client Controller Task

Figure 3.6: Block Diagram of OASIS

Figure 3.6 shows the block diagram of the OASIS system. The data input can come 

from either saved power system snapshots, obtained from on-line EMS data or off

line studies, or from a real-time power system simulator mimicking the real power 

system. This facility allows the effects of simulator operator control actions to be 

evaluated by OASIS and provides the basis for closing the loop on power system 

operation where automatic on-line advice can be directly implemented without any 

operator intervention.

The server tasks, executed on each of the host computers, are based on a real

time power system simulator[95,106] and perform the contingency screening and 

evaluation. The client controller task distributes the contingencies to the server tasks, 

collects the results and displays them to the operators through X-Window[101,107] 

displays.
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3 .5 .2  Parallel Evaluation

During the design of OASIS, a number of practical implementation technologies were 

investigated for their suitability for forming the client-server backbone of OASIS. 

Of these technologies, PVM (Parallel Virtual Machine), developed by Oak Ridge 

National Laboratory[108-111], offered the best practical solution and hence was 

chosen. PVM allows a parallel machine to be dynamically constructed from a number 

of heterogeneous computing platforms on which client-server software tasks can run.
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Figure 3.7: An Example OASIS System

The OASIS system falls into several distinct yet interacting layers as shown in figure 

3.7. The hardware level is comprised of the physical machines available to form 

the heterogeneous computing system. Residing on each of these machines is the 

PVM daemon forming the linking layer between the hardware and PVM. Finally, 

the PVM task layer allows the tasks to be distributed across the parallel virtual 

machine. PVM then allows the client task and a number of server tasks to be run 

across the heterogeneous computing system
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3.5.3 Client Task

In OASIS the client has to perform the tasks of server initialisation, contingency 

processing control and HCI for the DSAS. In addition the client has to be able to 

register OASIS with PVM and to gracefully leave PVM once all the contingencies 

have been evaluated.

3.5.3.1 Server Initialisation

The vast majority of UNIX schedulers[112] operate on a round robin basis swapping 

between tasks that are not waiting on 10. The server task was designed to be a 

purely computational process and therefore will not be waiting on any 1 0  and hence 

there will be no benefit of using multiple server tasks on one architecture as they 

will be competing to use the same (cpu) resource. Indeed, there will be a slight 

degradation in performance if multiple worker tasks are spawned as there will be an 

overhead associated between swapping between the multiple tasks as well as the other 

processes running on the architecture. The OASIS system was therefore designed to 

create one instance of the server process on each of the architectures registered with 

PVM during its initialisation. Once the sever tasks have been created, the client task 

sends the current power system state and contingency database to each server task, 

each of which then waits for the client to inform it of which contingency to evaluate.

3.5.3.2 C ontingency Processing

The controller task distributes server tasks over the PVM system using a flood-fill 

algorithm. The server tasks are firstly initialised with the current system states 

obtained from the on-line EMS, power system simulator or saved power system
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snapshots. The controller task then enters the main service loop which controls 

the contingency processing.

Inside the service loop, contingencies are allocated to the server tasks using the ‘pool 

of tasks’ paradigm since the number of contingencies to be evaluated is normally at 

least one order of magnitude more than the number of host computers. Under this 

condition, the system is inherently load balanced with each server task making full use 

of its host processing resource. The controller task then waits for a message from one 

of the server tasks containing information about the contingency evaluation. These 

results are stored and a new contingency is allocated to the server task until all the 

contingencies have been evaluated. When the last contingency has been allocated 

to a server task, the other server tasks are also allocated the last contingency for 

evaluation. In this manner OASIS will not be left waiting for the results of one 

server task running on a very slow computer as one of the faster server tasks may 

return the results first.

Once the evaluation is complete a ranked list of contingencies is displayed to the 

user in the main window. A new evaluation cycle is then started using the latest 

power system state. If a manual trigger signal is received, the current evaluation 

cycle is aborted and a new cycle started using the current power system states. The 

contingency evaluation cycling continues indefinitely.

3.5.3.3 H um an-C om puter Interface

The HCI is provided through an X-Window interface based on MOTIF [107] 

comprising two windows and was developed using valuable input from NGC shift 

engineers resulting in clear unambiguous displays. The top section of both windows 

displays information on the total system load, the percentage of contingency
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processing that has been completed and provides various buttons to control the 

processing.
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Figure 3.8: Ranked Contingency List

The main window is shown in figure 3.8 and displays a ranked list of contingencies. 

The stability information for each contingency is provided at the right of the 

contingency and displays a ‘T ’ on a red background for transiently unstable 

contingencies, ‘D’ on a green background for poorly damped contingencies and 

nothing for contingencies which do not lead to either of these problems. In addition 

an T  is displayed if any node of the system becomes islanded as a result of the 

contingency. Poke points are provided which upon activation change the display to 

show the more detailed information about a particular contingency.

The more detailed display of a single contingency, shown in Figure 3.9, is split 

into two areas. The upper area displays the details of the contingency including 

affected plant, breaker operation times and fault location. The lower area displays 

information from four of the machines connected to the power system. The machines
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Figure 3.9: Detail of Contingency

that are automatically displayed are those four with the largest rotor swings in the 

system, but other machines can be specified by the user in the contingency database. 

Since the rotor swing curves only provide qualitative information, only one machine 

is selected per busbar to allow plots from other machines elsewhere in the system to 

be displayed. For each machine the pre-contingency MW and MVAr loadings, rotor 

angle and terminal voltage are shown and the rotor angle time histories are plotted. 

By default, the rotor angles are referenced to the weighted mean rotor angle of the 

system but any one of the four machines may also be used as a reference.

3.5.4 Server Task

The function of the server task is to perform the contingency screening and evaluation 

and report the results to the controller task. The server task is a pure calculation 

engine requiring no disk or 1 0  access other than the communications provided
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through the PVM library. Since the task is coded in ANSI standard ‘C’, the server 

task can be ported easily to a wide variety of hardware platforms.

3.5 .4 .1  C ontingency Screening

One of the key areas to be addressed by such dynamic security assessors is the 

contingency screening required for these instability problems in order that most of 

the mild contingencies can be filtered out, with the remaining ones being left to 

undergo a detailed time domain simulation to determine their severity.

The work described in this thesis has been aimed at developing both transient and 

oscillatory instability screens for OASIS. These screens have been incorporated into 

the server task and result in an overall speedup of approximately 2 0  times.

3.5.4.2 Contingency Evaluation

The contingency evaluation is based on PowSim, an enhanced real-time power system 

simulator which has been developed at the University of Bath over a number of 

years [113,114]. The simulation algorithm is based on the partitioned implicit 

trapezoidal method. Each machine group is represented by a fifth order ‘voltage 

behind subtransient reactance’ model. Together with a first order excitation model 

and a fourth order prime mover model, this results in a set of ten first order 

differential equations including valve rate and position limits, AVR ceiling limits and 

magnetic saturation. The network models balanced conditions using positive phase 

sequence nodal admittance analysis. Loads are modelled by lumped fixed impedances 

while circuit branches are represented by a general purpose equivalent 7r circuit that 

models either lumped parameter transmission lines or power transformers. Previous
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work has successfully verified PowSim against RASM [115], the off-line professional 

stability analysis package developed and used by the NGC.

When the contingency evaluation is complete, a severity index is calculated and, 

together with the stability information and the selected machine rotor time history 

plots, sent back to the client for displaying to the operators using the HCI.

3.5.5 F ield  Trials

Field trials were carried out at the NGCC between 7th and 24th November, 1994. 

OASIS was installed on a Silicon Graphics Indy with access to the operational 

ethernets at the NGCC.

Silicon Graphics 
Indy

NCI NC2 NC3 (EBU)

Cyber 9600 Cyber 9600 Cyber 9600
OASIS

Communication Bus x2

RTU N l.

Data Acquisition Bus x2

RTU

Man-Macbine Interface Bus x2

EMS Workstations • running X-Windows Wall Diagram

Figure 3.10: Setup for OASIS Trials at NGCC
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Figure 3.10 shows the basic hardware configuration at NGCC. The main EMS 

computers are Cyber 9600’s: NCI and NC2 are the operational and standby

computers with NC3 being used as the engineering backup computer, where software 

modifications are first implemented. The remote telemetry units (RTUs) provide the 

SCADA interface to the power system and this SCADA data is distributed by the 

data acquisition busses. The system reliability is enhanced by having two operational 

EMS computers and two of the communication, data acquisition and man-machine 

interface busses.

For the field trials, the Indy which was used was connected to one of the main 

communication ethernets, which allowed the latest state estimated power network 

solution, in IEEE format, to be down-loaded using f tp  from NC3. A utility running 

on the Silicon Graphics Indy combined this file with a static database of machine, 

governor and AVR parameters to produce an OASIS input file.

Since only one Silicon Graphics Indy was being used during the trials, the PVM 

consisted of only this machine. Hence both the client and the one server task were 

running on the Indy. Typical cycle times for OASIS were of the order of 2.5 minutes 

for the ten contingencies, using a full 30 second time domain simulation.

For a practical implementation of approximately 5000 contingencies within a 10 

minute cycle time, the hardware requirement would require approximately 125 Indy’s. 

The contingency screening technique described in this thesis would reduce this 

requirement to only 4 Indy’s, which would represent a more feasible investment.

The X-Window interface was shown to a number of power system operators and 

managers from NGCC and numerous other personnel from other sections of NGC. 

The feedback that was received was very favourable and moves are now underway to 

produce a full control-room DSAS as soon as possible.
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As a requirement of the field trials, the results from OASIS for the ten contingencies 

were stored for a later off-line comparison with RASM. The report [103] describes the 

details of these results.



Chapter Four

Contingency Screening

he aim of contingency screening is to filter out those contingencies which 

pose little or no security problems so that only the few potentially severe 

contingencies undergo detailed evaluation. This detailed evaluation 

is usually performed by a time domain simulation and is used to determine the 

severity of the contingency so that possible preventative actions may be taken and/or 

corrective actions determined. The research described in this thesis concerns the 

development of artificial neural network based electro-mechanical stability screens 

for use within a OASIS[86,104], the online dynamic security assessment system 

developed at the University of Bath.

4.1 Introduction

In order that a large number of contingencies can be processed by an online dynamic 

security assessor it is necessary to include some form of contingency screening to 

filter out those contingencies which lead to little or no degradation of the system 

security.

56
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All the selected contingencies will be processed by the contingency screens and 

therefore it is important that the screening process is simple. This will reduce 

the time spent filtering out the potentially severe contingencies and reduce the 

update time of the dynamic security assessment system. At the same time, it is 

very important that all the contingencies that will lead to stability problems are 

identified, i.e. that the screening process is conservative.

The potentially severe contingencies can then undergo detailed online evaluation for 

security violations such as line overloads, voltage violations and stability problems. 

These results are then presented to the power system operators through the DSA 

displays to enable them to take preventative or plan for corrective actions.

4.2 Traditional Approaches

There are several broad approaches that can be used for stability assessment: nu

merical integration methods, energy function approaches, expert systems, eigenvalue 

analysis and pattern recognition methods.

4.2.1 Num erical Integration

Digital power system simulators[95] perform a step by step solution of the network 

and machine equations at discrete intervals in time using numerical integration 

methods to solve the differential equations. Considerable progress has been made 

to speed up the numerical integration functions and combined with the use of 

modern sparse matrix techniques [116] the speed of numerical integration methods 

has improved considerably.
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This approach can be used to perform a full time domain simulation of the effect 

of the contingency on the power system, and is the ideal method for contingency 

evaluation. The transient stability of the system can be determined and the decay 

rate of machine rotor oscillations can be calculated, giving a good indication of the 

degree of oscillatory instability of the post-contingency operating point.

The principal advantage of this approach is that complex high order models of 

AVRs, governors, boilers, SVCs and other items of plant can be used giving 

very accurate results which form the benchmark against which the other stability 

assessment methods are judged. However this method remains too slow to be used 

for contingency screening in an on-line environment such as a DSA.

4.2.2 Energy Function M ethods

In these methods the post-contingency integration period is replaced by a stability 

criterion based on the construction of a Lyapunov function[117] in order to determine 

the stability domain surrounding the stable equilibrium point of the post-contingency 

system. If the value of the Lyapunov function is less than a pre-determined 

value then the system remains stable for the contingency. The transient energy 

function method[118] and the Equal Area Criterion (EAC) are the most widely used 

techniques for transient stability analysis.

4.2.2.1 Transient Energy Function

The basis of this method is that at the end of the disturbance of interest a certain 

function, in this case describing the transient energy of the system, is calculated and 

compared with a critical value. The difference between these values is the transient
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energy margin. This energy margin must be related to the parameter of interest in 

assessment of the systems transient behaviour, usually that of loss of synchronism 

associated with the pole-slipping of a machine.

The transient energy function[119,120], which describes the system transient energy 

at the point of interest, contains potential and kinetic energy components. The 

former is made up of three components; position energy, magnetic energy and the 

energy associated with the networks transfer conductances. In the post disturbance 

period the total transient energy is considered constant, and the transient kinetic 

energy is converted into potential energy. If all the kinetic energy is converted then 

the system remains stable.

The critical energy is the threshold value of the transient energy against which 

transient stability assessment is made. It is the value of the potential energy at the 

controlling unstable equilibrium point, UEP, for the particular disturbance under 

investigation. The value of the potential energy at the UEP depends on the identity 

of the severely disturbed machines and since this in turn determines the kinetic 

energy correction, the UEP determination is the key step in the use of the TEF 

method in transient stability assessment. The determination of the controlling UEP 

is complicated by the following difficulties:

O  The desired UEP is system and disturbance-specific.

O  It is one among many possible UEPs.

O  It is to be solved for in systems which are often numerically ill-conditioned. 

Solving for the UEP can be viewed as involving the following steps:

(D Identifying the critical machines; this determines the specific UEP to be solved
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for (if the critical machines are known then this step can be by-passed).

(D Starting the solution procedure, in the angle space, near the desired UEP (to 

avoid solving for the wrong UEP)

(D Using a robust solution technique to solve for the UEP.

At present there are two procedures which can be used for determining the UEP. The

first is the mode of disturbance (MOD) procedure which involves the three distinct

steps mentioned above. This method is reliable but is computationally cumbersome 

if there are many machines in the UEP. The second procedure is the so-called exit 

point method, based on the concept of the stable manifold of the controlling UEP 

and the associated gradient system.

The assessment of the system transient behavoir is accomplished via computing the 

transient energy margin AV, given by:

AV =  ( E c - E ^ )  (4.1)

=  ( E Z , - E j )  (4.2)

where Ea- is the critical energy, E eod is the energy at the end of the disturbance and 

is the potential energy at the UEP.

For transient stability assessment:

AV > 0 =£> System is stable (4.3)

AV =  0 => System is critically stable (4.4)

A V  < 0  =£■ System is unstable (4.5)

The normalised AV is the energy margin divided by the corrected kinetic energy 

and is indicative of the degree of stability of the system.
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The concept of system vulnerability [1 2 1 ] is concerned with the change in A V  to a 

changing system parameter, P , hence the sensitivity of the control parameter P  is 

given by:

^  (4.6)

This approach may provide one route for determining control actions to move the 

system towards a more secure operating condition. To summarise, the advantages of 

using the TEF method are:

O  Contains qualitative information on the degree of stability and instability.

O  Gives sensitivity of stability-related information to changes in key system 

parameters or operating conditions.

O  Detects structural attributes of the (post disturbance) network which influences 

the transient system behavoir even beyond the inertial transient.

O  Suited for applications in which large amounts of data need to be processed, 

i.e. on-line operation.

The three main drawbacks to this approach are that if the post-contingency 

operating point is outside the estimated stability region then the post-contingency 

stability cannot be determined for certain. Secondly the computational overhead of 

determining the stability boundary for large multi-machine power systems is very 

time consuming and, finally, reduced order models have to be used, so that the 

accuracy of a numerical integration method is not achieved. However, this method is 

considerably less processing intensive than the numerical integration method and 

is being considered for use as transient stability screen within dynamic security 

assessment systems.
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4.2 .2 .2  Equal Area Criterion

This method[122-124] falls into the direct methods category of fast transient stability 

assessment. It is based on a particular application of the Lyapunov direct method 

and an extension of the equal-area criterion applied to a multi-machine case. For a 

given contingency it consists of:

O  Dividing the machines in the system into two groups; that of the critical 

machines which are responsible for the loss of synchronism, and the remaining 

non-critical machines.

O  Replacing the two groups by two equivalent machines.

O  Further replacing this by a single machine infinite bus system.

O  Evaluating the system robustness for the contingency using the equal-area 

criterion.

The system robustness is quantified by two measures. The stability margin, 77, 

corresponding to a given fault clearing time and the critical clearing time for which 

the stability margin is reduced to zero. This technique suffers from similar problems 

to the TEF method. Above all, the use of reduced models and problems with 

accuracy after the first swing make this method an unlikely candidate for a transient 

stability screen within a DSA system.

4.2.3 Expert System s

Expert systems have been sucessfully applied to many areas of power engineering 

where a well defined set of rules can be derived [63]. Applications include alarm
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processing [125], stability assessment [126] and dynamic security assessment [62]. 

Expert systems are highly suited for assisting operator control actions [43,66,127, 

128] because it is possible to model the majority of operators actions by a set of 

rules.

The use of decision trees [129-131] has been widely investigated for stability 

assessment. This work has produced a reliable method for stability assessment, 

although the size of the decision trees becomes very large for large power systems. 

Work remains to be done on sensitivity and control for different security regions 

as well as practical strategies for implementing this technique. A comparison of 

decision trees versus the pattern recognition technique for stability assessment [132] 

concluded that the pattern recognition technique was slightly more reliable/accurate 

than the decision tree approach.

4.2.4 Eigenvalue Analysis

The most widely used technique for steady-state stability studies is eigenvalue 

analysis [133-135], which involves determining the most critical eigenvalues of the 

power system. An eigenvalue with a real part greater than zero corresponds to a 

system pole in the right hand half of a root locus diagram and is a chaxacteristic of 

an unstable system. Power systems with a poor oscillatory stability response can also 

be detected by this approach. The positioning of system poles close to the imaginary 

axis (i.e. having a small real part) will experience poor damping, and hence produce 

a poor oscillatory stability response.

Studies carried out by Chan[136] showed that for the full NGC system (900 busbars 

and 1 0 th order machine models) a standard eigenvalue analysis using a QR solver 

would take approximately seven minutes to calculate all eigenvalues when running
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on a Silicon Graphics Indigo (SPECMark 60.3). This indicates that this approach is 

considerably slower than required for a fast contingency screen.

4.2.5 Pattern Recognition M ethod

This method relies on reducing the on-line computational overhead to a minimum at 

the expense of intensive off-line studies. By performing offline training of a pattern 

classifier using results obtained from a time domain simulator, the accuracy of a 

numerical integration method may be achieved within the computational and time 

constraints of on-line operation making this approach an ideal choice for stability 

screening.

The classical task of pattern recognition consists of defining a pattern vector, / ,  whose 

components contain sufficient information about the stability of the power system 

so that a classifier can decide purely on the basis of V  what the system stability will 

be. This vector is then evaluated at many different representative operating points of 

the power system to generate a training data set. The final step is then to determine 

the classifier function C (I)  such that the pattern recognition task becomes:

/ r\ I >  0 for a secure I , .
C ( I )  = { , . T (4.7)<  0  tor an insecure 1 v '

The lower limit for the classification error depends on the choice of the primary 

inputs and the feature selection process to determine the inputs to the classifier.

In 1974 Pang[137] described a pattern recognition approach to security assessment 

and included results for the 225kV 10 bus CIGRE test network. Most of the 

selected features were related to particular items of plant, such as bus 4 voltage
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magnitude, and therefore do not scale well to systems with approximately 1000 

busbars. However, the broad approach of using a steady state classifier followed by 

a transient security classifier remains the basic approach adopted within OASIS.

This work was followed in 1975 by Koizumi[138] which described a pattern 

recognition approach to transient stability screening. The network that was used 

for the studies was an 78 busbar model with 24 generating units and 88 lines. As 

before, the features are related directly to the power system state vector, and the 

feature extraction process selected 30 features to be used as inputs to a classifier and 

achieved good results.

In 1983 the work of Hakimmashhadi[139] outlined a method for fast transient stability 

assessment. This work mentioned the use of transient data as features for stability 

assessment and in particular the use of acce le ra tin g  en erg y  as a feature for 

transient stability assessment. The example system that was used was a nine bus 

reduction of a 230kV network and resulted in classification errors of less than 2%.

Yamashiro[140] described a method for transient stability assessment using only 

two features. The asynchronous k ine tic  energy  of the generators and the 

tran sm iss io n  pow er m arg in  are shown to be sufficient for the classification of 

one particular contingency on the IEEE 118 bus network. These features have been 

shown by the author to provide poor discrimination on larger systems, such as the 

UK National Grid System.

The application of pattern recognition techniques to transient security assessment 

was comprehensively detailed by Hakim[141] The application of a pattern recognition 

technique to security analysis is described by Chang[46]. Again, specific elements of 

the power system state vector were used as inputs to a classifier to detect post

contingency voltage problems. This approach was tested on a 22 bus network, and
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the  authors indicated that further work is needed to ascertain the feasibility of this 

approach to larger networks.

In 1993 Fidalgo[142] described an approach for using an ANN to predict the transient 

stability margin. This approach was tested on the 11 bus CIGRE test system and 

used plant specific features, which will not easily scale to large power networks.

The use of adaptive pattern recognition proposed by Sobajic[143] coupled with a 

neural network approach has been shown to produce good results on a 4 bus system, 

but this technique still has to be applied to large power networks.

Over recent years, the application of ANNs as pattern classifiers has become 

widespread. In particular, the application of ANNs for power system security 

assessment is of particular interest.

4.2 .5 .1  N eural Network Classifiers

The work of Niebur[52,144] formed the basis for the adoption of self-organising 

ANNs to the task of security assessment. In particular, the use of Kohonen networks 

for static security assessment on a 5 bus system has produced encouraging results. 

Similar work by Pao[50] has also been performed.

The work of Sobajic[48,72] forms one of the core references for the application of 

supervised learning ANN models to power system security assessment, although the 

work was only applied to a 6 busbar power system. Chowdhury[145] also discussed 

the application of ANNs to security assessment and concluded that this approach is 

significantly less computationally demanding that a numerical integration approach. 

The problem of extending this technique to larger systems was outlined, including
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the much larger input vector size.

Similar work by Song[146], Aggoune[147], Thomas[148], El-Sharkawi[51], Mori[149] 

and Hobson[150] has applied neural nets to security assessment, although the latter 

paper raised into doubt the ability of ANNs to generalise over different operating 

conditions. The use of ANNs and a transient energy function approach has been 

extended to include the concept of v u ln e rab ility  assessm en t [102,121,151], where 

the inputs to an ANN are used to indicate corrective actions to move the power 

system closer to stability.

4.2 .5 .2  D im ensionality  P ro b lem s

The traditional problem with applying pattern recognition methods to stability 

assessment of large power systems is due to the curse o f dimensionality. Put simply, 

this problem is due to a large number of features being required to classify the 

stability of a large power system. This makes it almost impossible to design a 

classifier which will be robust to changes in the system loading and topology. This 

problem is well described by Hobson [150] where the conclusion that current pattern 

recognition methods cannot be sucessfully applied to large power systems.

Cauley[70] outlined a method for contingency screening using features based on the 

deviation between parameters calculated at the pre- and immediate post-contingency 

(fault clearing) operating conditions. These features, or composite indices as they 

are termed, are system wide and not all limited to particular items of plant. This 

approach was applied to a 436 bus network and 24 features were selected as inputs to 

a classifier. A MLP was trained to perform the classification and good classification 

results were obtained. This work is being taken forward by EPRI[56] and shows 

promising results. The principle difference between this work and the rest is that
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actual power system parameters, such as generation levels and line power flows are 

not used as inputs to the MLP.

4.2.5.3 T he new  m ethod

The contingency screening method described in this thesis is based on the pattern 

recognition approach. As with the previous methods, an ANN is used as the basis 

of the pattern classifier. These screens are shown to be easily scaled to large 

power systems by the use of a novel set of features which overcome the curse 

of dimensionality. The approach is also extended to detect both transient and 

oscillatory instability. Results are presented for the application of these screens 

to a 100 busbar, laboratory scale, power system model as well as to snapshots of the 

full UK national grid system. In addition, the screens are integrated into a dynamic 

security assessor, allowing the real benefits of this fast contingency screening to be 

realised.

4.3 Chapter Summary

The provision of fast and reliable contingency screens within a dynamic security 

assessment system is critical to enable the time constraints for on-line operation to 

be met. A wide number of techniques can be used to detect those contingencies 

which may lead to instability, but few are suitable for contingency screening due to 

their complexity.

The pattern recognition approach is ideally suited for on-line operation and has been 

chosen to form the basic approach for this work. The traditional problem of applying 

such a technique to large power systems has been solved and is described in detail
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in the next chapter. This is followed in chapter 7 by details of their implementation 

within OASIS.



Chapter Five

Connectionism

onnectionist systems consist of many primitive units which are working 

in parallel and are connected via directed links (connections). The 

main processing principle of these units is the distribution of activation 

patterns across connections similar to the basic mechanism of the human brain. This 

kind of processing is also known as parallel distributed processing. Neural networks 

are one such connectionist system and are being touted as one of the greatest 

computational tools ever developed [23,24,152]. Although there is substantial hype, 

most of the excitement is due to a neural networks apparent ability to imitate the 

human brain’s ability to make decisions and at a primitive level to im itate the brain’s 

creative processes.

Neural networks, or to be more precise Artificial Neural Networks, ANNs, have been 

found to be exceptionally suited to some tasks where there is either no, or no effective, 

algorithmic solution. These tasks are primarily that of pattern recognition and 

optimisation. Before going into these areas in more detail the relationship between 

an ANN and the biological neural networks, BNNs, will be outlined.

70
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5.1 Biological Basis for Neural Network Tools

Every day of our lives, each of us carries out thousands of tasks that require us 

to keep track of many things at once. Relatively simple actions, such as picking 

up a glass involve memory, learning and physical co-ordination. The complexitivity 

of even these simple tasks, which we often do without thinking, is underscored by 

the difficulty of building a robot to perform the same operation. It is the complex 

biological systems within us that make performance of these tasks possible.

The operating time for biological neurons is of the order of one millisecond, which is 

many times slower than that provided by modern silicon technology. However it is 

the vast parallel operation of information flow from dendrites through the cell body 

to the axons that makes biological neural nets far superior.

5.1.1 Structure

Over the past few decades detailed studies have been carried out on the construction 

and operation of our brains and nervous systems. The basic building block of the 

nervous system is the neuron, see figure 5.1 for a conceptual diagram, which is 

comprised of a cell body, dendrites and an axon. There are many different types 

of neuron[152]; the neuron shown is most like a motor neuron but is meant only to 

convey the basic configuration and terminology. The signal flow goes from left to 

right, from the dendrites through the cell body and out through the axon. The signal 

from one neuron to another is passed on by the connection of one neurons axon and 

the other neurons dendrite at a connection called a synapse.

The human brain has a large number of neurons: typical estimates are of the order 10
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Figure 5.1: Biological Neuron

to 500 billion[152]. According to one estimate by Stubbs[153], neurons are arranged 

into about 1000 main modules, each with about 500 neural networks. Each neural 

network has of the order of 100,000 neurons and each axon connects to on average 

100 dendrites. The perceived operation of the brain is that neurons communicate 

with each other by means of electrical impulses[154].

5.1.2 Operation

The signals reaching a synapse and received by the dendrites are converted into 

electrical energy. The inter-neural transmission is sometimes electrical but more 

often effected by the release of chemical transmitters in the synapse. The neuron 

then either generates an impulse (fires) to its axon if the input is sufficiently excitatory 

or fails to do so if the input is inhibitory. More precisely, for the neuron to fire, the 

excitation must exceed the inhibition by a value equal to the threshold value.
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After carrying a pulse, an axon fibre moves to a state of non-excitability for a certain 

tim e known as the refractory period. This duration varies between different types 

of neurons and results in the brain being a dense interconnection of neurons which 

release asynchronous signals. The signals are not only fed forward to other neurons 

within the spatial neighbourhood but also back to some of the generating neurons.

This explanation of the biological operation is greatly simplified when seen from 

a neuro-biological point of view, although it explains the basic principles involved. 

Artificial neural networks are much more simplified than their biological counterparts 

are described in the following section.

5.2 Artificial Neural Network M odels

Vast discrepancies exist between both the architectures and capabilities of artificial 

and biological neural networks. Knowledge about actual brain functions is so limited 

that there is little to guide those who try to emulate them. In ANNs, the processing 

elements are often called neurodes or neurons, and in this thesis the latter will be 

used. The main differences between BNNs and ANNs are outlined below:-

O  In a typical implementation of a ANN, connections among neurons can either 

have positive or negative weights.

O  Information about the state of activation, or excitation, of a neuron is passed 

to other neurons to which it is connected as a single numeric value.

O  There are many kinds of neurons in biological systems. A ANN is usually 

implemented with only one type of neuron, although occasionally two or three 

types are used.
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O  BMNs typically operate on a cycle time of about 10-100 milliseconds. ANNs 

implemented on even a basic IBM PC386 operate with a cycle time of 1-10 

micro seconds.

O  There is a significant difference between the number of neurons in a BNN and 

and a typical ANN. Typically ANNs are implemented with less than a few 

hundred neurons.

None of the models that exist today have been successful in duplicating the 

performance of the human brain but they been very successful in limited application 

areas[23,24,155]. Of the different types of ANN, that of the feed-forward, multi-layer 

perceptron (MLP) model is the most widely used.

5.2.1 T he Perceptron

The perceptron is the simplest form of neural network used for the classification of a 

special type of patterns said to be linearly separable. Figure 5.2 shows a single-layer 

perceptron (SLP) which is composed of a single artificial neuron with adjustable 

synaptic weights and threshold.

i
z
2

Output
Inputs ^

Thiedtold

x

Figure 5.2: Single-layer perceptron

The output of the SLP is given by a linear combination of the inputs multiplied by 

the connection weights, in, as well as the threshold 6 as shown in equation 5.1
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O =  f > / i - 0  (5.1)
*=1

The work of Rosenblatt [156] on his perceptron brain model forms the basis for the 

whole field of ANNs. Rosenblatt proved that if the input patterns (vectors) used 

to train the perceptron are drawn from two linearly separable classes, then the 

perceptron algorithm converges and positions the decision surface in the form of 

a hyper-plane between the two classes.

5.2.2 M ulti-Layer Perceptrons

The Multi-layer perceptron model consists of a set of input neurons that constitute an 

input layer, a set of hidden neurons and a set of output neurons that form the output 

layer. These class of ANNs are a generalisation of the SLPs described previously, 

but are far more powerful.

A simple three layer MLP is shown in figure 5.3. Each neuron is represented by a 

circle with the icon in the circle representing the transfer function of the neuron. The 

neurons are grouped together in slabs, or layers. The connections between neurons 

are represented by straight arrowed lines. The input neurons are on the left and the 

output neurons are on the right.

To train an ANN requires an algorithm that adapts the connection weights in such 

a manner that successive presentations of the training data to the input neuron 

produces outputs that are close to the desired response. This form of learning, 

where the output is changed towards a desired value is known as supervised learning, 

and is usually performed by a variant of the back-propagation algorithm[23].
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General 3 Layer Feedforward Neural Network

Layer 3Layer 1 Layer 2

Figure 5.3: Feed-forward Network Structure

5.2.2.1 T he  B ack-P ropagation  L earning A lgorithm

The back-propagation training algorithm is an iterative gradient algorithm designed 

to minimise the mean squared error between the actual output of a multi-layer feed

forward ANN and the desired output. It requires that the transfer function for each 

neuron is continuous and differentiable. The algorithm is explained below:

S T E P  1 -  Initialise Weights and Offsets. Set all weights and node offsets to small 

random values.

S T E P  2 -  Present Inputs and Desired Outputs. Present a continuously valued input 

vector space to the input neurons, / ,  and get the desired output, d.

S T E P  3 -  Calculate Actual Outputs. Use the neuron transfer functions to propagate 

the network input vectors through to the output layer neurons.
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S T E P  4 -  Adapt Weights. Use a recursive algorithm starting at the output neurons 

and working back to the first hidden layer to adjust the weights. Adjust the 

weights by:

Wij(t +  1) =  Wij(t) +  rjSjli +  a  (Wij(t) -  Wij(t -  1))

In this equation, Wij(t) is a weight from neuron i, in layer n — 1, to neuron 

j  in layer n  at iteration t. 0 <  77 < 1 is the learning factor, which controls 

how much of the error is used to adapt the weights, and 0 <  a  <  1 is the 

momentum factor which controls how much of the previous weight change is 

used for the current weight change.

If neuron j  is in the output layer, and assuming all neuron transfer functions 

are S igm oid, then:

Si = o,(i -  Oi)(Ji -  Oj)

where dj is the desired output of neuron j ,  and Oj is the actual output. If node 

j  is a hidden layer neuron then:

6j  =  I j (  1 -  Ij)<TkSkw jk

where k  goes from 1 to the number of nodes in the layers above node j .  

Bias thresholds are adapted in a similar manner by assuming that they are 

connections from a constant valued (1) bias neuron.

ST E P  5 -  Calculate Average Sum Squared Error. If the average sum squared error 

is less than a threshold then the learning is complete, else return to step 2.

5.2.3 The Self-Organisation M odel

This neural network model was made famous by the work of Dr. Teuvo Kohonen of 

Helsinki University of Technology in Finland, and is often referred to as the Kohonen 

model.
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The most significant difference between this model and the feed-forward model is 

the fact that this model is trained without supervision: only the input patterns are 

presented, and the network trains itself. The best description of this model is given 

by Dr Kohonen[157].

5.2.4 The Hopfield M odel

This model[158] is a recurrent, single layered, neural network. Unlike the previous 

models, the main use of these networks is for optimisation problems[159]. The 

network is not trained, but inter-neuron connection weights can be explicitly set 

so that the network performs optimisation.

Recent papers[160-162] have shown that these networks can be used for constrained, 

non-linear, quadratic optimisation with boundary constraints. The major advantages 

of optimisation methods employing these neural networks are:

O  Exponential convergence.

O  Amenable to parallel implementation.

O  Only yields feasible solutions.

5.3 Practical Issues

The inclusion of an ANN within a software or hardware module is often perceived to 

be surrounded by some vague guidelines and guesswork. This section provides broad 

guidelines for practical issues surrounding the design, training and testing of ANN 

based systems.



Five Connectionism 79

5.3.1 Choice o f M odel

The choice of model is usually made on the type of data available for training. If the 

desired output of the ANN is known for each of the training patterns then a form 

of supervised learning is likely to be the most suitable. The most obvious choice for 

an ANN model that supports this type of learning is the MLP, trained using some 

variant of the back-propagation algorithm. Other choices may include ANN models 

derived from an self-organising input stage and an output stage using a supervised 

learning technique to achieve the desired transfer function. Otherwise, an ANN 

model supporting a un-supervised learning algorithm would be more appropriate, 

such as the self-organising models described earlier.

5.3.2 Size o f M odel

The degree of freedom of an ANN is equal to the number of interconnections and 

therefore proportional to the number of hidden neurons in a 3 layer MLP. The number 

of hidden neurons must therefore be matched in some sense to the complexity of the 

decision boundary. Currently, the only reliable method is to use a comparison of the 

performance of ANNs with different numbers of hidden neurons. The time to achieve 

a desired training error can be used as a metric, and usually a bath type curve of 

training error against the number of hidden layer neurons is achieved. For a small 

number of hidden layer neurons the ANN will be unable to learn the training data. 

As this number is increased the training error will reduce until a very large number 

of neurons are used, when the error will increase again.
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5.3.3 Feature Extraction

For pattern recognition problems, the inputs to the pattern classifier should have 

a high correlation with the desired classification. The process by which the inputs 

to an ANN classifier are determined is called feature extraction. The mathematical 

approach to feature selection is to identify certain invariant properties of the pattern 

classes. These properties are then used to reduce the dimensionality of the pattern 

vectors either through a linear transformation or through the preferential choice of 

a subset of the attributes.

The selection of features with a low correlation to the problem should be avoided as 

the ANN will try  to force a mapping between the feature and the output. In this 

case, the performance ANN may depend heavily on a feature with weak correlation.

5.3.4 G eneralisation versus M emorisation

The ability of an ANN to classify inputs that it has not seen before is referred to as 

generalisation. Memorisation, on the other hand, guarantees that when the ANN is 

presented with a particular pattern in the training set then the output of the ANN 

will be as desired. However, the performance of such an ANN on data that it has not 

seen before is likely to be poor. The ability to interpolate among the training data 

does not necessarily imply good generalisation. A properly trained ANN classifier 

should respond with roughly the same error for both the training and test cases.



Five Connectionism 81

5.3.5 Inversion

The process of inversion can be used to enhance the performance of an ANN close 

to a decision boundary. A query-based mechanism has been proposed[24,163] which 

requires a set of inversion data points from a partially trained ANN. These points 

are then used to calculate further input patterns in the vicinity of the decision 

boundary. The desired output of the classifier for these patterns is determined using 

the techniques used to generate the training patterns, and hence the performance of 

the ANN is improved in the vicinity of the decision boundary.

5.4 Performance M etrics for A N N s

Most of the time, measuring how well a system performs is relatively straightforward, 

for example by calculating the percentage of all answers that are correct. Measuring 

the performance of ANNs is usually not this simple.

Consideration has to be given to the choosing of a representative testing data set, 

and should not just be the standard examples, but should include examples close to 

decision boundaries. The examples should ideally be chosen by experts in the field 

and not just the programmer or engineer.

5.4.1 Percent Correct

This is probably the most simple performance metric. Care should be taken when 

interpreting results if a number of different examples were chosen for each class.
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5.4.2 Average Sum-Squared Error

This is a convenient metric for monitoring the learning of a network as training 

progresses and the testing of the network once the training phase is complete.

The average sum squared error is obtained by computing the difference between the 

output value of an output neuron, ot, and its desired value, t{. This value is then 

squared and summed with the values for all output neurons for all P  patterns. This 

grand total sum over all output neurons and patterns, multiplied by 0.5 and divided 

by the total number of patterns yields the average sum squared error, Easae:

Basse =  ty p ^ 2  i^ P 1 ~ °P l )  (® *2)L *  r I P

5.4.3 ROC Curves

Another way to measure the performance of a neural network system is with receiver 

operating characteristic, ROC, curves. The use of these curves has dated back to 

the 1940’s for electronic communication systems and has been more recently used 

for measuring the performance of neural networks and other expert systems.

ROC curves are particularly valuable tools when used with neural network systems 

because the results obtained are not sensitive to the probability distribution of the 

training/test set patterns or decision bias. A ROC curve is generated for, and reflects, 

the performance of a neural network for one given result. It indicates how well the 

system did compared with a gold standard, in making a decision.

For a given decision, indicated by a given output neuron, four possible alternatives 

exist as shown in the ROC contingency table in figure 5.1. The first alternative is a
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System Diagnosis ’’.Gold Standa 
Positive

ixd” diagnosis 
Negative

Positive TP (true positive) FP (false positive )
Negative FN (false negative) TN (true negative)

Table 5.1: ROC Contingency Table

true positive decision, T P , in which the positive decision of the system coincides with 

a positive diagnosis according to the gold standard. The second is a false positive 

decision, F P , in which the system made a positive diagnosis that was not in the gold 

standard. Similarly, a false negative decision, FN , is made when the gold standard 

diagnosed a positive diagnosis that was not made by the system, and a true negative 

decision is made when both the system and gold standard indicate the absence of a 

positive diagnosis.

The ROC curve makes use of two ratios involving these four possible decisions, as 

shown in table 5.2.

Ratio Construction
True Positive Ratio TP

T P+ FN
False Positive Ratio FP

FP+T N

Table 5.2: ROC Ratios

The ROC curve is then a plot of the true positive ratio versus the false positive 

ratio. When applied to the performance of neural network tools, the curve is usually 

obtained by plotting points for various values of the threshold and then connecting 

the points. A typical way to proceed is to plot points for a number of threshold values, 

for example 0.1, 0.2, • • •, 0.9. Both ratios are then calculated for each point. Figure 

5.4 illustrates a hypothetical case involving two configurations of an ANN, giving the 

two ROC curves shown. The curve representing the configuration of ANN2 reflects 

a better overall system performance than that of ANN1. The dotted line represents
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Figure 5.4: Example ROC curve

the situation in which no discrimination exists, ie a system could only achieve this 

by chance. When the curve follows the left vertical and upper horizontal axes, the 

system is discriminating perfectly.

The ROC curve therefore always lies above the major diagonal, and the area under 

the ROC curve can be used as a single value performance metric.

5.4.4 C hi-Square Test

The chi-square test examines the frequency distribution of all the categories that it 

is possible to obtain from a particular network system. That is, it looks at how often 

each category is expected to occur versus how often it actually occurs.
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5.5 Neural Network Tools

A Neural Network Tool, NNT, is an analysis tool which allows artificial neural 

networks to be designed, trained and tested. Such tools are invariably software 

based although the majority of ANNs that are developed are coded in software high 

speed ANNs can be achieved by constructing hardware ANNs. Two NNTs were used 

in this research and are described below.

5.5.1 (N )eural (N)etwork (S)imulator

NNS is a NNT designed and written by the author to provide an effective method for 

training neural networks in an offline environment. The features of NNS of interest 

are:

(D The ability to train and test general N  layer neural networks.

(D Training by the back-propagation algorithm.

© Designed for processing large networks offline.

® Utility to generate Hinton diagrams.

(D Utility to produce high quality network diagrams.

5.5.2 (S)tuttgart (N)eural (N)etwork (S)imulator

SNNS is a simulator for neural networks developed at the Institute for Parallel and 

Distributed High Performance Systems at the Universitat Stuttgart since 1989. The
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goal of the project was to create an efficient and flexible simulation environment for 

research on and application of neural nets. It is the authors opinion that SNNS is 

an extremely good NNT.

SNNS is a NNT which runs under an X Window System environment on a wide 

range of computing architectures. The features of SNNS which made it suitable for 

use in this project are briefly described below.

(D Full Windows-Icon-Mouse-Pointer interface, allowing fast and convenient 

modification of neural networks.

(D Ability to handle a wide range of ANNs with a wide selection of neurons and 

training algorithms.

(D A graphical network editor which allows for easy modification and monitoring 

of an ANN.

® Ability to produce Hinton diagrams.

Figure 5.5 shows a typical screen display of SNNS being used to train a pattern 

classification ANN. SNNS was used wherever possible for all interactive design 

of neural networks as the very effective graphical user interface allowed greater 

productivity than offline neural network design. SNNS can be freely obtained by 

anonymous ftp from i f i . in f o r m a t ik .u n i - s tu t tg a r t .d e .

5.6 Formal M ethods

Some work has been done on arriving on a method for neural network formalisa- 

tion[164] based on the concept of layers. It comprises a mnemonic notation, a uni-
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Figure 5.5: SNNS Screen Display

form nomenclature and a topological taxonomy, supplemented with both a hierarch

ical and a universal mathematical definition of a neural network. This method has 

not been adopted in this work at the present time due to its complex notational 

requirements, but its merits are noted by the author.

5.7 Current A pplication Areas

The application of ANNs to current science and engineering problems is a widespread 

area, and is expanding rapidly. Table 5.3 outlines som e of the current application 

areas; it is not supposed to be complete, but merely to provide a feel for the current 

wide range of applications.

The application of ANNs to tools within energy management systems is another of 

these main application areas[124]. This is a rapidly expanding area and table 5.4
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Analysis of medical tests 
EEG waveform classification 
Stock market prediction 
Oil exploration 
Psychiatric evaluations 
Composing music 
Speech recognition 
Optical character recognition

Circuit board problem diagnosis 
Analysis of loan predictions 
Military target tracking and recognition 
Process control
Optimising scheduled machine maintenance 
Explosives detection in airline luggage 
Test-to-speech conversion 
Spectral Analysis

Table 5.3: Neural Network Application Areas

shows the topics which have been investigated at the present time.

Load Forecasting Contingency Screening
Contingency Selection Optimal Power Flow
Transient Stability Studies Dynamic Stability Studies 
Unit Commitment Corrective Actions
State Estimation Restorative Actions

Table 5.4: Neural Networks in Power Systems

5.8 Sources of Information

Current hot news on neural networks can be obtained from the internet news group 

comp. a i .  n e u ra l-n e ts  [165], the IEEE transactions on Neural Networks or any of 

the international neural network bodies.

Table 5.5 shows some uniform resource locators (URLs) which provide usefull on-line 

neural network information via the WWW (internet).
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http: /  /  www.emsl.pnl.gov:2080/  docs /  cie/neural/ 
http://http2.sils.um ich.edu/Public/nirg/nirgl.htinl 
http: / / www.neuronet .ph.kcl.ac.uk/
http: / /vasarely.informatik.uni-stuttgart.de/snns/snns.html 
http: / /physig.ph.kcl.ac.uk/cnn/cnn.html
http://www.lpac.ac.uk/SEL-HPC/Articles/GeneratedHtml/neural.appl.html 
http://www.mindspring.com/ zsol/nnintro.html 
http://www.lpac.ac.uk/SEL-HPC/Articles/NeuralArchive.html 
http: / / www.eeb.ele.tue.nl/neural/index.html

Table 5.5: Neural Network URLs

5.9 Chapter Summary

The broad topic of artificial neural networks has been covered, with particular 

emphasis on multi-layer perceptrons and the back-propogation algorithm that is used 

to adapt the weights to achieve the desired non-linear mapping function from inputs 

to output. Practical issues surrounding the design and training of such networks 

have also been covered.

The following chapter describes the details of the application of this type of neural 

network to contingency screening.

http://www.emsl.pnl.gov:2080/
http://http2.sils.umich.edu/Public/nirg/nirgl.htinl
http://www.neuronet
http://www.lpac.ac.uk/SEL-HPC/Articles/GeneratedHtml/neural.appl.html
http://www.mindspring.com/
http://www.lpac.ac.uk/SEL-HPC/Articles/NeuralArchive.html
http://www.eeb.ele.tue.nl/neural/index.html


Chapter Six

Neural Network Contingency 
Screening

he previous chapters have outlined the requirement for fast contingency 

screening within dynamic security assessment systems and have de

scribed the technology of neural networks. This chapter brings these 

two strands together and describes a new pattern recognition method for fast con

tingency screening of large interconnected power systems. A novel way of generating 

and selecting features which are highly correlated to the stability of the power system 

is presented. It is shown that these features can be used to overcome the dimensional

ity problems associated to applying pattern recognition techniques to large systems. 

This is preceeded with a brief justification of the reasons for using neural networks 

as the core of a pattern classifier.

6.1 W hy use Neural Networks?

Pattern recognition problems can be solved in a variety of ways. If rules can 

be generated to perform the classification then a rule-based pattern classifier will

90
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be appropriate. Such classifiers could then be based on expert or fuzzy-expert 

systems, decision trees or other similar techniques. However, in many cases such 

as contingency screening, the rule-base is difficult or impossible to generate and 

therefore another approach needs to be adopted.

Such approaches rely on using past experience or historical records to develop the 

pattern classifiers. Neural networks are one such example of this technique. Their 

ability to learn examples of the pattern classification and then to be able to generalise 

for patterns that it has not seen before make them the leading contender for such 

classifiers. For these reasons, neural networks were chosen to form the core of the 

pattern classifier for this application.

6.2 Overview

The broad approach of using neural networks for contingency screening is shown in 

figure 6.1. A power system simulator is used to perform a time domain simulation 

of the contingency up until the power system topology changes are complete. This 

point in the simulation is referred to as the contingency termination point (CTP). 

At the CTP a set of features, called composite indices, are calculated from the power 

system state vector and presented as inputs to an ANN. The ANN then predicts an 

instability index which is compared to a threshold value to determine whether the 

system remains stable.

If the time domain simulation is continued beyond the CTP then the effect of 

protection equipment may be to alter the topology of the power network. However, 

these effects are due to the influence of the contingency on the power system and 

not to the contingency itself and hence do not effect the position of the CTP. In
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ANN Screen (fast)

0 CTP

Stability
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Composite
Indices

ANN
Sim > 1 9 t ani

Figure 6.1: Outline of the ANN Screening Approach

practice, two sets of composite indices and ANNs are used, one for transient and one 

for oscillatory instability.

6.2.1 A dvantages

The primary advantage of this approach is that the computationally intensive 

operation of simulating the post-contingency state of the power system, beyond the 

CTP, is replaced by the relatively un-intensive process of calculating the composite 

indices, propagating them through the ANN and comparing the output with a 

threshold value. This property makes this method an ideal candidate for use as an 

online stability screen, having an accuracy close to that of a numerical integration 

approach coupled with the speed advantages of a pattern recognition approach.
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6.2.2 Drawbacks

A feature of pattern  recognition techniques is that although they are faster than a 

full time domain simulation, their reliability can be questioned. In particular, the 

classifier must be designed to function across the range of expected operating points, 

maintaining efficiency and conservativeness of operation.

The robustness of this approaches to changes in the power system topology depends 

on:

(D Selection of features (composite indices) that are as topology and loading 

independent as possible.

(D The use of training data that covers the expected range of operating conditions.

® The reliable performance of the classifier in the vicinity of stability boundaries.

The first two points can be dealt with by ensuring that the training data set is 

(1) representative of the problem to be solved and (2) covers the expected range of 

operating conditions. The third point has been dealt with in the following way.

Figure 6.2 shows a conceptual stability boundary. Those contingencies close 

to the boundary will in practice be either just stable or just unstable and 

the conventional binary classification into stable or unstable classes looses this 

information. By training the ANN to predict the instability index the errors close to 

these stability boundaries are greatly reduced as the ANN surface is much smoother 

and consequently the prediction errors in the vicinity of the stability boundary are 

reduced.
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Unstable

Stable

Stability Classification Boundary

Figure 6.2: Conceptual Stability Boundary

Figure 6.3 shows an imaginary cross section through a stability boundary with the 

associated stability index profile. A contingency which should produce an output 

at position X  would normally be classified as unstable. However, if the neural 

network output occurs at position X ’ then the contingency would be classified as 

stable, resulting in a serious mis-classification. This mis-classification is avoided if 

the threshold (T ) is set to 0.3 and the neural network is trained to predict the stability 

index. Although the stability index falls from 0.7 to 0.5, the contingency will still 

be classified as unstable. This example shows how the number of mis-classifications 

of unstable contingencies as stable is reduced. The negative side of this approach is 

that a contingency with a real output of X ’ will be classified as unstable but this is 

not a serious classification error.

By adopting a continuous valued instability index we can also control the issue of 

the conservativeness of the screen. Varying the level of the threshold for stability 

comparison has the effect of varying the severity of the contingencies which are passed 

on for detailed tim e domain simulation evaluation.
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Figure 6.3: Slice Through a Stability Boundary

Various methods have been proposed to improve the performance of ANNs in the 

vicinity of decision boundaries by a technique known as inversion [166]. This 

technique uses a query-based training mechanism[24] where new patterns close to 

the decision boundary are determined. These patterns can then be evaluated, by 

the offline pattern  generation process, to determine the class of the pattern. This 

technique cannot be used in this case as there is no mechanism to obtain the 

operating condition of the power system from the selected features, due to the high 

dimensionality reduction performed by the composite indices.
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6.3 Instability Indices

The purpose of a stability index is to indicate how far the system operating point 

is from the stability boundary, not just the binary stability classification. For the 

purposes of this work both transient and oscillatory instability indices were required 

preferably using information derived from a time domain simulation. The advantage 

of this is that as the time domain simulator is improved to include higher order 

AVR’s, governors, quadrature boosters, SVC’s, protection modelling etc then no 

further changes are needed to get the instability index. Also this method does not 

rely on simplified models as do most of the energy function methods.

6.3.1 Transient Instability Indices

By its very nature, transient stability is a localised effect based on local energy 

imbalances between generating sets and the transmission system. A variety of 

transient instability indicators were investigated, as detailed below.

6.3.1.1 S tability  Indicator

This is a simple binary index which is set to zero if the system is transiently stable or 

to one if the system is transiently unstable. Although this index is simple it suffers 

because there is no indication of how close the system is to losing synchronism for 

a particular contingency, and because in practice power system operators would be 

interested in those contingencies with long decay constants as well as those leading 

directly to transient instability.
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6.3 .1 .2  P roxim ity  to Pole Slip

Considering a 2 pole machine model, the distance of the rotor angle from 180 degrees 

can be used as a measure of the proximity of the machine from pole-slipping, and 

hence as a measure of the transient behavoir of the power system.

6.3 .1 .3  Transient Energy M argin

This is a useful indicator as the transient performance of a system, but suffers as it 

relies on using simplified power system models. As one of the key aims in selecting 

a transient stability index was that it should be able to use the full modelling detail 

provided by the time domain simulation, this index was rejected.

6 .3 .1 .4  First Swing M agnitude

The maximum magnitude of the first rotor swing of all the machines connected to 

the transmission system provides a measure of the transient susceptance of the power 

system to the contingency. NGC consider any swing in excess of 100 degrees to be 

unacceptable as regards the operation of the UK power system.

6.3.1.5 M axim um  R otor Swing

The maximum rotor angle swing occurring on a machine in the power system is 

a useful indicator of the transient period following a contingency. For a mild 

contingency the rotor angles swings on the machines would be expected to be slight 

but for a more severe contingency large rotor angle swings may be experienced by
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some of the machines. In the case of a machine which loses synchronism, the rotor 

angle swing, on a two pole model, would be a full 360 degrees.

This index has been adopted by NGC[76] as a guide to the transient performance of 

the system. It is suggested that swings of over 100 degrees are unacceptable. Because 

this index also provides a continuous valued stability index which is related directly 

to desired operational performance, it was chosen as the transient stability index.

6.3.2 Oscillatory Instability Indices

Oscillatory instability problems affect large area’s of the system and are frequently 

due to too much real power being transmitted through weak lines connecting two 

area’s of the power system. The transition to a dynamically poor operating state 

will be characterised by slow and/or oscillatory effects and in the extreme case pole- 

slipping of a number of machines or the outaging of overloaded lines by protection 

schemes. Two oscillatory instability indices were considered, as shown below.

6.3.2.1 M ost P ositive Eigenvalue

The evaluation of the small signal, oscillatory, instability of power systems can be 

achieved by the calculation of the eigenvalues of a very large unsymetrical and non- 

sparse m atrix derived from a linearisation of the current operating point of the power 

system[79,135]. For a practical sized power system, say of over 100 busbars, this 

results in a heavyweight computational process which is not suited to online operation 

within an EMS. However, for offline studies this method is the main approach and 

results in the determination of the system eigenvalues in the complex plane.
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Traditional control theory tells us that if any of the eigenvalues have a positive real 

part then the system can, under some operating condition, lead to instability. The 

most positive real part of all the eigen vectors can therefore be used as an indicator 

of the proximity to oscillatory instability.

Some work has been done on using ANN’s to predict the most positive eigenvalue 

for power systems[149] but this has been limited to small power systems, typically 

less than 20 busbars, using actual power system measurements as inputs. Such an 

approach is not easily scaled to a power system of approximately 100 busbars, such 

as the UK National Grid System, as a very large number of inputs would be needed, 

which would make an ANN difficult to train.

6.3.2.2 Transient D ecay R ate

As a quantitative measure of the decay of transients in a power system we may 

consider the exponential decay rate of an envelope of power system parameters of 

the form given in equation 6.1.

p(<) =  =  e(“+M> (6.1)

In practice, the envelope of power system parameters such as rotor angle swings 

will not be a true exponential, however their decay can be approximated by an 

exponential envelope of this form.

The transient decay rate corresponds to the value of b which is a best fit on the 

discrete data obtained by simulation. Consider a situation in which Ntot points of 

simulated data for a machine rotor angle are known.
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The decay rate, 6, can be found by considering a time series of amplitudes of the N  

power system parameter p associated with a machine, p may be the rotor angle, MW 

generation or any other parameter related to the transient behavoir of the machine. 

Taking a logarithm of equation 6.1 gives:

In (p) =  bt +  a (6-2)

This equation yields a linear graph of the logarithm of the power system parameter, 

p, versus the simulation time. Hence, given discrete values of p during a time domain 

simulation, we can use the method of least squares to fit a best line through these 

points, which will correspond to our desired decay envelope. The gradient of this 

line is equal to the decay rate 6.

Let the function x  be the sum of the squares of the errors between the best fit line

and the data obtained by simulation, hence:

X2 (<L b) = J 2  (Vi - a -  b x i f  (6.3)
*=i

constraint

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

The optimal solution of a and b to minimise this error is found when the 

equations given below are met.

d x  _
da
d x  =  
db ~  

d2X 
da2 
d2X 
db2

- bxi) =  0

- 2  E i l i  x i (y,  — o -  bxi) =  0

=  2 E £ i l > 0

C*<*»

*.n
«III > 0



Six Neural Network Contingency Screening 101

Of the equations above, 6.6 and 6.7 are clearly met, a fact which implies that the 

only sensible solution leads to a minimum error. Rewriting equations 6.4 and 6.5 

gives:

Y v i  = aN  + b ^ X i  (6.9)
*=i i=i

N  N  N

Y^Xiyi =  a Y xi + b Y ,xi (6-10)
i = i  i = i  i = i

(6 .11)

The solution of these two simultaneous equations yields the parameters a and 6 which

define the decay envelope of the transient. The particular advantage of this index is

that it describes how quickly the transients decay away following a contingency.

This index has been applied to the 100 busbar, 20 machine reduced model of the UK 

National Grid. The results have been very encouraging, showing that the transient 

decay of the machine rotor angle transients tends to fit an exponential response well 

from 10s after the end of a contingency. Figure 6.4 shows the best fit exponential 

envelope plotted against 30 seconds of discrete rotor swing amplitudes.

If a decay time constant was of the order of 12 seconds then this implies that the 

transient should have reduced by 99% after one minute. The direct relationship 

of this decay rate to a power system operational perspective is very useful as a 

meaningful threshold can be put on decay rates and hence contingencies which may 

lead to unacceptable decay rates can be identified[76]. OASIS uses this stability 

index to highlight those contingencies with an unacceptable dynamic performance.

6.3.2.3 Selected O scillatory Instability Index

The selected oscillatory instability index was the transient decay rate as (1) it provides 

both a continuous valued stability index and (2) it is directly related to the desired
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Figure 6.4: Transient Decay Envelope

operational performance of the power system.

6.4 C om posite Indices

In everyday life we are confronted with statistical indicators of the health of the 

economy and combinations of these indicators can be successfully used to provide a 

clear indication of the overall economic health of the country. In this manner a system 

with many millions of states is successfully classified by a few tens of numbers. This 

form of feature compression, based on using statistical indicators is the motivation 

behind using composite indices as features for stability assessment and is justified by 

the results that have been obtained.
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6.4.1 W hy use C om posite Indices?

Much of the previous work on the application of ANNs to power system security 

assessment (described in 4.2.5.1) has concentrated on small power systems. Due to 

their small size, individual elements of the power system state vector have a good 

correlation to the system security, or stability. However, as the size of the power 

systems increase the correlation of an individual element of the state vector to the 

power system stability falls to such an extent that they are un-usable as features for 

security assessment.

Composite indices provide a method for describing in numerical terms certain 

properties of the power system that are highly correlated to the power system 

security. The following section outlines how they are constructed and methods that 

are used to select the most suitable indices for stability assessment.

6.4.2 Set N otation

Information regarding the post-contingency stability of a power system can be 

captured by use of a number of composite indices generated in the following manner.

i — A A  B  A C  A D A E  (6.12)

Equation 6.12 describes how a composite index, z, is formed where A, /?, C, D and 

E  are elements of sets where:-
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A :  A e U a (6.13)

B : B e U b (6.14)

C : C e U c (6.15)

D - . D e U t (6.16)

E :  E d  Ue (6.17)

Set Ua is a set of statistical functions to be used to create the composite index. 

The members M IN  and M A X  are the minimum and maximum functions 

respectively and SU M  is the sum of the values across all items of plant. R M S 

allows the use of the root mean square function, R N G  determines the range 

of the variable and V A R  calculates the variance. M E A N  is the mean of all 

the variables, S K E W  is the skew and A D E V  is the absolute deviation. The 

remaining two use the modulus function: M M A X  is the maximum modulus 

of the variable and M SU M  is the sum of the modulus of all the variables. 

These are explained in detail in section 6.4.4.

Set Ub defines which parameters are to be used in the construction of the composite 

index. Element N  indicates that the index is to be built using the appropriate 

measurement at the CTP. G  indicates that the gradient of the measurement at 

the CTP is to be used. C signifies that the change between the pre-contingency 

value and the measurement at the CTP is to be used. The set member S defines 

the post contingency steady state value of the composite index, determined by 

a loadflow, to be used.

Set Uc defines the items of plant which are related to the composite index. These 

may be Busbars, Lines or Machines. For the purposes of the. modelling all 

transformers, SVCs and quadrature boosters are modelled as lines.
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S e t Ud defines the measurements (base indices) to be constructed from the CTP 

state vector to form the basis of the composite index. V M  and V P  are the 

voltage magnitude and phase respectively, M W  and M V  are the MW and 

MVAr measurements and M VA is the MVA measurement. OL is the overload 

which is the current MVA value divided by the approximate rating. K E  is the 

kinetic energy of a machine, R A , RS and R C  are the rotor angle, speed and 

acceleration of machines and R A M  is the rotor angular momentum. R A P  

calculates the rotor accelerating power, AVE is the machine’s AVR voltage 

error and T I  is the estimated time to instability assuming constant rotor 

acceleration. The derivation of these base indices is described in detail in 

section 6.4.3.

S e t Ue contains two members. The first member V  limits the scope of generation of 

composite indices to the immediate vicinity of a contingency. Since transient 

instability problems are local phenomena, the effects on parts of the power 

system remote from the contingency area are negligible. Our work has shown 

that defining the vicinity as a topological distance of four busbars from an item 

of plant involved in the contingency produces good results. The other member 

of the set S forces the indices to be built from all items of plant in the power 

system, i.e. the index is system wide.

This is best clarified by considering the example index shown below

i =  {SUM , C , M , KE, S} (6.18)

which corresponds to the sum o f the changes in machine kinetic energy changes 

across the whole system. In practice, each composite index was divided by the 

number of items of plant involved in its construction, i.e. the above was divided by 

the number of machines, in order to reduce the sensitivity of the composite indices 

to changes in the number of equipment. In this manner, the composite indices are 

made even more robust to changes in the power system topology and loading.
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6.4.3 Base Indices

Previous research [137,138] has shown that parameters such as generator real power 

output, generator bus voltage, generator rotor angle, real and reactive power flows 

and the speed and kinetic energy of generators are likely to be suitable inputs for 

a transient stability classifier for multi-machine power system studies. In addition 

features used for the TEF method for power system stability studies have been used 

as well as those thought to be potentially useful by the author. These type of features 

are referred to as base indices.

The following sections define the base indices and are related to a system with Nb 

busbars, Ni lines and Ng generators. For convenience, they are split into three 

categories: network, machine and local.

6.4.3.1 N etw ork Indices

B u sb a r V oltage M ag n itu d e  Low voltages on or near generator terminals tends 

to make the generators more susceptible to transient instability. The reason 

for this is that the available electrical output power from a generator is 

proportional to the terminal voltage; a low terminal voltage will reduce the 

electrical power output causing the rotor to increase speed above nominal. 

Work presented by EPRI[56] indicated that this is a very useful index for 

transient stability classification.

B u sb ar V oltage P h ase  Power systems with a large variation in busbar voltage 

phase angles are likely to be more susceptible to oscillatory instability problems 

due to large MW transfers between area’s of the power system. This index is 

therefore quite useful for oscillatory instability classification.
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T ran sm issio n  L ine M W  flow As mentioned in (3.2.3) one characteristic of a 

oscillatory unstable system is large MW transfers across critical boundaries. 

This index is the direct indicator of these problems and is likely to be useful 

for oscillatory instability classification.

T ransm ission  L ine M V ar flow Overloaded lines tend to have large MVar genera

tion which can be used as an indicator of potential dynamic stability problems. 

Also localised MVar flows provide a good indication of the voltage situation 

and may be used for transient instability classification.

T ransm ission  L ine P h ase  D ifference As the voltage phase difference over a 

transmission line increases the MW flow through the line will increase. When 

the line becomes overloaded the system will tend to be more susceptible to 

oscillatory instability problems. In the UK, overloading on the transmission 

lines from Scotland to England can lead to such problems.

T ransm ission  L ine P o te n tia l E n e rg y  If the potential energy of the transmission 

lines is low enough to absorb the excess kinetic energy of the machines during 

the transient phase of the contingency, then the system is liable to be transiently 

stable. If this is not the case then the transmission system will be unable to 

absorb the injected kinetic energy and some generating units may pole-slip as 

a result.

Excess G en e ra tio n  This index provides information on the level of excess gener

ation in the system. If this is high then the machine frequencies will be high 

and the system will be closer to transient instability.

T opology C hange  The outaging of a line due to a contingency will cause a 

significant amount of power re-routing in the locality of the outaged line. The 

resulting increase in loading of neighbouring lines may make the system more 

susceptible to transient instability problems.
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6.4.3.2 M ach ine  Ind ices

T erm in a l V oltage M ag n itu d e  Machines which experiencr transient instability 

problems are usually associated with a low terminal voltage magnitude which 

reduces the possible electrical power output. Hence, this base index is very 

useful for transient instability classification.

T erm in a l V oltage P h a se  If a machine is forced to change its MW output consid

erably then there is likely to be a significant change in its terminal voltage phase 

angle. This change may be used to indicate transient instability problems.

A V R V oltage E rro r  The AVR voltage error, the terminal voltage minus the 

desired terminal voltage, can be used to provide information on how much 

effort the machine AVRs are making to keep the terminal voltage at the set 

point. As the transient problems increase, the error will increase until the 

AVR fails to maintain the terminal voltage. Once this condition is reached, it 

is likely that the machine will pole-slip.

M W  O u tp u t  The change in MW output of a machine during a contingency is 

a good indicator of the severity of the contingency. Large localised MW 

variations indicate that the electrical power output of the machine has change 

significantly, moving the system towards transient instability.

M V ar O u tp u t  The change in MVar output of a machine during a contingency 

provides indication on the voltage support at the generator terminals. There

fore this provides a useful indicator of transient stability problems.

R o to r  A ngle The change in machine rotor angles during the contingency, and their 

proximity to 180 degrees is by its very nature a good indicator of stability, which 

is due to large rotor angle swing on affected machines.
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s — So T ut -J” (6.19)

<̂ p =  &clearing  +  *  1 +  ^  ^  ( 6 .2 0 )

In addition, three composite indices were selected based on the projected rotor 

angle, Sp defined above. Equation 6.19 is one of the standard Newtonian 

equations of motion, from which its rotational equivalent (6.20) is derived. An 

estimate of a machines rotor angle one second after the end of a contingency 

could be made by considering the rotor acceleration to remain constant during 

this period. The functions MAXi and MINi are the used to provide estimates 

of the maximum and minimum projected rotor angle one second after the end 

of the contingency.

Cj

The projected time to instability, t,-, is based on equation 6.20, but in this case

the distance of the rotor angle from 7r is known and hence the estimated time

for the machine to pole slip assuming constant acceleration is calculated. The 

minimum of the projected times for all machines in the system is likely to be a 

good indicator of potential transient stability problems. Although in practice 

the rotor acceleration will not remain constant this index could provide a useful 

indicator of the proximity of a machine from a pole slipping situation.

R o to r  K in e tic  E n e rg y  As a machine approaches a pole-slip it will have a notice

able difference from its steady state kinetic energy. Machines with high kinetic 

energies are likely to be unstable as the transmission network is less likely to be 

able to absorb the excess kinetic energy before a pole-slip situation is reached.

R o to r  P o te n tia l  E n e rg y  For completeness, an estimate of the rotor potential 

energy is used to provide an idea of how much margin there is for kinetic 

energy increase.
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R o to r  A n g u la r  M o m en tu m  The angular momentum of a rotating body is a key 

indicator of how much energy is required to stop the rotation. In this case the 

excess angular momentum at the end of the contingency must be removed by 

the interaction with the network or the machine will pole-slip.

A synchronous K in e tic  Energy[140] Asynchronous Kinetic energy, <j>a ke<> is an 

index which shows the degree of dispersion of the kinetic energy among 

generators and is hence expected to be a useful index for transient stability 

assessment.

N g

Io = £ / ,  (6.22)
1= 1

4>ak' =  (6-24)

The first equation calculates the centre o f inertia o f the system  and the second 

and third combine to calculate the asynchronous kinetic energy.

M achine lines o u tag ed  This index is one if any lines have been outaged from the 

generator terminals by the contingency, otherwize zero. In general, the loss of 

a line from a generator will overload the remaining lines (if any) and send the 

generator towards instability.

S y stem  F req u en cy  The deviation of the system frequency from the nominal 50Hz 

is a good measure of the degree of disturbance present in the system.

N eg ativ e  P o le  S lip L ikely This index is one if the post contingency rotor angle 

is less than 1.5 radian (on two pole model) and both the rotor angular velocity 

and acceleration are negative, otherwize zero.
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P o sitiv e  P o le  S lip  Likely This index is one if the post contingency rotor angle is 

greater than 1.5 radian (on two pole model) and both the rotor angular velocity 

and acceleration are positive, otherwise zero.

C ap ac ity  R ed u c tio n  This index provides a measure of the percentage of transmis

sion capacity that is lost from a generation group due to the outaging of lines 

connected directly to the generating groups terminals.

V*? P
C R  =  j;1 1 (6.25)

*G0

Equation 6.25 is used to calculate the capacity reduction for a generation group 

with a pre-contingency generation of Pqq MW which has n lines connected to 

its terminals. The term P, corresponds to the outaged MW pre-contingency 

capacity of one of the n lines. Hence, if the line is not outaged then Pt is zero 

else it is equal to the pre-contingency MW flow of the line.

6.4.3.3 Local Ind ices

C ritica l M W  In te rface  Flows Past experience of power system operators has 

revealed critical interface flows, which if exceeded will move the system towards 

instability. The choice of these flows as inputs to a neural network classifier 

seems sensible.

C ritica l M V ar In te rface  Flows This is similar to above and used for complete

ness.

Local A re a  M W  G en era tio n  The total MW generation within a particular part 

of the overall system can have a big effect on stability.

Local A rea  M V ar G en e ra tio n  The total MVar generation within a particular 

area has a big effect on the voltage profile within that area. If the voltage
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profile is low then the area will be more susceptible to transient instability 

problems.

G e n e ra to r  K in e tic  E n e rg y  The kinetic energy of a small generator will not have 

much effect on a system wide total kinetic energy index. Choosing this index 

will allow the neural network more information on a susceptible generator.

G e n e ra to r  A n g u la r A ccelera tion  This is used for similar cases to the index 

above, and provides information on a small machine whose input to the global 

index would otherwise be negligible.

6.4.4 Statistical Functions

The purpose of the statistical functions is to provide a mapping from a number of 

base indices to a single numerical composite index that may be useful for the stability 

classification problem. In this manner a dimensionality reduction is achieved without 

the loss of discriminatory power.

Consider an example where we can determine the voltage magnitudes at all Nf, 

busbars in the power system. A standard deviation function will perform a mapping 

from fftNb to 9?: i.e. Nb busbar voltage magnitudes are mapped onto a single value.

The indices are formed by using a number of functions on the power system 

parameters, fi at the immediate post-contingency state. The functions used to 

produce the composite indices <j> are detailed below, where /io represents the pre- 

contingency value of n :

M ax im u m  V alue — this is the maximum value of fi across all the equipments in
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the network.

(j) =  MAXi (fi) =  max /zt-

M in im u m  V alue — this is the minimum value of fi across all the equipments in 

the network.

<j> =  MINi (fi) =  min m i =  1 • • • N, (6.27)
a

M ax im u m  C h an g e  — this is the maximum value of the change in /z between the 

pre and immediate post-contingency state across all the equipments in the 

network.

(j> =  MAXDi (fi) =  max (//, — /.z°)

M in im u m  C h an g e  — this is the minimum value of the change in fi between the 

pre and immediate post-contingency state across all the equipments in the 

network.

<j> =  MINDi (fi) =  min (/zt- — fif̂

M axim um  M o d u lu s  of C hange  — this is the maximum value of the modulus of 

the change in fi between the pre and immediate post-contingency state across 

all the equipments in the network.

(j) =  MAXMDi (fi) =  max (| /ltf- — /z? |) * = 1 • • • N. (6.30)
9

Sum  o f M o d u lu s  of C hange  — this is the sum of the modulus of all the changes 

of fi.
N g

<j> =  SUMDi(/u) =  (/z. - / z - )  (6.31)
*=i

M ax im um  G ra d ie n t — this is the maximum gradient of fi at the immediate post

contingency state across all the equipments.

</> =  MAXGi (fi) =  max fli i =  <6-32)
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M in im u m  G ra d ie n t — this is the minimum gradient of fi at the immediate post

contingency state across all the equipments.

<j> =  MINGi (fi) =  min fi{

M ax im u m  M o d u lu s  of G rad ien t — this is the maximum value of the modulus 

of the gradient of fi between the pre and immediate post-contingency state 

across all the equipments in the network.

(j) =  MAXMGi(fi) =  max | /it- i = <6-34)
Sum  of M o d u lu s  of G rad ie n t — this is the sum of the modulus of the gradient 

of fi at the immediate post-contingency state.
Ng

<t> =  SUMGi (fi) = 2̂fii (6.35)
i=l

M ean  — this is the mean values of fi at the immediate post-contingency state across 

all the equipment and is denoted by fi.
i Ng

MEAN (,.) =  —  (6.36)
8  *=1

V ariance — this is the variance of fi over all the items of equipment and provides 

a measure of of the width or variability of fi about this value and is represented 

as a 2 where cr is the standard deviation.

<f> =  VAR (li) = - ~ — T £  (w -  fi?  (6-37)
iV5 1 i=l

As the mean depends on the first moment of the data, the variance depends

on the second moment. It is not uncommon in real life to be dealing with

a distribution whose second moment does not exist (i.e. is infinite). In this 

case, the variance is useless as a measure of the data’s width around its central 

value: the values obtained by 6.37 will not converge with increased numbers 

of points, nor show any consistency from data set to data set drawn from the 

same distribution. A more robust estimator of the width is the mean absolute 

deviation.
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M ean  A b so lu te  D ev ia tio n  — This is a more robust estimator of the width of a 

distribution.
I  Ng

* = ADEVG0 = — £ | W- / i | (6-38)
I y 9 t=l

Skew ness — This characterises the degree of asymmetry of a distribution around 

its mean. While the mean, variance and absolute deviation are dimensional 

quantities, that is, have the same units as the measured quantities, /̂ , the 

skewness is defined in such a way as to make it non-dimensional. It is a pure 

number that characterises only the shape of the distribution.
1 N91 vAT f J t i - f i^ = SKEW (/*) = — £  CL-C (6.39)

i y g  i=i a

6.5 Selection O f Composite Indices

From the set of composite indices considered a number of standard filters were used to 

select the best composite indices to use as inputs to a direct neural network classifier. 

The aim of this selection procedure is to provide a structured method for ranking 

the composite indices on their effectiveness for stability assessment. In this way a 

selection of the best composite indices can be used to as inputs to the neural network 

classifier.

The filters that were used performed a ranking of the indices using the inter-class 

Euclidean distance as the metric. Both a best features and a sequential forward search 

technique were used, and the best 5 indices considered for selection. These filters 

were implemented in a software package called TOOLDIAG[167], which is freely 

available.

A utility program was also written to perform this automatic selection by calculating 

a number of ranking coefficients, C\ • • • Cio, for each composite index. The best
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composite index for each of these ranking criteria was then chosen, resulting in a 

small number of automatically selected composite indices.

Let <f>i be the value of the composite index c for the ith contingency. If the stability 

index for contingency i is given by s,- and the stability classification is Si then:-

N c t g

Ci = £ ( * - * ) *
*=1

(6.40)

N c t g

c 2 = £ ( * - $ ) *
*=1

(6.41)

N c t g

c 3 = £  (<k -  s,)h+1
i=1

(6.42)

N c t g

c4 = £  (* -  5.)*+1
t=l

(6.43)

N c t g

c 5 = £  (<i>, -  s , r 2 
*=1

(6.44)

N c t g

Ce = £  (* -  St)*'
i= 1

(6.45)

C7 = MAX"? (<t>, -  s,)2 (6.46)

Cs = MA X & tf i-S i)* (6.47)

(6.48)

where k  is the error power. The higher the value of k  the more a single large error 

is penalised compared to a number of smaller errors. The values of k  that were 

used were one, five and ten in order to achieve a balance between composite indices 

showing a general trend and ones with a good correlation to the stability indices but 

with the occasional large error. Values of k greater than ten were found to produce 

negligible changes in the selected composite indices.
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Similarly, ranking coefficients Cg • • • Cie were generated by replacing Si by 1 — Si and 

Si by 1 — Si. This allows those indices with a good correlation to the inverse of the 

stability index to be selected.

6.6 Visualisation of Feature Space

Once a set of composite indices have been selected as features for the stability 

assessment, it is desirable if their suitability at performing the desired classification 

can be displayed. This has the effect of confirming the suitability of the selected 

indices and of highlighting any errors in the selection process. W ith the time required 

to validate the screens being several hours, this quick check can save a lot of time.

6.6.1 Single feature suitability

The correlation of a single composite index (feature) to the instability index can be 

shown by a plot of the value of the composite index against the instability index for 

all patterns in the training data set.

Figure 6.5 shows a graph of the value of one automatically selected composite index 

versus the stability index for all the contingencies in the training set. There is a 

clear correlation between this index and the stability, confirming the usefulness of 

the automatic selection program. Another technique that performs a similar function 

is that of boxplots.
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Figure 6.5: A good composite index for stability classification 

6 .6 .2  B ox  P lo ts

Box plots[168] provide a powerful graphical tool for visualising the range and 

distribution of a composite index for the stable and unstable classes. Figure 6.6 

shows a box plot for two typical composite indices. The plots show the bounds, 

interquartile ranges and medians of the composite index, on the same scale for the 

stable and unstable contingencies. The good index shows a clear difference in the 

composite index between the stable and unstable cases, but the poor index lacks 

this discrimination and is therefore likely to be of little use for transient stability 

classification.
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Figure 6.6: Box Plots for two composite indices

6.6 .3  S elected  fea tu res’ su itab ility

In order to visualise the suitability of the selected features for describing the power 

system stability, some method must be used to transform the high dimensional 

feature space onto a two dimensional piece of paper. The techniques have been 

adopted tha t are based on Sammon plots.

6.6 .4  Sam m on P lo ts

The Sammon algorithm [169] allows the visualisation of a multi-dimensional set of 

inputs to a neural network on a two dimensional piece of paper allowing the relative 

geometric separation between patterns from different classes to be compared. This 

algorithm performs a dimensionality reduction from a high order space, equal to the 

number of selected composite indices, to a lower dimensional space, in this case two 

dimensions. The criteria for the dimensionality reduction is to reduce, by a gradient 

descent approach, the differences in the Euclidean distances between patterns in the 

the high and low spaces as much as possible. In this way the geometric separation 

of the patterns is maintained.
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Figure 6.7: Sammon Plot for Iris Data Set

Figure 6.7 shows a Sammon Plot for the classical data set of Fisher[l 70]; a set of 150 

samples of feature dimension four describes three different flower classes, 50 samples 

per class. It can be seen tha t the patterns represented by ‘plusses’ (setosa class), those 

represented by ‘crosses’ (versicolor class) and those represented by ‘boxes’ (virginica 

class) are clustered into three fairly distinct areas indicating that the patterns contain 

enough information to perform the classification.

If there is no obvious separation between the classes (in our case stable and unstable) 

then the composite indices chosen are not likely to be able to classify the stability and 

they will almost certainly not be robust to changes in the power system operating 

condition. In this way, the relative clustering of the patterns on a Sammon diagram 

provides a good indication of the likely success of the ANN screen.
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6.6 .5  Edw ards-Sam m on P lot

This plot is based on the Sammon plot and has been enhanced by the author to 

indicate the likely region of classification for patterns that the ANN has not seen 

before.

For applications where a degree of membership of a class can be determined, it is 

useful to produce a Sammon plot for the class membership and an associated contour 

diagram representing the class membership function. For this particular application 

we can classify a contingency as transiently1 stable or unstable. However in section 

6.3 continuous valued stability indices were investigated, which can be used to provide 

a degree of membership to the stable or unstable classes.

XX

/

Figure 6.8: Edwards-Sammon Plot for Transient Stability 

oscillatory
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Figure 6.8 shows an Edwards-Sammon plot for an ANN transient stability screen 

developed for the 100 busbar laboratory scale power system model. The surface is 

visualised by a smooth colour representation of the degree of class membership from 

in this case green (stable contingency zone) to red (unstable contingency zone). The 

algorithm for determining the contour plot was determined empirically.

The colour of a point (x,y) is related to its class membership, or height, which is 

determined in the following manner:-

(D Calculate the Euclidean distance, dt, from x,y  (current point) to each of the i 

patterns in the training set.

(D Select the closest Np patterns to the current point.

<D For each of the Np points set the dj to 0.0001 if dj is less than 0.0001 to prevent 

numerical problems when (x,y) is close to the position of an actual pattern on 

the plot.

® Use equation 6.49 to calculate the height of the current point, hxy.

u n E , £ &  h  * Wi * {Hj -  0.5)hzy =  0.5 + ----------- - j f — ------------  (6.49)
2-r* = l U

where /,• is an influence factor related to the distance from the current point to 

the pattern i and is given by

Ii = 3  (6-5°)

and where Wi is a colour weighting function defined by
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6.7 Screening Im plem entation M ethods

In general the contingency screening process will use multiple screens, each tailored 

to identify a particular security problem. There may also be multiple screens trying 

to identify the same problem, in which case a voting system can be employed to 

either take the majority decision or to pass a contingency for evaluation if only one 

screen identifies it as potentially insecure.

6.7.1 M ultiple Contingency Screens

Contingency screening for stability violations can be carried out by a single detailed 

screen which provides all of the discrimination. This approach tends to lead to a 

relatively computationally intensive screen compared to a coarse filter which may 

remove only 70% of the stable cases. The adoption of a multi-screen approach as 

outlined in figure 6.9 uses a number of coarse screens to provide the overall screening. 

In this manner the least intensive screen can be used to provide some initial screening 

with more detailed screening being used only on those contingencies which are passed 

by the coarse screens. The net effect of this approach is to (1) reduce the overall time 

spent screening the contingencies and (2) to improve the reliability of the contingency 

screening process.

Within OASIS, the transient and oscillatory screens are used in this multi-screening 

manner. Those contingencies which are deemed safe by the transient screen are 

passed to the oscillatory instability screen. Those which pass through this screen are 

then assumed to produce safe, well damped, electro-mechanical oscillations and are 

not considered any further.
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Contingency OK

FailFail Contingency Potentially Insecure

Contingency Selection

Contingency Evaluation

Pass

Figure 6.9: Multiple Contingency Screens

6.7 .2  V oting  M eth od s

Voting methods are often employed in safety critical systems to reduce the probability 

of mal-operation of the system. The principle behind this approach is to incorporate 

redundancy within the system by having multiple modules to perform the same task. 

The results from each module are compared and if one module produces significantly 

different answers from the rest then its results are ignored and the module flagged 

up as faulty. One of the most notable examples of this method is employed within 

the space industry where critical systems within satellites and manned space vehicles 

must be extremely reliable[171,172].

For this application, a number of transient screens could be developed and operated 

in parallel. If any one screen classifies a contingency as unstable then the contingency 

could be flagged up for detailed evaluation. If the screens used different input features 

and network topologies then this would further improve the robustness of the screens. 

The principle drawback to this approach is the computational overhead of running 

multiple screens.
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6.8 Performance Evaluation

The performance of a contingency screen can be made on two fronts. Firstly, the 

performance of the DSA system, incorporating the screens, can be compared to the 

same system with no screening. Secondly the performance of the screen can be 

evaluated from the perspective of a pattern classification system and a ROC table 

can be determined.

6.8.1 Performance o f Screen

As mentioned previously (5.4.3) a receiver operating table can be constructed to 

display the performance of an ANN. Such a table can also be used to display the 

performance of the ANN screen as a whole.

Actual Stability Stable Unstable
ANN Stable 
ANN Unstable

OCgs &US 
OCsu &uu

Table 6.1: Screen Performance Table

Table 6.1 shows such a performance table. The a  values represent the number of 

contingencies that fall into each of the four categories. For the screen to be a success 

we require that a us is zero, i.e. that no unstable contingencies are mistaken to be 

stable and that olsu is small compared to olss and a uu so that the screening efficiency 

is high. We can define this latter quantity by rj, where:

Number of contingencies screened as stable
rj  ----------------------------------------------------------------- (6.52)Number of stable contingencies
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6.8.2 Improvement in overall D SA  performance

The motivation behind using contingency screening within a DSA system is to reduce 

the DSA cycle time. Hence, the speedup factor, A, of the DSA can be determined 

by:-

Operating time of DSA with no screens A —  (o«53)Operating time of DSA with screens

A value of A of over ten or so would represent a considerable improvement in the 

performance of a DSA system. The cycle time of OASIS, toASis, with the ANN 

transient and oscillatory instability screens implemented is given by:-

Ns TVc
toASis =  N s r ) T tT  H - T ] o t o  H — t s i M  (6.54)

rjT

where Nc is the total number of selected contingencies, tjt and rjo are the efficiencies 

of the transient and oscillatory instability screens respectively, t?  and to  are the 

operating times of the transient and oscillatory instability screens and tsiM  is the 

operating time of the contingency evaluator.

6.9 Chapter Summary

A method for contingency screening of electro-mechanical instability problems using 

a numerical integration approach coupled with an ANN has been detailed. A set 

of composite indices are calculated using the results from a short time domain 

simulation and presented as inputs to an ANN. The ANN predicts an instability index
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which is compared with a threshold value to determine whether the contingency is 

potentially severe.

The performance of the screen should be such that a ua is zero and rj is in excess 

of 90%. W ith these conditions met, we can expect an improvement in a DSA cycle 

time of at least one order of magnitude.

The next chapters give details of the implementation of these screens into OASIS 

and simulation results on both a laboratory scale and real sized power system model.



Chapter Seven

Enhancements to OASIS

he enhancements that were made to OASIS involved the modification of 

parts of the OASIS client and server tasks. This chapter explains the 

5 reasons for these changes and gives details of the changes themselves.

7.1 M odifications to Client Task

The main modification to the client task was the incorporation of a module to 

display power system stability in a graphical format. The visualisation of power 

system security information is an area of active research at the present time. Various 

techniques to present this information to power system operators in a clear manner 

have been proposed[102,173] but the traditional approach of a single line wall 

diagrams and EMS displays are the norm. The use of single line diagrams is well 

accepted [174-176] and a full wall diagram of the power system is present within 

virtually every energy management centre as it provides the power system operators 

with a clear indication of the activity of circuit breakers, whether busbars are being 

run split and the current system frequency.

128
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Transient stability problems are by their very nature very localised and as  such highly 

dependent on the local topology of the power system around the generator of interest. 

Oscillatory instability problems tend to be caused by the outaging of transmission 

lines between different areas of the power system. This causes the remaining lines 

to become more highly loaded and can result in poor damping of post-contingency 

electro-mechanical oscillations. In order to clearly view these problems it was decided 

to improve OASIS such that the topological and geographical information could be 

combined with the results of the contingency processing to present a complete picture 

of the power system stability.

A graphical display method based on the standard topological system map is the 

natural choice for the display, and is currently used within the NGC to display MW 

transfer limits and other constraints (Picasso diagrams) [76]. Those items of plant 

which lead to stability problems (transient or oscillatory) should be clearly shown, 

and then when used in conjunction with the Picasso }s will provide a much clearer 

impression of the system security.

The method that was adopted to indicate those items of plant that are involved in 

contingencies which lead to instability was to draw them in red. Hence, transmission 

lines, SVCs and busbars are shown in red if they are involved in contingencies which 

lead to instability. Transmission lines which when outaged may lead to poor damping 

on the system are marked as dashed red lines, whereas lines leading to transient 

instability are marked with solid red lines. Busbars which have machines which are 

transiently unstable are ringed in red to indicate the presence of a generating group 

which is transiently unstable.

In addition the background of the maps was to be comprised of a patchwork where the 

colour of each patch is related to the desired parameter of the nearest busbar on the 

map. In this manner an appreciation of the correlation between the pre-contingency
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parameter, such as busbar voltage magnitude, and the stability is shown.

7.1.1 V oltage Profile

In the case of a voltage magnitude profile, sharp patch boundaries correspond to 

lines with significant voltage difference across then and hence lines with large MVar 

flows. As the system voltage profile has a large effect on system stability then the 

inclusion of this information is valuable.

scenario/m20dump.base Stability Map
MS I«

Voltage Contours:

scenario/m20dump.base Stability Map
Voltage Contours:

Figure 7.1: Security map with voltage profile

Figure 7.1 shows the geographic and topological maps for the laboratory scale power 

system model, detailed in 8.1. As expected, the voltage levels are higher in Scotland 

and the North of England than the South-West of England due to the distribution of 

the majority of the generation. In particular, the voltage levels in South Wales seem 

to be relatively low compared to the actual voltage levels on the full NGC system.
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This is primarily due to the fact that the generation at Pembroke is not included in 

the laboratory scale model.

7.1.2 MW Injection Profile

The stability maps produced using the net busbar MW injection as a contour allows 

a comparison between the power generation and local transient instability to be 

judged. One would expect that those contingencies which may lead to transient 

instability will occur in the vicinity of large MW generation.

scenario/m20dump.base Stability Map
Mw Injection Contours:

scenario/m20dump.base Stability Map
■ m  -ism

Mw Injection Contours:

Figure 7.2: Security map with MW injection profile

Figure 7.2 shows the geographic and topological maps for the base case of the 

laboratory scale model.
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7.1.3 MVar Injection Profile

The background produced by busbar MVar injections highlights those areas of the 

power system with power generation and voltage support. Transmission lines that 

cross a clear boundary in the MVar generation profile are likely to be carrying a large 

MVar flow, and loss of these lines is likely to result in severe voltage problems in the 

post-contingency operating point.

scenario/m20dump.base Stability Map
Mvar Injection Contours:

scenario/m20dump.base Stability Map
Mvar Injection Contours:

Figure 7.3: Security map with MVar injection profile 

Figure 7.3 shows the security maps using this profile.
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7.2 M odifications to Server Task

The integration of the stability screens into the server task of OASIS required 

substantial additions to the server task. The basic operation of the server task was 

extended to allow the generation of composite indices, the inclusion of the ANNs 

and the threshold comparison.

In order to maintain a high degree of flexibility it was decided that the transient 

and oscillatory instability screens should be uploaded to each server task from 

the client, as opposed to being hard-coded into the server. This allows different 

screens to be loaded into the server task depending on the power system model 

being used. The main disadvantages of this approach are that (1) there is the 

initial overhead of building the internal representation of the screen on startup 

and (2) the slightly slower operation of the screen, due to the slightly less optimal 

internal representation. However, the much greater flexibility of this approach 

outweighs these slight disadvantages. From a coding (implementation) perspective, 

this required the following enhancements to the server task.

O  Additions to the PVM interface to allow the screens to be loaded and flags set 

to allow testing of the screens and generation of training data.

O  The incorporation of a load flow within the server tasks.

O  The addition of a composite indices module.

O  The incorporation of a module to simulate an ANN and perform the stability 

index comparison.

Figure 7.4 shows the main blocks within the new client task. The new modules are 

described in more detail in the following sections.
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PVM Interface

Study File Module Control
Module

Stability Screen Module

Contingency File Module Composite Indices Module

Power System Simulator Load flow module

Contingency Application Module

Internal Data Structures

Figure 7.4: Block diagram of new server task

7.2.1 PVM  Interface

Message handling within PVM applications involves sending and receiving messages,

each of which has an associated in te g e r  tag to indicate the nature of the contents.

The changes to the PVM interface involved adding routines to process messages of

the following (new) tag types.

MT_TSS — this was added to indicate that the received message is a transient 

instability screen. The message is then extracted from the PVM buffer and 

stored.

MT_0SS — this was added to indicate that the received message is an oscillatory 

instability screen. The message is then extracted from the PVM buffer and 

stored.

MT-TEST — this was added to allow any the screens to be tested. A flag is set to 

store the results from the screens and compare them with the results obtained 

using a full time-domain simulation.
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MT-GENDATA — this was added to indicate that the values of the composite indices 

defined in the screen files are to be written to the s td e r r  stream. This stream is 

re-directed within oasis to a log file. By defining a screen with all (nearly 2000) 

composite indices as inputs the training database can be generated. Upon 

writing the data, the simulation continues to determine the actual transient 

and oscillatory instability indices. These values are then written to the same 

stream, and the process repeated for the next contingency.

7.2.2 Load Flow M odule

Load flow routines have formed the basis of power system static security analysis 

and have taken many different forms. In the late 1970s and early 1980s, fast 

decoupled routines became popular [177], although recent trends have favoured fully 

coupled implementations due to the increased accuracy, improved convergence and 

the advances in computing power.

The load flow routine (Complex Power Flow - CPF) implemented as part of the 

OASIS project is based on a standard formulation such as that described in [105]. 

The set of simultaneous power equations which defines the system’s state are non

linear. They are therefore solved via a set of successive linear approximations based 

on first order Taylor expansions of the power equations.

The solution routine requires assigning some initial estimate to all the busbar voltages 

and angles (the slack bus is typically assigned to 1Z0) and calculating the initial real 

and reactive power mismatches. Should any of these be above the set tolerance, the 

Jacobian is formed and solved for updates of voltages and angles upon which new 

estimates of the power mismatches are obtained. While convergence is not obtained, 

the Jacobian is again formed and new updates of voltage magnitude and phase are
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found.

The core routines to build the admittance matrix, form the Jacobian and solve 

the power flow were extracted from CPF and inserted into a single module, I f . c. 

Functions were then written to provide the loadflow with the pre-contingency voltage 

vector as the starting point for the loadflow. The results from the loadflow were then 

stored to be used in the calculation of the composite indices.

7.2.3 Com posite Indices Module

The implementation of the composite indices module was performed in a similar 

structure to the set notation described earlier (see section 6.4.2).

Figure 7.5 shows the basic control flow for the construction of the composite 

indices. A separate function exists for each statistical function, which then uses the 

information contained in set B  and set C  to build the composite index. The numerical 

measurements are provided by a call to the variable-functions which interface to the 

OASIS data structures. This description is intended to provide a brief flavour of the 

implementation. In practice the ANSI ‘C’ source code (c i .c) uses function and data 

pointers to improve the efficiency.

7.2.4 Stability Screen Module

Each stability screen is defined in a screen definition file which is loaded into the 

server task upon initialisation. The definition file contains the following information 

concurrently and in plain ASCII format.
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(D The neural network architecture and connection weights in the same format 

as an SNNS[178] network definition file. This allows the ANNs to be trained 

using SNNS and then saved into this format, all ready for including in a screen 

definition file.

(D The definition of the composite indices to be used for the screen is specified 

using the set notation described earlier (see section 6.4.2).

® The normalisation limits for each composite index are then included, to ensure 

that the range of the values of each composite index are the same as used in 

training the ANN.

® The stability threshold value is included to allow a binary classification to be 

achieved.

The functions coded within this module (sc reen .c )  perform the decoding of the 

definition file, the implementation of an ANN and the stability comparison required 

by each of the screens. The following sections provide a brief indication of the data 

structures and key functionality of this module.

7.2.4.1 D a ta  S tru c tu re s

The primary data structure within this module concerns the internal representation 

of each ANN. The fundamental building block of ANNs, neurons, was used as the 

basis for the data storage and has the format shown below.
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ty p e d e f  s tru c t  Neuron { 

float act; 

float bias; 

ch a r st; 

in t Nsources;

in t SourceId[MAX_CONNECTIONS]; 

float SourceWt[MAX_CONNECTIONS]; 

float Output;

} Neuron;

The current activation value (ac t)  and bias (b ias) values are followed by a character 

indicating whether the neuron is in the input, hidden or output layer. The number 

of source neurons (Nsources) is used to store the number of neurons that contribute 

their output to the activation of the neuron. The arrays S ourceld  and SourceWt are 

the identifier and connection weights for these source neurons. Output is the current 

value of the output of the single output layer neuron.

7.2.5 Operation

The decoding of the screen definition file begins with reading the number of neurons 

from the storage buffer. A section of memory, equal in size to the number of neurons 

in the screen multiplied by the size of the Neuron data structure, is allocated and the 

bias values and other topology information stored into this array of Neurons. The 

screen initialisation is then complete.

For on-line operation, once the composite indices have been calculated, the inputs
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are normalised and presented to the input layer neurons. The output of each of 

the input layer neurons are then propagated through the hidden layer neurons to 

the output layer neuron. The output of the output layer neuron corresponds to the 

stability index.

The stability comparison is then performed using a simple numerical comparison. If 

the stability index is less than the threshold value then the contingency is classified 

as secure, else it is classified as potentially insecure.
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Figure 7.5: Control flow for composite index generation



Chapter Eight

Simulation Results

his chapter contains the simulation results that have been obtained using 

OASIS with the transient and oscillatory instability screens. Results 

are presented for the laboratory scale power system model as well as 

snapshots of the full scale UK national grid system which show the speedup of 

OASIS of approximately 25 times when the stability screens are used.

8.1 100 Busbar M odel

The standard laboratory scale power system is a 20 machine 100 busbar reduced 

model of the UK National Grid System. This model is based on a full system 

snapshot taken from the EMS during a summer night in 1984. Figure 8.1 shows 

the topological map for this model. The model covers the main 400kV system and 

extends to cover some of the Scottish system so that the full electro-mechanical 

interaction between these two systems can be modelled.

141
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Figure 8.1: 100 Busbar Power System Model

8.1.1 Transient Instab ility  Screen

The base case laboratory model was used for generating the training data for 

the ANN. A total of 1916 composite indices were generated for the 838 training
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contingencies comprising three phase to ground busbar faults, loss of load, loss of 

generation and loss of transmission lines. The selection procedure outlined in section 

6.5 was applied and resulted in the selection of the 18 composite indices shown in 

table 8.1 using the set notation discussed earlier in section 6.4.2.

No A B C D E No A B C D E
1 S M N MIN OL 10 S M C MIN RAM
2 S M N MIN VM 11 S M N MIN AVE
3 S M N RNG VM 12 s M N MIN AVE
4 S M N VAR VM 13 s M N MIN AVE
5 S M C MIN VM 14 s M C MIN AVE
6 S M C RNG VM 15 s M C MIN AVE
7 S M c VAR VM 16 V M N VAR VP
8 S M N MIN RS 17 V M C RNG VP
9 s M N MIN RAM 18 V M C ADEV VP

Table 8.1: Selected Composite Indices for Transient Instability Screen

These selected indices do not include any line or busbar indices, but when this 

approach is applied to larger power systems, such as the full national grid system, 

such indices are selected. 14 of these indices are related to the terminal voltage of 

the generating sets in the power network, showing the clear link between generator 

terminal voltage and transient stability. A pattern file was then generated to train 

the ANN to perform the non-linear mapping from this feature space to the transient 

instability classification. These patterns were also processed by the Edwards- 

Sammon algorithm and then displayed on a contour surface based on the stability 

index as shown in figure 8.2.

The surface is determined from the stability index of each of the patterns and has the 

effect of highlighting clusters of patterns of a similar stability class. It can be seen 

that the transiently unstable patterns (crosses) are geometrically well separated from 

the stable patterns (dots), indicating that the screen is likely to be able to classify 

the stability and be fairly robust to changes in the power system state and topology.
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Figure 8.2: Transient Instability Screen Edwards-Sammon Plot for Laboratory Scale 
Model

The choice of the number of input neurons for the ANN is set by the number of 

selected features; 18 for this screen. The ANN is required to predict a stability 

margin, hence one output layer neuron is required. The choice of the number of 

hidden layer neurons is less well defined. The choice of 10 neurons was made using 

experience at training a large number of ANNs for a wide variety of applications. 

In practice, due to the clear separation of the classes on the Edwards-Sammon plot, 

the ANN will be able to learn and generalise the problem domain well. The choice 

of the number of hidden layer neurons becomes less critical in these cases.

The ANN was trained using SNNS[178] and a back-propagation algorithm [24]. 

The training was stopped after 400 iterations when convergence had been achieved.
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The threshold value was set to 0.4 because the largest stability index for a stable 

contingency in the training set was 0.38.

8.1.2 Oscillatory Instability Screen

The feature selection process described earlier resulted in the selection of 10 

composite indices for the oscillatory instability screen.

No A B C D E No A B C D E
1 S M N VAR RAM 6 V L C RMS MW
2 S M C VAR RAM 7 V L C MSUM MW
3 s L N MSUM OL 8 V L C RMS MVA
4 s L C MSUM OL 9 V L C MSUM MVA
5 s L C ADEV MVA 10 V L C MSUM VP

Table 8.2: Oscillatory Instability Screen Composite Indices for Laboratory Scale 
Model

Table 8.2 shows the set membership for the 10 selected composite indices. The 

suitability of these indices at classifying the oscillatory instability problem can be 

shown by using a Sammon plot, as shown in figure 8.3.

As can be seen from this plot, those patterns represented by ‘crosses’ (unstable) are 

well separated from those represented by ‘dots’ (stable), indicating that the ANN 

will be able to learn the training data and generalise for other cases that it has not 

seen before. As before, a simple three layer feed-forward ANN was chosen as the 

neural network architecture. The selection of 10 composite indices requires 10 input 

neurons for the ANN. One output neuron is required for the stability index and 8 

hidden layer neurons were chosen. The ANN was then trained using SNNS and a 

back-propagation algorithm with a learning rate of 0.9. The oscillatory instability 

screen was then tested on a number of different scenario’s.
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Figure 8.3: Oscillatory Instability Screen Sammon Plot for Laboratory Scale Model

8.1 .3  Perform ance Evaluation

W ithin the laboratory environment a parallel virtual machine consisting of two DEC 

Alphas and two Silicon Graphics R4000s was used to evaluate the performance of 

OASIS. The performance of OASIS was then evaluated, using the transient and 

oscillatory instability screens, on the base case (A) laboratory power system model 

and a number of scenarios which were constructed from the base case (B-G) as 

follows:
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S cenario  B — A sudden increase in load on busbars D R A K 4, H A M H , CELL4 

and W ILL 4 met by reducing the motoring load of the pumped storage units 

at D inorw ig  from 1800MW to 1270MW.

S cenario  C — The same increase in load as (A) met by stopping all 280MW of 

motoring at F festin iog  and reducing the motoring load at D inorw ig  from 

1800MW to 1530MW.

S cenario  D — This has the same loading and generation pattern as the base case 

(A) but the circuits from P E L H 4 to W A L P4 and from P E L H 4  to C O T T 4 

are outaged. This has the effect of increasing the power transfer through the 

remaining circuits into the London area.

S cenario  E  — The loss of one of the England-Scotland circuits between S T E W 2 J 

and C O CK 2.

Scenario  F  — The loss of the generation at Ratcliffe; a total loss in generation of 

1176MW.

Scenario  G  — The loss of one of the 400KV circuits between D E E S 4 and P E N T 4  

resulting in an increased impedance between the North-Wales generation and 

the rest of the system.

Snapshot Transient Screen Oscillatory Screen OASIS
^ tdsaOlss otuu OiSu v(%) &UU OtSu *,(%)

A 822 16 9 98.9 833 3 2 99.8 20.9 43
B 829 8 0 100.0 830 0 8 99.0 21.5 42
C 821 8 8 99.0 830 0 8 99.0 20.0 45
D 807 16 9 98.9 833 3 2 99.8 22.0 41
E 817 16 5 99.4 833 5 0 100.0 22.0 41
F 802 18 0 100.0 826 11 1 99.9 23.1 39
G 814 19 14 98.2 830 6 2 99.8 19.6 46

Table 8.3: Performance for Laboratory Scale Model
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Table 8.3 contains the performance related results using OASIS with both the 

transient and oscillatory instability screens. For the transient instability screen, 

the screening efficiency remained above 98% for each of the scenarios used in testing. 

The number of unstable contingencies mis-classified by the transient screen was zero 

for all scenarios, meeting the requirement of conservative operation.

The oscillatory instability screen had a performance similar to that of the transient 

instability screen. In this case, the efficiency remained above 99%. The net effect of 

using both the transient and oscillatory instability screen within OASIS reduces the 

cycle time from approximately 15 minutes to 45 seconds - a 20 fold speedup.

8.1.4 Contingency Allocation

Figure 8.4 shows details of the OASIS contingency allocation when the PVM was 

comprised of the four host computers used for the performance evaluation. The total 

operating time of the DSA was 45 seconds using the screens described above.

It can be seen that those contingencies which required full evaluation took signi

ficantly longer to process than those which only required screening. Also, due to 

the multi-user nature of UNIX systems, the time taken to perform the 30 second 

time domain simulation (evaluation) varied from both host to host and occasionally 

from time to tim e on the same computer. This is due to the unpredictable and vari

able load demand on the computers due to other user and system programs being 

executed.
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Contingency Allocation
Pvm Hardware Contingencies/Sec
Host Name Arch Max Min Avg

ALBION SGI5 11.11 0.33 4.63

HAYDN ALPHA 20.00 0.07 4.98

VIOLET SGI5 10.00 0.19 1.93

MOZART ALPHA 25.00 0.58 7.20

45 secs
Statistics
Idle(s) No of Ctg %

1 207 25

1 222 26

1 86 10

1 323 39

Figure 8.4: Contingency Allocation for Laboratory Scale Model

8.2 Full U K  Power System  Snapshots

The UK Power system is a highly interconnected transmission system with in excess 

of 7000 kilometres of overhead transmission lines and cables, 21,600 towers, 280 sub

stations and up to 200 large generating units operating at any time. There are two 

major power interconnections: the first a 275 and 400kV AC link to the Scottish 

power system and the second a 2000MW DC link with France[26,27].

During the field trials of OASIS at NGCC (see 3.5) a number of system snapshots 

were saved to be used in the laboratory for validation of the ANN screens. The 

number of busbars in each snapshot varied between 900 and 920 and the number of 

generating units varied from approximately 100 to 150 depending on the load level.

The previous discussion on ANNs (5) explained that ANNs are suited well to 

interpolation between patterns used for training but not extrapolation. As a
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consequence it was decided to train the ANN using results obtained for the condition 

of lowest and highest daily demand and then to examine the performance of the 

screen for those conditions in between. The lowest daily demand of 28GW occured 

at approximately 0500 hrs and the daily peak of 48GW occured at 1700 hrs. A total 

of 6838 training patterns were then generated to be used for training the ANNs.

8.2.1 Transient Instability Screen

The selection of the composite indices was performed using 1000 contingencies with 

the worst transient response. The reason for using a subset of the total training data 

for the feature selection was to speed up the feature selection process. The majority 

of contingencies were very stable and hence many of these patterns were very similar 

in nature. The mcovar selection process uses a sequential forward search which is 

very time consuming for a large number of patterns and hence it was more practical 

to use a subset of the training cases for the feature selection. The selected indices 

are shown in table 8.4.

No A B C D E No A B C D E
1 S M C MIN OL 13 V M C SKEW MW
2 S M c SKEW PF 14 V M N SKEW KE
3 S M c SKEW MW 15 V M G SKEW KE
4 S M G SKEW VP 16 V M C SKEW RAP
5 S M C MAX VP 17 s L G MAX PF
6 S M C RNG VP 18 s L G MMAX PF
7 S M C MMAX VP 19 s L C MSUM VM
8 S M N SKEW KE 20 s B C MMAX VP
9 S M N SKEW RAP 21 V B N RNG VP
10 S M C SKEW OL 22 V B G SKEW VP
11 V M N SKEW OL 23 V B C RNG VP
12 V M C SKEW OL 24 V B C MMAX VP

Table 8.4: Transient Instability Screen Composite Indices for NGC Model
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The selection of only 24 features for the stability classification is a highly significant 

result. Traditional approaches to applying pattern recognition methods for stability 

assessment of similar sized power system models are not practical because many 

more (at least five times as many) features would be required. By selecting only 24 

features, it is possible to use an ANN as the core of the pattern  classifier. Boxplots 

for these indices are shown in Appendix A.I. The suitability of these features at 

performing the stability classification is shown through the Sammon plot in figure 

8.5.
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Figure 8.5: Transient Instability Screen Sammon Plot for NGC Model

In this case the unstable patterns again fall into one broad cluster, indicating that 

the ANN will be able to learn this data. It can be seen that the transiently unstable 

patterns (crosses) are geometrically well separated from the stable patterns (dots),
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indicating that the ANN is likely to be able to classify the stability and be fairly 

robust to changes in the power system state and topology. Hence a standard three 

layer feed-forward neural network was chosen with 24 inputs, 10 hidden layer neurons 

and one output neuron. The ANN was trained using SNNS[178] and converged after 

5000 iterations. This ten fold increase in the training time over that required for the 

laboratory scale model due to the larger number of training patterns and connection 

weights in the ANN. The threshold value was set to 0.4 because the largest stability 

index for a stable contingency in the training set was 0.37.

8.2.2 Oscillatory Instability Screen

The training cases used for the transient screen was also used for the oscillatory 

instability screen. The 1000 contingencies with the worst oscillatory response were 

selected to be used for the feature selection. This resulted in the selection of 26 

composite indices as shown in table 8.5.

No A B C D E No A B c D E
1 ADEV S M PF S 14 SKEW C M RA V
2 SKEW c M MW S 15 MIN C L MW S
3 SKEW s M MV S 16 MEAN s L MV s
4 VAR N M TI s 17 VAR c L MV s
5 SKEW s M VM s 18 MAX s L MVA s
6 VAR G M RAM s 19 ADEV c L VM s
7 MAX C M RAP s 20 MIN s L MW V
8 SKEW C N RAP s 21 VAR c L MW V
9 RNG N M AVE V 22 RMS c L MVA V
10 SKEW G M MV V 23 MAX N B VM s
11 VAR C M MVA V 24 ADEV c B VP V
12 ADEV C M MVA V 25 MMAX c B VP V
13 RMS N M RA V 26 ISLANDING

Table 8.5: Oscillatory Instability Screen Composite Indices for NGC Model

These indices are based on a wide selection of power system features. Approximately
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half of the indices are based on machine parameters including T I which is the 

estimated time to pole slipping. Voltage effects are included by use of terminal 

voltage magnitudes and AVR voltage errors. Rotor accelerating power was selected 

for three of the indices. The majority of the remaining indices are based on real 

and reactive power flows in transmission lines. Two indices were selected based on 

changes in busbar voltage phase angles. The last index is a special index. This is 

a number which is set to one if there is any islanding in the system, else it is set 

to zero. Boxplots for these indices are shown in Appendix A.2. Fig.8.6 shows the 

Sammon plot of the selected features.
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Figure 8.6: Oscillatory Instability Screen Sammon Plot for NGC Model

Again, the insecure patterns (crosses) are geometrically fairly well separated from 

the secure patterns (dots), indicating that the screen is likely to be able to classify
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the stability. A standard three layer feed-forward neural network was chosen with 26 

inputs, 13 hidden layer neurons and one output neuron. The ANN was trained 

and the training was stopped after 1500 iterations when the learning error was 

approximately zero.

8.2.3 Perform ance Evaluation

Table 8.6 shows the performance of the transient and oscillatory instability screens 

when tested on several snapshots taken from the EMS of the UK power system. 

These results were obtained in the laboratory using the processing power of two 

DEC Alphas and three Silicon Graphics R4000s. The first two columns show the 

approximate time the snapshot was taken, and the total system load at that time. 

N ctg is the total number of contingencies selected for analysis. The next two sections 

contain information on the transient and oscillatory instability screens. The final 

two columns show the net effect of the incorporation of the screens into OASIS. For 

the testing of the screens, every contingency was passed through both screens, but 

for the determination of the speedups, the screens were cascaded, as shown earlier 

in fig. 6.9

Snapshot Transient Screen Oscillatory Screen OASIS
t(hrs) P (GW) Nctg <*3, Otuu OtSu f W «33 «uu aitu v(%) A tdsa
0000 31.4 3345 3313 16 16 99.5 3329 4 12 99.6 25.1 13:22
0300 30.7 3348 3292 20 36 98.9 3321 24 3 99.9 24.7 13:03
0600 30.5 3362 3308 16 38 98.9 3328 2 32 99.0 24.8 13:08
0900 39.9 3434 3399 16 19 99.4 3434 0 0 100.0 25.2 13:33
1200 41.4 3452 3409 16 27 99.2 3452 0 0 100.0 24.8 13:40
1500 41.1 3439 3407 14 18 99.5 3438 0 1 99.9 24.9 13:23
1800 45.2 3426 3395 20 11 99.7 3425 0 1 99.9 25.0 13:29
2100 38.9 3416 3385 16 15 99.6 3416 0 0 100.0 25.3 13:01

Table 8.6: Performance the Instability Screens 

For the transient instability screen, the screening efficiency remained above 98%
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for all of the test cases. a ua, the number of insecure contingencies classified as 

secure was zero for all test cases, meeting the primary requirement of the screen; 

conservativeness of operation.

The oscillatory instability screen was over 99% efficient, and a ua was zero for all 

the test cases. From an operational perspective it is interesting to note that under 

the lighter loading conditions oscillatory instability problems (poor damping) were 

detected. As the load level increases and the system becomes more stressed these 

problems disappear. This result agrees with operational experience of poor damping 

on lightly loaded transmission systems.

The overall cycle time of OASIS using both stability screens is shown to be reduced 

from approximately five and a half hours to approximately 13 minutes by use of the 

screens. This represents an overall speedup of approximately 25 times which allows 

OASIS to produce results within an acceptable time frame for on-line operation.

8.2.4 Contingency Allocation

Figure 8.7 shows details of the OASIS contingency allocation when the PVM was 

comprised of the five computers used for the performance evaluation. The total 

operating time of the DSA was approximately 13 minutes using the screens described 

above.

As before, it can be seen that those contingencies which required full evaluation 

took significantly longer to process than those which only required screening. A 

good example of this case is the first contingency that was processed by H A Y D N . 

Also, due to the multi-user nature of UNIX systems, the time taken to perform the 

screening and 30 second time domain simulations (evaluation) varied from both host
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Contingency Allocation 13.3 mins
Pvm Hardware Contingencies/Sec Statistics
Host Name Arch Max Min Avg Idle(s) No of Ctg %

ALBION SGI5 2.58 0.09 0.65 2 512 15

HAYDN ALPHA 4.29 0.03 1.00 3 803 24

VIOLET SGI5 2.91 0.08 0.64 3 520 16

SCARLET SGI5 2.58 0.03 0.56 2 443 13

MOZART ALPHA 6.42 0.10 1.33 4 1067 32

Figure 8.7: Contingency Allocation for Laboratory Scale Model

to host and occasionally from time to time on the same computer. This is due to 

the unpredictable and variable load demand on the computers due to other user and 

system programs being executed.

8.3 Chapter Sum mary

The use of the ANN based stability screens within OASIS has been shown to produce 

an overall reduction in cycle time of at least 20 times on typical networks, due to

(1) efficient operation of the screens and (2) due to the low computational demand

of the screens.

For the laboratory scale power system model, fewer than 20 composite indices are
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shown to be capable of classifying the transient (and oscillatory) instability. The net 

performance benefit of using these screens is shown by the speedup of approximately 

20 times, with screening efficiencies of over 98%.

For the snapshots of the UK power system, less than 30 features were required 

for each stability screen. This represents a significant advance as the traditional 

dimensionality problems of applying pattern recognition approaches to large power 

system have been avoided. The overall performance benefit of these screens is seen 

through a speedup in OASIS of approximately 25 times.



Chapter Nine

Conclusions

his work has resulted in the development of a general method for fast 

electro-mechanical stability assessment of large interconnected power 

systems. It is based on a pattern recognition method and uses a novel 

feature extraction process to enable easy scaling to both small and large power 

systems. The pattern classifier is provided by (1) an artificial neural network which 

predicts a stability index and by (2) a threshold comparison to determine the stability 

classification.

Stability screens have been developed for both transient and oscillatory instability 

and incorporated within the OASIS server tasks. The overall speedup of OASIS using 

these screens represents a significant advance towards achieving full on-line dynamic 

security assessment.

158
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9.1 Overall Approach

The use of the pattern recognition method for contingency screening is shown to 

produce reliable results in significantly shorter time than is possible by use of a time 

domain simulation alone. The combination of using composite indices to form the 

feature vector coupled with a neural network based pattern classifier has resulted in 

a flexible and robust method for contingency screening.

The implementation of the screens within the server task allows maximum flexibility 

for both on-line operation and development work. Screens are uploaded to the server 

task upon initialisation allowing different screens to be used without the need to re

compile the server tasks.

The development of screens for both transient and oscillatory instability detection is 

crucial as no further contingency screens are required. If only the transient stability 

screen had been developed then it would still be necessary to run either an eigenvalue 

analysis or time-domain simulation for each contingency to determine the oscillatory 

instability.

9.2 Com posite Indices

Composite indices have been shown to be ideally suited for use as elements of a 

feature vector for stability assessment. In particular, the novel nature of these 

features allow the pattern recognition approach to be (1) easily and (2) sensibly 

scaled to large power systems. This is a highly significant advance over previous 

work as it overcomes the curse of dimensionality which has traditionally prevented 

pattern recognition techniques being applied to large power systems.
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The work of Niebur and others [50,52,144] has applied self-organising ANNs to 

small power systems, i.e. less than 20 busbars, but they suffer from the traditional 

dimensionality problems as actual power system features are used as inputs. The 

use of multi-layer perceptron ANNs for stability assessment has been performed for 

small power systems of typically less than 20 busbars [48,50,147]. The only work 

to approach the same size of power system was carried out by Cauley et al [70]. A 

similar pattern recognition technique was applied to a 436 busbar system with 88 

generating units. W ith the enhancements that have been made to the generation 

of composite indices, this concept has been extended to cover transient stability 

assessment for a system of over 900 busbars and 130 generating sets.

The application of composite indices to the assessment of oscillatory instability 

problems has made a huge advance over previous work [179]. Typically, ANN 

applications to dynamic security assessment has concentrated on developing ANNs to 

predict the most positive eigenvalue in the system [149]. This work has been limited 

to systems with typically less than 20 busbars. The application of ANNs to the 

oscillatory instability screening of the 900 bus UK system is therefore a significant 

advance.

9.3 Pattern Classifier

Off-line time domain simulations have been successfully used to generate training 

data for the neural networks. By developing features which produce a clear 

discrimination between the stability classes, as shown in the Sammon plots, the ANNs 

are left to determine the simple non-linear mapping to perform the classification. 

By training the ANNs to predict a stability margin, classification errors at or near 

decision boundaries are reduced. The conservativeness of the screens can be altered
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by varying the threshold comparison level in accordance with utility operating policy.

9.4 Performance

The improvement in operating performance of OASIS can be split into three broad 

areas: transient and oscillatory detection and overall speedup.

9.4.1 Speedup

The reason for contingency screening is primarily to speed up the time required to 

fully identify any stability problems in the power system. This speedup is achieved 

by quickly identifying those contingencies with potential stability problems so that 

a full evaluation can then be performed by a time-domain simulator.

The artificial neural network based screens developed during this work have been 

shown to produce a  speedup in the total screening and evaluation time of between 

20 and 25 times depending on the size of the power system model. This represents a 

significant speedup and we can conclude that by using these screens with state-of-the- 

art power system simulator, such as PowSim, for contingency evaluation that full on

line dynamic security assessment can now be performed within the time constraints 

required for on-line operation within a utilities energy management centre.

9.4.2 Transient Instability D etection

These screens were conservative; i.e. a us was zero so that all unstable contingencies 

were identified by the screen. The low values of a au mean that only a very few
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stable contingencies are mis-classified as potentially unstable, leading to screening 

efficiencies of approximately 99% for a wide variety of operating conditions.

One of the main reasons for the high efficiencies are that (1) the composite index 

based features provide very good discrimination of the post-contingency stability of 

the power system and (2) that transient stability problems usually occur soon after 

the contingency termination point and therefore their effects are evident before the 

point.

9.4.3 Oscillatory Instability D etection

As with the transient screens, the oscillatory instability screens are also conservative 

in nature with a ua zero; i.e. no unstable contingencies were mis-classified as stable. 

The efficiency of the screens for the laboratory and full size power system model is 

above 98% for a wide range of operating conditions.

9.5 V isualisation o f Power System  Stability

The main enhancement to the OASIS client task was the incorporation of a module 

to produce the stability maps, explained earlier in section 7.1. These maps manage to 

display the natural geographic/topological nature of instability in conjunction with 

features such as the pre-contingency busbar Voltage magnitudes. The net effect is 

a novel and clear method for displaying stability information which could be very 

useful for power system operators.
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9.6 Edwards-Sammon Plots

The enhancements that have been made to the basic Sammon algorithm allow 

visualisation of ANN training data for a continuous valued output. This allows the 

smooth surface that the ANN will learn to be visualised. This represents a powerfull 

tool, especially when applied to ANN time series prediction problems.

9.7 Practical D SA  Im plementation

The deciding factor for the implementation of a dynamic security assessment system 

will undoubtedly depend on the results of a cost benefit analysis. In particular, the 

annual potential savings in constraint costs will have to be compared to the initial 

capital expenditure on hardware, development costs and continuing maintenance 

costs.

It seems reasonable that from a utility perspective that the analysis of up to 1000 

contingencies within a 15 minute time frame would be, initially at least, a good 

starting point. If we consider a full on-line implementation of OASIS, using the 

stability screens, within the UK National Grid Control Centre’s energy management 

system then the following technical conclusions can be made.

(D Using the single DEC Alpha (about SPECfp 162 and SPECint 114) 1000 

contingencies can be assessed in approximately 17 minutes assuming that less 

than 8 contingencies will require full evaluation.

(D During conditions of stress on the system, during storms for example, many 

more contingencies may be potentially unstable and hence require detailed
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evaluation. It is during such times that an on-line DSA tool could be of most 

use and hence enough processing power should be provided to meet the 15 

minute update time under these conditions. This may require up to five times 

more processing power being used within the PVM.

(D In common with the other EMS computers, redundancy is important to ensure 

continuous reliable operation and to facilitate upgrades without loss of on-line 

operation. An on-line backup PVM is the minimum that should be provided, 

and possibly an engineering backup as well (in accordance with the current use 

of three EMS computers).

NCI NC2

Cyber WOO C yber WOO
OASIS1 OASIS2

RTU

RTU

Figure 9.1: Setup for OASIS at NGCC

Figure 9.1 shows the probable hardware configuration for a full version of OASIS 

running on-line at the UK National Grid Control Centre, taking into account the 

comments above.

At the end of the day, the capital cost of developing and installing a DSA system 

within a utilities energy management centre will be considerable. However, the
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improvement in terms of the reduction of uplift costs and the increase in security 

will make such an investment worthwhile.



Chapter Ten

Suggestions for further work

he work described in this thesis has confirmed that the approach of 

using composite indices and a neural network classifier is well suited to 

the detection of transient and oscillatory instability. However, certain 

areas exist where further work is needed to confirm the suitability of this technique 

for full on-line instability detection and for other similar applications.

10.1 Extensive on-line testing o f screens

Before any stability screens are likely to be included within a full on-line dynamic 

security assessment system, confidence in their efficiency and reliability must be 

obtained. The work described in this thesis has resulted in considerable confidence 

in their operation, using saved system snapshots, but their performance should also 

be confirmed by a series of on-line testing within an EMC.

166
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10.2 O n-line adaption of screens

Within the control and automation fields of engineering, adaptive control techniques 

are becoming more widely used. The basis of this approach is to optimise the control 

process further by using the results of actual data obtained from the plant that is to 

be controlled.
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Figure 10.1: Online Adaption of ANN Stability Screen

Figure 10.1 shows a possible approach where the ANN stability screens could be fine 

tuned by using a real-time power system simulator to evaluate all of the contingencies 

that have been selected.

Under normal operation the ANN stability screens are used to detect those 

contingencies which may cause stability problems. In the online adaption mode, 

a full time domain simulation is also carried out and the results compared to that 

produced by the ANN screen. If the screen mis-classified the contingency then the 

ANN inputs are added to the training data set and periodically, the ANN re-trained.
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The obvious drawback to this approach is that the DSA operating time will be very 

slow, but this approach could be used to increase confidence in the ANN screens by 

performing a comparison of their outputs. This form of supervised testing of the 

ANN may therefore be useful in the initial stages of acceptance of the screens.

10.3 Developm ent of Screens for unusual operat
ing conditions

The work described so far has concentrated on the development of screens for 

typical operating conditions. From time to time, particularly during poor weather 

conditions, the power system will be more vulnerable to security violations. From 

a practical perspective, it may be desirable to train a number of transient and 

oscillatory instability screens for these more unusual operating conditions, to ensure 

that the screens remain conservative.

This would require system snapshots, obtained either directly from the EMS or from 

offline storage to be used to develop the screens.

10.4 Application to on-line limit calculation

The main aim of dynamic security assessment is to provide the power system 

operators with on-line advice to maintain the security of operation of the power 

system whilst ensuring economic operation. The advice currently provided by OASIS 

is in the form of a ranked list of contingencies, designed to indicate those area’s with 

stability problems.
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The neural network based stability screens described in this thesis could be used as 

part of a limit calculation function. This function provides the operators with actual 

MW transfer limits across critical boundaries in the power system. W ith reference 

to the UK power system, on-line information on the MW transfer limits between 

England and Scotland may allow the Scottish import to be increased. The current 

transfer limits are conservative and result in the running of out-of-merit generation 

adding to the constraint, or uplift costs.
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State Estimator

On-line stability constrained MW transfer limit

Figure 10.2: Transfer Limit Calculation using Stability Screens

Figure 10.2 shows a flowchart for a possible implementation of a limit calculation 

function within a dynamic security assessment system. The effects of a database 

of contingencies on a snapshot latest power system is determined by the stability 

screens. If the system remains secure then the transfer limit is increased, say by 

500MW and a new snapshot is assembled. If the system is insecure then the transfer 

limit is reduced and a new snapshot assembled. The process is repeated until 

the change in MW transfer is within acceptable limits, say 10MW. Although the



Ten Suggestions for further work 170

ANN does not identify the generating units which experience instability, operator 

experience can be used to identify those generating units which have to be backed 

off and those generating units which will be used to take up the drop in generation.

This best estimate of the transfer limit can then be used to provide constraints for the 

on-line MW dispatch programs within the EMS. In practice, a small safety margin 

would be subtracted from the transfer limit to ensure that stability is maintained.

This type of approach, but using the Transient Energy Function, has been tried[89] 

and seems to produce considerable economic benefit for BC Hydro.

10.5 Full on-line dynamic security assessm ent sys
tem

The work that has been undertaken within the Power and Energy Systems Group, 

at the University of Bath, over the past few years has resulted in the development 

of a state-of-the-art power system simulator. This work has been extended and 

has resulted in the development of OASIS, a prototype dynamic security assessment 

system. The work described in this thesis concerns the development of fast stability 

screens for OASIS.

Work is currently in progress on the development of a limit calculation module for 

OASIS and when completed, OASIS will be ready for full trials within an energy 

management system.
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10.6 Application to other large engineering sys
tem s

The method for the detection of instability in power systems described in this thesis 

could be applied in a similar manner to the detection of problems within other large 

engineering systems. The feature extraction and stability classification method are 

a general approach that could be used in a variety of other industrial applications.

In particular, the authors experience of steel mill automation indicates several areas 

where this approach would be highly suited. One of the most notable of these 

involves the detection of the position of the leading edge of steel strip during the 

rolling process. Traditionally, this relies on the use of infra-red detectors between 

each rolling mill stand. Because of the hostile environment in these areas (water, 

grease, dirt, heat etc) these sensors rapidly degrade in performance, and if not cleaned 

regularly will fail to function. This can lead to large and expensive problems on the 

mill if the steel strip cobbles. This occurs when (usually the leading edge) of the 

steel strip does not enter a stand properly and causes the upstream strip to lift off 

the rolling table into the air. At this point the strip can go almost anywhere and 

usually has to be removed from the stands by being manually cut into small sections 

by an arc torch. It may well be possible to use information from the stand drives 

(torque, current etc) to predict the position of the head of the steel strip. W ith even 

a temporary mill shutdown of 20 minutes costing many thousands of pounds, the 

financial rewards could be considerable.
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Appendix A

Box Plots

This appendix contains box plots for the composite indices selected for the transient 

and oscillatory instability screens for the full national grid system.

A .l  Transient Stabilty
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A .2 Oscillatory Stability
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Appendix B

Published Work

This appendix contains copies of papers which have been published concerning the 

design and development of the instability screens. Also included are copies of papers 

that have been submitted for publication for various conferences and proceedings.

(D T ran s ien t S tab ility  A ssessm en t using  N eura l N etw orks presented at 

29th Universities Power Engineering Conference, Galway, Ireland, September

1994.

(D D y n am ic  S ta b ility  S creen ing  of E lec tric  Pow er S ystem s using  A r

tific ial N eu ra l N etw orks presented at 30f/l Universities Power Engineering 

Conference, Grenwich, England, September 1995.

(D T ran s ien t S tab ility  A ssessm ent using  A rtific ial N eu ra l N etw orks 

accepted for publication in IEE Proceedings, part C, September 1995.

® O n-line  d y n am ic  sec u rity  assessm en t using  a  re a l- tim e  pow er sys

te m  s im u la to r w ith  n eu ra l netw ork  con tingency  screens accepted for 

presentation at the international conference on advances in power system con

trol, operation and management (APSCOM), November 1995.
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© In te ra c tiv e  O n-line D y n am ic  S ecu rity  A ssessm ent of L arg e  C om plex  

P ow er S y stem s P a r t  2 : C on tingency  S creen ing  submitted to IEEE 

Power Engineering Society Winter Meeting, January 1996.
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TRANSIENT STABILITY ASSESSMENT USING 
ARTIFICIAL NEURAL NETWORKS

A.R.Edwards, K-W.Chan, R.W.Dtmn, A.R.Daniels 

School of Electronic and Electrical Engineering, University of Bath, Avon, UK

Abstract
This paper discusses a method for fast transient sta
bility assessment of large interconnected power sys
tems. Composite indices, such as the minimum post
contingency busbar voltage magnitude and sum of the 
changes in rotor angles, provide an effective method for 
reducing the dimensionality of feature vectors for transi
ent stability classification. Typically, less than 20 com
posite indices are required to construct a feature vector 
for a contingency, which can then be classified using an 
artificial neural network into a transiendy stable or un
stable contingency.
Simulation results are presented for an IEEE test net
work as well as a reduced model of the UK National Grid 
System, and the application of this technique to contin
gency screening in an Energy Management System is 
discussed.

1 INTRODUCTION

An economic and reliable electric power system is one 
of the cornerstones of a modem society. The principle 
aim of the power system is to convey electrical power 
from generation sites to consumers meeting statutory 
regulations in the presence of disturbances on the sys
tem.
These disturbances, or contingencies as they are also 
known, may be due to failures within the power system 
or external effects such as lightning strikes. The power 
system operators must make the minute by minute de
cisions to keep the power system operating securely 
and economically, and tools within the Energy Manage
ment System (EMS) are provided to assist the operators 
achieve these goals.
The stability of a power system concerns the nature 
of the electro-mechanical oscillations within the power 
system following a contingency, and the loss of syn
chronism within the power system is of primary con
cern. Tools for use inside EMSs are being developed to 
provide the operators with warnings of situations where 
a probable contingency could lead to transient stability 
problems. By providing these warnings, operators will 
be able to move the operating point of the power system 
to remove these potential problems, or decide on cor
rective action should the contingency occur.
A number of methods exist for detecting transient stabil

ity problems, such as time domain simulation[l], energy 
function methods [2, 3], expert systems[4, 5] and pat
tern recognition methods [6,7]. The method discussed 
in this papa falls into the pattern recognition class of 
methods and is shown to provide for a fast method of 
transient stability screening.

2 OUTLINE OF METHOD

The basis of the approach outlined in this paper is to use 
the calculated power system and generator immediate 
post contingency states, obtained, by a numerical integ
ration method, as inputs to a transient stability predictor, 
as shown in figure 1. In this case, the task of predicting a 
transient stability margin is performed by a feed-forward 
neural network, trained using the back-propagation al
gorithm. This stability margin is then classified into 
either a stable or unstable class by comparison with a 
pre-determined threshold value.

f -------------------------------- \
Stability OuBdcaCMa

Transiently Stable 
Transiently Unstable

0.15794

12.3457
0.00340

Hueahold Coopaiscm

Figure 1: The Basic Approach

The advantage of this method is that there is no need for 
the computationally intensive numerical integration of 
the power system state to be carried out beyond the first 
time step after the contingency to determine whether the 
power system is transiently stable. The computational 
overhead ofassembling the ANN inputsand propagating 
the pattern through the ANN is considerably less than
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Presented at 29tk Universities Power Engineering Conference, Galway, Ireland. September 1994 2
that consumed by even one numerical integration itera- layer neurons, and the process repeated until the neurons
tion on a large power system. It is for this reason that this in the output layer have computed their output values.
method is especially suited for contingency screening 
applications. Using the neural network to predict a sta
bility margin, as opposed to the stability class directly, 
tends to prevent contingencies near the class boundaries 
being miss-classified. Those contingencies which pass 
through the screen will have to be analysed by a full time 
domain simulation, so the detection of as many of the 
stable contingencies as possible will have a large effect 
on the total efficiency of the system.

3 OVERVIEW OF ANNs
Artificial Neural Networks (ANNs) have grown from 
the perceptron concept[8] where the problem of how a 
machine might learn by example was first seriously ad
dressed. The method involves internal reorganisation of 
the machine from its initial state to a final state where it 
can not only recognise example patterns that it has seen 
before but also be able to recognise patterns similar to 
examples that it has seen before.
Recently there has been a confluence of ideas and meth
ods from many sources that has given rise to the area 
known as artificial neural net, or connectionist net, 
research. The common feature of this research area is 
the concept of using large numbers of heavily connected 
processing elements, called neurons, to process pattern 
information in a parallel manner. Of the ANNs being 
used in this area, that of the feed-forward layered model 
is of most interest, particularly as regards the work out
lined in this paper, as they are especially suitable for use 
as pattern classifiers.
A typical feed-forward ANN, is illustrated in figure 2, 
where a layer represents a topological set of neurons.

Feedforward Neural Network

Layer 2 Layer 3Layer 1

Figure 2: A general feed-forward ANN

The underlying operation of the feed-forward ANN is 
that patterns are presented to the neurons in the input 
layer, and the outputs of the input layer neurons are then 
calculated. These values are then multiplied by connec
tion weights and fed-forward to the inputs of the next

There are a variety of learning algorithms suitable for 
a feed-forward ANN, which alter the neuron connec
tion weights such that the training patterns are learned. 
All of these approaches share the same basic method, 
namely that the ANN is presented with an input pat
tern and feed-forward propagation is used to calculate 
the output pattern. This output pattern is then com
pared to the desired output pattern and the error is cal
culated. Various methods can then be employed to back- 
propagate the error through the ANN so that when the 
pattern is propagated through the ANN again, the error 
has been reduced. One of the most widely used learning 
algorithms is that of back-propagation with momentum 
which provides a faster learning algorithm than the basic 
approach.
It is vital that the patterns chosen for training span the 
range of sets to be classified and are representative of the 
patterns to be classified, or the ANN will function unre
liably.

3.1 TRAINING DATA
The training data for the transient stability classifier was 
generated by a digital simulation of a power system sub
ject to a number of contingencies. The digital power sys
tem simulation was performed using PowSim[9, 10], a 
real-time power system simulator developed at the Uni
versity of Bath. PowSim  provides a 10tfc order power 
system model including synchronous machines, AVRs 
and govenors.
The contingencies used for generating the training pat
terns were automatically generated for each power sys
tem base case considered and comprised:

•  3 phase to ground faults on busbars, with various 
fault clearing times.

•  Loss of single and multiple transmission lines.

•  Loss or reduction of load on a busbar.

•  Loss of a generator.

In addition, for the NGC based networks used, the con
tingency database was augmented with further contin
gencies suggested by NGC engineers.

4 COMPOSITE INDICES
The selection of input features for the ANN classifier in
volved considerable effort in attempting to arrive at a 
small number of inputs which would allow the transient 
stability of a large, greater than 50 busbars, power sys
tem to be determined.
The inputs to the neural network classifier should con
tain enough information on the state of the power sys
tem so that the transient stability classification is reli-
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Figure 3: Box Plots for two composite indices

able. The input features, or composite indices, must en
code enough information for the ANN to be able determ
ine the degree of stability of the system.
EPRI have shown that indices such as the minimum 
generator terminal voltage and busbar voltage dip in
dex provide useful discrimination for transient stability 
assessment[7, 11], However, the power system model 
used in the work described here is of a considerably 
higher modelling complexity and coupled with the use 
of the 100 busbar reduced NGC network, these indices 
have been found to be inadequate. Much work has gone 
into determining indices which provide good discrimin
ation as regards transient stability.
Figure 3 shows box plots[12] of two typical compos
ite indices that were investigated. The plots show the 
bounds, interquartile ranges and medians of the compos
ite index, on the same scale for the stable and unstable 
contingencies. The good index shows a clear difference 
in the composite index between the stable and unstable 
cases, but the poor index lacks this discrimination and 
is therefore likely to be of little use for transient stability 
classification.
Approximately 270 indices were generated for the net
works under consideration. Indices such as the max
imum generator rotor speed, sum of changes in rotor 
angles and the sum of the modulus of generator MVar 
changes have been found to be useful for the classific
ation, but indices such as the maximum MW output of 
the generators and the MW export from an area of the 
power system seem to be less useful.
The selection of a subset of these indices as inputs to the 
ANN was made using two similar methods. Firstly, each 
index was ranked according to its ability to perform the 
classification alone, based on the Euclidean inter-class 
distance metric. Secondly box plots of the bounds, inter
quartile ranges and median were produced. The selec
tion process then used this information to determine the 
best inputs based on as many different types of power 
system parameters as possible whilst keeping thedimen- 
sionality as low as possible.
The stability margin threshold was determined by in
vestigating the performance of the ANN on the training 
data. The main requirement is to minimise the risk of 
miss-classifying an unstable contingency as stable, and 
this was met by lowering the threshold value until all of 
the unstable contingencies were identified correctly.

5 PERFORMANCE
The performance of the neural network transient stabil
ity assessor was assessed on three fronts. Firstly, it is 
essential that the failure rate, a, is zero, ie no unstable 
contingencies are classified as stable. Secondly, the ef
ficiency of the system should be as high as possible. In 
this case we define the efficiency of the screen, tj by:

r>=w *100 (1)
where N, is the total number of stable contingencies 
and Nnt is the number of contingencies identified as 
stable by the neural network approach. The final per
formance measure is the speed advantage of this method 
compared to a standard two seconds time simulation us
ing PowSim. The performance benefits of this network 
will be greater for larger networks as the computational 
requirements for the time simulation of the networks in
creases rapidly with increased machines and busbars. 
Also, for systems which may take several seconds to 
reach instability, a five second time simulation may be 
required; the operation time of the neural network re
mains the same and hence its relative performance in
creases.

5.1 IEEE 57 Bus Network
One of the test systems used was based on the IEEE 57 
bus loadflow network. At four of the generation sites a 
generation set was simulated so that the dynamic per
formance of the system could be simulated. A database 
of 1414 contingencies was used for training, 11 of which 
produced transient instability. A database of 278 con
tingencies were used for testing. Using the feature se
lection method described earlier, 10 composite indices 
were chosen as inputs to the neural network.

Scenario !»(%) a Nu
Base Case 99 0.0 4
5% Load Increase 97 0.0 4
5% Load Decrease 98 0.0 4
Line Busl-Busl5 Outaged 95 0.0 5

Table 1: Results for IEEE 57 Bus Network

Table 1 shows the screening results for this study, where 
Nu is the number of transiently unstable contingencies. 
For all of the scenarios considered, the failure rate was 
zero and the efficiency was above 95%. The typical 
speedup of this method was 4.3 times for a two second 
time simulation and 7.3 times for a five second simula
tion.

5.2 NGC 100 Bus Network
This network is a 100 bus reduction of the full NGC sys
tem including 20 generators. The total number of con
tingencies used for the training was 2010, of which 222



B Published Work 202

Presented at 29th Universities Power Engineering Conference, GaJway, Ireland, September 1994 4
[2] N. Kakimoto, Y. Ohnogi,

H. Matsuda, and H. Shibuya. Transient stability 
analysis of large-scale power system by lypanov’s

were transiently unstable. A database of 810 contingen
cies was used for testing, comprising 80ms busbar faults, 
single and multiple line outages, loss of load and loss 
of generation. Using the feature selection method de
scribed earlier, IS composite indices were chosen as in
puts to the neural network.

Scenario »?(%) a Nu
Base Case 93 0.0 13
5% Load Increase 94 0.0 6
5% Load Decrease 93 0.0 10
Line Drax-Eggb Outaged 81 0.0 13

Table 2: Results for 100 Bus Network

Table 2 shows the screening results for this study. For 
all of the scenarios considered, the failure rate was zero 
and the efficiency was above 80%. The typical speedup 
of this method was 7.9 times for a two second time sim
ulation and 15.8 times for a five second simulation.

6 CONCLUSIONS
The use of pattern recognition techniques for transient 
stability assessment of small power systems has been ex
plored previously, but its application to systems of the 
order of 100 busbars or more has previously proved dif
ficult. This work shows that a systematic method for the 
selection of features is required as the number of gener
ators and busbars increases.
The application of a neural network in a transient stabil
ity classifier has been shown to give a failure rate of zero 
and an efficiency of over 80% for a 20 machine 100 bus
bar power system. In this case, 20% of the stable contin
gencies will require a full time domain simulation and so 
the overall speedup of the system will fall to approxim
ately three. However, for higher efficiencies this figure 
will rise to approximately eight.
This leads us to conclude that this approach may be 
suited for on-line contingency screening within an en
ergy management system. The next stage is to assess the 
performance of this method on larger systems. Tests on 
systems of approximately 800busbars are still to be car
ried out, but the results on the 100 bus network indicate 
that the results will be favourable.
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Abstract
This paper discusses a method for fast dynamic stability 
screening of large interconnected power systems. Compos
ite indices, such as the variance of machine rotor angular 
momentum between the pre and immediate post contingency 
operating points, are shown to be especially suited as features 
for dynamic stability classification. This work uses compos
ite indices as inputs to an artificial neural network to form a 
dynamic stability screen.

1 INTRODUCTION
The trends in today’s modem interconnected power systems 
have resulted in heavier transmission loadings and therefore 
operation closer to the steady-state limits. The intercon
nections to neighbouring power systems are often weak and 
coupled with the large diversity of generation has resulted in 
many power systems being stability limited, Le. the stability 
limits arc reached prior to the steady state limits. The majority 
of these stability limits are due to dynamic stability problems 
which are caused by attempts to transmit too much real power 
across a weak boundary within the power network.

In most power systems there tend to be areas of cheap genera
tion (A) and more expensive areas of generation (B). At times 
of large power demand the power system operators increase 
the online generation in merit order, by using the cheapestgen- 
eration first. When the MW transfer from (A) to (B) exceeds 
a critical limit then any further increase in load in area B will 
have to be met by generation in area B. This will require the 
running of out-of-merit generation and will incur a financial 
penalty in the form of increased constraint costs.

Traditionally, these MW limits are determined by off-line stud
ies performed a day or more ahead and must be conservative to 
take into account possible changes in the power system state. 
The aim of dynamic security assessment (DSA) is to provide 
the operators with the on-line security information which will 
allow the system to be operated in a more economic manner 
through the running of less out-of-merit generation.

At the heart of a DSA system are the algorithms to evaluate the 
effect on the power system of a set of contingencies. Due to the 
highly computationally demanding nature of these algorithms, filters are used to remove those contingencies which will cause 
little or no stability problems. This filtering, or contingency screening as it is usually referred to, must be a computationally 
simple (fast) process and 100% reliable which means it will not 
filter out any unstable contingency, ie . it must be conservative. 
If a stable contingency is mis-classified by a screen as unstable 
then this will be revealed by the full contingency evaluation 
process and merely has the effect of reducing the efficiency of 
the screen.

Work has been carried out to develop an artificial neural net
work (ANN) based contingency screens to detect transient 
stability problems[l]. The work described in this paper ex
tends this technique to the development of a dynamic stability 
screen (DSS).

2 DYNAMIC STABILITY
Dynamic stability analysis concentrates on the stability of the 
power system subject to small perturbations about its operating 
point[2], Le. its small signal stability. In particular, increasing 
long term oscillations and limit cycles are of interest as these 
impair the power system security and may lead to islanding.

If the post-contingency operating point of the power system 
is dynamically unstable, or close to the stability boundary, 
then the transition from the pre to post-contingency operating 
point will be characterised by poor damping of the electro
mechanical oscillations. From an operational perspective it 
is desired that the electro-mechanical oscillations due to a 
contingency decay away quickly (within approximately one 
minute) and that the system remains stable. The rate of decay 
of these oscillations can therefore be used as an indicator of 
the dynamic stability of the post-contingency operating point, 
and hence as a dynamic stability index.

2.1 Decay of Oscillations
As a quantitative measure of the decay of these oscillations in 
a power system, the exponential decay rate of an envelope of 
power system parameters, p, is considered to be of the form 
given in equation 1.

P i t )  = Ae*  (1)

In practice, the envelope of power system parameters such as 
rotor angle swings will not be a true exponential, however their 
decay can be approximated by an exponential envelope. The 
transient decay rate corresponds to the value of b which is a best fit on the discrete data obtained by simulation, as shown 
in figure 1.

Deg
Rotor swing ampttude • 
Best fitted exponential -

100
20

60L
Seoonds Seconds

Figure 1: Decay Rate Curves

The decay rate, b, can be found by considering a time series 
of amplitudes of the rotor angle swings, p, of the machines in 
the power system. Taking a logarithm of equation 1 gives:

ln(p) = bt + ln(A) (2)

This equation yields a linear graph of the logarithm of the rotor 
angle swing amplitudes versus the simulation time. Therefore, 
given discrete values of p from a time domain simulation, the 
method of least squares can be used to fit a best line through
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these points, which will correspond to the desired decay envel
ope. Hie gradient of this line equals the decay rate b. Hence, b 
can be used as a quantitative measure of the dynamic stability 
of the post contingency operating point of the power system,
1.e. 6 is a dynamic stability index. Another dynamic stability 
index that could be used is the most positive eigenvalue[3], but 
for the purposes of this work the damping index was used as 
this is more directly related to power system operating condi
tions.

3 OVERVIEW OF ANNs
Artificial neural networks (ANNs), based on the structure of 
the human brain, are being used with increasing frequency in 
a wide range of engineering disciplines[4].

An ANN is composed of a set of interconnected neurons which 
produce an output dependent on their input. There are sev
eral classes of ANNs, the most popular of which is the feed
forward ANN which is often trained by the back-propagation 
algorithm. A typical feed-forward ANN, is illustrated in figure
2, where a layer represents a topological set of neurons.

Figure 2: A general feed-forward ANN

The underlying operation of the feed-forward ANN is that 
patterns are presented to die neurons in the input layer, and the 
outputs of the input layer neurons arc then calculated. These 
values are then multiplied by connection weights and fed- 
forward to the inputs of the next layer neurons, and the process 
repeated until the neurons in the output layer have computed 
their output values.

An ANN is trained to produce the desired input-output (IO) 
mapping by adapting the connection weights so that IO map
ping is achieved for the training data. If the training data is 
representative of the data to be used by the ANN during nor
mal operation, then the ANN should be able to produce correct 
outputs for inputs that it has not seen before.

The selection of training data for an ANN is critical. ANNs 
are very effective at performing classifications when the input 
pattern falls between two or more of the patterns used for 
training -  i.e they perform well when interpolating between 
training patterns. Operation of an ANN outside the scope 
of the training data, i.e. when extrapolation of training data 
is used, will produce unreliable results. For this application, 
it is important therefore that realistic contingencies are used 
for training the ANN and that they cover the likely operating 
conditions of the ANN.

4 DYNAMIC STABILITY SCREEN
This screen is based on a pattern recognition approach[5], see 
figure 3, and uses a power system simulator(6] to perform a 
time domain simulation of the contingency up until the power 
system topology changes are complete. This point in the simu
lation is referred to as the contingency termination point (CTP). 
At the CTP a set of numerical values, called composite indices, 
are calculated from the power system state vector and presen
ted as inputs to an ANN. The ANN then predicts the dynamic 
stability index, 6, which is compared to a threshold value to 
determine whether the damping of machine rotor angle oscil
lations are acceptable.

»  Traditional Time S inu ta tkw  ( d a w ) -----------------------►

ANN S cn eo  (faat)

C T P

Figure 3: The Basic Approach

With this approach, the computationally intensive operation 
of simulating the post-contingency state of the power sys
tem using a time domain simulator is replaced by the relat
ively un-intensive process of calculating the composite indices, 
propagating them through the ANN and comparing the output 
with a threshold value. This approach makes this method an 
ideal candidate for use as an online DSS, having an accuracy 
close to that of a time domain simulator coupled with the speed 
advantages of a pattern recognition approachfS].

A major factor affecting the robustness of this approach con
cerns the results obtained close to the stability boundaries. 
Those contingencies close to the boundary will in practice be 
either just stable or just unstable and the conventional binary 
classification into stable or unstable classes looses this inform
ation, Le. does not take into account the degree of stability. 
By training the ANN to predict the dynamic stability index the 
errors close to these stability boundaries are greatly reduced 
as the ANN surface is much smoother and consequently die 
prediction errors in the vicinity of the stability boundary arc 
reduced.

By adopting a continuous valued stability index the issue of the conservativeness of the screen can also be controlled. Varying 
the level of the threshold for stability comparison has the effect 
of varying the severity of the contingencies which are passed 
on for detailed time domain simulation evaluation.

5 COMPOSITE INDICES
The use of statistical parameters for providing broad inform
ation on the state of large systems is widely accepted. Com
posite indices are used to provide a dimensionality reduction1 
and have been shown to be an effective method for transient 
stability classification[l]

1 from say 100 busbar voltage magnitudesto a single numeric value, 
such as the standard deviation o f the voltages
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/  =  A x  B x C  x  D x  E (3)

Using set notation, equation 3 describes how a set of composite 
indices, / ,  are formed from the sets of statistical functions and 
power system variables A to E: x is the product set operator. 
Table 1 shows the members of each of these five sets.

No A B C D E
i V M N M IN ' " “ VM
2 S L c MAX VP
3 B G SUM MW
4 S RMS MV
5 RNG MVA
6 VAR OL
7 MEAN KE
8 SKEW RA
9 ADEV RS
10 MMAX RC
11 MSUM RAM
12 RAP
13 AVE
14 TI

Table 1: Set Membership

Set A contains two members. The first member V limits the 
scope of generation of composite indices to the immedi
ate vicinity of a contingency. Our work has shown that 
defining the vicinity as a topological distance of four bus
bars from an item of plant involved in the contingency 
produces good results.
The other member of the set S forces the indices to be 
built from all items of plant in the power system, i.e. the 
index is system wide.

Set B defines the items of plant which are related to the com
posite index. These may be Busbars, Lines or Machines. 
For the purposes of the modelling, all transformers, SVCs 
and quadrature boosters are modelled as lines.

Set C contains members which describe how the composite 
index is to be composed. N indicates that the index is to 
be built using the appropriate measurement at the CTP. 
G indicates that the gradient of the measurement at the 
CTP is to be used C signifies that the change between 
the pre-contingency value and the measurement at the 
CTP is to be used The set member S defines the post 
contingency steady state value of the composite index, 
determined by a loadflow, to be used

Set D defines the type of statistical functions to be used to 
create the composite index. MIN and MAX are the 
minimum and maximum values respectively and SUM 
is the sum of the values across all items of plant. RMS 
allows the use of the root mean square function, RNG 
determines the range of the variable and VAR calculates 
the variance. MEAN is the mean of all the variables, 
SKEW is the skew and ADEV is the absolute deviation. 
The remaining two use the modulus function: MMAX 
is the maximum modulus of the variable and MSUM is 
the sum of the modulus of all the variables.

Set E defines the actual measurements to be constructed from 
the CTP state vector to form the basis of the compos
ite index. VM and VP are the voltage magnitude and 
phase respectively, MW and MV are the MW and MVAr

measurements and MVA is the MVA measurement. OL 
is the overload which is the current MVA value divided 
by the approximate rating. KE is the kinetic energy of 
a machine, RA, RS and RC are the rotor angle, speed 
and acceleration of machines and RAM is the rotor an
gular momentum. RAP calculates the rotor accelerating 
power, AVE is the machine’s AVR voltage error and TI is 
the estimated time to instability assuming constant rotor 
acceleration.

A composite index can then be represented in a manner similar 
to:

» =  { S , L , C , M I N , M V }  (4)

which is the system wide minimum of line MVar flows. In 
addition to the indices outlined above, a number of special 
indices were generated which checked for a line outages and 
islanding.

6 SIMULATION RESULTS
Within the laboratory a 100 busbar 20 machine model of the 
UK power system was used to investigate the performance 
and reliability of the DSS. This model was derived from a 
dynamic reduction of a snapshot of the full UK National Grid 
System taken during a mid-summer night in 1984, which had 
a very low loading condition and was likely to be susceptible 
to dynamic stability problems. A number of scenarios (B-G) 
were constructed from the base case (A) of the model so that 
the screen could be tested on scenarios which led to more un- 
acceptably damped post-contingency electro-mechanical rotor 
oscillations.

The training data for the dynamic stability classifier was gen
erated by a time domain simulation of scenario (A) subject to 
a number of contingencies. The digital power system simula
tion was performed using PowSim[6], a real-time power sys
tem simulator developed at the University of Bath. FowSim 
provides a IO* order generating plant model including syn
chronous machines, AVRs and governors. A total of 838 con
tingencies were used to generate the training data, comprising 
line, busbar, loss of load and loss of generator contingencies as 
well as some suggested by NGC engineers which were likely 
to produce dynamic stability problems.

6.1 FEATURE SELECTION

A total of 1916 composite indices were generated as possible 
features for the ANN for each contingency in the training set 
The first stage in the design of the screen involved selection 
of a small (less than 20) subset of these feature as inputs 
to the ANN. Univar correlations[7] were performed between 
the value of each feature versus the stability index for all the 
contingencies in the training set and those with the highest 
correlation were selected.

No AHCU ■ E No ABCu E
1 S M N VAR RAM 6 V L (J RMS MW
2 S M C VAR RAM 7 V L C MSUM MW
3 S L N MSUM OL 8 V L c RMS MVA
4 S L C MSUM OL 9 V L c MSUM MVA
5 S L C ADEV MVA 10 V L c MSUM VP

Table 2: Selected Composite Indices for Dynamic Screen
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Table 2 shows the set membership for the 10 selected compos
ite indices. Hie suitability of these indices at classifying the 
dynamic stability problem can be shown by using a Sammon 
plot(8], as shown in figure 4.

■ .-'*v v

Figure 4: Samruon Plot for Dynamic Screen

As can be seen from this plot, those patterns represented by 
'crosses’ (unstable) are well separated from those represented 
by ‘dots’ (stable), indicating that the ANN will be able to leam 
the training data and generalise for other cases that it has not 
seen before.

A simple three layer feed-forward ANN comprising 10 input 
neurons, 8 hidden neurons and one output neuron was then 
trained using the back-propagation algorithm[9] with a learn
ing rate of 0.9. The dynamic stability screen was then tested 
on a number of different scenario’s.

6.2 PERFORMANCE

The DSS was then tested on the base case (A) and a number 
of scenarios which were constructed from the base case (B-G) 
and designed to test die performance of the screen for operating 
conditions away from the training case.

Scenario A B c b E F G
N ° Stable 
N ° Unstable

833
5

838
0

838
0

833
5

835
3

833
5

832
6

Screening Efficiency
N ° Pass 
Efficiency (%)

0
100.0

4
99.5

4
99.5

I
99.9

5
99.4

7
9 92

4
99.5

Table 3: Results for Laboratory Model

Table 3 tabulates the simulation results that were obtained 
in the laboratory. With all of the scenarios, the screen did 
not mis-classify any unstable contingencies as stable, thus 
ensuring that all unstable cases were detected, meeting the 
primary requirement of a conservative screen. In the unlikely 
scenario of very large changes in the operating point of the 
system, such as the outaging of a critical lines between two 
areas of the power system, the screen may mis-classify some 
of the unstable contingencies. This is due to the gross dis
similarity between the operating condition and the training 
case, and under these conditions the screen should be replaced 
by a time domain simulation.

With die efficiency of a screen being defined as the ratio of 
the number of contingencies declared stable by the screen to 
the actual number of stable contingencies, the efficiency of the 
screen remained above 99% because the nu mber of stable con
tingencies that passed through the screen (N° Pass) was small. 
These results indicate that when the dynamic and transient! 1] 
screens are fully integrated into OASIS[6], the cycle time of 
the DSA will be reduced by a factor of approximately 20.

7 CONCLUSIONS
This approach to dynamic stability screening has been shown 
to be both a fast and efficient method. The training of an 
ANN to predict a dynamic stability margin produces fewer 
classification errors and also allows the conservativeness of 
the screen to be controlled. The application of this technique 
to the full UK National Grid System is continuing, and the 
preliminary results arc encouraging.
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Transient Stability Screening Using Artificial Neural Networks 
within a Dynamic Security Assessment System

A. R. Edwards, K. W. Chan, R. W. Dunn and A. R. Daniels

Abstract:
Accurate assessment of transient and dynamic stability 
provided by an on-line dynamic security assessor 
allows the power system to be operated closer to 
its stability limits with considerable economic benefit 
through therunning of less out-of-merit generation. As 
part of such assessors, contingency screens are used to 
filter out those contingencies which pose no stability 
problems. Those contingencies which pass through 
these filters are evaluated in detail to determine their 
effects on the system stability. This paper describes 
an approach where an artificial neural network is 
successfully used to provide a fast transient stability 
screen within a dynamic security assessment system. 
Results are presented for a number of test networks 
based on a reduced model of the UK National Grid 
System.

1 Introduction
Electric power utilities are usually bound by statutory 
regulations to provide an economic and reliable supply at all 
times. As a consequence their power systems must be robust 
to faults, or contingencies as they are usually referred to, due 
to both external effects such as lightning strikes on overhead 
transmission lines and internal failures such as insulation 
breakdown.

The nature of the electro-mechanical oscillations between 
the power network and the machines connected to it 
determines the stability of the system. Transient stability 
problems are local effects due to large power imbalances 
between generators mechanical input power and the available 
electrical load. Under these conditions, the generator rotor 
will accelerate and move towards pole-slippingat which point 
its protection schemes operate and trip the affected machine. 
The result of transmitting too much power through weak 
parts of the transmission network moves the system towards 
dynamic instability. Under this condition, large power 
oscillations occur across the network and if they increase 
substantially, they will either cause the machines to move 
towards pole-slipping or cause the weak transmission lines to 
be tripped due to the operation of protection. The resulting 
islands will invariably operate at different frequencies and 
hence be very difficult to re-synchronise and connect

Most power system utilities are forced to run out-of-merit 
generation due to stability limitations. Off-line stability 
studies are performed to determine how much power can 
be transferred across critical boundaries within the power

The authors are with the School of Electronic and Electrical Engineering, 
University of Bath, Bath BA2 7AY, UK

system whilst ensuring the system is secure for a pre-defined 
set of contingencies. On-line dynamic security assessment 
(DSA) tools will provide operators with the actual on-line 
current stability limits, allowing the power system to be 
operated closer to these limits. The net effect is that less 
out-of-merit generation is required resulting in considerable 
economic savings [1]. In the year 1993/4 the constraint 
costs on the UK transmission system were approximately 
£190M [2], some of which was due to stability constraints. 
Even a small percentage reduction in the amount of out-of
merit generation used will reap large financial rewards; if 
for two hours during peak loading conditions generation of 
100MW can be supplied by a northern generating set bidding 
at £14/MWh[3] instead of a southern gas turbine bidding at 
£780/MWh then the saving is over £150K Financial savings 
can also be made through less cases of load shedding etc, 
as the operators are warned of such potential problems in 
advance and can take preventative control actions. It is 
the combination of these large financial savings that is the 
key motivation behind the development of dynamic security 
assessment systems.

A prototype DSA known as OASIS (On-line Algorithm 
for Systran Instability Studies) [4] is under development at 
the University of Bath and is co-sponsored by the National 
Grid Company pic, UK. This paper describes a fast transient 
stability screen for use within OASIS, based on an artificial 
neural network (ANN) approach.

2 Overview Of Existing Approaches
There are four broad approaches used for transient stability 
assessment:

Numerical Integration methods perform a step by step 
solution of the network and machine equations at discrete 
intervals in time using numerical integration methods to 
solve the differential equations. Considerable progress 
has been made in speeding up these methods [5,6], 
however they currently remain too slow to be used for 
contingency screening in an on-line environment such, 
as a DSA, if a large number of contingencies is to be 
evaluated. However, this is the most accurate method for 
stability assessment, and forms the benchmark against 
which the other stability assessment methods are judged.

Energy Function Methods use a stability criterion based on 
the construction of a Lyapunov function[7] in order to 
determine the stability of the post-contingency operating 
point of the system. This method is less computationally 
demanding than the numerical integration approach but 
does not achieve the same level of accuracy due to the 
use of reduced order modeling.
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Expert System Methods rely on decision trees to assess the 

system stability in terms of selected pre-contingency 
parameters[8,9]. These approaches tend to be less robust 
to changes in the power system state and can result ir, 
mis-classification of unstable contingencies as stable.

Pattern Recognition Methods rely on reducing the on-line 
computational overhead to a minimum at the expense 
of intensive off-line studies. By performing off-line 
training of a pattern classifier using results obtained 
from a time domain simulator, accuracy close to that 
of a numerical integration method may be achieved 
within the computational and time constraints of on
line operation making this approach an ideal choice for 
a stability screen.

The task of pattern recognition consists of defining a pattern 
vector, V, whose components contain sufficient information 
about the stability of the power system so that a classifier 
can decide purely on the basis of V what the system 
stability will be. This vector is then evaluated at many 
different representative operating points of the power system 
to generate a training data set. The final step is then to 
determine the classifier function S (10 such that the pattern 
recognition task becomes:

c (V) _  /  > 0  fora secure V
\  <  0 for an insecure V

The lower limit for the classification error depends on the 
choice of the primary inputs and the feature selection process 
to determine the inputs to the classifier. Numerous feature 
extraction methods have been developed[l, 10,11] but few of 
these methods are easily scaled to large power system models.

3 The Approach
The basis of the approach is shown in Fig.l and uses a state 
of the art real-time power system simulator to simulate a 
contingency up until the power system topology changes 
are complete. This point in the simulation is known as 
the contingency termination point (CTP). At the CTP a set 
of numerical values, composite indices, are calculated from 
the power system states and presented as inputs to an ANN. 
The ANN then predicts a transient stability margin which 
is compared to a threshold value to determine the transient 
stability.

If the time domain simulation is continued beyond the CTP 
then topology changes may occur as a result of the action of 
protection equipment but these effects are not part of the 
contingency, but of the power system’s response and hence 
do not affect the position of the CTP.

With thisapproach the computationally intensiveoperation 
of simulating the post-contingency state of the power 
system using the power system simulator is replaced by 
the computationally less intensive process of calculating the 
composite indices and propagating them through the ANN. 
This makes this method and an ideal candidate for an on
line transient stability screen, having the accuracy close to 
that of a numerical integration approach coupled with the 
speed advantages of the pattern recognition methods. The

2
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Fig 1: Outline of the approach

robustness of this screen to changes in the power system 
state relies on the selection of composite indices which are as 
independent of the state as possible and encode the stability 
information.

3.1 Composite Indices

In everyday life we are confronted with statistical indicators 
of the health of the economy and combinations of these 
indicators can be successfully used to provide a clear 
indication of the overall economic health of the country. 
Similarly, a system with many millions of states can often 
be successfully classified by a few tens of artificial indicators. 
This form of feature compression is the motivation behind 
using composite indices for transient stability screening, and 
is justified by the results that have been obtained.

I = A x B x C x D x E  (2)

Using set notation, equation 2 describes how a set of 
composite indices, / ,  are formed from the sets of statistical 
functions and power system variables A to E; x is the product 
set operator. Table 1 shows the members of each of these five 
sets.

No A B C D E
1 V M N MIN VM
2 s L C MAX VP
3 B G SUM MW
4 RMS MV
5 RNG MVA
6 VAR OL
7 MEAN KE
8 SKEW RA
9 ADEV RS
10 MMAX RC
11 MSUM RAM
12 RAP
13 AVE
14 TI

Table 1: Set Membership
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Set A contains two members. The first member V limits the 

scope of the composite indices to the immediate vicinity 
of a contingency. Since transient stability problems are 
local phenomena, the effects on parts of the power system 
remote from the contingency area are often small. Our 
work has shown that defining the vicinity as a topological 
distance of four busbars from an item of plant involved 
in the contingency produces good results.
The other member of the set S forces the indices to be 
built from all items of plant in the power system, i.e. the 
index is system wide.

Set B  defines the items of plant which are related to the 
composite index. These may be Busbars, Lines or 
Machines. For the purposes of the modelling all 
transforma's, static var compensators and quadrature 
boosters are modelled as lines.

Set C  contains members which define which state vector(s) 
are to be used to construct the composite index. The 
member N indicates that the composite index should 
be built from the system state vector at the CTP. C 
selects the composite index to be built using the changes 
between the state vector at the pre-contingency and the 
CTP state vector. The element G indicates that the 
gradient of the state vector elements at the CTP should 
be used to build the composite index.

Set D  defines the type of statistical functions to be used to 
create the composite index. MIN and MAX are the 
minimum and maximum values respectively and SUM 
is the sum of the values across all items of plant RMS 
allows the use of the root mean square function, RNG 
determines the range of the variable and YAR calculates 
the variance. MEAN is the mean of all the variables, 
SKEW is the skew and ADEV is the absolute deviation. 
The remaining two use the modulus function: MMAX 
is the maximum modulus of the variable and MSUM is 
the sum of the modulus of all the variables.

Set E  defines the actual measurements to be constructed 
from the CTP state vector to form the basis of 
the composite index. VM and VP are the voltage 
magnitude and phase respectively, MW and MV are the 
MW and MVAr measurements and MVA is the MVA 
measurement OL is the overload which is the current 
MVA value divided by the approximate rating. KE is the 
kinetic energy of a machine, RA,RS and RC are the rotor 
angle, speed and acceleration o f machines and RAM is 
the rotor angular momentum. RAP calculates the rotor 
accelerating power, AYE is die machine’s automatic 
voltage regulator’s voltage error and TI is the estimated 
time to instability assuming constant rotor acceleration.

£ =  { S , M , C , SUM , KE} (3)

Equation 3 above shows an example of a composite index 
which is the system wide sum of the machine kinetic energy 
changes. In addition to the indices oudined above, a number 
of special indices were generated which checked for a line 
outages and islanding.

3
The full set of these composite indices was then generated 

for each of the contingencies in the training set. In addition a 
transient stability margin was generated for each contingency 
in this case, based on the maximum rotor angle swing of 
any of the machines modelled in the power system, found 
during the simulations. The main reason for the choice of 
this margin was that it is frequendy used within the National 
Grid Company as a measure of the severity of a transient 
disturbance, but in practice an energy margin could also be 
used.

3.2 Feature Extraction
The total number of indices generated by this approach was 
approximately 1900 and hence a semi-automatic selection 
procedure was required to select those indices which provided 
the best indicator of the system stability for use as inputs to 
the ANN. The selection procedure described below has been 
used with success.

1. Initially, correlations are performed to automatically 
select the best ten or so indices of the classification, 
and ten best indices for each contingency are also 
determined.

2. An initial attempt is then made to train an ANN using 
only the ten globally selected indices, which highlight 
any contingencies which are being mis-classified.

3. Por these mis-classified contingencies, some of their best 
individual indices are selected and the process iterated 
until the ANN trains successfully.

In this work typically less than 30 composite indices proved 
sufficient to classify the post-contingency stability of the 
system. The effectiveness of the selected composite indices at 
performing the required classification can be indicated using a 
Sammon plot[12]. This algorithm performs a dimensionality 
reduction from a high order space, equal to the number of 
selected composite indices, to a lower dimensional space, in 
this case two dimensions. The criterion for the dimensionality 
reduction is to reduce, by a gradient descent approach, the 
differences in the Euclidean distances between patterns in the 
the high and low spaces as much as possible. In this way 
the geometric separation of the patterns is maintained and 
therefore we can expect that those classes (stable,unstable) 
that distinguish well in the high dimensional space maintain 
this quality also in the lower dimension.

Figure 2 shows a sammon plot for the classical data set of 
Fisher[13]; a set of 150 samples of feature dimension four 
describes three different flower classes, 50 samples per class. 
It can be seen that the patterns represented by ’pluses* (setosa 
class), those represented by ’crosses’ (versicolor class) and 
those represented by ’boxes’ (virginica class) are clustered 
into three fairly distinct areas indicating that the patterns 
used contain enough information to perform the stability 
classification.

If there is no obvious separation between the classes (in oin
case stable and unstable classes) then the composite indices 
chosen are not likely to be able to classify the stability and 
will almost certainly not be robust to changes in the power
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Fig 2: Sammon Plot for Fishers’ Data Set

system state or topology. In this way, a sammon plot of the 
selected indices is a useful guide as to the likely success of 
training the ANN for this application.

3.3 Artificial Neural Network

An ANN was chosen to be the pattern classifier as they have 
been shown to be successful in other similar applications [14] 
and because training data was available while classification 
rules were not.

A standard feed-forward ANN architecture! 15] was chosen 
for a combination of its simplicity, ease of training and 
fast non-iterative on-line execution. Using off-line time 
simulations, large numbers of training cases can be generated 
allowing the ANN classifier to be trained by the back- 
propagation algorithm. An additional advantage of ANNs 
is that provision may be made for on-line training of the ANN 
should its output decision be found to be wrong or should any 
unexpected system operating condition be reached.

The indices were normalised across the training set before 
being presented to the ANN for training in order to reduce 
the possibility of saturation within the ANN structure. These 
normalisation limits were then applied to all subsequent inputs 
of the ANN during operation of the DSA.

4 Integration into OASIS
OASIS is a dynamic security assessor implemented using 
Parallel Virtual Machine (PVM) which uses an enhanced real
time power system simulator for contingency evaluation[4]. 
PVM is a set of utilities and library functions used to create a 
parallel computing environment that is transparent to the user 
and can be composed of an arbitrary number of heterogeneous 
computes. Fig.3 shows the functional block diagram of 
OASIS which is based on a client-server approach. OASIS 
can easily be ported to a wide variety of computes since it is 
implemented using ANSI standard ‘C’.

Hie data input can be from saved power system snapshots, 
on-line EMS data or from a real-time power system simulator. 
Within the laboratory environment, the real-time power 
system simulator is run to mimic the real power system and the

Online EMS Data

i
Manual Control Actions 

1
f S n a m h n t *  D f l t n h a v f  Real-time Power1 kjllnlXlllUla LffllHlldSC J S y s t e m  Simulator )

-

 ̂ Client Controller Task J
* t t \

 ̂Server Talk J   ̂Server Talk J   ̂Server Talk  ̂  ̂Server Talk J

Fig 3: Block diagram of OASIS

effects on stability of simulated control actions on the power 
system can be seen through changes in the OASIS displays.

The client task controls the contingency processing and 
provides an X-Window based human-computerinterface. The 
server tasks are based on PowSim, an enhanced real-time 
power system simulator which has been developed at the 
University of Bath over a number of years [5,6], which is 
used for the detailed contingency evaluation. The transient 
stability screen described in this paper forms part of the server 
task.

The definition of the transient stability screen, the 
composite indices to be used and details of the ANN, 
are specified in a scren definition file to allow maximum 
flexibility. This file is loaded into the server task at run
time when the server task is initialised by the master. This 
approach allows a a set of screens to be developed off-line and 
loaded into OASIS as the power system conditions change. 
As a result, two additional functional blocks were added to 
the OASIS server task as shown in Fig.4.

Original Server TUsk

Contingency
Application

Moduk

Severity
Indices
M oduk

ANN
M oduk

PowSim
Calculation

Engine

Composite
Indices
Module

Fig 4: Block diagram of new server task

The first is a module which builds up an internal 
representation of the ANN defined in the screen definition 
file. A number of neural network transfer functions were 
built into the module and the mechanism for propagating the 
composite indices through the ANN implemented.

The function of the other module is to calculate the 
composite indices specified in the screen definition file. This 
required interfacing to the server data structures to obtain the 
power system state vector and the inclusion of the statistical 
functions required to compose the composite indices. A 
facility was also provided to save the composite indices so 
that off-line training data could be generated.
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5 Results of Laboratory Studies
Within the laboratory environment, the PVM that was used 
comprised only two machines: a DEC Alpha 3600/OSF1 2.0 
and a Silicon Graphics Indigo R4000/IRIX 5.2. The standard 
laboratory scale power system is a reduced model of the UK 
national grid system. This model comprises 20 generating 
stations connected to a highly interconnected transmission 
system of 100 busbars and 256 lines. This model was derived 
by a reduction of a full system snapshot taken from the EMS 
during a summer night in 1984.

North Wales
Nothern and Central 

England ^

Southern England

Fig 5: Major areas of UK power system

Figure 5 shows the major areas of the UK power system. 
The NGC are responsible for power transmission in and 
between the English and North Wales areas. Power can 
be imported from the Scottish power system through EHV 
circuits and also from France (not shown) via a DC link.

5.1 Training

The laboratory model was used as the base case for training 
the transient stability screen. A total of 1916 composite 
indices were generated for the 838 training contingencies 
comprising three phase to ground busbar faults, loss of load, 
loss of generation and loss of transmission lines. The selection 
procedure outlined in section 3.2 was applied and resulted in 
the selection of 18 composite indices shown in table 2.

These selected indices did not include any line or busbar 
indices, but when this approach is applied to larger power 
systems such indices may be more relevant and therefore be 
selected. 14of these indices are related to the terminal voltage 
of the generating sets in the power network, showing the clear 
link between terminal voltage and transient stability.

Once these indices were selected, a pattern file was 
generated to train the ANN. These patterns were also 
processed by the Sammon algorithm and then displayed on a 
contour surface based on the stability index as shown in figure 
6.

The surface is determined from the stability index of each 
of the patterns and has the effect of highlighting clusters of 
patterns of a similar stability. In this example the unstable 
patterns fall into one broad cluster, indicating that the ANN 
will be able to learn this data. It can be clearly seen that the 
transiently unstable patterns (crosses) are geometrically well 
separated from the stable patterns (dots), indicating that the 
screen is likely to be able to classify the stability and be fairly 
robust to changes in the power system state and topology. 
Hence a standard three layer feed-forward neural network 
was chosen with 18 inputs, 10 hidden layer neurons and one

5

Fig 6: Sammon Plot for Training Data

output neuron. The ANN was trained using a neural netowk 
simulator and the training was stopped after 400 iterations. 
The threshold value was set to 0.4 because the largest stability 
index for a stable contingency in the training set was 0.38.

5.2 Testing

The screen was then tested on the base case (A) and a number 
of scenarios which were constructed from the base case (B—G) 
as follows:

Scenario B — A sudden increase in load of 530MW is met 
reducing the motoring load of a North Wales pumped 
storage station from 1800MW to 1270MW. This reduces 
the net power export from the North Wales area and 
improvs the transient stability of the system subject to 
contingencies within this area.

Scenario C — The same increase in load as (A) met by 
stopping all 280MW of motoring at one pumped storage 
station and reducing the motoring load from 1800MW 
to 1530MW at another pumped storage station, also 
within the Noth Wales area. This results in a different 
generation pattern within the North Wales area.

Scenario D — This has the same loading and generation 
pattern as the base case (A) but includes a double circuit 
outage between Central and Southern England. This has 
the effect of increasing the power transfer through the 
remaining circuits into the southern half of the country.

Scenario E — The loss of one of the England-Scotland 
circuits, increasing the transfer through the remaining 
curcuits.

Scenario F — The loss of 1176MW of generation in central 
England, being met by increased generation across all 
major generating stations in the country. This moves 
many stations closer to their transient stability limits.

Scenario G — The loss of one 400KV circuit between the 
North Wales area and Central England, resulting in 
increase loading on the remaining circuits. This also has



B Published Work 212

Submitted to IEE Proceedings Part C, January 1995 6

No A B G D E No A B C D E
1 S M N MIN OL 10 S M C MIN RAM
2 S M N MIN VM 11 S M N MIN AVE
3 S M N RNG VM 12 S M N MIN AVE
4 S M N VAR VM 13 s M N MIN AVE
5 S M C MIN VM 14 s M C MIN AVE
6 S M C RNG VM 15 s M C MIN AVE
7 S M c VAR VM 16 V M N VAR VP
8 S M N MIN RS 17 V M C RNG VP
9 S M N MIN RAM 18 V M C ADEV VP

Thble 2: Set Membership of Selected Composite Indices

the effect of increasing the impedence between the North 
Wales generating units and Central England, increasing 
the susceptability of the North Wales units to transient 
stability problems.

Table 3 tabulates the results that were obtained using the 
laboratory PVM. With all of the test cases the screen did not 
mis-classify any unstable contingencies as stable. This is a 
very important result and confirms that the screen remained 
conservative in its stability classification.

With the efficiency of a screen being defined as the ratio of 
the number of contingencies declared stable by the screen and 
by the actual number of stable contingencies, the efficiency of 
the screen remained above 98% because the number of stable 
contingencies that passed through the screen (N° Pass) was 
small.

For each of the above simulations, the overall speedup 
of the DSA by using this stability screen as opposed to the 
standard 30 second time domain simulation varied between 
19 and 25 times. The speedup is also greatly affected by the 
actual number of unstable contingencies; a large number of 
these will require more time domain simulations and hence 
increase the operating time of the DSA with the screen.

6 Conclusion

The use of statistical information based on a real power system 
state vector has been shown to be sufficient for determining 
the post-contingency stability of a power system. The use of 
an artificial neural network to predict a transient stability i ndex 
from this statistical information provides a robust framework 
for an on-line transient stability screen.

The implementation of this screen within a dynamic 
security assessor has shown that on-line dynamic security 
assessment is possible using reasonable computing power.

A transient stability screen is under development for die full 
UK National Grid System composed of approximately 940 
busbars and between 100 and 160 generating units depending 
on the system load. Preliminary results are very encouraging 
and indicate that full on-line dynamic security assessment for 
power systems of this size is now possible.
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Abstract
On-line dynamic security assessment aims to provide 
power system operators with real-time information 
on the stability of a power system subjected to 
a set of probable contingencies. Although this 
task is several orders of magnitude more complex 
than static security analysis, recent advancements 
in computer technology now make such analysis 
possible within the time constraints required by an 
energy management system. This paper describes a 
dynamic security assessment system that has recently 
been developed and provides details of the artificial 
neural network based stability screens that are used to 
improve the performance of the system. Simulation 
results are presented for various snapshots of the UK 
national grid system which show that full on-line 
dynamic security assessment is now practical.

1 Introduction
An on-line dynamic security analysis tool will allow 
the power system to be operated closer to the 
security limits. Traditionally, security limits have 
tended to arise from thermal considerations but with 
increasing demand and more remote generation, 
and problems associated with its re-enforcement, 
many transmission systems now suffer from stability 
constraints.

Prom an operational perspective, these stability 
limits are determined in the planning stages and 
augmented with a safety margin to account for 
possible variations between the planned study and 
the actual power system operating state. Dynamic 
security analysis [1] aims to provide the operators 
with advice as to (a) the proximity of the operating 
condition to stability problems and (b) the maximum 
permissible power flows across critical boundaries in 
order to remain secure.

A dynamic security assessor (DSA) is comprised 
of a number of modules to select, screen, evaluate 
and rank contingencies which may have an adverse 
effect on power system stability. Contingency 
selection is the process used to identify those

contingencies which may lead to stability problems. 
Contingency screening aims to quickly identify 
those selected contingencies which will produce no 
adverse effect on the stability of the power system. 
The remaining contingencies then undergo detailed 
evaluation where the severity of the contingency is 
determined. The contingencies are then ranked in 
order of severity and presented to the power system 
operator through the Energy Management System 
(EMS) displays.

Contingency selection is usually performed off-line 
using a combination of operational experience and 
simulated operating conditions. Stability evaluation 
has traditionally been performed by energy function 
methods [2] and eigenvalue analysis methods. 
Recent advancements in the application of artificial 
intelligence techniques to power system analysis 
have led to work on applying decision trees and 
pattern recognition techniques to stability screening. 
In this study, a pattern recognition technique has 
been developed which is shown to be well suited 
to on-line stability screening. The most reliable 
method for contingency evaluation is to use a full 
time domain simulation. Numerous contingency 
ranking algorithms have been developed [3] and to a 
large extent, the algorithms that are used depend on 
the operating policy of the utility.

This paper describes a dynamic security analysis 
system that has undergone field trials at the UK 
National Grid Control Centre. OASIS (On-line 
Algorithms for System Instability Studies) has been 
developed over the last three years in a collaborative 
venture between the University of Bath, UK, and 
the National Grid Company, UK. It displays electro
mechanical security information to the operators 
through an X-Window display.

2 Overall Structure of OASIS
OASIS was originally designed as a complementary 
system working alongside an existing EMS, special
ising in on-line electro-mechanical stability analysis. 
The task of static security analysis, as well as the 
other EMS functions such as dispatch, are retained
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by the existing EMS.

Real Time 
Power Network Model

Contingency Ranking

Selected Contingencies

Alarm Processing

Contingency Evaluation

Man-Machine Interface (MMI)

Fig 1: On-Line Dynamic Security Assessor

Approximately every 15 minutes the real-time power 
network model, comprised of the system topology 
and operating states, is assembled by the EMS 
and then fed to OASIS. The effect of the selected 
contingencies on the updated power system model 
is then determined, as shown in fig 1. Once all the 
contingencies have been evaluated, they are ranked 
according to their severity and then displayed, with 
any associated alarm messages, to the users through 
an X-Window based man-machine interface. This 
process is then repeated when a new updated power 
system model is made available from the EMS.

3 Stability Evaluation

Power systems exhibit non-linear behaviour and 
consequently may suffer from a wide range of 
stability problems. In the case of dynamic security 
assessment, the main interest is in the behaviour 
of synchronous generators during and immediately 
after a large system disturbance or contingency. 
The aim is to detect electro-mechanical transient 
and oscillatory instability. The time-scale of these 
phenomena range from milliseconds to minutes or 
even hours in some extreme cases.

Various methods are available for transient stability 
analysis. Methods based on transient energy function 
(TEF) [4] or the extended equal area criterion 
(EEAQ [5] have often been proposed for use in 
on-line transient stability assessment applications. 
Although they are relatively fast in terms of execution 
speed, the complexity of the power system models 
and contingency sequences they can cope with are 
seriously limited.

In the light of recent advancements in computer 
technology, a modem real-time power system sim
ulator is used within OASIS as the baseline method 
for contingency evaluation [6,7], This simulator is 
capable of modelling an 80 machine 800 busbar

power system in real-time on a standard UNIX 
workstation. Each machine group is represented by 
a fifth order voltage behind sub-transient reactance 
model with second order excitation model and a 
fourth order prime mover and governor model. A 
number of non-linearities are modelled such as 
control limits, non-linear steam flows and magnetic 
saturation.

For each contingency, the full system is simulated for 
up to 30 seconds, if no pole-slip is detected. Para
meters such as rotor angle are monitored throughout 
the simulation and transient and oscillatory severity 
indices are calculated. The transient severity index 
is calculated based on the time to pole-slip (if there 
are any) or the magnitude of the first swing and 
the deviations of the machine frequency and MVA 
generation from the system frequency and machine 
MVA rating.

The assessment of oscillatory instability [8] is more 
difficult than its transient counterpart. Firstly, the 
term oscillatory instability should be clarified in that 
it refers to the post-contingency dynamic behaviour 
of the power system rather than the traditional 
definition of steady state stability. Slow power 
oscillations and limit cycles are, primarily, the main 
concerns. As a result, standard steady state stability 
analysis methods such as eigenvalue analysis are not 
adopted in OASIS.

Post-contingency oscillatory problems are manifes
ted through the system damping, and hence the 
degree of oscillatory instability can be assessed by 
examining the damping of each machine in the sys
tem. As a result of time domain simulation, the time 
history of the machine rotor swings or accelerations 
are readily available and can be used to calculate the 
decay rate of the rotor oscillations. Obviously, cases 
with growing oscillations, i.e. negative decay rates, 
are oscillatory unstable and therefore unacceptable. 
From an operational perspective, any oscillations 
should decay away quickly, say within a minute 
i.e. the time constant of these decays is less than 
12 seconds. Those contingencies which fail to meet 
these damping requirements should be reported as 
cases with poor oscillatory stability and the system 
oscillation decay rate can be used as an oscillatory 
severity index.

4 Stability Screens

The electro-mechanical stability screens used within 
OASIS are based on a pattern recognition approach. 
The real-time power system simulator, used for 
the detailed contingency evaluation, simulates each 
contingency up until the topology changes are
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complete. This point is referred to as the contingency 
termination point (CTP). A snapshot of the power 
system state vector at the CTP is then used to 
construct a feature vector. An artificial neural 
network (ANN) is then used to predict a stability 
index which is then compared to a threshold value 
to determine if the contingency leads to a secure or 
insecure operating condition.

The choice of stability indices for each screen has 
been made from practical operational guidelines. 
The transient stability index was chosen to be the 
magnitude of the worst machine rotor angle swing 
in the post-contingency period. Another index that 
could be used is the transient energy margin [4]. As 
mentioned earlier, oscillatory stability problems are 
manifested by poor damping of the post-contingency 
electro-mechanical oscillations. The time constant 
of these oscillations can be used as a quantitative 
measure of the degree of oscillatory instability. 
Decay time constants of more than 12 seconds can 
then therefore be identified as being un-acceptably 
damped.

By training the ANN to predict a stability index, the 
classification errors in the vicinity of a classification 
boundary are reduced. This is because there 
are no discontinuities in the learning surface as 
each contingency has a stability index between 
zero and one as opposed to only one of the two 
values. The threshold value should be set so that 
the desired level of security is achieved. From 
a transient perspective, it may be operationally 
desirable to identify all contingencies which lead 
to rotor angle swings in excess of 100 degrees, 
say, as transiently poor. Therefore, varying the 
threshold level allows the utility to control the level 
of conservativeness of the screens -  as the threshold 
is raised fewer contingencies will be identified as 
potentially insecure but the faster the DSA will 
operate.

The power system simulator can also be used to 
generate training data for the neural networks. This 
allows detailed modelling of machines and other 
equipment to be used in the training of the classifier, 
improving the reliability of the approach still further.

However, the main advantage of this approach is 
that the demanding task of simulating the whole 
of the post-contingency operating condition of 
the power system is replaced by a very small 
amount of simulation, feature vector calculation 
and classification. This makes this approach very 
attractive for on-line use, although this is at the 
expense of off-line training of the ANNs.

4.1 Feature Building
Traditional pattern recognition approaches to sta
bility screening have suffered from the curse of 
dimensionality, namely that for large power systems 
the feature vectors have a high dimensionality which 
makes it difficult to construct a pattern classifier. This 
problem is addressed by the use of features that are 
based on statistical properties of the power system 
state vector at the CTP.

The basic approach to feature construction is to apply 
a standard statistical function, such as minimum or 
variance, to a set of power system parameters, such 
as line power flows or generator terminal voltages. 
In this way a single numeric value can be derived 
from a set of power system parameters and can be 
used as a feature.

4.2 Feature Selection
Approximately 2000 statistical features were gen
erated from a time domain simulation for a variety 
of operating conditions of the power system. The 
feature selection process involved running a series 
of correlations to determine those features which 
were most highly correlated to the required stability 
classification.

x x

Fig 2: Sammon Plot

The best features selected by each of the selection 
criteria were then used to form the feature vectors 
for the screens. The suitability of the feature vectors 
at performing the classification was confirmed by 
producing Sammon plots [9] for each screen. If 
there is a clear separation between the patterns in 
the two dimensional plot for each stability class then 
there is a clear geometric separation of the patterns 
in the higher dimensional feature space. Tliis is an

216
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indicator that (a) the features are well suited for the 
classification and (b) that the neural networks will be 
able to learn the training data with ease.

Fig 2 shows the Sammon plot for the transient 
stability screen within OASIS for the 1000 training 
patterns with the worst transient response. There is a 
clear separation between the insecure (unstable) and 
the secure (stable) patterns. As expected, the ANN 
learned this training data in only a few iterations.

The overhead with using multiple screens is very 
low. The reason for this is that the majority of the 
time required for the screening process is spent of 
performing the time domain simulation up to the 
CTP The low overhead associated with calculating a 
few features and propagating them through an ANN 
takes only approximately 5% of the total screening 
time. Hence, although only a transient stability 
screen has been fully developed the inclusion of a 
screen to detect oscillatory instability problems will 
not noticeably increase the operating time of OASIS.

5 Implementation

One of the design goals of OASIS was an ability 
to work in an on-line mode with a target cycle 
time within 15 minutes irrespective of system size 
and number of contingencies. TTiis requires that 
OASIS has to be scalable and portable such that 
more advanced computing systems, which may be 
general purpose single-processor workstations or 
dedicated multi-processor computing servers, can be 
used when they are available.

OASIS follows the client/server model and has been 
implemented as a set of co-operating tasks running on 
a heterogeneous computing system. Inter-processor 
communications and remote task management are 
supported through the Parallel Virtual Machine 
(PVM) [10] developed by the Oak National Labor
atory. Hie component tasks of OASIS are founded 
on the use of Open Systems standards. ANSI C 
has been used to ensure portability for all all pieces 
of code. UNIX compatibility has been retained on 
all computing subsystems. Hie graphical interface 
for OASIS is built on X-Windows with MOTIF look 
and feel. Fig 3 shows the basis software structure of 
OASIS.

Data input can come directly from an energy 
management system, saved system snapshots or from 
a real-time power system simulator mimicking the 
real power system. This latter feature allows a 
complete model of a power system and OASIS to 
be run within the laboratory environment which can 
be used to train power system operators.

DSA Controller
(Clan* T a* )

Fig 3: Block Diagram of OASIS

The client task initiates the spawning of one server 
task on each of the host computers, and then transmits 
the latest power system snapshot to each of them. 
The definition of each stability screen is encoded 
into an ASCII file, defining the composite indices to 
be used as inputs, the topology of the ANN and the 
threshold for stability comparison. These files are 
then uploaded to the server tasks by the client. The 
client task then enters a contingency allocation loop 
where a new contingency is allocated to each idle 
server task.

Upon creation, the server tasks decode the power 
system snapshot file into the internal data sets 
required by the power system simulator and build 
up an internal representation of the stability screens 
from the screen definition files. The server tasks then 
perform contingency screening and evaluation for the 
contingencies specified by the client task. Those 
contingencies which are selected by the screens 
as potentially harmful undergo detailed evaluation 
by the real-time power system simulator [7] to 
determine the extent of the security violations. When 
this evaluation is complete each server task calculates 
an overall severity index and sends this information 
to the client task. Information on the decay rate of 
the transients in the system is included in this index 
to provide a quantitative measure of the degree of 
oscillatory instability.

When all the contingencies have been evaluated by 
the server tasks, the client displays the new ranked 
contingency list to the operator through the Motif 
X-Window display, as shown in fig 4.

6 Experimental Results

The feature selection process for the transient 
stability screen resulted in the selection of 10 
features which are highly suited for transient stability 
assessment. A feed-forward ANN with 10 input 
neurons, 8 hidden layer neurons and one output 
neuron was then trained. Training was stopped
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Abstract— On-line dynam ic security analysis has now become realistic 
due to advances in com puter technology and  algorithm s for security as
sessm ent. This paper presents details of p a tte rn  recognition based electro
m echanical stability screens which have been im plem ented within a dynamic 
security  assessor. Use of statistical functions o ffeatu res is shown to overcome 
the dim ensionality  problem  of applying pa tte rn  recognition techniques to 
la rge pow er systems. The low com putational cost of this approach coupled 
with efficient operation has resulted in a significant step tow ards achieving 
full on -line dynam ic security assessm ent.
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te rn  Recognition, Artificial N eural Netw orks

I. INTRODUCTION

Dynamic security analysis (DSA) is rapidly evolving from the 
realm o f pure research into a practical engineering tool [ 1,2] with 
significant economic benefit to electric power utilities. The aims 
of DSA are (1) to assess the security of a power system subject 
to a set of pre-defined disturbances (contingencies), and (2) to 
provide the operators with on-line advice to improve the system 
security while maintaining economic operation. The dynamic 
security assessment process is split into the following distinct 
tasks.

Contingency Selection — a set of contingencies is chosen for 
analysis. This may be drawn from a pre-defined list of 
contingencies or selected from a database of contingencies 
depending on the system operating condition, expected 
weather conditions and other factors affecting the system 
security.

Contingency Screening — this process aims to quickly identify 
those contingencies from the selected list which may lead 
to a security violation. This is essentially a filtering process 
which removes those contingencies which pose little or no 
threat to the security of the power system.

Contingency Evaluation — the process where the detailed ef
fects of a contingency on the power system are investigated. 
A full time domain simulation is currently the most reliable 
method available for performing detailed evaluation [1,3].

Contingency Ranking — to assist the operator, the contin
gencies are ranked in order of severity with the most severe 
contingencies available for display to the operator. The
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operators can then use this information coupled with their 
knowledge of the system to move the system towards a 
more secure operating condition if necessary.

Limit Calculation — the on-line calculation of transfer limits 
between areas of the power system may also be incorpor
ated with DSA systems. This defines the MW transfer 
constraints which can be coupled into the on-line dispatch 
tools to reduce generation costs whilst maintaining security.

Human-Computer Interface — This is used to display the 
ranked contingency list and/or transfer limits to the operat
ors, often via an X-Window display similar in style to other 
EMS applications.

From the DSA perspective, power system stability can be 
divided into two categories, transient and oscillatory instability
[4], Contingency screens are required for each of these areas. 
Fig. 1 shows the practical arrangement of transient and oscillat
ory instability screens within a DSA system.

Poten tu llT  lose cur*

Secure Insecure

Contingency
Evaluation

Transient Instability 
Screen

Oscillatory Instability 
Screen

Fig. 1. Stability Screens in a Dynamic Security Assessment System

The stability screens are cascaded so that any contingency 
that is identified as potentially insecure is passed on to the 
contingency evaluation module to determine whether it will 
actually lead to instability in the power system.

OASIS (On-line Algorithms for System Instability Studies) is 
a DSA system[5] which has been developed in a collaborative 
venture between the University of Bath, UK, and National Grid 
Company, UK. OASIS runs on a heterogeneous parallel com
puting system, and uses multiple copies of a real-time power 
system simulator[3] for contingency evaluation and is described 
in detail in a companion paper [6].

The work described in this paper concerns the development 
of contingency screens to detect both transient and oscillatory 
insecurity. A pattern recognition approach is adopted where a 
stability index is predicted and compared to a pre-determined 
threshold value to determine the security classification. This 
method is shown to be efficient, considerably faster than a time 
domain simulation and scalable to large power systems. This
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latter feature is of particular interest as in the past it has limited 
the application of pattern recognition techniques to only small 
power systems.

II. TRANSIENT AND OSCILLATORY INSTABILITY

Transient security concerns the stability of the power system 
in the event of large changes on the system, such as busbar 
faults, line outages or the tripping of generating sets. The 
insecurity is observed as one or more synchronous generators 
losing synchronism with the rest of the system i.e. pole-slipping. 
This happens when there is an energy imbalance between the 
mechanical input power to the generator and the electrical power 
exported to the transmission system. This imbalance causes the 
machine’s rotor to accelerate and if this is not arrested then 
pole-slipping will occur.

The maximum amplitude of a rotor angle swing in the post
contingency period can be used as a measure of the transient 
severity of a contingency. Utility operational guidelines usually 
recommend that large rotor swings should be avoided to maintain 
security of operation. For this reason the maximum rotor swing 
amplitude was used as the transient stability index, although the 
more traditional transient energy margin [7] could also be used.

A power system is often considered to have poor dynamic 
characteristics if the electro-mechanical oscillations of the gen
erating units do not decay away quickly (within one minute) 
following a disturbance. The envelope of the amplitudes of 
these oscillations can be used to provide a quantitative measure 
of the dynamic, or oscillatory, security of the power system. This 
envelope approximates to an exponential decay (or growth) and 
by using a best fit technique the time constant of the exponential 
can be determined and used as an oscillatory instability index. To 
ensure that the oscillations have decayed away after one minute, 
this decay rate should be kept below 12 seconds.

Oscillatory insecurity, due to insufficient damping in the sys
tem, can give rise to long term oscillations which may lead to 
pole-slipping or limit cycles which will stress generation and 
transmission plant causing long term damage. This may also 
cause mal-operation of protection causing further insecurity. By 
enforcing a limit for the decay of electro-mechanical oscilla
tions the above problems are avoided and the system security is 
maintained.

III. PATTERN RECOGNITION APPROACH

The application of pattern recognition techniques to contin
gency screening is not new[8-10], but recent work [11] has 
shown considerable progress in the application of artificial in
telligence techniques to contingency screening of realistic sized 
power systems. In particular, the use of composite indices as 
features for stability classification has been shown to provide the 
basis of a method for avoiding the curse of dimensionality, so 
often the Achilles heel of the pattern recognition approach. In 
this work, the concept of composite indices has been extended to 
allow a set of measurements taken from a power system model 
to be compressed into a single numeric value by the use of 
statistical functions. This compression is then shown to avoid 
dimensionality problems when applied to large power systems, 
whilst still encoding features characteristic of instability.

(start with selected contingencyy
T ■

Perform time domain simulation up to the 
contingency termination point (CTP)

Construct features/composite indices

Artificial Neural Network

Stability
arison -̂^

Potentially Insecure (^Secure )̂

Fig. 2. Structure of Stability Screens

Fig. 2 shows the basic approach for the stability screens. 
An electro-mechanical power system simulator [3] is used to 
simulate the effect of a contingency on the power system, until 
the power system topology changes are complete. This point in 
the simulation is referred to as the fault clearance or contingency 
termination point (CIP). For each screen, the features to be used 
in the pattern recognition process are constructed using both 
the pre-contingency power system state vector and the power 
system state vector at the CTP. These features are then presented 
as inputs to the pattern classifier which classifies the contingency 
as secure or potentially insecure.

With this approach, the computationally demanding process 
of simulating the post-contingency state of the power system is 
replaced by the trivial task of feature building and pattern classi
fication. In addition, the information stored from simulation of 
the power system until the CTP is shared amongst the screens, 
so the overhead involved with implementing multiple screens is 
fairly small. This approach is therefore an ideal candidate for 
transient and oscillatory instability screens for use within online 
dynamic security assessment systems.

A. Choice of classifier
The pattern classifier that has been adopted is a feed-forward 

multi-layer perceptron artificial neural network (ANN)[12,13]. 
The reason for this choice is threefold. (1) Although explicit 
rules to determine stability are not well defined, a large number 
of examples can be generated by applying a database of contin
gencies to a model of the power system and performing a full time 
domain simulation. This is the primary reason for choosing an 
ANN as the pattern classifier. (2) The feature selection process 
results in features that are highly correlated to the stability index, 
allowing a simple ANN to be used. (3) A supervised learning 
technique is appropriate to produce a classifier which predicts the 
stability index. The use of other ANN architectures is therefore 
unlikely to achieve any significant advantage over this basic
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ANN architecture.

B. Reliability
Training an ANN to predict a binary stability classification 

requires the ANN to learn a discontinuous surface, with the 
discontinuity being at the stability boundary. Thus, there is a high 
likelihood of mis-classification for those contingencies which 
are close to the stability boundary. By predicting a continuous 
valued stability index, the ANN generalises a smooth surface 
with no large discontinuities, improving the classification per
formance around stability boundaries. This stability index is then 
compared to a threshold to determine the stability classification.

In order that the screen remains conservative, the threshold 
against which the stability index is compared can be lowered. 
For lower values of the threshold, contingencies which have 
a lower stability index will be marked as potentially insecure. 
However, lowering the threshold too much will inevitably impair 
the performance of the screen as more stable contingencies will 
be classified as potentially insecure and will therefore undergo 
full evaluation.

C. Performance Metrics
Let the symbol a ry represent the number of contingencies 

that fall into class x but are classified by a screen as class 
y. Let s represent the class of secure contingencies and u to 
represent the class of insecure contingencies. For the screen to 
remain conservative, i.e. for all the insecure contingencies to be 
detected, a u„  the number of contingencies which are insecure 
but are classified by the screen as secure, must be zero.

a t,, +  at.„
Equation 1 is used to define the efficiency of a screen, 17. 

The screen will be 100% efficient if all stable contingencies are 
correctly classified, and will fall as more stable contingencies 
are classified as potentially insecure.

The speedup of OASIS obtained by using the screens, A, 
provides a quantitative measure of the overall performance bene
fit o f  this approach. The individual speedups of the transient and 
oscillatory instability screens, At and A0, over a full time domain 
simulation, equivalent to 30 seconds of real time, provide an 
indication of the relative speeds of both screens.

IV. COMPOSITE INDICES

Information regarding the post-contingency stability of a power 
system can be captured by use of a number of composite indices 
generated in the following manna:.

i =  A A B A C A . D A F  (2)

Equation 2 describes how a composite index, i, is formed 
where A , B, C, D  and E  are elements of sets where:-

A : A  €  Ua (3)
B : B e U b (4)
C . C t U c  (5)
D . D t U d  (6)

E : E € U e (7)

Set Ua is a set o f statistical functions to be used to create 
the composite index. The members MIN and MAX are the 
m inim um and m axim um  functions respectively and SUM is 
the sum of the values across all items of plant RMS allows 
the use of the root mean square function, RNG determines 
the range of the variable and VAR calculates the variance. 
MEAN is the mean of all the variables, SKEW is the skew 
and ADE V is the absolute deviation. The remaining two use 
the modulus function: MMAX is the maximum modulus 
of the variable and MSUM is the sum of the modulus of all 
the variables.

Set Ub defines which parameters are to be used in the con
struction of the composite index. Element N indicates that 
the index is to be builtusing the appropriate measurement at 
the CTP. G indicates that the gradient of the measurement at 
the CTP is to be used. C signifies that the change between 
the pre-contingency value and the measurement at the CTP 
is to be used. The set member S defines the post contingency 
steady state value of the composite index, determined by a 
loadflow, to be used.

Set Uc defines the items of plant which are related to the com
posite index. These may be Busbars, Lines or Machines. 
For the purposes of the modelling all transformers, SVCs 
and quadrature boosters are modelled as lines.

Set Ud defines the actual measurements to be constructed 
from the CTP state vector to form the basis of the com
posite index. VM and VP are the voltage magnitude and 
phase respectively, MW and MV are the MW and MVAr 
measurements and MVA is the MVA measurement. OL is 
the overload which is the current MVA value divided by the 
approximate rating. KE is the kinetic energy of a machine, 
RA, RS and RC are the rotor angle, speed and acceleration 
of machines and RAM is the rotor angular momentum. 
RAP calculates the rotor accelerating power, AVE is the 
machine’s AVR voltage error and TI is the estimated time 
to instability assuming constant rotor acceleration.

Set Ua contains two members. The first member V limits the 
scope of generation of composite indices to the immediate 
vicinity of a contingency. Since transient stability problems 
are local phenomena, the effects on parts of the power sys
tem remote from the contingency area are negligible. Our 
work has shown that defining the vicinity as a topological 
distance of four busbars from an item of plant involved in 
the contingency produces good results. The other member 
of the set S forces the indices to be built from all items of 
plant in the power system, i.e. the index is system wide.

This is best clarified by considering the example index shown 
below

* =  { S U M , C , M , K E , S }  (8)

which corresponds to the sum of the changes in machine kinetic 
energy changes across the whole system. In practice, each 
composite index was divided by the number of items of plant 
involved in its construction, i.e. the above was divided by the 
number of machines, in order to reduce the sensitivity of the 
composite indices to changes in the number of equipment. In 
this manner, the composite indices are made even more robust
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to changes in the power system topology and loading.

V. FEATURE SELECTION

The reliability of pattern recognition techniques is centred on 
the selection of features that are highly correlated to the desired 
stability classification and fairly insensitive to other changes, 
such as the loading level or topology of the power system.

A  Selection Criteria
The composite indices were ranked according to two standard 

feature extraction algorithms[14]. The first, univar, assumes 
that all the features are independent and performs correlations 
between each feature and the stability classification. The main 
advantage of this selection criterion is the low computational 
cost, because features can be considered sequentially and ranked. 
The main disadvantage is that although single features may 
be ranked with a low discriminative power, their multivariate 
combination might prove to be very discriminative. Also, a 
number of very similar features may be ranked equally highly, 
although the benefit of using more than one of them is small.

Secondly, multiple covariance analysis! IS] is used to rank the 
features in order of combined discriminative power. This has a 
much higher computational cost than the univar algorithm, but 
the multivariate character of the selection makes this algorithm 
powerful.

The selected composite indices are chosen from the top 10 of 
each of the two ranked lists. In general, the multivariate list is 
used first and augmented with others chosen from the univar list 
until discrimination is achieved.

B. Visualisation of feature space
The effectiveness of the selected composite indices at per

forming the required classification can be indicated using a 
Sammon plot[16]. This algorithm performs a dimensionality 
reduction from a high order space, equal to the number of 
selected composite indices, to a lower dimensional space, in 
this case two dimensions for plotting. The criterion for the 
dimensionality reduction is to minimise, by a gradient descent 
approach, the differences in the Euclidean distances between 
patterns in the the high and low spaces as much as possible. In 
this way the geometric separation of the patterns is maintained 
and therefore we can expect that those classes, in this case 
secure and potentially insecure, that distinguish well in the high 
dimensional space maintain do so also in the lower dimension.

If there is no obvious separation on the Sammon plot between 
the classes then the selected composite indices are not likely to 
be able to classify the stability and will almost certainly not be 
robust to changes in the power system state or topology. In this 
way, a Sammon plot of the selected indices is a useful guide as 
to the likely success of training the ANN for this application.

VI. RESULTS ON UK POWER SYSTEM

The UK National Grid System operates at up to 400kV and 
is connected to the Scottish power system by two 400kV and 
two 275kV overhead lines and by a 2000MW dc link to France. 
The system is composed of in excess of 7000 kilometres of 
overhead transmission lines and cables, 21600 towers, 280 sub
stations and up to 200 large generating units. During the trials

of OASIS at the UK National Grid Control Centre, a number of 
system snapshots were saved over a 24 hour period to be used 
in the laboratory for validation of the screens. The lowest daily 
demand of 28.5GW was met using 109 laige generating units 
(0500 hrs) and the daily peak of 47.IGW was produced by 147 
units (1700 hrs).

These two snapshots were used to provide training data for 
the ANNs as they cover the demand range for the required 
operating condition. Applying artificially severe line outage, loss 
of load and generator tripping contingencies to these snapshots 
allowed a total of 9098 training patterns to be constructed, with 
approximately 1900 composite indices each. It was necessary 
to use artificially severe contingencies in order that stability 
problems would be encountered when analysing the snapshots 
obtained from the EMS. The feature selection process described 
above was then applied to selecta small subset of these composite 
indices to be used as input features to the ANNs.

A. Transient Screen
Table I shows the ten composite indices that were selected 

using the procedure outlined earlier.

TABLE I
T r a n sie n t  Sta b il it y  Sc r e e n  F eatures

No A S c D E No A B c D E
1 MIN N M OL s 6 SKEW G M KE s
2 MIN C M OL s 7 RNG C B VP s
3 RNG C M VP s 8 MM AX C B VP s
4 VAR c M VP s 9 ADEV C B VP V
5 MM AX c M VP s 10 MM AX C B VP V

The selected features are largely based on voltage phase angle 
changes on machine terminals and busbars. Such changes are 
directly related to large changes in power flow which are often 
symptoms of transient instability. Fig. 3 shows the Sammon 
plot for these features.

Secure

Fig. 3. Sammon Plot for Transient Stability Screen

It can be seen that the transiently insecure patterns (crosses) 
are geometrically well separated from the secure patterns (dots), 
indicating that the screen is likely to be able to classify the 
stability and be fairly robust to changes in the power system state 
and topology. Hence a standard three layer feed-forward neural
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network was chosen with 10 inputs, 8 hidden layer neurons and 
one output neuron. The standard back-propagation algorithm 
was then used to train the ANN. The threshold value was set to
0.4 because the largest stability index for a secure contingency 
in the training set was 0.37.

B. Oscillatory Instability Screen
For the oscillatory instability screen 16 composite indices, 

shown in table II, were selected.

TABLED 
O scilla tory  I n s t a b i l t t y  F e a tu r e s

No A B C D E No A B c D E
1 MIN N M OL s 9 RMS C M VP V
2 MIN C M OL s 10 MIN C L MV s
3 RNG C M VP S 11 MMAX N B VP s
4 M MAX C M VP S 12 MAX C B VP s
5 MM AX G M RAM S 13 MMAX C B VP s
6 VAR N M RAP S 14 MAX c B VP V
7 MSUM G M MW V 15 ADEV C B VP V
8 MSIJM G N MV V 16 MMAX C B VP V

As with the transient stability screen, indices based on voltage 
phase angle changes are highly correlated to the instability. In 
addition, indices based on machine rotor angular momentum and 
accelerating power are shown to be well correlated. Fig.4 shows 
the Sammon plot of the selected features.

Fig. 4 . Sammon Plot for Oscillatory Instability Screen

Again, the insecure patterns (crosses) are geometrically well 
separated from the secure patterns (dots), indicating that the 
screen is likely to be able to classify the stability. A standard three 
layer- feed-forward neural network was chosen with 16 inputs, 
10 hidden layer neurons and one output neuron. The ANN was 
trained and the training was stopped after 1500 iterations.

C. Performance of Screens
Table III shows the performance of the transient and oscillat

ory instability screens when tested on several snapshots taken 
from the EMS of the UK power system. These results were 
obtained in the laboratory using the processing power of two 
DEC ALPHAS and two Silicon Graphics R4000s. The first two 
columns show the approximate time the snapshot was taken,

and the total system load at that time. Netg is the total number 
of contingencies selected for analysis. Hie next two sections 
contain information on the transient and oscillatory instability 
screens. The final two columns show the net effect of the 
incorporation of the screens into OASIS. For the testing of the 
screens, every contingency was passed through both screens, but 
for the determination of the speedups, the screens ware cascaded, 
as shown in fig. 1

For the transient instability screen, the screening efficiency 
remained above 98% for all of the test cases. aUf, the number of 
insecure contingencies classified as secure was zero for all test 
cases, meeting the primary requirement of the screen; conser
vativeness of operation. The individual speedup of OASIS by 
using the transient stability screen, for the evaluation of transient 
stability only, was approximately 25 times.

The oscillatory instability screen was approximately 96% 
efficient, and au, was zero for all the test cases. The individual 
speedup was slightly lower than that for the transient screen, due 
to the slighdy lower efficiency of the screen.

The overall cycle time of OASIS using both stability screens is 
shown to be reduced to approximately 10 minutes by use of the 
screens. This represents an overall speedup of approximately 
25 times which allows OASIS to produce results within an 
acceptable time frame for on-line operation.

vn. CONCLUSIONS

The following conclusions can be drawn from the results 
presented.

1. The traditional problem of a high dimension feature space 
when applying pattern recognition techniques to stability 
assessment of large power systems has been avoided by the 
use of composite indices.

2. These indices produce features that are sufficiently loosely 
correlated to the loading and topology of the power system 
whilst remaining highly correlated to the power system 
stability. This allows the classifiers to be used over a wide 
range of power system operating conditions.

3. A simple pattern classifier, such as a simple feed-forward 
ANN, can be used resulting in a considerable on-line speed 
advantage over a full time domain simulation.

4. The efficiency of the screens results in very few secure con
tingencies being classified as potentially insecure, further 
increasing the speed advantage of this approach.

5. No contingencies that are insecure are classified by either 
screen as secure.

These screens are therefore highly suited to implementation 
within a dynamic security assessment system and reduce the 
on-line operating time to such an extent that a practical DSA 
implementation is now feasible.
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