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Sum m ary

The object of this thesis is to analyse coupled Inset Dielectric Guide structure and the appli

cation of theory developed to the practical coupler design.

The coupled IDG structure is analysed rigorously for LSE and LSM types of polarization. 

The problem is formulated through the Transverse Resonance Diffraction approach using 

integral impedance or admittance operators, accordingly to the polarization used. The oper

ators are discretized in the space domain by the Ritz-Galerkin method employing generalized 

Laguerre polynomial functions as a basis set capable of dealing with singular boundary con

ditions. Fast convergence is achieved and the accuracy is demonstrated by comparison with 

measured results.

The developed method amalgamized with Bethe’s theory of waveguide coupling through small 

holes is then used to synthesize multi-hole IDG coupler. Synthesis is based on an analysis 

and optimization procedure linked through an error function that measures the agreement 

between achieved and desired response. Two types of analysis are developed:

• first type considers hole and air coupling as independent coupling mechanisms,

• second type of analysis includes the interaction of mechanisms.

A good agreement between predicated and measured results is achieved. A new method of 

modeling influence of finite wall thickness on coupler responses is developed and implemented 

in this work.
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C hapter 1

Introduction

The communication and information technology has been making giant steps allowing more 

and more users to benefit from recent developments. However, more users requires more 

channels, and, in order to avoid spectrum overcrowding, the operating frequency keeps moving 

up. The requirements for high definition satellite and radar systems and needs for compact 

system size have been an additional stimulus for the development of high frequency systems 

due to the small wavelength of such system. Also high speed computation introduce problems 

of electromagnetic compatibility for printed digital boards and open up needs for transmission 

media allowing large scale on board integration with low cross-talk level between lines. 

MMIC technology opens door for design of integral systems operating in millimetre wave 

band, which stretches from 30 GHz to 300 GHz. This advanced technology represents major 

brakethrough and the components such as switches, mixers, oscillators and even amplifiers has 

become a reality for lower bands of millimetre frequency range. These components are smaller 

and lighter than their lower frequency counterparts, but tolerance requirements become more 

tight especially in terms of dimensions and machining finish of metal walls and corners. For 

these reasons the manufacturing costs of millimetre wave components are high.

The most widely used transmission structure for microwave integrated circuits design has 

been microstrip and the housing variants such as suspended substrate stripline and finline.
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These structures can be fabricated using conventional printed circuit technique which made 

them very popular. Housing must be smaller or similar in size to  the rectangular waveguide 

at that frequency in order to avoid higher mode excitation. The necessity to fabricate the 

planar circuits with increasingly high tolerance standards as frequency increases is limited by 

the etching process and so alternative, and easier to  manufacture structures are sought for 

millimeter wave frequencies.

1.1 Inset D ielectric G uide Structure

The structures that claim to be suitable for applications on millimetre wave range are sur

face waveguide structure. Such structures support guided waves with a phase velocity less 

than the characteristic velocity for the particular medium and are thus known as slow wave 

structure.

Various types of slow wave structure have been proposed for millimetre wave use such as 

image line, insular line, trapped image line, non-radiative guide, groove guides and etc.. The 

cross section of the above listed structures consist of two or more regions with different char

acteristic velocities, so that the effective dielectric constant for each region is different. The 

interface between the different regions supports a wave that has a phase velocity somewhere 

between the characteristic velocities of the regions.

The low loss nature of surface waveguides comes from the fact that slow wave propagates in 

low loss dielectrics and are loosely bounded to the structure. However, a loosely bound wave 

can detach itself from the guiding structure and radiate into surrounding medium if it comes 

across even a small discontinuity, or any change in direction of guiding such as bend.

The Inset Dielectric Guide (IDG) shown in F ig .l.la  was mentioned in [1] as a variation of 

image line that could have a practical use. IDG consists from a metal groove filled with 

dielectric. It has been shown that this structure possesses several advantages over the image

[2], Fig. 1.1b, and insular guide [3], Fig. 1.1c. One major performance advantage that the 

IDG possesses is its ability to guide energy around relatively sharp bends with low radiation

2
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Figure 1.1: Three similar types of slow wave guiding structure

loss [4].

In terms of its manufacture, IDG appears to  be quite simple to construct. It is seen as easier 

to machine a precision slot in a metal ground and then fill that groove with dielectric, than 

to machine dielectric to same dimensions and bound to metal ground as it should be done 

in the image guide case. Moreover, through the use of low dielectric loss plastic moulding 

and spray metalisation techniques, IDG components could be lightweight and cheap to mass 

production.

The problems encountered in the inclusion of PIN, mixer and source diodes in image or in

sular guide circuits produces a major limitation in use of such structure for sub-systems or 

a system  design. As it was shown [5] the fundamental H E q\ mode in deep slot IDG has a 

constant electric field variation across the slot and a field maximum near the air-dielectric 

interface. This is a almost ideal situation for diode integration since the device can be placed 

across the slot to couple strongly with the field without needing to modify the IDG structure. 

In common with image and insular guide, it has been seen that thin printed dipoles on guide 

surface produce low reflection radiating elements [6]. These elements are very suitable for 

constructing arrays which naturally produce little mismatch. Through choice of slot config

uration and dipole orientation, both horizontal and vertical polarization antennas may be 

realized in IDG [7]. The resulting radiating surface has no protruding edges and could be

3



made either flat or curved by design. The radiation properties of the IDG array antennas 

have been seen to give very low cross polarization [8].

The three distinct advantages characterize use of the IDG structure rather than image guide:

•  simpler manufacture

• resistance to the radiation loss from the bends

•  easier inclusion of a diodes for the purpose of control device design.

Coupled line sections can arise in two dimensional arrays where coupling between adjacent 

sections of the array may be of importance due to the lengths involved. Parallel antenna 

arrays in IDG have been shown to suffer much less from near field coupling problems than 

similar arrays in microstrip or image guide, because of the presence of the side metal wall 

which frustrates lateral TM surface wave propagation.

Parallel coupled line in IDG structure depicted on Fig. 1.2 can be constructed almost as easily 

as single lines, and it was the goal of this thesis to provide a rigorous analysis of coupled 

lines and to assess its practical application to the design of IDG couplers. Also coupled lines 

can be employed in various bandpass filter and matching networks design. Consequently, 

basic filtering and power splitting devices could be fabricated in the same circuit media as 

the antenna, forming a complete sub-assembly.

1.2 Coupled D ielectric G uide Structures: review

Various researcher have investigate coupling between certain dielectric guides and its applica

tion to coupler design [9]-[14]. Most designs presented so far had treated the degenerate mode 

coupling, i.e. coupling between same modes of dielectric guides with identical cross-section. 

An approximate analytical method, so called effective dielectric constant (EDC), alongside 

with empirical data was used to derive coupling coefficients for symmetric and non symmetric 

coupled slab dielectric guide structures [9]. For the case of non-symmetric coupler it was nec

essary to make additional measurements in order to determine a correction factor. Authors
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Figure 1.3: Some coupled surface wave guide structures

claim that same method can be applied on guiding structures with rectangular cross-section, 

or even on coupling between different guiding structures as long as the propagation constants 

of guides are similar.

In [10], authors analysed hollow image guide structure which also can be considered as two 

parallel image guides coupled strongly by a dielectric overlay. Again the EDO have been 

used for dispersion characterization of single and coupled structure. The characteristic of 

120mm long coupled section was presented and measured results, corrected for the dielectric 

and radiation losses, shows satisfactory agreement with predicted results. The coupler has 

a relatively narrow bandwidth of 10% for 3dB characteristic and coupling decreases with 

frequency increasing, which is common behavior for all dielectric guide couplers.

The coupling between curved transmission lines has been investigated in [11], and closed-form  

expressions for the field amplitudes, directivity and reflection are given. An experimental 

model for a 3dB directional coupler was designed to  operate at 94 Ghz using non-radiative 

dielectric guides. The experimental data were in good agreement with theoretical results 

though a substantial amount of insertion loss was found, which is largely believed to be di

electric loss. Again measured results were corrected for losses, and shows very narrow-band 

coupling characteristic.

The design and evaluation of the directly connected image guide directional coupler was
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presented in [12]. To analyse dispersion characteristic of directly connected image guides 

the EDC approach has been used and synthesis is done in terms of even and odd modes. 

The bandwidth of such coupler with proper dimensions and the optimized value for height of 

connecting dielectric layer, extends to about 28 percent.

A beam-splitter coupler type was used to design broadband coupler employing thin dielectric 

film with appropriate dielectric constant for direct connection of two image guide [13]. How

ever, this method can be inconvenient in practice because a layer having a specific dielectric 

constant which is different from that of the guides is required.

All o f the above analyses were performed for degenerate modes, i.e. for symmetric coupled 

lines with identical phase constants. The asymmetrical coupler design can improve band

width and a 3dB coupler with 30 percent bandwidth was realised by taking advantage of the 

dispersion and the frequency dependence of coupling per unit length between two dielectric 

guides with asymmetrical cross sections [14]. Asymmetrical couplers are not hybrid by nature 

and the simple single line compensation of the phase response was used in order to achieve 

approximate quadrature of signals on coupled and through ports.

Another possible approach to wide-band hybrid design would be the couplers based on ta

pered velocity principle. However, a serious drawback of the tapered velocity couplers is that 

they have to be very long, several tens to hundreds of wavelengths, which makes them large 

and lossy.

1.3 Survey o f th e T hesis

The material of the thesis tries to follow chronological order in which it was developed. The 

remainder of the work is divided into six chapters.

Chapter two is used to highlight the theory of coupled lines. The scattering matrix theory 

gives several useful general theorems on the properties of the four port directional couplers. 

But scattering matrix can not provide field description inside the four port junctions and this 

theory appears to be useful in combination with other two theory described in same chapter.
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The symmetry of the junction can, however, provide some knowledge about the field in the 

interior and wave solution of Maxwell’s equations under specific boundary conditions becomes 

simpler. The analysis of symmetric junctions can be split into two trial analysis of the junc

tion under two different sets of boundary conditions. This approach, in terms of even and 

odd modes is presented in the second section of the second chapter and will be used in this 

thesis to derive Transverse Resonance Diffraction (TRD) dispersion equation for degenerate 

modes of the coupled IDGs.

Coupled waveguide theory is presented in the third section, and represents general theory 

of coupling between two waveguides. This pioneering work is done by Miller [15] and was 

in later stages extended to include coupling theory of velocity tapered guides [16]-[18]. The 

mathematical model of the two coupled lines, based on a two first order differential equa

tions, gives physical understanding of power distribution between lines. As it will be shown, 

this distribution depends on line phase constant, the coupling coefficient and the length of 

coupled section.

Chapter three is devoted to the evaluation of TRD dispersion equation under LSE and LSM 

polarization. The complete field description of all three regions is derived from y  directed 

electric and magnetic vector mode functions. As the analysis in terms of even and odd cou

pled modes is applied, field description for region I should be found for both modes. The 

impedance and admittance integral operators for LSE and LSM polarization respectively, has 

been formulated using a variational principle.

Chapter four describes Ritz-Galerkin discretization procedure as applied on TRD dispersion 

operator equation. The choice of proper basis function, able to take into account singular 

behavior of field components on metal corners, is presented. The optimal scale factor was 

introduced through basis function set in order to give the best fit of unknown field on discon

tinuity planes. The matrix model of TRD dispersion equation gives access to finite network 

representation of single and coupled IDG lines as well as the possibility of analysing coupled 

IDG arrays by performing ordinary matrix operations. In the last section of this chapter, 

expressions for field components are given in terms of discretization coefficients.
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Numerical results and their comparison with measured data are presented in Chapter 5. The 

shallow and deep slot IDG configuration are analysed and dispersion characteristic for various 

modes of single and coupled IDG lines is given.

Chapter six comprises multihole coupler theory, which is together with results from previous 

chapter used in broadband IDG coupler design. Two different synthesis procedure has been 

considered.

•  First approach treats discrete hole and continuous wave coupling independently. Overall 

coupling is obtained by simple addition of these two coupling mechanisms and synthesis 

of coupler with flat coupling response is done using optimization procedure.

• Second approach is based on the hybrid network representation comprising P i  lumped 

network which models aperture coupling and such circuit is placed between sections 

of transmission line that has same propagation parameters as IDG. Then, in order to 

obtain response of overall structure an network analysis in terms of chain matrices is 

utilized. On this way two coupling mechanisms are considered as interactive and the 

measured results are in good agreement with analytically predicated data. Again, the 

synthesis is performed by the help of an optimization procedure.

Finally in chapter seven the results of the preceding chapters are brought together to en

able observations and conclusion to be made. The need and scope of further work in IDG 

technology is also discussed.
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C hapter 2

M ethods o f Coupled Lines A nalysis

The microwave engineer is often faced with the dilemma of which type of coupler to use in 

system design in order to meet specification. Sometimes , it is possible to  satisfy a specification 

by the use one of several coupler types, when choice is then made on the ground of other 

parameters such as cost, manufacturing techniques, the physical layout, weight, etc.. Quite as 

often, the specification can be met only by one type of coupler, so that knowledge of general 

coupler theory is desirable and three different approaches for the four port network analysis 

will be presented in this chapter. The extensive review of different coupler types and basic 

coupler theory is given by Levy [1] and Altman[2].

2.1 Scattering M atrix o f Coupled Four-port

Application of scattering matrix theory can gives us several very useful general theorems on 

the properties of multi-port junction, and particularly interesting for us, on properties of the 

four port directional coupler. For the case of linear, passive and reciprocal n-port network, 

the external behavior of the network can be represented by n linear equations, written in 

matrix form as:

[6] =  [5][«] (2.1)
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port2port 1

port 4

port 3

Figure 2.1: Four-port network

The [6] and [a] are a column vectors representing scattered and incident wave amplitudes, 

respectively. The interpretation of the elements s,j of the n x n matrix is that if i ^  j ,  Sij 

represents the transmission coefficient between arms i and j ,  while su represents the reflection 

coefficient at the port i. The next two properties of S  matrix are of prime importance [3].

• For the reciprocal networks the scattering matrix and its transpose are identical

=  sji (2 .2)

• For the lossless networks the scattering matrix satisfy unitary relationship i.e.

[S][5]* =  [1] (2.3)

where ★ indicates complex conjugate transponse values of the matrix [5].

Consider a lossless four port network represented in Fig.2.1 where ports 1&2 and ports 3&4 are

mutually isolated ports. Furthermore, if we suppose that one pair of ports is ideally matched

14



then the unitary relationship suggests that two remaining ports must be ideally matched, 

too. It also can be easily proved that every four-port junction with perfectly matched ports 

possesses two sets of mutually isolated ports and therefore, performs as directional coupler 

[!]•

The reference planes in the various ports may be chosen to fix the phases of the scattering 

waves and set S13 to be real and S14 purely imaginary. Then the scattering matrix of coupled 

four-port takes the form

0 0 a jP

0 0 jP a

a jP 0 0

jP a 0 0

One of the most common and useful classes of directional couplers is completely symmetric 

structure, where ports from Fig.2.1 can not be physically indistinguishable. Again applying 

the unitary relationship it is possible to work out some useful general properties of the sym

metrical coupler, particularly in terms of the phase difference between coupled and through 

ports. In the case of ideally matched four-port symmetric network with perfect isolation, the 

phase difference between output ports is 90 degree.

This approach allow us to find the phase deviation in the case when isolation is not perfect 

and consequently the matching is not ideal. For the 3dB  symmetric coupler when isolation 

is better then 30d6, phase differ only for 0.1 degree from 90 degrees, and when isolation is 

down to 20dB  then difference raise up to 1.2 degree.

2.2 A nalysis in Term s o f Even and Odd M odes

The symmetry of network geometry can be used to make analysis of the four-port junction 

easier and provide the solution of Maxwell’s equation for the boundary conditions imposed 

by electro-magnetic nature of such symmetric junction [4].

Suppose that the directional coupler depicted in Fig.2.2 has a symmetry plane as indicated
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Figure 2.2: Four-port network with (a) even mode excitation and (b) odd mode excitation

by the dotted line. When two in phase signals of half amplitude are applied to ports 1 and 

2, by symmetry a voltage maximum occurs at the line of symmetry, what is equivalent to 

having infinite impedance on the symmetry plane. It means that the junction may be left 

open and that will not affect the field distribution which is equivalent to raising magnetic  

wall as the symmetry plane. This mode of operation is called even  mode.

Similarly, an odd mode is defined as the mode existing when ports 1 and 2 are excited  

by two signals with half amplitude but out of phase. Then a short circuit representation of 

symmetry plane become reality or expressed in field term, electric wall placed as symmetry 

plane would not affect field distribution.
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The odd and even modes are n orm al operational modes of symmetric junction and exhibit 

odd or even symmetry about the electric and magnetic wall raised as symmetry plane. 

Conducting analysis in this way, the problem of the four-port network analysis reduces to 

that of a two-port network, for which a solution may be obtained more easily.

The response corresponding to unitary source applied at port 1 is obtained by super-position 

of even and odd modes, that gives expressions for the signals on the guides:

•  For guide one

E \ =  i  cos(u;t -  (3ex) -|- i  cos{u t -  p ox) (2.5)

=  cos(a;t — fix) cos(ca?)

•  For guide two

E 2 =  \  cos( v t  — (3ex) — i  cos(a;t — fi0x) (2-6)

=  sin(u;t — fix) sin(car)

where

P  =

c =

/?e +  Po
2

Pe ~  Po

Same expression can be written in phaser notation as

E i(x )  =  cos (cx )e x p (-jP x )  (2-7)

E i(x ) =  jsm (cx )ex p (—jP x)

which will be used later on for the comparison with expressions obtained from the coupled 

mode theory.
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For the case of symmetric junction analysed in terms of even and odd modes, the vector 

amplitudes of scattered waves emerging out of ports are found as:

6,  =  i f r .  +  r . )  ( 2 .8 )

h  = \  (re -  r„)

is  =  \ ( T t - T 0)

&4 = \ ( T .  +  T0)

where r e and T0 are reflection coefficients and Te and T0 are transmission coefficients of 

two-ports obtained for even and odd mode, respectively. As analysis of two-port network is 

usually carried out in terms of impedance or chain transfer matrix, the relationship between 

reflection and transmission coefficients on one side and chain matrix on other side is stated 

as:

r  =  A +  B / Z p -  C Z q -  D  , .
A  +  B / Z 0 +  C Z 0 +  D  K ' }

T  =  2
A  +  B / Z q -f- C Z q +  D

Zo is the characteristic impedance of the input and output ports, while the input impedance 

for matched load on output port is given as

z ' -  c T d Jzo ( }

An approach for analysis of symmetric coupled lines in terms of chain matrix elements is pre

sented in Appendix A. Very interesting conclusions, determining whether the coupler belongs 

to the families of forward or backward couplers, can be drawn from such analysis. An ideal 

forward coupler needs even and odd mode impedances to be equal, while phase constants of 

even and odd mode must not differ for an ideal backward coupler:

18



•  Forward coupler

•  Backward coupler

Zc -  ZQ /3e /  f30

Ze  /  Zo Pe =  Po

2.3 T heory o f Coupled W aves

Here, we summarize the theory developed by Miller [5] and generalizations and extensions 

of this work were carried out by other authors [6 , 7, 8]. Consider two coupled guides I and 

II represented in Fig.2.3. The variations of the wave amplitude in guide I and guide II can 

be represented by first order linear differential equations relating the wave amplitudes in the 

two guides within the coupling region. This theory takes into account not only unilateral 

coupling from one to another line, but also back coupling. The theory of coupled modes must 

be invoked whenever coupling is substantial and non-localized.

dEi
dx

d E 2

dx

=  -  (7i +  k) Ei  +  kE 2 

=  kEi — (72 +  k) E 2

(2.11)

where E\  and E 2 are the complex wave amplitudes on guides I and II, 71 and 72 are the 

propagation constants of lines I and II and k is the coupling coefficient within the region of 

coupling.

For the wave of unit amplitude incident at guide I, i.e. for the starting conditions E  =  1 

and E 2 =  0 at x =  0, system of differential equations (2.11) gets the solution in form

Ei =

E 2 =

7i “  72

2 \ / ( 7 i  - 7 2 ) 2 +  4fc2_ 
k

Six + 1
2 +

7i “  72

Z y f i l  1 - 7 2 )2 +  4fc2_
(2.12)

erix -
( 7 i  “  72)2 +  4k2 y j (71  -  7 2) 2 +  4k2
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Figure 2.3: Coupled transmission lines

with

ri =  ~  (2k +  7 i +  72) +  \ / ( 7 i  -  72)2 +  4A:2

r2 =  — i  (2A: 4- Ti H- 7 2 ) ~  ' J i l l -  12?  +  4fc2

For the lossless coupling mechanism, i.e. when k is purely imaginary k =  jc  and for coupling 

between identical transmission lines, 71 =  72 =  7 , previous equations simplify into forms 

identical to that one obtained by analysis in terms of even and odd modes.

E,  =  cos (2.13)

E2 =  Jsin cze- iJC+7ix

The amplitude and phase variations due to the coupling as given by the above equations are 

shown in Fig.2.4. Complete power transfer occurs cyclically with a period of cx =  7r/2, and

an arbitrary power distribution between lines can be achieved by suitable choice of coupler

length.

Here, we also will give presentation of coupling between two lines with different phase
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Figure 2.4: Wave amplitude and phase of coupled transmission lines having identical propa
gation constants
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constant, but with same attenuation constant.

a i  =  a 2 =  a  71 =  a  +  jPi 72 =  a  +  j f c  (2-14)

when equation (2 .12) reduces to

Ei =  Eie-*1* =  (cos $ - j A  sin $ )  e " ^  (2.15)

E 2 =  £2e-'yx =  j ^ s in ^ e " ^

with

*  =  \ r J > ) 2 + ^  (2 - i6)

7  =  a + j

4 c2 

C +  P1 +  P2

and

A =  ------------- 0 2  (2.17)

B  =

2 c V ^ 5r+ i  
1

7 ^ = P 7 l

and £2 are plotted for the four different values of (Pi — P2 ), Fig.2.5. It is apparent for 

bigger differences in phase constant, the maximum coupled power decreases and the period 

of cyclic variation in coupling is reduced. This can be very useful for application in the 

broad-band coupler design by deliberately creating difference between the phase constants 

of the two lines, when there is a region where the coupling is very slightly dependent on ex. 

The main disadvantage associated with this method of broad-banding is that the directional 

coupler is not symmetric, so that the phase relationship between the waves are not 90 degree 

for all frequencies, but varies considerably across the frequency range.
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2.4 Conclusion

The three different approaches to the coupled lines analysis have been presented. The unitary 

property of the scattering matrix and knowledge about coupler geometry can give us a good 

deal of information on the general properties of the coupled structure. This theory allows us 

to predict isolation property and phase deviation for the real coupler case, where matchings 

of the ports are not ideal and consequently zero return loss could not be assumed.

All symmetrical couplers can be analysed in terms of normal modes, i.e. even and odd modes, 

when analysis of a four port network is reduced to the two-port network analysis.

The theory of coupled guide developed by Miller, comprises mathematical model based on 

the system of two first-order differential equations. This theory also gives us understanding 

how much power is transferred from guide to guide and what is the phase difference between 

coupled and through port waves for the different geometries of coupled lines. For the case of 

symmetric coupling structure this theory leads us to the same conclusions obtained by the 

theory of normal modes.
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C hapter 3

Transverse R esonance Form ulation  

for ID G  Coupled Lines

The theory of normal modes is applied to the coupled symmetric IDG lines enabling us to 

find parameters of interest for a considered IDG structure. The cross section of coupled 

symmetric IDGs is shown in Fig.3.1, the entire volume is separated into two identical parts 

by plane of symmetry. Each half can also be divided into three regions by placing two planes 

along the metal corners of IDG. Due to their nature, these planes will be called discontinuity 

planes in the following text. For each of the three established regions solution of Maxwell’s 

equation under certain boundary conditions can be evaluated analytically.

Maxwell theory provides general relationships between electric and magnetic field inside 

macroscopic media. A physical solutions of Maxwell’s equations must satisfy the bound

ary conditions imposed by the media over which the solution is sought. The direct analytical 

solution of these equation is limited to a few simple cases, and generally speaking some nu

merical approach has to be adopted in order to get approximate solutions for electric and 

magnetic fields satisfying boundary conditions determined by the physical nature of a media. 

Two different numerical approaches for this purpose can be distinguished:
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•  the first is a pure numerical one, where no prior knowledge of the field is necessarily 

and a numerical iteration process is used in order to obtain solutions. This approach is 

very general and consequently has very wide application but in most cases is inefficient 

giving slow convergence and consuming lot a computing time.

•  second approach is combined analytical-numerical, where an analytical solution is sought 

over the parts of the entire volume and combined with a numerical approach applied 

to the rest of the volume. With this approach computation time can be considerably 

reduced.

The later approach has been used in this thesis. The transverse resonance technique used 

here, employs a transmission line model of the transverse cross section, shown in Fig.3.1, and 

transforms field theory into circuit and transmission line theory. This method belongs to a 

space domain approach, where the integral operators are obtained in the terms of a equivalent 

transmission lines parameters characterizing the IDG cross-section geometry.

3.1 T R D  Form ulation as A pplied on C oupled ID G s

The entire cross section is separated into three different regions and the metal edges will be 

treated as discontinuity separating the different homogeneous regions. In each of the three 

regions the propagation constants are linked by the relationship

€rkl  =  kl  +  +  fi2 (3.1)

where (3 is the z directed propagation constant common for each region that has to be de

termined. The expressions for field components for each of the three regions created by two 

boundary planes, as shown on Fig.3.1, will be evaluated analytically under y  directed LSE 

and LSM polarizations.

The first region is considered as a quarter open space, the second as a grounded slab dielectric 

guide and the third one as a half open space. Two discontinuity planes exist and on each
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of them continuous modes are excited. Moreover, multiple reflection occurs between two 

discontinuity planes and thus region II can not be represented by a few discrete transmission 

lines, as it is done in [1], in any rigorous network representation used by TRD approach. 

Indeed this region will be represented by two port T or II networks consisting of impedance 

or admittance integral operators defined for the LSE and LSM polarizations respectively.

In fact, in order to analyze such a region, electric and magnetic walls are placed at x =  d /2  

and x =  a -f  d /2 , in a manner analogous to the determination of the impedance or admittance 

parameters of a 2N-port network by open and short circuit ports. Integral operators are then 

found relating the total E and H field at the various ports under these open and short circuit 

condition, and these are used to relate the total fields at each port to one another. Such an 

analysis follows closely the method described in [2].

From such an analysis, the transverse electric and magnetic fields on the first step can be 

expressed as functions of the transverse electric and magnetic fields on the second step and 

vice-versa. Choosing a y  directed field component as an independent variable the above de

pendence can be expressed by means of a two-port Green’s open-circuit impedance operator 

for the case of LSE polarization, or an admittance operator for the case of LSM polarization. 

Such two port circuit representation of region II is terminated with impedance or admittance 

operators representing the driving point impedances of region I and III, thus completing the 

circuit representation of the entire structure.

3.2 T R D  Form ulation under LSE polarization

In the case of deep slot IDG, it has been seen that for HEmn modes the Ey component is 

small except for the immediate vicinity of the metal corners [3]. This then suggests that 

rather than using a full six-field component description, the problem can be approximated 

to good effect by using the five field LSE(y) description. In this case, the Hy field is used 

as the unknown variable in operator formulation, and corresponding a circuit representation 

is given in Fig.3.2. referring to the directions notified at the circuit schematic, the operator
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Figure 3.1: Cross section of symmetric coupled IDGs



equations that link Ez and Hy at the two interface planes x + d / 2  and x = a + d /2  can be written 

in matrix form

For region I & III

- E x — 2 xe,o 0 Hx

- e 2 0 Z3 h 2
(3.2)

• and for region II

Ex Zxx Zx2 Hx

e 2 Z 12 Zxx h 2
(3.3)

where the dot product should be understood in the sense of operator multiplication defined 

as

roo
Ez(y)  =  /  Z ( y , y ' ) H v(y')dy'

Jo
(3.4)

E ,  =  Z  • H,

Boundary conditions regarding transverse electric and magnetic fields at the discontinuity 

planes [5] are found as:

E n  

E 2 2 

H u  

# 2 2

Ex

Ez

Hx

Hz

y  >  o 

y  >  o 
y  >  o 

y  >  o

(3.5)

Implementation of these conditions into (3.2) and (3.3) and simple addition of those two 

equations gives matrix form of TRD operators dispersion equation under LSE polarization.

(3.6)
0 Zxx ~ Zxe,o Zx2 Hx

0 Zx2 Zxx 4* Zz h 2
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Figure 3.2: Network representation of TRD operator equation under LSE polarization

This operator equation must be solved in order to get solutions for a phase constant of even 

and odd modes, normal modes of the symmetric coupled IDG structure.

3.3 T R D  Form ulation for LSM Polarization

LSM polarization is applicable on shallow IDG guide or rather to those modes of the shallow 

guide where the y  directed electric field is a non-negligible field component. The use of Ey as 

the independent variable determines a formulation of admittance integral operators linking 

that electric field and Hz, this being another transverse component at the discontinuity 

planes. The equivalent circuit representation for the LSM polarization is shown in Fig.3.3. 

The integral operator under LSM polarization is defined as

fOO
Hy{y)  =  /  y ( y , y ' ) E z{y')dy'  (3.7)

Jo
Hy =  y - E z
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Figure 3.3: Network representation of TRD operator equation under LSM polarization

The operator equations represented in matrix form, accordingly to the directions from Fig.3.3 

can be written as

•  Regions I & III

Hi -yie,o 0 Ei

h 2 o y 3 e 2

• Region II

Hi yi  i y n Ei

h 2 y n y n e 2

33



W ith implementation of same boundary conditions as in LSE case (3.5), TRD dispersion 

equation for symmetric coupled IDGs under LSM polarization appears as

0 3b i -  3 W  3>12 Ei

0 3̂ 12 3 b i +  3b e 2

The solutions of this matrix operator equation will give the even and odd mode phase con

stants that allow calculation of coupling coefficient between two IDGs.

The replacement of Z u t0 and yu,o  with Z 3 and $3  in (3.6) and (3.10) respectively, leads 

to  TRD formulation of dispersion equation for single IDG under LSE and LSM types of 

polarization.

3.4 F ield  C om ponents

The aim of this section is to determine a electromagnetic field components description for 

each of the three regions from Fig.3.1.

The functions that can correctly model the electric and magnetic field volume distribution 

are limited to those solutions of Maxwell’s equations which satisfy the relevant boundary 

conditions. As direct solutions of Maxwell’s equations for coupled IDG structure with asso

ciated boundary conditions is extremely difficult, the entire volume is separated into three 

homogeneous regions which are related to each other through the previously established TRD  

dispersion equation. For each homogeneous region direct solutions of Maxwell’s equation is 

possible and expressions for five field description will be determined.

As all three regions are assumed to be linear, superposition of solutions under different po

larization, represent solution of Maxwell’s equation itself for the hybrid field description. 

The IDG structure has two 90° metal edges which introduce a singularity to the x and y  

directed field components. This discontinuity translated in terms of boundary conditions 

means that such fields go to infinity at the edge. However, the order of singularity must be 

such to gives finite energy stored in the vicinity of the edge. In [6] it was shown that for a
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90° metal edge the minimum allowable singularity to satisfy this conditions is r” 3, where r 

stands for the radial distance from the edge.

The field in each region will have a different form, although for a guided mode the phase 

constant /? will be the same for all regions, and the continuity of the transverse fields will 

apply at the boundary between the two regions. Bearing in mind that the field variation in 

the z  direction is common for all three regions, the coupled IDG structure will be described 

in terms of field components derived from y  directed potential functions.

The method using vector mode functions for purpose of the field evaluation was adopted here

[7]. The notification used is

• efv and h'v are the electric and magnetic mode functions for LSM polarization, respec

tively.

• e" and h" are vector mode functions for LSE polarization.

The scalar mode functions and determine the vector mode functions. Here, the 

relationship between vector and scalar mode functions is redefined comparing to that given 

by [8] in order to introduce y  directed LSE and LSM polarization.

• LSM polarization:

e'v(x,z) =  —£ - V t $ v( x , z )  (3.11)
Ktl>

K ( x , z ) =

• LSE polarization:

e"(x,z)  =  j / o X  (3.12)
tv

K ( x i z ) = fo xe"
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where k\v and k"v denote the transverse wave numbers and the nabla operator is defined as:

d _ d  _
V* =  —  xQ +  — zQ 

ox  o z

The scalar mode functions and $!„ are normalized, i.e.

J  i r * l t d S = 6rl, (3.13)

I
d S  =  6vll

and the vector mode functions satisfy the following orthogonality relationships: 

• The electric vector mode functions

J  e'„e'„dS =  (3.14)

L
e"e"„ d S  =

J  e'„e"„dS =  0

• The magnetic vector mode functions

f  t iyh'^dS =  (3.15)
J z

/
J z

J

% % d s  =

d S  =  0

The total transverse fields Et and Ht expressed through transmission line notation, which is 

adopted here, gives the form [13]
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Current amplitude

e , =  Y  +  (3.16)
V

h , =  Y  K { v , “ ) K  +  i " ( y , “ ) K
u

and conversely, voltage and current amplitudes can be expressed in terms of the vectors Ht 

and E t and the vector mode functions ev and hv .

•  Voltage amplitude

Vl =  J  e , (x , y , z ) 7 ' t( x , z )  d S  (3.17)

V" =  J  E t( x , y , z )  7 it( x , z ) d S

/ '  =  J  H,(x,  y, z ) V t(x, z)  OS (3.18)

I" =  /  Ht(x ,y ,z )hPt( x , z ) d S

Then, by separating modes the expressions for the field components are established as:

• LSM polarization:

E [ ( x , y , z , u )  =  ^ 2 Vv(y ,u)e '„(x, z )  (3.19)
V

- j u ) t E y ( x , y , z , u )  =  ^ J ' ( y ,u ; )  V* -e’u( x , z )
V

H't(x, y, z , u )  x  yo =  ^ i K y . ^ e ^ x ^ z )
V

H ’y( x , y , z , u )  =  0
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• LSE polarization:

E " { x , y , z , u )  =  ^  V"(y,  a;) e"(x, z)  (3.20)
V

E y ( x , y , z , u )  =  0

H " ( x , y , z , u ) x y Q =  ^ /" ( y ,w ) c j ( a : ,z )
V

- j u n H ^ ( x , y , z , u )  =  -y0 X e”v{ x , z )
V

Having the tools necessary for the derivation of the field components, now we proceed with 

the field evaluation for each region separately under LSE polarization. At the same time, 

the impedance operator equations will be established using a variational principle. The field 

expressions and admittance operator equation for LSM polarization are given in Appendix B. 

Previous equations are valid for discrete eigen-modes. Each of the three regions support 

continuous modes and for these modes the summation should be replaced by integration over 

the y  directed wave number for the semi-infinite region.

roo
y > * . . . = >  /  dpVp . . .  (3.21)

J°

3 .4 .1  R e g io n  I: a q u a rter  o p en  sp a ce

Boundary conditions valid for region I, which is represented in Fig.3.4, differ for two consid

ered types of normal modes. Hence, two different scalar mode functions had to be introduced, 

each relating to the appropriate odd or even symmetry of normal modes.

Even mode

When an even mode magnetic wall is placed at the x =  0 symmetry plane, boundary condi

tions corresponding to this case are given as:

• II y =  0 x =  0 ; 0 < y < o o  h  0 < £ <  d/2; y  =  0

• H z =  d E z / d x  =  0 a; =  0 ; 0 < y < o o
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Figure 3.4: Region I understood as a quarter open space
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•  Ez — d H g /d y  =  0 0 < x < d / 2; y  =  0

• Ex =  d H x/ d x  =  0 x =  0 ; 0 < y < o o  & 0 <  x <  d/2; y  =  0

• Ez , H z , H y are continuous across the interface plane I

•  Hy, E x, H x possess a weak r -1 / 3 type singularity at x =  d/2; y =  0

The scalar mode function is found to be

$ p(x, 2 ) =  J -  sin f c ^ x - ^  exp( - j (3ez)  (3.22)
V 7T v 2tt

Combining this mode function together with the expressions

VP(p ,y)  =  Vp( p ) ^ s m k ypy (3.23)

i P( p , y )  = i p ( p ) \ f ^ co* k ypy

and substituting them into (3.12) next expressions for the five component field description 

under LSE polarization for a quadrant open space is obtained:

Ex =  — [  dpVp(p) , J -  sin kxpx J -  sin py  (3.24)
Jo yJP l + kl P V * V *

Ez =  -  f  dpVp(p) ■ . ̂ xp \ — cos kxpx \  —sin py
Jo \JPI +  k l p V * V7r

J5T. = f  dplp(p) } - J -  cos fcxpx W -  cos py
Jo yjP I +  *2,  V * V?r

[ ° °  ,  T (  , jPe [ 2  . , [2= -  / d p I J p ) —  \ — sin fcXpX W — cos py
Jo y / P f + W p V *  V7r

“  JQ dPyp(p)yjpi + k*p\f^ sin \ / f  sinpyHy =
j u p  0
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Having evaluated expressions for the field components, and by taking advantage of integral 

operator equation (3.18) the link between the electric field Ez and magnetic field Hy at the 

discontinuity plane x =  d{ 2 is derived as:

E z(x =  d / 2 , y)  =  J  d y 'J  d pz \ , z(p) y ^ s m p y  y ^ s m p y ' H y(x =  d /2 , 5/')

Ei  =  Zi ,e( y , y ' ) - H i  (3.25)

where the kernel 2 i >e(y, yf) is symmetrical in variables y  and y', and often is called a Green’s 

function, although strictly speaking it is not a true Green’s function in the normal sense [12]. 

This operator equation is given as:

2 i,e =  J  dpZi tC(p) y j^ -sm py  y j^-smpy'  (3.26)

k d
*i A p ) =  W O  ki  cot(kx„~)

This impedance represents the driving point impedance of a quarter open space region of 

length d/2  in length when an ideal magnetic wall is placed at the x =  0 plane, as shown in 

Fig.3.4.

Odd mode

For the case of odd mode, electric wall is placed as x =  0 plane and boundary conditions 

imposed by such geometry can be written as:

• Hx =  d E x/ d x  =  0 x =  0 ; 0 < y < o o

•  d H y / d x  =  0 x =  0 ; 0 < 2 / < o o

• Hy =  0 0 < x < d/2; y  =  0

• Ez =  d H z/ d x  =  0 x =  0 ; 0 < 2/ <  oo5mm& 0 < x <  d/2; y =  0

• Ez =  dH z / d y  =  0 0 <  x <  x /2; y =  0

• Ez, H z , H y are continuous across the interface plane
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•  H y , E x, H x possess a weak r type singularity at x =  d / 2; y  =  0

The scalar mode function, complying with the above boundary conditions used to evaluate 

field components for odd modes of region I is assumed to be:

Vp(x, z)  =  J - c o s ( k xpx) ~ ^ =  exp( - j /3 0z ) (3.27)
V 7T y/2ir

The equations (3.23) are also valid for odd modes, and using the same procedure as for even 

modes the expressions for field components for odd mode of region I under LSE polarization 

are obtained:

Ex = f  dp Vp(p) ■.==== J^-cos{kxpx) \ f ^ s m ( p y )  (3.28)
J o  y / f i i  +  *2, V * V *

/  dp Vp(p) - -y kiP •••--•*- sin(A;xpa:) J ^ sin(py)
Jo y j  PI +  k l P V x V *

Ey  =  0

X =

=

=  /  d p l p(p) ——fc-p- -  - J ^ s m ( k xpx) J ^ c o s ( p y )
Jo yJPl +  k2xp V * V *

/  dp Ip(p) -  _ J -  cos(kxpx) J -  cos(py)
Jo y/PI +  W P V * V x

H y  =  - J ^ j 0 d p  V M  +  k * p  \ / f  cos(**p*) sin(pt/)

Again applying the same procedure as in the even case, the integral operator equation is

established as

d r°° r°° [ 2  [ 2  d
Ez(x =  - , y )  =  - J  d y ' d p z i i0{ p ) ^ - s m { p y ) ^ - s m ( p y ,) H y ( x  = - , y ' )

El  =  ^ ( y .y ' J - i T i  (3.29)
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giving the impedance operator for odd case as:

Zi,o =  J  dp zi,o(p) ^ e m ( p y )  ^ e m ( p y ' )  (3.30)

*i A p ) =  WPo p  tan(fcIp^)

3 .4 .2  R egion  II: a grounded slab w aveguide

Region II is understood as a grounded dielectric slab waveguide energized in the x directions. 

Grounded slab guide supports two type of waves, discrete and continuous. Bound modes 

surface waves are typified by a field that decays exponentially away from dielectric surface, 

with most of field contained in or near the dielectric. At higher frequencies the field generally 

becomes more tightly bound to  the dielectric. Due to the presence of the dielectric, the phase 

velocity of a surface wave is less then the velocity of light in a vacuum. The grounded slab 

waveguide is shown in Fig.3.5. Two distinct regions appear in this structure, the dielectric

and air regions. Modes of both polarization, TE and TM, can be supported by this dielectric

slab structure.

In order to maintain field continuity between the different regions, the TE modes of grounded 

dielectric slab guide must be chosen when LSE polarization of the IDG is considered.

As continuity of field should be imposed in the air region only, the field components for this 

region will be derived. The scalar mode function for TE modes of dielectric slab waveguide 

are

• discrete modes

M y )  =  K  exp (-7 " y )

A"
h +

— sin (q'lh)

o =  i "  +  q" c° t  {q"h)

y  >  o (3.31)

(3.32)
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YJ - y  directed decay constant for bounded modes in air region 

of a grounded dielectric slab guide

q% - y  directed the bounded mode phase constant in dielectric 

region of a grounded slab guide 

•  continuous modes

v P( y , p )  =  ) J ^ s{TL( t f  +  a ") (3-33)
q"

cot a" =  —  cot q”h
P

q" - y directed the continuous mode phase constant in dielectric 

region of a grounded slab guide

p - the air region wave number for continuous modes in the y  

direction of a grounded dielectric slab guide 

The angle a" above represents the phase shift of a planar wave with propagation constants 

(q'pjP) undergoes upon impinging on the slab and reemerging from it.

The slab guide is a planar structure and assumes two dimensional dependence of field com

ponents. As IDG is a three dimensional structure, field components and mode impedances 

are modified in order to include z  dependence of the field components.

Applying again the procedure described by equations (3.12) to (3.20), the air region field 

components for the TE modes of a grounded dielectric slab waveguide with three-dimensional 

field distribution are derived as:

E z (x, y) =  v "(u ) ~ p jk-Xy- K  ex p (-7 ? y ) +
V \J  hx„ +  Pe,o

+  f  dp V?(p) jkxp J ^ s in (py  +  a") (3.34)
Jo y / % ,  +  d o  V *

Hx(x ,y )  =  ^ 2  ~ r  ^  A” exP(~7^y) +
* y]kl„ +  Pl t0
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Figure 3.5: Region II understood as grounded slab dielectric guide.
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+  /  dpI'e(P) —jJ kxp - sin(py  +  a")
Jo f a  +  Plo  V '

Hy( x ,y )  =  X ]  C C " ) J kl* +  Pl<, A" exp(“ 7"#) +

+  f  dp V"(p) . 3k*p sin (py  +  a")
•/°

The impedance operator linking E z and Hy field components is found to by replacing the 

voltage amplitudes in (3.34) by

roo 1

V „ »  =  - W o /  dy< -------------< e x p ( - 7 :V )g > (y ')  (3.35)
70 + P\,o

V'f {u)  =  - ju f i c  f  dy' 1 =  J ^ - s m ( p y  +  a " ) H v(y')
Jo <Jkl ,  +  Pl<, V,r

which yields to the impedance operator equation

n 3w

Z *9 =  X I  Zi/ exP(- ^ )  ^  exP (-7 ^ V ) (3.36)
t / = i

+ J  dp zp y ?  sin(/>y +  a") y j^  sin (py' +  a")

where mode impedances are found to be

= W/i0 fc2 +  fl2 ' =  W/i0 fc2 + f l 2 (3*37)'  lJ e,o **xp '  r'ejO

N 8W stands for the total number of surface modes which can be supported by the slab guide 

structure. This number depends on slab geometry, dielectric constant and working frequency. 

As described earlier, for the purpose of including the mutual interaction of two discontinuity 

steps on the finite length of dielectric guide, region II was modeled as two port network Fig.3.2 

[13]. In order to make the model correct, the integral operator (3.36) should be modified with 

proper expressions to give the correct sense to the operators Z \ \  and Z \ i .
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The operator Z \\  was defined as driving point impedance of a ground slab dielectric guide of 

length L — a when the other port is short-circuited, or equivalently, an electric wall placed at 

the other end of the waveguide. With correspondence to the transmission line representation, 

and modeling electric field as voltage and magnetic as current on the line, the driving point 

impedance of short-circuited line is

z n  =  Zq coth(jkxa) =  —jZ oco t(kxa) (3.38)

The impedance relating input voltage and output current on the open-ended transmission 

line is established as:

Z\2  =  Zq  r =  ~]Zq CSc(kxd) (3.39)
sin(jA:xa)

Modifying the mode impedances given in (3.37) according to equations (3.38) and (3.39) the 

operators take the form:

N,w ,ivi
Z n  =  - ^ 2  w o , 2 22R2 c o t ( ^ a ) A " e x v ( ~ i ”y )  K exp(-t£V) -

j / = l  x v  '  Pe,o

f°° k l~2 [2
-  j  d p ju p  0 fc2 esc (kxpa) y  -  sin (py  +  a") y  -  sin(py/ +  a") (3.40)

Z 12 =  ~ ^ 2  W o  , 2 k*2o2 csc(kxua) A "e x p ( -7 ”y) A" ex p (~ 7 ”y') -
v — 1 x v  • Pe,o

f°° kx [2 [2
~  yo dp jijjpo 2 " csc(kxpa) y  -  sin(/>2/ +  a") y  -  sin(py; +  a")

These equations are applicable to a slab grounded dielectric guide section where the properties 

of the discontinuity planes on both sides of the section are identical.

However, non-symmetrical case is also very interesting for consideration. Such case may 

occur when metal wall separating dielectric fillings of two coupled IDGs are lowered on 

purpose to control the coupling between the guides. In that case the impedance operator 

matrix describing region II is not symmetric any more. If and $ i p represent scalar mode 

function describing the field distribution on the first discontinuity plane and accordingly $ 21/
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and ^ 2p describe the second discontinuity plane, then impedance integral operators of the 

two port network representation are given by:

roo
(3.41)£ 1 1 =  Y h  *>, »®1(v)® i(»') +

V

r  0 °

/  dpz, ( » ) * ! „ ( / )
'0

Z\2 =  £ * l j ,® l ( v ) * 'a ( v ' ) +  .

V

r o o

/  dpzl 2pV\p{yW2p{.y') 
ro

^21 =  ^ ^ i 2i/^2(y )^ i (y') +
V ^

r o o

/ dpz12p^2p(y)^,ip(y') 
r0

£22 =  ^ 2n t,tf2(y)$!i(y') +
V ^

r o o

/ ^ i i p ,*r2p(y)^2p(y/) 
r0

In order to determine wave numbers of slab region we eliminate kXL) from:

9?  +  = €rkl

- 7 ?  +  kl„ = kl

(3.42)

leading to

9 ?  +  7 ?  =  (€, -  l)*o (3.43)

This equation together with (3.32) forms a system of two non-linear equations and their

graphical solutions is represented on Fig.3.6. Solutions with negative 7 '' are called improper

modes. Such modes are discarded in the physical ground that they do not decay in y  direction 

and therefore carry infinite power.

The number of valid solutions determines the value for N Sw

Combination of (3.43) and (3.32) yields to the alternative transcendental equation:

=  (<Tr -  1 )k% (3.44)
sin (<7"h)

The solutions of this equation in graphical form are shown in Fig.3.7. Function on LHS of 

(3.44) is plotted with solid line and RHS of same equation is represented by a straight doted 

line.
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dielectric region phase constant

Figure 3.6: The graphical representation of solutions for system  of two nonlinear equations 
determining air decay and dielectric phase constant for grounded slab guide under LSE po
larization. The shown results are for the d =  15.24mm thick guide with €r =  2.08 at 15 GHz.
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A  valid solution
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300 400 500100

>
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Figure 3.7: Graphical representation and phase constant solutions obtained from transcen
dental equation (3.44 ). The air decay constant is then determined from (3.32 ). The shown 
results are for the h =  15.24m m  thick dielectric slab guide with er =  2.08 at l h G H z  under 
TE polarization. The zoomed region shows that there are a values of €tK q for which no 
solutions of (3.44 ) exist. This occurs at the frequencies bellow TE  mode cut-off.
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A metal
Figure 3.8: Region III understood as a half open space 

3 .4 .3  R e g io n  III: a  h a lf  o p e n  s p a c e

Region III is treated as a half open space in Fig.3.8 and as such it supports continuous 

modes. The same procedure as in two previous cases, for field components evaluation has 

been involved again.

Boundary conditions for region III are

•  Ex =  dH x/d x  =  0

• E z =  dH z/ d y  =  0

0 < x < o o ; y  =  0

0 <  x < oo; y =  0

•  Hy =  0

•  E ZiH ZiHy

•  H y, E x, H x

0 < x <  oo; y — 0

are continuous across the interface plane II

have a weak r -1 / 3 type singularity at x — d /2  +  a\ y  =  0
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The scalar mode functions satisfying the above boundary conditions under L S E y polarization 

is found as

=  - 4=  exp (~ jk xx)  —L= exp ( - j P e,Qz)  (3.45)
V27T V 2tt

Substitution of these expression into equations (3.12)-(3.20) and taking into account relations 

for the y  dependence of voltage and current magnitude given by (3.23) and (3.24) yields the 

field component expressions:

Ex =  -  f  dp Vp( p ) - 4 =  exp (~ jk xx) J ?  sin (py)  (3.46)
Jo y/klP + t%* w  V *

Ey =  0

E z -  f  dp Vp(p) — - i =  exp(~ jk xx) J ^ s i n ( p y )
Jo yJkh  +  Plo W  V *

Hx =  f  dp Ip(p) l kxp - i =  exp{ - j k xx) J ^ c o s ( p y )
Jo yJkl P +  Plo ^  V T

Hy =  ~ V ^ T  f  dp V p y/ k*p +  Plo  - 4 = exp(-;fcxa:) J |s in (p y )jW p .o  J o  * V 2 t t  V .«

Hz = [  dp Ip(p) —  - i =  exp(-jfcxx) y?cos(^>y)
7° \J kl P +  Plo ^  V ^

The Green’s function representing the impedance operator on the second discontinuity plane, 

giving the driving point impedance for a half open space is

=  J o  d p Z 3( p } \ J ^ s m ( p y ) \ J ^ s l n ( p y ^  ( 3 ,4 T )

Z3(/o) =  u>/i0 - * xp

3.5 T R D  Form ulation for IDG  Array

Consider the IDG structure represented on Fig.3.10 consisting of from three identical guides. 

Applying the same approach as has been done for the case of two coupled IDG, four homo

52



geneous regions can be distinguished in halved structure by placing three separation walls 

as indicated in Fig.3.10. On each of these planes continuity of transverse field should be 

satisfied. The two regions bounded with discontinuity planes will be modeled with two port 

operator networks in order to take into account multiple reflection between discontinuities. 

Two outer regions are represented with driving point impedance operators. Referring to the 

network representation from Fig.3.10, the next identities can be written

Ei =  

E [  =  

E'2 =  

E'i =  

£ "  =  

E ,  =

Z\ • Hi

Z'U H{ +  Z'l 2 -H'2 

Z[2 -H{  +  Z'n -H'2

Z w TT" I 7  TTlt
11 ' -“ 2 T "12 * -“ 3

T T 11 J  * 7  T T , f  12 * 2 * ^22 * -“ 3

— Z3 • HZ

(3.48)

where dot product should be understood in the sense of operator multiplication. 

Applying boundary conditions:

771   771/  rpt __ ipf/ TTlff__ JHt ,  1 — Jh J £ j2 — £ j2 -ts 3 — -Er 3

TT   Tj! TT/ __ TTlt TTlI___ TT
I I I  — El 1 -“ 2 ~  -"2 -“ 3 — " 3

yields the TRD operator equation for three mutually coupled IDGs.

0 Z'li -  Zi Z'u 0 Hi

0 = Z ' l  ZJ2 +  Z " 7 n
^ 1 2

• H2

0 1

0

Z$2 +  z 3 h 3

The same approach can be applied on TRD formulation of non-symmetric multi-line coupled 

IDG structure.
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Figure 3.9: Some proposed and modified IDG structure for tighter coupling
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3.6 Conclusion

The half geometry of symmetric coupled IDGs is divided into three homogeneous sections, 

and complete five components field description under L S E V polarization is provided for each 

of them. Definition of the operator equations linking the transverse components on the 

separation planes and application of field continuity on each of these discontinuity planes 

yields a TRD dispersion equation formulation.

This approach allows treatment of any IDG configuration exhibiting a discontinuity across 

the x direction. Some possible modifications of the classical coupled IDG structure having 

purpose to increase the coupling are depicted in Fig.3.9. This structures are amenable for 

analysis using the described approach.

Moreover, the concept of TRD formulation for IDG array structure was introduced in this 

chapter, too.
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C hapter 4

N um erical Approach and N etw ork  

M odeling

A mathematical model in an integral form has been established in the previous chapter. The 

integral formulation is characterised by use of a Green’s function and its feature is that it re

duces a three dimensional problem to a two dimensional one and two dimensional problem to 

one dimensional. One adventage of the integral equation over approaches not using a Green’s 

function, is that integration is more stable process than differentiation from a numerical point 

of view.

Exact solutions of Maxwell’s equations are found for each of three homogeneous regions which 

comprise the coupled IDGs transverse cross-section shown in Fig.3.1. The field components 

must satisfy boundary conditions on each of two discontinuity planes. Implementation of 

these conditions on field components allow us to formulate a TRD model for coupled IDGs. 

Projections of this mathematical model into suitable numerical form is needed in order to 

obtain solutions for the complete geometry.

The discretisation of the operator equation can be done in either a space or frequency domain 

by using proper set of basis functions. The basis function used in the spectral domain ap

proach must be Fourier transformable. This necessity can inforce the use of a non-optimum
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basis set for expansion. Moreover, when the transverse cross-section is divided into homoge

neous subsections, as is done in our case, the Fourier tansform in each section must be same. 

This requirement can make implementation of the spectral domain approach very difficult or 

even impossible for some applications.

In contrast to the spectral domain approach, the space domain approach is more difficult to 

formulate, but fast convergence set of basis functions can alway be used.

Taking these facts into consideration, the space domain approach is choosen for use on the 

coupled IDGs problem.

4.1 R itz-G alerkin’s M ethod

Generaly speaking, an infinite amount of data is required to exactly describe an electric or 

magnetic field behaviour over some region of space and time. As we can deal only with 

a finite amount of data, some sensible approximation has to be made. For problems with 

linear media this approximation invariably gets a matrix form. To the mathematician this 

is a matter of taking a projection from an infinite dimensional Hilbert space onto a finite 

Euclidean space.

In order to define a Ritz-Galerkin’s method for discretization of an operator equation, we 

start with deterministic problem.

Q, u =  v  (4.1)

where v  represents the known excitation and u is the unknown and wanted field. Q is a linear

operator involving integration or differentiation or possibly both.

Adopting some known function, 6»(s), usually forming a complete set, the known variable u 

can be approximated by expansion as

N

u =  Ui b' ( s ) (4 -2)
1= 1
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In general, approximation could not exactly satisfy (4.2), but to what extent the approxi

mation is good depends on the coefficients tt,-. The exact solution of equation (4.1) is not 

avaliable and it is reason to introduce an error function as

N

R(s)  =  Qu — v  =  ft U{bi(s) — v(s)  (4*3)
t=i

This residual error function [7] is equal to zero only for exact solution of equation (4.2). For 

good approximation residual error function should be kept as low as possible. Choosing, 

like 6j, another set of functions complete over the range s , an inner product ( z ( s ) ,2/(s)) is 

introduced. Rather than asking for the impossible, R (s ) =  0 for all s , R (s)  is set to be 

orthogonal to the trial function set, w. This transforms eqn.(4.3) into N equations with N 

unknown U{ coeficcients

I M s ) ~  v (s)> w j ( s ) j  = 0 (4-4)

and can be written in matrix form as

[ft][«] = M (4.5)

M column vector of elements t*i, U2 . . .  un

M column vector of elements <  u(s),tuj(s) >

[0] - square matrix < n 6 ,(s), w j(s)  >

complete set of functions is used as both the basis and the trial function

set, the previosly described discretization method is known as the Ritz-Galerkin’s approach, 

which very often results in an identical formulation to a variational approach [3].

4.2 D iscretization  o f O perators

As same numerical approach will be applied to discretise both operator equation (3.6) and 

(3.10), the procedure used will be described using a unified notation. In order to do so, the
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operator equation is represented as

A n  — Aie,o A12 X x 0

A12 A n  +  A3 x 2 0
(4.6)

where A — Z  for LSE polarization and A =  y  for LSM case. The operator equations derived 

in chapter 3 can be represented in generalized form as

•  Region I

Region II

roo
-A-ie,o =  I d p \ p\ e 0̂*£\(jy,p )T i(y  , p) 

Jo
(4.7)

roo
A ll ,12 =  ^2u{y) +  I dpXpii^'tiiV', p )^ 2 (y \  p) (4.8)

v=l J°

Region III
roo

A3 =  /  d p \ fi3r>[ l ( y ,p ) ' t 1{ y \ p )
Jo

(4.9)

where T notation stands for scalar mode function describing field distribution along the y 

axis. As this scalar function is the same for regions I and III, the same transformer coefficients 

are valid for operator discretization at these two regions. The mode function can be expanded 

in terms of transformer coefficients and basis set as

(4.10)
N

? i ( y , p )  = ^  ̂P m p £ m { y )
m=1

N

TaW =
m=l

N

T2(3/,p) =
m=l
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Applying the Ritz-Galerkin’s procedure on integral operators (4.7)-(4.9), discretized matrix 

form is reached as

Ai,3 =  /  dpPp(p)TXpli3Pp(p)
Jo
N sW roo

A ll,12 =  K K u ,12R» +  I  dpRp(p)\pn ti2Rp(p)
t A  Jo

(4.11)

(4.12)

The resulting matrix A is N  X  N  matrix where N  stands for number of basis function used in 

the expansion. Pp and R p are vectors of length N  and R v is rectangular transformer matrix 

with dimensions of N aw x  N .  The elements of these matrix are determined accordingly to 

(4.5) as

r°°
Pmp =  <  T i , £ m > =  I d y T i (y ,p )C m(y)  (4.13)

Jo

Rmv — <'- T 2i/ , £ > =  I d y Y 2V{y)Cm(y)
Jo

Rmp =  < T 2, £ m > =  I dyfT2(y 1p)Cm(y)
Jo

By this discretization process an eigen-value problem represented by equation (4.6) is trans

formed into a general eigenvalue matrix equation, or what is often called the determinental

equation:

A n — Aief0 A12 

A12 A n  +  A3

Although the solution of above equation is often straightforward, it is not automatic or direct, 

and has to be searched for solutions in a way that cannot be infalliable. This represents the 

major disadvantage of problem formulated in the above described manner.

det =  0 (4.14)
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4.3 Choice o f B asis Function

At the heart of the discretisation process lies the choice of basis function. The set of basis 

functions forms a multidimensional space in which the unknown field is defined by coordi

nates corresponding to the projection of that point onto each axis. These projections are 

mathematicaly formulated by equations (4.13). By discretising, operator equation is trans

formed into the function space [4].

The accuracy and extent of numerical labour involved in discretisation depends on how closely 

the expansion set Cm(y)  approximates the expected field distribution across the observed vol

ume. It means that the choice of basis set is crucial for the accurecy and efficiency of the 

numerical process.

The unknown field, Hy(y)  for LSM or E y(y) for LSM case, has to be modeled accurately 

on two discontinuity planes to achieve fast convergence by using a just few terms from the 

expansion set. The bound modes, which are considered in this thesis, decay exponentially in 

the y  direction. The basis function should be able to model such kind of behavior. Moreover, 

the expansion function should also model the field to good extent for y =  0, where the 90° 

metal edge is present. As known [1] such a metal edge will concentrate the field in the imme

diate vicinity and introduce singularity to the field components transverse to such an edge. 

The order of singularity is determined from the condition that the energy in the vicinity of 

edge must be finite for phisicaly relizable systems. Finite amount of energy close to the 90° 

metal wedge is secured by a r -1 / 3 type of singularity, where r  is the radial distance from 

the wedge. Taking into account influence of both if the metal edges occuring in the IDG 

geometry, the function modeling correctly the singularity is given by

wa(y)  =  V 1/3 r j 1/3 (4.15)

where ri is the distance from the edge at x =  d /2 , y =  0 and 7*2 is the distance from the edge 

placed at x =  d /2  -f a, y  =  0. The function(4.15), when transformed into a form valid at the
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discontinuity planes, is written:

- 1 / 3

w B =  y  1/3

where only first term shows singular behavior.

Now we seek for a polynomial function which has the same weight factor to that given by the 

above equation. The orthogonal relationship valid for the generalized Laguerre polynomial 

functions is
N?l n =  m

f  w0 Ln(y)L ^(y)dy  =  <
Jo

where the weight function and normalization coefficient are given by

& a > - 1 (4.17)
0 n m

wo =  y ae y 
N 2 _  r ( q  +  n +  1)

n!

The weight function is not quite identical to the function describing singular behavior due to 

presence of metal wedge (4.16), but for a  =  —1/3  they have same value at y  =  0. Also both 

functions tends to zero when y  goes to infinity.

Thus an appropriate complete set of basis functions is provided by the generalized Lagguere 

polynomial. The first five functions from the basis set are depicted in Fig.4.1 and expressed 

mathematically as

=i h  ( y ° a ) i n  ( £ )  ' exp { - £ ) ( i )  (4-18)
with the orthogonality relationship

r  Cm Ln ( - 5 ! - )  d l«m» (4.19)
Jo \ y o d J  \ y o a J  \ y o d j

The scale parameter yQ is introduced in order to improve convergence and its definition and
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Figure 4.1: First five terms from the expansion function set
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procedure for evaluation is given in the next section.

Having defined the expansion set (4.18) and subsistuting it back into (4.13), the evaluation 

of the transformer coefficients becomes possible. The mathemaical steps involved in the 

transformer coefficients derivation are presented in Appendix C.

4.4 Form ulation o f Scale Param eters

The scale parameter was introduced to improve convergence, or in other words, to make the 

expansion in terms of the basis functions a better fit to the unknown field. Although the idea 

is clear, the scale parameter evaluation remains undefined, and the aim of this section is to 

find a way of determining its value.

We start from the problem that an arbitrary vector X  needs to be approximated in terms 

of linear combination of the independent set { e i , e 2 . .  .en}. We understand by the best ap-
•  •  . JL

proximation to mean the linear combination 23l=1 6tet- that is closest to X .  In other words,

for the best approximation the error function, X  — &*e» , is smallest. An orthonormal

set {<£i,<f>2y. .  .4>n} can be constructed from {&i,62, • • • > &n} by the use of the Gram-Schmidt 

procedure. Since both expansion sets generate the same linear manifold, the approximation 

of X will be done in terms of <f> functions , X  =  2 ? = i The reason for this approach is 

that the coefficients {a ,} are more easily calculated than coefficients {&,-}.

Now we should find coefficients {a ,} which give the best approximation, or what mathemat- 

icaly can be formulated through an error function

k

/error =  | |*  -  (4.20)
t'=l

From [2] it has be found that the error function can be expanded as

k  k

/error =  | |* | |2 +  £  |<  X,<t>i >  - a , f  -  £  |<  > |2 (4.21)
1=1 i=l
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from where it is clear that minimum of error function is obtained by choosing a; = <  X ,  fa > . 

These optimal values for the coefficients are known as the Fourier coefficients of X with 

respect to the orthonormal set {fa } .

The error function has been reduced to

k

! error =  | |* | |2 -  £  |<  X , 4>i > |2 (4.22)
1 =  1

The notification ||X ||2 stands for the norm induced by the scalar product defined as

\\X\\2 = < X t X * >  (4.23)

In order to determine optimal scale factor, the scalar mode function T 2„ will be expanded 

in terms of the basis function Cm{y ) and the error function will be minimized through some 

optimisation procedure, giving optimal values for yQ.

The error function, given by (4.22) is reformulated in terms of the IDG ’s parameters as:

N aw /  N  \

ferror{yo ,N ,freq ,€T,h )  =  ^  ( llT 2«,(y)||2 ~  l< T 2„ (y ),Cm(y)  > |2 1 (4.24)
i/—l V m=l /

This error function represents a measure of completeness of the basis function set for the 

discrete modes of a grounded slab dielectric waveguide. Beside the parameters listed in 

the above equation, scale parameters are dependant upon type of polarization since mode 

function T 2i/ is different for the two types of polarization considered in this thesis.

4.5 F in ite  N etw ork R epresentation

The discretized dispersion equation (4.14) is amenable for network representation. The dis

crete and continuous waves are transformed into a fictional N-port network which is eligible 

for ordinary network analysis. The network representation for coupled symmetric IDGs is 

depicted in Fig.4.2.
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I

Region I Region II i Region HI

Figure 4.2: Equivalent network representation of discretized operator equations

Transformers R p and R v project continuous and discrete modes for each of three regions 

into the N-port network. Application of standard network theory makes solution for much 

more complicated IDG geometries easily obtainable.

For the analysis of non-symmetric the coupled IDGs same approach as for the symmetric 

case can be applied by extending the analysis to include some parameters of network analysis 

performed in terms of chain matrix. The non-symmetric coupled IDG structure is shown 

in Fig.4.3. The TRD formulation is represented through an impedance operator equivalent 

circuit and depicted on same figure. Instead of using a determinantal equation approach to 

analyse the overall structure, which has already been described for the case o f a symmetric 

triple coupled IDG array in chapter 2, the analysis of this structure will be carried out by 

the cascade multiplication of the chain matrices of the individual discrete networks.

If we denote by

(4.25)
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Figure 4.3: Non-symmetric coupled IDGs and equivalent circuit representation
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impedance matrix of discretised operators, then the corresponding chain matrix is formulated 

as
— 1 rj rr-\

Ci =
Z ll iZ 21i Z \\ iZ 21iZ22i — Zi2i

Z2\{Z22i
(4.26)

The chain matrix of overal structure is obtained by simple multiplication of three chain 

matrices each one coresponding to one of the three regions shown in Fig4.3.

Ct — Cidgl * Cmetalwall * Cidg2

The chain matrix is transfered back into impedance form by:

(4.27)

C ll tC 2i t —C u tC 2 *tC22t +  Ci2t Z n t Z\2t

C 2\t —C 2i tC22t Zzit Zz2t
(4.28)

Bearing in mind that the network is terminated on both sides by the driving point impedance 

of a half open space, the determinantal equation for non-symmetric coupled IDGs has the 

form
Z n t — Zz Z\2t

Z2\t Z22t +  Zz
det =  0 (4.29)

The above equation has to be searched for eigen-values of phase constant, which then enable 

calculation of coupling coefficient between two IDGs having different geometries.

4.6 Form ulation o f Field C om ponents

Once having solved dispersion equation (4.14), the amplitude coefficients of unknown field 

can be evaluated. These coefficients can not be obtained by direct substitution of /?ej0 into the 

dispersion equation, because such a solution represent singular values for the inverse matrix. 

The new matrix form is nedded in order to solve (4.6) for the vectors X \  and X 2 . In order to 

avoid singulararity o f the inverse matrix, the discrete modes of region II are pulled out and 

the impedance operator for this region comprises only the Green’s function for continuous
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waves of the dielectric slab region. The determinental equation is then reformulated as

< E dz l , C >

< E d2, C >

Zf, -  Zx z u

+  Z3

X i

X 2
(4.30)

where superscript d  stands for discrete and c for continuous modes. From the above equations 

the amplitude coelicients in vector form are found as

[Xx] =  ([Ztx - Z x ]  +  [ Z t i  [Ztx +  z 3 -  Z tJ T 1 [Zfi - Z x -  Z fd ) '  [< E j ,  C(y)  >  

[X2] =  [Z\x +  Z z - Z { J - ' [ Z \ x - Z x - Z \ 2\{Xx\ (4.31)

Having these two sets of amplitude coefficients, the unknown field Hy on both discontinuity 

planes is calculated from

N

H ,(x  =  d /2 ,y )  =  =  [* ,]" [£ ]
«=1
N

Hy(x =  d /2  +  a ,y )  =  ^ X 2l£ , =  [X2]T[£]

(4.32)

i=1

Knowing the Hy field and puting it back into (4.6), evaluation of Ez becomes an easy task. 

Other field components are obtainable by application of Maxwell’s equation over the volume 

of each of the three regions.

• Region I The unknown field on the first discontinuity plane is

Hy(x =  d /  2 ,y )  =  d p V /M y J k l ,  +  P2\ f ^  sin(fcI(, ^ ) ^  sin(p^)

=  X {  C (4.33)

By multiplying both sides with sin(py) and taking inner product over the seminfi- 

nite y  range, the field component expressions take the form
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I

II

Figure 4.4: Transmission line modeling x  dependance of H y under LSE polarisation  

Even mode

Hy(x ,y )  =

E z ( x , y )  =

Odd modes

t°° Y T P ( n \  P) P)
(4.35)

r dp s-m£rf/2) ' H  Sin(̂ X > Sin(py) (4-34)
"  r d n u * ‘ k lP  I,s S l / 2 )  £

H y( x , y )

E z ( x , y )

=  Jo00 d p c o i k % )  J l  c c H k ^

= i :  + £ c o ^ £ d / 2j

• Region II First of all the x dependance of the field components in the second 

region should be determined. This dependance is modeled by a transmission line having 

excitation on both ends, as represented in Fig.4.4. The expression for the total current 

on the line is found to be

, ,  . _ sinfcx( a - x )  r sinfcxx _ . . _ . x
I(x) = h 7-̂ 7 +  I?——7—  =  ¥>(a -  *) + (4.36)

sin kxa sin kxa

Magnetic field is modeled as current, and thus the transverse field components are
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represented as

/ ° ° L t d  Sinkxp(a -  x)  s inkxpx \  [ 2  .
-  /  < X I R P ------- '- +  X I R P . p f V - s m (a  +  py)

Jo I sin kxpa * y sin kxpa J V 7r

=  5 3  { h M A a “  x ) +  e™
V

+  J  dp {hp(pp(a - x )  +  I2p(pp(x )}  y j^  sin(a +  py)

Ez{x,y)  =  ^ ^ ( h v Z v \ \ - l 2 » z » \ 2 ) V v { p . - x )

+ 53 - h v Z u u )  <Pv(x) | e ™

+  j  j f  ( / ip * p i i  -  h p Z p u )  <Pp(a -  x )

sin (a +  py)

(4.37)

with <

' ' 
*11 JU

f

cot kxa
i

Zl2
\  J , sink* a

• Region III The transverse field components in this region were calculated as

H y ( x , y )  =  X ^ P p ( p ) ^ s m p y e  3k*f>x

E z ( x , y )  =  J  zZp ( p ) X Z P p { p ) y j ^ s m p y e - 3kx‘>x

(4.38)

4.7 Conclusion

In this chapter Ritz-Galerkin’s procedure for discretization of operator equation has been 

described. The choice of basis set governs both, the rate of convergence and the final accuracy 

of the solutions. In order to make convergence faster, the scale parameter,yQ, is introduced
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into the basis function. By finding optimal value of this parameter, the basis function fits 

the unknown field better and less terms are needed in the expansions. This is very benefitial 

for the accuracy and efficency of the chosen approach.

The formulation of the problem in terms of a transverse equivalent circuit enables application 

of the same approach to other similar structures. Finite network representation for discretised 

impedance operators makes solutions for non-symmetrical coupled structure easy avaliable. 

The chain matrix multiplication is only needed to extend the analysis to coupled arrays of 

IDG lines and similar structures.
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C hapter 7

C onclusion

The objective of this concluding chapter is to bring together the results of the precidings 

chapters and to address the major achievements of this work. This should help us to assess 

significance of the results and their implication on the other areas of prospective work.

7.1 R eview  o f th e Presented  Work

This thesis presents work concerning the analysis of the coupled Inset Dielectric Guides 

(IDGs) and application of the developed analytical tools to the all passive circuits which 

comprise coupled IDG structures. Generally speaking, dielectric guides are intended for use 

in integrated circuit operating at the frequencies above 100 GHz.

Chapter I addresses the importance of milimetre waves and gives a brief comparison of IDG 

with other similar dielectric guiding structures such as image guide and insular guide. A 

brief survey of previous work on the coupled dielectric guides is presented on the basis of 

numerical methods used and results achieved.

The theory of coupled lines were developed a long time ago, and in Chapter 2 a brief intro

duction to two different types of analysis are given. For the case when symmetric lines are 

considered, the coupled structure can be divided by plane of symmetry and analysis is then 

performed in terms of even and odd mode depending on the symmetry plane nature. Odd
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mode is enforced by placing metall wall as symmetry plane while magnetic wall corresponds 

to the even mode. In this way the analysis of a four port networks is reduced to the analysis 

of two two-port networks under odd and even symmetry. The general Miller’s theory con

cerning coupling betweeq two non-identical lines is outlined in Chapter 2 , as well.

The formulation of problem, based upon the Transverse Resonance Diffraction (TRD) method 

is introduced in Chapter 3. The entire structure of the coupled IDG is divided into two halves 

by a symmetry plane, and such half structure is separated further into three homogeneous 

regions listed as:

•  Region I : a quarter open space

•  Region II : a grounded slab dielectric guide

•  Region III : a half open space

These three regions are linked through the TRD formulation giving a set of coupled integral 

equations. This procedure requires different formulation of integral operators for the coupling 

of deep slot IDG from that one performed for shallow slot IDG. The derivation of field com

ponents of all three regions under LSE polarization and formulation of impedance integral

operators is given in the same chapter. The same procedure but covering the case of coupling

between shallow guides under LSM polarization is presented in Appendix B. The formulated 

matrix operator equations had to be solved by numerical means. In order to do so Galerkin’s 

method for integral operator discretisation is used, transforming the integral operators into 

matrices. The order of matrix is determined by number of basis function involved in the 

discretisation procedure,but it also governs the computing time and convergence behavior 

of the numerical method. So if the basis functions closely fit unknown field, fewer of them  

should be used in the expansion, thereby achieving fast convergence and reduced computing 

time. The detailed description of the procedure, as well as choice of basis function capable 

of simulating singular behavior of field close to the metal edges of a IDG slot, is presented in 

Chapter 4.

The results obtained from a dispersion equation solutions are presented in Chapter 5. As a
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result of good basis function selection, the convergence is fast. Indeed, on comparison with 

measured results, only four or five terms are needed in the expansion set to get an accuracy 

better than 0.5%. The fundamental hybrid field for a deep slot IDG is, to good approxi

mation, LSEoi  with constant electric field variation across the deep slot, while fundamental 

mode of shallow IDG structure is L S M \\ .  The results obtained for a single line are verified 

against both with measured and computed data obtained by other authors [1] utilizing a 

similar approach.

An approximate way of calculating propagation constant for deep and shallow single IDGs 

is established and shows rather good agreement with measured data. The coupling between 

coupled lines is characterized in terms of (3t and (30, the propagation constants for even and 

odd modes. The difference between the two propagation constants is less pronounced at 

higher frequency and consequently the coupling between two guides decreases as frequency 

increases.

The measured characteristic of coupled IDG lines shows that such a structure gives forward 

coupling with very good isolation and return loss characteristics. Coupling characteristic 

versus frequency is represented by smooth curve having negative slope and the explanation 

for such behavior is found in the fact that field is more strongly confined to the dielectric 

insets at higher frequency, so giving less coupling. The coupling dependance on permittivity 

of dielectric filling was investigated as well. In order to maintain the same monomode band

width, the two IDGs having dielectric fillings of different permittivity must possess different 

slot cross-sections too. It was found that IDG with high permittivity dielectric filling does 

not suffer from strong coupling even for very small separation between two adjacent guides. 

Consequently, such structure is amenable for application in technologies where circuit inte

gration on large scale is needed. Another good feature of the high permittivity IDG is that 

it has smaller dimensions of slot cross-section than the low permittivity counterparts, aimed 

for the same frequency range of monomode operation.

Once the solutions for /3 are found, the field components can be computed and plots for 

several modes of single and coupled guides are avaliable for deep and shallow IDG structures.
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The singularity in the held pattern due to the presence of the edge discontinuity was clearly 

seen.

Chapter 6 is concerned with design of multihole IDG couplers. An additional mechanism, 

coupling through holes, was introduced in order to compensate the inherent frequency de

pendance of the IDG coupling characteristic. The similarity between the field distribution of 

the T E qi mode of metal wave guide and the L S E qi IDG mode allows use of Bethe’s theory 

for calculating the coupling through the holes.

The synthesis of couplers presented is based on an approach utilizing analysis and optimiza

tion procedures. Two types of analysis were developed:

• first, coupling mechanisms are treated as independent and total coupling is found as 

sum of discrete coupling through holes and continuous wave coupling through air region 

of the coupled IDG section.

• second, coupling mechanisms are considered in their interaction. Hole coupling is mod

eled by means of a lumped circuit which is placed in the middle of a transmission line 

section having the same propagation parameters as the IDG line. Analysis is again 

performed in terms of even and odd modes. Correction due to finite thickness of the 

separation wall is modeled by the means of a reactive susceptance and included in the 

lumped circuit model.

Two couplers are synthesized, for -3dB and -lOdB coupling levels. The maximal obtainable 

flat coupling is presented in graphic form and can be used for the purpose of guide spacing 

and coupler length assessment.

The theory developed is compared with measurements done on the —3dB  and —10dB  coupler 

test pieces. The responses measured do not obey power conservation rule and the application 

of unitary principle on coupler scattering parameters yields conclusion that 10 -  20% of 

power missing. Knowing that line loss of single IDG is very small [2], the extra power loss is 

associated with radiation loss. Bearing this in mind, the agreement between predicated and 

measured data is rather very good.
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The approach where the coupling mechanisms are considered as interacting, tends to better 

fit experimentally obtained data, especially for the higher levels of the coupled power. The 

measured isolation and return loss are of much higher level than analytically predicated. 

The real coupled IDG isolation is masked by direct energy coupling between two aperture of 

adjacent transition sections. In order to produce IDG couplers of very high directivity, the 

metal wave guide to IDG transition of better characteristics is needed.

7.2 Suggested  Further Work

The work on coupled IDG lines presented here opens up possibility of coupled line application 

in the design of a passive components such couplers and filters. Approach developed and 

initially aimed for the analysis of single layer IDGs can be easily applied on the multilayer 

IDG structure. Knowing that multilayered structure has wider monomode range [3], the 

design of IDG circuits with monomode operation over very wide frequency range becomes 

reality.

The design procedures for the multi-hole IDG coupler was developed in this thesis, but other 

coupler types also need investigation. There may be no strong need for non-symmetrical 

IDG coupler design because of the broadness that can be achieved by other means. Brunch 

line couplers are desirable for both broad-band and narrow-band applications and for the 

sake of simplicity. For accurate branch line coupler design the characterization of step and T 

junction discontinuity is needed.

The filter design utilizing coupled IDG lines is simply an extension of work being done on the 

coupler design side. The characterization for short circuit termination of IDG line section is 

desired for the parallel fine filter design. The investigation of IDG type resonators will give 

the necessary base for development of IDG cavity filters.

The metal waveguide to IDG transition analysis ought to provide a good knowledge database 

which then can be used in the design of an efficient launcher. A good performance metal 

wave guide-IDG launcher is highly desirable in order to help IDG finds its way for practical
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applications.

Integration of active elements, such as diodes into the IDG line allows devices as switches, 

mixers and oscillator to be made in IDG technology.

Multi-hole IDG coupling theory lends itself for design of IDG launchers, antenna feeders and 

by controlling hole aperture status with diode placed in the hole, various kinds of electrically 

adjustable passive and active IDG devices could be produced.

Summarized list of possible IDG development:

•  extension of the developed approach to include analysis of multilayer coupled IDGs and 

probably metal strip loaded IDG structures

• development of effective metal waveguide-to-IDG launcher and antenna feeders utilizing 

multihole coupled IDG structures

• characterization of IDG resonator and its application to the design of cavity filters and 

parallel resonator filters.

• characterization of step and T junction type discontinuity for application to the branch 

line couplers and development of ladder type matching networks and filters.

• integration of diodes into IDG and its use for the purpose of mixer, switch and oscillator 

design or controlling coupling level or antenna radiation pattern.

7.3 Concluding Rem arks

After a recent reduction in defense spending the research into dielectric guides suffers a lack 

of funding. The present microwave systems use frequency range well under 100GHz where 

conventional transmission structures based on metal strips such as micro-strip, strip-line and 

fin-line have undoubtable advantages over dielectric guides.

Dielectric guide structures when loaded with metal strips give new dimension to the mi

crowave circuit design and their system application. In order to make efficient use of such
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structures, good knowledge of dielectric guides on their own is needed. The IDG is a more 

practical variant of image guide, and might have a leading role in this development. The 

excellency of this approach already has been proven on the antenna designs [4, 5, 6],

The work concerning coupled IDG lines and presented in this thesis, will find its way to 

the practical applications quite easily. The broadband multihole IDG couplers exhibit eas

ily obtained broadness which exceeds that one of any other previously reported dielectric 

guide based coupler. This just proves the need for continuous research into possible IDG 

applications.
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A p p e n d i x  A

Forward and Backw ard C oupling

Two coupled symmetric lines are shown in F ig .A .l. If such structure is analysed in terms of 

even and odd modes than chain matrix equation can be written as

V le ,0 cos 0 e ,o jZ e ,o  sin 0 e>o V4e,o

I le ,o -rr-— sin 9e 0 cos 6eo
^e,o e,o

(A .l)

The corresponding reflection and transmission coefficients for even and odd mode are defined

2 H h- 3
-------------------------------------------------------- symmetry plane

1 —1.'-  -  . I -  4

Figure A .l: Symmetric Coupled Lines
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as

r c,0 — j

Ze,Q Zc
~Z7 ~-Z7To sin 0.e,o

(A.2)
Je,o

T'-° ~  s C,0

where

Sg(o — 2 cos 0e,o 4” J
Zc,o +  z c sin 0e>o (A.3)
Zc ^e,o.

For the unit incident wave at port 1, the amplitudes of scattered waves coming out of ports 

are given as

h

62

64

^ (r e +  r 0)

l ( r ‘ "  r<))

\ ( . n - T 0)

\ ( T e  +  T<,)

(A.4)

• If we assume that characteristic impedances of even and odd modes are identical and 

equal to the characteristic impedance, then above equations get the simple form:

61 =  0 62 =  0

63 =  j  sin - e ■ — =  j  sin cO

a  ~ 6 0  a64 =  cos — - —  =  cos cu

(A.5)

A coupler having the parameters that meets previously stated assumption, is ideally 

matched and has perfect isolation. At the same time such a coupler belongs to the 

family of forward couplers. The above model fits an ideal IDG coupler behavior too.
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•  For the case when phase constants for even and odd mode are equal, i.e. 9e =  90 =  9 

and in addition Zc =  yJZGZQ is satisfied, the expressions for scattered waves get a form:

6 i = 0 (A.6)

62

64

\J Ze/Z0 — yj Z J Z ' sin#
2 cos # +  3 [ s /Z e/Z 0 4- y /Z Q/ Z e

=  0

2 C O S  9 +  J y jZ c/Z Q +  y jZ Q/ Zt

The coupled port is number 2 in Fig.A .l which puts this coupler in the family of 

backward couplers. The backward coupling behavior is common for TEM line couplers.

Both couplers are perfectly matched and isolated and phases of through and coupled port 

are in quadrature.
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A ppendix B

LSM  Polarisation

B .l  Field D escription

When IDG geometry is one of shallow type, then the hybrid modes E H mn become predomi

nant and the field distribution of these modes can be successfully approximated by the LSM 

polarization. This polarization gives five components field description rather than full six 

field representation, omitting the Hy component from the six field component model. Anal

ysis of shallow IDG structures under LSM polarization is performed on same manner as it 

was done for the LSE polarization case, and here only the field components and admittance 

operator expressions are given for each of the three regions.

B .1 .1  R e g io n :  q u a r te r  o p e n  sp a c e  

Odd mode

The scalar mode function is

z)  =  J -  sin(kxpx) - ^ =  exp(-;/?* ) (B .l)
V 7T y/2w
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when replaced in (3.11)-(3.19) together with

V (y ,p )  =  Vpy J^ sm (py)  (B.2)

i ( y ,p )  =  Ip \J^ ™ s(py)

gives the field components

E x =  -  f  dp Vp(p) _ J ^ fL = =  * / l c o s ( k xpx) \ /^ c o s ( p y )  (B.3)
Jo y f f t  +  k*p v *  v *

f  dp Vp(p) j E l =  J ? -s \n {k xpx) J ^ s m ( p y )
Jo y / K  +  Wp V * V ^

Ey ~ JQ dP Ip \ j  kl P +  P2 \ J ^  sin (kxpx) y j ^  cos (py)

f  d p l p(p) ■■■■ J ^ s m ( k xpx) J ^ -cos(py )
Jo y  Po + k lp V r V *

f  d p l p{ p ) — k. xp.  cos(kxpx ) J ^  cos(py) (B.4)
Jo y /P i +  % ,  V * V *

E ,  =

Ht =

Hy =  0

utilizing the same boundary conditions as given for the LSE case, see page 41. The integral 

admittance operator linking transverse E y and H z components is defined as

r o o

E y( y ) =  d t f Y { y , y f ) H , U )  (B.5)
Jo

Using orthogonality property of mode functions (3.18) an expression for current amplitude

Ip is found as

(p) =  **>£ f  dy' 1 i / f  . 1 j  l / f  cos (py') E v{yf) (B.6)
Jo J kl„ +  0o V sin( M )  V *
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Subsistuting this into (B.4) gives

Hz(x =  d /2 ,y )  =  J  dy' I  d p y lf0 ^ c o s (py) yj^-cos(py') Ey(x =  d /2 , 3/') (B.7)

from where the kernel is separated as the admittance operator

/  3/1.0 y ^ c o s (p y )  cos(py') (B.8)

S'i.o =  cot(fc*',5 )

Even mode

Without repeating derivation for even symmetry field components of a quarter open space 

region, only the expression for the admittance operator is given as:

y i , t  =  /  2/1,e ^ c o s ( p y )  y |c o s ( p t / )  (B.9)

yi,« =  tan(^ p ^ )

In order to check validity of this expression, the fact that Ye must be equal to Y0 when d goes 

to infinity, i.e.

lim y e =  lim y o (B.10)
d—* oo d—*oo

has been used to prove validity of admittance operators.

The equation for wavenumber conservation, in the case of a bounded modes in a lossless 

media /3 > ko gives always purely imaginary values for kxp. The trigonometric functions are 

transformed to hyperbolic form making both operator equations (B.8) and (B.9) to be of the 

same sign. As tanh and coth get unity value when their argument tends to infinity, Y0 and 

Ye become equal, and the identity (B.10) is satisfied.
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B .1 .2  R eg io n  II: a  g ro u n d ed  slab  g u id e

The admittance operator for TM modes of grounded slab guide, by analogy with (3.36) can 

be described as

N sw roo
Y *9 ~  J 2  y» M l / )  +  /  d p y p y) y') ( B .l l )

Jo

with

Vv = k%„ +  p  Vl>= k l ,  +  p
kxi/

The scalar functions for TM modes of grounded dielectric slab in air region are formulated 

as [4]:

• discrete mode:

*„(y)  =  A’ue - < y y >  0 (B.12)

with A[
2er

h + €rhk [1 + l k / q2 (1 + erK'kh)]

and 0 =  l'v ~ — tan {q'vh)

• continuous mode:

$p {y ,p )  =  \ j^ c o s ( p y  +  a') y > 0 (B.13)

k
tan a 1 =  —— tan(kph) 

p€r

To take into account of multiple reflection occurring between the two discontinuity steps, re

gion II was modeled as a II two-port network. The network representation of the model based 

on integral admittance operators is presented in Fig.3.3. According to eq n (B .ll)  complete
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expressions for integral operators are given by:

'«auf roo
Y u  =  -  V  y» ta,n(kxl/a) $„(y)  Q ^y')  -  /  d p y p ta,n(kxpa) $„(/>, y) $ p(p, y')

t A  Jo
N« u >  r O O

Yu  =  -  V  csc(kxl/a) $„(y) $ u{y') -  /  d p y p csc(kxpa) $ „ (p ,y )  $ P(/>,2/')
t A  Jo

le kwith y„ =  ]u>€ ki +p2 Vp =  JuC j'.i ^ 2  The values for attenuation constant 7 '

are obtainable as solutions of transcendental equation

'2
%

€r - l  | 1
er cos 2(q'„h)_

=  ( tT - l ) k l  (B.14)

As the cut-off frequency for TM waves in grounded slab dielectric guide is equal to zero, at 

least one valid solution of above equation will be avaliable above zero frequency. The graphic 

representation of eqn.(B.14) is depicted in F ig.B .l.

B .1 .3  R e g io n  III: a  h a lf  o p e n  sp a c e

The scalar mode function used for the evaluation of half open space field components under 

LSM polarization is given by:

$ ( z ,z )  =  PJkxX ^==expj/3z  (B.15)

Subsistution of the above equation into (3.11) and (3.19) together with

V(V,p)  = Ip sin(py)

I{y ,P )  = Ipcos(py)
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gives the field description consisting of five components: 

Ex ==  -  f  dp V„{p) } k x f -  - i =  exp(~ ]k xx)  sin(py)  (B.16)
Jo ^  V *

1 f ° °  /  1 p 2
Ey =  JJe J 0 dp Ip^  V k*p +  v l ?  exp(-;fcxx) y  -  cos(p2/)

/  dp Vp(p) 3A e-°- - - j =  exp(-;A;xx) sin (py)
•/ o  yj*lp + K,o ^  V  *

/  dp Ip{p) - ^ =  exp(-;fcxz) J ? -  cos(py)
Jo y/k*p +  Plo ^  V x

E t =

==  -  f  dp Ip{p) ■ jkxp ~ ^ =  exp(-jfcxx) cos (py)

The admittance operator relating transverse electric field i?y to transverse magnetic field Hz 

at the second discontinuity plane rr =  0, is found as:

y* = Jq dpy3pyf̂ cos(py) \J ĉos{py') (B-17)

with y3p =  ue kxp
k l p  + P l o

This operator equation tends to be equal to the 3̂ i,e and y \ tQ given by (B.9) and (B.8), when 

d —► oo. And indeed

lim 3>ite =  lim yho =  J>3 (B.18)
d —+ oo a—►oo

All admittance operators appearing in TRD dispersion equation (3.10) have been evaluated 

and make the solution possible for the case of L S M y polarization applied on symmetrically 

coupled IDG structure.
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Figure B .l: Graphical representation for solutions of transcendental equation (B .14 ). The 
solutions are for LSM modes of d =  10.16mm thick grounded guide with eT =  2.08 at f= 15 GHz.
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A ppendix  C

Transformer Coefficients

The coefficient Pmp has been defined as

sin (py)  

cos (py)
P  = T  —  -  P ' - V '  *m p  J o  N m ^ ^ a \ y 0a )  m~1V tt

=  f ° °  _ J _  f ±  ( J L )  _1/3 e- y / M L- m  f l  I sin (pay fa)
Jo N m-1  V 2/o \ y 0a j  V 7T I cos(payfa)

dy  (C .l)

► d (y /a )

where upper terms in brackets reefer to LSE and lower for LSM polarisation. 

From [3] the integrals are found to be:

0 0  /*.A o —c xr oo
Jo X e <

sin bx 

cos bx
L^(cx)dx =

eTj(n+S)/2r(A_4g + lj fen +  (_ l)" + « (c +  ; ( ,) -A -» -l]

6 = [6,aCc > 0;KA > - ! - < ]

(C.2)

(C.3)
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which give, after applying some complex number identities:

1 I 2 a r ( m  — 1 / 3 )  {py0a)m~l
mp Nm-i V Vo (m -  1)! [1 + { p y 0a ) 2] i 2m - ^ l 2

y
sin

x [(m — 1)tt/ 2 +  (m — l/3)arc<<7(p?/0a)]
cos

( C .4 )

Same procedure as above is employed in order to get expressions for transformer coefficients 

of continuum mode of region II.

R
1 I 2a T(m  — 1 / 3 )  (pyQa )m —1

Nm-\  V ^ Vo ( m - l ) !  [1 +  (p3/0a)2](2m-i)/2 

sin [a" +  (m — 1)tt/2 +  (m — l/3)arc<5r(p2/0a)] 

cos [o' -f- (m — l)7r/2 +  (m — l/3)arc^(/?t/0a)]
(C.5)

In order to get the transformer coefficients for the discrete mode of region II, integral given 

by equations (4.13) had to be solved. From [2] the solution is found as

r oo
/  x xe~pxL x(cx)dx =

Jo

T ( \  +  n + l ) ( p - c ) n
n JpA+n+l ( C .6 )

with conditions [Up > 0; > — 1] which are satisfied in our case and give us the expression:

m —1

7 k
y0a

Rmk —
A"

N - m —\ V Vo I / [

r ( m -  1 / 3 )  

(m — 1)!

(1 +

Ik

7  k
(C .7 )

► 2/0a)m_1/ 3
7  A:
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C hapter 5

N um erical and M easured R esu lts

This chapter presents results obtained from the numerically solved dispersion equation and 

their comparison with available measured data. The results are gathered for both deep and 

shallow slot IDG geometry, and also for single and coupled IDG structures.

The dispersion equation capable of modeling deep or shallow IDG in coupled or in single 

configuration is derived in chapter 4 and given with (4.6). The solutions of this equation are 

found by searching for such values of /?e>0 that give zero value for determinantal function. 

The function is calculated for successive values of /?e>0 and when the change of sign occurs an 

iterative procedure is applied to find root of this non-linear equation. Since the dispersion 

equation is transcendental equation, same method has to be repeated for every sign change 

in order to cover all possible solutions.

5.1 C om putational M ethod and N um erical A lgorithm s

The programs which determine the solutions for the dispersion equation were written in 

Fortran77 and run on HP9000 series 825 computer under UNIX operating system. The 

presentation of computational method follows the same chronological order in which it was 

developed.

First of all, the solutions of transcendental equation (3.44) are needed in order to determine
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decay and phase constants for TE modes of grounded slab dielectric guide. The iteration 

method used to find solutions of this non-linear equation is based on Muller’s method of 

successive bisections and inverse parabolic interpolation, which starts with initial bounds. It 

is assumed that values of the non-linear function at the initial bounds are of different sign. 

The graphic representation of the transcendental equation giving solutions for phase constant 

in dielectric slab under LSE polarization was depicted in Fig. 3.7, and that one representing 

solutions under LSM polarization was shown in Fig. B .l. The number of valid solutions 

determines number of propagating bound modes. Beside valid there are invalid solutions too, 

but these have negative decay constant in the y-direction which is characteristic of physically 

non-realizable solutions. Such invalid solutions of (3.44) should be ignored. Also, for the case 

of LSE polarization, a valid solution may not exist for frequencies below the cut-off frequency 

of TE waves in grounded dielectric slab guide. On other hand at least one solution of (B.14) 

is always available for LSM polarization since the cut-off frequency for TM modes is equal to 

zero.

Having solutions for decay and propagation constant of slab guide in air and dielectric region 

respectively, the scale factors used to improve convergence in the basis function, (4.18), can be 

found. The optimal values for y0 are obtained through an optimization procedure searching 

for minimum of the error function defined in chapter 4 and given by (4.24). The optimization 

routine used is capable of finding a quasi-global function minimum within a defined and 

constrained volume. A certain number of starting points over such a volume are specified 

and about 4 iterations are done from each point. The five points which result in the lowest 

values of the error function are allowed to continue to convergence. The local minimum with 

the lowest function value is taken to be the global minimum. As the number of starting 

points is increased, the probability that the minimum found is really the global minimum is 

increased [1].

After determining scale factors for certain IDG geometry, frequency and type of polarization, 

transformer coefficients Pp, R v and R p are due to be evaluated. Beside the evaluation of the 

Gamma function, the calculation of these coefficients is straightforward, and values for Pp,
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R v and R p are easy numerically obtainable.

Moving further forward, the terms of the discretized impedance matrix have to  be evaluated. 

Real difficulties start with the evaluation of impedance matrix terms for the continuous 

modes, where good numerical integration procedure becomes necessary. The integrations 

have to be performed on integrand functions having a singular value at p  =  ko and therefore 

only the principal value of the integrals given by (4.7-4.9) can be determined [2]. As the 

integration space stretches over a semi-infinite range, a procedure transforming semi-infinite 

integration into two integrals over bounded range is applied [3]. The impedance matrix is 

often very badly balanced. Many elements of the matrix are large and particular care must 

be taken in the evaluation of these elements. Numerical integration is based on a routine 

where the integral is computed as the sum of estimates over suitably chosen subintervals of 

the given interval of integration. Starting with the interval of integration itself as the first 

such subinterval, cautious Romberg extrapolation is used to find an acceptable estimate on 

a given subinterval. If this attempt fails, the subinterval is divided into two subintervals of 

equal length, and each of them is considered separately [4].

When all terms in the matrix equation are evaluated, the calculation of determinantal function 

is the next step. For a given frequency the determinant value is scanned over the range 

of interest ( ko <  /3e,o <  y/^rk:0). The determinant calculation is based on an algorithm  

which computes LU decomposition of row wise permutation of the complex matrix. Row 

equilibration and partial pivoting are used [5]. When a change of sign occurs in the returned 

value for the determinant then the zero (or pole) lay between two successive values of /?, 

and an iteration procedure is applied to find solution and determine whether the successive 

values found a zero or pole of the function. The used iteration algorithm is a combination 

of linear interpolation, inverse quadratic interpolation and bisection. Convergence is usually 

superlinear [6]. Since the dispersion equation is transcendental, the method of search has to 

be repeated for all possible solutions.

This computational method is applied for the calculation of both even and odd mode phase 

constants, enabling dispersion characterization of coupled IDGs.
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5.2 Scale Factor

The scale factor y0 was introduced in (4.18) in order to make basis set better fit the unknown 

held and consequently to improve convergence. An optimization procedure is used to deter

mine optimal values of yQ and the relevant error function was defined in chapter 4.

The parameters that influence the value of the scale factors are permittivity and thickness 

of dielectric filling, slot height, working frequency, type of polarization and number of basis 

function used in the field expansion. Tables Tab.5.1 and Tab.5.2 contain optimal values of 

the scale factor for deep slot IDG under LSE polarization with two types of dielectric fill

ing. The deep slot IDG with specified dimensions and physical parameters is monomode 

over frequency range exceeding X band. The dimensions of the slot filled with dielectric of 

higher permittivity are scaled down in order to maintain monomode operation over the same 

frequency range.

The scale coefficients for shallow slot IDG configuration are given in Tab.5.3 for two type of 

polarization. The shallow guide with the dimensions given is over moded, and can support 

both LSE and LSM modes over the specified frequency range. Therefore coefficients for both 

types of polarization have been evaluated for this type of slot configuration.

As previously stated the scale factor depends on number of function used in the expansion. 

From the tables it is apparent that dependence on number of functions is significant when 

only a few functions are used. When four or more basis functions are used the same scale 

factor can be used regardless of expansion order. From the above observation the conclu

sion can be drawn that sufficiently good approximation is achieved with at least four basis 

functions incorporated into the expansion set.

5.3 M ode Classification

The field supported by the IDG structure is hybrid in nature due to presence of the 90° metal 

edge discontinuity. Such field needs six components for a complete description. The modes 

in the hybrid representation are designated H E mn or E H mn according to which component
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freq GHz 7 8 9 10 11 12 13

N =1 1.12670 .805714 .632422 .523287 .447903 .392486 .349969
N =2 .897430 .641780 .503748 .416816 .356771 .312629 .278763
N =3 .879810 .629179 .493857 .408633 .349766 .306491 .273290
N =4 .877593 .627594 .492613 .407603 .348885 .305719 .272601
N =5 .877287 .627376 .492441 .407462 .348765 .305613 .272507

Table 5.1: Computed values for optimal scale constants under L S E q\  polarization for deep 
slot (10.16 x 15.24mm) IDG geometry with PTFE dielectric filling, er =  2.08

freq GHz 7 8 9 10 11 12 13

N=1 1.27030 .883860 .683987 .561101 .477504 .416725 .370406
N =2 1.01180 .704028 .544822 .446937 .380349 .331936 .295042
N =3 .991979 .690205 .534125 .438162 .372881 .325420 .289242
N =4 .989479 .688466 .532780 .437058 .371942 .324599 .288520
N =5 .989135 .688227 .532594 .437058 .371813 .324486 .288420

Table 5.2: Computed values for optimal scale constants under LSEoi  polarization for deep 
slot (3.24 x 4.86mm) IDG geometry with ceramic dielectric filling, er =  10.8

freq GHz 7 8 9 10 11 12 13
L S M \ \  mode

N=1 .336340 .273391 .230311 .199149 .175614 .157193 .142420
N =2 .267907 .217766 .183451 .158629 .139883 .125210 .113443
N =3 .262647 .213490 .179849 .155515 .137137 .122752 .111215
N =4 .261985 .212953 .179396 .155123 .136791 .122442 .110935
N =5 .261894 .212878 .179334 .155069 .136744 .122400 .110896

L S E q i mode
N=1 1.16380 .574296 .386857 .294182 .238730 .201680
N =2 .926990 .457448 .308145 .234326 .190157 .160646

COII .908790 .448467 .302095 .229726 .185423 .157491

II .906501 .447337 .301334 .229147 .185953 .157095
N =5 .906186 .447181 .301229 .229067 .185889 .157040

Table 5.3: Computed values for scale constants under LSM and LSE polarization for shallow 
slot (22.86 x 10.16mm) IDG geometry with PTFE dielectric filling, er =  2.08. First column 
for L S E qi mode is empty because cut-off frequency of that mode is above 7 GHz.
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Ex Hx Ey Hy Ez Hz

H E mn yes yes yes yes yes yes H y dominates over E y
LSEmn yes yes no yes yes yes E y does not exist

EHmn yes yes yes yes yes yes Ey dominates over H y
LSMmn yes yes yes no yes yes Hy does not exist

Table 5.4: Tabular comparison between hybrid, LSE and LSM modes in terms of the field 
components existence.

is dominant with respect to y , [7].

As the analysis in this thesis is performed in terms of LSE and LSM polarization having five 

components field description, the modes will be denoted as L S E mn and L S M mn. It will be 

shown that hybrid modes are approximated to an excellent extent by the L S E  and L S M  

modes.

For LSEmn modes, the E y component does not exist and these modes corresponds to H E mn 

hybrid modes where Hy is the dominant field wrt. y. By analogy L S M mn approximate the 

E H mn hybrid modes. The pair of indices nm  designates the order of functional dependence 

of a particular mode in the x and y direction respectively.

The similarity between hybrid and approximate modes is compared through the existence 

of particular field components, as shown in Tab.5.4. As presented in [7], deep slot IDG has 

HEoi  as the dominant mode, and the E y component exist only in the vicinity of the metal 

edge discontinuities. Therefore, such an IDG structure is amenable for LSE analysis. On 

other hand shallow slot IDG has E H \ \  as the fundamental mode and the LSM polarization 

is applicable on this type of structure. Since shallow IDG shows a very narrow monomode 

range of operation, LSE analysis should be performed in order to characterize H E mn higher 

order modes of the shallow IDG structure.

The designation for normal degenerate modes of coupled IDGs differs from that of single IDG 

nomenclature only in appearance of e and o prefixes. These indicate the symmetry of the 

Hertzian potential in the x direction.
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5.4 Convergence Test

The convergence of the applied numerical method is dependent on the choice of basis function. 

In order to make the basis function fit unknown field better, and consequently improve 

convergence, the scale parameter y0 was introduced. This factor is a function of frequency, 

guide cross-section geometry and type of polarization.

The convergence behavior of the adopted numerical approach is shown in Tab.5.5 for several 

frequencies in the monomode operating range of a single, deep slot IDG line. Comparing 

with measured values, this test shows that an accuracy of 0.5% is achieved in the calculation 

of propagation constant using only five basis functions as an expansion set. Such a degree of 

accuracy does probably exceed the precision to which the permittivity of the IDG filling is 

known, and so might be thought of as being excessive.

The convergence test for shallow single IDG is depicted in Tab.5.6. The achieved accuracy for 

L S M n  modes using an expansion set consists from five basis function is better than 0.3%. 

The properties of coupled IDGs rely on the relatively small difference between the phase 

constants of the even and odd modes, and five or six basis functions were used as the expansion 

set in order to achieve desired accuracy and stability.

The discretized impedance operator matrix for coupled lines is not so well balanced as it is case 

for single IDG. Consequently, convergence is not so steady and oscillatory behavior is noticed. 

Also convergence stability is noticed to be better for the analysis of coupled IDGs under LSM 

polarization than for the LSE case. As evaluation of matrix elements include such complex 

numerical task as estimation of principal value of an integral over a semi-infinite range, the 

produced numerical integration error together with wavy feature of integrand function make 

convergence slower and with oscillatory behavior. Also convergence behavior is different for 

even and odd modes of the same polarization. For instance, even mode under LSE converges 

slower than the odd mode. This is due to presence of the magnetic wall which makes the 

elements of the matrix very badly balanced, and greater integration error and instability are 

introduced. An identical statement is valid for odd modes under LSM polarization.
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freq GHz 7 8 9 10 11 12 13
N =3 162.319 193.489 224.563 255.413 285.766 316.061 346.345
N =4 163.544 195.432 227.649 259.871 291.907 323.643 355.129
N =5 163.505 195.860 228.282 260.761 293.185 325.409 357.149

Meas. 160.056 198.088 230.297 262.138 293.914 325.806 357.388

Table 5.5: Convergence test for the L S E q i  mode propagation constant in a deep slot IDG, 
and comparison with measured data. The IDG is filled with PTFE and has 10.16 X 15.24mm  
for the slot dimensions.

freq GHz 8 9 10 11 12 13 14
L S M u  mode

N =3 203.130 240.570 276.533 311.477 345.679 379.313
N =4 203.947 240.565 276.532 311.477 345.676 379.309
N =5 203.128 240.566 276.532 311.473 345.680 379.309

L S E qi mode

II CO 170.603 198.841 236.789 253.048 288.263 320.435 353.305

IIS5 170.942 198.465 228.708 260.044 291.538 324.549 352.363
N =5 170.919 199.182 229.694 262.240 289.864 324.552 357.612

Table 5.6: Convergence test for the propagation constants of L S M \ \  and L S E qi modes in 
a shallow slot IDG, and comparison with measured data. The IDG is filled with PTFE and 
has 22.86 X 10.16mm for the slot dimensions.
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5.5 A pproxim ate C alculation o f (3 for Single ID G

A useful approximate procedure is established in order to simplify solutions for phase constant 

of single IDG. The modes of a single IDG were designated to the L S M mn or L S E mn. Which 

mode is dominant depends on the geometry of slot used and the operating frequency. The 

indices mn  stands for the order of the functional dependence of a particular mode. If m x / a  

is assumed to be the x directed wave number, and the phase constant in y  direction (qn) is 

assigned to be the phase constant of a grounded dielectric slab having the same thickness as 

the dielectric IDG filling, then the propagating constant is calculated simply by

Solutions obtained from this equation on deep and shallow IDG geometries over the X band 

frequency range are presented in Tab.5.7. The difference between the values for (3 gained by 

solving full dispersion equation (4.6) and those obtained by approximation (5.1) is negligible 

for all practical applications. The error is something bigger for frequencies close to cut-off 

and decrease steadily as frequency is increased. This is believed to be due tighter energy 

confinement within the dielectric at higher frequencies, where the approximation becomes 

more accurate.

In order to endorse the above statement, the shallow IDG structure is analysed over Qu 

frequency band. Two modes, L S M U and L S E q\ are supported by shallow structure of 

cross section having 8x3m m  and filled with PTFE. The phase constants obtained through 

approximate and full calculations procedure are represented in Tab.5.8. This data is shown 

graphically in Fig.5.1.

As the agreement between computed and approximate values is apparent and more than 

satisfactory, this leads us to the conclusion that the phase constant can be calculated quite 

accurately through use of approximate equation. If the validity of approximate solution needs 

to be checked or accuracy enhanced, then a search routine utilizing full numerical procedure 

is applied in neighborhood of the approximate solution.
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freq GHz 7 8 9 10 11 12 13 14

ko 147.196 168.244 189.252 210.280 231.308 252.336 273.364

L S E q i Modes of Deep Slot IDG
9i 135.102 143.174 149.487 154.581 158.791 162.336 165.386

Papp 163.750 195.902 228.367 260.916 293.381 325.711 357.885
Pcom 163.728 194.918 227.217 260.387 292.849 325.236 357.388

L S M u  Modes of Shallow Slot IDG
9i 109.524 115.311 119.793 123.345 126.222 128.600 130.594 132.301

Papp 203.417 240.810 276.741 311.663 345.847 379.465
Pcom 203.128 240.566 276.532 311.473 345.680 379.309

L S E qi Modes of Shallow Slot IDG
9i 152.950 172.076 186.463 197.806 207.054 214.762 221.309 226.951

Papp 171.033 199.322 229.882 261.564 293.799 326.276 358.831
Pcom 170.919 199.288 230.038 261.403 293.580 326.023 357.612

Table 5.7: Tabular comparison between data obtained through application of approximate 
equation (5.1 ) and that calculated by dispersion equation (4.6 ). The considered guides have 
10.16 x 15.24mm and 22.86 x 10.16mm for deep and shallow slot dimensions,respectively. 
Dielectric filing is assumed to be PTFE.

freq GHz 25 27 29 30 31 33 35
k0 525.701 567.757 609.813 630.841 651.869 693.926 735.982

L S M i i  Modes of Shallow Slot IDG
9i 375.792 386.969 396.577 400.903 404.934 412.239 418.675

Papp 640.075 703.877 767.749 799.669 831.574 895.308 958.910
Pcom 641.376 703.324 765.627 796.863 828.158 890.816 953.530

L S E qi Modes of Shallow Slot IDG
9i 538.169 574.901 605.896 619.726 632.582 655.837 676.339

Papp 526.227 574.901 628.671 657.083 686.260 740.338 808.076
Pcom 526.227 574.665 628.425 656.708 685.783 740.700 807.505

Table 5.8: Tabular comparison between approximate and computed data for phase constant 
of shallow IDG structure over Qu frequency band. The dimensions of guide cross-section are 
8.0x3.0m m  and dielectric inset is made from PTFE.
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Figure 5.1: Approximate and computed curves for effective dielectric constant o f shallow 
guide, having slot dimensions 8.0x3.0m m . Dielectric filling is PTFE.
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5.6 F ield C om ponent Patterns

Having solved the dispersion equation (4.6), the amplitude coefficients of the unknown field 

are obtained by substitution of these solutions into (4.31). The x dependence of the field in 

region II is modeled by a transmission line having kx propagation constant with excitation 

at both ends as is shown in Fig.4.4. Expressions for the H y and E z field components in each 

region are given in chapter 4, and other components , if needed, can be evaluated from the 

wave equation. The overall field pattern is reached by merging three independent patterns, 

each corresponding to a different region. Numerical difficulties occur when the field pattern 

is calculated for modes of the L S E on type. For these modes the propagation constant in x 

direction is equal to zero, and expressions given by (4.36) should be reformulated for L S E on 

modes. The proper limit as kx —► 0 must be taken giving:

„  , . „  sin kx(a — x)  __ s m k xx .___.
Hy(x)  =  Hy 1 lim ----- — ---------- h Hy2 lim —  (5.2)

kx-> o sinfcxa kx-+osmkxa

-  77 a ~ X M IT X-  Hyl— — + Hy2-
a a

Field plots in the air region over the single IDG structure are shown in Figs.5.2-5.4. The 

amplitude coefficients at the two discontinuity planes for both the unknown H y field in the 

case of a coupled deep slot IDGs, and for the Ey field in the case of a shallow IDG coupled 

structure, are presented in Tab.5.9.

The electric field E z of the L S E q\ mode for deep and shallow IDG geometries is very low in 

magnitude, usually three orders smaller than magnitude of Hy. Due this, the contribution 

of continuous mode to the field magnitude becomes significant and it gives a raise to wavy 

field pattern. On contrary, the amplitudes of discrete components for L S M u  are significantly 

larger than amplitude of continuous wave and field pattern does not show wavy tendency. 

The pattern of y  directed fields includes spikes close at the 90° metal corner edges, due to  

the singularity of these fields at these points.
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o

Hy field

Figure 5.2: Two field components of L S E q\ mode in air region over deep slot IDG. Slot 
dimensions are 10.16 x 15.24 and dielectric inset is made from PT FE . Working frequency is 
10GHz. The dashed lines in 2D projection stand for discontinuity planes as shown in Fig. 3.1.
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Ez field

Hy field

Figure 5.3: Two field components of L S E q\ mode in air region over shallow slot IDG. Slot 
dimensions are 22.86 x 10.16mm and dielectric inset is made from PT FE . Working frequency 
is 12GHz. The dashed lines in 2D projection stand for discontinuity planes as shown in 
Fig. 3.1.
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Figure 5.4: Two field components of L S M U mode in air region over deep slot IDG. Slot 
dimensions are 22.86 x 10.16 and dielectric inset is made from PTFE . Working frequency is 
12GHz. The dashed lines in 2D projection stand for discontinuity planes as shown in Fig. 3.1.
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Ez odd Ez even

Hy odd Hy even

Figure 5.5: Two field components of even and odd symmetry for LSEoi  mode in air region 
over deep slot coupled IDGs. Slot dimensions are 10.16 x 15.24mm and dielectric inset is 
made from PTFE . Guides are separated by 2m m . Working frequency is 10GHz. The dashed 
lines in 2D projection stand for discontinuity planes as shown in Fig. 3.1.
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Ez even

Hy even

Figure 5.6: Two field components of even and odd symmetry for L S E q i  mode in air region 
over shallow slot coupled IDGs. Slot dimensions are 22.86 x 10.16mm and dielectric inset is 
made from PTFE. Guides are separated by 2mm. Working frequency is 12GHz. The dashed 
lines in 2D projection stand for discontinuity planes as shown in Fig. 3.1.
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Hz odd Hz even

Ey even

Figure 5.7: Two field components of even and odd symmetry for L S M n  mode in air region 
over shallow slot coupled IDGs. Slot dimensions are 22.86 x 10.16mm and dielectric inset is 
made from PTFE. Guides are separated by 2mm. Working frequency is 12GHz. The dashed 
lines in 2D projection stand for discontinuity planes as shown in Fig. 3.1.



L S E q\ mode of deep IDG
odd x1 0.0, -7.13079 0.0, -7.96772 0.0, -72.3556 0 .0 , - 72.5522 0.0, -71.0467

x2 0.0, +7-23885 0.0, +72.7978 0.0,+78.1495 0 .0 , + 711.347 0 .0 , + 76.4532
even X x 0.0,+7-01732 0.0, —.7.85008 0.0, -72.7812 0 .0 ,-74 .0276 0.0 ,-71 .9709

x2 0.0, —7-05175 0.0, -;18 .129 0.0, -765.539 0.0, -7105.97 0.0, -767.064
L S E qi mode of shallow IDG

odd Xx 0.0, -7.90726 0.0, -74.5258 0.0, -77.6048 0.0, -74.8248 0.0, -7.48541
x2 0.0,+717.746 0.0, +7104.47 0.0, +7223.38 0.0,+7228.09 0 .0 , + 793.020

even Xx 0.0,+71.9487 0.0, +75.5833 0.0,+711.425 0.0,+77.4193 0.0,+72.7445
X 2 0.0,+7147.82 0.0,+7899.14 0.0, -71959.5 0.0, -72034.6 0.0, -7842.22

L S M \ \  mode of shallow IDG
odd Xx 0.0 ,-7 .10940 0.0, -7.77810 0.0, -72.3513 0 .0 ,-73 .5215 0 .0 , - 72.2034

x2 0.0, -730.260 0.0 ,-7181.42 0.0, -7438.01 0.0, -7544.98 0.0, -7265.83
even Xx 0.0,+7.37816 0.0, +72.3546 0.0,+75.1446 0.0, +76.0474 0.0,+72.6927

x2 0.0 ,-731.157
T—1
l>-O001p0

0.0, -7450.68 0.0, -7560.60 0.0, -7273.35

Table 5.9: Amplitude coefficients on two interface planes for L S E qi mode in deep and shallow 
IDG geometry and for LSMxx mode of shallow guide. The IDG is filled with PTFE and 10.16 
x 15.24mm are dimensions of a deep slot while 22.86 x 10.16mm are dimensions for a shallow 
slot.

5.7 Single ID G  Characterization

As was previously mentioned, the same dispersion equation derived for purpose of analysing 

the coupled symmetric IDG can be used for single IDG characterization by a simple mod

ification. All that is necessary is to replace the integral impedance/admittance operator 

representing region I by an operator relating the transverse field components in region III. 

However, the behavior of the single IDG was investigated before [7], and those results will be 

compared with data obtained through the approach presented in this thesis.

Two basic slot configurations were considered, deep and shallow slot IDGs. While deep slot 

mode properties were well known, the modes of shallow slot IDG had received less attention 

and have been investigated here. The shallow slot IDG is very easily overmoded, and this is 

endorsed by numerical computation and measured data. Both types of analysis, concerning 

models for LSE and LSM polarization, were employed in order to detect and characterize all 

possible modes of the shallow IDG geometry.
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5 .7 .1  D e e p  S lo t  ID G

By deep slot IDG we understand such geometry where the height is greater than the slot 

width. The basic mode of such guide is assigned to the L S E q\ and the guide exhibits 

monomode behavior over a considerable frequency range. The IDG having slot dimensions

10.16 x  15.24mm and filled with PTFE possess a wider monomode bandwidth range than X 

band metal-waveguide. The dispersion characteristic of such a guide is presented in Fig.5.8 

along with experimentally obtained data. The method used for phase constant measurement 

will be described in section 9 of this chapter.

The two data sets are in good agreement. For frequencies close to cut-off the greater difference 

between two data sets is caused by using a five field LSE polarization rather than a full six 

components hybrid description. On the same figure numerical data obtained as a result of the 

application of hybrid modes [7] is also presented. Very small differences between our set and 

that obtained for hybrid modes shows excellent compatibility between H E mn and L S E mn 

modes for this geometry.

The field pattern of the H y and Ez components in air region over completely filled deep slot 

IDG is presented in Fig.5.2. As was shown in [7], the E z component is very weak and exists 

only in the vicinity of metal edges. The continuous field component is of same magnitude 

as discrete field component and wavy field pattern is obtained for z  directed electric field 

component of deep slotted IDG. The magnitude of discrete Hy field is two orders bigger than 

that of continuous wave, and due this the field is steady and has no wavy pattern. Two spikes 

which can be noticed close to the metal edges are caused by field singularity at these points.

5 .7 .2  S h a llow  S lo t  ID G

By shallow IDG geometry is called that one, where width of the slot is greater than its height. 

The investigated shallow IDG had slot dimensions 22.86 x 10.16mm that were chosen for the 

sake of compatibility with X-band rectangular metal waveguide, from which the IDG can be 

efficiently feed by the use of a dielectric taper within a metal waveguide transition section.
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Figure 5.8: Calculated and measured dispersion characteristics of L S E 01 mode in deep slot 
IDG. Slot dimensions are 10.16 x 15.24mm and dielectric inset is made from PTFE.
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The dielectric filling was made from PTFE, having c =  2.08 for dielectric constant.

The numerical data for this guide were collected over the 7 —14G H z  frequency range and com

pared with experimentally obtained data for the frequencies between 8 and 12G H z .  Three 

types of modes show up, and are assigned to L S E qi , L S M \ \  and L S E n  which are listed in 

order of appearance. The dispersion characteristics for these three modes are depicted in 

Fig.5.9. The results obtained from phase constant measurements are also presented on the 

same figure, and show good agreement with numerically predicted data. In order to avoid 

overmoding and make practical use of the shallow IDG, the slot dimensions should be chosen 

in such way as to promote monomode operation in the structure. Monomode operation re

quires that the width/height ratio of the shallow slot should be quite high, when the L S M \ \  

would emerge as the fundamental mode and monomode operation is achieved over a moderate 

frequency rangy [8].

5.8 Coupled ID G  Characterization

The aim of this thesis was to investigate coupling between two IDGs and this section is the 

core of that investigation. The presented results are gained through extensive numerical 

computation and compared with data obtained by measurements.

Both types of coupled IDGs, deep and shallow slot geometry, were treated numerically but 

empirical results only are available for deep IDG configuration. The phase constants of all 

modes were measured by the use of a resonant section technique. Different orientation of the 

magnetic probes in that technique allow us to pick up resonant frequencies for modes of both 

symmetries simultaneously from a single measurement, and reduce errors in data reading.

5 .8 .1  C o u p lin g  B e tw e e n  D e e p  Id en tica l ID G s

Analysis is performed on symmetrically coupled deep slot IDGs, having dimensions 10.16 x 

15.24mm.  Dielectric filling was made from PTFE. The numerical results are presented in 

terms of effective dielectric constants for even and odd modes and a curves representing these
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Figure 5.9: Calculated and measured dispersion characteristic for L S E q\ and L S M n  modes, 
supported by shallow IDG structure. Slot dimensions are 22.86 x 10.16mm and dielectric 
inset is made from PTFE.
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data along with measured points for a separation of d =  0.47mm between the guides are 

shown in Fig.5.10. The same sets of data but for a separation of d =  1.7mm is presented in 

tabular form in Tab.5.10. From both figure and table presentations it is apparent that the 

phase constants of even and odd modes tend to have much more similar values for higher 

working frequencies. Such behavior consequently means that coupling gets weaker as the 

working frequency is increasing. Knowing that more energy is confined inside dielectric as 

frequency is increased, explains the above stated frequency characteristic of coupled deep slot 

IDG.

In order to investigate the influence of dielectric permittivity on coupling characteristic, 

deep slot IDG configuration having er =  10.8 for a ceramic filling was analysed. To be 

able to compare results for different guide filling, the considered guides should support the 

same mode and have equal monomode bandwidth. This requirements are met when the 

dimensions of slot filled with dielectric of higher permittivity are scaled down. It has been 

found that 3.24 x 4.86mm filed with er =  10.8 supports the same mode and have roughly 

the same monomode bandwidth as IDG having 10.16 x 15.24mm for slot and er =  2.08. The 

dispersion characteristic for this guide is presented in terms of effective dielectric constant 

for even and odd modes in Fig.5.11.

It was noticed from the measurements that the IDG coupler gives a very low level of return 

loss and that the isolation was excellent. For this reasons the return and isolation power 

loss were neglected. Under such assumption the (2.13) can be understood in the sense of 

scattering parameters, 5i2& 5i3, for the case when the unit incident wave is applied on one 

of the symmetrically coupled IDG ports:

\S13\ =  10 x log (s in 2 ~  X l ) )  (5.3)

The Fig.5.12 shows the coupling per coupled guide wavelength against guide separation plot

ted for two guides with different slot dimensions and filling permittivity, but both with the 

same monomode frequency range. Clearly the higher permittivity filling acts to concentrate

1 0 1



freq Pe (3? PI PT
8 197.489 198.140 202.860 203.107
9 228.563 229.973 233.421 234.282

10 260.413 260.902 264.761 265.424
11 292.766 292.233 296.185 296.165
12 324.061 323.782 326.409 326.638

Table 5.10: Computed and measured values for (3 of deep slot coupled IDGs. Slot dimensions 
are 10.16 X 15.24mm, filled with PT FE  and separated by s =  1.7mm
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Figure 5.10: Calculated and measured dispersion characteristic for L S E q\ mode of even and 
odd symmetry supported by deep slot symmetrically coupled IDGs. Slot dimensions are
10.16 X 15.24mm and dielectric inserts are made from PTFE. Separation between lines is 
d =  0.5m m
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Figure 5.11: Dispersion characteristic for even and odd symmetry of L S E q i  mode supported  
by deep slot coupled IDGs. Slot dimensions are 3.24 x 4.86mm and dielectric inserts have 
e =  10.8 for dielectric permittivity. Separation between lines is 0.1m m .
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the field within the slot and hence reduce the coupling effect. The guide wavelength in the 

high permittivity case is almost half that of the PTFE filled case, so when considering equal 

physical separation the difference in coupling is even more pronounced. Consequently, in 

applications where coupling is to be avoided, smaller IDGs filled with a high permittivity 

material should be used. Such an application might be the implementation of parallel sets of 

radiating dipoles in a two dimensional array antenna. The reduction in guide size facilitates 

the avoidance of grating lobes, while the coupling could be reduced to negligible level, greatly 

simplifying analysis and design.

5 .8 .2  C o u p lin g  C h a r a c te r is t ic s  for S h a llow  S lo t ID G s

As previously stated, shallow IDG structure does not appear to have wide monomode op

eration range and because that, coupling characteristics for fundamental mode of LSE and 

LSM polarization have been investigated. The dimensions of the shallow slot used in numer

ical computation are 22.86 X 10.16mm, and these dimensions were chosen for compatibility 

with metal rectangular X band waveguide which was used for the purpose of IDG excitation. 

The IDG structure of these dimensions is capable of supporting L S E q\  and L S M \ \  modes 

over the X band frequency range. The dispersion characteristic of normal modes for the 

coupled shallow IDG structure is presented in Fig.5.13, for a separation of 0.5mm between 

guides. The coupling is much greater for the L S M \ \  mode than for the L S E qi mode of the 

same IDG structure. The coupling characteristic versus shallow guide separation is presented 

in Fig.5.14. Comparing this characteristic with the relevant characteristic of deep IDGs, 

Fig.5.12, we notice that for small separations coupling is much stronger between the shallow 

slots, while for separations of 0.08 d j \ g and greater, the coupling factors are quite similar.

5.9 Phase Constant M easurem ents

For the sake of accurate assessment, a comparison between computed and measured data is 

needed. The measurements were carried out at the X band frequency range, 8 — 12.4<j I I z,
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Figure 5.12: Coupling characteristic for LSEoi  mode versus guide separation between deep 
IDGs. IDG1 has dielectric inset made from PT FE  and is set to fill 10.16 x 15.24mm slot 
completely. IDG2 slot 3 .2 4 x 4 .86mm is full-filled with ceramic dielectric inset having cr =  10.8 
for dielectric permittivity. Working frequency is 9.0 GHz.
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Figure 5.13: Dispersion characteristic for LSEoi  and L S M \\  modes of even and odd sym 
metry supported by shallow slot coupled IDGs. Slot dimensions are 22.86 x 10.16mm and 
dielectric inset is made from PTFE.
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Figure 5.14: Coupling characteristic for L S M u  mode of shallow IDG structure versus guide 
separation. Slot dimensions are 22.86 X 10.16mm and dielectric inset is made from PTFE. 
Working frequency is 11.0 GHz.
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due to availability of equipment and measuring system. The measurement of the single IDG 

line has been already described [7], and here we pay attention only to the phase constant 

measurements of coupled IDG lines.

The initial test piece was made from aluminum into which deep slots had been machined. A 

separation wall between two slots was made to be removable, and this enabled measurements 

for various spacings between the lines. In order to facilitate the transition from rectangular 

waveguide to IDG, the slots were kept at the standard rectangular waveguide width, 10.16mm  

for the X band. A drawing of the test jig used is given in Fig.5.15. The dielectric inserts 

were machined from PTFE and had cross section of 10.16 x 15.24.

The dispersion characteristic of the normal, even and odd modes of the coupled IDGs were 

measured by using the resonant section technique. Metal plates are fixed at both ends of 

a section of line forming short circuit loads. Magnetic probes are positioned symmetrically 

above the IDG lines through holes drilled in the shorting plates. In order to determine 

accurate values for phase constant, the coupling between the probes and the IDG structure 

should be low so that the end plates act as short circuit loads. This is achieved by controlling 

the distance between the probes and top surface of the IDG line. Such a geometry will thus 

support only those waves which can meet the requirement that the electric field is zero at each 

end of the resonant structure. The power transmission through the structure shows resonant 

maxima when the intermediate line length is an integral number of half wavelengths, so phase 

constants are determined at discrete frequencies. Mathematically the above statement can 

be expressed as:

where Xg =  wavelength of the bounded wave 

n =  integer

L =  length of resonant section.

In addition, the orientation of the magnetic loop probes facilitates relatively independent 

excitation of modes with even and odd symmetries about the probe position. The swept
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Figure 5.15: The X band test jig used for the purpose of deep slot IDG coupling characteri
zation.
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frequency transmission response of a L =  250mm long coupled section of deep slot IDGs 

excited by weak coupling of odd symmetry is shown in Fig.5.16. When the orientation of the 

two probes are altered, the resonant peaks for normal modes of both symmetry appears at 

the same time, which is shown in Fig.5.17. The readings for resonant frequencies for guided 

modes of both symmetry can be taken from single measurements. Various errors associated 

with measuring process are of the same magnitude for either symmetry mode, and thus the 

relative error relevant to the calculation of coupling coefficient will be low.

The center frequency of each peak determines the wavelength of the guided wave. Also, 

the order of a resonant frequency associated with integer n in (5.4) had to be evaluated by 

tuning the source to a resonant frequency and measuring the guide wavelength with a field 

probe.

Tab.5.11 gives the measured dispersion results in the terms of effective dielectric constant 

for even and odd modes. The concerned coupling section was L =  250mm having 10.16 X 

15.24mm for slot dimensions and dielectric inserts were made from PTFE.

5.10 Transition Section

A transition section is needed for the purpose of connection of any practical IDG circuit into 

a rectangular waveguide system. The fundamental mode in deep slot IDG, LSE oi, has been 

shown [7] to have a field distribution very similar to that of the TE \q  mode of rectangular 

metal waveguide. So the main requirement is an impedance matching between the two types 

of guide. The impedance matching is utilized by the means of dielectric taper placed inside 

the metal waveguide, rising from zero height to the height of the IDG. Although, it was 

seen that such taper provides broadband matching, the transition is not optimized in any 

way. The power loss is present in all of the IDG measurements and as guide loss of IDG 

is calculated to be low [7], the extra loss is associated with radiation and mode conversion 

losses. The loss becomes more considerable at the higher frequencies and examination of 

transitions used to launch the L S E q i  mode is needed in order to obtain explanation for such
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Figure 5.16: The measured insertion loss of a resonant section of the coupled IDGs. The 
magnetic probes were set to emphasize LSEoi mode of odd symmetry. The resonant section 
was L =  250mm long and slot dimensions were 10.16 x 15.24mm. Dielectric inserts were 
made from PTFE while guide separation was 0.47mm.
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Figure 5.17: The measured insertion loss of a resonant section of the coupled deep slot IDG 
structure. The magnetic probes were set to excite L S E qi  mode of odd and even symmetry 
simultaneously. The resonant section was L  =  250mm long and slot dimensions were 10.16 x 
15.24mm. Dielectric inserts were made from PTFE while guide separation was 0.47mm.

112



Pres fodd K q odd *eff  odd fevn 0 evn ^ef f  evn

113.097 5.169 108.204 1.0925 5.216 109.188 1.0729
125.664 5.544 116.054 1.1725 5.637 118.001 1.1341
138.230 5.928 124.092 1.2408 6.059 126.835 1.1878
150.796 6.312 132.131 1.3025 6.472 135.480 1.2389
163.363 6.706 140.378 1.3543 6.875 143.916 1.2885
175.929 7.119 149.024 1.3937 7.297 152.750 1.3265
188.495 7.512 157.251 1.4369 7.690 160.977 1.3711
201.062 7.916 165.708 1.4722 8.094 169.434 1.4082
213.628 8.328 174.332 1.5016 8.497 177.870 1.4425
226.195 8.731 182.768 1.5317 8.891 186.118 1.4470
238.761 9.134 191.205 1.5593 9.294 194.554 1.5061
251.327 9.537 199.641 1.5848 9.687 202.781 1.5361
263.894 9.950 208.286 1.6052 10.091 211.238 1.5607
276.460 10.353 216.722 1.6273 10.484 219.465 1.5868
289.026 10.765 225.347 1.6450 10.887 227.901 1.6084
301.593 11.168 233.783 1.6642 11.290 236.337 1.6285
314.159 11.581 242.428 1.6793 11.694 244.794 1.6470
326.725 11.984 250.865 1.6962 12.097 253.230 1.6647

Table 5.11: Measured values for phase constants of L S E qi mode of even and odd symmetry 
in deep slot (10.16 x 15.24mm) IDG geometry with PTFE dielectric filling, cr =  2.08. Guide 
separation is s =  0.25mm.
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behavior. The transitions were investigated in terms of power loss. The two transitions were 

connected back to back and the S  parameters were measured using the HP8510 Network 

Analyzer. The deviation of measured S  parameters from the unitary principle

|S n |2 +  |S i2|2 =  1

gives a measure of the loss inside the transition.

From Fig.5.18, which shows the loss for transition sections where the dielectric taper rises 

to  the height of the metal guide, it is noticeable that the loss is considerable for frequencies 

above 11 GHz. Such behavior can be explained by the fact that dielectric filling reduces the 

cut-off frequency of the T E 20 mode, which starts to propagate at about 11 GHz.

By lowering down the height of dielectric filling, the slope angle of taper is decreasing but 

loss caused by energy transformation to local modes is still considerable, Fig.5.19. To avoid 

this difficulties the height of metal waveguide should be tapered down as the dielectric taper 

rises up and the cross-section of such launcher is depicted in Fig.5.20. By lowering down the 

height of launcher we try to increase the cut-off frequency of the T E 20 mode in the dielectric 

filed guide.

A theoretical analysis to find an optimum shape of the launcher and the dielectric taper 

inside, can be done by converting Maxwell’s equations for this structure into generalized 

telegraphist’s equations. By this conversion, wave propagation in the transition is represented 

in terms of local normal modes for any cross-section within the transition. The coupling 

between these local modes is introduced by the change of the cross-section with axial distance. 

For a particular mode to be launched efficiently, the transition must be gradual and coupling 

between local modes must be small. The telegraphist’s equation are then nearly independent 

from each other and may be solved by iteration [9].

The performance of launcher proposed in Fig.5.20 can be degraded by three different effects:

• reflection

• mode conversion

(5.5)
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Figure 5.18: Transmission loss of two metal waveguide-to-IDG transition sections connected 
back to back. The height of dielectric taper located inside transition is raised to the full height 
of metal guide. The dimensions of metal waveguide are 10.16 x 22.86mm while perm ittivity  
of inserted dielectric taper is c=2.08

START 8 . 0 0 0 0 0 0 0 0 0  GHz 
STOP 1 2 . 5 0 0 0 0 0 0 0 0  GHz



transition tectioa  1 ! transition section 2

START 8 . 0 0 0 0 0 0 0 0 0  GHz 
STOP 1 2 . 5 0 0 0 0 0 0 0 0  GHz

Figure 5.19. Transmission loss of two metal waveguide-to-IDG transition sections connected 
back to back. The height of dielectric taper located inside transition is raised to the height 
of 15.24m m . The dimensions of metal waveguide are 10.16 x 22.86mm while perm ittivity of 
inserted dielectric taper is c=2.08
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metal

I I

II transition section IDGMWG

Figure 5.20: The proposed transition section for metal waveguide to IDG connection. The 
aim of dielectric taper inside transition is to match impedances while tapering of top metal 
wall should preserve monomode operation of transition section. Flaring section on the output 
of the transition plays role in reducing radiation loss.
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• radiation

For reflections to be small, the tapers should be sufficiently gradual. Mode conversion to 

local normal modes can be kept low by making flare angles small. Radiation loss is controlled 

by the length of the horn aperture.

5.11 Conclusion

This chapter was concerned with the solutions of the coupled IDG dispersion equation for 

various modes of single and coupled lines under LSE and LSM polarization.

First of all, scale coefficients making the basis set better fit the unknown field had to be

evaluated in the order to improve convergence of numerical approach used.

The solutions for the phase constant /? opened up the possibility of calculating field amplitudes 

and plotting field patterns in the air region over single and coupled IDGs.

The mode type classification in terms of two polarizations is described. Also it is found that 

L S E mn mode assignation quite clearly corresponds to the H E mn hybrid field notation. On 

other hand L SM mn is related to the E H mn modes.

The procedure for approximate calculation of single IDG phase constant is presented and 

shows excellent agreement with measured data and data obtained through application of full 

hybrid mode analysis [7].

The phase constants for both type of IDG, deep and shallow slot IDG, have been calculated 

for LSE and LSM types of polarisation by approach developed in this thesis. These data are 

in good correlation with previously reported data [7], too.

The results for coupled IDG sections are presented for both types of IDG configuration as 

well as for different modes of propagation. These results were also compared with measured 

data and shows rather excellent agreement.

The transition section used to match rectangular metal waveguide to IDG is analysed in term 

of power loss and a new launcher structure for the improved performance is proposed.
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C hapter 6

M ultihole ID G  Coupler

Having characterized coupled IDG, the design of a directional coupler in IDG comes naturally 

as the next step. In common with all dielectric guides IDG possesses coupling characteristic 

which is frequency dependent. However, for most applications flat coupling is desired and an 

additional coupling mechanism is sought in order to make overall coupling flat over a certain 

frequency range.

One method of doing this, which is very simple to include, is to superimpose a multihole array 

drilled in the metal separation wall between the two IDGs. The coupling characteristics of 

two employed mechanisms are different in nature, intrinsic IDG coupling is continuous while 

coupling through holes is discrete. The distributed coupling is a common feature for both 

mechanisms, and by choosing right parameters of distributed coupling, balance between two 

mechanisms can be achieved. This approach of flattening coupling response, opens new 

avenues in the design of IDG devices and subsystems.

6.1 M ultihole Coupler Theory

Among the earliest types of directional coupler were those coupling two identical waveguides 

by means of one or more apertures in the common wall. Bethe’s theoretical work on small 

hole coupling [1] provides a good base for multiaperture waveguide directional coupler design.
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The basic assumption there is that the radius of the hole must be considerably smaller than 

the wavelength in the waveguide.

The field coupled through an aperture in a guide wall, whose linear dimensions are small 

compared to the wavelength and which is far away from any discontinuity, is that radiated 

by an electric and magnetic charge and current distributions set up at the aperture by the 

exciting field.

It has already been noted that the field components of the fundamental deep slot IDG mode, 

H E oi, are very similar to those of TE \o  mode metal waveguide [2]. This similarity between

field distributions of H E q\ mode of IDG and T E q\ mode of rectangular metal waveguide

filled with the same dielectric as the IDG is specially emphasized in the region close to the 

groove bottom.

So, we can use the multihole coupling theory developed for metal guides adjusted to include 

parameters and features of the IDG transmission media. The forward coupled wave, A ,  

and backward coupled wave ,Z?, are determined by the waveguide fields at the center of 

the hole: Ex1H y iHz ] the magnetic polarizability of the aperture: M y ,M z ; and the electric 

polarizability normal to the hole: P .

2 7T
A  =  [+MyH\yH2y +  M ZR \ZH.2z — P E \XE2x\ (6-1)

2 7T
B  =  [ ~ M y H l y H 2 y  +  -  P E M

For the case of two identical guides, H \y =  H.2y and etc., the field components in a metal 

rectangular waveguide with unit excitation are given as:

H ,  =  - s i n ( ^ )  (6.2)

*■  -

* - *-(?)
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Figure 6.1: Symmetric coupled IDG cross-section additionally coupled by the means of holes 
drilled through separation wall
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Figure 6.2: Reference coordinate system used in the process of coupling evaluation between 
two adjacent IDGs additionally coupled by array of holes.

where Xg - wavelength o f guided wave

A - wavelength in unbounded media

The reference coordinate system used in the expressions for field components and later cal

culation of magnitude of coupled waves is shown in Fig.6.2.

The same expressions (6.2) are used to describe field in deep slot IDG near the groove floor, 

but using the wavelength and propagation constants relevant for the HEoi  IDG mode.

6.1.1 H ole in narrow wall

When a hole is placed in the narrow wall, the case corresponds to the coupling of shallow slot 

IDGs by means of an additional aperture in the separation wall. The expressions for forward
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and backward coupling (6.1) get reduced to:

•4 = e  = & S  <6-3>

due to fact that y = 0. Since the magnetic polarizability M z is frequency independent, the 

magnitude of forward and backward wave is directly proportional to Xg . Then, the hole 

coupling has the same frequency dependence as the inherent IDG coupling. This conclusion 

is only valid for H E mn modes of a shallow guide. However shallow structures of certain 

height/width ratios favor E H \\  mode and the coupling between two adjacent IDGs supporting 

this type of field distribution can be balanced by the use of an arrays of holes again. If slot 

depth is too small to accommodate holes of a specific size, then the transverse slot can be 

used as directive aperture [4]. Also, the use of elliptic holes as the aperture can be considered 

in this application.

6 .1 .2  H o le  in  broad  w all

The case of coupling deep IDGs by holes drilled in separation wall between the guides is 

equivalent to the metal waveguide coupling by use of a hole in the broad wall. In contrast 

to the case of a hole in narrow wall, the expressions for field components possess one degree 

of freedom more, because y  ^  0. By substituting (6.2) into (6.1) the amplitudes for forward 

and backward coupled waves are found as:

A  =  

B  =

j27T
ah X g

j27T
ah X g

{ -  ( i f )  p] si“ 2 ( f ) + (2z k )  cosJ ( t )  } (6-4)

M y + ) p si“2 ( t )  -  M > (2a )  cos2 ( t )  }

For the case where a circular hole of radius d{ is used as an aperture, the polarizabilities are 

given by
d3 2 P

M y  =  M t  =  —  =  —  (6.5)
O €r
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Moreover, when holes are placed at points with coordinate (0, h /4 )  and the L S E q\ mode is 

considered, the expressions (6.4) reduce to the form

A  = 

B =

jn d 3 
24 h2a 
jxd 3 
2Ah2a

2 h A '
—  +  —  
A„ T 2h

(6.6)

6h

L^g

V  
2 ft

The frequency dependence is apparent, and for Xg <  2h, the first term in square brackets 

determines that the amplitude of the forward coupled wave increases with frequency. This 

kind of behavior is just right for the application considered here where the compensation of 

the inherent IDG coupling characteristic is needed.

6.2 Equivalent Network o f an A perture

Consider two identical waveguides which are coupled by means of an aperture in the common 

wall. As stated earlier, the analysis of a four port network associated with coupled symmetric 

lines can be performed in terms of even and odd excitation modes. This approach reduces the 

analysis of four-port network to one of two, two-port networks. So, the problem of coupling 

through an aperture can be alternatively considered as an obstacle placed in the middle of 

the transmission line section.

The equivalent network for an obstacle in a closed waveguide can be represented in terms of 

reactive lumped elements whose values are related to the geometry of the obstacle. There 

are different ways to find values of these lumped elements and two different approaches were 

utilized by Markuwitz [5] and Oliner [6] in the early days of aperture coupler development. 

For the case of symmetrical and lossless obstacles only two different parameters are needed for 

its correct circuit representation, Fig.6.3. Strictly speaking, the equivalent network is valid 

only for monomode operation, and if multimode operation is considered different element 

values should be determined for each possible mode of propagation.

The reflection and transmission coefficients of the two port network in Fig.6.3 are calculated
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Bb

Ba Ba

Figure 6.3: Two port equivalent network modeling an obstacle

as

r  =  ( g7 )

With E =  2(1 +  B J B b +  j(2B a -  1 /B b +  B 2J B b)

As elements Ba and Bb are proportional to the third order of obstacle dimensions, all higher

orders of Ba and Bb will be neglected and (6.7) gets a very simply form

r  =  <6-8> 

T =  x - ^ - 2

A four port network suitable for modelling coupling through an aperture in a common wall

of the coupled guide structure is depicted in Fig.6.4.

This model comprises two back to back connected II networks bridged across by an additional
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1

Figure 6.4: A four port network modeling two guides coupled by means of an aperture placed 
in the common wall.

element — B a. Now we analyse this four port network under even and odd type of polarization. 

For the even mode Vi =  V2 and points a! and c' are at the same potential, and consequently 

shunt element can be omitted because no current flows through it. In that case the equivalent 

network for an aperture in the common wall of two coupled guides is reduced to the II network 

previously seen in Fig.6.3.

For odd mode excitation Vi =  —V2, points b and b" are on same potential, therefore no 

currents flows through series admittance which can then be eliminated. As the total shunt 

admittance at each of the two identical two port networks is B a — 2B a +  B a =  0, straight 

connection is obtained for the equivalent model of an aperture under odd excitation. This 

means that the discontinuity caused by the placement of an aperture in a common wall is 

not seen by odd mode excitation.
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6 .2 .1  E le m e n ts  o f  e q u iv a le n t n etw ork

The elements of the aperture equivalent network can be expressed in terms of field parameters 

and aperture dimensions. The next two identities are taken from [7]

—ex — hy +  hz =  T j(B a +  (®*®)

—€x +  hy +  hz — — 2 5 ^)

yielding

(6 .10)

where ex ,h y and hz are given by:

e» =  i p ( j )  sia2qy  (6 1 1 )

The above equations determine the equivalent network of an aperture. The elements also 

depend on the shape and size of the aperture. For different shapes, different formulas for 

magnetic polarizability should be applied. Here, we limit ourself to circular aperture only 

and electric and magnetic polarizabilities are given by (6.5).

6 .2 .2  C o rrec tio n  for  w all th ick n ess  and  large a p e r tu r e

The previously defined network that models a hole as an obstacle has limited validity because 

it was derived under the constraints:

• hole diameters are small compared with wavelength

jB a
1

3T b

— hz Cj

=  2 hv
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•  holes are not close to each other

•  wall thickness is negligible

The procedure for the correction of Bethe’s equation due to finite wall thickness and large 

aperture dimensions was established by Cohn [8]. The influence of the perturbing structures 

is difficult to include into the model, but this influence is estimated to be usually small for 

most cases of practical interest, and will be omitted from consideration.

Here, we model the influence of the finite wall thickness by a means of susceptance B Cte for 

even symmetry excitation and reactance X CjQ for excitation of odd symmetry. The model in 

Fig. 6.4 transforms itself into suitable forms capable of incorporating the correction suscep

tance and reactance,Fig. 6.5.

The hole is understood as a circular waveguide having its length equal to the thickness of the 

m etal wall separating the two IDG insets. The circular guide mode whose field distribution 

most matches that in the IDG at most, is found to be T M q\ .  For the excitation of even sym

metry a magnetic wall is placed between the guides in such way that it cuts the circular guide 

into two halves. Then, the correction susceptance is modeled as point driving impedance of 

short circuited s /2  long circular guide section.

On the other hand, correction reactance for odd symmetry is modeled as the driving point 

impedance of the same circular guide section terminated with a metal wall at the other end.

Be,, =  - A  , .  € tK ° tanh ( sj ^ - t r K l S- )  (6.12)
k y / P j P  "  ^ K W ^ K o  -  q‘

v  , d "  ' r X S V 'r K S  ~ 1 \  J  14 ^
= + 1 i ----------------------- tanh \ y - d T -  CrK° 5 1 (6-13)

Both correction elements comprise dfh  ratio which represents transformer coefficient used in 

order to maintain continuity of dc voltage at the discontinuity interface between the inset 

and circular guides [9]. Other parameters are listed as:

Wqi - first root of the Bessel’s function of the 0 order

130



Bb

Be,e/2Be,e/2
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odd symmetry case

Figure 6.5: Circuits that model an aperture under even and odd excitation symmetry and 
capable to include correction for wall thickness.
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q - phase constant in y  direction for grounded dielectric guide of thickness h under LSE 

polarization 

d - hole diameter

s - wall thickness

When the wall thickness is set to zero the correction admittance for odd symmetry excitation 

tends to infinity, i.e. short circuit connection, while admittance for even symmetry becomes 

zero, i.e. open connection. Hence there is no influence on coupler response, as expected. 

When large holes are to be considered, the magnetic and electric polarizability can not be con

sidered as frequently independent any more. Instead, the resonant frequency of the aperture 

should be taken into consideration, and the polarizabilities get modified forms:

M x M , 2 P  .
(6.14)

i - p m  i - / 2/ / ?  * r i - p m

The f c represents the cut-off frequency of the circular guide having a diameter d. For the 

TMoi mode this cut-off frequency is given as

^  = h w r  ^
1 1 4.91

2w y/eji d

This type of correction has been seen to give results in a good agreement with experimentally 

obtained data for case of the metal waveguide couplers [8].

6.3 Coupling o f M ultihole Arrays

IDG coupled lines favor forward coupling while making backward coupling weak. The hole 

arrays in the separation wall should also favor such coupling and balance the frequency 

dependance of the IDG coupled lines. An n-hole directional coupler is shown in Fig.6.6,
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Figure 6.6: Schematic representation of a multi-hole directional coupler, 

where the holes are separated by distance d such that

d  =  ^  (6.16)

at the center frequency.

If the voltage coupling coefficient at hole k is Ak in forward direction and Bk in backward

direction, then the total unwanted reverse wave coupling becomes

B d  = £i + B 2 e - 1 2 *  +  B 3 e ~ lA *  +  . . .  +  (6.17)

k=1

The coupled wave in forward direction is

A t =  M i + - 4 2 +  . . .  +  .4tl) e - j(n- 1)* (6.18)

k=1

In order to achieve good directivity, some kind of coupling distribution has to be used. 

Usually a Chebishev’s or binomial distribution is adopted as the desired response function 

for distributed coupling.

For many practical applications very tight couplers are required, and often a single array has
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holes of very large diameter, or the array is to long. It is possible to overcome this problem 

by using superimposed set of arrays. A simple linear relationship determines overall coupling, 

but this linear relationship breaks down for strong coupling. The fact that overall coupling 

can never exceed unit value should also be borne in mind during supperpositioning of arrays. 

Also, it is very interesting that the maximum value of the backward wave of superimposed 

arrays will never exceed that of a single array, or in other words, the isolation of superimposed 

arrays is better or equal to that of single array.

6.4 Synthesis and D esign  Procedure

Two different procedures for multihole IDG coupler synthesis, based on two distinctive anal

ysis approaches, were considered:

• Discrete hole coupling and continuous, wave coupling axe treated independently. Overall 

coupling is obtained by simple summation of couplings obtained by employing these two 

coupling mechanisms.

• A continuous coupling and discrete coupling are considered in their interaction. The 

holes are modeled as an obstacle by use of lumped circuit representation and this model 

is placed between transmission line sections having the same parameters as the IDG 

line. Then, by utilizing ordinary circuit analysis of such a combined lumped-distributed 

network under even and odd mode symmetries, the coupling characteristic is easily 

obtained.

6 .4 .1  C o u p lin g  m ech a n ism s co n sid ered  as in d e p e n d e n t

The theory of coupling through holes were described in the previous section. To find total 

coupling due to the existence of hole arrays in the mid-wall, the expression (6.18) is used. 

As the fields of the H Eoi mode in IDG are very similar to the TEoi mode of a closed metal 

rectangular waveguide, expressions for forward and backward coupling of single hole are 

valid, subject to the use of the relevant propagation parameters that describe IDG guiding

134



properties.

The continuous wave coupling is calculated under the assumption that coupler is ideally 

matched:

C mavc =  sin2 x A  (6.19)

Then the total coupling is simply found as

Cf(/f*5 h, S ,  7i) =  Chole "I" Cwave (6.20)

where fr - working frequency

a,h dimensions of IDG cross-section 

s - separation between IDGs 

d{ - hole diameters 

y - height of hole placement 

n - number of holes

The initial values for hole diameters are determined from the requirement that the isolation 

and coupling response of a multi-hole coupler have certain levels and correspond to the 

Chebyshev equi-ripple function.

6 .4 .2  C o u p lin g  m ech a n ism s co n sid ered  as in te r a c tiv e

This approach considers that two employed coupling mechanisms to be mutually interacting. 

The discrete hole coupling is modeled by an equivalent lumped element network as depicted 

in Fig.6.3. Such lumped networks are then placed between sections of transmission lines 

having same propagation properties as the IDG. This analysis is performed for odd and even 

symmetries, and since the hole circuit model is different for these excitations, two distinctive 

lumped-distributed two-port networks are formed as depicted in Fig.6.7.

The elements of the equivalent circuit are determined by use of (6.10), and the values of 

these elements are function of hole diameter, height of hole placement, working frequency 

and the parameters characterizing propagation properties of the coupled IDG section.
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IDG section hole model 
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Figure 6.7: The combined lumped-distributed circuit representation for coupled IDG section 
of 29 in length additionally coupled by hole drilled in the mid-wall and placed at the middle 
of a section.
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Ordinary network analysis in terms of chain matrix is applied in order to get the overall 

response of the circuits. By using ( A .2 )  the reflection and transmission coefficients are de

termined for even and odd mode of operation. Combining these two solutions according to 

( A .4 )  the coupler characteristics are easily obtainable. This approach is amenable to strong 

and weak coupling characterization and takes into account the correction for the finite wall 

thickness.

6 .4 .3  E rror fu n c tio n  fo rm u la tio n

The optimization procedure used to finalise the design requires formulation of an error func

tion, which represents the measure of agreement between calculated and desired response. 

The error function that leads to maximum obtainable flat coupling of analysed structure is 

formulated as
m m

fCTTOT = E  E  ICW/i) -  C<(A)|2 (6-21)
j= i *=i+1

where Ct stands for overall coupling at certain point of frequency and m  is total number of 

such points over specified frequency range.

If a certain level of coupling is requested, lets say Cr, then the error function was defined as

m

/ er„ r = £ |C ,( / , - ) - C r|2 (6-22)
3=1

Usually, beside coupling level, coupler parameters such as return loss and reverse coupling are 

also of interest. Then, for each of these parameters an error function is formulated in either of 

the ways described above, and the total error function is reached through their combination.

ferror =  W l • flerror "h W 2 * f2error "I" • • • "I" kUn • fnerror ( 6 .2 3 )

The weight coefficients are associated with each error function, and by choosing weights, 

particular features of the coupler response can be favored during the optimization procedure.
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6.5 In itia l H ole D iam eters C alculation

The coupled wave of a multihole array is determined by (6.18), where the amplitude of the 

forward coupled wave is calculated as the sum of the wave magnitudes coupled by each hole. 

There are, of course, an infinite number of ways of arranging the magnitudes of these coupling 

coefficients, ,4;.

The problem of designing a broad band coupler consists of obtaining a desired level of coupling 

while, also keeping the level of backward coupling under a certain value. When (6.17) is 

equated to eCn- \ { x )  then this type of solution automatically insures that \Bd\ <  £ over the 

specified band. The notification C n(x) stands for Chebyshev polynomial of order n defined 

as:

C n(x) =  cos(ncos_1 x) (6.24)

The procedure for determining the initial hole diameters is essentially the same as procedure 

for finding impedance steps in a multi-section transformer design. This procedure involves 

several steps which are:

•  First, the type of distribution is selected. Here, we bound ourself to the use of Chebyshev 

distribution only.

• Second, the level of discrete coupling is expressed as functions of A i  only, and after the 

number of holes n has been chosen, the level of reverse coupling is tested by determining 

whether or not it exceeds minimal prescribed values e. If it exceeds, the procedure 

should be repeated for a larger number of holes.

•  Finally, when two previous steps are satisfactorily completed the hole dimensions are 

obtained interactively from (6.4) or from empirical formulas and graphs [10].
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6.6 E xam ples and E xperim ental R esu lts

This section is devoted to the example design of two couplers of different coupling levels. 

The first example addresses the design of a —3dB  coupler while second concerns a —10dB  

coupler design. The synthesis procedure involves the use of an analysis and optimization 

process. Both types of analysis described earlier, one treating the coupling mechanisms as 

independent the other treating them as interactive, have been utilized for the purpose of the 

coupler synthesis. When the error function is formulated according to (6.21) the maximal 

possible level of flat coupling is achieved for the chosen IDG length, and the coupler cross- 

section.

Finally, the experimental results gathered from measurements of two realized couplers are 

compared to the coupler responses obtained through simulation programs.

6 .6 .1  -3  d B  co u p ler  d es ig n

It was shown that two IDG placed along side each other form a forward coupler having 

frequency dependent coupling response but with very good isolation property. Such a longi

tudinally coupled IDG structure with additional hole arrays drilled in the mid-wall separating 

the two guides will be used for the —3dB  coupler design.

The prerequisite for IDG coupler design is to have values for the propagation constants of 

even and odd modes that determine the wave coupling characteristic. These parameters can 

be gathered after applying the analysis developed and described in Chapter 3, and obtained 

values for two different separation between deep slot IDGs are presented in Tab.6.1.

The example task chosen here is to design a —3dB  coupler having flat coupling response over 

the 8 — 12G H z  frequency range. The inherent coupling of pure coupled IDG is frequency 

dependent due to the increased power confinement within the dielectric at higher operating 

frequency. An additional coupling mechanism is sought in order to balance the intrinsic IDG  

coupler characteristic, and as previously described, good solution appears to be obtainable 

using hole arrays.
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freq (GHz) 7.0 8.0 9.0 10.0 11.0 12.0
s =  0.5mm

ft  even 166.647 197.595 228.395 260.395 291.198 322.886
flodd 172.831 204.502 235.714 266.734 297.393 327.930

s =  1.0mm
ft  even 167.088 198.151 230.240 260.947 292.528 323.704
Podd 172.288 203.633 234.568 265.442 296.330 327.232

Table 6.1: The normal mode phase constants of the coupled IDGs for two different spacing 
between lines. The IDG is filled with PTFE and have 10.16 x 15.24mm for slot dimensions.

As the measured reverse coupling of pure coupled IDG lines are of the order of —20dB , five 

holes in a single array appears to be sufficient to keep the total reverse coupling of the same 

order at least. Then expressions for the forward and backward coupled waves become

A d  — 2-4i +  2-42 4" -43

B d  =  2 B \ cos(40) -f 2 B 2 cos(20) 4- B 3

(6.25)

In order to keep the hole diameters small and realizable, the level for wave coupling of a 

single array is chosen to be —28dB. A this level of coupling is also of the same order as 

wave coupling of an IDG section having length equal to that of the single array. This is very 

important in the sense that an easy balance between the two mechanisms can be obtained 

only if they have a similar level of coupling. Then we can write

Ad = antilog20/28
=  0.04 (6.26)

We adopt that bandwidth ratio p  =  2.0 and substitute co s0  =  a?cos0i with 0 i =  180°/(p +  

1) =  60°, so that cos 0  =  0.5. Also, if we assume for the moment that the magnitudes of the 

forward and backward waves coupled through a single hole are the same, -4t =  Bi =  I \ ,  then

Bd =  2T i(8a:4 cos0 i -  822 cos2 0 i +  1) +  2r2(2a:2cos2 0 i -  1) +  I 3 (6.27) 
=  £ £ 4(2 ) =  (824 -  822  +  1)£
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A i 0.0032 di 2.43275
A 2 0.0098 cfe 3.50864
A 3 0.0135 fife 3.90157

Table 6.2: The magnitudes of the forward coupled wave and corresponding diameter values 
for the case when five hole array is used to achieve power coupling of -14dB. Guide dimensions 
are 10.16 x 15.24mm, dielectric inset is made from PTFE and guides are detached by s =  
0.47mm.

From the above equality we find

r i =  8 £

r 2 =  24s

r 3 =  33£

and forward coupling is then

Ad — 2Fi +  2 r 2 +  T3 =  97£

giving
0.04 

£ ~  97

Directivity is obtained as

D  =  20 l o g ^  =  39 dB  
Bd

If better directivity required additional holes in the array should be introduced. The coupling 

coefficients and corresponding diameters of holes are represented in tabular form Tab.6.2 In 

order to achieve coupling level of —3dB , ten superimposed arrays are combined as shown in 

Fig.6.8. The full length of such a superimposed array is L =  240mm and the response of 

discrete hole and continuous wave coupling over the considered frequency range is depicted 

in Fig.6.9. The opposite frequency dependence of the two employed coupling mechanisms 

and their tendency to balance each other is clearly apparent.

Now we come to the point, from where the synthesis can be taken along two different paths. 

The difference occurs in the way in which the total coupling is calculated. The first path as-
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Figure 6.8: Superimposed hole arrays
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Figure 6.9: Response of multi-hole IDG coupler before optimization. Overall coupling is 
obtained as sum of discrete and continuous couplings which are regarded as independent. 
Guide dimensions are 10.16 x 15.24mm and are separated by s =  0 .47m m . Teen superimposed 
hole arrays were used each array comprises five holes with diameters listed in Tab.6.2 . The 
all holes are placed at height of 4mm from slot floor.
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Method I Method II
di 1.76690 2.31713
d>2 3.93511 4.41310
d-3 5.03693 3.00810
3/1 7.68143 6.67634
3/2 7.60907 3.88266
3/3 7.64104 2.70211

Table 6.3: The optimal values for hole diameters and heights of their placement. The con
sidered guides are of deep slot configuration having 10.16x 15.24mm for slot dimensions and 
filled with PTFE. Guides are separated by s=0.47mm.

sumes that two mechanisms are independent, and overall coupling is simple sum of couplings 

obtained by each simple mechanism. This method from now on will be denoted as Method I. 

Method II is that where the coupling mechanisms are treated as interacting, and elements of 

circuit analysis, as described in section 6.4, is employed in order to find the overall coupling 

characteristics.

After applying an optimization process in order to minimize the error function, the optimal 

coupling characteristic is presented in Fig.6.10. The analysis used to supply feed-back infor

mation to the optimization routine is performed in the manner described for Method I.

On the other hand, when the same definition of error function is used, but coupler responses 

are supplied by Method II, the optimal response is shown in Fig.6.11. The optimal hole 

diameters for both procedures are represented in tabular form, Tab.6.3.

6 .6 .2  -lO d B  co u p ler  d esig n

The design of a —10dB  coupler utilizes the same procedure as described in the last section. 

Again, we use a five hole array, but as the required overall coupling level is much lower this 

time, only three or four superimposed arrays are needed. It also means that length of the 

coupled IDG section involved in coupler design is considerably shorter than that length used 

in the —3dB  case.

Following same steps as in the last design example, but now using a wider separation between
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8 .0  8 .5  9 .0  9 .5  1 0 .0  1 0 .5  1 1 .0  1 1 .5  1 2 .0

frequency GHz

Figure 6.10: The response of multihole IDG coupler optimized to the coupling level Of -3dB. 
The goal is achieved by using analysis Method I to supply necessary feed-back information for 
optimization routine. The hole diameters and heights of their placement are given in Tab.6.3 . 
The used IDG section is L=240m m  in length and has 10.16x 15.24mm for dimensions of guide 
cross-section. The guides are separated by s=0.47m m .

144



-2.0-1 0

- 2 . 5 - —10

- 3 . 0 -
—20

- 3 . 5 -

CT>
.C
%  - 4 . 0 -

— 3 0  C

- 4 . 5 -

- 5 0
- 5 . 0 -

M i s o l a t i o n  r e s p o n s W  

B  c o u p l i n g  r e s p o n s e  

O  t h r o u g h t  r e s p o n s e

- 6 0
- 5 . 5 -

-7 0

8.0 8 .5 9 .0 9 .5 10.0 1 0 .5 11.0 1 1 .5 12.0
frequency GHz

Figure 6.11: The response of multihole IDG coupler optimized to the coupling level Of -3dB. 
The used analysis Method II consider the coupling mechanisms in their interaction. The 
hole diameters and heights of their placement are given in Tab.6.3 . The used IDG section 
is L=240mm in length and has 10.16x 15.24mm for dimensions of guide cross-section. The 
guides are separated by s=0.47m m  and dielectric inset is made from PTFE .
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A t 0.0046 di 2.72959
A 2 0.0139 d-2 3.93675
A 3 0.0191 d>3 4.37763

Table 6.4: The magnitudes of forward coupled waves and initial hole diameters that achieve 
-15dB coupling level per single array. Holes are assumed to be placed at 4mm height from 
slot floor. The considered guide has deep slot configuration with 10.16X 15.24mm for cross- 
section dimensions and slot is filled with PTFE dielectric material. The separation between 
guides is s=1.0m m .

Method I Method II
di 5.31984 4.84944
d,2 4.43402 4.63282
dz 5.27188 5.46638
i/i 3.63544 5.28320
i/2 5.20572 7.83996
i/3 4.07262 4.05697

Table 6.5: The optimal values for hole diameters and their placement heights obtained by 
two different analysis approaches. Method I considers the used coupling mechanisms as inde
pendent while Method II takes into account interactive nature of coupling mechanisms. The 
involved IDG section, L=96mm long, comprises two symmetric IDGs detached by s=1.0m m  
and having 10.16x 15.24mm for the cross-section. Dielectric filling is assumed to be made 
from PTFE.

the two IDGs, the magnitudes of forward coupled waves and corresponding diameters are 

calculated and given in Tab.6.4.

The responses of discrete hole coupling and continuous wave coupling before optimization 

are shown in Fig. 6.12. The overall coupling response after applying two types of synthesis 

procedures are depicted in Fig. 6.13 and Fig. 6.14. The overall coupling in Fig. 6.13 is obtained 

through optimization procedure which utilize analysis Method I in order to evaluate the error 

function required by the optimization procedures.

On other hand, when Method II of analysis is used to provide necessary inputs for calculation 

of the error function, the overall coupling is depicted in Fig.6.14.

The optimal values for hole diameters and height of hole placements, gained through both 

types of approaches are given in tabular form in Tab. 6.5.
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Figure 6.12: The responses of multi-hole IDG coupler initially calculated to  have coupling 
level of -lOdB. The hole diameters are listed in Tab. 6.4 . All holes are placed on same height 
of 4mm. The involved IDG section, L=96m m  long, comprises two symmetric IDGs detached 
by s=1.0m m  and having 10.16x 15.24mm for the cross-section. Dielectric filling is assumed 
to be made from PTFE .
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Figure 6.13: The optimal response for -lOdB coupler when coupling mechanisms are treated  
as independent. The optimal values for hole diameters and their placement heights are 
given in Tab. 6.5 . The involved IDG section, L=96m m  long, comprises two symmetric IDGs 
detached by s=1.0m m  and having 10.16x 15.24mm for the cross-section. Dielectric filling is 
assumed to be made from PTFE.
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Figure 6.14: The optimal response for -lOdB coupler when coupling mechanisms are treated  
as interactive. The optimal values for hole diameters and their placement heights are given in 
Tab. 6.5 . The involved IDG section, L=96m m  long, comprises two symmetric IDGs detached 
by s=1.0m m  and having 10.16x 15.24mm for the cross-section. Dielectric filling is assumed 
to be made from PTFE.
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6 .6 .3  C o u p ler  w ith  m a x im a l o b ta in a b le  fla t c o u p lin g

We have defined an error function (6.21) whose minimization leads to hole diameters solutions 

which give maximal obtainable flat coupling for certain length of IDG section over a prescribed 

frequency range. This kind of information can be used for the purpose of IDG length and 

guide spacing assessment when certain level of coupling is required. The curves representing 

maximally obtainable coupling for two different spacings and for several coupling lengths are 

plotted and shown in Fig. 6.15 and Fig. 6.16. Only Method II, capable of taking into account 

interactive behavior of wave and hole coupling, was used in this analysis. Optimal values for 

hole diameters and heights of holes placement are presented in Tab.6.6.

In order to illustrate influence of wall thickness on the coupler response, two curve sets with 

and without correction for wall thickness are plotted in Fig.6.17 for three different spacings 

between the guides.

6 .6 .4  E x p e r im e n ta l r e su lts

For the reason of practical realization restrictions imposed on us by the availability of material 

and tools, optimal values for hole diameters and heights of hole placement are not practically 

implemented. Instead, both realized couplers use deep slot IDG structure and PTFE as filing 

material, and the holes were uniformly placed at a height of 4.0mm. The —3dB  coupler uses 

guides with 0.47mm separation, while 1.0mm separation was used for the —10dB  coupler. As 

expected, more dramatic worsening in coupler responses comes with thicker separation wall. 

The comparison between coupling response obtained through analysis procedures and exper

iments are depicted in Fig. 6.18 for the —3dB  coupler and in Fig. 6.19 for the —10dB  coupler.

From both figures it is obvious that the analysis method where the coupling mechanisms 

are treated as interacting better fit the measured coupler response. Also, we noticed that 

the approach where coupling is calculated simply as sum of couplings of two independent 

mechanisms becomes less accurate for higher coupling levels. Hence we conclude that linear 

superposition of coupled power is more inaccurate at higher levels of coupling.
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Figure 6.15: The maximal obtainable flat coupling for various lengths of IDG coupled section. 
The involved IDG sections, comprises two symmetric IDGs detached by s=0.47m m  and having 
10.16x 15.24mm for the cross-section. Dielectric filling is assumed to be made from PT FE .
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Figure 6.16: The maximal obtainable flat coupling for various lengths of IDG coupled section. 
The involved IDG sections, comprises two symmetric IDGs detached by s=1.0m m  and having 
10.16x 15.24mm for the cross-section. Dielectric filling is assumed to be made from PTFE.
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Figure 6.17: The two curve sets for the coupling characteristic of multi-hole IDG coupler. 
The sets are plotted for three different separation between guides. First curve in each set is 
calculated when no correction for wall-thickness is taken into account, second is the corrected 
coupling response. The involved IDG section, L=240m m  long, comprises two symmetric IDGs 
detached by s=1.0m m  and having 10.16x 15.24mm for the cross-section. Dielectric filling is 
assumed to be made from PT FE . Teen superimposed arrays are employed, each consists from 
five holes whose diameters are listed as: d\ — 1.0m m , cfo =  3.0m m  and d3 =  4 .0m m . All 
holes placed at height of 4.0mm from the groove floor.
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Figure 6.18: The comparison between measured and predicated level of coupling for -3dB  
coupler. The involved IDG section, L=240mm long, comprises two symmetric IDGs detached 
by s=0.47m m  and having 10.16x 15.24mm for the cross-section. Dielectric filling is assumed 
to be made from PT FE . Teen superimposed arrays are employed, each consists from five 
holes whose diameters are listed as: d\ =  3.0m m , =  4.0m m  and ds =  4.5m m . All holes
placed at height of 4.0mm from the groove floor.
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Figure 6.19: The comparison between measured and predicated level of coupling for -lOdB 
coupler. The involved IDG section, L=96m m  long, comprises two symmetric IDGs detached  
by s=0.47m m  and having 10.16x 15.24mm for the cross-section. Dielectric filling is assumed 
to be made from PT FE . Teen superimposed arrays are employed, each consists from five 
holes whose diameters are listed as: d\ =  1 .0 m m , =  3.0m m  and d3 =  4.0m m . All holes
placed at height of 4.0mm from the groove floor.
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The measured responses for coupled and through ports of —3dB  coupler are shown in Fig.6.20 

while return loss and isolation characteristics of the same coupler are represented in Fig.6.21. 

The coupling and isolation characteristics of —10dB  coupler are depicted in Fig.6.22.

From the measurements it is apparent that coupling response shows flat characteristic over 

vide frequency range. The power levels on output of the coupled and through ports are not 

o f predicated value. The power loss which occurs is believed to be mainly due to radiation 

loss from the transition apertures.

The measured return loss characteristic is very similar to that of a single line and level of the 

returned power is about —20dB. The value of the return loss is directly determined by the 

ability of transition section to effectively matches metal guide to the IDG.

In a symmetric coupler case, which were only considered here, the imperfect matching im

plies imperfect isolation, and vice versa. Because that, the measured isolation of realized 

couplers has the similar power level as the return-loss characteristic. In order to measure the 

predicated isolation level of —40d,B, the much better matching of coupler ports was needed. 

Moreover, a separator between two coupled IDGs is relatively thin and consequently tran

sition apertures lie very close each other, giving direct path to mask coupled line isolation. 

The finite reflection from a taper and backward coupling action also mask isolation, Fig. 6.23, 

and gives wavy pattern to the measured isolation curve.

6.7 Conclusion

In this chapter a procedure for IDG multi-hole coupler design is presented. It was shown that 

by utilizing additional coupling through holes drilled in the mid-wall of IDG coupled section, 

a broad-band flat coupling characteristic can be achieved.

Two types of analysis were performed

• first, coupling over air region and through holes were treated independently

•  second, two mechanisms were understood to be in interaction
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Figure 6.20: The responses of the coupled and through ports of -3dB coupler. The involved 
IDG section, L=240m m  long, comprises two symmetric IDGs detached by s=0.47m m  and 
having 10.16x 15.24mm for the cross-section dimensions. Dielectric filling is assumed to be 
made from PT FE . Teen superimposed arrays are employed, each consists from five holes 
whose diameters are listed as: d\ =  3.0m m , =  4.0m m  and dz =  4.5m m . All holes placed
at height of 4.0mm from the groove floor.
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Figure 6.21: Isolation and return loss characteristics of -3dB coupler. The involved IDG 
section, L=240mm long, comprises two symmetric IDGs detached by s=0.47mm and having 
10.16x 15.24mm for the cross-section dimensions. Dielectric filling is assumed to be made 
from PTFE. Teen superimposed arrays are employed, each consists from five holes whose 
diameters are listed as: d\ — 3.0mm, d2 =  4.0mm and d$ =  4.5mm. All holes placed at 
height of 4.0mm from the groove floor.
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Figure 6.22: The measured coupling and isolation characteristic for -lOdB coupler. The 
involved IDG section, L=96mm long, comprises two symmetric IDGs detached by s=0.47mm  
and having 10.16x 15.24mm for the cross-section. Dielectric filling is assumed to be made 
from PTFE. Teen superimposed arrays are employed, each consists from five holes whose 
diameters are listed as: d\ =  1.0mm, d2 =  3.0mm and d3 =  4.0mm. All holes placed at 
height of 4.0mm from the groove floor.

separator

Figure 6.23: The direct transition aperture coupling and backward coupling of reflected wave 
act to mask isolation of IDG coupler.
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Also, the finite thickness of separation wall between guides was modeled by reactive elements 

incorporated into a lumped circuit model of an obstacle. This approach represents a novel 

technique of modeling the influence of finite wall thickness on coupler responses. Synthesis 

procedures are based on two analysis methods developed and utilize an optimization proce

dure in order to find optimal parameters for multi-hole IDG coupler design. The Chebyshev 

equi-ripple function is used to model the pass-band forward coupling response, and from such 

a model initial values for hole diameters are determined.

Generally speaking, better agreement between measured and predicated data is achieved by 

using analysis method where continuous wave and discrete hole coupling were understood to 

be interacting, but the simple approach of treating the coupling mechanisms as independent 

gives quite satisfactory results for low levels of coupling and can be used for the sake of 

simplicity.

Very good IDG coupler characteristics are measured for the two test pieces, the —3dB  and 

— 10dB  couplers. The measurements of coupler characteristics were affected by the lack of 

good metal guide to IDG transition.
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I di d2 dz Vi 3/2 3/3

s =  0.5mm
48.00 4.61446 4.67998 2.50017 7.62317 7.62317 7.60744
96.00 3.04706 4.81487 5.49990 7.61336 7.61990 7.62045
144.00 3.97375 4.83215 4.58179 7.56949 7.59387 7.58770
192.00 3.93345 5.29104 5.37419 7.78076 7.77294 7.70905

s =  1.0mm
48.00 5.04009 5.49406 5.14020 7.27110 6.65462 5.95434
96.00 5.15455 5.45012 5.49763 5.57602 7.90615 7.83968
144.00 5.05164 5.39529 5.49988 6.69046 7.34388 5.10130
192.00 4.85658 5.49944 5.29823 7.40534 7.45968 6.01353
240.00 4.86660 5.49999 5.05323 6.65151 6.96570 6.09249

Table 6.6: Optimal values for hole diameters and and heights of their placement giving 
maximally obtainable level of flat coupling for different lengths of coupled section. The IDG 
is filled with PTFE and have 10.16 x 15.24mm for slot dimensions.
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