

University of Bath

PHD

Convex hull generation, connected component labelling, and minimum distance
calculation for set-theoretically defined models

Pidcock, Dan

Award date:
2000

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019

CONVEX HULL GENERATION,
CONNECTED COMPONENT

LABELLING, AND MINIMUM
DISTANCE CALCULATION FOR
SET-THEORETICALLY DEFINED

MODELS

Submitted by Dan Pidcock

for the degree of

Doctor of Philosophy

of the University of Bath

2000

COPYRIGHT

Attention is drawn to the fact that copyright of this thesis rests with its author.

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognise that its copyright rests with its author and no

information derived from it may be published without the prior written consent

of the author.

This thesis may be made available for consultation within the University library

and may be photocopied or lent to other libraries for the purposes of consultation.

UMI Number: U601815

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U601815
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

j U , : • : ")

- 5 J A M ? A 0 1 ,
j ___

I

Abstract

Three areas of geometric modelling have been studied in this thesis: the compu­

tation of the convex hull of a model, the labelling of the connected components

of a model, and the calculation of the minimum distance between two objects

in a model. The models considered for each area of research are solid models

which have been defined set-theoretically, i.e. using computational solid geometry

(CSG). Although the areas of research have been considered independently of the

dimensionality of the models, methods developed in this work have been imple­

mented for three-dimensional models.

The following new results are presented in this thesis:

• Computing the convex hull of a set-theoretically defined model. A point-

set that represents the model is generated by one of three m ethods (one

for polyhedral models, two for non-polyhedral models). The convex hull of

this point-set is then found by using an existing convex hull algorithm.

• A heuristic method of computing the connectivity between two points within

a given model. This works using a divide-and-conquer method to attem pt

to find a series of points which are connected.

• A connected-component labelling algorithm utilising a binary tree storage

structure for a model by dividing a model and storing the divided model

in a binary tree. Neighbouring nodes in the binary tree are examined to

compute connected components.

• An algorithm for the computation of the minimum distance between two

models by dividing the models recursively and concentrating the division

on areas within which the closest points between the models are considered

more likely to be found.

Acknowledgements

Thanks to Rachel for her great support, and to everyone else who has helped

me keep going and made life fun throughout the duration of this work, especially

Roger, Sylvia, Jo, Adrian, Kev, Dave, James, Jan, Jakob, Irina, and not forgetting

Nougat and Caramel.

I would like to thank the Department of Mechanical Engineering, University of

Bath for funding this research.

Contents

1 Introduction 2

2 Background 5

2.1 Geometric m o d e ll in g .. 5

2.1.1 Boundary representation (B-rep) .. 6

2.1.2 Set-theoretic m od ellin g ... 7

2.1.3 2n trees and Binary tr e e s .. 8

2.2 The Svlis set-theoretic solid m o d e lle r ... 10

2.2.1 P r u n in g ... 12

2.2.2 Adaptive recursive spatial d iv ision .. 13

2.2.3 Effective solution of geometric problems by using adaptive

recursive d iv is io n .. 14

3 Convex hulls 16

3.1 In trodu ction ... 16

iii

3.2 Literature s u r v e y .. 18

3.2.1 Point set algorithms in d -d im e n s io n s .. 18

3.2.2 Point set algorithms in three d im e n s io n s 21

3.2.3 Planar a lgorithm s... 25

3.3 New Research co m p le ted .. 28

3.3.1 Adaptation of an existing point-set a lg o r ith m 28

3.3.2 R esu lts .. 32

3.4 Future w o r k .. 42

3.4.1 Improvements to the adapted point-set a lg o r ith m 42

3.4.2 Multi-dimensional technique for convex hull computation . 42

3.5 C o n c lu s io n s .. 44

4 Connected component labelling 47

4.1 In trodu ction .. 47

4.2 Literature s u r v e y .. 48

4.2.1 2" trees and binary t r e e s ... 49

4.2.2 Connected components of geometrical o b j e c t s 53

4.3 New Research co m p le ted .. 54

4.3.1 Point connectivity .. 55

4.3.2 R esu lts ... 60

iv

4.3.3 Connected component labelling of binary t r e e s 63

4.3.4 R esu lts ... 69

4.3.5 Dealing with surface sub-models a n a ly tica lly 75

4.3.6 R esu lts ... 81

4.4 Future work ... 83

4.5 C o n c lu s io n s .. 84

Minimum distance 86

5.1 In troduction .. 86

5.2 Literature s u r v e y .. 89

5.2.1 Point s e t s .. 89

5.2.2 P o ly g o n s .. 89

5.2.3 Convex objects in three or more d im e n s io n s 92

5.2.4 Non-convex p o ly h e d r a ... 102

5.3 New Research Completed ..104

5.3.1 The brute force approach..104

5.3.2 R esu lts ... 105

5.3.3 Minimum distance using adaptive division and distance

bounds track in g ..108

5.3.4 R esu lts ... 118

5.4 Future w o r k ... 127

5.4.1 Improvements to the existing minimum-distance algorithm 127

5.4.2 Breadth-first division for minimum-distance calculation . . 130

5.5 C o n c lu s io n s ...131

6 Conclusions 133

References 137

vi

List of Figures

2.1 Baumgart’s winged-edge data structure (after 7.1 by Woodwark [79]). 6

2.2 The binary tree and the 2" tree required to store the same spatial

data... 9

2.3 The relationship between the elements used in sV L ls.......................... 12

2.4 A two-dimensional divided model containing air, solid and surface

sub-models.. 14

3.1 Example convex hulls of two- and three-dimensional point sets . . 16

3.2 (a) The half-plane containing the facet formed by e and p$ forms

the largest angle with the half-plane containing F0. (b) Values for

calculating the angle... 20

3.3 Extending the convex hull in the beneath-beyond on-line algorithm. 20

3.4 Illustration for Preparata and Shamos’s 3-dimensional convex hull

technique (after Preparata and Shamos’s Fig 3 .3 1) 23

3.5 (a) Adding a point can make the hull non-convex. (b) The hull

can be made convex by deleting two facets then creating two new

facets... 26

3.6 ‘Two cuboids’ polyhedral model and the convex hull produced. . . 34

vii

3.7 ‘Cuboid unioned with smaller cuboids’ polyhedral model and the

convex hull produced.. 35

3.8 ‘Simple robot arm’ polyhedral model and the convex hull pro­

duced 36

3.9 Model for which the convex hull program tetra fails to create the

convex hull.. 37

3.10 ‘Robot arm’ example m odel.. 38

3.11 Convex hull of ‘Robot arm’ model from points generated by model

division with division resolution of 10-5 .. 38

3.12 Convex hull of ‘Robot arm’ model from points generated by faceting

the model with facet factor of 1... 38

3.13 ‘Wristwatch’ example m odel... 39

3.14 Convex hull of ‘Wristwatch’ model from points generated by model

division with division resolution of 10-5 .. 39

3.15 Convex hull of ‘Wristwatch’ model from points generated by faceting

the model with facet factor of 10-4 ... 39

3.16 ‘CSG’ example m o d e l... 40

3.17 Convex hull of ‘CSG’ model from points generated by model divi­

sion with division resolution of 10-5 ... 40

3.18 Convex hull of ‘CSG’ model from points generated by faceting the

model with facet factor of 1... 40

3.19 Example for multi-dimensional convex hull m ethod................................ 43

3.20 Projection from multi-dimensional space to original model space

for convex hulls... 45

viii

4.1 Example scanning orders for two-dimensional binary trees: (a)

admissible, (b) inadmissible, (c) weakly admissible.............................. 52

4.2 Example object for divide and conquer solution to point connec­

tivity q u e r y .. 55

4.3 The intersection of the line segment I with a sub-model (A n B) u C ,

i.e. I r (1) is {Ia {1) f l^ (O) U^c(0> which covers the entire line
segment.. 56

4.4 The intersection of the line segment I with a sub-model (A n B)C \C ,

i.e. I r (1) is (I a (1) D^b(O) D ^ c(0i which is the empty interval. . . 57

4.5 Example object for alternative divide and conquer solution to point

connectivity query.. 59

4.6 The configuration space of a two-dimensional model with one de­

gree of freedom.. 61

4.7 The start and final positions of a nomad (the brown union of two

tetrahedra) either side of a simple obstacle (the blue cube). The

green cube is a collision flag and is not part of the geometry of the

problem.. 62

4.8 A position of the nomad on the path between the start and final

positions that does not cause it to overlap with the obstacle. . . 62

4.9 A position of the nomad on the straight hyperline between the start

and final positions. The nomad is in contact with the obstacle,

shown by the collision flag as a red tetrahedron..................................... 63

4.10 The order in which quadtree nodes are visited for Samet’s algorithm. 64

4.11 Example for binary tree connected-component-labelling algorithm. 65

4.12 Labelling adjacent nodes of quadtrees and binary trees....................... 68

ix

4.13 Connected components found for ‘Two boxes’ model............ 70

4.14 Connected components found for ‘Two L shapes and block’ model. 71

4.15 Connected components found for ‘Racing car’ model............ 71

4.16 Connected components found for ‘Robot with obstacles’ model. . 72

4.17 Connected components found for ‘Non-polyhedral robot’ model. . 72

4.18 Connected components found for ‘CSG’ m odel....................... 73

4.19 Failure situations for the connected component algorithm when

surface boxes are considered to be air boxes.. 74

4.20 A sub-model containing two planar half-spaces that do not cross

within the sub-model’s box.. 76

4.21 Two planar half-spaces that do not intersect in the sub-m odel’s

box, and result in two unconnected components.................................... 77

4.22 Three planar half-spaces that intersect at a point, resulting in one

component.. 78

4.23 Three planar half-spaces that do not intersect at a point and result

in one component... 78

4.24 Three planar half-spaces that do not intersect at a point and result

in several unconnected components... 78

5.1 Minimum translational distance and minimum distance in a fixed

d ire c tio n .. 88

5.2 Visible chains for a polygon.. 91

5.3 Two example polygons and their Minkowski difference........................ 94

x

5.4 Example for GJK’s algorithm.. 94

5.5 Points and search directions for example objects for Bobrow’s al­

gorithm 97

5.6 Example of variables used for evaluating the Kuhn-Tucker condi­

tions in Bobrow’s algorithm... 98

5.7 The line segments used to find new closest points for Bobrow’s

algorithm... 99

5.8 The zig-zagging problem of Bobrow’s algorithm...................................... 101

5.9 The cone for which the Kuhn-Tucker conditions are satisfied. . . 102

5.10 The distance between boxes... 105

5.11 Sample models for the brute force minimum-distance method. . . 107

5.12 The distance between the centroids of large boxes can be more

accurate than that between the centroids of smaller boxes....................107

5.13 The terms dmin, dmax and dconfirme(i illustrated.. 108

5.14 The terms Diower and D upper illustrated.. 109

5.15 A model after division to find boxes that only contain part of one

of the sets Si and S 2 ...112

5.16 Dividing 61 - one of a pair of sub-m odels’ boxes (61, 62) to create

the boxes bia and bib and corresponding sub-models............................... 113

5.17 Minimum distance for £L shapes’ m odel.. 118

5.18 Minimum distance for ‘R obot’ m odel..119

5.19 Minimum distance for ‘Non-polyhedral robot’ Model.............................119

xi

5.20 Minimum distance for ‘Sine curves’ m odel... 119

5.21 Time taken to find the minimum distance between objects with

different numbers of prim itives..122

5.22 Time taken for models with different algebraic complexities 123

5.23 Time taken to find minimum distance for models with different

crinkliness values..124

5.24 Time taken to find the minimum distance for objects separated by

different a m o u n ts ...125

xii

List of Tables

3.1 Number of points generated for the convex hulls for the model

division and model faceting point-generation methods for non-

polyhedral models.. 37

3.2 Time in seconds taken to generate points for the convex hulls for

the model division and model faceting point-generation methods

for non-polyhedral models.. 41

4.1 Results of the binary tree connected component algorithm. The

number of components found is shown at several division resolu­

tions and for the algorithm considering surface leaf sub-models to

be either solid or air... 73

4.2 Results for the connected component labelling algorithm that han­

dles polyhedral surface models analytically.. 81

5.1 Accuracy of results for brute force distance procedure, with dis­

tances given in model units... 106

5.2 Accuracy of the minimum-distance a lgorithm ..120

5.3 Time in seconds to find the minimum distance using different meth­

ods to decrease dm a x ... 126

1

Chapter 1

Introduction

The field of geometric modelling is large and has many applications, for example

in robotics and computer aided design. The majority of commercial geomet­

ric modelling applications, however, use the boundary representation method to

store the geometric models, and rarely utilize set-theoretic modelling, largely be­

cause of the lack of effective solutions to key problems. Because set-theoretic

modelling is a more intuitive and human-centred approach to modelling, several

boundary representation modelling applications (for example ACIS) actually use

set-theory for shape definition when interacting with the user. Set-theoretic mod­

elling also generalizes to higher numbers of dimensions more easily than boundary

representation modelling.

This thesis concentrates on set-theoretic modelling and some of the unsolved

problems which currently make it less attractive for commercial application. The

three areas which have been studied in detail are convex hulls, connected compo­

nent labelling, and minimum distance. Each of these problems has already been

the subject of research and, although several efficient algorithms have been found

2

for other modelling representations such as boundary representation, little work

exists for set-theoretically defined models. The new work presented in this thesis

consist of the following:

• A method of computing the convex hulls of set-theoretically defined objects

by generating points that are sent to an existing point-set algorithm.

• An overview of a multi-dimensional method for directly computing convex

hulls.

• A heuristic method that computes the connectedness of two points in a

model.

• A connected component labelling algorithm utilising a binary tree storage

for a model.

• An algorithm to compute the minimum distance between two models.

An introduction to geometric modelling is provided in Chapter 2 of this thesis,

including boundary and set-theoretic modelling representations and binary trees.

A binary tree is a data structure which enables many operations to be performed

efficiently on set-theoretic geometric models. The sVLls set-theoretic kernel mod­

eller is then outlined, followed by a description of the adaptive recursive spatial

division problem-solving technique which has been used in my proposed solutions

of the three problem areas.

A chapter has been devoted to each area of research. W ithin each chapter an

introduction to and the definition of the problem being studied is given, followed

by a literature survey of existing research. Methods of computing the properties

have been proposed and results from my implementation of these methods are

3

given. At the end of each of these three chapters there is a section detailing areas

of interest for further research and conclusions from the work in that chapter.

Finally, Chapter 6 summarizes the conclusions.

The research has been implemented using the sVLls 1 [10] set-theoretic kernel

modeller developed by Adrian Bowyer at the University of Bath.

^ V L lS is pronounced soo-liss.

4

Chapter 2

Background

2.1 Geometric modelling

The main geometric representation in commercial use is the boundary representa­

tion ., where the vertices, edges and faces of a model are each stored together with

topological information about their adjacency relationships. Set-theoretic mod­

elling, also known as constructive solid geometry (CSG), is an alternative form of

modelling, in which simple shapes are combined using set-theoretic operators to

create more complex models. Set-theoretic modelling is a more intuitive way of

modelling than boundary representation and, for this reason, most boundary rep­

resentation modellers employ CSG front-ends for shape definition. Set-theoretic

solid models can also be dealt with more consistently and the representation

generalizes well to n-dimensions. These two forms of solid modelling have been

outlined in sections 2.1.1 and 2.1.2, given below. More detailed descriptions can

be found in the work of Woodwark [79] and Rooney [62].

5

Figure 2.1: Baum gart’s winged-edge data structure (after 7.1 by Woodwark [79]).

2.1.1 Boundary representation (B-rep)

A boundary representation model explicitly stores the faces, edges, and vertices

of an object, along with the topological relationship between these elements. The

most common data structure for this is Baum gart’s winged-edge data structure.

This structure provides links between every edge in the model and the two end

vertices of the edge (a), between the edge and the two adjacent faces (b) and

between the edge and the four other edges tha t share a face and a vertex with

the edge (c), as illustrated in figure 2.1.

There is no intuitive concept of solid models when using boundary representation

as it represents the shell of a model. Storing a solid model requires the model to

be tagged to identify which side of the faces is solid.

An advantage tha t boundary representation models have over set-theoretic mod­

els is tha t the vertex, edge and face information is explicitly stored in b-rep

models, therefore operations such as finding the closest two points between con­

vex polyhedral models can be performed by searching the model’s data structure

to find the points. For more complicated shapes such as NURBS-based models,

6

and generally for non-convex models, less efficient techniques must be used. Local

m inim a can be found by using calculus, then global optimisation m ethods such as

simulated annealing must be applied to find the closest points. These techniques

are not specific to geometrical modelling and so are not further considered in

this work. Connectivity information is explicitly stored within a m odel’s data

structure on creation; however finding the connectivity between two separate b-

rep models that exist in the same space is not as straightforward and requires

intersection testing of vertices and faces for the models.

2.1.2 Set-theoretic modelling

Defining an object using set-theoretic modelling is done by combining primitive

objects using the following operators of set-theory: union, intersection and com­

plement. The primitive objects chosen affect the types of solid models that can

be defined; they can be entities such as cuboids, cylinders, and half-spaces, all of

which can be defined as collections of polynomial inequalities. In solid modellers,

the polynomial value of any point in space shows whether or not it is solid; if

the value of a point is above a threshold value then that point is considered to

be solid, conversely a point which has a value below the threshold is considered

to be air. Points whose values are equal to the threshold value are considered

to be on the surface of a model. Different set-theoretic solid modellers may use

different quantities for the threshold value, and different conventions that define

whether points with values above the threshold are solid, or points with values

below the threshold are solid: for example in sVLls the threshold value is zero,

and points with values below the threshold are considered to be solid.

Set-theoretic models can be stored as a tree where the nodes are boolean oper­

ators and the leaves are the atomic primitive objects. In general, set-theoretic

modellers need less storage space than boundary representation modellers, as

only the equations of the half-spaces and the set-theoretic tree are stored - this

is especially true for models in a space of high dimensionality. The disadvantage

of storing model information in this non-evaluated way is that finding high-level

geometrical information, such as the distance between two objects or counting

the number of disjoint objects that exist in a model, requires significant compu­

tational effort.

The set-theoretic solid modeller in use at the University of Bath is the sVLls set-

theoretic kernel geometric modeller, which will be discussed in more detail in

section 2.2 below.

2.1.3 2n trees and Binary trees

Spatial data can be stored effectively in trees which break a rectilinear volume into

smaller parts and group areas of similarity together. Two types of trees commonly

used for storing such spatial data are 2n trees and binary trees, an example of

each is illustrated in figure 2.2. A 2n tree divides n —dimensional space into 2n

parts at each level of the tree: for example two-dimensional space is divided into

quadrants at each successive subdivision to create a quadtree [44], and similarly

three-dimensional space is divided into eight cuboids at each subdivision to create

an octree. Binary trees always divide the space into two parts at each tree

level, regardless of the dimensionality of the space, and can be used to divide

n-dimensional space by dividing each dimension in turn. Both types of tree can

divide the volume at any position, but if they are restricted to divide the volume

at the mid-point the split position need no I be stored, requiring less memory

and possibly making algorithms which use the trees more efficient at the cost of

flexibility in the division of the volumes.

8

Figure 2.2: The binary tree and the 2n tree required to store the same spatial
data.

9

An advantage that binary trees have over 2n trees is that extension to an arbitrary

number of dimensions is more straightforward. For both types of tree the data

stored at nodes must increase in dimensionality, but for 2n trees the number of

children that each non-leaf node has will also increase as n increases. At each

non-leaf node in a binary tree, the node will still have two children, but the

choice of dimensions that is being split by the children will increase: for a two-

dimensional binary tree, each node is either split in the x- or y-axes to create two

children, whereas in three-dimensions the node can be split in the x-, y- or z-axes

to create two children. It is simpler to extend the data structure for a binary

tree as the dimensionality increases; however it will also produce a deeper tree.

In some cases the binary tree can be a more efficient way of storing a model (less

nodes are required) as the data structure can match the shape of the model more

closely.

2.2 The Svlis set-theoretic solid modeller

SvLls is a set-theoretic geometric modeller, developed at the University of Bath

by Adrian Bowyer [10], and is the modeller on which algorithms have been im­

plemented for this research.

SvLls uses the concepts outlined in section 2.1.2 (above). Points with negative

values are considered to be within solid, points with positive values are outside

the solid (i.e. they are in air), whilst points with zero value are on the surface of

a model.

The simplest components used in sVLls are primitives. There are currently six

standard primitives in sVLls : real numbers, half-planes, spheres, infinite cylin­

10

ders, infinite cones, and tori. The modeller also allows any implicit function to

be used as a primitive, thus giving access to many possible shapes. One type of

primitive is real numbers, which enable arithmetic operations to be performed,

while the remaining five primitives are half-spaces which divide space into two

(possibly multiply-connected) regions, denoted in sVLls as solid and air. The

solid region contains all points that have a zero or negative value when substi­

tuted into the algebraic expression defining the primitive; all other points are in

the air region.

Prim itives may be combined using the four set-theoretic operators ‘union’ (U),

‘intersection’ (f|), ‘difference’ (—) and ‘symmetric difference’ (A) to create a

set-theoretic tree with primitives at the leaves and operators at the nodes. In

sVLls such a tree is called a set. The four operators are reduced to U> fl and —

internally by sVLls using standard Boolean re-write rules.

A box is a three-dimensional region of interest which is an axially-aligned cuboid;

it is stored in sVLls as three intervals1, one for each dimension.

A model is the highest level entity in sVLls and is defined as a box together with

one or more sets. It defines a group of objects in the region of space that the box

occupies.

The relationship between these elements of sVLls is illustrated in figure 2.3.

The concepts of ‘solid’ and ‘air’ in sVLls can be applied to different elements,

namely primitives, sets, models and points. Primitives divide space into solid

and air regions. When primitives are combined into a set, the set will have solid

regions and air regions within it. If a model’s box lies completely within the solid

1 An interval is a continuous section of the real line between two values, and is written [a, b]
where a and b are the bottom and top end of the interval.

11

M odel

B ox

x interval
y interval
z interval

Set ,°P

op op

/ \ / \
op prim prim prim

/ \
prim prim

Set ,°P

op

/ \
prim prim

prim

op = set-theoretic operator, prim = primitive

Figure 2.3: The relationship between the elements used in sVLls .

region of the model’s set, then tha t model is considered to be solid. The reverse

is true for air models, and if a model’s box contains solid and air regions of a set

then it is considered to be a surface model Given a point and a set, a membership

test can be performed to test if tha t point is within the solid or air region of the

set. For brevity, I usually refer to this classification of a point with a set as a

point being (in) solid or air.

2.2.1 Pruning

If the surface of a primitive in the sets of a model does not pass through the

model’s box, then either the primitive must be completely solid within the box,

or the box does not contain any part of the primitive, i.e. the primitive is air

within the box. If the primitive is solid within the box, it can be replaced by the

universal set U in the model’s set for tha t box only. Conversely, if the primitive

is air within the box, it can be replaced by the empty set 0. The set for th a t box

can now be simplified by using the basic set-theory rules S U 0 = 5, S f l 0 = 0,

S U U = U and S n U = S.

This process reduces the complexity of the set-theoretic tree that is required to

12

represent the set within a given box, and is known as pruning a set to a box.

2.2.2 Adaptive recursive spatial division

The box of a sVLls model can be divided into two smaller sub-boxes by cutting

it in any position within the box along one of the coordinate axes. The original

m odel’s set is pruned to each of the new sub-boxes to create two new sub-models.

This adaptive spatial division [80] is applied recursively to the two sub-models.

Terminating conditions for the recursion depend on the application of the divided

structure; however a useful set of general-purpose conditions is to stop the re­

cursion if the ratio of the volume of the sub-model’s box to the volume of the

original box is less than a given quantity, or if the sub-model contains less than a

certain number of primitives. When dividing a m odel’s box into two sub-boxes,

the cut can be made in different places for each of the child boxes, so that the

two child boxes overlap slightly. This is useful to prevent axially-aligned planar

half spaces from being ‘lost’ if they coincide exactly with the cut position2. The

box swell factor is the factor by which the child box is larger than the box would

have been if the cut was made in the same position for each child box - a factor

of zero will result in no overlap between the child boxes.

A t the end of the division, three types of sub-models will exist:

• solid models whose box only contains solid;

• air models whose box only contains air;

• surface models whose box contains one or more primitives which cannot be

further pruned and whose box may contain just air, just solid or a mixture

2This might, for example, be caused by floating-point rounding.

13

Figure 2.4: A two-dimensional divided model containing air, solid and surface
sub-models.

of solid and air3.

A divided model with sub-models of all three types is shown in figure 2.4. The

sub-model with box 65 is a solid model, the sub-model with box 6i0 is an air

model and all of the other sub-models are surface models.

2.2.3 Effective solution o f geom etric problem s by using adap­

tive recursive division

Adaptive recursive division can be a useful technique for solving a geometric prob­

lem by splitting a model into sub-models. The division must be halted at some

point, which would commonly be defined either by the size of the sub-model’s

box (relative to the original model’s box - referred to as the division resolution)

or by the complexity of the sub-model (for example, the number of primitives

in the sub-model). At this point the problem must be solved analytically. The

chosen division resolution affects the complexity of the smallest sub-models for

which the problem must be solved. If an intelligent analytical solution is used

3The way that sVLls evaluates whether a box contains any surface uses interval arithmetic
and is conservative so cannot reliably confirm that a box really does contain some surface.

14

then the complexity of the simplest sub-model can be set higher and the division

resolution larger, so fewer sub-models need be considered and less division per­

formed. The computational effort required for more intelligent solutions needs*

to be evaluated, and then compared to the computational effort and memory

requirements of sub-model division, in order that the most efficient solution to

any given problem is adopted.

15

Chapter 3

Convex hulls

3.1 Introduction

A set is convex if all line segments between any two points within the set lie

entirely within the set. Given a set of objects S , the convex hull of S , C (S) , is

the smallest convex set that contains S. Figure 3.1 shows example convex hulls

of two-dimensional and three-dimensional discrete point sets {p i,P 2>---jPs} and

respectively.

p

*p4

Figure 3.1: Example convex hulls of two- and three-dimensional point sets

16

The convex hull of a point set can be described by any of:

• the faces of C(S);

• the vertex set, Ver(S) which is the minimum subset of S such that

C (V er (S)) = C(S) \

• the set of hyperplanes, H *(S), by which C (S) becomes the intersection of

the half spaces bounded by H*(S).

In many applications of the convex hull an approximation of the hull is sufficient,

provided that it can be found quickly. For example in a robot path planning

application, instead of performing exact collision detection between the robots

and obstacles, the approximate convex hulls of these objects can be used for

initial tests and only objects whose approximate hulls intersect will then need

to be examined for more accurate collision detection. It is essential that the

approximate hulls found are guaranteed to be the same as or larger than the

exact hull for this method to work.

Specific applications of convex hulls include:

• Collision detection and path planning. The convex hull can be used in path

planning [52] (along with heuristics) to generate a non-optimal path to solve

the travelling salesman problem.

• Machine vision, where the stable configurations that define the ways that

a three-dimensional object may be positioned on a surface can be found

from the convex hull. The convex hull can be further used if the image

that the machine is recognising is silhouetted against a contrasting back­

ground, meaning that not all concave features on the object will be visible.

17

The convex hull of the object can be compared to the convex hull of the

silhouette for preliminary image matching.

• Pattern recognition [63], by using the convexity of an image to classify it.

• Feature recognition, which uses convex decomposition, some implementa­

tions of which, for example Kim [42], require that the convex hull be found.

• Statistical problems in operational research [34].

3.2 Literature survey

The vast majority of work on convex hulls is on convex hulls of point sets, although

other geometrical entities have been investigated such as sets of spheres [7].

Several point-set algorithms exist to find the two-dimensional convex hull [31,

34, 24, 83, 21] and the three-dimensional hull [27, 2], and general approaches

have been proposed for the d-dimensional case [18, 39, 8]. Recently, research

has become more focused upon numerically robust convex hull techniques [32]

and convex hull algorithms for special hardware including parallel computers

and multicomputers [22, 26, 83, 21], two-dimensional processor arrays with a re-

configurable bus system [55] and neural networks [20, 47]. In general the best

efficiency that can be performed is 0 (n l o g n): the closest that has been achieved

in three-dimensions is that of © (n logn) by Preparata and Shamos [60].

3.2.1 Point set algorithms in d-dimensions

Methods of computing the convex hulls of point sets include gift-wrapping, de­

veloped by Chand and Kapur [18], and beneath-beyond, proposed by Kallay [39].

18

These methods are discussed in detail below. Borgwardt (1997) [8] presents an al­

gorithm that combines gift-wrapping and a method of disregarding non-extremal

points. Sugihara [72] revised the gift-wrapping algorithm in 1994 so that it is nu­

merically robust. Preparata and Shamos [60] give the computational complexity

of the gift-wrapping algorithm as 0 (n \d^ +1) + 0 (n l d,'2Uog n) and the beneath-

beyond technique as 0(n^d̂ +1)

Gift-wrapping

Chand and Kapur (1970) [18] developed the gift-wrapping algorithm to find the

convex hull of a d-dimensional point set S = {p i,P 2> This starts with an

initial facet of the convex hull and then rotates a plane about one of the edges

of that face until the plane ‘h its’ one of the points in S. A new facet is created

using the edge and the point found. The process is repeated until each edge of

the convex hull has two adjacent facets.

The initial facet is found by generating a plane parallel to the axis of the first

dimension and wrapping it around the point that has the smallest component in

that dimension, in a similar way that the wrapping is performed for the main

part of the algorithm.

The wrapping step is performed by using an existing facet F0 and an edge e of

that facet; a new facet Fi is constructed from the edge e and a point pk (that

is not in Fq) which makes the angle between F 0 and as large as possible.

Figure 3.2(a) illustrates this situation - p$ would be chosen as the point from

which to construct F \. To find pk, let n be the unit normal to F , let a be a unit

vector normal to both the edge e and n and let Vk denote the vector p 2Pk, as

illustrated in figure 3.2(b). In order to determine which point should be used,

19

Figure 3.2: (a) The half-plane containing the facet formed by e and p$ forms the
largest angle with the half-plane containing F0. (b) Values for calculating the
angle.

Figure 3.3: Extending the convex hull in the beneath-beyond on-line algorithm.

compute 7*; = Vk-a/vk-n for all of the points pk not in F - the required point is

th a t which maximises 7*.

B en ea th -b ey o n d

The beneath-beyond method was proposed by Kallay in 1981 [39], again relating

to finite point sets in d-dimensional space, but it has an advantage over the the

gift-wrapping method of the on-line property. An on-line point-set convex hull

algorithm is one which can be given one point at a time and which then computes

the convex hull after it has been given each point.

20

The basic method starts with a given convex hull1. When a new point is intro­

duced, test if the point is inside the convex hull: if it is then ignore it. Otherwise,

add the point to the convex hull and remove all points from the convex hull that

are in the cone beneath the new point. This is illustrated in figure 3.3, where p

is the new point added to the convex hull and the cone is shown as the shaded

area. In this case only one point p 0 will be removed from the convex hull.

3.2.2 Point set algorithms in three dimensions

Finding the convex hull of a three-dimensional point set can be done more effi­

ciently than the general d-dimensional case. Preparata and Shamos [60] suggest

a technique in their book published in 1985 with optimal worst case tim e com­

plexity of Q (n lo g n) (i.e. within a constant multiple of n logn) . Allison and

N oga’s [2] program tetra has expected running tim e of 0 (n) (i.e. less than a

constant multiple of n).

Preparata and Shamos’s method

The algorithm works by using the ‘divide and conquer’ problem-solving tech­

nique. The points {pi, ..., pn} are first sorted in any axis, and then the following

recursive algorithm can be applied:

1The first n + 1 non-coplanar points in n-dimensions can be used to create the initial convex
hull.

21

c o n v e x _ h u l l (S)

if number of elements in S < k then

construct CH(S) by brute force

return CH(S)

else

51 { p i , 5 Pf }
5 2 <- {p*+i>) Pn)

R i = convex_hull(S\)

R 2 = convex_hull(S2)

R = merge (Ri, R 2)

return (R)

end

The merge step is key to the performance of the algorithm; it is performed by

constructing a triangulation T around Ri and R 2 using a gift-wrapping operation

and removing points of Ri and #2 that are ‘obscured’ by T.

The first step in the construction of T is to create a facet of T. One way of doing

this is to project Ri and R 2 onto the coordinate plane perpendicular to the axis

in which the points have been sorted and then to construct a common support

line e' of the two projections. The line (planar edge) e1 is the projection of an

edge e of T. The plane through e and parallel to the axis in which the points

have been sorted can be used as the starting facet of T.

The triangulation is now created by advancing around the two hulls. Let vertices

of R\ be denoted by a* and vertices of R 2 by b'i. Let (d2 ,bi ,cii) be the last

constructed facet of T. Vertices a! and b' must now be selected such that a' is

22

b7

b,'

Figure 3.4: Illustration for Preparata and Sham os’s 3-dimensional convex hull
technique (after Preparata and Shamos’s F ig 3.31)

connected to a2 and 6' is connected to 62; the facet (02, 61, 0') forms the largest

convex angle with (02, 61, 01) and the facet (02, 6], 6') forms the largest convex

angle with (a2, 61, a i). Of the two facets (a2, 61, a') and (a2, 61, 6'), the one which

forms the greatest convex angle with (02, 61, 01) is chosen, and the third vertex

of that facet (o' or 6') is added to T.

The removal of points in R\ and R 2 that are ‘obscured’ by T are removed while

finding the next facet. Referring to figure 3.4 for illustration, (61, 6, a) is the last

constructed facet of T, the vertices b2 to 67 are being considered for 6' and a4 to

07 are being considered for o'. Let (6a, 6, o) be the facet that forms the largest

convex angle with (61, 6, 0) (in the example s= 4) . Any edge (6, 6*) for 1 < i < s

will be inside the final convex hull and can therefore be discarded from further

consideration. Since the edges around vertex a have been partially scanned at an

earlier stage in the process, the scan to find the vertex for o' should start at the

last visited edge - (a, a4) in the example.

23

Allison and Noga’s method

Allison and Noga [2] have written a program tetra to compute the three-

dimensional convex hull of a set of n points in (x , y , z) space which has ex­

pected running time of 0 (n) . The program uses a combination of divide and

conquer [60] and incremental [40] approaches. Firstly, points that are definitely

inside the convex hull are eliminated. Secondly an initial tetrahedron is found

that consists of points definitely on the convex hull. The tetrahedron is then

"grown” outwards with points from the point set until all possible points have

been considered. A more detailed description of the program will now be given.

For the program, two sets of facets are used: w is for facets definitely on the

convex hull and t is the set of candidate facets. The point set of which the

convex hull is to be found is denoted by P.

The point elimination pre-processing step is performed by finding minimum and

maximum points in each coordinate direction, and defining a prism using these

points. All points within a cuboid which fits inside the prism are then deleted

from P.

The initial tetrahedron is then constructed. The minimum and maximum points

in each coordinate direction are found and a test is performed to ensure that they

are not coplanar. If they are coplanar, then the program exits without having

found the convex hull2. The minimum and maximum points in the x direction

(Xmin and xmax) are used to define a line segment. The point whose projection

onto the x-y plane has the furthest perpendicular direction is found. This point,

together with x min and xmax, defines an initial facet f \ . Let hp(f) denote the

2A simple (but less efficient) method of constructing an initial tetrahedron that would not
fail as long as the entire input set is not co-planar would be to substitute an arbitrary point
that is not in the plane.

24

highest point above a facet / , i.e. the point whose projection onto the plane

containing / has the furthest perpendicular direction. The point hp(f i) is found

and this point, along with the three points in / i , define the initial tetrahedron.

The four facets of this tetrahedron are then added to the set of candidate facets

t. Any points interior to the tetrahedron are deleted from P.

The iterative phase of "growing" the tetrahedron is then commenced. W hile P

contains points, a facet / in t is examined to find hp(f) . If no such point exists

then / is on the hull and can be moved from t to w. If a point is found, then

the additional facets created by the edges of / and hp(f) are added to t. Any

points inside the tetrahedron constructed with / and h p(f) are deleted from P ,

and / can now be removed from t as it is definitely not on the hull. Adding a new

tetrahedron may make the polytope non-convex, as demonstrated in figure 3.5(a),

where the new tetrahedron is shown dotted. This must be corrected to maintain

hull convexity and is achieved by examining each of the three new facet/opposing

facet pairs created, and when a non-convex join is found, the two facets are deleted

from t and two new facets are created as shown in figure 3.5(b).

The process culminates once the set of points P becomes empty and there are

no candidate faces left in t : w will then contain all facets making up the convex

hull.

3.2.3 Planar algorithms

A lot of research has been completed on the convex hull of a planar point set.

Generally this does not extend well to non-planar sets, so it is only summarised

briefly here.

25

(a)

Figure 3.5: (a) Adding a point can make the hull non-convex. (b) The hull can
be made convex by deleting two facets then creating two new facets.

Graham (1972) [30] gives an 0 (n l o g n) worst-case time planar algorithm.

Jarvis (1973) [38] optimizes Chand and Kapur’s d-dimensional gift-wrapping

m ethod [18] for two dimensions with time complexity of 0 (n m) where m is the

number of points on the hull.

Preparata and Hong (1977) [59] give 0 (n l o g n) algorithms for two- and three-

dimensional point sets that use a ‘divide and conquer’ approach. The convex hulls

of the divided point sets are merged by finding the two lines that connect the two

convex hulls and discarding all points inside the lines in the sets. This is then

extended to three-dimensions. They suggest that questions of set separability

and existence of linear decision rules are easily solved through determination of

convex hulls.

Bentley and Shamos (1978) [5] give a ‘divide and conquer’ algorithm for an ap­

proximate convex hull of n points in two- or three-space in worst-case linear time.

In three-dimensions the total running time is 0 (n + k2 log k) and storage space

is 0 (k 2).

26

Akl and Toussaint (1979) [1] present an algorithm for two-dimensional point sets

w ith worst-case complexity of 0 (n l o g n) and expected running tim e of 0 (n) for

n points. They discard points within a quadrilateral of extremal points on the

hull. Of the remaining points, the angle between consecutive sets of three points

(in the x dimension) is found, and the middle point is discarded if the angle is

concave.

Preparata (1979) [58] gives a real-time on-line algorithm, which constructs the

hull incrementally as it is given points, and for each point it has update tim e

O{logn) . Overall, it runs in tim e 0 (n l o g n) .

Bentley, Faust and Preparata (1982) [3] give an algorithm for finding the ap­

proximate planar convex hull in 0 (n + ^) time where E is a measure of the

approximation. It splits the point set into strips, finds the set of extremes of

each strip, and then finds the convex hull of the extremes set. It can be extended

to d-space, however dimensions above three give large sets of extremes. This is

improved upon by the work of Soisalonsoininen (1983) [70]. Stojmenovic and

Soisalonsoininen then corrected errors in this work in 1986 [71].

Kirkpatrick and Seidel (1986) [43] give a solution for the two-dimensional convex

hull problem using a variation on ‘divide and conquer’ that they have named

‘marriage before conquest’. The problem is first divided into finding the upper

and lower hull. For each of the upper and lower point sets, the set is recursively

divided into two sets, and the ‘bridge’ part of the convex hull across the division

is found. No merging is required, simply connecting the bridges end to end.

Worst-case time is 0 (n l o g H) where H is the size of the output set.

Kao and Knott (1990) [41] give an efficient numerically-correct algorithm called

FastHull This works by discarding points that cannot be on the convex hull

27

before using ‘divide and conquer’, then using a merge after solving the recur­

sively divided problem. Extension to three-dimensions is briefly discussed but is

largely left as an open problem. Worst-case time is 0 (n l o g n) , and linear tim e

performance is claimed for many kinds of input patterns.

Guibas, Salesin and Stolfi (1993) [32] give numerically robust algorithms for ap­

proximate hulls of inaccurate primitives.

3.3 New Research completed

There is a large amount of existing research on the convex hull of a set of points

in any number of dimensions, without, as far as I am aware, the problem of

computing convex hulls of set-theoretically defined models being addressed. A

m ethod of finding the convex hull of a semi-algebraic set that is built around

an adaptation of an existing point set convex hull algorithm for set-theoretic

models is proposed. This has been implemented using the sVLls solid modelling

kernel and results are given. The future work section discusses an original multi­

dimensional set-theoretic modelling method of finding the convex hull that was

originally suggested to me by Woodwark [78].

3.3.1 Adaptation of an existing point-set algorithm

Most existing convex hull algorithms compute the convex hulls of point sets.

Using one of these algorithms for a set-theoretically defined model would entail

finding a point set that represents the model, and using this point set as input for

the convex hull algorithm. Any model that contains curved objects can only be

28

approximated by a point set, although an approximate convex hull is still useful

for many applications such as collision detection and path planning. If the model

only contains poly topes then it is possible to generate the exact convex hull. 1

Convex hull algorithms usually find the convex hull as a point set. For use in

set-theoretic modelling it would be desirable to convert this into an intersection

of planar half-spaces.

A m ethod for computing the convex hull of set-theoretically defined models has

been developed, which has three distinct phases:

1 . generate a set of points that enclose the model,

2 . using a point-set convex hull algorithm, find the convex hull of those points,

3. represent the resulting convex hull set-theoretically using planar half-spaces.

Generating points that enclose the model

A set of points that enclose the set-theoretically defined model must first be

generated, so that the convex hull of these points can be found. Three methods

of generating these points have been used: for polyhedral input models the exact

points required are found from the vertices of the model, while for non-polyhedral

models two methods generate points that approximate curved models by the

following means:

1. recursively divide the model and use the corners of the smallest boxes.

2 . facet the model and use the corners of the facets.

29

The vertices of polyhedral models are found by using a three-dimensional vertex

finder written by Bowyer, Eisenthal and Wise as part of the sVLls m project [12].

This works by recursively dividing the model until the sub-model under consid­

eration contains three or less planes. The point of intersection of the three planes

is then determined analytically, and this point is added to the list of vertices.

The process continues for all sub-models in the divided model tree. The con­

vex hull created from these points is exact within the accuracy of floating point

arithmetic.

For the first point-generation method for non-polyhedral models, the model is

first recursively divided with no overlap of the divided model’s boxes, i.e. the

box-swell factor is set to zero. The divided m odel’s tree is traversed, and for each

surface leaf sub-model of the tree each of the corner points of the sub-m odel’s box

are examined: if a point is not within the solid part of the model it is saved for

input into the convex hull algorithm. Corner points of boxes which are in solid

parts of the model do not need to be considered by the convex hull algorithm

because they are surrounded by other sub-model boxes’ corner points that are

not in solid, assuming that the model is closed within its box. To demonstrate

that this is true, consider a point that is in solid and let its adjacent points be

the points that are directly connected to it by the edges of the divided model.

Consider the case where all of the adjacent points are in air. All of the adjacent

points will be corner points of either the current box or an adjacent box. In either

case, the box of which they are a corner must be a surface box, as it has one corner

in solid, and one corner in air. The box’s corner points, and in particular the

adjacent points, will be included in the points that are output, and since they

are adjacent to the solid point the latter will be discarded by the convex hull

algorithm. If any of the adjacent points are solid, then the adjacent boxes that

have them as corners may also be solid. These points and boxes do not need to be

30

output for the convex hull algorithm, because they will eventually be surrounded

by other points in air which will be output by the same mechanism.

Some of the points generated will be duplicates as they are corners of more than

one sub-model’s box. These duplicate points are removed before the point set is

output. (Note that a simple scheme of considering only the corner of a box that

has the minimum value in all axes would not work as the boxes have different

sizes)

The convex hull created by this method is an approximation, nevertheless it is

guaranteed to contain the exact convex hull of the model - a property which is

useful for applications such as collision detection and avoidance.

The second method of generating points for non-polyhedral models starts by

faceting the model, i.e. creating polygons that represent approximately the

m odel’s surface (these are most frequently used for display purposes). The cor­

ner points of each facet are generated for input to the convex hull algorithm.

In a similar way that box corners in the first method may be duplicated, the

corner points of facets may be shared by several facets: for efficiency, such dupli­

cate points are removed. The convex hull resulting from these points is a close

approximation to the exact convex hull.

The convex hull algorithm

Allison and Noga’s convex hull program ‘tetra’ [2] (described earlier in section

3.2.2) has been used to find the convex hull of the point set. The tetra program

takes as its input a point set, and outputs both the points on the convex hull

and facets as indices into the list of points. I have adapted the program so that

31

in addition to producing the points on the convex hull and the facets of the

convex hull it also generates a point ptin that is within the convex hull; this point

is the centroid of the initial tetrahedron that is determined as the first step in

the convex hull algorithm, after the point elimination pre-processing step (see

section 3.2.2, page 24). This point is used when converting the point set into

set-theoretic representation to determine which side of each facet is solid.

Converting the point set into an intersection of planar half-spaces

The resulting convex hull generated by tetra as a point set and facets is converted

into a set-theoretic representation. A planar half-space is created for each facet

that is coincident with the facet and which has its solid side towards the point

within the hull (pUn). The set-theoretic model of the convex hull is then created

as the intersection of all the planar half-spaces.

3.3.2 Results

The convex hulls of several polyhedral and non-polyhedral models have been com­

puted by using the three point generation methods proposed (one for polyhedral

models and two for non-polyhedral models). Results for polyhedral models are

shown in figures 3.6 to 3.8, where the points have been generated by finding the

vertices of the model. The convex hulls found for these models are exact.

Allison and Noga’s tetra convex hull program fails to create the convex hull for

some point sets that have been generated, resulting in the error message “attem pt

to delete a point known to be on the hull”. To date it has not been possible

to ascertain the reason for these failures. There is no correlation between the

32

complexity of the point sets and the failures; for example the points generated

from the model shown in figure 3.9 are relatively simple and yet cause the error,

whereas more complicated point sets also cause the error. For some point sets

tetra can successfully find the convex hull, but if some of the points in the point

set are translated by a small amount then tetra fails to find the convex hull of

the new point set.

The convex hulls of three non-polyhedral models have been calculated by gener­

ating points by using the two methods of using the corner points of sub-model’s

boxes in a divided model and of using the corner points of the faceted m odel’s

facets. Example results for these models are shown in figures 3.10 to 3.18. The

division resolution and facet factors for these examples have been chosen so that

the number of points that are sent to the convex hull program tetra is approx­

im ately the same for each model for both methods (exact figures can be seen

in table 3.1). The faceting method creates convex hulls which are considerably

closer to the original m odel’s surface, although the hull is approximate and may

be partly inside the original model.

33

Figure 3.6: ‘Two cuboids’ polyhedral model and the convex hull produced.

Figure 3.7: ‘Cuboid unioned with smaller cuboids’ polyhedral model and the
convex hull produced.

35

Figure 3.8: ‘Simple robot arm ’ polyhedral model and the convex hull produced.

36

iF

Figure 3.9: Model for which the convex hull program tetra fails to create the
convex hull.

Model Division resolution Facet factor

H—
*

o
1 to 10-3 1 0 “ 4 1 0 “ 5 1 0 ~ 6 1 H T 1 10-2 1 0 “ 3 1 0 “ 4

Robot 78 154 471 1342 4362 519 2501 9703 25883 25883

Wristwatch 187 740 2865 8249 20285 1339 2586 3415 3897 4108
CSG 43 126 783 2425 8003 2075 4675 5701 6798 7514

Sphere 146 458 2306 8730 11242 896 896 896 896 896

Table 3.1: Number of points generated for the convex hulls for the model division
and model faceting point-generation methods for non-polyhedral models.

Table 3.1 gives results for the number of points generated for the two point-

generation methods of dividing the model (for various division resolutions) and

of faceting the model (for various facet factors, which are measures of the accuracy

of the resulting faceted model and result in the model being divided more finely

before facets are created). The number of points is shown after duplicate points

have been removed. The values in italics denote the results shown in figures 3.10

to 3.18. The division resolutions and facet factors are not directly comparable

because the division resolution is the ratio of the volume of the smallest possible

37

\
Figure 3.10: ‘Robot arm ’ example model.

Figure 3.11: Convex hull of ‘Robot arm ’ model from points generated by model
division with division resolution of 10~5.

Figure 3.12: Convex hull of ‘Robot arm’ model from points generated by faceting
the model with facet factor of 1.

38

Figure 3.13: ‘Wristwatch’ example model.

Figure 3.14: Convex hull of ‘Wristwatch’ model from points generated by model
division with division resolution of 10-5.

Figure 3.15: Convex hull of ‘Wristwatch’ model from points generated by faceting
the model with facet factor of 10_4.

Figure 3.16: ‘CSG’ example model

Figure 3.17: Convex hull of ‘CSG’ model from points generated by model division
with division resolution of 10-5 .

Figure 3.18: Convex hull of ‘CSG’ model from points generated by faceting the
model with facet factor of 1.

M odel D iv isio n resolution F acet factor

1OrH 10~3 10~4 10"5 10"6 1 10"1 10-2 1—
»

0
1 CO 10"4

Robot 0.00 0.06 0.17 0.42 1.52 0.32 1.26 4.80 10.26 10.47
Wristwatch 0.05 0.15 0.77 1.81 4.59 0.55 1.54 1.42 1.61 1.70

CSG 0.05 0.06 0.27 0.89 2.93 0.94 1.89 2.17 2.59 2.88
Sphere 0.05 0.16 0.99 3.92 4.91 0.42 0.42 0.42 0.42 0.42

Table 3.2: Time in seconds taken to generate points for the convex hulls for the
m odel division and model faceting point-generation methods for non-polyhedral
models.

sub-model box to the volume of the original m odel’s box, and the facet factor is a

measure of facet accuracy. The number of points found is the same for the ‘R obot’

model at facet factors 10~3 and 10-4 because the faceting algorithm produces the

same facets at these facet factors.

Table 3.2 shows the time taken in seconds to generate points for the two point-

generation methods for each model at several division resolutions and facet fac­

tors. The values in italics denote the results shown in figures 3.10 to 3.18. The

tim es are measured as CPU time taken as an average of three executions of the

program on a Windows 95 based computer with a 266MHz K6-2 (Pentium II

class) processor and 64Mb of RAM . It takes a similar amount of tim e to perform

division as it does to facet the model to generate the same number of points for a

given model. As the division resolution or facet factor is made finer, the number

of points generated increases but the time taken to generate the points does not

increase linearly with the number of points. This is usual for adaptive binary

spatial division as the division time is affected by other factors.

41

3.4 Future work

3.4.1 Improvements to the adapted point-set algorithm

The ‘tetra’ convex hull program that has been used to find the convex hull of a set

of points generated from a set-theoretically defined model has problems handling

some points sets as identified on page 32. To ensure that this convex hull method

can be used on all models it would be important to either identify the cause of

this problem, or to use an alternative point-set convex hull algorithm.

The data structure that is currently used to store the points found from the

set-theoretically defined model before they are sent to the point-set convex hull

algorithm is an unsorted linked list of points. It is necessary to remove duplicates

from this list before the points are sent to the convex hull algorithm. It would be

more computationally efficient to use an alternative data structure that supports

fast point insertion without inserting duplicate points, such as an ordered binary

tree.

3.4.2 M ulti-dimensional technique for convex hull compu­

tation

The framework of this technique was suggested to me by Woodwark [78], who pro­

posed a multi-dimensional method of finding the convex hull of a set-theoretically

defined model. Given such a model and an infinite number of planar half-spaces

which may be in any position in space and have any orientation, the convex hull

of the model is the intersection of all planar half-spaces that satisfy the condition

42

Figure 3.19: Example for multi-dimensional convex hull method.

half-space fl model = model (1)

i.e. all planar half-spaces which completely enclose the model. Figure 3.19 illus­

trates this with a two-dimensional example model, and shows some of the planar

half-spaces tha t satisfy this condition. As this is a two-dimensional model the

planar half spaces are lines. Generally with this method there is some redundancy

in the planar half-spaces, since half-spaces tha t do not touch the surface of the

model are unnecessary. The half-spaces would have three degrees of freedom if

the model is a three-dimensional model, or more generally d degrees of freedom

for a d-dimensional model.

This lends itself to a multi-dimensional implementation, which could use the

sVLls m multi-dimensional CSG modeller [12]. A one-dimensional diagram, fig­

ure 3.20, is used to illustrate how this would work. The one-dimensional model

consists of two intervals Ia and A, combined with the union operator. A multi­

dimensional space is created containing the original model’s dimensions, the di­

mensions of translation of the model in each of the original dimensions, and the

43

rotation of the model. In the example this space contains the model dimension,

x, the translation dimension, x t, and a rotation dimension which has only two

values as a one-dimensional planar half-space can only be rotated into two posi­

tions, so that the solid side is either at lower values of x or at higher values of x.

W ithin this space, a multi-dimensional model is created. This model is solid at

the points where condition (1) is satisfied for a half-space at the position specified

by the position in the multi-dimensional space. In the example half-spaces with

x values lower than the lowest interval with the solid side of the half-space in

the direction of increasing x satisfy condition (1) (shown as the region P i), as

do half-spaces with x values higher than the highest interval with the solid side

of the half-space in the direction of decreasing x (shown as the region P2). This

multi-dimensional model is next projected down into the original m odel’s space,

shown as the regions R \ and R 2 . To enumerate this projected model, adaptive

recursive spatial division could be used to find solid, air and surface areas, with

finer division used to make the results more accurate. The convex hull would

then be represented by the regions of the projected model that are air, i.e. the

convex hull would be the complement of the projected model.

3.5 Conclusions

A method for computing the convex hull of a set-theoretically defined model has

been presented. This method consists of generating a point set from a model and

then using an existing point-set algorithm to find the convex hull of the point

set. The point set that is created by this to represent the convex hull can then

be converted into a set-theoretically defined model.

Different methods of generating the point set have been implemented: one for

44

R R x

Figure 3.20: Projection from multi-dimensional space to original model space for
convex hulls.

45

polyhedral models and two for non-polyhedral models. The method for polyhe­

dral models finds the exact convex hull. The two methods for non-polyhedral

m odels use recursive division and faceting, and create approximate convex hulls.

O f these two methods the faceting method was found to produce convex hulls

closer to the original model, although these are not guaranteed to completely

enclose the model. Convex hulls generated by the recursive division method for

non-polyhedral models will always enclose the original model.

46

Chapter 4

Connected component labelling

4.1 Introduction

Connected component labelling is used in model analysis to determine whether

two points of a model are connected, and also to count the number of separate

components of a model. One application of connectivity information is component

analysis. An example of this could be that an engineer has created a computer

model of engine components and wants to be sure that fluid will not leak from

one engine chamber to another. Another possible situation could be that after

creating the model the engineer wants to check how many separate components

there are to identify design errors such as inadvertently splitting a component

into two separate objects.

Boundary representation modellers have connectivity information explicitly stored

in the data structure and so, in theory, it should be easy to find the connectivity

information for a boundary representation model. In set-theoretic modelling

however, there is no straightforward way of extracting the connectivity information

47

because the model is unevaluated, i.e. the structure of the set-theoretic tree of

boolean operators and primitives has no direct relation to the connectivity of the

model.

There are several connectivity problems with differing levels of complexity. A

relatively simple connectivity problem is to determine if two points in three-

dimensional space are connected by a path passing only through the ‘solid’ parts

of a model or only through the ‘air’ parts of the model (this would solve the

foregoing example above of checking that fluid cannot pass between two chambers:

if the two chambers are connected by a path passing through ‘air’ then the fluid

will leak). A more difficult problem is to label the connected components and

hence find the number of separate components within a model. By labelling the

components the point-connectivity problem can be answered by examining the

labels of the parts of the model that the two points lie in, although the path

between the two points will not be known.

4.2 Literature survey

Research in the field of connected component labelling uses various approaches

and data structures such as 2n trees and binary trees, geometrical objects, voxel

images and line segments.. The first two data.structures are reviewed in detail in

this section, and the latter two are only briefly mentioned below as they are not

relevant to the current research because the methods used are not compatible w ith

the data structure of the sVLls geometric modeller. Much connected component

research has been done in the area of vision analysis [36].

Voxel image algorithms such as Lumia’s [51] and Thurjfell, Bengtsson and

48

Nordin’s [73] use two phases: firstly scan each slice, row and column of an image

and give adjacent voxels the same label, and secondly re-label the model using

label equivalences that are found in the labelling phase. This process is covered

in more detail in the explanation of Sam et’s work [64], given below. Work on con­

nected components for line segments, such as that by Lopez and Thurimella [49],

is concerned with the special data structure of sets of line segments, which can

be applied to the fabrication of VLSI electronic circuits.

4.2.1 2n trees and binary trees

Much of the work on 2n trees and binary trees is within the field of computer

graphics, where images are often stored using these tree structures. The internal

nodes of these trees are considered to be grey and the leaf nodes are either

black or white - these leaf nodes can be considered to be equivalent to the solid

and air nodes (see section 2.2) of a spatially-divided model in set-theoretic solid

geometrical modelling. There is no equivalent to surface leaf nodes in set-theoretic

modelling for trees representing images.

One connected-component labelling approach is neighbour-visiting [64, 23] in

which all of the nodes in the image are visited in a certain order, and when

a black node N is encountered each of its’ neighbours are visited to see if they

are black. If any neighbour is black, then node N and that neighbour are given

the same label (if they are both already labelled, the two labels are added to a

list of equivalent labels). Another approach visits each node in turn and keeps

track of an active border [66, 67] which stores the colour of nodes adjacent to the

border; this makes it unnecessary to visit the neighbours of each node. However

as the number of dimensions increases the size of the active border data structure

can become excessive.

49

Neighbour-visiting algorithms use two approaches to find neighbours: top-down

or bottom-up. The top-down approach [45] uses the coordinates and size of the

current node to compute the location of a point in the neighbouring node. The

tree can then be walked from the root downwards to find the node which contains

that point. The bottom-up approach (used for example by Samet [64]) makes

use of parent pointers in each node to walk up the tree in order to find the node

that contains both the current node and its neighbour. The tree can then be

walked down, mirroring the nodes chosen when walking up the tree, to find the

neighbouring node of equal or greater size.

S a m e t (1 9 8 1) [64] presents an algorithm for labelling the connected components

of an image represented by a quadtree. The quadtree is traversed in postorder

i.e. the children of a node are visited before the node itself, and children are

always visited in the fixed order Northwest, Northeast, Southwest, Southeast. As

each leaf node is visited, its Eastern and Southern neighbours of equal or greater

size are found, and all children of those neighbours adjacent to the leaf node

are examined to see if they are solid. When two adjacent solid nodes are found,

they are given the same label; if two adjacent solid nodes are already labelled,

their labels are added to a ‘label equivalence’ list, and the label equivalences are

merged after the tree has been traversed.

S a m e t an d T a m m in en (19 8 5) [66] give algorithms for linear quadtrees that

do not require the calculation of the neighbour of a node. These algorithms are

used to calculate perimeters, label connected components and to calculate the

Euler number for two-dimensional images. The Euler number, or genus, is the

difference between the number of connected components and the number of holes

(a hole is an air component completely enclosed by a solid component). These

algorithms use an active border to keep track of information relating to nodes

that have already been visited, which reduces the computational complexity of

50

Sam et’s original approach [64] but requires more storage (for the active border).

S a m e t and T a m m in en (19 8 8) [67] introduce a multi-dimensional connected

component algorithm that uses active borders in a similar way to their earlier

work in 1985 [66]. The running time of the algorithm is ‘alm ost’ linear with

respect to the number of nodes in the 2n tree, and worst-case storage requirements

are 0 (b) where b is the number of solid nodes.

S a m e t (1 9 8 9) [65] presents algorithms for finding neighbours in octrees using a

bottom -up approach; this technique is useful for neighbour-visiting in connected-

component labelling algorithms.

D ille n c o u r t , S a m et and T a m m in en (1 9 9 2) [23] give an algorithm for

connected-component labelling for a variety of image representation schemes,

including quadtrees and binary trees. This algorithm labels adjacent solid nodes

in the image with the same label by scanning the image in a similar way to [64].

Two methods are used to reduce storage requirement: an intermediate file is used

between two passes and labels are re-used.

A major part of the computational effort for connected component algorithms

is keeping track of active elements (active elements are those elements which

have been scanned but have at least one neighbour that has not been scanned).

The order in which the image is scanned is also important. Dillencourt, Samet

and Tamminen define three categories of scanning orders: admissible, weakly

admissible and inadmissible.

A d m iss ib le sca n n in g orders limit the number of active image elements. For

a scanning order to be admissible two criteria must be met: firstly each

element must be processed only once, and secondly all neighbours of each

51

6 8 14 16

5 7 13 15

2 4 10 12

1 3 9 11

7 5 15 13

8 6 16 14

3 1 11 9

4 2 12 10

1 3 9 11

2 4 10 12

6 8 14 16

5 7 13 15

(a) (b) (c)

Figure 4.1: Example scanning orders for two-dimensional binary trees: (a) ad­
missible, (b) inadmissible, (c) weakly admissible.

image element in a set of distinguished directions will either have already

been scanned or will not exist (i.e. the image element is on the edge of

the image). The distinguished directions consist of one direction from each

direction pair (i.e. the North-South pair or the East-West pair).

W ea k ly a d m iss ib le sca n n in g orders also ensure that each image element is

processed once and that when processing any image element, all of its neigh­

bours in at least one direction of every direction pair (such as North-South

or East-West) either do not exist or have been scanned already. The direc­

tions can be chosen differently for each image element. The only difference

between admissible orders and weakly admissible orders is that the neigh­

bours must be in a set of distinguished directions. All admissible orders are

also weakly admissible.

In a d m iss ib le sca n n in g ord ers are all scanning orders that are not weakly ad­

missible nor admissible.

An example of an admissible order for binary trees would be to first scan the

child in the minimum direction of each axis and is shown in figure 4.1a. The

distinguished directions for this example are South and West. Inadmissible and

52

weakly admissible orders for binary trees are counter-intuitive; for example, al­

ternately choosing the child with the lowest value in all axes, then choosing the

child with the highest value in all axes, would produce the inadmissible order of

figure 4.1b. A weakly admissible scanning order is shown in figure 4.1c, which

could be produced by applying the rule: choose the least child in each direction,

unless the current node is a maximum node in the North-South direction, in

which case choose the child node with the maximum value in the North-South

direction to be the next node to be scanned.

4.2.2 Connected components of geometrical objects

E d e lsb ru n n er e t a l (1 9 8 4) [25] propose a connected component labelling

m ethod for horizontal and vertical line segments and for rectangles in a two-

dimensional plane. It can be performed in 0 (n lo g n) time and 0 {n) space. In

this approach a vertical line is swept across the objects and a connected compo­

nent data structure is stored which is updated whenever the sweeping line either

comes onto, or comes off, a horizontal segment, or when it intersects a vertical

segment. For rectangles there are two cases which need to be handled: when the

sweeping line meets the left end of a rectangle or when it meets the right end of a

rectangle. They also discuss a method for rectilinear objects with dimensionality

higher then two, which does not use a sweeping approach, but instead uses a

m ethod of intersecting d-dimensional rectilinear objects with one another. This

can be processed in 0 (n lo g d n) time and requires 0 (n l o g d~l n) space where d is

the dimensionality of the objects.

C a n n y (1 9 8 8) [17] has proposed a ‘roadmap’ algorithm which finds the one­

dimensional skeleton of a semi-algebraic set, called the roadmap of the set. The

algorithm works in single exponential time. The relevance of this to connected

53

component labelling is that if a'set is connected then its roadmap is connected,

hence the roadmap of a set can be used to determine whether or not two points

lie in the same connected component of that set. In [16] (1993) Canny removes

the restrictions that the set must be compact and ‘in general position’.

H e in tz , R o y an d S o lern o (1 9 9 4) [33] have also used roadmaps in an algorithm

for finding the connected components of a semi-algebraic set. Their m ethod does

not require that the set be in general position, and does not need a ‘W hitney

stratified input’ [17].

4.3 New Research completed

I have suggested two methods to determine whether or not two points are con­

nected in a set-theoretically defined model which uses intersection of line seg­

ments; these methods are described in section 4.3.1, below.

Furthermore, the connected component labelling problem has been approached by

analysing the binary tree created by recursive spatial sub-division of a sVLls model

in order to find connected boxes, as described in section 4.3.3. Connected boxes

are given the same label, and the number of different labels gives the number

of components. I have adapted Samet’s connected component labelling algo­

rithm for two-dimensional quadtrees representing two-dimensional monochrome

images, so that it works with binary trees representing three-dimensional set-

theoretic models. Finally, this connected component labelling method is adapted

to use an analytical method of finding the connectivity of polyhedral models, as

described in section 4.3.5.

54

F,

Figure 4.2: Example object for divide and conquer solution to point connectivity
query.

4.3.1 Point connectivity

This section briefly describes a heuristic for point connectivity that is possible

to implement for any modeller offering point membership and line-intersection

(ray-trace) queries. It may not always find a solution, but any solution found

is guaranteed to be valid. A ‘divide and conquer’ approach is used that divides

the line between the points until a series of line segments have been found that

do not pass through any part of the model. All examples in this section are

two-dimensional for clarity within diagrams, however the method suggested has

been used in more than three dimensions using the multi-dimensional modeller

sVLls m [12].

It is assumed that the two points between which connectivity information is

required are in solid objects and are denoted by pi and p2, and also that I is

the line segment (pi, p2) as shown in figure 4.2. If I does not intersect with any

surfaces, then the two points must be connected. If I does intersect with some

55

yo
lc(0

VO

^Resulting interval

Figure 4.3: The intersection of the line segment I with a sub-model (A C \B)U C,
i.e. I r (1) is (/a (0 fl-W O) U-^c(0i which covers the entire line segment.

surface, then the plane tha t is the perpendicular bisector of I is found. A

point p3 is found tha t lies in the plane F\ and is also in solid. The process is

now applied recursively to the pairs of points {pi,ps) and (̂ >3,^ 2) until either the

points are connected by a path through solid, or a bisecting plane is found th a t

is completely in air, so the two points are known to be disconnected. If neither

of these two conditions are met within a given number of iterations the process

must be terminated, as the connectivity relationship between the points cannot

be established. The planes and points found for a two-dimensional object are

shown in figure 4.2. In this example only one more recursion is needed to find p±

between pi and p3.

The proposed method needs to be able to determine whether or not I intersects

with any surface in a model, and also needs to be able to find a point on a plane

tha t is in solid. The first of these requirements - the line-segment intersection

mechanism - is available within the sVLls geometric modeller in the form of ray-

tracing operations, which are more efficient if the model has been divided. The

56

Figure 4.4: The intersection of the line segment I with a sub-model (A fl B) fl C,
i.e. I r (1) is (Ia {1) fl which is the empty interval.

first leaf sub-model tha t I intersects is found by comparing the model’s box and

sub-model’s boxes with I. For each primitive X in a leaf sub-model the interval

I x (l) of parametric values of I for which I intersects X is computed. These

intervals are then combined in the same way as the primitives are combined in

the set-theoretic expression tha t defines the set within the leaf sub-model’s box,

resulting in an interval or series of intervals I r (1) of the intersection of the set

tree with I. Examples of the computation of this interval are given in figures 4.3

and 4.4. If I r (1) covers the entirety of I (for example figure 4.3) or is the empty

interval (for example figure 4.4) the model tree traversal is continued to find the

next leaf sub-model tha t I intersects, and the interval examination is performed

again. Alternatively if the interval does not cover the whole of the sub-model’s

box, or a series of intervals has been found, then I must intersect with the set and

the first primitive tha t I intersects is found at the boundary of the first interval.

If I does not intersect with any of the leaf sub-models then it is known not to

intersect the sub-model.

The second requirement of a modeller that is to be used for this point connectivity

57

technique is to find a point that is on the bisecting plane F and that is also in the

solid region of the set. A recursive division technique or a Monte Carlo technique

can be used to do this. For the recursive division technique, the concept of two

sub-models being directly connected is required. Two sub-models are directly

connected if a line-intersection query on the line segment between the centroids

of the two sub-models’ boxes results in no intersection with the surface of the sub­

model. To find a point in F and in solid the sub-models that F passes through

are examined, with three possibilities:

O n e or m ore o f th e su b -m o d e ls are c o m p le te ly so lid . The point on the

plane that is closest to the centroid of that sub-model’s box is used. If

more than one solid sub-model is found, and these sub-models are not

directly connected, then the recursion must be performed in turn on the

points found in each of those sub-models’ boxes.

T h e p la n e F p asses th ro u g h o n ly su rface su b -m o d e ls . The sub-models

are divided until a solid one is found.

A ll o f th e su b -m o d e ls th a t F p a sses th r o u g h are air. The two points are

known not to be connected.

A n a lte r n a tiv e ap p roach to p o in t c o n n e c t iv ity

An alternative method for establishing point connectivity has also been originated

where, instead of finding one perpendicular bisector, two planes F\ ti and F2|i are

found. F ifi and F2)i are perpendicular to the line segment and pass through

the points where the ray emerges from the surface. The point p1}i is found,

where this points lies in solid and on plane Fi^. Point p2) 1 is found in a similar

manner. A ray is now fired from p^i to p 2,i and the process is repeated until

58

Figure 4.5: Example object for alternative divide and conquer solution to point
connectivity query.

either a connection has been established, or a bisecting plane is found that is

completely in air, in which case the two points are known to be disconnected.

As with the previous method the process must also be terminated if neither of

these two conditions are met within a given number of iterations, in which case

the connectivity information for the points remains unknown. Figure 4.5 shows

the same two-dimensional object as that of figure 4.2, with the points and planes

found by this alternative method. The alternative m ethod required two iterations

to determine the connectivity information for this example.

Suitability of the techniques

Both of the preceding techniques can fail to provide connectivity information if

a bisecting plane has been divided to the division limit and only surface boxes

result. In this situation the initial division resolution could be made finer, but

that may not always lead to a solution. For instance it is possible to construct two

59

disconnected objects between which there is no dividing plane that is completely

in air; for such objects these techniques will terminate with unknown connectivity.

However the techniques would be useful as heuristics if they were part of a system

where the exact answer was not required.

The techniques are inefficient if two objects are very close but are not connected.

In this situation a large number of iterations would be required if the gap between

the objects does not fall in one of the splitting planes found in an early iteration.

The techniques are therefore suitable for confirming that two points in solid

parts of the model are connected, for example in model analysis where there is a

requirement that two points in the model are connected. Because of the nature

of set-theoretic modelling, to check that two points in air parts of the model are

connected, these techniques can be applied to the complement of the model.

4.3.2 Results

Bowyer [11] has created a multi-dimensional implementation of my point connec­

tivity technique using the sVLls m [12] multi-dimensional set-theoretic modeller.

The configuration space of a two-dimensional model that is able to rotate (i.e. it

has one degree of freedom) is three-dimensional and is shown in figure 4.6. This

modeller is used in a path planning situation where a configuration space [50] has

been generated for a three-dimensional nomad which can translate and rotate but

must not clash with a three-dimensional obstacle; this configuration space can­

not be illustrated as it is six-dimensional. The start position and final position of

the nomad are two points in the configuration space, and the point connectivity

technique presented here is used to find out whether or not there is a connection

between these two points: if there is then the series of line segments between the

60

Figure 4.6: The configuration space of a two-dimensional model with one degree
of freedom.

intermediate points in the configuration space gives a path in the model space.

The start and final positions of a nomad (the brown union of two tetrahedra)

and an obstacle (the blue cube) are shown in figure 4.7, and figure 4.8 shows a

point found on the path between these two positions. The small green cube is a

graphical flag used by the configuration space mapping program to show that the

positions of the nomad and the obstacle are valid, i.e. they do not overlap. An

animation of the nomad following the path that has been generated is available

on Bowyer’s website [9]. The time taken to find a path for this problem was

approximately two minutes on a 400MHz Pentium II running Linux.

61

*

>■
Figure 4.7: The start and final positions of a nomad (the brown union of two
tetrahedra) either side of a simple obstacle (the blue cube). The green cube is a
collision flag and is not part of the geometry of the problem.

t
Figure 4.8: A position of the nomad on the path between the start and final
positions that does not cause it to overlap with the obstacle.

62

i
<

Figure 4.9: A position of the nomad on the straight hyperline between the start
and final positions. The nomad is in contact with the obstacle, shown by the
collision flag as a red tetrahedron.

4.3.3 Connected com ponent labelling of binary trees

I have adapted Samet’s algorithm for labelling connected components in two-

dimensional quadtrees [64] to work with multi-dimensional binary trees, and im­

plemented it to work on three-dimensional binary trees such as those created by

dividing a sVLls set-theoretically defined model.

The main traditional application area for Samet’s algorithm is monochrome image

processing, in which all leaf nodes of the quadtree will be either solid (black) or

air (white). Samet also uses the term ‘grey’ nodes to denote non-leaf nodes which

contain both black and white nodes; the equivalent of this in sVLls is a non-leaf

surface sub-model.

Samet’s algorithm works as follows. A quadtree is traversed in postorder, visiting

children in the order Northwest, Northeast, Southwest, Southeast - an example

of this traversal is shown in figure 4.10. When a solid leaf node a is visited, its

Eastern and Southern neighbours of equal or greater size are visited. If a has

adjacent solid nodes, they are given the same label as a, generating a new label

63

1 2

5

3 4

6

7
8 9

10 11

1 2 1 3

Figure 4.10: The order in which quadtree nodes are visited for Sam et’s algorithm.

if neither a nor its adjacent nodes are labelled. If both a and an adjacent solid

node are already labelled, their labels are added to a label equivalence list. The

label equivalences are merged after the tree has been traversed, and the elements

in the tree are given their final labels which can be counted to find the number

of connected components, or interrogated to determine which parts of the model

are connected.

As with quadtrees, divided sVLls models contain solid and air leaf sub-models,

and also contain surface leaf sub-models. These latter are represented in my

adaptation of the algorithm as either solid or air (selectable by the user), which

respectively biases towards an underestimate or an overestimate of the number

of disconnected components. Extension of the algorithm to handle simple surface

sub-models analytically removes a large amount of uncertainty and means that

the initial model need not be divided so finely, thereby creating a smaller binary

tree to search - this is discussed further in section 4.3.5.

The general structure of Samet’s algorithm has been retained in this adaptation

for multi-dimensional binary trees, with some changes necessary to the functions

that he suggests. First the model is divided. A recursive function to label the

model is then applied, which traverses the m odel’s binary tree in postorder; for

a leaf model P , each of the neighbouring models Qi in each dimension i of the

64

p
a b^

c d

e /

* / ----L--
h

Q>

Figure 4.11: Example for binary tree connected-component-labelling algorithm.

n-dimensional space is found and is labelled as being adjacent to the leaf model.

W hen labelling two models as adjacent, P is guaranteed to be a leaf model but

Qi may not be. If Qi is not a leaf model then all of its children that are closest

to P in the direction of the cut between P and Qi must be recursively labelled.

Figure 4.11 shows an example two-dimensional model where neither Q i nor Q2

are leaf models. The binary tree for the model is also shown, with the children of

Q i and Q2 closest to P in the cut direction denoted by shaded boxes; these will

be given the same label as P. The leaf nodes that will be labelled are shown as

black boxes.

Pseudo code for the new connected component labelling algorithm is given below.

Functions denoted by italics are further explained below the pseudo code.

M ain fu n ctio n

divide the model

label(model)

merge equivalent labels

65

fu n ctio n : label (m o d e l)

if model is not a leaf

label (model’s first child)

label (model’s second child)

else

do for each axis

Q = neighbour in axis

if not on an edge

label as adjacent (Q, model, axis direction)

end if

end do

end if

fu n ctio n : label as a d ja c e n t (m o d e l 1, m o d e l 2, ax is d ir e c t io n)

if model 1 is not a leaf model

label as adjacent (model l ’s first child, model 2)

if axis direction is different to model l ’s cut direction

label as adjacent (model l ’s second child, model 2)

end if

else if are connected (model 1, model 2)

label with same label (model 1, model 2)

end if

The first step is to divide the model, which produces a model divided into sub­

models each small enough to ensure that connections are not inadvertently made

between two disconnected objects. The division method used is one that divides

until either the volume of the sub-model’s boxes is smaller than the original

model’s volume by a ratio dependent on the required accuracy, or the sub-model

66

contains no surface of any object. The volume ratio must be chosen so that the

sm allest sub-model boxes are smaller than the smallest feature on the model; for

example if the smallest feature is one tenth of the length of the m odel’s box, then

the division volume ratio must be 10-3 . The box-swell factor (see section 2.2.2

on page 13) for the division must be set to zero, so that the sub-model’s boxes

do not overlap.

The function to merge equivalent labels is not explained here as it is essentially

the same as in Sam et’s code.

The main loop of the labelling part of the algorithm (label) was changed from

Sam et’s code for two reasons; firstly to accommodate a three-dimensional struc­

ture rather than Samet’s two-dimensional quadtree, and secondly as there are

only two child trees in a binary tree that must be recursed into instead of the

four child trees in a quadtree.

The function to find the neighbour of a node that is greater or equal in size to that

node (neighbour in axis) was completely rewritten to use a ‘top-down’ neighbour

method instead of Samet’s ‘bottom -up’ method (gtequal_adj_neighbor). Samet’s

bottom -up method is unsuitable for binary trees because it relies on the position

of each node in relation to its parent and the layout of each node is not fixed as

it is in 2n trees; for example in a 2n tree the position of each node is known by

examining which child it is: the southwest (minimum x and y) child of a quadtree

is always at the bottom left corner of a node, whereas in a two-dimensional

binary tree a child that is at the minimum direction in the x axis could be at the

minimum or maximum y position, depending on the y position of its ancestor

node that is split in the y direction. The proposed neighbour in axis function

uses a ‘top-down’ geometric method to find the neighbouring node: the centroid

of the neighbouring box is found by translating the centroid of the current box

67

n
X;

p
(a) quadtree (b) bintree

Figure 4.12: Labelling adjacent nodes of quadtrees and binary trees.

in the direction of the neighbouring box, and by a translational distance equal

to the length of the side of the current box which faces in the direction of the

neighbouring box. The box tree is then recursively traversed to find the largest

box with that centroid, and the resultant box is returned as the neighbour. This

method relies upon the box structure being divided with no overlap between the

boxes, which is the reason for the box-swell factor being set to zero in the initial

model division function.

The function label as adjacent labels all children of a node p th a t are adjacent

to another node n with the same label as n. It was changed from Samet’s la-

bel_ adjacent, because identification of the children of a tree node tha t lie on the

correct ‘side’ needs a different function to tha t used for quadtrees. The original

function starts from a given node p, which is not necessarily a leaf node, and la­

bels all children of p that are adjacent to a node on the Northern (Western) side

of p with the same label as n. In order to do this the Northwest and Northeast

(Northwest and Southwest) children are recursed into, labelling the Northwest

and Northeast (Northwest and Southwest) solid leaf nodes with the same label

as n. Figure 4.12(a) shows the leaf nodes adjacent to n tha t would be labelled by

this function as shaded nodes, and the starting node p with a thick chain outline.

68

In my binary tree implementation of this function, the children of node p that are

adjacent to node n are found by walking over p’s tree recursively, and as children

of p that have been divided in the same direction as the division between p and n

are entered, only walking into the child that is in the direction of p. For example,

using the two-dimensional binary tree of figure 4.12(b), p and n are divided in

the x-axis. The first level of recursion will walk into both children of p since

they are divided in the y-axis, and the next level of recursion will only select the

sub-model with the least value in the x-axis, since that is in the direction of n.

For this example the recursion would then be complete.

The function are connected (model 1, model 2) determines whether model 1 and

model 2 are connected by evaluating the contents of each model in terms of air,

surface or solid. Surface models are considered to be either solid or air, depending

upon a global setting selected for each execution of the algorithm. This allows

conservativeness in diagnosing connectivity, or in diagnosing disconnectedness. If

both models are solid (or are considered to be solid) then they are connected;

otherwise one of the models is air (or is considered to be air), and they are not

connected.

The function to label two models with the same label (label with same label) is

not explained here, as again it is essentially unchanged from Sam et’s original.

4.3.4 Results

The connected component algorithm has been implemented for the three-

dimensional binary trees that are created by dividing a sVLls set-theoretically

defined model, and figures 4.13 to 4.18 show the results of running the algorithm

on several such sVLls models. The algorithm has automatically allocated each

69

Figure 4.13: Connected components found for ‘Two boxes’ model.

separate connected component found within the models a different colour. The

mode of the algorithm selected for these tests was that in which surface leaf boxes

are considered to be solid.

Results for these particular models are summarised in table 4.1. The connected

components of each model were labelled and counted at several different division

resolutions - the value given in the table is the ratio of the volume of the smallest

divided sub-model’s box to the volume of the original model’s box. For each of

these resolutions the number of components found is listed. The algorithm was

run on each model to compare the effect of the choice of modes, i.e. either where

the surface leaf boxes are treated as solid boxes, or treated as air boxes. The

‘Working resolution’ column shows for each model the division resolution at (and

below) which the algorithm consistently1 labels the components correctly.

The most significant aspect of the results is that when surface boxes are con­

sidered to be air, the number of components returned does not behave in a pre-

1 A lth ou gh th e num ber o f com p on en ts is correctly found for the racing car m odel at d iv ision
resolution o f 10- 4 , th is is due to fortu n ate alignm ent o f th e d ivided m o d e l’s sub-m odels so th a t
th ere are th ree areas o f so lid su b -m od els w ith air betw een them . A d ivision resolution o f 10- 7
or finer is required to correctly sep arate th e solid su b-m odels in to three areas.

70

Figure 4.14: Connected components found for ‘Two L shapes and block’ model.

Figure 4.15: Connected components found for ‘Racing car’ model.

71

Figure 4.16: Connected components found for ‘Robot with obstacles’ model.

t
Figure 4.17: Connected components found for ‘Non-polyhedral robot’ model.

CSC-
Figure 4.18: Connected components found for ‘CSG’ model.

Model Compo­ Surface Working Components found
nents box type resolution 10"3 10“4 10"5 1(T6 1(T7

Two 2 solid 1(T4 1 2 2 2 2
boxes air 10“3 2 2 2 2 2

Two L shapes 3 solid 10"5 1 2 3 3 3
and block air i (H 2 3 3 3 3
Racing car 3 solid i o - 7 1 3 4 4 3

air - 0 0 0 9 4
Robot with 4 solid 1(T4 3 4 4 4 4
obstacles air 1 0 -7 0 0 1 11 4

Non-polyhedral 4 solid 1(T4 3 4 4 4 4
robot air 10-7 0 1 5 11 4
CSG 3 solid 10"5 1 4 3 3 3

air - 0 4 5 4 5

Table 4.1: Results of the binary tree connected component algorithm. The num­
ber of components found is shown at several division resolutions and for the
algorithm considering surface leaf sub-models to be either solid or air.

73

(a) (b)

Figure 4.19: Failure situations for the connected component algorithm when
surface boxes are considered to be air boxes.

dictable manner as the resolution of division is made finer. Generally the number

of components will be too few with coarser division resolutions, as exemplified in

figure 4.19(a), owing to the boxes being too large to contain just solid parts of

the components. This results in the model only consisting of surface boxes th a t

are considered to be air, so no component is found. The number of components

increases to the correct value as division resolution is made finer, however for

some models (i.e. ‘Racing car’, ‘Robot with obstacles’, ‘CSG’) the number of

components goes above the correct number as division is made finer. This error

occurs because the smallest boxes tha t the model is divided into contains only

parts of the components within solid boxes, and these solid boxes are not con­

nected, even though in reality they are part of the same connected component;

this is shown in figure 4.19(b). As division is made even finer, the number of

components found should fall to the true value.

When surface boxes are treated as being solid boxes by the algorithm, the num­

ber of components found is generally an underestimate of the true number of

components a t coarser division resolutions, increasing to the correct number as

74

the division is made finer. The exception with the example models used is the

‘CSG ’ model which erroneously rises to four components at a division resolution

of 10-4 because the open area of the ‘C’ shape is incorrectly identified as con­

taining a component. This is due to the method used to evaluate the contents of

the model w ithin sVLls which is not exact for non-polyhedral models or for poly­

hedral models with contents greater than three. To produce the correct answer

the m odel must be divided more finely. This precludes the use of an automatic

technique for finding the optimal division-resolution, where resolution is made

finer until the number of components no longer increases. To ensure correct com­

ponent labelling the division resolution must be made fine enough so that no

m odel features can be contained in the smallest division box.

4.3.5 Dealing with surface sub-models analytically

For the binary tree connected component labelling algorithm described previ­

ously, the models used are divided into solid, air and surface sub-models. The

surface sub-models are considered to be either air or solid, which can give under-

or over-estimates respectively of the number of separate components. If the

connectivity between surface sub-models could be found analytically, then the

number of components could be calculated exactly, and the accuracy of the cal­

culation would not rely upon the resolution of the initial model division.

Initially only polyhedral sub-models have been considered, as they are sim­

pler to deal with than general models, and can be used to approximate many

non-polyhedral objects. Two properties of a sub-model need to be computed:

the number of disconnected components in the sub-model and the connectivity

between a surface sub-model and its neighbouring sub-models.

75

Figure 4.20: A sub-model containing two planar half-spaces tha t do not cross
within the sub-model’s box.

If the model can be divided such that the number of disconnected components in

each sub-model can be guaranteed to be zero or one then the number of connected

components in the entire model can be ascertained by examining the connectivity

between a surface sub-model and its neighbouring sub-models. In order to see

how a model may be divided into sub-models tha t contain at most one component

it is necessary to examine how sub-models containing any number of planar half­

spaces (the most primitive entity for the model) are dealt with in the division

process. If a sub-model contains more than three planar half-spaces it is divided.

If a sub-model is of the smallest size allowed by the division resolution, then the

model contains features smaller than the division resolution, and the connectivity

between these features cannot be computed. For other cases, any given sub-model

will contain either one, two or three planar half-spaces. Each of these possibilities

is now considered in turn.

O ne p lanar half-space: A sub-model containing one planar half-space can only

contain one component.

Two planar half-spaces: If a sub-model contains two planar half-spaces tha t

cross within the sub-model’s box then the sub-model must consist of only

76

Figure 4.21: Two planar half-spaces that do not intersect in the sub-model’s box,
and result in two unconnected components.

one component. If on the other hand a sub-model contains two planar

half-spaces tha t do not cross (for example A and B in figure 4.20), then the

sub-model can contain two components if the half-spaces normals are facing

towards each other and they are combined with the union operator (such

as A U B , shown in figure 4.21). Therefore to ensure tha t no sub-model

containing two half-spaces can contain more than one component any sub­

models containing two half-spaces should be divided if the half spaces do

not cross within the sub-model’s box.

T h ree p lanar half-spaces: If the three half-spaces cross at a point within the

sub-model’s box then the sub-model can contain only one disconnected

component as the half-spaces are connected through the point at which

they cross. An example of this is shown in figure 4.22. If they do not

cross at a point then they could contain one component (for example the

situation shown in figure 4.23) or more than one component (for example

figure 4.24). Therefore to ensure tha t sub-models which contain three half­

spaces can only contain one component, sub-model boxes which contain

three planar half-spaces must be divided if the half-spaces do not cross at

a point within the sub-model’s box.

77

Figure 4.22: Three planar half-spaces that intersect at a point, resulting in one
component.

Figure 4.23: Three planar half-spaces that do not intersect at a point and result
in one component.

Figure 4.24: Three planar half-spaces that do not intersect at a point and result
in several unconnected components.

78

A s the number of components within a sub-model has been constrained to be at

most one, the connectivity between a surface sub-model and its neighbouring sub­

model must be calculated. In order to do this, let R be the rectangle of contact

between the two sub-models’ boxes. If there exists a point in R which membership

tests as solid for both sub-models, then the two sub-models are connected. In

general, finding whether such a point exists is not straightforward, but if both of

the sub-models consist only of planar sets then the following properties can be

used to test if the sub-models are connected:

• If they each contain only one plane, and it is the same plane, then they are

connected.

• In other cases the connection between the sub-models must be within the

rectangle R. Points at the intersection of the planes with R and the in­

tersection points of the planes must be tested, and if any point is solid

or surface with respect to the model, then the sub-models are connected.

Otherwise if all points are air, then the sub-models are not connected. The

connectivity of a sub-model to another sub-model only needs to be tested

at points where the edges of the rectangle of overlap intersect the planes or

at points where two planes intersect each other because the connectivity of

a sub-model can only change at the surface of the sub-model.

From this, the following method has been devised for connected component la­

belling of set-theoretically defined polyhedral models. Based on the algorithm

described in section 4.3.3 for connected component labelling of binary trees, the

functions divide the model and are connected (model 1, model 2) have been mod­

ified as described below.

The new divide the model will divide the model until the smallest sub-models

79

satisfy one of the following conditions:

• the sub-model contains only one planar half-space.

• the sub-model contains two planar half-spaces and these cross to produce

a line within the sub-model’s box.

• the sub-model contains three planar half-spaces and these intersect at a

point within the sub-model’s box.

The changed function are connected determines whether two sub-models are con­

nected by using several steps, which increase in computational complexity. As

soon as a step determines that the sub-models are connected, the function can

finish. The steps are:

1. Test if both models are solid. If they are, then they are connected.

2. Test if both models contain only one planar primitive. If they do, and it is

the same primitive for both models, then they are connected.

3. Test if both models are polyhedral. If they are, and they contain three or

less primitives each, then find the points of intersection (if any) between

each plane in model 1 and each plane in model 2 within the rectangle of

overlap R. Also find the points where the planes of the models intersect

the edges of R. If any of these points are solid then the sub-models are

connected; otherwise all of the points are air which means that the sub­

models are disconnected.

4. If step 3 fails, i.e. the models are not polyhedral or they contain more than

three primitives (in which case the feature size of the model is smaller than

the smallest division resolution) then the analytical solution cannot work.

80

Model Compo­
nents

Surface
box type

Working
resolution

Components found
IO"3 1 0 '4 IO"5 10"b IO"7

Two 9 solid lO"3 2 2 2 2 2 1
boxes air IO"3 2 2 2 2 2

Two L shapes 3 solid o 1 C
n

1 3f 3 3 3
and block air IO"4 2 3 3 3 3

Racing car 3 solid IO"6 1 2 3 3 3
air IO"6 11 12 10 3 3

Robot with 4 solid 10-4 3 4 4 4 4
obstacles air IO-6 4* 7 6 4 4

Non-polyhedral 4 solid IO”5 3 3 4 4 4
robot air IO"7 2 5 6 11 4
CSG 3 solid IO"5 1 4 3 3 3

air - 0 5 5 6 5

Table 4.2: Results for the connected component labelling algorithm that handles
polyhedral surface models analytically.
tThe number of components found is correct but the components are labelled
incorrectly.

A trade-off has been made between the amount of analytical work that is

done for a sub-model and the amount of division that will be done. The

surface boxes are considered to be either air or solid, globally selectable by

the user, as for the non-analytical solution. If both models are solid, or

they are surface and surface is considered to be solid, then the models are

connected.

If none of these steps determines that the models are connected then are connected

terminates with the conclusion that the models are disconnected.

4.3.6 Results

The algorithm was tested with the same models as the binary tree connected

component algorithm from section 4.3.3, giving the results shown in table 4.2.

81

W hen surface boxes are considered to be solid, the number of components is

calculated exactly for all of the polyhedral models (i.e. all of the models except

the ‘CSG’ and ‘Non-polyhedral robot’ models) at a coarser division resolution

than the division resolution required for the non-analytical connected component

labelling algorithm to give the correct results. The benefit of using a coarser

division resolution is that the components can be labelled more quickly. For the

non-polyhedral models there is no change for the ’CSG’ model, however, for the

‘Non-polyhedral robot’ model, the number of components was found correctly

at a coarser division by the non-analytical method. This is because the model

contains both polyhedral and non-polyhedral parts and at the division resolution

of 10-4 , the polyhedral parts of the model are not divided as finely as when

using the non-analytical method and one of the polyhedral sub-model’s boxes is

adjacent to a non-polyhedral sub-model’s box so the two are considered to be

connected. To resolve this situation, a division resolution finer than the smallest

feature of the model should be used.

W hen surface boxes are considered to be air, the number of components is found

correctly at the same division resolution or at a coarser division resolution (for

the ‘Robot with obstacles’ model) than that achieved by the binary tree labelling

method where surface boxes are not handled analytically. Additionally, the cor­

rect number of components is found for the ‘Racing car‘ model for which the

non-analytical method could not find the correct result. The number of con­

nected components could again not be found for the ‘CSG’ model, which is non-

polyhedral so no improvement was expected for the analytical m ethod over the

non-analytical method.

82

4.4 Future work

If the point connectivity method suggested is applied to a model that consists of

two components that are disconnected but are not separated by an infinite plane

it will not be able to compute whether the components are connected or not. It

may be possible to use a hybrid scheme that finds gaps betv/een components by

recursively spatially dividing the model to find sub-models that are completely

air, and finds connections by using the point-connection line segment intersec­

tion method. An alternative approach would be to use the point connectivity

m ethod within the binary tree connected component labelling m ethod to answer

the question of whether two surface sub-models are connected.

The connected component algorithm has been designed so that it is not restricted

to work in a certain number of dimensions. A multi-dimensional version of the al­

gorithm could be implemented using the sVLls m multi-dimensional set-theoretic

modeller [12].

Extension of the analytical method for connected component labelling to non-

polyhedral models should result in more accurate results at coarser model division

resolutions for these types of model. It should be relatively straightforward to

calculate exact connectivity information for spheres and cylinders, so these would

provide an ideal starting point for such work.

It may be beneficial to investigate whether adapting a different connected com­

ponent labelling algorithm for use with binary trees is more efficient than the

adapted Sam et’s algorithm. Samet and Tamminen’s 1988 work [67] would be in­

teresting to investigate since that was designed for use with n-dimensional binary

trees. It is however more complicated to implement since it uses an active border

to store information about whether scanned elements at the edge of the scanned

83

region are air or solid.

An algorithm that combines the proposed binary tree algorithm and the analytical

binary tree algorithm for polyhedral models would give accurate connectivity

information on complicated set-theoretically defined models. For simple poly­

hedral parts of the model, the analytical approach would be used and for more

complicated parts the algorithm would revert to using the binary tree approach.

The initial model division would not divide sub-models which are simple enough

for their connectivity information to be ascertained analytically. Alternatively

it may be possible for this hybrid, algorithm to be built around adaptive model

sub-division, so that a model would be divided as the connectivity information

is being computed, and only areas of the model which could not be solved at the

current division resolution would need to be divided more finely.

4.5 Conclusions

A m ethod of testing whether or not two points in a set-theoretically defined

model are connected has been introduced. This uses recursive techniques that

compute the intersection of line segments with the model in an attem pt to find

a connected path between the two points that lies completely within air or solid

parts of the model. Two variants of this method are proposed, the first of which

has been implemented in a multi-dimensional set-theoretic modeller to find a path

through the configuration space of a nomad model that translates and rotates

around an obstacle model. The second variant is similar and has therefore not

been implemented.

A connected component labelling method based on the adaptation and extension

84

o f an existing quadtree algorithm by Samet has been presented and successfully

applied to several models. This method operates by firstly dividing a model to

create a binary tree, and then labelling the connected components in the binary

tree, thus labelling the connected components of the model.

85

Chapter 5

Minimum distance

5.1 Introduction

Minimum distance information for solid geometric models has many applica­

tions, including path planning, configuration-space map generation and compo­

nent analysis [56, 69]. As Cameron has stated, “minimum distance is far and

away the most important factor for robot navigation and choreography” [14]. In

the field of robotics, advanced path-planning systems, such as the one proposed

by Paden et al in 1989 [56], need distance information. Many configuration-space

(Lozano Perez [50]) algorithms also need to perform distance computations: an

example is Simeon’s algorithm [69]. As far as I have been able to ascertain, there

has been no work carried out to determine the minimum distance between two

set-theoretically defined solid models, i.e. CSG or boolean solid models, although

Cameron [13] has examined the intersection query for CSG models which tests

for touching objects, i.e. those with a minimum distance of zero. An efficient al­

gorithm for computing distances between set-theoretically defined models would

86

make the implementation of some of the path-planning systems mentioned above

possible for such models. Distance information on engineering components that

have been modelled using set-theoretic geometry could be used to check the struc­

ture of components (for example, the cylinders in an engine block must be more

than a certain distance apart otherwise there will be insufficient space for coolant

flow between them). The problems that need to be solved are those created by

the fact that set-theoretic models are stored in a non-evaluated format.

Existing approaches to finding the minimum distance between models stored

using a variety of representation methods are detailed in section 5.2. Most of

these find only the minimum distance between convex models and not concave

models, as, in general, faster solutions to the minimum distance problem can

be found for convex models. Methods such as Red’s [61] to find the distance

between non-convex polyhedra rely on finding the distances between the convex

components that have been combined to create the non-convex polyhedra. It

is not always possible, however, to decompose non-convex curved objects into

unions of convex objects: a block with a cylindrical hole cut through it is the

classic example. The convex decompositions of some models would need a large

number of convex components to represent them, for example a prosthetic socket

that follows the contours of a human limb has many indentations, so the convex

decomposition of this would be complicated.

The minimal translational distance [15] is a metric that is closely related to

minimum distance, and is defined as “the length of the shortest relative translation

that results in two objects being in contact”. It is equal to the minimum distance

between two non-touching objects, but for intersecting objects it is a measure

of penetration. Minimum distance in a fixed direction is another special case of

minimum translational distance. It is a useful measure for some applications,

mainly collision detection and avoidance. If two models are known to be moving

87

Minimum
translational distance

A

Minimum distance
in a fixed direction

x

Figure 5.1: Minimum translational distance and minimum distance in a fixed
direction

towards each other in a fixed direction, then the minimum distance in that fixed

direction will give the maximum translation of the models that can occur before

collision. Figure 5.1 shows three example polygons A, B and C, the minimum

translational distance between A and B and B and C, and the minimum distance

in the fixed direction parallel to the x axis between A and B.

A special case of minimum-distance calculation is incremental distance calculation

or the tracking problem, which arises when two objects are moving, and the

minimum distance between objects is required to be calculated as the objects

move. The minimum distance at the previous position of the objects can be used

to find the distance for the present position more efficiently [48].

I have designed and implemented a method for finding the minimum distance

between general non-convex or convex set-theoretic models including polyhedra

and models containing curved surfaces. This method uses adaptive recursive

spatial division of a set-theoretic model and pruning of the resultant search space

by discarding widely separated sub-models. This technique is explained in detail

in section 5.3.3.

88

5.2 Literature survey

Work on finding the minimum distance between two objects has been done on

several types of objects including point sets [46], polygons [68,19], convex objects

in three or more dimensions [29, 37, 6, 28, 82, 74], and non-convex polyhedra [61].

5.2.1 Point sets

L ee an d P r e p a r a ta (1 9 8 4) describe the problem of finding the two closest

points in a set of points in their survey of computational geometry [46]. The

solution to this is generally a search of all the points, although the divide-and-

conquer technique proposed by B e n t le y and S h a m o s (19 7 6) [4] finds the min­

imum distance more efficiently in 0 (n lo g n) time.

5.2.2 Polygons

S ch w artz (1 9 8 1) gives an algorithm [68] for computing the minimum distance

between two convex two-dimensional polygons Pi and P2. He utilizes the fact that

the minimum distance between Pi and P2 is equivalent to the distance between

the origin and the convex set that is the Minkowski difference of polygons P i and

P2 (Pi © P 2) • The Minkowski difference is defined as the Minkowski sum of P i and

the reflection in the origin of P2, i.e. Pi ® (—P2) where Pi © P2 is the Minkowski

sum of Pi and P2. Wise [77] has given a set-theoretic implementation of the

Minkowski sum for convex polyhedra. Schwartz gives an 0 (lo g 2 n) procedure for

finding Pi © P 2, where n is the total number of vertices in Pi and P2. The overall

algorithm for determining minimum distance also works in 0 (lo g 2 n) time.

89

C h in an d W an g (1 9 8 3) give an O (logn) algorithm for finding the minimum

distance between two two-dimensional polygons [19], one of which must be con­

vex. The non-convex polygon must be a simple polygon, i.e. a polygon whose

edges do not intersect themselves and whose vertices are represented by ordered

pairs, in either Cartesian or Polar coordinates. The time complexity of the al­

gorithm is 0 (n + m), where n is the number of points in the convex polygon

and m is the number of points in the simple non-convex polygon. For efficiency

Chin and Wang’s algorithm uses the visible edge chains of the polygons, and they

prove that the minimum distance between a convex polygon and a non-convex

(or convex) polygon is the same as the distance between the visible edge chains

of the polygons. A point q in a polygon Q is said to be visible from a point o if

the line segment (o, q) does not intersect with any other point on the boundary

of Q. A visible edge chain V (Q , o) is a sequence of edges of Q that are all visible

from o. Figure 5.2 shows the visible edge chains V(Q,Oi) and V (Q , 02) for two

points oi and 02 of the polygon S. The visible chain V (Q , S) of a polygon Q

from a polygon S is defined by

v(q,s)= n y (Q’x)
x£S

i.e. it is the overlap of all the visible edge chains for all points in S. For the

example polygons in figure 5.2 it is the same as V(Q,Oi) .

Chin and Wang’s algorithm starts by finding the visible chain V of the non-convex

polygon (Q) from the convex polygon (P), which can be performed in 0 (m) tim e,

where m is the number of vertices in Q. A scan is performed, starting at the first

vertex v in V and the vertex p in Q that is closest to v. The scan finds the

minimum distance between v and the line segment in Q that precedes p or the

90

V(Q.o 2)

V(Q,o) = V(Q,S)

Figure 5.2: Visible chains for a polygon.

distance between p and the line segment in V that precedes v , deciding between

these two possibilities on the basis of whether the closest point in Q to v precedes

p or not. The scan also advances through either V or Q at each iteration of the

algorithm on this same basis. The global minimum distance is the minimum of

the minimum distances that are found at each iteration of the algorithm. The

algorithm is efficient because each point in P need not be compared to each line

segment in V and vice versa.

Chin and Wang also give an algorithm which finds the minimum distance between

two convex polygons Pi and P2. To do this, the visible chains Vi = V (P i,P 2)

and V2 = V (P 25 P i) are computed. The distance between Vi and V2 can then be

quickly found using a binary search. For any point in Vi, the distance from V2

increases in one direction along Vi and decreases in the other direction along V2.

Starting at the mid-point r0 of one of the visible chains V, the direction in which

the distance to the other visible chain Vj decreases is determined. The mid-point

91

between To and the end of V* is then found and this binary division of the chain

is continued recursively. The search is also performed on the other visible chain

Vj-

5.2.3 Convex objects in three or more dimensions

G ilb e r t , J o h n so n an d K e e r th i (1988) [29] give an algorithm for convex poly­

topes and their spherical extensions, where a spherical extension of radius r to

a polytope consists of all the points that are within a distance of r from the

polytope and all the points in the polytope - it is equivalent to the Minkowski

sum of the poly tope and a sphere of radius r; for example in three dimensions

the spherical extension of a point would be a sphere, and the spherical extension

of a line would be a cylinder with hemi-spherical ends. The approach is similar

to that taken by Schwartz [68] for two-dimensional objects in that it transforms

the minimum distance problem into one of finding the Minkowski difference of

the two sets of objects and then finding the minimum distance of this from the

origin. However the algorithm given by Gilbert, Johnson and Keerthi has the

advantage that it generalizes to any number of dimensions. The Minkowski dif­

ference does not actually have be evaluated, as distances and support functions

(see below) can be computed directly from the two sets. Gilbert, Johnson and

Keerthi give experimental results to show that the overall computational effort of

the algorithm is approximately linear with respect to the total number of vertices

specifying the two objects.

Gilbert, Johnson and Keerthi’s algorithm for finding the minimum distance be­

tween sets K i and K 2 is summarised here. Let K be the Minkowski difference of

K \ and K 2 i.e. K = K \ Q K 2. Perform the following steps:

92

1. Set k = 0 and initialize the set V0 to be a subset of K containing at least 1

element and less than m + 2 elements where m is the dimensionality of K .

2. Find the point Vk which lies within Vk and is nearest to the origin.

3. Find the point q lying within K which has the largest projection onto — Vk-

If the projection is of equal length to the distance between the origin and

Vk but in the opposite direction, then Vk is the closest point in K to the

origin; terminate the search as the algorithm has determined the distance

between K \ and K 2 to be the distance between the origin and u*.

4. Let Vk be the smallest subset of Vk within which Vk lies. Set Vk+i = V& U q.

Increment k. Continue from step 2.

A simple two dimensional example can be used to demonstrate the algorithm.

Figure 5.3 illustrates four polygons: K i, K 2, —K 2 (the reflection of K 2 in the

origin) and the Minkowski difference K = K \ © — K 2 — I<\ © K 2. Figure 5.4

shows the quantities used in the algorithm for the point set K made up of points

{so> • • • j 55} after Vo has been initialized to {so ,S i,S 2} and vq has been found.

The point in K with the largest projection onto — Vo has been found as s4, and

q has been set to this. The projection has a different length to u*, so step 4 is

performed and Vo is set to the smallest subset containing vQ which is {so, S2}> so

Vi — { so ,s2, s 4}. In the next iteration of the algorithm, v\ will be set to s4, and

the algorithm will terminate, having found the distance between K \ and K 2 as

the distance between the origin and s4.

The algorithm needs to be able to find the point q which lies within K and which

has the largest projection onto a vector u, as used in step 3. This is done by

using K i and K 2, and does not require K (= K \ © K 2) to be evaluated. Given

a convex set A , and that x • y denotes the inner product of x and y, the support

93

Figure 5.3: Two example polygons and their Minkowski difference.

Figure 5.4: Example for GJK’s algorithm.

94

function of X is defined by:

hx{fl) = m a x {x ■ rj : x C X }

s x { i7) denotes any solution of the above, i.e.:

hx{rj) = s x (v) * V, s x i v) C X

Informally, sx (^) is the point in X which is furthest from the origin in the

direction of the vector 77, so in figure 5.4, Sx{—p) is the point S4. In step 3 of

the algorithm described earlier, point q is found as the point s x { —ujfc), and the

length of the projection is given by h x {—Vk)•

Gilbert, Johnson and Keerthi state that to calculate hxiri) and 5^ (77) [where

K = K i © K 2] without evaluating K it is possible to use:

/to (77) = ^ 1(77) + hK2{ -r])

and

Sk W = SKiiv) ~ sK2{~v)

This allows the support function for the set K to be computed directly from K \

and K 2 w ithout having to find the Minkowski difference of the two sets.

95

H u r te a u an d S tew a rt (1 9 8 8) [37] propose a minimum-distance algorithm for

objects represented using constructive solid geometry, but the only primitives that

their algorithm can deal with are convex polyhedra and finite cylinders, and the

only operator that can be used to combine these primitives is the union operator.

Clearly the variety of objects that can thus be represented is severely restricted,

and although this may not be a great problem for some robotics applications, it

is not sufficiently versatile as a general engineering component modelling tool.

B o b r o w (1 9 8 9) [6] describes a minimizing technique for finding the minimum

distance for convex polyhedra and their spherical extensions. The polyhedra are

considered to be made up of the intersection of several planar half-spaces, and the

algorithm works directly on the points and normals that define these half-spaces,

so bounding lines and vertices do not need to be explicitly calculated.

Bobrow’s algorithm starts with two points pi and P2 , one inside each object.

(Points near to the centroids of the objects are good initial points.) Two points,

x \ and rc2, which are on the surfaces of the objects and which lie on a line between

Pi and P2 are found1. If xi and X2 are not the closest points of the objects, then

search directions s\ and S2 are determined from x-\ and X2 . Si is the projection

of v = x i — X2 onto the surface upon which x \ lies, i.e. it is a vector along the

surface of the object that contains pi, in the direction in which X2 lies from x\.

Similarly for s2- The closest points x[and x'2 in the directions of Si and s2 are

found, and the algorithm is repeated using these points as X\ and z 2, until the

closest points between the two objects are found. Figure 5.5 illustrates the points

and search directions found after one iteration of the algorithm.

Two parts of the algorithm deserve further explanation, as they are not trivial

1 Bobrow also suggests an alternative of the two vertices with the smallest projections onto
this line.

96

Object 2

Object 1

Figure 5.5: Points and search directions for example objects for Bobrow’s algo­
rithm.

and are essential to its operation. These parts are the check to see if X\ and X2

are the closest points, and the finding of the new search directions.

Bobrow uses Kuhn-Tucker conditions to determine if x\ and X 2 are the closest

points for the objects. If these conditions are satisfied then X\ and X2 are the

closest points. The Kuhn-Tucker conditions are expressed by:

k i

- v = ^2aitinhi
i = 1

k i

V = ^ 2 a 2 , j n 2 ,j

where v = X\ — x 2, ki is the number of planes that Xi lies on, k2 is the number

of planes that x2 lies on, and a 2j are positive scalar multipliers, n i)t- are the

normals of the planes that x\ lies on and n 2j are the normals of the planes that

X 2 lies on.

97

Object 1

Object 2

Figure 5.6: Example of variables used for evaluating the Kuhn-Tucker conditions
in Bobrow’s algorithm.

Figure 5.6 illustrates a 2-dimensional example. x\ and X2 have been set to the

points x[and x'2 from figure 5.5. In this case, the Kuhn-Tucker conditions can

be satisfied as shown by the lines in the figure. The dashed line shows that — v =

CKi.ifti,! + 051,2711,2 and the solid line shows that v = Q2 ^ 2 for a ^ i, a ^ , <22 > 0.

Finding the new search directions uses the scalar multipliers cca,b (a = 1 ,2 ;6 =

l . . .k a) found when attem pting to satisfy the Kuhn-Tucker conditions. For each

point xi and X2 , the plane with the largest value of a a is found and v (or —u)

is projected onto that plane to give the search direction.

An example will clarify Bobrow’s method. The initial state is shown in figure 5.5,

where x \ and x 2 have been found by finding points on the surfaces of the objects

that lie on the line between pi and p2. The first step is to find out if x \ and X2

are the closest points on the objects. This is done by attem pting to satisfy the

Kuhn-Tucker conditions, which in this case are X2 — = a \n \ and x\ —X2 = 0:2712

as both points lie on one plane only. Whatever positive values of Qi and 0:2 are

used, these conditions cannui oe saUslied. Search directions are next found by

projecting v and —v onto the planes with the largest values for a. In this case,

98

Object 2

Object 1

Figure 5.7: The line segments used to find new closest points for Bobrow’s algo­
rithm.

as both points lie on one plane each, then v and —v are projected onto the planes

on which the points lie. The search directions can be seen in figures 5.5 and 5.7

as si and s2. The line segments from Xi in the direction of Si and from x 2 in

the direction of s2 are found. These are represented in figure 5.7 by the thick

lines. The closest points between these two line segments are found, shown in

figure 5.5 as x[and x '2. Next the process is repeated using x[and x 2 instead of

x\ and x 2. The Kuhn-Tucker conditions are now x2 —x\ = + a i,2n ij2 and

x\ — x 2 = a 2n2 where a^ i, a i t2, a 2 > 0. These can be satisfied as shown by the

lines in figure 5.5. The dotted line shows that the first condition can be satisfied,

and the solid line shows the same for the second condition.

Because the Kuhn-Tucker conditions have been satisfied, then these points x[

and x 2 must be the closest points on the two objects.

G ilb e r t and F oo (19 9 0) [28] extend the work of Gilbert, Johnson and Keerthi

in 1988 [29] to handle solids with curved surfaces as well as polyhedra. This is

done by providing support functions for a sphere, an ellipsoid, a section of an

ellipse and a section of a circle. Support functions for more complicated objects

99

can be computed by combining the support functions of simple objects. General

procedures for computing the support properties of objects created by taking

the union or Minkowski sum of simple objects are given in terms of the support

properties of the simple objects; however there is no general and simple procedure

for computing the support properties of set intersections. The computational

effort for the distance algorithm is the same as Gilbert, Johnson and Keerthi’s

original 1988 algorithm [29] , i.e. approximately linear with the total number of

elements.

The algorithm by Z egh lou l an d R a m b ea u d (1 9 9 6) [82] is similar to Bobrow’s

algorithm, however it solves the ‘zig-zagging problem,2 and changes the test for

whether the Kuhn-Tucker conditions are satisfied. Like Bobrow’s, the algorithm

works on convex polyhedra defined as the intersection of planes and is linear in

the total number of planes. However many of the slowest cases for Bobrow’s

algorithm are made more efficient. Overall, Zeghloul and Rambeaud claim that

their approach increases the speed of Bobrow’s algorithm by a factor of more

than two.

The major improvement is that the ‘zig-zagging problem’ identified in Zeghloul

and Rambeaud’s 1992 paper [81] is resolved. When the Kuhn-Tucker conditions

are only satisfied on one object, Bobrow’s algorithm will set the search direction

for the object on which the Kuhn-Tucker conditions are satisfied to null. Fig­

ure 5.8 illustrates the problem, where (rri,n, are the closest points after the

n th iteration of the algorithm. For each pair of points the Kuhn-Tucker conditions

are satisfied on one object because the vector between the points is normal to

the surface of one of the objects. Zeghloul and Rambeaud solve the ‘zig-zagging

problem’ as follows: if the Kuhn-Tucker conditions are only satisfied for object

Oi, then instead of setting the search direction for O 2 to null, it is set to the

2as described by Zeghloul and Rambeaud in their earlier 1992 paper [81].

100

Figure 5.8: The zig-zagging problem of Bobrow’s algorithm.

projection of the search direction of the other object onto the planes that x\ lies

on.

Zeghloul and Rambeaud also suggest a change to the test for whether the Kuhn-

Tucker conditions are satisfied. Geometrically, the Kuhn-Tucker conditions are

satisfied for x\ if x<i lies in the cone of vertex x\ and spanned by the normals

of the planes that x i lies upon. As Zeghloul and Rambeaud state, this can be

tested with n dot-product evaluations, where n is the number of planes that x\

lies on. Figure 5.9 gives a two-dimensional example of the cone.

T u rn b u ll an d C a m eron (1 9 9 8) [74] give a minimum distance algorithm for

NURBS-defined convex objects. It is based on Gilbert, Johnson and Keerthi [29]

and again uses support properties. A method of calculating the support prop­

erties for NURBS objects is given. The algorithm has been implemented for

two-dimensional shapes and formulae have been developed for three dimensions.

101

Any point in this cone satisfies
the Kuhn-Tucker conditions

Figure 5.9: The cone for which the Kuhn-Tucker conditions are satisfied.

5.2.4 Non-convex polyhedra

W ith the exception of Chin and W ang’s algorithm for planar polygons, the mini­

mum distance algorithms described in the foregoing section use minimizing tech­

niques to find the closest distance which rely on the convex property of the ob­

jects. There is little research on minimum distance between non-convex objects

as this is a much harder problem.

R e d (1 9 8 3) [61] gives an algorithm for finding the minimum distance between

two polyhedra. However, concave polyhedra must be stored as unions of con­

vex polyhedra, with no intersection allowed between the convex polyhedra, so

essentially Red’s algorithm is a technique for finding and merging the minimum

distances between convex polyhedra. Red anticipates the application of the algo­

rithm as robot task simulation, and the paper considers the problem of finding the

distance between polyhedra representing a manipulator and polyhedra represent­

ing obstacles. Red suggests two global elimination strategies to reduce the number

of polyhedron to polyhedron comparisons; he also describes a local strategy for

eliminating unnecessary polygon-to-polygon comparisons, and an algorithm for

102

finding the minimum distance between two polygons in three-dimensional space.

R ed’s first global elimination strategy consists of using spheres or rounded cylin­

ders (spherical extensions of lines) to bound all polyhedra. Only the bounding

shapes closer together than a ‘sensitivity distance’ are considered for distance

checking. Red suggests that this distance can be set manually for applications

where a user is planning a manipulator path, and that a value based on the

proximity of the closest object should be used when the manipulator is far from

obstacles in a configuration mapping application. R ed’s other global strategy is

that of ignoring obstacles outside the volume that could be swept by the manip­

ulator.

The minimum distance between polyhedra is found by computing the distances

between their constituent polygons and taking the minimum value. Red’s basis

for reducing the number of comparisons is that if both polyhedra are convex, then

non-facing polygons do not need to be compared, thereby eliminating unneces­

sary polygon-to-polygon comparisons. Red’s method for finding the minimum

distance between two polygons in three-dimensional space considers the relation­

ships between the polygons F* and Fj and the planes Pi and Pj in which the

polygons lie. These relationships are classified and the minimum distance be­

tween the polygons is found by projecting Fi onto Pj and Fj onto Pi.

Red asserts that computational times increase linearly or less than linearly with

the number of polyhedra.

103

5.3 New Research Completed

To find the minimum distance between two set-theoretically defined objects, I

have used a spatial division approach that recursively divides the object as de­

scribed in section 2.2.2, and finds the two closest sub-m odel’s boxes: the minimum

distance between these boxes is returned as the minimum distance between the

objects. An initial naive approach to this was developed to give a basis for the

comparison of accuracy and speed of more sophisticated methods that might sub­

sequently be developed. This ‘brute force’ method (described in section 5.3.1)

recursively divides a model to a certain smallest size and then finds the two clos­

est boxes. A more refined approach was later developed. This is laid out in

section 5.3.3. In it a model is recursively spatially divided and the minimum

distance between sub-model’s boxes is found while model division is performed.

The model is divided more finely in the areas of the model where the closest

points are considered likely to occur, depending upon information found so far.

5.3.1 The brute force approach

This simple approach is useful for checking the accuracy of results obtained by

more advanced methods. The model is first divided using a simple division proce­

dure that divides sub-model boxes in half along their longest side if they contain

some of the surface of the object and are not ‘too sm all’. The definition of ‘too

sm all’ for a sub-model is that the ratio of its volume to the volume of the box

that contains all of the objects (the model’s box) is smaller than a given value

(usually of the order of 10-6).

The two leaf boxes containing surface of different objects with closest centroids

104

B

Figure 5.10: The distance between boxes.

are found in the divided model by finding the distance between the centroid of

each leaf box containing surface of the first object and the centroid of each leaf

box containing surface of the second object. The minimum distance between the

two objects is set to the distance between the centroids of these two closest leaf

boxes. However, this method does not always give accurate results, as can be

seen in the example in figure 5.10 where the distance between the centroids of

boxes A and B is smaller than the distance between the centroids of A and C,

although the objects (shown by the curves) are actually closer in C and A than B

and A. To ensure more accurate results, the model has to be divided into smaller

boxes.

Finding the two closest boxes needs m n comparisons, where there are m leaf

boxes containing object 1 and n leaf boxes containing object 2; m and n are

dependent upon the smallest box size and the complexity of the surfaces of the

objects. This method therefore has computational efficiency of 0 {m n) .

5.3.2 Results

The accuracy of this method depends on the size of the smallest boxes. If the

boxes are assumed to be cuboids, then the largest possible error is 2 \ /3 \ / f V

105

Model Minimum
size
ratio

Distance
found

Actual
distance

Actual
error /%

Largest
possible
error /%

Two cuboids 10"3 0.89 1.50 41 230
Two cuboids 10"4] .30 1.50 13 107
Two cuboids 5 x 10"5 1.48 1.50 1.3 85
Two cuboids ic r 6 1.42 1.50 5.3 50
Mirrored cuboids

C
O1Oi—

1 5.03 5.20 3.3 67
Mirrored cuboids

IoT—
1 5.01 5.20 3.3 31

Mirrored cuboids 5 x 10"5 4.82 5.20 7.3 25
Mirrored cuboids 10"5 5.01 5.20 3.7 14

Table 5.1: Accuracy of results for brute force distance procedure, with distances
given in model units.

where / is the minimum size ratio, i.e. the ratio of the volume of the smallest

box to the volume of the largest box, and V is the volume of the m odel’s initial

all-encompassing box. The error is proportional to y/J. which means that the

smallest box volume must be greatly reduced to give even a modest increase in ac­

curacy, as would be expected for a volume-distance relationship. Table 5.1 shows

the distance found and the maximum possible error for models ‘Two cuboids’

and ‘Mirrored cuboids’ (shown in figure 5.11) for different minimum size ratios.

Note that in all cases the actual error is significantly smaller than the maximum

possible error. Two anomalies where the error increases for smaller box size are

evident for ‘Two cuboids’ at minimum size ratio 10-5 and ‘Mirrored cuboids’

at minimum size ratio 5 x 10-5 . This is because the distance calculated is the

distance between the centroids of the boxes, and the larger boxes were centred

closer to the actual closest points of the two objects than were the smaller boxes.

This is illustrated by the two-dimensional example of figure 5.12, where the dis­

tance between the centroids (shown by the arrowed line) of the two larger boxes

is closer to the actual distance between the objects than the distance between

the centroids of the smaller boxes.

106

Figure 5.11: Sample models for the brute force minimum-distance method.

Figure 5.12: The distance between the centroids of large boxes can be more
accurate than that between the centroids of smaller boxes.

107

min

confirm ed
max

Figure 5.13: The terms dm;n, dmax and dconfirme(i illustrated.

5.3.3 M inim um distance using adaptive division and dis­

tance bounds tracking

I have researched a more refined approach [57], whereby the model is divided more

intelligently, concentrating on boxes that are likely to contain the closest points,

and ignoring other boxes. As the algorithm progresses the model is divided more

finely and the calculation of the distance improves.

For the purposes of explaining the algorithm, five terms are used: dmin, dmax,

dean firmed, D'lower &nd Dupper. These are defined below, followed by further expla­

nation of the steps of the algorithm. Figures 5.13 and 5.14 show the geometric

meaning of the terms for example three- and two-dimensional models.

dmin A distance less than, or equal to, the minimum distance between two sub­

models. This is usually the minimum distance between the boxes, but the

exact smallest distance between the sets is used if it can be calculated. The

current implementation finds the exact distance only for convex polyhedral

sets, each made up of three planes, using a minimization technique.

108

►

Figure 5.14: The terms Aower and Dupper illustrated.

dmax The maximum distance between two boxes.

dccmfirmed The distance between two points in solid parts of the sets of two sub­

models. This is not necessarily the minimum distance between the sub­

models, but it is guaranteed to be equal to or larger than the minimum

distance. The process for calculating dconf irme(i is described below.

Dlower The smallest value of dmin for any pair in the group of candidate pairs. It

is the lower bound on the minimum distance, and its initial value is zero.

Dupper The smallest value of dconj irme(i for any pair in the group of candidate

pairs. It is the upper bound on the minimum distance and is initially set

to the diagonal of the original model’s box, so that it is not less than the

minimum distance between the two objects.

C alcu la tin g dC(mfirme(i for a pair o f su b -m od els

Smaller values of dcanf irme(i reduce the value of Dupper, which in turn reduces the

minimum distance bounds; this causes more sub-model pairs for which dmin >

109

D upper to be discarded (see below).

If a pair of sub-models contain simple sets between which the minimum distance

can be exactly calculated, dconfirmed is set to the value of the minimum distance.

For more complicated sets, a point on the surface or in the solid part of each

m odel is sought, and dconfirmed is set to the distance between the points. Closer

points result in more accurate values of dconfirmed- If such points cannot be found,

then dconfirmed cannot be calculated for the sub-models.

In my implementation of the algorithm, the distance between convex sets with

three planes is calculated by using a simpler version of Bobrow’s minimization

technique [6]. This could be extended to more complicated sets if the distance

between the sets could be exactly calculated: cylinders and spheres would be

suitable sets to study first.

To find points on the surface or in the solid part of each model, a Newton-Raphson

root-finding method is used. If no such points are found then the centroid and

the corners of the sub-model’s box are tested. The Newton-Raphson root-finding

m ethod is used by finding a root of r \ where the r{ are the primitives’

potential functions and n is two for an edge and three for a corner. The rf are

normalized so that high-degree primitives do not have more influence than lower-

degree primitives. The Newton-Raphson method needs a point, p0> from which

to start converging3. The point po is set to the centroid of the m odel’s box, or

if that is not in solid, to one of the corners of the m odel’s box that is in solid.

If two points that are in solid parts of the set cannot be found, then dconfirmed

cannot be found for the current pair of sub-models so this step of the algorithm

is skipped and D upptl will not be reduced.

3If the point po is in the solid part of the sub-model, then the point found by the Newton-
Raphson method is also more likely to be in the solid part of the sub-model.

110

Outline of the algorithm

Given a model, M0, containing two labelled sets, Si and S2, the algorithm finds

lower and upper bounds for the minimum distance between 5 i and £ 2- The

algorithm can be expressed as five stages, summarised here and explained in

more detail later.

1. Using recursive spatial division, divide Mo into several sub-models, each

sub-model containing only one of the sets Si or 62- If any sub-model has

been divided to a certain smallest size and it still contains both Si and £ 2,

terminate the algorithm with ‘sets are touching’.

2 . Categorise the sub-models as containing S i or S 2 .

3. Create a group4of candidate pairs, each pair consisting of one sub-model

from each category.

4. Remove one pair of sub-models from the group of candidate pairs and divide

one of the sub-models in this pair. For each of the two new pairs created

by this division, if it is possible that the pair could be the closest pair, then

add this pair to the group of candidate pairs and also update the value of

D upper.

5. If any of certain terminating conditions (see below) have been met, termi­

nate the algorithm, otherwise return to Step 4.

Ill

Figure 5.15: A model after division to find boxes tha t only contain part of one
of the sets Si and S2.

S tep 1 : d iv id e M0 in to su b -m od els

The model is divided recursively into sub-models which each contain part of only

one of Si or S2. Figure 5.15 shows a two-dimensional example of such a division.

If any sub-model has been divided so many times tha t its volume is smaller than

a threshold volume5, and it still contains parts of both Si and S2, then the sets

are considered to be so close that they touch or interpenetrate, and the algorithm

is terminated and returns this result.

Step 2 : ca tegor ise th e su b -m od els

The label of the set in each sub-model is retrieved and compared with the known

labels for Si and S2. If the label of the set is equal to the label for Si then add

the sub-model to the collection of sub-models K \, otherwise if the label is equal

to the label for S2 then add the sub-model to the collection of sub-models K 2.

4A set o f cand idate pairs w ould be a m ore accurate term , b u t to avoid confusion w ith
SVLIS sets, th e word group is used in th is thesis.

5T h is is typ ica lly se t to 10-6 tim es the volum e o f the orig inal m odel.

112

Figure 5.16: Dividing b\ - one of a pair of sub-models’ boxes (6ls b2) to create the
boxes bia and b^ and corresponding sub-models.

Step 3: a group of candidate pairs is created

For each possible pair of sub-models where one sub-model is in K \ and the other

is in K 2, check the values for that pair by using the function described below in

the section ‘Function to check values for a pair of sub-models’, on page 116.

Step 4: remove one of the sub-model pairs and further divide one

sub-model of the pair

A pair of sub-models {M i, M2} is removed from the group of pairs. One of them

is spatially divided into two smaller sub-models, M ia and M^, in the manner

described earlier and as illustrated in figure 5.16. Two new sub-model pairs

{Mia, M j} and {M ^, M j} are created. The ‘Function to check values for a pair of

sub-models’, described below on page 116, is then applied to the two new pairs

to decide whether they are added to the group of candidate pairs and also to

update the value of D upper.

The order in which the sub-models are divided has a great effect on the efficiency

of the algorithm. To minimize execution time, sub-model division strategies are

applied which increase Diower and decrease D upper to narrow the bounds on the

113

minimum distance, as explained in the following paragraphs.

The first pair of sub-models to be removed from the group of pairs is the pair with

the smallest value of dmin. Of the two sub-models within this pair, the sub-model

w ith the largest box is divided. On the next iteration of the algorithm, the pair

marked as the ‘upper-bound pair’ is removed and the sub-model with the largest

box within that pair is divided. This order of alternating between removing and

dividing the pair with the smallest value of dmin, and the pair marked as the

upper-bound pair, is repeated until the algorithm terminates.

When a box b\ in the pair (61, 62) that is marked as the ‘upper-bound pair’ is

divided into two sub-boxes 6ia and 615, if the sub-model with the box contains

part of a set, and if the value of dconfirmed for the closest of the two new pairs

of boxes {&1&, 62} is smaller than dconf irrne<i for the pair { 61, b2} that was divided,

then D upper will have been reduced. If the pair { 615, 62} is again marked as the

upper-bound pair it will be further divided in later iterations of the algorithm,

and D upper will be quickly reduced with subsequent iterations. Reductions in

Dupper will reduce the minimum distance range, and will also lead to those pairs

for which dmin > D Upper being eliminated from the pair structure in future.

When a box in the pair with the smallest dmin is divided, if dmin > Diower for the

two newly-created pairs, then Diower may have changed. Under these conditions,

the smallest value of dmin for all of the pairs in the candidate pair group is found,

and Dlower is then given that value.

Dividing one box of the pair with the smallest dmin will increase the lower bound

on the distance only if the closest sub-model created (615) does not contain part

of a set. The new smallest dmin will either be the dmin for { 6ia, 62}, or the dmin for

another pair, if that is smaller. For many models, the sub-model’s pairs found in

114

the initial ‘single set’ division will have boxes that touch each other (for example,

{ 62, 63} in Figure 5.15) and therefore have a dmin of zero. In this case the lower

bound on the distance will also be zero. All of these ‘touching’ sub-model pairs

m ust in reality have air between the sets in those sub-models (otherwise they

v/ould have been divided to the minimum volume in the ‘single-set’ division and

the algorithm would have terminated with the result that the sets 5 i and S 2

were touching). After repeated division of their closest boxes, those boxes will

be found to contain air, and will be removed from the pair structure. Some of

the pairs that have small values of dmin may contain sets that are actually widely

separated, and after division the new value of dmin for the sets could be larger

than D upper, and the pair would not be added to the pair structure.

If there are no more touching sub-model pairs and the inner pair created by

dividing the pair with smallest dmin contains surface, that pair will be divided

again. This will be repeated until the inner pair no longer contains surface, at

which point only the outer pair will be added to the candidate pair list. This

outer pair will have a dmin larger than the dmin of the original pair, and so will

not necessarily be the pair divided in the next division.

Step 5: termination of the algorithm

When the algorithm terminates, the bounds on the minimum distance have been

found and are given by Diower and D upper.

The terminating conditions are designed to allow the algorithm to continue until

a final value for minimum distance has been found within specified tolerances,

as well as to make sure the algorithm does not continue indefinitely, with only a

marginal improvement in the minimum distance range computed. Terminating

115

conditions can be combined so that the algorithm terminates only when two or

more conditions are true.

Possible conditions that ensure that the distance found is a reasonable measure

of the true minimum distance are:

• The range of the minimum-distance bounds {D upper — Diower) is smaller than

a given size.

• The ratio of the range D upper — Diower to the midpoint of that range is

smaller than a given value.

• The largest sub-model’s box still in consideration is smaller than a given

size.

• There are fewer than a given number of candidate pairs.

• There are no touching sub-models (DioweT > 0).

Possible conditions that ensure the algorithm will not continue indefinitely are:

• There has been a negligible reduction in the size of the minimum-distance

bounds for a given number of divisions.

• A given number of divisions have been performed.

Function to check values for a pair of sub-models (Used in steps 3

and 4)

This function decides whether a pair should be stored in the group of candidate

pairs; if the pair should be stored, it updates the value of D upper. It uses the

following steps:

• Firstly the values of d min and d max are found for the pair of sub-models.

To calculate d min , if the smallest distance between the sub-models can be

calculated exactly using my implementation of Bobrow’s minimization ap­

proach [6], then use that for d min . Otherwise d mini s set to the minimum

distance between the sub-models’ boxes. d max is calculated as the distance

between the furthest corners of the sub-model’s boxes. Some investigation

was done on a more exact calculation of d max, but it was found that this

did not improve the overall efficiency of the algorithm, as shown later in

section 5.3.4.

• If dmin > D upper the pair cannot contain the closest points of Si and £ 2,

because D upper is larger than or equal to the minimum distance between

S\ and £ 2• If this condition is true, the pair is not added to the group of

candidate pairs and this function is exited.

• Add the pair to the group of candidate pairs.

• If d max < A tp p er for the pair of sub-models the pair may contain the clos­

est points between Si and S 2 so d conf irmed is calculated for the pair. If

dconfirmed ^ ^ upper ? then D u PPer is set to d confirmed and the pair is marked

as the ‘upper-bound pair’.

A pair for which d min < D upper < = d max may contain the closest points, and a

value of dconfirmed could be found for the pair that is less than D upper. In practice,

calculating d confirmed for all these pairs takes more time than letting the algorithm

run for more iterations to gain a result of the same accuracy.

117

Figure 5.17: Minimum distance for ‘L shapes’ model.

The way in which the group of candidate pairs is stored affects the speed of the

algorithm. I have chosen to implement the algorithm using a binary search tree

of sub-model pairs, because a binary search tree has fast insertion, removal and

searching, which are essential operations for the algorithm.

5.3.4 R esults

All times in this section are CPU time measured on a Silicon Graphics Onyx with

two 150MHz R4400 processors.

To demonstrate visually the results of the algorithm, the minimum distance found

for some of the sample models is shown in figures 5.17 to 5.20, with the separate

objects shown in different colours. A red line connects the points between which

the minimum distance lower bound (Diower) has been found. Additionally on

the ‘Sine curves’ model, a blue dashed line indicates the points for the minimum

distance upper bound (Dupper).

118

Figure 5.18: Minimum distance for ‘Robot’ model.

Figure 5.19: Minimum distance for ‘Non-polyhedral robot’ Model.

Figure 5.20: Minimum distance for ‘Sine curves’ model.

119

Model Actual
distance

Brute force
distance

Minimum-distance
bounds

Two cuboids 1.5 1.42 1.5000-1.5000
Mirrored cuboids V27 -5 .1 9 6 2 5.01 5.1678-5.1964

Racing car 0.8062 0.71 0.7906-0.8067
Robot 1.0542 1.09 1.0304-1.0602

Non-polyhedral robot - 1.01 1.0886-1.2062
Sine curves - 5.94 5.9838-6.0148

Lever - 7.74 7.8170-7.9931
‘L’ shapes ^ -8 .0 8 2 9 8.04 8.0629-8.0890

Table 5.2: Accuracy of the minimum-distance algorithm

A c c u r a c y o f th e m in im u m -d is ta n ce a lg o r ith m

To verify that the results obtained by the minimum-distance algorithm are cor­

rect, the results were compared with either the exact distance if it could be

calculated (by examining the models), or the distance calculated by using the

brute-force method with divided box volume of 10-6 times the volume of the

m odel’s box. For each model, table 5.2 shows one or both of these distances, and

the minimum-distance bounds computed by the ‘adaptive division and distance

bounds tracking’ algorithm. The condition used to terminate the algorithm in

these tests was that the ratio of the volume of the smallest sub-model’s box to

the volume of the original model’s box was less than 10-9 .

The bounds given by the minimum-distance algorithm are accurate for the sets

w ith known distances. For those, the actual distance is close to the upper bound

(Dupper) because D upper is calculated exactly. For the other sets, the bounds are

close to that given by the brute-force method. The bounds do not contain the

distance calculated by the brute force method, but that is not guaranteed to

give the correct result as can be seen by comparing the actual distance with the

distance calculated by the brute force method for those models for which the

actual distance is known, so this does not imply that the ‘adaptive division and

120

distance bounds tracking’ algorithm is inaccurate.

Investigation into how properties of the models affect the tim e taken

to calculate the minimum distance

Several sets of tests were performed to investigate how the time taken to calculate

the minimum distance is affected by the number of primitives in the model, the

algebraic complexity of the primitives, the ‘crinkliness’ of the models, and the

distance between the objects. For each of these properties, the minimum distance

between the models of table 5.2 was found with the two objects within the models

rotated by a random angle with the centre of rotation located within the object.

A t least seven minimum-distance calculations were performed for each model; for

each calculation the model was rotated differently. The division resolution was

10-9 for all tests.

a) Number of primitives

Figure 5.21 shows how the number of primitives in the sets affects the time taken

to find the distance between two sets. No trend can be seen in the data, therefore

the number of primitives does not have any significant effect on the tim e taken

to find the minimum distance, which is very encouraging.

The values for two data points with times of greater than 250s have not been

plotted to make the graph more readable. These points were for the sine curves

model which has four primitives and took 250s and 1060s to find the minimum

distance.

121

Time taken to find minimum distance against number ofpiimithres

110.00 X

100.00 ■

90.00 ■

80.00 ■
X X

70.00 ■ X

X

-S 60.00 • X

1 X
£ 50.00

40.00 •
X

X

X X
30.00 ■■ X X

X X

20.00 • X
X

10.00 ■ jj X
X

Xx 5
XM X X

0.00 ■ s - t - L - _ x § ------_ ----------- ,------------------- 1I------------------- *----S-------------
20 40 60 80

N um b er o f p r im itiv es

100 120

Figure 5.21: Time taken to find the minimum distance between objects with
different numbers of primitives

b) A lg eb ra ic co m p lex ity o f th e p r im itives

Figure 5.22 shows how the time taken to find the distance is affected by the order

of the highest degree primitive in a model. The Trig values are those for the

‘Sine curves’ model and have been placed at the right hand side of the graph for

convenience and not to denote that they are of degree greater than four.

The time taken to calculate the minimum-distance increases approximately lin­

early with the order of the highest degree primitive, with the exception of the

degree 4 model.

c) C rin k lin ess

Crinkliness [54] for a three-dimensional object is defined as the ratio of the surface

area of the object to the surface area of a sphere with the same volume as the

122

Time taken to find minimum distance against order of highest order primitive

800

700

600

500

400
H

300 -

200

100 -

1 2 3 4 Trig

O rder o f h ig h e s t order p r im itiv e

Figure 5.22: Time taken for models with different algebraic complexities

object; crinkliness can be used to measure how ‘irregular’ the surface of an object

is. A ball will have a crinkliness value of one, and a starfish will have a relatively

high crinkliness value. Figure 5.23 shows the time taken for the example sets

plotted against the sum of the crinkliness of the sets.

The two tests for which the minimum-distance was computed in more than 250s

have again not been plotted. They give points of (2.7, 250) and (2.7, 1060).

There is no general trend in the data, so it is assumed tha t crinkliness has little

effect on the time taken to find the minimum distance.

d) D is ta n c e b e tw een th e o b jects

It was thought tha t the separation between the objects may affect the time taken

to find tha t distance. Figure 5.24 is a plot for two sets of the translation from

the start position against the time taken to find the distance. More positive

123

11 n nn

Time taken to find minimum distance against crinkliness

1 1 u . u u X

1 0 0 . 0 0 -

90.00 ■

80.00 •
X

70.00 ■
y*

X

60.00 - X

X
50.00 -

X
40.00 ■ X

X X
30.00 • X X

X X

2 0 . 0 0 • >< *

I x 3
1 0 . 0 0 ■ 5 x * V X| X X x

n nn 1 $i 8 . x x
U.UU

1 2 3 4 5 6 7 8 9

Criiddinefs

Figure 5.23: Time taken to find minimum distance for models with different
crinkliness values.

translations mean tha t the objects are further apart. The results for the ‘sine

curves’ models are shown as o, the results for the cuboids mirrored diagonally

are shown as + . There is no general trend in the data.

The results show th a t three of these four properties of the models have little effect

on the time taken to execute the algorithm, suggesting tha t such measurement

is unable to account for a binary tree structure that is divided dynamically de­

pending upon the geometrical structure of the model rather than the structure

of the data, as can be used, for example, to classify computational complexity of

point-set algorithms by the number of input points.

M eth o d s o f ca lcu la tin g dmax

The value of dmax is calculated for a pair of sub-models in the ‘function to check

values for a pair of sub-models’ by finding the distance between the sub-model’s

124

20 -

10 -2
" o
i—

o H
- 5 - 4 - 3 - 2 - 1 D 1 2 3 4- 5 6 7 8

translation

Figure 5.24: Time taken to find the minimum distance for objects separated by
different amounts

boxes furthest corners. I have investigated the efficiency implications of using

other methods of calculating this, namely:

• The distance between the centroids of the sub-models’ boxes if the centroids

are in solid.

• The distance between the closest corners of the sub-models’ boxes th a t

membership test as solid.

• Using the Newton-Raphson root-finding method provided by sVLls to find a

point in each sub-model and calculate the distance between the two points

found. This only works on sub-models with two or three primitives and

has been explained earlier in the section ‘Calculating dconfirmed for a pair

of sub-models’.

125

Method used to calculate dmax Racing car Robot
Furthest corners (reference value) 20.9 15.0
Centroids 24.4 15.5
Closest solid corners 25.1 17.4
N ewt on-Raphson 21.3 15.8
Centroids and closest solid corners 24.6 17.6
Closest solid corners and Newton-Raphson 27.1 21.8
Centroids, closest solid corners and Newton-Raphson 30.1 18.6

Table 5.3: Time in seconds to find the minimum distance using different m ethods
to decrease dmax

The minimum distance algorithm was applied to two sample models: ‘Racing

car’ and ‘Robot with obstacles’ (shown in figures 4.15 and 4.16 from page 71).

The tim e taken to find the distance is shown in table 5.3 for each m ethod and

combinations of the methods.

A ll of the more exact calculation methods make the minimum-distance algorithm

slower than the ‘furthest corners’ approach, with the Newton-Raphson m ethod

having the smallest time overhead. This shows that the reduced number of sub­

model pairs that need to be considered in the ‘function to check values for a pair

of sub-models’ to calculate dconfirme(i does not offset the additional overhead of

more complicated methods of calculating dmax.

Summary of results

• The proposed ‘progressive division’ minimum-distance algorithm has been

shown to be accurate by comparing its results to those obtained by exact

calculation where that has been possible, or by comparison with results

from the brute force minimum-distance algorithm.

• Neither the total number of primitives in the models, the crinkliness of the

objects, or the distance between the objects has any noticeable effect on

126

the time taken to find the minimum distance.

• The tim e taken to find the minimum distance increases approximately lin­

early with the order of the highest degree primitive in the models.

• Methods of calculating dmax for a pair of sub-models that are more sophis­

ticated than calculating the distance between the furthest corners of the

sub-model’s box do not improve the overall efficiency of the algorithm due

to the large overhead of performing the more complicated calculations.

5.4 Future work

5.4.1 Improvements to the existing minimum-distance al­

gorithm

The main way of improving efficiency of the algorithm would be to reduce the

number of candidate pairs to be considered. Possible approaches include checking

the dmin value of pairs before division, finding a smaller initial value for D upper

and an exact distance calculation for simple pairs of sub-models.

Before dividing a sub-model M , it may be worth checking whether the values

for all of the pairs {M , M i} (where i is the value for each of the partners of M)

are greater than D upper and, if they are, then that sub-model can be discarded. It

is possible that the overhead of performing this check may outweigh the benefit

of removing the sub-model and its partners from the candidate sub-model pairs.

Finding a smaller initial value for D upper would mean that fewer sub-model pairs

may be added to the group of candidate pairs because their dmin > D upper. It

127

would be possible to find the distance between the two sets by using a minimiza­

tion technique such as Bobrow’s [6]. This technique requires that the sets are

convex polyhedra to find the minimum distance between them. However, even if

they are not, it will still find two points on the surfaces of the sets which would be

closer than the diagonal of the m odel’s box (the current initial value of D upper) .

The sVLls function that evaluates the contents of a model uses interval arithmetic

and is conservative, i.e. it may report that a model contains some boundary

when it is actually all air or all solid. If an exact test for whether a model was

air, solid or surface existed, then these sub-models that the current evaluation

regards as containing surface, but are actually air, could be eliminated from

further consideration. For polygonal sub-models it is possible to compute whether

there is really any surface in a sub-model; Voiculescu [75] is researching techniques

to evaluate more accurately whether a model more complicated than a simple

polyhedron contains surface by using the model’s algebraic properties. Milne [53]

has also done some work on this problem in his Geometric Algebra System.

Exact distance calculation for simple pairs of sub-models

Finding the exact minimum distance between a pair of simple sub-models could

make the algorithm more efficient. It would set the value of dconfirmed to the

lowest possible value for that pair, which may decrease D upper) in turn meaning

that less sub-model pairs need be considered in future.

For a pair of sub-models that consist only of convex polyhedral objects, Bobrow’s

algorithm [6] could be used to find the exact distance. The sub-models would

generally be open sets, which Bobrow’s algorithm is not designed to work with,

but the planes of the sub-model’s box could be used to bound the sets. Imple­

128

m entation issues would involve:

• finding start points,

• testing the Kuhn-Tucker conditions,

• finding new search directions,

• finding the amount to move in the search direction.

Each start point could be any solid point in the object, which could be simply

found by dividing the model until a solid box was located: any point within this

box could be used. Finding the planes that the points lie on, in order to test

the Kuhn-Tucker conditions, could be done with point-membership tests on all

the planes in a small box around the point. The new search direction could be

ascertained by projecting the vector between the points onto a plane or planes.

It may be possible to find the distance to move by tracing a ray until it leaves

the surface of the object.

Calculating the exact distance between non-polyhedral sub-models would make

the m ethod more efficient for non-polyhedral objects. Spheres and cylinders, as

spherical extensions of points and lines, should prove to be relatively straightfor­

ward objects to begin work upon.

If m odels are constructed only from convex primitives, an efficient way to check

if a sub-model were convex would be to check if the set is stored in disjunctive

norm al form (DNF), i.e. the intersection operator never appears above any union

operator in the set-theoretic tree. In general, convex parts of models will be stored

in DN F as that is usually the result of constructing them in a straightforward

manner. It is possible to convert any set-theoretic tree into a union of DNF [35]

129

trees, but in the worst case, the size of the tree grows exponentially with increasing

numbers of leaf nodes of the original tree. Specifically, if the original tree has 2K

leaf nodes and it has intersection operators everywhere but at the lowest internal

nodes, the DNF will have 2K product terms, each of which has K leaf nodes.

5.4.2 Breadth-first division for minimum-distance calcula­

tion

The basis of this method for computing the minimum distance between two ob­

jects was proposed to me by Wise [76]. Assume that a function exists that can

quickly calculate the distance between an axially aligned cuboid (box) and an

object in a set theoretically defined model. Use adaptive spatial division in a

breadth-first6 manner to create a sub-model tree, and at each division of a sub­

model, calculate the intervals for distances between the sub-model’s box and each

of the objects in the model. Let [dia, dhi\ be the sum of the squares of these two

intervals. If the dia is less than the ‘best’ value found, then set the ‘best’ value

to di0. Otherwise, if dhi is greater than the ‘best’ value found, then mark the

sub-model so that it is not divided further in the spatial division.

This m ethod searches a divided model while the model is being divided to find

the smallest value of di0. The search avoids local minima as it is a global search,

and is made efficient by discarding areas of the model which have values of d^

larger than the smallest value of d[0.

The search would continue indefinitely so terminating conditions would need to

be used. If an accurate result were required, terminate the search when the

6i.e. divide all of the models at one level of the sub-model tree once before dividing any
model at the next level of the tree.

130

interval [di0, dhi\ for the sub-model with the smallest value of di0 is less than a

certain threshold value. For a faster search, terminate when the number of levels

in the divided sub-model tree exceeds a threshold value. In practice a balance of

the two conditions will probably have to be used. When the search terminates

the minimum distance between the objects is given by \/d{0.

5.5 Conclusions

Two methods of calculating minimum distance between set-theoretically defined

m odels have been devised and implemented. The first is a simple brute force

approach which is useful to check the results obtained from the second, more

sophisticated method. This second method calculates bounds on the minimum

distance by using adaptive spatial sub-division; dividing the model more finely

in areas where the closest two points are likely to be found.

The brute force method first divides the model and then calculates the distance

between every pair of sub-model’s boxes. The distance is found as the distance

between the two closest boxes. This has computational efficiency of O (m n),

where m is the number of leaf boxes containing one object and n is the number

of leaf boxes containing the other object. Despite its inefficiency, this m ethod

offers an important tool for checking the results obtained from using other, more

sophisticated methods.

Empirical results have shown that the order of the highest order primitive affects

the computational time in a linear fashion; this is likely to be because higher

order primitives generally result in more complicated shapes which require more

division. However, examining the computational efficiency of the adaptive divi­

131

sion method using other metrics such as number of primitives has been found

to be inconclusive. This is due to the nature of the binary trees used to store

the divided model, which is such that large areas of the model containing many

primitives may be ignored.

Experimental results from different methods of estim ating the upper bound on

the distance between two sub-models have been compared, and the more com ­

plicated methods do not tend to improve the overall efficiency of the method, as

their increased computational overhead is not offset by the gain in computational

efficiency due to the better estimations of the upper bound.

132

Chapter 6

Conclusions

This thesis has considered three areas of research in the field of set-theoretically

defined geometry: the computation of the convex hull of a solid model, the la­

belling of the connected components of a solid model and the calculation of the

minimum distance between solid models. Methods have been proposed and im­

plemented that offer solutions to each of these points of research, and scope for

further research in each area has been highlighted. The implementation of these

methods has been carried out using the sVLls [10] set-theoretic solid modelling

kernel.

In the first part of the thesis two approaches have been proposed to find the

convex hull of a set-theoretically defined model: a multi-dimensional approach,

and a point-set based method. The multi-dimensional approach processes the

set-theoretically defined model in a multi-dimensional space, finally projecting

the convex hull of the model back down into the original space. Implementation

of this m ethod is left as an open problem. The point-set based method involves

firstly generating a point set that represents the model, then finding the convex

133

hull of the point set by using an existing convex-hull algorithm, before finally

creating the set-theoretically defined convex hull from the resulting point set of

the convex-hull algorithm. Three different ways of generating the points have

been discussed, two of which result in the approximate convex hull for both non-

polyhedral and polyhedral models, whilst the third finds the exact convex hull of

polyhedral models only. The first of these methods creates convex hulls which are

closer to the original shape of the model, and so would have applications in the

field of computer vision and image recognition. The convex hulls generated by the

second method, however, are guaranteed to contain the original model, therefore

making it more applicable for applications such as collision detection. Lastly,

the third point-generation method constructs exact convex hulls for polyhedral

models, therefore making it the optimum method to use for such models.

The second area of research is connected component labelling, for which a m ethod

of labelling connected components within a model has been devised by adapt­

ing and extending Sam et’s quadtree algorithm [64] to work with binary trees of

general dimensionality. These binary trees are created from set-theoretically de­

fined models by using adaptive spatial sub-division. This method also enables

the point connectivity query (see below) to be answered by the comparison of

the labels of the parts of the sub-model that the two points lie in, although the

path between the points will not actually be found. This labelling method has

been implemented for three-dimensional models by using the sVLls kernel mod­

eller. The method has been specialised to handle polyhedral models analytically,

in order to label their connected components faster than the general binary tree

method. Both the general binary tree method and the method for polyhedral

models have been tested on a variety of models, and each method labels the com­

ponents correctly above a certain threshold of division resolution - this threshold

varies depending on the choice of model. For polyhedral models however, using

134

finer division resolutions for the specialised method does not result in a divided

m odel which has a significantly greater size, so therefore this method can be used

w ith a finer division resolution for all models, whilst only using a small amount

o f additional memory space.

In connected component labelling, the question of point connectivity has also

been covered, namely whether or not two points in a set-theoretically defined

solid model are connected by a path that passes entirely through solid parts of

the model. In an effort to resolve this query, a line-segment intersection tech­

nique has been proposed, using a ‘divide and conquer’ approach to find a path

connecting a series of points. Implementation in a multi-dimensional modeller to

find the connectivity of two points results in a tree path between the points in

a configuration space which corresponds to non-colliding movements of a model

through the m odel’s space. The implementation has shown this technique to be

effective for model analysis in confirming that two points in solid parts of the

model, or two points in air parts of the model, are connected.

The last area of research covers the calculation of the minimum distance be­

tween two set-theoretically defined solid models. For this, an algorithm has been

proposed and implemented using the sVLls kernel modeller which calculates the

lower and upper bounds on the minimum distance. Depending upon the proposed

application of the minimum-distance information, the algorithm can be used in

different ‘m odes’, for example, for the calculation of approximate bounds in a

small amount of time, or for ascertaining more accurate bounds given more com­

putational time. The algorithm has been found to give accurate results. Inves­

tigation into how certain properties of the models possibly affect the calculation

tim e of the minimum distance was undertaken; these model properties being the

number of primitives in the model, the algebraic complexity of the primitives, the

‘crinkliness’ of the model, and the distance between the objects. Of these, it was

135

found that only the algebraic complexity of the primitives had any significant

effect on the tim e taken to calculate the minimum distance bounds.

136

References

[1] S. G. Aid and G. T. Toussaint. Efficient convex hull algorithms for pat­

tern recognition applications. In Proceedings of the Ĵ th International Joint

Conference on Pattern Recognition, pages 483-487, Kyoto, Japan, 1979.

[2] D. C. S. Allison and M. T. Noga. Computing the three-dimensional convex

hull. Computer Physics Communications, 103(1):74—82, 1997.

[3] J. L. Bentley, M. G. Faust, and F. P. Preparata. Approximation algorithms

for convex hulls. Communications of the ACM , 25(l):64-68, 1982.

[4] J. L. Bentley and M. I. Shamos. Divide-and-conquer in multi-dimensional

space. In Proceedings of the 8th ACM Annual Symposium on Theory of

Computation, pages 220-230, 1976.

[5] J. L. Bentley and M. I. Shamos. Divide and conquer for linear expected

time. Inform ation Processing Letters 7, 2, pages 87-91, 1978.

[6] J. E. Bobrow. Direct minimization approach for obtaining the distance

between convex polyhedra. International Journal of Robotics Research,

8(3):65-76, 1989.

[7] J. D. Boissonnat, A. Cerezo, 0 . Devillers, J. Duquesne, and M. Yvinec. An

algorithm for constructing the convex-hull of a set of spheres in dimension-D.

Computational Geometry - Theory and Applications, 6(2):123-130, 1996.

[8] K. H. Borgwardt. Average complexity of a gift-wrapping algorithm for de­

termining the convex-hull of randomly given points. Discrete and Computa­

tional Geometry, 17(1) :79—109, 1997.

[9] A. Bowyer. Configuration space maps. The Svlis-M project.

Dept, of Mechanical Engineering, University of Bath, England.

http://w w w .bath . ac.uk/~ensab/G _m od/Svm /csm .htm l.

137

http://www.bath

[10] A. Bowyer. SvLls —Introduction and User Manual. Information Geometers,

2nd edition, 1995. h ttp://w w w .bath .ac.uk/~ensab/ G _m od/Svlis.

[11] A. Bowyer, D. C. R. Eisenthal, D. Pidcock, and K. Wise. Configurations,

constraints, and CSG. In Proceedings of the 1st K orea-U K Workshop on

Geometric modelling and Computer Graphics, Seoul, Korea, April 2000.

[12] A. Bowyer, D. C. R. Eisenthal, and K. D. Wise. Pers. comm. The Svlis-

M project. Dept, of Mechanical Engineering, University of Bath, England.

http://w w w .bath .ac.uk/~ensab/G _m od.

[13] S. Cameron. Efficient intersection tests for objects defined constructively.

International Journal of Robotics Research, 8 (1):3, 1989.

[14] S. A. Cameron. Pers. comm. Oxford University Computing Laboratory,

Wolfson Building, Parks Road, Oxford, OX1 3QD, England.

[15] S. A. Cameron and R. K. Culley. Determining the minimum translational

distance between two convex polyhedra. In Proceedings of the 1986 IEEE

International Conference on Robotics and Autom ation (Conf. code 08325),

pages 591-596, San Francisco, CA, USA, 1986.

[16] J. Canny. Computing roadmaps of general semi-algebraic sets. Computer

Journal, 36(5):504-514, 1993.

[17] J. F. Canny. The Complexity of Robot M otion Planning. ACM Doctoral

Dissertation Award. The MIT Press, 1988.

[18] D. R. Chand and S. S. Kapur. An algorithm for convex polytopes. Journal

of the ACM, 17(7):78—86, 1970.

[19] F. Chin and C. A. Wang. Optimal algorithms for the intersection and the

minimum distance problems between planar polygons. IEEE Transactions

on Computers, C-32:1203-1207, 1983.

[20] A. D atta and S. K. Parui. Dynamic neural net to compute convex hull.

Neurocomputing, 10(4):375-384, 1996.

[21] A. M. Day and D. Tracey. Parallel implementations for determining the 2-D

convex hull. Concurrency Practice and Experience, 10(6):p449-466, 1998.

[22] F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar. Randomized

parallel 3-D convex hull algorithm for coarse grained multicomputers. In

138

http://www.bath.ac.uk/~ensab/
http://www.bath.ac.uk/~ensab/G_mod

Proceedings of the 7th Annual A C M Symposium on Parallel Algorithms and

Architectures (C onf Code 43717), pages 27-33, Santa Barbara, CA, US,

July 1995. ACM, New York, NY, USA.

[23] M. B. Dillencourt, H. Samet, and M. Tamminen. A general approach to

connected-component labeling for arbitrary image representations. Journal

of the ACM , 39(2):253-280, 1992.

[24] M. Dyer, J. Nash, and P. Dew. Optimal randomized planar convex hull

algorithm with good empirical performance. In Proceedings of the 7th Annual

A C M Symposium on Parallel Algorithms and Architectures, (Conf. Code

43717), pages 21-26, Santa Barbara, CA, USA, July 1995. ACM, New York,

NY, USA.

[25] H. Edelsbrunner, J. Vanleeuwen, T. Ottmann, and D. Wood. Computing the

connected components of simple rectilinear geometrical objects in d-space.

R .A .I.R .O . Informatique Theorique-Theoretical Informatics, 18(2):171-183,

1984.

[26] A. Ferreira, A. Rauchaplin, and S. Ueda. Scalable 2-D convex hull and

triangulation algorithms for coarse grained multicomputers. In Proceedings

of the 7th IEEE Symposium on Parallel and Distributed Processing (Conf.

Code 44002), pages 561-568, San Antonio, TX, USA, October 1995. IEEE,

Los Alamitos, CA, USA.

[27] E. Gasparraj and S. Anand. New three dimensional convex hull algorithm

and it ’s applications in flatness evaluation. In Proceedings of the 5th Indus­

tria l Engineering Research Conference (Conf. Code 40228), pages 239-244,

Minneapolis, MN, USA, May 1996. HE, Norcross, GA, USA.

[28] E. G. Gilbert and C. P. Foo. Computing the distance between general convex

objects in three-dimensional space. IEEE Transactions on Robotics and

Autom ation, 6 (1):53—61, 1990.

[29] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. Fast procedure for comput­

ing the distance between complex objects in three-dimensional space. IEEE

Journal of Robotics and Autom ation, 4(2):193—203, 1988.

[30] R. L. Graham. An efficient algorithm for determining the convex hull of a

finite planar set. Information processing letters, 1, pages 132-133, 1972.

139

[31] P. J. Green and B. W. Silverman. Constructing the convex hull of a set of

points in the plane. Computer Journal, 22(3):262-266, 1979.

[32] L. Guibas, D. Salesin, and J. Stolfi. Constructing strongly convex approxi­

m ate hulls with inaccurate primitives. Algorithmica (New York), 9(6):534-

560, 1993.

[33] J. Heintz, M. F. Roy, and P. Solerno. Description of the connected compo­

nents of a semialgebraic set in single exponential time. D iscrete and Com ­

putational Geometry, 11 (2):121—140, 1994.

[34] J. Hershberger and S. Suri. Applications of a semidynamic convex-hull al­

gorithm. BIT, 32(2):249-267, 1992.

[35] F. J. Hill and G. R. Peterson. Introduction to Switching Theory and Logical

Design. Wiley, New York, 1874.

[36] R. Hummel. Connected component labelling in image processing with mimd

architectures. In Intermediate-level image processing, pages 101-127. Aca­

demic Press, New York, 1986.

[37] G. Hurteau and N. F. Stewart. Distance calculation for imminent collision

indication in a robot system simulation. Robotica, 6:47-51, 1988.

[38] R. A. Jarvis. On the identification of the convex hull of a finite set of points

in the plane. Information Processing Letters, 2, pages 18-21, 1973.

[39] M. Kallay. Convex hull algorithms in higher dimensions. 1981.

[40] M. Kallay. Complexity of incremental convex hull algorithms in r d. Infor­

m ation Processing Letters, 19(4): 197, 1984.

[41] T. C. Kao and G. D. Knott. An efficient and numerically correct algorithm

for the 2-d convex-hull problem. BIT, 1990, 30(2) :311—331, 1990.

[42] Y. S. Kim. Recognition of form features using convex decomposition. Com­

pu ter Aided Design, 24(9):461-476, 1992.

[43] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex-hull algorithm?

Siam Journal on Computing, 15(1) :287—299, 1986.

[44] A. Klinger and C. R. Dyer. Experiments in picture representation using

regular decomposition. Computer Graphics and Image Processing, (5):68-

105, 1976.

140

[45] A. Klinger and M. L. Rhodes. Organization and access of image data by

areas. IEEE Transactions on Pattern Analysis and Machine Intelligence,

pages 50-60, January 1979.

[46] D. T. Lee and F. P. Preparata. Computational geometry - a survey. IEEE

Transactions on Computers, 33(12): 1072-1101, 1984.

[47] Y. Leung, J. S. Zhang, and Z. B. Xu. Neural networks for convex hull

computation. IEEE Transactions on Neural Netvjorks, 8(3):601-611, 1997.

[48] M. C. Lin and J. Canny. A fast algorithm for incremental distance cal­

culation. In International Conference on Robotics and Autom ation , pages

1008-1014, Sacramento, April 1991.

[49] M. A. Lopez and T. Ramakrishna. On computing connected components of

line segments. IEEE Transactions on Com puters, 44(4) :597—, 1995.

[50] T. Lozano-Perez. Spatial planning: a configuration space approach. IEEE

Transactions on Computers, 32(2):108—119, 1983.

[51] R. Lumia. A new three-dimensional connected components algorithm. Com­

pu ter Vision, Graphics and Image Processing, 23:207-217, August 1983.

[52] S. Meeran and A. Shafie. Optimum path planning using convex hull and

local search heuristic algorithms. Mechatronics, 7(8):737-756, 1997.

[53] P. Milne. On the algorithms and implementation of a geometric algebra

system. Technical Report 90-40, University of Bath Computer Science De­

partment, 1990.

[54] D. Mollison. Conjecture on the spread of infection in two dimensions dis­

proved. Nature, 240:467-468, 1972.

[55] S. Olariu, J. L. Schwing, and J. Zhang. Fast adaptive convex hull algorithm

on two-dimensional processor arrays with a reconfigurable bus system. Com­

puter System s Science and Engineering, 10(3):131—137, 1995.

[56] B. Paden, A. Mees, and M. Fisher. Path planning using a Jacobian-based

freespace generation algorithm. Proceedings of the IEEE International Con­

ference on Robotics and Automation, pages 1732-1737, 1989.

[57] D. Pidcock and A. Bowyer. Finding good bounds on the minimum distance

between two set-theoretically defined geometric models. In Proceedings of the

141

CSG ’98 Conference, Ammerdown, U.K., April 1998. Information Geometers

Ltd.

[58] F. P. Preparata. Optimal real-time algorithm for planar convex hulls. Com ­

munications of the ACM , 22(7):402-404, 1979.

[59] F. P. Preparata and S. J. Hong. Convex hulls of finite sets in two and three

dimensions. Communications of the ACM , 20(2):87-93, 1977.

[60] F. P. Preparata and M. I. Shamos. Computational Geometry, an Introduc­

tion. Springer-Verlag New York Inc., 1985.

[61] W. E. Red. Minimum distances for robot task simulation. Robotica, 1(4):231-

238, 1983.

[62] J. Rooney and P. Steadman, editors. Computer Aided Design. P itm an /

Open University, 1987.

[63] A. Rosenfeld. Picture Processing by Computer. Academic Press, 111 Fifth

Avenue, New York, UK edition, 1969.

[64] H. Samet. Connected component labelling using quadtrees. Journal of the

Association for Computing Machinery, 28(3):487-501, 1981.

[65] H. Samet. Neighbor finding in images represented by octrees. Com puter

Vision, Graphics and Image Processing, 46(3) :367—386, 1989.

[66] H. Samet and M. Tamminen. Computing geometric properties of images

represented by linear quadtrees. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 7(March), 1985.

[67] H. Samet and M. Tamminen. Efficient component labeling of images of

arbitrary dimension represented by linear bintrees. IEEE Transactions on

P attern Analysis and Machine Intelligence, 10(4):579- 586, 1988.

[68] J. T. Schwartz. Finding the minimum distance between two convex polygons.

Inform ation Processing Letters , 13(4,5) :168—170, 1981.

[69] T. Simeon. Planning collision-free trajectories by a configuration space ap­

proach. Geometry & Robotics, in Springers Lecture Notes in Computer Sci­

ence Series , 391:116-132, 1988.

[70] E. Soisalonsoininen. On computing approximate convex hulls. Inform ation

Processing Letters, 16(3):121—126, 1983.

142

[71] I. Stojmenovic and E. Soisalonsoininen. A note on approximate convex hulls.

Inform ation Processing Letters, 22(2):55—56, 1986.

[72] K. Sugihara. Robust gift wrapping for the three-dimensional convex hull.

Journal of Computer and System Sciences, 49(2):391-407, 1994.

[73] L. Thurfjell, E. Bengtsson, and B. Nordin. A new three-dimensional con­

nected components labeling algorithm with simultaneous object feature ex­

traction capability. Computer Vision, Graphics, and Image Processing ,

54(4):357-364, July 1992.

[74] C. Turnbull and S. Cameron. Computing distances between nurbs-defined

convex objects. IC R A , May 1998.

[75] I. D. Voiculescu. Implicit function algebra in set-theoretic geometric mod­

elling. Technical report, Dept, of Mechanical Engineering, University of

Bath, England, 1998. http://w w w .bath.ac.uk/~enpidv/R eport.

[76] K. D. Wise. Pers. comm. Dept, of Mechanical Engineering, University of

Bath, http://w ww .bath.ac.uk/~enskdw .

[77] K. D. Wise. Computing Global C-space M aps using M ultidimensional Set-

theoretic Modelling. PhD thesis, Dept, of Mechanical Engineering, Univer­

sity of Bath, England, 2000.

[78] J. R. Woodwark. Pers. comm. Information Geometers, Winchester, England.

http://w w w .inge.com .

[79] J. R. Woodwark. Computing Shape. Butterworths, 1986.

[80] J. R. Woodwark and K. M. Quinlan. The derivation of graphics from volume

models by recursive division of the object space. Proceedings of the Com puter

Graphics Conference, pages 335-343, August 1980.

[81] S. Zeghloul and P. Rambeaud. A direct minimization approach for obtaining

the distance between convex polyhedra - comment. International Journal of

Robotics Research, 11 (5) :499—501, 1992.

[82] S. Zeghloul and P. Rambeaud. A fast algorithm for distance calculation be­

tween convex objects using the optimization approach. Robotica, 14(4):355-

363, 1996.

143

http://www.bath.ac.uk/~enpidv/Report
http://www.bath.ac.uk/~enskdw
http://www.inge.com

[83] J. Zhou, X. Deng, and P. Dymond. 2-D parallel convex hull algorithm with

optimal communication phases. In Proceedings of the 11th International

Parallel Processing Symposium (Conf. Code 46339), pages 596-602, Geneva,

Switzerland, April 1997. IEEE, Los Alamitos, CA, USA.

144

