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Abstract

The synthesis of inositol phosphates and novel analogues is described. Their effects at 

inositol 1,4,5-trisphosphate receptors and metabolising enzymes of the phosphoinositide 

pathway is reported. The enantiomers of myoinositol 1,3,4-trisphosphate were prepared by 

a novel route from myo-inositol involving the optical resolution of DL-2,4,5-tri-0-benzyl-l-

0-/?-methoxybenzyl-myoinositol. lD-Ins(l,3,4)P3 was shown to be essentially inactive at 

Ins(l,4,5)P3 receptors, whereas lL-Ins(l,3,4)P3 was able to mobilise intracellular Ca2+, in 

accordance with arguments based on structure-activity principles. The first five-membered 

ring mimic of Ins(l,4,5)P3 [(1R, 2R, 35, 4R, 55)-3-hydroxy-l,2,4-trisphospho-5- 

vinylcyclopentane] was synthesised by a strategy involving zirconium-mediated 

diastereoselective ring contraction of a protected vinyl carbohydrate. A conformationally 

restrained cyclic phosphate analogue of Ins(l,4,5)P3 [DL-6-deoxy-6-hydroxymethyl-s,cy//o 

inositol l:7-cyclic,2,4-trisphosphate] was synthesised from myoinositol orthoformate via a 

versatile intermediate [2,4,6/3,5-pentahydroxy-3,5-di-0-p-methoxybenzyl-2,4,6-<9- 

methylidene-cyclohexanone], and appeared to behave as a weak full agonist at Ins(l,4,5)P3
Q 1

receptors. Potentiometric and P NMR studies showed the analogue to have markedly 

different acid-base properties to Ins(l,4,5)P3. A scy//oinositol-based analogue of 

Ins(l,4,5)P3 [DL-6-deoxy-6-hydroxymethyl-.scy//oinositol-l,2,4-trisphosphate] bearing an 

hydroxymethyl group at a position analogous to that of this structure in adenophostin A. 

was synthesised and found to be equipotent to Ins(l,4,5)P3 itself. The first disaccharide 

based Ca2+-mobilising Ins(l,4,5)P3 mimic, the C2-symmetrical a,a-trehalose 3,4,3',4'- 

tetrakisphosphate, was synthesised from a,a-trehalose by a route involving the 

simultaneous regioselective reduction of two benzylidene acetals. lL-myoinositol 1,3,4- 

trisphosphorothioate was synthesised and shown to be a very low intrinsic activity partial 

agonist at the Ins(l,4,5)P3 receptors of platelets, and was able to inhibit Ins(l,4,5)P3 - 

induced Ca2+ release in a dose-dependent manner. A novel symmetrical analogue of inositol

1,3,4,5-tetrakisphosphate [scy//oinositol 1,2,3,5-tetrakisphosphate], intended for structure- 

activity investigations into the properties of Ins(l,3,4,5)P4 binding proteins, was 

synthesised. A new rapid route to lD-Ins(l,3,4,5)P4 and its unnatural enantiomer 1l- 

Ins(l,3,4,5)P4, via diastereoisomeric bis-(-)-fi>camphanate esters of myo-inositol 

orthoformate was developed, and the absolute configurations of the products proved by an 

X-ray crystallographic study of the intermediate Id-2,6-di-0-[(-)-fit>camphanoyl]-1,3,5-0- 

methy li dene-my oinositol.
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IR infrared
J coupling constant (in NMR)
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1.7-(benzylphosphate) (Epimer37b) 222 
DL-(l,3,5/2,4,6)-3,5-Di-(9-benzyl-6-hydroxymethyl-cyclohexane-l,2,3,4,5-pentol
1.7-(benzylphosphate)-2,4-bis(dibenzylphosphate) (Epimer38a) 223 
DL-(l,3,5/2,4,6)-3,5-Di-(9-benzyl-6-hydroxymethyl-cyclohexane-l,2,3,4,5-pentol
1.7-(benzylphosphate)-2,4-bis(dibenzylphosphate) (Epimer38b) 224
DL-( 1,3,5/2,4,6)-6-Hydroxymethyl-cyclohexane-1,2,3,4,5-pentol 1:7-cyclic,2,4- 
trisphosphate (=  DL-6-deoxy-6-hydroxymethyl-jcy//o-inositol l:7-cyclic,2,4- 
trisphosphate) (26) 224

8.6 Various Compounds from the Route to 26 225
2.4-Di-0-p-methoxybenzyl-6-methylidene-cyclohexane-1,3,5/2,4-pentol (39) 225 
2-C-Hydroxymethyl-l,3,5-(9-methylidene-4,6-di-0-p-methoxybenzyl-wyo-inositol 
(40) 226
DL-2,4-Di-0-/?-methoxybenzyl-6-(methoxymethylidene)-l,3,5-(9-methylidene- 
cyclohexane-l,3,5/2,4-pentol (41) 226
DL-3,5/4,6-Tetrahydroxy-3,5-di-(9-/?-methoxybenzyl-cyclohex- 1-ene-1 - 
carbaldehyde (42) 227
DL-4-O-Formyl-3,5/4,6-tetrahydroxy-3,5-di-0-/?-methoxybenzyl-1 -cyclohexene-1 - 
carbaldehyde (42a) 228
DL-5-Hydroxymethyl-1,3-di-0-/?-methoxybenzyl-cyclohex-5-ene-1,3/2,4-tetrol (43)

229
8.7 DL-6-Deoxy-6-hydroxymethyl-scy//o-inositoI-l,2,4-trisphosphate 229

DL-( 1,3,5/2,4,6)-1,3-Di-0-benzyl-6-benzyloxymethyl-2,4-di-0-p-methoxybenzyl- 
cyclohexane-l,2,3,4,5-pentol (45) 229
DL-(l,3,5/2,4,6)-l,3-Di-0-benzyl-6-benzyloxymethyl-cyclohexane-l,2,3,4,5-pentol 
(46) 230
(1,3,5/2,4,6)-1,3,5-Tri-0-benzyl-6-hydroxymethyl-2,4-di-(9-p-methoxybenzyl- 
cyclohexane-1,2,3,4,5-pentol (47) 231
(1,3,5/2,4,6)-l ,3,5-Tri-0-benzyl-6-hydroxymethyl-cyclohexane-l ,2,3,4,5-pentol 
(48) 232
DL-(l,3,5/2,4,6)-3,5-Di-0-benzyl-6-benzyloxymethyl-cyclohexane-l,2,3,4,5-pentol
1.2.4-tris(dibenzylphosphate) (49) 233
DL-( 1,3,5/2,4,6)-6-Hydroxymethyl-cyclohexane-1,2,3,4,5-pentol 1,2,4- 
trisphosphate (=  DL-6-Deoxy-6-hydroxymethyl-5cy//o-inositol-l,2,4-trisphosphate 
44) 234
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1 Introduction

1.1 First and Second Messengers

This thesis is primarily concerned with lD-myoinositol 1,4,5-trisphosphate 

[Ins(l,4 ,5 )P3, Figure 1.1]. Ins(l,4 ,5 )P3 functions as a second messenger in cells.

OH
PO;

HO

O PO

Figure 1.1 lD-raye>-inositol 1,4,5-trisphosphate.

The cells in a multicellular organism must be able to communicate with one 

another in order to regulate their function, their growth and division, and their 

organisation into tissues. This intercellular communication is conducted by a range of 

extracellular signalling molecules or first messengers, which include hormones, 

neurotransmitters, and local mediators. Small hydrophobic signalling molecules, such as 

steroids and thyroid hormones, are able to pass through the cell membrane and activate 

receptor proteins within the cell, but the vast majority of signalling molecules are 

hydrophilic, and are denied entry to the cell by the lipid bilayer of the plasma 

membrane. Instead, they bind to receptors on the cell surface, and this interaction with 

the receptor somehow causes the production or release within the cell of a second 

messenger, which causes the cellular response. This concept is illustrated in Figure 1.2.

First
messenger

Second
messenger

Cellular
response

Figure 1.2 First and second messengers.

1.2 Calcium Signalling

The most common second messenger in cells, ranging from the simplest bacteria to the 

specialised neurones of the vertebrate nervous system , 1 is ionised calcium; Ca2+. The 

reason for this choice of ion may be related to the changing compositions of the oceans
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during the early stages of the evolution of life on Earth. When life first evolved, it is 

likely that the oceans were more alkaline than they are today and the concentration of
Oxdissolved Ca was therefore low. As organisms proliferated, the accumulation of 

carbon dioxide and other acidic metabolites caused the pH to fall, and the solubility of 

Ca2+ increased.2 Cells would have been unable to tolerate high levels of intracellular 

Ca2+ since it precipitates phosphate, which was already established as an energy 

currency. They were therefore forced to develop mechanisms to control intracellular 

Ca2+ concentrations, either by pumping Ca2+ out of the cell or sequestering it in some 

way. Having created transmembrane Ca2+ gradients out of the need to avoid the toxic 

effects of Ca2+, cells later evolved ways of exploiting these gradients. Mechanisms
Oxdeveloped that could allow small amounts of Ca to flow back into the cytosol, either 

from outside or from intracellular sequestering compartments, under the control of 

variables such as changes in membrane potential or extracellular stimuli. Proteins that
O xoriginally functioned as Ca buffers took on more specialised signal-transducing roles, 

involving conformational changes triggered by the binding of Ca2+, and Ca2+-binding 

motifs became incorporated into many different proteins.
O xIt is now known that the complex mechanisms that have evolved for Ca release 

from intracellular stores and for Ca2+ entry across the plasma membrane lead to an 

inherently oscillatory system.4 The Ca2+ signals that are generated in response to 

external stimuli are not uniform, but pulsatile in nature, and take the form of repetitive 

spikes or waves which encode information by frequency modulation. Complex wave 

patterns with spherical, spiral and planar waves have been observed, and detailed 

mathematical models have been proposed to account for these.5

1.3 Calcium Channels

The flow of Ca2+, either from the extracellular space or from internal stores is controlled
O xby various types of Ca channel (Figure 1.3). Entry from the outside is controlled by 

voltage-operated channels or receptor-operated channels (e.g. NMDA receptors). There 

are also calcium-release activated channels (CRAC) which are somehow triggered by 

emptying of the intracellular stores (Section 1.6) and there may be calcium influx 

channels gated by Ins(l,4 ,5)P3 or other second messengers such as D-rayo-inositol
O x  _1,3,4,5-tetrakisphosphate [Ins(l,3,4 ,5)P4], or by Ca itself. Two main families of 

intracellular Ca2+ channels are known; ryanodine receptors and Ins(l,4 ,5)P3 receptors, 

and they share many similarities. A third type of intracellular Ca2+ channel, gated by

2



sphingolipids has recently been characterised.6 The natural ligand may be sphingosine-

1-phosphate (SIP) . 7

agonist
SMOCDHPR

RYR1

RYR2

CRAC

Capacitative 
calcium  
entry signal

CICR cADPR

Figure 1.3 Calcium channels. DHPR = dihydropyridine receptor, VOC = voltage- 
operated channel, ROC = receptor-operated channel, SMOC = second messenger- 
operated channel, CRAC = calcium release-activated channel, RYR1 = type 1 
ryanodine receptor, RYR2 = type 2 ryanodine receptor, IP3R = D-myo-inositol 1,4,5- 
trisphosphate receptor, IP3 = D-myo-inositol 1,4,5-trisphosphate, IP4 = D-myo-inositol
1,3,4,5-tetrakisphosphate, CICR = calcium-induced calcium release.

Ryanodine receptors were first identified through their high-affinity binding for 

the plant alkaloid ryanodine. Several subtypes have been found. The type 1 isoform 

(RYR1), predominantly found in skeletal muscle, is activated by depolarisation of 

transverse tubules (T-tubules), and this is an important step in excitation-contraction 

coupling of skeletal muscle. The bulbous head of RYR1 seems to interact through 

conformational coupling with the dihydropyridine receptor, which is the voltage sensor 

of the T-tubule membrane. RYR2, found in cardiac muscle, can also be opened by 

depolarisation of the cell membrane, but in this case the interaction is less direct, in that 

it is stimulated by a pulse of Ca2+. Note that in this case, Ca2+ triggers its own release; 

an example of positive feedback. This process of calcium-induced calcium release 

(CICR) is of central importance in Ca2+ signalling, and it is a property of both ryanodine 

and Ins(l,4,5)P3 receptors. A single mutation in RYR1 (Arg 615 —» Cys) seems to be 

responsible for malignant hyperthermia, in which over-sensitivity of the receptor to Ca2+

3



leads to uncontrolled CICR, with spasm of the muscles and potentially fatal 

overheating.8

Some cells express only ryanodine or only Ins(l,4 ,5)P3 receptors, while others

express both. Within an individual cell, individual Ca2+ stores may express only one of

the receptors, both, or neither. As the phenomenon of CICR is increasingly seen as

fundamental to the whole process of Ca signalling, it may be more instructive to

regard Ins(l,4 ,5)P3 receptors and ryanodine receptors as two related families of CICR

channels, the first of which is known to be modulated by Ins(l,4 ,5)P3. Cyclic adenosine

diphosphate ribose (cADPR, Figure 1.4),9,10 a naturally occurring metabolite of

nicotinamide adenine dinucleotide (NAD+), triggers Ca2+ release through ryanodine

receptors by sensitising them to CICR, and this molecule and/or its 2'-phosphaten may
12modulate ryanodine receptors in non-muscle cells.

OH OH

NH
HoC'

O -P = 0 o
i V o — p—o

CH.

OH X

Figure 1.4 Cyclic ADP-ribose (X = OH) and its 2'-phosphate (X = OPO32 )

Finally, there is a recent report of intracellular Ca2+ release in Xenopus oocytes

in response to microinjection of cytidine-5'-diphosphate-D-glucose (CDPG, Figure 
111.5) The site of action is currently unknown, but appears to be quite specific in its 

structural requirements. The closely-related uridine-glucose conjugate UDPG, for 

example, was less active and other nucleotide-glucose conjugates were inactive. The 

effect was not inhibited by heparin, suggesting a mechanism distinct from that of 

Ins(l,4,5)P3.

OH

NH.HO
HO

HO

O’- P
O— P—O

OH OH

Figure 1.5 Cytidine 5'-diphosphate-D-glucose.
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It is interesting to note a kind of family resemblance between cADPR (or its 2'- 

phosphate), CDGP and the adenophostins (Section 1.7). Whether this is a reflection of 

corresponding evolutionary relationships between their respective target proteins 

remains to be seen.

The rest of this thesis will be concerned with Ins(l,4 ,5 )P3 and other inositol 

phosphates. Ins(l,4,5)P3 receptors will be discussed in Section 1.5. but first we will 

describe the origin of Ins(l,4,5)P3, and how its production may be controlled by 

extracellular messengers.

1.4 Origin of Ins(l,4,5)P3

Ins(l,4,5)P3 is produced when the minor membrane phospholipid phosphatidylinositol

4,5-bisphosphate [PtdIns(4,5)P2] is cleaved by a phosphodiesterase of the phospholipase 

C (PLC) type (Figure 1.6). Recent evidence suggests an additional source for 

Ins(l,4,5)P3 (see Section 1.9.2) but the significance of this is unknown at present.

Fatty acid chains in 
lipid monolayer of 
plasma membrane

co co
er

c h 2- c h - c h 2I0
O—P-0
o h /

CO c o  
/  /

^-^■"V-OH O 
HOA^V^X-O-P-O'

n  5

CYTOPLASM

Phospholipase C

(PLC)

o o 
c h 2—c h - c h 2
OH

0—P—o' 
o

diacylglycerol (DAG)

O—P—o 
’0OH,

Phosphatidylinositol-4,5-bisphosphate
[Ptdlns(4,5)P2]

Ho\.— P-00 5
1

O - P —o

Inositol 1,4,5-trisphosphate  
[lns(1,4,5)P3]

Figure 1.6 Hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C 
produces inositol 1,4,5-trisphosphate and diacylglycerol.

5



PLCs are classified into three types (PLC-/3, PLC-y and PLC-<5) and each type 

contains more than one subtype. Two main types of cell-surface receptor are able to 

initiate the production of Ins(l,4 ,5 )P3 by activating particular PLC isoforms. These are 

the G protein-coupled receptors and the tyrosine kinase-coupled receptors (Figure 1.7).

Figure 1.7 Tyrosine kinase-linked and G protein-linked receptors. EGF = epidermal 
growth factor, PDGF = platelet-derived growth factor, PLC = phospholipase C.

cell-surface G-protein coupled receptors. Many of this large family of receptors, which 

all have seven transmembrane domains, are able to activate PLC-/3j via G q/ n  subunits of 

their associated heterotrimeric G-proteins. The tyrosine kinase-linked receptors are 

simpler, having a single transmembrane domain, and relay information through a direct 

interaction between the receptor and PLC-/i. On binding their ligands, the receptors

TYROSINE KINASE- 
LINKED RECEPTORS

G PROTEIN-LINKED
RECEPTORS

Antigen EGF 
1  PDGF

Noradrenaline, acetylcholine, 
histamine, 5-HT, odours, light
and many others (see Table 1.1)

T-cell
receptor

Ick
fyn

Ptdlns(4,5)P2

\

Cellular lnsM.4.51P,response

lns(1,4,5)P3 receptor

calcium store
•  •  •  
•  • •

•  •  •  •

»• •  •  •  •

Many extracellular signals cause release of intracellular Ca2+ by interacting with
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dimerise and phosphorylate one another on tyrosine, creating docking sites for PLC-yi. 

PLC-yi then binds to the receptor and is pulled onto the membrane, where it meets its 

substrate, PtdIns(4 ,5)P2. The hydrophilic head-group of PtdIns(4 ,5)P2 released by both 

these mechanisms is Ins(l,4 ,5)P3, which then diffuses into the cytoplasm and causes the 

release of Ca2+ from intracellular stores by interacting with Ins(l,4 ,5)P3 receptors. In 

general, the tyrosine-kinase-activated PLC-'js increase Ca2+ more slowly and for longer 

durations than do the G protein-mediated PLC-/3s. It is important to stress that tyrosine 

kinase-linked receptors also activate other effectors such as phosphatidylinositol-3- 

kinase (Section 1.9.5), and GTPase-activator protein (GAP, Section 1.10.4). These other 

signalling pathways have been omitted from Figure 1.7 for the sake of clarity.

Via PLC-P Via PLC-y

Adrenoceptors ocia. 0Cib ,(Xid Epidermal growth factor receptor

Angiotensin ATi Fibroblast growth factor receptor

Bombesin BBj, BB2 Platelet-derived growth factor receptor

i Bradykinin Bi, B2 T cell antigen receptor

! Cholecystokinin CCKa, CCKb

I Endothelin ETa, ETb

I Glucagon

Gonadotrophin releasing hormone

Histamine Hi

5-HT2A, 5-HT2B, 5-HT2C-------------— ........... ..... ................................................... — ....

Leukotriene BLT, CysLTi
i
Melatonin ML

Metabotropic glutamate mGlui, mGlus

Muscarinic Mi ,M3, M5,

Oxytocin

Platelet-activating factor

Prostanoid EPi, EP3, FP, TP

Purinoceptors P2Y, P2U

Tachykinin NKj, NK2, NK3

Thrombin

Thromboxanes

Thyrotropin releasing hormone

Vasopressin V ia , V ib

Table 1.1 Plasma membrane receptors activating phospholipase C.
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Finally, IgM receptors in B-lymphocytes and the T-cell antigen receptor CD3 

can also stimulate the production of Ins(l,4 ,5 )P3 . They lack tyrosine kinase activity of 

their own but recruit members of the src proto-oncogene family such as the protein 

tyrosine kinases fyn  and lek . Table 1.1 lists some of the plasma membrane receptors that 

are coupled to hydrolysis of PtdIns(4 ,5 )P2, either through activation of PLC-/3 or PLC-7 . 

The other product of hydrolysis of PtdIns(4 ,5 )P2 by PLCs is the lipophilic 1,2-di-O-acyl 

glycerol (DAG). DAG remains in the membrane, and can activate a family of protein 

kinase C isoenzymes, which catalyse protein phosphorylation. This part of the pathway 

is not shown in Figure 1.7. Many of the actions of DAG are mimicked by the phorbol 

esters, products of the Euphorbaciae family of higher plants.

1.5 Inositol 1,4,5-trisphosphate Receptors

The Ins(l,4 ,5 )P3 receptor is a tetramer, composed of four subunits surrounding a 

cationic pore which behaves as an ion channel. Each subunit binds one molecule of 

Ins(l,4 ,5 )P3 at a positively-charged domain close to the N-terminal. The transmembrane 

topology is thought to be as shown in Figure 1.8. Each subunit has six transmembrane 

helices towards the C-terminal which constitute the Ca2+ channel domain.

binding
domain heparin

regulatory
domain

caffeine

H O O C C O O H

C a
channel
domain

polyamines
THA+

Endoplasmic
Reticulum

Figure 1.8 Cross-section of a generalised inositol 1,4,5-trisphosphate receptor, showing 
proposed site of action of antagonists.



The two domains are coupled by a large regulatory domain which contains sites for 

phosphorylation by many different protein kinases, and also two putative ATP binding 

sites. Note that Figure 1.8 represents a cross-section through a generalised Ins(l,4,5)P3 

receptor and therefore shows only two of the four subunits. There are at least three types 

of Ins(l,4 ,5)P3 receptor subunits, derived from distinct genes and designated type 1 

(IP3R-I), type 2 (IP3R-2) and type 3 (IP3R-3), all of which share significant similarity to 

each other, partial homology with the ryanodine receptor and no significant homology 

with voltage-gated calcium channels. It is likely that this list will expand in the future. 

The distribution of isoforms differs considerably between tissues.14 IP3R -I, for example, 

is particularly enriched in cerebellum. Mutant mice lacking IP3R-I usually die in utero, 

and bom animals have severe ataxia and epileptic seizures.15 IP3R-3 is expressed most 

abundantly in gastrointestinal tract and kidney16 and is also the predominant isoform 

expressed in adult pancreatic islets. It may be responsible for mediating the effects of 

Ins(l,4 ,5)P3 on insulin secretion.17 For a recent review on the Ins(l,4 ,5)P3 receptor 

family see Joseph (1996)18

It was originally thought that Ins(l,4 ,5)P3 receptors were located only in the 

membranes of the endoplasmic reticulum, but more recently they have been found in the 

plasma membranes of various cells (e.g. lymphocytes19,20). This could indicate that, at 

least in some cell-types, Ins(l,4 ,5)P3 receptors may have a role in Ca entry from the 

extracellular space. Until very recently Ins(l,4 ,5)P3 receptors were assumed to be 

homotetramers, composed of identical subunits, but evidence is now emerging that 

distinct types of subunits may assemble to form heterotetramers.21,22 

Heteroligomerisation of isoforms might provide a mechanism for generating greater 

diversity of Ins(l,4 ,5)P3 receptors. The mixing of just two types of subunits, for 

example, would produce five kinds of Ins(l,4 ,5)P3 receptor, i.e. two homotetramers and 

three kinds of heterotetramer. A mathematical model based on the random association 

of subunits with high and low affinities for Ins(l,4 ,5)P3 in this way has been used to 

describe the kinetics of Ca2+ release from rat basophilic leukaemia cells and has been
2+ 23proposed as an explanation for the phenomenon of quantal Ca release (see below).

1.6 Capacitative Calcium Entry

The binding of Ins(l,4 ,5)P3 to its receptor results in the release of Ca2+ stored in the 

endoplasmic reticulum (ER). Submaximal concentrations of Ins(l,4 ,5)P3 release only a 

fraction of the Ins(l,4 ,5)P3-sensitive Ca store, and further increases in Ins(l,4 ,5)P3

9



concentration can mobilise more Ca2+. This phenomenon, which may also be a property 

of ryanodine receptors, is described as “quantal” Ca2+ release. The Ca2+ liberated by 

Ins(l,4 ,5)P3 can activate a range of calcium-dependent processes by inducing 

conformational changes in various Ca2+-binding proteins. Ca2+ is then pumped both out 

of the cell and back into the ER by Ca2+ ATPases. Thus there is a net loss of Ca2+ from 

the cell, and a small amount of extracellular Ca2+ must enter through the plasma 

membrane to make good this loss. This influx of Ca2+ from the environment is known as 

capacitative calcium entry, and it occurs regardless of whether the stores are emptied by 

Ins(l,4 ,5)P3 or by blockade of the endoplasmic reticulum Ca2+ pump. Besides 

replenishing the intracellular Ca2+ stores this mechanism maximises Ca2+ concentrations
2 i

near the plasma membrane, where specialised Ca -dependent proteins are found. There 

is a growing awareness that capacitative calcium entry plays a central role in the 

functioning of non-excitable cells, which lack voltage-gated Ca2+ channels. A currently 

unsolved mystery is why Ca2+ entry through the plasma membrane inevitably follows 

Ca2+ release from the endoplasmic reticulum. This question is now a subject of great 

controversy in the field of cellular signalling.24

A specific depletion-activated Ca2+ current has now been identified and is 

termed Icrac (calcium-release-activated calcium current). Icrac has been shown to be 

highly selective for Ca , not voltage-dependent, and is linked to depletion of 

intracellular Ca2+ stores, but neither Ins(l,4,5)P3 nor D-Ins(l,3,4 ,5)P4 are necessary for 

its activation.25 The CRAC channel itself has not yet been identified, although there has 

been considerable excitement generated by reports that CRAC may be activated by a 

novel diffusible factor, released from the Ca2+ stores and acting as a kind of reverse
Ofi 77messenger (Figure 1.9). ’ This putative messenger, now named calcium influx factor 

(CIF), was postulated to be a small anionic phosphorylated molecule and seemed to be 

present in extracts from cells in which the Ca2+ stores had been depleted. A more recent 

study, in which extracts from stimulated Jurkat T-lymphocytes caused Ca2+ influx in 

Xenopus oocytes suggests that the CIF activity may consist of at least two active 

components, one which can act from the outside and the other which works only when 

injected.28 However, little progress has been made in identifying CIF, and alternative 

models of capacitative Ca2+ entry, based on protein-protein interactions, have been 

gaining ground recently.24 It has been suggested, for example, that information is 

transmitted directly from Ins(l,4 ,5)P3 receptors to CRAC channels by a conformational 

coupling mechanism (analogous to that which is thought to exist between RYR1 and the
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dihydropyridine receptor, and perhaps involving specific Ins(l,4,5)P3. receptor subtypes.

It has been found that over-expression of type-3 Ins(l,4,5)P3 receptors in Xenopus

oocytes has no effect on Ins( 1,4 ,5 )P3-induced Ca2+ release, but markedly enhances the

magnitude and duration of calcium influx.29 These two dominant theories of

capacitative calcium entry, conformational coupling and CIF are summarised

schematically in Figure 1.9. Either mechanism would be of interest to the medicinal

chemist, as they both offer the possibility of pharmacological intervention in

capacitative Ca2+ entry (either through CIF-analogues or selective IP3R- 3  ligands).
.2+Ca‘

CRAC

immim .
Extracellular
sp a ce

C onform ational 
co u p lin g ?

P3 R

nmnmrg C alcium  influx 
fa c to r (CIF)?

Empty
store

pump

miiumiMnmuiiiM
Figure 1.9 Two theories of capacitative Ca2+ entry: conformational coupling and a 
diffusible calcium influx factor (CIF).

A recent study claims that LU52396 (Figure 1.10) is the first pharmacological 

tool that selectively inhibits capacitative Ca2+ influx (Kj around 2/xM in HeLa cells), 

although its selectivity is low, and it also inhibits Ca2+ fluxes through Ins(l,4 ,5 )P3 

receptors, ryanodine receptors and Ca2+-ATPases at higher concentrations.30 LU52396 

has three chiral centres, and the results were obtained with the mixture of eight 

stereoisomers, so there is the possibility that greater selectivity might be achieved when 

the individual isomers are synthesised and tested separately.

F

OH

Figure 1.10 LU52396; recently claimed to be an inhibitor of capacitative Ca2+ entry.
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1.7 Structure-Activity Relationships at Ins(l,4,5)P3 Receptors

Axial 2-hydroxyl
The least important part of 
lns(1 ,4,5)P3. Of only minimal 
importance for binding.

> Can be deleted, changed 
to equatorial or replaced with 
fluorine with only slight effect 
on activity.
> C-2 can be replaced with 
pyranoside oxygen.
> Bulky substituents or 
phosphate group are tolerated.

> Equatorial 2-OH together with 
phosphorothioates at 1,4,5 
and axial 3 or 6-OH gives low 
intrinsic activity partial agonists.

Equatorial 1-phosphate Equatorial 6-hydroxyl
Less important than the 4- 
and 5-phosphates. Enhances 
binding, but not essential. May 
have a long-range interaction 
with the receptor binding site.

> Deletion greatly reduces 
activity, but replacement with 
axial phosphate or a phosphate 
more distant from the ring
is tolerated.
> Large groups can be tolerated 
without major loss of activity.
> Replacement with 
phosphorothioate reduces 
activity only slightly.

Very important for binding. May 
have H-bond interactions with 
binding site and/or affect 
conformation / ionisation state 
of 5-phosphate, probably via 
hydroxyl hydrogen rather than 
lone pair electrons.

> Deletion or changing to axial 
greatly reduces activity, but
in combination with phosphoro­
thioate at 1,4,5 gives partial 
agonists.
> Bulky substituents, 
equatorial phosphate or 
replacement with fluorine 
gives greatly reduced 
activity.

Equatorial 3-hydroxyl
Enhances binding, but less 
important than 6-hydroxyl. May 
have H-bond interactions with 
binding site probably via 
oxygen lone pair electrons.

> Deletion or changing to axial 
reduces activity, but less so than 
for the 6-hydroxyl.

> Replacement with fluorine 
reduces activity only slightly.
> Axial hydroxyl together with 
phosphorothioates at 1,4,5 gives 
a partial agonist.
> Increasing molecular volume of 
equatorial substituents is thought 
to correlate inversely with potency, 
but se e  Chapter 5.
> Equatorial or axial phosphate 
gives greatly reduced potency.

4,5-bisphosphate
The most important part of lns(1,4,5)P3 and essential for activity. 
Can be replaced with a bisphosphorothioate. Linking the 4- and 5- 
phosphates to give a cyclic pyrophosphate abolishes activity.

Equatorial 4-phosphate
Information is lacking on 
analogues selectively modified 
at this position.

> Deletion abolishes activity, 
changing to axial greatly 
reduces activity.
> Replacement with 
phosphorothioate has less 
effect on potency than 
replacing the 5-phosphate.

Equatorial 5-phosphate
Ionisation state correlates with 
the affinity of lns(1,4,5)P3 for its 
receptor.

> Deletion abolishes activity, 
effect of axial not known.
> Can be replaced with 
methylenephosphonate or 
phosphorothioate, to give 
metabolically resistant analogues 
causing prolonged Ca2+ release.

Figure 1.11 Structure-activity relationships for Ins(l,4 ,5)P3 receptors.
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Since 1986 there has been considerable interest in the synthesis of inositol 

polyphosphates and in establishing structure-activity relationships for the Ins(l,4 ,5)P3 

receptor. As a result, we now have a reasonable idea of which molecular features are 

associated with agonist activity, and which modifications will increase or decrease 

potency. Structure-activity relationships for the various enzymes involved in the 

interconversion of inositol phosphates have also been studied, but are currently less 

well-defined. The contemporary state of knowledge of these relationships has been 

comprehensively documented in a recent review31 and there is no reason to reiterate it 

here. Instead, the important aspects of structure-activity relationships for the Ins(l,4 ,5)P3 

receptor are summarised in Figure 1.11, to which we will often return. The 

corresponding relationships for enzymes and other binding proteins will be discussed as 

they arise in the text.

The 4,5-bisphosphate appears to be the essential pharmacophore for activity at 

Ins(l,4 ,5)P3 receptors. These two phosphate groups are vicinal and diequatorial, and the 

torsion angle 0 4 -C 4 -C 5 -0 5  is negative (Figure 1.12). It may be possible for vicinal 

phosphate groups positioned elsewhere in the myo-inositol ring (or in other rings, or 

even in some conformations of acyclic molecules) to mimic the 4,5-bisphosphate to 

greater or lesser extents, and this idea will be a recurring theme in what follows.

H

to is negative

H

Figure 1.12 Definition of the term “4,5-bisphosphate”.

In 1994 the discovery was announced of adenophostins A and B (Figure 1.13) 

from the culture broth of a fungus, Penicillium brevicompactum. The adenophostins 

were reported to be astonishingly potent agonists at Ins(l,4 ,5)P3 receptors, 100-fold 

more potent than Ins(l,4,5)P3 itself. No compound had previously found to be more 

potent than Ins(l,4 ,5)P3 and most modifications of the Ins(l,4 ,5)P3 molecule had 

resulted in reduced potency. The publication of the structures of the adenophostins 

immediately confirmed most of the conclusions that had already been reached about the 

necessary features for Ins(l,4 ,5)P3 receptor ligands, and which are detailed in Figure

1.11 (e.g. a 4,5-bisphosphate together with a third phosphate close to position 1, a 6- 

hydroxyl group, etc.) and yet the adenophostins also have some additional features.
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At the time of writing, the significance of these additional components in the 

adenophostins, and the origin of their extreme potency is not understood. However, an 

explanation cannot be far away. The importance of the adenophostins is such that they 

are discussed separately, in Chapter 5.

Figure 1.13 Adenophostins A and B

The structure-activity principles outlined in Figure 1.11 are all derived from 

studies of analogues in which the 4,5-bisphosphate is on a six-membered ring. In 

Chapter 3 an excursion into new and uncharted territory is described: analogues based 

on a/zve-membered ring.

1.8 Antagonists at Ins(l,4,5)P3 Receptors

The polysulphated polysaccharide heparin has been shown to be a potent competitive
'JO

and reversible antagonist at Ins(l,4 ,5)P3 receptors, and it might seem likely that the 

anionic sulphate groups of heparin can somehow mimic the phosphate groups of 

Ins(l,4,5)P3 at the receptor binding site. However, myoinositol 1,4,5-trissulphate34 has 

been shown to be inactive at Ins(l,4 ,5)P3 receptors,35 as has the hexadeoxy-1,4,5- 

tris(methylenesulphonic acid) analogue of Ins(l,4,5)P3.36 The design of antagonists 

based on heparin is made difficult by the large and flexible nature of the heparin 

molecule, and the use of heparin in studies of intact cells is complicated by the fact that 

heparin is also a potent inhibitor of Ins(l,4,5)P3 3-kinase. Heparin has also been 

reported to interact with the ryanodine receptor, causing Ca2+ release.38 At millimolar 

concentrations, caffeine acts as an inhibitor of Ins(l,4,5)P3-induced calcium release, 

probably by acting at an ATP binding site present on the cytoplasmic coupling domain 

of the receptor, rather than at the ligand binding site, but like heparin, caffeine also 

interacts with ryanodine receptors.

RQ Adenophostin A R = H 

Adenophostin B R =COCH3

NH2
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It has recently been shown that physiological concentrations of polyamines can 

inhibit Ins(l,4 ,5)P3-induced Ca2+ release and their potency is directly related to the 

number of positive charges on the molecule.40 Furthermore, various 

tetraalkylammonium cations, particularly tetrahexylammonium ions (THA+) have a 

similar effect, (higher concentrations of THA+ (10-100jUM) can mobilise Ca2+)41 and 

may share a similar mechanism of action with polyamines, perhaps involving an 

interaction with negatively charged amino acids in the channel region of the receptor. It 

is not clear whether triethylammonium or cyclohexylammonium ions can have a 

significant effect on Ca2+ release, but as most of the compounds described in this thesis 

were isolated and used as the triethylammonium salts, the possibility must be bome in 

mind until experiments prove otherwise. It has also been reported that some reagents 

used as Ca2+ chelators may competitively antagonise binding of Ins(l,4 ,5)P3 to the 

receptor 42 This finding may be of importance, if only because these reagents (EDTA, 

EGTA, BAPTA, fura-2) are commonly used either to monitor or manipulate Ca2+ levels 

in biological studies of Ca2+ release, and may therefore give rise to experimental 

artefacts. Finally, the racemic 5-methylphosphonate analogue of Ins(l,4 ,5)P3 was 

reported to antagonise Ins(l,4 ,5)P3 -stimulated Ca2+ release in a pH-dependent manner 

in human platelets.43 This finding would be of major significance if it could be 

confirmed, but further biological data are not available.

1.8.1 Partial Agonists at Ins(l,4,5)P3 Receptors

It might be expected that Ins(l,4 ,5)P3 analogues would show greater selectivity for the 

Ins(l,4 ,5)P3 receptor than agents such as heparin, decavanadate or caffeine, and may 

therefore be better candidates as specific Ins(l,4,5)P3 antagonists. Unfortunately it 

appears that, in general, the inositol phosphate analogues that bind to Ins(l,4 ,5)P3 

receptors also cause Ca2+ release, and must therefore be classified as agonists.* 

However, it sometimes happens that, while an analogue can fully displace 

[3H ]Ins(l,4 ,5)P3 from its receptor, it induces only partial Ca2+ release compared to that 

releasable by Ins(l,4 ,5)P3 alone (Figure 1.14). These compounds may be classified as 

partial agonists (or alternatively, partial antagonists).

Evidence has recently been presented54 that the naturally-occurring Ins(l,3,4,5,6)P5 acts as a weak 
Ins(l,4,5)P3 antagonist in vitro and that this may have physiological significance for Ins(l,4,5)P3 receptor 
regulation in vivo.
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C a 2+ release

Log[analogue]

Figure 1.14 Theoretical dose-response relationships for full and partial agonists.

At least under some conditions, the symmetrical inositol tetrakisphosphate 

Ins(l,3 ,4 ,6 )P4 (Figure 1.15) has been found to behave in this way, releasing around 80% 

of the Ca2+ mobilised by Ins(l,4 ,5 )P3 when tested in SH-SY5Y neuroblastoma cells.44 

Again working with SH-SY5Y cells, it has been shown that when the maximally 

effective Ca2+-releasing concentration of Ins(l,3,4,6)P4 is administered together with 

Ins(l,4 ,5 )P3, the EC50 of the latter is increased.44 This indicates that Ins(l,3,4,6)P4 and 

Ins(l,4 ,5 )P3 are competing for the same site, and is strong evidence that, in this assay, 

Ins(l,3,4,6)P4 is behaving as a true partial agonist. These observations were the stimulus 

for the synthesis of D-Ins(l,3,4)P3 and D-Ins(l,3,6)P3 [ = L-Ins(l,3,4)P3 ] described in 

Chapter 2, and also D-Ins( 1,4,6)P3 and D-Ins(3,4,6)P3 (carried out by a colleague), in a 

collaborative attempt to identify which features of Ins(l,3,4,6)P4 were responsible for its 

partial agonist properties. Ins(l,3,4,6)P4 has since been tested in permeabilised platelets, 

which is the assay system used to evaluate most of the analogues described in this 

thesis, and appears to behave as a full agonist under these conditions,45 further 

complicating the issue.* Unusual pH-dependent behaviour has been reported for d-3- 

amino-3 -deoxy-myo-Ins(l,4 ,5 )P3 (Fig. 1.15) again in SH-SY5Y cells. Apparently this 

compound behaved as a full agonist at pH 7.2 and 7.6, but as a high intrinsic activity 

partial agonist (releasing about 80% of the Ins(l,4 ,5 )P3 -sensitive Ca2+ pool) at pH 6 .8 . 46

However, the ability o f Ins( 1,3,4,6)P4 to displace [H3]In s(l,4 ,5 )P 3 from rat cerebellar membranes seem s 
to indicate a binding affinity higher than would be expected from its moderate potency in the rabbit 
platelet assay for Ca2+-release. The significance o f this finding is not understood at present.

full agonist 

with lower 

affinity than 

ln s(1,4 ,5)P 3

ln s(1 ,4 ,5 )P 3

partial agonist
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Two inositol phosphorothioates, L-c/»>0-inositol-2,3,5-trisphosphorothioate [l -  

c/iz>o-Ins(2,3,5)PS3] and D-6-deoxy-mye>-inositol-l,4,5-trisphosphorothioate [d -6 -  

deoxy-Ins(l,4,5)PS3] have been shown to act as low intrinsic activity partial agonists, 

releasing only 34% and 42% of Ins(l,4 ,5)P3-releasable Ca2+ respectively in SH-SY5Y 

cells.47 Significantly, L-c/nre>-Ins(2,3,5)P3 has now been tested in the rabbit platelet 

assay and shown to behave in a similar way, making it the first partial agonist at the 

platelet Ins(l,4 ,5)P3 receptor.45

Figure 1.15 Partial agonists at Ins(l,4,5)P3 receptors.

All the partial agonists discussed above can be seen as Ins(l,4 ,5)P3 analogues 

with modifications at C-3 or C-6 , sometimes together with phosphorothioate 

substitution. It was these observations that led us to consider the synthesis of two 

phosphorothioate analogues, L-myoinositol 1,3,4-trisphosphorothioate and DL-6-deoxy- 

6-hydroxymethyl-scy//0-inositol 1,2,5-trisphosphorothioate, described in Chapter 6, and 

also of DL-rayo-inositol-1,4,6-trisphosphorothioate.48’49

Very recently, a study of three D-3-deoxy-3-fluoro-myc>-Ins( 1,4,5)P3 

phosphorothioate analogues provided the significant observations that their order of 

potency was as shown in Figure 1.16 and that of the three, only the 4,5- 

bisphosphorothioate appeared to be a partial agonist (in SH-SY5Y cells).50 These results 

confirm the expectation that modification of the 5-phosphate is more perturbing for 

Ins(l,4 ,5)P3 receptor binding than a similar modification of the 4-phosphate (see 

Chapter 4), and show that in this series, phosphorothioate substitution at both C-4 and 

C-5 was necessary for partial agonism.

lns(1,3,4(6)P4 D -3 -a m in o -3 -d e o x y -ln s (1 ,4,5)P3

C T % - 0

! np/.c
0 P (S )0 2

0 P (S )0 2

0 P (S )0 2‘

0 P (S )0 2‘
0 P (S )0 2‘

L-c/7/ro-lns(2,3,5)PS3 D -6 -d e o x y -ln s (1 ,4,5)PS3
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Full agonist Full agonist Partial agonist

<    »

Increasing potency for binding and Ca 2+ mobilisation

Figure 1.16 Consequences of selective phosphorothioate substitution at the 4,5- 
bisphosphate for Ins(l,4 ,5)P3 receptor affinity and partial agonism. See Fauq et al. 
(1996)50

1.8.2 Antagonists and Partial Agonists: Conclusions

A major goal in the medicinal chemistry of inositol phosphates is the development of a 

specific competitive antagonist for Ins(l,4,5)P3 receptors (and then, subtype-selective 

analogues). Unfortunately it appears that, for small-molecule Ins(l,4 ,5)P3 receptor 

ligands, efficacy and affinity are difficult to disentangle, and it has not yet been possible 

to identify any structural feature that is related to one and not the other. Molecules that 

bind to the Ins(l,4 ,5)P3 receptor with reasonably high affinity and yet appear to behave 

as partial agonists are therefore important lead compounds in the search for specific 

Ins(l,4,5)P3 antagonists. However, it is becoming clear that Ins(l,4 ,5)P3 -induced Ca2+ 

release is a complex phenomenon, and it may be necessary to exercise some caution in 

using the simple criteria illustrated in Figure 1.14 to identify these leads. It is known for 

example, that Ins(l,4 ,5)P3 -sensitive Ca2+ stores can respond rapidly and transiently to a 

low concentration of agonist, and yet maintain the ability to release Ca in response to
•  ̂i

higher concentrations (quantal Ca release). This complicates investigation of the 

relationship between Ins(l,4 ,5)P3 receptor occupation and Ca2+ release, and 

discrimination between agonists of different efficacy. Even a partial agonist may be 

able to deplete the Ca2+ stores given sufficient time,47 particularly if it is resistant to 

metabolism, and only partial agonists with very low intrinsic efficacy will give a dose 

response curve similar to that in Figure 1.14. Finally, there may be problems involved in 

the detection of antagonistic effects when permeabilised, rather than intact, cells are 

used.51
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1.9 Inositol Phosphate Metabolism

D-lns(1,4,5)P3

( 3-kinase ] ( MIPP )

( 5-phosphatase] __________________
 ► D-lns(1,4)P2 ^ x M-phosphatase)

_  D-lns(4)P 
► D-lns(4,5)P2 \by+

( monophosphatase")|

INOSITOL
Recycled for lipid 

synthesisD-lns(1,3,4,5)P4

( 5-phosphatase) ( 5/6-kinase ) [ monophosphatase"]

D-lns(1,3,4)P3
► lns(1,3)P2  ► D-lns(1)P

► D-lns(3)PX - >  D-lns(3,4)P2

( 5/6-kinase )

[ 1-phosphatase]

D-lns(1,3,6)P3^

(=L-lns(1,3,4)P3)

lns(1,3,4,6)P4
D-lns(1,4,6)P3

D-lns(3,4,6)P3

PP-lnsPn

InsP,

[MIPP ]
„ -----► D-lns(1,4,5,6)P4

D-lns(3,4,5,6)P4

[MIPP )
«, D-lns(1,2,4,5,6)PS

D-lns(1,2,3,5,6)P5

Figure 1.17 Metabolism of receptor-generated Ins(l,4 ,5)P3 in mammalian cells.

Just as a cell must contain mechanisms for the generation of intracellular signals, 

it must also contain mechanisms for their termination. Cyclic nucleotides, (cAMP and 

cGMP), for example, are inactivated by the action of at least five classes of 

phosphodiesterase isoenzymes, and these enzymes are targets for therapeutic 

intervention in this signalling pathway. In a similar way, Ins(l,4 ,5)P3 is a substrate for 

various enzymes, whose function may be seen as that of terminating the Ins(l,4 ,5)P3 

signal. However, it is now becoming clear that the metabolism of Ins(l,4 ,5)P3 is 

complex, and the expanding number of metabolites, enzymes and isoenzymes reported
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in the literature have brought this possibly simplistic view into question. Nearly half of 

the 63 possible monoesterified phosphate derivatives of inositol have been found in 

eukaryotic cells, and it seems increasingly likely that some of these, particularly the 

higher inositol phosphates, will have important cellular functions of their own. Two of 

the most abundant inositol phosphates in cells are Ins(l,3,4,5,6)Ps and InsP6 for 

example, and many functions have been suggested for these highly charged 

molecules,52'54 including the theory that InsP6 may act as a binding site for iron, thus 

inhibiting iron-catalysed hydroxyl radical formation.55 A new class of pyrophosphate- 

containing inositol polyphosphates (PP-InsPn) has now been identified,56 and a total 

synthesis of the enantiomers of 1-PP-InsPs has recently been reported.57

The remainder of this section provides a highly selective account of some of the 

enzymes involved in phosphoinositide metabolism. It deals only with those that are 

potential targets for the compounds synthesised in this work. The currently established 

pathways of Ins(l,4 ,5)P3 metabolism in stimulated mammalian cells are diagrammed in 

Figure 1.17.

1.9.1 Inositol 1,4,5-trisphosphate 3-kinase

D-lns(1,4,5)P3 — 3'kln-ase- » D-lns(1,3,4,5)P4

The enzyme D-myo-inositol 1,4,5-trisphosphate 3-kinase catalyses the phosphorylation 

of Ins(l,4 ,5)P3 to Ins(l,3,4 ,5)P4. Two isoenzymes, 3-kinase A and 3-kinase B have been 

identified and recent evidence suggests that the human forms are specifically expressed
CO

in different tissues and cells. 3-Kinase seems to be highly selective for its substrates 

and there is increasing evidence that it is the key regulatory enzyme for Ins(l,4 ,5)P3 

metabolism. A number of mechanisms exist for the regulation of 3-kinase activity59 and 

the enzyme is a substrate for the calcium-activated proteolytic enzyme calpain, which 

might provide a mechanism for regulation of 3-kinase levels.60 Focal cerebral ischaemia 

in rats has been shown to result in a time-dependent irreversible decrease in 3-kinase 

activity, suggesting that 3-kinase is one of the target enzymes of cerebral ischaemia and 

that the resulting perturbation of Ins(l,4 ,5)P3 metabolism may be an important factor
2 . z |

underlying the changes in intracellular Ca that lead to neuronal cell death.

The specificity of 3-kinase poses problems for the design of inhibitors. Heparin 

inhibits the activity of bovine adrenal cortex cytosol 3-kinase in a non-competitive 

fashion37 but, as noted above, has many disadvantages as a pharmacological tool. The
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anthracycline antibiotic adriamycin, widely used in antineoplastic therapy has also been 

found to inhibit 3-kinase, but it too has numerous other biological effects.62 Some 3- 

position-modified analogues of Ins( 1,4,5)P3 act as 3-kinase inhibitors, but also release 

calcium. Unexpectedly, L-2,2-difluoro-2-deoxy-myo-inositol-l,4,5-trisphosphate is 

also a competitive inhibitor (Kj=l 1.9jUM)64 and a carbohydrate-based 3-kinase inhibitor 

(Kj=26.8^M) synthesised from mannose has also been reported.65 These two molecules 

are therefore important leads in the search for non-calcium releasing, small-molecule 

inhibitors of 3-kinase.

F OH

L-2,2-F2-lns(1 ,4 ,5)P 3 m annose-based  analogue

Figure 1.18 Small-molecule 3-kinase inhibitors

All the new compounds described in this thesis are currently being examined for 

their interaction with a purified 3-kinase preparation. In particular, an investigation is 

being carried out into the effect of 3-kinase on 6-deoxy-6-hydroxymethyl scy/Zo-inositol 

1,2,4-trisphosphate (Figure 1.19). The synthesis of this analogue is described in Chapter 

5.

_ 2  O a P O -y ^ -^ T ^ O H  
0 3PO—£ ^ " ^ ^ O P 0 32'

HO

Figure 1.19 6-deoxy-6-hydroxymethyl scyllo-inositol 1,2,4-trisphosphate.

1.9.2 Multiple Inositol Polyphosphate Phosphatase (MIPP)

lns(1,3,4,5,6)P5
MIPP MIPP

MIPP MIPP

Ins(l,3,4 ,5)P4 is a substrate for at least two metabolising enzymes, 5-phosphatase (see 

below) and a 3-phosphatase, both of which are potential targets for the design of 

inhibitors. The latter enzyme, (now re-named multiple inositol polyphosphate 

phosphatase, MIPP66 has been shown to be capable of hydrolysing the 6-phosphate of
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both Ins(l,3,4,5,6)Ps and Ins(l,4 ,5,6)P4, an observation which has been rationalised by 

considering the binding orientations in which these molecules can mimic Ins(l,3,4 ,5)P4. 

This finding suggests that pathways might exist for the synthesis of both Ins(l,4 ,5)P3 

and Ins(l,3,4 ,5)P4 independently of phospholipase C .67

Because Ins(l,3,4 ,5)P4 is converted into Ins(l,4 ,5)P3 in vivo by MIPP, it is 

possible that some effects apparently due to Ins(l,3,4 ,5)P4 may result from its 

conversion to Ins(l,4 ,5)P3. This problem has been addressed by the synthesis of the 

MIPP-resistant Ins(l,3,4,5)P4 analogue myo-inositol-l,4,5-trisphosphate-3- 

phosphorothioate (Ins(l,3,4 ,5)P4-3S).68 In SH-SY5Y cells, this analogue was found to 

be essentially equipotent to Ins(l,3,4 ,5)P4 in causing Ca2+ release,69’70 providing
9-i-evidence that, at least in this cell type, Ins(l,3,4,5)P4 may be able to mobilise Ca 

stores, independent of any conversion to Ins(l,4 ,5)P3.

ATP
x^3-kinase

Figure 1.20 The resistance of the 3-phosphorothioate analogue of Ins(l,3,4,5)P4 to the 
action of MIPP makes it a useful pharmacological tool.

In Chapter 7, a synthesis of the previously unknown scyllo-inositol analogue of 

Ins(l,3,4,5)P4, is described. This symmetrical molecule, in which the equivalent to the 

2-hydroxyl group is equatorial, rather than axial, should enable us to investigate the role 

of the 2-hydroxyl group in the mechanism of action of MIPP.
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1.9.3 Inositol Polyphosphate 5-phosphatase

5-phosphatase
D-lns(1,4,5)P3 --------------------► D-lns(1,4)P2

D-lns(1,3,4,5)P4 ----------------------► D-lns(1,3,4)P3

Ptdlns(4,5)P2 ----------------------► Ptdlns(4)P

Ptdlns(3,4,5)P3 ---------------------- ► Ptdlns(3,4)P2

Ins(l,4 ,5)P3 is dephosphorylated to the inactive D-Ins(l,4)P2 by a family of specific 5- 

phosphatases. This metabolic step is therefore a highly effective method of inactivating 

the Ins(l,4 ,5)P3 signal, as it removes the crucial 5-phosphate group, abolishing the 

pharmacophore in one step. There appear to be multiple types of 5-phosphatase, and 

both soluble, cytosolic forms and particulate, membrane-bound forms exist. For a 

review see Verjans et al. (1994).71

Three soluble, cytosolic 5-phosphatases have been identified and designated 

Type I 5-phosphatase. Type I 5-phosphatases have a mass of 40-45kDa and will 

hydrolyse both Ins(l,4 ,5)P3 and Ins(l,3,4,5)P4. A second, higher molecular mass group 

of cytosolic 5-phosphatases, which have reduced affinity for Ins(l,3,4 ,5)P4, have been 

named Type II 5-phosphatase. Less is known about the particulate forms, which make 

up the majority of 5-phosphatase activity within the cell, although one such enzyme
77from human placental membranes has been purified. Recently the cloning and 

expression of a cDNA encoding this enzyme has enabled its tissue distribution to be 

mapped, showing that this membrane-associated 5-phosphatase is predominantly 

expressed in heart, skeletal muscle and brain.73

A pattern seems to be emerging in which certain enzymes involved in the 

metabolism of inositol phosphates will also metabolise their inositol phospholipid 

counterparts. So for example, a Type II 75kDa 5-phosphatase from human platelets will 

also hydrolyse phosphatidylinositol 4,5-bisphosphate forming phosphatidylinositol 4- 

phosphate. The gene encoding this enzyme has been found to be highly homologous to 

the defective gene in Lowe’s oculocerebrorenal syndrome (OCRL), a disease of 

unknown pathogenesis featuring defective development of the eyes, brain and kidney. 

74,75 This discovery highlights the potential significance of the 5-phosphatases, and 

OCRL has become the first known example of an inborn defect in inositol 

polyphosphate metabolism.
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It has been reported that inositol polyphosphate metabolism is deranged in 

lymphocytes infected with the HIV virus, and that the effect can be reversed by AZT 

therapy.76 It seems that 5-phosphatase activity is reduced in patients infected with HIV, 

and that as the disease progresses, Ins(l,3,4,5)P4-3-phosphatase (MIPP) is also 

decreased. In the later stages both activities are completely lost. A study of 5- 

phosphatase in normal and malignant haemopoietic cells also found that 5-phosphatase 

activity was significantly reduced or completely absent in subpopulations of cells taken
77from patients with various leukaemias. The authors speculated that the half-life of 

Ins(l,4 ,5)P3 and Ins(l,3,4 ,5)P4 may be increased in these cells, resulting in prolongation 

of Ca signals. This might lead to aberrations in cellular regulatory processes, including 

those involved in cell proliferation and differentiation.

It has recently been reported that the 75kDa 5-phosphatase is also capable of 

hydrolysing phosphatidylinositol 3,4,5-trisphosphate, and growing evidence suggests 

that the potential signalling function of PtdIns(3,4,5)P3 may be terminated by such an 

enzyme.78 We can therefore imagine a pattern in which the initiation and termination of 

inositol phospholipid signals in the plasma membrane parallels that of inositol 

phosphate signals in the cytosol (Figure 1.21).

PLASMA MEMBRANE

5 -p h o sp h a ta se    P IP -3 -k inase  5 -p h o sp h a ta se
P td ln s (4 )P  j P td ln s (4 ,5 )P 2 ► P td ln s fa A S J P a  i .......  ■> P td ln s (3 ,4 )P 2

P h o sp h o lip a se  C

\ t
5 -p h o sp h a ta se  3 -k in ase  5 -p h o sp h a ta se

1ns(1 ,4 )P 2 <■■ i ln s (1 ,4 ,5 )P 3 ■ „ — »  ln s(1 ,3 ,4 ,5 )P 4 i ------------------- ln s (1 ,3 ,4 )P 3

CYTOSOL

Figure 1.21 Parallels between phospholipid and inositol phosphate metabolism.

Very recently, the central region of synaptojanin, a nerve terminal protein, has 

been shown to be highly homologous to both type I and II 5-phosphatases.79 The 

purified protein hydrolyses Ins(l,4 ,5)P3, Ins(l,3,4,5)P4 and PtdIns(4 ,5)P2. The N- 

terminal domain of the same protein is similar to the cytosolic domain of the yeast Sacl 

protein which is genetically implicated in inositol phospholipid metabolism. 

Synaptojanin therefore incorporates two separate domains which are linked to
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phosphoinositide metabolism (hence the name, from the Roman god with two faces, 

Janus). The C-terminal domain binds the SH3 domain of amphysin, which is also bound 

by dynamin, a presynaptic protein implicated in endocytosis. The fact that synaptojanin 

is highly concentrated at the nerve terminal provides strong evidence for a link between 

phosphoinositide metabolism and synaptic vesicle recycling.

In contrast to Ins(l,4 ,5)P3-3-kinase, it seems that 5-phosphatase is relatively non­

specific. A range of phenothiazines, including chlorpromazine and trifluoperazine

(which is also a potent calmodulin antagonist) inhibit both soluble and particulate 5-
80phosphatases, as does calmidazolinium chloride (another calmodulin antagonist), 

disulfiram, and several of its analogues.81

The most potent 5-phosphatase inhibitor yet discovered is L-chiro- 

Ins(2,3,5)PS3.82 However, this compound is also a 3-kinase inhibitor and a partial 

agonist at Ins(l,4 ,5)P3 receptors (see above). More selective inhibitors83 include L- 

Ins(l,4,5)PS3, the meso-compound Ins(l,3,5)PS3, and (lR,2R,4R)-cyclohexane-1,2,4- 

tris(methylenesulphonate)84 The most promising candidate so far in the search for a 

potent, selective 5-phosphatase inhibitor is L-c/uro-inositol 1,4,6-trisphosphorothioate [ 

L-chiro-lns( 1,4 ,6)PS3 ] which, with its two axial phosphorothioate groups, seems to be 

structurally quite different from the other analogues. A possible rationalisation for the 

potency of L-c/z/ro-Ins(l,4 ,6)PS3 is that its three phosphorothioate groups may mimic 

the phosphate groups of Ins(l,4,5)P3 if it were to bind with its ring orthogonal to the 

usual orientation. An alternative explanation may be that in solution under physiological 

conditions, a proportion of L-c/»>o-Ins(l,4 ,6)PS3 may exist in the alternative chair form 

which has features in common with L-Ins(l,4,5)PS3 (Figure 1.22).

(1 /?,3fl,4f?)-cyclohexane- 
1,2,4-tris(methylenesulphonate)lns(1,3,5)PS3

S

S L-crt/ro-lns(1,4,6)PS3

{1 L-c/7/ro-lns(1t4,6)PS3
Alternative conformation

Figure 1.22 Small-molecule 5-phosphatase inhibitors.
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1.9.4 Inositol 1,3,4-trisphosphate 5/6-kinase

D-lns(1,3,4)P3 5/6-kinase^ D-lns(1,3,4,6)P4 
D-lns(1,3,4,5)P4

In all vertebrate cells studied so far, D-Ins(l,3,4)P3 is phosphorylated to produce 

Ins(l,3,4,6)P4 and D-Ins(l,3,4,5)P4. It is not established at present whether these two 

tetrakisphosphates have signalling functions of their own, or whether their cellular role 

is as precursors of Ins(l,3,4,5,6)P5 and InsP6. The activity responsible for 

phosphorylating D-Ins(l,3,4)P3 has been purified and appears to be a single enzyme, 

which combines 6-kinase and 5-kinase activities in a ratio of roughly 5 :l .85 It is widely 

distributed and unaffected by Li+, Ca2+/calmodulin, protein kinase A or protein kinase 

C.86 The affinity of this enzyme for D-Ins(l,3,4)P3 is the highest yet determined for an 

inositol phosphate.

An initial structure-activity study of the interaction of the kinase with various
87inositol polyphosphates has been reported. It was found that several inositol 

trisphosphate isomers inhibited D-Ins(l,3,4)P3 kinase activity. They fell into two groups: 

InsP3 isomers having vicinal phosphate groups at positions 5 and 6 [D-Ins(l,5,6)P3 and 

D-Ins(3,5,6)P3] were moderately potent inhibitors, whilst InsP3 isomers containing a 

vicinal 4,5-bisphosphate were much weaker. Thus the essential pharmacophore for D- 

Ins(l,3,4)P3 kinase may be a 3,4-bisphosphate, (the role of the third phosphate is not yet 

clear) but a 5,6-bisphosphate may be able to mimic this to some extent. Structure- 

activity principles therefore become, to some extent analogous to those already 

developed for Ins(l,4,5)P3 analogues at the Ins(l,4,5)P3 receptor. The suggested L- 

Ins(l,3,4)P3 kinase pharmacophore is enantiomorphic with the minimal 4,5- 

bisphosphate pharmacophore identified for Ins(l,4,5)P3 receptor (Figure 1.23).

3 ^
H

Figure 1.23 Pharmacophores for recognition by the Ins(l,4,5)P3 receptor and by 
Ins(l,3,4)P3 6-kinase may be enantiomorphic
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pharmacophore
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pharmacophore?
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This observation provides some justification for synthesising both enantiomers of novel 

polyphosphates, because, while one enantiomer may be recognised by the Ins(l,4,5)P3 

receptor, its non-calcium releasing antipode may be a D-Ins(l,3,4)P3 kinase ligand. An 

excellent example of this principle is the case of Ins(l,3,4)P3 itself (Chapter 2). The D- 

enantiomer has the highest affinity of any known molecule for the kinase and, as we will 

show, does not release calcium, while the L-enantiomer is an Ins(l,4,5)P3 receptor 

agonist and (preliminary results indicate) interacts only weakly with the kinase.

The most potent competitive inhibitors of D-Ins(l,3,4)P3 kinase were three 

inositol tetrakisphosphates; D-Ins(l,3,4,5)P4, Ins(l,3,4,6)P4 and D-Ins(3,4,5,6)P4.87 The 

first two are products of the kinase and may physiologically regulate its action through 

feedback inhibition. The third, and most potent of the three, D-Ins(3,4,5,6)P4, is also 

present in the cytosol at physiologically relevant concentrations. Note that this molecule 

has both a 3,4- and a 5,6-bisphosphate, and its resistance to phosphorylation might be 

rationalised by visualising four possible binding modes which retain the 3,4- 

bisphosphate structure of D-Ins(l,3,4)P3 (Figure 1.24). In each orientation, the area of 

the molecule corresponding to the site of action of the enzyme in Ins(l,3,4)P3 is either 

blocked by the presence of phosphates or has vicinal cw-hydroxyl groups rather than 

trans.

Figure 1.24 Possible binding modes of D-Ins(3,4,5,6)P4 to Ins(l,3,4)P3 6-kinase.

One can therefore imagine many potential inhibitors in which the recognition 

elements present in Ins(l,3,4)P3 are retained, but this part of the molecule is modified 

(e.g. by deletion of hydroxyls or replacement with fluorine). It might also be possible to

S ite  of ac tio n  

of 5 /6 -k in a se

D -ln s(1 ,3 ,4 )P 3

F o u r a lte rn a tiv e  b in d in g  
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develop metabolically resistant, monosaccharide-based D-Ins(l,3,4)P3 mimics. All the 

compounds described in this thesis are currently under evaluation as part of a major 

investigation into structure-activity relationships for Ins(l,3,4)P3 5/6-kinase, and the 

synthesis of the natural substrate for this enzyme [ D-Ins(l,3,4)P3 ] is described in 

Chapter 2.

1.9.5 Phosphatidylinositol 3-kinase

P tdlns 3-k in ase
Ptdlns ----------------- ► Ptdlns(3)P

Ptdlns(4)P ----------------- ► Ptdlns(3,4)P2

Ptdlns(4,5)P2 ----------------- ► Ptdlns(3,4,5)P3

Phosphatidylinositol 3-kinase (Ptdlns 3-kinase) phosphorylates the D-3-position of the 

inositol head-groups of phosphatidylinositol (Ptdlns), phosphatidylinositol 4- 

monophosphate [PtdIns(4)P] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] 

giving D-3-phosphatidylinositol lipids, which are not substrates for phospholipase C. 

The enzyme is a heterodimer, comprising a 85kDa regulatory subunit and a llOkDa 

catalytic subunit. Evidence is accumulating that some or all of its 3-phosphorylated lipid 

products [and particularly PtdIns(3,4,5)P3] may have second messenger functions of 

their own. Any attempt to summarise the rapidly expanding field of phospholipid 

signalling is outside the scope of this work, which is primarily concerned with the
OQ

inositol phosphates, but the area has recently been reviewed.

Inhibitors of Ptdlns 3-kinase may help to clarify the role of this enzyme and its 

metabolic products in cells. The most widely used inhibitor at present is the fungal 

metabolite wortmannin, which is active at nanomolar concentrations, but also inhibits 

other enzymes (e.g. myosin light chain kinase and phospholipase D). The chromone 

derivative LY294002 (Figure 1.25) has recently been developed as the result of a
OQ . • . .  .

structure-activity study of several chromones and is claimed to be a specific inhibitor 

of PtdIns-3-kinase, although like wortmannin, it acts at the ATP site of the 1 lOkDa 

catalytic subunit.
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Wortmannin LY294002

Figure 1.25 Inhibitors of Ptdlns 3-kinase currently in use as pharmacological tools.

In the light of the parallels that seem to exist between inositol phospholipid 

metabolism and the better-understood metabolism of the inositol phosphates, it might be 

instructive to examine the interaction of Ptdlns 3-kinase with inositol phosphates and 

their analogues, many of which are now available. Such a study has been carried out 

recently.90 Of the many analogues tested* most were inactive, but significantly, L-chiro- 

inositol 2,3,5-trisphosphate (and the corresponding trisphosphorothioate) were found to 

be inhibitors. Now L-c/i/ro-Ins(2,3,5)P3 can be considered as Ins(l,4,5)P3 in which the 

equatorial 3-position hydroxyl group is replaced by an axial hydroxyl group. It may not 

be surprising that a structural alteration at the d-3 position, which is the site of 

phosphorylation by Ptdlns 3-kinase, should have this effect, but D-Ins(l,4,6)P3 was not 

recognised. A comparison of the structures of D-Ins(l,4,6)P3 and L-c/i/roIns(2,3,5)P3 

(Figure 1.26) show that they differ only in the orientation of the hydroxyl group 

corresponding to the 2-hydroxyl of Ins(l,4,5)P3. Thus there seems to be a requirement 

for axial hydroxyl groups at both 2- and 3- positions for inositol phosphates to inhibit 

Ptdlns 3-kinase activity. One other analogue, benzene 1,2,4-trisphosphate (Bz(l,2,4)P3), 

in which the inositol ring is replaced by the planar benzene ring* with three phosphate 

groups in a similar spatial arrangement to Ins(l,4,5)P3, was also found to be an inhibitor.

OH
OPO- OPO

OH OHHOOPO OPO.
OPO OPO;OH OH

L-c/7/ro-lns(2,3)5 )P 3 D-m yo-lns(1,4,6)P3
R ecognised Not R ecognised

Figure 1.26 The orientation of the 2-hydroxyl group appears to be important to the 
recognition of inositol phosphates by Ptdlns 3-kinase.*

* The syntheses of some of these are described in this thesis. Details are given in the appropriate chapters.
+ A molecular modelling study has shown that benzene may not be as rigid as is sometimes supposed, and 
for small torsional deformations (<15°) it is as flexible as cyclohexane.140
* An X-ray crystal structure of Ins(l,4,5)P3 bound to the PtdIns(4,5)P2 binding site of mammalian PLC-8 
has recently been published.141 The axial 2-OH group of Ins(l,4,5)P3 was seen to have a number of crucial
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1.10 Syntheses of Two Naturally Occurring Inositol Phosphates

Chapter 2 describes the synthesis of the enantiomers of myoinositol 1,3,4-trisphosphate, 

and in Chapter 7 a synthesis, strategically quite different, of the enantiomers of myo­

inositol 1,3,4,5-tetrakisphosphate will be described. In each case there has been 

controversy in the biological literature over the roles of the naturally-occurring D- 

enantiomers of these compounds.

1.10.1 my o-Inositol 1,3,4-trisphosphate

We were interested in the enantiomers of Ins(l,3,4)P3 (Figure 1.27) for two related 

reasons. First, there had been long-standing controversy in the literature as to the activity 

and role of the D-enantiomer, which is a major inositol phosphate in stimulated cells. 

Second, the previously unknown L-enantiomer has structural similarities to 

Ins(l,3,4,6)P4, which had recently been found to behave as a partial agonist in SH- 

SY5Y neuroblastoma cells (see Section 1.8.1 and Chapter 6).

[ = D-lns(1,3,6)P3]

Figure 1.27 Enantiomers of myo-inositol 1,3,4-trisphosphate

1.10.2 D-my o-Inositol 1,3,4-trisphosphate

D-Ins(l,3,4)P3 is well-established as one of the major inositol trisphosphates found in 

mammalian cells, and stands at a crucial branch-point in the metabolism of inositol 

phosphates. It has been isolated from biological sources and synthesised by various 

groups (see below). However, a survey of the literature presents us with a confusing, 

and sometimes contradictory, account of its biological activity (or lack of it) at 

Ins(l,4,5)P3 receptors. The important features of the various literature reports are 

summarised below as a chronological list, in an attempt to minimise this confusion. The 

contradictions will quickly become apparent.

interactions with amino acid residues at the active site (and also with one Ca2+ ion). Perhaps similar 
interactions explain the necessity for an axial 2-OH group in PtdIns(4,5)P2-3-kinase ligands.

OH OH

o p o 32‘

D-lns(1,3,4)P3 L-lns(1,3,4)P3
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1986: D-Ins(l,3,4)P3 is obtained by incubation of D-Ins(l,3,4,5)P4 with human 

erythrocyte membranes. It is reported to release Ca2+ from Swiss 3T3 cells, with an EC50 

of 9fjmo\. Speculation follows that D-Ins(l,3,4)P3 may function to keep Ca2+ stores
91empty.

1988: Racemic Ins(l,3,4)P3 is synthesised. It releases Ca from permeabilised aortic 

smooth muscle cells. The authors conclude that D-Ins(l,3,4)P3 must be responsible.92

1988: Another group report that D-Ins(l,3,4)P3 does not release Ca2+ from GH3 or Swiss 

3T3 cells.93

1988: D-Ins(l,3,4)P3 is found to be active in depolarising the ventral photoreceptors of 

the horseshoe crab (Limulus polyphemus) when injected intracellularly. It is reported to 

be “about half as potent as Ins(l,4,5)P3 ” 94

1988: D-Ins(l,3,4)P3 is synthesised. It has a negative optical rotation.95

1988: [3H]-D-Ins(l,3,4)P3 and [3H]-L-Ins(l,3,4)P3 are synthesised. Neither shows 

binding displaceable by D-Ins(l,3,4)P3 to rat brain receptor proteins.96

1992: D-Ins(l,3,4)P3 is synthesised on a large scale by an enzymatic method.

It has a positive optical rotation. Authors comment on the discrepancy, but “ . . . no 

further information on optically active Ins(l,3,4)P3 is available”.97,98

1992: When injected into Limulus photoreceptors, some samples of D-Ins(l,3,4)P3 

(including commercially available material) release Ca2+. Others, produced by Gou and 

Chen, do not.99

While some of these contradictions might be explained by tissue-specific effects, 

or different experimental conditions, others, for example those involving Limulus 

photoreceptors, plainly cannot. It followed that some samples of D-Ins(l,3,4)P3 were 

different from others. The obvious explanation is that some samples of D-Ins(l,3,4)P3 

were impure and/or that mistakes had been made regarding the absolute configuration of 

synthetic D-Ins(l,3,4)P3. It was decided that the best way to provide a definitive solution 

to this problem would be to synthesise both enantiomers of Ins(l,3,4)P3 in highly pure 

form, prove their absolute configurations beyond doubt, and then test them under
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identical conditions in Limulus photoreceptors. In fact, these photoreceptors are 

sufficiently large that it would be possible to test both enantiomers in the same cell 

using a double-barrelled microelectrode.

1.10.3 L-myo-Inositol 1,3,4-trisphosphate: Relationship to Ins(l,3,4,6)P4
The L-enantiomer of Ins(l,3,4)P3 might also be useful in the search for partial agonists

at Ins(l,4,5)P3 receptors, because of its structural relationship to Ins(l,3,4,6)P4. Recall 

that a 4,5-bisphosphate system has been accepted as a necessary feature for binding to 

the Ins(l,4,5)P3 receptor (Section 1.7). Ins(l,3,4,6)P4 plainly does not possess this 

structure, and therefore should not bind. However, it is possible to imagine 

Ins(l,3,4,6)P4 in two different orientations relative to D-Ins(l,4,5)P35 in which two of the 

phosphate groups in Ins(l,3,4,6)P4 might mimic a 4,5-bisphosphate (a "pseudo-4,5- 

bisphosphate" arrangement100,101). The situation is best appreciated by the manipulation 

of computer-generated molecular graphics, but on paper, these orientations or binding 

modes can be represented as shown in Figure 1.28. In either one of the two binding 

modes shown, Ins(l,3,4,6)P4 may be capable of presenting three phosphate groups to the 

receptor binding site in a way that mimics the spatial arrangement of the three 

phosphates in D-Ins(l,4,5)P3. The extra phosphate now occupies a position analogous to 

position 2 in D-Ins(l,4,5)P3j normally occupied by an axial hydroxyl group. The 

important differences between the two putative binding modes lies in the two hydroxyl 

groups which flank the pseudo-4,5-bisphosphate moiety. In binding mode (b) the 

equatorial 3-OH of D-Ins(l,4,5)P3 is replaced by an axial OH group, while in (c) it is the 

6-OH whose orientation is changed. It is not obvious, however, which of the two 

binding modes might be preferred by the receptor.
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Figure 1.28 Possible binding orientations of Ins(l,3,4,6)P4 at Ins(l,4,5)P3 receptors.

Of course, it is possible that Ins(l,3,4,6)P4 may bind to the receptor in both
109modes, it may bind to different conformational states or isoforms of the receptor in 

different modes, and it is more than likely that this static view of binding is over­

simplified. However, it might be possible to use Ins(l,3,4,6)P4 as starting point for 

rational modification, with the aim of identifying the structural basis of its partial 

agonism and elucidating its mode of binding to the receptor. It might then be possible to 

design molecules with decreased Ca2+-releasing activity, while maintaining or 

enhancing binding affinity.

Evidence exists that naturally occurring Ins(l,3,4,6)P4 may be 

dephosphorylated103 by enzymes that are still not well-characterised, to give D- 

Ins(l,3,4)P3, D-Ins(l,4,6)P3, D-Ins(l,3,6)P3 [ = L-Ins(l,3,4)P3] and D-Ins(3,4,6)P3 [ = L- 

Ins(l,4,6)P3] (Figure 1.29).
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Figure 1.29 Relationship of the symmetrical Ins(l,3,4,6)P4 to four chiral trisphosphates.

As discussed above, D-Ins(l,3,4)P3 is already well-known and there were no 

reports of it showing partial agonist activity. The activity of the other trisphosphates was 

unknown, although D-Ins(l,4,6)P3 had been identified in WRK rat mammary tumour 

cells,104 and L-Ins(l,3,4)P3, (alternative name D-Ins(l,3,6)P3) had been identified as a 

minor inositol trisphosphate in avian erythrocytes and a product of Ins(l,3,4,6)P4
i mdephosphorylation by brain cytosol.

Now Figure 1.29 also illustrates the structural relationships of these five 

molecules. The four chiral trisphosphates can be regarded as simplified analogues of 

Ins(l,3,4,6)P4, each formed by the removal of a different phosphate group. It might 

therefore be possible to determine what feature of Ins(l,3,4,6)P4 leads to partial agonist 

activity by comparing the biological activities of the four trisphosphates.

The study would also enable us to find out the effect of changing the orientations 

of the hydroxyl groups of Ins(l,4,5)P3. It can be seen from Figure 1.30 that, by analogy 

with Ins(l,3,4,6)P4, each of these molecules can bind to the receptor in one of two 

possible orientations. However, in each case, only one of these orientations mimics the 

positioning of the three phosphate groups in Ins(l,4,5)P3. In the case of D-Ins(l,4,6)P3 

(Figure 1.30), this mode is (b) while for L-Ins(l,3,4)P3 it is (e).
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Figure 1.30 Possible binding modes (orientations) of D-Ins(l,4,6)P3 and L-Ins(l,3,4)P3 
at the Ins(l,4,5)P3 receptor.

Now in the D-Ins(l,4,6)P3 binding mode (b), the axial hydroxyl group replaces 

the usual equatorial 3-hydroxyl group of Ins(l,4,5)P3. In the L-Ins(l,3,4)P3 binding 

mode (e), the positioning of the phosphates forces the axial hydroxyl group of L- 

Ins(l,3,4)P3 into the equivalent position of the 6-hydroxyl group in Ins(l,4,5)P3. The 

fact that these modes of binding have an equatorial rather than axial hydroxyl at the 

equivalent of Ins(l,4,5)P3 position 2 is acceptable, because the 2-OH of Ins(l,4,5)P3 has 

been shown to have a relatively insignificant role in receptor binding and Ca2+ release105 

with DL-scy/Zc>-Ins(l,2,4)P3 (which can be regarded as DL-rayo-Ins(l,4,5)P3 with an 

equatorial 2-OH) being only slightly less potent than Ins(l,4,5)P3. 106

Current opinion holds that the 3-OH group plays a minor role in receptor 

recognition while the 6-OH is critical (Figure 1.11). This has been deduced from the fact 

that D-3-deoxy-Ins(l,4,5)P3107’108 has a high affinity for the Ins(l,4,5)P3 receptor while 

D-6-deoxy-Ins(l,4,5)P3 is 70-fold less potent than D-Ins(l,4,5)P3.109 Thus we 

hypothesised that, if altering the orientation of an hydroxyl group has a similar effect to 

deleting it then, while both D-Ins(l,4,6)P3 and L-Ins(l,3,4)P3 should bind to the
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Ins(l,4,5)P3 receptor and release calcium, D-Ins(l,4,6)P3 should bind with higher 
• ^affinity. Whether either of these molecules would also show partial agonist properties 

remained to be seen. This investigation is described in Chapter 2.

1.10.4 Inositol 1,3,4,5-tetrakisphosphate

The product of the action of 3-kinase on Ins(l,4,5)P3 is D-myo-inositol 1,3,4,5- 

tetrakisphosphate. The level of controversy surrounding this molecule is currently very 

high, and often focuses on the detailed methodology of various biological assays, some 

of which seem to be giving conflicting results. However, the situation with respect to D- 

Ins(l,3,4,5)P4 is far more complex than that already discussed for D-Ins(l,3,4)P3, and 

only the briefest account will be given here.

Debate exists as to whether D-Ins(l,3,4,5)P4 itself can mobilise intracellular Ca2+ 

stores by acting at Ins(l,4,5)P3 receptors. Wilcox et al.69,110,111 found that in SH-SY5Y 

cells, D-Ins(l,3,4,5)P4 appears to cause Ca release by direct interaction with the 

Ins(l,4,5)P3 receptor, being a 40 fold weaker ligand and 20-fold weaker agonist than 

Ins(l,4,5)P3. In contrast, using L I210 cells, Cullen et al.u l  found that D-Ins(l,3,4,5)P4 

caused no Ca2+ mobilisation in the absence of Ins(l,4,5)P3. Gawler et al.m  found that, 

using racemic Ins(l,3,4,5)P4, there appeared to be a synergistic effect of Ins(l,3,4,5)P4 

in enhancing Ca2+ release by Ins(l,4,5)P3, but also that Ins(l,3,4,5)P4 was capable of 

releasing Ca2+ from intracellular stores by itself. Other workers have reported that D- 

Ins(l,3,4,5)P4 acts synergistically with Ins(l,4,5)P3 but is not itself able to induce Ca2+ 

release.114

Another issue is the possible existence of specific receptors for D- 

Ins(l,3,4,5)P4.115 The identification of an D-Ins(l,3,4,5)P4-activated Ca2+ channel in the 

plasma membrane of endothelial cells116 has lent weight to suggestions that D- 

Ins(l,3,4,5)P4 may somehow modulate Ca2+ influx across the plasma membrane.117 

Specific binding sites for D-Ins(l,3,4,5)P4 have been identified in several tissues, and a 

D-Ins(l,3,4,5)P4 binding protein, purified from porcine platelets, has been demonstrated
I 1 Q

to be a member of the GAP1 family. The affinity of this site, now designated 

GAP1IP4BP, for various myo-inositol phosphates has been the subject of two recent

* But what of the remaining possible binding modes? The D-Ins(l,4,6)P3 binding mode (c) seems very 
unlikely, because the axial hydroxyl group would be placed at position 6, but the situation is less clear in 
the case of the L-Ins(l,3,4)P3 binding mode (d). In this orientation, the L-Ins(l,3,4)P3 molecule can avoid 
placing its axial hydroxyl group in the equivalent of the 6-position, but only at the expense of placing its 
1-phosphate group at the equivalent of position 2 in Ins(l,4,5)P3. We know that an equatorial phosphate 
group is tolerated in this position, because scy//o-Ins(l,2,4,5)P4 is highly active, but this does not allow us 
to deduce whether binding mode (d) or (e) would be lower energy for L-Ins(l,3,4)P3.
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investigations. 119’120 Another high-affinity D-Ins(l,3,4,5)P4 binding site, recently 

purified from mouse cerebellum and designated IP4BP/synaptotagmin n , may be 

involved in synaptic function.121

1.10.5 Syntheses of Optically Active Ins(l,3,4,5)P4 :Two Examples

Several syntheses of racemic Ins(l,3,4,5)P4 122-125 and D-Ins(l,3,4,5)P4 97’98 126-128
I <̂Q

have been reported in the literature. Baudin et al. developed a synthesis of both 

enantiomers of Ins(l,3,4 ,5)P4 from myo-inositol orthoformate by the routes shown in 

Figure 1.31. This is the only reported synthesis of L-Ins(l,3,4 ,5)P4. Regioselective 

protection of the sterically most accessible hydroxyl group of the three130 gave the 

symmetrical silylated orthoformate 1.1 which was then benzylated to give the racemate 

1.2ab. Treatment of the racemate with 1 -phenylethyl isocyanate in the presence

of BuLi at -78°C gave a mixture of the diastereoisomers 1.3a and 1.3b and some 

starting material. The starting material could not be separated from the carbamates, but 

desilylation followed by medium-pressure liquid chromatography gave the 

diastereoisomers 1.4a and 1.4b plus starting material which was recycled. Benzylation 

of each diastereoisomer with benzyl trichloroacetamidate in the presence of 

trifluoromethanesulphonic acid gave the diastereoisomers 1.5a and 1.5b. Removal of 

the orthoformate groups with aqueous CF3COOH, followed by aqueous ammonia gave 

1.7a and 1.7b which treated with NaOEt in ethanol giving the enantiomeric tetrols 1.8a 

and 1.8b. The absolute configurations of 1.8a and 1.8b were deduced by converting the 

monobenzyl orthoformate intermediate 1.3a into the known lL-4-(9-benzyl-myo-inositol 

1.6a. Phosphitylation/oxidation of the tetrols followed by hydrogenolysis and treatment 

with cyclohexylamine gave D-Ins(l,3,4 ,5)P4 and L-Ins(l,3,4 ,5)P4 as the 

cyclohexylammonium salts, each in around 10% yield from the orthoformate. The 

authors also reported an enzymatic route, based on selective monodeacylation of meso- 

derivatives of myo-inositol by pig liver diesterase, although this strategy involved more 

synthetic steps.
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Figure 1.31 Synthesis of D-Ins(l,3,4,5)P4 and L-Ins(l,3,4,5)P4 (Baudin et al.129).

More recently, a large-scale synthesis of D-Ins(l,3,4,5)P4 has been reported by
QQ

Gou and Chen ( Figure 1.32). Regioselective stannylene-mediated acylation of racemic 

l,2:5,6-di-0-cyclohexylidene-mye>-inositol (DL-1.10) gave the racemic butyrate ester 

DL-1,11. Enantiospecific hydrolysis of DL-1.11 using porcine pancreatic lipase (PPL) 

gave lD-l,2:5,6-di-0-cyclohexylidene-myo-inositol (1.12). Allylation followed by 

selective hydrolysis of the trans ketal gave 1.14, which was also used for the synthesis 

of D-Ins(l,3,4)P3 (see Chapter 2). Regioselective benzylation at the C-6 position via the 

O-stannylene acetal in the presence of CsF provided 1.15, and allylation followed by 

removal of the 1,2-0-cyclohexylidene group gave 1.17. 1-0-allylation followed by 2-0- 

benzylation furnished the fully-protected 1.19 and deallylation gave the known tetrol
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1.8a. Phosphitylation/oxidation and finally debenzylation by catalytic hydrogenolysis 

gave D-Ins(l,3,4,5)P4 in 38% overall yield from 1.12.

This route, which was used to produce D-Ins(l,3,4,5)P4 in multigram quantities, 

has been described in some detail because most commercially available material 

obtainable at present has been synthesised using this method by the University of Rhode 

Island Foundation Chemistry Group. Consequently, this has been the source of the 

samples used in many biological studies of Ins(l,3,4,5)P4. The significance of this will 

be discussed in Chapter 7, where a very rapid and potentially large-scale synthesis of 

both enantiomers of Ins(l,3,4,5)P4 is described, with particular reference to the purity of 

previously available D-Ins(l,3,4,5)P4.
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Figure 1.32 Chemoenzymatic route to D-Ins(l,3,4,5)P4 (Gou and Chen 98)
PPL = porcine pancreatic lipase.

The routes discussed above also serve to illustrate some common features of 

most published syntheses of chiral inositol phosphates from myoinositol. These can be 

summarised as:
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1) Selective protection of hydroxyl groups.

2) Resolution of a protected intermediate (usually followed by more protection- 

deprotection steps).

3) Phosphorylation of exposed hydroxyl groups, either by P(V) or, more recently, 

P(in) methodology. The latter involves phosphitylation followed by oxidation.

4) Deprotection of hydroxyl groups and phosphate groups (sometimes simultaneously, 

sometimes in two stages).

5) Purification (e.g. by crystallisation or ion-exchange chromatography)

Much attention has been devoted to the first four of these steps over recent years
10 1 Q1

(see References ’ for reviews) although little attention has been paid to step 5 

(purification). It is now apparent that many inositol phosphates are biologically active at 

a range of sites, often in very low concentrations. It seems very likely that many of these 

activities are currently unknown, and even unsuspected. It will therefore become 

increasingly important that the samples used for biological investigations are subjected 

to a final purification step, (preferably ion-exchange chromatography or HPLC) and are 

demonstrated to be free of contaminants by a sensitive physical method. Failure to carry 

out these procedures may result in misleading biological results, and lead to confusion 

and unjustified speculation over the biological functions of naturally occurring inositol 

phosphates.

1.11 Ins(l,4,5)P3 Conformation

No information is yet available on the three-dimensional structure of the active 

site of an Ins(l,4,5)P3 receptor (although see below for a discussion of the recently- 

published X-ray structures of PH domains) and so we are presently limited to a study of 

the compounds that are active at these sites. In this situation, we attempt to make 

inferences about the active sites and the nature of the receptor-ligand interactions by 

systematically altering the structure of the natural ligand and observing the effects on 

activity. However, it is not always clear whether a change in activity, brought about by 

the modification of part of a molecule, results from a purely local effect, or whether 

there are more widespread consequences for the conformation or ionisation state of the 

molecule as a whole. Modification at C-3 of Ins(l,4,5)P3, for example, can have various 

consequences for affinity and efficacy of analogues at Ins(l,4,5)P3 receptors. Do these 

effects arise simply from the altered interaction of the 3-substituent with the receptor, or 

through effects on the orientation and ionisation state of the adjacent 4-phosphate
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group? An additional phosphate group at this position, as in D-Ins(l,3,4,5)P4 for 

example, must surely have dramatic effects on the 4-phosphate, and the evolution of a 

highly specific Ins(l,4,5)P3 3-kinase may be associated with the functional 

consequences of these effects. We could even imagine cases in which modifications 

(e.g. an axial phosphate) could alter the overall conformation of the cyclohexane ring. 

This idea has been invoked to explain the unexpectedly high activity found for L- 

Ins(2,4,5)P3 in one study.132

NMR studies can sometimes provide information on the relative proportions of 

equilibrating conformations in solution, but these may not necessarily resemble the 

receptor-bound conformation. The stabilising interactions in the receptor-ligand 

complex may be quite large, allowing considerable distortion of the ligand away from an 

energy minimum. This may be particularly relevant in the binding of a highly charged 

molecule such as Ins(l,4,5)P3 with positively charged residues at the binding site, so 

that electrostatic interactions with the receptor may compensate the energetic penalty of 

large conformational changes. Molecular modelling studies can be used to predict 

energy minima in the conformational space available to a molecule, and information 

gained from NMR (e.g. NOE studies and coupling constants) can be used as constraints 

in theoretical calculations. By comparing a number of agonists with varying structures it 

may be possible to deduce a theoretical three-dimensional pharmacophore that is 

attainable at reasonable energetic cost by all active ligands. It is then possible to use this 

pharmacophore as a template for the design of receptor ligands.

In the case of Ins(l,4,5)P3 however, we do not yet have available a range of 

active molecules that differ sufficiently in structure to make such a study feasible. The 

active molecules that we have are too similar to one another, and too conformationally 

mobile. In particular, the inositol phosphates that show significant affinity for the 

Ins(l,4,5)P3 receptors all contain the 4,5-bisphosphate motif. This conformationally 

mobile system is regarded as essential for binding and Ca2+-release, and yet little work 

has focused upon modification of this region of Ins(l,4,5)P3.* Thus, little is known 

about the way in which these two phosphate groups interact with the receptor in the 

series of events that leads to the opening of the integral ion channel. Could it be, for

* After the synthesis of the conformationally restricted analogue described in Chapter 4, but before the 
publication of our results, a synthesis of 3-deoxy-D-muc0-Ins(l,4,5)P3, was published.142 In this molecule, 
the configuration at C-4 is the opposite to that in Ins(l,4,5)P3. The affinity of this analogue for the 
Ins(l,4,5)P3 receptor is 3 orders of magnitude lower than that of Ins(l,4,5)P3, further demonstrating the 
importance of the trans relationship of the 4- and 5-phosphates.
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example, that the 4,5-bisphosphate binds to the receptor in one conformation, and then a 

mutual conformational change of receptor and ligand occurs during the opening of the 

ion channel? In that case, it might be possible to make an antagonist by fixing the 

bisphosphate in a conformation that binds to the receptor but cannot activate it (i.e. to 

separate affinity from efficacy).

The design and synthesis of a conformationally restricted analogue of 

Ins(l,4,5)P3 are described in Chapter 4. Preliminary biological results are given, and an 

account of a detailed potentiometric and NMR investigation into its ionisation state and 

solution conformation.

1.12 PH Domains

PH domains are recently-discovered structural modules o f around 100 amino acids that 

are present in many signal transduction proteins (e.g. protein kinases, phospholipases, 

PtdIns(4,5)P2 3-kinase and G A Pl134315). They also occur as part of some cytoskeletal
133 •proteins such as spectrin, and in dynamins, which are involved in endocytotic vesicle 

formation. Many proteins implicated in human cancers and in developmental disorders 

contain PH domains, although the medical significance of this is currently not clear. 

Mutational changes in the PH domain of Bruton’s tyrosine kinase are the cause of X- 

linked agammaglobulinaemia (XLA), a genetic disorder in which B lymphocytes fail to 

develop and consequently no circulating antibodies are produced, although the 

physiological ligand for this PH domain is presently unknown. A detailed review, 

dealing with the occurrence, structure and possible functions of PH domains has been 

published recently.134

In 1994 it was reported that the PH domain of pleckstrin bound PtdIns(4,5)P2, 

and the ligand binding site was located to the N-terminus.135 In November 1995, a study 

of an isolated PH domain from PLC-<5i showed that besides binding PtdIns(4,5)P2, it
1 3A

was also able to bind inositol phosphates. D-Ins(l,4,5)P3 was bound stereospecifically 

and with highest affinity and various inositol tetrakisphosphates, including 

Ins(l,3,4,6)P4 [but not D-Ins(l,3,4,5)P4] also bound, as did D-Ins(2,4,5)P3. Inositol 

mono- and bisphosphates and also D-Ins(l,3,4)P3 were not recognised. Similar results 

have been reported for the /3-spectrin PH domain.137 All PH-domain-containing proteins 

are associated with membrane surfaces, and numerous lines of evidence now suggest 

that the PH domains are involved in reversible anchoring of these proteins to the 

membranes, often by binding to phosphoinositides. In the case of PLC-5i, for example,
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a mechanism has been suggested 138 involving a negative feedback loop in which PLC- 

<5j uses its PH domain to bind PtdIns(4 ,5 )P2, in the cell membrane. The PLC enzyme 

than hydrolyses PtdIns(4 ,5 )P2 to give free Ins( 1 ,4 ,5 )P3, which then inhibits the binding 

of further PtdIns(4 ,5 )P2 to the PH domain.

At the end of 1995, two groups independently published X-ray crystal structures 

of Ins(l,4,5)P3 bound to pleckstrin homology (PH) domains. 137,139 These X-ray studies 

have allowed us to see, for the first time, the conformation of Ins(l,4,5)P3 at one of its 

binding sites. This is shown schematically for the /3-spectrin PH domain in Figure 1.33.
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Figure 1.33 Schematic drawing of the Ins(l,4,5)P3 binding site of the /Tspectrin PH 
domain, showing hydrogen bonds and salt bridges between amino acid residues and 
ligand. Negative charges on phosphate groups are not shown. Adapted from Hyvonen et 
a l  (1995)137.

The first thing to notice is the importance of the 4 and 5-phosphate groups, 

which are anchored by salt bridges to positively charged amino acid residues, and by 

hydrogen bonds to Trp23 and Tyr69. The 1-phosphate group, in contrast, is linked by 

only one hydrogen bond to a Ser residue, and is mostly exposed to solvent. The upper 

face of the molecule, including the area around the axial 2 -hydroxyl group is also open 

to solvent. Modelling of several inositol phosphates onto the bound Ins(l,4,5)P3 ligand 

confirmed the importance if the 4,5-bisphosphate, and D-Ins(l,3,4)P3 and L-Ins(l,4,5)P3 

did not fit the binding site. Although the 3-hydroxyl group was not close enough to 

Trp23 to interact with it directly, it did form an H-bond to one bound water molecule 

which was, in turn, H-bonded to the main-chain NH group of Trp23. It might be 

interesting to examine the binding affinity of the hydroxymethyl analogue 44 (Chapter

5) and the adenophostins at this site.
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Figure 1.34 The Ins(l,4 ,5 )P3 binding site of the PLC-<5j PH domain. Adapted from 
Ferguson et al. (1995).139

The X-ray structure of Ins(l,4,5)P3 at the PLC-<5j PH domain139 shows that, by 

contrast with the /3-spectrin PH domain, Ins(l,4,5)P3 is significantly more buried within 

a binding pocket, and there are many more interactions with residues at the binding site, 

(Figure 1.34) particularly for the 5-phosphate (additional H-bonds via water molecules 

are not shown). This is reflected in the greater stability of the Ins(l,4,5)P3-PLC-<5i 

complex. Again we see that the 4,5-bisphosphate is of primary importance for binding, 

while the 1-phosphate group forms a single hydrogen bond, this time to a Trp residue. 

The authors of this study make the remarkable observation that Trp 36 and Arg 40, 

which interact with the 1- and 5-phosphate groups of Ins(l,4,5)P3 are analogous to two 

residues in the Bruton’s kinase PH domain which, when altered by site-directed 

mutagenesis, result in XLA. Finally, both studies suggest that one function of the /3- 

spectrin and PLC-<5i PH domains is to anchor the respective proteins to the cell 

membrane in a reversible way. This is illustrated schematically for the /3-spectrin PH 

domain in Figure 1.35.

These two studies have been dealt with here in some detail because they 

represent an exciting new departure in the inositol phosphate field. For the first time, the 

interaction of Ins(l,4,5)P3 with binding sites has been observed in detail, and the results 

are in excellent agreement with the conclusions reached about Ins(l,4,5)P3 receptor 

binding as a result of structure-activity investigations conducted over a period of years. 

This is not to say that the Ins(l,4,5)P3 binding site of these PH domains necessarily 

resembles that of Ins(l,4,5)P3 receptors. Note, for example, that neither study showed 

any interactions of the 6 -hydroxyl group of Ins(l,4,5)P3 with the binding site, and yet 

this feature is known to be important for binding to Ins(l,4,5)P3 receptors. However,
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many of the structure-activity principles deduced for Ins(l,4,5)P3 receptors can be 

accommodated by the binding site structures shown in Figures 1.33 and 1.34, and this 

may suggest that similar interactions and spatial relationships are involved.

"*o. or Co

OH

o~V
!  \

PH Domain

F ig u re  1.35 Schematic drawing of the proposed interaction of PtdIns(4,5)P2 with the PH 
domain of /3-spectrin. Adapted from Hyvonen et al. (1995)137.

It will be interesting to investigate the interactions of a range of naturally- 

occurring and synthetic analogues with the binding sites of PH domains. Some of the 

compounds whose synthesis is described in this thesis are already being used in an 

NMR investigation of inositol phosphate binding by the PH domain of human dynamin.
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2 wjw-Inositol 1,3,4-Trisphosphate

2.1 Overview

D-rayo-inositol 1,3,4-trisphosphate [D-Ins(l,3,4)P3, Fig. 2.1] is produced in 

stimulated cells by the sequential action of the enzymes 3-kinase and 5-phosphatase. As 

discussed in Chapter 1, there had been controversy as to whether D-Ins(l,3,4)P3 was 

active at Ins(l,4,5)P3 receptors, and therefore confusion about its biological role. L-myo­

inositol 1,3,4-trisphosphate [L-Ins(l,3,4)P3] had not previously been investigated, and its 

biological activities were unknown. Structure-activity considerations predicted that, in 

contrast to the D-enantiomer, L-Ins(l,3,4)P3 should be recognised by Ins(l,4,5)P3 

receptors and furthermore, arguments based on the possible ways in which the partial 

agonist Ins(l,3,4,6)P4 might bind to Ins(l,4,5)P3 receptors suggested that L-Ins(l,3,4)P3 

might show partial agonist properties.

HO-V—- ^ \ ^ OP°32'
O P 032'

D-lns(1,4,5)P3

3-kinase

D-lns(1,3l4,5)P4

5-phosphatase

Figure 2.1 Origin of D-Ins(l,3,4)P3 from D-Ins(l,4,5)P3 via D-Ins(l,3,4,5)P4. The 
enantiomer, L-Ins(l,3,4)P3 [ = D-Ins(l,3,6)P3] is also shown.

We would begin by synthesising racemic Ins(l,3,4)P3 in order to optimise the synthetic 

methods and to verify that this material could induce Ca -release in our assay system 

(permeabilised rabbit platelets). Recall that racemic Ins(l,3,4)P3 had previously been 

reported to cause Ca2+-release from permeabilised aortic smooth muscle cells,92 and the 

authors had concluded that D-Ins(l,3,4)P3 was the active component (Chapter 1).
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2.2 Synthesis of DL-wyo-Inositol-l,3,4-trisphosphate
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Figure 2.2 Synthesis of DL-myo-inositol-1,3,4-trisphosphate (11).
(i) (a) 2,2-Dimethoxypropane, PTSA DMF, reflux, (b) BzCl, pyridine; (ii) NaOH, 
MeOH, reflux; (iii) allyl bromide, NaH, DMF; (iv) ACOH/H2O, 4:1, reflux; (v) (a) 
Bu2SnO, toluene, reflux, (b) PMBC1, CsF, KI, DMF; (vi) BnBr, NaH, DMF; (vii) 
KOBu', DMSO, 50°C; (viii) MHCl/EtOH, 1:2, reflux; (ix) (a) (BnO)2PNPr'2, 1H- 
tetrazole, CH2CI2 (b) Bu'OOH (x) Na/liquid NH3. Bn, benzyl; Bz, benzoyl; PMB, p- 
methoxybenzyl. All compounds are racemic.

Racemic Ins(l,3,4)P3 was synthesised (Figure 2.2) using a new route starting from myo­

inositol The key fully-protected intermediate DL-l,4-di-0-allyl-2,5,6-tri-0-benzyl-3-0- 

p-methoxybenzyl-myo-inositol (7) was chosen for the following reasons:

First, partial deprotection of this compound leads to the known triol, 2,4,5-tri-O-benzyl- 

myo-inositol (9) which is then used as the precursor for phosphorylation. The absolute 

configurations of the enantiomers of this material had recently been assigned.143 Second, 

the use of allyl protection at positions 1 and 4, together with p-methoxybenzyl at 3 

allowed for two possible strategies of resolution using diastereoisomeric esters formed 

with a chiral resolving agent. The diastereoisomers must be capable of separation, either
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by recrystallisation or by chromatography, and in many cases, neither is possible. The p- 

methoxybenzyl protecting group also gives versatility and the possibility of Ins(l,3,4)P3 

analogues modified at position 3.

2.2.1 Synthesis of a Key Intermediate

DL-1,4-di-0-allyl-2,5,6-tri-0-benzyl-3-0-p-methoxybenzyl-my<9-inositol (7) was 

synthesised as shown in Figure 2.2 via the known DL-1,2:4,5-di-d-isopropylidene-myo- 

inositol (2). Following the procedure developed by Gigg et a/.,144 myo-inositol was 

treated with 2,2-dimethoxypropane in DMF with a catalyst of PTS A to give a mixture of 

three bisisopropylidene ketals (Figure 2.3 ).

Figure 2.3 Reaction of myoinositol with 2,2-dimethoxypropane gives a mixture of 
three bis-ketals.144

The three regioi somers were then converted into their dibenzoates by reaction with 

benzoyl chloride in pyridine. The dibenzoate 1 of the l,2:4,5-bis-ketal is, in contrast to 

the other two dibenzoates, almost insoluble in pyridine, water, acetone and ether, and so 

it can be isolated by filtration and washing with these solvents. The benzoyl groups are 

then removed by refluxing in methanolic sodium hydroxide to give d l - 1,2:4,5-di-O- 

isopropylidene-myo-inositol 2 .144

Allylation using sodium hydride in DMF followed by allyl bromide now gave 

the known l,4-di-0-allyl-2,3:5,6-di-D-isopropylidene-myo-inositol (3).145 Finally, the 

isopropylidene groups were removed by heating in acetic acid-water (4:1) to give the 

tetrol 4.149 The NMR spectrum of 4 initially posed some difficulties of interpretation 

due to overlapping signals from some of the inositol ring protons. 4 was therefore 

converted into the (highly crystalline) tetra-acetate 5. In the !H NMR spectrum of this 

compound, the signals from protons at positions 2,3,5 and 6 were, as expected, shifted 

downfield, well away from those corresponding to H-l and H-4. A 400MHz

1,2:3,4 1,2:4,5 1,2:5,6
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COSY NMR spectrum of 5 allowed an unambiguous assignment of the ring protons, 

and interpretation of the original overlapping signals.

The next step was a selective p-methoxybenzylation of the tetrol at position 3. 

This involved the regioselective protection of one equatorial hydroxyl group in the 

presence of three other OH groups: one axial and two equatorial. The difference in the 

reactivity between the equatorial OH groups in inositol is slight, and the use of 

organotin derivatives has found a place in the selective activation of the equatorial OH 

of a vicinal equatorial-axial pair.146 It has been shown that maximum yields in tin- 

mediated monoalkylations can be obtained by the use of caesium fluoride.147 The 

authors of this study suggest that the polarisable caesium cation interacts with the 

halogen atom of the alkyl halide, causing its activation, and furthermore that Sn-0 

bonds are also activated by the formation of a pentacoordinate complex. The tetrol 4 

was reacted with dibutyltin oxide by refluxing in toluene with azeotropic removal of 

water to give a dibutylstannylene derivative, which was not isolated, but reacted with p- 

methoxybenzyl chloride in DMF in the presence of caesium fluoride, to give the 3-0-/?- 

methoxybenzyl ether 6 in 65% yield. Finally, 6 was benzylated using sodium hydride 

and benzyl bromide in DMF to give the fully-protected, crystalline intermediate d l - 1 ,4 -  

di-0-allyl-2,5,6-tri-0-benzyl-3-0-/7-methoxybenzyl-myo-inositol (7).

2.2.2 Synthesis of d l - 2 ,4,5-Tri-O-benzyl-wyo-inositol

The next step was to generate the triol 9 by removing both the allyl and p- 

methoxybenzyl protecting groups from 7. Allyl groups are similar to benzyl groups in 

their high stability to acidic and basic conditions, but in the presence of very strong 

base, isomerisation of allyl ethers to cts-prop-l-enyl ethers occurs. These enol ethers can 

then be cleaved by mild acid hydrolysis. The isomerisation was carried out using the 

standard conditions of potassium-terr-butoxide* in DMSO at 50°C.145 The reaction 

proceeded smoothly and the highly crystalline cw-prop-l-enyl ether 8 was obtained in 

83% yield.

In contrast to the unsubstituted benzyl ethers, p-methoxybenzyl ethers are acid 

labile, although less so than ds-prop-l-enyl ethers. Thus 8 can be converted into a diol 

by subjecting it to mild acid hydrolysis, or to the triol 9 by the use of harsher conditions. 

In the synthesis of racemic Ins(l,3,4)P3, the triol was the desired product and so 8 was

* The potassium r-butoxide should be purified by sublimation for best results. When this step was omitted, 
the reaction was slower and poor yields were obtained.
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deprotected using the relatively vigorous treatment of refluxing in 1M HCl-ethanol (2:1)

benzyl protecting groups as judged by TLC. Flash chromatography removed the p- 

methoxybenzyl alcohol produced in the hydrolysis giving pure 9 in 90% yield.

There has been some disagreement in the literature as to the melting point of 

racemic 9, with values of 126-128°C 148 and 135-137°C 145 being reported. It was found 

during the course of the current project that two different batches of 9, both pure, had 

different melting points. On closer examination it was found that, when the temperature 

was very gradually increased as the crystals were observed on the hot stage microscope, 

they underwent a phase transition from plates to needles at about 128°C, with the 

needles then melting sharply at 135-136.5°C. If the temperature was increased slightly 

more rapidly, the plates melted at 128°C and then the liquid recrystallised to give 

needles which melted at the higher temperature. Thus it seems that racemic 9 can exist 

in at least two different crystalline forms (polymorphs) and the reason for the 

discrepancy in reported melting points is clear. Interestingly, another benzyl ether of 

myo-inositol (racemic-3,4-di-0-acetyl-l,2,5,6-tetra-0-benzyl-myo-inositol149 has been 

shown to show unusual behaviour on heating (“jumping crystals”), and the effect is 

thought to be associated with solid-solid phase transitions.150 X-ray crystal structures of 

the three crystalline phases have been published.151

2.2.3 Phosphorylation of DL-2,4,5-Tri-0-benzyl-myo-inositol

Figure 2.4 Phosphitylation of the triol 9, gives a trisphosphite triester, which is oxidised 
to the trisphosphate triester 10.

Because the triol possesses a vicinal diol, a P(III) approach to phosphorylation is 

appropriate. Direct phosphorylation of a vicinal diol using P(V) reagents, in which the

for two hours, which resulted in complete conversion of 8 into the triol with no loss of

OP(OBn)2
OP(OBn)2
L--OBn1 H-tetrazole (BnO)2P<

OBn
9

oxidise

OP(OBn)2 Y\
OP(OBn)2
k^OBn(BnO)2P<

OBn

trisphosphite triester  

'  5Jab = 3 .7  Hz

10
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phosphorus atom is already in the +5 oxidation state, can cause difficulties, such as the 

formation of unwanted five-membered cyclic phosphates. Using P(III) methods, the 

hydroxyl groups are first phosphitylated and subsequently oxidised to give the protected 

phosphate ester. P(DT) methodology can also be adapted to give phosphorothioates by 

the substitution of elemental sulphur for the oxidising agent in the second stage. The 

phosphitylation was carried out using the P(III) reagent bis-(benzyloxy)-A,A- 

diisopropylaminophosphine (Figure 2.4) v/hich has to be catalytically activated by a 

weak acid, such as 1 -H  tetrazole, giving a reactive tetrazolide complex.

It is useful, and informative, to follow the course of the 

phosphitylation/oxidation sequence by 31P NMR, if appropriate facilities are available. 

All such reactions reported in this thesis were monitored in this way by obtaining 31P 

NMR spectra at various stages of the process, using a JEOL FX90 spectrometer. A low- 

field machine such as this is quite adequate for this purpose and may even have some 

advantages.* P(HT) agents tend to be rather unstable, and by obtaining a 31P NMR 

spectrum after adding the 1//-tetrazole, it is possible to check the purity of the 

phosphitylating agent-tetrazolide complex before committing (often precious) inositol 

derivative to the reaction (Figure 2.5 A). When the substrate is added, any vicinal 

phosphite triesters formed will show 5/ pp spin couplings (Figure 2.5 B) and these 

couplings can give useful information, confirming the substitution pattern of the 

product. Finally, after oxidation (or sulphoxidation, which may be slower) the 

disappearance of all phosphite signals confirms that the reaction has gone to completion 

(Figure 2.5 C).

After 1//-tetrazole was added to a solution of the phosphitylating agent in dry 

dichloromethane, a proton-decoupled 31P NMR spectrum showed a singlet at <5p 127, 

confirming the presence of the phosphitylating agent-tetrazolide, and no impurities. The 

triol 9 was therefore added and now the 31P NMR spectrum showed the appearance of 

signals at <5p 140.39 (2P) and <5p 142.21 (IP), corresponding to the trisphosphite triester. 

A signal at Sp 127 (excess phosphitylating agent-tetrazolide) was also present. A high 

resolution, low sweep-width 31P NMR spectrum of the signals close to <5p 140 was able 

to resolve three signals, and two of these were doublets with a coupling constant of

*Spin couplings of low magnitude may be obscured in spectra acquired at high field as a result of signal 
broadening due to chemical shift anisotropy. This anistropic effect is reduced at low field strength (and 
high temperature).
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3.7Hz. This arises from the Vpp spin coupling between the P atoms at C-3 and C-4, and 

was clear evidence that the compound contained a vicinal bisphosphite.

A
Phosphitylating agent-tetrazolide

14 0  13 0  5P 10 0  - 10

B
Trisphosphite triester:
5 J p p  couplings indicate vicinal phosphites

Excess phosphitylating 
agent-tetrazolide

■ x '
i— H — I I— i------- 1-------- 1-------- 1-------- 1

14 0  13 0  5P 10 0 - 10

c
Absence of phosphite 
signals indicates that 
oxidation is complete

I I I I r
14 0  13 0

Figure 2.5 Proton-decoupled 31P NMR is a useful technique for following the progress 
of phosphitylation oxidation. A: After addition of 1//-tetrazole to phosphitylating agent, 
B: After addition of triol, C: After oxidation with terr-butyl hydroperoxide.

A small amount of water was now added before oxidation. It was reasoned that 

this would react with excess phosphitylating agent-tetrazolide and therefore simplify the 

later purification stage. The oxidation was then carried out by adding excess tert-butyl 

hydroperoxide. 3IP NMR now showed that oxidation to the protected trisphosphate was 

complete, with the signals around <5p 140 disappearing, to be replaced with three clear 

singlets at <5p -1.42, -1.57, and -1.81. The only by-product detectable by 31P NMR was 

an //-phosphonate at <5p 7.5 and it was found that this could easily be removed by flash 

chromatography to give 10 in 73% yield. It was later found, in the course of 

phosphorylating a range of other compounds, that higher yields (80-90%) could usually 

be obtained by using m-CPBA as the oxidising agent.

Trisphosphate triester:

H-phosphonate
by-product

T
10 -10
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2.2.4 Deprotection and Purification

The final deblocking of 10 involved the removal of the nine protecting benzyl 

groups using sodium in liquid ammonia. A number of attempts were necessary before 

this was carried out successfully and the procedure found to be effective is detailed in 

the experimental section. Subsequent experience with many deprotection reactions of 

this type have shown that the quality of the sodium used is a major factor influencing 

yield. The apparatus should be dried in an oven and assembled under nitrogen while hot. 

Only a small volume of liquid ammonia (20-30mL) should be used because the amount 

of sodium needed is then reduced accordingly. This, in turn, means that the ionic 

strength of the crude product is lower, and it can be loaded onto the ion-exchange 

column in a smaller volume of water, saving time during the purification stage.

An alternative deprotection strategy for this synthesis would have been to use 

hydrogenolysis, which is more reliable and usually gives near-quantitative yields. 

However the necessary apparatus was not available at this time. Note also that 

hydrogenolysis cannot be used to deprotect phosphorothioates (Chapter 6), compounds 

with ester protecting groups (Chapter 7) or unsaturated compounds (Chapter 3). Traces 

of paramagnetic ions from the catalyst (usually Pd) can cause extreme broadening of 

NMR signals, unless these are removed completely by ion exchange chromatography. 

The sodium in liquid ammonia method has wider applicability, but can give poor yields.

Trisphosphate 11 was purified using ion-exchange chromatography. After 

deprotection, the crude product contains large amounts of sodium salts and uncharged 

by-products, but these can easily be separated from the highly charged inositol 

phosphates by the ion-exchange column. Problems do occur, however, if other, 

similarly-charged inositol phosphates, which may arise from phosphate migrations 

during deprotection, are present (see Chapter 7). It is advisable to filter the solution of 

crude product before loading onto the column because any oily or particulate matter can 

cause blockage of filters and valves.

The ion-exchange column is eluted using a gradient of triethylammonium 

bicarbonate (TEAB) buffer from 0 to 1 M. It is not immediately apparent which 

fractions contain the target compound because, as there is usually no chromophore 

present, the usual post-column detection by UV absorption is not possible. The fractions 

containing phosphate were detected using a method that relies on the complexation of 

free phosphate with molybdate ions152 and then subjected to 31P NMR to determine 

which phosphate-containing fractions contained the desired product.
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Because the inositol phosphates obtained by ion-exchange purification are 

isolated as their triethyl ammonium salts, whose stoichiometries may be different in each 

case, the formula mass is not known accurately and they cannot therefore be quantified 

on the basis of mass. Instead, a quantitative assay for phosphate must be carried out. The 

result of this assay is a quantity of phosphate (in ^moles) which is then divided by three 

for a trisphosphate, by two for a bisphosphate etc. The conventional method is to use the 

Briggs Phosphate Assay.152

The triethylammonium salt of racemic 11 was obtained as a colourless glass. The
 ̂i

proton-coupled P NMR spectrum of 11 confirmed the presence of the three phosphate 

groups with heteronuclear / h c o p  coupling. The identity of 11 was confirmed by one- 

and two-dimensional !H NMR spectroscopy. It was possible to assign all the signals, 

including the separate assignments of H-l and H-3 (see below) leaving no doubt 

remaining as to the identity of 11.

2.2.5 Biological Testing of DL-Ins(l,3,4)P3

Previous work has shown that intracellular injection of Ins(l,4,5)P3 into the 

ventral photoreceptors of the horseshoe crab Limulus polyphemus, results in a transient 

depolarisation of the cellular membrane potential.153,154 This depolarisation 

accompanies, and is caused by, a burst of Ca2+ release from intracellular stores.155 

Poorly-metabolisable active analogues of Ins(l,4,5)P3, such as D-myo-inositol-1,4,5- 

trisphosphorothioate, induce a train of bursts of depolarisation due to bursts of Ca2+ 

release that persist for many minutes after injection.156

Racemic 11 was injected into Limulus ventral photoreceptors at a concentration 

in the injection pipette of 100/iM. It was indeed, highly active, producing bursts of 

depolarisation that persisted for minutes after injection, suggesting that the active 

component of 11 was poorly metabolisable. (An alternative explanation of the 

prolonged effect would be that one enantiomer of 11 was capable of inhibiting the 

metabolism of the other).

11 Was also evaluated for its ability to mobilise 45Ca2+ from saponin- 

permeabilised rabbit platelets, relative to Ins(l,4,5)P3 and Ins(l,3,4,6)P4. The results 

showed that racemic 11 was considerably less potent than Ins(l,4,5)P3 but equal to, or 

slightly greater in potency than Ins(l,3,4,6)P4 in its ability to mobilise 45Ca2+. As 

discussed above, structure-activity considerations predict that this activity should reside 

in L-Ins(l,3,4)P3, and not the D-enantiomer.
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A preliminary assay showed that 11 was capable of inhibiting 5-phosphatase 

(Ki=8.8/iM). Polokoff et al?1 also found their racemic Ins(l,3,4)P3 to behave in a 

similar way. It has previously been shown that D-Ins(l,3,4)P3 is not a 5-phosphatase
1 57inhibitor, so it follows that the L-enantiomer must be responsible. As discussed above, 

L-Ins(l,3,4)P3 has been found to be present in avian erthyrocytes103 but there is as yet no
I 5Qevidence that L-Ins(l,3,4)P3 attains levels that would inhibit 5-phosphatase in vivo.

It was at this stage in the project that Hirata et al. published a detailed biological 

study of D-Ins(l,4,6)P3 and L-Ins(l,3,4)P3 with no synthetic details.159 Strangely, 

although their L-Ins(l,3,4)P3 seemed active in binding studies in rat cerebellum (90-fold 

less potent than Ins(l,4,5)P3), as would be expected, it was almost inactive in Ca - 

release (3000 times weaker than Ins(l,4,5)P3). The latter result is totally at odds with our 

finding that racemic 11 was moderately potent in Ca2+ release. These results 

strengthened our suspicions that this group had tested the wrong enantiomer of 

Ins(l,3,4)P3, especially in the light of earlier discrepancies over the optical rotation of 

the D-enantiomer, and yet this could not explain the high potency in binding. The only 

other possibility seemed to be that the differences in Ca2+ release reflected differences in 

the Ins(l,4,5)P3 receptors in different cell types. Our results, as explained above were, 

based on experiments using rabbit platelets (and Limulus photoreceptors) whereas 

Hirata et a l  had used rat basophilic leukaemic (RBL) cells. Thus, it was important to 

continue with the original plan, synthesise both enantiomers of Ins(l,3,4)P3, prove their 

absolute configurations, and evaluate their biological activities in our own assays.

2.3 Optical Resolution of 2,4,5-Tri-O-benzyl-l-O-p-methoxybenzyl-wyo-inositol

The successful optical resolution of inositol derivatives via the formation of camphanate 

esters has been reported in various studies.143,160'162 Both S-(-)- and R-(+)~ camphanic 

acid chlorides are stable crystalline reagents available in high optical purities. The 

diastereoisomeric camphanate esters can sometimes be separated by crystallisation, or 

their polarities may be sufficiently different to allow separation by column 

chromatography. In other cases, neither method may be successful. The camphanate 

ester may also be used as a protecting group, allowing selective modification subsequent 

to resolution (see Chapter 7).

The decision was made to attempt the resolution via the formation of 3,6-bis- 

camphanates on the basis of a report that 1,2,4,5-tetra-O-benzyl-myo-inositol had been 

successfully resolved by this method.143 Accordingly, racemic 2,4,5-tri-0-benzyl-3,6-di-
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0Kcw-prop-l-enyl)-l-<9-/?-methoxybenzyl-ray0-inositol 8 was subjected to mild acid 

hydrolysis using 1M HCl-acetone (1:10) at 50°C. TLC showed complete conversion to 

the 1,4-diol within 5 minutes, after which the acid was rapidly neutralised with aqueous 

sodium hydrogencarbonate. Experiments showed that if the reaction was continued 

beyond 30 min, then significant amounts of triol began to appear, arising from loss of 

the p-methoxybenzyl group at position 3. The racemic diol 12 was obtained in 84% 

yield after purification by flash chromatography. Racemic 12 was then converted into its 

bis-[(7S)-(-)-<»-camphanate] esters by reaction with (75)-(-)-fi)-camphanic acid chloride 

in pyridine with a catalyst of DMAP.
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Figure 2.6 Optical resolution of 12 and conversion to D- and L-Ins(l,3,4)P3.
(i) 1M HCl/acetone, 1:10, 50°C; (ii) (5)-to-camphanic acid chloride, DMAP, pyridine; 
(iii) NaOH, MeOH, reflux; (iv) BnBr, NaH, DMF; (v) 1M HCl/EtOH 1:2, reflux; (vi) 
(a) (BnO)2PNPr*2, 177-tetrazole, (b) Bu'OOH; (vii) Na/liquid NH3. Bn, benzyl; PMB, p- 
methoxybenzyl; (-)Camph, (lS)-(-)-<2>-camphanate.
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Attempts to resolve the diastereoisomers by recrystallisation from various 

solvent systems (methanol, ethanol, ether, ethyl acetate/hexane) were not successful. 

The only remaining possibility was the use of chromatography, although the two 

diastereoisomers showed a ARf of only 0.07. However, no better TLC system could be 

found and so the separation was attempted using chloroform/acetone (30:1). Perhaps 

surprisingly, this was successful, and excellent separation was achieved.

The individual diastereoisomers proved to be very different. One of these, the 

(+)-diastereoisomer, was highly crystalline, with a very low solubility in cold methanol 

allowing easy crystallisation from hot solvent. The (-)-diastereoisomer was much more 

soluble in methanol and ethanol, and could not be induced to form satisfactory crystals 

from any of a range of solvents, tending instead to precipitate as a gel, which then had to 

be dried under vacuum to remove solvent. Unfortunately, it was not possible to grow 

crystals of either diastereoisomer that were suitable for X-ray analysis.

The NMR spectra of the two diastereoisomers showed them to be pure, with no 

trace visible of the other diastereoisomer in each case (!H NMR at 400MHz and 13C 

NMR at 100MHz). The efficiency of the resolution could be judged by the *H NMR 

resonances of the camphanate methyl groups. Further evidence came from an 

examination of the H-2 signal, which occurred at very different chemical shifts (54.11 

and 4.23) in the two diastereoisomers. Saponification of the individual diastereoisomers 

by refluxing with sodium hydroxide in methanol then gave the enantiomeric diols 12a 

and 12b.

As it had not been possible establish the absolute configuration of either 

biscamphanate by X-ray crystallography, the remaining option was to convert one of the 

enantiomeric diols into a compound whose absolute configuration was already well- 

established. Fortunately, this had been anticipated in the design of the synthesis, and the 

(-)-diol 12b was therefore converted into one of the enantiomers of the known 

1,2,4,5,6-penta-O-benzyl-myo-inositol 14 by benzylation followed by removal of the p- 

methoxybenzyl group. The absolute configuration of the (+)-enantiomer as 1D-1,2,4,5,6- 

penta-O-benzyl-myo-inositol had been established by Shvets, in 1973, based on its 

conversion to (+)-bomesitol.163 The product was found to have an JH NMR spectrum 

identical to that of racemic 1,2,4,5,6-penta-O-benzyl-myo-inositol164, but an optical 

rotation o f -11.5°, identifying it as (-)-lL-l,2,4,5,6-penta-0-benzyl myo-inositol L-14b. 

Thus the (-)-diol could be assigned as lL-2,5,6-tri-0-benzyl-3-0-p-methoxybenzyl myo­
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inositol L-12b allowing the absolute configurations of the diastereoisomeric 

biscamphanates and of the resolved enantiomers generated from them to be deduced.

However, at this stage in the project we encountered a problem. It emerged that 

there were, in fact, unacknowledged contradictions in the literature regarding the 

absolute configurations of the enantiomers of 14. Two independent X-ray studies165,166 

carried out on the (lS)-(-)-6>-camphanic acid ester of the (+)-enantiomer had deduced 

the lL-l,2,4,5,6-penta-(9-benzyl-myo-inositol configuration for the (+)-enantiomer, the 

opposite of that found by Shvets. The authors did not remark on the discrepancy, and, 

partly because of their use of different nomenclature for 14, we were unaware that 

Shvets’ assignment was in question. The disagreement is reflected in the reported 

conversions of both enantiomers into the same lD-myo-inositol-l-phosphate by 

phosphorylation and debenzylation.163,165 Fortunately, a study published in 1994 by
i fnAneja et al. resolved this conflict unambiguously, showing beyond doubt that Shvets’ 

original assignment was correct. Our assignments of the absolute configurations of (+) 

and (-)-12, and related compounds were therefore on solid ground.

The enantiomeric diols D-12a and L-12b were converted into the known triols D- 

9a and L-9b by removal of their p-methoxybenzyl groups as described for 9. The optical 

rotations of these enantiomers were in agreement with, although larger than, those 

previously reported143,98, thus confirming the absolute configurations proposed by Desai 

et al.m and of the D-Ins(l,3,4)P3 synthesised by Gou and Chen.98 Examination of a *H- 

COSY NMR spectrum of D-9a allowed the signals corresponding to each of the three 

hydroxyl groups to be assigned, as well as the ring protons. The melting point behaviour 

of the optically pure triols paralleled that of the racemate. The phase change occurred at 

lower temperature (93°C) with the needles then melting at 104-106°C in each case. 

Thus the individual enantiomers exist in polymorphic forms.

The triols were phosphorylated as described for the racemic material, followed 

by deprotection and purification as before to give D- and L-myo-inositol-1,3,4- 

trisphosphates D -lla  and L -llb  respectively as the triethylammonium salts. The 162 

MHz proton-coupled 31P NMR spectra of D -lla  and L -llb  showed that they were free 

from contamination with other phosphates. Previously published NMR spectra of
1A8Ins(l,3,4)P3 obtained from biological sources showed the material to be 

contaminated, probably with Ins(l,4,5)P3. In this respect it is also worth noting that, as 

L-Ins(l,3,4)P3 is now known to occur naturally in at least some cell types (see above), it 

follows that any Ins(l,3,4)P3 obtained from biological sources may contain L-
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Ins(l,3,4)P3, and of course, the two enantiomers would be indistinguishable by standard 

chromatographic analyses, or by NMR. However, as the diastereoisomeric 

biscamphanate intermediates in our route appeared pure by NMR, we can expect that 

neither D -lla  nor L -llb  would contain more than 1% of its enantiomer.

The NMR spectra of the enantiomers were identical with one another, and with 

that of racemic 11. 400MHz !H spectra were obtained, and a 2D COSY spectrum 

of L -llb .T he assignment of the lH NMR spectrum of L - llb  (Figure 2.7) is explained 

below.

• H-2 appears as a narrow triplet (actually a dd) at <5h 4.28. This is the only 

equatorial proton and it is deshielded relative to the axial protons. It can be 

deduced that this position is not phosphorylated because any 7hp heteronuclear 

coupling to phosphorus would cause a doubling of the signal.

• H-4 is seen at <5h 4.17. Three couplings are present; two axial-axial interactions 

with H-3 and H-5 and a 3/ h p  coupling to the phosphorus at C-4. The heteronuclear 

coupling constant has a similar magnitude to 3/ax-ax , giving a quartet (or ddd). This 

proton cannot be H-5 because, given that C -l and C-3 are also phosphorylated (see 

below) the molecule would then have a plane of symmetry.

• H-3 and H-l each give a doublet of triplets (or ddd). If these positions were not

phosphorylated, each signal would appear as a doublet of doublets. Again the 

pattern is a result of the heteronuclear coupling constant being similar in

magnitude to the homonuclear 3/ax-ax coupling. It is not possible, from the ID

spectrum to say which of the two signals is H-l and which is H-3, but in the ^ ^ H  

COSY, the downfield signal has a cross-peak with H-4, establishing it as H-3.

• The quartet centred at (5h 3.49 showed no cross-peaks with ring protons in the !H-

*H COSY spectrum. It arises from ethanol of crystallisation (or possibly 

CH3C //2NR2 of an impurity in the trie thy lamine).

• Finally, H-6 and H-5 appear as triplets (dd) at high field, indicating that these

positions are not phosphorylated. In myo-inositol derivatives, H-4 and H-6 tend to 

resonate downfield of H-5, given similar substituents, presumably as a result of a 

deshielding 1,3-diaxial interaction with the oxygen at position 2.

Thus, no doubt remained as to the identities of D -lla  and L -llb .
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Figure 2.7 400 MHz *H NMR spectrum of l i b  in D20 , pH~4.2. The inset shows the 
162 MHz ‘H-coupled 31P NMR spectrum of Xla in D20 , pH~4.2.

The complete 'H NMR spectra showed the number of triethylammonium cations 

to be between 3 and 3.5. Solutions of the salts in water were acidic (pH 4.2), and their 

specific rotations, calculated for the free acid, were highly dependent on pH, being small 

(<10°) at acidic pH and large (>40°) at pH 10.6. A similar pH-dependency has been 

found for the optical rotations of D-Ins(l,4 ,5 )P3 .169 The rotations for D-Ins(l,3,4)P3 were 

positive over this range and those for L-Ins(l,3,4)P3 were negative. At pH 7.8 the values, 

calculated for the free acids, were +37° and -40° respectively (c = 0.42, TEAB buffer ). 

The signs of the rotations therefore agreed with the positive rotation reported for the 

potassium salt of D-Ins(l,3,4)P3 by Gou and Chen.98 The larger magnitudes of our 

rotations may be attributed to pH differences. It is not clear why Ozaki et a/.95obtained a 

negative rotation for their D-Ins(l,3,4)P3 (ammonium salt). Had this group actually 

obtained the wrong enantiomer of Ins(l,3,4)P3? In fact this now seems very unlikely, 

and the reasons will be discussed in detail below.
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2.4 Biological Testing of D-Ins(l,3,4)P3 and L-Ins(l,3,4)P3

The structural considerations discussed in Chapter 1 predict that D-Ins(l,3,4)P3 should 

show little ability to release Ca2+. Our working hypothesis is that the essential 

requirement for Ca2+ release in inositol polyphosphates is the presence of a D-4,5- 

bisphosphate as found in D-Ins(l,4,5)P3, or a pseudo-D-4,5-bisphosphate [e.g. in 

Ins(l,3,4,6)P4 ]. L-Ins(l,3,4)P3 possesses this motif and we therefore predicted that it 

should release Ca2+. D-Ins(l,3,4)P3 does not, and for this reason, despite the reports to 

the contrary cited in Chapter 1, we would expect it to show little, if any, activity as an 

agonist at the Ins( 1,4,5)P3 receptor.

2.4.1 Effects of D-Ins(l,3,4)P3 and L-Ins(l,3,4)P3 in Limulus Photoreceptors

The two enantiomers of Ins(l,3,4)P3 D - l la  and L - l lb  were injected into Limulus ventral 

photoreceptors in order to compare their effectiveness in a living cell.
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Figure 2.8 Injection of InsP3 isomers into the rhabdomeral lobe of Limulus 
photoreceptors. Figures A and B show recordings of membrane potential made from a 
cell impaled with a double-barrelled micropipette containing 100 fiM D-Ins(l,3,4)P3 (D- 
11a) in one barrel and 100 jiM Ins(l,4,5)P3 in the other barrel. The pressure applied to 
either barrel was 60 psi for 1 0 0 ms.Figures C and D show recordings of membrane 
potential made from another cell impaled with a double-barrelled electrode containing 
100 jiM D-Ins(l,3,4)P3, (D - l la )  in one barrel and 100 jiM L-Ins(l,3,4)P3 (L - l lb )  in the 
other. Pressure applied to the first barrel was 20 psi. for 200ms and to the second barrel 
was 38 psi applied for 200ms.
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Ventral photoreceptors were impaled in their light-sensitive region with a double- 

barrelled micropipette, one barrel containing 100 pM D-Ins(l,3,4)P3 (D - l la )  and the 

other barrel either 100 pM D-Ins( 1,4,5)P3 or 100 pM L-Ins(l,3,4)P3 (L - l lb ) .  These 

solutions were injected into the photoreceptor by brief pressure pulses delivering 

approximately equal volumes. Photoreceptors remained in darkness throughout the 

experiment. Injection of D-Ins(l,3,4)P3 was found to be much less effective in inducing 

a rapid burst of depolarisation than injection of either D-Ins(l,4,5)P3 or L-Ins(l,3,4)P3 

(Figure 2.8). In addition, unlike the single burst of depolarisation seen following 

injection of D-Ins(l,4,5)P3 (Figure 2.8 B), repetitive bursts of depolarisation were 

induced by L-Ins(l,3,4)P3 (Figure 2.8 D). These bursts continued for up to 5 minutes 

after injection of L-Ins(l,3,4)P3, suggesting that L-Ins(l,3,4)P3 is metabolised at a slower 

rate than D-Ins(l,4,5)P3.

2.4.2 Effects o f  D- and L-Ins(l,3,4)P3 in Permeabilised Rabbit Platelets

The enantiomers D - l l a  and L - l l b  were also examined for their ability to release 45Ca2+ 

from permeabilised rabbit platelets (Figure 2.15). L-Ins(l,3,4)P3 (L - l lb )  behaved as a 

full agonist and was found to be some 11-fold weaker at releasing 45Ca2+ than D- 

Ins(l,4,5)P3. However D-Ins(l,3,4)P3 (D - l la )  was almost inactive, releasing only 16% 

of the 45Ca2+ at the highest concentration examined (lOCtyiM).
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— D-lns(1,3,4)P. 

—a— lns(1,4,5)P3
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Figure 2.9 Calcium release from permeabilised rabbit platelets induced by Ins(l,4,5)P3, 
L-Ins(l,3,4)P3 (L - l lb )  and D-Ins(l,3,4)P3 (D - l la ) .  Values are mean ± S.E.M. for three 
separate experiments, each performed in triplicate.

The above findings were extended by examining the kinetics of Ca2+ release by 

the two enantiomers. Ca2+ release was monitored in the presence of the fluorescent dye 

fura-2 by spectrofluorimetry. Addition of 1 /jM  Ins( 1,4,5)P3 caused release of Ca2+ from

62



the intracellular stores of platelets, detected as a rapid increase in the fluorescence of 

fura-2 free acid. The increase on fluorescence was transient, presumably due to 

metabolism of Ins(l,4 ,5 )P3 to inactive products, resulting in resequestration of Ca2+ 

back into the intracellular stores by Ca2+-ATPase activity. Addition of L - l l b  [L- 

Ins(l,3 ,4 )P3] caused a dose-dependent release of Ca2+ from the intracellular stores. 

However, unlike the effect of Ins(l,4,5)P3, Ca2+-release by L - l l b  reached a maximum 

which was then maintained at a plateau phase over the time-course of the experiment 

(Figure 2.10). In agreement with the findings for 45Ca2+-release, D - l la  [D-Ins(l,3,4)P3] 

was inactive, with no increase in fluorescence measured at 3 0 / llM  of D -l la .
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Figure 2 .10  Ca2+ mobilisation induced by D-Ins(l,3,4)P3 (D - l la )  and L-Ins(l,3,4)P3 (L- 
11b) monitored by spectrofluorimetry. Each trace is taken from a single experiment but 
is representative of 4 individual experiments.

As discussed in Chapter 1, heparin has previously been demonstrated to be a 

competitive antagonist at the Ins(l,4 ,5 )P3 binding site of the Ins(l,4 ,5 )P3 receptor.33 

Heparin was found to inhibit L-Ins(l,3,4)P3-induced Ca2+ release, indicating that the 

effects of L-Ins(l,3,4)P3 result from an interaction with the same site.
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Figure 2.11 Effect of heparin on L-Ins(l,3,4)P3-induced Ca2+-release.

2.4.3 Binding Studies in Rat Cerebellar Membranes

[3H]Ins(l,4,5)P3 was readily displaced from specific binding sites on rat cerebellar 

membranes by cold Ins(l,4,5)P3 with an IC50 of 0.045 ± O.Ol^M. Ins(l,3,4,6)P4 also 

displaced specifically bound [3H]Ins(l,4,5)P3 but was 36-fold weaker than Ins(l,4,5)P3. 

L-Ins(l,3,4)P3 was around 100-fold weaker than Ins(l,4,5)P3 but D-Ins(l,3,4)P3 was able 

to displace [3H]Ins(l,4,5)P3 only very weakly, even at the highest concentration 

examined (30/tM) with an IC50 > 30/nM (Figure 2.12).
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Figure 2.12 Displacement of specific [3H]Ins(l,4,5)P3 binding to rat cerebellar 
membranes by Ins(l,4,5)P3, L-Ins(l,3,4)P3 (L-llb) and D-Ins(l,3,4)P3 (D-lla). Values 
are mean ± S.E.M. for three separate experiments, each performed in duplicate.
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2.4.4 Comparison with Ins(l,3,4,6)P4 and the Enantiomers of Ins(l,4,6)P3

Table 2.1 summarises the results of the Ca2+-release and binding assays for Ins(l,4 ,5)P3, 

Ins(l,3,4,6)P4 and the enantiomers of Ins(l,3,4)P3 and Ins(l,4 ,6)P3. In both assays, the 

activities of D-Ins(l,3,4)P3 and L-Ins(l,4,6)P3 were so low that EC40 and IC50 values 

could not be measured. Recall that both of these molecules would be expected to be 

essentially inactive because they lack any equivalent to a 4,5-bisphosphate.

The potency orders of the remaining compounds is as shown below:

Binding assay:

Ins(l,4,5)P3 > D-Ins( 1,4,6)P3 = Ins( 1,3,4,6)P4> L-Ins( 1,3,4)P3
9+Ca release:

Ins(l,4,5)P3 > D-Ins( 1,4,6)P3 > L-Ins( 1,3,4)P3 > Ins(l,3,4,6)P4

Compound Ins(l,4,5)P3 receptor 
binding
IC50//xM ± S.E.M.

45Ca2+ release 
EC40/^M  ± s .e .m .

D-Ins(l,4,5)P3 0.045 ±0.01 0.69 ± 0.24

Ins(l,3,4,6)P4 1.62 ±0.39 28.50 ± 1.06

L-Ins(l,3,4)P3 (L -llb ) 4.42 ± 1.29 8.05 ± 0.98

D-Ins(l,3,4)P3 (D -lla) > 30 >100

L-Ins(l,4,6)P3 > 10 > 100

D-Ins(l,4,6)P3 1.42 ±0.34 1.56 ±0.34

Table 2.1 Comparison of inositol phosphates for displacement of [3H]Ins(l,4,5)P3 from 
rat cerebellar membranes and for release of 45Ca2+ from permeabilised platelets. EC4o = 
concentration causing 40% 45Ca2+-release. (n = 3-10).

In both assays, D-Ins(l,4,6)P3 was more potent than L-Ins(l,3,4)P3. These results 

agree with the predictions made on the basis of the binding-orientation arguments given 

in Chapter 1, and confirm that the 3-hydroxyl group of Ins(l,4,5)P3 is more important 

for binding than the 6-hydroxyl group. The same conclusion was reached by Hirata et al. 

in their study of D-Ins(l,4,6)P3 and L-Ins(l,3,4)P3.159

All the analogues behaved as full agonists in the platelet Ca -release assay, and 

yet, as discussed in Chapter 1, Ins(l,3,4,6)P4 has been previously been demonstrated to 

behave as a partial agonist in SH-SY5Y cells. Both SH-SY5Y cells and platelets possess 

the type 1 Ins(l,4,5)P3 receptor,170’171 but while 99% of the Ins(l,4,5)P3 receptors in SH- 

SY5Y cells are type 1, the abundance of this subtype in platelets is not known. It is
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possible, then, that the difference may be related to different receptors in the two cell- 

types. It should also be borne in mind that there may be methodological problems in the 

detection of partial agonists (see Section 1.8.2 and Chapter 5) related to the details of 

the assay. It will therefore be necessary to investigate the effects of L-Ins(l,3,4)P3 and D- 

Ins(l,4,6)P3 in SH-SY5Y cells before we can come to any conclusions about the 

structural basis of the partial agonist behaviour of Ins(l,3,4,6)P4. This study is now 

being carried out.

Finally, note that the orders of potency of the analogues are different for the 

binding and Ca -release assays. Again, it must be remembered that the two assays were 

carried out in different cell-types, and it is also known that, even in the same cell-type, 

binding and Ca2+ release assays may not give the same results, due to differences in 

experimental conditions.172 Ins(l,3,4,6)P4 was more potent than L-Ins(l,3,4)P3 in the 

binding assay, being equal to D-Ins(l,4,6)P3 in its ability to displace [3H]Ins(l,4,5)P3 

from cerebellar membranes. However, in Ca release it was the least potent of the 

analogues tested. Thus Ins(l,3,4,6)P4 seems to be weaker in Ca2+ release from platelets 

than would be expected from its binding affinity in cerebellum. The significance of this 

observation is not clear at the time of writing.

2.4.5 Interaction with Ins(l,3,4)P3 5/6-kinase and Ins(l,4,5)P3 3-kinase

Both enantiomers were tested for their ability to inhibit phosphorylation of 

[3H]Ins(l,3,4)P3 by a purified Ins(l,3,4)P3 5/6-kinase preparation. As expected, D- 

Ins(l,3,4)P3 was a potent inhibitor (ICso= 5.25(jM) and in this respect was identical to 

commercially available Ins(l,3,4)P3. L-Ins(l,3,4)P3 was almost inactive (IC so »  

100/xM), which is what would be predicted using the structural arguments described in 

Section 1.9.4

In contrast, when tested for interaction with Ins(l,4,5)P3 3-kinase, D-Ins(l,3,4)P3 

was not a substrate, but L-Ins(l,3,4)P3 was phosphorylated by the enzyme with 

approximately 0.4-fold the speed of the natural substrate, Ins(l,4,5)P3. This finding is in 

agreement with the arguments given in Section 1.10.3, where it is argued that L- 

Ins(l,3,4)P3 but not D-Ins(l,3,4)P3 has structural similarities to Ins(l,4,5)P3.

Finally, neither enantiomer was able to inhibit phosphatidylinositol 3-kinase. As 

for Ins(l,4,5)P3 3-kinase, we would not expect D-Ins(l,3,4)P3 to be recognised, because 

it does not resemble Ins(l,4,5)P3. However, the fact that L-Ins(l,3,4)P3 is unable to 

interact with Ptdlns 3-kinase is significant, and is evidence for the hypothesis that an
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axial 2-OH group is a structural requirement for inositol phosphates to be recognised by 

this enzyme (Section 1.9.5).90 There are no possible binding orientations for L- 

Ins(l,3,4)P3 in which it can mimic both the 4,5-bisphosphate and the axial 2-hydroxyl 

group of Ins(l,4,5)P3.

2.5 Activities of D-Ins(l,3,4)P3 and L-Ins(l,3,4)P3: Conclusions

These results have clearly established that the Ca2+-releasing ability of racemic 

Ins(l,3,4)P3 resides in the L-enantiomer. In the biological assays described above, D- 

Ins(l,3,4)P3 was essentially inactive. This is what we would expect from structure- 

activity considerations, and indeed, it is what seems to be most logical from a biological 

point of view. That is, the conversion of Ins(l,4,5)P3 to D-Ins(l,3,4)P3 by the sequential 

action of 5-phosphatase and 3-kinase abolishes its ability to release Ca2+ and therefore 

terminates this branch of the signalling pathway.

In Limulus photoreceptors, L-Ins(l,3,4)P3 caused repetitive bursts of 

depolarisation, while in the fluorescence experiments with rabbit platelets it was seen to 

cause prolonged Ca2+ release. These observations both suggest that L-Ins(l,3,4)P3 is 

only poorly metabolised, and therefore has a prolonged effect. In the study by Hirata et 

al.,159 L-Ins(l,3,4)P3 was found to be 90-fold weaker in displacement of [3H]Ins(l,4,5)P3 

from rat cerebellar membranes. In a similar assay, L -llb  was 98-fold weaker than 

Ins(l,4,5)P3. These results are in excellent agreement, and are very strong evidence that 

the absolute configuration of the L-Ins(l,3,4)P3 synthesised by Hirata et al. was correctly 

assigned. As discussed above, we found that the optical rotations of D -lla  and L -llb  

were highly dependent on pH, and this may account for the discrepancies noted earlier.

As mentioned above, some samples of D-Ins(l,3,4)P3 tested by Dr Richard 

Payne, including those purchased from commercial sources, were consistently active in 

Limulus photoreceptors, while others, including D -lla  were always inactive. We 

conclude that the active samples were contaminated with some unknown substance. In 

the case of the biologically-derived D-Ins(l,3,4)P3 this contamination is likely to have 

been Ins(l,4,5)P3. The activity was not due to L-Ins(l,3,4)P3, because the active samples 

did not produce repetitive bursts of Ca release. Similarly, we conclude that when D- 

Ins(l,3,4)P3 was reported to release Ca2+ from Swiss 3T3 cells,91 this too was 

contaminated, most likely with Ins(l,4,5)P3. It was this report that led other workers92 to 

infer that the activity of racemic Ins(l,3,4)P3 in bovine aortic smooth muscle cells was 

due to D-Ins(l,3,4)P3.
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So the confusion over the activity of D-Ins(l,3,4)P3, it seems, has been resolved. 

All absolute configurations were correctly assigned, but some samples of D-Ins(l,3,4)P3 

were not pure. Pure D-Ins(l,3,4)P3 is essentially inactive at the Ins(l,4,5)P3 receptors of 

rabbit platelets, rat cerebellar membranes, Limulus photoreceptors, GH3 cells and Swiss 

3T3 cells. One puzzle, however, remains. Hirata et al. reported that their L-Ins(l,3,4)P3 

was almost inactive in Ca2+ release, being 3000-fold weaker than Ins(l,4,5)P3.159 (In fact 

this group found L-Ins(l,3,4)P3 to be so weak that they were unable to measure an EC50 

value). In the rabbit platelet assay, L -llb  was only 12-fold weaker than Ins(l,4,5)P3. 

What could be the reason for this anomaly? It is unlikely to result from the different 

preparations of L-Ins(l,3,4)P4 used in the two studies, because the affinities for rat 

cerebellar membranes were the same. The Ca2+-mobilising effect of L-Ins(l,3,4)P3 

cannot be unique to platelets, because it was also found in Limulus photoreceptors. 

Furthermore, we can infer from the results of Polokoff et al.92 with racemic Ins(l,3,4)P3 

that L-Ins(l,3,4)P3 was also quite potent in bovine aortic smooth muscle cells. It may be 

that the discrepancy somehow results from differences in assay conditions, but there is 

also the possibility that it is due to differences between the Ins(l,4,5)P3 receptor 

subtypes in the different cell types.

Since this study was carried out, more information has emerged regarding the 

different distributions of Ins(l,4,5)P3 receptor subtypes in various tissues.170 Platelets 

possess the type 1 Ins(l,4,5)P3 receptor, and this has been shown to be similar to the rat 

cerebellum type 1 receptor in its ligand-binding characteristics.171 In contrast, RBL cells 

have now been shown to express receptors that are primarily of the type 2 family, with 

very low amounts of type l . 172 The significance of Ins(l,4,5)P3 receptor diversity has 

not been established, although some have been reported to have a different inositol 

phosphate specificity.* The apparent difference in potency of L-Ins(l,3,4)P3 in RBL cells 

and platelets suggests the possibility that the Ins(l,4,5)P3 receptor subtypes in these two 

cell types might respond differently to L-Ins(l,3,4)P3.

* An Ins(l,4,5)P3 receptor associated with the plasma membrane of lymphocytes has been reported to 
show an unusually high affinity for Ins(l,3,4,5)P4.20 jn another study, the Ins(l,4,5)P3 receptor of olfactory 
cilia, also thought to be located in the plasma membrane, was found to bind Ins(2,4,5)P3 with higher 
affinity than Ins(l,4,5)P3 itself.174
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3 Acyclic and Ring-Contracted Analogues

3.1 An Acyclic Analogue of Ins(l,4,5)P3

Various studies have demonstrated that the hydroxyl groups at positions 2 and 3 of 

Ins(l,4,5)P3 play a relatively minor role in the recognition of this molecule by the 

Ins(l,4,5)P3 receptor. The clearest illustration of this fact is the finding that Id-2,3- 

dideoxy-Ins(l,4,5)P3 (Figure 3.1) is only about six-fold weaker than Ins(l,4,5)P3 in 

binding to bovine adrenal cortices and four-fold weaker in Ca2+ release from 

permeabilised SH-SY5Y cells.107 It might therefore be interesting to delete this area of 

the cyclohexane ring in the Ins(l,4,5)P3 molecule and examine the consequences for 

activity. The most drastic way to accomplish this would be to synthesise the acyclic 

trisphosphate 15 (Figure 3.1).
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Figure 3.1 Deletion of C-2 and C-3 in Ins(l,4,5)P3 gives the acyclic analogue 15.

This molecule retains a vicinal bisphosphate together with an adjacent hydroxyl group 

and a third phosphate group in an arrangement which is topologically equivalent to the 

important binding motifs of Ins(l,4,5)P3. Of course, conformationally, 15 would be 

expected to be very different from Ins(l,4,5)P3, and a molecular modelling simulation 

showed that many low energy conformers were possible. However, there was a report in 

the literature that L-glycerol 1,2-bisphosphate (but not glycerol 1,3-bisphosphate) could
>y, 119

release Ca in rat basophilic leukaemia cells at high concentrations (EC50 = 1.9mM). 

Furthermore, 2,3-diphosphoglycerate has been reported to be a weak competitive 

antagonist of Ins(l,4,5)P3 binding in rat cerebellar microsomes (IC50 = 400jUM)175 and, 

more recently, in calf cerebellar Ins(l,4,5)P3 receptors.176 This last observation implies 

that 2,3-diphosphoglycerate was recognised (albeit with very low affinity) by the
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Ins(l,4,5)P3 binding site and yet, perhaps as a result of its flexibility, was unable to 

cause the conformational changes in the Ins(l,4,5)P3 receptor that result in opening of 

the ion channel. If it was possible to obtain a similar, or improved antagonist effect with 

15, then it might be possible to improve the binding affinity of the antagonist by further 

modifications. *

The acyclic analogue 15 can be related retrosynthetically to L-tartaric acid, but it 

was soon found that a more suitable starting material, (2S,3S)-(+)-2-benzyloxybutane- 

1,3,4-triol was commercially obtainable (Fluka), and could be used to synthesise 15 in 

only two steps. As this triol was readily available, the route would also provide an 

opportunity to evaluate a novel phosphitylating agent, bis-(4-chlorobenzyloxy)-iV,iV- 

diisopropylaminophosphine (Figure 3.2) which had been developed for the preparation 

of phosphorylated amino acids and peptides.177 The advantages claimed for this reagent 

were that it is a solid, which is easy to handle, and that the 4-chlorobenzyl groups 

increased the crystallinity of the phosphorylated products, which are often oils and 

therefore difficult to purify.

CI-BnO

CI-BnO

( J -I

1 -

P -N

H 'OBn

(2S,3S)-(+)-2-benzyloxy- 
1,3,4-butanetriol

1H- tetrazole Cl
'OBn

trisphosphite intermediate 

% b  = 6Jbc= 1.5 Hz

Na / liquid NH3

'OH ''OBn

15 16

Figure 3.2 Synthesis of acyclic analogue 15. Bn-Cl = 4-chlorobenzyl.

* For example, the 2'-AMP structure of the adenophostins appears to confer a hundred-fold increase in 
affinity for the receptor relative to analogues lacking this structure (See Chapter 5). Might it therefore be 
possible to design an acyclic analogue incorporating features of adenophostin, which would bind with 
high affinity, but not release Ca2+?
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The triol was phosphitylated using bis-(4-chlorobenzyloxy)-A,A- 

diisopropylaminophosphine / l//-tetrazole in dichloromethane. The 31P NMR spectrum 

of the intermediate trisphosphite triester showed very small 5/pp spin coupling constants 

(1.5 Hz), and unexpectedly, a 6/ pp coupling of approximately the same magnitude was 

present. Thus, the 31P NMR spectrum appeared as two doublets and a triplet. Oxidation 

gave the trisphosphate triester 16 which, disappointingly, was found to be an oil. 

Deprotection using sodium in liquid ammonia was successful, although the yield was 

low (42%) after purification by ion-exchange chromatography to give 15 as its 

triethylammonium salt.

3.1.1 Biological Evaluation

The acyclic trisphosphate 15 was tested for ability to release 45Ca2+ from permeabilised 

rabbit platelets. Not surprisingly, it showed no effect over the usual concentration range 

(0 to \00fiM ) although slight 45Ca2+ release was observed (19 ± 3.8%) at the highest 

concentration used (300jUM). More significantly, 15 showed no ability to inhibit 

Ins(l,4,5)P3 -induced 45Ca2+-release ( I f jM Ins(l,4,5)P3 ), and the slight 45Ca2+-release 

effect at high concentrations was additive with the effect of Ins(l,4,5)P3. Thus, 15 

seemed to be acting as a very weak agonist, similar behaviour to that reported for L- 

glycerol 2,3-bisphosphate. It was decided not to pursue the investigation of acyclic 

analogues any further, and binding studies were not carried out.

These results suggest that a particular, relatively rigid, spatial arrangement of 

phosphate groups is required for recognition by the Ins(l,4,5)P3 receptor. It might be 

reasoned that, although the acyclic analogue is capable of attaining the required 

conformation the suitable conformers are of relatively high energy, and are therefore 

present in very small amounts. An alternative interpretation is to invoke a more 

dynamic, induced-fit model, in which a flexible arrangement of phosphate and hydroxyl 

groups (even if it does mimic the appropriate binding conformation) will always be 

incapable of participating in a sequence of co-ordinated protein-ligand interactions 

which together constitute the process of ligand binding.

An examination of the ability of 15 to inhibit phosphorylation of Ins(l,3,4)P3 by 

Ins(l,3,4)P3 5/6-kinase showed that it was not recognised by the enzyme. The 

interaction of 15 with 5-phosphatase is under evaluation.
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3.2 Five-membered Ring Analogues of Ins(l,4,5)P3.

Returning now to the possibility of deleting part of the Ins(l,4,5)P3 molecule, an 

approach based on ring-contraction might be more successful. In particular, a five- 

membered ring Ins(l,4,5)P3 analogue that maintained the important recognition features 

and the conformational rigidity of Ins(l,4,5)P3, but lacked any equivalent to positions 2 

and 3 of Ins(l,4,5)P3 might still be active. Of course, this ring-contracted version of 

Ins( 1,4,5)P3 would have to include an equivalent of the critical 4,5-bisphosphate feature, 

together with a surrogate for the important 6-hydroxyl group. A third phosphate group in 

a position corresponding to the 1-phosphate of Ins(l,4,5)P3 should enhance binding. The 

simplest version of this is shown in Figure 3.3.

Figure 3.3 Deletion of the 2- and 3-hydroxyl groups of Ins(l,4,5)P3 to give a five-

The prospect of such a five-membered ring analogue was enticing because, despite the 

many modifications made to Ins(l,4,5)P3 in the past, the requirement for a six- 

membered ring had never been questioned. Even in the adenophostins (see Chapter 5), 

which differ in many respects from Ins(l,4,5)P3, the important 3,4-bisphosphate/2- 

hydroxyl triad, analogous to the 4,5-bisphosphate/6-hydroxyl arrangement of 

Ins(l,4,5)P3, is contained within a six-membered pyranoside ring.

3.2.1 A Route to Five-Membered Rings from Glucose

This minimal structure did not seem to be easily accessible synthetically, and it was 

questionable whether the time and effort likely to be involved in developing a route was 

justified. At around this time a simple route to highly functionalised optically pure
178vmy/cyclopentanes from various carbohydrates was disclosed by Ito et al. The method 

involved a zirconium-mediated diastereoselective ring contraction of vinyl carbohydrate 

derivatives. Two examples are shown in Figure 3.4.

* Note that the five-membered analogue shown in Figure 3.3 could be regarded as a conformationally- 
restrained analogue of the (inactive) acyclic analogue 15.

OH

HOHO

membered ring analogue.
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Figure 3.4 Diastereoselective ring contraction of vinyl carbohydrates using the 
zirconocene equivalent “Cp2Zr” 178 (see text).

This prompted us to consider the feasibility of synthesising analogue 17. Notice that 17 

includes an hydroxymethyl group, which also occurs in adenophostin A (Chapter 5). 

Retrosynthetic analysis (Figure 3.5) showed that the required protected carbohydrate 

was the a-methyl-D-glucopyranoside derivative 18, and it turned out that a colleague had 

already developed a route to this compound as part of a separate project. The 

appropriately protected pyranoside 18 was synthesised in 4 steps from a-methyl-D- 

glucopyranoside by this colleague.179

PMBO-

PMBO^
PMBO-

PMBÔ
PMBO-Glucose

OMe OMe
18

Figure 3.5. Retrosynthetic analysis suggests that the five-membered ring Ins(l,4,5)P3 
analogue 17 might be synthesised from glucose via the protected a-methyl-D- 
glucopyranoside derivative 18.

3.2.2 Ring Contraction

The synthesis of the critical vinylcyclopentane derivative 21b is shown in Figure 

3.6. Swem oxidation of 18 with DMSO/oxalyl chloride gave the aldehyde 19. This 

aldehyde was anticipated to be unstable and aqueous work-up was avoided. Instead the 

crude product was simply loaded onto a short column of silica and then eluted with ethyl 

acetate/hexane. Evaporation of solvents gave a yellow oil which was then used without



further purification. Wittig methylenation proceeded smoothly to give the required vinyl 

carbohydrate 20 in 75% overall yield from 18. The ring contraction was carried out

with Cp2Zr(«-Bu)2 (prepared in situ from zirconocene dichloride and 2 equivalents of n- 

butyllithium), followed by BF3#OEt2 in THF.

“Cp2Zr”/THF then BF3*OEt2, -78°C to r.t. Bn = benzyl, PMB = p-methoxybenzyl.

The authors178 propose a reaction mechanism (Figure 3.7) based on an NMR 

study of the reactive allylic zirconium intermediate, suggesting that the BF3*OEt2 

functions to accelerate the elimination of a methoxyl group by co-ordination to the 

methoxy oxygen of this intermediate. This gives two possible oxacarbenium ion 

transition states, one of which is of higher energy due an unfavourable steric interaction 

involving the protecting group at position 4 of the starting vinylpyranoside and a 

cyclopentadiene ring. The diastereoselectivity of the ring contraction is thought to 

originate in this energy difference. The stereochemistry of the new chiral centres in the 

product is thus strongly influenced by the stereochemistry at position 4 and the nature of 

the substituent. In this respect it was expected that a p-methoxybenzyl protecting group 

at this position would exert a similar influence to a benzyl group.

using the method described by Ito et al.,m  in which the vinyl carbohydrate is treated

OH o

PMBO
PMB

PMBO^
PMBO-

OMe
18

OMe 19

PMBO
PMB

OMe
20

in

PMBO- 
PMBO—t + PMBO-

PMBÔ i
BnO

21a
(<5%)

21b
(46%)

Figure 3.6 Synthesis of the vinylcyclopentane intermediate 21b.
i) DMSO, (COCl)2, CH2C12 then Et3N, -60°C, ii) CH3PPh3, K O B u, THF, iii)
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BnO BnO H OMeOMe
Allylic zirconium
intermediate

PMBO//
kOPMB

PMBO""

BnO'"
T ransition 

states

Low energy High energy

PMBO-
PMBÔ <

PMBO- 
PMBO—t

21b 21a

Figure 3.7 Proposed mechanism for the zirconium mediated ring-contraction 178 applied 
to the formation of the two vinylcyclopentanes 21a and 21b.

One complication encountered, however, was that gradual loss of p- 

methoxybenzyl protecting groups after the addition of BF3»OEt2 became a competing 

reaction. Nevertheless, the major product was obtained in fair (46%) yield as a waxy 

solid, together with a small amount of another product which had a very similar Rf, but 

could be isolated by careful chromatography, and then crystallised. The two products 

had almost identical infra-red spectra, but very different NMR spectra and optical 

rotations. It seemed likely that the two products were the diastereoisomers 21a and 21b, 

the minor isomer being the kinetically disfavoured product resulting from collapse of 

the higher energy pseudochair transition state.

3.2.3 Assignment of Structures

At this stage it was not known which of the two products was the required structure 21b 

although, on the basis of the mechanistic argument above, it seemed likely that 21b 

would be the major product.
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1 13The H and C NMR spectra of this material closely resembled those obtained by Ito et 

al. for the related product with three benzyl protecting groups (Figure 3.4) while those 

for the minor product did not. However, Ito et al. did not isolate any of the minor 

product in the contraction of their glucopyranoside derivative, and so no data were 

available for comparison. X-ray crystal structures were out of the question, as the major 

product was a wax, and the other could be crystallised only with difficulty. However, the 

fact that we did have both diastereoisomers, meant that an NOE study was particularly 

appropriate.

JH - !H COSY NMR spectra were first obtained for both isomers and used to 

assign the ring protons in each case. The ID *H NMR spectra, with the assignments are 

shown in Figure 3.8. A phase-sensitive 2D-NOESY was then obtained for the major 

product. Evidence from the 2D-NOESY was not conclusive. A definite strong NOE was 

seen between H-4 and H-5, for example, confirming that the substituents on the new C- 

C bond are cis, but this was compatible with either structure. All the expected strong 

NOEs, e.g. within the p-methoxybenzyl rings, within the vinyl group and between the 

ring protons at protected positions and the CH2 protons of their respective protecting 

groups were visible, but other interactions within the five-membered ring were not clear.

The relative stereochemistries of 21a and of 21b were finally confirmed by NOE 

difference NMR spectroscopy. In each case, the H-5 proton was selectively irradiated 

and the NOE enhancements of the other ring protons were measured. The results are 

shown in Figure 3.9. This time, the expected NOEs could be seen, although there were 

some problems due to obscuring of signals by the p-methoxybenzyl methyl groups. 

However, the major product did indeed appear to be 21b. The critical observations were 

the existence of an H-2/H-5 interaction in 21b but not 21a, and an H-l/H-5 interaction 

in 21a, but not 21b. This example illustrates the value of having both possible products 

when assigning structures on the basis of NOE experiments. The failure to observe an 

NOE, for example, is not in itself sufficient evidence for a particular structure. 

However, the observation of an NOE between two protons in one molecule, although 

not between the equivalent protons in another closely related structure, carries much 

more weight.
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Figure 3.8 1H-1H NMR spectra of vinylcyclopentanes 21a and 21b (400 MHz, CDCI3)
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Figure 3.9 Results of NOE difference NMR spectroscopy of the diastereoisomeric 
vinylcyclopentanes 21a and 21b. Positive NOEs to H-3 and/or H-4 were observed for 
21a, but could not be quantified due to overlap of these signals with one another and 
with OCH3 of PMBs.

3.2.4 A Prototype Vinylcyclopentane-based Analogue of Ins(l,4,5)P3

At this stage, oxidative cleavage of the vinyl group and further 

protection/deprotection steps would be required to give the triol precursor for the target 

trisphosphate 17. It was decided, with a relatively small amount of the ring-contracted 

intermediate 21b in hand, to consider making the prototype compound 22, which retains 

the vinyl group, and then to evaluate it biologically before continuing further with the 

synthesis of 17.

PMBO'
PMBO^

BnO  ► OH

21b 22

Figure 3.10 The intermediate 21b could be converted to 22 in only three steps.

Molecular modelling showed that the vinyl group of 22 would be expected to 

occupy a position in space close to that of the axial 2-OH of Ins(l,4 ,5)P3, and it is 

known that bulky substituents are tolerated in this region.180 It therefore seemed logical 

to produce the immediately attainable trisphosphate 22, and to find out whether this 

prototype molecule retained any biological activity, before attempting the more lengthy 

synthesis of 17. If trisphosphate 22 did prove to be active, then the vinyl group of 

intermediate 21b would provide a starting-point for modification to provide a variety of 

functional groups, including the original target trisphosphate 17. Should this prototype 

prove to be totally inactive however, then the value of making other five-membered ring 

analogues might be called into question.



Removal of the p-methoxybenzyl protecting groups from the major product 21b 

by acid hydrolysis gave the triol 23. Phosphitylation using bis-(benzyloxy)-N,Af- 

diisopropylaminophosphine and 1/7-tetrazole, followed by oxidation of phosphites with

constant of 6.7 Hz [cf. 2.9 Hz and 3.4 Hz for precursors of Ins(4 ,5)P2181 and 

Ins(l,4 ,5)P3182 respectively], presumably reflecting the altered geometry of the P(III)- 

P(III) interaction in a five-membered ring.

Figure 3.11 Conversion of 21b to the prototype five-membered ring analogue 22. 
i) M HCl/EtOH 1:2, A, 3h, 87%; ii) a) Pr'2NP(OBn)2, lH-tetrazole, CH2C12 b) m-CPBA, 
-78°C, 82%; iii) Na/ liquid NH3, -78°C, 58%.

The !H-coupled 31P NMR spectrum of the trisphosphate triester 24 (Figure 3.12) 

showed a surprising feature. In previous compounds of this type, which were all based 

on six-membered frameworks, the signals for the three phosphorus atoms appear as 

sextets. This pattern arises from heteronuclear Vhp couplings to the four protons in the 

benzyl CH2 groups and also to the single cyclitol ring proton at the position of 

phosphorylation. As these five protons are all chemically inequivalent, the splitting 

pattern is strictly a ddddd, but because the coupling constants are usually similar, each 

signal approximates to a sextet. In the spectrum of 24, one of the three phosphorus 

atoms appears as a doubled sextet. The extra splitting (approximately 2.7Hz) must arise 

from a long-range 31P -*H coupling, probably related to the novel geometry of the five- 

membered ring, although it was not possible to locate this coupling in the complex *H

o i
m-chloroperoxybenzoic acid gave the fully protected trisphosphate 24. P NMR 

spectroscopy of the intermediate trisphosphite triester showed a large Vpp coupling

PMBO'
PMBO^j

BnOBnO

23 21b

ii

(BnO)2
(BnO)2PC

O BnO
■OP(OBn)2 ,jj 2q

On OPO3
OH

24 22
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NMR spectrum. A 2D phosphorus-proton COSY experiment, which has not yet been 

carried out, should be able to identify the pair of atoms involved.

(BnO)2P O - ^ - ^
(BnO)2jj>0 ^ ^ < ^ O f j ,(OBn)2

O Bn0 O
24

- 2.4- 2 .3- 2.2- 1.9 - 2.0 - 2.1

Figure 3.12 31P NMR spectrum of 24 (’H-coupled, 400 MHz, CDCI3).

Deprotection using sodium in liquid ammonia removed the seven benzyl 

protecting groups, leaving the vinyl group intact. Purification by ion-exchange 

chromatography of the crude product gave the trisphosphate 2 2 , which was isolated as 

the triethylammonium salt and quantified by phosphate assay. A 'H-coupled 31P NMR 

spectrum of 22 showed the expected three doublets. The long-range heteronuclear 

coupling seen in the spectrum of its protected precursor had now disappeared.

3.2.5 Biological Evaluation

Trisphosphate 22 was examined for Ca2+ mobilising activity at the platelet Ins(l,4 ,5 )P3 

receptor using fluorescence techniques, and also using saponin-permeabilised platelets 

loaded with 45Ca2+ It was found to be a full agonist, around 65-fold weaker than 

Ins(l,4 ,5 )P3 (Figure 3.13) and the effect was inhibited by addition of heparin.
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Figure 3.13 45Ca2+-release by 22 from permeabilised rabbit platelets (n=2).

These results demonstrated for the first time that potent Ins( 1,4 ,5 )P3 receptor-mediated 

Ca2+ mobilisation does not necessarily require a six-membered ring. A smaller ring 

phosphate that retains crucial recognition elements of Ins(l,4 ,5 )P3, i.e. three 

appropriately orientated phosphates and a surrogate for the 6 -hydroxyl group, is still 

recognised by the Ins(l,4,5)P3 receptor.

The Ca2+-releasing properties of 22 in SHSY-5Y cells and its interaction with a 

cloned 3-kinase are currently under investigation. As an optically pure analogue whose 

frarcs-bisphosphate has the d-4,5-configuration, we would not expect it to interact with 

D-Ins(l,3 ,4 )P3 5/6-kinase (Section 1.9.4), and biological testing has now confirmed that 

this enzyme does not recognise 2 2 .

3.3 Attempted Synthesis of Hydroxymethyl Analogue 17

It was not clear at this stage whether the considerably reduced potency of 22 

relative to Ins( 1,4 ,5 )P3* was related to the presence of the vinyl group or was a necessary 

consequence of the reduced ring size. In the five-membered ring, for example, 

molecular modelling shows that the torsion angle corresponding to 0 4 -C 4 -C 5 -0 5  of 

Ins(l,4,5)P3 is expected to be larger,1 and the relative position of the 1-phosphate group 

is altered. Increasing steric bulk at the 3-position of Ins(l,4 ,5 )P3 (see Chapter 5) reduces

* Strictly, 22 should be compared to D -3-deoxy-Ins(l,4 ,5)P3, which is reported to be 4-fold  weaker in Ca2+ 
release and 6-fold  weaker in binding than In s(l,4 ,5 )P 3.107
f The effect o f  increasing this torsion angle on biological activity could be explored by the synthesis o f  
cyclohexene-based analogues (see section 4.5.2)

81



affinity for the receptor, and D-3-MeO-Ins(l,4 ,5)P3 is 150-fold weaker in Ca2+-release 

and 50-fold weaker in binding than Ins(l,4 ,5)P3183 while steric bulk at the axial position 

2 is well-tolerated. As the molecular modelling of 22 showed its vinyl group to occupy 

an area of space somewhere between positions 2 and 3 it was difficult to predict the 

extent of its effect. However, having demonstrated reasonably potent activity for the 

prototype 22, the next step was to synthesise and evaluate the 

hydroxymethylcyclopentane trisphosphate 17.

The synthesis of 17 would require oxidative cleavage of the vinyl group in 21b 

together with a number of protection/deprotection steps before phosphorylation and 

final deprotection. However, the intermediate 21b was by now in short supply, and so it 

was decided to attempt a short-cut by cleaving the vinyl group of the phosphorylated 

intermediate 24 with osmium tetraoxide/ sodium metaperiodate followed by sodium 

borohydride.

A solution of 24 in ether was treated with an aqueous solution of osmium 

tetraoxide and sodium metaperiodate.184 A TLC obtained 3 hours after addition of the 

OsCVNalCU mixture showed only highly polar products together with one spot at longer 

Rf. What was worse, this product, which was assumed to be the aldehyde (although 

worryingly, it did not stain with DNP) appeared to be diminishing with time. When 

sodium borohydride was added the spot was unaffected. The reaction had obviously 

failed, and isolation of the only non-polar product by flash chromatography showed it to 

be a small amount of the Wc-diol 25 (the stereochemistry at the position marked * is not 

established).

It seems, therefore that the initial dihydroxylation of the double bond had 

occurred, with the OsC>4 approaching exclusively from one face to give the glycol 25. 

Presumably, 25 would then be cleaved over a period of hours, by the metaperiodate to 

give the aldehyde, hence the gradual diminution of the corresponding spot in the TLC. 

However, as no aldehyde was seen, it is tempting to conclude that it was unstable, and 

rapid conversion to polar products, with loss of phosphate esters had occurred.

82



OH

O
H \  ?\ y —OH

(Bn0)2P 0 - 7 ^ ^ /  0s04 (Bn0 )2P0 7 ^ ^ /
(BnO)2[J O ^ ^ < ^ .o P (O B n )2  ► (Bn0)2j J 0 ^ ^ ^ 0 P ( 0 B n ) 2

O Bn0 g o Bn0
2 4  2 5

O

OP(OBn)2

Figure 3.14 Unsuccessful attempt at oxidative cleavage of the vinyl group in 24

3.3.1 Improved Route to the Hydroxymethyl Analogue

It would therefore be necessary to synthesise more ring-contracted intermediate 

21b and then carry out the cleavage of the vinyl group prior to phosphorylation. 

However, at about this time, a more direct route to 17 became available. A recently 

reported samarium (II) iodide-mediated ring contraction185 could be used directly on 

aldehyde 19 to give the diol (Figure 3.15) required for the synthesis of 17. The route 

would be far shorter than that via the vinylcyclopentane intermediate. The synthesis of 

17 by this new method has now been successfully carried out by a colleague.

The vinylcyclopentane trisphosphate 22 and the hydroxymethyl analogue 17 

were compared for release of 45Ca2+ from permeabilised Jurkat T-lymphocytes (the 

rabbit platelet assay was no longer available). As expected, 17 showed greatly increased 

activity compared to vinylcyclopentane analogue 22, being only two to four-fold weaker 

than Ins( 1,4 ,5)P3 in this assay.

Sm l2-THF, HMPAPMBO
PMBO

Bu OH OHBnO I 

1 9  0 M e
BnO

OH

OPO.
OH
1 7

.185Figure 3.15 Sml2-mediated ring-contraction of an aldehyde provides a rapid route to 
the diol required for the target trisphosphate 17.
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It is not yet clear whether this enhancement of activity in the hydroxymethyl 

analogue 17 is due simply to the removal of the hydrophobic vinyl group, or whether the 

primary hydroxyl group engages in favourable interactions with the Ins(l,4 ,5 )P3 receptor 

binding site. Another possibility is that the hydroxymethyl group influences the 

orientation of the nearby phosphate group by intramolecular hydrogen bonding. A 

molecular modelling simulation showed that, in many low energy conformations of both 

Ins(l,4 ,5 )P3 and 17, the 4-phosphate group of Ins(l,4 ,5 )P3 and its equivalent in 17 did 

form H-bonds to the neighbouring hydroxyl (Figure 3.16), although it is difficult to say 

how significant such intramolecular interactions may be in solution and at the receptor 

binding site.

Figure 3.16 Low-energy conformations of Ins(l,4 ,5 )P3 and 17 show intramolecular H- 
bonding interactions. (See Experimental for details of modelling).
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4 A Conformationally Restricted Analogue of Ins(l,4,5)P3

4.1 Design

It was argued in Section 1.11 that it might be possible to gain more information about 

the Ins(l,4 ,5)P3 receptor binding site by studies of conformationally restricted 

analogues. A problem inherent in the use of this strategy is that it is not possible to 

achieve the desired constraint without altering the molecule in some other way. It is 

likely that steric bulk will be added, for example, and that charge distribution and 

hydrogen bonding interactions will be disrupted. The ideal is to constrain some part of 

the molecule, which is thought to be significant in its binding to the receptor, in such a 

way as to minimise the disturbance to other regions that are known to be important for 

activity. This may be difficult to achieve, and, should the molecule prove to be inactive, 

it is not possible to infer with certainty that its inactivity is related to its conformational 

rigidity per se.

Considering now the Ins(l,4,5)P3 molecule, it would be interesting to constrain 

the orientation of one of the phosphate groups. Apart from a study of the naturally 

occurring inositol l:2-cyclic,4,5-trisphosphate,186 which mobilises Ca2+, and the 

synthetic inositol l-phosphate-4,5-pyrophosphate,187 which was inactive, this approach 

had not yet been explored for Ins(l,4 ,5)P3. In the light of the discussion above, it might 

be particularly interesting to constrain the 4- or 5-phosphate group. To do this, we 

would need somehow to attach it to an adjacent position (Figure 4.1). Note that in the 

two analogues shown, the equivalent of the hydroxyl group at position 2 is equatorial 

rather than axial. This considerably simplifies the synthesis, as will be seen later. It was 

thought unlikely that the inversion of position 2 would significantly reduce activity, as 

jcy//o-Ins(l,2,4)P3 106 is almost equipotent with Ins(l,4 ,5)P3. Studies have shown that 

the Ins(l,4 ,5)P3 receptor is intolerant of added steric bulk at position 6 92 and that 

deletion of the hydroxyl group at 6 also reduces activity by a factor of 70.109 On the 

other hand, the Ins(l,4 ,5)P3 receptor can accommodate slightly increased bulk around 

the 3-position188 and what is more, 3-deoxy-Ins(l,4 ,5)P3 is highly active.107,108

85



A Constrained 4-phosphate B Constrained 5-phosphate

Figure 4.1 Two cyclic phosphate analogues of Ins( 1,4 ,5)P3

Finally, constraining a phosphate group in this way would necessarily result in a 

decrease of negative charge on the constrained phosphate. Now NMR studies have 

shown that the binding affinity of Ins(l,4,5)P3 to its receptor correlates most closely 

with the ionisation state of the 5-phosphate group.189 Taken together, then, these 

observations suggested that the initial target should be structure A, in which the 4- 

phosphate group is constrained.

There are two possible epimeric molecules corresponding to structure A, and 

these are shown in Figure 4.2. When molecular modelling studies of Ins( 1,4 ,5)P3 were 

carried out, the energy-minimised structures were consistently found to resemble the 

trans-fused structure 26, in which the equivalent of the P 4-04 -C 4-H 4  torsion angle* is 

positive and gauche, more than its ds-fused epimer.

OPO-
OHHO'

OPO-

O'

OPO-
OHHO'

OPO-

c/s-fused trans- fused

Figure 4.2 Two epimeric cyclic analogues of Ins(l,4 ,5)P3. The phosphate group 
equivalent to the 4-phosphate of Ins(l,4 ,5)P3 is constrained in one of two different 
orientations.

* Energy-minimised conformations of Ins(l,4,5)P3 all had a P 4-04-C 4-H 4 torsion angle between 0° and 
+60°, but the size of the angle appeared to depend on the way in which the charges on the phosphate 
groups were simulated, on the treatment of the dielectric constant of the medium, and on whether the 
minimised structure showed intramolecular H-bonding. However, structures resembling the cw-fused 
epimer were never seen.
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This arises because, at least in these simulations, the dominant factor in determining the 

conformation of the 4- and 5-phosphates is electrostatic repulsion. In some energy- 

minimised structures (e.g. Figure 3.16) a hydrogen-bonding interaction between the 4- 

phosphate and the 3-OH group was also seen, further stabilising a splayed arrangement 

of phosphate groups.

The decision was therefore made initially to develop a route leading to 26, in 

which the two rings of the target bicyclic system are fused in a trans sense. Ideally the 

route should be capable of modification to give the cw-fused epimer, if required, so that 

the biological properties of the two epimers could be compared. Retrosynthetic analysis 

of analogue 26 led to a symmetrical precursor which could, in turn, be synthesised from 

myoinositol orthoformate (27).

j — OH

^  ÔH

OH

■OH
OH

OH OX
OX

OH
myo-inositol orthoformate

Figure 4.3 Retrosynthetic analysis of the cyclic analogue 26 suggests a synthesis from 
myoinositol orthoformate.

4.2 Synthesis

The successful synthesis of 26 is shown in Figure 4.4. It has the advantage that the 

symmetrical nature of the intermediates is maintained well into the synthesis. This 

simplifies the interpretation of the NMR spectra, particularly for the orthoformate 

derivatives, whose ^  NMR spectra can be complicated by high multiplicity of the 

signals due to long-range couplings, and the fact that all vicinal couplings are of similar 

magnitudes, making signals difficult to assign.
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Figure 4.4 Synthesis of conformationally restrained analogue 26 
i) NaH (2.1equiv.), PMBC1 (2.0 equiv.), DMF; ii) DMSO, (COCl)2, CH2C12, -60°C then Et3N; 

iii) CH3PPh3Br, f-BuOK, THF, reflux; iv) a) 9BBN-H, THF, 50°C b) H20 2, OH'; v) 1M 
HCl/MeOH 1:10, 50°C; vi) C6H5CH(OMe)2, DMF, p-TsOH, vii) NaH, BnBr, DMF; viii) 1M 
HCl/THF/MeOH 1:5:5, reflux; ix) a) BnOP(NPr'2)2, ltf-tetrazole, b) m-CPBA, -78°C; x) DDQ, 
CH2C12, H20 ; xi) a) (BnO)2PNPr'2, l//-tetrazole, b) m-CPBA, -78°C; xii) Na/liq NH3 PMB = p- 
methoxybenzyl; Bn = benzyl; All asymmetrical compounds are racemic.

It was intended that the methylenation step would be carried out using a Wittig 

reaction or by the use of Tebbe's reagent.190 Difficulties had been reported in the use of 

Wittig reactions on inososes but apparently these could be overcome by introducing 

conformational restraint,191 and the rigid structure of ketone 29 should be particularly
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suited to this. Furthermore, it might be possible to exploit the structure of alkene 30 so 

as to determine the stereochemistry at the branch-point with high selectivity.

4.3 Synthesis of a Versatile Ketone Intermediate

p-Methoxybenzyl groups were chosen to protect positions 4 and 6 of myo­

inositol orthoformate. The protecting groups at these positions were required to be of a 

semi-permanent nature and although, like the orthoformate ester, these groups are acid- 

labile, it was known that an orthoformate ester could selectively be cleaved in their 

presence.83 Allyl groups, for example, were not suitable, because a hydroboration 

reaction might be required at a later stage. One route to the 4,6-di-O-alkylated 

compound 28 would be selectively to protect myo-inositol orthoformate at position 2 

(e.g. with terf-butyldimethylsilyl chloride), carry out the p-methoxybenzylation, and 

then remove the protection at position 2. This strategy has been used for the synthesis of
1 7Q 1 ™4- and 6- substituted myo-inositol orthoformates. * However, the overall yield after 

these three steps is low and this arises mainly from inefficiency in the introduction of 

the silyl protecting group. There is a report in the literature that, benzylation of myo­

inositol orthoformate using two equivalents of sodium hydride and two equivalents of 

benzyl bromide gave a mixture of mono-, di- and tri-O-benzylated orthoformates, with 

the 4,6-dibenzylated product as the major product (27% yield).125 It was felt that, if this 

yield could be improved, then this strategy would be preferable to the three-step route, 

particularly for large-scale production of 28.

Figure 4.5 Regioselective alkylation of myo-inositol orthoformate followed by Swem 
oxidation gives the strained ketone 29.

Reaction of 27 with 2.1 equivalents of p-methoxybenzyl chloride and 2.3 

equivalents of sodium hydride gave the symmetrical 4,6-disubsituted alcohol 28 as the 

highly crystalline major product, easily recognisable from the NMR spectra by its plane 

of symmetry. With careful work-up and chromatography it was possible to increase the 

yield of 28 to around 40%. The monosubstituted by-product was found to be exclusively 

the axially substituted diol, and this could be recycled to give more 28. No products 

substituted at position 2 were detected, apart from a small amount of the tri-O-p-
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Q"3
methoxybenzyl ether. Alcohol 28 has obvious application as a precursor for position 

2-modified analogues of Ins(l,3,4 ,5,6)P5, and for the synthesis of position 2-modified 

Ins(l,4 ,6)PS3 analogues, potential partial agonists at the Ins(l,4 ,5)P3 receptor (see 

Chapter 6).

Swem oxidation of 28 using DMSO/oxalyl chloride was expected to give the 

inosose 29, and the reaction appeared to be successful, as judged by TLC. However, 

after aqueous work-up, an infra-red spectrum of the product showed two bands at 3540 

and 3440cm'1 suggesting two alcohol groups, together with a band at 1760cm'1, 

corresponding to the expected ketone. The alcohol bands were not due to starting 

material, which showed a single band at 3500cm'1. The NMR spectrum was 

confusing, showing a mixture of two compounds. Eventually it was realised that the 

desired ketone was present, but had been partially converted into the corresponding 

gem-diol (ketone hydrate 29a, Figure 4.6) in the work-up. Part of the sample was 

refluxed in toluene, with azeotropic removal of water, and the IR spectrum then showed 

that the bands around 3500cm"1 had disappeared. *H NMR and 13C NMR spectra were 

then obtained, and clearly showed the product to be the symmetrical ketone 29.

The gem-diol 29a could also be isolated by allowing a solution of the ketone in 

dioxane with a few drops of water to stand for a few days, followed by evaporation and 

re-crystallisation. The !H NMR spectrum of 29a showed the two OH protons, 

exchangeable in D2O within a molecule that maintained the same symmetry as the 

corresponding ketone. The chemical shifts of these protons were very different (5 3.82 

and 8 4.97, CDCI3). It is likely that the signal at 8 4.97 corresponds to the proton of the 

axial hydroxyl group, as the higher-field signal is similar to that seen in the spectrum of 

28, and the corresponding hydroxyl proton of the scyllo-inositol orthoformate derivative 

63 (Chapter 7) is also deshielded. The 13C NMR spectrum showed the unusual feature of 

a quaternary carbon resonating at 8 88.67, corresponding to C(OH)2-

The ease of hydration of ketone 29 may be attributable to strain effects in its 

rigid cage-like structure, resulting in destabilisation of sp2-hybridized carbon relative to
3 * 1sp . The unusually high stretching frequency of the C = 0 bond in 29 (1760cm' ) is 

further evidence of ring strain. Ketone 29 also reacted with methanol at room 

temperature to give a single hemiketal. The configuration of this product at C-2 has not 

yet been rigorously established, but it seems likely that it is 29b, with the O-methyl 

group equatorial. Of the two alternatives, this epimer is sterically less congested, and
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therefore likely to be the more thermodynamically stable. In the *£1 NMR of 29b, the 

singlet corresponding to the hydroxyl proton is found at very low field (S  4.92, CDCI3), 

an observation which may be interpreted as evidence that hydroxyl group is axial, thus 

supporting the structure shown.

Figure 4.6 Conversion of the ketone 29 to gem-diol 29a and hemiketal 29b

Ketone 29 is highly crystalline, and stable if kept out of contact with moisture. 

Its carbonyl group shows high reactivity, and the fact that one face is sterically hindered 

by the p-methoxybenzyl groups, while the other is highly exposed to attack from a 

variety of reagents should make it a useful intermediate for stereoselective modification. 

An example of this is its use in the synthesis of scyllo-inositol 1,2,3,5-tetrakisphosphate 

(Chapter 7).

4.4 Wittig Methylenation: Observation of an Unusually Stable Intermediate.

The next step was the methylenation of ketone 29 to provide the symmetrical alkene 30. 

It was planned to attempt this transformation initially by Wittig methylenation using 

methylenetriphenylphosphine, and then if this was unsatisfactory, to try Peterson 

olefination or the (much more expensive) Tebbe reagent. In a reported synthesis of 

conduritols from L-quebrachitol, Wittig methylenation of an inosose bearing 

cyclohexylidene and methyl ether protecting groups gave very poor yields, which the 

authors attributed to steric hindrance, although Peterson olefination was successful.192 A 

comparative study of the Wittig and Tebbe reagents190 claimed higher yields for the 

latter, and greater success with substrates that were sterically hindered. The strongly 

basic conditions of the Wittig reaction were not expected to be a problem, as neither 

orthoformate nor p-methoxybenzyl protecting groups are base-sensitive. Another 

important property of ketone 29 is that the protons a  to the carbonyl group are not 

acidic, being located at bridgeheads, so there is no possibility of enolisation.

In the first attempts at Wittig methylenation using methyltriphenylphosphonium 

bromide, potassium terf-butoxide as base and heating to 50°C for two hours, the yields 

were consistently low (30 to 50%). During a final attempt to improve yields, it was

MeOH

I OP MB I  
OPMB OH
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noticed that TLC of the crude product showed another polar by-product, besides 

triphenylphosphine oxide. In previous attempts, large quantities of highly polar, pale 

yellow solid material had been filtered off during work-up and discarded, assuming it to 

contain mainly triphenylphosphine oxide. However, one of the polar products stained 

purple with PMA, evidence that it contained p-methoxybenzyl groups. Some of the 

solid, still left in a Buchner funnel from the previous day’s reaction was added to THF 

and heated to reflux. It rapidly decomposed to give large quantities of alkene 30, and the 

cause of the low yields was immediately apparent. The intermediate oxaphosphetane 

formed by the reaction of ketone 29 with methylenetriphenylphosphorane was highly 

stable, and heating to 50°C was insufficient to decompose it fully within two hours. 

When the reaction was repeated, but with heating to reflux for two hours after adding 

ketone to Wittig reagent, 30 was obtained in 91% yield. In a later, large-scale run of the 

reaction, samples were taken and subjected to 31P NMR. After addition of base to 

methyltriphenylphosphonium bromide, the canary yellow ylide appeared as a peak at 

19.9 in the NMR spectrum. On addition of ketone, this was replaced by a single 

resonance at <5p -68.9, corresponding to the oxaphosphetane. A sample of this material 

was kept for 2 days at 4°C, after which time 31P NMR spectrum showed evidence of 

only slight decomposition.* The oxaphosphetane is assumed to have the structure shown 

in Figure 4.7, arising from attack at the less hindered face of the carbonyl group.

Figure 4.7 Wittig methylene of ketone 29 proceeds via a stable oxaphosphetane 
intermediate.

The orthoformate ester of 30 could be removed selectively using mild acid 

treatment to give the symmetrical crystalline triol 39. This compound has not been 

further investigated to-date.

* A detailed low-temperature study of the intermediates in the Wittig reaction193 has found that, although 
most oxaphosphetanes obtained from the reaction of aldehydes and ketones with CH2=PPh3 are unstable, 
being decomposed within a few minutes at -8°C, those derived from cyclobutanone and norbornanone 
require >0°C for conversion to the strained alkene.
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1M HCI/MeOH 
1:10, 50°C

rOPMB^CH'2
PMBO

^OH
OPMB

OPMB HO

30 39

Figure 4.8 Selective removal of the orthoformate ester gives alkene 39.

4.5 Diastereoselective Hydroboration/O xidation

The alkene 30 was converted into alcohol 31 by hydroboration/oxidation using 9-BBN- 

H followed by alkaline hydrogen peroxide solution. It was hoped that the high steric 

demands of 9-BBN-H would give good regio- and stereoselectivity in this case. The 

results were even better than anticipated, and a single product was obtained in 97% yield 

after chromatography. Although the expected structure of this product was 31, rather 

than the epimeric 31a, this could not be deduced from the NMR spectrum simply by 

inspection of vicinal coupling constants. Both structures would show only axial- 

equatorial or equatorial-equatorial couplings which are of similar low magnitude, 

together with long-range-couplings, leading to rather complex or broadened signals 

from the ring protons. It would probably be possible to use NOESY to establish the 

correct structure of the product, but there was a more immediate way.

Figure 4.9 Hydroboration-oxidation of alkene 30 with 9-BBN-H gives a single product.

many of its derivatives shows a long-range 5-bond coupling (typically around 1 Hz)

whereas in the spectrum of the scyllo-inositol orthoformate derivative 63 (Figure 4.10 

and Chapter 7), no coupling can be seen. Now the corresponding signal in the spectrum 

of the hydroboration/oxidation product was a sharp singlet. The fact that there was no 

coupling to H-2 was evidence that this proton was no longer axial, and that the product 

therefore had the desired structure 31. It is important to note that this method of

I OPMB 
OPMB

I OPMB 
OPMB

I OPMB NCH  
OPMB '

30 31 31a none detected

It has been noted that the lH NMR spectrum of myo-inositol orthoformate and

between the methylidine proton and the axial proton at C-2.129 Thus, in the *H NMR 

spectrum of 28, the methylidine proton appears as a narrow doublet with 5J  = 0.9Hz,
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predicting stereochemistry at C-2 of inositol orthoformate derivatives requires a well- 

resolved ]H NMR spectrum. In the spectra of more polar derivatives, which were 

obtained using d6-DMSO as solvent, all signals were broadened and small couplings 

were often not resolved.

doublet
, ,  5 i

t p E L n ,  1
I ° p MB I I OPMB I

OPMB , OPMB OH OPMB Mb
I WriVID II

OPMB bOPMB OHOPMB

8 1 .2 5
triplet of triplets 
J  = 10.7 Hz, 2.1 Hz

PMBO'
H O ^ ^ T ^ O H  

PMBO H I  
H

32

Figure 4.10 Determination of the structures of 28 and 32 by !H NMR.

Mild acid treatment cleaved the orthoformate ester without significant loss of p- 

methoxybenzyl groups to give the tetrol 32. The structure of this molecule can be 

identified unequivocally by inspection of the lH NMR spectrum. The inositol ring, freed 

of the constraining orthoformate ester now flips into its alternative chair conformation 

with the two /7-methoxybenzyl groups equatorial (Figure 4.10). Long-range couplings 

disappear and the signal from Hb moves to very high field (8  1.25ppm), transforming 

itself into a clear triplet of triplets. The only couplings between the inositol ring protons 

are now large, and therefore axial-axial. No doubt remained as to the structure of 32 or 

its precursor 31.

4.5.1 Ruthenium-Catalysed Dihydroxylation

The two most common reagents used for the cw-hydroxylation of alkenes are potassium 

permanganate and osmium tetraoxide, with the latter affording better yields, despite 

being both costly and highly toxic. Recently, a new “flash-dihydroxylation” method has 

been reported by Shing et al., using ruthenium tetraoxide.194 The procedure was reported 

to give rapid cw-hydroxylation of a variety of alkenes although its diastereoselectivity 

was, at the time, still under investigation. A sample of 30 was treated according to the 

published protocol, which is extremely straightforward, involving little more than
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stirring a solution of the alkene in acetonitrile with RuCh/NalC^ in water. The reaction 

was successful at the first attempt, complete within 3 minutes, and was totally 

diastereoselective as judged by NMR of the crude product. Chromatography gave a 

crystalline diol in 77% yield. It seems highly likely that the structure is 40, resulting 

from attack at the less-hindered face of the C=C bond (personal communication, Dr. T. 

K. M. Shing), but final confirmation of this will probably require NOESY. Time has not 

allowed further investigation of 40, but it has obvious possibilities as a precursor for 

novel cyclitols and derivatives. The reaction illustrates the potential of alkene 30 for 

diastereofacioselective modification, as well as the value of the ruthenium method as a 

rapid and safe alternative to osmium tetraoxide.

RuCI3/N al04

OPMB ^  I OPMB
OPMB OPMB

OH
30 40

Figure 4.11 Ruthenium-catalysed dihydroxylation of alkene 30.

The reactions described in Sections 4.5 and 4.5.1 both exploit the fact that one 

diastereotopic face* of alkene 30 is exposed while the other is very hindered. A space­

filling model of alkene 30 (Fig. 4.12) demonstrates the extreme steric hindrance of one 

face of the C=C bond by the two p-methoxybenzyl groups, while the other face is

open

OPMB ch ?  
OPMB '  2

hindered

Figure 4.12 Space-filling model of alkene 30 showing hindrance of the C=C bond.

Note that the faces o f  the C=C bond in alkene 30 are diastereotopic even though the products, 31 and 40 
are not chiral. C-2 in alkene 30 (and also in ketone 29) is therefore prostereogenic but not prochiral.
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4.5.2 Investigation of an  Alternative Route

Another route to the epimers of the alcohol 31 was also explored in parallel with the 

methylenation/hydroboration strategy described above. A Wittig reaction was used to 

convert ketone 29 into the asymmetrical enol ether 41 in 93% yield. It was thought that 

mild acid treatment could be used to hydrolyse 41 to an aldehyde (or mixture of 

aldehydes) which could then be epimerised using mildly basic conditions and reduced to 

give 31a, the precursor for the ds-fused conformationally restrained analogue.

However, a series of experiments using a range of mildly acidic conditions all 

failed to give the required aldehyde, with TLC showing complete conversion to an 

unexpectedly polar compound. Under some conditions, an intermediate could be seen as 

a spot on the TLC plate, but rapid conversion to the polar product competed with its 

formation from 41, and it could not be isolated. An IR spectrum of the product showed 

the expected strong C =0 stretching band of an aldehyde, but the frequency was low 

(1685cm 1), suggesting a,/?-unsaturation. Alcohol groups were also present. The !H 

NMR spectrum clearly showed the aldehyde resonance as a singlet at S  9.43 and the 

corresponding carbonyl signal in the 13C NMR spectrum was shielded (<5c 194.63) again 

indicating conjugation. !H and 13C NMR both suggested the structure 42, and this was 

confirmed by COSY. The proton at C-3 gave a highly distinctive doublet of

triplets in the *H spectrum, caused by a long-range 5J  coupling to H-6, and H-2 was 

strongly deshielded (8 6.54). The other vicinal couplings confirmed that the ring was 

now distorted well away from the chair conformation previously seen in saturated 

inositol derivatives.

5 “ OH 3 

42

Figure 4.13 Acid hydrolysis of enol ether 41 always results in elimination to give the 
conjugated aldehyde 42.
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Conversion of the enol ether 41 to the saturated aldehyde proved to be 

impossible. Elimination to give the conjugated aldehyde 42 always occurred, even under 

very mildly acidic conditions. When the reaction was scaled up and carried out using 1 

M HC1 in THF (1:10), it was possible to isolate a small amount of the intermediate 

previously observed in the TLCs. The intermediate was shown to be the 4-formate ester 

42a, and showed a !H NMR spectrum very similar to that of 42, except that the signal 

corresponding to H-4 was now shifted well downfield (by 1.29 ppm) establishing that 

this was the position of esterification. The distinctive singlet corresponding to the 

formate proton was at 8 8.11.

The failure to detect the saturated aldehyde 41a as an intermediate suggests that 

the elimination proceeds by a one-step mechanism (Figure 4.14) rather than a two-step 

elimination via a saturated aldehyde. The orthoformate structure holds the C-O bond in 

an axial orientation, almost at right angles to the developing double bond, and therefore 

ideally placed for elimination to occur (Figure 4.14).*

Figure 4.14 Proposed mechanism for formation of conjugated aldehyde 42. Incomplete 
hydrolysis gave the formate ester 42a.

a,/TUnsaturated aldehydes can themselves be valuable synthetic precursors, and 

42 may therefore be a useful intermediate. It was found that crystalline 42 could be 

obtained in 82% yield by heating the enol ether 41 in 1M HC1 / THF for 1 hour, and a 

large-scale synthesis would be straightforward. Treatment with sodium borohydride in 

methanol reduced the aldehyde group within 5 minutes, giving the racemic allylic 

alcohol 43 in 91% yield after crystallisation. A successful optical resolution of this 

material would provide two useful chiral intermediates, and the absolute configurations 

could easily be determined by hydrogenation to give the corresponding carbasugars, 

which are known.195

*

Note that, if this one-step elimination mechanism is valid, then there is no need to assume that the 
required saturated aldehyde 41a is itself prone to elimination. In fact elimination might be disfavoured, 
because it would have to proceed via a strained enol. It might still be possible, therefore, to make 
aldehyde 41a by oxidation of the primary alcohol, followed by epimerisation and reduction to give the 
required alcohol. This route still awaits further investigation.
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Deprotection of one enantiomer of 43, for example, would give an epimer of the 

plant growth regulator streptol. 196 In the inositol phosphate field, 43 could prove to be a 

valuable precursor for a range of deoxygenated and unsaturated inositol phosphate 

analogues. Limitations of time did not allow further exploration of these possibilities, 

some of which are now being investigated by a colleague. Having developed a highly 

efficient route to the required symmetrical tetrol 31, the priority was to continue with the 

planned route to the conformationally restricted analogue.

Figure 4.15 Reduction of the enal 42 with sodium borohydride gave allylic alcohol 43, 
one enantiomer of which is related to the plant growth inhibitor streptol. An optical 
resolution of 43 would provide a precursor for novel analogues of Ins( 1,4 ,5 )P3 .

4.6 Conversion to a Fully-Protected, Versatile Intermediate

Two protection steps were now used to produce the fully-protected 34. The racemic 

benzylidene acetal 33 was initially prepared in 70% yield by the reaction of tetrol 32 

with benzaldehyde dimethyl acetal (a,a-dimethoxytoluene) in dry DMF with a catalytic 

amount of PTSA at 70°C. However, in subsequent preparations in was found that the 

yield could be increased by applying a method described by Horton and Weckerle for 

the preparation of 2,3:4,6-di-0-benzylidene-a-D-mannopyranoside. 197 The key 

modification is simply to carry out the reaction with continuous removal of the liberated 

methanol. This can easily be achieved by fitting the reaction vessel with an air 

condenser attached to a water pump, so that the reactants and DMF are retained while 

methanol escapes, driving the equilibrium towards formation of the benzylidene acetal. 

This method was found to be faster, required a smaller excess of benzaldehyde dimethyl 

acetal, and consistently gave yields in excess of 90%.
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Figure 4.16 Protection of two hydroxyl groups in 32 as the benzylidene acetal gave 
racemic 33 which was converted to the fully-protected 34.

Benzylation under standard conditions then gave fully-protected 34. This is a versatile 

intermediate because either the benzylidene or p-methoxybenzyl groups can be removed 

chemoselectively, or the benzylidene ring can be reduced regioselectively in either 

direction (see Chapter 5). Intermediate 34 is currently being used by a colleague in the 

synthesis of a potential 3-kinase inhibitor.

4.7 Construction of the Cyclic Phosphate

The next step would be the introduction of the cyclic phosphate triester structure, strictly 

a 1,3,2-dioxaphosphorinane. There were reports in the literature of the construction of 

related structures based on carbohydrates198 and rrans-2-hydroxymethyl-l-cyclohexanol 

199,200 -n  ^  c o u r s e  0 f  stereochemical investigations, and P(V) methodologies had been 

employed. However, a more recent report201 described the synthesis of some 5- 

membered cyclic phosphate triesters of myo-inositol using the bifunctional P(IH) reagent 

benzyloxy-bis(Af,Af-diethylamino)phosphine and l//-tetrazole, followed by oxidation 

with m-CPBA. The strained 5-membered rings are generally unstable in the presence of 

nucleophiles, and this property was exploited by treating them in situ with various 

alcohols, resulting in regioselective ring-opening. It the present case, it was reasoned 

that this P(m) approach should easily be adaptable to the construction of the more stable 

six-membered cyclic phosphate. The procedures were similar to that already used in 

previous work (Chapters 2 and 3), and employed the benzyl protecting group, which 

was ideal for the planned synthetic strategy. In the event, we decided to carry out the 

cyclic phosphitylation using a slightly different bifunctional phosphitylating agent, 

benzyloxy-bis(Af,7V-diisopropylamino)phosphine,202 which was readily accessible by the 

reaction of bis(diisopropylamino)chlorophosphine with one equivalent of benzyl 

alcohol. This phosphitylating agent has been employed in the synthesis of an analogue 

of PtdIns(4 ,5)P2,202 and can be regarded as the bifunctional equivalent of the 

monofunctional bis(benzyloxy)-Af,Af-diisopropylamino-phosphine203 described in 

Chapter 2.
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The first step was to establish conditions for the selective removal of the 

benzylidene acetal from 34 with minimal loss of p-methoxybenzyl groups. It was found 

that 1M HCl/methanol at 50°C was effective, the reaction being complete within 30 

minutes, giving diol 35. Benzyloxy-bis(N,iV-diisopropylamino)phosphine was 

synthesised according to Dreef et al.202 and reaction of 35 with 1.2 equivalents of this 

reagent and 3 equivalents of l//-tetrazole gave two cyclic phosphite triesters, epimeric 

at phosphorus as expected. These intermediates were visible as two spots close together 

on the TLC plate, and also as two distinct signals at <5p 125.0 and Sp 130.4 in the 31P 

NMR spectrum. These signals disappeared and were replaced by peaks at <5p -4 .6  and <5p 

-7 .5  after addition of w-CPBA. It was possible to separate the two epimeric cyclic 

phosphate triesters by column chromatography, and isolate them as crystalline solids.
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Figure 4.17 Formation of epimeric cyclic phosphite triesters by reaction of diol 35 with 
a bifunctional phosphitylating agent. Oxidation gives epimeric triesters 36a and 36b.

The configuration at phosphorus of the two epimers was determined by 

examination of their 31P and !H NMR chemical shifts, V h c o p  coupling constants and 

P = 0  stretching frequencies. Epimers 36a and 36b can be regarded as esters of 2-oxo- 

1,3,2-dioxaphosphorinanes, and studies have been published on simple related 

compounds.198' 199, 204 In all previous studies on isomeric pairs of phosphorinanes (see 

Reference199 and references therein) the axially substituted epimer has an upfield 31P
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chemical shift. This identifies the less polar epimer (6p -7.5) as 36a and the more polar 

isomer as the equatorially substituted 36b. The P = 0  stretching frequency in the IR 

spectrum of 36b is 21cm' 1 lower than for 36a ( Vp=o 1287cm'1) confirming this 

assignment.

The /7-methoxbenzyl ethers of 36a and 36b were successfully cleaved with DDQ 

giving the corresponding diols 37a and 37b. The lH NMR spectra of all four 

compounds were assigned completely with the aid of COSY. A detailed study of 

these spectra revealed further evidence for the assigned structures. In the equatorially 

protected epimers 36b and 37b, for example, H-l and CH2-ax are deshielded, as 

expected for protons in a 2,4-diaxial relationship with a P = 0  group. These protons 

therefore resonate downfield of the corresponding protons in 36a and 37a, while the 

CH2-eq protons have similar chemical shifts in all four molecules (Table 4.1).

BnO

R = PMB 36a R = PMB 36b
R = OH 37a R = OH 37b

-j
Table 4.1 Chemical shifts and /hcop coupling constants for cyclic phosphate triesters 
36a, 36b, 37a, 37b.

Compound Chemical Shifts/p.p.m. Coupling Constants/Hz

Sp ^Hax t̂ Heq <5hi 37p-Hax 37p-Heq

36a -7.49 3.76 4.41 4.04 ~0 24.2

37a -7.27 3.81 4.43 3.86 ~0 24.4

36b -4 .56 4.03 4.39 4.32 3.9 20.4

37b -4.43 4.08 4.42 4.17 4.4 20.0

7hcop coupling constants have been used to investigate the solution conformations of 

phosphorinanes,199 and a Karplus-type relationship has been established for the HCOP 

dihedral angle and the magnitude of the coupling constant.205 Thus the coupling 

constants for 36a and 37a are consistent with a normal chair conformation, because the 

large 3/p-Heq and small 3/p-Hax values indicate an anti- dihedral angle for HeqCOP and a 

gauche dihedral angle for HaxCOP. In the equatorially protected esters 36b and 37b, the 

decrease in Vp-Heq accompanied by increased Vp-Hax is evidence for a slightly flattened
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chair conformation, or a rapidly equilibrating mixture of undistorted chair and twist-boat 

conformations. Some relevant NMR data for the four compounds are summarised in 

Table 4.1. and the 'H-coupled 31P NMR spectra are shown in Figure 4.18.
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Figure 4.18 3*P NMR spectra of 36a and 36b (162 MHz, 'H-coupled, CDCb)-
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4.8 Phosphitylation/Oxidation: An Unexpected PIII-PV Spin-Spin Coupling

The diols 37a and 37b were then phosphitylated using the monofunctional 

phosphitylating agent bis(benzyloxy)-iV,A^-diisopropylaminophosphine with 1H- 

tetrazole. This step involves the formation of a phosphite triester at a position vicinal to 

an existing phosphate triester and in each case we were able to observe in the 31P NMR 

spectrum a Vpp spin-spin coupling of 1.2 Hz between the phosphorus atoms of 

neighbouring phosphate and phosphite groups. To the best of our knowledge, such a 

long-range P(IH)-P(V) coupling has not been previously reported, although it is known 

in vicinal P(IH)-P(ni) systems. It is tempting to speculate that conformational restraint 

of the phosphate is responsible for this unusual effect, as no such coupling was observed 

in a mixed P(III)/P(V) species (Figure 4.19) leading the authors to conclude that two 

P(m) centres were necessary for the interaction.206 Oxidation with m-CPBA and 

purification gave crystalline 38a and 38b, neither of which showed any phosphorus- 

phosphorus couplings.

OBn

0^ 0-7
0"7'"—̂ 7^0Bn

BnO

37a

B n O / ^ 0 ^ 7

HO-^--^^/.OH
BnO

37b

BnO
5p

°'9r ^ / ' 0Bn
BnO, 9

b p  BnO ap

OBn Bn0 0Bn

5 Jbc = 1.2 Hz

BnO/P̂ '0'7 r
° ' 7 ^ ^ / " 0Bn

BnO, P ' ^ T ^ - ^ - o  
. p  BnO a p

BnO' OBnOBn

sJbe = 1.2 Hz

BnOi
a f '^ o '7

(BnO)2l|JO^^««« .̂o^(OBn)2
O " o

38a

B n O / O " ^
O^T'^^T'OBn

(BnO)2FjjO-̂ -̂N*/-0|J(OBn)2
O " o

38b

o
R 0 7 P OR' B nO ?Bn

v

R' = CH2CH2CI3 
R" = CH2CH2CN

OR RO OR

No coupling observed

Figure 4.19 Phosphitylation of 37a and 37b gives mixed P(]H)-P(V) intermediates, 
which both showed unusual P(m)-P(V) 5/pp spin couplings. A similar arrangement in a

OC\f\conformationally mobile system showed no such coupling.

4.9 Deprotection

The planned deprotection using sodium in liquid ammonia was first tried out on the
31protected cyclic phosphate 36a. An examination of a proton-coupled P NMR spectrum 

of the crude product showed only one signal; a doublet with a large splitting ( /  > 20Hz). 

This splitting could only have resulted from the large heteronuclear coupling to the
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equatorial proton in the 1,3,2-dioxaphosphorinane ring and therefore confirmed beyond

doubt that the cyclic phosphate structure had remained intact. The fact that no other

couplings were observed showed that the benzyl protecting group had been removed

successfully. Thus is was established that the cyclic phosphate triester could be

effectively deprotected using sodium in liquid ammonia.

The axially protected 38a was deprotected using the same procedure and

purification by ion-exchange chromatography at last gave the target compound 26 in
1  ̂1 1 ̂78% yield as the triethylammonium salt. The structure was confirmed by H, P and C 

NMR. A COSY NMR allowed all the proton resonances to be assigned

unequivocally. 26 Could also be crystallised as the cyclohexylammonium salt. A sample 

of the latter, left at room temperature for a year, showed no sign of decomposition. 

Some time later, when further supplies of 26 were required for a potentiometric study 

(see below), the equatorially protected 38b was also deblocked with equal success.

^OBn
O P(OBn)2

r"OBn
O P(O Bn)2(BnO)2PO (BnO)2P O

26

Figure 4.20 Deprotection of either epimer 38a or 38b gives the target compound 26.

The proton-coupled 31P NMR spectrum of 26 (Figure 4.21a) shows the expected 

heteronuclear spin couplings, with the phosphorus atoms in the unconstrained phosphate 

groups at positions 2 and 4 appearing as doublets with 7hp approximately 7 Hz. 

However, notice that the signal from the cyclic phosphate phosphorus atom (dp -2.76) is
■i ( i

also a doublet, with a large coupling constant ( /p-Heq = 22.5 Hz). The predicted 7hp
90Scoupling constant for a dihedral angle of 180° is approximately 23 Hz and so we can 

conclude that the angle HeqCOP is close to 180°. This suggests that the 

dioxaphosphorinane ring adopts a chair conformation as shown in Fig. 4.20 Further 

discussion of conformation, based on more detailed NMR analysis is given later in this 

section.
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Figure 4.21 ^-coupled 31P NMR spectra of the racemic conformationally restricted 
analogue 26 in D20  (162, MHz, pH~4). The inset shows the ‘H-decoupled spectrum.

Figure 4.21 also demonstrates an unusual effect: In the proton-decoupled 

spectrum (inset) the cyclic phosphate resonance at 5p -2.76 is much more intense 

(approximately three times more by integration) than either signal from the phosphorus 

atoms at positions 2 and 4. A categorical explanation for this observation awaits further 

NMR studies, but the finding that the effect disappears when the decoupler is switched
207off may suggest the involvement of heteronuclear NOEs.
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4.10 Biological Properties

Racemic 26 was examined for Ca2+-mobilizing activity at the platelet Ins(l,4,5)P3 

receptor using saponin-permeabilised platelets loaded with 45Ca2+. The results are 

shown in Figure 4.22. It appears that 26 behaves as a full agonist, although with an EC50 

around 40-70 fold higher than Ins(l,4 ,5 )P3. Assuming that only one enantiomer is 

active, this would imply a thrty-fold reduction in potency relative to Ins(l,4,5)P3.

1001
—■— hs(1,4,5)P3 (n=5) 
—o— 26 (n=3)

80-

4°C

20 -

0.01 0.1 1001 10
inositol phosphate [p IV|

Figure 4.22 45Ca2+-release by the conformationally restricted analogue 26 in 
permeabilised rabbit platelets.

Binding studies in rat cerebellar membranes (Fig. 4.23) show that the affinity of 

the analogue for the Ins(l,4,5)P3 receptor is much reduced (200 to 300-fold). The 

interpretation and possible significance of these results will be discussed later in this 

Chapter.

icon i-
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Figure 4.23 Inhibition of [3H]Ins(l,4,5)P3 binding to rat cerebellar membranes by 26.
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4.11 Protonation Sequence

A larger sample of 26 was synthesised (this time by deprotection of the equatorially 

protected epimer 38b) and used for detailed NMR and potentiometric titrations, which 

were carried out by Professor B. Speiss and his group at the Universite Louis Pasteur, 

Strasbourg.

4.11.1 Potentiometric Titration

A sample of 26 (triethylammonium salt) was first converted into the free acid and then 

titrated with potassium hydroxide solution. The titrations were carried out at 37°C in the 

presence of 0.2 M KC1, in order to mimic the intracellular medium. The potentiometric 

titration allows the calculation of macroscopic protonation constants, and for 26 the

values obtained were logA7 = 6.70 and logK2 = 5.60. These values are much lower than
208those found for Ins(l,4 ,5 )P3 under similar conditions (logA7  = 7.85, \ogK2 = 6.40). 

The Ky values allow the calculation of the percentage of each ionic species as a function 

of pH, although it is not possible at this stage to say which phosphate groups are 

protonated. In Figure 4.24 then, L represents the fully ionised species, LH the total 

monoprotonated species etc., but the actual locations of the protons in LH, LH2 and LH3 

are unknown.
100

%
LH

O □

LH.
VO
O7

3 4  5 6  7 8 9

pH

Figure 4.24 Distribution curves of various species of 26 plotted against pH. For clarity 
the charges are omitted.
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When Figure 4.24 is compared to a similar diagram for Ins(l,4,5)P3, it is evident that 

under these conditions, at physiological pH, 26 is less protonated than Ins(l,4,5)P3. 

Thus at pH 7.4, over 80% of 26 is in the fully ionised form L, while for Ins(l,4,5)P3 the 

predominant species is the monoprotonated form LH.

4.11.2 31P NMR Titration

A 31P NMR titration was now carried out under similar conditions, and accurate 

measurements of 31P chemical shifts and coupling constants were obtained over a pH 

range from 1.65 to 11.67. The phosphorus resonances of P2 and P4 were later assigned 

by performing a phosphorus-proton 2D COSY experiment. Figure 4.25 shows the 31P 

chemical shifts of PI, P2 and P4 plotted against pH. We see that the chemical shift of 

the cyclic phosphate phosphorus atom PI does not change at all over the pH range, 

implying that the basicity of the cyclic phosphate is very weak, so that it is protonated 

only at very low pH.. The chemical shifts of the phosphate atoms P2 and P4 in the two 

phosphate monoesters become progressively shielded with decreasing pH. The curves 

are monophasic, showing that P2 and P4 do not significantly interact (a similar lack of 

interaction is seen between the 1 and 4 phosphates of Ins(l,4 )P2 189). In each case, the 

change in chemical shift is related to the gain of one proton by each phosphate group as 

pH decreases (the second protonation occurs at pHs below 3).
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Figure 4.25 Chemical shifts S from 31P NMR titration of 26, plotted as a function of 

pH.
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Now the chemical shift observed for any signal S °bs is just the weighted average of the 

shifts for the protonated and deprotonated forms:

Sobs = (Ap x 5,■.„) +  (/;,„ X <5j.d) (1 )

where fit p and /• d respectively correspond to the protonated and deprotonated fractions 

at position i, and S ,-t p and <5,, d are the chemical shifts of the monoprotonated and fully 

deprotonated forms of the phosphate. But f  p + f  d = 1 , and so equation (1) becomes:

Ap = ( 5 0bs- 5 , , d ) / ( 5 , . p - 5 , . d )  (2)

Equation (2) now allows the calculation of the protonated fractions / ,  p from the 

chemical shift information. The result is shown in Figure 4.26. There is no curve for PI 

as this phosphate group is fully deprotonated {fi<p = 0) over the whole pH range.

«.P

0.6

P2P4

0.4

0.2

3 5 9 104 6 7 8

pH

Figure 4.26 Protonation fraction/, p plotted against pH for 26.

Now equations (1) and (2) are based on an assumption that the measured chemical shifts 

are largely dependent on the protonation state of the phosphate groups. It is now 

necessary to demonstrate that this assumption is valid for 26. The mean number of 

protons, p  , bound per mole of 26, according to the NMR calculations, is just the sum of 

the protonation fractions.
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P  -  Z ^ / i n  “  A  p + A ( 3 )

However, p  can also be obtained directly from the potentiometric measurements by 

applying equation (4):

_  CH- [ h ' ]  + [o h ]

P
(4)

where Ch and Cl are the analytical concentrations of acid and ligand respectively.

Figure 4.27 shows values of p  calculated according to both equations, plotted against 

pH. It is clear that, for 26, the two values are in excellent agreement.

2.0

pot.
rmnP

0 .5

2 3 4 105 6 7 98

PH

Figure 4.27 Plots of p  (the mean number of protons bound per mole of 26) versus pH. 
Values o f p  calculated from the potentiometric titration are in excellent agreement with 
those derived from the 31P NMR titration.

Now the macroscopic protonation constants, calculated from the potentiometric titration 

can be considered to be composites of microscopic constants reflecting the behaviour of 

the individual phosphate groups ( in this case the phosphates at positions 2 and 4). The 

macro- and micro-constants for 26, are related by equations (5)-(7) and the protonation 

scheme is shown in Figure 4.26.
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K] — kj + k$ (5)

1 !K2 = 1/^24 + 1/&42 (6)

K1K2 = ki x 2̂4 — k$x k^i (7)

Given the macroscopic constants (from the potentiometric titration) and the values / 2>  ̂

and f 4iP (from the NMR experiments) it is now possible to calculate the microscopic 

constants £2, £4, £24 and £42 (equations not shown). This is relatively straightforward for 

26 because, as it behaves as a diprotic acid over this pH range, there are only three 

different protonated forms to be considered. The situation is more complicated in the 

case of an inositol trisphosphate with three phosphate triesters (such as Ins(l,4 ,5)P3 ), 

which will have seven protonated forms under similar conditions. The macroscopic and 

microscopic protonation constants for 26 are given in Table 4.2.

lOgKy ± <7 i logki ± cr ii' logfcif ± 0

1 6.70 ±0.01 2 6.57 ±0.01 24 5.73 ± 0.02

2 5.60 ±0.01 4 6.10 ± 0.01 42 6.20 ± 0.02

Table 4.2 Macroscopic and microscopic protonation constants for 26

From these results, £2/̂ 4 is calculated to have a value of io (6'57'6 10) = 2.95. This is an 

indication of the lower basicity (higher acidity) of the P4 phosphate, which may be due 

to a greater probability of hydrogen bonding with the two neighbouring equatorial 

hydroxyl groups. The P4 phosphate is also less basic than the PI phosphate of either 

Ins(l)Pi or Ins(l,4)P2, which are flanked by one equatorial and one axial hydroxyl 

group, and is more similar to the P4 phosphate of Ins(l,4)P2. Thus, the fact that 26 has 

the scyllo- rather than the myo- configuration may have resulted in P4 being less basic 

than the equivalent PI of Ins(l,4 ,5)P3. The fact that this difference does not greatly 

influence Ins(l,4 ,5)P3 receptor binding is reflected in the high potency of scyllo- 

Ins(l,2,4)P3 and 6-deoxy-6-hydroxymethyl scy//o-Ins(l,2,4)P3 (Chapter 5), and also in 

the observation that Ins(l,4 ,5)P3 receptor binding, when measured over a range of pH 

values,175 does not correlate with the 31P NMR chemical shift of PI in Ins(l,4 ,5)P3.209
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Figure 4.28 Protonation scheme for 26. For interpretation of symbols, see text.

The cyclic phosphate of 26, as we have seen, has very low basicity and is 

therefore ionised over the whole pH range, while the 2-phosphate of 26, which is 

intended to mimic the 5-phosphate of Ins(l,4,5)P3, has log&2 = 6.57. While, as explained 

above, microscopic protonation constants are not available for Ins(l,4 ,5)P3, which 

behaves as a more complex system, the equivalent logfcs for Ins(4,5)P2 is 8.15.189 The 2- 

phosphate group of 26 is therefore jo (8'15‘6 57) = 38 times less basic (more acidic) than its 

equivalent in a vicinal phosphate pair. Thus, although conformational restraint of one 

phosphate in the vicinal pair necessarily reduces its charge, the ionisation of the other 

phosphate is enhanced. The first effect would be expected to reduce binding affinity, 

and the second to enhance it. It would seem that the decision to constrain the equivalent 

of the 4-phosphate (rather than the 5-phosphate) was well made, as constraining this less 

important phosphate group increases the ionisation of its vicinal partner at physiological

The microscopic protonation constants can now be used to calculate the 

proportion a  of each species present at a given pH (Figure 4.29). For example, at pH 10, 

26 is fully deprotonated, and when the pH is reduced, the proportion of the fully-ionised 

species gradually decreases as protons are added to the P2 and P4 phosphates. At

pH.
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physiological pH, around 80% of 26 is still in the fully-ionised form, while the rest is 

monoprotonated. The predominant monoprotonated form has the proton on P2, and the 

proportion of this species rises to a maximum at around pH 6 , when it forms 50% of the 

total. Below this pH, the proportion of the 2,4-diprotonated form increases, approaching 

100% at pH 3. The basicity of the cyclic phosphate PI, and the second basicities of the 

P2 and P4 are so weak that they are only protonated at lower pH.

a

0.6

VO
0.4

IP4H ko0.2

9875 63 4

pH

Figure 4.29 Distribution curves of the various species of 26 plotted against pH.

4.11.3 *H NMR Titration

Finally, a proton NMR titration was carried out under similar conditions. Figure 4.30 

shows the chemical shifts of protons at positions 3, 5 and 6  in 26, plotted against pH. 

These protons are at unphosphorylated positions, and perhaps not surprisingly, they are 

little affected by pH. Notice however that H3, which is vicinal to two phosphate 

monoesters, is most strongly influenced, and is deshielded by 0. lppm at high pH.
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Figure 4.30 ‘H NMR chemical shifts <5of H3, H5 and H6  in 26 plotted against pH.

Figure 4.31 shows a similar plot for the remaining five protons (note the larger scale). 

The chemical shifts of H2 and H4, which are at positions bearing phosphate monoesters, 

are pH-dependent, and follow a biphasic relationship. If we follow the plot for H2, from 

right to left, for example, we see that decreasing pH has no effect until around pH 7.6, 

after which it is progressively deshielded. This effect seems to be related to the first 

protonation of P2, and is also reflected in the 31P NMR plot (Figure 4.25). After a 

plateau, the deshielding begins again at pH 2.6, presumably as the second proton is 

added to P2. Hax and Heq are only slightly influenced by pH, behaving in a similar way 

to H5 and H6 , and this is in accordance with the finding from the 31P NMR titration that 

the cyclic phosphate PI is ionised over the whole pH range. HI shows a moderate pH 

dependency, and it seems likely that its chemical shift is influenced by the ionisation 

state of the adjacent P2. Thus it appears that the effect of pH on the chemical shifts of 

the protons in 26 is mediated by the ionisation state of the phosphate monoesters. The 

very weakly basic cyclic phosphate diester seems to have negligible effect.

Measurements of all 3J  vicinal coupling constants were also obtained. The effect 

of pH on these values seemed slight, which is what we would expect for a 

conformationally restrained bicyclic molecule such as 26. Some values did appear to 

steadily increase or decrease with pH, but the significance of these small changes, and 

whether they can be related to conformational changes is not obvious at present.
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Figure 4.31 'H NMR chemical shifts 8of HI, H2, H4, H„ and Hcq in 26 plotted 
against pH

More definite conclusions can be drawn from the average values of the 

heteronuclear 3/ h c o p  coupling constants, which were measured in both the *H NMR and 

proton-coupled 31P NMR spectra. The mean values, together with standard deviations 

are given in Table 4.3.

Hax-Pl Heq-Pl HI-PI H2-P2 H4-P4

3«/hcop / Hz 2.00 22.66 1.33 7.85 8.48

a !  Hz 0.00 0.13 0.08 1.06 1.12

Table 4.3 Mean and standard deviation (a) values for phosphorus-proton coupling 
constants in 26.

4.11.4 Conformation

According to Lankhorst et. al.,205 Vhcop is dependent on the dihedral angle (p = H -C - 

O-P, and the relationship can be described by the Karplus-type equations given below:

V h c o p =  18.1 cos2<p-4.8 cos<p (for 0  < (p < 90°) (8 )

V h c o p =  15.3cos2<p-6.1 cos<p+ 1.6 ( for 90 < (p < 180°) (9)
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First consider the geometry of the cyclic phosphate in 26. Solving equations (8) 

and (9) for the mean V h c o p  values given in table yields (p = 61° for Hax-C-O-Pl, (p = 

64° for H l-C -O -P l and (p = 172° for Heq-C-O-Pl. These values are good evidence 

that the cyclic phosphate adopts a chair-like conformation. The very small variations in 

the magnitudes of the /h c o p  values for PI suggest that the conformation remains much 

the same over the entire pH range.

The conformation of the cyclic phosphate can be deduced from the coupling 

constants with a fair degree of confidence, even though solution of equations (8) and (9) 

actually yields four possible dihedral angles for each coupling constant. For example, 

the possible solutions for 3/h c o p  = 2 H z give values of +61°, +93°, -61° and -93° for the 

angle Hax-C-O-Pl. However, only one of these values (+61°) is both geometrically 

possible in the six-membered ring, and consistent with the other coupling constants. The 

situation with respect to the phosphate monoesters is far more complex. First notice that 

there seems to be greater variation in their /h c o p  values over the pH range, suggesting 

that their conformation is influenced by pH. This is what we would expect, because, as 

the protonation state of these phosphate changes with pH, their hydrogen-bonding 

interactions with neighbouring hydroxyl groups will be affected, as will the electrostatic 

repulsion between phosphates. Now application of equations (8) and (9) yields the (p 

values of around +35°, -35°, +120°, and -1209 for both H 2-C 2-02-P 2  and H 4 -C 4 -0 4 - 

P4. Similar results have been obtained for P4 and P5 of Ins(l,4 ,5)P3.210 If we take the 

coupling constants to arise from a single predominant rotamer then we can probably 

discard the last two solutions, which represent eclipsed conformations. We would 

expect the 2-phosphate group to be orientated away from the 1 phosphate (due to 

electrostatic repulsion) and towards the 3-hydroxyl (due to hydrogen bonding) and so 

we might tentatively suggest a value of close to +35° for the angle H 2-C 2-02-P 2  (and 

also for the 4-and 5-phosphate groups of Ins(l,4 ,5)P3). There may be some additional 

support for this value in the Jccop couplings measured from the C NMR of 26. 

However, many assumptions have now been made in arriving at this value, not least of 

which is the assumption that the coupling constant reflects the geometry of a particular 

predominant conformation, rather than a time-averaged value arising from a population 

of rapidly interconverting rotamers.
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4.12 Conclusions

The conformationally restricted analogue can be viewed physicochemically as a 

simplified version of Ins(l,4 ,5)P3. Because it is conformationally restricted, we can be 

reasonably sure of the orientation of one of its phosphate groups, and NMR studies 

confirm that this phosphate is held at a dihedral angle close to +60°, that is, a positive 

gauche orientation. An unexpected advantage of introducing the cyclic phosphate has 

been that the acid-base properties of 26 have been simplified. Thus, 26 behaves 

essentially as a diprotic acid and it has therefore been possible to carry out a detailed 

analysis of the protonation state of the individual phosphate groups, something that has 

not so far been possible with Ins(l,4 ,5)P3.

Turning now to the biological results, the finding that 26 appears to behave as a 

full agonist, but with considerably reduced potency, presents us with some problems, 

which would not have arisen had the analogue been highly active, completely inactive, 

or a partial agonist. Experience with D-Ins(l,3,4)P3 (Chapter 2) and D-Ins(l,3,4,5)P4 

(Chapter 7) shows that in the inositol phosphate field, when a biological assay 

demonstrates moderate full agonist activity for a compound, we must consider an 

important (and painful) question. The question is “Could the apparent activity of 

analogue X be due to the presence of a small amount of a second, highly potent, full 

agonist Y?” The problem is particularly acute if there is some obvious way in which the 

agonist Y can arise in the synthesis or metabolism of X. For example, phosphate 

migration during the synthesis of D-Ins(l,3,4,5)P4 can lead to D-Ins(l,2,4 ,5)P4, and 

metabolism in vivo can lead to Ins(l,4 ,5)P3 (Chapter 7). Opening of the cyclic phosphate 

ring of the (presumably) active enantiomer of the conformationally restrained analogue 

can, in principle, lead to two trisphosphates (Figure 4.32).

44

Figure 4.32 Ring-opening of the cyclic phosphate in 26 could give two possible 
products, one of which (44) is now known to be highly active.
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2' 0 3p o v

h o

asymmetrical
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The symmetrical compound lacks a vicinal bisphosphate and is therefore expected to be 

inactive (this is currently under investigation), but we have now shown the alternative 

product, 44 to be highly potent in our assay systems (see Chapter 5).

We must therefore consider whether the apparent activity of 26 could 

conceivably be due to the presence of 44. It is difficult to see how the synthetic route 

could lead to the production of 44, unless some opening of the cyclic phosphate ring 

occurred on deprotection. Furthermore, the product was subsequently purified by ion 

exchange, and appeared to be pure by NMR. The FAB mass spectrum of 26 showed no 

evidence of contamination with 44. The six-membered cyclic phosphate structure fused 

to a six-membered ring would be expected to be highly stable to hydrolysis, and as 

already mentioned, a sample of the cyclohexylammonium salt showed no deterioration 

after a year at room temperature (samples for biological testing were kept at -20°C). It 

must be borne in mind, however, that neither NMR nor mass spectroscopy are ideal 

methods for the assay of inositol phosphates. The method of choice is currently HPLC 

with complexometric metal-dye detection,257 and it is hoped to apply this methodology 

to the analysis of 26 (and other analogues) in the near future.

There is also the possibility that enzymatic hydrolysis of the cyclic phosphate by 

non-specific phosphodiesterases during the biological assays could generate 44. A 

thorough evaluation of this possibility would involve consideration of the time-course of 

the assays, enzyme kinetics, and of the particular preparations used (whole cells, 

membranes, purified receptors etc.). An initial investigation, however, might involve 

comparison of an untreated sample of 26 to one pre-incubated with cell lysate or a 

purified phosphodiesterase.

With these reservations in mind, the finding that 26 retains full agonist activity 

might have significant implications for the understanding of Ins(l,4 ,5)P3 receptor 

function and the design of ligands. These involve considerations of affinity for the 

Ins(l,4 ,5)P3 receptor, efficacy in activation of Ca2+-release and the relation of these to 

the conformation of the ligand.

1) Conformational restraint together with charge reduction of the equivalent of the 4- 

phosphate of Ins(l,4,5)P3 decreases affinity for the Ins(l,4 ,5)P3 receptor. It is hardly 

surprising that charge-reduction causes this, but it does not necessarily follow from 

conformational restraint. Some rigid analogues of other natural ligands (e.g. of 

acetylcholine, to take a classical example) have higher affinity and greater selectivity
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than the natural ligand itself. However, in the present case, it is difficult to 

disentangle the biological impact of conformational restraint from the effect of 

reducing the charge on the constrained phosphate. The potentiometric and NMR 

investigations suggest that the reduction of charge compared to the equivalent 

phosphate of Ins(l,4 ,5)P3 may not be so great at physiological pH, and the ionisation 

of the other phosphate groups is increased.

2) The conformationally restrained analogue appears not to be an antagonist, nor a 

partial agonist. Therefore it does not seem that the path to an Ins(l,4 ,5)P3 antagonist 

lies in conformational restraint of the inositol ring nor of a phosphate group (at least 

not of the 4-phosphate in the positive gauche orientation). Assuming that the 

observed activity is due to 26, then conformational restraint and charge reduction of 

the 4-phosphate do not reduce efficacy. Therefore channel-opening cannot require the 

inositol ring to flip, and may not require a dramatic change in the orientation of the 4- 

phosphate.

3) Again assuming that 26 itself is recognised by the Ins(l,4 ,5)P3 receptor, the 4- 

phosphate group may be constrained in a way that is close to the conformation of 

Ins(l,4 ,5)P3 at the receptor binding site. This might be taken to suggest that in the 

active conformation of Ins(l,4,5)P3, the dihedral angle P4-04-C 4-H 4 is positive and 

synclinal (cp = +30° to +90°). Note that the 4,5-pyrophosphate analogue (Figure 4.29)
• • 187which mimics a high-energy conformation of Ins(l,4 ,5)P3, was totally inactive. It 

might still be interesting to synthesise the epimeric analogue, in which the phosphate 

is constrained in an anti orientation, but until the question of ring-opening is settled, 

the results could still be open to different interpretations.

Very recently, and since the work described in this Chapter was carried out, X-ray 

crystal structures, showing Ins(l,4,5)P3 bound to /2-spectrin137 and PLC-^i139 PH 

domains, have been published (See Chapter 1). In both these structures, the bound 

conformations of Ins(l,4 ,5)P3 appear to be similar, and are close to that predicted by our 

early molecular modelling, which was the basis for the design of 26. The dihedral angle 

P 4-04 -C 4-H 4  does indeed appear to be positive and synclinal, as in 26, and 

apparently* with (p < +60°.

* Co-ordinates had not yet been deposited with the appropriate databases at the time of writing and so 
measurements could not be made.
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Of course, the conformation of Ins(l,4 ,5 )P3 at the Ins(l,4 ,5 )P3 receptor itself 

need not necessarily resemble these structures. The Ins(l,4 ,5 )P3 receptor performs a very 

different function from these PH domains, which are now thought to act as membrane- 

anchoring modules. However, the similarity between these X-ray structures of bound 

Ins(l,4 ,5 )P3, and the picture of Ins(l,4,5)P3 derived from the theoretical and 

experimental investigations described above is quite striking. No doubt, X-ray structures 

of Ins(l,4 ,5 )P3 at other binding sites, and NMR studies, which will give more dynamic 

information about the process of binding, will be published in the near future.
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Figure 4.32 Orientation of the 4-phosphate group in the X-ray crystal structure of 
Ins(l,4 ,5 )P3 bound to PH-domains, and its equivalent in various conformationally 
restrained analogues.

Figure 4.33 Energy-minimised structure of Ins(l,4 ,5 )P3. For details of molecular 
modelling, see Experimental section.
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5 Adenophostins: Initial Structure-Activity Investigations

5.1 Adenophostins A and B

In 1994, two highly potent Ins(l,4,5)P3 receptor agonists were identified through 

screening of compounds for inhibition of [3H]Ins(l,4 ,5)P3 binding.211 Adenophostins A 

and B, found in the culture broth of Penicillium brevicompactum were reported to show 

very high potency in biological assays, being 100-fold more potent than Ins(l,4,5)P3 in 

Ca2+ release and producing detectable effects in cerebellar microsomes at concentrations 

as low as 1 nM. Their effect could be totally blocked by heparin. They appeared to be 

completely resistant to phosphorylation or dephosphorylation by the Ins(l,4 ,5)P3- 

metabolising enzymes 3-kinase and 5-phosphatase, and highly selective for Ins(l,4,5)P3 

receptors. The adenophostins, in contrast to Ins(l,4 ,5)P3 itself, showed no ability to 

inhibit [3H]Ins(l,3,4 ,5)P4-binding to a purified Ins(l,3,4 ,5)P4 -binding protein.32

5.1.1 Biological Effects of Adenophostin A

At this time there was no independent evidence for these surprising claims. Before 

embarking on a programme of research into synthetic adenophostin analogues it was 

important to establish whether the adenophostins had similar effects in our own 

biological assays. We were able to obtain a small amount (6mg) of adenophostin A 

from the discoverers and compare its activity to Ins(l,4 ,5)P3. A sample was first 

quantified accurately by UV assay and then accurately divided into 20nmole aliquots,
i ♦

while another (2mg) portion was used for H NMR studies.

An initial test for biological activity was carried out in permeabilised rabbit 

platelets, and calcium release was monitored in the presence of the fluorescent dye fura- 

2 by spectrofluorimetry. As can be seen from Figure 5.1a, adenophostin A was indeed 

astonishingly potent, causing measurable Ca2+ release at concentrations as low as 2nM. 

Figure 5.1b confirms that the effect was blocked by heparin. Note that the effect of 

adenophostin A, unlike that of Ins(l,4 ,5)P3 is prolonged, confirming its resistance to 

metabolism. Thus, what had seemed initially to be a small sample of adenophostin A 

was in fact sufficient for many biological studies, and the results of some of these, 

including dose-response and radioligand binding curves are given below.

* The high-resolution 400 MHz !H NMR spectrum of this sample in D2O confirmed the assigned structure, 
although in this spectrum, two signals showed greater than the expected multiplicity. Whether this showed 
an impurity in the sample, an experimental artefact or something more significant, is currently not clear. 
Further studies with synthetic adenophostin are planned.
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Figure 5.1a Adenophostin A-induced Ca2+-release from permeabilised rabbit platelets, 
monitored by spectrofluorimetry.
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Figure 5.1b Inhibition of adenophostin-induced Ca2+-release by heparin.

5.2 Structures of the Adenophostins

The publication of the structures212 of the adenophostins (Figure 5.2) came as a shock. 

At first glance they appear to be strikingly different from Ins(l,4 ,5 )P3 and, like cyclic 

ADP-ribose, they are adenosine derivatives. However, the Ca2+-releasing potency of 

cyclic-ADP ribose, which is thought to act via ryanodine receptors (see Chapter 1), is 

much lower than that of the adenophostins, and is not inhibited by heparin. On closer 

examination, the resemblances to Ins(l,4 ,5 )P3 become more apparent. Most importantly,
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the 3",4"-bisphosphate of the adenophostins is analogous to the 4,5-bisphosphate of 

Ins(l,4 ,5)P3. As we have seen, this structural motif seems to be an essential feature of 

all agonists at Ins(l,4 ,5)P3 receptors. One cannot help thinking that the finding of this 

feature in a molecule discovered by mass screening, and so far removed from 

Ins(l,4 ,5)P3 or from any other Ins(l,4,5)P3 receptor ligands previously known, is a 

testament to its importance as a recognition feature for Ins(l,4,5)P3 receptors. The 

bisphosphate is in a six-membered ring, albeit a glucopyranose rather than an inositol 

ring, and is accompanied by an equatorial hydroxyl group at C-2", which can be seen as 

equivalent to the 6-hydroxyl of Ins(l,4,5)P3. Here the direct structural correspondence 

ends, but some other features of adenophostin A, and its 6"-acetylated homologue 

adenophostin B, can be shown to be compatible with existing structure-activity 

principles derived from studies of synthetic Ins(l,4,5)P3 analogues.

NH.

HO
3____2

OPO-

RO‘

'''OH

OH

OPOHO,

'OH

OPO;

D-/nyolns(1,4,5)P3Adenophostin A R = H 
Adenophostin B R = COCH3

Figure 5.2 Structures of adenophostins A and B compared to Ins( 1,4 ,5)P3

First, consider the axial 2-hydroxyl group of Ins(l,4 ,5)P3. Studies of 2-modified 

analogues have established that this group is of little or no importance in binding to the 

Ins(l,4,5)P3 receptor.213 Thus, 5cy//o-Ins(l,4,5)P3 106 [strictly 5cy//o-Ins(l,2,4)P3] and 2- 

deoxy-Ins(l,4 ,5)P3 214 is only slightly less potent than Ins(l,4 ,5)P3. In the adenophostins, 

the equivalent position is occupied by the pyranoside oxygen. Second, it is known that, 

although a third phosphate group is not essential for activity in inositol phosphates, it 

greatly enhances it. Thus Ins(4 ,5)P2 is a 460-fold weaker agonist than Ins(l,4 ,5)P3.215 

Now in Ins(l,4 ,5)P3, this extra phosphate group is at the equatorial position 1, but
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moving it to the axial position 2 [as in Ins(2,4 ,5)P3] causes little reduction in activity* 

and an axial phosphate at position 1 as in D-c/z/ro-Ins(l,3,4)P3 will greatly enhance 

activity relative to Ins(4 ,5)P2.132 We can conclude that the location of the third 

phosphate group is less critical than that of the first two (perhaps the interaction with the 

binding site is long-range, as suggested by some workers ) and a phosphate group 

located somewhere within a fairly large region of space will enhance binding to the 

receptor. Very significantly, in the adenophostins, removal of the phosphate group at 

position 2 ' of the ribose ring causes a 1000-fold reduction in activity. Now the 2'- 

phosphate group of the adenophostins does seem to be in a strange position, but it is 

known that many disaccharides and higher saccharides have rather rigid shapes, and it 

may be that the 2'-phosphate is held in a precise position with respect to the 

glucopyranose ring. Our own preliminary molecular modelling simulations seemed to 

show that, in most low-energy conformations, the 2'-phosphate occupies a position 

similar to that of the 1-phosphate of Ins(l,4 ,5)P3, but in a different orientation and 

slightly further away from the ring. An example of one of these conformations is shown 

in Figure 5.3a. In other words, it is possible that 2/-phosphate may be positioned to 

interact with a similar area of the Ins(l,4 ,5)P3 binding site to the 1-phosphate of 

Ins(l,4 ,5)P3, but more effectively than in Ins(l,4 ,5)P3 itself. Of course, it is also possible 

that the 2'-phosphate of the adenophostins interacts with a different area of the 

Ins(l,4 ,5)P3 binding site from the 1-phosphate of Ins(l,4,5)P3.

The adenosine component of the adenophostins is probably the most surprising, 

and currently the most mysterious feature of these molecules. Its steric bulk alone 

requires that we invoke the idea of some kind of binding pocket or vacant area of the 

receptor to accommodate it. It is known that very large substituents at position 2 of 

Ins(l,4 ,5)P3 can be tolerated with minimal effect on potency, and it may be that this area 

of the binding site is open to solvent. This might lead us to consider an alternative 

binding orientation for the glucopyranose ring of the adenophostins as illustrated in 

Figure 5.3b. In this case, the above arguments still apply, but the equivalent of the 6- 

hydroxyl in Ins(l,4 ,5)P3 is now occupied by an hydroxymethyl group, (at present there is 

no information on the effect of a 6-hydroxymethyl group in Ins(l,4 ,5)P3 derivatives) and

* It may be more useful to consider the axial 2-phosphate in Ins(2,4,5)P4 as equivalent to an axial 1- 
phosphate at the receptor binding site, by visualising Ins(2,4,5)P3 in an inverted binding orientation, so 
that the 1-phosphate is axial. It is interesting to note here that Ins(l,4,5)P3 receptors from rat olfactory 
membranes are reported to respond to a 100-fold lower concentration of Ins(2,4,5)P3 relative to 
Ins(l,4,5)P3. 247
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the third phosphate group is held in an area of space close to that occupied by the 2- 

phosphate of Ins(2,4 ,5)P3. Binding orientation 5.3a requires an adenosine binding 

pocket in the area “below” position 1 of Ins(l,4 ,5)P3, but there is currently no evidence 

against this, and indeed, the idea of a specific binding pocket, that may interact strongly 

with the adenosine moiety may be more appealing. Figures 5.3a, 5.3b and 5.3c are also 

intended to illustrate the possibility of extended and hairpin conformations, in which the 

adenine is either orientated well away from the glucopyranose ring (5.3a and 5.3b) or 

held close to it as in 5.3c.

Figure 5.3 Examples of binding conformations and orientations in which adenophostin 
A might mimic Ins(l,4,5)P3. See text for discussion.

Of the three conformations shown, only 5.3a conforms with the exo-anomeric effect, 

which is usually the dominant factor in determining conformation around a glycosidic 

bond. Furthermore, an NOE between H-3' of ribose and H -l"  of glucose has been 

reported,212 and these two protons can be seen to be close together in 5.3a, while at a 

maximal separation in 5.3c. * We still do not know whether the adenosine moiety itself
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* This was actually reported for adenophostin B, which the authors used for the detailed NMR studies.
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is directly involved in the extraordinary potency of the adenophostins or whether it 

serves to orientate another part of the molecule (e.g. the 2'-phosphate?) in a particularly 

favourable way.

5.2.1 Is 2'-AMP Active at Ins(l,4,5)P3 Receptors?

If the Ins(l,4,5)P3 receptor has a binding pocket for 2'-AMP close to the Ins(l,4 ,5)P3 

binding site, can 2'-AMP itself bind to the Ins(l,4 ,5)P3 receptor? 2 '-AMP is readily 

available and quite surprisingly, it has been found to be a substrate for inositol 

monophosphatase216. Molecular modelling studies have been carried out on 2'-AMP in 

connection with research into the design of inositol monophosphatase inhibitors, and 

recently a study of the active conformation of 2'-AMP at the enzyme’s active site has 

been published.217

A sample of 2'-AMP free acid was converted to the triethylammonium salt in
 ̂I

order to increase its aqueous solubility, and after the purity had been checked by P 

NMR and HPLC, it was tested for ability to release Ca2+ in permeabilised rabbit 

platelets. As might be expected, it showed no ability to release Ca2+, even at 

concentrations up to ImM. More importantly, however, 2'-AMP did not inhibit 

Ins(l,4 ,5)P3 -induced Ca2+ release at these concentrations. This finding, although not 

unexpected, demonstrates that 2'-AMP alone, separated from the phosphate-bearing 

glucopyranose ring does not have significant affinity for the Ins(l,4 ,5)P3 binding site of 

the Ins(l,4 ,5)P3 receptor. The activity of the isolated “other ha lf’ of adenophostin A, i.e. 

glucose 3,4-bisphosphate, is presently not known, although this molecule could easily 

be synthesised from a protected glucose intermediate.

5.2.2 The 5"-CH2OH Group

There is one structural feature of the adenophostins that is not easily accommodated by 

structure-activity relationships based on Ins(l,4,5)P3 analogues, namely the presence of 

an hydroxymethyl group at a position corresponding to the 3-hydroxyl (or conceivably 

the 6-hydroxyl) group of Ins(l,4 ,5)P3. In a study designed to explore the steric tolerance 

of the Ins(l,4 ,5)P3 receptor at the equatorial 3-position a series of racemic 3-O-alkylated 

analogues have been synthesised.188 When these compounds were evaluated as Ca2+- 

mobilising agonists in permeabilised SH-SY5Y cells, activity was found to decrease 

dramatically with increasing chain length (R = Me, Et, Pr"). When R=Me, for example, 

potency was 25 times reduced, while for R = Et potency was reduced by greater than
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500-fold. However, when R = CH2COO' the reduction in potency was less, despite the 

steric bulk of this substituent.

Another study of 3-position-substituted Ins(l,4 ,5 )P3 mimics, including
219halogenated analogues, used regression analysis to establish a negative, linear 

correlation between steric volume of an equatorial 3-substituent and activity at 

Ins(l,4 ,5 )P3 receptors. 183 However, further analysis of the data showed that 

Ins(l,3,4,5)P4, 3 PS-Ins(l,4 ,5 )P3 and Ins(l,4,5)P3 itself were more active than would be 

predicted by this correlation based on purely steric considerations, and therefore fell into 

a second group (see Figure 5.4).
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Figure 5.4 Potency of 3-position-substituted Ins(l,4 ,5 )P3 analogues plotted against 
molecular volume (A3) of the substituent. Adapted from Reference. 183

No analogue with a CH2OH group at the equivalent of position 3 had been 

synthesised, but based on the considerations above, its activity would be expected to fall 

somewhere between that of Ins(l,4 ,5 )P3 and Ins(l,3 ,4 ,5 )P4 (i.e. considerably weaker 

than Ins(l,4 ,5 )P3 ). And yet the equivalent of a 3-hydroxymethyl group is present in 

adenophostin A in the form of the 5"-hydroxymethyl, and adenophostin B has the even 

more unwieldy acetate at this position. Does this mean that the adenophostins must bind 

to the Ins(l,4 ,5 )P3 receptor in a different way to Ins(l,4 ,5 )P3?

After the publication of the structures of the adenophostins, it was quickly 

realised that intermediate 34, discussed in Chapter 4, could be used to synthesise the 

hydroxymethyl analogue 44 (Figure 5.5) in a few steps. Analogue 44, which can be 

considered as the 3-deoxy-3-hydroxymethyl scyllo-inositol analogue of Ins(l,4 ,5 )P3, 

would represent the first step away from Ins(l,4 ,5 )P3 towards an adenophostin-related
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structure. True, 44 would (at this stage) be racemic, but it would enable us to investigate 

the effect of introducing an hydroxymethyl group at a position adjacent to the 4,5- 

bisphosphate in a molecule closely related to Ins(l,4 ,5)P3.

P h / ^ 0 - 7

P M B O ^-* ^^ /-O P M B  
BnO

34

Figure 5.5 The intermediate 34, from the synthesis of the conformationally restrained 
analogue (Chapter 4) can be used to synthesise an Ins(l,4 ,5)P3 analogue 44, which bears 
an equatorial hydroxymethyl group, as in adenophostin A.

5.3 Synthesis of a 3-Hydroxymethyl Analogue of Ins(l,4,5)P3

The 3-hydroxymethyl analogue 44 (strictly 6-deoxy-6-hydroxymethyl-scy//o-inositol 

1,2,4-trisphosphate) was synthesised in four steps from intermediate 34, as shown in 

Figure 5.6.

^OBn
OPMB ^OBn

OPMB
PMBO PMBO-

(BnO)2PO 
(BnO)2lj|0 —

44

Figure 5.6 Synthesis of 6-deoxy-6-hydroxymethyl scy//o-inositol 1,2,4-trisphosphate 

(44).

5.3.1 Regioselective Cleavage of a Benzylidene Acetal

Benzylidene acetal s are versatile protecting groups in that they can be removed 

completely by acid hydrolysis to give a diol (see Chapter 4), or reductively cleaved in 

either direction to give primary or secondary benzyl ethers. In the synthesis of 44, the 

required product was 45, in which the acetal has been reduced regioselectively to a 

primary benzyl ether, exposing a secondary alcohol group. Reductions of this type have
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been reported for benzylidene acetals of carbohydrates, and have employed aluminium 

chloride/trimethylamine-borane complex,220 or sodium cyanoborohydride/hydrogen 

chloride,221,222(see below) and more recently, trifluoroacetic acid / triethylsilane.223

It was decided to try the first method, using aluminium chloride/trimethylamine- 

borane complex to reduce intermediate 34. The results were disappointing at first, and 

the reaction seemed sluggish, eventually yielding a mixture of products, some of which 

resulted from loss of p-methoxybenzylidene groups. Rather than separating and 

individually characterising the products, the crude mixture was treated with refluxing 

1M HCl/ethanol 2:1, giving only two products, which were shown to be the triol 46 

(41% from 34) and the (unwanted) symmetrical triol 48 (27% from 34). It seems likely 

that the unwanted hydrolysis of the /?-methoxybenzyl ethers, had interfered with the 

regioselectivity of the ring-opening.

A literature search located another more recent application of the same method 

in carbohydrate chemistry, with the modification that the reaction was carried out in the 

presence of 4A molecular sieves.224 When the reaction on 34 was attempted again, but 

this time with the addition of 4A sieves, the results were much improved and the 

required alcohol 45 was obtained in 65% yield. A small amount of the symmetrical 

alcohol 47 (5%) was also isolated, and the TLC still showed quantities of more polar 

products resulting from p-methoxybenzyl ether cleavage. However, with sufficient 

quantities of 45 now in hand, no further attempts were made to optimise the procedure. 

It was later shown that the regioselectivity of the benzylidene cleavage could be 

reversed by reduction using diisobutylaluminium hydride (DIBAL-H) in toluene,225 this 

time giving the symmetrical alcohol 47 as the major product (72%) together with a 

small amount of 45 (5%).

ho-
PMBO-.

BnO
PMBO-

OBn
OPMB

OBn
OPMB

45 47

Conditions 45 (% yield) 47 (% yield)

BH3NMe3/AlCl3, THF, 0°C 65 5

DIBAL-H, toluene, 0°C 5 72

Table 5.1 Regioselective reduction of 34.
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5.3.2 Phosphitylation/Oxidation and Deprotection

The p-methoxybenzyl protecting groups of the asymmetrical alcohol 45 were removed 

by acid hydrolysis giving triol 46, which was phosphitylated using bis(benzyloxy)-A,7V- 

diisopropylaminophosphine/l//-tetrazole. The 3IP NMR spectrum of the intermediate 

trisphosphite triester showed a large Vpp coupling of 6.1Hz between the phosphorus 

atoms of the vicinal phosphite groups (values of 3 or 4 Hz are typical for vicinal 

phosphites in an inositol ring). Oxidation as usual with m-CPBA gave the fully 

protected trisphosphate triester 49 which was a low-melting point crystalline solid. 

Deprotection using sodium in liquid ammonia, and purification by ion exchange 

chromatography went smoothly and the trisphosphate 44 was obtained as the pure 

triethylammonium salt.

5.4 Biological Activity of 6-deoxy-6-hydroxymethyl-scy//o-inositol 1,2,4- 
trisphosphate

The ability of racemic 44 to release Ca2+ from permeabilised rabbit platelets was 

examined. It appeared that 44 was equal in potency to Ins(l,4 ,5 )P.3, despite being 

racemic. In an assay of this type, it is possible for a non-metabolisable compound to 

show artefactually high potency relative to Ins( 1,4 ,5 )P3 due to prolonged 45Ca2+ release. 

However, when 44 was tested for its ability to displace [3H]Ins(l,4 ,5 )P3 from rat 

cerebellar membranes, the results, shown in Figure 5.7 confirmed the 45Ca2+-release 

data, with racemic 44 being equipotent to Ins(l,4 ,5 )P3. Assuming that only the L- 

enantiomer* of 44 is active, these binding results suggest that it should be one of the 

most potent synthetic Ins( 1,4,5)P3 analogues yet identified.

100

SO­

OT
60-T3

—o—DL-44 
—▼— Ins (1,4,5) P.

2 0 -

Q001 Q01 Q1 1

Concentration of Inositol Phosphate (pM)

Figure 5 .7  Displacement of [3H]Ins(l,4,5)P3 from rat cerebellar membranes by d l -44.

* The enantiomer o f 44 whose structure is analogous to Ins(l,4 ,5 )P 3 is the L-enantiomer. See Appendix 1 
for an explanation o f this nomenclature.
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The observation that racemic 44 is equipotent with Ins(l,4 ,5)P3 implies that the 

CH2OH component, which is not present in Ins(l,4 ,5)P3 itself, is tolerated by the 

Ins( 1,4 ,5)P3 receptor despite the additional steric bulk. This finding seems to be at odds 

with the results of studies on 3-position modified Ins(l,4 ,5)P3 analogues (Figure 5.4), 

which found that any increase in steric volume in this area reduced affinity for the 

Ins(l,4 ,5)P3 receptor, and yet it is keeping with the high potency of the adenophostins. It 

would be interesting to establish whether analogues of 44 esterified at the primary 

hydroxyl group retained activity (as does adenophostin B) and if so, what limitations 

exist on the size and nature of the ester. Clearly, the potency of the adenophostins does 

not result from the CH2OH group. It must somehow be related to the 2'-AMP 

component, as discussed earlier, but equally well, there is no need to imagine an unusual 

binding conformation for the glucopyranose ring of adenophostin A to allow the 

receptor to accommodate the CH2OH group.

5.4.1 Comparison with scy/fo-Inositol 1,2,4-trisphosphate

Is a CH2OH at this position simply tolerated by the Ins(l,4 ,5)P3 receptor, or can it 

actually enhance binding? Unfortunately, 44 differs from Ins(l,4 ,5)P3 in two ways: it is 

modified at the equivalent of position 3, but also, it is strictly an analogue of scyllo- 

rather than myo-Ins(l,4,5)P3 (Figure 5.8).

Figure 5.8 Comparison of the structure of 44 with Ins(l,4 ,5)P3 and scy//o-Ins(l,2,4)P3.

We therefore need to exercise some care in drawing conclusions from direct 

comparisons between 44 and Ins(l,4 ,5)P3. However, it would be valid to draw 

conclusions from a comparison of 44 with racemic 5cy//o-Ins(l,2,4)P3. The two

and the results are shown in Figure 5.9. It appears that 44 is significantly more potent 

than 5cy//o-Ins(l,2,4)P3. Finally, racemic 44 was compared to racemic scyllo- 

Ins(l,2,4)P3 and Ins(l,4 ,5)P3 for ability to displace [3H]Ins(l,4,5)P3 from rat cerebellar 

membranes. Again, it was significantly more potent than racemic 5cy//o-Ins(l,2,4)P3, 

and equipotent to Ins(l,4 ,5)P3. The results of these experiments are summarised in 

Table 5.2. We can conclude that, in the scy/Zo-series at least, replacement of the

m y o - ln s ( 1 ,4 ,5 ) P 3 scyllo- l n s ( 1 ,2 ,4 ) P 3 4 4

analogues were therefore compared for ability to release 45Ca2+ from rabbit platelets,
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secondary hydroxyl group at position 3 (strictly now position 6 ) with a primary hydroxyl 

group enhances affinity for the Ins( 1 ,4 ,5 )P3 receptor.
100-1

—- — lns(1,4,5)P3 

—o— DL- 44
— a —  DL-scy/o-lns(1,2,4)P:

80-

% 60-

U 40-

20-

0.001 0.01 0.1 1 10 100
Concentration /  n M

Figure 5.9 45Ca2+-release by racemic 44, racemic 5cy//o-Ins(l,2 ,4 )P3 and Ins(l,4,5)P3.

Compound Ins(l,4,5)P3 receptor 
binding at 4°C 
ICso/^M ± S.E.M. (n=3)

45Ca2+ release at 4°C 
EC50/juM ± S.E.M. (n=6 )

D-Ins(l,4,5)P3 0.04 ±0.01 0.404 ±0.11

DL-^cy//o-Ins( 1,2,4)P3 0.15 ±0.018 1.67 ±0.35

d l -44 0.027 ±0.01 0.44 ± 0.26

Table 5.2 Comparison of inositol phosphates for displacement of [3H]Ins(l,4,5)P3 from 
rat cerebellar membranes and for release of 45Ca2+ from permeabilised platelets.

5.4.2 Interaction with Ins(l,4,5)P3 3-Kinase

DL-5cy//o-Ins( 1,2,4)P3 is known to be a substrate for 3-kinase, although the position 

of phosphorylation, and indeed, which enantiomer is metabolised, is not yet established. 

It might therefore be interesting to investigate the interaction of 3-kinase with 44. A 

sample of racemic 44 was incubated with a purified 3-kinase preparation and the 

product analysed by HPLC with metal dye detection.257 The results showed, perhaps 

surprisingly, that half of the sample had been phosphorylated, to give two unidentified 

tetrakisphosphates. This suggests that one enantiomer of 44 is being phosphorylated by 

the enzyme, but at two different positions. Although the specificity of 3-kinase for its 

natural substrate Ins(l,4,5)P3 is known to be very high, we cannot assume that it is 

necessarily the Ca2+ -releasing enantiomer that is phosphorylated. Benzene 1,2,4- 

trisphosphate226 and a mannose-based L-Ins(l,4,5)P3 analogue (Chapter 1) are
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recognised by 3-kinase, for example, but are inhibitors. Other possibilities exist; one 

enantiomer could be a 3-kinase inhibitor while the other is phosphorylated, for example, 

as was the case with racemic 2,2-difluoro-^cy//o-Ins(l,4 ,5)P3.64 Thus, the 

tetrakisphosphate products could have any one of five possible structures. How can they 

be identified?

The ideal solution is to resolve an intermediate in the synthesis of 44 (see 

below), synthesise optically pure D- and L-44, incubate the two enantiomers separately 

with the 3-kinase, and identify the product by NMR. However there is another strategy 

which might be able to establish which enantiomer is phosphorylated and at what 

positions (Figure 5.10).
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03PO -7^^7-O H  

2 03P0«^-^,̂ ^.0P032'
HO

DL-44

2'0 3P 0
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o 3p o ^ 2 - ^ » ^ ^ .  o p o 32‘
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Figure 5.10 Proposed strategy to identify the products of phosphorylation of 44 by 
Ins(l,4,5)P3 3-kinase.

If a larger quantity of racemic 44 is incubated with the enzyme, then it should be 

possible to separate the tetrakisphosphate products from the unphosphorylated 

trisphosphate enantiomer using ion exchange chromatography. There is little doubt that 

the potent Ca -releasing enantiomer of 44 must have the D-4,5-bisphosphate 

configuration. If the Ca2+-releasing activity of the unphosphorylated trisphosphate is 

then compared to racemic 44, the assay must show that either its apparent activity has 

increased or decreased. The configuration of the phosphorylated enantiomer can then be 

deduced. A ^-coupled  31P NMR of the tetrakisphosphate product should then be able
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to identify the relative configuration of the tetrakisphosphates, even if they cannot be 

completely separated. A triplet in the spectrum implies phosphorylation of the primary 

alcohol, four doublets means phosphorylation at position 3, while two doublets 

identifies the product as the symmetrical tetrakisphosphate resulting from 

phosphorylation at position 5. Putting this information together gives the absolute 

configuration of the products. Accordingly, a larger sample of racemic 44 was 

synthesised, and this study is now in progress.

5.4.3 Lack of Interaction with Ins(l,3,4)P3 5/6-kinase and Ptdlns 3-kinase
8 7When the interaction of racemic 44 with a purified D-Ins(l,3,4)P3 5/6-kinase was 

examined, racemic 44 was found to be completely inactive in inhibiting phosphorylation 

of [3H]Ins(l,3,4)P3. This result is quite remarkable, considering that all other racemic 

inositol phosphate analogues tested and all optically active analogues having the l-4,5 

bisphosphate [or equivalent, e.g. as in D-Ins(l,3,4)P3, see Section 1.9.4] were recognised 

by the enzyme, and yet in the case of 44, neither enantiomer was recognised. This 

finding might be rationalised by a consideration of the binding orientation of D-44 that 

might mimic the structure of D-Ins(l,3,4)P3, the natural substrate of 5/6-kinase (see 

Figure 5.11).

Figure 5.11 d-44 appears not to be recognised by Ins(l,3,4)P3 5/6-kinase, despite its 
similarities to D-Ins(l,3,4)P3.

Neither racemic 44 nor racemic 5cy//o-Ins(l,2,4)P3 were able to inhibit Ptdlns 3- 

kinase. This observation can be explained by the fact that the D-enantiomers of these 

molecules bear no resemblance to Ins(l,4,5)P3, while the L-enantiomers, although they 

may mimic the arrangement of phosphate groups in Ins(l,4,5)P3 , have no equivalent to 

the axial 2-hydroxyl group (see Section 1.9.5).

5.4.4 Optical Resolution

An attempt to resolve an intermediate in the synthesis of 26 and 44 by formation of bis- 

(-)-co-camphanate esters of diol 33 (Figure 4.4) was unsuccessful. The two 

diastereoisomeric biscamphanates, were inseparable by either chromatography or 

recrystallisation. Another attempt at resolution via monocamphanate esters of alcohol 45

Site of action 
of 5/6-kinase

primary hydroxyl?
0 P 0 32' Site blocked by

D -ln s(1 ,3 ,4 )P 3 d-4 4
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(Figure 5.6) also failed. However, when 45 was reacted with (5')-(+)-acetylmandelic acid 

(activated by DCC), the two products were well separated on the TLC plate. No more of 

the alcohol 45 remained at this stage, and so the reaction could not be scaled-up, but it is 

clear that the required optical resolution can be carried out at this stage, enabling the 

synthesis of the enantiomers of 44. This is now being carried out by another worker.

Should it not prove possible to obtain crystals suitable for an X-ray study, then 

reduction of the free alcohol group of (+)- or (-)-45 followed by hydrogenation will give 

the corresponding pseudosugar (either carba-/?-D-glucopyranose, or its enantiomer). The 

absolute configuration can then be deduced from the direction of the optical rotation ( 

[a ]D20 = +13.0° for the D-enantiomer in water227). Note that the enantiomers of 45 are 

precursors for optically active position-4 modified analogues of 44.

5.5 Phosphorylation of Carbohydrates
The L-enantiomer of 44 resembles both a scyllo-inositol derivative and a derivative of /?- 

D-glucopyranose. The fact that this structure showed highly potent activity at 

Ins( 1,4 ,5)P3 receptors suggested that a phosphorylated glucose derivative would also be 

active, even without the additional 2'-AMP feature found in the adenophostins. This 

may seem obvious in retrospect, but it must be remembered that the prevailing opinion 

at this time was that bulky substituents placed adjacent to the vicinal bisphosphate of 

Ins(l,4,5)P3 analogues would inevitably cause a reduction in potency.

The idea of producing inositol phosphate mimics based on carbohydrates is not 

new. A synthesis of a phosphonate-containing D-Ins(l,4 ,5)P3 analogue (Figure 5.12) 

from D-galactose has been described, for example.228 No biological results have been 

reported for this analogue, but in the light of our present knowledge it seems unlikely 

that it would be very active at Ins(l,4 ,5)P3 receptors. The galactose-based analogue 

retains an axial hydroxyl group, intended to mimic the 2-hydroxyl of myo-inositol, but 

the important 6-hydroxyl is replaced with pyranoside oxygen. It is now apparent, from 

studies of position 2-modified Ins(l,4 ,5)P3 analogues, from the discovery of the 

adenophostins, and from the potent activity of the hydroxymethyl analogue 44 described 

above, that the 2-hydroxyl group is of low importance with respect to Ins(l,4 ,5)P3 

receptor binding of trisphosphate Ins(l,4 ,5)P3 analogues. It can be changed to an 

equatorial hydroxyl, replaced with a pyranoside oxygen or removed completely. What is 

more, there is no need to retain a secondary hydroxyl group at position 3, and an 

hydroxymethyl group at this position is tolerated with no loss in activity. Thus, we

135



would expect that analogues derived from D-glucose, D-xylose (or even D-mannose) 

would be better mimics of Ins(l,4,5)P3 at Ins(l,4 ,5)P3 receptors.

G alactose-based G lucose-based X ylose-based

Figure 5.12 Ins(l,4 ,5)P3 analogue based on D-galactose.228 Structure-activity 
considerations (see text) now suggest that analogues based on D-glucose or D-xylose 
may be better Ins(l,4 ,5)P3 receptor ligands. Y could have various structures (see below).

A synthesis of D-mannose 1,4,6-trisphosphate, intended as an L-Ins(l,4 ,5)P3 

mimic, has also been reported (quoted in Reference65) but it was found that the 

anomeric phosphate was chemically and stereochemically unstable. The fact that 

phosphates formed at the anomeric position (Y = OPO32' in Figure 5.12) are intrinsically 

unstable poses severe limitations on the use of phosphorylated simple monosaccharides 

as inositol polyphosphate mimics. (A phosphonate formed at the anomeric position is 

stable, but in general, phosphonates have not been found to be good phosphate mimics 

at the Ins(l,4 ,5)P3 receptor). If we were to phosphorylate some of the hydroxyl groups in 

a glycoside, or even a disaccharide, then the anomeric position would not be a problem. 

Disaccharides could give plenty of scope for novel polyphosphates, but the difficulties 

of protecting the hydroxyl groups selectively would be much greater. One solution is to 

protect selected hydroxyl groups in two monosaccharides and then couple the two 

together (ideally in a stereospecific way). Another solution might be to choose a 

disaccharide that is easy to manipulate because of its symmetry. This reasoning led us to 

consider the use of a,a-trehalose.

5.5.1 An Ins(l,4,5)P3 Analogue Based on Trehalose

Trehalose is the general name for D-glucosyl D-glucosides. Since the glucose residues 

are joined at their anomeric carbon atoms, there are three possibilities; a,a-, ft,ft- and 

a ,/3-trehaloses. The first of these, a,a-trehalose (a-D-glucopyranosyl 1,1/-o /-d- 

glucopyranoside) is the only isomer known to occur in Nature, although a,/3- and /?,/?- 

forms have been synthesised. The glucose residues in all three known trehaloses are in 

the pyranose form. a,a-Trehalose is found in "Trehalamanna", the cocoons of a 

parasitic beetle, and it also occurs in some fungi, and a variety of plants and bacteria. In 

insects, Cf,a-trehalose is the main sugar found in the blood, and in adult flies it is the
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sole source of energy for flight. It may also help to protect enzymes and membranes in 

low-temperature and desiccated environments.229

oh

OH

a,a-trehalose p,(3-trehalose
,u n

HO'
HO OH

OHHO.
a, (3-trehalose OHOH

Figure 5.13 The trehaloses. Only the a,a-form  is known to occur naturally.

A series of trehalose-based mycobacterial cell surface antigens have been 

isolated from Mycobacterium tuberculosis, the causative agent of tuberculosis. These 

glycolipids have been identified as a series of 2,3-di-0-acyl-a,ct-trehaloses230 and the 

related M. fortuitum, which is an opportunistic pathogen*, has also been found to 

contain 2,3,4- and 2,3,6-tri-O-acylated forms. These findings have stimulated renewed 

chemical interest in trehalose, and strategies have been developed for the regioselective
9̂1protection of its hydroxyl groups. A major component of the M. fortuitum  lipid 

antigens has recently been synthesised from a,a-trehalose using these methods.232

It is interesting to note that sulphated /Tmaltosyl trehalose has recently been 

shown to have heparin-like antiproliferative effects and yet unlike heparin itself, has no 

(antithrombin Hi-mediated) anticoagulant properties.233 The authors hypothesise, on the 

basis of molecular modelling experiments, that the trehalose moiety is responsible for 

the biological activity of the molecule, although its site of action is not yet known. 

Although little information is available on trehalose phosphates, it is now thought that 

a ,a-trehalose-6-phosphate plays an important part in the regulation of yeast glycolysis, 

by feedback inhibition of hexokinase II, a role similar to that of glucose 6-phosphate in 

higher organisms.234 Syntheses of o^a-trehalose-b^'-phosphate and the four
235 236

monophosphates of a,a-trehalose have been published recently. ’

An important property of a,a-trehalose is that it possesses a C2 axis of 

symmetry, and no other symmetry elements. It therefore belongs to the C2 point group. 

Corresponding atoms e.g. C-l and C -l', C-2 and C-2' etc., are homotopic and are

* M. fortuitum  is becoming increasingly important because of its effects on AIDS patients.
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therefore identical chemically and indistinguishable by NMR. This gives some 

important advantages:

• The synthesis of symmetrical trehalose derivatives is greatly simplified.

• Interpretation of NMRs is straightforward.

• Molecular modelling studies require fewer computations and therefore less time.

The C2 symmetry of a,a-trehalose does lead to one disadvantage; that of 

determining its conformation and that of its derivatives by NMR. Because 

corresponding atoms in the two glucose residues are homotopic, the NMR equivalence 

of the two residues precludes determination of the solution conformation of symmetrical 

trehaloses by the measurement of chemical shifts, relaxation times, coupling constants 

or NOEs.237 However, X-ray structures are available for various trehalose derivatives 

(summarised in Reference ) and a detailed molecular modelling study has been earned 

out.238 The preferred conformations of the C-disaccharide equivalents of the trehaloses, 

in which the two methylene bridge protons are magnetically inequivalent, have recently 

been determined directly by NMR.239 These studies suggest that a,a-trehalose is less 

flexible than the other trehaloses, and probably more conformationally rigid than most
238other disaccharides, a factor which may be important in its various biological roles.

The observation that the adenophostins interact potently with the Ins(l,4,5)P3 

receptor binding site implies that the receptor can accommodate considerable steric bulk 

in an area of the binding site close to that normally occupied by Ins(l,4,5)P3. Exactly 

which area of space, relative to the inositol ring, is involved is currently unknown but, if 

the adenophostins bind in an extended conformation, then this suggests that the receptor 

should also be able to accommodate a disaccharide having an a,a-linkage (Figure 5.14).

Figure 5.14 The fact that the Ins(l,4,5)P3 receptor can accommodate the steric bulk of 
adenophostin A suggests that it might also be able to bind trehalose derivatives.

The C2 symmetry of a,a-trehalose makes it an ideal starting point for a molecule 

that can be used to test this hypothesis because to some extent, the same protecting

a,a-trehalose derivativeadenophostin A
n h2
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group strategies can be applied that have been developed for a-methyl-D- 

glucopyranoside. Furthermore, the glycosidic linkage in a,G'-trehalose is known to be 

resistant to a-glycosidase, a fact that should confer some metabolic resistance upon 

trehalose-based analogues. The initial target disaccharide chosen was the C2-symmetric 

3,4,3',4'-cx-D-glucopyranosyl-a'-D-glucopyranoside tetrakisphosphate 50. Note that, if 

we define the Ins(l,4 ,5 )P3 binding pharmacophore as described in Chapter 1, this 

molecule possesses two copies of it. Contrast this with Ins(l,3 ,4 ,6 )P4 which has a 

symmetry plane rather than axis, and belongs to the Cs (Cih) point group. In 

Ins(l,3 ,4 ,6 )P4 , positions 1 and 3 are enantiotopic, as are 4 and 6 . They are therefore not 

equivalent in a chiral environment such as the binding site of a receptor or enzyme, 

although they are chemically equivalent as far as NMR is concerned (in the absence of 

any chiral environment). Ins(l,3 ,4 ,6 )P4 therefore has only one vicinal bisphosphate that 

is equivalent to the 4,5-bisphosphate of Ins(l,4,5)P3.

axis

2 -

O P O  32-

O j P O ' ^ /  OH Q V X O P O , !
2-o 3p o ^  ' ^  O P 0 3

Figure 5.15 Proposed C2-symmetrical tetrakisphosphate analogue based on a,a- 
trehalose.

X-ray crystal structures of a,a-trehalose itself, and many derivatives generally 

show the torsion angles 0 and y/ to be negative and synclinal, with values between -40 

and -60°. This observation is a direct manifestation of the ^o-anomeric effect, which in 

trehalose will be an important factor in determining both 0 and y/. Applying this to the 

tetrakisphosphate 50 gives a conformation (Figure 5.16) in which the 3' and 4' 

phosphates are positioned such that neither corresponds to the crucial 2 ' phosphate of 

the adenophostins in the conformations shown in Figure 5.3.
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2'03P0
Figure 5.16 Theoretical conformation for 50 based on a consideration of the exo- 
anomeric effect, so that the torsion angles 0 and iff are both negative and synclinal.

There is no available information on the conformations of trehalose phosphates. 

(Note that it would not be possible to detect the expected NOE between H -l and H -l', 

because these protons are homotopic). Although it is certainly true that the ejco-anomeric 

effect does govern the conformations of most (but not all240) a,a-trehalose derivatives 

studied to-date, it seems possible that the influence of the charged phosphate groups 

may exert a major influence, and this is likely to vary with pH, ionic strength and 

counter-ion in solution. The symmetrical 50 seemed to be an immediately accessible, 

and aesthetically appealing starting point for an investigation into phosphorylated 

disaccharides.

Synthesis of the symmetrical tetrakisphosphate 50 required a protected precursor 

such as 56. A literature search showed that the diol 53 was known, and could be made in 

good yield from trehalose in two steps. The key synthetic strategy would be the 

regioselective reduction of both benzylidene acetals together to give 56. It was thought 

that the symmetry of 53 and its expected rigidity would mean that the two acetals could 

be regarded as being equivalent, and essentially independent from one another. The 

outcome of the reduction would be easy to determine by NMR because, of the three 

possible products, the required 56 is symmetrical and has no primary hydroxyl group.

50 OH 56 OBn

Figure 5.17 Retrosynthetic analysis of the symmetrical tetrakisphosphate 50 suggests a 
synthesis from 53.



The synthesis of 50 would also be expected to produce some of the asymmetrical

analogue, a,a-trehalose 2,4,3/,4/-tetrakisphosphate (Figure 5.18) This molecule 

preserves the pharmacophoric bisphosphate on one glucose residue, while the other 

bears a phosphate at the 2'-position, which was expected to be a better mimic of the 

adenophostin 2'-phosphate. Should 50 show biological activity, then, it would be 

interesting to compare it to the asymmetrical regioisomer.

Figure 5.18 The asymmetrical product of the benzylation reaction (52) could be used to 
make another, potentially active, asymmetrical tetrakisphosphate.

5.5.2 Other carbohydrate-based Ins(l,4,5)P3 /adenophostin mimics.

It was suggested that the planned synthesis was over-long, and that a direct route to 

tetrol 56, or a similarly protected precursor would be preferable. Accordingly, a series of 

attempts were made to prepare a precursor for phosphorylation by direct dibutyltin- 

mediated alkylation and acylation of trehalose. These experiments, which were carried 

out by a colleague, were unsuccessful, and attempts to synthesise 50 were abandoned.

Later, a report was published of the synthesis of a phosphorylated glucose 

derivative intended as an Ins(l,4,5)P3 /adenophostin A mimic241. This analogue showed 

potent activity at Ins(l,4,5)P3 receptors, as would be predicted from the results for the 

hydroxymethyl analogue 44, and by the reasoning given in Section 5.6. 2-Hydroxyethyl 

a-D-glucopyranoside 2',3,4-trisphosphate [Gluc(2',3,4)P3, Figure 5.19] was found to be 

a full agonist at the Ins(l,4,5)P3 receptors of rabbit platelets, but ten-fold weaker than

Figure 5.19 Structure of 2-hydroxyethyl-a-D-glucopyranoside-2',3,4-trisphosphate, 
[Gluc(2',3,4)P3], showing relationship to adenophostin A.

2,3'-di-G-benzylated 52 as a by-product, and this could be used to make another

toBnO ^  2 0 3p 
2-< _

 ̂ OPQ,2- 

OH
52 2,4I3,I4'-tetrakisphosphate

Ins(l,4,5)P3.

adenophostin A
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It seemed likely that the reduced potency of Gluc(2',3,4)P3 relative to 

adenophostin A, Ins(l,4,5)P3 and to the hydroxymethyl analogue 44 could be due to the 

flexibility of the ethylphosphate structure. A molecular dynamics simulation of 

G1uc(2',3,4)P3 supported this idea and as expected, low-energy conformations tended to 

be of the extended type, so that the primary phosphate group was positioned further 

away from the glucose ring than the equivalent 2'-phosphate of adenophostin A.

A comprehensive biological study of Gluc(2',3,4)P3 was published by another 

group,242 confirming its activity in SH-SY5Y neuroblastoma cells and MDCK cells. 

Binding studies were also carried out in pig cerebellum, and enzyme assays showed that 

G1uc(2',3,4)P3, like adenophostin A, was resistant to metabolism by 3-kinase and 5- 

phosphatase. These authors also carried out a molecular dynamics simulation, 

confirming our unpublished results and again showing that the ethylphosphate was too 

conformationally mobile and too distant from the glucose ring to be a good mimic of the 

2'-phosphate in adenophostin A. The authors also hypothesised that adenophostin A 

must interact with the Ins(l,4,5)P3 receptor in a different orientation than does 

Ins(l,4,5)P3 in order to minimise the negative effect of the hydroxymethyl group at 

position 5". However, our results for the hydroxymethyl analogue 44 (see above) imply 

that no such assumption is necessary, unless of course, 44 also interacts with the 

Ins(l,4,5)P3 receptor in a different orientation to Ins(l,4,5)P3.

Shortly afterwards, a third group published the syntheses of more analogues 

similar to Gluc(2',3,4)P3 but based on xylopyranosides.243 Their reported potencies were 

similar to that of Gluc(2',3,4)P3 (i.e. roughly ten times weaker than Ins(l,4,5)P3 ) 

although the j3-D-xylopyranoside with n = 3 appeared to be significantly weaker than the 

others. It would be interesting to compare the a-D-xylopyranosides with the 

glucopyranoside Gluc(2',3,4)P3 in the same biological assay so as to determine the 

contribution of the hydroxymethyl group to activity.

' 3

( n  =  2  o r  3 ) ( n  =  2  o r  3 )

Figure 5.20 a- and /3-xylopyranoside-based Ins(l,4,5)P3 mimics.243
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5.6 Synthesis of a,tf-trehalose-3,4,3',4'-tetrakisphosphate

The biological results reported for these phosphorylated carbohydrates did not bode well 

for the planned trehalose-based analogue, whose synthesis was now resumed. It seemed 

that the positioning of the third phosphate group was indeed a critical determinant of 

activity. (This did not imply, of course, that precise positioning of the phosphate group 

alone would necessarily give highly potent activity). As explained above, if we make 

that assumption that the exoanomeric effect would be dominant in determining the 

conformation of 50, and that the molecule would be quite rigid, then neither phosphate 

of the additional glucose ring would be in the right place. On the other hand, the 

published minimised energy conformation of adenophostin A, which was similar to that 

shown in Figure 5.3b, did not show any exo-anomeric effect either, and the idea of a 

disaccharide analogue with two copies of the essential pharmacophore was still 

attractive. At least the trehalose phosphate would be more rigid than the phosphorylated 

carbohydrate analogues discussed above, and if it showed any activity at all, it should be 

possible to produce various analogues in which the diequatorial bisphosphate motif was 

maintained on one ring while one or more phosphate groups were placed at various 

positions in the second. Finally, 50 and other trehalose polyphosphates might have 

interesting biological properties outside the phosphoinositide field. The synthesis of 50 

was finally carried out, and is shown in Figure 5.21.

5.6.1 Regioselective Benzylation of 4,6:4',6'-di-0-benzylidene-a,a-trehalose

The di-O-benzylidene acetal 51 was prepared according to the improved procedure of 

Baer and Radatus.244 The positive ion FAB mass spectrum of this compound, and of all 

subsequent derivatives in this synthesis showed a characteristic peak at [(M/2)-8]/z 

corresponding to the positive fragment ion produced by cleavage of the glycosidic bond. 

Regioselective benzylation according to Vicent et al.,245 using two equivalents of 

dibutyltin oxide, excess benzyl bromide and a catalyst of jV-methylimidazole gave the 

symmetrical 2,2'-di-O-benzyl-4,6:4/,6'-di-0-benzylidene-a,a-trehalose (53) in 54% 

yield and the asymmetrical 2,3'-di-0-benzylated derivative 52 in 32% yield after column 

chromatography. The authors of the original study reported that unchanged starting 

material (11%) was recovered, although in our hands, the conversion was complete as 

judged by TLC, and more of the asymmetrical 52 was obtained. Both 52 and 53 could 

be crystallised easily from ethyl acetate/hexane (52 had previously been reported to be a 

syrup). The isolation of substantial amounts of the unsymmetrically substituted 52 was
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useful, because it was a precursor for an asymmetrical trehalose tetrakisphosphate 

(Figure 5.18). The respective identities of 52 and 53 were immediately apparent from
1 13the H and C NMR spectra, in that 53 possesses a symmetry element, which is lacking 

in 52. The very simple NMR spectrum of 53 could be assigned completely, 

confirming the positions of the benzyl ethers.

OH HO
OR'.OH

'OR2 O''OH OHO OH Ph R OHO'
a.a-trehalose H0

BnOBnO
.OR

'OBn OHO * OH 
OBn

RO
55 R = Bz
56 R=H

BnO. t  BnO OH HO
OPO;

'OBn O 'OH O»jf(OBn).
57 BnO 50

Figure 5.21 Synthesis of a,a-trehalose-3,4,3',4'-tetrakisphosphate 50. 
i) C6H5CH(OMe)2, DMF, p-TsOH, 75°C; ii) a) Bu2SnO, 3A sieves, CH3CN, 120°C b) BnBr, N- 
methylimidazole; iii) BzCl, DMAP, pyridine; iv) NaCNBH3, THF, 3A sieves, dry HC1; v) a) 
(BnO)2PNPr'2, l//-tetrazole, b) m-CPBA, -78°C; vi) Na/liq NH3. Bn=benzyl, Bz=benzoyl.

5.6.2 Regioselective Reduction of Benzylidene Acetals

The next step would be a regioselective reduction of both benzylidene acetals in the 

symmetrical derivative 53. As discussed above, the borane-trimethylamine/aluminium 

chloride method had been successful when used in the case of the protected inositol 34, 

but the yield had been modest, and regioselectivity was sometimes poor. It was therefore
• 991decided to attempt the reaction using the method of Garegg et al. , which employs 

sodium cyanoborohydride-hydrogen chloride, and if this was not successful, to try the 

newly reported method of DeNinno et al. using triethylsilane-trifluoroacetic acid.223 In 

both of these methods, the carbohydrate model compounds used by the authors to 

investigate the regioselectivity of their method had protecting groups at position 3 (or its 

equivalent), although it was not clear what might be the effect of a free hydroxyl group 

at this position. It was particularly important in this case that the regioselectivity of the 

reaction was maximised so as to avoid obtaining a mixture of three products, which may 

be difficult to separate. (In fact a small-scale trial of the reaction directly on 53 did give
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at least three products, which still await positive identification). It was therefore decided 

to protect this position temporarily as a benzoate ester. It was expected that this would 

also aid identification of the product, as the benzoylated 3-position should be easily 

recognisable in *H NMR spectra.

Accordingly 53 was benzoylated under standard conditions to give the highly

crystalline symmetrical derivative 54. Reduction using sodium cyanoborohydride and
0 0  1hydrogen chloride in dry ether according to the published procedure was successful at 

the first attempt, with total conversion to a single product within 5 minutes. When the 

reaction was scaled up, the pure diol 55 was obtained in 80% yield after flash 

chromatography. The simple lH NMR spectrum confirmed the symmetry of the product, 

and as expected, the distinctive H-3 resonance, a pseudo-triplet, was shifted well 

downfield away from other signals, resulting in a first-order spectrum that could be 

completely assigned. Saponification using methanolic sodium hydroxide gave the 

required tetrol 56 in 85% yield.

5.6.3 Phosphorylation and Deprotection

The tetrol was phosphitylated with bis(benzyloxy)-Af,Af-diisopropylaminophosphine / 

l//-tetrazole, following the usual procedure. The 31P NMR of the intermediate 

trisphosphite was a single AB system with Vpp = 4.9 Hz. This confirmed beyond any 

doubt the structure of the tetrol precursor, in that such a spectrum could only arise if the 

precursor contained vicinal alcohol groups and was symmetrical. It is worth mentioning 

here that phosphitylation of polyols could be a useful technique for assigning their 

structure in situations when the !H NMR spectrum is complex, or where the hydroxyl 

groups cannot be seen. It enables immediate identification of vicinal diols, and the 

phosphites derived from isolated alcohol groups appear as singlets. In six-membered 

rings, the coupling constant can often be used to judge whether the relative 

stereochemistry of two hydroxyl groups is trans or cis.

Oxidation with m-CPBA gave the tetrakisphosphate triester 57. The proton- 

coupled 31P NMR spectrum of this compound simply consists of two pseudo-sextets 

(Figure 5.22a). Deprotection using sodium in liquid ammonia removed all benzyl 

protecting groups, leaving the glycosidic linkage intact and the target tetrakisphosphate 

was obtained as the pure triethylammonium salt after ion exchange chromatography. 

The proton-coupled 31P NMR spectrum of 50 is shown in Figure 5.22b.
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Figure 5.22 31P NMR spectra (^ -coup led , 162 MHz) of a) protected tetrakisphosphate 
triester 57 in CDC13 b) a,a-trehalose-3,4,3',4'-tetrakisphosphate 50 in D20 ,  pH~7.
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5.6.4 Ca2+-mobilising Ability of Trehal(3,4,3',4')P4

a,a-Trehalose-3,4,3',4'-tetrakisphosphate (50) was tested for ability to release 45Ca2+ in 

permeabilised rabbit platelets. The results (Figure 5.23) showed that 50 was able to 

release Ca2+ although with a potency around 100-fold lower than Ins(l,4,5)P3. Thus 50, 

although relatively weak, is the first known example of a disaccharide-based analogue 

active at Ins(l,4,5)P3 receptors. The results do not allow us to judge whether 50 is 

behaving as a full agonist or as a high-efficacy partial agonist in this assay.

100-1
—v— Ins(l,4,5)P3

—▼— adenophostin 
— G1uc(2,)3,4)P3 

—o— Trehal(3,4,3',4')P,

80-

?  eo-<U

P
20-

0.10.00001 0.0001 0.001 0.01 1 10
Concentration / p M

Figure 5.23 45Ca2+-release from permeabilised rabbit platelets induced by adenophostin 
A, Ins(l,4,5)P3 , G1uc(2',3,4)P3 and Trehal(3,4,3',4')P4 (50).

The time-course of Ca2+-release induced by 50 can be seen in Figure 5.24. The effect is 

prolonged, indicating that 50 is poorly metabolised and is probably resistant to 3-kinase 

and 5-phosphatase. The effect of 50 is inhibited by heparin (Figure 5.25), which is good 

evidence that it is acting at the Ins(l,4,5)P3 receptor binding site rather than by some 

other non-specific mechanism.
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100
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Figure 5.24 Time-course of Ca2+-mobilisation by Trehal(3,4,3',4')P3 (50) monitored by 
spectrofluorimetry.

147



Judging by these results, the affinity of 50 for the Ins(l,4 ,5 )P3 receptor appeared 

to be quite low, and this might be expected on the basis of the molecular modelling 

results discussed above. The results do show however, that the receptor is capable of 

accommodating the steric bulk of a second glucose residue, as predicted.

500-

400-

200 -
+ 25 ng/m l heparin

100 -

10 it M Trehal (3,4,3',4')P4

0 100 200 300 400
Time (seconds)

Figure 5.25 Spectrofluorimetry shows that the action of Trehal(3 ,4 ,3 ',4 ')P4 (50) is 
inhibited by heparin.

5.6.5 Preliminary Binding Assay

Preliminary binding assays have recently been carried out for 50 (Figure 5.26). These 

results are puzzling, in that 50 appears to displace [3H]Ins(l,4 ,5 )P3 with a potency 

similar to that of Gluc(2',3,4)P3. Thus the affinity of 50 for the rat cerebellar 

Ins(l,4,5)P3 receptor appears to be surprisingly high, only 10-fold weaker than 

Ins(l,4 ,5 )P3 itself. On the basis of these results, 50 would be classified as a potent 

Ins(l,4 ,5 )P3 receptor ligand, and yet its ability to release Ca2+ release from rabbit 

platelets is low. Speculation as to the significance of this anomaly will be avoided until 

the findings can be confirmed.

—v— lns(1,4,5)P3
—▼— adenophostin A 
—°— Trehal(3,4,3,,4,)Pi 
— Gluc(2‘,3,4)P3

o>
6 0 -

4 0 -

2 0 -

TT*r
1

o i — ...............— r
0.00001 0.0001

rTTTTl—
0.001 10 100

Compound (p M)
Figure 5.26 Displacement of [3H]Ins(l,4,5)P3 from rat cerebellar membranes by 
adenophostin A, Ins(l,4,5)P3, Gluc(2',3,4)P3 and Trehal(3,4,3',4/)P4 (50).
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Table 5.3 Binding and 45Ca2+ release data* for adenophostin A, Ins(l,4 ,5)P3, 
Gluc(2',3,4)P3 , Trehal(3,4,3',4')P4 (50) and 2'-AMP.

Compound Binding (ICso/juM) 45Ca2+ release (EC30//iM )

adenophostin A 0.00074 ± 0.00042 0.0073± 0.0036

2'-AMP — no release (ImM)

Ins(l,4 ,5)P3 0.038 ± .005 0.4 ±0.08

G1uc(2',3,4)P3 0.21 ±0.07 2.05 ± 0.3

Trehal(3,4,3',4')P4 0.37 ±0.17 100 ±65

*Displacement of specific [3H]Ins(l,4,5)P3 binding from rat cerebellar membranes, and 
45Ca2+ release from permeabilised rabbit platelets were used to determine the EC50 and 
IC50 values respectively. Values are mean ± S.E.M. ( n = 3 - 10).

5.7 Sum m ary

The discovery of the adenophostins has provided an important new stimulus to research 

in an area of medicinal chemistry where lead compounds were scarce and ideas were 

beginning to run out. The adenophostins possess the essential structural motifs that have 

been deduced for Ins(l,4 ,5)P3 mimics by application of the classical active analogue 

approach over a period of years, and they also confirm our existing ideas as to which 

features of Ins(l,4 ,5)P3 are not essential for activity. It was not previously appreciated 

that an hydroxymethyl group, and perhaps even larger structures, can be tolerated by the 

Ins(l,4 ,5)P3 receptor in the region that normally binds the 3-hydroxyl group of 

Ins(l,4 ,5)P3, but the high potency of 6-hydroxymethyl 5cy//o-Ins(l,2,4)P3 has shown 

that this is indeed the case, and the presence of a similar structure in adenophostin A is 

not mysterious.

Attempts to mimic the 2'-phosphate of the adenophostins with conformationally 

mobile primary phosphate groups have so far met with limited success, producing 

analogues weaker than Ins(l,4 ,5)P3 , but have established that simple carbohydrate- 

based analogues can show high potency. By comparing Gluc(2',3,4)P3 to 6-deoxy-6- 

hydroxymethyl-5cy//o-Ins(l,2,4)P3 we can deduce that the ethylphosphate of 

G1uc(2',3,4)P3 is not acting as a good surrogate for the 2/-phosphate, nor of the 1- 

phosphate of Ins(l,4 ,5)P3. However, it is almost certainly better than no phosphate at all. 

The fact that Gluc(2',3,4)P3 is far more potent than Ins(4 ,5)P2 , and the observation that 

the activity of the xylopyranoside-based Ins(l,4,5)P3 mimics (Figure 5.20) is dependent 

on the orientation and chain-length of the alkylphosphates, suggest that the
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conformationally mobile phosphate groups of these analogues enhance affinity for the 

Ins(l,4,5)P3 receptor binding site but that their interactions with it are sub-optimal. An 

attempted short-cut to a conformationally more rigid analogue 50 based on trehalose 

seems to have been less successful in terms of agonistic effect, but the preliminary 

binding assay apparently shows high-affinity binding for 50; an exciting result if it can 

be confirmed. Trehal(3,4,3',4')P4 is the first synthetic disaccharide active at Ins(l,4,5)P3 

receptors, and its other biological properties await investigation.

We still do not know whether high potency can be achieved with a minimal 

structure lacking adenine, but the next logical step is obviously to include a degree of 

conformational restraint in the structure of Gluc(2',3,4)P3 , and Desai et al.246 have very 

recently reported a synthesis of methyl 2-0-allyl-5-0-benzyl-j3-D-ribofuranoside 

intended for the synthesis of such an analogue (Figure 5.27A). Our molecular modelling 

suggests that, if the 4'-hydroxymethyl group is not important, then a similar effect might 

be achieved by an even simpler structure (Figure 5.27B), based on a conjugate of 

glucose with 1,4-anhydroerythritol. Comparison of the activities of these analogues 

would establish the importance of the 4'-hydroxymethyl group, which up to now, has 

received little or no attention.
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Figure 5.27 Attempt to establish the structural basis for the extreme potency of 
adenophostin A. Testing of A should establish whether the adenine is necessary. If not, 
the next step would be to synthesise and evaluate the even more simple B (or its 
cyclopentane-based equivalent). It is already established that Gluc(2',3,4)P3, with its 
conformationally mobile ethylphosphate does not retain high potency.
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6 Phosphorothioates as Partial Agonists

6.1 Overview

As discussed in Chapter 1, Ins(l,3,4,6)P4 has been shown to behave as a partial agonist 

at the Ins(l,4,5)P3 receptor of SH-SY5Y neuroblastoma cells.44 An attempt to determine 

the structural basis of this property by the synthesis and testing of L-Ins(l,3,4)P3 and D- 

Ins(l,4,6)P3 has not yet given conclusive results, because it now seems that 

Ins(l,3,4,6)P4 itself does not behave as a partial agonist in our biological assay system 

(permeabilised rabbit platelets). Although these analogues are now being evaluated in 

SH-SY5Y cells, the results are not yet available. So far, therefore, no inositol phosphate 

has demonstrated partial agonist properties in the rabbit platelet assay.

However, one inositol phosphorothioate, namely L-c/u’ro-inositol-2,3,5- 

trisphosphorothioate,45 had been found to be a partial agonist in rabbit platelets. During 

the course of our work on L-Ins(l,3,4)P3, described in Chapter 2, a colleague synthesised 

racemic Ins(l,4,6)PS3, and this analogue too was found to be a partial agonist with very 

low intrinsic efficacy in platelets. Ins(l,4,6)PS3 was also demonstrated to inhibit 

Ins( 1,4,5)P3-induced Ca2+-release in a concentration-dependent fashion.48 It was 

assumed that the D-enantiomer was responsible for this effect, and this can be 

rationalised by considering possible binding orientations at the Ins(l,4,5)P3 receptor as 

described for D-Ins(l,4,6)P3 in Chapter 1. Another low-intrinsic activity 

phosphorothioate partial agonist in SH-SY5Y cells, D-6-deoxy-myo-inositol-1,4,5- 

trisphosphorothioate,47 has not been tested in platelets.

It was possible to discern a pattern to these results (Figure 6.1), in which 

replacement of phosphate groups with phosphorothioates, coupled with the reorientation 

or deletion of the hydroxyl group at position 3 or 6 gives a partial agonist. Notice that 

two analogues are missing from this pattern and to the best of our knowledge, they have 

not so far been synthesised. Now in the suggested binding mode for L-Ins(l,3,4)P3 

(Chapter 1), the hydroxyl group corresponding to position 6 of Ins(l,4,5)P3 is also 

reorientated, so that it is now axial rather than equatorial, and in addition, the hydroxyl 

group corresponding to position 2 of Ins(l,4,5)P3 has now been changed from axial to 

equatorial, as in the suggested orientation for D-Ins(l,4,6)PS3. It was therefore thought 

that L-Ins(l,3,4)PS3 might also be a partial agonist.
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Figure 6.1 The finding that L-c/»>0-Ins(2,3,5)PS3, 6-deoxy-Ins(l,4,5)PS3 and D - 

Ins(l,4,6)PS3 are partial agonists suggested that L-Ins(l,3,4)PS3 might also share this 
property. Two other compounds are also predicted to be partial agonists from this 
pattern, but have not been synthesised. [PS = phosphorothioate, OP(S)C>22’].

6.2 Synthesis of DL-myo-Inositol 1,3,4-trisphosphorothioate

It was therefore decided to convert a small sample of the racemic triol 9 into DL-myo- 

inositol-1,3,4-trisphosphorothioate (59). If the racemic phosphorothioate showed 

interesting activity, then pure L-Ins(l,3,4)PS3 [and if necessary, D-Ins(l,3,4)PS3] could 

easily be made from the corresponding optically pure triols.

Figure 6.2 Syntheses of racemic Ins(l,3,4)PS3 (59) and L-Ins(l,3,4)PS3 (L-59)
i) a) (BnO)2PNPr'2, 1/f-tetrazole, b) Sg; ii) Na / liquid NH3. See Experimental section
for details.
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9 Was phosphitylated as before and then stirred overnight with elemental 

sulphur in dry pyridine. After the solvents were removed, purification by column 

chromatography gave the protected trisphosphorothioate 58 as an oil in modest (50%) 

yield. Deprotection using sodium in liquid ammonia, and purification by ion exchange 

chromatography gave racemic Ins(l,3,4)PS3 (59) in 61% yield.

6.2.1 Biological Evaluation

The racemic trisphosphorothioate was found to have very low efficacy at the 

Ins(l,4,5)P3 receptor of rabbit platelets, releasing only 20% of the Ins(l,4,5)P3 -sensitive 

Ca2+ pool, even at concentrations above ImM (Fig. 6.3).
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Figure 6.3 45Ca2+ release by DL-Ins(l,3,4)PS3 (59) from permeabilised rabbit platelets.

Now this result, taken in isolation, does not show that DL-Ins(l,3,4)PS3 is a partial 

agonist; an extremely weak full agonist could give similar results. However, when 

platelets were treated with Ins(l,4,5)P3 at a concentration of 1/iM, together with 

increasing concentrations of DL-Ins(l,3,4)PS3 a definite inhibition of Ins(l,4,5)P3- 

stimulated Ca2+ release was observed (Figure 6.4). These results demonstrate that DL- 

Ins(l,3,4)PS3 was acting as a true partial agonist. The effect of Ins(l,4,5)P3 is reduced as 

the concentration of DL-Ins(l,3,4)PS3 is increased, until it eventually falls to a level 

approaching the intrinsic efficacy of DL-Ins(l,3,4)PS3 itself (the DL-Ins(l,3,4)PS3 - 

induced Ca2+ release curve is shown again for comparison).
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Figure 6.4 Inhibition of Ins(l,4,5)P3 -induced 45Ca2+-release by DL-Ins(l,3,4)PS3

6.3 Synthesis and Evaluation of L-myo-Inositol 1,3,4-trisphosphorothioate

It was assumed that the partial agonist activity of racemic DL-Ins(l,3,4)PS3 resided in 

the L-enantiomer, but it was important to demonstrate that this was true. Accordingly a 

sample of optically active triol L-9b was phosphitylated as previously described. This 

time the sulphoxidation was carried out using an improved method, developed by a 

colleague.49 After the presence of the trisphosphite triester had been confirmed by 31P 

NMR, the dichloromethane was removed by evaporation under reduced pressure and 

DMF-pyridine (2:1) was added, followed by 3 equivalents of sulphur per phosphite 

group. Sulphoxidation was complete within 10 min as judged by 31P NMR. Note that 

this method is much faster than the use of sulphur in pyridine, which requires a few 

hours for complete conversion and can give poor yields. The small excess of sulphur 

was filtered off and the solvents evaporated in vacuo to give a syrup, which was purified 

by flash chromatography giving the fully protected trisphosphorothioate triester l-58 in 

71% yield, l-58 was deprotected as for the racemic compound and purification gave L- 

Ins(l,3,4)PS3 (l-59).

The ability of L-Ins(l,3,4)PS3 to displace [3H]Ins(l,4,5)P3 from rat cerebellar 

membranes was examined, and the results are shown in Figure 6.5. The observation that 

L-Ins(l,3,4)PS3 shows roughly twice the affinity of the racemic mixture in this assay 

confirms that the activity does indeed reside in the L-enantiomer.
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Figure 6.5 Displacement of [3H]Ins(l,4,5)P3 from rat cerebellar membranes by DL- 
Ins(l,3,4)PS3 (59) and L-Ins(l,3,4)PS3 (L-59).

D-Ins(l,4,6)PS3, which was synthesised in a parallel project by a colleague, 

showed even higher affinity for the Ins(l,4,5)P3 receptor in binding studies, an 

observation which can be rationalised by similar structure-activity arguments to those 

given in Chapter 1 for D-Ins(l,4,6)P3 and L-Ins(l,3,4)P3. Like L-Ins(l,3,4)PS3 this 

analogue also shows very low efficacy, releasing less than 20% of the Ins(l,4,5)P3 - 

sensitive Ca2+ pool (Figure 6 .6 ). D-Ins(l,4,6)PS3 therefore constitutes an important lead 

compound in the search for Ins(l,4,5)P3 receptor antagonists, and it should be possible 

to produce a series of analogues of this compound, selectively modified at the axial 2 - 

position from the myo-inositol orthoformate derivative 28 (Chapter 4).
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Figure 6.6 45Ca2+-release from permeabilised rabbit platelets induced by D- 
Ins(l,4,6)PS3 and L-Ins(l,3,4)PS3 (L-59).
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A further study was carried out in which Ca2+-release curves for Ins(l,4 ,5 )P3 in rabbit 

platelets were obtained in the presence of increasing concentrations of L-59. The results, 

shown in Figure 6.7 demonstrate that l-59 shows the classical antagonist behaviour, 

causing a progressive shifting of the Ca2+-release curves to the right as the dose is 

increased.
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Figure 6.7 Progressive shifting of the dose-response curve for Ins(l,4 ,5 )P3 -induced 
45Ca2+ release by increasing concentrations of L-Ins(l,3 ,4 )PS3 (L-59).

6.4 6-Deoxy-6-hydroxymethyl-scy//o-inositol-l,2,4-trisphosphorothioate

As discussed in Section 6.3, D-Ins(l,4,6)PS3 is currently the most promising lead 

compound in the search for partial agonists at Ins(l,4 ,5 )P3 receptors. Its intrinsic 

efficacy is very low, and yet it also binds with high affinity to Ins(l,4 ,5 )P3 receptors, a 

property inherited from its parent compound, D-Ins(l,4 ,6 )P3 . This suggested that a 

simple strategy for the design of a high affinity, low efficacy partial agonist might be to;

1) Identify a 3-position modified Ins(l,4 ,5 )P3 analogue that shows high affinity 

for the Ins(l,4 ,5 )P3 receptor, and then

2) Reduce its efficacy by replacing phosphates with phosphorothioates.*

Now the only difference between D-Ins(l,4 ,6 )PS3 and L-chiro-Ins(2 ,3 ,5 )PS3 is the 

orientation of one hydroxyl group, and yet this appears to lower the efficacy of D- 

Ins(l,4 ,6 )PS3 without reducing its affinity for the receptor. Ideally then, a candidate for a

* This strategy has since been shown to be valid. The 4,5-bisphosphorothioate o f  the highly potent D-3- 
deoxy-3-fluoro-myc>-Ins(l,4,5)P3 has recently been found to be a partial agonist in SH -SY 5Y  cells.50. If 3- 
deoxy-In s(l,4 ,5 )P S 3 itself is a partial agonist, then a xylose-based bisphosphorothioate conjugated with 2'- 
AM P (by analogy with the adenophostins) might be worthy o f investigation.
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partial agonist should also have this feature. Taken together these arguments, 

summarised in Figure 6.8, suggest that the phosphorothioate analogue 60 of the highly 

potent hydroxymethyl analogue 44 (Chapter 5) should be a promising candidate.

ot p o s itio n

Figure 6.8 Structural considerations suggest that, by analogy with D-Ins(l,4 ,6)PS3, the 
trisphosphorothioate 60 might also be a partial agonist.

Accordingly, racemic 60 was synthesised from the triol 46 (Figure 6.9). The structure of 

60 was confirmed beyond doubt by COSY NMR, 31P NMR and high resolution 

FAB mass spectrometry. The ^-coupled  31P NMR is shown in Figure 6.10. Note that 

the heteronuclear 3/ h c o p  coupling constants are quite large (11.9 Hz, 12.6 Hz and 9.9 

Hz). This seems to be a general feature in the 31P NMR spectra of phosphorothioates. 

The signals occur at lower field than those of the corresponding trisphosphate as a result 

of the greater electronegativity of sulphur compared to oxygen.

Figure 6.9 Synthesis of racemic 6-deoxy-6-hydroxymethyl-scy//oinositol 1,2,4- 
trisphosphorothioate (60)
i) a) (BnO)2PNPr'2, l//-tetrazole, CH2CI2 b) Sg; DMF/pyridine; ii) Na / liquid NH3.
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Figure 6.10 31P NMR spectrum of 60 ^H-coupled, 162 MHz, D20).

6.4.1 Biological Evaluation

The ability of racemic trisphosphorothioate 60 to release 45Ca2+ from permeabilised 

rabbit platelets was evaluated (Figure 6.11).

1 oo —|
■ InsU,4,5)P3 (n=3)

— 0—  60 (n=3)
80-

4°C

40-

20 -

0.01 0.1 1
Concentration/|iM

10 100

Figure 6.11 45Ca2+ release by racemic 60 from permeabilised rabbit platelets.

It appears that phosphorothioate substitution in 60 results in a dramatic reduction 

in ability to release Ca2+ (more than 500-fold), relative to the trisphosphate 44. The

158



situation is very different from that found for Ins(l,4,5)P3, whose trisphosphorothioate 

appears to be a full agonist and is only three to four times weaker than the parent 

compund.93 It is not possible to say whether 60 behaves as a full agonist or not from 

these results, but it does appear to have higher efficacy than L-Ins(l,3,4)PS3, in that it
94-can be seen to be releasing more than half of the Ins(l,4,5)P3 -sensitive Ca pool at a 

concentration of lOO^M. Whether the drastic reduction in the potency of 60 is reflected 

in a similar reduction in its affinity for the Ins(l,4,5)P3 receptor awaits the results of
'j

[ H]Ins( 1,4,5)P3 binding assays, but disappointingly, a preliminary assay appears to 

show that it does not inhibit Ins(l,4,5)P3 -induced Ca2+-release from rabbit platelets. 

Studies of the interaction of 60 with 3-kinase and 5/6-kinases are in progress.

6.5 Conclusions

The only low efficacy partial agonists at Ins(l,4,5)P3 receptors discovered to date have 

been phosphorothioates. L-Ins(l,3,4)PS3 can now be added to this small group of 

analogues, but D-Ins(l,4,6)PS3, which has higher affinity for the Ins(l,4,5)P3 receptor 

and yet maintains very low efficacy, is the most important lead compound. The 

behaviour of 6-deoxy-6-hydroxymethyl-5cy//o-inositol-l,2,4-trisphosphorothioate (60) 

is perplexing. The parent compound 44 (Chapter 5) showed one of the highest binding 

affinities to the Ins(l,4,5)P3 receptor of any Ins(l,4,5)P3 analogue yet synthesised and 

yet replacement of the phosphate groups with phosphorothioates seems, at present, to 

have given only a very weak, high-efficacy agonist. It is not known why the presence of 

the hydroxymethyl group should affect the activity of a trisphosphorothioate in this way, 

but this finding may have implications for the design of adenophostin-based partial 

agonists.

Finally, it should be noted that L-Ins(l,3,4)PS3 and D-Ins(l,4,6)PS3 only 

appeared to behave as partial agonists at 4°C. The effect disappeared when the 

experiments were repeated at 20°C, and this finding underscores the reservations that 

were expressed in Chapter 1 about our criteria for partial agonism. One of the hallmarks 

of quantal Ca release is that it disappears at low temperature, and it has been argued 

that the phenomenon of quantal Ca2+ release may obscure partial agonist behaviour.47

* This effect is in accordance with the kinetics predicted from a model based on stochastic recombination 
of high- and low-affinity Ins(l,4,5)P3 receptor subunits to give heterotetramers.23
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7 m yo -Inositol 1,3,4,5-tetrakisphosphate

7.1 Overview

Chapter 2 dealt with the synthesis and properties of the enantiomers of a naturally 

occurring inositol trisphosphate, Ins(l,3,4)P3. Recall that there had been disagreements 

in the literature as to whether D-Ins(l,3,4)P3 was active at Ins(l,4,5)P3 receptors, and 

therefore controversy as to its biological role. It was shown that pure D-Ins(l,3,4)P3 is 

essentially inactive, and it was suggested that studies finding otherwise had used 

contaminated Ins(l,3,4)P3. Today there are few workers in this field who would claim 

that D-Ins(l,3,4)P3 has any direct role in releasing intracellular Ca2+.

In contrast, the debate surrounding another, structurally-related and naturally- 

occurring inositol phosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate [Ins(l,3,4,5)P4] 

is currently growing more complex by the week, and this molecule will be the subject of 

this final chapter. There are now many suggested biological roles for Ins(l,3,4,5)P4 and 

many putative Ins(l,3,4,5)P4 binding proteins. There is also the question of whether 

Ins(l,3,4,5)P4 is recognised by Ins(l,4,5)P3 receptors, by only certain subtypes of 

Ins(l,4,5)P3 receptors, or not recognised by Ins(l,4,5)P3 receptors at all. As this thesis 

was nearing completion (April 1996) a new study was published claiming that, not only 

does Ins(l,3,4,5)P4 not release Ca2+ at physiologically relevant levels, but that at least in 

mouse lachrymal acinar cells, Ins(l,3,4,5)P4 or perhaps one of its metabolites, actually
94- < 1inhibits Ca release, and therefore functions to turn o ff the Ins(l,4,5)P3 signal.

In this chapter we describe a new and rapid synthesis of both enantiomers of 

Ins(l,3,4,5)P4, and some problems encountered relating to the purity and biological 

activity of the D-enantiomer. In contrast to the study of D-Ins(l,3,4)P3, no firm 

conclusions can be given, because the compounds are still under biological evaluation, 

and the significance of the results is still being discussed. Clearer answers may be 

available in a few months time. We begin however with a synthesis of the previously 

unknown scy//o-inositol analogue of Ins( 1,3,4,5)P4.

7.2 Stereochemical Relationships of D-Ins(l,3,4,5)P4 and L-Ins(l,3,4,5)P4

Various Ins(l,3,4,5)P4 binding proteins have been identified in recent years, and some of 

these have been discussed briefly in Chapter 1. The beginnings of a structure-activity
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relationship are being established for an Ins(l,3,4,5)P4 binding protein purified from 

porcine platelets, and now designated G A Pl18488. It has been reported120 that at this site, 

phosphate groups at positions 3 and 5 of myo-inositol are essential for binding, but 

position 4 is not needed. A third phosphate in the 1-position enhances binding, but 

phosphorylation of the axial 2-position abolishes activity. Notice how different these 

proposed requirements (Figure 7.1) are from those of the Ins(l,4,5)P3 receptor (Figure 

1. 11).

enhances 
phosphorylation b|nding
abolishes activity

phosphorylation
H O  2- s ' reduces activityI UrU-j 6

O H ^  _
essential ►2"0 3P0 ^ \ 111̂ -^ -^ § -0 P03 ‘

Opo32' essential

not necessary
1P4BPFigure 7.1 Proposed structure-activity relationships for GAP1

It is interesting to note that L-Ins(l,3,4,5)P4 129 appears to have only a 13-fold 

lower affinity for G A Pl184815 than D-Ins(l,3,4,5)P4.119 This is very different from the 

interaction of Ins(l,4,5)P3 with Ins(l,4,5)P3 receptors, where L-Ins(l,4,5)P3 has at least 

1000 times lower affinity than its enantiomer.111 The explanation for this finding may 

simply be that L-Ins(l,3,4,5)P4 is more similar to D-Ins(l,3,4,5)P4 than L-Ins(l,4,5)P3 is 

similar to D-Ins(l,4,5)P3. D-Ins(l,3,4,5)P4 and L-Ins(l,3,4,5)P4, although enantiomers, 

have identical arrangements of phosphate groups. L-Ins(l,3,4,5)P4 could therefore be 

regarded as an analogue of D-Ins(l,3,4,5)P4, in which the orientations of the hydroxyl 

groups at positions 2 and 6 have been interchanged (Figure 7.2). This is analogous to the 

relationship between D-Ins(l,4,5)P3 and L-Ins(l,3,4)P3, and from the point of view of a 

binding protein, must surely be more significant than the fact that D- and L- 

Ins(l,3,4,5)P4 are related to one another as an object is to its mirror image. Thus the 

concept of some “stereospecificity” as a property of the binding protein, and the notion 

that the Ins(l,3,4,5)P4 receptor may be “less stereospecific” than the Ins(l,4,5)P3
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receptor, without a consideration of the symmetry properties of the phosphate 

configurations in their respective ligands, may be misleading.*

opo32' 0P032'

0 3P01 '0P032' 2 O31-W

OH

'OPO32'
6po32’ opo32'

D-A7?yo-lns(1,3,4,5)P4 L-r77yo-lns(1,3,4,5)P4

OPO32'

,„vOH

'0P032'

6po32'

scyllo- lns(1,2,3,5)P4 

62

Figure 7.2 Stereochemical interrelationships of D-Ins(l,3,4,5)P4, L-Ins(l,3,4,5)P4 and 
scy//o-Ins(l,2,3,5)P4 (62).

To-date, all the inositol phosphates evaluated at Ins(l,3,4,5)P4 binding sites have 

been of the rayo-configuration, possessing an axial group at the 2-position. The scyllo- 

inositol analogue of Ins( 1,3,4,5)P4 (strictly scy/Zo-inositol 1,2,3,5-tetrakisphosphate, 62, 

Figure 7.2), in which this group is equatorial, will allow the importance of this feature to 

be explored at the various putative Ins(l,3,4,5)P4 binding sites. The mesc-compound 

^cy//o-Ins(l,2,3,5)P4 can be seen as an analogue of both D- and L-Ins(l,3,4,5)P4. It is 

epimeric with both, but because it possesses a plane of symmetry it is identical with its 

enantiomer. Thus D-Ins(l,3,4,5)P4 , L-Ins(l,3,4,5)P4 and scy//o-Ins(l,2,3,5)P4 all possess 

the structural elements identified as important for GAP 11154813 binding as shown in Figure 

7.1, but the different affinities of the D- and L-enantiomers show that hydroxyl group 

orientations must also be important, as they are at the Ins(l,4,5)P3 receptor (Chapter 2). 

In scy//o-Ins(l,2,3,5)P4, only the orientation of the 2-hydroxyl group is changed, and it

In opposition to this argument, it might be pointed out that L -Ins(l,3,4,5)P4 has been reported to be 
almost inactive in releasing 45Ca2+ from permeabilised SH -SY 5Y  cells, while D -Ins(l,3 ,4 ,5)P 4 appeared to 
be only 20-fold weaker than Ins(l,4 ,5)P3.m  Thus D -Ins(l,3 ,4 ,5)P4 seem s to be a more potent agonist at 
the In s(l,4 ,5 )P 3 receptors o f SH -SY 5Y  cells than would be predicted from the arguments given above.
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will be interesting to examine the effect of this single modification on GAP1IP4BP 

binding.

D-Ins(l,3,4,5)P4 is also recognised with high affinity by the enzyme multiple 

inositol polyphosphate phosphatase (MIPP) which removes its 3-phosphate group, 

generating Ins(l,4,5)P3, and this has sometimes caused problems in establishing the true 

effects of Ins(l,3,4,5)P4 (Chapter 1). Whether the adjacent 2-hydroxyl group of 

Ins(l,3,4,5)P4 is involved in the mechanism of hydrolysis is not known, but it may be 

enlightening to establish whether scy//o-Ins(l,2,3,5)P4 is recognised by MIPP, and if so, 

whether it can be dephosphorylated by this enzyme. Similarly, the effect of 5- 

phosphatase on scy//o-Ins(l,2,3,5)P4 should be studied, as inactivation of Ins(l,3,4,5)P4 

by 5-phosphatase, which dephosphorylates it to Ins(l,3,4)P3 is also a problem in studies 

of Ins(l,3,4,5)P4.

7.3 Synthesis of scy//o-Inositol 1,2,3,5-tetrakisphosphate

The symmetry of 5cy//o-Ins(l,2,3,5)P4 makes it a particularly accessible analogue of 

Ins(l,3,4,5)P4 synthetically, in that neither a stereospecific synthesis nor an optical 

resolution is required. The synthesis (Figure 7.3) began with the versatile ketone 29 

(Chapter 4), which was reduced rapidly and stereoselectively with sodium borohydride 

to the scyllo-inositol orthoformate derivative 63 in 89% yield.

No J coupling

I OPMB Nn  
OPMB I OPMBIu 

OPMB OH

H H

OPMB

2 9 6 3 PMBO
6 4

II OP(OR)2
_ (ro )2p o '7 ^ ^ 7 ^ o p m b  
(RO)2P O ^ /^ ^ y - O P ( O R ) 2 

" OPMB 11
6 2 6 5

Figure7.3: i) NaBH4/M eO H / THF; ii) a) IM H C l/M eO H  1:10, A; b) aqueous NH3; 
iii) a) Pr'2NP(OR)2, l//-tetrazole, CH2C12 b) m-CPB A, -78°C iii) Na/liquid NH3, -78°C. 
PMB = /?-methoxybenzyl, R=CH2CH2CN.



The fact that the product had the scy/Zo-configuration was immediately apparent from 

the [H NMR spectrum of 63, because the signal corresponding to the methylidene 

proton was a singlet, while in the epimeric myo-analogue 28 (Chapter 4) it is doubled, 

due to a long-range spin coupling. The axial OH proton resonated at low field (S  4.12, 

CDCI3) and showed a very large / h c o h  value of 12.45 Hz. Selective cleavage of the 

orthoformate ester by mild acid hydrolysis gave the tetrol 64 in 68% yield.* 

Phosphitylation with bis(2-cyanoethoxy)-Af,/V-diisopropylaminophosphine / lf f-  

tetrazole, followed by oxidation of the intermediate tetrakisphosphite triester with m- 

CPBA gave the fully-protected 65 (85%). Deprotection using sodium in liquid ammonia 

caused some problems in that the /?-methoxybenzyl protecting groups proved more 

resistant to cleavage by this method than the more usual benzyl groups. This was 

apparent during the purification process by ion exchange chromatography as the target 

compound, which contains no chromophore, appeared to show some UV absorbance as 

it eluted from the ion-exchange column. A 31P NMR spectrum showed small impurity 

peaks, and the lH NMR spectrum showed small but characteristic signals due to the p- 

disubstituted aromatic ring protons. The deprotection reaction was therefore repeated, 

but left for 5 minutes rather than the usual 2 minutes before quenching. This time, 

deprotection was complete and pure 62 was obtained as the triethyl ammonium salt 

(71%) giving a 37% overall yield from 29.

5cy//o-Ins(l,2,3,5)P4 is intended as a probe for Ins(l,3,4 ,5)P4 binding sites, 

rather than Ins(l,4 ,5)P3 receptors, but its ability to mobilise intracellular Ca2+ in SH- 

SY5Y neuroblastoma cells has now been examined. 62 Appears to be some four-fold 

weaker than commercially available D-Ins(l,3,4,5)P4. The significance of these results is 

not yet clear, because the true activity of D-Ins(l,3,4 ,5)P4 is still in question, as will be 

seen later in this Chapter. A study of the interaction of 62 with GAP1IP4BP is now 

underway. 62 Showed potent ability to inhibit phosphorylation of Ins(l,3,4)P3 by the 

5/6-kinase enzyme as might be expected, because three of its phosphate groups can be 

superimposed upon those of D-Ins(l,3,4)P3 (Figure 7.4).

* These two steps were carried out by a final-year undergraduate project student, who also converted 
compound 63 into its tri-O-p-methoxybenzyl ether. The fact that the NMR spectra of this compound 
showed three-fo\d symmetry was irrefutable evidence that 63 had the scyllo configuration.
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Figure 7.4 scy//o-Ins(l,2,3,5)P4 may be recognised by Ins(l,3,4)P3 5/6-kinase because it 
is capable of mimicking certain aspects of the natural substrate Ins(l,3,4)P3

7.4. A Short Route to D-Ins(l,3,4,5)P4 and L-Ins(l,3,4,5)P4

As part of an investigation into long-range 31P-31P spin-spin coupling in the NMR 

spectra of phosphite triesters,248 an orthoformate ester of myo-inositol was required in 

which the two axial hydroxyl groups were chemically inequivalent. Thus it was 

necessary to break the symmetry of the molecule. It was thought that this might be 

achieved by reacting myo-inositol orthoformate with 1.1 equivalents of (lS)-(-)-co- 

camphanic acid chloride in pyridine with a catalyst of DMAP. The expectation was that 

the 2-camphanate ester 66 would be the major product, and that this would be 

sufficiently dissymmetric to make possible the direct observation of any spin-spin 

coupling between phosphite esters formed at positions 4 and 6.

(-)-camphanic acid 
OH chloride

OH OHOH OH
myo-inositol orthoformate 66

Symmetrical Asymmetrical

Figure 7.4a Reaction of the symmetrical myoinositol orthoformate with 1 equivalent of 
(15)-(-)-fi>camphanic acid chloride gives an unsymmetrical ester.

The reaction was carried out and when the major product was isolated, it was 

indeed found to be the 2-camphanate ester. The position of substitution was established 

beyond doubt by removing the orthoformate ester and obtaining a !H NMR of the 

product 66a (Figure 7.5). In this molecule, the proton at position 2 is easily identified by 

its distinctive splitting pattern (a narrow triplet or strictly, a narrow doublet of doublets), 

and in 66a this signal was shifted well downfield. Compound 66 was therefore used for 

the planned NMR study.
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Remove orthoformate: 
ring flips.

(-)Camph =

OH O(-Camph)

HC

H H
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H-2 is now the only ring proton 

with two small 3 J ax-eq couplings,

Figure 7.5 Confirmation of the structure of the 2-camphanate 66 by !H NMR.

The TLC also showed two minor products, close together at longer Rf. These 

were isolated and shown to be the 2,6-biscamphanate and the 2,4-biscamphanate. It was 

impossible to tell which was which by NMR. None of the 4,6-disubstituted product was 

detected.

O H

myoinositol orthoformate

0(-)Camph 0(-)Camph
0(-)Camph

0(-)Camph O H

t 
t

D-lns(1,3I4,5)P4 L-lns(1I3,4,5)P4

Figure 7.6 Reaction of myoinositol orthoformate with 2 equivalents of (1 £)-(-)-<*>- 
camphanic acid chloride gives mainly the 2,6- and 2,4-biscamphanate esters, which are 
precursors for D- and L-Ins(l,3,4,5)P4 respectively.



Note that this situation is quite different to the alkylation of myo-inositol orthoformate 

(Chapter 4) in which the disubstituted product was exclusively the 4,6-di-O-/?- 

methoxybenzyl ether, with no 2,4- or 2,6- disubstituted ethers detectable. It was quickly 

realised that the biscamphanates could provide a short and large-scale route to the 

enantiomers of Ins(l,3,4 ,5)P4 (Figure 7.6).

7.5 Synthesis of D-Ins(l,3,4,5)P4 and L-Ins(l,3,4,5)P4

Several syntheses of D-Ins(l,3,4,5)P4 have been published, although many are long or

employ special techniques, such as the use of enzymes. Two examples were described in

Chapter 1. The inconsistencies in the reports of the activity of D-Ins(l,3,4,5)P4 in 
2+releasing Ca might lead us to suspect that some samples were not pure and indeed, a 

study published by Gawler et al. in 1990 113 showed that when commercially available 

samples of D-Ins(l,3,4,5)P4, from more than one source, were treated with 3-kinase, 

their activity in SH-SY5Y neuroblastoma cells was markedly decreased. This is strong 

evidence that these samples contained Ins(l,4 ,5)P3.

The unnatural enantiomer, L-Ins(l,3,4,5)P4 is increasingly being used as a 

biological tool in studies of D-Ins(l,3,4,5)P4. m ’ 114, 119 There is only one reported 

synthesis of L-Ins(l,3,4,5)P4 ,129 and to the best of our knowledge, all the material used 

has come from this source. It is agreed that L-Ins(l,3,4,5)P4 has only low activity at 

Ins(l,4 ,5)P3 receptors (which would be expected from the structure-activity 

relationships outlined in Figure 1.11) and yet has moderate affinity for Ins(l,3,4,5)P4 

receptors. Therefore, it is argued, effects induced by L-Ins(l,3,4,5)P4 must be mediated 

by the Ins(l,3,4,5)P4 receptor. This strategy has been used to distinguish putative 

Ins(l,3,4,5)P4 binding sites from Ins(l,4,5)P3 receptors but has led workers to rather 

different conclusions. Wilcox et a i lu  have argued that, because D-Ins(l,3,4,5)P4 caused 

Ca2+ release, but L-Ins(l,3,4,5)P4 did not then D-Ins(l,3,4,5)P4 must cause Ca2+ release 

via Ins(l,4 ,5)P3 receptors. In contrast, Loomis-Husselbee et al.114 claim that both D- 

Ins(l,3,4,5)P4 and L-Ins(l,3,4,5)P4 can induce Ca2+ release by acting synergistically with 

Ins(l,4 ,5)P3, * but that, because both enantiomers have this synergistic effect with 

Ins(l,4 ,5)P3, this effect must be mediated by Ins(l,3,4,5)P4 receptors.

* D-Ins(2,4,5)P3, which is active at Ins(l,4,5)P3 receptors but 10-fold less so than Ins(l,4,5)P3 , was used 
instead of Ins(l,4,5)P3 in this study so as to obviate the possibility of conversion to Ins(l,3,4,5)P4.
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Whatever the validity of these biological arguments, it is clear that such studies 

require a reliable source of both D- and L-Ins(l,3,4 ,5)P4, which must be optically pure 

and free from contamination with other, potentially active, inositol phosphates. A 

synthesis of both enantiomers using the strategy outlined in Figure 7.6 might achieve 

this in the minimum number of synthetic steps.

7.5.1 Absolute Configurations of Biscamphanates: X-Ray Study

The esterification reaction was repeated, using 2.2 equivalents of S-(-)-G>camphanic 

acid chloride. Now, as expected, the major products were the two biscamphanates. 

These two diastereoisomers were quite distinct in their physical properties. The less 

polar diastereoisomer (minor product) was easily recrystallised from ethyl 

acetate/hexane, whereas the more polar major product showed low solubility in all but 

the most polar solvents (DMF, acetonitrile, pyridine, but not water). It was eventually 

found that this isomer could be recrystallised easily from DMF/water. In order to find 

out which biscamphanate was which an X-ray crystal structure would be required or 

failing this, it would be necessary to convert one of them to a known reference 

compound.

The crystals of the less polar diastereoisomer appeared to be the better 

candidates for X-ray analysis, and so larger crystals were grown slowly from a solution 

in propan-2-ol. The crystals proved to be of a suitable type and an X-ray study was 

carried out. The X-ray crystal structure (Figure 7.7a) showed this compound to be the 

Id-2,6-biscamphanate ester of myoinositol orthoformate 67a. Within the rigid 

adamantane-like cage structure all C-C bond lengths were in the range 1.502-1.538 A 

and all C-O bond lengths between 1.394 and 1.448 A, with bond angles ranging from 

105.8° to 114.3°. An examination of the supramolecular structure of 67a (Figure 7.7b) 

revealed that the lattice was dominated by one-dimensional linear polymers as a result 

of intermolecular hydrogen-bonding between the free hydroxyl groups and the lactone 

carbonyl oxygens. This interaction probably accounts for the high crystallinity of this 

material compared to diastereoisomer 67b. For full details, see Appendix 2.
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Figure 7.7a X-ray crystal structure of the lD-2,6-biscamphanate ester 67a. Note: the 
numbering of atoms used in this representation is not the same as that used in the rest of 
this thesis.

7.5.2 Optimising the Yield of the 2,6-Biscamphanate

Diastereoisomer 67a was therefore a synthetic precursor to D-Ins(l,3 ,4 ,5 )P4 , and the 

more polar, major product 67b would provide L-Ins(l,3 ,4 ,5 )P4 . It seemed likely that 

demand for the natural D-enantiomer of Ins(l,3 ,4 ,5 )P4 would exceed that for the L- 

enantiomer, and so attempts were made to alter the selectivity of the esterification 

reaction by using different conditions.
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7.7 b) The supramolecular structure of 67a shows intermolecular hydrogen 
bonding between the 4-hydroxyl groups and lactone carbonyl oxygens, giving a one­
dimensional, linear polymeric structure.
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The reaction was repeated, replacing the pyridine with dichloromethane, together 

with a small amount of triethylamine to act as base. Again, DMAP was used as the 

catalyst. This worked well, and although myo-inositol orthoformate is only very slightly 

soluble in dichloromethane the reaction went smoothly, with the suspended 

orthoformate rapidly disappearing as esterification progressed. The reaction was 

complete within half an hour, and this time, TLC showed that the major product was the 

desired 2,6-biscamphanate, with a reduced amount of 2,4-ester and almost no 

monocamphanate. However significant amounts of the unwanted 2,4,6-triscamphanate 

were now produced.

The reaction was repeated a number of times, using various amounts of 

camphanic acid chloride and adjusting the volume of solvent and the temperature. 

Optimised conditions provided a respectable 60% yield of the 2,6-biscamphanate after 

flash chromatography. Note that the yield of this regioselective esterification exceeds 

the maximum possible theoretical yield (50%) that could be obtained by a conventional 

optical resolution of a racemate (e.g. in the synthesis of D- and L- Ins(l,3,4)P3 , Chapter 

2). The 2,4-disubstituted product was obtained in 23% yield. It was found that no work­

up was needed, and these yields could be achieved with minimal effort by simply 

removing the solvents in a rotary evaporator and purifying the crude residue using flash 

chromatography. Careful recrystallisation of the two products at this stage was carried 

out to increase their optical purity further.

A 400 MHz COSY spectrum of the 2,6-biscamphanate 67a is shown in Figure 

7.8. Having established the absolute configuration, it was now possible to assign the 

spectrum completely. Note the narrow signals corresponding to the ring protons, which 

have only small vicinal couplings, and the long-range 5J  coupling between H -l and H-3. 

This interaction is not seen directly in the spectra of any of the symmetrical inositol 

orthoformate derivatives (Chapter 4) because in these compounds H -l and H-3 are 

enantiotopic, and therefore isochronous. The small (0.98 Hz) long-range coupling 

between the methylidine proton (8  5.54) and H-2 (5 5.30) is not seen as a cross-peak in 

this spectrum, but is clearly resolved in the one-dimensional spectrum (Figure 7.8b).
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Figure 7.8 a) Part of the COSY NMR spectrum of the I d - 2 , 6 -biscamphanate 67a 
(CDC13, 400 MHz).
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Figure 7.8b An expansion of the part of the 270 MHz ‘H NMR spectrum of 67a, shows 
complex, narrow signals with splittings caused by long-range couplings. Note that the 
methylidine proton signal ( 8  5.54) is a narrow doublet, and couples to H-2.

7.5.3 Removal of Orthoformate Esters and Phosphitylation/Oxidation

It was now necessary to remove the orthoformate esters, while leaving the camphanate 

esters, with their lactone rings, intact. This was found to be straightforward for the 2,6- 

biscamphanate, and was carried out using a 1 to 10 refluxing mixture of 1M HC1 and 

methanol, without significant loss or migration of camphanate groups. The use of higher 

concentrations of acid was not successful, causing extensive loss of camphanates.

The 2,4-biscamphanate (which would lead to L-Ins(l,3,4,5)P4) posed much more 

of a problem. Although it was only slightly soluble in methanol or ethanol, it was 

thought that this would not preclude the use of the usual HCl/methanol or HCl/ethanol 

conditions. This was not the case, and almost no reaction was detectable after 5 to 6  

hours of reflux. Increasing the concentration of acid only caused loss of camphanate
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esters. The reaction was next attempted in refluxing 80% acetic acid, and this strategy 

was more successful. After 7 hours, most of the starting material was consumed and a 

clear solution was formed. However, the conversion was still not complete, with 

significant quantities of at least one intermediate formate ester being visible on the TLC. 

The reaction seemed to progress no further after this stage and the yield of tetrol was 

low.

Figure 7.9 Synthesis of D-Ins(l,3,4,5)P4 and L-Ins(l,3,4 ,5)P4 from myo-inositol 
orthoformate biscamphanates 67a and 67b. i) 1M HCl/MeOH 1:10, reflux (88%); ii) 
TFA/H20  4:1, 40h (85%); iii) a) Pr'zNPtOCHzCHjCN^, ltf-tetrazole, b) m- 
CPBA,78°C (80-84%) iv) Cone. NH3 solution, 60°C, 6 h (90-93%).

Another method of removing the orthoformate ester is to use 80% TFA at room 

temperature. This method had been avoided because it had previously been found to 

give significant amounts of formate esters, although these can be removed in a second 

stage, usually by stirring with methanolic ammonia.129 However, as other methods had

0(-)Camph0(-)Camph
0(-)Camph

0(-)Camph

67a

OH
67b

(-)CamphO

0(-)Camph
^OH (-Camph)O'

HO-i

0(-)Camph

OH HO

68a 68b

iii iii

O
(RO)2PO 0 (-)CamPh(-)CamPh?OP(OR^

(RO)2P O A ! i^ 5
O (RO)2PO

(-)CamphO
(RO)2P O ^

0(-)Camph
^ O f(O R )2

O 0 P 0 R )2 O

O
69a

(R=CH2CH2CN) o
69b

iv IV

70a 70b

D-lns(1 i3,4i5)P4 L-lns(1,3,4,5)P4

174



failed, the reaction was attempted. The 2,4-biscamphanate was, encouragingly, very 

soluble in 80% TFA, and the reaction was left at room temperature for 22 hours. TLC 

after this time showed that the reaction was not complete, and although the starting 

material had mostly been consumed, two intermediates, presumably formate esters were 

still present. This partial cleavage of an orthoester in compounds such as 67a and 67b 

could provide a rapid route to Ins(l,4,5)P3 or other chiral trisphosphates, and this 

prospect is now under investigation by a colleague. As expected, treatment with 

ammonia solution, even for a short time resulted in loss of the camphanate groups.

Finally it was found that 67b could be deprotected most successfully by simply 

stirring in 80% TFA at room temperature for a longer time. After 40 hours, the reaction 

was almost complete, with little formate remaining. This could easily be removed by 

flash chromatography and the pure tetrol 68b was at last obtained, in 85% yield.

Both of the diastereoisomeric tetrols 68a and 68b could easily be recrystallised 

(from propan-2-ol and DMF/water respectively). Note that, with a conventional optical 

resolution, the chiral resolving agent is normally removed immediately after the 

resolution step. The intermediates subsequent to this stage are therefore enantiomeric, 

and contamination with the unwanted enantiomer will not be apparent by NMR or TLC. 

Nor will chromatography give any increase in optical purity. At each step in this 

synthesis, the precursors to D-Ins(l,3,4 ,5)P4 and L-Ins(l,3,4 ,5)P4 were 

diastereoisomeric, having very different NMR spectra and different RjS. Any 

contamination would therefore be obvious, especially in the camphanate methyl 

resonances of the !H NMR spectra. No such contamination was visible in any of the 

NMR spectra.

The next stage was phosphitylation/oxidation, which was carried out without 

problems using bis(2-cyanoethoxy)-Af,A-diisopropylaminophosphine / 1/f-tetrazole 

followed by m-CPBA. This phosphitylating agent was chosen because the cyanoethyl 

protecting groups can be removed by alkaline hydrolysis and so could be removed 

together with the camphanate esters in a single deprotection step. It would eventually 

become clear that this choice was a serious mistake (see below).
'i 1

The two intermediate tetrakisphosphite triesters, gave quite different P NMR 

spectra but both showed the expected five-bond couplings between the P(III) atoms of
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the vicinal phosphites and the values of 5/ pp differed in magnitude for the two

intermediates. This characteristic pattern of a triplet (P4), two doublets (P3 and P5) and

a singlet (PI) in each confirmed the 1,3,4,5 arrangement of phosphites.

Oxidation gave the fully-protected tetrakisphosphate triesters 69a and 69b.

Again it is important to remember that these molecules are diastereoisomeric, as was

apparent from their very different 3lP , 13C, and *H NMR spectra. The ]H NMR

spectrum reconfirmed the substitution pattern, with the characteristic signals for H-2 and

H-6 in compound 69a, and for H-2 and H-4 in compound 69b, being shifted well
1 ̂downfield away from all other resonances. The C NMR spectra of both compounds 

were complicated by extensive 31P - 13C couplings. Both compounds took the form of 

brittle white foams, so no further recrystallisations were possible, but their NMR spectra 

testified to their chemical and optical purity.

7.5.4 Deprotection: Problems with Phosphate Migration

A small-scale trial established that total deprotection of 69a could easily be achieved by

heating at 60°C in concentrated aqueous ammonia solution in a sealed container for 3 
1  ̂1hours. A H-coupled P NMR of the product showed four clear doublets, confirming 

that the deprotection was complete. When the reaction was scaled up, the main problem 

was one of how to carry out this reaction safely, and the solution adopted was to carry 

out the reaction in a thick-walled, lOOmL glass autoclave bottle with a screw-cap. The 

foam (2g of 69a) was compressed into a fine powder, which was transferred to the 

bottle, followed by the ammonia solution and a magnetic stirring bead. The bottle was 

sealed and lowered into a water bath with a thermostatically-controlled heater-stirrer 

behind a safety screen. The thermostat was set to 60°C, and with the screen safely in 

place and the fume-cupboard closed, the heater stirrer was switched on. After the 

temperature had reached 60°C, heating was continued for 6 hours, and at the end of the 

reaction, the bottle was allowed to cool fully, before opening.

The product would now be in the form of the ammonium salt together with the 

hydrolysis products from the camphanate groups. A previous trial of the deprotection 

method using only ethyl camphanate and ammonia solution had established that the 

hydrolysis product, which was water-soluble, could be removed by acidification 

followed by extraction into dichloromethane or ether. This strategy was successfully
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employed, with Dowex-50 H+ resin being used to reduce the pH to ~2, prior to 

extraction. The aqueous layer was then titrated to pH 10 with 1M KOH. A final 

purification stage, designed to remove any excess KOH, was to re-dissolve the product 

in a small volume of de-ionised water and then add methanol, thus precipitating the 

potassium salt of D-Ins(l,3,4 ,5)P4 , and leaving residual KOH in solution. This stage 

also served to remove a slight brownish colour which had originated from the Dowex 

resin. The precipitate was dissolved once more in de-ionised water and lyophilised to 

give the potassium salt of D-Ins(l,3,4 ,5)P4 in 94% yield.

A smaller quantity of 69b was deprotected in exactly the same way to give L- 

Ins(l,3,4 ,5)P4 (potassium salt) in 90% yield. The !H and I3C NMRs of the two 

enantiomers D-70a and L-70b were identical and fully agreed with the previously 

published NMR data168. The 400 MHz *H NMR spectrum of L-70b and the 

corresponding 100 MHz 13C NMR spectrum are shown in Figure 7.10.

However, the 162 MHz 31P NMR spectra did show some slight impurity in each 

case although this was not seen at lower field. It was not clear at this stage how the 

impurities arose, as the precursors 69a and 69b appeared pure by high field 31P NMR. 

The potassium salts are not highly crystalline, tending instead to precipitate as fine or 

fibrous amorphous material from a number of solvent systems, and no improvement 

could be obtained by recrystallisation. A portion of the D- enantiomer was converted to 

both the ammonium and the cyclohexylammonium salts, and although the latter could 

be crystallised (with some difficulty), the impurity seen in the 31P NMR persisted. These 

attempts at purification, involving conversion to free acid, titrations and various 

attempts at crystallisations, occupied many weeks. High field NMR spectra had to be 

obtained after each attempt, each time adjusting pH to separate the signals, and often the 

sample had to be treated to remove paramagnetic ions (with Chelex-100 resin or 

EDTA), meaning that it could not be re-used. Time was running out, the originally large 

supply of D-Ins(l,3,4,5)P4 was dwindling, and the impurity would not go.
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Figure 7.10 a) 400M Hz !H NMR spectrum and b) 100 MHz 13C NMR spectrum of L- 
Ins(l,3,4,5)P4 (potassium salt, D20 ,  pH 8-9).
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7.5.5 Preliminary Biological Testing

The slightly impure potassium salts of D- and L-Ins(l,3,4,5)P4 were evaluated for Ca2+ 

release from permeabilised SH-SY5Y cells. As expected, the L-Ins(l,3,4,5)P4 proved to 

be weak (results not shown), and was able to release only about 37% of the Ca2+-pool at 

a concentration of KXtyiM. The D-Ins(l,3,4,5)P4 proved to be almost identical in its 

effect to the commercially available material, that is, around forty times weaker than 

Ins(l,4 ,5 )P3. Interestingly, scy//e>-Ins(l,2,3,5)P4 was considerably less active. Now as 

discussed above, there has been much controversy as to whether D-Ins(l,3,4,5)P4 can 

mobilise Ca2+ via Ins(l,4 ,5 )P3 receptors, and this has caused concern as to the purity of 

the D-Ins(l,3,4,5)P4 used. In this case, it was known that the D-Ins(l,3,4,5)P4 contained 

an unidentified impurity, and yet it behaved in an almost identical way to commercially 

available Ins(l,3,4,5)P4.

— lns( 1,4,5) P3 
— irrpure D-hs(1,3,4,5)P4 

v— scy/fe>lns(1l2,3,5)P4

Q001 Q01 Q1 1
Concentration (n M)

10 100

Figure 7.11 45Ca2+-release from SH-SY5Y neuroblastoma cells induced by Ins(l,4 ,5 )P3 

(potassium salt), 5cy//o-Ins(l,2 ,3 ,5 )P4 (62, triethylammonium salt) and impure D- 
Ins(l,3,4,5)P4 (D-70a, potassium salt). 45Ca2+-release is given relative to the maximal 
release induced by Ins(l,4 ,5 )P3.

It was intended to repeat the large-scale route and optimise it as a method of 

producing pure D- and L-Ins(l,3,4,5)P4 at a later stage, but time was pressing, and it 

seemed that the best course of action would be to purify the D-Ins(l,3,4,5)P4 by ion- 

exchange chromatography, and then test it again. A small sample (lOOmg) of the impure 

D-Ins(l,3,4,5)P4 was subjected to careful ion-exchange chromatography, taking only the 

fractions eluting above 700mM buffer strength, so as to exclude the possibility of
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overlap with any trisphosphate. However, the ion-exchange purified D-Ins(l,3,4 ,5)P4 

still contained around 2-3% of an impurity as judged by high-field phosphorus NMR. At 

low pH the D-Ins(l,3,4,5)P4 peaks were broad and no impurities could be seen (Figure 

7.12a), but after adding EDTA to chelate paramagnetic ions, impurities were visible in
31the P NMR spectrum (Figure 7 .12b). In order to spread the peaks as far as possible and 

therefore minimise overlap, the pH was raised to -10  by addition of KOH solution 

(Figure 7.12c). Four small impurity peaks could now be seen, suggesting a 

tetrakisphosphate, and of course, this finding was what might be expected for a 

compound that co-eluted with Ins(l,3,4 ,5)P4. Significantly, the fact that there were four 

peaks and not two, ruled out the possibility that the contaminant was a symmetrical 

tetrakisphosphate such as Ins(l,3,4 ,6)P4. It seemed very likely, therefore, that the 

contaminant was an asymmetrical tetrakisphosphate arising from phosphate migration at 

some stage during or after the deprotection. Figures 7.12a to 7.12c illustrate the 

importance of careful adjustment of conditions if 31P NMR is to be used as a criterion 

for the purity of inositol phosphates. The 400MHz !H NMR spectrum also showed 

irregularities in the baseline (as in Figure 7.10a) that suggested the presence of a second 

inositol phosphate, although overlap with other peaks made it impossible to identify the 

contaminant.

Now a consideration of the possible asymmetrical migration products obtainable 

from D-Ins(l,3,4,5)P4 shows that the production of D-Ins(l,2,4 ,5)P4 is a distinct 

possibility. A literature search revealed that another group had previously encountered 

problems with phosphate migration (under acidic conditions) and they reported that 

migration to an unprotected 2-position was particularly favoured.249 Thus, the expected 

migration products from D-Ins(l,3,4 ,5)P4 are D-Ins(2,3,4 ,5)P4 and D-Ins(l,2,4 ,5)P4. Now 

D-Ins(l,2,4,5)P4 is highly active at Ins(l,4 ,5)P3 receptors, being almost equipotent with 

Ins(l,4 ,5)P3.250'252 It was therefore possible that the apparent activity of our D- 

Ins(l,3,4,5)P4 (Figure 7.11) could result from around 2-3% contamination with D- 

Ins(l,2,4,5)P4. However, this would mean that commercially available D-Ins(l,3,4 ,5)P4 

was also contaminated with a Ca2+-mobilising material.
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Figure 7.12 162 MHz 31P NMR spectra of ion-exchange purified D-70a 
(triethylammonium salt in D20). a) pH 4-5; b) pH 4-5, EDTA added; c) pH -10, EDTA 
added.
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It seemed possible that the migration had occurred as a result of acidification 

with Dowex-H+ resin, and so the deprotection was repeated, and the crude product 

purified immediately by ion exchange with no work-up procedure. However, the 

impurity was still present, suggesting that migration was taking place at the deprotection 

stage, which employed alkaline conditions. It is known that, in the cleavage of 

cyanoethyl groups under alkaline conditions by /^-elimination, the first cyanoethyl group 

is removed very rapidly, while the second is then cleaved slowly. Perhaps migration was 

occurring at this prolonged intermediate stage, and the presence of cyanoethyl groups or 

the use of a slow deprotection method was the source of the problem.

More tetrol 68a was synthesised and this time phosphorylated using 

bis(benzyloxy)-Af,Af-diisopropylaminophosphine, giving 71a which was deprotected 

using sodium in liquid ammonia. It was not known how rapidly camphanate groups 

would be cleaved by this method, and so the reaction was quenched after five minutes, 

rather than the usual one or two minutes. This method gave better results, and all 

protecting groups were cleaved within this time, but a small amount of migration 

product was still visible in the NMR spectra after ion-exchange chromatography. Now 

migration had not been detected in previous deprotections of this type, notably in the 

synthesis of Ins(l,3,4)P3, which also has a vacant 2-position, so it seemed likely that it 

was the presence of camphanate esters at positions 2 and 6 that were causing the 

problem. Perhaps the esters were being cleaved more rapidly than the phosphate 

protecting groups, so that unprotected 2- and 6-hydroxyl groups were available as 

targets for phosphate migration during the deprotection. Presumably, the mechanism of 

migration would then be as shown in Figure 7.13. If this were so then it would seem that 

the camphanate groups were the cause of the difficulties. However, the selective 

protection of positions 2 and 6- with camphanate esters was the basis of the synthetic 

strategy, and if the problems they entailed were insurmountable, then that strategy 

would be intrinsically flawed.
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Figure 7.13 Possible mechanism for base-catalysed migration of a phosphate group to 
the axial 2-position via a five-membered cyclic phosphate intermediate. R = benzyl or 2- 
cyanoethyl.

7.5.6 Another Strategy: Two-Step Deprotection

There was one method remaining that should make migration impossible. It was to 

deprotect the phosphate groups first, and then remove the camphanate esters (Figure 

7.14). The fully protected compound 71a was therefore hydrogenolysed using a catalyst 

of palladium on carbon, and hydrogen at 50 p.s.i. overnight.
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Figure 7.14 Two-step deprotection of D-71a avoids migration of phosphate groups.
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It was impossible to tell whether the intermediate tetrakisphosphate was pure 

because residual palladium ions caused severe broadening of the NMR spectra, and 

could not be removed with EDTA. The camphanate esters were removed from this 

intermediate by heating at 60°C in concentrated ammonia solution as before and the 

crude product purified by ion exchange giving the triethylammonium salt of D- 

Ins(l,3,4,5)P4. The impurities that had been seen in all the previous samples of D-70a 

were no longer visible in the 31P NMR (Figure 7.15) and the baseline in the 400 MHz 

NMR was now smooth.

Figure 7.15 162 MHz 31P NMR spectrum of D-Ins(l,3,4,5)P4 produced by the two-step 
deprotection method (triethylammonium salt in D2O, pH 4-5; EDTA added).
Compare with Figure 7.12b.

Now that the problems with this synthesis appear to have been solved, it should 

provide a rapid and simple access to D- and L-Ins(l,3,4,5)P4. The strategy should enable 

either enantiomer of Ins(l,3,4,5)P5 to be synthesised from myo-inositol orthoformate, 

using procedures that require only a few days work. It now only remains to repeat the 

route using the optimised methods and produce larger amounts of both enantiomers. The 

methodology could also be adapted to give a rapid route to [3H]Ins(l,3,4,5)P4. Oxidation 

of the unprotected 4-position in 67a followed by stereoselective reduction of the 

resulting ketone with [3H]NaBH4 should yield 67a tritiated at position 4, which can then 

be converted to optically pure D-[3H]Ins(l,3,4,5)P4 in only three steps, using the 

methods already developed for 67a.
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The remaining impure D-Ins(l,3,4,5)P4 is currently being put to good use in a 

potentiometric/NMR investigation of Ins(l,3,4 ,5)P4 in the hope of gaining information 

on the ionisation state and solution conformation of Ins(l,3,4 ,5)P4.* It should be 

particularly interesting to establish how the addition of a phosphate group to position 3 

of Ins(l,4 ,5)P3 may affect the conformation and ionisation state of the adjacent 4,5- 

bisphosphate. Samples of the purified D-Ins(l,3,4 ,5)P4 are being used in an NMR study 

of their interaction with the isolated PH domain of human dynamin.

The purified D-Ins(l,3,4,5)P4 is now being evaluated in SH-SY5Y cells under 

the same conditions as before, and compared to the impure sample. Commercially 

available D-Ins(l,3,4 ,5)P4, HPLC-purified commercial D-Ins(l,3,4 ,5)P4, and HPLC- 

purified biologically-derived D-Ins(l,3,4 ,5)P4 are also being compared in the same 

assay. Further tests are in progress, and full binding assays are still to be carried out 

before firm conclusions can be drawn. It is hoped that the complete results, which 

should be available soon, will allow a clearer understanding of the effects of D- 

Ins(l,3,4,5)P4 and its role in cell signalling.

* A preliminary 31P NMR titration curve for D -7 0 a  is now available. See Appendix 3.
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8 Experimental

8.1 General Methods

Chemicals were purchased from Aldrich and Fluka. Dichloromethane was dried over 

phosphorus pentoxide, distilled and kept over 4 A molecular sieves. Pyridine was dried 

by refluxing with sodium hydroxide pellets, followed by distillation, and stored over 5 A 

sieves. Dimethylformamide was stored over 4 A sieves. Tetrahydrofuran (THF) was 

dried by passing through activated alumina to expel peroxide radicals, followed by 

distillation from sodium in the presence of benzophenone ketyl.

TLC was performed on pre-coated plates ( Merck TLC aluminium sheets silica 

F254, Art. no. 5554 ) with detection by UV light or with methanolic phosphomolybdic 

acid followed by heating. Flash-column chromatography was performed on silica gel 

(Sorbsil C60).

!H and 13C NMR spectra (internal Me4Si as reference) were recorded with a Jeol 

GX270 or EX400 NMR spectrometer, and 31P NMR spectra (external aq. 85% 

phosphoric acid as reference) were recorded with a Jeol EX400 or Jeol FX90Q 

spectrometer. Mass spectra were recorded at the SERC Mass Spectrometry Service 

Centre, Swansea, and at the University of Bath. Microanalysis was carried out by the 

Microanalysis Service, University of Bath. FAB-mass spectra were carried out using m- 

nitrobenzyl alcohol as the matrix. Melting points (uncorrected) were determined using a 

Reichert-Jung Thermo Galen Kofler Block. Optical rotations were measured using an 

Optical Activity Ltd. AA-10 polarimeter. Ion-exchange chromatography was performed 

on an LKB-Pharmacia Medium Pressure Ion Exchange Chromatograph using DEAE 

Sepharose or Sepharose Q Fast Flow by elution with a gradient of triethylammonium 

hydrogencarbonate (TEAB) buffer as eluent. Quantitative analysis of phosphate was 

performed using a modification of the Briggs phosphate assay.152,83

Dichloro-A,A-diisopropylaminophosphine was prepared by the method of 

Tanaka et al.253 by adding 2 equiv. of Af,iV-diisopropylamine to a solution of PCI3 in dry 

ether at -78°C. The crude product (<5p 166.4) was purified by distillation under reduced 

pressure, and reaction with 2 equiv. of benzyl alcohol in the presence of 2 equiv. of 

triethylamine afforded bis(benzyloxy)-A7V-diisopropylaminophosphine254 (<5p 145.24) 

which was purified by flash chromatography.

Benzyloxy-bis(A,7/-diisopropylamino)phosphine was prepared by the method of Dreef 

et al.202 Chloro-bis(A,iV-diisopropylamino)phosphine (2.67g, lO.Ommol) was dissolved

186



in dry ether (20mL) and cooled to 0°C under N2. Dry triethylamine (1.4mL, lO.Ommol) 

was added followed by anhydrous benzyl alcohol (1.39mL, lO.Ommol). The mixture 

was allowed to reach room temperature and stirred for a further 30 min. The mixture 

was then poured into pentane at 0°C (30mL) and rapidly filtered to remove the 

precipitated triethylammonium chloride. The filtrate was evaporated in vacuo giving 

benzyloxy-bis(N,iV-diisopropylamino)phosphine as a colourless oil (3.17g, 9.37mmol, 

94%).

'H NMR (CDC13) 270MHz): S 1.17 (12 H, d, J  = 6.8 Hz, 4 x CH3), 1.19 (12 H, d, J  =

6.8 Hz, 4 x CH3), 3.55 (2 H, septet, J  = 6.8 Hz, 2 x CH), 3.59 (2 H, septet, J  = 6.8 Hz, 2 

x CH), 4.65 (2 H, d, 3/ Hp = 7.1 Hz, CH2C6H5), 7.30 - 7.40 (5 H, m, C<7/5).

31P NMR (CDC13, 36 MHz, ‘H-decoupled): 5 123.6.

Bis(4-chlorobenzyloxy)-A^,A^-diisopropylaminophosphine was prepared according to de 

Bont et al.111

8.1.2 Com puter assisted M olecular Modelling

Energy minimisations of structures and molecular dynamics simulations were carried 

out using the AMBER or MM+ forcefields within the software packages Discover 2.95 

(Biosym Technologies, San Diego, USA) running on a Silicon Graphics workstation or 

Hyperchem release 4 for Windows (Hypercube Inc.) on a 486DX266 personal computer. 

Partial charges for the fully ionised molecules were calculated using a semi-empirical 

method (CNDO or AMI). Molecular dynamics simulations were conducted at 900K for 

50psec after an initial equilibration period of O.lpsec.

8.1.3 Biological Assays

The investigations involving 45Ca2+ release from rabbit platelets, the spectrofluorimetric 

studies of Ca2+ release from platelets and the binding assays in rat cerebellar membranes 

were carried out by or under the supervision of Dr C. Murphy, in the Group of Prof. J. 

Westwick, School of Pharmacy and Pharmacology, University of Bath. Experimental 

details are given in Reference.255

Assays for inhibition of phosphatidylinositol 3-kinase were carried out by Dr S. 

Ward in the School of Pharmacy and Pharmacology, University of Bath. Full details of 

procedures are given in Reference.90

Testing of D- and L-Ins(l,3,4)P3 in Limulus ventral photoreceptors was carried 

out by Dr R. Payne of the Dept of Zoology, University of Maryland, USA. Experimental 

details are given in Reference.
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Investigations into the effects of Ins(l,3,4,5)P4 analogues in SH-SY5Y 

neuroblastoma cells were undertaken by Dr R. A. Wilcox, Dept, of Cell Physiology and 

Pharmacology, University of Leicester. Full details of procedures are given in 

Reference.110

Preliminary assays of the interaction of analogues with Ins(l,3,4)P3 5/6-kinase 

were performed by Dr P. J. Hughes at the Centre for Clinical Research in Immunology 

and Signalling, The Medical School, University of Birmingham. For details of 

procedures see Reference.87

The compounds described in this thesis are being examined for their interaction 

with a purified Ins(l,4 ,5)P3 3-kinase preparation, with analysis of the phosphorylation 

products by HPLC with metal-dye detection.257 These studies are being conducted by Dr 

G. W. Mayr and Dr U. Bertsch at the Institute for Physiological Chemistry, University 

of Hamburg, Germany.

8.1.4 Potentiometric and 31P NMR Investigations

These studies were carried out by Professor Bernard Speiss and his group at the
1 RQUmversite Louis Pasteur, Strasbourg. Details of procedures are given in Reference.

8.1.5 X-ray Crystallography

The X-ray crystallographic study of compound 67a was carried out by Dr M. Mahon in 

the Dept of Chemistry, University of Bath. Full details are given in Appendix 2.

8.2 D- and L-m yo-Inositol 1,3,4-trisphosphate

DL-l,4-Di-O-benzoyl-2,3 :5,6-di-0 -isopropyIidene-/7iy0-inositol (1)

A mixture of myo-inositol (lOOg, 0.55mol), A/iV-dimethylformamide (500mL), 2,2- 

dimethoxypropane (400mL), and toluene-p-sulphonic acid monohydrate (2g) was stirred 

at 100-120°C for 2 h. Triethylamine (20mL) was added to the cooled solution and the 

low-boiling solvents were evaporated at 50°C under reduced pressure. Pyridine (400mL) 

was added, followed by benzoyl chloride (400mL) dropwise with stirring and cooling 

over 25 min. The mixture was left to stand for a further 2 h, and then the solid was 

removed by filtration and washed successively with water, triethylamine, acetone and 

ether to give 1 (41.3g, 94mmol, 17%).

Mp: 328 - 330°C ( from D M F) (lit.144 328 - 330° C)

'H  NMR (CDCU, 270MHz): 5 1.30, 1.44, 1.51, 1.64 (12 H, 4 s, 4CH3); 3.72 (1 H, dd, J  

= 11.0 Hz, 9.3 Hz, C-5-H), 4.40 (1 H, dd, /  = 10.6 Hz, 9.3 Hz, C-6-H); 4.40 (1 H, dd, J
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= 6.6 Hz, 4.6 Hz, C-3-H); 4.79 (1 H, dd, J  = 4.6 Hz, 4.6 Hz, C-2-H), 5.43 (1 H, dd, J  =

10.6 Hz, 4.4 Hz, C-l-H); 5.61 (1 H, dd, 7 = 11.0 Hz, 6.6 Hz, C-4-H), 7.41-7.51 (4 H, m, 

C ^sC O O ), 7.53-7.63 (2 H, m, C ^sC O O , 8.08-8.18 (4 H, m, C ^sC O O ).

DL-l,2:4,5-Di-0-isopropylidene-m;y0-inositol (2)

A mixture of 1 (20g, 45mmol), sodium hydroxide (6g), and methanol (250ml) was 

heated under reflux for 30 min producing a clear solution which was allowed to cool. 

The solution was neutralised with solid carbon dioxide and the resulting white paste was 

then diluted with water (lOOmL) and evaporated to dryness under reduced pressure. The 

residue was extracted with dichloromethane (6 x 150mL), dried (MgSCU) and 

evaporated under reduced pressure to give a solid, which was recrystallised from ethyl 

acetate giving 2 as colourless crystals (9.7g, 37mmol, 82%).

Mp: 166 - 170°C ( from ethyl acetate) (lit.144 171-173°C).

‘H NMR (CDC13, 270MHz): S 1.38, 1.46, 1.49, 1.54 (12 H, 4 s, 4 CH3), 2.48 (1 H, d, J  

= 8.6 Hz, D20  ex, C-3-OH), 2.67 (1 H, d, / =  3.1 Hz, D20  ex, C-6-OH), 3.33 (1 H, dd, J  

= 10.6 Hz, 9.4 Hz, C-5-H), 3.84 (1 H, dd, 7 =  10.1 Hz, 10.1 Hz, C-4-H), 3.90 (1 H, ddd, 

J  = 10.6 Hz, 6.0 Hz, 3.0 Hz, C-6-H), 4.03 (1 H, ddd, J  = 10.0 Hz, 8.6 Hz, 4.4 Hz, C-3- 

H), 4.08 (1 H, dd, J  = 6.5 Hz, 5.0 Hz, C-l-H), 4.49 (1 H, dd, J  = 5.0 Hz, 5.0 Hz, C-2-H). 

I3C NMR (CDC13, 68 MHz): 8  25.85, 26.89, 28.06 (3 q, 4 CH3), 69.74, 74.76, 77.56, 

77.97, 81.28, 81.83 (6d, inositol ring C), 110.28, 112.71 (2 s, 2 C(CH3)2 ).

DL-l,4-Di-0-alIyI-2,3:5,6-di-0-isopropylidene-/wyo-inositol (3)

To a solution of diol 2 (18.2g, 70mmol) and sodium hydride (4.8g, 200mmol) in N,N- 

dimethylformamide (250mL) at 0°C was added dropwise allyl bromide (13mL, 

150mmol), with stirring. The reaction mixture was stirred for 2 h at 20°C. Excess 

sodium hydride was destroyed with ethanol and the mixture evaporated to dryness under 

reduced pressure. Water (200mL) was added and the product extracted with ether (3 x 

200mL). The combined organic layers were dried (MgSCU) and evaporated under 

reduced pressure to give 3 (22g, 65mmol, 93% yield).

Mp: 83 - 85°C ( from hexane ); (lit.145 85 - 87°C).

!H NMR (CDC13, 270 MHz): 8  1.38, 1.43, 1.46, 1.54 (12 H, 4 s, 4 CH3), 3.34 (1H, dd 7 

= 10.5 Hz, 9.8 Hz, C-5-H), 3.66 (1 H, dd, 7 = 10.6 Hz, 6.4 Hz, C-4-H), 3.80 (1 H, dd, 7 

= 10.3 Hz, 4.2 Hz, C-l-H), 3.98 (1 H, dd, 7 =  10.1 Hz, 10.1 Hz, C-6-H), 4.10 (1 H, d d 7
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= 6.1 Hz, 4.6 Hz C-3-H), 4.21-4.37 (4 H. m, OCH2), 4.46 (1 H, dd, 7 = 4.4 Hz, 4.4 Hz, 

C-2-H), 5.17-5.35 (4 H, m, =CH2), 5.90-5.60 (2 H, m, -CH=)

l3C NMR (CDC13, 68 MHz): 525.91, 26.95, 28.06 (3q, 4CH3), 71.16, 71.26 (2t, OCH2), 

74.76, 76.42, 76.84, 78.56, 80.11, 81.38 (6d, inositol ring), 109.99, 112.10 (2 s, 

C(CH3)2), 117.38, 118.16 ( 2 1, =CH2), 134.67, 134.74 (2d, -CH=).

DL-l,4-Di-0-allyl-/wjo-inositol (4)

Compound 3 (21.0g, 61.7mmol) was dissolved in acetic acid-water (4:1 , 200mL) and 

the solution was refluxed for 30 min. The solvents were then evaporated under reduced 

pressure. The white residue was recrystallised from ethanol to give 4 (15.0g, 57.6mmol, 

93%).

Mp: 133-136°C ( from ethanol); Lit149 137-139°C.

‘H NMR (d6-DMSO, 270 MHz): 52.96 (1 H, dd, J  = 9.7 Hz, 2.6 Hz, C-l-H), 3.03 (1 H, 

ddd, J  = 9.0 Hz, 9.0 Hz, 4.8 Hz, D20  ex gives dd, J  = 9.0,9.0, C-5-H), 3 .16- 3.28 (2 H, 

m, C-3-H and C-4-H), 3.46 (1 H, ddd, J  = 9.6 Hz, 9.3 Hz, 4.6 Hz, D20  ex gives dd, J  =

9.6 Hz, 9.3 Hz, C-6-H), 3.86 (1 H, ddd, J  = 3.2 Hz, 2.6 Hz, 2.6 Hz, D20  ex gives dd J  =

2.6 Hz, 2.6 Hz, C-2-H), 3.97 - 4.12, (2 H, m, C tf2CH=CH2), 4.16 - 4.26 (2 H, m, 

CH2CH=CH2), 4.54 (1 H, d, J  = 6.0 Hz, D20  ex, OH), 4.61 (1 H, d, J  = 3.7 Hz, D20  ex, 

C-2-OH), 4.64 (1 H, d, /  = 4.8 Hz, D20  ex, OH), 4.69 (1 H, d, J  = 4.8 Hz, D20  ex, OH),

5.01 - 5.29 (4 H, m, CH2CH=CH2), 5.80 - 5.98 (2 H, m , CH2Cfl=CH2)

13C NMR (d6-DMSO, 68 MHz): <569.83, 71.42, 72.20, 75.02, 79.53, 81.41 (6d, inositol 

ring C), 70.09, 72.94 (2 t, CH2CH=CH2), 115.30, 115.99 (2 t, CH2CH=CH2), 136.23,

137.06 (2 d, CH2CH=CH2)

DL-2,3,5,6-Tetra-0-acetyl-l,4-di-O-allyl-my0-inositol (5)

To a solution of 4 (1.3g, 5 mmol) in pyridine (lOmL) were added acetic anhydride 

(2.8mL, 30mmol) and DMAP (lOOmg). The mixture was stirred at room temperature for 

1 h, after which TLC (ether) showed conversion to a major product at Rf 0.60. The 

liquid was evaporated under reduced pressure and the product dissolved in 

dichloromethane (lOOmL), washed with sat. sodium hydrogencarbonate solution 

(lOOmL) then water (lOOmL), dried (MgS04) and evaporated to give an off-white solid 

which was recrystallised from hexane / ethyl acetate yielding 5 (1.70g, 3.97mmol, 79%). 

Mp: 118.5 - 119.5°C ( from hexane / ethyl acetate ).
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'H  NMR (CDCI3, 400 MHz): 52.04, 2.05, 2.06, 2.16 (12H, 4s, 4 CH3), 3.55 (1 H, dd, 7 

= 10.3 Hz, 2.9 Hz, C-l-H), 3.84 (1 H, dd, 7 = 10.3 Hz, 9.8 Hz, C-4-H), 3.89 - 4.17 (4 H, 

m, C tf2CH=CH2). 4.87 (1 H, dd, 7 =  10.3 Hz, 2.9 Hz, C-3-H), 5.07 (1 H, dd, 7 = 9.8 Hz,

9.8 Hz, C-5-H), 5.11 - 5.26 (4 H, m, CH2CH=Ctf2), 5.31 (1 H, dd, 7 =  10.3 Hz, 10.3 Hz, 

C-6-H), 5.64 (1 H, dd, 7 = 2.9 Hz, 2.9 Hz, C-2-H), 5.71 - 5.84 (2 H, m, CH2Ci7=CH2). 

13C NMR (CDCI3, 68 MHz): 5  20.69 (q, 4 CH3), 67.37, 71.06, 71.26, 72.52, 74.41, 

76.61 (6 d, inositol ring Q , 70.97, 73.92 (2 t, CH2CH=CH2), 116.70, 117.67 (2 t, 

CH2CH=CH2), 133.63, 134.28 (2 d, CH2CH=CH2), 169.73, 169.90, 170.06 (3 s, 4 C=0) 

MS: m/z (+ve ion FAB, rel intensity) 429 [(M + H)+, 80%] 371 [ ( M -C H 2CHCH20 ‘ )+ , 

80%], 369 [(M -CH3C O O ')+, 100%]

Anal. Calcd for C20H28Oi0 (428.44): C, 56.07; H, 6.59. Found: C, 56.0; H, 6.64.

DL-1,4-Di-O-alIy 1-3-0-/? -methoxy benzyl-my o -inositol (6)

A mixture of 1,4-di-O-allyl-myo-inositol 4 (13.0g, 50mmol), dibutyltin oxide (14.9g, 

60mmol) and toluene (200mL) were heated under reflux for 3h in a Dean and Stark 

apparatus. The mixture was allowed to cool and the toluene removed by evaporation in 

vacuo giving an off-white solid. Caesium fluoride (19.0g, 125mmol), potassium iodide 

(12.5g, 75mmol) and DMF (200mL) were added, followed by p-methoxybenzyl chloride 

(10.2mL, 75mmol). After stirring for 3h at rt TLC (ethyl acetate) showed a major 

product at Rf 0.30. The mixture was left overnight at room temperature and then 

evaporated in vacuo. The residue was taken up in dichloromethane, washed with water, 

stirred with sodium hydrogencarbonate solution (10% w/v) for 30 min, and washed with 

water again. The insoluble tin derivatives were removed by filtration through Celite and 

the solution was dried (MgS04), and evaporated to give an oil which was 

chromatographed on silica gel (ethyl acetate) giving 6 (12.4g, 32.6mmol, 65%).

Mp: 94-96°C ( from ethyl acetate / hexane ).

'H  NMR (CDC13, 270MHz): 52.62 (1 H, br s, D20  ex., OH), 3.11-3.16 (3 H, m, D20  

ex. gives 1H, dd, 7 = 9.5 Hz, 2.6 Hz, 2 OH and C-l-H  or C-3-H), 3.32 (1 H, dd, 7 = 9.5 

Hz, 2.8 Hz, C -l-H  or C-3-H), 3.36 (1 H, ddd, 7 =  9.5 Hz, 9.5 Hz, 1.5 Hz, D2O ex gives 

dd, 7 = 9.5 Hz, 9.5 Hz, C-5-H), 3.66 (1 H, dd, 7 = 9.5 Hz, 9.5 Hz, C-4-H), 3.88 (1 H, br 

dd, 7 = 9.5 Hz, 9.5 Hz, D20  ex gives dd, C-6-H), 4.07 - 4.45 (5 H, m, 2 C7/2CH=CH2 

and C-2-H), 4.63, (2 H, br s, Cff2Ph), 5.15 - 5.32 (4 H, m, 2 CH2CH=CH2), 5.86 - 6.05 

(2 H, m, 2 CH2CH=CH2), 6.86 - 6.90 (2 H, m, /ViOMe), 7.27 - 7.31 (2 H, m, PhO U t)
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13C NMR (CDCI3, 68 MHz): 8 55.27 (q, OCH3), 67.01, 71.55, 74.05, 78.85, 79.34,

80.08 (6d, inositol ring C), 71.29, 72.27 (2 t, CH2CH=CH2), 74.24 (t, CH2Ph), 113.89, 

129.51 (2 d, PhOMe) 116.83, 117.87 (2 t, CH2CH=CH2), 129.94 (s, PhOMe) 134.51, 

135.26 (2 d, CH2CH=CH2), 159.35 (s, P/iOMe)

MS: m/z (+ve ion FAB, rel intensity) 379 [(M -H)+, 5% ], 259 [ (M -CH2C6H4OCH3)+, 

2% ], 137(12) 121 [ (CH2C6H4OCH3)+ , 100% ] ;

MS: m/z (-ve ion FAB, rel intensity) 759 [ (2 M -H )', 20%) ], 533 [ (M +NBA)', 92% ], 

379 [ (M -H)', 100% ], 339(25), 322(20), 249(21).

Anal. Calcd for C20O7H28 (380.44): C, 63.14; H, 7.42. Found: C, 62.9; H, 7.42.

DL-l,4-Di-0 -allyl-2,5,6-tri-O-benzyl-3-0 -p-methoxybenzyl-f7fy0-inositol (7)

To a solution of triol 6 (6.85g, 18mmol) in dry Af-N-dimethylformamide (lOOmL) was 

added sodium hydride (2.0g, 83mmol). The mixture was cooled to 0°C and benzyl 

bromide (7.0mL, 59mmol) was added dropwise with stirring. The mixture was stirred at 

room temperature for 2 h, after which TLC (hexane/ether 1:1) showed the reaction to be 

complete, with a major product at Rf 0.43. The excess sodium hydride was carefully 

destroyed with water and the mixture concentrated in vacuo. The residue was dissolved 

in dichloromethane (lOOmL), the solution was washed successively with water, 

0.1MHC1, sat. NaHC03 solution and water (lOOmL of each), dried (M gS04) and 

evaporated in vacuo to give 11.8g of a solid which was recrystallised from hexane 

giving 7 (10.2g, 15.7mmol, 87%).

Mp: 72 - 74°C ( from hexane ).

‘H NMR (CDCI3, 270MHz): 53.23 (1H, dd J  = 9.9 Hz, 2.2 Hz, C -l-H  or C-3-H), 3.28 

(1H, dd J  = 9.9 Hz, 2.2 Hz, C -l-H  or C-3-H), 3.39 (1H, dd, J  = 9.3 Hz, 9.3 Hz, C -5-H ), 

3.81 (3H, s, OCH3), 3.91 (1 H, dd, J  = 9.3 Hz, 9.3 Hz, C-4-H or C-6-H), 3.97 ( 1 H, dd, 

J  = 2.2 Hz, 2.2 Hz, C -2-H ), 3.98 (1 H, dd, J  = 9.7 Hz, 9.7 Hz, C-4-H or C-6-H), 4.07 - 

4.14 (2 H, m OC/72CH=CH2) , 4.27 - 4.44 (2 H, m O C//2CH=CH2), 4.54, 4.59 (2 H, 

AB, 7ab 11.4 Hz, CH2C6H40Me), 4.76 - 4.90 (6 H, m 3 OCH2C6H5 ), 5.13 - 5.35 (4 H, 

m =CHi), 5.83 - 6.06 (2 H, m, -C7/=), 6.86 - 6.90 (2 H, m, CH2C6ff4OMe), 7.24 - 7.42 

(17 H, m, 3 CH2C67/5 and OfeCrffcOMe)

13C NMR (CDCI3, 68 MHz): 55.27 (q, OCH3), 571.62, 72.54, 73.95, 74.54, 75.80 (6t, 

OCH2 ), 74.44, 80.50, 80.63, 81.41, 81.57, 83.65 (6 d, inositol ring Q , 113.72 (d, 

CH2C6H40Me), 116.54 and 116.60 ( 2 1, =CH2), 127.28, 127.50, 127.79, 127.92, 128.09,
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128.31 (6 d, CH2C6H5 and CH2C6H4OMe), 130.62 (s, CH2C6H4OMe), 134.93 and 

135.48 (2 d, 2-CH=), 138.92 and 138.98 (2 s, CH2C6H5), 159.13 (s, CH2C6H4OMe)

MS: m/z (+ve ion FAB, rel intensity) 649 [ (M -H)+, 1.5% ], 121 [ (CH2C6H40CH3)+ , 

100% ] 91 [ (M -C7H7)+, 70% ].

MS: m/z (-ve ion FAB, rel intensity) 803 [ (M+NBA)', 100% ], 529 [ (M - 

CH2C6H40CH3)', 10% ].

Anal. Calcd for C4iH460 7 (650.81): C, 75.67; H, 7.12. Found: C, 75.6; H, 7.09.

DL-2,4,5-tri-0-Benzyl-l-0-p-methoxybenzyl-3,6-di-O-(as-prop-l-enyl)-my0-inositol
(8)
A solution of 7 (l.Og, 1.54mmol) and freshly sublimed potassium terf-butoxide (2.0g, 

17.8mmol) in dry DMSO (50mL) was stirred for 3 h at 50°C, after which TLC 

(hexane/ether 1:1) showed complete conversion from starting material (Rf 0.44) to a 

product at Rf 0.56. Water (50mL) was added to the cooled brown solution, which was 

then extracted with ether (3 x lOOmL). The combined organic layers were dried 

(M gS04) and evaporated under reduced pressure to give an off-white solid which was 

recrystallised from ethanol giving 8 (0.83g, 1.28mmol, 83%).

Mp: 110-112°C ( from ethanol).

*H NMR (CDCI3,400MHz): 5 1.64 (3 H, dd, J=  6.8 Hz, 1.5 Hz, CH=CH-Cff3), 166 (3 

H, dd, J  = 6.8 Hz, 1.5 Hz, CH=CH-C7/3), 3.33 (1 H, dd, J  = 9.8 Hz, 2.4, C -l-H  or C-3- 

H), 3.44 (1 H, dd, 9.3 Hz, 9.3 Hz, C-5-H), 3.53 (1 H, dd, 9.8 Hz, 2.4 Hz, C -l-H  or C-3- 

H), 3.81 (3 H, s, OCH3), 3.99 (1 H, dd, 7 =  2.4 Hz, 2.4 Hz, C-2-H), 4.03 (1H, dd, J  = 9.8 

Hz, 9.8 Hz, C-4-H or C-6-H), 4.15 (1 H, dd, J = 9.3 Hz, 9.3 Hz, C-4-H or C-6-H), 4.35 

(1 H, dq, J  = 6.8 Hz, 6.8 Hz, CH=C//-CH3), 4.44 (1 H, dq, J=  6.8 Hz, 6.8 Hz, CH=CH- 

CH3), 4.51, 4.56 (2 H, AB, Jab 11.7 Hz, C tf2Ph), 4.72, 4.80 ( 2 H, AB, Jab 10.3 Hz, 

C # 2Ph), 4.73,4.80, (2 H, AB, Jab 10.7 Hz, C //2Ph), 4.82 (2 H, br s, CH2Ph), 6.08 (1 H, 

dq, J  = 6.8 Hz, 1.5Hz, CH=CH-CH3), 6.27 (1 H, dq, J  = 6.8 Hz, 1.5 Hz, C//=CH-CH3), 

6.85 - 6.88 (2 H, m, C ^ C ^ O M e ) ,  7.24 - 7.35 (15 H, m, OfcCftfs), 7.37 - 7.42 (2 H, 

m, CK^C^-tOMe)

13C NMR (CDC13, 100 MHz): S 9.36, 9.42 (2 q, CH=CH-CH3), 55.29 (q, 

CH2C6H40CH3), 72.29, 74.47, 75.69, 75.78, (4 t, CH2Ph), 75.88, 78.35, 80.71, 82.55, 

84.40, 82.94 (6d, inositol ring ), 98.19. 100.62, (2 d, CH=CH-CH3), 113.72 (d, 

CH2CsH40Me), 127.38, 127.61, 127.83, 128,13, 129.26 (6 d, CH2C6H5 and
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CH2C6H40Me), 130.34 (s, CH2C6H4OMe), 138.50, 138.61, 138.71 (s, CH2C6H5), 

145.66, 147.77 (2 d, OCH=CH), 159.18 (s, CH2C6H40Me)

MS: m/z (+ve ion FAB, rel intensity) 649 [ (M -H)+ , 0.4%)], 559 [ (M -C 7H7)+ , 0.5%) ], 

121 [ (CH2C6H4OCH3)+ , 100% ], 91 [ (C7H7)+, 80% ];

MS: m/z (-ve  ion FAB, rel intensity) 803 [ (M+NBA)' , 100% ], 696 (32%) 559 [ (M - 

C7H7)' 10% ] 529 [ (M -CH2C6H4OCH3) ' , 10% ]

A nal Calcd for C4iH460 7 (650.81): C, 75.67; H, 7.12; Found; C, 75.7; H, 7.17. 

dl-2,4,5-T  ri-O-benzyl-myo-inositol (9)

The cw-propenyl ether 8 (500mg, 0.77mmol) was refluxed in 1M HC1 - ethanol (1:2) for 

2h, after which TLC (ethyl acetate/hexane 4:1) showed conversion to a major product at 

Rf 0.34. After cooling, the mixture was evaporated to dryness under reduced pressure. 

The residue was taken up in dichloromethane (50mL), washed with sat. N aHC03 and 

water (50mL of each), dried (M gS04) and evaporated to give a white solid, which was 

purified by column chromatography (ethyl acetate/ hexane 4:1) giving 9 (310mg, 

0.69mmol, 90%).

Mp: 135 - 136.5°C with a phase change at 127 - 128°C (from ethyl acetate/ hexane); Lit. 

145 135-137°C; Lit.124 126-128°C.

!H NMR (CDC13, 270MHz): <52.38 (1 H, d, J =  5.4 Hz, D2O ex, C-3-OH), 2.48 (1H, 

dd, J  = 5.9 Hz, D20  ex, C-l-OH), 2.63 (1 H, br s, D20  ex, C-6-OH), 3.32 (1 H, dd, /  =

9.3 Hz, 9.3 Hz C-5-H), 3.44 (1 H, ddd, J  = 9.7 Hz, 5.9 Hz, 2.8 Hz, DzO ex gives dd, J  =

9.7 Hz, 2.8 Hz, C-l-H  ), 3.57 (1 H, ddd, J  = 9.7 Hz, 5.4 Hz, 2.6, D20  ex gives dd, J  =

9.7 Hz, 2.6 Hz, C-3-H), 3.78 (1 H, dd, J  = 9.3 Hz, 9.3 Hz, C-4-H), 3.83 (1 H, br dd, D20  

ex gives dd, J  = 9.5 Hz, 9.5 Hz, C-6-H), 3.98 (1 H, dd, J  = 2.7 Hz, 2.7 Hz, C-2-H), 4.75- 

4.94 (6H, m, OCi72C6H5), 7.26 - 7.38 (15H, m, O CHzC^s)

13C NMR (CDC13, 68 MHz): 5 72.33, 72.70, 74.02, 78.89, 81.78, 82.95 (6 d, inositol 

ring C), 75.17, 75.23, 75.41 (3 t, OCH2C6H5), 127.76, 127.79, 127.89, 128.04, 128.46, 

128.54 (6 d, 3 CH2C6H5) 138.35, 138.48 (2 s, 3 CH2C6H5)

MS: m/z (+ve ion FAB, rel intensity) 451 [ (M+ H)+ , 3% ], 181(20%), 91 [ (C7H7)+ , 

100% ]

MS: m/z (-ve ion FAB, rel intensity) 616 (70%), 603 [ (M + NBA)‘> 92% ], 496 (30%), 

449 [ (M -  H )- , 100% ], 359 [ (M -  C7H7)', 23%].
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DL-2,5,6-Tri-0-benzyl-77ry0-inositoI l,3,4-tris(dibenzyIphosphate) (10)

To a solution of bis(benzyloxy)-iV,Af-diisopropylaminophosphine (920mg, 2.66mmol) in 

dry dichloromethane (3mL) was added lif-tetrazole (280mg, 4.00mmol). The mixture 

was stirred at room temperature for lOmins. 9 (200mg, 0.44mol) was added, and stirring 

continued for a further lh. TLC (ethyl acetate) showed complete conversion of the triol ( 

Rf 0.44 ) to a product ( R/0.10  ) and 31P NMR spectroscopy showed phosphite triester 

peaks at 140.39 (2P) and 142.2 (IP) . Water (5mL) was added and after stirring for a 

further 5min, terr-butyl hydroperoxide (lm L of a 70% solution in water). Stirring was 

continued overnight after which TLC showed conversion of the trisphosphite to a new 

product ( R f  0.64 ). The solvents were removed by evaporation in v a c u o  and then 

ethanol (20mL), water (20mL) and sodium metabisulphite (1.5g) were added. After 

stirring at rt. for 15min the mixture was evaporated to give a paste which was taken up 

in ether (lOOmL), washed with water (2 x 50mL), dried (MgSCU), and evaporated to 

give an oil (680mg). This was purified by column chromatography (ethyl acetate) giving 

10 (398mg, 0.323mmol, 73%) as a colourless oil.124

*H NMR (CDC13, 270 MHz): 5 3.45 (1 H, dd, J = 9.4 Hz, 9.4 Hz C-5-H), 4.06 (1 H, dd. 

J  = 9.4 Hz, 9.4 Hz, C-6-H), 4.22-4.36 (2 H, m, C-l-H  and C-3-H), 4.62 (1 H, dd, J  = 2.3 

Hz, 2.3 Hz, C-2-H), 4.74 - 5.05 (19 H, m, 9 0 7 2C6H5 and C-4-H), 7.12 - 7.38 (45 H, m, 

9 CH2C6/ / 5).

13C NMR (CDCI3, 68 MHz): S 69.20, 69.28, 69.36, 69.49, 69.74, 69.82 (6 t, 6 PO- 

CH2C6H5), 75.27, 75.51, 75.74 (3 t, 3 OCH2C6H5), 77.63, 77.92, 78.04, 79.37, 79.47, 

80.53, (6 d, inositol ring C), 127.21, 127.29, 127.36, 127.42, 127.53, 127.65, 127.73, 

127.79, 127.96, 128.07, 128.12, 128.25, 128.46, 128.72, 130.80 (15 d, 9 CH2C6H5), 

135.47, 137.93, 138.19 (3 s, 9 CH2C6H5)

31P NMR ( CDCI3, 162MHz ) <51.41, -1.56 and -2.01.

MS: m/z (+ve ion FAB, rel intensity) 1231 [ (M + H)+, 5% ], 1230(6%), 181 (10%), 91 [ 

(C7H7)+, 100% ].

MS: m/z (-ve ion FAB, rel intensity) 1383 [ (M + NBA)', 5% ], 1139 [ (M -  C7H7)\ 

30% ], 1138(35%), 1138 (35%), 277 [ (C6H5CH20 )2P 0 2)', 100% ].

DL-myo-Inositol-l,3,4-trisphosphate (11)

Ammonia was condensed into a three neck flask at -78°C. An excess of sodium was 

added to dry the liquid ammonia, which was then distilled into a second three neck flask 

and kept at -78°C. Sodium was added until the solution remained blue. Compound 10
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(lOOm g, 81 .2 m m o l) w as d isso lv ed  in  anhydrous d io x an e  (2m L ) and  added  to  the 

so d iu m  - liq u id  am m o n ia  m ix tu re. A fte r stirring  fo r 3 m in  the  reac tio n  w as q u en ch ed  

w ith  e thano l. A m m o n ia  and  e thano l w ere evaporated . T h e  re s id u e  w as d isso lv ed  in  d e ­

io n ised  w a te r (500m L ) and  p u rified  by  io n -ex ch an g e  ch ro m ato g rap h y  on Q  S ep h aro se  

F as t F low , e lu tin g  w ith  a  g rad ien t o f  trie th y lam m o n iu m  b ica rb o n a te  b u ffe r (0  to  1M ), 

p H  8.0. T h e  trie th y lam m o n iu m  salt o f  11 e lu ted  b e tw een  4 0 0  m M  and  4 7 0  m M . Y ie ld  

2 6 m m o l, 3 2 % ).I24' 258

‘H  N M R  (D 20 ,  4 0 0  M H z, p H  -4 .2 ): S 3 .40  (1 H , dd , 7  =  9 .3  H z, 9 .3 H z, C -5 -H ), 3 .68 

(1 H , dd, 7  =  9.3 H z, 9 .3  H z, C -6-H ), 3 .85 (1 H , ddd , 7  =  9 .3  H z, 8.8 H z, 2 .4  H z, C - l -  

H ), 3.95 (1 H , ddd , 7  =  9 .8  H z, 9 .8 H z, 2 .5 H z, C -3 -H ), 4 .1 6  (1 H , ddd , 7  =  9 .3  H z, 9.3 

H z, 9 .3  H z, C -4 -H ), 4 .4 0  (1 H , dd , 7  = 2 .4  H z, 2 .4  H z, C -2 -H )

31P N M R ( D 20 ,  162 M H z, p H -7 )  5 0 .1 3  ( 1 P , d , 7  =  8.6 H z ), 0 .2 4  ( 1 P , d, 7 = 9 . 5  H z 

), 0 .97  ( 1 P , d , 7  =  8.5 H z ).

M S: m/z (+ v e  ion F A B , re l in tensity ) 102 [ (Q H s ^ N H 4, 100%  ]

M S: m/z ( - v e  ion  F A B , rel in tensity ) 838 [ 2M ', 12% ], 41 9  [ M \  100% ], 97  [ H 2P 0 4‘, 

10%]

M S: m/z 4 1 8 .9 5 4  (M -H )‘ (calcd  fo r Q H m O u P j,  4 18 .955).

D L -2 ,4 ,5 -T ri-0 -b e n zy I- l-O -p -m e th o x y b e n zy I- /7 iy 0 -in o s ito l (12)

A  so lu tion  o f  8 (0 .83g , 1.28m m ol) in  acetone (45m L ) w as w arm ed  to  50°C  w ith  stirring . 

1M HC1 (5m L ) w as added , and  stirring  co n tin u ed  fo r lO m ins, a fte r w h ich  T L C  (ether) 

sh o w ed  co m p le te  co n v ers io n  o f  starting  m ateria l (R /0 .7 6 ) to  a  m ajo r p ro d u c t at Rf 0 .56 . 

S o d iu m  h ydrogen  ca rb o n ate  ( lg )  w as added , and  s tirring  co n tin u ed  fo r a  fu rth e r lO m in, 

as the so lu tio n  w as a llo w ed  to  cool to  rt. T he  so lven ts  w ere  rem o v ed  u n d er red u ced  

p ressu re  an d  the re s id u e  w as taken  up  in  d ich lo ro m eth an e  (100m L ). T h e  su sp en sio n  w as 

w ash ed  w ith  w a te r (2 x 100m L), d ried  (MgSCU), an d  ev ap o ra ted  to  g ive  an  oil w h ich  

w as p u rified  by  co lu m n  ch ro m ato g rap h y  (e ther) to  g ive  12 (0 .69g , 1.21 m m ol, 94% ).

M p: 100 - 102°C  (from  h ex an e  /  ethy l acetate).

!H  N M R  (CDC13, 270M H z): 5 2 .2 7  (1 H , d, J =  6 .4  H z, D 20  ex . C -3 -O H ), 2 .5 0  (1 H , d, 

J = 1.5 H z, D 20  ex , C -6 -O H ), 3 .26  (1 H , dd , J = 9 .5  H z, 2 .2  H z, C - l-H ) , 3 .38 (1 H , dd, 

7  =  9.3 H z, 9 .3  H z, C -5-H ), 3.51 (1 H , ddd , J =  9.3 H z, 6 .4  H z, 2 .2  H z, D 20  ex  g ives dd, 

J =  9.3 H z , 2 .2  H z, C -3 -H ), 3 .78  (1 H , dd, J =  9.3 H z, 9 .3  H z, C -4 -H ), 3.81 (3 H , s, 

C 6H 4O C //3), 4 .0 4  (1 H , dd , J =  2 .2  H z, 2 .2  H z, C -2-H ), 4 .13  (1 H , ddd , J =  9 .3  H z, 

9 .3H z, 1.5, D 20  ex  g ives dd, J  = 9.3 H z, 9 .3 H z, C -6-H ), 4 .53 , 4.61 (2H , A B , 7a b , 11.4,
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O C /f2Ph), 4 .6 7  - 4 .93  (6  H , m , O C //2Ph), 6 .8 8  (2 H , b r d, J =  8 .2H z, C H z Q /^ O M e ) ,

7 .2 4  - 7 .74  (17  H , m , C l f e C ^ O M e  and  3 C H 2C 6H5).

13C  N M R  (CDC13, 6 8  M H z): S 55 .27  (q, O C H 3), 72 .15 , 74 .6 2 , 75 .20 , 75 .46 , (4  t, 

O C H 2P h), 72 .5 1 , 73 .04 , 76 .14 , 80 .03 , 81 .87 , 83.23 (6  d, in o sito l ring  C ), 113.98 (d, 

0 C H 2C6H 4 0 C H 3), 127.65, 127.78, 127.91, 128.04, 128.35, 128.41, 128.48, 129.45 (8  d, 

3 C H 2C 6H 5 an d  C H 2C6H 4O C H 3), 129.32 (s, C H 2C6H 4O M e), 138.04, 138.17 (2 s, 3 

C H 2C6H 5), 158.90 (s, C H 2C6H 4 0 M e).

M S: m/z (+ v e  ion F A B , rel in tensity ) 569 [ (M -H )+, 7%  ], 4 7 9  [ (M -C 7H 7)+, 2% ], 4 4 9  [ 

(M -C H 2C 6H 40C H 3)+, 10% ], 181(60% ), 121 [ (C H 2C 6H 4 0 C H 3)+, 90%  ], 91 [ (C 7H 7)+, 

100% ];

M S: m/z ( - v e  ion  F A B , re l in tensity ) 723 [ (M + N B A )', 100%  ], 569 [ ( M - H ) \  50%  ], 

322  (42% ), 140 (52% ).

Anal C alcd  fo r C 35H 3 8 0 7 (570 .68) C , 73 .66 ; H  6 .71 , F o u n d  C , 73 .8 ; H , 6.65.

Resolution of DL-2,4,5-tri-0-benzyl-1 -O-p-me thoxybenzyl-myo-inositol

A  m ix tu re  o f  12 (1 .35g, 2 .37m m ol) and  (l£ ,4 /? )-(-)-< o-cam phan ic  ac id  ch lo rid e  (1 .54g , 

7.11 m m o l) an d  D M A P  (50m g, 0.41 m m ol) in dry  p y rid ine  (lO m L ) w as s tirred  fo r lh  at 

rt, a fte r w h ich  T L C  (ch lo ro fo rm /ace tone  30:1) show ed  co m p le te  co n v ersio n  from  

startin g  m ateria l (R /0 .1 3 ) to  tw o  p roducts  (R /0 .1 7  and  R /0 .2 4 ) . T h e  m ix tu re  w as co o led  

in an ice b a th , and  w ate r ( lm L )  w as added. S tirrin g  w as co n tin u ed  fo r a  fu rth e r lh . 

E th e r (lOOm L) and  d ich lo ro m eth an e  (50m L ) w ere added , an d  the  o rg an ic  p h ase  w as 

w ash ed  su ccessiv e ly  w ith  sat. KC1, ice-co ld  1M  HC1, sat. KC1, an d  sat. N aH C C >3 

(lOOm L o f  each), d ried  (M g S 0 4), and  ev ap o ra ted  to  g ive  the  m ix tu re  o f 

d ias te reo iso m ers  (2 .16g , 2 .32m m ol, 98% ).

T h e  m ix tu re  o f  d iaste reo isom ers w as separa ted  by  co lu m n  ch ro m ato g rap h y  

(ch lo ro fo rm /ace to n e  30 :1 ) in to  tw o fractions, w h ich  w ere  recry sta llised  fro m  m eth an o l 

to  g ive  the  tw o  d iaste reo isom ers; 13a , Rf 0 .17  (683m g, 0 .7 3 4 m m o l, 63 .3%  o f  th is 

d iaste reo iso m er) and  13b, Rf 0 .2 4  (796m g, 0 .8 5 5 m m o l, 7 3 .7%  o f  th is d iaste reo iso m er).

lD-2,5,6-Tri-O-benzyl-l,4-di-O-[(-)-ft>camphanoyl]-3-O-p-methoxybenzyl-my0-
inositol (13a)

M p: 186-188°C  ( from  m e th a n o l)

'H  N M R  (C D C I3,2 7 0 M H z ): 5 0 .7 4 ,0 .8 4  (6  H , 2 s, cam p h -C H 3), 0 .9 6  (6  H , b r  s, cam p h - 

C H 3), 1.04, 1.07 (6  H , 2s, cam p h -C H 3), 1 .60-1 .74  (2  H , m , c a m p h -C H 2), 1.78 - 1.96 (4
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H , m , cam p h -C H 2), 2.21 - 2 .37 (2 H , m , cam p h -C H 2), 3 .63 (1 H , dd, J =  10.8 H z, 1.5 

H z, C -3 -H ), 3 .70  (1 H , dd, J =  9.5 H z, 9 .5  H z, C -5-H ), 3 .79  (3 H , s, C H 2C 6H 4O C //3),

4 .23  (1 H , b r s, C -2-H ), 4 .28  (1 H , dd, / =  9 .7  H z, 9 .7  H z, C -6 -H ), 4 .47  - 5 .05  (9 H , m , 4  

C t f 2P h  an d  C - l-H ) , 5 .85  (1 H , dd, J =  9 .9  H z, 9 .9  H z C -4 -H ), 6 .8 6  (2 H , b r d, J =  8 .4  

H z, C f ^ O M e ) ,  7 .20  - 7 .44  (17 H , m , C ^ O M e  an d  3 C ^ s ) .

13C  N M R  (CDC13, 6 8  M H z): 8  15.72, 15.97, 16.06, (3 q, cam p h -C H 3), 28 .35 , 30 .33 ,

30 .47  (3 t, cam p h -C H 2), 53.42, 53 .57 , 54.18 (3 s, cam p h ), 5 4 .70  (q, O C H 3), 71 .62 ,

74 .0 3 , 74 .18 , 74 .63  (4 t, C H 2Ph), 73 .24 , 73 .47 , 74 .41 , 77 .85 , 78 .22 , 8 0 .10  (6  d, inosito l 

rin g  C ), 90 .1 7 , 90 .43  (2 s, cam ph), 113.31 (d, C6H 4O M e), 126.37, 126.61, 126.82, 

126.92, 127.10, 127.16, 127.70, 127.76, 128.23 (9 d, 3 C H 2C6H 5 and  C 6H 4O M e), 

137.30, 137.40 (2  s, 3 C H 2C 6H 5), 158.78 (s, CaKUOMe), 166.17, 166.83, 177.21, 

177.70, (4  s, cam p h  C = 0 ) .

MS: m/z (+ve ion FAB, rel intensity) 929 [ (M -H )+, 0.7% ], 839 [ (M -C 7H7)+, 0.7% ], 

809 [ (M -C H 2C6H40CH3)+, 1.2%], 121 [ (CH2C6H 40CH 3)+, 100% ], 91 [(C7H7)\6 8 %  ] 

MS: m/z (-ve ion FAB, rel intensity) 1083 [ (M +  NBA)', 7% ], 197 [ (camphO)\100% ] 

[ a ] D27 = -1 1  (c = 1 in CHC13)

Anal. C a lcd  fo r C s s lfe O is  (931 .09); C , 70 .95; H  6 .71 , F o u n d  C , 70 .8 ; H , 6 .76.

lL-2,5,6-Tri-0-benzyI-l,4-di-0-[(-)-C0-camphanoyI]-3-0-/j-methoxybenzyl-/?ry0- 
inositol (13b)

M p: 194-195°C  ( fro m  m e th a n o l).

‘H  N M R  (C D C I3, 400M H z): 8  0 .82 , 0 .88 , 0 .96 , 1.00, 1.05, 1.08 (18 H , 6  s, cam p h - 

C H 3), 1.54 - 1.71 (2  H , m , cam p h -C H 2), 1.72 - 1.88 (4  H , m , cam p h -C H 2), 2 .3 4  - 2.31 (2 

H , m , cam p h -C H 2), 3 .62  (1H , dd , J  =  10.4 H z, 2.1 H z C -3 -H ), 3 .68 (1 H , dd , J  =  9 .5  H z,

9 .5  H z, C -5 -H ), 3 .79  (3 H , s, C 6H 4O C //3), 4 .12  (1 H , d d , J  =  2 .1H z, 2.1 H z, C -2 -H ),

4 .2 4  (1 H , dd , J  =  9 .5  H z, 9 .5 H z, C -6 -H ), 4 .4 7 , 4 .5 8  (2  H , AB, J AB 11.3 H z, 

C ff2C 6H 4 0 C H 3), 4 .59  - 4 .88  ( 6  H , m , 3 C H 2C 6H 5), 5 .0 0  (1 H , dd , 7 =  10.4 H z, 2 .4  H z, 

C - l-H ) , 5 .82  (1 H , dd , J  =  9 .8  H z, 9 .8  H z, C -4 -H ), 6 .8 6  (2  H , b r  d, J  =  8 .9 H z, 

C M O M c), 7 .1 9  - 7 .38  (17 H , m , C ^ O M e  an d  3 C M )

13C  N M R  (C D C I3, 6 8  M H z): S 16.45, 16.59, 16.72, (3 q, cam p h -C H 3), 28 .8 5 , 30 .73 , 

3 0 .85  (3 t, cam p h -C H 2), 54 .18 , 54 .77 , 54 .83  (3  s, cam p h ), 55 .27  (q, O C H 3), 71 .88 , 

75 .0 1 , 7 5 .2 0  7 5 .2 7  (4  t, C H 2P h ), 74 .0 7 , 74 .77 , 74 .8 1 , 77 .8 8 , 78 .7 7 , 81 .23  ( 6  d, in o sito l 

rin g  C ), 90 .7 5 , 91 .13  (2  s, cam ph), 113.88 (d, C 6H 4O M e), 127.21, 127.26, 127.49, 

127.55, 127 .67, 128.25, 128.36, 128.82 129.38 (9d , 3 C H 2C 6H 5 an d  C 6H 4O M e), 137.96
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138.14  (2  s, 3 C H 2C 6H 5), 159.32 (s, C6H 4O M e), 166 .73 , 167.29, 177.84, 178.46, (4  s, 

c am p h  C = 0 ) .

M S : m/z (+ ve ion F A B , rel in tensity) 929  [ ( M - H ) +, 0 .8%  ], 839  [ ( M - C 7H 7)+, 1.1%  ], 

809  [ ( M - C H 2C 6H 4 0 C H 3)+, 1 .2 % ], 121  [ ( C 7H 6O C H 3)+, 100%  ], 91 [ (C 7H 7)+, 58%  ]

M S: m/z ( - v e  ion  F A B , rel in tensity) 1083 [ (M  +  NBA)'* 11%  ], 197 [ (cam p h -O )', 

100% ]

[cc]D21 = +5 (c =1 in CHC13)

Anal. C a lcd  fo r C 55H 62O 13 (931 .09); C , 70 .95 ; H  6 .71 , F o u n d  C , 70 .6 ; H , 6 .70

(+)-lD-2,5,6-Tri-O-benzyl-3-0-/?-methoxybenzyl-fwy0-inositol (12a)

T h e  (- )-b iscam p h a n a te  es te r 13a (570m g, 0 .6 1 2 m m o l) w as d isso lv ed  in m eth an o l 

(lOOm L) co n ta in in g  so d iu m  h ydrox ide  pelle ts  (4g) and  re flu x ed  fo r 30m in . T h e  m ix tu re  

w as co o led  an d  then  n eu tra lised  w ith  so lid  ca rbon  d iox ide. A fte r the  so lv en ts  w ere  

rem o v ed  by  ev ap o ra tio n  u n d er red u ced  p ressu re , the  re s id u e  w as tak en  up  in  w a te r 

(lOOm L), ex trac ted  w ith  ch lo ro fo rm  (2 x lOOmL), d ried  (M g S 0 4 ) an d  ev ap o ra ted  to  

g ive  a  w h ite  so lid . T h is  w as recrysta llised  fro m  ethyl ac e ta te / h ex an e  g iv in g  12a 

(334m g, 0 .5 8 5 m m o l, 96% )

M p: 95- 96 .5 °C  ( fro m  ethy l aceta te  /  h e x a n e ).

[ a ] D24 =  + 4  (c  =  1, C H C I3)

Anal. C a lcd  fo r C 35H 380 7  (570 .68); C , 73 .66 ; H  6 .71 , F o u n d  C , 73 .6 ; H , 6 .6 4  

N M R  and  m ass sp ec tro m etry  d a ta  w ere  iden tical to th o se  fo r the  racem ic  d io l 12.

(-)-lL-2,5,6-Tri-O-benzyl-3-0-p-methoxybenzyl-/fiy0-inositol (12b)

T h e  (+ )-b iscam p h an a te  es te r 13b (77 0 m g ,0 .8 2 7 m m o l) w as co n v e rted  to  the  d io l 12b as 

d esc rib ed  fo r co m p o u n d  13a. Y ield  46 1 m g , 0 .8 0 8 m m o l, 98% .

M p: 95- 9 7 °C  ( fro m  e th y l aceta te  /  h ex an e  ).

[ a ] D 22 = - 4  (c  =  1, CHC13)

Anal. C a lcd  fo r C 35H 38O 7 (570 .68); C , 73 .66 ; H  6 .71 , F o u n d  C , 73 .6 ; H , 6 .6 6  

N M R  an d  m ass sp ec tro m etry  d a ta  w ere  iden tical to  those  fo r  th e  racem ic  d io l 12.

(-)-lL -l,2,4,5,6-Penta-O-benzyl-my0-inositol (14b)

T h e  ab so lu te  co n fig u ra tio n  o f  12b w as d e te rm in ed  by  co n v e rtin g  it to  the  k now n  

p en tab en zy l e th e r 14b. A  sam ple  o f  the ( - ) -d io l 12b (60m g, 0 .1 0 5 m m o l) w as d isso lv ed  

in d ry  D M F  (5m L ), and  so d iu m  hydride  (20m g o f  a 60%  d isp ers io n  in  o il, 0 .5 0 m m o l)
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w as added. A fte r s tirrin g  at room  tem p era tu re  fo r lO m in, benzy l b ro m id e  (0 .05m L , 

0 .4 2 m m o l) w as ad d ed  and  stirring  co n tin u ed  fo r 2 h. T h e  ex cess so d iu m  h ydride  w as 

destro y ed  by  ad d itio n  o f  w ater (5m L ) and  the  m ix tu re  co n cen tra ted  u n d er reduced  

pressu re . T h e  re s id u e  w as taken  u p  in  d ich lo ro m eth an e  (20m L ), w ash ed  w ith  0 .1 M  HC1 

(20m L ) and  ev ap o ra ted . T he residue w as then  re flu x ed  in  m eth an o l /  1M  HC1 2:1 fo r 5 h 

a fte r w h ich  tim e  T L C  show ed  com ple te  co nversion  to the  p en ta-O -b en zy l ether. T h e  

so lven ts  w ere rem o v ed  by evaporation  in vacuo and  the re s id u e  w as taken  up  in 

d ich lo ro m eth an e  (30m L ), w ashed  w ith  sat. N aH CC >3 and  w a te r (2 0 m L  o f  each ), d ried  

(MgSC>4) and  ev ap o ra ted . C olum n ch rom atography  (pen tane  /  e th e r 1 :1 )  gave th e  p u re  

p en ta-O -b en zy l e ther, w hich  had  an N M R  sp ec tru m  iden tical to  an racem ic  1 ,2 ,4 ,5 ,6- 

p en ta-O -b en zy l-m y o -in o sito l , 164 b u t a  spec ific  ro ta tio n  o f  -1 1 .5 ° ,  a llo w in g  its ab so lu te  

co n fig u ra tio n  to  be  assig n ed  as L -14b. (52m g, 0 .0 8 2 4 m m o l, 78%  from  12b).

[ a ]d 22 =  - 1 1 .5  (c  =  2  in CHC13) [lit. 163 [ a fo  =  -1 3 .5  (c =  0 .5 , C H C I3); lit. 259 [ a ] D =  

+ 1 0 .0  (c  =1, C H C I3) fo r  th e  enan tiom er; L it . 167 [ a ]o  =  + 9 .7  (c  =  1.5, C H C I3) fo r  the 

enan tiom er].

!H  N M R  (C D C I3 , 2 70M H z): 82.22  ( 1 H , d, / =  6 .0H z, D zO  ex ., C -3 -O H  ); 3 .43 - 3.53 

( 3H , m , C - l-H , C -3 -H , C -5-H ); 3.81 ( 1 H , dd , J =  9 .5  H z, 9 .5 H z, C -6 -H  o r C -4 -H );

4 .03  ( 1 H , dd, J  =  2 .2  H z, 2 .2  H z, C - 2 - H ); 4 .0 6  ( 1 H , dd, J =  9 .5  H z, 9 .5  H z, C -6 -H  o r 

C -4 -H  ); 4 .7 0  - 5 .02  ( 10 H , m , C tf2C 6H 5 ); 7 .25 - 7 .38  ( 25 H , m , CeH5 ).

( - ) - 1 d -2 ,5 ,6 -T r i-O -b e n z y l-w y o -in o s ito l (9a)

T h e  (+ )-d io l 1 2 a  (300m g, 0 .5 2 6 m m o l) w as d isso lv ed  in e th an o l (80m L ) an d  1M  HC1 

(40m L ) w as added . T h e  m ix tu re  w as re flu x ed  fo r 4h  an d  the  so lv en ts  ev ap o ra ted  u n d er 

red u ced  p ressure . T h e  resid u e  w as taken  up  in d ich lo ro m eth an e  (50m L ), w ash ed  w ith  

w ater, sa tu ra ted  N aH C C >3 and  b rine  (30 m L  o f  each) and  d ried  (M gSCU). T he  so lven ts  

w ere  rem o v ed  an d  th e  re sid u e  p u rified  by  flash  ch ro m ato g rap h y  (e thy l ace ta te / h ex an e  

4 :1 ) to  g ive  a w h ite  so lid  w h ich  w as recrysta llised  fro m  ethy l ace ta te / h ex an e  g iv in g  the 

trio l 9 a  (213m g, 0 .4 7 3 m m o l, 90% ).

M p: 104 - 106°C  w ith  a  ph ase  change at 92  - 93°C  ( fro m  ethy l aceta te  /  h ex an e  ); L it . 143 

103 - 105°C

[ a ] D23 =  - 3 2  (c  =  1, C H C I3) [ L i t .23 [ah 25 =  - 2 7  (c =  1, CHC13). L it. 24 [ a ] D =  - 2 5  ( c  =  

0 .5 , C H C I3)].

N M R  an d  m ass sp ec tro m etry  d a ta  w ere  iden tical to  those  fo r the  racem ic  trio l 9.
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(+)-lL-2,5,6-Tri-0 -benzyl-f7ryo-inositoI (9b)

T h e  ( - ) -d io l  12b (350m g, 0 .613m m ol) w as trea ted  as d esc rib ed  fo r the  en an tio m er 

above  to  g ive  the  (+ )-trio l 9b (250m g, O .555m m ol, 91% ).

M p: 104- 106°C  w ith  a  ph ase  change a t 93 - 9 4°C  ( fro m  ethy l ace ta te  /  h ex an e  ); L it . 143 

104 - 106°C

[ a ] D21 =  + 32  (c  =  1, C H C U ). [L it. 143 [ a ] D25 =  +  25 (c  =  1, CHC13)].

N M R  an d  m ass sp ec tro m etry  d a ta  w ere  iden tica l to  those  fo r the  racem ic  trio l 9.

(+)-lD-2,5,6-Tri-0-benzyl-myo-inositol l,3,4-tris(dibenzylphosphate) (10a)

T h e  ( - ) - t r io l  9a (60m g, O .133m m ol) w as p h o sp h ity la ted  as d esc rib ed  fo r the racem ic  

m ate ria l. O x id a tio n  and  p u rifica tio n  as befo re  gave 10a as a  co lo u rle ss  o il (126m g, 

0 .1 0 2 m m o l, 77% ).

[ a ] D20 =  +6 ( c =  1 ,C H C 13)

Anal. C a lcd  fo r C 69H 69O 15P 3; C , 67 .31 ; H  5 .65, F o u n d  C , 67 .3 ; H , 5 .70  

N M R  an d  m ass spec trom etry  d a ta  w ere iden tical to those fo r racem ic  10.

(-)-lL-2,5,6-Tri-0-benzyI-myo-inositol l,3,4-tris(dibenzylphosphate) (10b)

T h e  (-h)-triol 9b (60m g, 0 .13 3 m m o l) w as p h o sp h ity la ted  as d esc rib ed  fo r the  racem ate  

g iv in g  9b as a  co lo u rle ss  oil. Y ield  123m g, O.lOOmmol, 75% .

[ a ] D20 =  - 6  (c =  1, C H C I3) L it . 143 [ a ] D25 =  - 5 .8  (c  = 1, C H C I3)

N M R  an d  m ass sp ec tro m etry  d a ta  w ere iden tical to  those  fo r racem ic  10.

(+)-lD-myo-inositol-l,3,4-trisphosphate (11a)

T h e  fu lly -p ro tec ted  trisp h o sp h ate  tries te r 10a (80m g, 6 5 p n o l )  w as d ep ro tec ted  and  

p u rified  as d esc rib ed  fo r the  racem ic m ateria l to  g ive  11a as the  g lassy  

trie th y lam m o n iu m  salt. Y ie ld  34 /tm o l, 52%

[cx]d26 =  + 37 ( c = 0 .42 , T E A B  buffer, pH  7.8 ) C alcu la ted  fo r the  free  acid . L it .95 [a]v 

= - 6 ( c  = 0 .5 , H 20  ), L it .98 [ a ] D = + 13 .6  ( c = 2, H 20 ,  p H  8.2, p o tass iu m  salt).

M S: m/z 4 1 8 .9 5 6  (M -H )“ (ca lcd  fo r C 6H i40 i5P 3, 418 .955).

N M R  d a ta  w ere  iden tica l to  those  fo r the racem ate  11.

(-)-lL-/wy0-inositol-l,3,4-trisphosphate (lib )
C o m p o u n d  104b (lOOmg, 8 1 .2 ^ m o l) w as d ep ro tec ted  an d  p u rified  as d esc rib ed  fo r the 

racem ic  m ateria l g iv ing  the  trie th y lam m o n iu m  salt l ib . Y ield  31/zm ol, 38% ).

[a]d 26 =  - 4 0  ( c =  0 .42 , T E A B  buffer, pH  7 .8  ) C alcu la ted  fo r th e  free  acid .
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M S: m/z 4 1 8 .9 5 7  (M -H )“ (calcd  fo r Q H 14O 15P 3, 418 .955).

N M R  d a ta  w ere  iden tica l to  those  fo r 11.

8.3 Acyclic Analogue

(2S,3S)-butane-l,2,3,4-tetrol-l,2,4-tris[bis(4-chlorobenzyl)phosphate)] (16)

T o  a  so lu tio n  o f  b is(4 -ch lo robenzy loxy)-A f,A -d iisop ropy lam inophosph ine177 (1 .24g , 

2 .9 9 m m o l) in d ry  d ich lo ro m eth an e  (5m L ) w as added  l / /- te tra z o le  (420m g, 5 .9 9 m m o l). 

T h e  m ix tu re  w as stirred  at ro o m  tem pera tu re  fo r 10 m in  an d  th en  (2S,3S)-(+)-2- 

b en z y lo x y b u ta n e -l,3 ,4 -tr io l (106m g, 0 .49 9 m m o l) w as added . T h e  m ix tu re  w as s tirred  

fo r a  fu rth e r 0 .5  h, a fte r w hich  a  9 0  M H z 31P  N M R  sp ec tru m  sh o w ed  signals a ro u n d  

139ppm  (tw o  d o ub le ts  and  a  trip le t, 7pp =  1.5 H z) co rresp o n d in g  to  th e  trisp h o sp h ite  

tries te r. T h e  m ix tu re  w as co o led  to  -78°C  and  m -C P B A  (570m g, 3 .30  m m ol) w as added . 

T h e  m ix tu re  w as w arm ed  to  room  tem peratu re , w ith  stirring , and  then  d ilu ted  w ith  e th e r 

(50m L ). T h e  so lu tion  w as w ashed  w ith  10% so d ium  su lp h ite  so lu tio n , sat. N aH C O s and  

b rin e  (5 0 m L  o f  each), d ried  (M gS 0 4 ) and  ev ap o ra ted  in vacuo to  g ive an  oil. 

P u rifica tio n  by  co lu m n  ch rom atography  (e ther, then  ethyl aceta te) gave the 

trisp h o sp h a te  tries te r 16 as a  co lo u rless oil (437m g, 0 .3 6 4 m m o l, 73% ).

Rf 0.54 (E thy l aceta te); [ a ] D20 - 0  ( c  = 1, CHC13).

‘H  N M R  (C D C I3, 4 0 0  M H z): 5  3 .76  (1 H , d t, ]=  4 .6  H z, 4 .6  H z, C -3 -H ), 4 .0 3 -4 .0 9  (1 H , 

m , C f tO P ) ,  4 .1 3 -4 .1 9  (1 H , m , CH2 O P), 4 .2 1 -4 .2 6  (2 H , m , CH2 OP), 4 .47 , 4 .5 9  (2  H , 

A B q, JAK =  11.6 H z, O C //2Q H 5), 4 .68  (1 H , m , C -2-H ), 4 .8 5 -4 .9 8  (12  H , m , 6  x 

O O T 2C 6H 4CI), 7 .1 1 -7 .2 9  (29 H , m , 6  x C ^ C l  an d  C y / 5).

13C  N M R  (C D C I3 , 100 M H z): 5  6 5 .1 4  (t, b road , C H 2O P ), 69 .93  (t, b road , C H 2O P),

68 .6 4 , 68 .73 , 6 8 .76  (overlapp ing  trip le ts w ith  J Cop co up ling , 6  x  P O C T ^A r), 7 3 .1 2  (t, 

O C H 2C6H 5), 7 5 .8 6  (d, Jcop = 5 .5H z, 7.3 H z, C -2  o r  C -3), 7 6 .1 2  (d, Jcop =  5 .5 H z, 5 .6  

H z, C -2  o r C -3), 127.83, 128.11, 128.22, 128.49, 128.77, 128.82, 129.04, 129.21, 

129.24, 129.30, 129.55 (d, C6H 5 and  C6IUC\), 133.80, 133.87, 133.94, 134.55, 134.60, 

134 .66  (6  s, 6  x  C - l  and  C -4  o f  C6H 5C1), 137.01 (s, C - l  o f  C 6H 5).

31P  N M R  ( CDC13,1 6 2 M H z , 'H -d eco u p led ) 5 -0 .9 6 , -1 .13  an d  -1 .52 .

M S: m/z (+ v e  ion  F A B , re l in tensity ) 1202(30% ), 1201(76% ), 1200(42% ) 1199(82% ), 

1198(16% ), 1197(34% ) [iso topom ers o f  (M + H )+], 127 [ (C 7H 637C 1)+, 100% ], 125 [ 

(C 7H 635C l)+,33%  ].
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M S: m/z ( - v e  ion F A B , rel in tensity ) 1073 [ (M -C 7H 635C 1) \  85%  and  various 

iso to p o m er p eaks ], 345 [ (35C 1C 7H 6 0 )2P 0 2 ) \  100%  ].

Anal C a lcd  fo r C 53H 49O 13P 3CI6 (1199 .60); C , 53 .07 ; H  4 .12 , F o u n d  C , 52 .8 ; H , 4 .14 .

(2S,3S)-butane-l,2,3,4-tetroI-l,2,4-trisphosphate (15)

A m m o n ia  (-lO O m L ) w as co n d en sed  in to  a th ree -n eck  flask  a t -7 8 ° C . A n ex cess  o f  

so d iu m  w as ad d ed  to  dry  the  liq u id  am m o n ia  an d  the deep  b lu e  so lu tio n  w as s tirred  at -  

7 8 °C  fo r 30m in . A  sm all v o lum e o f  the d ry  am m o n ia  (~ 30m L ) w as th en  d is tilled  in to  a 

seco n d  th ree -n eck  flask  and  k ep t at -7 8 ° C . S o d iu m  w as added  un til the so lu tion  

rem a in ed  b lu e-b lack  fo r 10 m in. A  so lu tion  o f  16 (95m g, 7 9 ^ m o l)  in d ry  d io x an e  (2m L ) 

w as ad d ed  to  the  v igo ro u sly -stirrin g  sod ium  - liq u id  am m o n ia  m ix tu re . A fte r 60  - 9 0  sec 

th e  reac tion  w as ca refu lly  q u en ch ed  w ith  m ethano l, fo llo w ed  by  d e-io n ised  w ater. 

A m m o n ia  and  so lven ts  w ere  then  rem oved  by ev ap o ra tio n  in vacuo. T h e  re sid u e  w as 

d isso lv ed  in  d e-io n ised  w ate r (500m L ) and  p u rified  by  io n -ex ch an g e  ch ro m ato g rap h y  on 

Q  S ep h aro se  F ast F low  R esin , e lu tin g  w ith  a g rad ien t o f  trie th y lam m o n iu m  b ica rb o n a te  

b u ffe r (0 to  1M ), pH  8.0. T h e  g lassy  trie th y lam m o n iu m  salt o f  15 e lu ted  b e tw een  300 

m M  and  360  m M . Y ie ld  3 3 ^ m o l, 42% ).

[T he N M R  sp ec tra  o f  15 w ere d ifficu lt to  in terp re t, due to  b ro ad  signals  in the  31P  N M R  

sp ec tru m  at ac id ic  pH , and  ob scu rin g  o f  signals in the lH N M R  sp ec tru m  by  p eak s from  

the  trie th y lam m o n iu m  ions. 15 w as therefo re  co n v erted  to  its N a+ salt by  trea tm en t w ith  

H + D o w ex  resin , fo llo w ed  by  C h elex -100  (N a+ form )].

[ a h 20  ~ 0  ( c  =  0 .2 , H 2O ).

'H  N M R  (D 20 ,  4 0 0  M H z, N a+ salt, p H  6-7): 8 3 .6 8 -3 .7 6  (1 H , m , C tf 2O P ), 3 .7 7 -3 .8 6  (3 

H , m , C t f 2O P ), 3 .86-3 .91  (1 H , m , C -3 -H ), 4 .1 1 -4 .1 8  (1 H , m , C -2 -H ).

31P  N M R  (D 20 ,  161.7 M H z, ‘H -coup led , N a+ salt, p H  6-7) 5 0 .9 6  (1 P , d, 7Hp =  9 .4  H z, 

P -2 ), 1.92 (1 P , t, 7Hp =  5.8 H z), 2 .07  (1 P, t, 7Hp =  6.5 H z)
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8.4 Five-membered ring Analogue

M e th y l 2 -0 -b e n z y l-6 ,7 -d id e o x y -3 ,4 -d i-0 -p -m e th o x y b e n z y l-a -D -g /a c o -h e p t-6 -  
e n o p y ra n o s id e  (1 ,5) (20)

In to  a  d ry  th ree -n eck  flask  u n d er N 2 w as p laced  oxaly l ch lo rid e  (3 .2 m L  o f  a  2M  so lu tion  

in  d ich lo ro m eth an e , 6 .4m m ol) fo llo w ed  by  dry  d ich lo ro m eth an e  (lO m L ). T h e  appara tus 

w as co o led  to  -6 0 ° C  and  a  so lu tion  o f  anhydrous d im eth y lsu lp h o x id e  (0 .90m L , 

12 .7m m ol) in  dry  d ich lo ro m eth an e  (15m L ) w as carefu lly  in jec ted  o v er a  p e rio d  o f  5 

m in . T he  m ix tu re  w as stirred  fo r 5 m in  and  then  a  so lu tion  o f  m ethy l 2 -O b e n z y l-3 ,4 -d i-  

O -p -m eth o x y b en zy l-a -D -g lu co p y ran o sid e  (18) (3 .00g , 5 .7 2 m m o l) in dry

d ich lo ro m eth an e  (lO m L ) w as added  d ropw ise  o v er 5 m in . S tirrin g  w as co n tin u ed  a t - 6 0  

°C  fo r a  fu r th e r 20  m in  and  then  d ry  trie thy lam ine (5m L ) w as added . A fte r s tirrin g  fo r 5 

m in , the  reac tio n  w as a llow ed  to  reach  ro o m  tem peratu re . T h e  so lv en ts  w ere  rem o v ed  

by  ev ap o ra tio n  in vacuo and  the  residue w as tak en  up  in  d ich lo ro m eth an e  (15m L ) to  

g ive  a  slurry , w h ich  w as loaded  onto  a  short co lu m n  o f  s ilica  and  e lu ted  w ith  ethyl 

ace ta te /h ex an e  3 :2 , g iv ing  the crude  a ldehyde as a pale  yellow  oil (2 .6g). T h is  w as u sed  

fo r the n ex t s tep  w ith o u t fu rth e r purifica tion .

A  dry  lOOmL flask  w as charged  w ith  m eth y ltrip h en y lp h o sp h o n iu m  b ro m id e  (3 .70g , 

10 .36m m ol), p rev io u sly  d ried  in vacuo at 60°C . D ry  T H F  (lO m L ) w as ad d ed  an d  the 

su sp en sio n  w as co o led  to  -1 0 ° C , w ith  stirring , u n d er N 2. P o ta ss iu m  terr-b u to x id e  

(9 .8 m L  o f  a  1.0M  so lu tio n  in  dry  T H F , 9 .8m m ol) w as added , an d  the  yellow  su sp en sio n  

w as a llo w ed  to  reach  room  tem peratu re . A fte r s tirring  fo r a  fu rth e r 10 m in  the 

su sp en sio n  w as co o led  to  -1 0 ° C  once m ore, and  a  so lu tion  o f  the  c rude  aldehyde (2 .6g) 

in d ry  T H F  (5m L ) w as added . T he  co lo u r d arkened  to  deep  o ran g e  a lm o st im m ed ia te ly , 

and  the  m ix tu re  w as a llo w ed  to  w arm  to  room  tem peratu re . S tirrin g  w as co n tin u ed  fo r a 

fu rth e r 1 h  an d  then  th e  so lv en t w as rem oved  by  ev ap o ra tio n  in vacuo g iv in g  a  b ro w n  

oil. P u rifica tio n  by co lu m n  ch ro m ato g rap h y  (ethyl ace ta te /p en tan e  1:3) gave p u re  2 0  as 

a w axy  so lid  (2 .23g , 4 .2 8 m m o l, 75%  from  18.

‘H  N M R  (C D C I3, 270M H z): S 3.21 (1 H , dd, 7  =  9 .3  H z, 9 .2  H z, C -4 -H ), 3 .37  (3 H , s, 

O C H 3), 3 .5 0  (1 H , d d  7  =  9 .7  H z, 3 .2  H z, C -2-H ), 3 .79 , 3 .80  ( 6  H , 2  s, 2 x A rO C H 3),

3 .9 6  (1 H , dd , 7  =  9 .5  H z, 9 .2  H z, C -3-H ), 4 .0 2  (1 H , dd , 7  =  9 .3  H z, 6 .8  H z , C -5 -H ), 

4 .5 1 -4 .9 0  (6  H , m , 3 x A1 CH2O A B  system s), 4 .58  (1 H , d, 7  =  3 .2  H z, C - l-H ) , 5 .26  (1 

H , b r  d , 7  =  10.1 H z, C -7-H , c is ,, 5 .4 0 (1  H , b r d , 7  =  17.2 H z, C -7 -H , trans), 5 .88  (1H , 

d d d , 7 =  17.2 H z, 10.1 H z, 6 .8  H z, C -6 -H ), 6 .8 3 -7 .3 6  (13 H , m , a ro m atic  C H ).
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I3C  N M R  (CDC13, 67 .8  M H z): <555.11, 55 .25  (2  q, O C H 3), 71.41 (d , C H ), 73 .3 8 , 74 .75 , 

75 .51  (3 t, A rC H jO ), 79 .87 , 81 .44 , 81 .95  (3 d, C H ), 98 .08  (d , C - l ) ,  113.75, 113.80 (2 d, 

2 x C -3  an d  C -5  o f  P M B  rings), 118.01 (t, C -7 ), 127.84, 128.05, 128 .41 , 129.56, 129.59 

(5 d , a ro m atic  C H ), 130.42, 131.07 (2  s, 2 x C - l  o f  P M B  rin g s), 135.32 (d, C -6 ), 138.24 

(s, C - l  o f  benzy l ring), 159.18, 159.26 (2 s, 2 x C -4  o f  PM B  rings).

M S: m/z (+ ve ion  F A B , rel in tensity) 519 [ (M -H )+ , 2 .0% )], 121 [(C H 2C 6H 4 0 C H 3)+, 

1 0 0 %  ], 91 [ (C 7H 7)+ 2 0 % ];

M S: m/z ( - v e  ion F A B , rel in tensity ) 673 [ (M  +  N B A )- , 25%  ], 399  [ (M -

C H 2C 6H 4O C H 3) - , 100% ].

[cc ]d 23 = - 2 3  (c = 1 ,C H C 1 3)

A nal, ca lcd . fo r C 3iH 360 7 (520 .62) C , 71 .52 ; H , 6 .97  F ound : C , 71 .5 ; H , 7 .07. 

Zirconium-Mediated Ring Contraction178

Z irco n o cen e  d ich lo rid e  (672m g, 2 .30m m ol) w as p laced  in to  a  d ry  lOOmL fla sk  u n d er 

N 2, fo llo w ed  by  dry  T H F  (lO m L ). T he  su spension  w as co o led  to  -7 8 ° C  an d  n- 

b u ty llith iu m  (1 .8 4 m L  o f  a  2 .5M  so lu tion  in  hexane, 4 .6 0 m m o l) w as added . T h e  m ix tu re  

w as s tirred  at -7 8 ° C  fo r 1 h and  then  a  so lu tion  o f  the  vinyl p y ran o sid e  20 (l.OOg, 

1 .92m m ol) in  d ry  T H F  (8 m L ) w as added. T h e  c lea r yellow  so lu tion  w as a llo w ed  to  

reach  ro o m  tem p era tu re  and  stirring  w as co n tin u ed  fo r 3 h , d u rin g  w h ich  tim e  it 

g rad u ally  d ark en ed  to  red d ish  orange. T he  so lu tio n  w as co o led  to  0°C  and  a  so lu tio n  o f  

b o ro n  triflu o rid e  e th era te  (0 .45m L , 3 .7m m ol) in  dry  T H F  (5m L ) w as added . S tirrin g  w as 

co n tin u ed  a t ro o m  tem p era tu re , and  T L C  (d ich lo ro m eth an e/e th y l aceta te  10:1) show ed  

co n v e rs io n  o f  s ta rtin g  m ateria l (Rf 0.72) to  a  m a jo r p ro d u c t (Rf 0.56 ) w ith in  30m in . 

A fte r 4 5 m in , T L C  sh o w ed  th a t PM B  groups w ere  b e in g  lost. 1M HC1 (50m L ) w as 

ad d ed  an d  th e  m ix tu re  ex trac ted  w ith  d ich lo ro m eth an e  (2 x  50m L ). T h e  o rgan ic  ex trac ts  

w ere  co m b in ed , w ash ed  w ith  b rin e  (lOOmL), d ried  (MgSC>4) and  ev ap o ra ted  in  vacuo 

g iv in g  a  yellow  o il, w h ich  w as p u rified  by  co lu m n  ch ro m ato g rap h y  

(d ich lo ro m eth an e /ace to n e  30 :1) to  g ive the m ajo r d ias te reo iso m er 21b (433m g, 

0 .8 8 3 m m o l, 4 6 % ) as a  w axy  so lid . A  sm all am o u n t o f  the  m in o r d ia s te reo iso m er 21a 

w as a lso  iso la ted  (~ 30m g, 0 .06m m ol, 3% ).
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(1/?, 2 5 ,3 5 ,4R, 55)-3-Benzyloxy-4-hydroxy-l,2-di-/?-methoxybenzyIoxy-5- 
vinylcyclopentane (Major Diastereoisomer) (21b)

Rf= 0 .3 2  (d ich lo ro m eth an e/ace to n e  30:1)

!H  N M R (C D C 13, 400M H z): S 1.99 (1 H , d, /  =  4 .2 2  H z, D 20  ex , C -4 -O H ), 2 .86  (1 H , 

ddd , J =  7 .8  H z, 7 .8  H z, 6 .2  H z, C -5-H ), 3 .77 , 3 .78  (6 H , 2s, 2 x O C H 3), 3 .77  (1 H , 

o b scu red  by  O C H 3, C -3-H ), 3.93 - 4.01 (2 H , m , C - l -H  an d  C -2 -H ), 4.11 (1 H , m , D 20  

ex  g ives dd , J  =  6 .0  H z, 3.1 H z, C -4-H ), 4 .45  - 4 .65  (6  H , m , 3 x A rC / /20  A B  system s),

5 .23 (1 H , b r d, J =  17.2 H z, = C H 2, trans), 5 .25 ((1 H , b r  d , J =  10.6 H z, = C H 2, cis),

5.91 (1 H , ddd , J =  17.2 H z, 10.8 H z, 8 .0  H z, C H = ), 6 .83 - 6 .87  (4 H , m , C ^ O M e ) ,

7 .2 0  - 7 .25  (4  H , m , C ^ O M e ) ,  7 .28 - 7 .35  (5 H , m , C JI5).

13C  N M R  (CDC13, 67.8  M H z): 5  50 .96  (d, C -5), 55 .20  (q, 2 x O C H 3), 7 1 .57  (t, 

O C H 2A r), 7 1 .6 0  (t, 2 x O C H 2A r), 75 .36 , 84 .49 , 87 .17 , 87.91 (4 d, C - l ,  C -2 , C -3 , C -4), 

113.67, 113.72 (2 d, C -3 and  C-5 o f  PM B  rings), 118.76 (t, = C H 2), 127.65, 127.73, 

128.33, 129.40, 129.51 (5 d, arom atic  C H ), 130.13, 130.36 (2 s, 2 x C - l  o f  PM B  rings), 

134.69 (d, C H =), 138.06 (s, C - l  o f  benzyl ring), 159 21, 159.13 (2  s, C -4  o f  PM B  

rings).

M S: m/z (+ ve ion F A B , rel in tensity ) 489  [ (M -H )+ , 1.2% )], 369 [ ( M -  

C H 2C 6H 4 0 C H 3)+, 6 .0% ), 121 [ (C H 2C 6H 4O C H 3)+, 100% ];

M S: m/z ( - v e  ion F A B , rel in tensity ) 643 [ (M  +  N B A )" , 100%  ]

[a h  = +9 (c=  1 ,C H C 13)

A nal. C alcd . fo r C 30H 34O 6: C , 73 .45; H , 6 .99  F ound: C , 73 .2 ; H , 7 .05.

(1R, 2 5 ,3 5 ,4 5 ,5R)-3-Benzyloxy-4-hydroxy-l,2-di-p-methoxybenzyIoxy-5- 
vinylcyclopentane (Minor Diastereoisomer) (21a)

Rf= 0 .36  (d ich lo ro m eth an e /ace to n e  30:1)

M p: 83 -8 5 °C  (from  ethano l)

‘H  N M R  (CDC13, 4 0 0 M H z): <52.53 (1 H , d , 7 =  8.3 H z, D 20  ex , C -4 -O H ), 2 .71 (1 H , 

d d d , J =  8 .3  H z, 7 .8  H z, 7 .8  H z, C -5-H ), 3 .66  (1 H , d d  J =  7 .8  H z, 4 .4  H z , C - l-H ) ,  3 .79 ,

3 .8 0  ( 6  H , 2 s, 2 x O C H 3), 3 .79  - 3 .87  (2  H , m , p artly  o b scu red  b y  O C H 3, C -3 -H  an d  C - 

4 -H ), 3 .9 4  (1 H , dd , J  =  4 .3  H z, 2 .44  H z, C -2-H ), 4 .43  - 4 .6 9  ( 6  H , m , 3 x A tCH20  A B  

system s), 5 .1 6  (1 H , b r  d, J  =  10.3 H z, = C H 2, cis), 5 .23  (1 H , b r  d, J = 17.1, = C H 2, 

trans), 5 .8 4  (1 H , ddd , J =  17.1 H z, 10.3 H z, 7 .8  H z, C H = ), 6 .85  - 6 .89  (4  H , m , 

C^HiOMe), 7.31 - 7 .37  (4  H , m , C ^ O M e ) ,  7.31 - 7 .37  (5 H , m , C ^ s ) .
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13C  N M R  (C D C I3, 67 .8  M H z): <5 5 3 .7 4  (d, C -5), 5 5 .1 9  (q, 2 x  O C H 3), 71 .4 5 , 71 .62 , 

7 1 .7 5  (3 t, O C H 2A r), 7 3 .7 9 , 81 .75 , 85 .21 , 86 .13  (4  d, C - l ,  C -2 , C -3 , C -4), 113.67,

113.78 (2  d, C -3 an d  C -5  o f  P M B  rings), 117.12 (t, = C H 2), 127.79, 127.89, 128.44,

129 .35 , 129.38 (5  d, a ro m atic  C H ), 129.93, 130.24 (2  s, 2 x C - l  o f  P M B  rings), 137.59 

(s, C - l  o f  benzy l ring), 137 .82  (d, C H =), 159 14, 159.29(2  s, C -4  o f  PM B  rings).

M S: m/z (+ve ion F A B , rel in tensity) 48 9  [ (M -H )+ , 1.0% )], 369  [ ( M -  

C H 2C 6H 4 0 C H 3)+, 5 .0% ), 121  [ (C H 2C 6H 4O C H 3)+ , 1 0 0 % ]; 91 [ ( C 7H 7)+, 1 0 %]

[a]D = -2 6  ( c =  1 ,C H C 13)

A nal. C alcd . fo r C 30H 34O 6: C , 73 .45 ; H , 6 .99  F ound: C , 73 .6 ; H , 7 .02 .

(1R, 2S, 3S, 4R, 5R)-3-Benzyloxy-l,2,4-trihydroxy-5-vinylcycIopentane (23)

T h e  alcoho l 21b (175m g, 0 .3 5 7 m m o l) w as d isso lv ed  in  e th an o l (40m L ) and  1M  HC1 

(20m L ) w as added . T h e  so lu tio n  w as re flu x ed  fo r 3 h and  then  the  so lven ts  w ere 

rem o v ed  by ev ap o ra tio n  in vacuo. T he residue w as taken  u p  in  ethyl ace ta te  (50m L ), 

and  w ashed  w ith  sat. N a H C 0 3 and  b rine  (25 m L  o f  each). T h e  co m b in ed  aqueous layers 

w ere  re -ex trac ted  w ith  e thy l ace ta te  (50m L ) and  the co m b in ed  o rgan ic  layers w ere  then  

d ried  (M g S 0 4) and  ev ap o ra ted  in vacuo to  g ive  a  yellow  o il. P u rifica tio n  by  co lu m n  

ch ro m ato g rap h y  (ch lo ro fo rm /m eth an o l 5 :1) gave the  trio l 23 as a  w axy  so lid  (78m g, 

0 .3 1 2 m m o l, 87% ).

M p: 6 4 -66°C  (from  e th er)

[H  N M R  (CDC13, 4 0 0 M H z): <52.55 (1 H , ddd, 7  =  9.3 H z, 7 .8  H z, 7.3 H z, C -5 -H ), 2 .79  

(1 H , b r s, D 20  ex , O H ), 2 .9 2  (1 H , b r s, D 20  ex , O H ), 3 .65 (1 H , d d  J  =  5 .4  H z, 2 .0  H z, 

C -3 -H ), 3 .88 (1 H , b r dd , D 20  ex  g ives dd, J =  7 .3  H z, 5 .4  H z, C -2 -H ), 3 .95 - 4 .0 0  (2 H , 

b r  m , sharpens on D 20  ex , C - l -H  and  C -4-H ), 4 .1 0  (1 H , b r  s, D 20  ex , O H ), 4 .54 , 4 .58  

(2 H , A B , 7ab = 11-7 H z , OCH2C6H5 ), 5 .20  (1H , dd, J = 17.1 H z, 1.6 H z, = C H 2, trans),

5.23 (1 H , dd, 7 =  10.3 H z, 1.6 H z, = C H 2, cis), 5 .82  (1 H , ddd , 7 =  17.1 H z, 10.3 H z, 7 .8 

H z, C H = ), 7 .22  - 7 .32  (5 H , m , CeHs).

13C  N M R  (C D C I3, 100.4 M H z): 5 5 1 .4 7  (d, C -5 ), 7 1 .8 4  (t, O C H 2C 6H 5), 74 .7 3 , 76 .67 ,

81 .4 6 , 89 .09  (4 d, C - l ,  C -2 , C -3 , C -4), 119.56 (t, = C H 2), 127.86, 127.91, 128.48 (3 d, 

a rom atic  C H ), 133.77 (d , C H = ), 137.79 (s, C - l  o f  ben zy l ring)

M S: m/z (+ ve ion F A B , re l in tensity ) 501 [ (2M  +  H )+, 2 .0%  ], 249  [ (M -H )+  , 5 .0% )], 

149 (30% ), 91 [ (C 7H 7)+, 100% ]
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M S : m/z ( - v e  ion F A B , rel in tensity) 403 [ (M  +  N B A )" , 100%  ], 249  [ (M -H )"  , 

50% )], 149 (50% ).

[« ] d =  +53 (c = 1 ,C H C 1 3)

A nal. C alcd . fo r C i4H i80 4: C , 67 .18; H , 7 .25 F ound: C , 66.9; H , 7 .44.

(LR, 2R, 3 S , 4R, 5 S )-3 -B e n zy Io x y -l,2 ,4 - tr is (d ib e n z y Io x y p h o sp h o ry Io x y )-5 -  
v in y lc y c lo p e n ta n e  (24)

T o  a  so lu tio n  o f  b is(benzyloxy)-A f,A f-diisopropylam inophosphine (670m g, 1 .94m m ol) in 

dry  d ich lo ro m eth an e  (2m L ) w as added  1 /f-te trazo le  (200m g, 2 .8 5 m m o l). T h e  m ix tu re  

w as s tirred  at ro o m  tem p era tu re  fo r 10 m in  and  then  the  trio l 23  (80m g, 0 .3 2 0 m m o l) 

w as added . T h e  m ix tu re  w as stirred  fo r a  fu rth e r 1 h, afte r w h ich  a  90  M H z 31P  N M R  

sp ec tru m  sh o w ed  signals aro u n d  139ppm  (a s ing le t and  an A B  q u arte t w ith  /  = 6 .7  H z) 

co rresp o n d in g  to  th e  trisp h o sp h ite  triester. T he  m ix tu re  w as co o led  to  -7 8 ° C  an d  m- 

C P B A  (517m g, 3 .00m m ol) w as added. T he  m ix tu re  w as w arm ed  to  ro o m  tem pera tu re , 

w ith  stirring , and  then  d ilu ted  w ith  ethyl acetate  (50m L ). T h e  so lu tio n  w as w ash ed  w ith  

10% so d iu m  su lp h ite  so lu tion , 1M HC1, sat. N a H C 0 3 and  b rin e  (5 0 m L  o f  each ), d ried  

(M g S 0 4) and  ev ap o ra ted  in vacuo to  g ive  an oil. P u rifica tio n  by  co lu m n

ch ro m ato g rap h y  (ch lo ro fo rm /ace to n e  10:1) gave the trisp h o sp h a te  trie s te r 2 4  as a

co lo u rle ss  o il (271m g, 0 .2 6 3 m m o l, 82% ).

lH N M R  (CDC13, 400M H z): 5 3 .0 2  (1 H , m , C -5-H ), 4 .2 0  (1 H , b r  s, C -3 -H ), 4 .5 0  (2  H , 

A B , Jab = 11.2 H z, O C /72C 6H 5), 4 .68  (1 H , b r dd, J = 7 .8  H z, 4 .9  H z, C -4 -H ), 4 .8 7  -

5 .08  (14  H , m , 6  x OCH2C6H5, C - l -H  and  C -2-H ), 5 .18 (1 H , d, J = 10.3 H z, 1.5 H z, 

=CH2, cis), 5 .26  (1 H , d, J =  17.1 H z, 1.5 H z, =CH2, trans), 5 .86  (1 H , ddd , /  =  17.1 

H z, 10.3 H z, 8.3 H z, C H = ), 7 .17  - 7 .33 (35 H , m , 7 x C 6H 5)

13C  N M R  (CDC13, 100.4 M H z): 5 5 0 .8 5  (d, C -5), 69 .24 , 69 .37 , 69 .48 , 69 .57 , 7 1 .9 6  (5 t, 

7 x O C H 2C 6H 5), 81 .18 , 84 .05 , 85.57, 86.23 (4 d, C - l ,  C -2 , C -3 , C -4 ), 120.72 (t, = C H 2), 

127.43, 127.52, 127.74, 127.89, 127.98, 128.13, 128.18, 128.29, 128.46 128.86 (10  d, 

a rom atic  C H ), 131.38 (d, C H =), 135.40, 135.48, 135.53, 135.59, 135.66, 135.75, 137.29 

(7 s, 7 x C - l  o f  ben zy l ring)

3IP  N M R  (CDC13, 161.7 M H z): 5 - 1 .9 7 ,  -2 .1 2 ,  - 2 .3 4

M S: m/z (+ v e  io n  F A B , re l in tensity ) 1031 [ (M  +  H )+ , 2 .5% )], 149 (20% ), 91 [

(C 7H 7)+, 100% ]

M S: m/z ( - v e  ion  F A B , re l in tensity ) 938(14), 277  [ (C 6H 5 0 )2P 0 2‘ , 100%  ]

[ « ] D26 =  + 3 .5  (c  =  1 ,C H C 13)

208



A nal. C alcd . fo r C 56H 57O 13P 3 C , 65 .24; H , 5.57 Found: C , 65 .0 ; H , 5 .60.

(1/?, 2R, 3S, 4R, 5S)-3-Hydroxy-l,2,4-trisphospho-5-vinylcyclopentane (22)

T h e  trisp h o sp h a te  tries te r 24 (80m g, 77.6jUmol) w as d ep ro tec ted  as d esc rib ed  fo r 

co m p o u n d  15. P u rifica tio n  by  ion -exchange  ch ro m ato g rap h y  on  Q  S ep h aro se  F ast F low  

R esin , as b e fo re  gave  the  g lassy  trie th y lam m o n iu m  salt o f  22, w h ich  e lu ted  b e tw een  300  

m M  an d  4 0 0  m M  T E A B . Y ie ld  45jUmol, 58% )

‘H  N M R  (D 2O , 4 0 0  M H z, p H  3.2): S 2 .76  (1 H , ddd , J =  8 .9  H z. 7 .9  H z , 7 .9  H z, C -5 - 

H ), 3 .98  (1 H , dd , J  =  3 .7  H z, 3 .7 H z, C -3-H ), 4 .1 4  - 4.21 (2  H , m , C -2 -H , C -4 -H ), 4 .37  

(1 H , ddd , J  =  8 .9  H z, 8 .9  H z, 5 .2  H z, C - l-H ) , 5 .07  (1 H , b r  d, J = 10.4 H z, =CH2, cis), 

5 .1 2 (1  H , b r  d , 7  =  17.4 H z, = C H 2, trans), 5 .7 5 (1  H , d d d , / =  17.4 H z, 10.4 H z, 7 .9  H z, 

CH=)

31P  N M R  (D 20 ,  161.7 M H z, p H  3.2 , ’H -coup led ) S 1.62 (1 P , d , / Hp =  9 .0  H z), 1.86 (1 

P , d, JHp =  8 .8  H z ), 2 .20  (1 P , d , JHp =  9 .0  H z)

M S: m/z (+ ve ion F A B , rel in tensity ) 102 [ (C 2H 5)3N H +, 100%  ]

M S: m/z ( - v e  ion  F A B , re l in tensity ) 798 [ 2 M \ 10% ], 399  [ M ', 100%  ]

[cc]d =  - 8 , [a ]436 =  - 2 8  (c =  0 .36 , T E A B  bu ffer p H  7.8) ca lcd  fo r the  free  ac id  

M S: m/z 398 .963  (M ‘) ca lcd  fo r C7H 14O 13P3', 398.965.

Attempted oxidative cleavage of vinyl group

T h e  a ttem p ted  o x id a tiv e  c leavage  o f  v in y lcyclopen tane 24 acco rd in g  to  a  rep o rted  

p ro c e d u re 184 gave on ly  a  sm all am oun t o f  25 iso la ted  as an oil an d  id en tified  as (1/?, 2R, 

35, 4  R, 5 5 )-3 -B en zy lo x y -1,2 ,4 -tris(d ib en zy lp h o sp h o ry lo x y )-5 -( 1,2 -d ihydroxyethy l)-

cy c lo p en tan e . N M R  d a ta  fo r 25 are g iven  below .

*H N M R  (C D C I3, 270M H z): S 2 .57  (1 H , b r  t, C -5 -H ), 3 .58  (1 H , dd, J =  11.5 H z, 6 .6  

H z, C -7 -H ), 3 .7 4 -3 .8 6  (2 H , m , C -6 -H  and  C -7-H ), 4 .13  (1 H , b r  s, C -3 -H ), 4 .37 , 4 .43  (2 

H , A B , 7ab =  11.7 H z, O C //2C 6H 5), 4 .82  - 5 .05 (15 H , m , 6  x OCH2C6U5, C - l-H , C -2 -H  

an d  C -4 -H ), 7 .1 6  - 7 .32  (35 H , m , 7 x C 6H 5)

13C  N M R  (C D C I3, 100.4 M H z): 5 5 0 .1 0  (d, C -5), 6 4 .32  (t, C -l), 68 .85  (d, C -6 ), 69 .37 ,

69 .4 7 , 69 .77 , 69 .95 , 7 0 .2 4  (5 t, 6  x P O C H 2C 6H 5), 71 .65  (t, O C H 2C 6H 5), 79 .9 7 , 83 .16 , 

86 .83  (3 d, C - l ,  C -2 , C -4), 84 .30  (d, C -3), 127.67, 127.80, 127.85, 127.91, 128.00,

128.03, 128.07, 128.13, 128.31, 128.51, 128.69, 128.78, 128.98, 129.22, 129.31 (15 d, 

C 6H 5), 135.20, 135.28, 135.40, 135.46, 135.53, 135.61 137 .14  (7 s, 7 x C - l  o f  benzy l 

rings).
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31P  N M R  (C D C I3, 109.4 M H z): 5 - 1 .7 5 ,  - 0 .7 7 ,  0 .52

M S : m/z (+ ve ion FA B , re l in tensity ) 1065 [ (M  +  H )+ , 50% )], 281(8 0 % ), 91 [ (C 7H 7)+, 

100%]

M S: m/z ( - v e  ion  F A B , rel in tensity ) 973 [M -C 7H 7]‘, 85% ], 277  [ (C 6H 50 ) 2P 0 2' ,100%  ]

8.5 Conformationally-Restricted Analogue

l ,3,5-O-Methylidene-/fiy0-inositol [ = myo-inositol orthoformate] (27)130
1 9Q

T h is  co m p o u n d  w as syn thesised  accord ing  to  the im proved  p ro ced u re  o f  B au d in  et a l 

rayo-Inosito l (50 .0g , 0 .2 7 8 m o l) and  to lu en e-p -su lp h o n ic  ac id  (13 .8g , 0 .0 7 3 m o l) w ere 

su sp en d ed  in dry  D M F  (500m L ). T rie thy l o rth o fo rm ate  (83m L , 0 .5 0 m o l) w as added  

d ro p w ise  u n d er N 2 at 100°C. T he m ix tu re  w as stirred  at 100°C  fo r 4  h , a fte r w h ich  the 

reac tion  w as ju d g e d  to  be  com ple te  by T L C  (aceton itrile , p ro d u c t a t R /0 .4 4 ) . D M F  w as 

d is tilled  o ff  u n d e r reduced  p ressu re  at 50°C . T he  resid u e  w as trea ted  w ith  10% so d iu m  

hydro g en carb o n ate  so lu tion  (lOOmL), stirred  fo r 15m in at rt, d ilu ted  w ith  w a te r (1L), 

an d  ex trac ted  w ith  ch lo ro fo rm  (3 x 250m L ). T h e  aqueous p h ase  w as ev ap o ra ted  to  

d ryness u n d er red u ced  p ressu re  at 40°C , and  the resid u e  w as th en  s tirred  w ith  m eth an o l 

(2L ) at 50°C . T h e  su spension  w as filte red  and  ev ap o ra ted  to  g ive  a  s ticky  o ff-w h ite  

so lid .(~ 70g). T h is  w as d isso lv ed  in the m in im u m  am o u n t o f  w ater, and  p u rified  by  flash  

ch ro m ato g rap h y  (aceton itrile ) to  g ive 27 (40 .5g , 0 .213m ol, 77% )

M p: 297-3 0 0 °C  (from  m eth an o l/e th y l aceta te) (lit . 130 300 -302°C ).

*H N M R  (d6-D M S O , 270M H z): 8 3.95 (2 H , dd , J  = 3.0  H z, 1.7 H z, C - l-H , C -3-H ),

3 .99  (1 H , b r  s, C -2-H ), 4 .0 6  (1 H , m , C -5-H ), 4 .27  (2 H , b r s, D 20  ex  g ives dd, J  =  3.8 

H z, 3.8 H z, C -4-H , C -6 -H ), 5 .32  (1H , b r s, D 20  ex , C -2 -O H ), 5 .44  (1H , d, J  =1.1 H z, 

C O 3H ), 5 .47  (2H , b r  s, D 20  ex , C -4-O H , C -6 -O H ).

4,6-Di-0 -/7-methoxybenzyl-l,3,5-0 -methylidene-/wyo-inositol (28)

T o  a  so lu tion  o f  m yo-inosito l o rtho fo rm ate  27 (15 .0g , 7 8 m m o l) in  d ry  D M F  (300m L ) at 

0 °C  w as added  so d iu m  hydride  (7 .2g  o f  a  60%  d isp ers io n  in  o il, 180m m ol). T h e  m ix tu re  

w as s tirred  fo r 20  m in  at 0 °C  and  then  p -m eth o x y b en zy l ch lo rid e  (22 .5m L , 166m m ol) 

w as added . T h e  m ix tu re  w as stirred  fo r a  fu rth e r 2h  a t rt, a fte r w h ich  T L C  

(d ich lo ro m eth an e/e th y l aceta te  2:1) show ed  a m ajo r p ro d u c t a t Rf 0 .4 9  and  m in o r 

p ro d u c ts  (m ono- and  tri-O -p -m eth o x y b en zy la ted  m ateria l) at Rf 0 .2 2  an d  0 .64 . W a te r 

(lO m L ) w as added  ca refu lly  to  quench  the  reaction . S o lven ts  w ere  ev ap o ra ted  in vacuo 

an d  the  re sid u e  p artitio n ed  be tw een  w ate r (200m L ) and  d ich lo ro m eth an e  (400m L ). T h e
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o rg an ic  layer w as w ash ed  w ith  b rine  (200m L ), d ried  (M g S 0 4), and  ev ap o ra ted  to  g ive 

an  o il w h ich  w as p u rified  by flash  ch ro m ato g rap h y  (d ich lo ro m eth an e/e th y l ace ta te  5:1) 

g iv ing , in  o rd e r o f  e lu tion ; the tri-O -p -m eth o x y b en zy la ted  ether, d i-O-p- 

m eth o x y b en zy la ted  m ateria l, and  finally , m o n o -su b stitu ted  p roduc ts . R ecry sta llisa tio n  

o f  the seco n d  frac tio n  from  ethy l aceta te /hexane gave 28 (13 .5g , 3 1 .4m m ol, 40%  yield). 

M p: 120 - 121 °C  (from  ethy l aceta te /hexane).

‘H  N M R  (CDC13, 4 0 0  M H z) 8  3 .26  (1 H  d, /  =  11.3 H z , D 20  ex , C -2 -O H ), 3 .79  (6  H , 

s, 2 x C H 2C 6H 4 0 CH3), 4 .1 6  (1 H , b r d, J =  11.2 H z, D 20  ex g ives b r  s, C -2 -H ), 4 .1 8 -

4 .2 0  (2  H , m , C - l -H  and  C -3-H ) 4 .3 2  (2 H , dd, J =  3 .4  H z, 3 .4  H z, C -4 -H  and  C -6 -H ), 

4 .4 0  (1 H , m , C -5 -H ), 4 .48 , 4 .56  (4 H , A B , 7ab =  11-0 H z, 2 x C / / 2C 6H 4 0 C H 3) 5 .4 6  (1 

H , d, /  =  0 .9  H z, 0 3C H ), 6.81 (4 H , d, J =  8.9 H z, 2 x C H 2C 6^ 4O C H 3), 7 .17  (4  H , d, J 

=  8 .6  H z , 2  x C H 2C 6t f 4O C H 3)

13C  N M R  (CDC13, 67 .8  M H z) 5  55 .14  (q, 2 x Q ^ O O T s ) ,  61 .12  (d, inosito l ring  C ), 

67 .7 4  (d , inosito l rin g  C ), 71.21 (t, 2 x C H ^ t U O C H ^ ,  7 2 .9 0  (d, 2 in o sito l rin g  C ), 

73 .38  (d, 2 in o sito l ring  C ), 103.24 (d, 0 3C H ), 113.75 (d, 2 x C H 2C6H 4 0 C H 3), 129.27 

(d, 2 x C H 2C6H 4 0 C H 3), 129.53 (s, 2 x C H 2C6H 4 0 C H 3), 159.29 (s, 2 x C -O C H 3)

M S: m/z (+ ve ion  F A B , rel in tensity ) 431 [(M + H )+, 12% ], 309  [ (M -C 7H 6O C H 3)+, 

15% ], 121 [ (C 7H 6O C H 3)+, 100% ].

Anal C a lcd  fo r C 23H 260 8 (430 .45); C , 64 .18; H  6 .09 , F o u n d  C , 63 .9 ; H , 6 .05

2,4,6/3,5-Pentahydroxy-3,5-di-O-/j-methoxybenzyl-2,4,6-0-methyIidene- 
cyclohexanone (29)

D ry  d ich lo ro m eth an e  (40m L ) w as p laced  in to  a  2 5 0 m L  flask  u n d er an a tm o sp h ere  o f  N 2. 

A  so lu tio n  o f  oxaly l ch lo rid e  in dry  d ich lo ro m eth an e  (1 2 .8 m L  o f  a  2M  so lu tio n , 

2 5 .6 m m o l) w as in jec ted , and  the fla sk  w as co o led  to  -6 0 ° C  u sin g  a  ch lo ro fo rm /so lid  

C 0 2 bath . A n hydrous D M S O  (3 .6m L , 51m m ol) d isso lv ed  in  dry  d ich lo ro m eth an e  

(5m L ) w as ad d ed  d ro p w ise  o v er 5 m in  {care! rapid evolution of gas) an d  s tirring  

co n tin u ed  fo r 5m in . A  so lu tion  o f  28 (lO.Og, 2 3 .2m m ol) in d ry  d ich lo ro m eth an e  (30m L ) 

w as ad d ed  d ro p w ise  o v er 5m in  and  s tirring  co n tin u ed  fo r an  ad d itio n al 2 0m in , 

m ain ta in in g  a  tem p era tu re  o f  - 5 5  to  -6 0 ° C . D ry  trie th y lam in e  (15m L ) w as added  

d ro p w ise  o v er 2 m in  an d  th e  reaction  w as stirred  fo r a  fu rth e r 5m in  b efo re  a llo w in g  it to  

w arm  to  rt. T h e  m ix tu re  w as stirred  w ith  w a te r (lOOm L) fo r lO m in, an d  then  

d ich lo ro m eth an e  (200m L ) w as added. T h e  o rgan ic  layer w as separated , an d  the  aq ueous 

layer re -ex trac ted  w ith  a  fu rth e r 2 00m L  o f  d ich lo ro m eth an e . T h e  co m b in ed  o rgan ic
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layers w ere  then  w ash ed  successively  w ith , sat. N aC l, 1% HC1, w ater, 10%NaHCC>3, 

an d  w a te r (2 0 0 m L  o f  each), d ried  (M gS 0 4 ), and  ev ap o ra ted  to  g ive  a  w h ite  so lid  

co n sis tin g  o f  a  m ix tu re  o f  the  k e to n e  29 and  its hydra ted  gem-d io l 29a. T h e  m ix tu re  w as 

d isso lv ed  in  to lu en e  (300m L ) and  re flu x ed  w ith  azeo tro p ic  rem oval o f  w a te r in  a  D ean  

an d  S ta rk  apparatus fo r 3 h. T he  to luene w as rem o v ed  by  ev ap o ra tio n  in vacuo and  the 

re sid u e  rec ry sta llised  fro m  ethyl aceta te /hexane to  g ive  the  k e to n e  29 (9 .14g , 21 .3 m m o l, 

92% ).

M p: 125 - 126°C  (from  ethy l aceta te /hexane).

IR : Vc=o 1 7 6 0 cm '1

‘H  N M R  (CDCI3, 2 7 0  M H z) 5 3 .7 8  (6  H , s, 2 x C 6H 4O C tf3), 4 .3 9  (2  H , dd , J  =  2 .7  H z,

1.0 H z, 2 in o sito l ring  C -H ), 4 .47  - 4 .56  (7 H , m , 3 in o sito l rin g  C -H  an d  2 x 

C /72C 6H 4O C H 3), 5 .63 (1 H , s, O3CH), 6.81 (4 H , d, J = 8 .2 H z, 2 x CaH*O C H 3), 7 .1 6  (4 

H , d, J =  8 .4  H z, 2 x C e /^ O C H s)

13C  N M R  (C D C I3, 67 .8  M H z) 5 5 5 .2 2  (q, 2  x C 6H 4O C H 3), 6 8 .8 8  (d , C -4), 71 .18  (t, 2 x 

C H 2C 6H 4O C H 3), 7 6 .37  (d, 2 inosito l ring  C ), 77 .97  (d, 2 in o sito l rin g  C ), 102.64 (d, 

0 3C H ), 113.85 (d, 2  x C H 2C6H 4O C H 3), 128.90 (s, 2  x C H 2C 6H 4O C H 3), 129.50 (d, 2  x 

C H 2C6H 4O C H 3), 159.47 (s, 2  x C -O C H 3), 199.23 (s, C = 0 ).

M S: m/z (+ ve ion F A B , rel in tensity ) 447  [(M + H 20 + H )+, 0 .3 % ], 429  [(M + H )+, 1 .2% ], 

121  [ (C 7H 6O C H 3)+, 1 0 0 %].

M S: m/z ( - v e  ion F A B , re l in tensity ) 580  [(M + N B A -H ) ', 7 5 % ], 427  [ ( M - H ) \  30% ], 

322  (80), 303 (100), 287  (60% ).

Anal. C a lcd  fo r C 23H 24O 8 (428 .44); C , 64 .48; H  5 .65 , F o u n d  C , 64 .6 ; H , 5 .66

2-C-Hydroxy-4,6-di-(9-/?-methoxybenzyl-l,3,5-0-methylidene-myo-inositol (gem- 
diol, 29a)

T h e  k e to n e  29 (400m g, 0 .92 4 m m o l) w as d isso lv ed  in d ioxan  (4m L ) an d  w a te r (0 .4m L ) 

w as added . T he  so lu tio n  w as left a t ro o m  tem p era tu re  fo r 3 days an d  then  w a te r w as 

ad d ed  d ro p w ise  un til crysta ls began  to  appear. A fte r an o th er day  at ro o m  tem p era tu re  

th e  c rysta ls  w ere  filte red  off, and  w ere found  to  co n sis t o f  p u re  gem-d io l 29a (315m g, 

0 .7 0 6 m m o l, 76% ).

M p: 1 2 9 -1 3 1°C. (from  ethy l aceta te /hexane).

‘H  N M R  (C D C I3, 2 7 0  M H z) 5 3 .7 9  (6 H , s, C6 lUOCH3), 3 .82  (1H , s, D 20  ex , C -2 -O H ),

4 .13  (2H , b r  d, 7 =  1.5 H z, C - l-H  an d  C -3-H ), 4.41 - 4 .6 0  (7 H , m , 2 x CH2A r , C -4 -H , 

C -6 -H  an d  C -5-H ), 4 .97  (1 H , s, D 20  ex , C -2 -O H ), 5 .50  (1 H , s, 0 3C tf)  6 .8 0  (4  H , d , J =

8 .6  H z, C 6t f 4O C H 3), 7 .12  (4  H , d, J =  8 .6  H z, C ^ O C H s ) .
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13C  N M R  (C D C I3, 6 8  M H z) <5 55.25 (q, 2 x C 6H 5O C H 3), 67.51 (d , C -5 ), 7 1 .4 2  (t, 2 x 

C H 2C 6H 4O C H 3), 73 .32  (d, 2 x inosito l ring  C ), 7 3 .56  (d, 2 x in o sito l rin g  C ), 88 .67  (s, 

C (O H )2), 102 .30  (d, O 3C H ), 113.95 (d, C -3 and  C -5 o f  p -m eth o x y p h en y l rings), 128.74 

(s, C - l  o f  p -m eth o x y p h en y l rings), 129.76 (d, C -2  an d  C -6  o f  p -m eth o x y p h en y l rings), 

159.58 (s, C -4  o f  p -m eth o x y p h en y l rings).

M S : m/z (+ v e  ion F A B , rel in tensity ) 4 4 7  [(M + H )+, 2% ], 121 [(C 7H 6O C H 3)+, 100% ] 

Anal. C a lcd  fo r C 23H 26O 9 (446 .45); C , 61 .88; H  5 .87 , F o u n d  C , 61 .8 ; H , 5 .89

2-C-Hydroxy-4,6-di-0 -/7-methoxybenzyI-2-0 -methyl-l,3,5-0 -methylidene-7nyo- 
inositol (hemiketal 29b)

A  so lu tio n  o f  the ketone 29 in m eth an o l/T H F  u n d er N 2 w as k ep t a t ro o m  tem p era tu re  fo r 

on e  w eek . T h e  fo rm ed  crysta ls w ere rem o v ed  by  filtra tio n  an d  fo u n d  to  be  the  h em ik eta l 

29b. (M e th o d  n o t op tim ised ).

M p: 134-146°C . (from  ethy l aceta te /hexane).

lH N M R  (C D C L 3, 2 7 0  M H z) 5 3 .4 8  (3 H , s, O C H 3), 3 .79  (6  H , s, 2 x C 6H 4O C tf3), 4 .2 6 - 

4 .2 9  (2 H , m , C - l-H  and  C -3-H ), 4 .47  (2 H , dd , J =  3 .7  H z, 3 .7 H z, C -4 -H  an d  C -6 -H ), 

4 .4 8 -4 .5 8  (1 H , m , C -5-H ), 4 .54 , 4 .56  (4  H , A B q, JAB =  10.4 H z, 2 x O C H 2A r), 4 .9 2  (1

H , s, D 20  ex , C -2 -O H ), 5 .52  (1 H , s, 0 3CH) 6 .7 6 -6 .8 4  (4 H , m , C effcO C H s), 7 .10 -7 .18  

(4 H , m , C 6/ / 4O C H 3).
13C  N M R  (C D C I3, 100 M H z) 8  48 .28  (s, O C H 3), 55.23 (q, 2 x C 6H 5O C H 3), 67 .72 , 

70 .08 , 7 3 .5 7  (3 d, 5 inosito l ring  C H ), 71 .38  (t, 2 x C H 2C 6H 4O C H 3), 90.91 (s, C -2), 

102.30 (d, O 3C H ), 113.88 (d, C -3 and  C -5 o f  p -m eth o x y p h en y l rings), 128.71 (s, C - l  o f  

p -m e th o x y p h en y l rings), 129.83 (d, C -2  and  C -6  o f  p -m eth o x y p h en y l rings), 159.54 (s, 

C -4  o f  p -m eth o x y p h en y l rings).

M S: m/z (+ v e  ion F A B , re l in tensity ) 461 [(M + H )+, 2% ], 121 [(C 7H 6O C H 3)+, 100% ] 

Anal. C a lcd  fo r C 24H 2 8 0 9 (446 .45); C , 62.6; H  6 .13 , F o u n d  C , 62 .5 ; H , 6 .03

2,4-Di-0-/?-methoxybenzyl-6-methylidene-l,3,5-0-methylidene-cyclohexane- 
I,3,5/2,4-pentol (30)

M eth y ltrip h en y lp h o sp h o n iu m  b ro m id e  (6 .13g , 17 .2m m ol), p rev io u sly  d ried  in vacuo at 

70 °C , w as su sp en d ed  in  dry  T H F  (20m L ) u n d er N 2 at 0°C . P o ta ss iu m  tert-b u to x id e  

(1 6 .3 m L  o f  a  1M  so lu tion  in  T H F, 16 .3m m ol) w as added . T he  re su ltin g  yellow  

su sp en sio n  w as a llo w ed  to  reach  rt and  w as then  stirred  a t rt fo r lO m in. A  so lu tio n  o f  

k e to n e  29 (3 .50g . 8 .1 7 m m o l) in d ry  T H F  (30m L ) w as added . [A t th is stage, a  31P  N M R  

sp ec tru m  o f  a  sam p le  taken  fro m  the  yellow  su spension  sh o w ed  the  p resen ce  o f  an
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o x ap h o sp h e tan e  in te rm ed ia te  (<5p -6 8 .9 p p m ). T h is signal co u ld  still be  o b serv ed  in the 

N M R  sam p le  a fte r several days at 4°C ]. T h e  m ix tu re  w as re flu x ed  fo r 2 h , afte r w hich  

its co lo u r h ad  d ark en ed  to  o range and  T L C  (ethyl ace ta te /h ex an e  1:1) sh o w ed  the 

reac tio n  to  b e  co m p le te , w ith  the p ro d u c t at Rf 0 .52 . T h e  so lv en t w as rem o v ed  by 

ev ap o ra tio n  in vacuo and  the  residue w as taken  up  in  e th e r (lOOm L), the  so lu tion  

w ash ed  w ith  b rin e  (lOOm L), d ried  (MgSCU) and  ev ap o ra ted  to  g ive  a  c lea r b row n  oil. 

P u rifica tio n  b y  flash  ch ro m ato g rap h y  (ethyl ace ta te /h ex an e  1:2) gave the  a lkene 30  as a 

w h ite  c ry s ta llin e  so lid  (3 .17g, 7 .42m m ol, 91% ).

M p: 9 5 -9 7 °C  (fro m  ethano l).

’H  N M R  (CD C13, 2 7 0  M H z) 8  3 .80  (6  H , s, 2 x  O C H 3), 4 .23  (2  H , d d , J  =  3 .6  H z, 3 .6  

H z, C -2 -H , C -4 -H ), 4 .31 (1 H , tt, J =  3 .6  H z, 1.7 H z, C -3-H ), 4 .4 0  (2  H , dd , J = 3 .6  H z,

1.7 H z, C - l -H ,  C -5 -H  ), 4 .54 , 4 .58  (4  H , A B q, J  =  11.8 H z, 2 x O C f tC s R tO M e ) ,  5 .25 

(2  H , s, =CH2), 5 .57  (1 H , s, 0 3C H ), 6 .82 -6 .87  (4  H , m  2 x C ^ O M e ) ,  7 .2 2 -7 .2 6  (4  H , 

m , 2  x C fcf^O M e).

13C  N M R  (CD C13, 67 .8  M H z) 8  55 .19  (q, 2 x O C H 3), 68 .9 4 , 73 .5 5 , 7 4 .2 6  (3 d , 5 x 

inosito l rin g  C ), 71 .05  (t, 0 C H 2C 6H 4 0 M e), 103.73 (d, 0 3C H ), 113.75, 129.43 (2  d, 2  x 

C eH tO M e), 114.27 (t, C = C H 2), 129.82 (s, C =C H 2), 137.15 (s, 2  x C6H 4O M e), 159.32 

(s, 2  x CeFUOM e).

M S: m/z (+ ve  ion  F A B , rel in tensity ) 427  [(M + H )+, 1% ], 305[ (M -C 7H 6O C H 3)+, 6 % ], 

121  [ (C 7H 6O C H 3)+, 100% ].

Anal. C alcd  fo r C 24H 2 6 0 7 (426 .47); C , 67 .59; H  6 .15 , F o u n d  C , 67 .3 ; H , 6 .15.

( l ,3 ,5 /2 ,4 ,6 )-6 -H y d ro x y m e th y l- l ,3 ,5 -O -m e th y I id e n e -2 ,4 -d i-0 - /? -m e th o x y b e n z y l-  
c y c lo h e x a n e - l ,2 ,3 ,4 ,5 -p e n to l (31)

A  d ry  2 5 0 m L  th ree-n eck ed  flask  w as charged  w ith  the  a lk en e  3 0  (6 .0g , 14 .0m m ol), 

p rev io u sly  d ried  a t 60°C  in vacuo. 9 -B B N -H  (60 m L  o f  a  0 .5M  so lu tio n  in  T H F , 

3 0 m m o l) w as added  u n d er an a tm osphere  o f  N 2 at ro o m  tem pera tu re . T h e  tem p era tu re  

w as in creased  to  50°C  and  the  m ix tu re  w as stirred  u n d er N 2 fo r  2h. T h e  m ix tu re  w as 

a llo w ed  to  co o l to  ro o m  tem p era tu re  and  then  fu rth e r co o led  to  0°C  in  an  ice  bath . 

E th an o l (20m L ), 6 M  N aO H  (5m L ) and  30%  H 20 2 (lO m L ) w ere  ad d ed  d ro p w ise  (care! 

exothermic reaction with rapid evolution of gas), and  th en  the tem p era tu re  w as 

in creased  to  50°C . A fte r s tirring  a t 50°C  fo r 30m in , the  m ix tu re  w as co o led  to  ro o m  

tem p era tu re  an d  the  aqueous layer w as sa tu ra ted  w ith  K 2C Q 3. T h e  o rgan ic  layer w as
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rem o v ed , d ried  (M g S 0 4 ) and  ev ap o ra ted  in vacuo to  g ive  a  co lo u rle ss  o il w hich  w as 

p u rified  by  co lu m n  ch ro m ato g rap h y  g iv ing  31 as a  w h ite  so lid  (6 .0 4 g ,1 3 .6 m m o l, 97% ). 

M p: 8 1 -8 2 °C  (from  ethano l o r e thy l aceta te /hexane)

‘H  N M R  (C D C I3, 27 0  M H z) S 1.58 (1 H, t, J  =  5 .9  H z, D 20  ex ., O H ), 2 .97  (1 H , b r  t, J 

=  8.2 H z, C -6 -H ), 3 .80  (6  H , s, 2 x O C H 3), 4 .08  (2  H , dd , J  =  8 .2  H z, 5 .9  H z, D 20  ex 

g ives d , J = 8 .2  H z, C H 2O H ), 4 .27  (2  H , b r  s, C - l-H , C -5 -H ), 4 .3 6  (2  H , b r  s, C -2 -H , C - 

4 -H ), 4 .4 9 ,4 .5 9  (4  H , A B q, J  =  10.8 H z, 2 x C / / 2C 6H 4O M e), 4 .53  (1 H , m , C -3 -H ), 5 .58 

(1 H , s, O ,CH), 6 .7 9 -6 .8 2  (4  H , m , 2 x C ^ O M e ) ,  7 .1 5 -7 .2 6  (4  H , m , 2 x C ^ O M e ) .  

13C  N M R  (CDC13, 67 .8  M H z) <542.88 (d, C -6 ), 55 .17  (q, 2 x O C H 3), 59 .89  (t, C H 2O H ), 

6 8 .5 0  (d, C -3 ), 69 .0 2 , 7 3 .0 6  (2  d, C - l ,2 ,4 ,5), 71.41 (t, 2 x C H 2C 6H 4 0 M e), 103 .84  (d, 

O 3C H ), 113.78 (d , 2 x C sH tO M e), 129.29 (d , 2 x C6H 4O M e), 129.63 (s, 2 x C6H 4O M e), 

159.26 (s, 2  x C 6t l ,O M e ) .

M S: m/z (+ v e  ion  F A B , re l in tensity ) 445  [(M + H )+, 1.2% ], 323 [ (M -C 7H 6O C H 3)+, 

3 .1 % ], 121 [(C 7H 6O C H 3)+, 100% ].

M S: m/z ( - v e  ion F A B , rel in tensity) 597 [(M + N B A )', 100% ], 323 [ (M -C 7 H 6 O C H 3 ) ',  

90% ].

Anal C alcd  fo r C 24H 28O 8 (444 .48); C , 64 .85; H  6 .35 , F o u n d  C , 65 .1 ; H , 6 .47

(l,3,5/2,4,6)-6-Hydroxymethyl -2,4-di-0-/?-methoxybenzyl-cycIohexane-l,2,3,4,5- 
pentol (32)

A lco h o l 31 (2 .32g , 5. 22m m ol) w as d isso lv ed  in m eth an o l (lOOm L) and  hea ted  to  50°C . 

1M HC1 (lO m L ) w as added  and  the m ix tu re  s tirred  a t 5 0°C  fo r 30m in . E x cess 

co n cen tra ted  am m o n ia  so lu tio n  w as added  and  the  m ix tu re  w as a llo w ed  to  cool. S tirrin g  

w as co n tin u ed  at room  tem p era tu re  fo r a fu rth e r 30m in , an d  the  so lv en ts  w ere  rem o v ed  

by  ev ap o ra tio n  in vacuo. T he  resid u e  w as ex trac ted  w ith  ho t e thy l aceta te  ( 2 x lOOmL) 

and  the  co m b in ed  ex trac ts  ev ap o ra ted  in vacuo to  g ive a  w h ite  so lid  w h ich  w as p u rified  

by  flash  ch ro m ato g rap h y  (C H C U /M eO H  100:0 - 50 :50 ) g iv ing  te tro l 32 (1 .98g , 

4 .5 6 m m o l, 87% ).

M p: 136-137°C  (from  ethy l aceta te /hexane)

'H  N M R  (dfi-D M SO , 4 0 0  M H z) S 1.25 (1 H , tt, J  =  10.7 H z, 2.1 H z, C -6 -H ), 3 .09  (2  H , 

dd , J  =  9 .3  H z, 9 .3  H z, C -2 -H , C -4-H ), 3 .20  (1 H , dt, J  =  9 .2  H z, 5 .4  H z, D 20  ex  g ives 

t, J  =  9 .2  H z, C -3 -H ), 3 .29  (2  H , ddd , J = 10.7 H z, 9 .3  H z, 5 .9  H z, D 20  ex  g ives dd , J  =

10.7 H z, 9 .3  H z, C - l-H , C -5 -H ), 3 .69  (2  H , dd , J  =  5 .4  H z, 2.1 H z, D 20  ex  g ives d , J  =  

2.1 H z, C H 2O H ), 3 .73 (6  H , s, 2 x O C H 3), 4 .27  (1 H , t, J  =  5 .4  H z, D 2Q  ex , C H 2O fl) ,
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4.71 (4  H , s, 2 x C H 2C 6H 4O C H 3), 4 .74  (2 H , d, /  =  5 .9  H z, D 20  ex , C - l -0 7 / ,  C-5-O T/),

4 .9 2  (1 H , d, J  =  5 .4  H z, D 20  ex , C -3 -0 T /), 6 .83 -6 .87  (4  H , m , 2 x C ^ O C H , ) ,  7 .29-

7 .3 6  (4  H , m , 2  x C 6T/4O C H 3)

13C  N M R  (de-D M S O , 67.8 M H z) 5  48 .13  (d, C -6 ), 5 5 .4 9  (q, 2  x O C H 3), 5 7 .5 4  (t, 

C H 2O H ), 6 9 .0 0  (d, 2 inosito l rin g  C ), 73 .87  (d, C -3 ), 73 .88  (t, 2 x  C H 2C 6H 4 0 C H 3), 

8 5 .9 0  (d, 2  in o sito l ring  C ), 113.78 (d, 2 x C 6H 4O C H 3), 129.80 (d, 2  x  C 6H 4O C H 3),

132.07 (s, 2 x  C 6H 4 0 C H 3), 158.91 (s, 2 x C 6R 1O C H 3)

M S : m/z (+ v e  ion  F A B , rel in tensity ) 433  [ (M -H )+, 2 .0% ], 313  [ (M -C 7H 6O C H 3)+, 

7 .0 % ], 121 [(C 7H 6O C H 3)+, 100% ].

M S : m/z ( - v e  ion FA B , rel in tensity ) 587 [(M + N B A )', 100% ], 433  [ ( M - H ) \  100% ], 313 

[(M -C 7H 6O C H 3) \  20% ]

Anal. C a lcd  fo r C 23H 30O 8 (434 .49); C , 63 .58; H  6 .96 , F o u n d  C , 63 .4 ; H , 6 .94

DL-(l,3,5/2,4,6)-l,7-O-Benzylidene-6-hydroxymethyl-2,4-di-0-/?-methoxybenzyI- 
cyclohexane-l,2,3,4,5-pentol (33)

T h e  te tro l 32 (2 .00g , 4 .6 0 m m o l) w as d isso lv ed  in d ry  D M F  (lO m L ) in a  lOOmL round  

b o tto m ed  flask . A  ca ta ly tic  am o u n t o f  to lu en e-p -su lp h o n ic  ac id  (50m g) w as added , 

fo llo w ed  by benzald eh y d e  d im ethy l acetal (0 .80m L , 5 .33m m ol). T h e  flask  w as fitted  

w ith  a  2 5 0 m m  air co n d en ser co n n ected  to  a  filte r p u m p  an d  the  so lu tio n  w as s tirred  at 

65 - 7 5°C  u n d er red u ced  p ressu re  fo r lh ,  afte r w hich  T L C  (ethyl aceta te) sh o w ed  the 

reac tio n  to  be com ple te . T he  so lu tion  w as co o led  to  ro o m  tem p era tu re  an d  trie th y lam in e  

( lm L )  added . A fte r stirring  fo r 30m in  at ro o m  tem p era tu re  the  so lv en ts  w ere  rem o v ed  

by  ev ap o ra tio n  in vacuo. T h e  resid u e  w as taken  up  in  d ich lo ro m eth an e  (lOOm L), 

w ash ed  w ith  b rin e  (50m L ), d ried  (MgSCU) and  ev ap o ra ted  in vacuo to  g ive  a  so lid  

w h ich  w as p u rified  by  co lum n  ch rom atography  (ethyl ace ta te /ch lo ro fo rm  1:1) g iv in g  the 

d io l 33 as a  w h ite  so lid  (2 .24g , 4 .29m m ol, 93% ).

M p: 158 - 160°C  (from  ethy l aceta te /hexane).

lU N M R  (C D C I3, 2 7 0  M H z) S 1.92 (1 H , dddd , J  =  11.3 H z, 11.3 H z, 10.1 H z, 4 .4  H z, 

C -6 -H ), 2 .36  (1 H , b r  s, D 20  ex , O H ), 2 .69  (1 H , b r s, D 20  ex , O H ), 3 .22  (1 H , b r dd, 

D 20  ex  g ives dd, J = 11.0 H z, 8 .8  H z, C -3-H ), 3 .33 (1 H , dd , J =  8 .8  H z, 8 .6  H z , C -4- 

H ), 3 .5 0 -3 .6 6  (3 H , m , C - l-H , C -2-H , C -3-H ), 3 .68 (1 H , dd , 7 = 1 1 .1  H z, 11.1 H z, C -7- 

Hax ), 3 .78  (6  H , b r s, 2 x O C H 3), 4 .49  (1 H , dd , 7  =  11.2 H z, 4 .4  H z, C-7-Heq), 4 .61 ,

4 .9 7  (2 H , A B q, 7  =  11.2 H z, C / / 2C 6H 4 0 C H 3), 4 .63 , 4 .9 6  (2 H , A B q, 7  =  11.0 H z,
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C / / 2C 6H 4O C H 3), 5 .53 (1 H , s, CHPh), 6 .84 -6 .92  (4 H , m , C ^ O C H s ) ,  7 .2 4 -7 .3 2  (4  H , 

m , C 6H 4O C H 3), 7 .3 4 -7 .5 4  (5 H , m , Crfs).

13C  N M R  (C D C I3, 67 .8  M H z) S 39.51 (d, C -6 ), 55 .27  (q, 2 x O C H 3), 69 .39  (t, C-l), 

69 .41 , 74 .6 8 , 80 .03 , 82 .03 , 84.33 (5 d, inosito l ring  Q ,  7 4 .62  (t, C H 2C 6H 4O C H 3), 74 .75  

(t, C H 2C 6H 4O C H 3), 101.10 (d, C H Ph), 113.97, 114.09 (2  d, C6H 4O C H 3), 125.98, 

128.27, 128.87, 129.74, 129.87 (5 d, C6H 4O C H 3 and  C6H 5), 130.47, 130.62 (2  s, 

C 6H 4O C H 3), 138.06 (s, C6H 5), 159.42, 159.45 (2  s, C6H 4O C H 3).

M S : m/z (+ ve  ion F A B , rel in tensity ) 523 [(M + H )+, 1.0% ], 522 [ M +, 2 .0% ], 401 [ (M -  

C 7H 6O C H 3)+, 2 .0% ], 121  [(C 7H 6O C H 3)+, 1 0 0 % ].

M S: m/z ( - v e  ion  F A B , rel in tensity ) 1043 [(2 M -H )\ 30% ], 8 28(10% ), 688(10% ), 675 

[(M + N B A )', 100% ], 521 [ ( M - H ) \  100% ], 401 [ (M -C 7H 6O C H 3)-, 40% ]

Anal C a lcd  fo r C 3oH34 0 8 (522 .60); C , 68 .95; H  6 .56 , F o u n d  C , 6 8 .8 ; H , 6 .53.

DL-(l,3,5/2,4,6)-l,3-Di-0-benzyl-5,7-O-benzylidene-6-hydroxymethyl-2,4-di-0-/?- 
methoxybenzyl-cyclohexane-l,2,3,4,5-pentol (34)

T h e  d io l 33 (l.OOg, 1.91 m m ol) w as d isso lv ed  in  d ry  D M F  and  so d iu m  hydride  (250m g 

o f  a  60%  d isp ers io n  in oil, 6 .25m m ol) w as added . T h e  su sp en sio n  w as s tirred  fo r 20m in  

at ro o m  tem p era tu re  and  then  benzyl b ro m id e  (0 .50m L , 4 .6 0 m m o l) w as added , and  

s tirrin g  w as co n tin u ed  fo r 2h , afte r w h ich  T L C  (ethyl ace ta te /h ex an e  1:1) sh o w ed  the 

reac tio n  to  b e  com plete . E xcess N aH  w as carefu lly  d estroyed  by  d ro p w ise  ad d itio n  o f  

w a te r and  th e  so lven ts  w ere  rem o v ed  by ev ap o ra tio n  in vacuo. T h e  resid u e  (w h ich  h ad  a 

very  low  so lu b ility  in e ther) w as taken  u p  in d ich lo ro m eth an e  (50m L ), w ash ed  w ith  

b rin e  (2 x 50m L ), d ried  (MgSCU) and  ev ap o ra ted  in vacuo to  g ive  a  w h ite  so lid  w h ich  

w as w ash ed  w ith  p en tan e  and  then  recry sta llised  from  h o t e th an o l y ie ld ing  34 (1 .26g ,

I.7 9 m m o l, 94% ) as co lo u rle ss  crysta ls.

M p  135 - 137°C  (from  e thano l).

‘H  N M R  (C D C I3, 4 0 0  M H z) 8  1.98 (1 H , dddd , J  =  11.2 H z, 11.2 H z, 10.8 H z, 4 .4  H z, 

C -6 -H ), 3.21 (1 H , dd , J  =  10.8 H z, 9 .3 H z, C - l - H ) ,  3.45 - 3 .73  (5 H , m , C -2 -H , C -3 -H , 

C -4 -H , C -5 -H , C - 7 -H ax), 3 .76  (3 H , s, O C H 3), 3 .78  (3 H , s, O C H 3), 4 .4 2  (1 H , dd , J =

I I .2  H z , 4 .4  H z, C-7-Heq), 4 .51 -4 .9 7  (8 H , m , 4  x CH2Ar), 5 .48  (1 H , s, C H P h ), 6 .77  -

6.81 (4 H , m , C6ff4O C H 3), 7 .2 0  - 7 .5 0  (19 H , m , CJJ^OCH, an d  Cifls).

13C  N M R  (CDC13, 100 M H z) 8 39 .69  (d , C -6 ), 55.21 (q, 2 x O C H 3), 69.31 (t, 

C H C H 2O C H P h ), 74 .9 3 , 75 .2 0 , 75 .62 , 7 6 .0 6  (4  t, O C H 2A r), 7 7 .9 4 , 80 .03 , 82 .77 , 83 .19 , 

8 5 .7 0  (5 d , inosito l ring  C ), 100.95 (d , C H Ph), 113.73, 113 .84  (2 d, C sfttO C H -,),
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125.91, 127.60, 127.78, 127.96, 128.05, 128.18, 128.38, 128.51, 128.77, 129.59, 129.83 

(11 d, C 6H 4O C H 3 and  C6H 5), 130.58, 130.74 (2  s, C6H 4O C H 3), 138.00, 138.04, 138.64 

(3 s, C 6H 5), 159.20, 159.23 (2  s, C e ^ O C H ^ .

M S: m/z (+ ve ion  F A B , rel in tensity ) 703 [(M + H )+, 0 .5 % ], 70 2  [ M +, 0 .7 % ], 611 [ (M -  

C 7H 7)+, 0 .3% ], 581 [(M -C 7H 6O C H 3)+, 3 .5% ], 121 [(C 7H 6O C H 3)+, 100% ], 91 [(C 7H 7)+, 

22%].

M S: m/z ( - v e  ion  F A B , rel in tensity ) 855 [(M + N B A )', 100% ], 611 [ (M -C 7H 7)', 40% ], 

581 [ (M -C 7H 6O C H 3) \  20% ].

Anal. C a lcd  fo r C 44H 460 8 (702 .84); C , 75 .19 ; H  6 .60 , F o u n d  C , 75 .2 ; H , 6 .62

D L -( l ,3 ,5 /2 ,4 ,6 ) - l ,3 -D i-0 -b e n z y l-6 -h y d ro x y m e th y l-2 ,4 -d i-O -/? -m e th o x y b e n z y I-  
c y c lo h e x a n e - l ,2 ,3 ,4 ,5 -p e n to l (35)

C o m p o u n d  3 4  (l.OOg, 1 .42m m ol) w as d isso lv ed  in a  m ix tu re  o f  T H F  (25m L ) and  

m eth an o l (25m L ). 1M HC1 (5m L ) w as added  and  the so lu tio n  w as re flu x ed  fo r 30m in , 

a fte r w h ich  T L C  (ethyl acetate) show ed  th a t no s tarting  m ateria l rem ained . E x cess 

N a H C 0 3 ( lg )  w as added  and  the m ix tu re  w as a llow ed  to  coo l to  rt w ith  s tirring  befo re  

the  so lven ts  w ere rem o v ed  by  evapora tion  in vacuo. T h e  re sid u e  w as taken  up  in 

d ich lo ro m eth an e  (lOOm L), w ashed  w ith  w a te r (50m L ) and  b rine  (50m L ), d ried  

(M g S 0 4) and  ev ap o ra ted  in vacuo to  g ive  a  so lid  w h ich  w as p u rified  by  flash  

ch ro m ato g rap h y  y ie ld ing  the d io l 35  (720m g, 1 .17m m ol, 82% ).

M p  1 1 6 - 1 17.5°C  (from  ethano l).

]H  N M R  (CDC13, 2 7 0  M H z) 8 1.65 (1 H , dddd , J =  9.3 H z, 9 .3  H z, 4 .5  H z, 3 .0  H z, C -6 - 

H ), 2 .27  (1 H , b r  dd, J =  5.1 H z, 5.1 H z, D 20  ex , C -7 -O H ), 2 .77  ( 1 H , d, J = 1.5 H z, 

D 20  ex , C -5 -0 H), 3 .34  - 3.51 (4 H , m , 4  x inosito l ring  H ), 3 .63 (1 H , dd , J =  9 .3  H z,

9.3 H z, inosito l rin g  H ), 3.73 (1 H , b r m , D 20  ex  g ives dd, /  =  11.2 H z, 4 .5  H z, C -7-H ), 

3 .89  (1 H , b r m , D 20  ex  g ives dd, J =  11.2 H z, 3 .0  H z, C -7 -H ), 3 .77 (3 H , s, O C H 3 ),

3 .78  (3 H , s, O C H 3), 4 .59  - 4 .97  (8  H , m , 4  x C H 2A r), 6 .79  - 6 .87  (4 H , m , C 6/ / 4O C H 3), 

7 .18  - 7 .23  (4 H , m , C 6# 4O C H 3), 7 .29  - 7 .38  (10  H , m , 2 x C ^ s ) .

13C  N M R  (C D C I3, 67 .8  M H z) S 4 6 .0 7  (d , C -6 ), 5 5 .2 0  (q, 2  x O C H 3), 60 .22  (t, C-l), 

7 0 .3 7 , 77 .5 2 , 83 .20 , 84 .80 , 85 .95  (5 d, inosito l rin g  C ), 75 .1 0 , 7 5 .2 0 , 7 5 .4 3 , 7 5 .5 7  (4  t, 

C H 2A r), 113.80, 114.03 (2  d, C eftiO C H j), 127.63, 127.84, 127.99, 128.41, 129.37, 

129.53 (6  d , C 6H 5 an d  C6H 4 0 C H 3), 130.49, 130 .60  (2  s, C6H 4O C H 3), 138.14, 138.45 (2 

s, C 6H 5), 159.14, 159.37 (2  s, C eU tO C H j).
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M S : m/z (+ ve ion  F A B , rel in tensity ) 615 [(M + H )+, 0 .5% ], 614  [ M +, 0 .4% ], 523 [ (M -  

C 7H 7)+, 0 .2% ], 493  [ (M -C 7H 6O C H 3)+, 2 .8% ], 121  [(C 7H 6O C H 3)+, 1 0 0 % ], 91 [(C 7H 7)+, 

20%].

M S: m/z ( - v e  ion  F A B , rel in tensity ) 767  [(M + N B A )', 60% ], 613 [ ( M - H ) \  100% ), 493 

[ (M -C 7H 6O C H 3)', 35% ].

Anal C alcd  fo r C 37H 420 8 (614 .74); C , 72 .29 ; H  6 .89 , F o u n d  C , 72 .3 ; H , 6 .8 8 .

C y c lic  P h o s p h o ry la t io n

B enzy loxy-b is(A ,iV -d iisopropy lam ino)phosph ine202 (285m g, 0 .8 4 m m o l) w as p laced  in a 

d ry  ro u n d -b o tto m ed  flask  and  d ich lo ro m eth an e  (5m L ) w as added , fo llo w ed  by  1H- 

te tra zo le  (150m g, 2 .14m m ol). T h e  suspension  w as stirred  fo r lO m in an d  then  co o led  to 

0°C . T h e  d io l 35 (430m g, 0 .7 0 m m o l, p rev io u sly  d ried  in vacuo at 60°C ) w as ad d ed  and 

s tirrin g  w as co n tin u ed  at 0°C  fo r 2h. 31P  N M R  sp ec tro sco p y  now  sh o w ed  signals  a t <5p

125.0 and  130 .4ppm , co rresp o n d in g  to  the  tw o  cyclic  p h o sp h ite  trie s te r invertom ers. 

T h e  m ix tu re  w as co o led  to  -7 8 ° C  and  m -C P B A  (240m g, 1 .4m m ol) w as added . T he  

c lea r so lu tion  w as n o w  allow ed  to  w arm  to ro o m  tem p era tu re  and  then  d ilu ted  w ith  

e thy l aceta te  (50m L ), w ashed  w ith  10% N a2S 0 3, 1MHC1, sa tu ra ted  N a H C 0 3 an d  b rine  

(5 0 m L  o f  each), d ried  (M g S 0 4) and  ev ap o ra ted  in vacuo to  g ive  a  co lo u rle ss  oil. 

P u rifica tio n  by  flash  ch ro m ato g rap h y  (ethyl ace ta te /h ex an e  1:1) gav e  the  tw o  cyclic  

p h o sp h a te  trieste rs  36a, Rf 0 .30  (246m g, 0 .3 2 m m o l) and  36b, Rf 0 .18  (214m g, 

0 .2 8 m m o l) co rresp o n d in g  to  a  to tal y ie ld  o f  0 .6 0 m m o l (8 6 % fro m  35).

DL-(l,3,5/2,4,6)-3,5-Di-0-benzyI-6-hydroxymethyl-2,4-di-O-p-methoxybenzyl- 
cyclohexane-l,2,3,4,5-pentol l,7-(benzylphosphate) (Epimer 36a)

M p: 130 - 132°C  (fro m  ethyl aceta te /hexane).

IR : ( K B r d isk ) Vp=o 1 2 8 7 c m 1

‘H N M R  (CDC13, 270  M H z) 5 2 .1 9 ( 1  H , dddd , /  =  11.3 H z, 11.3 H z, 11.3 H z, 4 .5  H z, 

C -6 -H ), 3 .08 (1 H , dd, J =  11.2 H z, 9 .2  H z, C -5-H ), 3 .40  (1 H , dd , 9 .3 H z, 9 .3  H z, C -3- 

H ), 3 .63  (1 H , dd , J =  9 .4  H z, 9 .4  H z, C -2 -H  o r C -4-H ), 3 .66  (1 H , dd , J =  9 .4  H z, 9 .4  

H z, C -2 -H  o r C -4 -H ), 3 .76  (1 H , dd, J =  11.3 H z, 11.3 H z, C-7-Hax), 3 .768  (3 H , s, 

O C H 3), 3 .773  (3 H , s, O C H 3), 4 .0 4  (1 H , dd , y  =  11.2 H z, 9 .2  H z, C - l-H ) , 4.41 (1 H , 

d dd , J  =  24 .2  H z, 11.4 H z, 4 .5  H z, C-7-Heq), 4 .41 (1 H , d, J = 11.2 H z, p art o f  a  b ro ad  

A B  system , C / / 2A r), 4 .68  - 4 .93  (7 H , m , O C //2A r), 5 .06 , 5.11 (2 H , A B X , Jab  =11 .7
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H z, J Hp =  7 .7  H z, 7 .7  H z, P ( 0 ) 0 C / / 2C 6H 5), 6 .79  - 6 .83  (4 H , m , C 6# 4O C H 3), 7 .1 5  -

7 .3 6  (19  H , m , C ^ O C H ,  an d  C 6H 5).

13C  N M R  (C D C I3, 6 8  M H z) S 40 .28  (d, C -6 ), 5 5 .2 0  (q , 2 x O C H 3), 6 8 .9 3  (t, 

P ( 0 ) 0 C H 2A r), 7 0 .2 6  (t, C -7), 75 .02 , 75 .59 , 76.01 (3 t, 4  x C H 2A r), 76 .2 9 , 81 .2 2 , 82 .30 , 

82 .6 0 , 84 .93  (5  d, inosito l rin g  C ), 113.77, 113.83 (2  d , C 6H 4O C H 3), 127 .58 , 127.65, 

127.97, 128.13, 128.38, 128.56, 128.67, 128.72, 129.50, 129 .76  (10  d, C6H 4O C H 3 and  

C 6H 5), 130 .15 , 130 .24  (2  s, C6H 4O C H 3), 135.44 (s, P ( 0 ) 0 C H 2C 6H 5), 137 .30 , 138.25 (2  

s, C H O C H 2C 6H 5), 159.30 (s, C 6H 4O C H 3).

31P  N M R  (C D C I3, 162 M H z) -7 .4 9  (ddd , 7Hp =  24 .2  H z, 7 .7  H z, 7 .7  H z).

M S: m/z (+ v e  ion  F A B , re l in tensity ) 767  [(M + H )+, 1.2% ], 675  [ (M -C 7H 7)+, 1.2% ], 645 

[ (M -C 7H 6O C H 3)+, 1.4% ], 121 [(C 7H 6O C H 3)+, 100% ], 91 [(C 7H 7)+, 28% ].

M S : m/z ( - v e  ion  F A B , rel in tensity) 919  [(M + N B A )', 80% ], 765  [ ( M - H ) \  30% ), 675 

[ (M -C 7H 7) ',1 0 0 % ], 645 [ (M -C 7H 6O C H 3)', 30% ], 187 [C 7H 70 P 0 3H )', 80% ], 97 

[(H 2P 0 4) \  45% ].

Anal C a lcd  fo r G w H ^O io P  (766 .82); C , 68.92; H  6 .18 , F o u n d  C , 69 .1 ; H , 6 .11.

DL-(l,3,5/2,4,6)-3,5-Di-O-benzyI-6-hydroxymethyI-2,4-di-0-p-methoxybenzyI-
I,2,3,4,5-cycIohexanepentoI l,7-(benzylphosphate) (Epimer 36b)

M p  101 - 102 .5°C  (from  ethano l).

IR  ( K B r d isk ) Vp=o 1 2 6 6 cm '1

*H N M R  (CDC13, 27 0  M H z) 5 2 .1 7  (1 H , dddd , J =  11.2 H z, 11.2 H z, 11.2 H z, 4 .8  H z, 

C -6 -H ), 3 .18  (1 H , dd, J =  11.0 H z, 9 .0  H z, C -5-H ), 3 .44  (1 H , dd, 9 .0  H z, 9 .0  H z , C -3- 

H ), 3.51 (1 H , dd, J =  9.1 H z, 9.1 H z, C -2 -H  o r C -4-H ), 3 .60  (1 H , dd , J  =  9 .0  H z, 9 .0  

H z, C -2 -H  o r C -4 -H ), 3 .76  (3 H , s, O C H 3), 3 .78 (3 H , s, O C H 3), 4 .03  (1 H , d d d , J  =

I I .2  H z, 11.2 H z, 3 .9  H z, C-7-Hax), 4 .32  (1 H , b r dd, J =  11.2 H z, 9 .2  H z, C - l-H ) ,  4 .3 9  

(1 H , ddd , J =  20 .4  H z, 11.2 H z, 4 .7  H z, C-7-Heq), 4 .45  - 4 .9 0  (8  H , m , O C tf 2A r), 5 .08 ,

5 .13  (2 H , A B X , Jar =  11.9 H z, 7Hp =  9 .9  H z, 9 .9  H z, P ( 0 ) 0 C t f 2C 6H 5), 6 .78  - 6 .8 4  (4 

H , m , C 6/ / 4O C H 3), 7 .17  - 7 .38  (19 H , m , C 6^ 4O C H 3 and  C 6H 5).

13C  N M R  (CDC13, 6 8  M H z) 5 4 0 .4 1  (d, C -6 ), 55 .19 , 55 .22  (2 q , 2 x O C H 3), 6 9 .4 7  (t, 

P (0 )O C H 2A r), 7 0 .4 0  (t, C -7), 75 .12 , 75 .59 , 7 6 .06  (3 t, 4  x C H 2A r), 76 .47 , 81 .1 4 , 82 .29 ,

82 .65 , 8 5 .0 4  (5 d, in o sito l ring  C ), 113.65, 113.85 (2 d, C 6H 4 0 C H 3), 127.63, 127.71, 

127.86, 128.17, 128.26, 128.35, 128.62, 128.65, 129.50, 129.72 (10  d, C6H 4 0 C H 3 and  

C 6H 5), 130.18, 130.26 (2  s, C6H 4 0 C H 3), 135.45 (s, P (0 )O C H 2C 6H 5), 137.28, 138 .30  (2  

s, C H O C H 2C 6H 5), 159.22, 159.30 (2 s, C6H 4 0 C H 3).
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31P  N M R  (CDC13> 162 M H z) 6 - 4 .5 6  (dddd, JHp =  20 .3  H z, 9 .9  H z, 9 .9  H z, 3 .9  H z).

M S: m/z (+ v e  ion  F A B , re l in tensity ) 767  [ (M + H )\  2 .0 % ], 675  [ (M -C 7H 7)+, 1.0% ], 645  

[(M -C 7H 6O C H 3)+, 4 .0 % ], 121 [(C7H 6O C H 3)+, 100% ], 91 [(C 7H 7)+, 22% ].

M S: m/z ( - v e  ion  F A B , re l in tensity ) 919 [(M + N B A )', 20% ], 765  [ (M -H ) ',  10% ), 675 

[ (M -C 7H 7)',1 0 0 % ], 645  [ (M -C 7H 6O C H 3) \  12% ], 187 [C 7H 70 P 0 3H ) \  70% ], 97  

[(H 2P 0 4)', 45% ].

Anal C a lcd  fo r C w H ^ O io P  (766 .82); C , 68 .92; H  6 .18 , F o u n d  C , 69 .1 ; H , 6.13.

DL-(l,3,5/2,4,6)-3,5-Di-0-benzyI-6-hydroxymethyl-cyclohexane-l,2,3,4,5-pentol 1,7- 
(benzylphosphate) (Epimer, 37a)

T o  a  so lu tio n  o f  36a (3 00m g, 0 .39m m ol) in  d ich lo ro m eth an e  (lO m L ) w as added  w a te r 

( lm L )  and  2 ,3 -d ich lo ro -5 ,6 -d icy an o -l,4 -b en zo q u in o n e  (D D Q ) (355m g, 1 .56m m ol). T h e  

m ix tu re  w as s tirred  at rt fo r  2.5 h, afte r w hich  T L C  (ethyl ace ta te / h ex an e  2 :1 ) sh o w ed  

th e  reac tion  to  b e  co m p le te . D ich lo ro m eth an e  (60m L ) w as added  and  the  o rg an ic  lay er 

w as w ash ed  w ith  10%  N a 2S 0 3 so lu tion  (3 x 50m L ), sat N a H C 0 3 so lu tio n , an d  b rin e  

(5 0 m L  o f  each), d ried  (M g S 0 4) and ev ap o ra ted  in vacuo to  g ive  a  yellow  o il w h ich  w as 

p u rified  by  co lu m n  ch ro m ato g rap h y  (ethyl ace ta te /p en tan e  3 :2) g iv ing  the  d io l 37a 

(137m g, 0 .2 6 0 m m o l, 66% ).

M p  145-149°C  (fro m  e th y l ace ta te / hexane).

Rf 0 .45  (e thy l a ce ta te / d ich lo ro m eth an e  1:1), /? /0 .31  (e thy l ace ta te / h ex an e  2:1).

IR  ( K B r d isk) vP=0 1280cm ’1

[H  N M R  (CDC13, 4 0 0  M H z): 5 2 .0 7 ( 1  H , dddd , J =  11.2 H z, 10.7 H z, 10.7 H z , 4 .4  H z , 

C -6 -H ), 2 .83  (1 H , d , J  =  1.96 H z, D 20  ex ., C -4 -O H ), 3 .07  (1 H , dd , J  =  10.7 H z, 9 .3  

H z, C -5 -H ), 3 .20  (1 H , dd , J  =  9 .3  H z, 9.3 H z, C -3 -H ), 3 .55 (1 H , d , J  =  2 .9  H z, D 20  ex . 

C -2 -O H ), 3 .63  - 3 .7 0  (2 H , m , C -2-H , C -4-H ), 3.81 (1 H , dd , J = 11.2 H z, 11.2 H z, C -7 - 

Hax), 3 .86  (1 H , dd , J =  10.7 H z, 9 .3 H z, C - l-H ) , 4 .43  (1 H , ddd , J = 24 .4  H z, 11.2 H z ,

4 .4  H z, C-7-Heq), 4 .4 8  - 5 .13  (6  H , 3 x  A B  system s, 3 x C H 2C 6H 5), 7 .25  - 7 .38  (15 H , m , 

3 x CiHs).

13C  N M R  (CDC13, 100.4 M H z): 5 3 9 .6 0  (d, C -6), 69 .15 , 70 .45  ( 2 1, 2 x P O CH2), 7 4 .3 5 , 

7 5 .1 7  (2  t, 2 x  O C tf2C 6H 5), 74 .70 , 75 .8 5 , 76 .6 9 , 80 .90 , 81 .32  (5 d, inosito l rin g  Q ,  

127 .99, 128 .06 , 128 .13 , 128.28, 128.39, 128.52, 128.59, 128.72, 128.85 (9  d , C6H 5), 

135.28 (s, P O C H 2C6H 5), 137.59, 138.17 (2  s, 2  x  O C H 2C 6H 5).

3IP  N M R  (CDC13, 162 M H z) 5 - 7 .2 7  (1 P, ddd , J HP =  24 .2  H z, 8.1 H z, 8.1 H z)
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M S : m/z (+ ve ion  F A B , rel in tensity) 527 [(M + H )+, 22% ], 435  [ (M -C 7H 7)+, 3% ], 391 

(10), 181(6), 91 [(C 7H 7)+, 100% ].

M S : m/z ( - v e  ion  F A B , rel in tensity ) 679 [(M + N B A )', 90% ], 525 [ (M -H ) ',  100% ), 435 

[ (M -C 7H 7) \9 0 % ], 187 [C 7H 70 P 0 3H )', 40% ], 97 [(H 2P 0 4) \  20% ].

Anal C a lcd  fo r C 28H 3i 0 8P (526 .52); C , 63 .87; H  5 .93 , F o u n d  C , 63 .7 ; H , 6 .00

DL-(l,3,5/2,4,6)-3,5-Di-0-benzyl-6-hydroxymethyl-cycIohexane-l,2,3,4,5-pentol 1,7- 
(benzylphosphate) (Epimer 37b)

T h e  p -m eth o x y b en zy l g roups w ere rem oved  fro m  36b (260m g, 0 .3 4 m m o l) u s in g  the 

sam e p ro ced u re  as fo r 36a. P u rifica tio n  by  co lu m n  ch ro m ato g rap h y  (ethyl ace ta te / 

d ich lo ro m eth an e  1:1) gave 37b (125m g, 0 .237m m ol, 70% ).

M p  160 - 162°C  (from  ethy l ace ta te / hexane).

Rf 0 .25  (e thy l ace ta te /d ich lo ro m eth an e  1:1), R /0 .15 (e thyl ace ta te /h ex an e  2:1).

IR : ( K B r d isk) vP=o 1 2 6 3 cm '1

*H N M R  (CDC13, 4 0 0  M H z): 5 2 .1 3  (1 H , dddd , J =  11.2 H z, 10.8 H z, 10.7 H z, 4 .9  H z, 

C -6 -H ), 2 .93 (1 H , d, J =  2 .4  H z, D 20  ex., O H ), 3 .13 (1 H , dd , 7 =  10.7 H z, 9.3 H z, C -5- 

H ), 3 .25 (1 H , dd , 7 =  9.3 H z, 9 .3  H z, C -3-H ), 3 .50  (1 H , b r s, D 20  ex ., O H ), 3 .63 - 3 .69  

(2 H , b r m , C -2 -H  and  C -4-H ), 4 .08  (1 H , ddd, 7 =  11.2 H z, 11.2 H z, 7HP =  4 .4  H z, C -7- 

Hax), 4 .17  (1 H , dd, 7 =  10.8 H z, 10.7 H z, C - l-H ) , 4 .42  (1 H , ddd , 7 =  2 0 .0  H z, 10.7 H z,

4 .9  H z, C-7-Heq), 4.51 - 5 .12  (6  H , AB system s, 3 x CH2C6 H 5), 7 .25  - 7 .4 0  (15 H , m , 3 x 

C 6H 5).

13C  N M R  (C D C I3 , 100.4 M H z): 5 4 0 .1 3  (d, C -6 ), 70 .16 , 7 0 .8 6  (2 t, 2 x P O C H 2 ), 74 .81 , 

7 5 .5 4  (2  t, 2  x O C H 2C 6H 5), 75 .39 , 76 .56 , 77 .13 , 80 .08 , 81 .94  (5 d, in o sito l rin g  C),

128.32, 128.48, 128.55, 128.72, 128.87, 128.90, 129.05 (7 d, C 6H 5), 135.41 (s, 

P O C H 2C6H 5), 137.90, 138.56 (2  s, 2  x O C H 2C6H 5).

31P  N M R  (C D C I3, 162 M H z) 5 - 4 .4 3  ( IP , b r  dddd , 7HP =  20  H z, 8  H z , 8  H z, 4  H z)

M S: m/z (+ve ion  F A B , rel in tensity ) 527 [(M + H )+, 20% ], 435  [ (M -C 7H 7)+, 4 % ], 91 

[(C 7H 7)+, 100% ].

M S: m/z ( - v e  ion  F A B , rel in tensity ) 1051 [(2M -H )', 4 % ], 960 (5 ), 679  [(M + N B A )’, 

40 % ], 525 [ (M -H ) ',  80% ), 435  [ (M -C 7H 7) ',1 0 0 % ], 187 [C 7H 70 P 0 3H ) \  50% ], 97 

[(H 2P 0 4) \  2 2 % ].

Anal. C a lcd  fo r C 28H 3i 0 8P  (526 .52); C , 63 .87; H  5 .93, F o u n d  C , 63.6 ; H , 6 .01.
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DL-(l,3,5/2,4,6)-3,5-Di-0-benzyl-6-hydroxymethyI-cyclohexane-l,2,3,4,5-pentoI 1,7- 
(benzylphosphate)-2,4-bis(dibenzylphosphate) (Epimer 38a)

T o  a  so lu tion  o f  bis(benzyloxy)-A f,A f-diisopropylam inophosphine (345m g, l.O Om mol) in 

d ry  d ich lo ro m eth an e  (3m L ) w as added  1 /7-tetrazole (140m g, 2 .0 0 m m o l). T h e  m ix tu re  

w as s tirred  at rt fo r 2 0m in  and  then  the diol 37a (130m g, 0 .2 4 7 m m o l) w as added . 

S tirrin g  w as co n tin u ed  fo r 30m in , afte r w h ich  31P  N M R  sh o w ed  signals  a t 5  143 (1 P , s, 

p h o sp h ite  a t C -4 ), 142 (1 P , d, Vpp = 1 .2  H z, p h o sp h ite  trie s te r a t C -2 ), - 7 .9  (1 P , d, 5/p P 

=  1.2 H z, cyc lic  p h o sp h a te  triester). T h e  m ix tu re  w as co o led  to  -7 8 ° C , m -C P B A  

(3 4 5 m g , 2 .0 0 m m o l) w as added , and  the  co o lin g  b a th  w as rem oved . T h e  m ix tu re  w as 

a llo w ed  to  reach  rt and  then  d ilu ted  w ith  ethyl aceta te  (50m L ). T h e  c lea r so lu tio n  w as 

w ash ed  w ith  10%  N a 2SC>3, 1MHC1, sat. N aH CC >3 and  b rin e  (5 0 m L  o f  each) d ried  

(MgSC>4) an d  ev ap o ra ted  in vacuo g iv ing  a  so lid  residue . P u rifica tio n  by  co lu m n  

ch ro m ato g rap h y  (e thy l ace ta te /d ich lo ro m eth an e  1:2) affo rd ed  38a (192m g, O .183m m ol, 

7 4 % ) as a  w h ite  solid .

M p  171 - 172.5°C  (from  ethano l).

'H  N M R  (C D C U , 2 7 0  M H z): 5 2 .2 0  (1 H , dddd , J  =  1 1.2 H z, 11.0 H z, 11.0 H z, 4 .4  H z, 

C -6 -H ), 3.21 (1 H , dd , J  =  11.0 H z, 9 .0  H z, C -5-H ), 3 .5 8 (1  H , dd , J  =  9 .2  H z, 9 .2  H z, 

C -3 -H ), 3 .68  (1 H , dd , J  =  11.2 H z, 11.0 H z, C -7 -H » ), 4 .1 0  (1 H , b r  dd , J  =  11.2 H z, 9 .4  

H z, C - l-H ) , 4 .3 2  (1 H , ddd , J =  24 .2  H z, 11.0 H z, 4 .4  H z, C -7-H *,), 4 .33  (1 H , d, J  =

11.4 H z, p a rt o f  a  b ro ad  A B  system , C / /2C 6H 5), 4 .5 0  - 4 .68  (2 H , m , C -2 -H  and  C -4-H ),

4 .7 2  - 5 .10  (13 H , m , CH2C 6H 5 AB system s), 6 .95 - 7 .42  (35 H , m , CeH5).

13C  N M R  (C D C I3 , 6 8  M H z): 5 3 9 .0  (d, C -6 ), 6 9 .04  (t, C -7), 69 .40 , 69 .49 , 69 .60 , 69 .68  

(4  t, 5 x P O C H 2C 6H 5) 7 4 .1 6  (t, 2 x O C H 2C 6H 5) 75 .04 , 78 .2 0 , 78 .7 5 , 79 .38 , 80.81 (5 d, 

in o sito l rin g  C), 127.36, 127.44, 127.84, 127.89, 128.09, 128.17, 128.23, 128.26,

128.36, 128.39, 128.51, 128.67, 128.77 (13 d, C 6H 5), 135.51, 135.63, 136.75, 137.54 (4 

s, 7 x C6H 5)

31P  N M R  (C D C I3 , 162 M H z) 5 - 8 .3 3  (1 P , ddd , J =  24.1 H z, 7 .6  H z, 7 .6  H z), - 1 .8 1 ,  -  

1.65 (2 P, o v erlap  to  g ive  m  in  1H - co u p led  spectrum ).

M S : m/z (+ v e  ion  F A B , rel in tensity ) 1047 [(M + H )+, 5% ], 181(10), 91 [(C 7H 7)+, 100% ]. 

M S : m/z ( - v e  ion  F A B , rel in tensity ) 1199 [(M + N B A )', 8 % ], 1045 [ (M -H ) ',  3% ] 955

[(M -C 7H 7)~,55% ], 277  [ (C 6H 50 ) 2 P 0 2 ', 100%  ], 187(38% ), 97 [ H 2P (V , 10% ].

Anal. C a lcd  fo r C s e ^ O u P s  (1046 .98); C , 64 .24 ; H  5 .49 , F o u n d  C , 63 .9 ; H , 5 .46.
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DL-(l,3,5/2,4,6)-3,5-Di-0-benzyI-6-hydroxymethyI-cycIohexane-l,2,3,4,5-pentol 1,7- 
(benzylphosphate)-2,4-bis(dibenzylphosphate) (Epimer 38b)

C o m p o u n d  37b (1 lO m g, 0 .20 9 m m o l) w as ph o sp h o ry la ted  u sin g  th e  p ro ced u re  d escrib ed

fo r 37a. P u rifica tio n  by flash  ch rom atography  (e thyl ace ta te /d ich lo ro m eth an e  1:3)

a ffo rd ed  38b (190m g, 0 .182m m ol, 87% ) as a  w h ite  solid .

M p  136 - 138°C (from  ethy l aceta te /hexane).

'H  N M R  (C D C I3, 4 0 0  M H z): 5 2 .2 4  (1 H , dddd , J  =  11.0 H z, 11.0 H z, 11.0 H z, 4 .6  H z, 

C -6 -H ), 3 .33  (1 H , dd , J  =  9 .8  H z, 9 .8 H z, C -5-H ), 3 .62  (1 H , dd , J  =  9 .2  H z, 8 .9 H z, C -

3 -H ), 4 .0 0  (1 H , b r dd , J  =  11.0 H z, 11.0 H z, C -7 -H alt), 4.31 (1 H , ddd , J  =  2 1 .4  H z, 11.0 

H z, 4 .6  H z, C-7-Heq), 4 .39  (1 H , d, J  =  11.3 H z, p art o f  a  b ro ad  A B  system , C / / 2C 6H 5), 

4 .4 4  (1 H , b r dd, J =  10.7 H z, 10.1 H z, C - l-H ) , 4.61 (1 H , ddd , J  =  9 .2  H z, 9 .2  H z, 8.9 

H z, C -2 -H  o r C -4-H ), 4 .67  - 5 .27 (14 H , m , C H 2C 6H 5 A B  system s and  C -2 -H  o r C -4-H ),

6 .99  - 7 .4 0  (35 H , m , CaH5).

13C  N M R  (C D C I3, 100.4 M H z): 5  39.3 (d, C -6 ), 6 8 .8 8  (t, C -7), 69 .17 , 69 .5 4 , 69 .59 , 

7 0 .8 2  (4 t, P O C H 2C 6H j), 74 .18 , 7 4 .3 4  (2 t, 2 x C H 2C 6H 5), 75 .3 1 , 77 .1 4 , 7 8 .8 2 , 79 .44 ,

81 .03  (5 d, inosito l rin g  Q ,  127.27, 127.32, 127.72, 127.89, 128.00, 128 .13 , 128.22,

128.33, 128.42, 128.60, 128.71 (11 d, C 6H 5), 134.88, 135.54, 135.66, 135.73, 135.83, 

136.76, 137.65 (7 s, 7 x C 6H 5)

31P  N M R  (CDC13, 162 M H z) 5 - 5 .2 8  (1 P , dddd , J =  21 .4  H z, 7 .6  H z, 7 .6  H z, 2 H z), -  

1.58, -1 .5 1  (2  P, o v erlap  to  g ive  m  in H - co u p led  spec trum ).

M S : m/z (+ ve ion  F A B , rel in tensity ) 1047 [(M + H )+,70% ], 91 [(C 7H 7)+, 100% ].

M S: m/z ( - v e  ion  F A B , rel in tensity ) 1212(65), 1199 [(M + N B A )', 30% ], 1046(50), 955 

[ (M -C 7H 7) ',1 0 0 % ], 277  [(C6H 50 ) 2P 0 2- , 60% ]

Anal. C a lcd  fo r C asH nO w P s (1046 .98); C , 64 .24; H  5 .49 , F o u n d  C , 64 .4 ; H , 5 .55

DL-(l,3,5/2,4,6)-6-Hydroxymethyl-cyclohexane-l,2,3,4,5-pentoI l:7-cyclic,2,4- 
trisphosphate (=  DL-6-deoxy-6-hydroxymethyl-scy//o-inositol l:7-cyclic,2,4- 
trisphosphate) (26)

E ith e r co m p o u n d  38a o r 38b (95m g, 9 1 /u n o l) w as d ep ro tec ted  as d esc rib ed  fo r 

co m p o u n d  15. P u rifica tio n  by  ion -ex ch an g e  ch ro m ato g rap h y  on  Q S ep h aro se  F ast F low  

R esin , as b e fo re  gav e  the g lassy  trie th y lam m o n iu m  salt o f  26, w h ich  e lu ted  b e tw een  500  

m M  and  6 5 0  m M  T E A B . Y ie ld  78 - 82% )

*H N M R  (D 20 ,  4 0 0  M H z, N a+ salt, pH  8 ): 8 1.94 (1 H , d d d d  7 =  10.7 H z, 10.7 H z, 10.7 

H z, 4 .4  H z, C -6 -H ), 3 .32  (1 H , dd, J =  10.7 H z, 9 .3  H z, C -5 -H ), 3.41 (1 H , dd , J  =  9.3
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H z, 8 .8  H z, C -3 -H ), 3 .80  (1 H , ddd , J  =  8.8 H z, 8 .8 H z, 7 .8  H z, C -4 -H ), 3.85 - 3 .98  (3 

H ,m ,  C - l-H , C -2 -H , C-7-Hax), 4.21 (1 H , ddd , J  =  22 .9  H z, 11.3 H z, 4 .4  H z, C -7-H eq) 

13C  N M R  (D 20 ,  100.4 M H z, N a+ salt, p H  8) 4 1 .6 7  (d , C -6), 69 .15  (t, C -7), 70 .58 , 74 .37 , 

77 .5 7 , 78 .14 , 80.21 (5 d, inosito l rin g  C).

31P  N M R  (D 20 ,  162 M H z, ‘H -coup led , N a+ salt, pH  8) 8 -2 .1 6  (1 P , d, 7Hp = 22 .5  H z, 

P I ) ,  2 .99  (1 P , d, 7Hp =  7.1 H z, P 2), 3 .96 (1 P, d, 7Hp =  6.8 H z, P4).

M S: m/z ( - v e  ion  F A B , rel in tensity) 831 [ (2M -H )', 20% ], 415  [ (M -H ) ',  90% ], 

159(100), 97 [H 2P 0 4\  83% ].

M S: m/z 4 1 4 .9 6 2  (M -H ) ' (calcd  fo r C 7H 140 14P 3', 414 .960).

8.6 Various Compounds from the Route to 26

2,4-Di-0-/?-methoxybenzyl-6-methylidene-cyclohexane-l,3,5/2,4-pentol (39)

T he a lk en e  30 (4 .0g , 9 .38  m m ol) w as susp en d ed  in m eth an o l (lOOm L) and  h ea ted  to  

reflux . 1M  HC1 (lO m L ) w as added , and  hea ting  co n tin u ed  fo r 30  m in , afte r w h ich  T L C  

(ethyl ace ta te /h ex an e  2 :1) sh o w ed  th a t a lm ost all the  s tarting  m ateria l (R /0 .6 7 ) had  been  

co n su m ed . T h e  so lu tion  w as a llow ed  to  coo l, co n cen tra ted  am m o n ia  so lu tio n  (5m L ) w as 

added , and  the m ix tu re  w as stirred  at room  tem p era tu re  fo r a  fu rth e r 1 h. T he  so lven ts  

w ere  rem o v ed  by ev ap o ra tio n  in vacuo g iv ing  a  w h ite  so lid , w h ich  w as d ry -ex trac ted  

w ith  h o t ethyl aceta te  (2 x lOOmL). T he co m b in ed  ex trac ts  w ere  ev ap o ra ted  in v acu o  to 

g ive  a w h ite  so lid  w h ich  w as p u rified  by flash  ch ro m ato g rap h y , (ethyl ace ta te / 

d ich lo ro m eth an e  1:1) y ie ld ing  the  ally lic  a lcoho l 39 (2 .66g , 6 .3 9 m m o l, 68% ).

M p: 161 .5-163°C  (fro m  ethy l aceta te /hexane); IR: Vc=c 1 6 6 0 cm '1

‘H  N M R  (ds-D M S O , 4 0 0  M H z) S 2 .92  (2 H , d d , J = 9 .5 H z, 9 .2  H z, C -2 -H  an d  C -4 -H ),

3 .47  (1 H , d t, J  =  9 .2  H z, 5 .8  H z, D 20  ex  g ives t, J = 9 .2  H z, C -3 -H ), 3 .74  (6  H , s, 2 x 

O C H 3), 3 .87  (2  H , dd , J  =  9 .5 H z, 5.5 H z, D 20  ex  g iv es d, J  =  9 .5  H z, C - l -H  an d  C -5 - 

H ), 4 .7 2 , 4 .75  (4 H , A B q, Jab =  11.0 H z, 2 x O C ff2A r), 5 .0 4  (1 H , d, J = 5 .8  H z, D 20  

ex , C -3 -O H ), 5 .18  (2  H , d, 7 =  5 .50  H z, D zO  ex , C - l-O H , C -5 -O H ), 5 .22  (2 H , s, =CH2), 

6 .88  (4  H , d , J  =  8 .6  H z, C ^ O M e ) ,  7 .37  (4  H , d, J  =  8 .6  H z, C ^ O M e ) .

13C  N M R  (ds-D M S O , 100 M H z) <555.03 (q, 2 x O C H 3), 71 .23  (d , C -2  an d  C -4 ), 7 3 .5 2  

(t, O C H 2A r), 73 .83  (d , C -3), 85.68 (d, C - l  an d  C -5), 105.59 (t, = C H 2), 113.27 (d, C -3  

an d  C -5  o f  p -m eth o x y p h en y l rings), 129.26 (d, C -2  an d  C -6  o f  p -m eth o x y p h en y l 

rin g s),), 131 .64  (s, C - l  o f  p -m eth o x y p h en y l rings), 149.14 (s, C -6 ), 158.45 (s, C -4  o f  p- 

m eth o x y p h en y l rings).
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MS: m/z (+ve ion FAB, rel intensity) 415(35), 295[(M-C7H6OCH3)+, 100%], 173(100) 

MS: m/z (-ve ion FAB, rel intensity) 582(100), 569[(M+NBA)\ 50%], 415[(M -H)', 

60%],

A nal Calcd for (416.47); C, 66.3; H 6.78, Found C, 66.2; H, 6.66

2-C-Hydroxymethyl-l,3,5-0-methylidene-4,6-di-0-/j-methoxybenzyl-#wy0-inositol
(40)

To a vigorously stirred solution of the alkene 30 (426mg, l.Ommol) in ethyl 

acetate/acetonitrile (6mL of each) at 0°C was added a solution of RUCI3.3H2O (15mg, 

0.072mmol) and NaIC>4 (320mg, 1.5mmol) in distilled water (2mL). The two-phase 

mixture was stirred vigorously for 3 min and then quenched with sat. Na2S0 3 solution 

(lOmL). The aqueous layer was separated and extracted with ethyl acetate (2 x 20mL). 

The combined organic layers were dried (MgSCU) and evaporated in vacuo to give a 

brown oil. Purification by flash chromatography (ethyl acetate/hexane 1:1) gave pure 40 

as a white crystalline solid (356mg, 0.733mmol, 77%).

Mp: 120-121.5°C (from ethyl acetate/hexane).

'H NMR (CDC13, 270 MHz) <52.13 (1 H, t, 7 = 6.9 Hz, D20  ex., CH2OH), 3.77 (1 H, s, 

D20  ex, OH), 3.80 (6 H, s, 2 x OCH3), 4.09 (2 H, d, 7 = 6.8 Hz, D20  ex gives s, 

C //2OH ), 4.17 (2 H, m, 2 x inositol ring C-H), 4.42 (3 H, m, 2 x inositol ring C-H and 

C-5-H), 4.54 (4 H, br s, 2 x C /^C e^O M e), 5.52 (1 H, s, 0 3CH), 6.81 (4 H, d, J  = 8.6 

Hz, 2 x C6/ / 4OMe), 7.16 (4 H, d, J=  8.6 Hz, 2 x C ^ O M e ) .

13C NMR (CDC13, 68 MHz) <555.21 (q, 2 x OCH3), 63.49 (t, CH2OH), 67.89 (d, C-5), 

70.16 (s, C-2), 71.52 (t, 2 x CH2Ar), 72.69, 74.13 (2d, C -l, C-3, C-4, C-6), 103.19 (d, 

0 3CH), 113.82 (d, C-3 and C-5 of p-methoxyphenyl rings), 129.53 (d, C-2 and C-6 of p- 

methoxyphenyl rings), 132.68 (s, C-l of p-methoxyphenyl rings), 158.35 (s, C-4 of p- 

methoxyphenyl rings).

MS: m/z (+ve ion FAB, rel intensity) 461 [(M+H)+, 54%], 339 [ (M -C 7H6OCH3)+, 

14%], 121 [(C7H6OCH3)+, 100%]

A na l Calcd for C24H28O9 (460.48); C, 62.60; H 6.13, Found C, 62.4; H, 6.11

DL-2,4-Di-0-/7-methoxybenzyl-6-(methoxymethylidene)-l,3,5-0-methyIidene- 
cyclohexane-l,3,5/2,4-pentol (41)

Methoxymethyltriphenylphosphonium chloride (3.50g, 10.2mmol) was suspended in dry 

THF (lOmL) under N2 at 0°C. Potassium terf-butoxide (lO.lm L of a 1M solution in
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THF, 10.1 mmol) was added. The resulting orange suspension was allowed to reach 

room temperature and stirred for 1 h before cooling again to 0°C. A solution of ketone 

29 (2.14g 5.00mmol) in dry THF (lOmL) was added over 5 min. The mixture was 

refluxed for 2 h, after which its colour had darkened and TLC (ethyl acetate/hexane 1:1) 

showed the reaction to be complete, with the product at Rf 0.44. The mixture was 

allowed to cool and the solvent was removed by evaporation in vacuo. The orange 

residue was taken up in ether (lOOmL), the solution washed water then brine (50mL of 

each), dried (MgS04) and evaporated to give a clear brown oil. Purification by flash 

chromatography (ethyl acetate/pentane 2:3) gave the enol ether 41 as a white crystalline 

solid (2.12, 4.63mmol, 93%).

Mp: 110-111°C (from ethanol)

*H NMR (CDC13, 400 MHz) 8 3.67 (3H, s, =OCH3), 3.79 (3 H, s, OCH3), 3.80 (3 H, s, 

OCH3), 4.16 (1 H,ddd, J  = 3.4 Hz, 3.4 Hz, 1.2 Hz, inositol ring C-H), 4.21 - 4.23 (2 H, 

m, 2 x inositol ring C-H), 4.32 (1 H, appears as tt, J=  3.4 Hz, 1.5 Hz, C-3-H), 4.50, 4.58 

(2 H, ABq, J  = 11.9 Hz, 0 C //2C6H40Me), 4.51, 4.64 (2 H, ABq, J  = 11.6 Hz, 

0 C //2C6H40Me), 5.05 (1 H, ddd, J=  3.4 Hz, 1.5 Hz, 1.5 Hz, C -l-H  or C-5-H), 5.58 (1 

H, s, 0 3CH), 6.24 (1 H, s, =CtfOCH3), 6.79-6.87 (4 H, m C ^ O M e ) , 7.18-7.29 (4 H, 

m, Cfr^OM e).

13C NMR (CDC13, 100 MHz) 8 55.49 (q, 2 x OCH3), 60.47 (q, =CHOCH3), 66.98,

69.94, 72.10, 72.92, 73.29 (5 d, inositol ring C), 71.13 (t, 2 x OCH2C6H4OMe), 104.94 

(d, 0 3CH), 106.72 (s, C-6), 113.96, (d, 2 x C6H4OMe), 129.43 (d, 2 x C6H4OMe), 

130.35 (s, 2 x C6H40Me), 145.98 (d, =CHOCH3), 159.52 (s, 2 x C6H4OMe).

MS: m/z (+ve ion FAB, rel intensity) 335[ (M -C7H6OCH3)+, 1%], 121 [ (C7H6OCH3)+, 

100%].

MS: m/z (-ve ion FAB, rel intensity) 610 [(M+NBA)', 50%], 471(60), 291(100).

Anal. Calcd for C24H280 8 (456.49); C, 65.78; H 6.18, Found C, 65.6; H, 6.16

DL-3,5/4,6-Tetrahydroxy-3,5-di-0-/?-methoxybenzyl-cycIohex-l-ene-l-carbaldehyde
(42)

The enol ether 41 (l.OOg, 2.19mmol) was dissolved in THF (20mL) and 1M HC1 (2mL) 

was added. The solution was heated at reflux for 1 h and allowed to cool. The solution 

was stirred with 10% NaHC03 solution (5mL) for 5 min and the solvents were removed 

by evaporation in vacuo. The residue was taken up in dichloromethane (50mL), washed 

with water and brine (50mL of each), dried (MgSQ4) and evaporated in vacuo to give a
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white solid which was purified by flash chromatography (ethyl acetate/dichloromethane 

1:5) giving the enal 42 (748mg, 1.80mmol, 82%). (A small amount of the formate 42a 

(~ 70mg) was also isolated as an oil).

Mp: 131-133°C (from ethyl acetate/hexane)

IR: Vc=o 1685cm'1
*H NMR (CDCI3, 270 MHz) 52.92 (1H, br s, D20  ex, OH), 3.55 (1 H, dd, 7 =  10.3 Hz,

7.3 Hz, C-5-H), 3.67 (1 H, br s, D20  ex, OH), 3.73 (1 H, br dd, D20  ex gives dd, J  =

10.3 Hz, 8.2 Hz, C-4-H), 3.80 (6 H, br s, 2 x OCH3), 4.26 (1 H, ddd (appears as dt), J  =

8.2 Hz, 2.4 Hz, 2.2 Hz, C-3-H), 4.68 (1 H, buried, C-6-H), 4.69, 4.82 (2 H, ABq, Jab =

11.4 Hz, CH2C6H40Me), 4.69, 4.99 (2 H, ABq, Jab = 11.0 Hz, CH2C6H4OMe), 6.54 

(1H, dd (appears as t), J  ~ 2 Hz, 1.5 Hz, C-2-H), 6.86-6.92 (4 H, m, C ^ O M e ) , ), 7.29- 

7.33 (4 H, m, C ^ O M e ) , 9.43 (1 H, s, CHO).

13C NMR (CDCI3, 68 MHz) 5 55.22 (q, 2 x OCH3), 70.90, 73.30, 77.45, 81.87 (4 d, 

inositol ring C), 72.99, 74.54 (2 t, OCH2Ar), 113.91 (d, C-3 and C-5 of p- 

methoxyphenyl rings), 129.64, 129.77 (2 d, C-2 and C-6 of p-methoxyphenyl rings),

130.24 (s, C-l of p-methoxyphenyl rings), 139.45 (s, C -l), 148.05 (d, C-2), 159.37,

159.43 (2 s, C-4 of /?-methoxyphenyl rings), 194.63 (d, conjugated C=0).

MS: m/z (+ve ion FAB, rel intensity) 413(1%), 121 [ (C7H6OCH3)+, 100%].

MS: m/z (-ve ion FAB, rel intensity) 567 [(M+NBA)', 100%], 292(60), 233(50), 

112(45).

Anal Calcd for C23H260 7 (414.46); C, 66.65; H 6.32, Found C, 65.4; H, 6.34

DL-4-O-FormyI-3,5/4,6-tetrahydroxy-3,5-di-0-/?-methoxybenzyIcyclohex-l-ene-l- 
carbaldehyde (42a)

‘H NMR (CDCI3, 270 MHz) 8  3.64 (1H, br s, OH), 3.68 (1 H, dd, J  = 10.5 Hz, 7.4 Hz, 

C-5-H), 3.79 (3 H, s, OCH3), 3.80 (3 H, s, OCH3), 4.38 (1 H, ddd (appears as dt), J  = 8.4 

Hz, 2.3 Hz, 2.0 Hz, C-3-H), 4.58, 4.63 (2 H, ABq, A n = 112 Hz, C ^ C e ^ O M e ) , 4.74 

(1 H, br m, C-6-H), 4.66,4.83 (2 H, ABq, A b = 11.1 Hz, C //2C6H4OMe), 5.02 (1 H, dd, 

J  = 10.5 Hz, 8.4 Hz, C-4-H), 6.56 (1 H, dd (appears as t), J  ~ 2 Hz, 1.5 Hz, C-2-H), 

6.83-6.92 (4 H, m, C ^ O M e ) , 7.22-7.28 (4 H, m, C ^ O M e ) , 8.11 (1 H, s, OCHO),

9.43 (1 H, s, CHO).

DL-5-IIydroxymethyl-l,3-di-0-/>-methoxybenzyl-cyclohex-5-ene-l,3/2,4-tetrol (43)

The enal 42 (414mg, l.Ommol) was dissolved in methanol (20mL) and THF (lOmL), 

and sodium borohydride (38mg, l.Ommol) was added. TLC (ethyl acetate) after 5 min

228



showed that the reaction was complete with total conversion of enal (Rf  0.29) to a 

product with Rf 0.60. Water (5mL) was added and then the solvents were removed by 

evaporation in vacuo. The residue was taken up in ethyl acetate (50mL), washed with 

water (50mL) and brine (50mL) and dried (MgS04). Evaporation of solvents in vacuo 

gave a white solid which was recrystallised from ethyl acetate/hexane giving the allylic 

alcohol (380mg, 0.912mmol, 91%).

Mp: 142-145 (from ethyl acetate/hexane).

*H NMR (CDC13, 270 MHz) 52.34 (1 H, br t, J  ~ 6 HZ, D20  ex, CH20 H), 2.70-2.73 (2 

H, m, D20  ex, 2 x OH), 3.47 (1 H, dd, J  = 10.4 Hz, 7.9 Hz, C-3-H), 3.76 (1 H, ddd, J  =

10.3 Hz, 7.7 Hz, 2.0 Hz, D20  ex gives dd, J  = 10.3 Hz, 7.7 Hz, C-2-H), 3.80 (3 H, s, 

OCH3) , ), 3.81 (3 H, s, OCH3), 4.08 (1 H, m, C-l-H), 4.17 (2 H, br m, C H 2OH), 4.39 (1 

H, br m, D20  ex gives ddd, J  = 7.9 Hz, ~2 Hz, ~2 Hz, C-4-H), 4.65 (2 H, br s, 

C //2C6H4OMe), 4.76, 4.84 (2 H, ABq, 7ab = 11.2 Hz, C H 2C6H4OMe), 5.64 (1 H, br s, 

C-6-H), 6.87-6.91 (4 H, m, C ^ O M e ) , 7.26-7.33 (4 H, m, C ^ O M e ) .

13C NMR (d6-DMSO, 100 MHz) 5 55.13 (q, 2 x OCH3), 60.69 (t, C-7), 71.55, 74.59, 

79.41, 84.72 (4 d, C -l, C-2, C-3, C-4), 70.69, 73.52 (2 t, OCH2Ar), 113.41, 113.63 (2d, 

C-3 and C-5 of /?-methoxyphenyl rings), 120.25 (d, C-6), 129.23, 129.38 (2 d, C-2 and 

C-6 of p-methoxyphenyl rings), 131.13, 131.64 (2 s, C-l of /?-methoxyphenyl rings), 

141.30 (s, C-5), 158.58, 158.66 (2 s, C-4 of /7-methoxyphenyl rings).

MS: m/z (+ve ion FAB, rel intensity) 415(30), 295(10), 121 [[C7H6OCH3)+, 100%]

MS: m/z (-ve ion FAB, rel intensity) 582(100), 569(100), 415 [(M-H)', 60%]

Anal. Calcd for C23H2807 (416.47); C, 66.3; H 6.78, Found C, 66.4; H, 7.01

8.7 DL-6 -Deoxy-6 -hydroxymethyl-scy//0 -inositol-1,2,4-trisphosphate

DL-(l,3,5/2,4,6)-l,3-Di-0-benzyI-6-benzyloxymethyl-2,4-di-0-p-methoxybenzyl- 
cyclohexane-l,2,3,4,5-pentol (45)

To an ice-cold mixture of compound 34 (300mg, 0.427mmol) and 4A molecular sieves 

(2g) and THF (lOmL) under N2 were added borane-trimethylamine complex (190mg,

2.60 mmol) and freshly pulverised aluminium chloride (345mg, 2.59 mmol). The 

mixture was stirred at 0°C for 23 h, after which time TLC (ethyl acetate/hexane 1:1) 

showed the reaction to be complete with conversion of starting material (Rf  0.57) to a 

product (Rf 0 .49). Ether (50mL) was added followed by ice-water (50mL) and 1M HC1 

(lOmL). The organic layer was removed and the aqueous layer re-extracted with a 

further 50mL of ether. The combined organic extracts were washed with brine (lOOmL),
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dried (MgSCU) and evaporated under reduced pressure to give an oily residue. 

Purification by flash chromatography (dichloromethane/ethyl acetate 20:1) gave the 

alcohol 45 as a colourless oil which slowly solidified (195mg, 0.271mmol, 65%).

Mp 95-97°C (from hexane).

‘H NMR (CDC13, 270 MHz): S 1.67 (1 H, m, C-6-H), 2.66 (1 H, d, 7 = 2 .0  Hz, D20  ex., 

C-5-OH), 3.37 (1 H, dd, 7 = 9.2 Hz, 9.2 Hz, C-H), 3.49-3.85 (6 H, m, 4 x inositol C-H 

and C-7-H2), 4.41-4.96 (10 H, m, AB systems of C H 2C6H 5 and C ^C sfttO M e), 6.78- 

6.88 (4 H, m, C6f/4OMe) 7.18-7.36 (19 H, m, C (fl5 and C ^ O M e ) .

13C NMR (CDCI3, 68 MHz): 5 45.46 (d, C-6), 55.16 (q, 2 x OCH3), 65.65 (t, C-7),

69.48 (d, inositol ring CH), 73.06, 75.09, 75.35, 75.59 (4t, 5 x C H 2As),  77.44, 83.07, 

85.22, 85.92 (4d, inositol ring CH), 113.73, 113.93 (2d, C-3 and C-5 of p- 

methoxyphenyl rings), 127.40, 127.45, 127.53, 127.66, 127.78, 128.85, 128.33 (7d, 

C6H5 and Cef^OMe), 130.74 (s, 2 x C-l of p-methoxyphenyl rings), 138.27, 138.50, 

138.56 (3s, C6H5 ipso), 159.08, 159.26 (2s, C-4 of /7-methoxyphenyl rings).

MS: m/z (+ve ion FAB, rel intensity) 705[(M+H)+, 24%], 584[(M-PMB)+,28%], 

211(80), 121[(CH2C6H40Me)+, 100%].

MS: m/z (-ve ion FAB, rel intensity) 857 [(M+NBA)', 100%], 703 [(M -H)', 40%], 

470(78), 303(60), 140(80), 121(80).

Anal. Calcd for C ^ g O g  (704.86); C, 74.98; H 6.80, Found C, 74.7; H, 6.86

DL-(l,3,5/2,4,6)-l,3-Di-0-benzyI-6-benzyloxymethyl-cycIohexane-l,2,3,4,5-pentol
(46)

The alcohol 45 (200mg, 0.284mmol) was dissolved in ethanol (60mL) and 1M HC1 

(30mL) added. The mixture was heated at reflux for 5 h and then the solvents removed 

by evaporation under reduced pressure. The residue was dissolved in dichloromethane 

(50mL), washed with sat NaHCC>3 and brine (50mL of each) and evaporated to give an 

oily residue. Purification by flash chromatography (ethyl acetate/hexane 1:1) gave the 

triol as a white solid (115mg, 0.248mmol, 87%).

Rf  0.24 (ethyl acetate/hexane 1:1)

Mp: 93-95°C (from hexane)

*H NMR (CDCI3, 400 MHz): 8  1.70 (1 H, dddd, J  = 10.7 Hz, 10.7 Hz, 4.4 Hz, 2.4 Hz, 

C-6-H), 2.59 (1 H, d , J =  1.95 Hz, D20  ex., OH), 2.83 (1 H, br s, D20  ex., OH), 3.19 (1 

H, d, /  = 2.9 Hz, D20  ex, OH), 3.22 (1 H, dd, J  = 9.76 Hz, 9.28 Hz, C-3-H), 3.38-3.48 

(2 H, m, C -l-H  and C-4-H), 3.57-3.68 (3 H, m, C-2-H, C-5-H and C-7-Ha), 3.85 (1 H,
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dd, J  = 9.28 Hz, 2.4 Hz, C-7-Hb), 4.46, 4.50 (2 H, AB q, 7ab = 11.7 Hz, O C//2C6H5),

4.58, 4.78 (2 H, AB q, 7ab = 10.7 Hz, OC//2C6H5), 4.86 (2 H, s, O C//2C6H5), 7.24-7.38 

(15H, m, 3 x C6H5).

13C NMR (CDC13, 68 MHz): 8 44.92 (d, C-6), 66.60 (t, C-7), 70.58 (d, inositol ring 

CH), 73.25, 74.79, 74.83 (3t, CH2C6U5), 76.69, 77.05, 77.65, 81.88 (4d, inositol ring 

CH), 127.68, 127.75, 127.86, 127.92, 127.99, 128.39, 128.43, 128.54 (9d, C6H5), 

137.95, 138.40, 138.53 (3s, C6H5 ipso).

MS: m/z (+ve ion FAB, rel intensity) 465[(M+H)+, 6%], 181(15), 91 [(C7H7)+, 100%]. 

MS: m/z (-ve ion FAB, rel intensity) 617 [(M+NBA)', 80%], 463 [(M-H)', 100%].

Anal Calcd for C28H320 6 (464.56); C, 72.39; H 6.94, Found C, 72.3; H, 6.90

(l,3,5/2,4,6)-l,3,5-Tri-0-benzyl-6-hydroxymethyl-2,4-di-O-/?-methoxybenzyl- 
cyclohexane-l,2,3,4,5-pentol (47)

The fully-protected compound 34 (351mg, 0.5mmol) was suspended in dry toluene 

(2mL) and DIBALH (1.7mL of a 1.5 M solution in toluene, 2.55mmol) was added 

dropwise at 0°C. Stirring was continued at 0°C for 20 h after which TLC 

(chloroform/acetone 20:1) showed that starting material (Rf 0.38) had been almost 

completely converted to a major product (Rf 0.13). A minor product with Rf 0.26 was 

also present. Methanol (lOmL) was added (fizzing!) followed by 10% NaOH (lOmL). 

The mixture was stirred for 10 min and then the solvents removed by evaporation under 

reduced pressure. The residue was taken up in ethyl acetate (50mL), washed with water 

and brine (50mL of each) and dried (MgS04). Evaporation under reduced pressure gave 

a colourless oil, which was purified by flash chromatography (dichloromethane/ethyl 

acetate 10:1) giving the symmetrical alcohol 47 (252mg, 0.358mmol, 72%) as a white 

solid.

Mp: 118.5-120.5°C (from ethanol).*

‘H NMR (CDCh, 270 MHz): 50.91 (1 H, t, / =  5.6 Hz, D20  ex, CH2Ofl), 1.58 (1 H, br 

t, J  ~ 11 Hz, C-6-H), 3.42 (1 H, dd, J  = 10.8 Hz, 9.2 Hz, C -l-H  and C-5-H), 3.46 (1 H, t, 

J  = 9.0 Hz, C-3-H), 3.60 (1 H, dd, J  = 9.2 Hz, 9.0 Hz, C-2-H and C-4-H), 3.70 (2 H, dd, 

J  = 5.6 Hz, 2.4 Hz, D20 e x . gives d / =  2.4 Hz, C-7-H2), 3.78 (6 H, s, 2 x OCH3), 4.65,

4.91 (4H, AB q, / a b  =  110 Hz, C H2Ar), 4.80,4.85 (4 H, AB q, 7 a b  =  10.4 Hz, C H 2Ai) ,

* The crystals contained 0.5mole of EtOH per mole of 47, but a second *H NMR spectrum taken some 
months later showed that the ethanol had now disappeared.

231



4.92 (2H, s, CH2C6H5), 6.82 (4H, d, J  = 8.6 Hz, C ^ O M e ) , 7.21 (4H, d, J  = 8.6 Hz, 

C ^ O M e ) , 7.26-7.40 (15H, m, C6H5).

13C NMR (CDCU, 68 MHz): S 45.56 (d, C-6), 55.25 (q, 2 x OCH3), 58.30 (t, C-7),

69.48 (d, inositol ring CH), 75.04, 75.44 (2t, 4 x C tf2Ar), 75.82 (t, OCH2Ar at C-5), 

76.66 (d, 2 x inositol ring CH), 83.30 (d, C-3), 85.88 (d, 2 x inositol ring CH), 113.81, 

(d, C-3 and C-5 of p-methoxyphenyl rings), 127.56, 127.63, 127.98, 128.27, 128.42,

128.58, 129.49 (7d, C6H5 and C6H4OMe), 130.72 (s, C-l of p-methoxyphenyl rings),

138.26, (s, 2 x C6H5 ipso), 138.68 (s, CeH5 ipso), 159.16(s, C-4 of p-methoxyphenyl 

rings).

MS: m/z (+ve ion FAB) 703[(M-H)+, 30%], 583[(M-PMB)+,50%], 211(80), 

121[(CH2C6H40Me)+, 100%].

MS: m/z (-ve ion FAB) 857 [(M+NBA)', 100%], 470(40), 289(45), 135(60), 140(80), 

121(50).
Anal. Calcd for C ^ g O g  (704.86); C, 74.98; H 6.86, Found C, 74.7; H, 6.86

(l,3,5/2,4,6)-l,3,5-Tri-0-benzyl-6-hydroxymethyl-cyclohexane-l,2,3,4,5-pentol (48)

The /7-methoxybenzyl protecting groups of the symmetrical alcohol 47 (200mg, 

0.284mmol) were cleaved using the same procedure as that for the symmetrical alcohol 

45. Purification by flash chromatography (ethyl acetate/hexane 1:1) gave the 

symmetrical triol 48 as a white solid (108mg, 0.232mmol, 81%).

Rf 0.46 (ethyl acetate/hexane 1:1)

Mp: 88-90°C (from hexane/ethyl acetate 10:1)

'H  NMR (C D C I3 , 270 MHz): 5 1.07 (1 H, t, J  = 5.5 Hz, D20  ex., CH2Ofl), 1-62 (1 H, tt, 

7 = 1 1  Hz, 3.8 Hz, C-6-H), 2.54 (2 H, d, J  = 2.2 Hz, D20  ex., C-2-OH, C-4-OH), 3.23 (1 

H, t, J  = 9.3 Hz, C-3-H), 3.38 (2 H, dd, J  = 11 Hz, 9.3 Hz, C-l-H  and C-5-H), 3.66 (2 H, 

ddd, J  = 9.3 Hz, 9.3 Hz, 2.2 Hz, D20  ex. gives dd, J  = 9.3 Hz, 9.3 Hz, C-2-H and C-4- 

H), 3.78 (2 H, dd, J  = 5.5 Hz, 2.8 Hz, D20  ex. gives d, J  = 2.7 Hz, C-7-H2), 4.74, 4.83 

(4 H, AB q, Jab = 11-4 Hz, 2 x OCH2C6H5), 4.87 (2 H, s, O C//2C6H5), 4.86 (2 H, s, 

OCH2C6R 5), 7.32-7.39 (15 H, m, 3 x C<f l 5).

I3C NMR (CDCI3, 68 MHz): <545.78 (d, C-6), 58.19 (t, C-7), 74.42, (t, 2 x CH2C6H5),

74.92 (t, CH2C6U5), 76.74 (d, 2 x inositol ring CH), 76.94, (d, 2 x inositol ring CH), 

82.37 (d, C-3), 127.86, 127.91, 127.97, 128.20, 128.57 (5d, C6H5), 138.24, (s, 2 x C6H5 

ipso), 138.47 (s, C6H5 ipso).

MS: m/z (+ve ion FAB, rel intensity) 465[(M+H)+, 2.3%], 181(10), 91 [(C7H7)+, 100%].
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MS: m/z (-ve ion FAB, rel intensity) 617 [(M+NBA)', 50%], 463 [(M-H)', 100%].

Anal. Calcd for C28H32O6 (464.56); C, 72.39; H 6.94, Found C, 72.1; H, 6.98.

DL-(l,3,5/2,4,6)-3,5-Di-0-benzyl-6-benzyloxymethyl-cyclohexane-l,2,3,4,5-pentoI
l,2,4-tris(dibenzylphosphate) (49)

To a solution of bis(benzyloxy)diisopropylaminophosphine (356mg, 1.03mmol) in dry 

dichloromethane (3mL) was added l//-tetrazole (144mg, 2.06mmol). The mixture was 

stirred at room temperature for 20min and then the triol 46 (80mg, 0.172mmol) was 

added, and stirring was continued for 30min. The mixture was cooled to -78°C, m- 

CPBA (200mg, 1.16mmol) was added, and the cooling bath was removed. The mixture 

was allowed to reach rt and then diluted with ethyl acetate (50mL). The clear solution 

was washed with 10% Na2SC>3, 1M HC1, sat. NaHCC>3 and brine (50mL of each) dried 

(MgSOzO and evaporated in vacuo giving an oily residue. Purification by column 

chromatography (chloroform acetone 10:1) afforded 49 (183mg, 0.147mmol, 85%) as a 

colourless oil which slowly crystallised.

Mp: 87.5 - 88.5°C (from hexane).

Rf  0.20 (chloroform/acetone 10:1)

‘H NMR (CDCI3, 400MHz): 8 1.93 (1 H, br t, J  = 10.7 Hz, C-6-H), 3.63 (1 H, dd, 7 =

8.9 Hz, 8.6 Hz, C-3-H or C-5-H), 3.71-3.77 (2 H, m, C-7-Ha and C-3-H or C-5-H), 3.84 

(1 H, dd, J  = 9.5 Hz, 2.1 Hz, C-7-Hb), 4.18, 4.44 (2 H, AB q, A n = 11.6 Hz, 

O C//2C6H5), 4.42 (1 H, half of AB system of O C//2C6H5), 4.53-5.07 (18 H, AB systems 

of OC772C6H5, C-l-H, C-2-H, C-4-H), 6.93-7.01 (6 H, m, CeH5), 7.08-7.26 (37H, m, 

CeHs), 7.39-7.41 (2 H, m, C ^ s ) .

I3C NMR (CDCI3, 100 MHz): 8 44.75 (d, C-6), 63.66 (t, C-7), 69.24, 69.29, 69.35, 

69.40, 69.71, 69.77 (6t, P(0)OCH2), 72.56, 73.90, 74.34 (3t, CHOCH2C6H5), 74.98, 

75.20, 78.86, 80.23, 81.84 (5d, inositol ring CH), 127.05, 127.41, 127.52, 127.61,

127.80, 127.91, 127.98, 128.02, 128.11, 128.18, 128.27, 128.33, 128.38, 128.47 (14d, 

C6H5), 135.77, 135.83, 135.90, 135.97, 136.03, 136.10 (6s, C6H5 ipso), 138.06, 138.20,

138.24 (3s, C6H5 ipso).

31P NMR (C D C I3 , 162 MHz, ^ -d eco u p led ): 5 -2 .1 2  (IP), -1.67(1P), -1.53(1P).

MS: m/z (+ve ion FAB, rel intensity) 1245 [(M+H)+, 65%], 271(10), 181(10), 91 

[(C7H7)+, 100%].

M S : m/z (-ve ion F A B , rel intensity) 1397 [ ( M + N B A ) ',  80%], 1153 [ ( M - C 7H 7) \  

100%], 277 [ (C 6H 5C H 20 )2P ( 0 ) 0 ' ,  100%].
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A na l Calcd for C70H71O 15P3 (1245.25); C, 67.52; H 5.75, Found C, 67.4; H, 5.64

DL-(l,3,5/2,4,6)-6-Hydroxymethyl-cyclohexane-l,2,3,4,5-pentol 1,2,4-trisphosphate 
(=  DL-6-Deoxy-6-hydroxymethyl-scy//o-inositol-l,2,4-trisphosphate 44)

The trisphosphate triester 49 (60mg, 48mmol) was deprotected as described for 

compound 15. Purification by ion-exchange chromatography on Q Sepharose Fast Flow 

Resin, as before gave the glassy triethyl ammonium salt of 44, which eluted between 450 

mM and 550 mM TEAB. Yield 34//mol, 71%

*H NMR (D20 , 400MHz): <5 1.47 (1 H, dddd, / =  11 Hz, 11 Hz, 2 Hz, C-6-H), 3.38 (1 

H, dd, J  = 9.5 Hz, 9.2 Hz, C-3-H), 3.48 (1 H, dd, /  = 11 Hz, 9.5 Hz, C-5-H), 3.68 (2 H, 

ABX, CH2), 3.80 (1 H, ddd, J  = 9.5 Hz, 9.2 Hz, 8.5 Hz, C-4-H), 3.87 (1 H, ddd, J  = 10.4 

Hz, 10.4 Hz, 10.4 Hz, C-l-H), 4.00 (1 H, ddd, J  = 9.2 Hz, 9.2 Hz, 9.2 Hz, C-2-H).

31P NMR (D20 , 162 MHz): 0.15 (IP, 7Hp = 10.0 Hz), 0.45 (IP, JHP = 8.1 Hz), 0.96 (7P, 

/ h p  = 9.0 Hz)

MS: m/z (+ve ion FAB, rel intensity) 102 [(C2H5)3NH+, 100%].

MS: m/z (-ve ion FAB, rel intensity) 867 [ (2M-H)\ 10%], 433 [(M-H)', 100%], 

159(10), 97 [H2P 0 4\  35%].

MS (accurate mass FAB'): m/z 432.9708 (M -H)' (calcd for C7H 16O 15P3', 432.9702)

8.8 a,c&-Trehalose 3,4,3',4'-tetrakisphosphate

4,6:4',6'-Di-0-benzylidene-a,a-trehalose (51)

This was prepared according to the procedure of Baer and Radatus.244 

a,a-Trehalose dihydrate (lO.Og, 26.4mmol) was dehydrated by heating a suspension in 

absolute ethanol (60mL) at reflux for 30min followed by evaporation of solvents in 

vacuo. The dry residue was dissolved in dry DMF (60mL) in a round-bottomed flask, 

and benzaldehyde dimethyl acetal (4.0mL, 27mmol) was added, together with a catalytic 

amount of /?-toluenesulphonic acid (250mg). The flask was fitted with an air condenser 

and the mixture was heated in an oil bath, with stirring, at 100°C for 10 min. The flask 

was then attached to a rotary evaporator for 5 min (bath temperature 60°C). The heating 

procedures in oil bath and on the evaporator were repeated twice, each time with the 

addition of fresh benzaldehyde dimethyl acetal (4.0mL and lm L respectively). By this 

time, no solid material remained and TLC (ethyl acetate/dichloromethane 3:1) showed 

total conversion to a product at Rf  0.4. Most of the DMF was removed by evaporation in
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vacuo to give a syrup, and toluene (60mL) was then added. Crystals began to form 

within a few minutes and were filtered off and washed with toluene. Further crops of 

crystals were obtained from the mother liquor by partial evaporation, addition of more 

toluene, and cooling in a refrigerator to 4°C. The combined crops were stirred with 10% 

sodium hydrogen carbonate solution for 20 min and then filtered off and washed 

successively with water and hexane. The product could be recrystallised by dissolving in 

boiling ethanol, followed by addition of hot water and slow cooling.* Considerable care 

was necessary to avoid the formation of an oil, but 51 was eventually obtained as 

colourless crystals of the hemihydrate (10.7g, 20.3mmol, 77%)

Mp:198-200°C (from ethanol/water) L i t260 195°C, L i t261 199-200°C.

[a ]D18 = +81 (c = 1, MeOH) (lit.260 +80.3, lit.244 +81.3).

'H  NMR (d6-DMSO, 270MHz): 8 3.36-3.50 (4 H, br m obscured by H2O, D2O ex gives 

dd, J  = 9.3 Hz, 3.7 Hz, C-2-H and C-2'-H, and dd J  = 9.3 Hz, 9.2 Hz, C-4-H and C-4'- 

H), 3.65 (2 H, br m, D20  ex gives dd, J  = 9.9 Hz, 9.9 Hz, C-3-H and C-3'-H), 4.00-4.15 

(4 H, m, C-6-H2 and C-6'-H2), 4.94 (2 H, d, J  = 3.8 Hz, C -l-H  and C-l'-H ), 5.26 (2 H, 

d, J  = 5.0 Hz, D20  ex, 2 x C -0H),  5.32 (2 H, d, J  = 5.9 Hz, D20  ex, 2 x C-OH),  5.54 (2 

H, s, C//Ph), 7.35-7.44 (10 H, m, aromatic H)

13C NMR (d6-DMSO, 68 MHz) 562.74, 69.86,72.36, 81.73 (4 d, C-2/2', C-3/3', C-4/4', 

C-5/5'), 68.69 (t, C-6/6'), 95.29 (d, C-l/1 '), 101.42 (d, CHPh), 126.90, 128.62, 129.46 

(3 d, C6H5), 138.20 (s, C6H5 ipso).

MS: m/z (+ve ion FAB, rel intensity) 1037 [(2M+H)+, 45%], 613(80), 519 [(M+H)+, 

100%], 251 [+ve fragment ion from cleavage of glycosidic bond, 45%].

MS: m/z (-ve ion FAB, rel intensity) 1202(30), 1123(40), 957(80), 684(100), 517 [(M - 

H)‘, 80%].

Regioselective Dibenzylation of 4,6:4/,6'-D i-0-benzyIidene-a,a'-trehalose

This was carried out according to Vicent et al.245

The tetrol 51 (2.00g, 3.46mmol) was placed in a dry three-neck flask, together with 

powdered molecular sieves (3A, lOg), dibutyltin oxide (2.40g, 4.82mmol) and dry 

acetonitrile (lOOmL). The mixture was stirred under N2 at 120°C for 24 h. Benzyl 

bromide (4.6mL, 38.6mmol) and Af-methylimidazole (0.60mL, 7.6mmol) were added, 

and stirring was continued at 110°C. TLC (chloroform/acetone 10:1) showed the

* 51 could be recrystallised far more easily from propan-2-ol. The crystals so formed contained 1 
equivalent of propan-2-ol, visible in the NMR spectra.
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reaction to be complete after 70 h, with products at Rf  0.22 and Rf  0.30. The mixture was 

allowed to cool, and filtered to remove the molecular sieves, which were washed with 

chloroform. The combined filtrate and washings were concentrated by evaporation in 

vacuo. Column chromatography of the residue (chloroform/acetone 10:1) gave first the 

2,3'-0-benzylated derivative 52 Rf  0.30 (785mg, 1.12mmol, 32%) and then the 

symmetrical 2,2'-0-benzylated product 53 (1.32g, 1.88mmol, 54%).

2,3'-Di-0-benzyl-4,6:4',6'-di-0-benzyIidene-a,a-trehalose (52)

Mp: 185-187°C (from ethyl acetate/hexane) (lit.245 syrup).

[a ]D19 = +88 (c = 1, CHC13 ) [lit32 [a]D = +76 (c = 1.1, CHC13)]

!H NMR (CDCI3, 270MHz): <52.38 (1 H, d, 7 = 5.1 Hz, C-2'-OH), 2.69 (1 H, d, 7 = 2.2 

Hz, C-3-OH), 3.50 (1 H, dd, 7 = 9.5 Hz, 9.3 Hz, C-4-H), 3.55 (1 H, dd, 7 = 9.3 Hz, 3.7 

Hz, C-2-H), 3.63-3.79 (4 H, m, C-2'-H, C-4'-H, C-6-Ha*, C-6'-Hax), 3.95 (1 H, dd, 7 =

9.2 Hz, 9.2 Hz, C-3'-H), 4.09-4.29 (5 H, m, C-3-H, C-5-H, C-5'-H, C-6-Heq, C-6'-Heq),

4.69-5.00 (4 H, 2 AB systems, PhCtf2), 5.17 (1 H, d, 7 =  3.8 Hz, C-l-H  or C-l'-H ), 5.19 

(1 H, d, 7= 3.8 Hz, C -l-H  or C-l'-H ), 5.51 (1 H, s, PhCH), 5.55 (1 H, s, PhC//), 7.23- 

7.52 (20 H, m, C ^ s )

13C NMR (CDCI3, 67.8 MHz): 562.71, 63.31 (2 d, CH), 68.84 (t, C-6 and C-6'), 70.35,

71.60 (2 d, CH), 73.30, 74.97 (2 t, OCH2C6H5), 78.61, 78.83, 81.23, 82.14 (4 d, CH), 

93.87, 95.38 (2 d, C-l-H  and C-l'-H), 101.28, 101.88 (2 d, PhCH), 126.12, 126.29, 

127.84, 127.92, 128.00, 128.05, 128.17, 128.26, 128.44, 128.65, 128.94, 129.16 (12 d, 

C6H5), 137.05, 137.36, 137.46, 138.32 (4 s, C6H5 ipso).

MS: m/z (+ve ion FAB, rel intensity) 699 [(M+H)+, 15%], 341[+ve fragment ion from 

cleavage of glycosidic bond, 4%], 91 [(C7H7)+, 100%].

MS: m/z (-ve ion FAB, rel intensity) 697 [(M-H)', 52%], 625(40), 612(45), 308(44), 

274(42).

2,2'-Di-0-benzyl-4,6:4',6'-di-0-benzyIidene-a,a-trehalose (53)

Mp: 196-199°C (from ethyl acetate/hexane) (lit.245 197-199°C).

[a ]D19 = +99 (c = 1, CHCI3 ) [lit32 [a]D = +90 (c = 2, CHC13)]

*H NMR (CDCI3, 400MHz): 52.57 (2 H, d, J  = 1.95 Hz, D20  ex., 3/3'-OH), 3.49 (2 H, 

dd, J  = 9.8 Hz, 9.8 Hz, C-4/4'-H), 3.54 (2 H, dd, J  = 9.3 Hz, 3.4 Hz, C-2/2'-H), 3.66 (2 

H, dd, / =  10.7 Hz, 10.3 Hz, C-6/6'-ax), 4.11 (2 H, dd, 7 =  10.3 Hz, 4.9 Hz, C-6/6'-eq),
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4.20-4.27 (4 H, m, simplifies on D20  shake, C-3/3'-H and C-5/5'-H), 4.75, 4.78 (4 H, 

ABq, Jab = 11.7 Hz, O C//2C6H5), 5.18 (2 H, d, /  = 3.4 Hz, C -l/l'-H ), 5.49 (2 H, s, 

PhCH), 7.25-7.48 (20 H, m, C ^ s ) .

13C NMR (CDC13, 67.8 MHz): 562.76 (d, 2 x CH), 68.84 (t, C-6/6'), 70.27 (d, 2 x CH), 

73.29 (t, 2 x OCH2C6H5), 78.95, 81.30 (2d, 4 x CH), 94.40 (d, C -l/l'-H ), 101.98 (d, 2 x 

PhCH), 126.46, 127.76, 127.97, 128.23, 128.62, 129.21 (6d, C6H5), 137.10, 137.57 (2s, 

4 x C6H5 ipso).

MS: m/z (+ve ion FAB, rel intensity) 1397[(2M+H)+, 30%], 1090(60), 830(65), 781(56), 

699 [(M+H)+, 20%], 341 [+ve fragment ion from cleavage of glycosidic bond, 40%], 

94(75).

MS: m/z (-ve ion FAB, rel intensity) 697 [(M -H )\ 20%], 625(60), 612(65), 308(70), 

274(60).

3,3'-Di-0-benzoyl-2,2'-di-(9-benzyl-4,6:4',6'-di-0-benzylidene-a,a-trehalose (54)

The symmetrical diol 53 (500mg, 0.716mmol) was dissolved in dry pyridine (4mL). A 

catalytic amount of DMAP (50mg) was added, followed by benzoyl chloride (0.19mL, 

1.64mmol). The mixture was stirred overnight at room temperature and then water 

(lm L) was added and stirring continued for a further lOmin. The solvents were removed 

by evaporation under reduced pressure. The residue was taken up in dichloromethane 

and washed with 0.1M HC1, sat. NaHCC>3 and brine (50mL of each) then dried over 

MgSC>4. Evaporation under reduced pressure gave a solid which was purified by flash 

chromatography (ethyl acetate/hexane 1:1) giving 54 (586mg, 0.646mmol, 90%) as a 

white solid.

Mp: 230-231°C (from ethyl acetate/hexane).

[ « ] d 20 = +78 (c =  1,CHC13 ).

‘H NMR (CDCI3, 400MHz): 53.68 (2 H, dd, J  = 10.3 Hz, 9.8 Hz, C-6/6'-H ») 3.73 (2 

H, dd, J  = 9.8 Hz, 9.8 Hz, C-4/4'-H), 3.86 (2 H, dd, J  = 9.8 Hz, 3.9 Hz, C-2/2'-H), 4.11 

(2 H, dd, J  = 10.3 Hz, 4.9 Hz, C-6/6'-Heq), 4.37 (2 H, ddd, J  = 9.8 Hz, 9.8 Hz, 4.9 Hz, 

C-5/5'-H), 4.62, 4.69 (4 H, ABq, Ab = 12.2 Hz, CH2Ph), 5.28 (2 H, d, J  = 3.9 Hz, C- 

l/l'-H ), 5.43 (2 H, s, CHPh), 5.92 (2 H, dd, J =  9.8 Hz, 9.8 Hz, C-3/3'-H), 7.17-7.46 (24 

H, m, C (fl5), 7.56 (2 H, t, J  = 7.3 Hz, O C (0)C Ji5 para), 8.05 (4 H, d, J  = 7.8 Hz, 

0 C(0 )C6^5 ortho)
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13C NMR (CDCI3, 67.8 MHz): S 62.95 (d, 2 x CH), 68.84 (t, C-6/6'), 71.65 (d, 2 x CH), 

72.64 (t, 2 x OCH2C6H5), 76.17, 79.55 (2d, 2 x CH), 94.79 (d, C -l/1 '), 101.61 (d, 2 x 

PhCH), 126.35, 127.91, 128.02, 128.25, 128.49, 128.84, 129.86 (7 d, C6HS) 130.17 (s, 2 

x 0 C (0 )C 6H5 ipso), 132.84 (d, 2 x 0C (0)C 6H5 para), 136.96, 137.20 (2s, C6H5 ipso),

165.09 (s, 2 x C=0).

MS: m/z (+ve ion FAB, rel intensity) 907 [(M+H)+, 60%], 445 [+ve fragment ion from 

cleavage of glycosidic bond, 60%], 323(80), 91 [(C7H7)+, 100%].

A nal Calcd for C54H50O13 (906.98); C, 71.51 H 5.56, Found: C, 71.6; H, 5.56.

Found: C, 71.6; H, 5.56. Calcd. for C54H50O13: C, 71.51; H, 5.56%

3,3'-Di-0-benzoyl-2,6,2',6'-tetra-0-benzyl-a,ct-trehalose (55)

To a solution of sodium cyanoborohydride in THF (14mL of a 1M solution) containing 

3A molecular sieves was added compound 54 (500mg, 0.551 mmol). The mixture was 

stirred under N2 at room temperature, and a solution of hydrogen chloride in dry ether 

was added dropwise until evolution of gas ceased. TLC (chloroform/acetone 10:1) 

showed the reaction to be complete with total conversion of starting material (/fy0.55) to 

a product at Rf 0.24. The mixture was diluted with dichloromethane (50mL), washed 

with water, sat. NaHCC>3 and brine (50mL of each) and dried over MgSC>4. Evaporation 

under reduced pressure gave an oil which was purified by flash chromatography to 

provide the symmetrical 55 as a white foam (404mg, 0.439mmol, 80%).

[a ]D25 = +158 (c = 1, CHCI3).

‘H NMR (CDCI3, 270MHz): 8  2.99 (2 H, d, J=  6.4 Hz, D20  ex. C-4/4'-OH), 3.59 (4 H, 

d AB q, 7ab ~ 11 Hz, C-6/6'-H). 3.69 (4 H, dd, J  = 9.8 Hz, 3.5 Hz, C-2/2'-H), 3.74, (2 

H, m, D20  ex. gives dd, J  = 9.7 Hz, 9.2 Hz, C-4/4'-H), 4.21 (2 H, ddd, J  = 10 Hz, 3.4 

Hz, 3.4 Hz, C-5/5'-H), 4.50 (4 H, AB s, OCH2C6H5), 4.57, 4.63 (4 H, AB q, J AB = 12.3 

Hz, OCH2C6H5), 5.35 (2 H, d, ]  = 3.5 Hz, C -l/l'-H ), 5.63 (2 H, dd, J  = 9.5 Hz, 9.5 Hz, 

C-3/3'-H), 7.14-7.19 (10 H, m, OfeCeffs), 7.24-7.29 (10 H, m, CH2C<fls) 7.45 (4 H, dd, 

J  = 7.9 Hz, 7.1 Hz, O C(P)Cffli meta), 7.59 (2 H, tt, 7 = 7.1 Hz, 1.5 Hz, 0 C(0 )C6«5 

para), 8.04 (4 H, dd, J  = 7.9 Hz, 1.5 Hz, O C(0)C(fl5 ortho)

13C NMR (CDC13, 67.8 MHz): 5 68.89 (t, C-6/6'), 69.38, 71.73, 72.52 (3 d, 6 x CH), 

73.64,75.22 ( 2 1, 4 x OCH2C6H5), 76.17 (d, 2 x CH), 93.45 (d, C -l/1 '), 127.60, 127.70,

127.83, 127.89, 128.33 (5d, C6H5), 129.76 (s, C(0)C6H5 ipso), 129.93 (d, 0C(0)C6H5
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ortho), 133.23 (d, OC(0)C6H5 para), 137.88, 136.99 (2 s, CH2C6H5 ipso), 167.14 (s, 2 x 

C=0).

MS: m/z (+ve ion FAB, rel intensity) 911 [M+, 40%], 537(80), 447 [+ve fragment ion 

from cleavage of glycosidic bond, 10%], 91 [(C7H7)+, 100%].

MS: m/z (-ve ion FAB, rel intensity) 1063 [(M+NBA-H)', 35%], 121 [(C 7 H 5 O 2 )’, 

100%].

A nal Calcd for C54H54O 13 (911.01) C, 71.19; H, 5.97; Found C, 71.0; H, 5.97. 

2,6,2',6'-Tetra-0-benzyl-a, a-trehalose (56)

Sodium hydroxide pellets (lOOmg, 2.5mmol) were added to a solution of 55 (400mg, 

0.439mmol) in methanol (25mL) and the mixture was heated at reflux for 30 min. TLC 

(chloroform methanol 5:1) showed complete conversion of starting material (Rf  0.82) to 

a product (Rf  0.50). The solution was allowed to cool and then neutralised by bubbling 

CO2 gas through it overnight. The solvents were removed by evaporation under reduced 

pressure and the solid residue was extracted with ethyl acetate (3 x 50mL). The 

combined extracts were washed with water (lOOmL), dried over MgSCU and evaporated 

to give an oil. Purification by flash chromatography (ethyl acetate) gave 56 (263mg, 

0.374mmol, 85%) as a white crystalline solid.

Rf  0.2 (ethyl acetate)

Mp: 135-137°C (from ethyl acetate/hexane).

[ « ] d 18 = +127 (c = 1, CHCl, ).

‘H NMR (CDCI3, 270MHz): <53.37 (2 H, dd, J  = 9.7 Hz, 3.1 Hz, C-2/2'-H), 3.53 (2 H, 

ddd, J  = 9.5 Hz, 9.5 Hz, ~5Hz, D20  ex gives dd, J  = 9.5 Hz, 9.5 Hz, C-4/4'-H), 3.52 - 

3.65 (4 H, m, C-6/6'-H2), 3.64, (2 H, br d, J -  5Hz, D20  ex., C-4/4'-OH), 4.04 (2 H, 

ddd, J  = 9.3 Hz, 9.3 Hz, 3.4 Hz, D20  ex gives dd, J  = 9.3 Hz, 9.3 Hz, C-3/3'-H), 4.10 (2 

H, ddd, J  = 9.5 Hz, 4 Hz, 3.4 Hz, C-5/5'-H), 4.20 (2 H, br d, 7 -  3.5 Hz, D20  ex, C-3/3'- 

OH), 4.44 - 4.66 (8 H, 2 x AB systems, 4 x O C//2C6H5), 5.12 (2 H, d, J  = 3.1 Hz, C- 

l/l'-H ), 7.22-7.27 (20 H, m, CHzCffls).

13C NMR (CDC13, 67.8 MHz): <5 69.31 (t, C-6/6'), 70.72, 71.28, 72.41 (3 d, 6 x CH), 

72.54,73.55 ( 2 1, 4 x OCH2C6H5), 78.09 (d, 2 x CH), 93.92 (d, C -l/1 '), 127.57, 127.66,

128.04,128.09, 128.30 (6 d, C6H5), 137.05,137.96 (2 s, 4 x CH2C6H5 ipso).

MS: m/z (+ve ion FAB, rel intensity) 703 [(M+H)+, 10%], 685(56), 433(24), 343 [+ve 

fragment ion from cleavage of glycosidic bond, 92%], 91 [(C7H7)+, 100%].
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MS: m/z (-ve ion FAB, rel intensity) 1404 [2M‘, 20%], 869(100), 855 [(M+NBA)', 

65%], 701 [(M -H)', 30%].

Anal. Calcd. for C40H64Ou: (702.80) C, 68.36; H, 6.60; Found: C, 68.2; H, 6.6.

2,6,2',6/-Tetra-0-benzyI-a,a-trehalose-3,4,3',4'-tetrakis(dibenzylphosphate) (57) 

To a solution of bis(benzyloxy)-Af,iV-diisopropylaminophosphine (550mg, 1.59mmol) in 

dry dichloromethane (2mL) was added 1/7-tetrazole (223mg, 3.18mmol). The mixture 

was stirred at room temperature for 10 min and then the tetrol 56 (140mg, 0.199mmol) 

was added. The mixture was stirred for a further 1 h, after which a 90 MHz 31P NMR 

spectrum showed signals at S 140.7 and 141.1 ppm (AB system 5/ Pp = 4.9Hz). The 

mixture was cooled to -78°C and m-CPBA (288mg, 1.67mmol) was added. The 

mixture was allowed to reach room temperature and then diluted with ethyl acetate 

(50mL). The solution was washed with 10% sodium sulphite solution, 1M HC1, sat. 

NaHCC>3 and brine (50mL of each), dried (MgS04) and evaporated in vacuo to give an 

oil. Purification by column chromatography (chloroform/acetone 10:1) gave 57 as a 

colourless oil (315mg, 0.181mmol, 91%).

Rf 0.26 (chloroform/acetone 10:1)

[«]D26 = +46 (c = 1, CHC13)

‘H NMR (CDCI3,400MHz): 8  3.28 (2 H, br d, J  ~ 11 Hz, C-6/6'-H), 3.47 (2 H, dd, J = 

11 Hz, 3.5 Hz, C-6/6'-H), 3.63 (2 H, dd, J  = 9.8 Hz, 3.7 Hz, C-2/2'-H), 4.21 (2 H, 

obscured by AB system, C-5/5'-H), 4.20, 4.37 (4 H, ABq, Jab = 11.9 Hz, 2 x 

OCtf2C6H5), 4.52, 4.60 (4 H, ABq, 7Ab = 11.9 Hz, 2 x  OCH2C6B 5), 4.70 (2 H, ddd, J  =

9.5 Hz, 9.5 Hz, 9.5 Hz, C-3/3'-H or C-4/4'-H), 4.84-5.13 (18 H, m, CH2OP AB systems 

and C-3/3'-H or C-4/4'-H), 5.16 (2 H, d, 7 =  3.7 Hz, C -l/l'-H ), 7.07-7.27 (60 H, m, 12 x 

C6H5).

I3C NMR (CDC13, 100 MHz): 8 67.34 (t, C-6/6'-H), 69.18 (t, / Cop = 5.5 Hz, 4 x 

CH2OP), 69.42 (t, Jcop = 5.5 Hz, 2 x CH2OP), 69.66 (t, Jcop = 5.5 Hz, 4 x CH2OP), 

69.69 (d, 2 x CH), 72.59 (t, 2 x OCH2C6H5), 73.05 (t, 2 x OCH2C6H5), 74.07 (d, 7Cop =
5.5 Hz, 3.7 Hz, C-3/3' or C-4/4'), 76.89 (d, 2 x CH), 78.39 (d, (d, 7Cop = 5.5 Hz, 3.7 Hz, 

C-3/3' or C-4/4'), 93.44 (d, C-l/1 '), 127.22, 127.33, 127.46, 127.59, 127.79, 127.88, 

127.93, 127.99,128.12,128.23, 128.28, 128.37 (12 d, C6H5), 135.69 (s, Jcop = 7.4 Hz, 2 

x POCH2C6H5 ipso), 135.89, 136.00, 136.12 (3 s, Jcop = 7.3 Hz, 6 x POCH2C6H5 ipso), 

137.33, 137.90 (2 s, 4 x OCH2C6H5 ipso).
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31P NMR (CDCI3, 162 MHz): 5 -1 .9 4  (2 P), -2.20(2 P).

MS: m/z (+ve ion FAB, rel intensity) 1744 [(M+H)+, 85%], 1654 (20), 459(40), 307(85), 

221(50), 91 [(C7H7)+, 100%].

MS: m/z (-ve ion FAB, rel intensity) 1742 [(M -H )\ 30%], 1652 [(M -C7H7)\ 80%], 277 

[((C6H5CH20 )2P 0 2) \  100%].

a,a-Trehalose 3,4,3',4'-tetrakisphosphate (50)

The trisphosphate triester 57 (135mg, HAfimoY) was deprotected as described for 

compound 15. Purification by ion-exchange chromatography on Q Sepharose Fast Flow 

Resin, as before gave the glassy triethylammonium salt of 50, which eluted between 500 

mM and 600 mM TEAB. Yield 50.5/zmol, 65%.

[a]o20 = +124 (c = 0.3, H2O, pH 5-6 , calculated for the free acid)

*H NMR (D20 , 400 MHz, pH 7) <5 3.54-3.61 (4 H, m, C-2/2'-H and C-6/6'-H), 3.67-

3.73 (4 H, m, C-5/5'-H and C-6/6'-H), 3.86 (2 H, ddd, J = 9.8Hz, 9.3Hz, 9.3Hz, C-4/4'- 

H), 4.36 (2 H, ddd, J  = 9.3Hz, 9.3Hz, 8.8Hz, C-3/3'-H), 5.03 (2 H, br s, C -l/l'-H ).

3IP NMR (D20 , 162 MHz, pH 7, 'H -coupled) 50.58 (2 P, d, J Hp = 8.9Hz, 3/3'-P), 0.99 

(2 P, d, Jm  = 10.1 Hz, 4/4'-P).

MS: m/z (+ve ion FAB) 255[((C2H5)3N+H +NBA), 85%], 102 [(C2H5)3N+H, 100%].

MS: m/z (-ve ion FAB) 1323 [ 2M \ 80%], 661 [ M \ 100%].

Accurate mass FAB': m/z 660.982 (M') calcd for C 12H25O23P4’, 660.974.

8.9 b-m yo-Inositol 1,3,4-trisphosphorothioate

DL-2,5,6-Tri-0-benzyI-/w-yo-inositol l,3,4-tris(dibenzylthiophosphate) (58)

To a solution of bis(benzyloxy)-7V,N-diisopropylaminophosphine (460mg, 1.33mmol) 

in dry dichloromethane (3mL) was added tetrazole (140mg, 2.00mmol). The mixture 

was stirred at rt for lOmins. The racemic triol 9 (lOOmg, 0.222mmol) was added and 

stirring continued for a further 30mins. Dry pyridine (3mL) and sulphur (lOOmg, 

3.13mmol) were added, and stirring continued for a further 18 h. The solvents were 

removed by evaporation under reduced pressure and the residue was purified by column 

chromatography (ethyl acetate/hexane 1:4) to give 58 (141mg, O.llOmmol, 50%) as an 

oil.
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*H NMR (CDCI3, 400MHz): 5 3.50 (1 H, dd, 7 9.4 Hz, 9.4 Hz, C-5-H), 4.11 (1H, dd, J

9.4 Hz, 9.4 Hz, C-6-H), 4.41-4.48 (2H, m, C-l-H  and C-3-H), 4.63-5.13 (19H, m, 

C H 2C6H 5 and C-2-H), 5.32 (1H, m, C-4-H), 6.98-7.30 (45H, m, CH2C6̂ 5)

13C NMR (C D C I3 , 100 MHz): 8  69.60-70.34 (triplets showing 37cop coupling, 

overlapping, 6 x POCH2), 75.05, 75.60, 75.61 (3 t, CHOCH2C6H5), 76.46, 77.34, 78.07, 

78.14, 79.817, 80.67 (6 d, inositol ring Q  127.08, 127.16, 127.27, 127.34, 127.45,

127.80, 127.80, 127.87, 127.94, 128.09, 128.14, 128.22, 128.29, 128.36, 128.40, 

128.47, 128.53 (16d, C H ^ H s )  135.39-136.19 (singlets showing 37cop coupling, 

overlapping, 6 x P O C H ^ H s  ipso), 138.06, 138.29, 138.50 (3s, C O C H ^ H s  ipso).

31P NMR ( C D C I3 , 162MHz ) 566.91 (1 P, app. as sextet, 7hp = 9.5 Hz), 67.75(1 P, app. 

as sextet, 7hp = 10.0 Hz), 69.80(1 P, app. as sextet, 7hp = 9.5 Hz).

MS: m/z (+ve ion FAB, rel intensity) 1279[ (M+H)+, 1.6%], 181(80), 91[(CH2C6H5)+, 

100%]

MS:m/z (-ve ion FAB, rel intensity) 1277[ (M -H )\ 64%], 1185(25), 293 

[OP(S)(OCH2C6H5)2', 100%], 95(30).

Anal. Calcd for C69H69O 11S3P3 (1279.40); C, 64.78; H 5.44, Found C, 65.0; H, 5.45 

d l -myo-Inositol-1,3,4-trisphosphorothioate (59)

Compound 58 (90mg, lOpmol) was deprotected as described for compound 15 and 

purified by ion-exchange chromatography on Q Sepharose Fast Flow Resin, eluting with 

a gradient of triethylammonium bicarbonate buffer (0 to 1M), pH 8.0. The 

triethylammonium salt of 59 eluted between 800 mM and 930 mM. Yield 43^tmol, 

61%).

MS: m/z 466.887 (M -H )' (calcd for C6Hi4012P3S3\  466.886).

lH  NMR (D20 , 400MHz): 53.39 (1H, dd, 7 =  9.3 Hz, 9.3 Hz, C-5-H), 3.67 (1H, dd, 7 = 

9.8 Hz, 9.8 Hz, C-6-H), 4.00 (1H, ddd, 7 =  11.7 Hz, 9.8 Hz, 2.5 Hz, C-l-H), 4.10 (1H, 

ddd, 7 = 12.2 Hz, 9.8 Hz, 2.5 Hz, C-3-H), 4.34 (1H, br s, C-2-H), 4.35 (1H, ddd, 7 =

10.7 Hz, 9.8 Hz, 9.3 Hz, C-4-H).

31P NMR (D20 , 162 MHz): 546.02 (1 P, 7hp = 11.2 Hz), 48.16 (IP, 7HP = 11.7 Hz),

48.83 (IP , 7hp= 11.2 Hz).

MS: m/z (+ve ion FAB, rel intensity) 102 [(C2H5)3NH+, 100%].

MS: m/z (+ve ion FAB, rel intensity) 467 [(M-H)', 100%], 113 [H2PC>3S \ 10%].
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lL-2,5,6-Tri-0-benzyl-/wyo-inositol l,3,4-tris(dibenzylthiophosphate) (l-58)

To a solution of bis(benzyloxy)-A,Af-diisopropylaminophosphine (334mg, 0.966mmol) 

in dry dichloromethane (2mL) was added l//-tetrazole (135mg, 1.93mmol). The mixture 

was stirred at room temperature for 20 min and then the (+)-triol L-9b (72mg,
- j l

0.160mmol) was added, and stirring was continued for 30min. A P NMR spectrum 

now showed an AB system centred around <5p 141.2ppm (7ab = 3.7Hz) and a singlet at 

140.25ppm. Dry DMF (2mL) and dry pyridine(lmL) were added, followed by sulphur 

(46mg, 1.4mmol), and stirring was continued at rt for lOmin. 31P NMR now showed 3 

singlets around <5p 67ppm. No phosphite signals remained. The solvents were removed 

by evaporation under reduced pressure at room temperature. The residue was taken up in 

dichloromethane (50mL), washed with brine (50mL) and dried(MgS04). The solution 

was concentrated by evaporation under reduced pressure to a volume of about 20mL. 

This was left at 4°C overnight to crystallise out some of the excess sulphur, which was 

then filtered off. Purification by column chromatography (pentane/ethyl acetate 4:1) 

afforded L-58 (144mg, 0.113mmol, 71%) as a colourless oil.

[a]D18 = +1.6 (c = 1.2, CHC13).

Anal. Calcd for C w H a A ^ P a  (1279.40); C, 64.78; H 5.44, Found C, 65.0; H, 5.55 

NMR and mass spectroscopic data were identical to those for the racemic compound.

lL-l,3,4-myo-Inositol trisphosphorothioate (L-59)

L-58 (lOOmg, 78.2^mol) was deprotected as described for the racemic compound 59 

and purified by ion exchange chromatography as before. Yield 41/zmol, 52%).

[a]d22 = -1 4  ( c = 0.35, TEAB buffer, pH 8.0) Calculated for the free acid.

NMR and mass spectroscopic data were identical to those for the racemic compound. 

Accurate mass FAB': m/z 466.887 (M -H)' (calcd for C6H 14O 12P3S3', 466.886).

8.10 DL-6-Deoxy-6-hydroxymethyl-5cy//0-inositol 1,2,4- 
trisphosphorothioate

DL-(l,3,5/2,4,6)-3,5-Di-0-benzyl-6-benzyloxymethyl-cyclohexane-l,2,3,4,5-pentol
l,2,4-tris(dibenzylthiophosphate) (61)

The triol 46 (75mg, 0.161mmol) was thiophosphorylated as described for compound L- 

59. Purification by column chromatography (pentane/ethyl acetate 5:1) afforded 61 

(163mg, 0.126mmol, 78%) as a colourless oil.

A na l Calcd for C70H71O12P3S3 (1293.43); C, 65.00; H 5.53, Found C, 65.0; H, 5.38
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*H NMR (CDCI3, 270MHz): 52.19 (1 H, m, C-6-H), 3.65 (2 H, ABX system (broad), 

C-7-H2), 3.89 (1 H, dd, J  = 10.9 Hz, 7.4 Hz, C-5-H), 4.00 (1 H, dd, J  = 4.7 Hz, 4.7 Hz, 

C-3-H), 4.18, 4.40 (2 H, AB q, /ab = 11.5 Hz, O C//2C6H5), 4.42 (1 H, half of AB 

system of OCtf2C6H5), 4.62-5.25 (18 H, AB systems of OCtf2C6H5, C-l-H , C-2-H, C-4- 

H), 7.04-7.32 (45 H, m, CeH5.

13C NMR (C D C I3 , 68 MHz): 5 43.90 (d, C-6), 64.69 (t, C-7), 69.59-70.04 (6t, 

P (0 )0 C H 2), 72.30, 72.74, 73.79 (3t, CHOCH2C6H5), 75.62, 76.45, 79.30, 81.74, 81.85 

(5d, inositol ring CH), 127.06, 127.18, 127.32, 127.37, 127.55, 127.76, 127.89, 127.97,

128.00, 128.07, 128.12, 128.15, 128.28, 128.31, 128.35, 128.39 (16d, C6H5), 135.59,

135.63, 135.71, 135.84 (4s, 6 x C6H5 ipso), 137.93, 138.29 (2s, 3 x C6H5 ipso).

31P NMR (CDCI3, 162 MHz): 567.76 (2P), 68.23 (IP).

MS: m/z (+ve ion FAB) 1293 [(M+H)+, 70%], 305(50), 271(10), 181(15), 91 [(C7H7)+, 

100%].

MS: m/z (-ve ion FAB) 1201 [(M -C7H7) \  80%], 293 [(C6H5CH20 )2P(0)S ', 100%].

DL-(l,3,5/2,4,6)-6-Hydroxymethyl-cyclohexane-l,2,3,4,5-pentol 1,2,4- 
trisphosphorothioate (=  DL-6-Deoxy-6-hydroxymethyl-scy//o-inositoI-l,2,4- 
trisphosphorothioate 60)

Compound 61 (90mg, 70pmo\) was deprotected as described for 15 and purified by ion- 

exchange chromatography on Q Sepharose Fast Flow Resin, eluting with a gradient of 

triethylammonium bicarbonate buffer (0 to 1M), pH 8.0. The triethylammonium salt of 

60 eluted between 880 mM and 1000 mM. Yield 45mmol, 64%)

Accurate mass FAB': m/z 480.9025 (M -H)' (calcd for C7Hi60i2P3S3', 432.9017).

‘H NMR (D2O, 400MHz): S  1.43 (1 H, br t, J  -  11 Hz, 9.2 Hz, C-6-H), 3.36 (1 H, dd, J  

= 9.3 Hz, 9.3 Hz, C-3-H), 3.47 (1 H, dd, J  = 10.3 Hz, 9.8 Hz, C-5-H), 3.62,3.62 (1 H, br 

d, /  = 12.2 Hz, C-7-Ha), 3.77 (1 H, br d, J  = 12.2 Hz, C-7-Hb), 3.94-4.08 (2 H, m, C -l- 

H, C-4-H), 4.27 (1 H, ddd, J  =11.7 Hz, 9.8 Hz, 9.3 Hz, C-2-H).

31P NMR (D20 ,  162 MHz): 46.47 (1 P, 7Hp = 9.9 Hz), 49.05 (1 P, 7Hp = 12.6 Hz), 50.50 

( 1 P ,7 h p =  11.9 Hz)

MS: m/z (+ve ion FAB) 102 [(C2H5)3NH+, 100%].

MS: m/z (-ve  ion FAB) 481 [(M -H)', 100%], 447(5), 385(5), 113 [H2P 0 3S \ 10%].
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8.11 scy//0 -Inositol 1,2,3,5-tetrakisphosphate

2,4-Di-O-/?-methoxybenzyI-l,3,5-0-methylidene-scy//0-inositol (63)

The ketone 29 (1.98g, 4.63mmol) was dissolved in a mixture of THF (20mL) and 

methanol (80mL). Sodium borohydride (430mg, 11.6 mmol) was added gradually and 

the mixture stirred at room temperature, for a further 30 min. TLC showed complete 

conversion to a product with Rf  0.44 (ethyl acetate/hexane 1:1). Water (lOOmL) was 

added and the product extracted with dichloromethane (3 x lOOmL). The combined 

organic phases were washed with brine and dried over MgSC>4. Evaporation of solvent 

under reduced pressure gave a white solid which was recrystallised from ethyl 

acetate/hexane to provide 63 (1.77g, 4.12 mmol, 89%).

Mp: 125-126°C (from ethyl acetate/hexane or ethanol).

‘H NMR (CDCI3, 270MHz): S 3.79 (6 H, s, 2 x OCH3), 4.10 (1 H, d, J  = 12.45 Hz, D20  

ex 6-OH), 4.34-4.42 (3 H, m, narrows on DzO ex, C-6-H and 2 x C-H), 4.43-4.48 (2 H, 

m, 2 x C-H), 4.56 (4 H, AB s, C tf2C6H5), 4.56 (1 H, m, buried, C-3-H), 5.49 (1 H, s, 

0 3CH), 6.77-6.84 (4 H, m, C ^ O M e ) , 7.08-7.16 (4 H, m, Q /^O M e).

I3C NMR (CDC13, 68 MHz): 555.15 (q, 2 x OCH3), 66.71, 68.73, 69.18, 72.85 (4 d, 6 x 

inositol ring C), 71.36 (t, 2 x CH2C6H40Me), 102.40 (d, 0 3CH), 113.83 (d, C-3 and C-5 

of p-methoxyphenyl rings), 129.56 (d, C-2 and C-6 of /?-methoxyphenyl rings), 129.72 

(s, C-l of p-methoxyphenyl rings), 159.42 (s, C-4 of p-methoxyphenyl rings).

MS: m/z (+ve ion FAB, rel intensity) 431 [(M+H)+, 1%], 309 (8%), 121 [ 

( C H 2C 6H 4 0 C H 3)+ , 100%].

Anal Calcd for C23H26O8, C, 64.18; H, 6.09%), Found: C, 63.9; H, 6.08.

1,3-Di-O-p-me thoxybenzy I-scy/Zo-inositol (64)

To a solution of 63 (l.Og, 2.32mmol) in methanol (50mL) was added 1M HC1 (5mL). 

The mixture was heated at reflux for 30 min after which TLC showed that most of the 

starting material (.K/0.48, ethyl acetate/ hexane 1:1) had been consumed. The heating 

source was removed and concentrated ammonia solution (lm L) was added. Stirring was 

continued for a further 30 min at room temperature and then the solvents were removed 

by evaporation in vacuo to give a solid residue which was extracted with hot ethyl 

acetate (5 x 50mL). Evaporation of the combined extracts, followed by crystallisation 

from methanol/ethyl acetate gave 64 (666mg, 1.58mmol, 68%).

Mp: 161-163°C (from ethyl acetate/methanol).
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*H NMR (d6-DMSO, 270MHz): 52.98-3.19 (5 H, m, C-l-H, C-3-H, C-4-H, C-6-H and 

C-5-H or C-2-H), 3.29 (1 H, m, D20  ex gives t, 7 = 9.2 Hz, C-2-H or C-5-H), 3.73 (6 H, 

s, 2 x OCH3), 4.70 (4 H, s, 2 x OC/72Ar), 4.84 (3 H, d, 7 = 3.5 Hz, D20  ex, 3 x OH), 

4.98 (1 H, d, 7 = 5.3 Hz, D20  ex, OH), 6.86 (4 H, d, 7 = 8.4 Hz, C ^ O M e ) , 7.34 (4 H, 

d, 7 = 8 .4  Hz, C ^ O M e ) .

13C NMR (de-DMSO, 68 MHz): 555.09 (q, 2 x OCH3), 73.43 (t, 2 x OCH2Ar), 73.67 

(d, inositol ring C), 73.79 (d, 2 x inositol ring C), 74.50 (d, inositol ring C), 82.95 (d, 2 x 

inositol ring C), 113.33 (d, C-3 and C-5 of p-methoxyphenyl rings), 129.27 (d, C-2 and 

C-6 of p-methoxyphenyl rings), 131.75 (s, C -1 of p-methoxyphenyl rings), 158.49 (s, C- 

4 of p-methoxyphenyl rings).

MS: m/z (+ve ion FAB, rel intensity) 419 [(M -H)+, 3%], 299 (12), 149 (15), 121 [ 

(CH2C6H4OCH3)+ , 100%].

MS: m/z (-ve ion FAB, rel intensity) 573 [(M+NBA)', 95%], 419 [(M-H)', 100], 291

(43), 118(32).

Anal. Calcd for C22H280 8 (420.46):C, 62.85; H, 6.71%, Found: C, 62.5; H, 6.69.

4,6-Di-0-p-methoxybenzyl-scy//0-inositol l,2,3,5-tetrakis[ bis(2-cyanoethyI)- 
phosphate] (65)

To a solution of bis(cyanoethoxy)-Af,jV-diisopropylaminophosphine (516mg, 1.90mmol) 

in dry dichloromethane (2mL) was added l//-tetrazole (267mg, 3.80mmol). The mixture 

was stirred at room temperature for 10 min and then the tetrol 64 (lOOmg, 0.238mmol) 

was added. The mixture was stirred for a further 1 h, after which a 31P NMR spectrum 

showed a complex pattern of signals around 141ppm. The mixture was cooled to -7 8 °C 

and m-CPBA (360mg, 2.09mmol) was added. The mixture was allowed to reach room 

temperature, and then diluted with ethyl acetate (50mL). The solution was washed with 

10% sodium sulphite solution, sat. N aHC03 and brine (50mL of each), dried (M gS04) 

and evaporated in vacuo to give an oil. Purification by column chromatography (ethyl 

acetate/ethanol 5:1) gave the tetrakisphosphate triester 65 as a colourless oil (237mg, 

0.202mmol, 85%).

’H NMR (CDCI3,400MHz): 52.36-2.58 (8 H, m, 4 x Cff2CN), 2.72 (4 H, br t, J  -  6 Hz, 

C tf2CN), 2.84 (4H, br t, 7 -  6 Hz, CH2CN), 3.80 (6 H, s, 2 x )CH3), 3.86 (2 H, dd, J  =

7.6 Hz, 7.6Hz, C-4/6-H), 3.97-4.47 (16 H, m, 8 x OCf/2CH2CN), 4.61-4.71 (4 H, m, C- 

1/3-H, C-2-H and C-5-H), 4.79 (4 H, AB system, Jab = 11.3 Hz, OCtf2Ar), 6.90 (4 H, d, 

J  = 8.5 Hz, C6# 4OMe), 7.39 (4 H, d, J  = 8.5 Hz, C ^ O M e ) .
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13C NMR (CDCI3, 100 MHz): <519.32 (t, / COp= 7.3 Hz, 4 x CH2CN), 19.55 (t, 7Co p =  9.2 

Hz, 2 x CH2CN), 19.70 (t, Jcop= 7.3 Hz, 2 x CH2CN), 55.34 (q, 2 x OCH3), 62.67 (t, 

/ c o p  = 5.6 Hz, 2 x OCH2CH2CN), 62.85 (t, 7COp =  3.6 Hz, 2 x OCH2CH2CN), 63.08 (t, 

/ c o p  = 5.5 Hz, 2 x OCH2CH2CN), 63.28 (t, 7cop =  5.5 Hz, 2 x OCH2CH2CN), 73.92 (t, 

2 x 0 CH2C6H40Me), 76.50, 77.27, (2 d, / c o p  unreadable, 3 x inositol ring C), 78.20 (d, 

inositol ring C-4/6), 78.60 (d, / c o p  = 7.4 Hz, C-5), 113.81 (d, C-3 and C-5 of p- 

methoxyphenyl rings), 116.66, 116.90, 117.12, 117.43 (4 s, 8 x CN), 128.93 (d, C-2 and 

C-6 of /?-methoxyphenyl rings), 129.35 (s, C-l of p-methoxyphenyl rings), 159.34 (s, C- 

4 of p-methoxyphenyl rings).

31P NMR (CDCI3, 162 MHz): -2 .79 (1 P), -3.11 (3 P).

MS: m/z (+ve ion FAB, rel intensity) 1165 [(M+H)+, 40%], 1043(60), 281(80), 121 [ 

(CH2C6H4OCH3)+ , 100%].

MS: m/z (-ve ion FAB, rel intensity) 1367(30), 1330(80), 1110(100),

203[((NCC2H5O)2PO2)', 45%].

scy//0-Inositol-l,2,3,5-tetrakisphosphate (62)

Compound 65 (lOOmg, 85.8^mol) was deprotected as described for 15, with the 

modification that the reaction was allowed to proceed for 5 min before quenching with 

methanol. Purification by ion-exchange chromatography on Q Sepharose Fast Flow 

Resin, eluting with a gradient of triethylammonium bicarbonate buffer (0 to 1M), pH 8.0 

gave the glassy triethylammonium salt of 62, which eluted between 670 mM and 780 

mM. Yield 61jUmol, 71%)

‘H NMR (D20 , 400 MHz, pH 4): <53.48 ( 2  H, dd, /  = 9.76 Hz, 8.55 Hz, C-4/6-H), 3.83 

( 1 H, dt, / =  8.85 Hz , 9.16 Hz, C-5-H), 3.90-4.02 ( 3 H, m, C-1/3-H and C-2-H).

3IP NMR (D20 , 162 MHz, pH 4): 50.11 ( 2 P, d, / Hp = 8.85 Hz, P-l and P-3), 0.38 ( 1 

P, d, / HP = 8.85 Hz), 0.53 (1  P, d, / Hp = 8.85 Hz).

MS: m/z (+ve ion FAB, rel intensity) 102 [ (C2H5)3NH+, 100%]

MS: m/z (-ve  ion FAB, rel intensity) 999 [(2M-H)', 80%], 499 [ (M -H ) ', 100%] 

Accurate mass FAB': m/z 498.919 (M -H)' calcd for C6H 15O 18P4 , 498.921.
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8.12 D- and L-m yo-Inositol 1,3,4,5-tetrakisphosphate

2-0 -[(-)-fi>Camphanoyl]-l,3,5-0 -methylidene-/7i_y0-inositol (66)

To a solution of myo-inositol orthoformate (27) (l.OOg, 5.26mmol) in dry pyridine 

(lOmL) was added (lS,4R)-(-)-o>-camphanic acid chloride (1.25g, 5.78mmol and a 

catalytic amount of DMAP (50mg). The solution was stirred for 30 min at room 

temperature, after which TLC (dichloromethane/ethyl acetate 2:1) showed conversion to 

a major product (Rf  0.26) and two minor products Cfy0.40 and 0.48). The solvents were 

removed by evaporation in vacuo and the residue was taken up in dichloromethane. 

(lOOmL), washed with 1M HC1 (50mL) and brine (50mL), dried (MgSCL). Evaporation 

in vacuo followed by purification using flash chromatography (dichloromethane/ethyl 

acetate 3:1) gave the 2-camphanate 66 (1.19g, 3.21 mmol, 61%) and smaller amounts of 

the 2,4- and 2,6-biscamphanates (see below).

Rf  0.26 (dichloromethane/ethyl acetate 2:1)

Mp: 241-250°C (from ethyl acetate)

'H  NMR (d6-DMSO, 400 MHz) 50.87, 1.02, 1.07 (9 H, 3 s, camph-CH3), 1.54-1.61 (1 

H, m, camph-CtL), 1.96-2.06 (2 H, m, camph-CfL), 2.40-2.47 (1 H, m, camph-CfD, 

4.16-4.20 (3 H, br m, C-4-H, C-5-H, C-6-H), 4.36 (2 H, br m, C-l-H  and C-3-H), 5.41 

(1 H, br s, C-2-H), 5.59 (1 H, br s, 0 3CH), 5.70 (2 H, br s, D20  ex, C-4-OH, C-6-OH)

13C NMR (ds-DMSO, 100 MHz) S 9.87, 16.64, 16.82 (3q, camph-CH3), 28.84, 30.72 (2 

t, camph-CTL), 54.88, 54.64 (2 s, camph-C), 65.20, 67.32, 69.99, 71.96 (4 d, inositol 

ring C), 91.40 (s, camph-C), 102.25 (d, O3CH), 167.22, 178.75 (2 s, 2 x camph C=0). 

MS: m/z (+ve ion FAB, rel intensity) 741 [ (2M+H)+ , 90%)], 371 [ (M+H)+ , 100%)], 

173 [(M-camphanate)+, 40%]

MS: m/z (-ve ion FAB, rel intensity) 536(100), 523 [ (M+NBA)- , 80% ], 416(30), 369 

[(M-H)", 40%], 197 [(camphanate)‘,30%].

Anal. Calcd for C 17H22O9 (370.36); C, 55.13; H 5.99, Found C, 55.1; H, 6.08

Bis[(-)-o>camphanate] Esters of my0-Inositol Orthoformate: Optimised Method

To a stirred suspension of rayo-inositol orthoformate 27 (2.00g, 10.5mmol) in dry 

dichloromethane (40mL) at 0°C were added triethylamine (3.3mL, 23.7mmol) and a 

catalytic amount of DMAP (80mg). A solution of (lS,4/?)-(-)-co-camphanic acid 

chloride (4.55g, 21.0mmol) in dry dichloromethane (lOmL) was added dropwise under 

N2 at 0°C. The cooling bath was removed after 15min and stirring continued for further
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45min, after which time almost no solid was present and TLC (dichloromethane/ethyl 

acetate 3:l)showed two major products at /?/0.32 and 0.23. The solvent was removed by 

evaporation in vacuo and the residue purified by flash chromatography 

(dichloromethane/ethyl acetate 4:1) giving first the 2,6-biscamphanate 67a (3.46g, 

6.28mmol, 60% yield) and secondly the 2,4-biscamphanate 67b ( 1.35g, 2.45mmol, 

23% yield).

lD-2,6-Di-0-[(-)-a>camphanoyl]-l,3,5-0-methylidene-fwy0-inositol (67a)

Rf 0.32 (dichloromethane/ethyl acetate 3:1); [oc]d = -15  (c = 1, C H C I3 ) , [a]r>26 = -21  (c 

= 1, DMF).

Crystals from ethyl acetate/hexane or propan-2-ol. Gradual melting with sublimation 

above 235°C with phase change to needles, melting at 274-275°C.

'H NMR (C D C I3 , 400 MHz) 5 1.00, 1.03, 1.09, 1.10, 1.12, 1.14 (18 H, 6 s, camph- 

CH3), 1.65-1.75 (2 H, m, camph-CH2), 1.92-2.03 (2 H, m, camph-CH2), 2.06-2.18 (2 H, 

m, camph-CH2), 2.41-2.56 (2 H, m, camph-CH2), 3.29 (1 H, d, /  = 6.8 Hz, D2O ex., 4- 

OH), 4.36 (1 H, dddd, appears as dq, J  = 4 Hz, 2 Hz, 2 Hz, 2 Hz, C-3-H), 4.43 (1 H, 

dddd, appears as dq, J  = 4 Hz, 2 Hz, 2 Hz, 2 Hz, C-l-H), 4.55 (1 H, dddd, appears as tt, 

7 = 4 Hz, 4 Hz, 2 Hz, 2 Hz, C-5-H), 4.66-4.68 (1 H, br m, C-4-H), 5.30 (1 H, ddd, 

appears as partially resolved dt, J -  2 Hz, 2 Hz, 1 Hz, C-2-H), 5.54 (1 H, d, J  = 0.98 Hz, 

O3CH), 5.63 (1 H, ddd, appears as dt, J  = 4 Hz, 4 Hz, 1.5 Hz, C-6-H). 

n C NMR (ds-DMSO, 100 MHz) 59.40,9.45, 15.93, 16.11, 16.18, 16.35 (6 q, camph- 

CHj), 28.22, 28.29, 30.21, 30.65 (4 t, camph-CH2), 53.91, 54.02, 54.26, 54.37 (4s, 

camph C), 64.28, 65.76, 68.14, 68.43, 69.38, 71.08 (6 d, inositol ring C), 90.67 (s, 2 x 

camph C), 102.05 (d, 0 3CH), 166.44, 166.16, 177.63 (3 s, 4 x camph C=0).

MS: m/z (+ve ion FAB, rel intensity) 1101 [ (2M+H)+ , 100%)], 687(60), 551 [ (M+H)+ 

, 80%)], 353 [(M-camphanate)+, 20%]

MS: m/z (-ve ion FAB, rel intensity) 1100[ 2M \ 40%], 989(80), 716(100), 703 [ 

(M +NBA)-, 75% ], 197 [(camphanate)\30%].

Anal. Calcd for C27H34Oi2 (550.56); C, 58.90; H 6.22, Found C, 58.7; H, 6.23

lD-2,4-Di-0-[(-)-to-camphanoyl]-l,3,5-0-methylidene-myo-inositol (67b)

Rf 0.23 (dichloromethane/ethyl acetate 3:1); [ « ] d 25 = +7 (c = 1, DMF).

Mp: 270-272°C (from DMF/water).
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JH NMR (d6-DMSO, 400 MHz) 50.86, 0.88, 1.01, 1.02, 1.05, 1.08 (18 H, 6s, camph- 

CH3), 1.52-1.61 (2 H, m, camph-CH2), 1.84-2.07 (4 H, m, 2 x camph-CH2), 2.38-2.47 (2 

H, m, camph-CH2), 4.23 (1 H, br s, C-H), 4.42 (3 H, br s, 3 x C-H), 5.32 (1 H, br s, C-2- 

H), 5.44 (1 H, br s, C-4-H), 5.73 (1 H, s, 0 3CH), 5.96 (1 H, d, J  = 3.36 Hz, D20  ex., C-

6-OH).

13C NMR (d6-DMSO, 68 MHz) 5 9.47,9.52, 16.13, 16.25, 16.44, 16.54 (6 q, camph- 

CH3), 28.28, 28.41, 30.31, (3 t, 4 x camph-CH2), 53.90, 54.07, 54.31, 54.41 (4 s, camph 

C), 64.46, 65.81, 67.95, 68.39, 68.87, 71.05 (6 d, inositol ring Q , 90.73, 90.86 (2 s, 

camph C), 102.12 (d, 0 3CH), 165.81, 166.57, 177.61 (3 s, 4 x camph C=0).

MS: m/z (+ve ion FAB, rel intensity) 1101 [ (2M+H)+ , 55%)], 687(65), 551 [ (M+H)+ , 

100%)], 353 [(M-camphanate)+, 30%]

MS: m/z (-ve ion FAB, rel intensity) 716(70), 703 [ (M+NBA)- , 40% ], 197 

[(camphanate)', 100%].

Anal. Calcd for C27H34Oi2 (550.56); C, 58.90; H 6.22, Found C, 58.6; H, 6.31 

Id-2,6-Di-0-[(-)-fi>camphanoyl]-myo-inositol (68a)

To a stirred suspension of Id-2,6-di-0-[(-)-cocamphanoyl]-1,3,5-O-methylidene-myo- 

inositol 67a (3.0g, 5.45mmol) in methanol (lOOmL) was added 1.0M HC1 (lOmL). The 

mixture was heated at reflux for 6 h, after which time TLC (CHCl3/MeOH 5:1) showed 

that almost all the starting material (Rf  0.76) had been converted to a major product (Rf  

0.40). The clear solution was allowed to cool, and then evaporated to dryness under 

reduced pressure, leaving a white residue which was purified by flash chromatography 

(CHCl3/MeOH 5:1) to give the tetrol 68a (2.58g, 4.77mmol, 88% yield).

Rf  0.23 (CHCl3/MeOH 5:1)

[«]d25 = -8  ( c =  l.D M F).

Mp: 211-213°C (from propan-2-ol)

‘H NMR (de-DMSO, 400 MHz) S 0.82, 0.87,0.96 (9 H, 3 s, 3 x camph-CH3), 0.99 (6H, 

s, 2 x camph-CH3), 1.03 (3 H, s, c camph-CH3), 1.48-1.58 (2 H, m, camph-CH2), 1.83-

2.05 (4 H, m, 2 x camph -CH2), 2.33-2.44 (2 H, m, camphanate-CH2), 3.22 (1 H, m, 

D20  ex. gives dd, J  = 9.28 Hz, 9.27 Hz, C-5-H), 3.38 (1 H, m, D20  ex. gives dd, J  = 

9.28 Hz, 9.27 Hz, C-4-H), 3.49 (1 H, m, D20  ex. gives dd, J  = 9.76 Hz, 2.93 Hz, C-3- 

H), 3.76 (1 H, m, after D20  ex. signal obscured by H20 , C-l-H), 4.98 (1 H, dd, J  = 

10.26 Hz, 9.76 Hz, C-6-H), 5.12 (1 H, d, J  = 4.88 Hz, D2Q ex., C-4-OH), 5.19 (2 H, br
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s, D20  ex., C-3-OH and C-5-0H), 5.34 (1 H, dd, J  = 2.45 Hz, 2.44 Hz, C-2-H), 5.41 (1 

H, d, / =  5.37 Hz, D20  ex., C-l-OH).

13C NMR (CDC13, 67.8 MHz) 59.60, 9.65, 16.15, 16.41, 16.59 (5 q, 6 x camph-CH3), 

28.48, 30.29 (2 t, 4 x camph-CH2), 53.99, 54.03, 54.37, 54.44 (4 s, 4 x camph-C), 67.02,

68.94, 72.08, 73.48, 75.80, 76.22 (6 d, inositol ring CH), 91.19, 91.38 (2 s, camph-C),

166.26, 178.10 (2 s, 4 x camph-C=0).

MS: m/z (+ve ion FAB, rel intensity) 1081 [(2M+H)+, 40%], 694(40), 677(80), 541 

[(M+H)+, 100%], 343 [(M-camphanate)+, 15%.

MS: m/z (-ve ion FAB, rel intensity) 1246(65), 1233 [(2M+NBA)', 10%], 1145(15), 

1079 [(2M-H), 45%], 979(80), 706(100), 693 [(M+NBA)', 70%], 539 [(M -H)', 28%], 

197 [(camphanate)', 60%].

A na l Calcd for C26H36Oi2.2H20  (576.60), C 54.2; H 6.99, Found C, 54.5; H, 6.89.

I d-2,4-Di-0-[(-)-G>camphanoyl]-myo-inositol (68b)

A solution of the alcohol 67b (520mg, 0.944mmol) in TFA (8mL) and water (2mL) was 

stirred at room temperature. After 40 h, TLC showed almost complete conversion to the 

tetrol. The solvents were removed by evaporation under reduced pressure. Water was 

added (lOmL) and removed by evaporation under reduced pressure. This procedure was 

repeated twice to remove residual TFA, and the dry solid white residue was purified by 

flash chromatography (chloroform/methanol 5:1) to give 68b (436mg, 0.807mmol, 

85%).

Rf  0.23 (CHCl3/MeOH 5:1)

[ « ] d 25 = +12 (c=  1, DMF).

Mp: 238-241°C (from DMF/water).

'H  NMR (ds-DMSO, 400 MHz) 50.87, (6 H, s, 2 x camph-CH3), 0.997, 1.00, 1.02, 1.11 

(12 H, 4 s, 4 x camph-CHj), 1.51-1.57 (2 H, m, camph-CH2), 1.87-2.03 (4 H, m, 2 x 

camph-CH2), 2.36-2.46 (2 H, m, camph-CH2), 3.25 (1 H, m, D20  ex. gives dd, J  = 9.46 

Hz, 9.16 Hz, C-5-H), 3.35 (1 H, m, D20  ex. gives dd, J  = 9.16 Hz, 9.15 Hz, C-6-H), 

3.49 (1 H, m, D20  ex. gives br d, J=  9.16 Hz, C-l-H), 3.74 (1 H, m, D20  ex gives br d, 

J  = 10.07 Hz, C-3-H), 5.03-5.13 (4 H, m, D20  ex. gives 1 H, dd, J  = 9.77 Hz, 9.46 Hz, 

C-4-H and 3 x OH), 5.37 (1 H, br s, C-2-H), 5.38 (1 H, br s, D20  ex, OH).
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13C NMR (CDCI3, 100.4 MHz) 59.73, 16.37, 16.42, 16.59, 16.66 (5 q, 6 x camph-CH3), 

28.56, 28.62, 30.47 (3 t, 4 x camph-CH2), 54.11, 54.19, 54.53, 54.44 (3 s, 4 x camph-C), 

66.99, 69.18, 72.09, 73.24, 76.22, 76.39 (6 d, inositol ring CH), 91.27, 91.53 (2 s, 

camph-C), 166.38, 166.42, 178.21, 178.25 (4 s, 4 x camph-C=0).

MS: m/z (+ve ion FAB, rel intensity) 1081 [(2M+H)+, 45%], 694(50), 677(80), 541 

[(M+H)+, 100%], 343 [(M-camphanate)+, 10%.

MS: m/z (-ve ion FAB, rel intensity) 1246(60), 1145(15), 1079 [(2M-H), 50%], 

979(70), 706(100), 693 [(M + N B A )', 65%], 539 [(M-H)', 32%], 197 [(camphanate)', 

80%].

I d-2,6-Di-0-[(-)-fi>camphanoyl]-myo-inositol l,3,4,5-tetrakis[bis(2- 
cyanoethyI)phosphate] (69a)

The tetrol 68a (l.Og, 1.85mmol) was phosphitylated using bis(cyanoethoxy)-
1

diisopropylaminophosphine as described for the synthesis of 64. The P NMR spectrum 

of the intermediate tetrakisphosphite showed signals at 8 138.4 (IP, s,), 139.7 (IP, d, 

5JPP = 7.3 Hz), 141.3 (IP, d, 5/ PP = 7.3 Hz), 142.1 (IP, dd, 5/ PP = 7.3 Hz, 7.3 Hz ). 

Oxidation and work-up as before, followed by purification using flash chromatography 

(chloroform/methanol 5:1) afforded 69a (1.99g, 1.55mmol, 84%) as a brittle white 

foam.

[cc]d22 = -11 (c = 1, CHCI3).

‘H NMR (CDCI3, 400 MHz) 5 0.97, 1.05 (6 H, 2s, camph-CH3), 1.10 (6 H, s, 2 x 

camph-CH3), 1.13, 1.15 (6 H, 2s, camph-CH3), 1.71-1.76 (2 H, m, camph-CH2), 1.91-

2.05 (2 H, m, camph-CH2), 2.13-2.18 (1 H, m, camph-CH2), 2.24-2.30 (1 H, m, camph- 

CH2), 2.40-2.47 (1 H, m, camph-CH2), 2.51-2.58 (1 H, m, camph-CH2), 2.75-2.98 (16 

H, m, 8 x CH2CN), 4.32-4.46 (16 H, in, 8 x C7f2CH2CN), 4.66 (1 H, ddd, J = 9.46 Hz, 

9.46 Hz, 9.15 Hz, C-4-H or C-5-H), 4.73-4.86 (3 H, m, C-l-H , C-3-H and C-4-H or C- 

5-H), 5.54 (1 H, dd, J = 9.77 Hz, 9.76 Hz, C-6-H), 6.19 (1 H, br s, C-2-H).

13C NMR (CDC13, 100.4 MHz) 59.62, 9.73, 16.70, 16.73 (4 q, 6 x camph-CH3), 19.73 

(t, 8 x CH2CN), 28.80, 28.86, 30.65, 31.65 ( 4 1, camph-CH2), 54.81, 54.94, 55.0 (3 s, 4 

x camph-C), 63.09-63.55 (overlapping triplets showing 2Jcop coupling, 8 x POCH2),

69.9, 70.26, 71.94, 72.68, 74.83, 75.64 (6 d, inositol ring Q ,  90.95, 91.04 (2 s, camph­

or  117.12, 117.24, 117.34, 117.45 (4 s, 8 x CN), 166.24, 167.15, 177.81, 178.44 (4 s, 

camphanate-C=0)

31P NMR (CDC13, 162 MHz) 5 -3 .83 , -3.74, -3 .10, -2.85
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MS: m/z (+ve ion FAB, rel intensity) 1285 [(M+H)+, 100%], 1081 [(M -

( N C C 2H 50 )2P 0 2 ‘) +, 12%] 288(40), 169(45), 94(60).

MS: m/z (-ve ion FAB, rel intensity) 1450(50), 1437 [(M+NBA)', 25], 1230 [(M - 

CH2CH2CN+)\  100], 203 [(NCC2H50)2P02\  48%].

Anal. Calcd for C50H64O24P4N8 (1284.99); C, 46.7; H 5.02, N 8.72, Found C, 46.4; H,

5.00, N 8.40.

Id-2,4-Di-(9-[(-)-fi>camphanoyl]-myo-inositol l,3,5,6-tetrakis[bis(2- 
cyanoethyI)phosphate] (69b)

The tetrol 68b (380mg, 0.703mmol) was phosphitylated as described for 68a. A 3IP 

NMR of the intermediate tetrakisphosphite showed signals at 5 139.3 (IP, d, 5/pP = 6.7 

Hz), 139.5 (IP, s), 141.3 (IP, d, VPP = 7.9 Hz), 142.0 (IP, dd, VPP = 7.9 Hz, 6.7 Hz ). 

After oxidation and work-up as before, purification by flash chromatography 

(chloroform/methanol 10:1) afforded 69b (723mg, 0.563mmol, 80%) as a brittle white 

foam.

[a ]D20 = -6  (c=  1,CHC13).

*H NMR (CDC13, 400 MHz) 51.01, 1.03, 1.11, 1.12, 1.14, 1.17 (18 H, 6s, camph-CH3),

1.69-1.78 (2 H, m, camph-CH2), 1.92-2.06 (2 H, m, camph-CH2), 2.14-2.25 (2 H, m, 

camph-CH2), 2.43-2.58 (2 H, m, camph-CH2), 2.77-3.05 (16 H, m, 8 x C //2CN), 4.27- 

4.51 (16 H, m, 8 x C/72CH2CN), 4.70-4.87 (4 H, m, C-l-H, C-3-H, C-5-H, C-6-H), 5.61 

(1 H, dd, J=  9.77 Hz, 9.27 Hz, C-4-H), 6.15 (1 H, br s, C-2-H).

I3C NMR (C D C I3 , 100.4 MHz) 59.66, 16.70, 16.77, 16.86 (4 q, 6 x camph-CH3), 19.66,

19.73 (2 t, 8 x CH2CN), 28.80, 28.86, 30.93, 31.29 (4 t, camph-CH2), 54.55, 54.68, 

54.77, 54.93 (4 s, camph-C), 64.31-63.57 (overlapping triplets showing 2/ c o p  coupling, 

8 x POCH2), 69.70, 70.64, 72.29, 72.84, 74.40, 75.46 (6 d, inositol ring C), 90.87, 90.97 

(2 s, camph-C), 116.95, 117.08, 117.30, 117.35, 117.41, 117.46, 117.65 (7 s, 8 x CN), 

166.31, 166.82, 177.78, 178.35 (4 s, camph-C=0)

31P NMR (CDCI3, 109.4 MHz) 5-1 .84 , -2.05, -2.85, -3.01.

MS: m/z (+ve ion FAB, rel intensity) 1285 [(M+H)+, 100%], 288(30), 169(40), 94(50). 

MS: m/z (-ve ion FAB, rel intensity) 1450(50), 1437 [(M+NBA)', 30%], 1230 [(M- 

CH2CH2CN+)\  100%], 203 [(NCC2H50)2P02', 55%].

Anal. Calcd for C50H64O24P4N8 (1284.99); C, 46.7; H 5.02, N 8.72, Found C, 46.5; H,

5.00, N 8.40.
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lD-/7iyo-Inositol-l,3,4,5-tetrakisphosphate (70a)

The fully-protected tetrakisphosphate 69a (2.00g, 1.56mmol) was placed into a thick- 

walled Pyrex lOOmL autoclavable bottle with a screw-cap and magnetic stirrer bead, 

followed by concentrated ammonia solution (50mL). The bottle was sealed and heated 

{Care!! Use a safety screen) in a water bath at 60°C for 6 hours. During this time the 

suspension first changed to a clear solution and then to a white suspension. The bottle 

was cooled in an ice bath and then the contents were transferred to a round-bottomed 

flask, together with aqueous washings. The mixture was evaporated to dryness under 

reduced pressure and the residue dissolved in de-ionised water (50mL). Dowex 50 resin 

(H+ form, previously well-washed with de-ionised water) was added to the stirred 

solution until the pH had fallen to approximately pH 2. The solution was then washed 

with dichloromethane (3 x 50mL) and ether (3 x 50mL) before titrating with 1M 

potassium hydroxide solution to pH 10. The solution was then lyophilised and the solid 

residue redissolved in the minimum volume of de-ionised water. Methanol (60mL) was 

added to precipitate the potassium salt which was separated by centrifugation, and the 

supernatant liquid discarded. The precipitate was redissolved in de-ionised water 

(20mL) and lyophilised to give the potassium salt of 70a (1.17g, 1.45mmol, 93% yield). 

[a]o22 = -3 .5  to -4 .0  (c = 2, H20 ) (potassium sa lt); Lit.98 -3 .5  for the potassium salt 

[a]o20 = -3  (c = 2, H20 )  (cyclohexylammonium salt); Lit.129 -2 .5  for the 

cyclohexylammonium salt.

*H NMR (D20 , 400 MHz) 5 3.71 (1 H, dd app. as t, /  = 9.8 Hz, 8.8 Hz, C-6-H), 3.77-

3.83 (2 H, m, C-l-H  and C-5-H), 3.87 (1 H, ddd app. as dt, J  = 9.3 Hz, 8.8 Hz, -2.5 Hz, 

C-3-H), 4.18 (1 H, ddd app. as q, J  = 9.8 Hz, 9.3 Hz, 9.3 Hz, C-4-H), 4.31 (1 H, dd app. 

as poorly resolved t, C-2-H).

13C NMR (D20 , 100 MHz) 5 73.40 (C-2), 74.74 (C-6), 76.47, 76.54 (C-l and C-3), 

78.77 (C-4), 80.51 (C-5).

31P NMR (D20 , 162 MHz) 53.07, 3.66, 3.94, 4.58.

MS: m/z (+ve ion FAB, rel intensity, cyclohexylammonium salt) 100 [C6Hi4N+, 100%] 

MS: m/z (-ve ion FAB, rel intensity, cyclohexylammonium salt) 999 [(2M-H)', 20%], 

499 [ (M -H ) ', 100%]

Accurate mass FAB': m/z 498.921 M' calcd for C6H 15O18P4 ,498.921.
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lL-my0-Inositol-l,3,4,5-tetrakisphosphate (70b)

The fully-protected L-trisphosphate 69b (600mg, 0.467mmol) was deprotected in the 

same way as described for 69a, and treated similarly to give the potassium salt of 70b 

(340mg, 0.422mmol, 90%).

[a]d22 = +3.5 to +4.0 (c = 2, H2O) (potassium salt)
129(Lit +2.6 for the cyclohexylammonium salt.

NMR and mass spectroscopic data were identical to those for the enantiomer 70a. 

Accurate mass FAB': m/z 498.925 M' calcd for C6H 15O 18P4", 498.921.

8.13 Alternative Route to D-mjw-Inositol 1,3,4,5-tetrakisphosphate

lD-2,6-Di-0-[(-)-a)-camphanoyl]-my0-inositol-l,3,4,5-tetrakis(dibenzylphosphate)
(71a)

To a solution of bis(benzyloxy)-Af,iV-diisopropylaminophosphine (765mg, 2.22mmol) in 

dry dichloromethane (4mL) was added l//-tetrazole (311 mg, 4.43mmol). The mixture 

was stirred at room temperature for 20min and then the tetrol 68a (150mg, 0.277mmol) 

was added. Stirring was continued for 30min, after which 31P NMR showed a complex 

pattern of signals around <5p 140ppm. The mixture was cooled to -78°C , m-CPBA 

(420mg, 2.44mmol) was added, and the cooling bath was removed. The mixture was 

allowed to reach room temperature and then diluted with dichloromethane (50mL). The 

clear solution was washed with 10% Na2SC>3, and sat. NaHCC>3 (50mL of each) dried 

(MgS04) and evaporated in vacuo. Purification of the residue by flash chromatography 

(chloroform/methanol 10:1) afforded 71a (377mg, 0.238mmol, 86%) as a colourless oil. 

[a ]D 21 = - 6  (c = 1, CHCI3).

‘H NMR (CDCI3, 270 MHz) 8 0.90 (3 H, s, camphanate-CH3), 0.95 (6 H, s, 2 x 

camphanate-CTL), 1.03 (3 H, s, camphanate-CTL), 1.05 (3 H, s, camphanate-CH3), 1.08 

(3 H, s, camphanate-CH3), 1.45-2.50 (8 H, m, 4 x camphanate-CTL), 4.17 (1 H, ddd, J  = 

10 Hz, 8 Hz, 2.5 Hz, C -l-H  or C-3-H), 4.26-4.38 (2 H, m, 2 x phosphorylated inositol 

ring C-H), 4.89-5.09 (17 H, m, 8 x CH2C6U5 and C-4-H) 5.59 (1 H, dd, J  = 9.8. Hz, 9.8 

Hz, C-6-H), 6.29 (1 H, dd, J=  2.5 Hz 2.5 Hz, C-2-H), 7.12-7.36 (40 H, m, 8 x C6H5).

13C NMR (CDC13> 68 MHz) <59.58, 16.40, 16.50, 16.77 (4 q, 6 x camph-CH3), 28.87 (t, 

2 x camph-CH3), 30.55, 31.14 (2 t, camph-CH3), 69.87, 70.34 (2 t, 8 x OCTLAr), 70.61,

71.63, 72.69, 75.15, 75.60 (5 d, 6 x inositol ring C), 90.87, 90.90 (2 s, 4 x camph-C),

127.84, 128.20, 128.28, 128.38, 128.57, 128.82 (6 d, C6H5), 135.29, 135.37, 135.48,
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135.58, 135.68, 135.77 (6  s, 8  x C6H 5), 165.48, 166.90 (2  s, 2 x c a m p h -C = 0 ) , 177 .66 ,

178.07 (2 s, 2 x c a m p h -C = 0 )

31P  N M R  (C D C I3, 109 M H z) 5 - 1 .0 4 ,  -0 .9 8 ,  - 0 .9 2 ,  -0 .6 1

M S: m/z (+ ve ion  F A B , rel in tensity ) 1581[(M + H )+, 80% ], 271(50), 181(16), 91 

[(C 7H 7)+, 100% ].

M S: m/z ( - v e  ion  F A B , rel in tensity ) 1746(80), 1732(40), 1489 [ (M -C 7H 7)",50% ], 277  [ 

(C 6H 50 )2 P 0 2 - , 100%  ]

Two-Stage Deprotection of 71a

A so lu tion  o f  71a (180m g, 1 14jumole) in  e th an o l/w a te r (4 :1 , 50m L ) w as h y d ro g en o ly sed  

at ro o m  tem p era tu re  o v e r P d /C  (10% , 200m g) at a  p re ssu re  o f  50  p .s.i. fo r 18 h. T h e  

suspension  w as filte red  th ro u g h  C elite  to  rem ove the ca ta ly st an d  then  sp lit in to  tw o  

portions. T h e  firs t p o rtio n  w as ad justed  to  pH  10 w ith  cy c lo h ex y lam in e  an d  then  

lyoph ilised  and  k ep t at -20°C  fo r la te r use. T h e  second  p o rtio n  w as d isso lv ed  in 

concen tra ted  am m o n ia  so lu tio n  and  stirred  a t 60°C  in a  sea led  co n ta in e r fo r 6  h. T h e  

so lu tion  w as a llo w ed  to  coo l and  w ashed  w ith  e th e r (25m L ). A 31P  N M R  at th is  stage  

w as ex trem ely  b road , du e  to  the p resence  o f  p a ram ag n etic  ions, and  sh o w ed  n o  detail. 

T he sam ple w as m ad e up  to  50m L  w ith  d e-io n ised  w a te r an d  p u rified  by  io n -ex ch an g e  

ch rom atography  on Q  S ep h aro se  F ast F low  R esin , e lu tin g  w ith  a  g rad ien t o f  

trie th y lam m o n iu m  b icarb o n a te  b u ffe r (0  to  1M ), pH  8.0. T h e  trie th y lam m o n iu m  salt o f  

70a elu ted  b e tw een  7 3 0  m M  and  850  m M . (M eth o d  n o t op tim ised ).

[a ] D 20 =  - 3  (c = 2, T E A B  buffer, p H  8 ) (trie th y lam m o n iu m  salt) L it129 - 2 .5 °  fo r  th e  

cy c lo h ex y lam m o n iu m  salt.

'H  N M R  (D 20 , 4 0 0  M H z) <53.73 (1 H , dd, 7  =  9 .8  H z, 9 .5  H z, C -6 -H ), 3 .8 6 -3 .9 3  (2 H , 

m , C - l -H  and  C -5 -H ), 3 .98  (1 H , ddd , J = 9 .8  H z, 9 .8  H z, 2 .4  H z, C -3-H ), 4 .2 4  (1 H , dd

7 - 2  H z, app. as p o o rly  re so lv ed  t, C -2-H ), 4 .28  (1H , ddd , 7  =  9.8 H z, 9 .5  H z, 9 .5  H z, 

C -4-H )

31P  N M R  (D 2O, 162 M H z, ^ -d e c o u p le d )  5 - 0 . 5 1 ,  -0 .3 4 ,  0 .08 , 0 .35  (no im p u ritie s  

v isib le).
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Appendix 1 Notes on Nomenclature

T h e  in o sito ls  are  cy c lo h ex an e-l,2 ,3 ,4 ,5 ,6 -h ex o ls . In d iv id u al in o s ito ls  are  d iffe ren tia ted  

b y  the  u se  o f  an ita lic ised  p re fix  and  hyphen. T h ere  are e ig h t p o ss ib le  d ia s te reo iso m eric  

in o sito ls , o f  w h ich  seven  are ach iral meso co m p o u n d s p o ssess in g  an  in te rn a l sy m m etry  

p lan e  (scyllo, myo, neo, epi, muco, cis, alio) and  the  e ig h th  (c /i/ro -in o sito l) is  ch ira l. T h e  

sy m m etry  p lan e  m ay  n o t be  o bv ious in alio-inosito l, in  th a t the  in d iv id u a l c h a ir  fo rm s 

a re  ch ira l, b u t ch a ir-in v ers io n  leads to  the  enan tiom er.

muco cis alio

A s s ig n m e n t o f  L o c a n ts  (P o s itio n a l N u m b e rs ) 262

L o can ts  are  assigned  to  the  carb o n  atom s o f  the  ring . T h e  su b stitu en ts  above th e  p lan e  o f  

th e  rin g  co n stitu te  a  set, and  th o se  be lo w  the  p lan e  an o th e r set. L o w e s t lo c a n ts  are 

re la ted  to  on e  set o f  su b stitu en ts  acco rd ing  to  a  sequence  o f  c r ite ria  w h ich  are ap p lied  

su ccessiv e ly  un til a  d ec is io n  is reached:

(i) to  th e  su b stitu en ts  co n sid e red  as a  num erica l series, w ith o u t reg a rd  to  co n fig u ra tio n ;

(ii) i f  on e  se t o f  su b stitu en ts  is m ore  nu m ero u s than  the  o th er, to  the  m o re  num ero u s;

(iii) i f  th e  se ts  are eq u a lly  n u m ero u s and  one o f  th em  can  b e  d en o ted  by  lo w er n um bers, 

to  th a t set;

(iv ) to  su b stitu en ts  o th e r th an  u n m o d ified  hydroxy l groups;

(v) to  th e  su b stitu en t f irs t in  a lphabe tica l order;
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(v i) — fo r m eso -co m p o u n d s only— to those  p o sitio n s th a t lead  to  an  L ra th e r th an  a  D 

d esig n a tio n  w hen  the  absolute configuration rule is ap p lied  to  th e  lo w es t-n u m b ered  

a sy m m etric  carb o n  a to m  (see  below ).

N o te : L o w est nu m b ers are th o se  that, w hen  co n sid ered  as a  s ing le  ascen d in g  series, 

co n ta in  th e  lo w er n u m b er a t the  firs t p o in t o f  d iffe ren ce , e.g . 1 ,2 ,3 ,6  is lo w er than

T h ese  c rite ria  are  generally  app licab le  to  cyc lito l n o m en c la tu re . F o r 

u n su b s titu ted  in o sito ls , on ly  c rite ria  (ii) and  (vi) are requ ired . A p p lica tio n  o f  th ese  

c r ite ria  to  m yo-inosito l, fo r exam ple , g ives the n u m b erin g  show n  b e lo w , in  w h ich  the  

ax ia l h y d ro x y l g ro u p  is d esig n ated  as the  2-position .

Derivatives of Inositols

T h e  n u m b erin g s o f  the  p a ren t in osito ls  are re ta in ed  fo r deriva tives. W ith in  th is 

fram ew o rk , c rite ria  (iv) and  (v) are u sed  to  dec ide  b e tw een  a lte rna tives. T h ese  arise  

b ecau se  (a) in several o f  the  p aren t inosito ls  (scyllo, neo, muco, cis, chiro) th ere  are  tw o 

o r m o re  fu lly  eq u iv a len t s tarting  po in ts  (re la ted  by  a  C„ sym m etry  ax is) fo r the 

n u m b erin g , th a t m ay  n o t be  eq u iv a len t in  the deriva tives, and  (b) c rite rio n  (v i) does no t 

app ly  to  ch ira l d eriv a tiv es  o f  in osito ls  h av ing  a sym m etry  p lan e  {scyllo, myo, neo, epi, 

muco, cis, alio). T h e  app lica tion  o f  c rite ria  (iv) an d  (v) to  a  p a ir  o f  en an tio m ers  g ives 

each  a  p a ir  o f  m irro r-re la ted  p o sitio n s  o f  th e  sam e num bering . T yp ica lly , one 

en an tio m er w ill be  n u m b ered  c lo ck w ise , the o ther an ti-c lockw ise .

Absolute Configuration Rule262

T h e ab so lu te  co n fig u ra tio n  o f  each  en an tio m er is sp ec ified  by  m ak in g  a  vertical F isch er 

p ro jec tio n  o f  the  s tru c tu re  w ith  C - l  a t the  top  and  w ith  C -2  an d  C -3 on  the fro n t ed g e  o f  

the ring . T h e  co n fig u ra tio n  is then  desig n ated  D i f  the hydroxy l g roup  o f  the low est- 

n u m b ered  s te reo g en ic  cen tre  (o r o th er su b stitu en t i f  no  h ydroxy l g roup  is p resen t) 

p ro jec ts  to  th e  righ t, an d  as L- i f  it p o in ts  to  th e  left:

Above plane

myo- inositol Below plane
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HO HO

2 6

2 '0 3 P 0 y ^ c
OH OP°3 '

OPO 32'
2 -

4  4

1 D-myo-inositol 1 ,3 ,4-trisphosphate 1 L-ch/ro-inositol 2 ,3 ,5-trisphosphate

p

For myo-inositol derivatives, this rule has the consequence that derivatives numbered 

anticlockwise have the prefix D -, and clockwise numbering leads to the L - prefix:

The mere absence of a prefix D , L or D L indicates that the compound has a meso- 

configuration (e.g. Ins(l,3 ,4 ,6 )P4) and should therefore not be omitted. However, see 

below.

R e la x a tio n  o f  L o w est L o c a n t R u le

may be relaxed, so that a compound that by this rule belongs to the 1l  series may be 

given the I d  numbering if this shows the relationships that the author wishes to stress. 

For example, in the metabolic conversion:

lD-rayo-inositol 1,3,4-trisphosphate —> lL-myo-inositol 1,6-bisphosphate,

it may not be obvious that the step is simply a hydrolysis at C -l, but this is immediately

apparent if the conversion is written as:

lD-m yo-inositol 1,3,4-trisphosphate —» lD-m yo-inositol 3,4-bisphosphate.

T h e  S y m b o l In s

The recommendation also allows that Ins should be taken to mean wyo-inositol with 

the numbering of the I d  configuration unless other prefixes are explicitly added. Thus, 

lD-myo-inositol 1,4,5-trisphosphate may be symbolised as Ins(l,4,5)P3. In this thesis, D -

OH

D-/T7yo-lns ( 1 ,3 ,4)P 3

oh

L-myo-lns(1,3,4)P3

A more recent recommendation263 allows that, when necessary, the lowest-locant rule
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an d  L -prefixes are o ften  used , even  w hen  no t s tric tly  req u ired , an d  th e  lo w est lo can t ru le  

ap p lied , so  as to  em p h asise  p articu la r ste reochem ica l re la tio n sh ip s , e .g .

“D-Ins(l,3,4)P3 and L-Ins(l,3,4)P3” rather than “Ins(l,3,4)P3 and Ins(l,3,6)P3” .

Example
HO 2.

I OPCV
To name: 2-

h o \ « ^ ^ o p o 3
OPO 2 -

1 Numbering of parent inositol:

l_IQ Above plane
I OH

— V'OH
c=>

OH

myo-inositol Below plane

HO
OH5 OH

OHHO
OH

[ Criteria (ii) and (vi) ]

2 Allocate lowest numbers to phosphate groups within this framework:

ho 2 -
I O P O 3 6 

H 0 - \ ^ ^ ^ 0 2P 0 3
OPO-

myo-inositol 1,4,5-trisphosphate

3 Determine absolute configuration:

[ Criterion (iv) ]
Criterion (vi) no longer 
applies, and therefore 
direction of numbering 
changes to give lowest 
locants.

2 r  OH 1

1 D-myo-inositol 1,4,5-trisphosphate

[Absolute Configuration Rule]
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Appendix 2 X-Ray Crystallography Data for 67a

Note: The labelling scheme for atoms in 6 7 a  is that given in Figure 7.7a.

A crystal of approximate dimensions 0.3 x 0.3 x 0.3 mm was used for data 
collection.

Crystal data: C27H340 12, M  = 550.54, Monoclinic , a = 6.755(1), b = 
31.139(2), c = 7.035(1) A , )3 = 117.800(10)°, U = 1309.0(3) A3, space group P2„  
Z  = 2, Dc = 1.397 gem 3, (fiMo-KJ = 0.110 mm'1, F(000) = 584. Crystallographic 
measurements were made at 293(2)° K o n a  CAD4 automatic four-circle 
diffractometer in the range 2.61<0<21.93 . Data (1795 reflections) were 
corrected for Lorentz and polarization but not for absorption.

In the final least squares cycles all atoms were allowed to vibrate 
anisotropically. Hydrogen atoms were included at calculated positions where 
relevant, except in the case of H1A which was located in the penultimate 
difference Fourier and refined at a distance of 0.96 A  from 04. Examination of the 
supramolecular structure revealed that the lattice is dominated by one 
dimensional linear polymers parallel to the a axis as a consequence of hydrogen 
bonding. Typically, H1A (attached to 04) interacts with 0 8  of the molecule 
generated via the operator -1+x, y, z. [H1A-08, 2.14(3) A; 04-H1A-08, 157(6) *].

The solution of the structure (SHELX86)1 and refinement (SHELX93)2 
converged to a conventional [i.e. based on 1326 with Fo>4a(Fo)] R1 =0.0318 
and wR2 = 0.0755. Goodness of fit = 1.029. The max. and min. residual densities 
were 0.185 and -0.175 eA '3 respectively.

1. Sheldrick G.M., Acta Cryst., A46, 467-73, 1990.
2. Sheldrick G.M., J.Appl.Cryst., 1995 (In preparation.)
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Table 1. Crystal data and structure refinement

Identification code 
Empirical formula 
Formula weight 
Temperature 
Wavelength 
Crystal system 
Space group 
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient 
F(000)
Crystal size
Theta range for data collection 
Index ranges 
Reflections collected 
Independent reflections 
Refinement method 
Data / restraints / parameters 
Goodness-of-fit on F2 
Final R indices [l>2cr(l)]
R indices (all data)
Absolute structure parameter 
Largest diff. peak and hole 
Weighting scheme

Extinction coefficient 
Extinction expression

95FARM2
^27 ^34 0 12
550.54 
293(2)° K 
0.70930 A 
Monoclinic 

P2 ,
a = 6.755(1 )A
b = 31.139(2)A beta = 117.80(1)" 
c = 7.035(1)A 
1309.0(3) A5 
2
1.397 Mg/m3 
0.110 mm ‘1 
584
0.3 x 0.3 x 0.3 mm 
2.61 to 21.93°.
-7<=h<=0; 0<=k<=32; -6<=l<=7 
1795
1638 [R(int) = 0.1331]
Full-matrix least-squares on F2
1 6 3 0 /2 /3 6 2
1.029
R1 =0.0318 wR2 = 0.0755 
R1 =0.0593 wR2 = 0.1193 
- 1(2 )
0.185 and -0.175 eA '3 
calc w=1/[\s!(Fo2)+(0.0502P)2+0.6641P] 
where P=(FoA2A+2FcA2A)/3 
0.0187(27)
Fc’ =kFc[1 +0.001 xFc!X3/sin(6)]” ‘
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Table 2. Atomic coordinates ( x 104) and equivalent isotropic 
displacement parameters (A2 x 103) U(eq) 
is defined as one third of the trace of the orthogonalized Uij tensor.

Atom X y z U(eq)

0(1) -255(8) 5365(2) 10997(6) 64(1)
0(2) -3838(8) 5078(2) 9334(7) 66(1)
0(3) -3254(8) 5782(2) 8695(7) 67(1)
0(4) -4273(7) 5171(1) 3953(6) 63(1)
0(5) -518(6) 4652(1) 6815(6) 48(1)
0(6) -2121(7) 4025(1) 6876(6) 53(1)
0(7) 1069(6) 4373(1) 4277(5) 43(1)
0(8) 3352(6) 4304(2) 2804(6) 51(1)
0(9) 903(7) 5933(2) 8669(6) 59(1)
0(10) 74(11) 6264(2) 5571(7) 98(2)
0(11) 2818(8) 6933(2) 7690(7) 64(1)
0(12) 3831(9) 7625(2) 8288(9) 85(2)
C(1) 200(9) 5224(2) 9282(8) 48(2)
0(2) -1127(10) 4817(2) 8392(9) 47(2)
0(3) -3592(10) 4924(2) 7521(9) 50(2)
0(4) -4433(10) 5285(2) 5835(9) 57(2)
0(5) -2947(11) 5670(2) 6852(10) 57(2)
0(6) -517(10) 5572(2) 7602(9) 50(2)
0(7) -2541(14) 5444(2) 10204(11) 69(2)
0(8) -1083(8) 4243(2) 6232(8) 39(1)
0(9) -298(8) 4062(2) 4734(8) 38(1)
0(10) 2196(9) 4135(2) 3469(8) 41(2)
0(11) 1597(8) 3669(2) 3509(8) 41(1)
0(12) -848(9) 3647(2) 1708(9) 46(1)
0(13) -2145(9) 3925(2) 2538(9) 50(2)
0(14) 1270(8) 3672(2) 5553(8) 38(1)
0(15) 3405(9) 3763(2) 7640(9) 49(2)
0(16) 187(10) 3265(2) 5859(9) 51(2)
0(17) 3192(10) 3353(2) 3352(9) 53(2)
0(18) 1041(12) 6256(2) 7500(10) 58(2)
0(19) 2430(10) 6610(2) 8982(9) 46(2)
C(20) 3356(11) 7301(2) 8881(11) 60(2)
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C (21) 3306(9) 7199(2) 10961(10) 50(2)
C(22) 5365(10) 6905(2) 12144(11) 63(2)
C(23) 47 40(10) 6494(2) 10779(11) 62(2)
C(24) 1349(9) • 6868(2) 10101(9) 48(2)
C(25) -901(11) 7066(3) 8529(13) 77(2)
C(26) 1091(12) 6630(2) 11874(10) 64(2)
C(27) 3188(13) 7588(2) 12185(12) 76(2)
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C (19)-C (24)-C (25) 113 .0 (5)

C (19)-C (24)-C (26) 115 .4(5)
C (25)-C (24)-C (26) 109 .4(5)

C( 19 )-C (24)-C (21) 91 .5 (4 )

C (25)-C (24)-C (21) 112 .9(5)
C (26)-C (24)-C (21) 113 .7(5)
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Table 4. Anisotropic displacement parameters (A2 x 103)
The anisotropic displacement factor exponent takes the form: 
-2 pi2 [ h2 a* 2 U11 + ... + 2 h k a* b* U12 ]

Atom U11 U22 U33 U23 U13 U12

0 (1) 89(4) 60(3) 44(2) -5(2) 34(2) -10(3)
0 (2) 87(3) 63(3) 72(3) -13(2) 58(3) -14(3)
0(3) 90(3) 54(3) 69(3) -5(3) 48(3) 6 (2)
0(4) 63(3) 73(3) 43(2) -3(2) 17(2) -9(2)
0(5) 54(2) 47(3) 52(2) -1(2) 33(2) -6(2)
0 (6) 58(3) 50(3) 59(3) 0(2) 35(2) -12(2)
0(7) 44(2) 43(3) 46(2) 5(2) 25(2) -4(2)
0 (8) 47(2) 56(3) 55(2) 8(2) 30(2) -5(2)
0(9) 82(3) 49(3) 46(2) -4(2) 30(2) -19(2)
0 (10) 155(5) 93(4) 45(3) -4(3) 48(3) -51(4)
0 (11) 95(3) 51(3) 66(3) -5(2) 55(3) -19(2)
0 (12) 116(4) 58(3) 100(4) 5(3) 68(3) -20(3)
C(1) 52(3) 47(4) 45(3) -4(3) 21(3) -5(3)
C(2) 60(4) 47(4) 42(3) 0(3) 30(3) -5(3)
C(3) 56(4) 54(4) 49(3) -3(3) 31(3) -6(3)
0(4) 51(4) 70(5) 51(4) -5(4) 24(3) 3(3)
0(5) 76(5) 49(4) 45(3) 0(3) 27(3) 0(3)
0 (6) 66(4) 46(4) 40(3) -4(3) 25(3) -12(3)
0(7) 102(6) 67(5) 54(4) -12(4) 51(4) -8(5)
0 (8) 31(3) 41(4) 38(3) 2(3) 11(3) -3(3)
0(9) 36(3) 47(4) 34(3) 6(2) 18(3) -5(3)
0 (10) 29(3) 59(4) 31(3) 5(3) 10(3) -1(3)
0 (11) 36(3) 47(4) 40(3) 0(3) 20(3) -2(3)
0 (12) 41(3) 56(4) 38(3) -3(3) 17(3) -10(3)
0(13) 30(3) 73(4) 37(3) 7(3) 7(3) -6(3)
0(14) 32(3) 49(4) 33(3) 7(3) 14(3) -5(3)
0(15) 36(3) 59(4) 45(3) 9(3) 13(3) -2(3)
0(16) 54(4) 57(4) 50(3) 10(3) 30(3) -4(3)
0(17) 49(4) 59(4) 56(3) 2(3) 29(3) -3(3)
0(18) 89(5) 54(5) 51(4) 1(3) 49(4) -11(4)
0(19) 57(4) 43(4) 46(3) -2(3) 31(3) -13(3)
C(20) 67(4) 50(4) 76(5) 2(4) 43(4) -5(4)
0 (21) 53(4) 47(4) 60(4) -3(3) 34(3) -4(3)
C(22) 42(4) 60(5) 74(4) -9(4) 15(3) 0(3)
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C (23) 55(4) 52(4) 86(5) 3(4) 38(4) 8 (3 )
C (24) 43(3) 53(4) 48(3) 2(3) 21(3) -1 (3)
C (25) 51(4) 88(6) 87(5) 6(4) 28(4) 12(4)
C (26) 76(5) 70(5) 61(4) -3(4) 4 5 (4 ) -14(4)
C (27) 101(6) 58(5) 82(5) -21(4) 51(5) -10(4)
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Table 5. Hydrogen coordinates ( x 104) and isotropic 
displacement parameters (A2 x 103)

Atom X y z U(eq)

H(1 A) -5099(95) 4921(13) 3199(94) 75
H(1) 1802(9) 5165(2) 9848(8) 58
H(2) -696(10) 4607(2) 9556(9) 57
H(3) -4499(10) 4665(2) 6931(9) 60
H(4) -5987(10) 5356(2) 5455(9) 69
H(5) -3418(11) 5909(2) 5831(10) 68
H(6) -285(10) 5479(2) 6390(9) 60
H(7) -2772(14) 5536(2) 11418(11) 82
H(12A) -976(9) 3760(2) 370(9) 55
H(12B) -1394(9) 3353(2) 1477(9) 55
H(13A) -2822(9) 4171(2) 1613(9) 60
H(13B) -3297(9) 3761(2) 2668(9) 60
H(15A) 4108(35) 4018(7) 7471(23) 74
H(15B) 4413(28) 3524(6) 7971(33) 74
H(15C) 3034(12) 3804(12) 8789(16) 74
H(16A) -31(58) 3295(5) 7107(36) 77
H(16B) 1144(29) 3023(3) 6047(59) 77
H(16C) -1232(29) 3219(7) 4616(27) 77
H(17A) 2730(38) 3066(2) 3459(64) 79
H(17B) 4671(15) 3402(8) 4500(39) 79
H(17C) 3195(51) 3387(9) 1998(28) 79
H(22A) 6697(10) 7036(2) 12208(11) 76
H(22B) 5623(10) 6844(2) 13594(11) 76
H(23A) 5787(10) 6437(2) 10224(11) 75
H(23B) 4678(10) 6248(2) 11590(11) 75
H(25A) -1385(46) 7261(14) 9288(22) 116
H(25B) -1992(26) 6843(3) 7885(66) 116
H(25C) -734(24) 7220(15) 7428(53) 116
H(26A) -49(56) 6415(10) 11243(12) 96
H(26B) 676(76) 6830(3) 12665(48) 96
H(26C) 2485(26) 6496(13) 12828(44) 96
H(27A) 3189(87) 7497(3) 13490(41) 115
H(27B) 1840(44) 7745(9) 11319(34) 115
H(27C) 4460(47) 7769(9) 12524(73) 115
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Appendix 3 3,P NMR Titration of Ins(l,3,4,5)P4

A preliminary 3IP NMR titration for D-70a indicates a complex micro-protonation 

process due to interactions of the phosphate groups. A slight upfield shift is observed for 

PI on deprotonation, an effect also observed for Ins(l,4 ,5 )P3 .189 However it is clear that 

the behaviour of P4 is very different from that of P4 in Ins(l,4 ,5 )P3 . Further experiments 

are in progress.
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