

University of Bath

PHD

Bivariate splines

Stone, G.

Award date:
1988

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019

Bivariate Splines.

submitted by G. Stone
for the degree o f PhD

o f the University o f Bath
1988

Copyright

Attention is drawn to the fact that copyright o f this thesis rests with
its author. This copy o f the thesis has been supplied on condition
that anyone who consults it is understood to recognise that its
copyright rests with its author and that no quotation from the thesis
and no information derived from it may be published without the
prior written consent of the author.

This thesis may be made available for consultation within the
University Library and may be photocopied or lent to other libraries
for the purposes of consultation.

G. Stone

UMI Number: U537256

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U537256
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

UNIVERSITY IF BATH
LlgRARV ___

M 1 5 SEP m

Bivariate Splines.

Summary.

Cubic smoothing splines are well known to statisticians as the basis o f a non-
parametric regression technique with one independent and one dependent variable.
They arise as the solution of the variational problem,

minimise £ (yt-- f (x {))2 + a J / " 2 ,
f i= i

where X\ < ...< % are the design points, and yi,...O W are the corresponding
observations o f the dependent variable, for some suitable choice o f a, the
smoothing parameter.

Their generalisation to two or more independent variables has also been widely
studied, where the integral is generalised to the integral over R" (for design points
in n dimensions) of the sum of all the second (or higher) derivatives squared.
However, the case where the region o f integration is bounded is not so well
explored. In this case the fitted splines are required to be smooth only over a
region of interest containing the design points. An important special case of the
above is given by bivariate spatial regression where the design points lie in the
plane.

The solution of the variational problem in two dimensions corresponding to the
univariate problem mentioned above, gives rise to a complicated boundary value
problem, and the computation o f an approximate solution to this problem is
covered in this thesis. Chapter 1 presents the mathematical theory o f the thin
plate and the finite window splines, and is based upon the work of Wahba and of
Dyn and Levin. We extend the work of Dyn and Levin to cover finite window
smoothing splines.

In Chapter 2 we consider the implementations o f both thin plate and finite window
splines. We look at the efficient computation o f a matrix required for both thin
plate and finite window smoothing splines. We also develop a set o f integration
routines for use in the implementation of finite window splines, which are very
much quicker than the numerical techniques proposed by Dyn and Levin. A
discussion o f the numerical ill-conditioning of the linear system involved in the
thin plate splines is included and we look at one possible means of improving this
conditioning. Chapter 3 is a comparison o f the thin plate and finite window
splines both in the context o f interpolation with simulated data, and when
smoothing a real data set.

An alternative approach, suitable for use on much larger data sets than either thin
plate or finite window splines, results in the natural neighbour splines o f R.
Sibson. These splines arise from a discretisation o f the roughness penalty, and
give rise to a large sparse linear system. In Chapter 4 we consider the solution of
this linear system using the method o f conjugate gradients, which we describe, and
investigate several preconditioning techniques. The resulting implementation is
capable o f smoothing a data set containing 10,000 points using a relatively small
amount o f processor time.

Chapter 5 is a discussion o f an implementation o f sparse Cholesky decomposition,
for use with natural neighbour splines. We also compare the resulting splines to
the finite window splines discussed earlier.

Acknowledgements

I would like to thank my supervisor, Prof. K. Sibson, for his
guidance and assistance during the course o f this work, and all the
staff and postgraduates of the School o f Mathematical Sciences,
University of Bath. I acknowledge the financial support o f the
Science and Engineering Research Council.

Contents

Introduction 1

Chapter 1

Mathematical Determination o f Bivariate Splines 6
1.1 Characterisation of Bivariate Interpolatory Splines 6
1.2 Indentifying the Interpolatory Spline Q. 9

1.2.1 n = R 2 11
1.2.2 Q ^R 2 13

1.3 Smoothing Splines 16

Chapter 2
Details o f the Implementation of Bivariate Splines 22

2.1 Splines with £2=R2 22
2.2 The Condition of the Linear System 24
2.3 Interpolatory Splines with Q ^R 2 33
2.4 New Routines for the Evaluation o f and An (i/i,(pj) 37
2.5 Comparison o f the Efficiency o f the

New with the Old Integration Routines 42

Chapter 3
Fitting Finite Window Splines to Simulated and Real Data 44

3.1 The Results o f Dyn and Levin 44
3.2 The Choice o f Q Over Which to Fit the Finite Window Splines 45

3.2.1 Sizetest 46
3.2.2 Shapetest 59
3.2.3 Conclusions o f Sizetetst and Shapetest 63

3.3 The Application o f Thin Plate and Finite Window Splines
to a Real Data Set 67

3.4 Finite Window Smoothing Splines 82

Chapter 4
Natural Neighbour Splines 96

4.1 The Natural Neighbour Spline Problem 96
4.1.1 A Discrete Roughness Penalty in One Dimension 96
4.1.2 The Dirichlet Tessellation 97
4.1.3 Boundary over Distance Weights 98

v

4.1.4 A Bivariate Generalisation o f the Discrete
Roughness Penalty 99

4.1.5 Statement of the Natural Neighbour Spline Problem 100
4.2 The Preconditioned Conjugate Gradients Method

for Inverting a Sparse Matrix 101
4.2.1 The Conjugate Gradients Algorithm 101
4.2.2 The Preconditioned Algorithm 102
4.2.3 Some Preconditioning Techniques 104

4.3 The Implementation of Preconditioned Conjugate Gradients
Method for the Natural Neighbour Spline Matrices 108

4.3.1 The Positive Definiteness o f the Natural Neighbour
Spline Matrices 108

4.3.2 Calculations Involving the Interpolation Matrix 110
4.3.3 Calculations Involving the Smoothing Matrix 111
4.3.4 The Preconditioning Matrices - Interpolation 113
4.3.5 The Preconditioning Matrices - Smoothing 115

4.4 Some Examples of the use o f Preconditioned Conjugate
Gradients Method for Natural Neighbour Splines 118

4.4.1 The Interpolation Case 118
4.4.2 The Smoothing Case 121

Chapter 5
More on Natural Neighbour Splines 126

5.1 A Direct Method for Solving the Linear System in the
Smoothing Case 126

5.2 A Comparison of Natural Neighbour and Finite Window Splines 128
5.2.1 Interpolation 129
5.2.2 A Real Data Set 129

Appendix A
A Green's Formula for the Roughness Penalty 136

References 138

vi

Introduction.
Univariate Splines.

Consider the regression model,

where ^ < ...< ^ e R are the design points, and {£,} are assumed to be zero mean,
uncorrelated errors, and / is some unknown function. We are interested in
estimating / , given the observations y,- made at the design points. One way of
obtaining an estimate is to assume that / belongs to some known family o f curves
parametrised by a relatively small number o f parameters. The estimation o f / then
reduces to the estimation o f the unknown parameters. This parametric approach
has the problem that we must know or assume the family from which / is drawn.
Nonparametric approaches to interpolation and smoothing avoid this problem, but
at the cost o f being less powerful in cases where an assumption o f functional form
is appropriate. One o f the best known examples o f such a method is cubic spline
interpolation and smoothing.

Interpolating splines arise as the solution o f a variational problem:

where here //, is some suitable space o f functions from which / is chosen. This
function space is not as restricted as a parametric family o f curves, and in fact in
our case we take H to be the set o f functions whose (generalised) second
derivatives are (Lebesgue) square integrable (see Chapter 1).

This problem arises in mechanics, as the problem of finding the shape o f a stiff
wire constrained to pass through certain points. Its relevance to data analysis is
based on the property that the penalty function being minimised measures
departure from a first degree function, and is in other words a roughness penalty.

It can be shown (see Ahlberg, Nilson and Walsh (1967) or de Boor (1978) for
example) that the solution to this problem is unique, and the resulting function is a
cubic polynomial between neighbouring data sites, with a continuous second
derivative at the data sites. This solution is known as a piecewise cubic
polynomial with knots at the data sites and a continuous second derivative. It is
important to note that the functions in H do not all have continuous second
derivatives, (only first derivatives), and that this continuity arises from the nature
o f the problem.

minimise

subject to f e H
and f (t i) = y i i= 1,...,N

1

Univariate smoothing splines arise from the similar problem,

minimise £ (/) + a j (f ") 2

subject to f e H

where here E is some functional measuring the discrepancy between / and the
data, and a>0 is a trade-off or smoothing parameter. For most purposes a suitable
choice for E is (possibly weighted) sum of squared residuals, that is,

E (f) = h y - f U i)) 2-
1=1

It can be shown that the solution of this problem is again a piecewise cubic
polynomial with knots at the data sites, and has a continuous second derivative.
The choice o f smoothing parameter, which controls the trade-off between the
roughness o f the fitted function and its fidelity to the data, is the subject o f much
o f the statistical literature concerning splines, (see for example Silverman (1985),
Craven and Wahba (1979) and Hutchinson and De Hoog (1985)). We shall not
consider this problem in this thesis.

It can be shown that the fitted values y,- = /(/,) (where / is the estimate o f f) are
related to the observations by,

Y = A (a)Y

where A (a) is an N xN matrix depending on a. This matrix is called the hat
matrix and has some properties similar to those of the hat matrix in linear
regression, (see Eubank (1984).)

Another property o f the solution splines to the interpolation and smoothing
problems is that they are first degree functions outside the range o f the data.
Notice that first degree functions are free, in the sense that g " = 0 wherever g is
first degree, so that there is no contribution to the roughness o f the solution from
outside the range o f the data.

B-splines.

When fitting splines to a set of data the usual procedure is to define a basis for
the space o f all twice continuously differentiable piecewise cubic polynomials with
knots at f i which are linear outside (fi.fjy), and then determine the

A

coefficients o f these basis functions in the representation o f / by minimising the
penalty. One such basis which arises naturally from one approach to the solution
o f the variational problem, is derived from the first degree functions together with
the N Green’s functions

2

I t - t i 13 (»= 1 ,...,A 0

It can be shown that the solution spline to both the interpolation and smoothing
problems can be expressed as,

f (t) = a + b t+ J ^C i\ t - t i \3
i= 1

where a, b and the ct are determined by the data yt and a , and the ct satisfy the
extra conditions, to ensure first degree tail-out,

E c; = ' L cih = °-

However the determination o f these coefficients involves the inversion o f a matrix
which although almost triangular, can be quite ill-conditioned (Eubank 1988).

A change o f basis can be made to obtain a set o f spline functions A with
the following properties.

Pi(ti)> 0
and P M = 0 i f ^ (r , _ 2 ,r{+2) (i = 3 , . . . , iV - 2)

A (0 = 0 i f t> ti+2 0=1,2)

Pi(t)=0 (i= N - l ,N)

This basis is called the B-spline basis, and is discussed further in
Silverman (1985), Eubank (1988) and de Boor (1978).

The bounded support o f the functions in the B-spline basis (when A Is not an
edge spline), described above, is very useful. This property means that all the
matrices involved in the minimisation functional, which is now a quadratic form in
the coefficients of the B-splines, are banded. Consequently quite large univariate
data sets can be smoothed using smoothing splines, with a B-spline basis.

In the next section we discuss the generalisation o f univariate splines with
particular emphasis on bivariate splines. Further information can be obtained on
other aspects of univariate splines from Silverman (1985) and Wegman and
W right (1983).

Bivariate splines.

There are several generalisations o f splines from one to several dimensions.
Perhaps the simplest is the concept o f tensor product splines (de Boor (1978) and
Hu and Schumaker (1986) for example). This method is applicable only to
rectangular gridded data. In two dimensions this corresponds to defining two sets
o f B-splines, based on the knot sequences in the two directions in the grid. That
is for a grid with \< i< n and l<y<m , define the B-splines {#,-} on the

5

3

knot sequence {* ,} , and the B-splines {Af,} on the knot sequence {y ,}. The
spline surface is then given by,

n m
s(x,y) = ' Z ' £ cijNi (x)Mj (y)

/=i/=l

where are coefficients determined by interpolation or smoothing criteria.

These splines have preferred directions, since the resulting surface is a piecewise
cubic along any line parallel to one of the grid directions, but piecewise sextic
along lines in other directions. The special form of the data site positions means
also that these splines are inapplicable to most statistical applications.

Another possible generalisation o f univariate splines is given by multivariate B-
splines (Dahmen (1980,1981)). These functions are piecewise polynomials with
compact support, and so have severed nice properties similar to univariate B-
splines. However, they rely on a triangulation o f the data sites for their definition,
and where there are ambiguities in the triangulation, for instance when a subset of
the points lie in a cyclic configuration, it is not clear that the fitted surface is
independent o f the arbitrary choices made.

A third generalisation, (and the one which concerns us here), arises from a
generalisation o f the variational characterisation o f univariate splines. We are
interested only in bivariate splines here, so we only consider the generalisation to
functions in the plane. The integral o f the second derivative squared is
generalised to the integral (over a suitable region) o f the sum o f all the second
derivatives squared (including d 2ldxdy and d 2ldydx). This penalty function has the
property that it is invariant under Euclidean transformations (rotation, reflection
and translation). This gives rise to a characterisation discussed in Chapter 1. The
solution o f this characterisation inherits the above mentioned property o f the
penalty, and also is invariant under and isotropic change o f scale. A further
generalisation can be made by allowing the order o f the derivatives taken to vary
but we do not consider this here.

Remember that univariate splines are first degree outside the range o f the data.
This means that the univariate integral can be taken over any interval that contains
all the data, and the same solution spline w ill result. In two dimensions however
this is not, in general, the case. By a modification o f the methods used in
Chapter 2, Section 2 it is possible to show that bivariate splines are not first
degree outside the range o f the data, nor do they tend to a first degree function a
long way from the data. Thus in theory the region o f integration in the bivariate
measure o f roughness (see Chapter 1) can affect the solution spline. When this
region is the whole plane, the solution is the so called thin plate spline, studied

4

extensively by Wahba (1979) etc. and others. The spline is known as a thin plate
spline because the roughness in this case is proportional to the strain energy in a
uniform thin plate o f infinite extent, under infinitesimal displacements at the data
sites. This problem in mechanics generalises the mechanical problem from which
univariate splines arise. Dyn and Levin (1982) have suggested a numerical
technique, when the region o f integration is polygonal, in the interpolation case.
In Chapter 1 we present the mathematical derivation o f the solution splines in both
the thin plate and what we have called the finite window cases, and extend the
work o f Dyn and Levin to cover smoothing splines. Chapter 2 describes several
improvements to the existing implementations o f bivariate spline procedures, and
Chapter 3 is a comparison o f thin plate and finite window splines.

There is no basis composed of functions with compact support for the bivariate
problem as considered here, and all the matrices in the calculation o f the splines
are fu ll and can be quite ill-conditioned. Section 2 o f Chapter 2 considers this
problem and suggests a change of basis which can reduce the condition numbers
o f the matrices involved. For larger problems (that is those involving large
numbers of data sites) the denseness of the matrices becomes a lim iting constraint.
Sibson (1985) has proposed a discrete approximation to the roughness penalty
used in finite window bivariate splines. This approximation gives rise to very
sparse linear systems, and Chapter 4 describes this approximation and considers a
class o f sparse matrix techniques for the solution o f the linear systems. Chapter 5
considers a direct method for solving the linear system and compares the resulting
splines to the finite window splines that they approximate.

5

Chapter 1.
Mathematical Determination of Bivariate Splines.

1.1. Characterisation of Bivariate Interpolatory Splines.

This section summarises the mathematical aspects o f spline theory that we require
to find a bivariate interpolatory spline. We w ill consider smoothing splines later.
The multivariate interpolatory spline problem can be stated,

minimise J(J)
f*n

subject to f (t i) = z{ for 1 < i < N ,

where here H Q { f : R "—»R} is a set o f functions, with / : / / —>R some measure of
the roughness o f a function in H and the r{- are points in a domain Q c R ” , with

z, e R the values to be interpolated.

Before we can solve this problem we must specify what we mean by J and which
functions are to be included in the space H. A suitable class o f functionals J
which have been considered in detail are,

£ r / dmf (x l
• W) = E I (— ^ ----------------) d x \ - d x n

i i, = lflc R " '> •

where m e N u {0 }.

Our main interest w ill be confined to the case when (n - 2) so that we shall be
surface fitting. We take m=2, the natural analogue o f univariate cubic splines, so
that, £2=R2 corresponds to the well known thin plate spline problem. A more
general discussion (that is with 2) o f multivariate splines is given by
Duchon (1976), Meinguet (1979a) and Meinguet (1979b). A discussion of the
related smoothing splines can be found in Wahba (1979) and the case (Q ^R 2) is
considered by Dyn and Levin (1982).

In the area o f our interest, however, J corresponds to the functional

d 2f \ 2 . d 2f \ 2 ■ / d 2f \ 2
^ / > = J n (S) 2- (S A (0 ydx dxBy dy-

and here / r 2 (/) is the strain energy o f a uniform thin plate o f infinite extent under

infinitesimal displacement / from the rest position.

It remains to choose the space o f functions //, over which to minimise J^. It is
appealing to take

df d f .. , .. L1 d 2f d 2f d 2f— , — continuously differentiable, — r - , -----— , — r-
dx dy dx2 dxdy dy

2 ,

6

However we w ill see later that we require our space H to be a Hilbert space under
a norm derived from Jq . In order to have completeness we must include
functions where dfldx and dfldy are not necessarily continuously differentiable, but
which in some sense have discontinuous derivatives. To construct a suitable
space, therefore, we make use o f the notion o f generalised functions (or
distributions) and their generalised (or distributional) derivatives. For a more
detailed treatment see Mazja (1980) and Temple (1955).

In this theory continuous functions have generalised derivatives o f all orders. (In
fact generalised functions have generalised derivatives o f all orders.) We shall
write dxf for the generalised derivative o f / w.r.t. x. It can be shown that i f dfldx

is continuous in some domain then dxf is equal almost everywhere to an ordinary
continuous function and dxf^d f/dx in that domain.

Accordingly we define H to be [f : d xxf tdxyf , d yyf e L 2(Cl)}. This space is
known as the generalised Beppo-Levi space o f order 2 over Q. (See Deny and
Lions (1954) and Meinguet (1979b)).

It can be shown, (Duchon (1976), Meinguet (1979a) and Mazja (1980)), that //, as
defined above, equipped with the semi-inner product

A q (u ,v) = l^dxxUdjaV + IdxyUdxyV +dyyudyyVJ

is a semi-Hilbert space o f continuous functions.

Before proceeding further we make the following remark. Since throughout we
are using Lebesgue measure any function in H is determined only up to addition
o f a function which is zero almost everywhere, so that when we say u -v in H we
mean u -v a.e. and by v is continuous in H we mean 3w = 0 a.e. s.t. v + w is
continuous in the accepted sense.

The semi-inner product Aq as defined above has kernel on //,

O = span { 1 , x , y },

that is, the space of first-degree polynomials in x and y, (where we note the above
proviso). Let us now return to our interpolation problem which can now be
stated,

minimise Aa (f j) s.t. / (f t) = z,- (1 < i <N).
feH

Suppose, without loss of generality, that ^ not collinear. Then we
can choose a basis Pi ,p2 ,Pz for O such that, Pi(tN_3+j) = Sy (the Kronecker delta)

l < i j <3, that is

7

Pi(*N- 2) Pi^N-O P i({N)

1 1 0 0
i 2 0 1 0

3 0 0 1

We now define the linear map P : / / - » 0 by

P (f) = /(* jv -2)Pi + /(* jv -i)P 2 +/(*w)P3»

so that P (f) is the first-degree polynomial taking the same values as / at tN_2,
tN_i and tN. We can see that P is a projection onto <X> with kernel given by

x 0 = (I -P)H = { f e H I / (r N_2) = /(rN_!) = / (; *) = 0 }.

It can be seen that since H is a semi-Hilbert space then, equipped with An , X0 is a

Hilbert space and

H = O©X0.

Note that the preceding discussion holds for any three distinct that
are affine independent (ie. not collinear), or more generally we can write

X0=H/<t>

(that is Xq is isomorphic to the quotient space ///<!>).

So we may again restate our original problem in the following way.

Problem. Let f e H be such that / (f t) = zj fo r 1 < i< N , then find u * e (I -P 0)H
with, u*(ti) = (I - P 0)(f)(t i) fo r 1 <, i <N, where P0 is any linear projector from H
onto <X> and such that A^{u* ,u *) is a minimum.

In particular using the P defined above and writing,

z1' = z/ -z N_2p 1(r1)-z ^_ 1p2(r/)-z^p 3(rt) for 1 < i< N - 3

we have the equivalent problem,

Problem. Find u *e X 0 such that w*(f,) = z{-' l < i < N - 3 and A q (u * ,w*) is a

minimum.

Put

w0 = (/e X 0| / (f ;) = 0 l^ t ^ W - 3 }
= (f s H | /(q) = 0 1 Z i Z N) .

Then W0 is a closed subspace o f X0, since X0 is a complete space o f continuous
functions. So the linear variety W defined by

W = { /e X 0 | / (r;) = zt' 1 < i < N - 3}

S

is accordingly a closed affine subspace o f X0. In this situation we can use the
orthogonal projection theorem to get,

Lemma. 3 unique u* eW with minimal norm characterised by

Aa (u*,v) = 0 V v e Wq

The orthogonal projection theorem is simply a generalisation o f the geometric
result that the closest approach of a line to a point x in R2 is achieved by the
unique point y on the line where (y -x)*z = 0 V z parallel to the line. In our case
u* is the point in W closest to the origin in X0 and W0 is the subspace parallel to
W.

Since An (v,p) = 0 V peO the above characterisation can be written.

Theorem 1.1. There exists a unique solution d to the interpolation problem,

ti(t{) = zi 1 < i< N

with A^(u,d) a minimum

and u is characterised by

An(ti,v) = 0 \/v e H with v(ti) = 0 1 < /< / / .

1.2. Identifying the Interpolatory Spline ft.

We jd iow proceed to calculate d, using the characterisation derived above and the
existence and uniqueness properties provided by the orthogonal projection
theorem.

Let Pi e H for 1 < i < N be such that /?,(/,) = <5̂-, 1 <i,j<N . Such pt exist since
they could be simply interpolatory splines and these exist because o f theorem 1.1.
Then V / e / / ,

/-i/WA
; = i

and conversely any g e W0 can be written in this form, with f = g, because
g(tj) = 0, 1 < / < N for all such g. So d is characterised completely by,

A n (& > f - l i f (t i)Pi) = 0 V /e // and deW.
i= 1

That is u is completely characterised by,

An (d ,f) = j :A n (d ,p i) f (t i) V /e / /
i=i

and the interpolation conditions.

9

The exact choice o f the pt in the above is not important, since, suppose that
Yi e H, 1 < i < N are also such that Yi(tj) =Sij for 1 <i, j<N . Then for each j since
YjtH ,

;=i
= An (u,J3j)

So Anitiypi) is independent o f the particular choice o f Pi and we may write ft is
characterised by

A&(ft,f) = £ U V M)
i= 1

where = A^(ft,Pi) and Pi is any element o f H satisfying /?,(/,) = 0 for j ^ i
and Pi(ti) = 1.

A t this point we note that since Aa (ft,p) = 0 for all p g O we must have,

= 0 V peO .
i— 1

We note that since ft is the unique solution o f the interpolatory spline problem, by
theorem 1.1, the Ai(ft) are uniquely determined by the interpolation conditions and
the above.

This characterisation is sufficient in itself to determine the solution spline ft up to
a first-degree polynomial, for we can see that if,

A q (u J) = A q (v , /) V / e / / ,

then A q (m - v , /) = 0 V fe H ,

so that in particular A q (m - v , m- v) = 0,

=> dxx(u-v), dxy(u-v) and ^ (m -v) = 0 in £2,

=> (m - v) g O .

We now proceed to the calculation of ft from the above characterisation. In
appendix A, we show the derivation o f a Green’s formula. This Green’s formula
is given in Dyn and Levin (1982) and below. We have for bounded Q (provided
dCl satisfies certain regularity conditions),

^Q(M,V) = j dxxUdxxV-\-2dxyUdXyVJfdyyUdyyV
a

= f (V4«) V + 6 (V (^ -) -V v - ^ - (V 2«)v)
a L dn dn

10

I f Q. is not bounded this formula cannot hold as dQ. makes little sense. However
following Meinguet (1979b) we can derive the equivalent formula for Q=R2,
namely,

j4r2(m,v) = Jr2(V4m)v Vw,ve//.

Thus we can derive an equivalent differential characterisation o f U, in terms of
the Dirac delta function centred at a point r, 8t. That is we can write

/VV m = in Q,
1=1

= 0 ' on 3CI,
dn

■“ V2# = 0 on d£l.
dn

where the boundary conditions are automatically satisfied when Q=R2 (since
fteH). Accordingly we look for ft in the form,

0 (0 = E * i(0) £n (M i) + P it)
i= 1

where peO , and is a solution to the following,

V4£n (*,r) = 8t in Q ,

dEn (\ t)
V — =^— ^ = 0

dn

± * Ea i : t) = 0
on

1.2.1. n=R2.

Firstly we shall consider the case when 12=R . The above equation is known in
this case to have a solution given by

E(s,t) = (16/r)-1 ||s -r||2log ||,s-f||2 s ,te R2

(See Duchon (1976), Dyn and Levin (1982), Meinguet (1979a) or
Meinguet (1979b) for example. Note that these authors all write E in the form
(8;r)-1 ||$ -f||2log ||s -f|| but we use the above form so as to save the computation
o f a square root in the implementation.)

Unfortunately it can be seen that £ (*,f) since d ^ E i^ t) and its other second

derivatives are not square integrable functions. Meinguet (1979b) remarks that
£ (* ,0 has square integrable second derivatives over any compact region, even i f
that region contains the point t and goes on to prove that the function

11

i= 1

has square integrable second derivatives for all distinct tt e R2 and for any set
{ coi : 1 < i < N } provided,

N N N
= o, = °-

i= 1 i= 1 »=1

where ^ = (xt- ,y,) 1 < j < N.

Thus we have that,
N N

^R2(Z <°iE(',ti),f) = 2 *>//(',)>
i= l i= l

for all and coi that satisfy the above. Thus ti is given by
N

&(t) = ' Z A i E (t , ti) + dlp i (t) + d2P2(t) + d3p3(t)
i= 1

where the coefficients At- 1 < i< N and dj j = 1,2,3 are given by the interpolation

conditions,
N
2 A; E((x;- ,y,),r,) + d{ + d 2 Xj + d3 y} = zj \ < j < N
i= 1

and by the conditions,
N N N
2 A; = 0 , 2 A/*; = 0 , 2 A/>’,- = 0
i= 1 i = l j=1

In matrix form writing,

(K ytj = ,
NxN J J

T =
Nx 3

i *1 y i

1 xN yN

J-
'

h-*
J

a
.' J

t-------
*

N

and A =
Nx 1

, ^ =
3x1

d2
d3

J

z =
Nx 1

ZNb J

we have the matrix equations,

KX + Td = z, Tr X = 0.

These equations can be written in a from which makes nature o f the linear system

involved more apparent, namely,

12

< N > < 3 >/ N
AN

p
K

*

7
AN

p +

A
AN

»—
 N

t-

V V __ V
A3
V

t T 0 J
A3
V

d ^
A3
V

0

We solve these equations using the method o f Wahba (1979) with some
modifications. Firstly it is noted that i f iq 3 are N - 3 linearly independent
N-vectors such that each is also orthogonal to the columns o f 7, then Tt A = 0
ensures that A is in the space spanned by the iCs. In matrix notation, writing,

U = (iq ,..., % _3)
N x N - 3

then we have

A = Uy

where y is an (N-3)-vector. In fact for the case o f smoothing we require, for
Wahba’s method, that the columns of U are orthonormal, that is, UTU = /#_3.

Substituting this in the interpolation equation gives us,

K U y + Td = z

so premultiplying this equation by t /T we have, using the fact that UT 7 = 0,

(Ut K U) y = (U T z)
N - 3 x N - 3 N - 3 x l N - 3x1

From this equation y can be obtained, and hence A. d is found from the equation,

(7 t 7) d = 7 t (z - K A)
3x3 3x1 3xN Nx 1 NxN Nx 1

and then ft is completely determined.

1.2.2. Q+R2.

We now return to the problem of finding Esi when n ^ R 2. it is instructive to
arrange the first two o f the boundary conditions in an alternative form namely,
reversing the order of differentiation gives,

and

d_
dn

d_
dn

dx

dEa (-,t)

= 0

dy
= o

on the boundary dCl . This says that the change in gradient across the boundary is
zero and the remaining boundary condition says that the change in the Laplacian
is zero across the boundary. To determine Eq we put Eq = Zq + E2 with Zq, E2

13

the solutions o f the following, (see Dyn and Levin (1982))

V4£ , (v) = d, in n ,

V4£2(-,f) = 0 in £2 ,

<?g2(v)
dn

= - V
<?£i(v)

dn
on <9£2

The solution for El is easily found as in the case when £2 = R2. Thus we let,

^ (j.O = (16^)_1 ||^—r|| 2log||^—r||2 s,t g £2

To find E2 however now entails the solution o f a rather complicated boundary
value problem which cannot in general be solved in closed form except in the case
o f some rather special choices o f the region £2. Dyn and Levin (1982) propose
finding E2 as a series solution.

They define a sequence o f functions { q>n) by

<Pi - Re(zz)

<P2 +4 j = Im (z'+2)

Vi+Aj = Re(z-/+2) }■ j > 0

(pM j = Im (zz'+2)

<Ps+4j = Re(zz;+2)

where z is introduced as a short-hand notation, with z = x+iy.

Each member o f this sequence satisfies the biharmonic equation, V4 ?̂ = 0 in R2.
In polar coordinates this sequence becomes,

<P\ = r 2

Vi+Aj = r i +2sm(j+2)0

Vi+Aj = r ;+2cos(y+2)0 }• j > 0

(Pa+aj = ^ +3sin(y+ l)0

(Ps+Aj = r '+3cos(y+l)0

In this form the series solution is analogous to the the well known series solution
for Laplace’s equation in a region in the plane, where we include only those terms
which are continuous at the origin.

14

The method thus involves finding an approximation to ti in the form of a linear
combination o f the functions, { yq,..., yN, <pi, ...,q>n, ,p2 >P3}» where,

Yi(t) = (16^r)_11| r— 1| 2log|| r—̂ ||2 1 < i< N

and are the first n functions from the above sequence. Here n is chosen
in some way as a closeness of approximation parameter and n - 0 corresponds
simply to the thin plate spline with Q=R2. We return to the choice o f n later.

This approximation leaves us with N+n+3 parameters to be determined, and the
equations.

= E V (' i) V / e / /
i= 1

fi(ti) = Zi l < i < N

to use to determine them. The first o f these equations we can only hope to satisfy
approximately because we are only approximating ti. A technique often used in
this situation, is to apply the variational characterisation to the subspace o f basis
functions, namely, { <Pi,..., <pn ,Pi ,p2 ,Pz}. So letting,

N n 3
on = + E *;« \ + E 4 f t

/= 1 i= l /= 1

this gives us the following n+ 3 linear equations,

= 0 j = 1,2,3
i=i

N n N
E V *n (V'/ ,<Pj) + = £*i<Pj(ti) 1 £ j £ n
i= 1 i= 1 i=l

together with the N interpolation conditions,

+ X b iV i i t j) + 'Z d .p ^ t j) = Zj 1 < j £ N
i= l i= l i= l

so that we have an N+n+3 square linear system to solve to find the unknowns

,...,A ^, bj di ,^ 2 ,^ 3 -

In matrix notation with A ,d ,7 \/f,z defined as before and defining,

b =
n x l

we have the above equations in the partitioned form,

T1 X = 0 , M jX + M2b = BX , KX + B r b + Td = z,

or in the extended matrix form,

K B r
N r t--------------

*
n

b - 0

d ^ 0
C J

The solution is obtained by inverting the positive definite matrix M2 to write,

b = (M2y l (B - M j) X

and thus reducing the system to the first o f the above equations together with the
follow ing ,

(K + B t (M2)- '(S -M 1t)) X+Td = z.

These equations can then be solved in exactly the same way as before, only
remembering that the matrix multiplier o f X is no longer symmetric.

1.3. Smoothing Splines.

We now present a derivation o f the form of smoothing splines which follows
closely that o f Kimeldorf and Wahba (1971).

The bivariate smoothing spline problem is a natural extension o f the interpolation
problem. Earlier when we considered the interpolation problem it was defined as

Find the f e H with f (t {) = z{- (1 < i< N) such that An (f , f) is a minimum.

In the smoothing case we do not require that /(r ,) = z{- only that / (f f) be in some
sense close to z,-. How we measure the closeness o f the function values / (r t) to
the data zt depends upon the reason for smoothing, however the sum o f squared

differences is regularly used and is the easiest computationally. So we define the
smoothing spline problem by,

N 9Find f e H with J (/(* /) - z() + a A ^ { f , f) a minimum.
i=i

Here the scalar parameter a(>0) controls the trade-off between the roughness of
the solution and its fidelity to the data. As a -^0 the smoothing spline tends to
the interpolating spline and as a-^oo^the~smoothing spline tends to the least

squares linear regression planar solution. n

16

As before we suppose without loss o f generality that tN_2,tN_i ,tN are affine
independent, and that p\ ,p2 are defined as before. Then we define N - 3
functions by

Gi(t) - E c i(t , t i) - 'E p j(t i) E n(tttN_3+j) (l< i< N -3)
j = l

Notice that

where

N
G,(f) = ZcOijEaO.tj)

7=1

N 3
= P k (t i) - ' L P l (t i) P k (* N - 3 + l)

7=1 1=1
3

= PkUd-'Z.PiU,) Su
1=1

= 0

- (1<&<3, \< i< N -3)

that is

'Zcoijpitj) = 0 VpeO .
j= i

Therefore each G-t is a member o f H and in fact it is easy to see that they are
linearly independent since the ZsqCv,) are.

From our discussion on interpolatory splines we can see that the functions G,- have
a similar property to the interpolant tf, namely that,

Aa(Gitf) =
j = i

= m - :Z P j(t i) f (tN_3+j) (l< z< N -3)
7=1

and reintroducing the projection P onto <X> we have,

Aa (Ghf) = d - p) i f m

= f (h) - P f ih) writing pf for P (f) .

Therefore

f (t i) = A a (Gi , f) + p f (ti) (l< i< N)

where we define G,= 0 for i= N -2 ,N - l ,N .

17

We can now therefore write the sum of squared differences term from the
minimisation functional in the following form,

Z (/ (t ,) - z ;)2 = ,/)+;>/<<;)-z ,)2'
1=1 /= 1

And then remarking that any function f e H can be written uniquely as
N
'EVi Gi + Pf + gf
i - l

where G1= (/ - / ,)Gt-. gf is a function in H with P(g/)= 0 and such that
AftiG i ,gf) = 0 for 1 <i<N, we can write the above part o f the functional to be
minimised in the form,

£ Mn (G/, £ Gj +pf +gf) + P('ZTjjGj+pf +gf)(ti) - z{ \2
i= 1 7= 1 y=l

= £ { 'LV jAQ(Gi ,Gj) + p f i t i) - Zi)2
i= 1 ;=1

since An (Gt-,Gy) = /4n (G,-,Gy), etc. and since P(Gj)= 0 etc.

The roughness term in the functional can likewise be written,
N N

AaCLvjG j+P f+g f, 'Znp j+Pf+Sf)
i =1 7=1

= ZZlil/flfCpC,) + Aa (gf ,gf).
i=l;=l

Combining the above two results into the complete functional to be minimised, we
can see that the smallest value w ill occur when An(gf’8f)=Q- Sinc® P(gf)= 0 this
means that the functional is minimised when gf=0. This argument shows that the
smoothing spline solutions has the same from as the interpolating spline , i.e. the
solution is o f the form,

N
'Z n P i + P/
t=l

or equivalently,

where

+ ZdjPj (t)
;=i 7=i

^ i P (t i) = 0 V/?eO.
i=i

So now it only remains to determine the coefficients A,- and dj.

18

We can now rewrite the minimisation functional in terms o f the coefficients
above. Let (K)ij = and T be defined as in the interpolating splines
section. Then,

f)(/2 0(f;)-z ,)2 = (1<X+Td-z)T(KX+Td-z).
i= 1

Also,

A n (“a ’“ a) = E V a C 'z)
i= l

= 2 ̂XiXjE^iti ttj)
1

=

Thus the minimisation functional (for fixed a) is a quadratic form in the
coefficients X{ and dj> namely,

Q(X,d) = (KX+Td-z f(KX+Td-z) + aXr KX.

In the case of fl= R the matrix K is the same as the matrix K defined in the
section on interpolatory splines. However when Q ^R 2 since we cannot find
exactly the matrix K is unknown. We can approximate K by the matrix
corresponding to K in the interpolation equations namely, K + B t (M2)~1(B -M T)

where the matrices B,M\ 2iIt defined in the earlier section. We now proceed
with K as defined above.

It is required to find the extremals of the quadratic form mentioned above. Taking
Gateaux derivatives o f the quadratic form gives us the following sets of equations,

4 ^ - = 2KJKX + 2Kt T - 2K t z + a (K T+K)X = 0
oX

^ = 2Tt KX + 2TJTd - 2Tr z = 0 .
da

Thus the smoothing spline is completely determined by the form given above and
the equations given below,

(K J K + \a (K J +K))X = K J(z-Td)

Tr T d = Tr (z-KX)

Tt X = 0

In the case I2=R2 Wahba (1979) proposes the following solution o f the above
equations. Notice that in this case the matrix K is symmetric and i f we define the
matrix U as in the section on interpolation, and demand that U TU = I , then
defining K = UTKU the above equations reduce to,

19

(K + a I) r = U'z
x = U y

Tr Td = Tt (z-KX).

Now K is real symmetric matrix and therefore diagonalisable, so writing
K = RDRt we have (for all «>0),

X = UR(D+aI)~i RTUTz

Using this form of the equations, to find a smoothing spline solution for sequence
of different a ’s it is only necessary to invert a diagonal matrix and carry out some
matrix multiplication for each new value o f a.

We are motivated by this result to find an equivalent form for the equations when
Q ^R 2» that is when the matrix K is not necessarily (or only approximately)
symmetric. Solving the second set o f equations for d we find that
Td = T(Tt T)~1Tt (z-KX). Notice that T(Tt T)~1Tt is the projection matrix
onto the subspace o f spanned by the columns o f T. Notice also that since
UTU = IN_3 the matrix UUT represents a projection and since Ut T = 0 and the

rank o f U is N - 3, this projection is onto the orthogonal complement o f the
subspace o f spanned by the columns o f T. This means that,

T(TtT) -1Tt = I - U U T.

Using this result and substituting into the first set o f equations we have,

(K TK + ia (K T+K))X = K T(z - (I - U U r)(z-KX))

therefore

((i?T U)(U TK)+)la (K T+K))X = (K r U)(U Tz).

Letting X = Uy and K defined as above the equations become,

(K y K + \a (K J +K))y = K J (U Jz).

These equations have a somewhat similar form to those derived when Q=R , but
 r p -------- -----

are more complicated in the sense that K +K a real symmetric matrix replaces /
as the multiplier o f a. This means of course that the solution o f these equations is
slightly more complicated.

Firstly we note that since K TK is a real symmetric positive definite matrix it can
be written in the form SST for several nice choices o f S. For example S might be
a lower triangular matrix or o f the form R\D± where R± is an orthogonal matrix

and D i is a diagonal matrix. We must choose a decomposition that is

computationally easiest to work with. Then the above equations can be written,

5 (/+ i« S -1(^ T + ^)5 -T)STr = K t (U t z).

20

Diagonalising JS 1(ATt +AT)5 t we can now proceed as before.

In this way more work is needed in itia lly but then in order to calculate y for a
sequence o f values o f a very little extra work is required over that for Q=R2.

21

Chapter 2.
Details of the Implementation of Bivariate Splines.

In this chapter we w ill describe some o f the details o f our implementation of
bivariate splines, where it differs from the implementations o f Wahba and of Dyn
and Levin.

2.1. Splines with Q=R2.

There is only one point of major interest in the implementation o f interpolatory
splines when £2=R2, namely the calculation o f the matrix U. Wahba (1979) uses
the eigenvectors o f the matrix t (TtT)~1Tt corresponding to the eigenvalues
which are 0 (N - 3 of them), as the columns o f U. This involves the
diagonalisation o f an NxN matrix, however, which Wahba treats as an ordinary
symmetric matrix, and we try to find these eigenvectors using the special form of
T.

Our method consists o f completing the set o f vectors formed by the columns of T
into a basis for R^ and using the Gram-Schniidt orthogonalisation process to
orthonormalise this basis. The Gram-Schmidt process is generally regarded as
numerically unstable because o f the large number of inner products involved, and
because o f the way in which errors accumulate as the process proceeds. Since in
our case most o f the inner products are trivial these errors are significantly
reduced. In fact the only fu ll inner products required are at the normalisation
stage o f each vector and these can be carried out in extra precision. In the case of
interpolatory splines it is not necessary that that UTU =I only that U t T=0, and the
columns o f U are linearly independent. In the smoothing case, where we also
need £/, the orthonormality condition is necessary in the current formulation, (it
could be eliminated at the cost of some other computational work), so here we
orthonormalise the vectors. Thus we can see that some o f the errors are
unimportant in at least one of our situations.

The first step is to extend the columns of T to a basis for RN. The matrix T has
three columns given by the three vectors,

fV r *

*1

r
•

•
—

II

1

II

f

£
■

■
■

\-

II

y N
*

(Where here (Jti-,yt)=ri- are the sites at which data are observed.)

22

First we notice that non-collinearity of the data sites implies that at least one triple
o f points is not collinear. Without loss o f generality we may assume that this
triple is, (x2 ,y2) and (jc3 ,y3). It may be desirable for numerical reasons
to reorder the points such that this triple is actually markedly non-collinear.

W ith this possible reordering assumed, now define a basis for RN, {w ,}, by

setting wj - T x, w2 = Tx, w3 = Ty and for /= 4 ,...,N let wt- be that vector with a 1

in the ith position and zeros elsewhere. then form a basis. Suppose

= 0 then because the 3x3 matrix in the top left hand comer has been
i

made nonsingular, and the rest o f the top three rows are zero, we have
- jx2~ ^ =0, and it follows immediately that //4= ...= //^ = 0 from the form of

W 4 , . . . , W / y .

We can now orthonormalise this basis using the Gram-Schmidt process. For each
k the vector uk is obtained from wk by setting

*-1
Vic = W*“ Z

x= 1

uk = v*/V (vJv„).

Notice that since each wk has only one non-zero entry when k>4, the inner
products o f each wk with one of the previously orthonormalised vectors, reduces
to picking out a component o f the vector. Thus the only fu ll inner product
required is that o f a vector with itself, in order to normalise it, and this can be
carried out in extra precision i f desired. This also means that this version o f the
process is 0 (N2) instead of the usual 0 (N3) for a fu ll matrix diagonalisation.

Since after orthogonalising the vectors U\ ,w2,«3 span the same space as uq ,w2,w3

which are just T\,Tx tTy respectively, we can take the last N - 3 vectors o f this

new basis as the columns o f U.

Notice also that what we have effectively done to the matrix T is find a 3x3
invertible matrix A such that the columns of TA are orthonormal. In fact A is
upper triangular. M ultiplying this new matrix by its transpose we therefore find

that,

I = (TA)JTA

or equivalently

AAr = (7’t 7 T 1.

This means that i f we save the details o f the transformation A we can compute the
inverse o f Tt T for the extra work o f one 3x3 triangular matrix multiplication.

*T(Note that this is without even explicitly computing T T.)

23

Professor R.Sibson has suggested an alternative means o f finding a U suitable for
the interpolation case immediately, without orthonormalising, and suitable for the
smoothing case after orthonormalisation. Given 3 points which are not collinear,
without loss o f generality fl f r2 and r3, we can generate N - 3 vectors which are
linearly independent and orthogonal to the columns o f T, in the following way.
For each j > 3 find the homogeneous coordinates o f tj with respect to the triangle

formed by ti>t2 and r3. Call these coordinates w,y, where i = 1,2,3, so that we
have,

3
tj — ^ .

/= l

Since these coordinates are homogeneous we have that w ij+w 2 j+ w 3j = 1 for each
j so defining the //-vector uj by,

ty-)i =

i = 1,2,3

“ 1 * = /
0 otherwise,

we see that,

TTUj = (X (wy){- ,£ t y t a . E (u jh y i f
i= 1 i= l i= l

= (w j y+w2y+W3 y- 1, Wj jXi +w2 j x2 +w3 j x3 ~Xj ,wl j y l +W2 j y2 +w3 j y3 -y y)T

= 0

since wiy are homogeneous coordinates. Thus the matrix whose columns are the
Uj *s w ill do as a U in the interpolation case. Notice that this U is sparse, as the
first three rows are fu ll, while the last N — 3 rows are the negative o f the N -3 by
N —3 identity matrix, which is not the form that would arise i f the previous method
were stopped before the columns o f U were orthonormalised.

2.2 The Condition of the Linear System.

The practical application of thin plate splines is known to be restricted, using the
techniques discussed earlier, to approximately 200 points. This is due to the
numerical ill-conditioning and denseness o f the linear system arising out o f the
problem. (See Wahba (1979), Dyn and Levin (1983) for example). In order to fit
splines to larger numbers of data sites it may be necessary to use some iterative
means of solving this linear system. Many of these methods are sensitive to the
conditioning o f the system, and appropriate preconditioning may significantly
affect the ease o f solution. (For an example see the conjugate gradient algorithm
in later chapters). In this section we shall discuss the conditioning o f the linear
system involved in the thin plate spline problem, and mention one possible way o f

24

improving this condition.

Recall that the linear system to be solved can be written in the form,
p
K T

p *
X

t----

t t
V O t- d 0

It is the condition o f this system that we shall be concerned with here. This
means o f course that we are essentially looking at the interpolation problem, but
the smoothing case is similar with the equivalent system,

a l+K T
* *
X z

t—

H d* d 0 * d

How the addition o f this ridge term affects the conditioning o f the problem we
shall not consider here.

In the examples which follow we w ill measure the condition o f a matrix, A (say),
by the ratio Mm2LXNMmm where /zmax and are the largest and smallest
eigenvalues o f the matrix A TA. In the case that A is symmetric this is just the
absolute value o f the ratio o f the largest and smallest (in absolute value)
eigenvalues of A, and corresponds to the well known condition number.

As example matrices we have used those from the linear systems associated with
six interpolation problems. These are 49, 100 and 225 points scattered randomly
in the square, 0 < x ,y < 1 and the corresponding 7x7, 10x10 and 15x15 grids of
points in the same square.

Before we discuss the condition numbers of the above systems, let us investigate
some possible ways o f improving their conditioning. Remember that the matrix K
above arises from the basis functions Eif in that Ktj -E j{t{). So the zth row o f the
augmented matrix corresponds to the values o f all the basis functions (including
the polynomial basis 1 ,x ,y) at the point tt. For each j the basis function Ej(t) is
proportional to rJ\ogrJ where r j ’ is the squared distance of t from tj. These
functions all increase at a rate greater than jt2+ y2 as the point t=(x,y) approaches
infin ity, so the o ff diagonal entries in K may be very large indeed. Notice also
that the diagonal entries in K are zero, so that this effect w ill probably contribute
to the ill-conditioning o f the augmented matrix in the linear system. We might,
therefore, try and improve the condition by improving the diagonal dominance in
K and this is achieved via a change of basis, that reduces the rate o f growth o f the
basis functions.

25

A change of basis can be expressed as,

F M = 2 J vijEj (t)
j

where W = { w tj) is a non-singular matrix. It now remains to find a suitable choice
for the weights wy. Before proposing such a system o f weights first let us look at

the behaviour o f the E j . Recall that,

l 6 xEj(t) = || t - t j ||2log I t - t j ||2

where t=(x,y) and tj=(Xj,yj). Now we see that,

lo g ||r-0 ||2 = l0g(||r||2-2 (fTf;)+||fy||2)

= lo g il i2 + lo .(l J M)
II >112

so that

log llf-fy ll2 = log|| >||2 + £ I z i r i (M lJ y

i= 1 1 11*11

provided 11| tj ||2-2 tTtj \ < || r||2. (In fact we require 11| tj ||2-2 tTtj | much less than
|| 1 1|2 for the series to converge usefully fast.)

Thus

„ ,,2 „ „ „ 2 l . V j l
16xEj(t) =|| >|| [log||f II + " ' .I f . 2 " '2 < ~ II f ii 2 >]

-(2>T>;)[logll>ll2+ ^ j ^ i]

—><»+||fy||2log||r||2 +OC-jJjj-) as IIr|

So that, given a set of weights {Wy}, we have,

16xZwjjEj(t) = >112logII >||2-2(l+log|| r|| 2)>t (2>,j>;)
j j j

w - I r ^ r -)2 1

II tj II 2)(l+ log ll >ll 2)+ 2 g *|f||2 ' + 0 (]j7 jf)

Suppose now that the weights are such that,

= = ® f° r nearly all i. (*)
j j

(If the above were to hold for all i then (u > y) would be singular and therefore not

a change o f basis.)

26

In this case we have, for those i for which (*) holds,
T , \2

le ^ W ijE jU) = (%jVjj | tj || 2)(1 +log || r|| 2)+ 2 — j | - j j

since (*) makes the first two terms vanish. This change o f basis has therefore
reduced the rate o f growth to that of log||r||. Translating the origin and noticing
that, = 0 for those i for which the above mentioned conditions on

j
are satisfied, we see that,

16 ^ w y E j(t) = (X™ij II t j - ‘i II 2)(1+l°g|| f - f ; II2)

+ 2 II t - t , | | + 0 (ifT ir)

for such i.

With this new basis, since i is just the linear system to be
j i

solved becomes,

KWtX' +Td = z
TTWyX' = 0

so that the condition o f the new problem is thus the condition o f the matrix,

k w t t

Tt Wt 01

It only remains therefore to define a set of weights, that satisfy the above. Such a
set o f weights can be derived from the boundary over distance weights or subtile
weights arising from the Dirichlet tessellation of the data sites, and described in
Chapter 4 and in Sibson (1985) and Sibson (1980). As shown in
Sibson (1980, 1985) both these sets of weights satisfy the conditions,

= 0

for all i such that r,- is an interior point of the data. So we can define w,y, the
change o f basis matrix by,

Wij = <
vij i ¥

-Y v ik j= i

and these satisfy all the properties mentioned above. These weights as derived are
sparse, in the sense that wl} is non-zero only when tL and tj are neighbours (as

27

defined by the Dirichlet tessellation). Also the above statements about the
resulting rate o f growth o f the new basis Fh hold whenever rt- has a complete set
o f neighbours (ie. is not a neighbour o f the boundary).

The above derived augmented matrix for the new basis is not in general
symmetric, so it might be a good idea to make this matrix symmetric by
premultiplying the first set o f equations by W. Thus we get the linear system,

WKWt X' +WTd = Wz

T7 W7 X’ = 0

and the associated condition is that o f the matrix,
* ^

WKW7 WT

,(H T)t 0 J ’

a symmetric matrix. This matrix can be written as a product o f three matrices in
the following form,

fo * *
K T w 7 0

t--
-- o w
"

V.

H O 1. r O

which is similar to (and therefore has the same eigenvalues as),
* *
K T V T o w o'
T7 0

o
J r O w

*
V __

This matrix can be written,

KW7W T
T 7 W7W 0 '

V J

Thus we see that the condition o f the symmetric linear system above is just the
condition o f the above unsymmetric matrix. This unsymmetric matrix is just that
which is obtained by a second change o f basis, using the transpose o f the
weighting matrix used in the first change o f basis. So in the case that the
weighting matrix is symmetric, as it is in the case o f the weights derived from the
boundary over distance weights, this is just a repeat o f the first change o f basis.
The weights derived from the subtile weights are not symmetric and so the above
does not apply.

Before we can get the best advantage from this second change o f basis, however,
it is necessary to ensure that all the Ft- have similar leading terms. Recall that

each Fi has a fastest growing term of the form,

2) iogll r-r,-1|2
j

so that we can rescale these basis functions to have similar leading terms. Put

28

Du ~ (£ ^ikWh-hW1) 1 f° r each i and Dy = 0 whenever i ^ j . Then this
k

rescaling can be accomplised using this matrix D for a change o f basis, between
the two changes o f basis using the matrix W.

Putting Gt(f) = and using the same arguments as before in is easy
k

to see that,

G-(t) = Q > ,*) l°g ||f-r; ||2+ O a) = 0 (1) as
k

provided that r, is not a neighbour of the boundary, and has no neighbours which
neighbour the boundary. Thus the rapid growth in Et has been completely
removed.

In terms o f the original linear system, the matrix which is associated with this
condition is given by,

* *

D iW W TZ)i D*WT
. (D^WT) 7 0 , '

In order to understand this behaviour more clearly, and get some impression o f the
behaviour o f all the different basis functions closer to the points tb (since all the
above results show the behaviour o f the basis functions as IM I—*00), we have
calculated the basis functions for a particular example. We have used four points
at the comers of a square and a central point at the intersection o f the diagonals of
the square. We have then drawn a cross section through the three basis functions,
Ei, F i and Gl where is taken as the central point. (Extending the grid as

necessary to define G j). Figure 2.2.1 shows the cross-sections through the basis
functions where the solid line is F lf the dotted line is F j and the dot-dashed line
is G j. A ll the cross-sections have been rescaled so that their range is 1.0 over the
plotted area, so that we may compare rates o f growth more easily. Notice that Ei

grows rapidly as the distance away from the central point increases, whereas F t
increases more slowly, and G\ actually decays away to zero. This suggests that
we should be able to say more about Gi than G j(f) = <9(1) as t approaches
infinity. However the grided example is rather a special case. Figure 2.2.2 shows
a similar picture to the above but here the points upon which the basis functions a
based are scattered more arbitrarily. Here we again see the faster than quadratic
growth of Ei, the logarithmic growth o f F j, but now Gj does not decay to zero; it
appears to tend to a constant. This suggests that the gridded example, where Gi

does tend to zero, is indeed a special case.

29

va
lu

e
of

(s
ca

le
d)

ba

si
s

fu
nc

tio
ns

alo

ng

a
cr

os
s-

se
ct

io
n

The three basis functions (points on a square grid)

1.5

original

first change

second change
1.0

0.5

0.0

-0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

distance from the central point

figure 2.2.1

30

va
lu

e
of

(s
ca

le
d)

ba

si
s

fu
nc

tio
ns

alo

ng

a
cr

os
s-

se
ct

io
n

The three basis functions (irregularly spaced points)

1.5

original

first change

second change
1.0

0.5

0.0

-0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

distance from the central point

figure 2.2.2

31

We can prove this property for gridded data by considering the 0(1) term in the
expansion. Dti is constant for all i (away from the boundary) in this case so we
can ignore the rescaling step. The 0(1) term in G; is then proportional to,

2>v II II “2E wjk((t - t j)T(tt - t j))2 .
j k

This term can be rewritten in the form,
\T

In the case o f gridded data the 2x2 matrix in the numerator o f the above is the
same for all j provided only that tj is away from the boundary. For all regular
grids (excluding rectangular) symmetry arguments imply that,

YJwjk(tk- t j) (tk- t j)T ~ Z (t k- t j) a k- t j)T
k k

Symmetry also gives us,

~Z<xk-Xj)(yk-y j) = 0
k

TS-Xk-Xj) 2 = £(> ’*-;y,)2
k k

so that the 2 by 2 matrix is a multiple o f the identity matrix. Thus we see that the
0(1) term in G,- is proportional to, which vanishes whenever ti is not on the

j
boundary.

The case o f rectangular grids can be proved as follows. Suppose that the grid has
dimensions a in the x direction and b in the y direction. Then the matrices
(tk- t j) (tk- t j) T have one o f the two forms,

a2 0

t----OvO

o
'

o

9 0 b 2
< J

and the corresponding boundary over distance weights are, b lla and a/2b. Thus
the 2 by 2 matrix is,

a 2 0
+ *

0 0
2 (b/2 a) 0 0 k. J

+ 2 (b/2 a)
0 b \

= (ab)I2

So again the 0 (1) term is proportional to, = 0.
j

Thus we see that Gt is in fact 0 (l/||r ||) when the data is gridded and is not a
neighbour o f the boundary and has no neighbours neighbouring the boundary.

32

The table 2.2.1 shows the condition numbers o f the various linear systems
associated with the problems mentioned earlier, where the weights are those
derived from the boundary over distance weights.

Table 2.2.1.

No. of Preconditioning
Points None Unsymmetric Symmetric

49 5.5x10s 2.0x10s 4.1x10s
Scattered 100 l.OxlO7 1.1x10s 6.5x10s

225 1.6xl07 2.1x10s 2.8xl04

49 4.5xl04 3.5xl03 1.9xl02
Gridded 100 1.3x10s 7.3x10s 3.1xl02

225 4.2x10s 1.7xl04 5.4x10s

These figures represent reductions, when using the symmetric conditioning, by
factors o f 130, 1500 and 570 respectively in the scattered examples, and 230, 420
and 770 respectively in the gridded examples.

2.3. Interpolatory splines w ith H ^R 2.

We now turn to the calculation o f interpolating splines over regions Cl that are not
the whole plane. Remember that we have restricted ourselves to, not necessarily
convex, polygonal regions for simplicicty, so that a region can be specified in
terms o f the coordinates in the plane of its vertices.

Given such a region we must calculate the matrices given by,

(M i) i j= A a (yri ,<pj) , = Aa (<ph (pj).

We proceed first with the calculation o f M2. Recall that,

Aq (u,v) = JQ(V4M)v + ^ n {V (^nw).Vv-(<?rtV2w)v}

so that in our current case o f interest we have, since V4p=0 for all (p functions,

= An (<Pj,<Pj) = j> x l {V(.dn<pi).V<Pj - (d nV2 <Pi)<Pj)-

The area integral has therefore been converted to a contour integral which since
we are interested in polygonal regions, and the integrands are sufficiently well
behaved, reduces to a sum of line integrals. Dyn and Levin propose the
calculation o f these line integrals using Simpson’s rule and the numerical approach
was that first adopted by us. A much faster, i f conceptually more complicated,
approach has also been implemented by us and we w ill discuss this later.

33

In order to use a numerical rule to evaluate the integrals we must be able to
evaluate the integrand at any point on 3CI. Thus we require expressions for the
derivatives,

Now in our case we are interested in piecewise linear boundaries and the
d dderivative dn mentioned above reduces to nx — + ny — on each piece o f the

boundary, (where (nx ,ny) is the unit normal to that piece o f boundary). Thus the
inner product o f <pi with q>j reduces to a sum o f integrals o f the forms,

where each integral is along a straight line forming part o f the boundary o f Q and
is with respect to arc length.

So we actually require all the first and second derivatives and the gradient o f the
Laplacian o f the q> functions on the boundary o f Q. Define first the functions,

Cj(r,0) = r* cos j0 and Sj(r,0) = rhinjO Vy>0.

A ll the q> functions can be expressed simply in terms o f these functions and r 2, in
the following way.

V<Pi . , and dnV2 <Pi.

and

<Pl = r 2

V l+ A j = sj + 2

¥>3+4/ = 9+2 • y'SO.

¥’4+4j ~ r 2 Sj+1

¥’5+43 = r 2 cJ+1

Notice also that letting z = x+iy we have,

And using similar means we get the complete set o f derivatives,

Using these results and the above definitions o f the <p functions we get the
following set o f derivatives. (Here H (/) represents the Hessian matrix o f the
function f).

<Pi

V«>1 = 2 , H(<Pi) = 2I 2 , V (V V) = 0 ,

^2+4 j
* *
sj +1 s.- c /

(y+2)
fj+K

. H (fc+4i) = 0 + 2)(y+ 1)

-----N1

V (V2 >̂2+4y) = 0 ,
^3+4;

p %

cy+l ci ~ si
(y+2)

r J>+i-
, H (^3+4;) = (y+2)(y+ l)

r si ~ ci .
V(V2^3+4j) = 0 ,

^4+4 j

V^4+4 j =
Sj+2 +U + 2) r 2Sj

-c j+2 +U +Z)r2Cj

H(9>4+4 j) = (y+2)
2 sj+ i + U + l) r 2 sh l (y+ 1) r 2 ch j

(y+ 1) r 2Cj_! 2j?y+ 1 - (y +1) r 2 j

V(V2^4+4y) = 4(y+2)(y+l)

&5+4j

^5 + 4 ; “
Cj+ 2 + U + 2) r 2Cj

Sj+2 ~U + 2) r 2Sj

H (^5+4y) = (y+2)
2 c y + i+ (y + 1) r 2Cy_1 - (y + l) r 2jy_ !

- (y+1)r 2 jy-_! 2 cj+ 1 - (y+1) r 2 c,-_ j

V(V2p5+4;) = 4(y+2)(y+l) -sjj

where here we have introduced the extra definitions, c_i = 0 and = 0 for

35

notational convenience.

These derivatives are all expressed in terms o f the functions Cj, Sj and r 2, and so
are easily calculated once we have the above functions. It is important to have
efficient ways o f calculating the Cj and Sj since it is likely that they w ill be called

often when calculating the line integrals by numerical means. I f there is an
efficient implementation o f the sine, cosine and integral power functions available,
the Cj and Sj can be computed using the formulae given as their definitions.

There is however a pair o f recurrence relations that can be used for calculating
these functions, (in cartesian coordinates), namely,

Cj+i(x,y) = xc j(x ,y)-ys j(x ,y)

Sj+i(x,y) = xsj(x,y)+ycj(x,y)

and we prefer to use these, since we often require the values o f many q> functions
at the same point.

For the integration algorithm itself Dyn and Levin report using Simpson’s rule
which is adequate for this case of calculating the elements of M 2 since the (p
functions are actually only moderately low degree bivariate polynomials.
However we found this rule to be a little slow to reach a given accuracy when
calculating the elements o f M i , when the integrands involve logarithms, and so we
used Romberg integration. Greater efficiency could probably be achieved using a
Gaussian integration rule, (probably with logarithmic weights), but we did not
investigate this since we have a much more efficient means o f evaluating the
integrals.

We consider now the evaluation of the elements o f M j, that is A^iy/^cpj). Using
the symmetry o f the semi-inner product and a similar subsequent argument to that
used before we see that we actually only require to evaluate y/ and Vy/ on the
boundary o f Q. Now,

Vi(x,y) = (16/r)- 1 ((x-x i)2 + (y -y ,)2)log((;t-.x,)2+ (y-y,-)2) ,

and therefore,

\x -X i)
V ^ (x ,y) = (87t) 1(l+ lo g (U -^ /)2+ (y -y ,)2))

where here {xt>y{) is the zth data site.

The elements o f M i are calculated numerically from line integrals as before. The

calculation o f these line integrals necessitates a large number o f evaluations o f the
logarithm function and this slows the method down significantly, to the point at
which the calculation o f the matrix M j forms the largest part by far o f the

36

calculation o f a finite window spline. Obviously i f the finite window method is to
compete with the straightforward Q=R2 type splines, it must not introduce vast
amounts o f extra computing time. For this reason a faster method based on the
analytic evaluation o f the line integrals was devised.

2.4. New routines for the evaluation of
Afi(Pi,pj) and An (yr,,pj).

The method proposed here is based on the fact that the <p functions are all in
actual fact moderately low degree bivariate polynomials in Cartesian coordinates.
The expressions for the <p functions as polynomials can be easily derived from the
expressions for the functions Cj and Sj. These expressions are given by,

Cj(x,y) = Re(x+iy)i and Sj(x,y) = Im (x+iy)*.

But we have

(x+ iy)j = £ \ \ x ’ - k(iy)k
k= 0

So that

Cj(x,y) = X] L 'J t - O V - V *
k- 0

and

Sj(x,y)
k=0

where here the square brackets indicate the integer part o f the enclosed expression.
In this way we can write down the polynomial expressions for all the <p functions.

We now proceed to the evaluation o f the inner products A^((pi,(pj) for each i and
j . Given the polynomial forms of the <p functions, we can see that each o f these
inner products becomes a sum of inner products o f the form A^{(pi,xny m). These
inner products are,

- (dnV 2 <Pi)xny m

and the integrand reduces to its first term when i= 1,2+4./ or 3+4y, since
= 0 in these cases.

In our case, o f course, we are interested in SCI which are piecewise linear and thus
we have integrals to evaluate involving second and third derivatives o f q> functions
multiplied by simple polynomials o f the form x ny m. From the expressions given
for the derivatives o f the <p functions in the previous section, we can see that
integrals required for the evaluation o f the inner product involving (p ^ j are

37

expressible in terms o f integrals o f the forms,

j cj+ ixny m » j sj+ iXny m , j r 2 cj_ixnym , f r 2 sJ_1x ny m , fc jxny m and fs jxny m .

Using the recurrence relations for cJ + 1 etc. given earlier and the relations,

r 2 Cj_i = xcj+ySj and r 2 Sj_i = xsj-ycj ,

we can see that all o f these integrals (and hence the inner product An (<pi+4 j,<pk))
are equivalent to a linear combination o f integrals o f the form,

jcjXny m and js jxny m.

The final step is to notice that we can now express each o f these integrals as a
linear combination o f integrals of the form, simply,

"y m

Before we proceed to the evaluation o f these integrals let us first recap on the
previous argument. This particular means o f evaluating the inner products of <p
functions was chosen for efficiency and ease o f coding considerations in the
programs. Thus the above argument is best expressed as an algorithm. This
algorithm is the one actually used in the implementation.

fo r each linear piece T o f the boundary dCl do
set up table o f integrals j^ x ny mds

fo r each j such that <p2+4j is used do

set up tables o f integrals j r cjxny mds and j^s jxny mds
fo r each i such that <pt+4 j is used do

fo r each k< i+ 4 j do

Find j r <pi+4 j(pkds

Add to Aa ((pk,<pi+Aj)

We now turn to the evaluation of the integrals where T is one

piece o f the piecewise linear boundary dCl, and s is arc length. I f the endpoints o f
T are (£0 ,170) and (£1,771), (going around the boundary in anticlockwise fashion),
the the above integrals can be written,

The calculation o f the integrals proceeds as follows. First define In m to be the
integral in the above. I f n=0 then we have,

38

A),m “
no1

n r 1- n r 1

and similarly i f m=0,

Az,0 ~

(m+lXTh-rio)

48

4in+1 - fS + 1

i f 770= 77!

otherwise

i f to = f i

otherwise.

This leaves the cases where n>0 and m>0. We derive a recurrence formula for

ln,m using integration by parts, so that we have,

^n,m

48h.m

^O^n.O

(t fm n + 1 - t 8 n r l) - » (f t - to) rn-i.m+\

if ft “ ft
i f T}0 =TJ\

otherwise.

The case 4o=4i an(* Vo= ni should not normally occur as this means T is a single
point and can therefore be eliminated from the boundary. Also notice that the last
recurrence relation could be expressed in terms o f I n+\%m- \ and i f the integrals
were to be calculated individually it would make sense to use the version o f the
relation that led to the fewest recurrences. In our case however we in fact are
calculating all the integrals for those n,m such that n+m is less than a certain
number, so that it is simplest to use one formula all the time, and this leads to no
extra computation.

Let us now proceed to the evaluation o f the inner products An (^ , ^) . Using a
similar argument to those above this reduces to evaluating integrals o f the form,

V (^) . V ¥r , - 0 .V 2f5)»rJ .

However we have, y/,(x,y) = (16/r)-1 r flo g rf where r?=(x—xi)2 + (y -y i) 2 with
(jtj,y t)= rt- the zth data site, so that,

X - X ;

= (8*) '
- l

y -y i
(l+ lo g rf) .

Using these results and an argument similar to before we can see that the inner
product becomes a linear combination o f integrals o f the form,

f x ny m and f x ny mlogr;2.

The first o f these integrals we have already evaluated and it only remains to
evaluate the integrals o f the second form.

39

This is equivalent to evaluating the integrals,

f01x (O ny (C r io g (a (2 + 2 b(+c)dC

where x(Z)=(l-Z)Zo+ZZi ^ y (Z)~ (\~ Z)Tlo+ Zrli as before, and

t = (£ i- lo)(£ o -* i)+ (77 i- r7o)(77o-:y<)
c = (Zo-X if+ iT io-y i)2.

Before we evaluate the above integrals we introduce the following related
integrals,

1

and

Jn,m = S ^ (() ny(CY

Kn,m = ^ x (O ny(CY

(a£2 + 2 b£+c)

(a£ + 2 b£+c)

dZ

dZ.

These integrals can be evaluated using a set o f reccurence relations in the same
way that the l n%m were. The relations listed below are for the case and
770+ 771, the other simpler cases being derived in similar fashion after removal o f
the constant factor as before.

For «=0 and m=0 we have,

1
•Vo - V (a c -b 2)

tan-1 a+b
V (a c -b2)

-tan-1
yl(ac-b2)

and

V o = — jlog(tf+22?+c)-log(c)-2fr/00

For 77=0 and m>0 we have, by multiplying out the expression for one o f the

yCO’s (=77o+ (77i“ 77o))̂»

and

K0 ,m - + ~ (7h ~ rlo)(^-2bK0 _l -cJ 0 m_l)
a

where we have used the fact that,

J* x (C r y t fY
aZ*+2 bZ+c a

d Z = ^ (\ - 2 b K ntm-cJntfn).

For 77 >0 we similarly have,

40

/n,m £o*^rt-l,m“̂ (£l £o)^n-l,m

and

K n,m = ZoK n - \ %m + ~ (Z \ - Z Q) (\ - ' l b K n- i tm- c J n - \ , m) 'a

Now return to the evaluation o f the integrals,

K , m = J0̂ (C)^ (^)mlo g (^ 2+ 2 ^ + c)^ .

Notice as with I n m that i f £o=£i we ^ave similarly i f tj0 =tji.
Otherwise we proceed as follows.

For n=0 and m - 0 integration by parts, using 1 and log(a£2+2&£+c) as the parts,
gives,

A),o = log (a+b+c)-2 (l-bK 0 Q-cJ0t0).

For n - 0 and m>0 we have, again by integrating by parts,

^ = (m+ lX ^ - %) f r llO g (a + 6 + C) - r ,r "-0g(C)

-2 (fl^r0 m+1+&/0m+1)

For «>0 we have,

= (m+ l) (Vl-no) p r +ll°g(a+6+c)-«oC+1log(c)

~^(£ l —̂ o)^n-l,m+l

In this way all the inner products Aa (\/fi t q>j) can be found using the algorithm
given below.

fo r each linear piece T o f the boundary <90 do

set up table o f integrals j ^ x ny mds

fo r each i in 1 ,...,N do

set up tables o f integrals Ln m = Jr ^ ”y mlo g r2dls

fo r each k such that <pk is used do

Find \ r Yi(pkds

Add to

Notice that the first part o f this algorithm is the same as the first part o f the
algorithm used for finding the inner products o f the <p functions. For this reason
these algorithms can be interleaved to save some computation, and this is the

41

method used in our implementation. In the next section we w ill compare the
speed o f the two methods o f evaluating all the inner products.

2.5. Comparison of the efficiency of
the new with the old integration routines.

In order to assess the improvement in speed that the analytic integration routines
give us over the numerical method o f calculating the inner products two series of
test programs are considered. The first o f these series calculates the inner product
matrices using the old and new routines for various numbers o f points and extra
(<p) functions. In these tests the region chosen was {-%<xty<%} and 25, 50 and
100 points are scattered randomly in this region. The inner product matrices
An iP iiV j) and Aa (q>i f <pj) are then calculated using both integration techniques. In
the numerical case the integration tolerance was set to the value which gave
agreement with the analytic routines to about 3 or 4 significant figures. The
results presented in the following table are the CPU seconds used by each run on
a Sun3/260 workstation using a floating point accelerator.

No. of No. of Extra Functions
Points 7 15

new old new old

25 1.3 11.2 3.9 28.6
50 2.3 23.2 7.2 57.0
100 4.6 48.3 13.1 112.2

The figures above show that the new routines are very much quicker than the
numerical routines. In fact when using 7 extra functions the analytic routines save
about 90% o f the processor time used by the numerical integration routines,
regardless o f the number o f points defining ip functions. When 15 extra functions
are used the analytic routines are still approximately 85% faster. The reason for
the slight decrease in advantage o f the analytic routines probably lies in the fact
that it takes more work to evaluate the integrals as the subscript o f the tp functions
increases, since they become higher order polynomials. There is also more work
involved in evaluating the integrals numerically, as the degree o f the q>
polynomials increases, since the functions must be repeatedly evaluated as the
integration proceedes, but it appears that this increase is proportionately less than
the extra work incurred by the analytic routines. However for the range o f the
number o f extra functions that we are concerned with the numerical routines w ill
s till be very significantly slower than analytic routines, probably by at least 80%.

42

Although the above figures appear dramatic, they are not really a fair test o f the
new routines since there are still several other calculations to perform after
obtaining the inner product matrices before the spline is known. These
calculations remain common to both the analytic and numerical methods used
above. In order to obtain a fair comparison we should include these calculations
since they may swamp the timings given above.

For this reason a second series o f test programs were run and results obtained.
The programs calculate all the coefficients o f the basis functions for the splines
corresponding to the cases given above, and also o f the thin plate spline for
comparison. The timings are in the following table.

No. of No. of extra functions
Points 0 7 15

new old new old

25 0.5 1.8 11.3 4.2 28.4
50 4.4 6.9 27.3 11.4 60.4
100 36.4 41.4 83.0 50.8 147.2

Notice now that some o f the comparisons are much less dramatic. When using 7
extra functions the improvement in speed ranges from about 84% to as low as
50% and when using 15 extra functions the improvement is better, ranging from
85% to 65%. In both cases the lower of these figures occurs when the largest
number o f points is used and the highest when 25 points are being used. This
seems to suggest that the larger the number of points the more the improvement in
speed o f the analytic routines is swamped out by other considerations. This is
consistent with the fact that both methods are now calculating the inverse o f an
N - 3 x N - 3 matrix where N is the number o f points concerned and this is in fact
an 0 (N 3) operation.

In this way it can be seen that as N increases the calculation o f this inverse (along
with other calculations) begins to dominate the calculation o f the spline. However
the analytic routines still have a significant improvement over the numerical
routines for all practical values o f N. (For a discussion o f what are practical
values for N see elsewhere in this thesis and Wahba (1979)).

43

Chapter 3.
Fitting Finite Window Splines to Simulated and Real Data.

The results that we present fa ll into three categories, namely reproduction o f Dyn
and Levin’s results, further simulation studies and application to real data. Firstly
we consider the reproduction o f Dyn and Levin’s results, which are based on the
interpolation o f three functions in an L-shaped domain. Our own simulation study
concentrates on an area not reported by Dyn and Levin, namely the choice o f
region Q over which to fit the spline. Lastly we show the procedure in action on
geological data taken from O’Connor and Leach (1979).

3.1. The Results of Dyn and Levin.

In Dyn and Levin (1982) the authors present the results o f a simulation study of
the finite window splines. They use an L-shaped region O as below, and generate
data at randomly generated points in this domain, from three functions / j , f 2 and
/ 3, also shown below. The simulation was carried ovt for 13 and 27 points in Q
and for the values of the closeness of approximation parameter n (the number
terms in the sequence o f <p functions), o f 0. 7 and 15. The table shows the
roughness o f the solution U for each case.

Q = {(* ,y) | -0 .5 < x ,y <0.5, *> 0 or y>0 }.

/ l = 4ry, f 2 = sin(lQxy),

h = exp(-25U 2+ y2-0 .1)2).

Table 3.1.1.
Roughness over Q of Dyn and Levin’s
Fitted Spline for Three Test Functions.

No. of
Points

No. of
<p fns. f l f l f 3

0 25.0 98.0 85.0
13 7 17.4 76.0 78.0

15 16.6 72.0 74.0

0 28.1 105.0 132.0
27 7 19.0 87.0 124.0

15 18.3 82.0 119.0

44

The authors do not specify, in their paper, the location o f the data sites within the
L-shape. Thus we cannot expect to reproduce their results exactly. For this
reason we have repeated their simulations with ten replications (using different
sets o f data sites) and we present the means and standard deviations o f these
results. (See table below).

Table 3.1.2.
Mean Roughnesses over £2 of Fitted Splines
(with Standard Deviations, 10 Replications).

No. of
Points

No. of
(p fns. f l f l h

0 21.9(4.7) 88.9(15.7) 71.3(24.0)
13 7 15.6(2.8) 72.7(13.7) 64.2(21.4)

15 14.9(2.8) 67.6(11.8) 62.1(21.0)

0 28.3(1.9) 121.9(12.7) 148.8(16.3)
27 7 19.6(1.0) 107.8(15.3) 139.7(17.0)

15 19.0(1.1) 97.8(12.0) 137.4(16.5)

It can be seen from the tables that all o f Dyn and Levin’s results lie within two
standard deviations o f our mean results, and thus we conclude that we are
producing consistent results. Since the pattern o f the results presented by the
authors is also followed by our results, the conclusions in their paper apply
equally well here. The authors also indicate that away from the boundary o f £2
the finite window interpolants recover the original function more accurately than
the straight forward thin plate spline, and this result is also supported by our
study.

3.2. The Choice of Region £2
Over Which to Fit the Finite Window Splines.

In this section we present the results o f a study designed to help determine the
best choice o f region over which to fit finite window splines. This is an important
question when the data is presented as a list o f data sites and interpolation values,
but may be less important when it is known that the data sites were chosen in
order to cover a particular area. For instance, when mapping an area, an
investigator might attempt to spread his recording points evenly over the area to
be mapped. In this case the choice of region, £2, is natural and it is to be hoped
that imperfections in the spread of points does not adversely affect the method. It
can be seen however that an imperfection in the spread o f points is equivalent to
covering some other region, and it is the sensitivity o f the method to the choice of

45

region Q that concerns us here.

There is another reason why a certain amount o f insensitivity in the method to
choice o f region is desirable. Suppose the analyst is given only the data sites and
values at those sites without any associated region. In this case the analyst must
choose an appropriate region in which to apply the method. In order to do this
effectively he must know what is to be gained by using a finite window, over
taking £2=R2, and how sensitive to the choice o f this essentially arbitrary region
the method is.

To help answer these questions or at least allay some o f the fears they may cause,
and also to show the method in use we have conducted two studies called Sizetest
and Shapetest.

3.2.1. Sizetest.

The purpose o f this simulation study is to get some indication as to whether the
size o f the region enclosing the data sites has a significant effect on two properties
o f the interpolant. The properties considered are the residual roughness and the
“ goodness” o f recovery of a sample function by the interpolant.

For our study we chose to use five functions from which to simulate data. Data
was simulated from these functions using 25 and 50 points uniformly spread over
the square {-0 .4 9 9 <x,y<0.499}. Interpolants were then constructed using no
extra functions (that is Thin plate splines) and also using 7 and 15 extra functions
over the regions {-0 .5 < ;t,y< 0 .5 }, {-0 .6 < x ,y< 0 .6) and the region
{-1 .0 < x ,y < 1 .0 }, over which all the surfaces are contoured. For each interpolant

generated the residual roughnesses and approximations to J (/ - /) 2/area,

J (/ x - / JC)2 / a re a and j (f y - f y) 2 / area over each o f the three regions, were calculated

and the results tabulated. We introduce the following notation to make the tables
clearer.

H i = { -0 .5 < x yy <0.5)

& 2 = (_0.6< x ty <0.6 }

= { - 1.0< Jt,y < 1.0 }

The first function chosen was 4xy, as used by Dyn and Levin. A quadratic is a
sensible first choice, since they are the first polynomials not recovered exactly by
spline interpolants, whereas the first degree functions are recovered exactly, and
this quadratic maintains a point o f contact with Dyn and Levin’s work. This
function is also one o f the extra basis functions (<p functions) used in finite

46

window splines. The roughnesses o f the fitted splines can been seen in
table 3.2.1.1. When looking at th? tables o f roughnesses which follow, it must be
remembered that the numbers in each column are integrals over the regions, so
that these numbers are not really comparable along the rows. This problem may
be alleviated by standardising the integrals to give roughness per unit area, but this
does not solve the problem since the splines have quite different relationships to
each o f these regions. The data is only scattered in the smallest region, so
comparison o f the roughness over this region with the roughnesses over the larger
regions gives us some idea o f the roughness caused by edge effects.

In the table we expect the smallest roughness over a given region to occur when
the spline is fitted over the same region, and when the higher number o f extra
functions is used. This is in fact the case in both the twenty-five and the fifty
point interpolants. Notice also that for the 25 point interpolants and for each
region Q2 and ^3 the roughness o f the spline fitted over that region is
considerably less than the roughness over the same region o f the thin plate spline.
The splines over ^ and Q2 have reductions respectively o f 36.8 to 26.8 and 45.8

to 33.6, which are reductions o f more than 25%. The spline over Q3 has a more
modest reduction in roughness o f 63.1 to 52.2, about 15%. Similar results apply
to the 50 point case. This is entirely consistent with the Dyn and Levin results
mentioned above.

The splines fitted over the regions and Q2 have very close roughnesses over
both these regions. This suggests that the choice o f boundary does not make that
much difference to the roughness o f the solution spline provided it is close to the
data. However the spline fitted over the smallest region actually has a larger

roughness than the thin plate spline, when measured over the largest region £23.
This seems to confirm the intuitive idea that the finite window spline is
transferring roughness out o f its window and into the rest o f R2.

Over the whole table the roughnesses o f the 7 <p function spline and the 15 q>
function spline are very close, except possibly in the cases o f splines over Q j and
Q2 where the roughnesses are measured over the region £23. Again the results
suggest that splines increase the roughness outside their regions quite considerably
in order to decrease the roughness inside their region by a relatively small amount.

Table 3.2.1.2. gives an approximation to the integrated squared difference between
interpolating splines and the original function per unit area. The figures in this
and the following table 3.2.1.3. regarding gradient error, tell roughly the same
story as the the roughness figures. A ll the finite window splines are an
improvement on the thin plate spline in terms o f recovery error and again there is

47

Table 3.2.I.I.
Roughnesses of Splines Fitted to f|.

No. of
Points

Spline fitted
over

Residual Roughness over
Qj Q2 £23

R2 36.8 45.8 63.1

7 (p fns.
15 (p fns.

26.8
26.6

34.4
33.8

72.6
69.0

25
q 2 7 (p fns.

15 <p fns.
26.8
26.8

33.6
33.2

63.6
57.1

q 3 7 <p fns.
15 <p fns.

29.2
28.9

35.5
35.1

52.2
51.5

R2 41.6 54.6 79.1

7 (p fns.
15 <p fns.

29.7
29.6

39.0
39.1

84.3
110.7

50
£22 7 (p fns.

15 <p fns.
29.9
29.9

38.4
38.2

75.7
72.2

q 3 7 <p fns.
15 <p fns.

32.5
32.3

40.8
40.6

63.3
62.5

Table 3.2.I.2.
Value Recovery Error for f1#

No. of
Points

Spline fitted
over

Error in Value per
unit area, over

Q2 Q3

R2 0.0046 0.0259 0.8321

7 q> fns.
15 <p fns.

0.0008
0.0010

0.0040
0.0053

0.1146
0.1884

25 7 (p fns.
15 q> fns.

0.0011
0.0013

0.0060
0.0071

0.1752
0.2707

£23 7 <p fns.
15 <p fns.

0.0024
0.0023

0.0132
0.0126

0.4130
0.4213

R2 0.0010 0.0114 0.6608

7 (p fns.
15 <p fns.

0.0001
0.0001

0.0011
0.0012

0.0634
0.0779

50
£22

7 (p fns.
15 <p fns.

0.0002
0.0002

0.0018
0.0021

0.1006
0.1496

£23 7 <p fns.
15 <p fns.

0.0004
0.0004

0.0047
0.0045

0.2708
0.2835

48

Table 3.2.I.3.
Gradient Recovery Error for fj.

No. of Spline fitted Error in x-derivative Error in y-derivative
Points over per unit area, over per unit area, over

Q j 0.2 Q 3 Q j O 2 O 2

R2 0.288 0.671 3.549 0.189 0.551 3.459

Q l 7 (p fns.
15 (p fns.

0.046
0.065

0.100
0.155

0.487
1.205

0.029
0.031

0.080
0.088

0.499
0.701

25 7 (p fns.
15 (p fns.

0.068
0.082

0.151
0.198

0.750
1.495

0.043
0.046

0.119
0.136

0.734
1.135

O^
7 <p fns.

15 q> fns.
0.149
0.142

0.342
0.330

1.766
1.885

0.094
0.089

0.273
0.262

1.703
1.794

R2 0.114 0.417 3.164 0.106 0.388 3.080

7 <p fns.
15 q> fns.

0.011
0.012

0.039
0.044

0.300
0.443

0.010
0.011

0.037
0.039

0.293
0.460

50 a2 7 <p fns.
15 (p fns.

0.017
0.021

0.063
0.079

0.476
0.837

0.016
0.019

0.060
0.071

0.465
0.756

n3 7 <p fns.
15 g> fns.

0.047
0.045

0.170
0.166

1.291
1.419

0.044
0.042

0.160
0.155

1.260
1.376

49

little difference between the splines over and £22- The best figures represent a
reduction in recovery error by the finite window splines over the thin plate splines
o f around 90%, and the gradient figures are no less dramatic.

We can gain more information about the differences in the fitted splines by
looking at the following figures. These figures are contour maps o f the functions
drawn over the region { - l < x , y < + l } using the contouring package CONICON3
developed at Bath University by Prof. R Sibson. On the contour maps the small
plus symbols mark the positions o f the data sites used and the boundary o f the
region over which the spline is fitted is marked for finite window splines, where it
differs from the whole contouring area.

The contouring procedure uses a piecewise quadratic C 1 interpolant, which it
actually contours, so there is a second level o f interpolation error induced by
contouring this approximant. This interpolant is based on value and gradient
information supplied at a grid o f 21x21 points and thus we expect this secondary
error to be very small. In fact contour maps drawn using information at an 11x11
grid are not visibly different from those presented here, and in any case the
contouring interpolation error is known to be high only when the contoured
function is extremely non-quadratic in form or the function is very flat.

Figure 3.2.1.1 shows the actual function 4xy that the subsequent splines are
attempting to recover. Figure 3.2.1.2 shows the 25 point interpolant with £2=R2.
W ithin the body o f the data the interpolation is not as bad as may appear from
this contour map. However towards the edge o f the data, the contours bend
around significantly in order that the spline is smooth in the comers o f the plot.

In figures 3.2.1.3 and 3.2.1.4, 7 extra functions have been used to f it the spline
over the regions and Q2 respectively. The visible improvement in this case is
striking, but it must be remembered that most o f this improvement occurs a long
way from the data. This is therefore to be expected, since the data itself
effectively ties down the interpolant in its vicinity but it is the smoothness criteria
which dominates the form o f the spline away from the data.

The spline in figure 3.2.1.5 is the 25 point, 7 extra function over 0 3 interpolant.
Even this spline is a visible improvement over the thin plate spline, but it is less
so than figures 3.2.1.3 and 3.2.1.4. The 15 extra function and 50 point spline
interpolants show similar features, to those above and figure 3.2.1.6 is the 50
point, 7 extra function interpolant over Ql5 the spline with lowest recovery error
o f all those fitted.

50

■0 0 -•0 0 ' •0 0 - ■0 .0 '

fig 3.2.1.1. Function 1

fig 3.2.1.2. 25 points, 0 extra functions

51

>v

0 0----0

fig 3.2.1.3. 25 points, 7 extra functions, region 1

—00'■00-----

fig 3.2.1.4. 25 points, 7 extra functions, region 2

52

•0 0 -- o o -

fig 3.2.1.5. 25 points, 7 extra functions, region 3

fig 3.2.1.6. 50 points, 7 extra functions, region 1

53

The second function chosen as a test function for the Sizetest procedure was,

= 3 [u -0 .3)3-3 U -0 .3)(y+ 0 .2)2]+ [3 (x-0 .3)20>+0.2)-(y+0.2)3] .

This is in fact a linear combination o f two o f the <p functions, namely pg and q>j.
This cubic function was chosen as the next most complicated polynomial after a
quadratic, and it is interesting to see what happens to the results given in the
previous section as the function being recovered becomes more complicated.

This cubic also has that property that it satisfies one o f the boundary conditions
that a spline satisfies but not the others. Recall that the spline satisfies the
boundary conditions,

V =0 and -^ -V 2fi=0 on 30..
an an

The previous function 4xy had the property that it satisfied two out o f three o f
these boundary conditions itself, at least in our case. The cubic function above
however only satisfies the third o f these conditions (at least when Q is a square),
and so we may expect that a spline has more difficulty recovering the edge
behaviour o f this function. The next function we shall consider satisfies none of
these conditions (in our case) and so the edge effects may be even more
substantial.

Table 3.2.1.4. presents the residual roughness values over the same regions as
before o f the same set o f interpolants as before. These figures represent much the
same reductions as the figures for f i with one exception. The roughnesses over
Q i o f the splines fitted over Q i and 7 extra functions are, 141.6 and
140.8 respectively. We would expect the first o f these figures to be lower than
the second since this first spline was fitted over the region the roughness was
actually measured over, and should therefore be the smoothest interpolant possible
over this region. The spline fitted over the slightly larger region has a roughness
which is lower by less than 1% and this is due to the fact that 7 extra functions is
probably too few extra functions to take to obtain the expected results. It must be
remembered that all the finite window splines presented here are not actually true
splines, rather they are approximations to the minimal roughness splines fitted
over the regions in question, and the number o f extra functions controls the
closeness o f this approximation.

Table 3.2.1.5. has the figures for value recovery error o f the interpolants. As can
be seen from the table the figures show much the same pattern as with the
previous function, although the overall level o f error is considerably higher. One
interesting result however can be seen in the recovery errors over 0 3 in the 25

54

Table 3.2.I.4.
Roughnesses for f2.

No. of
Points

Spline fitted
over

Residual Roughness over
Q 2 Q 3

R2 185.5 226.8 296.8

Qj 7 q> fns.
15 q> fns.

141.6
137.9

194.3
178.7

661.7
1199.1

25
£22 7 <p fns.

15 <p fins.
140.8
139.4

178.5
173.9

415.7
472.2

7 (p fns.
15 q> fins.

160.5
156.6

193.2
188.9

262.5
258.8

R2 243.7 333.5 475.9

Gi
7 q> fns.

15 <p fns.
176.8
173.9

259.4
241.9

1045.7
792.0

50
0.2

7 <p fins.
15 <p fns.

177.1
176.7

241.8
236.4

705.9
603.1

Q 3 7 (p fns.
15 <p fns.

206.8
201.3

271.8
264.3

408.4
401.8

Table 3.2.I.5.
Value Recovery Error for f2.

No. of
Points

Spline fitted
over

Error in Value per
unit area, over

Qi Q2 Q3

R2 0.0184 0.1070 4.2001

O] 7 <p fns.
15 <p fns.

0.0045
0.0055

0.0253
0.0358

0.9852
3.2651

25
£22 7 (p fns.

15 (p fns.
0.0076
0.0074

0.0429
0.0446

1.7025
2.7586

q 3 7 <p fns.
15 <p fns.

0.0143
0.0135

0.0814
0.0767

3.2483
3.1646

R2 0.0029 0.0311 2.9952

C lx 7 q> fns.
15 (p fns.

0.0003
0.0006

0.0040
0.0069

0.3584
1.2763

50
q 2 7 <p fns.

15 <p fns.
0.0007
0.0009

0.0078
0.0100

0.7291
1.5472

£23 7 q> fns.
15 <p fns.

0.0019
0.0017

0.0206
0.0190

2.0442
1.9921

55

point case. Here the 15 extra function interpolant fitted over Q j has an extremely
large recovery error compared to the trend in the column and to the 7 extra
function spline. We shall discuss this later in the context o f the contour maps of
the interpolants.

Figure 3.2.1.7 shows the theoretical function that we are trying to recover, and
figure 3.2.1.8 shows the 25 point thin plate spline interpolant. Immediately we
see that the recovery is much worse than in the case o f the previous function. We
believe this largely due to the extremely flat nature o f the function around the
bottom right o f the region . This flatness where the data influencing the whole

lower right quadrant o f the contoured area is situated makes it d ifficu lt to predict
the behaviour o f the surface outside of Q j. O f course this kind o f extrapolation is
not to be recommended, but even so, since the thin plate spline is smoothing in
this area, it may propagate an edge effect right up to the edge o f the data. This
becomes more apparent when we compare figure 3.2.1.8 with figure 3.2.1.9 the
interpolant fitted over Q j with 7 extra functions. The whole shape o f the
interpolant is different throughout the whole o f 0 3 the contoured region, and the
edge effects now recognised in the thin plate spline, are seen to propagate right up
to the edge o f the data. Well within the data however the interpolation conditions
take over from the smoothness as the major determining factor, and the differences
between figures 3.2.1.8 and 3.2.1.9 are minimal. I f we were smoothing rather
than interpolating we may have found the edge effects propagating further into the
data, since then we do not enforce interpolation, only closeness to the data. We
shall discuss this aspect in a later section.

Figure 3.2.1.10 shows the spline over ^ with 25 points and 15 extra functions.
This is the spline with the anomalous value recovery error in the table above. In
the lower right hand comer o f the contoured region it appears to be doing better
than either o f the previous splines, but down the left hand side o f the plot it is
exhibiting a kind o f over correction. In pushing roughness out o f the region of
the data it has made this left hand area too rough, whereas the thin plate spline
makes it too smooth. This may be an indication that small numbers o f extra
functions can do better than larger, and accounts for the poor performance o f the
15 extra function spline, over the region £23 as a whole. Looking again at the
table o f roughnesses and recovery errors, we see that the spline fitted over

most stable in this respect, that is the variation in the results for the 7 and 15 extra
function splines is least when the spline is fitted over this region.

As mentioned earlier the third function used in the simulations, does not satisfy
any o f the boundary conditions mentioned above. The function is still quite
simple however (namely cubic), and a further quartic function has been used in

56

fig 3.2.1.7. Function 2

fig 3.2.1.8. 25 points, 0 extra functions

57

fig 3.2.1.9. 25 points, 7 extra functions, region 1

fig 3.2.1.10. 25 points, 15 extra functions, region 1

58

the simulations, in order to compare these effects o f function simplicity and the
satisfying o f boundary conditions. These functions are,

= A [*3+x(y+0.2)2] + [x2(;y+0.2)+(y+0.2)3]

and

- 3 (x-0 . l) 4-2 y 2.

The tables o f roughnesses and value recovery error show similar patterns to those
in the previous examples but with all effects less pronounced.

A final simulation was carried out using a function o f an entirely different nature
to the polynomials used previously. This function, / 5, is given by,

/ 5 = 1.7exp [-((*+ 0 .2)2+ iy 2)/0.08j-2exp [-((x -0 .1)2+ (y -0 .0 5)2)/0.18]

The results are tabulated in tables 3.2.1.6. and 3.2.1.7.

As the theory indicates all the roughnesses can be reduced by fitting finite window
splines instead o f thin plate splines, although the reductions are all slight. When a
finite window spline is fitted the recovery error is often actually worse than that
for the thin plate spline interpolant to f$.

Figure 3.2.1.11 shows the theoretical function f 5 and figures 3.2.1.12, and 3.2.1.13

show the thin plate and 15 extra function over Q2» 50 point interpolant splines
respectively. Both splines have a low recovery error close to the data, where the
interpolation conditions have most influence, but neither can recover the rapid tail
out to zero away from the data, and the finite window spline is in fact worse in
this area. The thin plate spline does better away from the data because it at least
assumes smoothness there whereas, the finite window spline does not, but neither
allows sufficient roughness at the edge o f the area covered by the data for the
spline to tail out to zero.

3.2.2. Shapetest.

Motivated by the results obtained when repeating Dyn and Levin’s simulations, we
decided to see i f a change in shape o f the region Q would affect the solution
spline. An important question to be asked here is should the region be convex.
Clearly, in the definition o f the spline problem, it is necessary only that the region,
be such that we can integrate over it. In fact the same definition could be used i f
Q. had more than one component. In the mathematical solution, it is important
only that the region Q be one in which a restricted version o f the divergence
theorem, namely bivariate integration by parts, applies. It can be seen that the
derivation o f the unique solution spline could go through, even i f f l had a

59

Table 3.2.I.6.
Roughness for f5.

No. of Spline fitted Residual Roughness over
Points over Q] & 2 £23

R 2 375.4 399.4 420.1

7 <p fns.
15 <p fns.

362.4
359.6

394.4
399.8

586.2
1211.9

25 7 (p fns.
15 <p fns.

364.1
362.0

389.1
387.3

466.4
519.5

£23 7 <p fns.
15 <p fns.

372.3
371.5

395.3
394.5

417.0
416.5

R 2 482.1 504.7 524.4

O] 7 <p fns.
15 <p fins.

477.0
476.6

503.8
506.3

643.2
1044.6

50
o 2

7 q> fins.
15 <p fns.

477.5
477.2

499.7
499.4

552.0
596.4

Q 3 7 <p fns.
15 <p fns.

480.9
480.9

502.9
502.9

522.9
522.8

Table 3.2.1.7
Value Recovery Error for fs.

No. of Spline fitted Difference in Value(/area) over
Points over O] ^ 2 Q 3

R 2 0.0115 0.0192 0.0392

Q j 7 <p fns.
15 q> fns.

0.0162
0.0195

0.0319
0.0408

0.6497
1.0664

25
Q>2

7 <p fns.
15 <p fns.

0.0147
0.0163

0.0273
0.0311

0.2918
0.3324

0 3 7 (p fns.
15 <p fns.

0.0122
0.0126

0.0211
0.0221

0.0739
0.0804

R 2 0.0002 0.0005 0.0399

7 q> fns.
15 (p fns.

0.0003
0.0004

0.0039
0.0053

0.6079
1.0744

50
Q 2 7 g> fns.

15 (p fns.
0.0002
0.0003

0.0019
0.0021

0.2754
0.3481

q 3 7 <p fns.
15 (p fns.

0.0002
0.0002

0.0007
0.0007

0.0696
0.0699

60

fig 3.2.1.11. Function 5

fig 3.2.1.12. 50 points, 0 extra functions

61

■oo-

fig 3.2.1.13. 50 points, 15 extra functions, region 2

62

boundary which was partly finite and partly infinite (e.g. a half plane), but this
would lead to some mixed boundary conditions in the differential characterisation.
The solution, even approximately, o f this characterisation and the practical
application o f the resultant splines are beyond the scope o f this thesis. For our
purposes we assume that Q is either R2 or closed and bounded. In fact, as before
we restrict ourselves to either Q=R2 or £2 having a piecewise linear boundary.

The simulations carried out consist o f 25 and 50 points scattered in a U-shaped
sub-region o f the square {-1 .5 < J t,y< 1 .5 }. Data is taken from two functions
used in Sizetest namely f i and / 2. Splines are then fitted over the U-shape and
the enclosing square using 7 and 15 extra functions, and roughnesses and recovery
errors then measured. These are given in tables 3.2.2.1. and 3.2.2.2.

Looking at the roughness tables we again see that by far the largest part o f the
reduction in roughness occurs when going from Q=R2 to either o f the bounded
Q, and the differences between the bounded £2 are small compared with this
reduction o f between 20% and 35%. This result is supported by the recovery
error figures which again show big reductions when a finite window is used and
little difference between finite windows.

One interesting point is that in all cases the 7 extra function splines do better for
recovery error than the 15 extra function splines. This seems to suggest that the
15 extra function splines are slightly over-smoothing in this case. However the
differences are slight when compared with the differences between thin plate and
finite window splines.

Figure 3.2.2.1 shows the 25 point thin plate interpolant to / j and figure 3.2.2.2 the
25 point interpolant with Q the square and 7 extra functions. Figure 3.2.2.3
shows the 25 point interpolant over the U-shape shown using 7 extra functions.
The contour maps for f 2 show similar, less pronounced, effects.

3.2.3. Conclusions of Sizetest and Shapetest.

The studies Sizetest and Shapetest have something to say about which region it is
best to fit finite window splines over, and which functions we might expect finite
window splines to recover best. Shapetest indicates that the shape o f the region is
largely unimportant, so that there is no need for the use o f complicated regions.

Sizetest indicates that the size o f the region is mostly unimportant provided that
the region is reasonably close to the data. However, the investigation also
indicates that a region too close to the data can cause the method to be more
sensitive to the choice o f number of extra functions. This second point is

63

Table 3.2.2.I.
Roughnesses of Splines Fitted in Shapetest.

No. of Spline over Function f \ Function /2
Points. Region. Roughness calculated over

U-shape Square U-shape Square

R2 276.3 340.3 6882 7669
U-shape (7) 179.9 243.2 5008 6020

25 05) 172.7 239.8 4610 5814
Square (7) 177.0 239.2 4917 5879

(15) 176.0 238.0 4706 5715

R2 333.9 392.1 9342 10153
U-shape (7) 208.3 271.3 6631 7738

50 (15) 206.6 271.6 6310 7473
Square (7) 208.8 270.9 6574 7649

05) 210.1 269.9 6422 7412

Table 3.2.2.2.
Value Recovery per Unit Area in Shapetest.

No. of Spline over Function / j Function / j
Points. Region. Error calculated over

U-shape Square U-shape Square

R2 0.599 0.470 7.79 6.43
U-shape (7) 0.070 0.055 2.32 2.13

25 (15) 0.110 0.087 2.78 2.39
Square (7) 0.093 0.073 2.64 2.35

(15) 0.111 0.087 3.02 2.56

R2 0.106 0.084 2.87 2.79
U-shape (7) 0.009 0.007 0.53 0.57

50 (15) 0.012 0.010 0.74 0.67
Square (7) 0.011 0.008 0.58 0.60

(15) 0.013 0.010 0.85 0.78

64

■0 0 ■oo-

fig 3.2.2.1. 25 points, 0 extra functions

■0 0-

fig 3.2.2.2. 25 points, 7 extra functions, square region

65

■oo-

fig 3.2.2.3. 25 points, 7 extra functions, U-shaped region

6 6

supported by the fact that points close to the boundary, have yr (that is r 2logr2)
functions involved in integrals along the boundary, causing the integrands to have
wide variation near the data point in question. This means that these integrals are
d ifficu lt to calculate numerically, especially using simple integration rules. This
problem is reduced by our techniques for evaluating the integrals, but these
integrals w ill still have proportionately larger numerical errors, when compared to
the errors in more well behaved integrals, involving only data points away from
the boundary.

Regions with boundaries far from the data begin to have associated splines which
return to the behaviour o f thin plate splines, so an ideal region is one relatively
close to the data, but not too close! We recommend a boundary which is on
average about half the distance from the data, as the data is from itself. This then
means that i f the data were reflected in the boundary, and the boundary then
removed the spread o f the extended data would appear to be as dense as the
original data. In this case the boundary allows about the right amount o f space
around the data.

It is interesting to note the type o f function that we might expect finite window
splines to recover best. The discussions earlier about functions satisfying the
boundary conditions o f finite window splines being recovered best, are o f course
obvious. It is certainly to be expected that a finite window spline w ill recover
something approximating a finite window spline, better than a thin plate spline.
Apart from this the simulations seem to indicate that the finite window splines
w ill do better where the roughness o f the function to be recovered is evenly
spread over the region o f interest. In the next section we w ill investigate this
aspect further.

3.3. The Application of Thin plate and
Finite Window Splines to a Real Data Set.

The functions used in the simulations in the previous sections, cannot be regarded
as typical o f the surfaces encountered in common applications o f surface fitting.
For example in geological applications, reconstruction o f the surface o f a buried
rock layer using bore-hole information, is unlikely to produce a solution with as
simple a shape as 4xy. Nor is it likely to produce a solution with such locally
restricted variation as the function f$ in Sizetest. The function 4.xy is a single

saddle point centered at the origin, whereas f$ consists o f a steep h ill and a deep

pit very close to each other in an otherwise flat landscape. Real data is more
likely to produce a surface which is a combination o f saddles, hills and pits
throughout the whole region o f interest.

67

To compare the results o f the thin plate and finite window splines, in these
circumstances we have used the data taken from O’Connor and Leach (1979).
This data arises from the analysis of 38 samples from a mine in Cobar, NSW,
Australia. A t each sampling point the ‘true width’ o f an ore bearing rock layer
and three types o f ore content were measured. So in this case we have four data
sets where the actual data sites are common between them. These data sets are
listed in table 3.3.1.

Looking at the data we notice that it is all rounded to 2 or 3 significant figures
and so, there is likely to be at least some measurement error in the data. Despite
this, so as to avoid the problem o f choosing a suitable smoothing parameter for
the time being, we w ill first look at interpolating splines. Figure 3.3.1 shows the
positions o f the data sites and a convex region around them chosen so as to lie
about the same distance from the data as half the distance between the data sites.
Notice how this method of choosing the region to suit the data leads to a more
even coverage than the method used in the simulations, o f scattering the data
‘uniform ly’ over a predetermined region. The fact that the positions o f the data
sites are fixed by a human investigator also leads to a more ‘uniform’ spread o f
the data than when the sites are chosen at random ‘uniform ly’ .

Figure 3.3.2 shows the interpolant to the ‘true width’ (data set 1) using £2=R2.
The effects o f rounding can be seen in that a large number o f the data sites lie
exactly on contours. When approximating the finite window spline we have to
decide how many extra functions to use. In the simulated data this was done by
comparing the splines with 7 and 15 extra functions, since we suspect the real data
case to be more complicated, we must be more careful about this choice. There
are two important criteria which may be used to determine a choice for n, the
number o f extra functions. These are the convergence o f the reductions in
roughness and the convergence o f the solution spline itself. The second o f these
criteria is more difficu lt to examine since it depends upon the behaviour o f a
whole surface as opposed to a single real number in the roughness criterion. Also
since it is this residual roughness the method is designed to minimize we chose
the roughness criterion as our means o f selecting n.

Table 3.3.2 shows the residual roughness o f the interpolants for each data set and
several values o f the parameter n. From the table it appears that in all but data set
1 the roughnesses have started to converge at 31-39 extra functions. However
data set 1 has an erratic behaviour upto 27 extra functions and decreases steadily
by about 0.15 thereafter. We notice from this that even 15 extra functions may be
too few to take, in the case o f real data, and larger values o f n are required. Also
notice that the overall reductions in roughness are much smaller, than in some of

68

Table 3.3.1.
Positions of Data Sites and Corresponding Data Values.

No.
Data Site

X y Set 1
Data Values

Set 2 Set 3 Set 4

1 -16.0 -15.0 17.0 0.984 0.606 3.297
2 -14.0 -4.0 18.0 0.850 0.564 3.177
3 -13.0 4.0 17.5 0.957 0.259 1.691
4 -7.0 5.0 19.0 1.260 0.870 6.829
5 -6.0 -43.0 22.0 1.709 1.486 7.563
6 -6.0 -36.0 24.0 0.900 1.298 10.670
7 1.0 -50.0 17.4 0.952 1.025 12.140
8 2.0 -39.0 23.0 0.982 0.720 7.727
9 2.0 -8.0 23.5 1.773 1.464 7.329

10 2.0 -51.0 15.0 0.829 0.877 11.420
11 9.0 -16.0 23.5 1.723 2.213 9.103
12 9.0 -42.0 25.0 1.422 1.922 7.405
13 17.0 -37.0 16.5 1.264 1.551 6.038
14 18.0 -12.0 19.5 1.580 2.228 6.232
15 24.0 -57.0 12.0 1.511 0.517 3.684
16 25.0 -29.0 18.5 1.367 1.077 3.257
17 26.0 -40.0 18.0 1.757 0.409 2.809
18 32.0 -7.0 14.0 0.602 2.184 4.258
19 33.0 -35.0 19.0 1.261 0.938 5.316
20 40.0 4.0 13.5 1.859 0.642 1.281
21 40.0 -61.0 18.0 1.401 0.079 0.190
22 44.0 -29.0 19.4 1.565 0.519 1.773
23 48.0 -65.0 13.0 0.798 0.056 0.272
24 48.0 -7.0 14.0 0.971 0.860 1.727
25 49.0 -32.0 19.5 1.660 1.662 1.952
26 55.0 -71.0 16.0 1.654 0.379 0.375
27 56.0 -14.0 16.0 1.014 1.521 3.133
28 59.0 -38.0 19.0 1.171 1.510 2.840
29 62.0 7.0 19.0 0.835 0.099 3.703
30 62.0 -3.0 21.5 2.477 0.082 1.417
31 64.0 -29.0 22.0 1.917 1.818 2.601
32 69.0 -28.0 20.5 1.403 0.913 2.131
33 70.0 -72.0 11.0 1.089 0.403 3.141
34 77.0 -19.0 26.0 1.117 0.637 2.474
35 78.0 -53.0 22.0 0.628 2.331 5.186
36 79.0 -37.0 26.0 0.877 1.337 5.836
37 84.0 -52.0 16.0 0.642 1.592 11.130
38 84.0 -16.0 16.0 0.230 0.129 0.968

69

fig 3.3.1 The data sites

fig 3.3.2 Thin-plate interpolant (data set 1)

fig 3.3.3 23 extra functions interpolant

71

the simulations. The final number o f extra functions chosen was 23 and this
represents only 3%, 4.25%, 1.5% and 6.25% reductions in roughness for each data
set respectively. This can probably be attributed to the fact that not only are the
recovered surfaces more complicated than any o f those in the simulated data, but
also the more even coverage o f the data sites, together with the interpolation
conditions allow much less freedom in the surface to be determined by
smoothness criteria. A t least one o f these problems should be reduced
significantly when some smoothing is applied, thereby relaxing the interpolation
conditions.

Table 3.3.2.
Residual Roughness of Interpolants.

No. of Extra Data Set
Functions 1 2 3 4

0 (Q = R 2) 64.06 1.195 1.660 21.34
3 63.81 1.192 1.657 21.32
7 63.71 1.187 1.651 20.70

11 63.45 1.176 1.646 20.63
15 62.68 1.172 1.641 20.44
19 62.61 1.153 1.640 20.11
23 62.08 1.144 1.633 20.00
27 61.98 1.140 1.631 19.95
31 61.79 1.129 1.629 19.85
35 61.66 1.128 1.625 19.80
39 61.55 1.123 1.624 19.77

Figure 3.3.3 shows the interpolant, to the first data set, using 23 extra functions
and the region shown. Here, in the real data application, the differences appear to
be much more confined to the edges than in the simulated data. It is d ifficu lt to
see these differences, beyond the largest, in contour maps o f this kind and more
d ifficu lt for us to describe them. However since both splines can be described
using the coefficient vectors A, b, and d for b a 23 vector o f coefficients o f the
extra functions (all held zero for the thin plate spline, figure 3.3.2) we can easily
look at the differences between the two splines by subtracting the respective
coefficients and contouring the residual function.

Figure 3.3.4 shows the contour map o f the difference between the thin plate and
the finite window splines (23 extra functions). A problem with these maps is that
large areas are relatively flat and close to zero. This is known to be a difficu lt
surface for contouring algorithms to map well and results in CONICON3 choosing
large wiggly zero contours. The position o f these zero contours is in theory
variable throughout the region where the residual is zero, but in practice is

72

fig 3.3.4 Difference between 0 and 23 extra functions

fig 3.3.5 Difference between 23 and 31 extra functions

73

fig 3.3.6 31 extra functions interpolant

7 4

determined by the rounding errors in the splines. A t the positions o f the data sites
the difference function is defined to be zero so almost all the sites lie under zero
contours. To overcome this problem of indeterminate zero contours, the maps
have been cross-hatched in regions where the function is close to zero and the
zero contours omitted. (By close to zero here we mean that the absolute value o f
the residual function is less than about 5% of the maximum value o f the original
splines.)

Figure 3.3.4 shows that the finite window spline procedure is indeed an edge
correction procedure, although there some areas in the lower part o f the data that
change slightly, away from the edge.

In order to see how our roughness criterion for choosing the number o f extra
functions, effects the shape o f the finite window spline we have contoured in the
same way as above, the difference between a finite window spline with 23 extra
functions and one with 31 extra functions. Again the differences can be seen, in
figure 3.3.5, to be restricted to the edges o f the region, even more so than in
figure 3.3.4 and the differences are in general smaller. There is a problem here in
that small differences in the value o f the surface can result in large changes in the
paths o f the contours, i f the gradient o f the surface is small. This is apparent
when comparing figure 3.3.6, the 31 extra function spline, with figure 3.3.3. A t
the centre-top o f the region the contours appear quite different, but figure 3.3.5
shows that these differences are about a third o f those between figures 3.3.2 and
3.3.3.

The other data sets show similar results to this one. The figures are presented
here for completeness. The data sets 2 and 3 appear more complicated than data
set 1, in that there is more variation in the region o f the data. Figures 3.3.7 and
3.3.8 show the thin plate and 23 extra function splines respectively for data set 2.
Immediately we see that this surface is more complicated in the central region
than the first data set, and there are several differences between the two splines.
Figures 3.3.9 and 3.3.10 are the differences between the thin plate and 23 extra
function splines and the 23 and 31 extra function splines respectively, with the
shaded region determined as before. It can be seen that, although the splines have
not really converged yet, there are extensive areas around the edges o f the region
and away from the data sites where the thin plate and finite window splines differ.

Figures 3.3.11 to 3.3.14, for data set 3, show much the same effects as those for
data set 2. Data set 4 shows a less erratic variation than any o f the previous data
sets, and the thin plate and 23 extra function splines are plotted in figures 3.3.15
and 3.3.16. Figure 3.3.17 shows probably the largest area o f differences between

75

fig 3.3.7 Thin-plate interpolant (data set 2)

fig 3.3.8 23 extra functions interpolant

76

fig 3.3.9 Difference between 0 and 23 extra functions

fig 3.3.10 Difference between 23 and 31 extra functions

77

fig 3.3.11 Thin-plate interpolant (data set 3)

IliJ W
o

fig 3.3.12 23 extra functions interpolant

78

fig 3.3.13 Difference between 0 and 23 extra functions

fig 3.3.14 Difference between 23 and 31 extra functions

79

fig 3.3.15 Thin-plate interpolant (data set 4)

fig 3.3.16 23 extra functions interpolant

80

fig 3.3.17 Difference between 0 and 23 extra functions

fig 3.3.18 Difference between 23 and 31 extra functions

81

these two splines of all the data sets, while figure 3.3.18, the difference between
the 23 and 31 extra function splines, shows similar results to the equivalent
previous plots.

Conclusions.

The application o f finite window splines to real data can largely be regarded as an
edge correction procedure. Despite the difficulty o f obtaining convergence to the
true finite window spline using the techniques of Dyn and Levin outlined here,
fitting modest numbers o f extra functions can produce splines significantly
different in appearance from thin plate (ft^ R 2) splines, at least away from the
data, in the interpolation case. However closer to the data the differences are
minimal, and this is to be expected in the interpolation case as the interpolation
conditions tie down the fitted function in regions close to the data sites.

In general the effects seen in the real data examples are much less marked than
the effects observed in the simulations. This might be seen as a disappointing
result until it is remembered that, although interpolation is important in bivariate
regression, in order to look at the data effectively, it is hardly likely to be a
wholly appropriate procedure for modelling surfaces based on real data. In this
case the smooth fitted surface may be unduly affected by errors in the recorded
data and smoothing these data values is desirable in order to estimate the error
free values, in all cases except where the errors are known to be small. Even in
the case o f small errors, smoothing may be appropriate in order to extract trend
information from the data more effectively.

In the next section we shall briefly look at some smoothed thin plate and finite
window splines, fitted to the real data o f this section.

3.4. Finite Window Smoothing Splines.

The mathematics and implementation of finite window smoothing splines was
discussed in earlier chapters. Here we look at their application to the first o f the
real data sets mentioned in the previous section. The automatic choice o f
smoothing parameter does not concern us here, since we are interested in
comparing thin plate and finite window splines, where a similar amount of
smoothing has been performed. There is a problem in matching the amounts of
smoothing carried out by the different types of splines. We cannot simply use the
same value o f smoothing parameter, as this parameter biases a different measure
o f roughness in the two spline problems.

82

Recall that the functional being minimised can be written as,

E (u)+ oJq (u)

where E is an error penalty, usually the sum of squared residuals, and is a
measure o f roughness, namely the integral over Q (=R2 or some bounded region)
o f the sum of all the second derivatives squared. Thus when £2=R2 the
smoothing parameter is biasing a larger factor than when £2 is some bounded
subset o f R2.

There are at least two ways o f assessing the amount o f smoothing that the splines
have done to the data. The first that we shall consider is the error. W ith this we
measure the sum o f squared residuals o f the fitted smoothing spline, and use this
as an indicator o f the amount o f smoothing performed. We also consider the
residual roughness over the region £2 over which the finite window spline is fitted
as a measure o f smoothing. This measure says that two splines have performed
the same amount o f smoothing i f they have the same residual roughness over the
region. This choice o f region is preferable rather dian the choosing R2 since,
although the finite window spline is defined outside the associated region, its
roughness over the whole plane its not necessarily finite.

Before proceeding to compare the two types o f splines, using the above measures
to determine comparable amounts o f smoothing, we shall look at the interaction of
these measures. For a range o f values o f the smoothing parameters the residual
roughnesses and errors were calculated for both types o f spline. Figure 3.4.1
shows the graphs o f the square root o f residual roughness plotted against the
square root of the sum o f squared residuals, for both spline types. The solid line
is for thin plate splines. As the smoothing parameters increase, the errors and
roughnesses change in such a way that we move, at differing rates, from left to
right along the respective curves. A t the far right o f the curves, where the
roughnesses are zero, the fitted surfaces are both planes. In fact the splines are
both the same, and are the least squares fitted plane. However away from this
point, the curves diverge with the finite window spline lying below the thin plate
spline curve. This can be interpreted in two ways. The finite window spline has
lower residual roughness for a given residual sum of squares, or the finite window
spline has lower error for a given residual roughness. Also it can be seen, in this
example, that the difference between the two curves is almost constant, so that
proportionately the differences in roughness for a given error, are greater where
more smoothing has taken place.

83

roo
t o

f r
esi

du
al

rou
gh

ne
ss

Root roughness versus root error for both types of spline

10

Thin Plate
8 Finite Window

6

4

2

0

200 5 10 15 25

root of sum of squared residuals
figure 3.4.1

84

fig 3.4.2 Thin-plate smoother (alpha=l)

fig 3.4.3 Error matched (23 extra functions)

85

fig 3.4.4 Difference between thin-plate and error matched splines

fig 3.4.5 Roughness matched (23 extra functions)

86

fig 3.3.6 Difference between thin-plate and roughness matched splines

To compare thin plate and finite window smoothing splines, three values of the
smoothing parameter were chosen in thin plate case, namely 1, 10 and 100, and
the finite window splines with the same error and the same roughness were found
for each thin plate spline. Figure 3.4.2 shows the thin plate spline smoother with
the value o f the smoothing parameter 1. The residual roughness o f this spline is
34.67 and the sum of squared residuals, is 12.24. Figure 3.4.3 shows the error
penalty matched, 23 extra function finite window smoothing spline, and figure
3.4.4 shows the difference between the two splines, with the hatched area
determined as before. Figures 3.4.5 and 3.4.6 show the roughness penalty
matched finite window spline and the difference between this and figure 3.4.2.
Figures 3.4.7 to 3.4.11 and 3.4.12 to 3.4.16 show the equivalent pictures for thin
plate smoothing parameters o f 10 and 100 respectively. Table 3.4.1 below shows
the roughnesses and error penalties o f all the splines fitted.

Table 3.4.1.

Thin Plate Finite Window
_ „ , _ . Error Matched Roughness Matcheda Roughness Error Penalty u £ i.Roughness Error Penalty

1 34.67 12.24 27.53 6.23
10 7.10 102.24 4.41 73.97

100 0.77 272.83 0.31 215.95

The table demonstrates also, that the finite window spline has less residual
roughness for a given error and less residual error penalty for a given roughness,
than the thin plate spline, as figure 3.4.1 has shown.

For both the error penalty matching and roughness penalty matching splines, the
differences between the thin plate and finite window versions become greater and
more extensive, as the smoothing is increased, in our examples. The differences
in the roughness matched splines are all much larger than the differences in the
error matched splines, and the increase in the differences is more marked when
comparing the roughness matched splines. This is to be expected since the error
matched splines are at least matching by a function o f the values o f the spline at
the data sites, and since the plotted differences are differences in value, we expect
the error matched splines to be closer than the roughness matched splines.

One interesting observation can be made i f we look back at the difference between
the interpolating thin plate and finite window splines for this data set
(figure 3.3.4). Comparing this with figure 3.4.4 we see that the difference
between the error matched splines at the lowest level o f smoothing tried, is
slightly less than the difference between the interpolating splines. We also know

88

fig 3.4.7 Thin-plate smoother (alpha=10)

fig 3.4.8 Error matched

89

fig 3.4.9 Difference between thin-plate and error matched

fig 3.4.10 Roughness matched

90

fig 3.3.11 Difference between thin-plate and roughness matched

91

fig 3.4.12 Thin-plate smoother (alpha=100)

fig 3.4.13 Error matched

92

fig 3.4.14 Difference between thin-plate and error matched

fig 3.4.15 Roughness matched

93

fig 3.3.16 Difference between thin-plate and roughness matched

94

that since the solution with an infinite amount o f smoothing is the same plane for
both types o f spline that the differences are zero as the smoothing parameter tends
to infin ity. Thus as we increase the amount o f smoothing away from
interpolation, it seems that in this case at least, the differences between the error
matched splines first decrease slightly, then increase more significandy and then at
some point begin to tend to zero. The largest differences occur, in this data set,
between the roughness matched splines, when we have smoothed considerably, but
are still extracting non-linear trend information from the data.

Although this section looked only at the first data set, similar results apply to the
other data sets we have looked at. The slight decrease in the differences between
the error matched splines at the lowest level o f smoothing, over the interpolating
splines, does not occur consistently, and may be a problem associated with the
actual matching o f the error penalties. More accurate matching, than to two
decimal places, may have eliminated this decrease. In any case the reduction is
very slight, and could easily be attributed to numerical errors, either in the spline
procedures or the contouring package. The difference surface is very flat in the
centre o f the data and it is known that this makes the contours less well
determined.

95

Chapter 4.
Natural Neighbour Splines.

4.1. The Natural Neighbour Spline Problem.
4.1.1. A Discrete Roughness Penalty in One Dimension.

A slightly different approach to bivariate (and higher dimensional) splines, arises
from an alternative view o f univariate splines. The univariate smoothing spline is
characterised as the solution of the variational problem,

minimise 'Z (z i - f (t i)) 2 + a jbf " 2

j= i a

where a< ti...< tN<b. As we have seen in the earlier chapters the error term
carries straight over to higher dimensions without modification. So it is the
roughness term which causes difficulty. The spline approach discussed earlier
generalises this integral to an integral over some region Q o f the sum of all the
second derivatives squared (including d 2fjdxdy and d 2 f/dydx), and proceeds to
solve the minimisation problem using functional analysis.

I f we notice, however, that in one dimension when the function / is cubic in the
interval (ti »U+1) where 1 <i<N, as it is in the case o f a univariate spline, the
contribution to the roughness o f this section of the spline can be written,

n (8 i+ l~£ i) 3 r/ \/ \ \i2
Ri = ~Tt -T- + --------- t(£i+i +£i)(f|+i “f/)“2(z/+i —zf-)]

where z{= /(f,) and £,•=/'(*,•) for all i (Sibson (1985)).

Accordingly this expression can be regarded as a discrete approximation o f the
contribution in the interval (?t-,f,+ i) to the roughness o f any function / , the
approximation being exact whenever / is cubic in this interval. Natural neighbour
splines arise from a generalisation o f this finite difference approximation to higher
dimensions.

Natural neighbour splines also rely on the observation that many smoothing
techniques use a two stage approach. That is firstly the data itself is smoothed to
obtained smoothed values at the data sites and secondly an interpolant is fitted to
these smoothed values. It is the first o f these stages that w ill be considered in this
part o f this thesis. For a detailed discussion of the second stage see Sibson
(1985).

In fact the natural neighbour approach has a first stage that estimates smoothed
values and gradients at the data sites (only gradients in the case o f interpolation)
and then uses a similar procedure to interpolate between the data sites. We shall

96

now describe the details o f natural neighbour splines which are relevant to the first
o f the above mentioned stages, the implementation o f which is our concern here.

In the case o f univariate splines, we have seen that the roughness o f the spline can
be written as,

N - 1
Rtotal = X

i= l

where was described above. Notice that the term /?,• involves only information

at the points f{- and *i+i. and Ri can be regarded as the contribution to the
roughness o f the function o f the link between this pair o f neighbours. The total
roughness Rtolai is then seen to be a sum of contributions over neighbour pairs,
counting each pair only once.

Thus before we can generalise /?, to two dimensions we must first generalise the
concept o f a neighbour.

4.1.2. The Dirichlet Tessellation.

We shall use the well known method of determining neighbours o f a point via the
Dirichlet tessellation. Firstly we describe the tessellation in its ^-dimensional
setting.

Suppose we have N points in R*, and a convex region £2cR*, containing
all the data sites. In fact we assume £2 to be an open, bounded polyhedron, as in
the chapters on finite window splines, although we did not require Q. to be convex
there. For each point tt define,

= { f e n : V ; * / }

where ||* || is the usual Euclidean distance norm in R*. Since 7,- is just the
intersection with the window Q. o f N - 1 half spaces, it is itself a convex
polyhedron. 7,- is in fact that part o f the window which is closer to tt than any
other tj for y=J=/, and we can see that,

N N _
K jT t c n c U 7;.
i= l /=1

That is, Q is covered by the union o f the 7t- up to a null set.

Ti is called the tile, or Voronoi or Thiessen polyhedron o f tt and the collection of
tiles is called the Dirichlet tessellation of Q defined by q Two tiles in the

tessellation are said to be contiguous i f they share a common boundary facet (k-1
dimensional) and we define the relation is a neighbour o f by,

97

ti is a neighbour o f tj <=> Tt and Tj are contiguous.

This gives us a neighbourhood system in the qualitative sense, but we w ill require
a quantitative measure o f the strength o f the neighbour relation. In one dimension
this is provided by the reciprocal o f the distance between two neighbours, which is
sufficient, since two neighbours do not have any other points between them, and
the neighbours o f a point are just those closest to it on either side. In higher
dimensions however this is not sufficient. Consider the points below,

h *

h ' h * h *

In this case, although the two points f2»*3 are about the same distance from flt t2

plays a much more important role than r3 because of the positions o f r4 and t$. In
fact in this case t2 provides the only information to the right o f To quantify
this importance we introduce the so called boundary over distance weights.

4.1.3. Boundary over Distance Weights.

Define V i \ j ,

Sij = { teQ: V IJfiJ }

Then 5^ is the k— 1 dimensional common facet o f tiles 7/ and Tj. Using <7 k_i to

mean k— 1 dimensional Lebesgue measure put,

Vij = ^ - 1 (^) 1 \\ti-tj\\.

Vij is called the boundary over distance weight or BOD weight. Notice that for
k= 1 Sij is a point midway between and tj, and thus = 1 / 1 —Jfy | , i f i and j are

neighbours. This means that the reciprocal o f the distance between two
neighbours is just the one dimensional BOD weight.

An important property o f the proved in Sibson (1980) and used extensively in
Sibson (1985) is called the local coordinates property. This states that, given that
ti is not neighbouring the boundary we have,

j¥

98

Recall that in one dimension the roughness was written, using the new notation,

X Vy ((g j - g ,)2+ -- _3—2 t(gy + g i) { t j - t i) - 2 (Z j -z,-)]2 }
pairs i$ j I tj h \

where here the sum is taken over unordered pairs with i ^ j and is zero i f i and
j are not neighbours.

4.1.4. A Bivariate Generalisation of the Discrete Roughness Penalty.

We shall now generalise the above univariate penalty to two dimensions. Since
the second term in the summand vanishes whenever the zt-, Zj, and gj lie on a
quadratic rather than a general cubic, we consider the first term, separately.

The roughness reduces to,

X vy(g j -g i)2
pairs 14=j

(where the is taken over the pairs mentioned above) and this correctly recovers the
roughness o f a C 1 piecewise quadratic (linear outside the range o f the data). This
sum can easily be generalised to higher dimensions by replacing the squared
change in derivative between and tj with the squared norm o f the change in
derivative, as below.

X vy (g j -g i)J (g j -g i)
pairs i‘4 j

and in fact this recovers the roughness o f a general quadratic in two dimensions
up to an edge effect near the window boundary.

In this way Sibson (1985) proposes that the form,

Rg = X vy\ (.g rg i)7 (g j -g i) + .. ** 2 [(gj+gi)J U j - t i) -2 (Z j -Z i)]2 \
pairs i'4=j I, II tj ?i II J

should be used as the appropriate generalisation o f the discrete roughness penalty,
where Qk is a dimension dependent constant. For k= 1 6 k= 3 is the appropriate

choice as we have seen and Sibson (1985) has an argument that suggests 0 k=k+2
is the best choice that can be made for 6 k. This choice does not make Rq recover
the roughness (even up to edge effects) o f any larger set o f functions than general
quadratics, but it is the preferred choice within this form of RG. More

complicated forms of RG are not considered here.

99

4.1.5. Statement of the Natural Neighbour Spline Problem.

We can now state our problem, which corresponds to the first stage o f the natural
neighbour spline fitting problem, namely determining fitted values and gradients at
the data sites.

Problem. Given data sites ,...,f^e£ 2cR 2, where Q is a convex polygonal
region, and corresponding data values Zx ,...,Zyv, find,

(interpolation) gi ,...,£# such that,

is a minimum.

Hence both the interpolation and smoothing problems reduce (at least in their first
stage) to minimising a quadratic form in 2N and 3N variables respectively. This
corresponds to the inversion o f 2N and 3N matrices, which are approximately two
and three times the size of the matrices to be inverted when using thin plate
splines. Thus we might expect natural neighbour splines to pose severe
computational problems, particularly for large data sets.

However, returning to the quadratic forms it is easy to see that the variables
associated with each data site r,-, namely z-t and giy occur in terms in the sums only
with the variables associated with the neighbours of tr In terms o f the matrices to
be inverted this means that in each row, row i say, the only entries which are
non-zero are the entries corresponding with the variables associated with f,- and the

neighbours o f r,-, and since the number of neighbours o f a point is relatively small,

the matrices are very sparse. In fact, in two dimensions, it is known that each
point has on average six neighbours, so that the average number o f non-zero
entries in each row does not increase with the number o f data sites, it remains at
six times the number variables associated with each data site plus the number of
variables associated with f, itself. Thus on average 14 or 21 non-zero entries in
each row can be expected.

pairs i+y

is a minimum, or

(smoothing) zl ,...,zN and gj suc^ ^a t,

E (z i-z,)2+a E vi j \ (g j - 8 i) T (g j - 8 i) +
i- 1 pairs j

100

4.2. The Preconditioned Conjugate Gradients Method
for Inverting a Sparse Matrix.

In the previous section we have seen that in order to determine fitted values and
gradients at the data sites to fit natural neighbour splines, we need to solve a
possibly very large, sparse linear system. D uff (1982) presents a recent review of
sparse matrix techniques. For our problem we have chosen, firstly, to use an
iterative technique known as the conjugate gradients method, (see Reid (1971)).

4.2.1. The Conjugate Gradients Algorithm.

The conjugate gradients method was discussed by Hestenes and Stiefel (1952), as
an /i-step procedure for solving an nxn linear system having a symmetric positive
definite matrix o f coefficients. In this form it is not regarded as an iterative
procedure, but rather as a terminating direct method.

The method regards solving the set o f equations,

A x -b

as equivalent to minimising the quadratic form,

Q (*) = %x t Ax - x Tb

where A is an nxn positive definite symmetric matrix and b is an n vector o f right
hand sides. In order to minimise Q, n search directions are set up d\>...ydn and
exact line search is used along each direction in turn starting from an initial
approximation, the solution o f one line search being used as the initial
approximation for the next search. The search directions used are designed to be
conjugate, that is they are chosen so that,

d jA d j- 0 i+y.

In this case it can be shown, (Reid (1971)), that i f exact arithmetic were in use,
the exact solution would be found after m<n searches. Normally m=n, but
repeated eigenvalues in A or a fortunate choice o f initial approximation can lead to
m<n. Unfortunately, however, in the presence o f rounding error this property no
longer holds, and in any case as a direct method, the conjugate gradients algorithm
is not competitive in storage or number o f floating point operations, with Gaussian
elimination.

A certain choice o f diy see below, leads to the property that the solution o f the
exact line search may be very close to the solution of the linear system after many
fewer than «-steps. This means that the method is very useful as an iterative
technique. We use the algorithm in its form presented by Reid (1971) and
Axelsson (1976), and given below.

101

Xq = in itia l approximation

r0 = Ax0-b

d0 = - r 0

repeat for i= 0 ,l» 2 ,...
A; = r j r j d j Adt

x i+1 = X i + X - A

r i+1 = U + X iA d i

Pi = r7+iri+ i/r7 ri

di+i = ~n+i +PA
until r i + i r i + i < s -

Notice the use o f a recursive formula for calculating the residuals at each iteration
which does not entail the extra matrix multiplication required by the alternative
formula,

r i+ i =Axi+ l-b .

Reid (1971) finds in his experiments that the two formulae give closely consistent
results. A t each stage, therefore, only one matrix multiplication is necessary to
find Adi since A is sparse this can be a not too expensive operation. Because
o f this, used as an iterative technique, the conjugate gradients method can compete
very well with direct methods for inverting sparse matrices.

The above choice for the search directions di ensures that d jA d j-0 V i+y as is
shown in Reid (1971), and so the search directions are conjugate (if exact
arithmetic were being used). The inexact nature o f numerical computation,
however, implies that the search directions w ill only be approximately conjugate
and since at each stage we multiply this direction by the matrix A, the growth o f
errors in the search directions, and hence the other vectors, is dependent on the
conditioning o f the matrix A. Reid (1971) makes a comparison o f the conjugate
gradients method with two other iterative techniques, and concludes that the
method competes favourably when A is a well-conditioned matrix.

4.2.2. The Preconditioned A lgorithm .

In our problem, since the matrix involved is derived from a discrete approximation
to the thin plate spline problem, it may be the case that our matrix shares the ill-
conditioning o f the thin plate problem. In fact this is the case and although
sparse, the matrices derived from the natural neighbour spline problem can be
quite badly conditioned, in the spectral condition number sense, particularly when
smoothing, as we shall see later.

102

It can be shown (see Axelsson (1976)) in fact that the rate o f convergence o f the
conjugate gradients method depends upon this spectral condition number and we
shall see that for our problem, convergence o f the above algorithm can be quite
slow. The rate o f convergence can however be improved by the technique of
preconditioning. This involves finding a matrix E such that the transformed
system o f equations,

(£ - 1A £ -t)(£ t ^) = (E -1 i>)

(where here £ -T denotes (£ _10 has a much better conditioned matrix than the
untransformed system. In principle the transformed system is then solved and the
untransformed solution recovered.

This method may have the serious draw back that E~lAE~T may not be as sparse
as A, and then the algorithm w ill require many more operations per iteration to
perform the matrix multiplication, even though it takes fewer iterations. This may
mean there is not actually a reduction in work. Also the matrix E must be easily
invertible so that E~l b and E~l AE~T can be easily calculated at little cost.

The difficulty with loss of sparseness can be overcome by transforming the
conjugate gradients algorithm to form a preconditioned algorithm. Axelsson
(1976) gives the following form of the algorithm, and it is this form that we shall
use.

*0 = in itia l approx

'o = Axq —b

solve CyQ = ro
do = -7o

repeat for i= 0 ,1,2 ,...

A/ = rJyJd jA d i

*/+ i = Xi +Xidi

n+i = ri+XiAdi

solve Cyi+i = r i+i

Pi = r7+iri+itr?n
di+\ = - r .+ i+ M -

until rhri+i<e.
where C = EET.

This algorithm uses the same matrix multiplication as the previous
unpreconditioned algorithm, and adds an extra matrix step, namely, solve
Cyt+i= r i+1 at each iteration. However this algorithm is equivalent to the
unpreconditioned algorithm replacing A by E~1AE~T etc. This matrix is better

103

conditioned (by choice o f E) and so convergence should be faster. We do not
require E in the preconditioned algorithm, only C = EET and since C-1A is
similar to E~l AE~T and therefore has the same condition number, we can choose
C immediately without determining E. C is chosen so that C-1A has a smaller
condition number than A. Again the technique fails to improve the overall work
rate o f the algorithm i f C is not much easier to invert than A, since we must invert
C at each iteration. However i f we choose C to be sufficiently easy to invert this
w ill not slow the algorithm significantly at each iteration, and fewer iterations can
be expected which means the algorithm w ill be faster. C is called the
preconditioning matrix.

4.2.3. Some Preconditioning Techniques.

The choice o f preconditioning technique corresponds to the choice o f matrix C.
The simplest technique is that o f diagonal scaling. In this case we set,

C = d iag(fli! , . . . ,ann) where A
nxn

This C is positive definite since A is and we have aa = e jA e i>0 where et is the
ith standard basis vector. Also C is trivial to invert, being a diagonal matrix so
very little extra work is required in the preconditioned algorithm. The naive
nature o f this preconditioning means that the spectral condition number may not
be reduced sufficiently to reduce the number o f required iterations significantly.

A more sophisticated approach is provided by the technique o f Symmetric
Successive Over-Relaxation or SSOR. SSOR is an iterative symmetric matrix
inversion method in its own right (see Young (1971)), and SSOR preconditioned
conjugate gradients can also be regarded as SSOR inversion with conjugate
gradients applied as an acceleration method. In this case we choose,

C = (D +a)L)D -H D +aLT)

where here A = L + D + L with D being the diagonal part o f A and L the strictly
lower triangular part, co is an over-relaxation parameter which must lie between 0
and 2 for convergence of the algorithm to be assured. Notice that co=0
corresponds to the diagonal scaling technique.

The choice o f at is by no means a trivial problem, and its theoretically optimal
value, that which reduces the spectral condition number o f C-1A the most, is
given by,

104

°>op‘ 1+2 <Qi+S)!n
2 where / /=m

and 5 = m in{0, max
X

x T[L D - 1L T- jD]x
x r Ax

see Axelsson (1976).

This optimal value is usually too expensive to calculate and estimated values must
be used. Axelsson however points out that the actual number o f iterations o f the
SSOR preconditioned conjugate gradients algorithm required to reach a specified
accuracy is quite insensitive to the choice o f co, so long as it is near coopt. In using
this method for our problem an estimate o f coopt was obtained by trying several
values o f co. This was repeated for differing interpolation and smoothing
problems, and the choice of co which produced the minimum number o f iterations
was subsequently used in the other examples. In fact in all cases this estimated
value for coopt was observed to be close to 1.0 and so we replaced co by this value
in our implementation, o f SSOR preconditioned conjugate gradients.

The third, and most complex, form of preconditioning we have used is incomplete
Cholesky decomposition. It is well known that any positive definite matrix can be
written in the form A = LLT, where L is some lower triangular matrix.
Unfortunately finding the factor L is a major part o f the work involved in a direct
method of inverting A, and it is known that L may contain many more non-zero
elements than A. Since for our problem A is very sparse we do not want to lose
the sparsity o f the problem in the inversion procedure. In fact the formulation of
the natural neighbour spline problem as presented here, was designed to generate
this sparsity.

We can preserve some of this sparsity by finding a sparse matrix L such that,
C = L L t has the property that C-1A is better conditioned than A, rather than
C -1A = /. In this case L is found so that LLT = A+E where E is an error matrix,
and in some sense small. This is the basis o f incomplete Cholesky decomposition.

In fact it is often advantageous to permute the rows and columns o f A (equivalent
to reordering the data sites) before an L is chosen, in order to reduce the
approximation errors E. Thus we actually have,

where P is a permutation matrix. We assume in what follows that a suitable
reordering o f the rows and columns of a has occurred. Such an ordering w ill be
suggested shortly.

l l t = p a p t + e

105

The Cholesky decomposition can be written in a square root free form, namely,
A = L D L 1 where D is a diagonal matrix and L is lower triangular, both given by
the algorithm,

for i = 1,...,n
for j = i,z + l,...,/i

i- 1
Lji = Aji - £ LjkLuPkk

k= l

Du = (Lur l

However as pointed out above, the L determined in this way has many more non­
zero entries than A. In fact it can be seen that L can have non-zero entries in row
j from element Ljm to element Ly} where m is such that Ajm is the first non-zero
entry in row j of A. In this way it is possible for the Cholesky decomposition o f
A to have filled-in the envelope o f the matrix. I f the data sites are ordered in such
a way that the non-zeros in A are close to the diagonal, the fill-ins are kept to a
fewer number, but this may still be too many.

The above ordering corresponds, in our problem, to sorting the data sites so that
neighbours occur only close to each other in the reordered collection o f sites.
Almost equivalently, the sites are reordered so that sites close to each other in the
plane are close to each other in the ordering.

For our purposes, we do not require the Cholesky decomposition, only some
matrix C such that C~lA is well-conditioned. The suggested technique is
therefore to fix some entries o f L, the Cholesky factor, to be zero, regardless o f
whether they should fill-in in the decomposition. The above algorithm is used,
but the chosen entries are fixed to be zero, and the algorithm proceeds with
calculating the other entries, using zero for the entries so fixed. In this way a
sparse approximation to L can be obtained, (say L), and the corresponding £>, (D),
found so that C = LDL can be used as a preconditioning matrix. As this matrix
is composed o f sparse matrices, it can be stored cheaply as its factors, and it is
easily inverted since all its factors are easily inverted. Clearly the reduction in
spectral condition number obtained w ill depend on how many fill-ins are allowed,
with all fill-ins permitted resulting in a condition number o f 1, (at least in theory.)

/ v <v' I '

The decomposition LDL is known as an incomplete Cholesky factorisation o f A.
There are at least two approaches to the problem of the choice o f the elements
which are to be allowed to fill-in . One procedure is to allow fill-ins wherever the
value o f the filling element exceeds a certain threshold. Munksgaard (1980) uses
this technique, allowing an element Lyt to fill-in whenever Lji>cy\{LnAjj) where c

is a positive parameter, dependent on how sparse the factors are required to be.

106

An alternative approach, is to force a predetermined sparsity pattern onto L.
Kershaw (1978) discusses this method, and he uses the simplest o f this group of
techniques, namely, that where the sparsity pattern enforced is that o f the matrix
A. For our investigations we shall use this method. It has the advantage that L is
known to be as sparse as A before we start to calculate it, and therefore requires
only as much storage as A does (A is symmetric, L lower triangular).

There remains one final problem. Since the elements o f L are in error whenever a
fill- in is suppressed, these errors w ill propagate into other columns o f the
decomposition, causing even those elements allowed to fill-in to be incorrect, that
is not the same as the corresponding elements in the complete factorisation. Since
C is only to be used as a preconditioning matrix this is not important for the
elements in L, but i f an element in D becomes negative (in error) then C = LD LT
w ill cease to be positive definite, and so the conjugate gradients algorithm may
not be convergent. Both Munksgaard (1980) and Kershaw (1978) address this
problem, and suggest different solutions. Munksgaard suggests multiplying the
diagonal elements o f A by a scalar (I+ 77) where 77>0, before the start o f the
incomplete factorisation algorithm. 77 must be chosen so that no D u becomes
negative. Kershaw remarks that since the factorisation is only meant to be
approximate, we can simply set the negative Du to some suitable positive value as

they occur.

In our experience, the first method usually results in the smaller number o f
iterations, with a sensible choice for 77. (We have used rj=l/100N in the
computations which follow.) In fact for certain forms o f matrices it can be proved
that 77=0 w ill do (Kershaw (1978)) and for our matrices, provided a good ordering
o f the data sites is found, this value is satisfactory in many cases. However some
non-zero value o f 77 is required, in some cases, particularly when A is very ill-
conditioned (see later).

Before we go on to discuss our implementations o f the above techniques for the
natural neighbour spline problem, there is a group o f preconditioning methods not
mentioned above, which are applicable to our problems. Remember that each data
site has 2 (interpolation) or 3 (smoothing) unknowns associated with it, in the
quadratic from to be minimised. These are namely the fitted gradients or fitted
values and gradients at the data site. The sparsity pattern o f the derived matrix
depends only on the neighbourhood relation, which depends on the positions o f
the data sites, so that the matrix can be thought o f as an N xN matrix of 2x2 or
3x3 blocks, having the same sparsity pattern in both cases. Each diagonal block
relates the variables o f one data site to themselves, and each non-zero, off-
diagonal block relates the variables at one data site to the variables o f one o f its

107

neighbours. This partitioning o f the matrix gives rise to the block preconditioning
techniques (mentioned briefly by Axelsson (1976)).

The simplest is block diagonal scaling, where the preconditioning matrix is taken
to be the matrix composed o f the diagonal blocks o f A. This matrix is easy to
invert as it is only necessary to invert N 2x2 or 3x3 matrices. The second
block-approach preconditioning we have looked at is block SSOR. In this
technique the matrices in the element-wise formulation o f the preconditioning
matrix, C - (D+caL)D~l (D+coL)T, are replaced by their block equivalents,
namely the block diagonal matrix and the block lower triangular matrix.

The computation o f the block incomplete Cholesky factorisation is somewhat
complicated, not least because the problem of diagonal entries becoming negative
is replaced by the harder to detect and solve problem of diagonal block matrices
becoming non-positive definite. For this reason, and because the results suggest it
is unnecessary, we have not looked at this preconditioning technique in this thesis.

4.3. The Implementation of Preconditioned Conjugate Gradients
Method for the Natural Neighbour Spline Matrices.

The use o f conjugate gradients to solve our problem requires that the matrices to
be inverted are positive definite. Before we discuss the implementation o f the
techniques mentioned above, therefore, we first establish their applicability.

4.3.1. The Positive Definiteness of the
Natural Neighbour Spline Matrices.

We deal first with the interpolation case. Remember that the quadratic form to be
minimised can be written,

Rg = JxTA t-;c T£+constant

where Rq is defined in section 4.1.5 and we define,
^ *

8 i
x = ;

2 N X 1
8n

b *

where each gi is a 2x1 vector o f gradients at data sites fj. A and b are also

defined accordingly.

Thus comparing the purely quadratic portions o f both sides we see that,

108

To prove positive definiteness o f A, the matrix to inverted in the interpolation
problem, consider x such that x TAx = 0. This implies that,

vtf{||gj-g,ll2+ „ 01 K g j+ g i f i t j - t i)] 2) = o

for each i and j with i ^ j , since this summand is at least non-negative. However
Vy is non-zero whenever i and j are neighbours, so that we have,

II£ /” £ /II2 = 0 whenever i and j are neighbours,

=* Si ~Sj whenever i and j are neighbours,

^ S i~ S (say) Vi provided Q is connected.

and then the second term gives,

[(g i+gj)T(t j - t i)] 2 = 0 whenever i and j are neighbours,

=> gT(t j- t i) = 0 i and j neighbours,

=> g=0 provided tt not all colinear.

Therefore x=0t that is A is positive definite.

In the smoothing case the purely quadratic part o f the form to be minimised
corresponds to,

X z;2 +« III gj -g ,||2 + - [(gy+g;)T(r ,- r1)-2(zJ-z 1)]2 [
1=1 i'=l y'4i [I\tj h II J

Setting this equal to zero, and noting that both sums are at least non-negative
(provided that a^O) we see that,

N
= 0 => zt= 0 V/.

i= i

Thus after equating the second sum to zero and substituting for z{- we proceed as
in the interpolation case.

These proofs show, therefore, that both the matrices derived from the interpolation
and smoothing problems are positive definite, and thus the conjugate gradients
method can be applied.

4.3.2. Calculations Involving the Interpolation Matrix.

The implementation o f the conjugate gradients algorithm, described above, is
straightforward. In both the interpolation and the smoothing cases the
preconditioned algorithm requires storage for 4 vectors, o f length 2N or 3N
respectively. The algorithm also requires storage for the matrices involved. The
amount o f storage required depends on the methods used for generating the
products Ax and solving the systems o f equations C y-g . It is these aspects o f the
algorithm which concern us here. Firstly we consider the interpolation case.

Recall from above that the matrix involved in the interpolation problem satisfies
the following,

x t a x = j l l « r & l l 2 + 1,2 Kg;+g«)T(0—f.->]2
I I'0 *ill

where x is defined as before, to be the block vector o f all the fitted gradients at
the data sites. In what follows let xk denote that 2x1 block o f the vector x which

corresponds to gk, (that is (*2* - i >*2*)T)- Differentiating the above expression for
x t Ax with respect to the vector gk we find,

f $2 T 1
(gj-gi)(Sjk-S ik) + ||t _f ||2 [(«y+&)T(fy -0 (* /- 'i) (fy + * ft)] j

where Sik is the Kronecker delta. Summing out the Kronecker deltas we get,

N [02]

' i=i I \U k - t i \ \ J

This gives, immediately, one way o f calculating the product Ax without actually
storing the matrix A. The alternative method is to store the matrix in memory and
use matrix multiplication to find the product. For this method, and to calculate
some of the preconditioning matrices, we need to find expressions for the elements
o f A. Differentiating Axk with respect to gi we find that, extending the notation
accordingly,

JL f e 2 H
Ald - 2 ^ vik\(£kl-8il)h + “

~ i=i I W k-hV

Thus we arrive at the expressions,

110

hAkl - 4

vklO2
~ vkih

Vki

i f / * *

i= 1
(h - t d ih - h) Kl=k

We also require the vector b from A x-b = 0 and using similar techniques to above
we see that,

N VaOn

therefore,

* Tb= (g j+ g if i ' i - t iX Z j-Z i) ,
i=lj$i \\tj *i II

N vki& 2
h = 4 Z T T (Z 4 - Z , X » t - 0 -
- «=1 II '* - '; II

Thus we can calculate A and b for use in the conjugate gradients algorithm. For
calculating Ax we have two methods. Either we can use the above expression for
this product or i f the preconditioning requires that we store the parts o f the matrix
A anyway, we can save a small amount of time by using matrix multiplication,
(still remembering that the matrix is sparse).

4.3.3. Calculations Involving the Smoothing Matrix.

In section 4.3.1. we saw that, when A is the smoothing matrix, we have,

x t A x = 2 £ z 2 + a S 2 * ' . > • j l lg y - g i lP + “ — [(g y + S,) 1 (' / - ' ;) - 2 (z , - Z j)] z
i=l i=l/4 1 \\tj ti II

In this case x is a 3xN vector which consists o f N 3x1 vectors, which each
contain the fitted value and gradients at a data site. Thus in what follows we use
xk to mean the 3-vector corresponding to the variables at the k-th data site,

namely,

*k =

x 3k-2

x 3 k - \

x 3k

f
zk

8k

The corresponding definitions are taken for Ay etc. It is more convenient to

replace A in the above with a~lA , and we do this.

We proceed in a similar way to the interpolation case, although in this case we
differentiate with respect to zk and gk in order to find (Ax)k. Thus we obtain, on

differentiating with respect to zk,

111

1 N N vii
2 « -1X zA + 202E Z * [(.gj+gifdj-v-nzj-ZimSit-Sjt)

1=1 i -l j^i \Uj ', II 2

and summing out the Kronecker deltas, as before, we get the first component of
(Ax)k. Differentiating with respect to gk gives us the other components and we
have, in partitioned form,

1 N vik°2 t((At)*), =2a z* + 4 £ — — f','~ — — 'T'
i=l II'* h I! [2 (z *-z ;)-(g f+£*)* (**-*■•)]

and

N
((Ax)*) 2. - 2 j£ v ik

~ (3} ,= 1
ik](<?/: Si) + ll'*-'ill2

This gives a means for calculating (Ax)k when we do not store A, however as
before we still need expressions for the entries o f the matrix.

We introduce the following notation,

* u =
1

(h -h) (h -h) and wu =
vu

I ' * - * , ii2

and continuing with the differentiation, we find,

-

-402W/d 202wkl(tk~tl)T

-262Wkl(tk~tl) vJd(0 2 XkI~h)

provided k^ l, and,

1 Akk ~

a 1+4022»'*i 2e2 'Zwki(ti - t k)T
i= 1 i= l

N N
262^ dWki(t i - tk) Y jyk i(h + ^2 Xki)

;=i i= i

It only remains to find the appropriate b. We recall that,

T i N

x b = 2 a Y jXizi

so that clearly,

i=i

2 a ~ 1Z k

0
0

Thus we have all the information required to use the conjugate gradients algorithm
on the smoothing problem, except that the preconditioning matrices have yet to be

112

determined.

4.3.4. The Preconditioning Matrices - Interpolation.

In the case o f interpolation we have used four preconditioning methods, namely,
element-wise diagonal scaling, block diagonal scaling, element-wise SSOR, and
block SSOR. We have used two versions o f block SSOR, one involving the
storage o f the matrix A and the other involving recalculation at each iteration. The
second o f these we expect to be slower, but obviously requires less storage. The
recalculation technique seems to have advantages from a numerical point o f view,
as we shall see later. We have not implemented the incomplete Cholesky
conjugate gradients method, mentioned in an earlier section, for the interpolation
case, as this method appears to be overly complex for this relatively well
conditioned problem. Neither have we looked at the unpreconditioned algorithm
in detail, since preliminary investigation indicated that it was far inferior, in
performance, to even the simplest preconditioned algorithm.

The simplest case to consider is the element-wise diagonal scaling preconditioning.
This method requires only 2N storage locations to store the inverses o f the
diagonal elements o f A, provided that the recalculation method for finding Ax is
used. The expressions for this product and the diagonal elements are given in
section 4.3.2 and involve sums over the neighbours of each data site to find the
corresponding diagonal entry in A. Once these entries have been reciprocated, the
solution o f the preconditioning equations C y-g at each iteration involves simply
2N scalar multiplications.

Block diagonal scaling is hardly more complicated. Only the inverses o f the 2x2
diagonal blocks o f the matrix A need be stored and since these are symmetric they
require 3 locations each, so that 3N storage locations are required in all. Again
the recalculation method o f finding Ax is used. Once the diagonal blocks are
calculated they are inverted, and then at each iteration N 2 by 2 matrix
multiplications are performed. Each matrix multiplication involves 4 scalar
multiplications and 2 additions, as opposed to the equivalent 2 scalar
multiplications in the element-wise scaling. This, and the fact that inverting N 2
by 2 blocks costs more than 2N scalar inversions, means that block scaling has a
larger initialisation work load and requires more work per iteration than element­
wise scaling. We therefore require a significant reduction in the number of
iterations o f the algorithm in order to justify the use of this method. Likewise,
both the SSOR techniques require more storage (possibly) and more computation
both before and at each iteration, so that significant reductions in the number of
iterations before convergence w ill be required before the techniques are justified.

113

The first SSOR method investigated is the element-wise version. For this
technique we need the whole o f the matrix A in effect since the diagonal entries
and the strict lower triangle are required at each iteration. This can either be
stored or recalculated, and in this case we chose to store the matrix in order to
decrease the amount o f work required at each iteration. We can use the fact that
all the blocks involved are symmetric and so require 3 storage locations for each
stored block. We know that on average there are 7 non-zero blocks in each
(block) row, but since the matrix A itself is symmetric we only need store half (on
average) o f the off-diagonal blocks. Thus we expect to store 3N o ff diagonal
blocks and N diagonal blocks, making 12N storage locations in all. In practice
this is a slight over-estimate since the data sites near the boundary have generally
fewer than 6 neighbours and so there corresponding (block) row in the matrix has
fewer non-zero entries. As a spin-off we no longer need to use the recalculation
method o f finding the product Ax since we are storing A, and we can simply use a
sparse matrix multiplication at each iteration.

To solve the preconditioning equations involves the inversion o f a 2Nx2N sparse
lower triangular matrix, a diagonal matrix and a sparse upper triangular matrix,
both o f the same size. This costs on average 32N scalar multiplications and
divisions, and some similar number o f additions or subtractions.

The block form SSOR is similar to the element-wise SSOR except that all the
operations treat the 2 by 2 blocks as blocks. This means that at each iteration we
need the strict block lower triangle and the diagonal blocks and the inverses o f the
diagonal blocks. I f we calculate the inverses o f the diagonal blocks at each
iteration, this incurs no extra storage over element-wise SSOR, however in the
interests o f efficiency we decided to store the inverses, so that total storage
required is now 15N on average. Again the product Ax can be found by sparse
matrix multiplication. A t each iteration the block equivalents o f the above
mentioned operations are preformed, resulting in an average o f 9N 2x2 matrix
multiplications, which is equivalent to 36N scalar multiplications. There is also an
increase in the required number o f additions.

During the testing o f the above methods it became apparent that the recalculation
method for finding Ax at each iteration was hardly slower than the sparse matrix
multiplication method. Also the expression used to find the product seemed to be
numerically more stable in the cases where the matrix is very ill-conditioned,
(which occurs mostly when smoothing). Thus for comparison we have
implemented a version o f block SSOR preconditioning that only stores the
diagonal blocks and their inverses, reducing the required storage to only 6N
locations.

114

A ll the preconditioned algorithms have an overhead involving the calculation and
storage o f the Dirichlet tessellation and the associated BOD weights. This
calculation is carried out once before the iterations start, and the information is
stored and kept available throughout the iterations. The solution obtained at the
termination o f the iterations is the vector of fitted gradients at the data sites, which
then can be used in stage two o f the natural neighbour spline interpolation process.

4.3.5. The Preconditioning Matrices - Smoothing.

In the case o f smoothing we have used the four preconditioning techniques
mentioned above, and the method of incomplete Cholesky factorisation. Since, as
we shall see later, the SSOR preconditioning that uses no extra storage is
considerably slower for large data sets, (precisely when a reduction in storage
requirements is valuable), than is the version o f SSOR that stores the lower
triangle o f the matrix being inverted, we have not considered this space saving
version in the smoothing case.

The preconditioning techniques o f diagonal scaling, SSOR and their associated
block derivatives, have analogous implementations in the smoothing case to those
in the interpolation case, except that more storage is required. The matrix to be
inverted, A, is in this case an N xN matrix o f 3x3 blocks, rather than the 2x2
blocks encountered earlier. The diagonal blocks remain symmetric, as does the
matrix A itself, whereas the off-diagonal are no longer so. They have a partly
skew symmetric, partly symmetric form as shown below,

an ~a2\ ~a3i

a 2l a 22 a 32 •

a3\ a 32 a 33
S . J

Economies can still therefore be made, and only the lower triangle o f these blocks
stored, with the upper triangle being determined by the above pattern. Each block
therefore requires 6 storage locations, as opposed to 3 in the interpolation case.

Thus we see that the following average storage requirements apply,

Method Storage locations

Diagonal Scaling 3N
Block Diagonal Scaling 6N
SSOR 24N
block SSOR 30N

115

The above methods o f preconditioning, are very slow to converge, especially when
larger numbers o f data sites are being considered, in the smoothing case. This
suggests that the smoothing matrices are less well conditioned than the
interpolation matrices, and this is borne out to some extent by the eigenvalue
analysis (see later). For this reasons the more sophisticated incomplete Cholesky
factorisation method o f preconditioning was used in this case. We shall denote
this method by IC.

The implementation o f the factorisation requires more storage than any o f the
other techniques. We require storage for a lower triangular matrix with the
superimposed sparsity pattern o f the matrix A. Unfortunately we cannot make
savings in the storage of the o ff diagonal blocks because in the factorisation
process they lose their special form. Thus we must store the whole o f the o ff
diagonal blocks, and the lower triangles of the diagonal blocks. We also require
3N locations to store the inverses of the diagonal elements, i f they are to be
stored, otherwise they can be recalculated at each iteration. We adopt the latter
approach. Thus we require 9 storage locations for the o ff diagonal blocks and 6
for the diagonal blocks. On average this totals 33N storage locations for the
preconditioning matrix.

Unfortunately the matrix stored in these locations is not the matrix A as in the
SSOR cases, so we either have to store this matrix seperately (at a cost o f 24N
more locations) or we can use the recalculation method o f finding the products Ax
at each iteration. Since the recalculation approach appears numerically more
stable in the case o f ill-conditioned matrices, we use it in our implementation.

The closeness o f the incomplete factorisation to the fu ll factorisation depends upon
a good ordering for the rows and columns o f A. The closer all o f the non-zero
entries are to the diagonal the better the approximation. For our purposes simply
sorting the data sites by their projections onto a straight line is sufficient, and this
is accomplished using a simple insertion sort. A ll the other preconditioning
methods do not sort the data sites in our implementations, so in the results
presented later the timings for IC include the sort time. This time could clearly be
reduced by the use o f a more complicated sorting algorithm.

Let us now consider the factorisation process. The algorithm for the factorisation,
taking account of the enforced sparsity becomes,

116

for i = N

D ii “ &H ~ Y jL i)P k k
k

for j > i such that Ay 4= 0

Lji = (Aji -^^jk^ikDkk)Diil
k

where the sums are taken over all k < i with, Aik non-zero in the first case, Aik and

Ajk both non-zero in the second. Here we have modified the algorithm slightly
from the version mentioned previously, so that a unit lower triangular matrix and a
diagonal matrix are produced. This means that less storage is required, but more
work is required to obtain the factorisation. However, using this form, less work
is required at each iteration to invert the preconditioning matrix.

The conditions, Ay 4= 0 etc., are equivalent to the condition that the yth and zth
variables be associated with data sites that are either the same or neighbours.
Thus for i= j the condition that Aik be non-zero is simnly equivalent to i and it
being associated with the same or neighbouring data sites, and for i ^ j the
conditions are equivalent to the data sites associated with the three variables
concerned being pairwise either the same or neighbours. This essentially the way
in which the factorisation is implemented, except that the summations are accrued
in a different order and the diagonal entries are first modified by the factor (I+ 77),
for some suitable tj. The various matrices are stored in the, previously discussed,
block form since this is convenient.

It must be remembered that the above version o f the algorithm is not applicable as
a block-wise factorisation. It can however be modified, subject to the proviso that
no diagonal block becomes non-positive definite during the factorisation. The
modified version has the following form,

for i= l, . . . ,N

D ii = A i i ~ H L ikD kk^7k
k

for j> i such that Ay^O

Lji = (A ji-^L fiD uL^D fi1
k

We have not implemented this version, because of the problem of the diagonal
blocks Du becoming non-positive definite.

We have now described the techniques used for inverting the matrices involved in
the natural neighbour spline problem, and discussed their implementation. In the
next section we present the results o f some tests carried out to try to evaluate the
performance o f these techniques, when applied to various problems.

117

4.4. Some Examples of the use of Preconditioned Conjugate
Gradients Method for Natural Neighbour Splines.

4.4.1. The Interpolation Case.

In order to compare the efficiency o f the implementations o f the preconditioning
techniques described in the previous sections, we have used four sets o f data sites.
The four sets consist o f 10, 100, 1000 and 10000 points randomly scattered in the
square 0<jc,y <1. We have also interpolated four different functions at each of
these sets o f sites, but the resulting number o f iterations required are so similar,
that we report only the results of one interpolation in each case here. Thus we
have four interpolation problems with widely differing numbers o f data sites.
Recall that the thin plate spline procedure would not be able to interpolate to the
1000 or 10000 point data sets, with the current fu ll matrix inversion methods that
we use, and the execution times for a 100 point data set can be found in chapter
2.

We have used five preconditioning techniques in the solution o f the interpolation
problems. These are element-wise diagonal scaling, block diagonal scaling,
element-wise and block SSOR, and an implementation o f block SSOR that
requires no more storage than block diagonal scaling. We have not used
incomplete Cholesky decomposition for the interpolation problem, since as the
results show, it is unnecessary to use such a complicated procedure for this case
given that the simpler methods perform so well.

Before we look at the execution times for the various methods, we discuss briefly
the condition number o f the unpreconditioned matrix. In order that we may use
existing fu ll matrix routines to calculate the eigenvalues required we look only at
the 10 point case. In this case we must find the largest and smallest eigenvalues
o f a 20x20 matrix. The resulting eigenvalues, for the 10 point problem also
considered later, are 1.74 and 240.38, which leads to a condition number o f about
140. This is not excessively large, and so this interpolation problem is quite well
conditioned. I f we precondition this matrix, using the simplest preconditioning
(element-wise diagonal scaling), this is equivalent to pre- and post-multiplying the
matrix by the diagonal matrix whose entries are the inverses o f the square roots of
the diagonal entries o f the unpreconditioned matrix. The eigenvalues o f this
preconditioned matrix are 0.0482 and 2.33, which leads to a condition number of
about 50. So even this simple form of conditioning can reduce the condition
number by a factor o f almost 3.

118

A final point must be made about the convergence criterion. Recall from the
description o f the conjugate gradients algorithm, that we iterate until r £ i / t+i is
less than some specified value, where r t+1 is the residual vector A x-b at the i+ lth
step, and Yi+i=C~1ri+ l, with C the preconditioning matrix. This quantity is
calculated by the algorithm for use elsewhere, so checking for convergence incurs
no extra computation when using this criterion. However it is easy to see that the
criterion depends upon the preconditioning being used, so that in order to compare
preconditioning techniques we should use some criterion which does not have this
dependence. The obvious choice is the sum of squared residuals, namely r^+ ir i+i t
which means extra computation at each iteration. This computation is relatively
small, however, and is constant between preconditioning methods. In our
programs the algorithm was said to have converged when < 10~15.

As an in itia l approximation for all the methods we took that which corresponds to
zero gradient at all the data sites. In fact the in itia l approximation made little
difference to the number o f iterations required for convergence. A ll the routines
are implemented in single precision, in FORTRAN 77, with double precision
accumulation o f inner products.

In the tables which follow we list the number o f iterations to convergence, the
CPU time required on a SUN-4/260 workstation using optimised code, and the
final value o f rJ+iYi+i* f° r each preconditioning method used on each o f the four
interpolation problems.

10 point problem.

Preconditioner

Diagonal Scaling (element-wise)
(block)

22
19

<0.1
<0.1

0.0004
0.05

(element-wise) 13 <0.1 0.004
SSOR (block) 12 <0.1 0.000001

(block reduced storage) 12 <0.1 0.000001

No. of
iterations

CPU Time
(secs)

rJ i/i+ i
xlO 15

100 point problem.

119

Preconditioner
No. of CPU Time rJ+\Yi+\

iterations (secs) xlO-15

(element-wise) Diagonal Scaling (b|Qck)

(element-wise)
SSOR (block)

(block reduced storage)

37 0.4 0.024
25 0.3 0.015
16 0.3 0.006
12 0.3 0.022
12 0.4 0.022

1000 point problem.

Preconditioner
No. of CPU Time r£ 1yi+1

iterations (secs) xlO-15

^ (e l e m e n t - w i s e) Diagonal Scaling

(element-wise)
SSOR (block)

(block reduced storage)

71 8.4 0.016
41 5.6 0.044
29 6.4 0.004
21 5.1 0.005
21 7.9 0.005

10000 point problem.

Preconditioner
No. of CPU Time

iterations (secs) x 10-15

TN. , o ,• (element-wise) Diagonal Scaling

(element-wise)
SSOR (block)

(block reduced storage)

84 109.9 0.023
48 73.0 0.022
34 85.8 0.012
24 65.3 0.022
24 96.3 0.022

Note that in the 10 point problem the execution times are faster than the resolution
o f the timing mechanism used.

In all cases the block techniques take fewer iterations than the element-wise
techniques, in fact sufficiently fewer that the CPU times are significantly reduced
despite the extra complexity o f each iteration. Also in all but the 10 point case
the block SSOR method requires about half the number o f iterations that the block
diagonal scaling does. The reduction in execution time however is about 10% in
the version that uses extra storage, whereas the version o f block SSOR that uses
no more storage than block diagonal scaling is actually slower because o f the
increased complexity o f each iteration. It can be seen therefore that much o f the
reduction in CPU time gained by the use o f the block SSOR method, requires that
the whole o f the matrix being inverted be stored. So it would appear that in the
case o f interpolation, block diagonal scaling preconditioned conjugate gradients is
the most economical technique (in time and storage) o f those we have

120

investigated. In fact only 48 iterations and \ \ minutes o f CPU time were required
to reach the desired accuracy for a very large problem indeed. Notice also that
r i+ i/i+ i i s always smaller than r j j r i+1 in our examples, a fact which must be
borne in mind when using rJ i7 x+i to test for convergence.

4.4.2. The Smoothing Case.

In the case o f smoothing splines we have used five preconditioning techniques.
These are the element-wise and block versions o f diagonal scaling and SSOR and
the element-wise incomplete Cholesky (IC). We have applied the techniques to
the same problems as before, with the addition o f the choice o f smoothing
parameter, 50IN where N is the number o f data sites. In the IC method we have
taken 77= (ION)-1 . Again let us first look at the conditioning o f the 10 point
problem.

The unpreconditioned matrix, which is now 30x30 as opposed to 20x20 in the
interpolation case, has smallest and largest eigenvalues which result in a condition
number o f over 106. This makes the smoothing problem quite ill-conditioned, and
we expect that much more complicated preconditioning techniques w ill be
required to obtain convergence, particularly in the larger problems. The element­
wise diagonally scaled matrix has a condition number which is smaller by a factor
o f over 20 but still this leaves the matrix very ill-conditioned. Remember that
these matrices are only 30x30 so that worse conditioning can be expected from
the larger problems.

Investigations also show that the unpreconditioned matrix becomes more ill-
conditioned, as the degree o f smoothing is increased. This is in one sense counter
intuitive, in that as we increase the smoothing the solution surface approaches the
least squares fitted first degree function, a very simple surface which is easy to
calculate. The reason for the increase in ill-conditioning, however, can be traced
to the roughness penalty in the minimisation functional. Recall that i f A is the
unpreconditioned matrix to be inverted and x a vector consisting o f the fitted value
and gradient information at the data sites, zz- and gt then we have,

x 'A x = '£ I? + i l l *,~S i II2 + |. -6~ .. -2- K g j+ g if 1.
1 i= y*i L II0 " ‘ ill J

Setting the roughness contribution to zero, we see that

E 5 > i; II gj - 8 i II2 = 0 => g j - g i =g (say) v i j
i=v+i

and the second term in the roughness component then gives,

121

gT(fy-r ;) - (z ; -z ,)= 0 whenever i and j are neighbours.

This implies that z /-g Trt- is a constant for all i. So we have shown that the
roughness contribution to x 1 Ax vanishes i f and only i f x corresponds to the values
and gradients on a plane, and we are left solely with 2 zi2* So we can think o f A

as being in the form E+aR where E is a matrix with the repeating pattern (1,0,0)
along the diagonal and zeros elsewhere and R is such that xTRx is the roughness
contribution. We can see that E has 2N zero eigenvalues, and R, as shown above,
has only 3 zero eigenvalues (since the first degree functions are 3 parameter
family), but the corresponding eigenspaces have zero intersection since, as we
have seen, E+aR is positive definite for all values of a > 0. As a increases
however, the matrix E becomes less important in the sum and (E+aR)x~aRx so
that A w ill have 3 very small eigenvalues.

Axelsson (1976) has shown that the number of iterations, k, required to reach a
given relative accuracy (measured by,

1*
(xk-£)TA(xk-x)

(r 0 - f) TA (r 0 - f)

where f is the solution, x0 is the in itia l approximation and xk is the result o f the
kxh iteration), is directly proportional to the square root o f the spectral condition
number o f A (C "M C "^T in the preconditioned case). Thus as the smoothing
increases the required number o f iterations w ill increase since the condition of
E+aR tends to the condition number o f aR and R has an infinite condition
number.

Fortunately we know the solution when a = <», namely the least squares fitted first
degree function to the data. In practice, therefore, when smoothing heavily we
can reduce the number o f iterations required by starting from this zero roughness
solution. On the other hand when smoothing lightly, fewer iterations result when
we use an in itia l approximation closer to the interpolant. There is an area in the
centre o f the smoothing range however when some o f the preconditioning
techniques perform quite badly, and this aspect requires further investigation.
Later we show the effect o f changing the smoothing parameter on one example,
but first we present the results o f the comparison o f preconditioning techniques.
50/N was chosen as the smoothing parameter for these problems, and it appears
from observation o f the solution surface, that this is slightly over-smoothing. The
starting point used in all cases, was that corresponding to values matching the data
and zero gradient at all the data sites. Convergence was checked for as before
using r j+ lr i+ l, and the algorithm terminated after 1000 iterations i f convergence

122

had not been reached by then. The results are tabulated below.

10 point problem.

Preconditioner
No. of CPU Time \og\orj+lri+l logi0r£iy i+1

iterations (secs)

i o i- (element-wise) Diagonal Scalrng ^

ccnD (element-wise)uoUK x(block)
IC (element-wise)

166 0.1 -15 -20
101 0.1 -15 -18
525 1.2 -15 -18
203 0.4 -15 -18
28 <0.1 -17 -20

100 point problem.

Preconditioner
No. of CPU Time logi0r£ ir ,+1 logiorj+1yi+l

iterations (secs)

. 0 .. (element-wise) Diagonal Scaling ^

CCAD (element-wise)guUK /ii * \(block)
IC (element-wise)

1000 13.4 -9 -13
830 11.8 -15 -19
1000 26.7 -9 -13
621 16.1 -15 -19
71 1.7 -15 -18

1000 point problem.

Preconditioner
No. of CPU Time logi0r£ ir i+1 log10r£ ifi+i

iterations (secs)

(element-wise) Diagonal Scaling ^

(element-wise)ujUK / i » « v(block)
IC (element-wise)

1000 133.8 3 -4
1000 141.2 2 -4
1000 286.9 5 -3
1000 286.6 3 -4
275 69.5 -15 -19

10000 point problem.

Preconditioner
No. of CPU Time \og10r?+1ri+1 lo g ^ rj.!^ !

iterations (secs)

. 0 .. (element-wise) Diagonal Scaling ^ |ock)

SS0R (element-wise)
(block)

IC (element-wise)

1000 1424.0 3 -4
1000 1504.2 2 -5
1000 3100.8 4 -3
1000 3093.1 1 -6
283 851.6 -15 -20

Notice here that, except possibly for the smallest data set, the IC preconditioning
consistently out performs all the other methods both in numbers o f iterations

123

required and in execution times. In fact this method converges in less than 300
iterations in all the examples. The decrease in r j r i as the algorithm proceeds is
quite erratic, and by no means monotonic, so the final values can vary by about a
factor o f 10. This erratic behaviour is due to the fact that the conjugate gradients
algorithm is designed to minimise the functional, x TA x-2bTx not the sum of
squared residuals, (A x-b)T(Ax-b). In the context o f preconditioning r j ^ y ^

corresponds to x TA(C~l A)x -2 b T(C~lA)x, so that i f C is a good preconditioner
and also has the property that C~1A~I, then rf+iYi+i is approximately the
functional we are minimising.

We now return to the problem of ill-conditioning which increases with the
smoothing parameter. To investigate this more fu lly we have taken the 100 point
problem and used IC preconditioned conjugate gradients until convergence, for 7
different values o f the smoothing parameter. (0.005, 0.05, 0.5, 5.0, 50.0, 500.0,
and 5000.0). These values have a range corresponding to a wide range of
smoothing. In the table below we list the corresponding number o f iterations
when using two different starting values, namely, (1) the least squares fitted plane,
and (2) the values matching the data and zero gradients starting values mentioned
earlier.

a No. of iterations
start (1) start (2)

0.005 28 28
0.05 49 51
0.5 69 71
5.0 98 102

50.0 95 101
500.0 101 128

5000.0 125 142

At small values o f a the number o f required iterations are very similar, and this is
consistent with our observations in the interpolation case where the choice of
starting value made little difference. In the case o f smoothing with some other
preconditioners the start (2) performed better than start (1) for these lower values
o f the smoothing parameter. When the smoothing increases, start (1) (the smooth
start) does better than start (2) by up to about 20%, and when using some other
preconditioners can make the difference between convergence and non-
convergence (in less than 1000 iterations).

Overall we conclude that in the case of smoothing the use o f the complicated
preconditioner (incomplete Cholesky) is worthwhile in terms o f efficiency,
whenever the extra storage is available. For small problems block diagonal
scaling is not significantly slower, in execution time, but takes many more

124

iterations and in these small problems storage is unlikely to be a problem. In the
larger problems, the savings of IC preconditioning are so great, and the
convergence o f the methods (at least in SUN single precision) so unreliable that if
the memory demands o f IC preconditioning are too great, then finding the solution
w ill be very difficult.

The increased use o f double precision in the implementation (possibly with
extended precision accumulation o f inner products) is one possible way of
reducing the effect o f some o f the problems o f numerical instability. In the next
chapter we have made brief comparisons of single and double precision routines.
However it must be remembered that the use o f double precision implies the use
o f more memory and slower floating point calculations, so that it may not be
possible to use the methods on the larger problems and the double precision
implementation may be slower.

125

Chapter 5.
More on Natural Neighbour Splines.

5.1. A Direct Method for Solving the Linear System
in the Smoothing Case.

For the case o f natural neighbour smoothing splines we have looked briefly at a
direct method o f solving the system of equations. Recall that the matrix A in the
system Ax=b is symmetric and positive definite, so that we can use Cholesky
decomposition which is known to be stable.

A good ordering o f the data sites (block rows and columns o f A) is necessary
however, in order to minimise the amount o f storage required. This can be
understood by observing that during the Cholesky factorisation all o f the fill-ins
occur in the envelope o f A (that part o f the matrix from the first non-zero in each
row to the diagonal). Thus an ordering which reduces the size o f the envelope,
reduces the amount o f storage required for the factored (and filled in) matrix. In
our case, since the sparsity pattern o f A is determined by the neighbour relation,
and this in turn is determined by the positions o f the data sites, a relatively good
ordering can be obtained by sorting the data sites according to their projections
onto a given line through the points (the first principal component for example).
This is the same ordering used in the incomplete Cholesky precondition conjugate
gradients method mentioned in the previous chapter.

W ith this ordering, points close to each other w ill be close in the ordering, and we
expect the number o f blocks between the first non-zero block in each block-row of
A and the diagonal to be 0(ylN). Thus the overall storage required is
approximately 0 (N 3f2)t compared to O(N) in the iterative methods discussed
earlier.

In the following examples, to illustrate the efficiency and accuracy o f the direct
method, we have used two implementations o f the Cholesky factorisation on
smoothing problems consisting o f data at 10, 100 and 1000 points scattered in the
square {0 < x , y < 1). The implementations differ only in that the first is a single
precision implementation (with double precision accumulation o f inner products)
and the second is a double precision implementation o f the same algorithm. (The
NAG library additional precision accumulation o f inner products was used in the
second case.) Single and double precision implementations o f the the incomplete
Cholesky preconditioned conjugate gradients are also included in the examples for
comparison.

126

Since the direct method provides no guide as to the accuracy of the solution, as
part o f the algorithm, whereas the iterative methods provide such a measure in the
form of the convergence criterion, we have looked at the norm o f the difference
between the solution given by the double precision iterative technique and the
solutions given by the other methods. Also reported are the CPU times for each
program on a SUN4/260.

Table of the Norms of the difference between the solutions
given by IC conjugate gradients (double precision) and other methods.

Norms of difference
10 pts 100 pts 1000 pts

Iterative Method

Direct Method

(single precision)
(double precision)
(single precision)

0.0025
10"6
0.15

0.0002
10~6
0.01

0.0062
10~5
6.91

Table of Execution Times on SUN4/260.

Run Times (secs)
10 pts 100 pts 1000 pts

Iterative Method (double precision) 0.1 3.1 110.4
(single precision) <0.1 1.5 52.7

Direct Method (double precision) <0.1 1.0 112.6
(single precision) <0.1 0.9 98.5

The table o f norms shows that the single precision iterative method does
consistently better than the single precision direct method, using the current
convergence criteria. The double precision direct method produces results which
are very similar to the double precision iterative method, but o f course because
they use almost double the storage o f the single precision techniques, they are
restricted to the smaller problems. In fact the double precision direct method
cannot be run on a 10,000 point example on our 32Mbyte SUN workstation,
because this is insufficient memory to store the matrix factors. We could of
course use backing store for the factors but this would slow the method down
quite significantly.

The execution times show that the single precision iterative method competes very
well with the direct method, especially for the larger data set Given the accuracy
o f the iterative method, it is obviously to be preferred, in most cases, over the
direct method considered above. The use o f more sophisticated direct methods is

127

not considered here.

5.2. A Comparison of Natural Neighbour and
Finite Window Splines.

In this section we briefly compare the natural neighbour and finite window
splines, fitted to three data sets. The first two of these data sets are simulated
from relatively simple functions used in earlier chapters. The splines compared
are interpolatory. The third data set is one o f the real data sets looked at in
chapter 3, and in this example we also consider smoothing splines. The natural
neighbour splines are contoured using CONICON3, as are the finite window
splines. This package requires values and gradients at a grid o f points, and a
bridging function is used to evaluate the natural neighbour spline away from the
data sites. The value and gradient o f this bridging function (and therefore the
natural neighbour spline) at an arbitrary point inside the window, is determined
from the fitted values and gradients at the data sites by minimising a roughness
penalty which has the same form as that used to determine the fitted values and
gradients at the data sites. The penalty used to determine the value z and gradient
g at the point t is,

Z * > (0 l l l * - « y l 2 + | | f _ ^ | | 2 [(g + g j f U - l j W z - Z j)] 2)

where here the weights K j (t) are the subtile weights at the points t. These subtile
weights are found by inserting the point t into the tessellation o f the data sites
(used to find the BOD weights) and then assigning to K j (t) the area o f that part o f
the tile associated with t which used to be associated with t j . That is,

K j (t) = cr2(7)(r))

where

T j(t) = { seCl (the window) : ||s-r||< || V i $ j }.

These weights are zero whenever t is not a neighbour o f t j , and minimising the
penalty produces a z and g that are a weighted averages o f the fitted values and
gradients at the data sites neighbouring t . Sibson (1985) proves that the bridging
function defined in this way is continuously differentiable, a property that would
not hold i f the BOD weights were substituted for the subtile weights.

It can also be seen that the value and gradient of the natural neighbour spline can
only be calculated at points that lie inside the window. Since CONICON3
requires the values and gradients at all four comers o f a grid cell before it can
contour that cell, the maps of the natural neighbour splines do not go quite up to

128

the edge o f the window. The expression for the value (and gradient) o f the finite
window splines, however, can be evaluated at any point in the plane, so that the
maps o f these splines cover a region slightly larger than the window, but are only
drawn inside the window.

For more information on the subtile weights and the bridging function see Sibson
(1985).

5.2.1 Interpolation.

The two examples used in comparing the interpolatory splines are the functions
4ry and 3(jc-0. l) 4-2 y 2 observed at 25 randomly scattered points in the square
{%<x ,y <%}. In the first example, since the discrete roughness penalty in the
natural neighbour approach recovers the roughness o f a quadratic exactly (apart
from edge effects), we expect both spline interpolants to be very similar. In the
case o f the finite window spline, 23 extra functions were used, and in both cases
the window over which the penalties are calculated was the square in which the
data are scattered. Figures 5.2.1 and 5.2.2 show the natural neighbour and finite
window spline interpolants respectively. In fact, because o f the problem that the
natural neighbour spline cannot be evaluated on or outside the window boundary,
these contour maps cover a region very slightly smaller than the window. These
figures are very similar which is as expected given the above.

The second example function is a quartic and so in this case the discrete penalty is
truly an approximation to the roughness. We might expect greater differences in
the two fitted splines, but in practice the contour maps are almost identical. They
differ only very slightly around the edge o f the square o f interest. It must be
remembered that both approaches are approximations to the true finite window
spline. Both the above examples seem to indicate that, at least in the interpolation
case and for these simple functions, the distinct approaches result in similar
solution splines. The next section considers interpolation to a more complicated
function, and also looks at smoothing.

5.2.2 A Real Data set.

The data set used in this example is the first data set o f those used in chapter 3.
It consists o f observations at 38 sites as shown in chapter 3. The window used is
that shown in the contour maps that follow. We have fitted the interpolating and
two smoothing natural neighbour splines to the data, and for comparison the finite
window spline equivalents. In the smoothing case, because o f the errors involved
in the discrete version o f the roughness penalty, the smoothing parameters do not
play the same role. However since the error penalty term in both cases is o f the

129

fig 5.2.1 Natural neighbour interpolant

fig 5.2.2 Finite window interpolant

130

same form, we can use this as guide to the amount of smoothing. Thus we have
compared both natural neighbour smoothing splines with the finite window
smoothing spline that produces the same residual error.

In the maps which follow notice that the natural neighbour spline cannot be
contoured close up to the edge o f the window, where the window boundary does
not run parallel to the grid directions used for contouring. Figures 5.2.3 and 5.2.4
show the natural neighbour and finite window interpolating splines respectively.
Much o f the difference occurs around the edge o f the window, and this is where
the discrete roughness penalty is most inaccurate since the points on the boundary
do not have a fu ll set o f neighbours. We attribute these differences to this edge
effect and some edge correction procedure may be appropriate to improve
performance in these areas. The other areas of difference occur where the fitted
surface is relatively flat, and these are areas in which contouring is known to
present small differences in the height of the surface as large differences in the
positions o f the contours.

Figure 5.2.5 shows the natural neighbour smoothing spline with smoothing
parameter 1.0. This spline has a residual error penalty o f 17.34 and the finite
window spline with a similar error occurs when a smoothing parameter o f 1.44 is
used in this case. Figure 5.2.6 shows the Finite window spline with this value of
the smoothing parameter. These maps have a very similar appearance, except for
some edge effects. The splines are closer in appearance than the interpolating
splines and this is to be expected since we have reduced the variability in both the
fitted surfaces. Figures 5.2.7 and 5.2.8 show the natural neighbour and finite
window smoothing splines with values o f the smoothing parameter o f 10.0 and
11.34 respectively. The residual error in this case is 99.52. The differences in
these maps are minor, and seem to occur in the upper right hand quarter o f the
plot.

The results o f this lim ited study outlined above seem to indicate that natural
neighbour splines produce very similar results to the finite window splines
discussed earlier in this thesis. This is especially true when a degree o f smoothing
is applied, or the recovered surface is smooth. When the recovered surface is less
smooth, as it is in the case of interpolation to the real data mentioned above, the
differences are greater but largely confined to the edge of the data. Clearly given
larger data sets the interpolating splines must perform very similarly well inside
the data, since the observations w ill determine the shape o f the surface more than
the smoothness criteria.

131

fig 5.2.3 Natural neighbour interpolant

fig 5.2.4 Finite window interpolant

132

fig 5.2.5 Natural neighbour smoother (alpha=1.0)

fig 5.2.6 Finite window smoother (error matched)

133

3535

fig 5.2.7 Natural neighbour smoother (alpha=10.0)

fig 5.2.8 Finite window smoother (error matched)

134

Thus natural neighbour splines are a very valuable tool for surface fitting,
especially for moderately large data sets (more than 200 points). Work has still to
be done in the area o f automatic choice of smoothing parameter, and in particular
the efficient calculation o f smoothing splines for a set o f different smoothing
parameters.

135

Appendix A.
A Green’s Formula for the Roughness Penalty.

In this appendix we present a derivation o f a Green’s formula for the roughness
penalty. A more general derivation can be found in Aubin (1972). The derivation
uses the divergence theorem in the plane for generalised derivatives.

We have,

A q (M , V) = j ^ d x x U d ^ V + 2 d x y U d xyV + d y y U d y y V

Firstly we notice that,

3xxudxxv = div

= div

d^udxV

0 - d xxxu d x v

And simlarly,

d y y l ld y y V =

dxx u d ^ -d ^ U V

0

0
d y y U d y V - d y y y U V

+ dm uv

4 - dyyyyU V

Also we have that,

dxyii3xyV = div

= div

And also

= div

= div

dxyUdyV

0
•» J

d ^d yV

Cd**yuv.

0
d „u d xv
* ^

-dtyyltV

VdXyUdxVi

~ Z x x y U d y V

+ dxxyyUV

~ 3xyyUd*v

+ d x ty y U V

(A .l)

(A.2)

(A.3)

(A.4)

Now adding together equations (A .1)-(A .4) and integrating over Q. we get the
following,

f 4 1 *^n(w ,v) = f {(V4«)v + div
h

where f i = V(^xm)*Vv - (dxV2u) v

and f 2 = V(dyu,yVv - (dyV2u) v

136

Following this with an application o f the divergence theorem to the second term in
the integral we get, for sufficiently nice Q, with some rearrangement o f terms, the
Green’s formula,

^n (w ,v) = Jn (V4w) v + $ # 1{V(<?/im)*Vv - (<?nV2w)v)

where dn denotes generalised differentiation along the outward normal.

137

References.

Ahlberg, J.H., Nilson, E.N. and Walsh, J.L. (1967) The Theory o f Splines and
Their Applications, Academic Press.

Aubin, J.P. (1972) Approximation o f Elliptic Boundary Value Problems, Wiley.

Axelsson, O. (1976) Solution of Linear Systems o f Equations: Iterative Methods.
In Sparse Matrix Techniques, (ed. Barker, V.A.) Springer-Verlag.

de Boor, C. (1978) A Practical Guide to Splines, Springer-Verlag.

Craven, P. and Wahba, G. (1979) Smoothing Noisy Data with Spline Functions:
Estimating the Correct Degree of Smoothing by the Method o f Generalized
Cross-Validation. Numerische Mathematiky 31, 377-403.

Dahmen, W. (1980) On Multivariate B-Splines. SIAM Journal on Numerical
Analysis, 17(2) 179-191.

Dahmen, W. (1981) Approximation by Linear Combinations o f Multivariate B-
Splines. Journal o f Approximation Theory, 31(3) 299-324.

Deny, J. and Lions, J.L. (1954) Les Espaces du type Beppo Levi. Annales Institut
Fourier, 5, 305-370.

Duchon, J. (1976) Interpolation Des Fonctions De Deux Variables Suivant Le
Principe De La Flexion Des Plaques Minces. RAIRO Analyse Numerique,
10(12) 5-12.

Duff, I.S. (1982) Research Directions in Sparse Matrix Computations. UKAEA
Harwell Research Report No. AERE-R 10547.

Dyn, N. and Levin, D. (1982) Construction of Surface Spline Interpolants of
Scattered Data over Finite Domains. RAIRO Numerical Analysis, 16(3)
201-209.

Dyn, N. and Levin, D. (1983) Iterative solution o f systems originating from
integral equations and surface interpolation. SIAM Journal on Numerical
Analysis, 20(2) 377-390.

Eubank R.L. (1984) The Hat Matrix for Smoothing Splines. Statistics and
Probability Letters, 2, 9-14.

138

Eubank R.L. (1988) Spline Smoothing and Nonparametric Regression, Marcel
Dekker.

Hestenes, M.R. and Stiefel, E. (1952) Methods of Conjugate Gradients for
Solving Linear Systems. National Bureau o f Standards Journal of
Research, 49, 409-436.

Hu C.L. and Schumaker L.L. (1986) Complete Spline Smoothing. Numerische
Mathematik, 49, 1-10.

Hutchinson M.F. and de Hoog, F.R. (1985) Smoothing Noisy Data with Spline
Functions. Numerische Mathematik, 47, 99-106.

Kershaw, D.S. (1978) The Incomplete Cholesky-Conjugate Gradient Method for
the Iterative Solution o f Systems o f Linear Equations. Journal of
Computational Physics, 26, 43-65.

Kimeldorf, G.S. and Wahba, G. (1971) Some Results -.-u Tchebycheffian Spline
Functions. Journal o f Mathematical Analysis and Application, 33, 82-94.

Maz’ja, V.G. (1980) Sobolev Spaces, Springer-Verlag.

Meinguet, J. (1979a) An Intrinsic Approach To Multivariate Spline Interpolation
A t Arbitrary Points. In Polynomial and Spline Approximation, (ed.
Sahney, B.N.) D.Reidel Publishing Company.

Meinguet, J. (1979b) Multivariate Interpolation A t Arbitrary Points Made Simple.
ZAMP, 30, 292-304.

Munksgaard, N. (1980) Solving Sparse Symmetric Sets o f Linear Equations by
Preconditioned Conjugate Gradients. ACM Transactions on Mathematical
Software, 6(2) 206-219.

O’Connor, D.P.H. and Leach, B.G. (1979) Geostatistical Analysis o f 18CC Stope
Block, CSA Mine, Cobar, NSW. In Estimation and Statement o f Mineral
Reserves. Australian IMM, Melbourne, Australia, pp. 145-153.

Reid, J.K. (1971) On the Method o f Conjugate Gradients for the Solution of
Large Sparse Systems of Linear Equations. In Large Sets o f Linear
Equations (ed. Reid, J.K.). Academic Press, pp.231-254.

Sibson, R. (1980) A Vector Identity for the Dirichlet Tessellation. Mathematical
Proceedings o f the Cambridge Philosophical Society, 87, 151-155.

139

Sibson, R. (1985) Nonparametric Spatial Regression. Draft Report. University o f
Bath.

Silverman B.W. (1985) Some Aspects o f the Spline Smoothing Approach to Non­
parametric Regression Curve Fitting. Journal o f the Royal Statistical
Society, Series B, 47(1), 1-52.

Temple, G. (1955) The theory o f generalised functions. Proceedings o f the Royal
Society A, 228, 175-190.

Wahba, G. (1979) How to smooth curves and surfaces with splines and cross-
validation. Technical report no. 555, Department o f Statistics, University
o f Wisconsin.

Wegman E.J. and Wright I.W. (1983) Splines in Statistics. Journal o f the
American Statistical Association, 78, 351-365.

Young, D.M. (1971) Iterative Solution o f Large Linear Systems. Academic Press.

140

