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Abstract

In this thesis we examine the ways in which elements in permutation groups may 
be related. The thesis is split into three parts.

In the first part of the thesis we examine those elements in Sn that have 
trivially intersecting cyclic groups but which nonetheless satisfy a word of length 
shorter than their order. We not only show that such elements exist but give 
constructions for related elements. We conclude this section by demonstrating 
some specific examples of nearly p-groups arising from looking at word lengths.

In the second part of the thesis we turn the problem on its head and look at 
expressing elements of Sn and An as products of cycles of a given length. We 
conclude that we can express any element in An as a product of two cycles of 
length or longer.

In the third part of the thesis we extend our arguments relating to expressing 
elements as products of a given shape to look at the groups generated by two 
elements of a given shape. In particular we look at the groups generated by the 
n-cycle (1, 2 , . . . ,  7i) and a standard representative of each conjugacy class of Sn. 
By choosing our representative of the conjugacy class we are able to generate Sn 
or An in most cases.

Appendix A contains some early unrelated work on trying to recognize the 
Galois group of a polynomial based on the cycle shapes of elements of the Galois 
group.

Appendices B and C contain some notes on Swirls. We defined the swirl of 
an element when trying to solve word problems The swirl of a group element is 
the right shift of each of the support of g under a given ordering of the set g acts 
on. We prove a number of interesting results concerning swirls but ultimately 
were not able to use them to help solve the word problems and their inclusion is 
as an interesting area where further investigation my yield results.

Throughout the development of this thesis the author has relied on the use 
of the computer algebra package GAP [8] as a way of gathering data and testing 
hypothesis. Without the use of this package the author doubts if he would have 
been able to develop the theory to the level seen and is indebted to the authors 
of the package for providing such a wonderful tool.
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N otation

We define the basic notation we will use throughout this thesis.
Sn Symmetric group on n letters
An Alternating group on n letters
Mu, M12, M23, M24 The four Mathieu groups which are at

least 4-transitive 
g , h, x , y, z Group elements
CG(g) The centralizer in G of g
p Prime integer
a, 6, d, n, i , j , k ,m ,l , r  Integers
a; A word on two group elements
o(g) The order of the group element g
c A standard shape representative
Ci A single cycle in a permutation
supp g The support of the group element g
Degree(G) The size of the support of the

permutation group G

A  word on pronouns

Throughout this thesis the author has adopted the use of the pronoun “we” rather 
than “I” to denote the joint journey taken by both the author and the reader.
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Chapter 1

Definitions of related elem ents 

and basic existence results

1.1 Basic definitions

We begin with a basic definition.

D efinition 1.1 (R elated  elem ents). Let G be a group, we say g,h  G G are 

related if there is a non-trivial word u  on g,h  (a product involving terms drawn 

from {g, h}) which is the identity. We say that g, h are non-trivially related if 

there exists such an u  and (g) H W  — 1-

We hope that the terminology in Definition 1.1 will not cause confusion with 

the notions of relator and relation.

Our aim in the first part of this thesis is to show that there are non-trivially 

related elements in groups and ways of constructing both the elements and u.

If we allow our elements to be trivially related, that is (g) 7̂  then we

may always find an u. For example if gx =  h? and o{g) =  m, then we may choose
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u  =  tig™*1. Therefore, this case is relatively uninteresting and we will not deal 

with it further.

Equally, if we allow the length of uj to be longer than o(g),o(h), then again 

we may construct u  = glh? where o(g) = i and o(h) = j  and this case is again 

uninteresting.

Instead we shall concentrate on the situation where o(g),o(h) > length(u). 

Of course we have no guarantee that suitable g, /i, cj exist and proving this will 

be our first task.

We concentrate on the case where G = Sn as his gives us the greatest flexibility 

in our choice of g and h.

1.2 Basic results

Our purpose in this section is to show that non-trivially related elements exist in 

Sn. In addition we will show that in some cases no non-trivially related elements 

exist. In this section we will concentrate on finding words of length les than m  

on g, h G Sn where o(g), o(h) > m

We begin this section by showing that for certain small n there are no non- 

trivially related elements.

Lem m a 1 .1 . Let g , h ^  id be elements of Sn and let g have order m < 4. Then 

g and h cannot be non-trivially related.

Proof. For g and h to be non-trivially related we need to find u  =  1 of length 

less than m. We examine all possible cases and note that in each case we may 

reverse the roles of g and h.

For m  =  2 there are no possible words of length 1.



For m  = 3 the only possible word is gh = id or alternatively g =  h~l so 

(g) =  (h) so they are trivially related.

For m = 4 there are two options for u. Firstly, u  may be of the form ghh 

or alternatively g = h~2 so (g) C (h) so they are trivially related. The other 

option is that ghg = id but this similarly yields h = g~2 and the same argument 

applies. □

We may also observe the following corollary.

Corollary 1.2. For n < 4 there are no non-trivially related elements in Sn.

1.3 Words of length 4

1.3.1 m -cycles

For n > 5 we can find non-trivially related elements in Sn. Lemma 1.3 gives a 

construction for elements in Sn that generate distinct cyclic subgroups.

Lem m a 1.3. Let ft, = {au,. . . ,  a n} and let g = (au, 0:2, . . . ,  am) G Sn and also let 

h = ( a i , . . . ,  Oj-i, Oim, a m- i , . . . ,  ct/) G Sn then for 2 < j  < m  the cyclic groups 

(g) and (h) intersect trivially.

Proof. In order to prove this result we consider the action of the two cyclic groups 

on a i and otj as a pair. For the cyclic groups to intersect at least one element of 

both groups each must be coincidental on these elements as a pair. We consider 

the image of aj when the image of is c^, i ^  1. The following tables show the 

images under (g) and (h) respectively:
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i OLj

2 < i < m —j  + 1 j  -hi - 1

m — j  -h i < i  < m j  -hi —  (m + l)

i

2 <  i < j  — 1 i -  1

j  < i < m  — 1 i +  1

m j ~  1

There are 6 possible combinations namely:

j + i  — l  = i — I => j  = 0

j  -hi — 1 =  2 +  1 = >  j  =  2

j  -hi — 1 = j  — 1 =h i = 0

j  -hi — (m -h l)  = i — 1 => j  = m

j - h i  — ( m - h l ) = i - h l  => j  = m-h 2 

j  -hi — (m -h l)  = j  — 1 =>• i = m

The only one of these combinations which is not precluded by our restrictions 

on j  is where i = m. In this case we instead consider the image of a2 when 

i =  m, in (g) it is a\ and in (h) it is Qm_i, these are distinct unless m = 2 

which is precluded by our restrictions on m  and the two cyclic groups intersect 

trivially. □

Lemma 1.3 gives elements of Sn that generate cyclic subgroups that have 

trivial intersection. If these elements are also related, then we have non-trivially 

related elements. As the next theorem shows where g is an m-cycle we can always 

find h, also an m-cycle, such that (gh)2 =  id.
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Theorem 1.4. For all g G Sn, g an m-cycle, m  > 5, there exists an h, also an 

m-cycle, such that {gh)2 = id and (g) f t  (h) = id.

Proof. We attack this in two parts. Firstly we construct h given g and show that 

it has the required property. Secondly we use Lemma 1.3 to show that the two 

elements generate distinct cyclic subgroups of Sn.

We may assume that g = (oi, (*2, <23, <*4, . . . ,  am), having fixed g we construct 

a suitable h. Let h = (ai, a;2, cnm, . . . ,  04) so gh = (an, a;3)(a:2, &m)- 

Thus gh has order 2 and uj has length 4 and we have demonstrated that the 

required h exists. Lemma 1.1 tells us that we cannot do better than this although 

alternative h will clearly exist.

Our chosen g and h have the form given in Lemma 1.3 with j  = 4 so the 

cyclic groups are distinct and we are done. □

We note that if g is an m-cycle, then it will not be possible generate, h, also 

an m-cycle such that gh is a single transposition as a single transposition is an 

odd element and the product of two similarly shaped elements will always be 

even. Of course if we allow g to be an element other than an m-cycle, then it will 

sometimes be possible to generate an h such that gh is a single transposition.

1.3.2 Other elem ents o f Sn

Where g is not an m-cycle can we do the same ? The obvious approach where g 

contains a suitable m-cycle is to form h by using the construction of Theorem 1.4 

on the m-cycle and take the inverse of each of the other cycles. However, in 

such a construction there is no guarantee that the cyclic groups will intersect 

trivially. Clearly if g is of order m, then this will be the case as each element of 

the cyclic group will act non-trivially on the support of the m-cycle. However,
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if g is of order k, then we cannot rely on this construction and must take a 

different approach. Again we have recourse to Lemma 1.3, we note from this 

that for cycles with support of size 4 or greater we can find a cycle with the same 

support such that when restricted to this support the cyclic groups intersect 

trivially. Furthermore, for transpositions we need not include any cycles acting 

on their support as they will disappear. Having dealt with transpositions and 

cycles of length 4 or more we need only consider 3-cycles, now if the 3-cycle in g is 

(ai, (*2 , 0 :3 ),  then we may insert the transposition (<*1, 0:2) i ^ 0 h, now restricting 

our attention to{o:i, 0:2, <*3} we see the action of gh = (0:2, <*3) hence [gh)2 = (). 

This naturally leads us to consider whether, for arbitrary g we can construct a h 

that is non-trivially related to g.

Clearly for arbitrary g we cannot create a word that is non-trivially related 

to g as by Lemma 1.1 elements of order 4 or less cannot be non-trivially related 

to any element. In addition, as 5 is prime the only elements of order 5 are the 

5-cycles or products of 5-cycles so there is no scope for additional non-trivially 

related elements. For elements of order 6 or more then there are certainly non- 

trivially related elements where at least one of the elements is not an m-cycle 

of length greater than 5. Consider g = (1,2,3)(4,5) and h =  (1,3,2,4,5) now 

gh = (1,4) and g and h have orders 6 and 5 respectively so they are clearly 

related, in addition a little work shows the cyclic subgroups intersect trivially so 

the elements are non-trivially related. Theorem 1.5 generalises this argument.

Theorem  1.5. Given g G Sn of order greater than 5, there exists h G Sn, also 

of order greater than 5, such that (gh)2 = id and (g) fl (h) =  id

Proof If g contains an m-cycle, m > 5, then we can construct the required h. 

We do this by considering each cycle of g in turn. For cycles with length 4 or

12



greater we apply Theorem 1.4 and for transpositions we do nothing. For 3-cycles 

we insert a transposition with elements drawn from the support of the 3-cycle. 

As the support of each cycle of h is a subset of the support of a cycle of g we 

may consider the support of each cycle of g separately. It is clear that for each 

cycle of gi of g that (<&) D {hi) =  0 and we may extend to the full support.

If g does not contain any cycle of length 5 or more, then it must consist solely 

of 2,3, and 4-cycles. If g only contains one type of cycle, then g has order less 

than 5. Similarly if g only contains 2-cycles and 4-cycles, then it will have order 4. 

So g must have at least one of the following combinations of cycles a 2-cycle and 

a 3-cycle or a 3-cycle and a 4-cycle. The construction in both cases is similar, we 

construct a 5, or 6 , cycle that joins each of the cycles together as a transposition 

while fixing the other elements, having generated the h we argue as in Lemma 1.3 

that the cyclic groups intersect trivially.

When g contains both a 2-cycle and a 3-cycle we may assume, without loss 

of generality, that g =  (oi, o2, 03^ 04 , (*5) now form h =  (01 , <23, 02 , <*5, <*4)- Now 

gh = (o i,o 5) so g and h are clearly related. Now in the cyclic group generated 

by g the image of 0:4 is either 0:5 or 04 , hm(a4) =  <25 only when m = 4 and 

h4(a 1) =  0:4 an impossibility under the action of g so the cyclic groups are 

distinct.

Similarly when g contains both a 3-cycle and a 4-cycle we may assume, without 

loss of generality, that g =  (o i,02 , 03 , 04)(o5, 06 , 07) and we now choose h =  

(01 , 04 , 03, 02, 05 , 06). So, gh = (01 , 05)(06 , o 7) and the two elements are clearly 

related. Now (h) stabilises 07 so the cyclic groups may only intersect when 07 is 

stabilised. In (g) 07 is only stabilised when 05 and 06 are also stabilised. The 

only element of (h) which stabilises all three elements is the identity thus (h) and 

(g) intersect trivially. □
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1.4 Words of length greater than 4

So far we have concentrated on proving that non-trivially related elements of 

groups exist by looking at the shortest possible non-trivially related words. How­

ever, it is worth considering whether, given g of order m > 5, it is possible to find 

a h for every 4 < I < m  such that there exists an u  of length I. There are certain 

obvious cases that present themselves. Where g is an m-cycle and I is even then 

we can extend the proof of Theorem 1.4 so that (gh)s =  id.

Theorem 1.6. For all g G Sn, g an m-cycle, m  > 5, there exists an h also an 

m-cycle such that (g h =  id, for I even and 2 <  I < m and {g) D (h) = id.

Proof. The proof follows the same lines as Theorem 1.4 and again we assume 

that g = (01, 0:2, • • • 3om). In this case we cannot assume a single construction 

for our m-cycle, instead we need different constructions when |  is odd or even 

these are given by:

( o i ,  O 2 ,  • • • , Oil—1 , O ifn , Oim —i ,  . . . , O if) 2 ® ^ e n

(o?i, 0 : 2 , . • •, Oii_ j, Oifji, Oiffi—1, . . . , Cxi.) 2 odd

Therefore gh gives rise to two ^-cycles when |  is even and a single |-cycle when 

|  is odd. Thus (gh)^ = id as required.

Again we can apply Lemma 1.3 to the chosen g and h to show that the two 

cyclic groups generated intersect trivially. □

In Theorem 1.5 we extended Theorem 1.4 to cover general elements of Sn. 

While it was possible to extend the construction for m-cycles easily when looking 

for a short word it is less clear how, in general, one would do this for arbitrary 

elements. For k even one could adopt the same construction as in the first part
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of Theorem 1.5 ensuring only the support of the m-cycle is moved by (gh)2. 

However, this does not help answer the general question of given g E Sn of order 

m  > 5 and 4 < I < m  can we always construct a h such that g and h are non- 

trivially related by a word u  of length I and there is no w' of length less than I 

such that uj' = id.

1.5 Words of arbitrary length

We can show that in general for g E Sn of order m  and 4 < I < m  we cannot find 

an u  of length I and h dependent on g and u  such that u  — id and the order of 

h > I and (g) and (h) intersect trivially. The following theorem gives an example 

of this.

T heorem  1.7. Let g E Sn, of order greater than 5, then there does not exist an 

h E Sn also of order greater than 5 such that g and h are non-trivially related by 

a word of length 5.

Proof There are 32 possible words of length 5 on g and h, two of these words are
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trivial as they consist solely of g’s or h1 s. The remaining words are listed below:

LJ Case LJ Case

ggggh 1 hgggg 1

ggghg 2 hgggh 2

ggghh 1 hgghg 3

gghgg 2 hgghh 2

gghgh 3 hghgg 3

gghhg 2 hghgh 4

gghhh 1 hghhg 4

ghggg 2 hghhh 2

ghggh 3 hhggg 1

ghghg 3 hhggh 2

ghghh 4 hhghg 4

ghhgg 2 hhghh 2

ghhgh 4 hhhgg 1

ghhhg 2 hhhgh 2

ghhhh 1 hhhhg 1

We deal with each word by an analysis of cases as given in the table above.

1. Where the word is of the form g%h? = id or t ig 1 = id then the cyclic groups 

intersect non-trivially as g% = h~j .

2. Where the l j  is of the form glh?gk = id then we may rearrange to get 

hj = g~(1+k) and the two cyclic groups intersect non-trivially. The same 

argument applies if l j  = hlg^hk.
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3. As l j  = id we may rearrange all of these words to be of the form hghgg = id. 

We can then look at this word in two different ways. Firstly:

hghgg = id => hghg =  g~Y (1.1)

Secondly we can see:

hghgg = id ghggh =  id

=> hggh = g~l (1.2)

Combining Equations 1.1 and 1.2 we can see that hghg = hggh and by

cancelling the leading hg that hg = gh so g and h commute. Therefore we

may write u  =  h?g3 and we have an equation of type 1.

4. As w =  id we may rearrange all of these words to be ghghh =  id so all 

are equivalent. We now see that the same argument as in case 3 applies by 

interchanging the roles of g by h.

□

Theorem 1.7 shows us that we cannot always generate words of a given length. 

However, it does not give us any information about whether this is possible for 

words of length other than 5. It may be that for u  of length 6 , or more, given n 

sufficiently large 3g, h G Sn that satisfy l j  and (g) fl (h) = 1.
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Chapter 2 

Words of Prim e Length

In Chapter 1 we examined the existence of non-trivially related group elements. 

In Chapter 1 when forming words of length greater than 4 we utilised the fact 

that oj was of composite length, /, and constructed it by factorising I and forming 

a shorter word that had order dividing L Of course where I is prime this approach 

will not work. Indeed, we have already showed that for I =  5 there are no non- 

trivially related elements. However, as the next section shows this is not the case 

for all primes.

2.1 M otivation

To motivate our discussion we consider a concrete example. Now suppose that 

p =  11, g = (1, 2,3)(6 ,7 ,8 ,9,10) and h = (1 ,2 ,3 ,4 ,5)(6,8,7). Let u  = g3hg3hh3. 

A direct calculation reveals that u = 1 and it is easy to see that g, h are unrelated. 

However, let us elect not to perform that calculation but instead to proceed as 

follows. Consider both g = gig2 and h = h\h2 as products of disjoint cycles 

with gi = (1,2,3), g2 = (6,7,8,9,10), h\ =  (1,2,3,4,5), and h2 =  (6,8,7) we
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can see that the supports enjoy the following inclusions: supp g\ C supp hi and 

supp h2 C supp g2 - Moreover, we have arranged our choice of g\ so that g\ is the 

identity and so commutes with h\. Thus supp g\ D supp l j  =  0.

We cannot apply the same arguments to the support of g2 . Observe that 

h3 = 1 and that g3h2 is a product of two disjoint 2-cycles, so supp uC\ supp g2 =  0 .

We conclude that supp l j  = 0 so l j  is the identity. A simple calculation shows 

the elements g , h are independent.

2.2 R esults

2.2.1 Sm all Prim es

Before we can proceed to the general case we address the issue of small primes 

where the construction outlined below does not work. Indeed, for p = 2,3,5,7 

we conjecture that there are no non-trivially related elements g,h  E Sp where a 

word of length p on g, h is the identity. We showed in Lemma 1.1 that for p < 5 

there are no elements that are non-trivially related by a word of length p. We 

then showed in Theorem 1.7 that the same is true for p = 5.

Theorem 1.7 does not extend to the case where n = 7 and we can see this via 

the following example provided by D Johnson. Let n = 18 and let

g = (1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9)(10,11,12,13,14,15,16,17,18)

now it is clear that g has order 9 > 7. Now we choose x such that x2 = g3 so

x = (1 ,2 ,4 ,5 ,7 ,8)(3,10,6,13,9,16)(11,12,14,15,17,18)
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and we let

h =  g~lx~l = (1,13,11,3) (2,8,5)(4,16,14,16)(7,10,17,9)(12,18,15)

Now, h has order 12 > 7 as required and (g) fl (h) must have order 3 or 1. The 

only subgroup of (h) of order 3 is the one generated by Ji4 so if the intersection 

has order 3 then h4 G (g), so h‘4 =  g3 or g6. But (l)h4 =  1, while (l)g3 = 4 and 

(l)g6 =  7 and we deduce {g) f l  {h) = 1. Now if

uj =  g4hgh =  g4g~1x~1gg~1x~1 = g3x~2 = 1

Therefore g and h satisfy a word of length 7 yet their cyclic groups intersect 

trivially and we are done. We have not been able to give a general construction 

although it seems likely that this is not an isolated example.

2.2.2 Prelim inary R esu lts

Before we can proceed to the general case we will need the following result con­

cerning the intersection of the cyclic groups generated by cycles in Sn.

Lem m a 2.1. Let g and h be r and s-cycles (respectively) in Sn. If  the greatest 

common divisor of r and s is 1, then the cyclic groups generated by g and h 

intersect trivially.

Proof We know by Lagrange’s theorem that (g) H W  is a group of order dividing 

both r and s, but as r  and s are coprime this group has order 1 so is trivial. □
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2.2.3 T he G eneral Case

We may now move to the general case for p > 7 and show that we may always 

find g,h  € Sp such that they satisfy a word of length p. The construction works 

in much the same way for all primes.

We begin the proof proper by arranging a structure for l j , g  and h  in similar 

vein to that used in Section 2.1. First, we suppose that p is odd and that there 

are natural numbers k and I such that p = 2k + 1 +  2. Now of course, except for 

small p there will be considerable choice in the selection of k, I, and we will take 

advantage of this flexibility at a later stage in the argument.

Consider the product l j  = gkhgkhhl so l j  can be viewed as a word of length p. 

Moreover, by specifying the g and h we will arrange that the cyclic groups {g), (h) 

intersect trivially, that g, h both have order greater than p, and that l j  = id.

First we settle the structure of h. Let h = hi?i2 where hi and /12 are disjoint 

cycles of lengths I and I +  2 respectively. We now enforce a similar structure on g. 

Once again we want g to be a product of two disjoint cycles so g = gig2 and we 

want the order of <72 to be k. Finally we settle the support of each cycle in g and

h. Let the support of <7* be T* and the support of hi be Hi. Moreover, we want 

to ensure that T2 Q H2 , Hi  C Ti and Ti n ^  =  0. Therefore, we may consider 

the support of H2 and Ti independently.

When restricted to H2 , gk = id so commutes with h so supp ljDH 2 = 0. Next 

we want to arrange that gkh has order 2 and therefore that gkhgkh = id, finally 

our condition on hi ensures that hl = id and we are done.

We need a few results about greatest common divisors before we can proceed. 

We recall from our elementary algebra that if the integer d divides the integers a 

and b then d also divides A a +  pb for all A, p also integers.
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Lemma 2.2. I f  n is an odd number greater than 2, then the greatest common 

divisor of n and n + 2 is 1.

Proof The greatest common divisor must be odd and divide (n +  2) — n = 2. □

Lemma 2.3. Forp prime and \{p— 1) odd the greatest common divisor o f \ (p + 1) 

and \(p  — 1) is 1.

Proof. The greatest common divisor must divide

^(p + l - p + 1 )  = 1.

□

Lemma 2.4. For p prime and \{p — 1) even the greatest common divisor of 

\{p + 3) and |(p  — 3) is 1.

Proof. Any common divisor of the given integers must divide two times the first 

minus the second i.e. 3. However, if the the greatest common divisor is 3, then 

3 divides \(p  — 3) so therefore must divide p — 3 and in turn divide p. But, p 

is prime so p = 3 and \{p — 1) =  1 which is not even so the greatest common 

divisor must be 1. □

Now if I is odd, then we can use Lemma 2.2 to show that h has order 1(1 + 2). 

We now use our flexibility of choice for I to ensure it is odd. The value 

we choose for I depends on whether \{jp — 1) is odd. If \(p — 1) is odd we let 

I = \(jp—5) and if it is even we let I =  \ (p —7) ensuring I is odd, then k = \ (p + 1) 

and |(p  +  3) respectively.

Our choice of supports for the disjoint cycles in g,h  ensures that we may con­

sider whether (gi) p|(/ij) =  1 separately for each i. Firstly we consider (^2) 0 (^2)•
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By Lemmas 2.3 and 2.4 we conclude that k and / +  2 are co-prime. We may now 

use Lemma 2.1 to show the cyclic groups intersect trivially.

We use a similar approach for (gi) P|(^i)- First we settle on an order for g\. In 

choosing o(<?i) we have two concerns: firstly we must ensure that |T! | +  | I  < P , 

and secondly (<7i )n (^ i)  =  F We choose an order for gi and deal with each of 

these concerns in turn. We choose o(gi) = I +  2 . Now |T11 + 1^1 =  2(Z + 2) < p 

so our first concern is dealt with. Now we address whether the cyclic groups 

intersect trivially. We know by Lemma 2.2 that I +  2 and I are co-prime so we 

may use Lemma 2.1 to show that (<7i) PK^i) =  F

The construction of u; also requires that g\hi have order 2 , but we have not 

shown this to be the case. We may use Lemmas 2.3 and 2.4 to show that I +  2 

and k are co-prime so g\ will also be an (I +  2)-cycle. Now let Ti =  {au . . .  ai+2} 

and suppose g\ =  (ai, 0:2, • • •»&1+2 ) we may choose hi = (c*i, oci+i, . . . ,  <23) and a 

direct calculation yields gfhi =  (<*1, oi2)(«z+ij 011+2 ). So we have a gi and hi with 

the required property. Moreover, by using Lemma 2.2 and Lemma 2.1 we can 

show the cyclic groups intersect trivially.

In order to ensure that T2 C H2 we require that k < I + 2 but have not shown 

this to be the case. In addition we have not shown that the orders of g and h are 

greater than p. We address these for each choice of I in turn.

2.2.4 l =  \ { p -  5)

In this case k = \(p +  1) and k < I +  2 Vp > 3.

All that remains is to show that g and h have order greater than p. Now we
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have:
order(h) =1(1 + 2)

=  5CP — 5 ) ( |0  — 5) +  2)

=  j ( p - 5 ) ( p -  1)

=  ~  6j> +  5)

> p Vp > 9

As I +  2 and k were co prime the order of g is (I + 2) k so

order(g) = (I + 2) k

=  | ( p - 1)i(p  +  1)

=  —1 )0  + ! )

= §G>2 - 1)
> p Vp > 8

2.2.5 l =  \ { p -  7)

Now k = \(p  +  3) and k < I + 2 Vp > 9.

All that remains is to show that g and h have order greater than p. Now we 

have:
order(h) =1(1 + 2)

=  1(p -7) (J(p - 7 ) + 2 )

=  j ( ? - 7 ) ( p - 3 )

=  ~  10p +  21)

> p Vp > 12

As before:
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order(g) = (I +  2 )k

=  5 (p - 3)|(p  +  3)

=  g(p —3)(p +  3)

= lip2 -  9)

> p Vp > 9

We have already dealt with small p and the proof outlined above works for 

all p > 12 so we only need consider when p = 11. Now if p = 11, then \{p — 1) 

is odd so we are in the first case and we are done.

2.3 Conclusion

Putting all of the above together we obtain the following result.

Theorem 2.5. Suppose that p >  7 is a prime number, then there exist g,h  G Sp 

with (g) H W  =  id, o(g),o(h) > p and there is a word lj of length p on g and h 

with u  =  1.
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Chapter 3 

Words of arbitrary length

In Chapter 2 we have shown that for p prime we can find g,h  G Sp such that there 

is a word on g, h of length p which is the identity. In this chapter we demonstrate 

that in general we may do the same for any n.

3.1 n  odd

We do this by considering the case for n prime and extending it to general n. 

In the first instance we note that in proving the case for tl prime we have only 

required that n be odd and not divisible by 3. We restate the extended theo­

rem 2.5.

Theorem  3.1. Suppose that n > 7 is an odd number not divisible by 3, then 

there exist g,h £ Sn with {g) H W  =  id, o(g), o(h) > n and there is a word lj of 

length n on g and h with u  = 1.

Proof. We note that the proof of Theorem 2.5 only requires that n is odd and 

not divisible by 3. □

We now give a construction for n divisible by 3.
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3.2 n  divisible by 3

To motivate our discussion we consider a concrete example suppose that n =  9, 

g = (1 ,4 ,5 ,2, 3)(7,8,9) and h = (1,2,3,4,5)(6 ,7 ,8). Let uj = g2hg2hg2h. A 

direct calculation reveals w =  1 and it is easy to see that the cyclic groups 

generated by g and h intersect trivially.

As before we first settle on a structure for u. As for n prime we start by 

forming a repeating structure, in this case we use the fact that n is divisible 

by 3 and let u  = gkhgkhgkh with k = |  — 1. We now settle the structure 

of g and h as before where g = <71*72 and h = /1-1/12 as products of distinct 

cycles. However, this time we settle the structure more clearly. Firstly, we let 

h = hih,2 =  (1 ,2 ,.. .,  n — 4)(n — 3, n — 2, n — 1) and note that as n is divisible 

by 3 then the greatest common divisor of n — 4 and 3 is 1, so h has order 

3n — 12 > n Vn > 6.

Next we settle on the structure of <7, we want g to consist of, <71 a (n — 4)-cycle 

with support of { 1 ,2 ,..., n — 4} and £2 a 3-cycle with support {n — 2, n — 1, n}. 

We now consider how <72 and /12 interact. Clearly, whatever 3-cycle we choose for 

<72 the cyclic groups will intersect trivially as they act on different supports. Now 

if k is a multiple of 3, then our choice of ^2 is irrelevant as gk = 1 and h\ =  1. If 

k is not a multiple of 3, then we choose #2 so gk = (n — 1, n — 2, n) and we see 

that gkh,2 = (n — 2, n, n — 3) and in either case {n — 3 , . . . ,  n} D supp u  = 0.

Next we need to ensure that if <71 is a (n — 4)-cycle, then gk is still a (n — 4)- 

cycle, we do this via the following lemma.

Lem m a 3.2. The greatest common divisor of n — 4 and |  — 1 is 1.

Proof. Any common divisor must divide three times the second minus the first

i.e. 1. □
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We are therefore assured that our (n — 4)-cycle remains an (n — 4)-cycle so 

may choose g\ so that g\ =  (1, n — 4, n — 5 , . . . ,  5,3,4,2) and we observe that 

g*h\ —  (3,5 , 4). Thus { 1 ,2 ,..., n —4}flsupp l j  =  0. and we conclude supp l j  =  0.

Given g\ and g\ are both (n — 4)-cycles we know (gi) =  (g\). Therefore 

provided we can show (gft) D (hi) = 1 we are done. We do this by considering the 

action of these groups on the pair {3,4}. Under the action of hi if the image of 

4 is m, then the image of 3 is m — 1 for all m  except 1 where the image is n — 4. 

However, under the action of g\ if the image of 4 is m, then for 5 < 777 < n — 5 

the image of 3 is 77i +  1, this leaves only m =  1,2,3, and 77 — 4 where the images 

of 3 are 2,4,5, and 1 respectively whereas under the group generated by g\ they 

are n — 4 ,1, 2, n — 5. Therefore these will only coincide if n = 6 and we have 

already ruled out this possibility and we have shown the cyclic groups intersect 

trivially. We note that we have not relied on n being odd and the proof works 

for any n divisible by 3 and we now conclude.

Theorem 3.3. Suppose that n > 6 is divisible by 3, then there exist g ,h  G Sn 

with (g) fl (h) = id, o(g), o(h) > n and there is a word l j  of length n on g and h 

with l j  = 1.

Now Theorems 3.1 and 3.3 show that for odd n > 7 we may always find 

related elements in Sn that satisfy a word of length n. All that remains is to 

show that for suitably large n we may also do this for even n.

3.3 n  even

As with 77 prime we consider a simple case for motivation. Suppose that n = 10, 

g = (1 ,2 ,3 ,4 ,5)(6,7,8) and h = (1,2,3,4)(6,8,7). Let l j  =  gAhg*h. A  direct
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calculation again reveals that u  = 1 and it is easy to see that the cyclic groups 

generated by g and h intersect trivially.

Again we begin by settling our structure for l j  and let l j = gkhgkh where 

k =  |  — 1. As before we settle the structure of g and h . Firstly we want g and 

h both to be products of two distinct cycles. We first settle the structure of g so 

that g = (1, 2, . . . ,  | ) ( |  +  1, |  +  2 , . . . ,  n — 2), now g consists of an |-cycle and 

an ( |  — 2)-cycle. In both cases when raised to the |  — 1 the cycles retain their 

original structure as in both cases the greatest common divisor is 1. Furthermore, 

the greatest common divisor of ^ and |  — 2 is at most 2 so g has order at least 

J ( f  — 2) > nVn > 12. For n = 12 o(g) = 12 and we note that this construction 

does not work in this case. For n =  10 the construction still holds as the greatest 

common divisor of 5 and 3 is 1 so o(g) =  15 > 10. However, for n = 8 this 

argument fails as the greatest common divisor is 2 and o(g) = 4.

We now consider gk = (1, . . . ,  2) ( |  +  1, |  +  2, . . . ,  n — 2). We now settle on

our h in order to ensure that gkh results in disjoint transpositions. We do this 

by letting h = (1 ,2 ,.. .,  |  — 1 )( | +  l ,n  — 2,n — 3 ,.. .  ,n, ^ +  2,n — 1) we have 

gkh =  (1, | ) ( |  +  l ,n  — 1) ( |  +  2,n).

Now gi and hi are a |-cycle and a ( |  — l)-cycle respectively and hence the 

greatest common divisor of their lengths is 1 and by Lemma 2.1 their cyclic groups 

intersect trivially. We observe that g2 stabilises n — 1 and n and the only element 

of (/12) that stabilises these elements is the identity and so (g) fl (h) = id.

We need to ensure o(h) > n. Now h consists of an |-cycle and a ( |  — l)-cycle, 

the lengths of these cycles are coprime and so h has order f  ( f  — 1) > n V n > 6 .

We have demonstrated a construction for all even n > 12, furthermore we 

have shown the construction works for n = 10. We note that for n =  12 we may 

use Theorem 3.3 as n is divisible by 3.
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Finally, we turn our attention to the case where n = 8 we show that this 

is the case via a concrete example. Let g = (1 ,2 ,3 ,4 ,5)(6,7,8) and let h =

(1,2,3,5) (4,7,6) so g and h have orders 15 and 12 respectively. We deduce that 

(g) fl (h) has order 3 or 1. Now if it has order 3 then, g5 must be h4  or h8 but 

g5 stabilises 4 yet h4  and h8  both move 4 and we conclude that the cyclic groups 

intersect trivially. All that remains is to show that g and h satisfy a word of 

length 8 . Let l j  =  ( g 2 h 2)2 =  ((2 ,6)(4,5))2 =  1 and we are done.

Theorem 3.4. Suppose that n > 8 is an even number, then there exist g,h  G Sn 

with (g) f l  (h) =  id, o(g),o(h) >  n and there is a word l j  of length n on g and h 

with l j  =  1.

3.4 Conclusion

We now draw together the results of the previous sections to obtain the following 

general result.

Theorem 3.5. Suppose that n >  8 , then there exist g ,h  E 5 n  with (g) f l  (h) = id, 

°(g): o{h) > n and there is a word l j  of length n on g and h with l j  = 1.

Proof The proof has been completed in three parts.

1. Theorem 3.1 gives us all n odd and not divisible by 3.

2. Theorem 3.3 gives us all n divisible by 3.

3. Theorem 3.4 gives us all the even n except n — 12.

□
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We have already shown that of the remaining possibilities n = 1,2,3 and 5 are 

impossible as words of these lengths give rise to related elements. Furthermore 

for n =  4 and 6 all elements of Sn have order at most n. We now have a complete 

solution for all n except n =  7. However, a direct computation in GAP shows 

that no such g and h exist in S 7 . While a direct computation does not constitute 

a proof it gives us reasonable confidence that one exists.
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Chapter 4

D istribution of minimum length  

words

In this chapter we consider the distribution of the minimum length of a word, u, 

on g and h, where g and h are n-cycles in Sn, such that l j  =  1 and {g) fl (h) =  id. 

Before we can attempt to calculate the distribution of word lengths we must 

address a few computational considerations.

In general for large n the problem will be computationally intractable as there 

are (n — 1)! n-cycles and hence (n — l )!2 ordered pairs of n-cycles. Furthermore, 

for a given length of word, I, there are 2 l words. Therefore, if a given pair of 

elements have a minimum word of length I, then they will need to be tested in 

at least X^=i 2 % = 2 l — 2  words before the minimum word is found.

4.1 A lgorithm s for reducing the search space

Clearly, if we are able to reduce the number of pairs of elements we need to test in 

each word, then we will gain a significant increase in efficiency of the algorithm.
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In the first instance we note that we may, without loss of generality fix one 

of the cycles. To show this we use the following result:

Lem m a 4.1. Let g,h  £ Sn be n-cycles and let lj be a word on g and h such 

that lj = 1. Then for g' = (1,2, . . .  ,n) there exists h a l s o  an n-cycle, such that 

lj' = 1 where lj’ is the word obtained by replacing g with g' and h with h' in lj.

Proof. We first note that there exists x  £ Sn such that gx =  (1, 2, . . . ,  n) = g'. 

Now let h' = hx. Substituting g' and h' into lj' we can see lJ =  x_1ljx =  1. □

Given that we are able to fix one cycle without affecting the distribution of 

the lengths of words we reduce the problem of finding words for (n — l)!2 pairs 

of elements by a factor of (n — 1)!.

We also note that that for all z £ Csn (g) if lj =g 1 for g and h, then lj =g 1 

for g and hz. Therefore, if we consider the action of Csn(g) by conjugation on the 

set of n-cycles, then we need only consider one representative from each orbit. 

If instead we only consider the action on the set of n-cycles whose cyclic groups 

intersect trivially with (g), then the calculation becomes trivial. We utilise the 

orbit counting lemma to determine the number of pairs we now need to test.

= \c T W \  ^  F ix{ i)I s n K y j \ i £ C s n ( g )

We first turn our attention to Csn{g)• Now in Sn all n-cycles are conjugate 

and as previously noted there are (n — 1)! of them thus \Sn : Csn(g)\ =  (n — 1)!. 

Hence, Csn has order n, furthermore Csn(g) < {g) which is also of has order n 

and so Csn(g) = (g)- Now the construction means that for all but the identity 

every element moves every n-cycle as by removing elements whose cyclic groups 

intersect with that of g we have certainly removed all n-cycles that commute with
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g and possibly some others. Now the equation reduces to

Fix (id) Number of n-cycles
\Orbits\

IC'snCs)! n

Therefore we make a saving of |C'sn(g)| =  n on the number of pairs we need to 

test.

Having made these simple observations there are seem to be no further ways to 

reduce the number of pairs that need to be tested. Instead we turn our attention 

to the number of words that need to be considered for each pair.

4.2 Algorithm s for reducing words

In calculating the minimum length of word required such that u  = 1 we need to 

generate words into which g and h can be substituted. There are two considera­

tions, the first is the number of words that need to be considered, the second is 

efficiency in calculating the words and making any reductions.

In order to reduce the number of words we make the following observations:

1. All words must contain at least one g and one h.

2. Any word of the form glhk may be ignored as these words imply that either 

the cyclic groups of g and h intersect non-trivially or that n divides both i 

and k.

3. l i u  =g 1, then any cyclic permutation of u  will also equal 1.

These observations greatly help to reduce the search space. When considering 

the effect of each observation we must note the interactions between them for 

example Observations 3 and 1 taken together mean that we only need consider
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words that start with a g and end with an h as any word containing a g and an h 

may be rotated to be of this form. Considering each observation independently 

we see that for words length I they save us a factor of 4, / words, and a factor 

of I respectively. Therefore at best we may assume there are 21~2/I words that 

we need consider. It is clear that this estimate of the savings is generous and we 

return to first principles for a more reasonable estimate. We know there are 2l 

words of length I and rotations of these can be used to reduce this by a factor 

of up to 1. Furthermore having considered the rotational reductions we need not 

consider the reduction to words of starting with a g or an h as this simply reduces 

the computational work. Furthermore there are I +  1 words of the form glhl~l 

for 0 < i < I which together with their rotations may be removed. Therefore we 

have approximately 21 /I — (I + 1) words for any given I. Table 4.1 shows both the 

actual number of words and the estimate.

Table 4.1: Number of distinct words

I Estimate Actual
4 -1 1
5 1 2
6 4 7
7 11 12
8 23 27
9 47 50
10 92 97
15 2,169 2,176
20 52,408 52,467
25 1,342,151 1,342,158
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4.3 Im plem entation

Having made these observations we turn our attention to the practical consider­

ations of implementation of the algorithms. In order to implement the reduced 

word list we must generate each word, or ideally not generate words we do not 

want, and then check whether any cyclic permutation of it has already been in­

cluded in the list of words or is one the form g%hk. The straightforward approach 

is to check each word and its cyclic permutations against the list of words. How­

ever, this is not practical as for even moderate n as we have to test inclusion for 

up to n — 1 permutations of each of 2n_2 words in a list of words that can be up 

to 2n/n  — (n +  2) long. Indeed, it seems that the natural constructions of lists of 

words generate an almost complete list of words early in the sequence with most 

of the words generated later being redundant.

In order to solve the problem of inclusion of a permutation of a word we 

consider how we represent our words. The most straightforward approach would 

be to hold these as strings of p’s and h’s. However, an alternative approach 

would be to consider each word as a list of 0’s and l ’s thus the word gghgh 

would be [0,0,1,0,1]. There is a natural bijection between the set of words 

expressed as lists of 0’s and l ’s and the set {1 . . .  2n} such that each word is the 

binary representation of the given integer. Indeed, we may set up the bijection 

to the set {1 . . .  2n_2} by considering the first and last digits fixed as zero and 

one respectively. Already this approach gives a simple way to generate words 

in an ordered fashion and gives us the ability to exclude words of the form gxhk 

merely by excluding from our set of integers those numbers consisting solely of 

l ’s, namely 2 l — 1 for 1 < I < n.

The key advantage of the representation given above is the efficiency of check­
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ing for inclusion of cyclic permutations of the current word in previously generated 

words. For each cyclic permutation of a word which starts with a zero and ends 

with a one instead of checking inclusion in the set of previous words we use the 

bijection merely to check that the integer representation of each permutation of 

the word is larger than that of the current word. This reduces the problem of 

inclusion for a given word from a large number of list comparisons to n — 2 integer 

multiplications and an integer comparison.

We can further improve the efficiency of the algorithm by instead of using a 

single bijection if) from the set of words to { 1 . . .  2n_2} we set up a family, of 

bijections. We construct ipi so that ^  is isomorphic to applying the permutation 

(1,2, . . . ,  n ) 1 to the word and then applying ?/>. We therefore no longer need cal­

culate the cyclic permutations of each word, merely apply the relevant bijection. 

In considering how to generate the ^  it is useful to consider (h)^  as the cartesian 

product of the list [0,2̂ n~2 \2 ^n~3\  ...,1 ,0 ] and h. Now, if we wish to generate ipi, 

then we may do this by taking a suitable permutation of [0 , 2 n̂~2\  2 n̂~3\  . . . , 1, 0], 

indeed the relevant permutation is (1, 2, . . .  ,n )- *, and then taking the cartesian 

product of this and the representation of the word. Thus applying each of the ifji 

is equivalent to taking the cartesian product of two lists and summing the result 

thus reducing the word reduction problem to n(n — 2) integer multiplications and 

n integer comparisons for each word.

While the reductions outlined above go some way to reducing the number 

of redundant words they by no means remove all such redundant words. For 

example, a word may contain the sequence gn which will be identically one. 

Trapping and removing such words would be costly. However, their existence 

must be borne in mind when constructing the algorithms to test pairs of elements. 

Provided the algorithm tests words in ascending length, if l j  = u\gnuj2 =  1, then
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uj\ui2 =  1  and is shorter than l j  s o  the algorithm will never test against such a word 

except where the result will not be 1. However, it is possible that in some cases the 

word U1LJ2 was not tested against as it was removed as a trivial word. However, 

we know the only words removed are of the form glhk, provided we remove pairs 

of elements whose cyclic groups intersect non-trivially such words will only be the 

identity when n divides both i and k. Furthermore, we know the only sequences 

we can trivially remove are multiple of n powers of either g or h. In order for 

such a word not to have been removed it must contain at least hg as otherwise 

it l j would be of the form g%hk which would be removed by standard reduction. 

The shortest trivial word containing a hg is hngn. Therefore, the shortest word 

not currently removed that could cause spurious results is gnhngnhn, a word of 

length 4n.

4.4 Results

Even with the efficiencies outlined above for n > 10 it was not possible to calculate 

the distribution of minimum word lengths due to computational limitations.

Table 4.2 shows the distribution of length of shortest words for 4 < n < 10.

There does not appear to be an obvious pattern to the longest minimum 

word length nor to the distribution of minimum word lengths. However, we can 

see that, at least for small n, the longest minimum word length appears to be 

increasing faster than n.

As previously noted there are no 7-cycles which satisfy a word of length 7 and 

do not satisfy a shorter word. Indeed we find no elements with minimum words 

length 11 or 13. However, we do find 36 pairs of elements that have a minimum 

word of length 17 for n =  9. For example, we may choose g = (1,2, . . . ,9 ) ,
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Table 4.2: Distribution of shortest words

Word n 
length 4 5 6 7 8 9 10
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 5 12 35 80 315 1,120
5 0 0 0 0 0 0 0
6 4 10 36 161 536 2,088 8,920
7 0 0 0 0 0 0
8 5 54 231 1,120 5,220 23,800
9 0 91 0 2,520 0
10 6 119 880 2,250 19,310
11 0 0 0 0
12 77 1,384 14,679 92070
13 0 0 0
14 776 4,823 23,370
15 0 2,277 0
16 160 3,069 66,050
17 0 36 0
18 48 2,493 91,970
19 36 0
20 414 23,390
21 36 0
22 0 4,400
23 0 0
24 18 7,940
25 0
26 140

h =  (1, 2, 6 ,4 ,9 ,5 ,8 ,7,3) and u  = g4 {hg)4 gh4  = 1. Therefore it is possible to 

find pairs of n-cycles who have a minimum word of prime length. However, for 

the n tested there are no elements that have a minimum word of length 5, 7, 11, 

or 13 which leads to the following conjecture.

C onjecture  4.2. Let p be a prime, p < 17, then there do not exist g, h both 

n-cycles in Sn whose cyclic groups intersect trivially such that the the shortest



word they satisfy is of length p.

We note that for n even there are no elements that satisfy a word of odd 

length. Observe that the identity is an even permutation and an n-cycle for 

n even is an odd permutation, so an even number of n-cycles are required to 

maintain parity. We therefore need not consider any words of odd length when 

n is even a further saving, but only for even n.

We now consider the following example for n =  5. We let g =  (1,2,3,4,5) 

and let h = (1,3,2,5,4) we now consider the shortest word that g and h satisfy. 

They do not satisfy the word ghgh and, as previously noted, they will only satisfy 

a word of length 5 if their cyclic groups intersect non-trivially, which they do not. 

Therefore the shortest word g and h may satisfy is of length 6 , a little searching 

shows that they satisfy the word gghggh. However, we also see that they satisfy 

the words ghghgh and ghhghh. Thus the pair satisfy 3 of the 7 words of length

6. We conclude that not only may a given pair of elements not satisfy a unique 

shortest word but that they may satisfy a high proportion of the available words. 

Table 4.3 shows the number of minimum words for each of the 1,384 8-cycles that 

together with (1 ,2 ,.. .,  8) have a minimum word of length 12. It also shows the 

same distribution for the 4,400 10-cycles that together with (1 ,2 ,.. .,  10) have a 

minimum word of length 22.

While the vast majority of pairs of elements appear to satisfy a unique shortest 

word a significant number appear to satisfy more than one minimum length word.
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Table 4.3: Distribution of the number of shortest words

Word Number of elements
count I = 12 and n =  8 I = 22 and n = 10
1 928 3,600
2 368 700
3 72 80
4 8 20
5 0 0
6 8 0
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Chapter 5 

Prim e power elem ents that do 

not generate p-groups

In this chapter we first look at the length of words where g and h both have 

prime power order, throughout this chapter p is a prime. This extends to a 

consideration of groups generated by two elements of prime power but which do 

not generate a Sylow p-subgroup of G. We begin by looking at such a p-group 

which is not Sylow p-subgroups of G. We consider the following two elements in 

Sq, we choose g =  (2,3) and h = (1, 5)(2,3) now every element of (g, h) has order 

2, but (g, h) is not a Sylow 2-subgroup of Sq.

5.1 Prelim inary results

We now turn our attention to the more interesting question. Let G be a group 

now for g,h e  G with g and h both of p power order, p prime, and (g , h) not a 

p-group what is the shortest word on g and h that does not have p power order 9 

We wish to begin by gathering some data with which to work by testing all
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possible pairs of p-power elements in Sn that do not generate a p-group. Before 

we gather any data we make the following observations:

Lem m a 5.1. Let g,h  G Sn and let x be the result of substituting g and h into u, 

a word on two symbols. Then for y G Sn xy is the result of substituting gy and 

hy into u.

Proof The y~l and y terms from successive substitutions will cancel leaving only 

the end terms □

Lem m a 5.2. Let g ,h ,x  G Sn then if (g,h) is a p-group, then {gx,h x) is also a 

p-group

Proof Let 7  G (g,h) then 7 x G (gx,hx) and as conjugate elements in Sn have 

the same shape we are done. □

Now Lemmas 5.1 and 5.2 tells us that we need only consider one g from each 

conjugacy class, as every conjugate of it will have a corresponding h. Unfortu­

nately, we cannot apply the lemma twice to only consider one pair from each 

pair of conjugacy classes as we need the freedom in the choice of h. However, we 

should also ensure that we only test each pair once i.e. do not test substituting 

h and g if we have already tried g and h.

Having made the above observations we turn to calculating the distributions.

5.2 A nearly p-group

When n — 8 we can see that for p =  7 we sometimes need a word of length p in or­

der to find a non-p-power element. In particular if we choose g — (1>2,3,4,5,6,7) 

and h =  (1 ,5 ,4 ,2 ,8 ,3 ,6), then they first generate a non-p-power element in the
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Table 5.1: Minimum word length for a non p-power element

Word length
n V 2 3 4 5 6 7
3 2 3
4 2 48
4 3 12 12
5 2 840 240 120
5 3 120 60
5 5 180 60
6 2 21,720 5,760 1,440
6 3 2,520 360
6 5 6,480 2,880 720
7 2 446,880 90,720 15,120
7 3 49,140 10,080
7 5 99,540 21,420 5,040
7 7 194,040 60,480 2,520
8 2 45,752,448 14,085,120 1,720,320 80,640
8 3 667,800 83,160
8 5 786,240 94,080 20,160
8 7 12,035,520 3,911,040 584,640 0 0 40,320

word u  =  g6h = (1,7)(2,5)(3,8)(4,6). Indeed if we consider the group G = (g, h), 

then we see that it is a group of order 56 which has a normal subgroup, N , of 

order 8 consisting of involutions only. Furthermore the group is isomorphic to 

the semi-direct product of the normal subgroup and the cyclic group of order

7. The group has the property that every element that is not a member of the 

normal subgroup has order 7. Now suppose that g' £ G but not in N , and that 

v € N  but is not the identity. We put h' =  g'v, now the natural homomorphism 

G —> G /N  sends both g' and hf to c, an element of order 7 in G /N. Now any 

positive word, u  on g \ h! of length 6 or less will not map to 1 in G /N  thus uj 

is not in N  and therefore the element u  has order 7. Now g' and hr have the 

property that all words of length less than 7 have order 7. Now it is clear that G
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is special group, indeed it is a Frobenius group and the Frobenius complement is 

N , a detailed description of Frobenius groups can be found in [12].

We now seek to generalise the argument given above for other primes. We do 

this by constructing a similar Frobenius group to that given above.

Theorem 5.3. Let p be a prime then there exists a group G and elements g,h  € G 

both of order p such that the shortest positive word on g and h that is not of order 

p is of length p.

Before we start the proof of Theorem 5.3 we remind ourselves of some theory 

originally developed by Singer [13] which we will have recourse to during the 

proof.

Definition 5.1. A Singer cycle of a finite projective space Sn_i =  PG(n — 1 ,q) 

is a collineation a such that (a) acts regularly on the points of £„_i.

The upshot of the existence of Singer cycles is that we may use them to 

construct automorphisms of vector spaces where all bar one element of the vector 

space is moved. We now move on to prove Theorem 5.3.

Proof Let A" be a vector space of dimension d over Z2 and let s be a Singer cycle. 

The length of s is 2d — 1, now (s) is a group of order 2d — 1. Now if we choose 

d such that 2 d — 1 =  pm, then we are assured by Sylow’s theorem that (s) has a 

subgroup of order p, let t be a generator of this subgroup. Clearly as the elements 

of (t ) are in the Singer cycle every element of (t) except the identity will move all 

elements of N  bar 1. Now Fermat’s theorem tells us that if p is prime and a an 

integer, then ap_1 =  1 mod p so we may pick d = p — 1. Now we let G = N  xi (t ) 

and suppose that Cc({t)) is the centraliser of (t ) in G. Certainly (t) is a subgroup 

of Coiit)). Now if 1/  is in the subgroup N  of G corresponding to the original N
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and v E CG((t)), then v 1tis =  t so t 1vt = v, but t moves all of N  but 1 so 

v = 1. Therefore N n C c d t))  = 1. Now |./VCg((£))| < |G| =  |AT||(t)|, furthermore 

|7VCG((t))||7V nCG((t» | =  |W||CG« t» | SO \NCG((t))\ = |iV||CG((t))|. Putting 

these together we get that |iV'||CG((t))| < |7V||(t)|. However, we know that (t) is 

a subgroup of CG((t)) so (t ) =  CG ((£)). Thus the number of elements conjugate 

to t is the index of CG((t)) in G , which in turn is \N\.

We now seek to show that different conjugates of 5 generate cyclic groups that 

intersect trivially. We do this by showing that for x, y E G if (sx) intersects (sy) 

non-trivially, then sx = sy. First suppose that (sx) intersects {sy) non-trivially, 

now we may conjugate by a;-1, if we let z =  yx_1, then we have (s) intersects 

(sz) non-trivially. Now s and sz are both of prime order so neither group has a 

proper subgroup so either (s) = (sz) or they intersect trivially.

Observe, we may express every element of G as a power of s times an element 

of iV, thus we may assume that we are conjugating by an element of N  rather 

than an element of G.

Therefore, we may write z — skv for some integer k and v G N  and v ^  1 

and we have sz = Now, if the groups coincide then some element of

(s) must be equal to sz. This means that sl =  for some integer I, now

sl~ 1 ^ - 1  _  Since s normalises N  it follows that is in N  and

therefore s1 - 1  is in N.  Now this forces I — 1 to be a multiple of p and therefore 

sl =  s and hence s = v~lsv and so v = 1 contrary to our assumption and we are 

done.

Now we know that we can generate \N\ subgroups of G each of size p simply by 

taking the N  conjugates of s and that each of these subgroups intersect trivially. 

Thus we have constructed |AT|(p — 1) different elements of order p and together 

with N  this exhausts G so we have shown that all elements not in N  have order
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p-

Now we use the natural homomorphism

6  : G -> G /N  “

Let g' € G be of order p and let h' = vg' for v € N  and v ^  1. Now if 

(g' ) 6  = g then (h! ) 6  = (yg')O = {y)6(g')0 = g'. Now g' is of order p as g' ^ N  

and the image is isomorphic to Cp. We let a; be a word length I on g' and h! and 

consider ( l j ) 9 ,  as (g' ) 6  = (h' ) 6  = g' then ( l j ) 6  =  g'1. Thus l j  is only the identity 

when p divides I. As the kernel of 6  are the only elements of G whose order is 

not p we have shown that for g' and h' we need a word whose length divides p 

to generate an element whose order is not p. We now show that there is a word 

length p that is not the identity by considering l j  =  g,ph', now if l j  =  1, then 

g'~xvg’ =  1 which is impossible as we insisted that v was not the identity. □

Now the proportion of elements in G with p-power order is (p — 1 )/p, this 

raises the question is this the best we can do ? It turns out that it is close.

Theorem 5.4. Let G be a finite group and p a prime. I f  |(7| =  pnq and p and q 

are co-prime then the proportion of p-power elements is at most (pn — 1 )/pn

Proof. Let P  be a Sylow p-subgroup of of G. The number of Sylow p-subgroups 

of G is the index of the normalizer of P  in G, this is at most q. Now every 

p-element of G is in a Sylow p-subgroup and there are at most q of these each 

with at most pn — 1 p-power elements giving at most pnq — q p-elements and hence 

at least q non-p-power elements as required. □
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Chapter 6

Expressing elem ents as products 

of elem ents of a given shape

In this chapter we look at expressing group elements as products of other group 

elements. In particular we look at expressing elements as pairs of other elements 

with a given cycle shape. In essence turning the word problems on their head. 

In particular we will look at expressing elements in An as the product of two 

/-cycles.

6.1 Previous work

Many results in this chapter are already known although the author arrived at 

the results independently and our methods often seem to be new or different. 

The classic reference in this area is Ore [10] who showed that every element in 

An was a commutator of an element in An for n > 5 (and so is a product of two 

elements with the same cycle shape). The results are included as they inform 

much of the work of later chapters which use techniques first developed during
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this work.

Bertram [1] theorem 2 gives necessary and sufficient conditions on I such that 

the number of ways a permutation in An can be expressed as the product of two 

/-cycles is greater than zero. The conditions are a bound on the cycle length, I, 

and (happily) match those given in Theorem 6.26. Our approach is similar to 

that used by Bertram in that we form disjoint cycles of a given length and then 

join these together although our approach differs in that we generate a concrete 

cycle structure for each cycle length and give a concrete method for joining these 

cycles together. Bertram’s work was extended by Boccara [3] to cover cycles of 

different lengths.

Other work by Walkup [15], Bertram and Wei [2], Stanley [14] and Can- 

gelmi [6] have since given explicit formulae for the number of ways in which a 

permutation can be expressed as a product of two n-cycles. Walkup uses a re­

cursive approach to solve this problem based on a set of transformations of a 

permutation. Bertram and Wei [2] develop a recursion that allows the explicit 

calculation of the number of ways a permutation may be expressed as a product 

of an n-cycle and an (n — z)-cycle. Finally, Cangelmi [6] has shown using combi­

natorial methods that the number of ways an n-cycle, n odd, can be expressed 

as a product of n-cycles is 2̂ ~ ^ !, this method is then extended to cover other 

element of Sn.

As far as we are aware Theorem 6.13 is novel as are the results in section 6.7. 

Lemma 6.15 is a more explicit statement of a result implicit in Bertram [1].
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6.2 Prelim inary results

Before we can begin the work proper of this chapter we must first show what is 

not possible. We do this via the following lemma.

Lem m a 6 .1 . Let c be a cycle shape in Sn then there exists g € Sn such that g 

cannot be expressed as a product of two elements with cycle shape c

Proof. We need only pick g as an odd element of Sn as the product of two even 

or two odd elements is always even. □

This tells us that we cannot express odd elements of Sn as a product of two 

similar shape elements. However, as every odd element may be expressed as an 

even element times a transposition we may deduce the following.

Lem m a 6 .2 . Let c be a cycle shape in An then if  every element of An can be 

expressed as a product of two elements of shape c then every element of Sn can 

be expressed as a product of at most two elements of shape c and a transposition

Proof Even elements of Sn can be expressed as a product of two c shape elements 

by the hypothesis and all odd elements of Sn can be expressed as an even element 

multiplied by a single transposition □

6.3 E lem ents in A p as products of p  cycles

We motive ourselves via the following well known theorem.

Theorem  6.3. For n > h , n  odd, An is generated by the n-cycles

Proof For n > 5 An is simple. Now the subgroup of An generated by the n-cycles 

is invariant under conjugation and hence is normal and non-trivial. But as An is 

simple it must be An. □
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Of course the theorem is also true for n =  3 as it consists solely of the 3-cycles. 

Having shown that the p-cycles generate Ap we now turn our attention to the 

following related theorem.

Theorem  6.4. Let g G Ap forp an odd prime then there exists x ,y  both p-cycles 

in Ap such that g = xy.

Theorem 6.4 states that every element of Ap can be expressed as a product 

of two p-cycles. An alternative formation of Theorem 6.4 would be:

Theorem  6.5. For p an odd prime let n  be the set of p-cycles in Ap. Then

Ap = {piP2\PuP2 e n}.

Before we can attempt to prove Theorem 6.4 we need a few preliminaries. The 

first observation is that we need not worry about showing that each element of 

Ap can be expressed as a product of two p-cycles merely that one representative 

of each conjugacy class can be expressed as a product of two p-cycles as, if this 

is true, then we simply need to conjugate the representative and x and y by a 

suitable element of Ap. However, while it is true that in Sp elements with the 

same cycle structure are conjugate this is not true in Ap, this need not worry us 

as we may conjugate by an element in Sp and be assured that the result will be 

within Ap. Therefore, we need not generate a representative of each conjugacy 

class merely an element with each cycle shape. We now deal with the trivial 

cases.

Lem m a 6 .6 . The identity element in Ap may be expressed as a product of two 

p-cycles

Proof. Take a p-cycle and its inverse. □
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Lemma 6.7. A p-cycle in Ap may be expressed as the product of two p-cycles 

Proof Let g be our p-cycle then g2 and g_ 1  are p-cycles and g2 g~ 1 = g □

We note that for Lemma 6.7 to be true we do not need p to be prime merely 

for it to be odd as this will ensure that g2 has the same shape as g. We will have 

recourse to this more general version of Lemma 6.7 later.

With these preliminary cases now dealt with we turn to the more general 

case. First we fix on a standard shape representative for each cycle shape, for 

convenience we shall assume this to be the element achieved by filling the cycle 

shape by writing the elements in ascending order and the cycles in descending 

length order. For example if the shape were (x , x , x, x)(x, x, x), then the standard 

shape representative would be (1,2 ,3 ,4)(5,6 ,7). We formalise this:

D efinition 6.1 (S tandard  Shape R epresen tative). Let ft = {1,2,. . . , n }  

and S = Sym(ft) then a standard shape representative,c, is an element of S  such 

that the orbits of c have the form (a, a +  1, a +  2, . . . ,  a +  6) and if i < j , then the 

orbit of i is at least as large as the orbit of j.

We note that our definition means that each conjugacy class in Sn will have 

a single standard shape representative. We also note that the definition applies 

equally in the alternating group but here two conjugacy classes may share the 

same standard shape representative. For many purposes we do not require that 

the cycle lengths are weakly decreasing although we will need this condition in 

Chapter 7. We note that in many cases we can alter the ordering of the cycles by 

conjugation in Sn. For example, g = (1, 2,3 ,4)(5,6 , 7)(8,9) is a standard shape 

representative in Sg if we wanted to we could conjugate g by h =  (1,4 ,6 , 2,5) (3,7) 

in order to move the 3-cycle to the front, we will use this flexibility later. The

52



notion of a standard shape representative is as far as the author is aware novel but 

is critical to the brevity of argument presented, without this notion the exposition 

would be significantly more complex.

C onjecture 6 .8 . Let p > 3 be a prime and g =  (1,2, . . . ,p )  a.nd let c be a 

standard shape representative excluding the identity and p-cycles. Then there 

exists h E< g > such that ch is a p-cycle

On the face of it this seems a wholly unlikely conjecture. However, computa­

tion in GAP shows that the conjecture is true for 5 < p < 61.

Conjecture 6.8 is true and a proof is given as Theorem 6.27. Observe that 

with a proof of Conjecture 6.8 we would be able to complete our proof of The­

orem 6.4 via the observation that chh~l =  c and is a product of two p-cycles as 

required. We elect not to prove Conjecture 6.8 now and instead use the following 

construction of a p-cycle.

Lem m a 6.9. I f  c =  C1C2 . . .  cn G Ap, for p prime such that:

• I f  Ci is an odd length cycle, then so is Cj_i.

• Each q, is of the form ( j , j  +  1 , j  +  2 , . . . ,  j  +  m ) .

•  I f  j  is the largest element of the support of Ci, then j  +  1 is in the support 

of Ci+1 unless i = n in which case it is in the stabiliser of c.

We assume that the Ci are of length k — U-i with lo = 0 and let

h =  ( 1 , 2 , . . . ,  Zi—1, / i + l ,  h + 2 , . . . ,  I2 1,  / 2 + I ,  • • • ,  l n ~ l j  h i  h i  • • • ,  In,  ^ n + 1? ^ n + 2 , . . .  ,p) 

Then ch is a p-cycle.
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The construction in Lemma 6.9 is best shown by illustration. Let c =

(1 ,2 ,3 ,4 ,5)(6,7 ,8) and p = 11 then h = (1 ,2 ,3 ,4 ,6 ,7 ,5 ,8 ,9,10,11) and ch =  

(1 ,3 ,6 ,5 ,2,4 ,8 ,7,9,10,11). We initially assure ourselves that Lemma 6.9 is true 

by direct calculation in GAP.

Proof. We wish to consider the orbit of a given element in order to show it is of 

size p. First we consider the images of U — 2, li — 1 and k respectively under ch.

The image of k — 2 will be U + 1  except where i = n. When i = n it will be l\.

The image of Z* — 1 will be Zj+1 except where i = n. When i = n it will be

ln +  1-

The image of U will depend on the length of c*. If c* is a transposition, then 

it will go to U +  1 unless i = n, in which case it will go to Zn +  1. If c* is not a 

transposition it will be Zi_i +  2.

For every other element, j , in each cycle its image will be j  +  2. We also 

observe that if ln < p , then for ln < j  < p the image of j  under ch is j  +  1, the 

image of p is 1.

Now the image of 1 will traverse all of the odd elements, except the li, in the 

odd length cycles. If there are no even length cycles, then the image will then 

go to li and then traverse the even elements of ci until h — 1  whose image is I2  

and so on until cn where the image of ln — 1 will be ln +  1. We now traverse the 

stabilizer of c until p where we return to 1 and we are done.

If c has some even length cycles, then these elements must come in pairs as c 

is even and even length cycles are odd. We consider each pair in turn. If c* and 

Ci+i are the first such pair then the image will go to /*_! + 1  and traverse the odd 

elements of c* until it reaches k — 1  when it will go to k+i followed by U +  2 then 

traverse the even elements of q +i until the li+1 — 2 it will then go to k+i +  1.

54



This will continue until cn when the image will be /*. The argument continues as 

above with the image traversing the remaining elements of the odd cycles until 

li- i  — l is reached. The image of this element will be li and its image in turn will 

be li-1 +  2 and the even elements of q  will be traversed until k ~ 2  whose image 

will be li + 1  the odd elements of ci+1 will be traversed until Zi+i — 1. If i + 1  =  n, 

then its image will be ln +  1 if not, then it will be the li+1 +  1 and the pattern 

continues.

The argument above follows even where c contains transpositions but this is 

far from clear so is set out in more detail below.

If c contains an even number of transpositions, then the image goes to the 

first point of the first transposition followed by the second point of the second 

transposition and then the first element of the next pair. When we arrive back 

at the pair we will go first to the second element of the first transposition then 

the first element of the second. We then go to the second element of the first of 

the next pair or the first point stabilized by c.

If c contains an odd number of transpositions, then we must deal with the case 

where there is an even length cycle of length greater than two and a transposition 

in a pair. Let c* be the even length cycle and Cj+1 the transposition. The image 

goes to the +  1 and traverses all of the odd elements followed by li +  2 and 

then k +  3. When we arrive back at the pair we will go first to li then the even 

elements of q  until li — 2 when we go li +  1. We then go to li+i 4- 2 if Ci+1 is not 

the last cycle or ln +  1 if it is. □

Now Lemma 6.9 appears to be extremely restrictive in its application as it 

places specific requirements on the support of c as well the ordering of the support 

of each cycle and the ordering of the cycles. However, we note that if d  is any
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element in Ap with the same cycle decomposition as c then there exists an x £ Sp 

such that (/ = (?, furthermore (ch)x = <fhx = dhx will be a p-cycle and hx will 

be a p-cycle in Ap. We can use this observation to generalise Lemma 6.9 to cover 

any element of Ap.

Lemma 6.10. If c £ Ap, then there exists a a p-cycle h £ Ap such that ch is a 

p-cycle.

Having completed the proof of Lemma 6.10 we are now in a position to be 

able to prove Theorem 6.4

Proof of Theorem 6.f. First we use Lemmas 6.6 and 6.7 to dispose of the 

trivial cases. Now we turn to the non-trivial cases. For p — 3 the conjecture is 

manifestly true. Now for p > 3, we can use Lemma 6.10 to find a p-cycle, h, such 

that ch is a p-cycle. Now /i-1 is also a p-cycle and (c/i)/i-1 =  c as required. □ 

We now note that we have not relied on p being prime in the proof of Theo­

rem 6.4 merely that the p-cycles are in Ap. Furthermore, we have already noted 

that Lemma 6.7 applies when p is odd so we may deduce the following corollary.

Corollary 6.11. Let g £ An for n odd then there exists x , y both n-cycles in An 

such that g = xy

We already know from Lemma 6.1 that we cannot express every element of 

Sn as a product of two n-cycles. Therefore, the best we can do is express every 

element in Sn} n odd, as the product of two n-cycles and a transposition.

6.4 A n as a product of ( n  — l)-cycles for n  even

Having shown that we can express every element of An as a product of n-cycles 

for n odd we now turn our attention to n even. For n even the n-cycles are odd
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permutations and hence are not in An. Instead we turn our attention to the 

(n — l)-cycles. First we observe that for elements of A n with non-trivial stabiliser 

we may consider them as elements of An_i and apply Corollary 6.11. This means 

we need only consider those elements of An that have no fixed points. We now 

examine the proof of Theorem 6.10 and note that we have not required that n 

be odd, this requirement came in order to allow the n-cycles to be included in 

An. Now if there exists h' G Sn such that ghhr is an (n — l)-cycle and /i/ -1/i-1 

is also an (n — l)-cycle, then we would be done. The obvious choice for b! is 

the transposition consisting of the first and last elements of gh, unfortunately 

h!~lh~l may not be an (n — l)-cycle. Direct computation in GAP shows it is not 

sufficient for h! to be a single transposition . However, a 4-cycle is sufficient, we 

construct the required 4-cycle as follows let h! =  (1, n, a, b) where a is the element 

preceding n in the cycle gh and b is the element preceding 1 in the cycle gh.

Theorem 6.12. Let g G An for n > 4 even then there exists x ,y  both (n — 1)- 

cycles in An such that g — xy

Proof We first use Theorem 6.4 to dispose of the elements which stabilise at 

least one point as these may be considered elements of An_i.

We now turn our attention to the elements with no fixed points. Again we 

construct h as in Theorem 6.4. We then construct z =  ( l,n , a, b) where a is 

the element preceding n in the cycle gh and b is the element preceding 1 in the 

cycle gh. Now we consider the following construction g h z z ^ h -1 =  g, it is clear 

that the product ghz and z- 1h-1 has the required cycle structure. However, 

we still need to prove that 2 is well defined and that ghz and z~xh~x are both 

(n — l)-cycles.

First we show that z is always a cycle, this will only not be the case if a = b,
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a = 1, n, or b = 1, n. We deal with the case a = b by observing that 6 precedes 1 

and a precedes n so they cannot be equal unless n = 1 which is absurd. Equally a 

cannot be n as it precedes it and b cannot be 1 as it precedes it. This leaves only 

the cases where a = 1 or b = n. We observe from the proof of Theorem 6.4 that 

if there are no even length cycles, then the orbit of 1 in gh will traverse the final 

element of the final cycle i.e. n before traversing the even position elements and 

sob ^  n. However, if there are some even length cycles, then n will be covered as 

the orbit first passes the last even cycle and again b ^  n. As before we consider 

which element precedes n in gh using the proof of Theorem 6.4, the pre-image of 

n will be the penultimate element of the penultimate cycle which can only be 1 

if g = (1,2)(3,4) so a ^  1 for n > 4.

Next we consider ghz, now gh is an n-cycle. As (a)gh = n and (n)z =  a, a is 

fixed by ghz so the support is at most size n — 1. We still need to show that ghz 

is an (n — l)-cycle. We consider the orbit of 1 and we see that it continues as 

in gh until it reaches the element preceding a, the image of this will be b whose 

image will in turn be n (the element after a) and the cycle will continue as in gh 

from n, so we are assured that ghz is a single cycle and the only point stabilised 

by ghz is a so it has support size n — 1 as required.

Finally we consider z~lh~x, now z~Y — (1,6,a,n). As h is an n-cycle our 

construction ensures that (l)/i_1 =  n and (n)z-1 =  1 so n is fixed by z~lh~l . 

First we look at what order 1, n, a, b appear in the orbit of 1 under h~l . Consider 

(n — 1 )gh, now (n — l)g =  n as we have insisted that the support of g is of size n 

and each cycle lists elements in ascending order. Equally, as g has no fixed points 

the construction of h yields that (n)h =  1 so (n—l)gh = 1 and therefore 6 =  n —1, 

in h-1 this will be the first element after the last element of each cycle is covered. 

Now, a precedes n in gh so will be the penultimate element of the penultimate
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cycle of g, thus in hr1 it will follow h. So h~l = (1, n , . . . ,  6, . . . , a, ...)

Consider the orbit of 1 under z~xh~l . First the orbit will go to the image of 

b under hr1, it will then continue as in h~l until it hits a. In the case it hits a it 

will then go to the third element of h~x and continue until it hits b whose image 

will be (:x)h~l and the cycle will now continue back to 1.

We have now completed the proof for n > 4, to prove the result for n — 4 

we simply observe that (1, 2,3) (1, 2,4) =  (1,4)(2,3) which is the only other cycle 

shape in A 4 . □

6.5 Other spanning elem ents

Having covered the longest cycles in An we next consider whether we can use the 

same treatment on pairs of elements whose support is n. We first attack this via 

direct computation in GAP. We quickly discover that if c is an element shape 

in An with support n, then we cannot always express g = cic2 for g, ci,c2 G An 

and ci,ca of shape c. First we demonstrate this by example, let n = 4, the only 

elements with no fixed points are of the form (a,/3)(,y,6), of which there are 3 

such elements, these, together with the identity, form a group of size 4. Therefore, 

not all elements of An can be expressed as a product of these cycles.

A similar effect can be seen for larger groups. Table 6.1 shows the spanning 

cycle shapes where not all elements of An can be expressed as a product of two 

elements with the given cycle shape.

Theorem  6.13. Let n be even and Q, be of size n , and let II be the set of elements 

in Sq composed of precisely n / 2  disjoint transpositions then only elements with 

an even number of each cycle shape may be expressed as a product of two elements 

of n . Moreover, for each transposition only one point will appear in each cycle.
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Table 6.1: Non-generating spanning shapes in A n

n Bad cycle shapes
4 (1,2)(3,4)
5 None
6 (1,2,3)(4,5,6)
7 None
8 (1>2)(3,4)(5,6)(7,8)
9 (1 >2,3) (4,5,6) (7,8,9)
10 None
11 None
12 (1.2)(3,4)(5,6)(7,8)(9,10)(11,12) and (1,2,3)(4,5,6)(7,8,9)(10,11,12)

Proof. Consider g,h  E II. We observe that if we can partition the support such 

that each transposition in g , h only moves elements in one subset, then we may 

consider each subset in the partition separately. There exists a partition of ft such 

that each subset is of minimal size. Each subset will be of even size, the subsets of 

size two are trivial as they imply g and h contain the same transposition resulting 

in two cycles of length 1.

Let ft be a subset in the minimal partition of ft for g and h and let g', h' be 

g, h restricted to ft.

We proceed by induction on k} the size of ft. Assume that we may pick ftm 

of size 2m < k and gm, hm such that:

1. gm is identical to gr restricted to ftm.

2. hm contains at most one transposition not in h! and acts identically to h! 

on the rest of ftm.

3. gm and hm satisfy the theorem.

We are assured that we may pick <72 and /i2 that satisfy conditions 1 and 2 

as we may pick any transposition in h! and the two transpositions in g' whose
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support intersects our chosen transposition in h' non-trivially. We then complete 

/12 with a transposition drawn from the remainder of 0 ,2 - Now there are six 

possible ordered pairs of transpositions with support size 4 and direct calculation 

shows:

(wi ,^ 2) (^3 ,^ 4)-(^1,^ 3) (^2, ̂ 4) =  (^l,^3)(^2,^4)-(^l,^2)(^3,^4)

=  (^1,^ 4)(^2, ^ 3) 

(uJU U 2)(u3,LJ4).(uJi,Ll>4)(uJ2,U3) =  (̂ 1, ̂ 4)(^2, ̂ 3).(u;i, U2)(uJ3 , ̂ 4)

=

(UJ1,UJ3 ) ( U J 2 , U J 4 ) .  { u U U 4 )  ( u j 2 , u 3 )  =  ( u >i , U J 4 ) ( ^ 2 , ^ 3 ) ^ 1 , U } 3 ) ( uJ 2 , UJ 4 )

— (^1>^2)(^3»^4)

Thus we are assured the theorem is true for k = 4 and furthermore where 

k > 4 we may pick a subset of size 4 that satisfies our induction hypothesis.

Now for k > 4 let (a, b) be the transposition in hm which is not in h! and let

(a)h' =  a  and (b)h' = (3. Now we are assured that a, (3 £ Qm or hm would differ 

from h' in more than one place. Now assume (a)g' = 7 , now 7  £ Qm as we have 

insisted that gm =^m g'. Let gm+1 =  gm{oL, 7 ) so gm+i satisfies condition 1.

Now (7)h' £ or hm would differ from h' by more than one transposition. 

Let hm+1 =  hm(b,a){b,a){b,7 ). Now (a,b)(b,a)(b,a)(b,y) = (a, a )(6,7 ) so hm + 1  

satisfies condition 2 .

Now condition 3 assures us that in gmhm a and b are in different cycles as 

they are in the same transposition in hm. Now
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9 m + \h m + i  =  p m ( a , 7 ) / i m ( 6 , a ) ( 6 , a ) ( 6 , 7 )

=  g m h m { a , j ) ( b , a ) ( b , a ) { b , ^ )

=  9 m h m ( a , b ) ( a , j )

Now the effect of multiplying gmhm by (a, b) (a, 7) will be to insert an a  into 

the cycle containing b and a 7 into the cycle containing a. Therefore, each cycle 

will increase in length by one. Furthermore, a  and 7 are in different cycles as 

are a and a, and b and 7  and gm+ 1, hm+1 satisfy condition 3. Finally we observe 

that when 2m =  |fi| the construction works with 7  =  (3 and we are done. □

Theorem  6.14. Let n > 2 be even and let II be the set of elements in A n 

composed of precisely n / 2  disjoint transpositions then there exist elements of A n 

which cannot be expressed as product of two elements from II.

Proof We may either deploy Theorem 6.13 and observe that there are elements 

in An whose cycle structure is not symmetrical.

Alternatively we may employ the following argument

First we observe that there are y  elements in An, now if II has size S, then 

there are at most S 2 distinct elements generated by pairs of elements of II.

Now S  = so S 2 = y-yj? we need only show that 2n_1(^!)2 > n! and we 

are done.

It is clear that this is true for n < 4. We proceed by using induction, we know 

the result is true for n < 4 and we assume it is true for n =  m and proceed to
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show it follows for n = m  +  4.

2*71+4-1 m  +  4
! =  242Anm—l 772 +  4 ^ / 7 7 2  +  2 '  2

(?0!2 J \  2 

=  (m + 4)2(m +  2)22m_1 ( y  l ) '

> (m + 4)2(m +  2)2m!

>  (771 + 4) (772 +  3) (771 +  2) (m +  1)771!

=  (772 +  4)!

So 2n !)2 > 72! as required and we are done. □

6.6 Other elem ents w ith large support

We now observe that we need not necessarily insist that the elements have support 

size 72 or even 72 — 1. However, we note that we must place some constraints on 

the size of the support namely that it must have size greater than |  as if the 

support is smaller than this it would not be possible to generate an element with 

no fixed points. Equally we require the number of elements with the given shape 

to be greater than or there will be insufficient pairs to generate y  distinct 

elements.

Looking at these constraints only we can relatively quickly establish the num­

ber of element shapes which have a support greater than n / 2  but where there are 

insufficient elements of the given shape. The number of such bad shapes is given 

in Table 6.2.

Looking back to Table 6.1 we can see that there are 2 elements shapes with
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Table 6 .2: Element shapes with large support that cannot generate An

n Total big shapes Bad shapes
4 2 1
5 3 0
6 4 0
7 6 0
8 9 1
9 13 0
10 18 0
11 25 0
12 34 1
13 46 0
14 61 0
15 82 1
16 106 1
17 139 0
18 179 0
19 232 0
20 295 1
21 378 1
22 476 1
23 603 1
24 753 1
25 945 1
26 1,172 1
27 1,460 1
28 1,798 3
29 2,222 2
30 2,721 1

no fixed points where not every element of A 12 can be expressed as a pair of 

elements of the given shape yet our estimate says there is only one. It is clear 

that our naive estimate is not sufficient.

We note that while there are over 1,400 times more pairs of 7-cycles in A n  

than there are elements in A n  it is still not possible to express every element 

as a product of two 7-cycles. It fails for the single conjugacy class contain­
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ing (1,2,3)(4,5)(6,7)(8,9)(10,11). The same applies for 5-cycles in Aq where 

the conjugacy classes containing the following elements {(1,2)(3,4)(5,6)(7,8),

(1,2,3) (4,5,6) (7,8 ,9), (1 ,2 ,3 ,4)(5,6 , 7)(8,9), (1 ,2 ,3 ,4 ,5)(6,7) (8 ,9)}.

6.6.1 (n — 2)-cycles for n  odd

Despite showing that there are element shapes with large support where we can­

not express every element of An as a product of two elements of the given shape 

there is some hope that we may be able to do so for some shapes. We turn our 

attention to the (n — 2)-cycles in An where n is odd. Firstly we observe, that for 

those elements where the size of the support is less than n — 1 we can simply use 

the construction of Theorem 6.4 on the smaller support. This leaves the problem 

of elements whose support has more than n — 2 elements. We remind ourselves 

of the basic construction of Theorem 6.4, if g E A n then we try to find h such 

that gh is a n-cycle then gh and h~l are the required n-cycles.

Before we can show that every element in An, for n odd, can be expressed as 

two (n — 2)-cycles we need the following preliminary result.

Lemma 6.15. Let g £  An with g =  gig2 where gi,g 2 G Sn have disjoint support. 

Then if there exists h i , /12 € Sn such that

• Supp(hi) C Supp(gi) i E {1,2}

• hi is a single cycle

• 9 ihi = Ci is a cycle length hi and Supp(hi) n  Supp(ci) ^  0

Then there exists h a single cycle such that gh is a single cycle7 c, of length 

k\ +  &2- Moreover h has length equal to the sum of the lengths of hi and /12.
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Proof. By design gihig2 h2 =  C1C2 and since the support of hi is disjoint from 

<72 we may change their order so gig2 hih2 =  ghih2 = cic2. Now we choose a 

transposition t = { ti,t2) such that it consists of an element from Supp{h\ ) n  

Supp(c\) and one from Supp(h2) D Supp(c2). We observe that post multiplying 

hih 2 by t will have the effect of joining hi and h2 (see Figure 6-1), similarly it 

will join ci and C2. Now we let h = hih2t which is a single cycle then c =  cic2t a 

cycle of length hi +  k2 as required. We note that h has length equal to the sum 

of the lengths of hi and h2

\

Figure 6-1: Joining cycles with a transposition

□

Lemma 6.15 is important as it allows us to break the problem of finding cycles 

into smaller problems. Essentially with Lemma 6.15 in our arsenal we can find 

a suitable cycle for each cycle in g and then stitch them together to form the 

required cycle.

We first note that for n = 3 an (n — 2)-cycle would be a cycle of length 1 so 

we will need to insist that n > 3.

T heorem  6 .1 6 . Forg G An, n > 3 odd, there exist x ,y  G An both {n-2)-cycles 

such that g = xy
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Proof. As before we observe that treating the elements of An as elements of Sn we 

need only generate one member of each conjugacy class in Sn as we may obtain 

all other members of the conjugacy class by conjugation in Sn. Furthermore, we 

note that if the size of the support of g is less than n — 1 then we can use the 

construction of Theorem 6.4 treating g as if it were in An_2- Equally, we note 

that for elements whose support is of size n — 1 their support is of even size and 

we may consider these as elements of An_i and we may apply Theorem 6.12 as 

our cycles are one shorter than n — 1 as required in that theorem.

This leaves us only the cases where the support has size n. The general con­

struction is similar to that used in Theorem 6.4, in that we attempt to construct 

h, a cycle of the required length, such that gh is a cycle of the same length. 

We also have recourse to the detailed construction used in Theorem 6.4 and the 

general approach is the same in all cases. Now let g have support size n , we want 

h to be an (n — 2)-cycle. Now we split g so that g = gig2 where gi and <72 have 

disjoint support. We use all but 2 of the support of gi to form the cycle hi and 

all of the support of g2 to form the cycle /12, thus the length of hi plus the length 

of h2 is n — 2. It may be that g is a single cycle in which case we cannot split 

g as described, in this case we simply take <72 =  ^2 =  ()• We note that we may 

always allow <72 =  ^2 — ()•

We now further restrict our choice of hi and /12 such that gihi and $2^2 are 

both single cycles whose supports have non trivial intersection with the supports 

of hi and /12 respectively. We may then deploy Lemma 6.15 to show that we can 

use hi and /12 to form a single cycle h of length n — 2 such that gh is a single 

cycle also of length n — 2. Clearly where <72 =  id we may omit this step.

First we deal with /i2- Provided /i2 7̂  () we use the construction of Theo­

rem 6.4. We note that in proving Theorem 6.4 we did not use the fact that p
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was odd except to ensure that p-cycles existed in Ap. In order to allow ourselves 

greater choice of /12 we relax this restriction and instead work in the symmet­

ric group on the support of <72 as the application of Lemma 6.15 will ensure we 

end up in An. However, the proof of Theorem 6.4 did rely on the fact that the 

shape contained an even number of even cycles. We note that <72 will satisfy this 

condition provided pi contains odd cycles only or an even number of even length 

cycles, we will ensure this happens in all cases.

We now address our choice of pi and hence h\ this will depend on the structure 

of g.

First we note that g must contain a cycle of odd length as n is odd. We have 

four cases:

1. g contains an odd cycle of length greater than 5

2. g contains a 5-cycle

3. g contains a 3-cycle

(a) g contains 3 3-cycles

(b) g contains only one 3-cycle

We give a separate construction for each case assuming in each case that the 

conditions of the previous cases are not met:

1. Assume the long odd cycle is (1 ,2 ,...,/:)  and let g\ be this cycle. Now we 

let hi = (1 ,2 ,...,  k — 5, k — 1, k — 2, k — 3) which gives

g\h\ = (1 ,3 ,...,  k — 6, k — 1, k, 2 ,4 ,. . . ,  k — 5, k — 4)

Thus pi hi has support size k — 2 as required.
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2 . Assume the 5-cycle is (1, 2,3,4,5) and let gi be this cycle. Now let hi =

(1,5,4) now gihi =  (1,2,3) which has support size 3 as required.

3. We note that if g contains a 3-cycle it must contain at least one other cycle 

as we have insisted that n > 3. Furthermore if g contains another 3-cycle 

then g must contain at least two other cycles as a single odd cycle would 

give g an even size support and we insisted n was odd equally even cycles 

must come in pairs. Therefore there are two sub-cases, the first where g 

contains at least 3 3-cycles, the second where g contains one 3-cycle and at 

least two even length cycles.

(a) Assume the 3 3-cycles are (1,2,3)(4,5 ,6)(7,8 ,9) and let g\ be these 

cycles. Now let h\ =  (1,3,2,4,5,6,7) now g\h\ =  (1,4,6,5,7,8,9) a 

7-cycle as required.

(b) If none of the previous conditions are met, then every cycle in g bar 

the 3-cycle is of even length. Now if there are two cycles which are 

not transpositions with lengths ki and k2 respectively then we may 

assume

9i = (I? 2 ,3 )(4 ,5 ,..., k\ +  3)(&i 4- 4, k\ +  5 , . . . ,  k\ 4- k2)

Now let

hi =  (1 ,3 ,2 ,4 ,..., fci+3—2, fci+3, /ci+4,. . . ,  ki-hk2 -\-3—2, ki-{-k2 -\-3>),

So colloquially hi is the inverse of the 3-cycle followed by the support of 

each of the even length cycles but omitting the penultimate element in
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each case. Therefore, it is clear h\ has length k\ +  &2 +1- Now we turn 

our attention to gih\. First we note that (2)gihi = 2 and (3)gihi = 3 

so gihi has support at most k\ +  &2 +  1* We now consider the orbit 

of 1, the orbit begins 1,4,6 it then traverses the even elements of the 

first even cycle, excluding k\ +  2, followed by k\ +  3 and the traverses 

the odd elements of the first even cycle followed by k\ +  2 and then 

repeats this pattern on the support of the second even cycle before 

returning to 1 and we conclude g\h\ is of length k\ +  &2 +  1. This is 

best illustrated by the following concrete example let

9l = (1,2,3) (4 ,5 ,6 ,7 ,8 ,9)(10,11,12,13)

and then

hx =  (1,3,2,4,5,6,7,9,10,11,13)

so

M i  =  (1,4,6,9,5,7,8,10,13,11,12).

We note that if we are forced to use a single transposition the same con­

struction works. If g consists of a single 3-cycle and transpositions only 

then we may assume g\ = (1,2,3)(4,5)(6,7) and let h\ = (1,3,2,4,6) 

now M i  =  (1,4,5,6 ,7)

We have now given a construction for all possible elements of An and we are 

done. □

While Theorem 6.16 is interesting in its own right we are forced to ask are 

n — 2 cycles the shortest cycles that may be used in this way or are there other i 

such that every element of An can be expressed as the product of two n — i cycles.
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We look back to the proof of Theorem 6.16 and see that there does not appear to 

be any reason why a similar approach could not be adopted for larger i assuming 

sufficiently large n. Indeed, we note that Theorem 6.16 effectively contains an 

induction step for all elements whose support is of size n — 1 or smaller. While 

it is clear that for large i the number of cases may become unwieldy there is 

certainly scope for extending this sort of construction a little further and we turn 

our attention to the case where i = 3.

6.6.2 (n  — 3)-cycles for n  even

Before we may start we observe that for even n less than 8, n — 3 < | ,  therefore 

(n — 3)-cycles will not be able to generate elements whose support is of size n 

and we shall not consider such small n. Now we may proceed with the general 

case where n is sufficiently large.

Theorem 6.17. For g E An, n > 10 even, then there exist x ,y  E An both 

(n — $)-cycles such that g = xy

Proof. As before we note that for elements whose support is smaller than n — 2 

we may simply treat them as elements of An_2 and apply Theorem 6.12. Again 

we are left with elements whose support is of size n — 1 or n.

We now use Theorem 6.16 as a guide and start with the case where the 

support has size n — 1 . We note that in this case the elements can be considered 

as elements of An_ 1, now n — 1 is odd and an (n — 3)-cycle has support two 

smaller than n — 1 and we may apply the case where the support has size n of 

Theorem 6.16 directly.

This leaves only the case where elements have support size n. We have six 

cases, in each case we give a construction that takes takes a support of size k and
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gives a cycle of length k — 3, we then use the construction of Theorem 6.4 on the 

remaining support using Lemma 6.15 to get a single cycle. We note that as in 

corollary 6.11 that the construction works for all odd n.

1. g has an odd cycle of length greater than 5.

2. g contains a 5-cycle.

3. g contains a 3-cycle.

(a) g contains at least 3 3-cycles.

(b) g contains two 3-cycles.

4. g contains two even cycles of length greater than 2.

5. g contains only one even cycle of length greater than 2.

6. g consists solely of transpositions.

We provide a construction in each case assuming in each case that the condi­

tions of the previous cases are not met:

1. Assume the long odd cycle is (1 ,2 ,...,  k) and let g\ be this cycle now let

h\ = (1 ,2 ,...,  k — 3, k — 4, k — 5, k — 6) now

gihi = (1 ,3 ,...,  k — 3, k — 2, k — 1, k, 2 ,4 ,. . . ,  k — 7).

gih\ has support k — 3 as required. We may also apply Theorem 6.4 to

<72, ^2 as there are an odd number of elements.

2. Assume the 5-cycle is (1,2,3,4,5) and let g\x be this cycle. Now as n is even 

g must contain at least one other odd length cycle (6 ,7 , . . . ,  A:+5) let this be
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gi2. Now we choose hix = (3,2, 1) so that g hh^  =  (3,4,5) which has length

3. Now g must contain another odd length cycle and it must be length 3 

or 5, if it is length 3 we may assume gi2 = (6 ,7 ,8) and then h \ 2 =  (7,6) 

giving gi2 hi2 = (7,8). If the other odd cycle is length 5 we may assume 

9u = (6,7,8,9,10) and then h l 2  = (6,7 ,9 ,8) giving gl2 h l 2  =  (6,9,10,7). 

In both cases the size of the support of the cycle is one less than the size of 

the support of g\ 2 as required. We now use Lemma 6.15 to join the results.

3. g contains a 3-cycle assume this is (1,2,3) and let g± be this cycle, we now 

consider two different cases depending on if g contains two other 3-cycles.

(a) We may assume the 3-cycles are (1,2,3)(4,5 ,6)(7,8 ,9) and let gi be 

these cycles. Now we let hi = (3,2,6,5 ,9 ,8) now gihi = (1,6 ,4,9,7,3) 

which is of length 6 as required.

(b) Now g must contain exactly 2 3-cycles as it has an even size support, 

assume the second is (4,5,6). First we deal with the case where g has 

only transpositions (7,8)(9,10) say. Now we let h\ =  (3,2,6 ,5 ,8,7,9) 

giving g\hi = (1,6,4,8,9,10,3) which has length 7 as required. Now 

if g contains only one even length cycle which is not a transposition, 

then we may assume gi =  (1,2,3)(4,5)(6,7 , . . . ,  k -F 5) then we let

hi = (2 ,1 ,4 ,6 ,7 , . . . ,  k +  1, k +  4, k -I- 3, k -1- 2)

giving

gihi = (2 ,3 ,4 ,5 ,6 , 8 , . . . ,  k, k +  4, k +  5 ,7 ,9 ,.. .,  k +  1).
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Thus g ih i has length k  +  2 as required.

4. We may assume that the non transpositions are

(1, 2, . . . ,  ki)(ki +  1, k\ +  2 , . . . ,  k\ +

we let this be g\. Now we choose

hi = (1 ,2 ,...,  k\ — 4, k\ — 2, ki — 3, k\ +  1,

k\ +  2 , . . . ,  k\ -+■ &2 — 4, k\ +  — 1, k\ +  k2 — 2, k\ +  k2 — 3)

which gives

gihx =  (1 ,3 ,.. .,  fci — 5, fci — 2, fci — 1, fci, 2 ,4 ,. . . ,  fci — 4, 

ki -T 1, k\ +  3 , . . . ,  k\ 4- &2 — 5, +  &2 — 1, +  A:2,

k\ +  2, fci +  4 , . . . ,  k\ +  &2 — 4)

Thus gi/ii has length fci +  — 3 as required. It is not clear this con­

struction works when the cycles are 4-cycles but it does, the required 

hi = { 2 ,1 ,7 ,6,5).

We now deal with the case where gi has a single transposition. Now k > 8 

as n > 10. Let

<7i =  (1? 2, . . . ,  k)(k +  1, k +  2)

now let

h\ = (1 ,2 ,.. .,  k — 6 , k — 1, k — 2, k — 3, k -I-1, k +  2)
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which has length k  — 1 as required. Now

gihi = (1 ,3 ,5 ,...,  k — 7, k — 1, k, 2 ,4 . . . ,  k — 6 , k — 5, k — 4, k + 1)

Thus gihi has length k — 1 as required.

5. We may assume that the non-transposition is (1 ,2 ,.. .,  k). Let

gi = (1 ,2 ,.. . ,  k)(k +  1, k +  2)(fc +  3, k +  4)(& +  5, +  6)

now let

hi =  (1 ,2 ,.. .,  k — 4, k — 1, k — 2, k — 3, k -I-1, k -I- 4, k -I- 3, k -f- 5).

This gives

gihi = (1, 3 , . . . ,  k — 5, k — 1, k, 2 ,4 ,. . . ,  k — 4, k + 1, fc +  2, A;+  4, A;+  5, fc +  6)

Thus gihi has length k +  3 as required. Again it is not clear this con­

struction work where k = 4 so we give the special case, the required 

hi = (3,2,1,4,7,6,9).

6 . We may assume that the transpositions are (1, 2) (3 ,4 )... (11,12) and let g\ 

be these transpositions. Now we choose hi = (2 ,1 ,3 ,6 ,5,7,10,9,11) which 

gives g\hi — (2 ,3 ,4 ,6 ,7 ,8 ,10,11,12) which has length 9 as required.

We note that case 6 can only occur when n is divisible by 4 so we need not 

worry about this case when n =  10.

□
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6 .6 .3  n  — i  c y c le s

We see from the proofs of Theorems 6.16 and 6.17 that in each case we need 

only consider elements whose support is of size n. However, it is also clear 

that the number of special cases will increase as the length of the cycles used 

decreases. However, it is also clear that at each point we use similar constructions 

for example, where we have two transpositions, (ai, o;2)(q!3, a/f) then multiplying 

by the 3-cycle (a 1, 013, 0:2) will produce another 3-cycle. Now if we could build 

an arsenal of such constructions such that took a set of cycles with support size 

k and produced a single A;-cycle such that the result was also a fc-cycle, then if 

we partitioned the support of g , then we could use a standard construction on 

each partition and then repeatedly apply Lemma 6.15 to join all of these cycles 

together. We start by setting out a few preliminary results.

Lem m a 6.18. Let c € Sn be a cycle of even length then there do not exist cycles 

ci, C2 € Sn both of length k such that cci = C2

Proof We observe that c is an odd element. If k is even, then c\ is an odd cycle 

and the product of two odd cycles is even so cannot be an even length cycle. 

Equally if k is of odd length, then cci will be an odd cycle so C2 will have even 

length. □

Lemma 6.18 tells us that we must always consider even length cycles in pairs 

so that we may use a single cycle length.

We now gather some of the constructions used so far.

Lem m a 6.19. Let g =  ( a i ^ X ^ a ^ )  be transpositions then there exists h, a 

3-cycle, such that gh is a 3-cycle whose support is a subset of {a 1 , 0 : 2 , 0 : 3 ,  < 2 4 }

Proof Let h =  (c*i, <23, 0:2) □
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Having dealt with transpositions we now turn our attention to other pairs of 

even length cycles. We give two constructions that we will use in tandem.

Lemma 6.20. Let c be a cycle of length k, k even, then there exists a cycle d  of 

length k' such that cd is a cycle of length k' +  1 for all |  < k' < k — 1

Proof. Assume c =  (1,2, . . . ,  k). Let

c' = (1, 2 , . . . ,  2 k’ -  fc, k', k’ -  1, . . . ,  2 k’ -  k +  1) 

d  is of length k’ as required. Now

cd = (1, 3 , . . . ,  2 k' -  k -  1, k', k' +  1, . . . ,  k, 2 , 4 , . . . ,  2 k' — 2).

Thus cd has k' +  1 elements as required. □

We note that in the construction of Lemma 6.20 A:' is in the support of d  and 

cd so the cycles are amenable to the application of Lemma 6.15.

Lemma 6.21. Let c be a cycle of length k, k even, then there exists a cycle d  of 

length k' such that cd is a cycle of length k' — 1 for all |  +  1 < k' < k

Proof Assume c =  (1,2, . . . ,  k). Let

d = (1, 2 , . . . ,  2 k' -  k -  2, k', k' -  1, . . . ,  2 k' — k — 1) 

c' is of length k' as required. Now

cc' = (1,3, . . . ,  2k' — k -  3, k', k' +  1, . . . ,  k, 2 ,4 , . . . ,  2k' -  k -  2)

Thus cd has k' — 1 elements as required.
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As before we note that k' is in the support of d  and cd.

As already noted with even cycles it is not possible to multiply by a given 

length cycle and obtain a cycle of the same given length. However, the last 

two lemmas have shown a way of multiplying by a cycle of a given length and 

obtaining a cycle either one shorter or one longer than the given length. As 

even cycles always come in pairs in An we may take a pair of even cycles and 

apply Lemma 6.20 to one and Lemma 6.21 to the other. We then note that the 

supports of d  and cd have non-trivial intersection in all cases so we may then 

apply Lemma 6.15 to join our cycles. We formalise this via the following result.

Lemma 6.22. Let ci, c  ̂ be disjoint cycles of even lengths , k\, k2 > 2 respectively, 

then there exists a cycle d  of length k' such that C\Cid is a cycle of length k' for 

+  1 < k' < h  +  k2

Proof. For the case where kf < k\ +  &2 we use Lemmas 6.20 and 6.21 and observe 

that we may apply one construction to c\ and the other to C2. We may then 

apply Lemma 6.15 in order to form the required cycles. Where k' = k\ +  k% 

we observe that if Ci =  (1,2, . . . ,  k\) and C2 =  (ki 4- 1, k\ +  2 , . . . ,  k\ +  then 

d = (1,2, . . . ,  k\ — 1, k\ +  1, k\ +  2 , . . . ,  k\, £2) will suffice. □

Before moving on to cycles of odd length we need to address the case where 

there is an even cycle of length greater than 2 and a transposition. We note 

that if in Lemma 6.22 we apply Lemma 6.21 to the longer cycle and use a single 

element of the transposition as the cycle to join to, then we are done, the same 

limits apply.

We now turn our attention to cycles of odd length.

Lemma 6.23. Let c be a cycle of length k, k odd, then there exists a cycle d  of 

length k' such that cd is a cycle of length k' for -— < k' < k
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Proof. Assume c =  (1,2, . . . ,  k) and let

d = (1, 2, . . . ,  2 k' -  k -  1, k', k' -  1, . . . ,  2k' -  k).

Now d  has length k' as required. We now calculate

cd = (1, 3 , . . . ,  2 k' -  k -  2, k', k' +  1) , . . . ,  k, 2, 4 , . . . ,  2 k' — k — 1)

which again has length k' as required. We note that the the supports of cd and 

c have non-trivial intersection. □

We are now in a position to show constructions for arbitrary cycle lengths. 

However, while the combination of constructions used relies on the element being 

in An as we require even length cycles to come in pairs we are not assured that 

the single cycle is in An, as the constructions given allow us to generate cycles of 

even length which are not in An. If we further insist that the resulting cycle is of 

odd length then Lemmas 6.19, 6.22 and 6.23 together with Lemma 6.15 allow us 

to calculate an estimate of the shortest cycle that a given element, <7, of An may 

be expressed as the product of two of. If we also observe that our constructions 

allow us to use any cycle between the shortest cycle for g and the size of its 

support, then we need now only observe that we can extend this cycle to any 

other odd length, k less than n, by joining it with any cycle length k — \Supp(g)\ 

whose support is drawn from the stabiliser of g. Therefore, in order to determine 

an estimate of the shortest cycle length, Z, such that every element of An may be 

expressed as the product of two Z-cycles we need only find the longest value of Z 

required for any element of An as we can extend all shorter cycles to this length.

Of course, we could reason about each group in turn as in Theorems 6.16
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and 6.17. However, we observe that we can reason about the shortest cycle based 

solely on the shape of the element. GAP allows calculation of the conjugacy 

classes of a group and will return the cycle shape of a representative it is then 

trivial to determine the shortest cycle length. Table 6.3 shows our estimate of 

the minimum value of / such that every element of An may be expressed as the 

product of two /-cycles for various n.

We observe that for those groups tested we may express our estimate of the 

shortest cycle length such that every element of An can be expressed as a product 

of two /-cycles via the following formulae:

f | 2pl if 1^1  odd 
l =  {  L 4 J 14 J (6.1)

Lt J 1 otherwise

We define [ij in Equation 6.1 to be the largest integer smaller than i. We 

observe that the limit on / undergoes a step change roughly every three elements 

and this relates to the maximum number of transpositions that can occur in an 

element of An. We now seek to formalise these observations and show that, based 

on the constructions outlined above, the observed limits apply.

Theorem 6.24. For all g G An there exist x ,y  both l-cycles in An such that 

g = xy for all odd I greater than or equal to lmin where:

-f  n divisible by 4

\(3n  — 3) n — 1 divisible by 4

\(Sn  — 2) n — 2 divisible by 4

4(372 — 1) 72 — 3 divisible by 4

Proof As previously we note that we need not consider every element of An sim­

ply that we need show that we can generate one element of each shape(conjugacy
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Table 6.3: Estimate of minimum / such that every element of A n is two /-cycles

n / n /
5 3 33 25
6 5 34 25
7 5 35 27
8 7 36 27
9 7 37 27
10 7 38 29
11 9 39 29
12 9 40 31
13 9 41 31
14 11 42 31
15 11 43 33
16 13 44 33
17 13 45 33
18 13 46 35
19 15 47 35
20 15 48 37
21 15 49 37
22 17 50 37
23 17 51 39
24 19 52 39
25 19 53 39
26 19 54 41
27 21 55 41
28 21 56 43
29 21 57 43
30 23 58 43
31 23 59 45
32 25 60 45

class in Sn), we may then use conjugation in Sn to generate each element of that 

shape. We also observe that if there exists hi, an /-cycle, such that ghi = hi, 

where hi is also an /-cycle, then hi and are the required /-cycles.

We note that Lemmas 6.19, 6.22 and 6.23 together with Lemma 6.15 give us a 

working construction of /-cycles. We now need to establish a lower limit on / and
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observe that for I greater than this limit we can create longer I by statbilising less 

elements in the support of g or by moving some elements outside of the support 

of g.

First we observe that for a cycle, c, of length l i>  2 the shortest equal length 

cycles that we can express c as a product of two of are roughly length We 

next observe that for n divisible by 4 An contains elements consisting solely of 

|  transpositions and our construction only allows us to convert 2 transpositions 

into a 3-cycle therefore in this case our constructions require two cycles of length 

Therefore, in general, the more transpositions an element contains the larger 

I it will require.

We now move to the general case. Let kQ be the number of odd length cycles 

in g and n 0  the total size of their support, ke be the number of even length cycles 

of length greater than 2 and ne be the total size of their support and finally we 

let kt be the number of transpositions.

First we consider the shortest cycle that can be formed from the cycles of odd 

length. Now each cycle can be expressed as the product of two cycles of length 

equal to half the size of its support plus one. Therefore we can express all of the 

odd cycles as the product of two cycles of length ^  =  n*+k°. We note that

as odd length cycles are of length at least 3 then kQ < 2* and we deduce that

neifcj, < n»+ 3 _  2n̂  < 3n̂  ^  previousiy observed.

We now turn to the even length cycles. There are two cases depending on if

g contains an even number of transpositions.

1. g contains an even number of transpositions. The transpositions can be 

expressed as the product of two cycles of length Now each pair of even 

length cycles of length greater than 2 can be expressed as as the product
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of two cycles of length equal to half the size of their support plus one. 

Therefore we can express all of the even cycles as the product of two cycles 

of length The even length cycles are of length at least 4 so ke < 10f

and we deduce that ^  ^  as previously noted.

2. g contains an odd number of transpositions. We need to include one of the 

transpositions in with the longer even length cycles. Now the transpositions 

can be expressed as the product of two cycles of length and the

longer even length cycles can be expressed as the product of two cycles of 

length (ne+2)+(fce+1) ̂  Again the even length cycles are of length at least 4 so 

(n e + 2 )+ (fce+ i )  <  n̂e+24 +3 =  — ^ 1-  <  3 (n *+ 2 )  for ne >  4 as observed earlier.

We are now in a position to write down an equation for the shortest I such 

that g can be written as a product of two /-cycles.

f

ng2fcg +  2k±fcc. _|_ g hag an even number of transpositions
If — ^

+  +  f e l l  otherwise

We deal with each limit in turn and attempt to find the shortest two cycles 

in Sn such that g can be expressed as a product of two cycles of the given length.

Observe that, if g contains 2 even length cycles of length I1 J 2 say, then they 

will require a cycle of length +1. However, An must also contain an element 

where the support of these cycles is moved by transpositions alone and this would 

require a cycle of length ■3̂ 1̂ 2̂ > +  1 provided l\ +  I2 > 4 which is always

true given our constraints on li and I2 . Therefore we need not consider elements 

where there is more than one long even length cycle. Equally, if the long even 

cycle is of length l \>  4 then there will be an element of An which moves all bar 

4 elements in transpositions and this will require a longer cycle.
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Therefore our equations become:

1 =
n°+k° _|_ 3|t  g an even number 0f transpositions

Ttp+fcg _j_ 6 +  otherwise

We have now minimised the number of cases including even length cycles 

that we need to consider. We now turn our attention to the odd length cycles, 

examining the term for odd length cycles it is clear that for a given nQ I will be 

larger the more odd length cycles there are. We consider various values of nG, we 

restrict our attention to small n0, as if nQ is large, then there will be an element 

in An where the support of odd cycles is of size n 0  — 4 that will require a larger 

I as the four other elements are move by two transpositions.

Table 6.4: Cycle lengths required for various sizes of odd cycle support

nQ Shapes m ax(\{n 0  +  lQ))
3 [3] 2
4 NA NA
5 [5] 3
6 [3,3] 4
7 [7] 4
8 [5,3] 5
9 [9],[3,3,3] 6
10 NA NA

In Table 6.4 we use the notation [x, x,y] to mean the multi-set consisting of 

two lots of x  and a single y. We note that if g contains a 7-cycle, then there 

will be an element in An that is identical to g on the stabiliser of the 7-cycle and 

contains two 3-cycles acting on the support of the 7-cycle and will require the 

same I so we may ignore elements containing 7-cycles. Equally we may ignore the 

case where 8 points are moved by odd cycles as An will contain an element where
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the support of the odd cycles is moved by 4 transpositions which will require 

a larger I. We now have a very limited number of cases to consider. We first 

demonstrate that our limits are necessary.

1. n divisible by 4, An contains an element consisting solely of transpositions 

with I = ^

2 . n — 1 divisible by 4, An contains an element consisting solely of transposi­

tions and a single fixed point which requires I =

3. n — 2 divisible by 4, An contains an element consisting of two three cycles 

with the remaing points all moved by transpositions which requires I —
a , 3(n—6) _  3n—2 

*  f  4  4

4. n — 3 divisible by 4, 4̂n contains an element consisting of a 3-cycle with the 

remaing points all moved by transpositions which requires I = 2 +  =
3n—1 

4

Having shown the limits are necessary we now attempt to prove that they are 

sufficient. Table 6.5 gives all possible combinations of maximal shapes together 

with their value when n — i is divisible by 4. In each case we consider where 

there are k pairs of transpositions and the remainder of the support is made up 

of the multi-set as shown, so for example k * [2,2] +  [2,4] would be an element 

consisting of k pairs of transpositions plus a transposition and a 4-cycle.

We can see that in no cases are our stated limits are exceeded and we are 

done. □

Of course we have not proved that the limits given in Theorem 6.24 are the 

best that can be done merely that they are the best that can be achieved using
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Table 6.5: Required cycle lengths for maximal shapes

Shape I n — 1 n — 2 n — 3
|(3 n  -  3) |(3 n  -  6) |(3 n -  9)fc*[2,2] 3 k

fc*[2,2] + [2,4] 3fc +  4
fc*[2,2] + [3] 3fc +  2
fc*[2,2] + [3,3] 3fc +  4
k*[ 2,2] + [5] 3fc +  3
k*[ 2,2] + [3,3,3] 3 k + 6

fc*[2,2] + [2,4,5] 3 k + 7
fc*[2 ,2] + [2,4,3] 3 k + 6

Maximum______________ |(3 n  —3) |(3 n  —2) |(3n  —1)~

the constructions outlined so far. We also note that although we showed that the 

limit is required in some cases we note that the observed limit may not always 

be an odd number so the cycles may not be in An.

We note that in proving Theorem 6.24 we have relied heavily on the con­

struction for pairs of transpositions. Indeed, if we are able to show that the 

construction for transpositions is minimal, then it is clear that Theorem 6.24 

becomes the best we can do. A direct computation in GAP shows that it is 

not possible to express 4 transpositions as the product of two cycles of the same 

length less than 6 a similar calculation shows that it is equally not possible to 

express 6 transpositions as the product of two cycles of the same length less than 

9. We now provide a proof for the limit on transpositions.

Lem m a 6.25. Let g = (1, 2)(3,4). . .  (n — l ,n) for n divisible by 4 then the 

shortest cycle length I such that g can be expressed as the product of two l-cycles 

is&

Proof First we note that if g can be expressed as the product of two /-cycles, 

then there exists an /-cycle, c, such that gc is an /-cycle. We now proceed to show 

that c must have length at least ^p. Observe that the support of c must contain
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at least one element from the support of each transposition or gc would contain a 

transposition. Therefore c must have support of size at least Next we observe 

that to stabilise an element in the support of g then c must contain both elements 

in the support of transposition, furthermore they must be consecutive. Therefore 

for gc to be a single cycle and stabilise one element c must have length at least 

f  +  1 giving gc of length n — 1. In general the shortest c such that i elements 

are stablised will have length |  +  i. Now we require c and gc to be cycles of the 

same length, this will only occur when i =  j  as required. □

Lemma 6.25 tells us that the construction used in Lemma 6.19 is the best we 

can do. We can now deduce that the limits of Theorem 6.24 are the best we can 

do as it is clear that for the 3,4, and 5 cycles we cannot do any better. We now 

restate Theorem 6.24 in its final form.

T heorem  6.26. For all g € An there exist x, y both l-cycles in An such that

g = xy if and only if  I is odd and greater than or equal to lmin where:

n divisible by 4  

|(3 n — 3) n — 1 divisible by 4

|(3 n — 2) n — 2 divisible by 4

\(3n  — 1) n — 3 divisible by 4

6.7 Proof of conjecture 6.8 and related results

We now return to Conjecture 6 .8. Direct computation shows that while the 

Conjecture is true it does not need to be as general, indeed a fixed power of g 

will suffice.

l m i n  —  ^
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T heorem  6.27. Let n > 3 be odd and let g = (1 ,2 ,.. . ,  n) and let c be a standard 

shape representative in An then cg~2 is an n-cycle.

Proof. We begin by settling on some notation. We remind ourselves that c is 

a standard shape representative so the support is in ascending order. Now let 

c =  C1C2 . . .  Cfc where the q are disjoint cycles and let the last point of cycle q be 

Si thus ci =  (1 ,2 ,...,  si), C2 =  (si +  1, si +  2 , . . . ,  s2) and cycle q is of length

Si Si-l-

Observe that eg-1 will have a given shape namely it will be a single cycle 

(77., n 1 , . . . ,  Sfc +  1, Sfc, Sfc_ 1, . . . ,  Si).

Now we consider the image of any point, m , under cg~2. Now if m  is in the 

stabiliser of eg-1 (that is it is not either one of the Si or in the stabiliser of c), 

then the image of m  is simply m  — 1 except where m = 1 in which case it is n. 

We note that in the case of Si +  1 this will be s*, that is the largest point in the 

support of the previous cycle of c. Equally, the image of any point stabilised by 

c is m — 2. This leaves us only to consider the image of each of the s*, this will 

be Si— 1 — 1 except where i  =  1 when it will be n — 1.

Having dealt with the general construction there are four cases that we con­

sider:

1. The number of fixed points is even and the number of cycles is even.

2. The number of fixed points is even and the number of cycles is odd.

3. The number of fixed points is odd and the number of cycles is even.

4. The number of fixed points is odd and the number of cycles is odd.

In each case we consider the image of n.



1. If the number of cycles is even, then there must be either no odd length 

cycles or an even number of them so the support of c is of even size. As n 

is odd and the size of the support is even the number of fixed points cannot 

be even so this case does not occur.

2. The construction is illustrated in Figure 6-2.

)

Figure 6-2: eg 2 with an even number of fixed points and odd number of cycles

We now generalise this, the image of n steps through the fixed points two at 

a time until we get Sk when the image is Sk-i — 1. The image then descends 

through the support of Ck-i until it reaches Sk- 2 when it goes to Sk- 3 — 1 

and so on until Si is reached the image will then be n — 1 and we will then 

step through the remaining fixed points of c in steps of two until we reach 

Sk — 1 we then descend through the support of cjt until we reach Sk-i- The 

image is then s^-2 — 1 and we continue in this way until the first cycle is 

reached which we then descend and the image returns to n. We have now 

covered all n points in a single cycle as required.

3. As before the construction is illustrated in Figure 6-3.

We now generalise this, the image of n steps through the fixed points two at 

a time until we reach s ^ - l  we then descend through the support of cjt until 

we reach Sk~i whose image is Sk- 2 — 1 and we continue in this way until we 

reach si whose image is n — 1. We now step through the remaining fixed 

points of c in steps of two which takes us to Sk whose image is Sk- 1 — 1 we
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Figure 6-3: eg 2 with an odd number of fixed points and an even number of 
cycles

then descend through the support of Ck~\ until we reach Sk-2 - We continue 

in this fashion until we reach s i—1 and we then descend through the support 

of Ci until the image returns to n. We have now covered all n points in a 

single cycle as required.

4. If there are an odd number of cycles, then c has an odd number of odd 

length cycles as even length cycles come in pairs in An. Now if c has an 

odd number of odd length cycles, then c has an odd size support. As n is 

odd and the size of the support is odd the number of fixed points cannot 

also be odd so this case does not occur.

□

We note that in proving Theorem 6.27 we did not have recourse to the fact 

that the cycles were listed with descending length only that each cycle of c was 

of the form (a,a +  l,o  + 2 , . . . , a  + i).

Having observed the special properties that g~ 2 exhibits in An we return to the 

original hypothesis of Conjecture 6.8 which considered the group {g). Table 6.6 

gives the number of elements in ( (1 ,2 ,...,  9)) such that pre-multiplying by a 

standard shape representative in Aq gives rise to a 9-cycle.

We note that for two cycle shapes g~ 2 is the only element of (g) that gives rise 

to a 9-cycle. While not all groups have such shape representatives Aq certainly is
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Table 6.6: Number of elements of ( (1,2, . . . ,  9)) that generate a 9-cycle

Shape
Number of 

9 cycles
(1,2)(3,4) 2
(1.2) (3,4) (5,6) (7,8) 4
(1,2,3) 3
(1,2,3)(4,5)(6,7) 1
(1,2,3)(4,5,6) 3
(1,2,3)(4,5,6)(7,8,9) 3
(1,2,3,4)(5,6) 3
(1,2,3,4)(5,6,7)(8,9) 2
(1>2,3,4)(5,6,7,8) 4
(1,2,3,4,5) 4
(1,2,3,4,5)(6,7)(8,9) 3
(1,2,3,4,5)(6,7,8) 2
(1,2,3,4,5)(6,7,8) 2
(1,2,3,4,5,6)(7,8) 1
(1,2,3,4,5,6,7) 4

not unique in having shape representatives where only g~2 will suffice. Table 6.7 

shows the smallest number of elements of ( (1 ,2 ,... ,  n)) that will generate an 

n-cycle for a standard shape representative in An.

We now turn our attention to Sn, again for n odd. We observe that this will 

not give rise to an n-cycle as where c is a odd element of Sn cg~2 will also be an 

odd element. For motivation we consider all of the conjugacy classes composed 

of odd elements of S7, the results are shown in Table 6.8.

We can see that in general there is not one shape that arises from multiplica­

tion by g~2. Equally, the cycle shapes are clearly not arbitrary as they consist of 

no more than two cycles with support of size at least 6.

T heorem  6.28. Let n > 3 be odd and let g = (1 ,2 ,.. .,  n) and let c be a standard 

shape representative in Sn then cg~2 is one of the following:
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Table 6.7: Minimumm number of elements generating an n-cycle

Minimum number 
n of elements
5 2
7 2
9 1
11 3
13 2
15 1
17 2
19 2
21 1
23 2
25 1

Table 6.8: Odd shape representatives in 57 multiplied by (1,2,3,4,5,6,7) 2

Shape Result
(1,2) (1,7,5,3)(2,6,4)
(1,2)(3,4)(5,6) (1,7,5,4)(2,6,3)
(1>2,3)(4,5) (1,7,5,2)(3,6,4)
(1,2,3,4) (1 ,7 ,5 ,3 ,2)(4,6)
(1,2,3,4)(5,6,7) (1,7,3,2)(4,6,5)
(1,2,3,4,5)(6,7) (1,7,4,3,2)(5,6)
(1,2,3,4,5,6) (1,7,5,4,3,2)

1. An n-cycle

2. An n — 1-cycle

3. Two disjoint cycles whose combined support is of size n

Proof. We use the same notation as in Theorem 6.27 and observe that for even 

elements we can apply Theorem 6.27 directly giving cg~2 as a single cycle of 

length n. This leaves us only to consider odd elements of Sn.
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Observe that, irrespective of whether c is even or odd, eg 1 will have the same 

general structure namely it will be the single cycle

(77., n 1 , . . . ,  Sk -t- 1, Sfc, S f c _ i , . . . ,  S i ) .

We consider the same possibilities as in Theorem 6.27 in turn:

1. The number of fixed points is even and the number of cycles is even. In this 

case we consider the orbits of n and n — 1 . The construction is illustrated 

using Figure 6-4 where the orbit of n is shown by solid lines and n — 1 by 

dotted lines.

)

Figure 6-4: eg 2 with an even number of fixed points and an even number of 
cycles

We start with the image of n this will step through the fixed points two at 

a time until it reaches Sk whose image is Sk-i — 1. The image then descends 

through the support of Ck-i until it reaches Sk- 2 when it goes to Sk- 3  — 1 

and so on until s± — 1 and the image will descend through C\ until 1 is 

reached and the image will then be n, this is the end of our first cycle. We 

now consider the image of n — 1 this will step through the remaining fixed 

points of c in steps of two until it reaches Sk — 1 when the image descends 

through the support of cjt until we reach Sk-1- The image is then Sk- 2  — 1 

and we continue in this way until the 52 — 1 is reached and the image then 

descends C2 to si and then returns to n — 1 .Thus we have now covered all
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n  points in two cycles as required.

2. The number of fixed points is even and the number of cycles is odd. For 

any element to be odd it requires an odd number of even length cycles but 

this would mean there were an even number of odd length cycles given even 

size support which contradicts the assertion that the number of fixed points 

is even hence all such elements will be in An.

3. The number of fixed points is odd and the number of cycles is even. For 

any element to be odd it requires an odd number of even length cycles 

but as there are an even number of cycles this would mean there were an 

odd number of odd length cycles and hence the support is of odd size and 

therefore the number of fixed points is even which contradicts the assertion 

that the number of fixed points is odd hence all such elements will be in 

A n .

4. The number of fixed points is odd and the number of cycles is odd. First 

we consider the special case where there is a single fixed point and a single 

cycle. In this case cg~ 2 = ( l,n , n — 2,n — 3 , . . .  ,2). We now turn to 

the general case and again we consider the orbits of n and n — 1. The 

construction is illustrated using figure 6-5 where the orbit of n is shown by 

solid lines and n — 1 by dotted lines.

Figure 6-5: eg 2 with an odd number of fixed points and an odd number of cycles

We consider the orbit of n first, it will step through the fixed points two
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at a time until it reaches Sf- — 1 it will then descend through the support 

of Cfc until it reaches s^-i where the image is Sk- 2 — 1 and will continue in 

this way until we reach Si — 1 when it will then descend c\ until it reaches 

1 whose image is n, this is the end of our first cycle. We now consider the 

image of n — 1 which steps through the remaining fixed points of c in steps 

of two which takes us to Sk whose image is Sk-i — 1 it will then descend 

through the support of cjt_i until it reaches Sk-2- It will continue in this 

fashion until it reaches S2 — 1 and will then descend through the support of 

C2 until we reach s\ and the image returns to n — 1. We have now covered 

all n points in two cycles as required.

□

We can see from the proof of Theorem 6.28 that it is possible us to read off 

the length of each of the cycles although this will depend on the parity of the 

number of fixed points. We have already established that where c is an even 

element we will have a single cycle of length n. We now turn our attention to 

when c is an odd element. If the number of fixed points is even, then one cycle 

will be of length 1 Length(ci) for i odd with the other being of length

+ £*=1 Length^ ) for i even. The situation is similar where the number of 

fixed points is odd in this case one cycle will be of length n~ 2f~1+X)t=i L en g th ^)  

for i odd with the other being of length n~sjc+1 +  Yli=i L en g th ^ )  for i even. We 

note that the only time that we get a single cycle is where c is an n — 1 cycle and 

in this case the support of cg~2 is of size n — 1, indeed this is the only case where 

the support is not of size n.
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Chapter 7 

G enerating An from standard  

shape representatives

Having shown in Chapter 6 that any element can be expressed as a product of 

two p cycles it is natural to ask the question if  c is a standard shape representative 

and g is the cycle (1 ,2 ,... , n), what can we deduce about {c,g) ? We begin by 

looking at the case where n is prime. For relatively small primes it is possible 

to calculate (c,g) using GAP. This direct computation yields that the only c 

for which (c, g) 7̂  Ap are c = id and c — g. For all but these trivial cases 

(c, g) = Ap for every p in the range 5 < p < 53. The same is not true where n 

is not prime. In this case there are other standard shape representatives where 

(c,g) 7̂  An, Table 7.1 gives the total number of shapes and the number which do 

not generate the whole of An for all odd n < 53.

7.1 Shapes that do not generate A n

We begin by proving a basic result
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Table 7.1: Number of standard shapes,c for whom (c, g) ^  A n

n
Total

Shapes
Non-generating

Shapes
5 4 2
7 8 2
9 16 3
11 29 2
13 52 2
15 90 6
17 151 2
19 248 2
21 400 10
23 632 2
25 985 5
27 1,512 17
29 2,291 2
31 3,431 2
33 5,084 31
35 7,456 12
37 10,836 2
39 15,613 54
41 22,316 2
43 31,659 2
45 44,601 105
47 62,416 2
49 86,809 9
51 120,025 153
53 165,028 2

Lem m a 7.1. Let g =  (1 ,2 ,... ,n), n odd, and let c be a standard shape repre­

sentative in An. Then (c, g) =  (g) if  and only if c = g or c —id

Proof For (c, g) = (g) we need c = g% for some 1 < i < n. Clearly this is true 

for the identity now for c not the identity (l)c =  2 a s i t i s a  standard shape 

representative and (1 )gl =  2 only when i = 1 so c = g and these are the only 

cases. □
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Lemma 7.1 tells us that there are always at least two c such that (c, g) < 

A n it does not give us any information about how many other standard shape 

representatives generate groups smaller than An, or indeed anything about the 

size of the group generated.

For motivation we consider the following standard shape representative in 

Aq let c = (1,2,3)(4,5,6)(T, 8,9). We note that (c, g) is a group with 81 ele­

ments so is not A^. To understand this we consider the following block structure 

(1,4,7}, (2,5,8}, (3,6,9}. Now any power of g permutes these blocks. Equally, 

powers of c permute these blocks and we see that (g, c) has a non-trivial block 

structure and hence is imprimitive and so is is not Aq. Clearly we can extend this 

construction to yield an imprimitive permutation group whenever n is composite.

Lem m a 7.2. Let g = (1 ,2 ,... ,n), n odd, and let

c = (1 ,2 ,...,  r)(r +  1, r -I- 2 , . . . ,  2 r ) . . .  (n — r  +  1, n — r +  2 , . . . ,  n) 

where n — mr. Then (g,c) < An

Proof. We begin by partitioning {1 ,2 ,... ,n}  into equivalence classes modulo r  

and consider the action of (g, c) on these partitions. Any power of g permutes 

these partitions so preserves the block structure. Equally, any power of c permutes 

these partitions and so preserves the block structure. Therefore (g, c) is not 

primitive. An is primitive so we deduce that (g,c) ^  An □

Lemma 7.2 tells us that there are more than two standard shape representa­

tives for which (g,c) < An. We note that for n = 15 we have so far accounted 

for 4 standard shape representatives namely the identity, g, and the elements 

consisting solely of the 3 and 5 cycles. However, Table 7.1 asserts that there are
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6 such shapes, the remaining two shapes are:

(1 ,2 ,3 ,4 ,5 ,6)(7,8,9,10,11,12)(13,14,15) and

(1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9)(10,11,12)(13,14,15).

Now we consider the same partitions of { 1 ,2 ,..., 15} modulo 3 and we note that 

our block structure is still preserved by each of these elements and we obtain the 

following corollary.

Corollary 7.3. Let g =  (1,2, . . . ,  n), n odd, and let c =  C1 C2 . . .  cjt where Ci =  

(si-i +  1, Si-1 +  2 , . . . ,  s^ , Sk = n and r|si — Si-i or c — id then (g , c) < A n.

Proof. We partition { 1 ,2 ,..., n} into equivalence classes modulo r  and consider 

the action of powers of g and c respectively, both respect the partitions and hence 

(g, c) < A n □

Of course we have not yet shown that these are the only standard shape 

representatives for which (g,c) < An. However, a direct computation in GAP 

shows that this is the case for all n < 51. We now proceed to look at cases where 

greatest common divisor of the cycle lengths and n is 1. We note that where the 

size of the support of c is less than n then c contains at least one 1-cycle so the 

greatest common divisor of the cycle lengths is 1.

7.2 Shapes that generate A n

We now turn our attention to standard shape representatives that generate A n, 

we first deal with the case where c fixes at least one point.
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7.2.1 Standard shapes w ith  support size less than n

We begin with a straightforward case, where the standard shape representative 

consists of two transpositions. We then extend to other standard shape repre­

sentatives by reducing them to this case. In the course of the discussion we look 

at some other special cases of elements that generate An.

Lem m a 7.4. Let g = (1 ,2 . . . ,n ) ,  n > 4 odd, and let c = (1,2)(3,4). Then 

{g, c) = An

Proof. First we observe that every element in An can be written as the product 

of an even number of transpositions. Therefore we need only show that (g, c) 

contains arbitrary pairs of transpositions and we are done.

We start by showing that (g, c) contains all pairs of transpositions of the form 

(x ,x  +  1 ){y,y +  1). Now cg% =  (1,2)^(3,4)5' =  (2 +  1,2 +  2)(i +  3,2 +  4) for 

0 < 2 < n — 1 where addition is modulo n. This means if we choose i = x — 1, 

then cgX 1 =  (x ,x  +  l)(x +  2,x  +  3) and we have the first transposition of our 

pair but not necessarily the second. However, we note that as i steps through all 

possible values the second transposition of c will step though all transpositions 

of the form (a, a +1) and in particular (y, y +1), we also note that if we multiply 

cg% by c*,+2, then the middle two transpositions cancel. In particular if we post- 

multiply cPx 1 by cgX+1, then the middle two transpositions will cancel and we 

will obtain a different final transposition. Moreover we may repeat this process, 

increasing the power of g by two, modulo n, each time until the required final 

transposition occurs.

Of course the above pair of transpositions is not arbitrary, we now address 

this. We use induction, let t = (a, a +  2), and we observe that t can be expressed 

as (a, a +  l)(a +  1, a +  2) (a, a +  1) which uses transpositions of the given form.
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We can extend this to an arbitrary t  =  (a, a +  i) by induction on i as

t = (a, a +  i — l)(a  +  i — 1, a +  i)(a, a +  i — 1)

Similarly we can extend this to our required arbitrary pair of transpositions as 

we write each of the transpositions using this algorithm and then multiply them, 

the resulting expression will have an even number of transpositions, each pair of 

which is of the form (a, a +  1)(6, 6 +  1) and we know we can generate any pair of 

this form and we are done. □

We next turn to some other simple cases and start with an obvious corollary 

of Lemma 7.4

C orollary 7.5. Let g = (1 ,2 ... ,  n), n > 4 odd, and let c = (a, a 4 -1)(6,6 + 1 ) 

a, b G { 1 ,...,  n} and a where addition is modulo n. Then G = {g , c) =  An

Proof. Without loss of generality we may assume that a < b and a = 1 (as we 

may conjugate to make this happen).

First we deal with the case where 6 =  2, in this case we observe that

— (1>2)(2,3)(2,3)(3,4) =  (1,2)(3,4)

We may now apply Lemma 7.4 and we are done.

We now turn to the case where 6 > 2. Let d =  cg2 6 =  (3 — 6,4 — 6)(2,3) and 

consider

cd = (1,2)(6, 6 +  1)(3 -  6,4 -  6)(2,3)

Now we want the two middle transpositions to have disjoint support and support 

disjoint from {1,2,3}. If the two middle transpositions are not disjoint then one
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of the following conditions is true:

1. 6 =  3 - 6 = > 2 6  =  3=>6=2±3.

2. 6 =  4 — 6 => 26 =  4 so either 6 =  2 which we have already ruled out, or 

6 =  but this cannot happen as n is odd.

3. 6 + 1  =  3 — b=> 2b = 2 but 6 ^ 1  the only other option is 6 =  ^±2 but this 

cannot happen as n is odd.

4. 6 +  1 =  4 — 6 =  ̂26 =  3 and we are in case 1 again.

Now we ensure that the middle transpositions are disjoint from {1,2,3}.

1. 6 =  1,2 we have already dealt with and if 6 =  3, then we can apply 

Lemma 7.4 directly.

2. 6 + 1  =  2 ,3 we have already dealt with leaving only 6 + 1  =  1 this implies 

6 =  n so c =  (n, 1)(1, 2) conjugation by g gives c9 =  (1, 2)(2, 3) and we have 

already dealt with this case.

3. 3 — 6 = l , 2 = ^ 6  =  2 o r l  respectively both of which we have already dealt 

with. Now if 3 — 6 =  3, then 6 =  n and we have just dealt with this case.

4. 4 — 6 =  2,3=>6 =  2 o r l  respectively, and we have dealt with these cases. 

Now if 4 — 6 =  1, then 6 =  3 and we may apply Lemma 7.4 directly.

Now provided that 6 ^  +12 ? the two middle transpositions commute with 

(2,3) and are disjoint so cd =  (1,2)(2,3)(6,6 +1) (3 — 6,4 — 6) and we may square 

this to get (1,2,3) and square again to get (1,3,2) =  (1,2)(2,3) G G and we have 

already shown that this implies G =  An.
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Now if b = then c =  (1,2)(Ẑ J 22̂  +  l) and we can conjugate c by g ~^~ l 

to get lk7jr  +  l)(n  +  2, n +  3) and if we post-multiply c by this, then we get

(1. 2)(2,3) € G and we are done

□

So far we have required that the transpositions consist of adjacent elements, 

but we now show that we need not insist on this.

Lem m a 7.6. Let g = (1,2, . . . ,  n), n > 6 odd, and let c = (1,2)(a, a +  2) where

3 < a < n — 3. Then (g , h) =  An

Proof. Let d  =  c9 = (2,3)(a +  l ,a  +  3) so cd — (l,2 )(a ,a  +  2)(2,3)(a +  l ,a  +  3) 

now if 3 < a < n —3, then the transpositions including a are disjoint from {1,2,3} 

and are clearly disjoint from each other so cd =  (1 ,3 ,2)(a, a +  2)(a +  1, a +  3) 

and (cc/)4 =  (1,3,2) =  (1, 2)(2,3) and we can apply Corollary 7.5. □

Now it is clear that we can extend Lemma 7.6 to cover the case where c =

(1. 2) (a, a +  i) provided that a + i < n  — l a s  the construction will still work.

Corollary 7.7. Let g = (1,2, . . . ,  n), n > 6 odd, and let c =  (1,2)(a, a + i) where 

a > 3 and a + i < n — 1. Then (g, h) =  An

Equally, we need not restrict the first transposition. If c =  (b, b +  l)(u, a + i), 

then we may conjugate by g~b to revert to the original case and we get

c®1 6 =  (1,2 ){a — b,a + i — b)

where addition is modulo n and this satisfies the conditions of Corollary 7.7 

provided a +  1 — b > 3 and a + i — b < n — 1.

Having dealt with most pairs of transpositions we now consider longer cycles. 

The first standard shape representative we consider is the standard 3-cycle.
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Lem m a 7.8. Let g = (1,2. . . ,  n), n > 4 odd, and let c = (1,2,3). Then (g, c) =  

An

Proof, c-1 =  (1,3,2) =  (1, 2)(2,3) and we may apply Corollary 7.5 □

Clearly there is very little that is special about the 3-cycle (1,2,3) and we 

next consider the 3-cycle (1,2, a) where a > 3.

Lem m a 7.9. Let g = (1,2 . . . ,  n), n > 3 odd, and let c = (1,2, a), a > 3. Then 

(9, c) =  An

Proof First note that if a = n, then c9 = (1,2,3) and we may apply Lemma 7.8. 

We now deal with the case where 3 < a < n. Let d = c9 =  (2,3, a +  1) and we 

consider the commutator [c~l ,d]\

c c ' - W  =  (1,2, a)(2, o + l ,  3)(1, a, 2) (2,3, a +  1)

=  ( l , a  +  l ,3 ,2 ,a ) ( l , a , 2 ) (2 ,3 , a+ 1)

=  (1, a +  1, 3)(2,3, a +  1)

=  (1,2,3)

We have shown that the group contains (1,2,3) and we may now apply Lemma 7.8 

and we are done. □

We now extend Lemma 7.8 to cover the case where c is any odd length cycle.

Lem m a 7.10. Let g = (1,2. . . ,  n), n > 5 odd, and let c=  (1,2, . . . ,  m), m odd 

and 3 < m  < n. Then (g, c) =  An

Proof If m = 3, then we may apply Lemma 7.8 directly. We note that m  < n — 2 

as we require m  to be odd. Now for m > 5 we observe that (c^)_1c =  (1,2, m + 1) 

and we have already shown in Lemma 7.9 the group will be An. □
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So far we have restricted our attention to standard shape representatives which 

consist of at most two non-trivial orbits. We now address the more general case 

where the standard shape representative is any whose support is smaller than n.

Lem m a 7.11. Let g = (1,2, . .. ,n), n odd, and let c be a standard shape repre­

sentative with support size less than n. Then (g, c) =  A n

Proof. First we remind ourselves of the definition of a standard shape repre­

sentative and let c = C1C2 . . .  Ck where the c* are disjoint cycles such that c* =

(s*_i +  1, s ^  1 +  2 , . . . ,  Si) and Length(ci+1) < Length(ci)

Now if c consists solely of transpositions and 1-cycles and Sk < n — 3, then

( l ,2,n) and conjugation by g yields (1,2,3) and we may apply Lemma 7.8 and 

we are done.

We now turn to the case where c does not consist solely of transpositions and 

1-cycles.

We consider the case where c has no transpositions first. Let

We may apply Corollary 7.5 and we are done. If Sk = n — 1, then c(cg2

c' =  C(C?) 1 =  ( 1 ,  S i  +  1 ,  S 2 +  1 ,  • . • , Sfc +  1 ,  s k , s k- 1 , • .  • ,  s i )

and let

c" — (cP) 1c — (2, Si +  2, s2 +  2, . . . ,  Sfc_i +  2, Sfc +  1, s^-i 4-1, Sk- 2  +
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We now consider the commutator [c^c"] in two parts firstly:

d V  1 — (Si, S2, • • • , Sk, Sk +  1, Sfc-l +  1, • • •, Si +  1,1)

(1, si +  1 , . . . ,  Sk +  1, Sk-1 +  2, Sk- 2 +  2 , . . . ,  2)

(^ij 2̂j • • • j $k—i "t" 2, Sk—2 “I- 2 , . . . ,  2,1)

Secondly :

C C (1, Si -f- 1, 52 “I- 1, . • . , Sk -f" 1, Sfc, Sfc_i, . . . , Si)

(2, si +  2, s2 +  2 , . . . ,  sfc- i  +  2, Sk +  1, sfc_i +  1, Sk- 2 +  1 , . . . ,  1)

— (sk +  ski Sk-i, . . . ,  si, 2, si +  2, S2 +  2 , . . . ,  sfc_i +  2)

Finally we can combine the above to get:

c ^ V -V c "  =  (si, s2, .. •, Sfc, Sfc-i +  2, Sfc_2 +  2 , . . . ,  2,1)

(sfc -t- 1, Sk) Sk—l j . . . } Si, 2, Si +  2, s2 4- 2 , . . . ,  Sk—i “I- 2)

=  (l,2)(sfc +  l , s fc)

We may now apply Corollary 7.5 and we are done for this case.

This leaves only the case where c contains some transpositions, the construc­

tion in this case is almost identical to that given above. In a standard shape 

representative cycles are listed in descending length order so the transpositions 

occur at the end. Let Ck> be the last cycle which is not a transposition. We 

define d and d' as before and we consider the same commutator. First we look
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at c '-V '-1:

c ' - V -1 =  (si, S2, . . . ,  Sfc, Sfc+ l,Sfc_i +  l , . . . ,  *1 +  1,1)

(1, si +  1 , . . . ,  Sfc +  1, Sk-i +  2, Sk- 2  +  2 , . . . ,  2)

=  (fil, 52, , Sfc/, 5fc/_i +  2, Sk'—2 +  2, . . .  ,2, 1)

Secondly :

c'c" =  (1, Si +  1, S2 +  1, . • • , Sk +  1, Sfc, Sk-1, . . • , Si)

(2, Si +  2, S2 +  2, . . . , Sfc_i +  2, Sfc +  1, Sfc_i +  1, Sfc_2 +  1 , . . . ,  1)

=  (Sfc', Sfc/_i,. . . ,  si, 2, si +  2, s2 +  2 , . . . ,  Sfc/ +  2)

Finally we can combine the above to get:

d~ld'~ldd' =  (si,S2,. . .  ,Sfc/,Sfc/_i+ 2,Sfc/_2+  2 , . . .  ,2,1)

(sfc', Sfc/—i j . . . ,  Si, 2, Si -f- 2, s2 ~\~ 2,..., Sk> “I- 2)

=  (lj2)(sfc/,Sfc/+  2)

If 3 < Sfc/ <  n — 3, then we can apply Lemma 7.6 and we are done. If Sfc/ =  3, 

then c consists of a 3-cycle and transpositions so c2 =  (1,3,2) =  (1,2)(2,3) and 

we can apply Lemma 7.8. This leaves only the case where Sk> = n — 2 but as we 

have insisted that c contains at least one transposition this would imply that c

had support size n which we have already ruled out. □

We observe that in proving Lemma 7.11 we have insisted that transpositions 

are listed last this is not strictly required although the exposition is then less

clear (essentially if transpositions occur in the middle, then they will simply
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cancel out).

7.2.2 Shapes w ith  support size n

Finally we turn our attention to the case where c is a standard shape representa­

tive with support of size n. We note that in proving Lemma 7.11 we have relied 

on the fact that Sfc 4- 1 is not 1. In this case the situation is somewhat different. 

As before we let

c' =  c(c^)—1 =  (1, Si +  1 , . . . ,  sfc_i +  l)(sk, sfc_ i , . . . ,  Si)

and let

c" =  (c9)- ^  =  (sfc_i -I-1, 2 +  1, • • •, 1)(2, si +  2 , . . . ,  Sfc_i 4- 2).

Now when we look at the commutator [c', c"] we get the following:

C '-V -1 =  (Sfc_i +  l,Sfc_2 +  l , . . . , l ) (Sl ,S2, . . . ,Sfc)

(1, si 4- 1 , . . . ,  Sfc_i 4- l)(sfc_i 4- 2, Sfc_ 2 4- 2 , . . . ,  2)

=  (̂ 1? 2̂j • • • > $k)(Sk—l 4* 2, Sfc_2 4“ 2, . . . , 2)

and also

c c (1, Si *+-1,..., Sfc—i 4- l)(sfc, Sfc—i^. . . ,  Si)

(fifc-1 +  1> sk- 2 +  !)•••? 1)(2, Si 4- 2 , . . . ,  Sfc_i 4- 2)

— (Sk, Sfc_i,.. •, 5i)(2, si 4- 2 , . . . ,  Sfc_i 4- 2)
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It is clear that [c', c"] is the identity and we cannot use the same construction 

as in Lemma 7.11. We recall that Corollary 7.3 gave conditions where (c, g) < An 

and direct calculation in GAP showed that for n < 51 only those representatives 

that met the conditions of Corollary 7.3 failed to generate An.

The following theorem is a restricted version of a theorem originally due to 

C. Jordan, the full theorem can be found in [9] as Theorem 5.6.2 and in [16] as 

Theorem 13.2.

T heorem  7.12. Let G be a primitive permutation group on n letters and let H  

be a transitive subgroup of G on m letters fixing the remaining n — m letters. I f  

H  is primitive, then G is n — m + 1 transitive.

Now if we can show that (c,g) is primitive, then we could possibly apply 

Theorem 7.12 to show that the group is at least 4-transitive. Thanks to the 

classification of finite simple groups [4] all groups which are at least 4-transitive 

are known. They must be the Mathieu groups, M u, M12, M23, M24, the symmetric 

group or the alternating group. Looking back to Table 7.1 we have already 

empirically ruled out the Mathieu groups and we know the group is not the 

symmetric group as it is generated by two even permutations so if (c, g) is at 

least 4-transitive, then it must be An. First we show that (c,g) is primitive via 

the following theorem.

Theorem  7.13. Let g = (1,2, . . .  ,n), n odd, and let c be a standard shape 

representative in An, if  the greatest common divisor of the cycle lengths of c is 1, 

then provided that c is not the identity G = (g,c) is primitive.

Proof. Clearly G is a transitive group as it contains an n-cycle. Suppose that 

B  is a block of G which contains 1. Suppose that B, Bg, Bg2, . . .  Bgr~1 are
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distinct, but that (1 )gr G Bgl for some 0 < i < r. It follows that (1 )gr G B  else 

(l)gT~1 G Bgl~l . Thus there are r blocks in the block system, each one consisting 

of the elements of Cl which are congruent modulo r. We may assume that r < n 

else the block system is trivial.

The cycle structure of c begins c =  (1,2, . . . ,  si)(si +  1 ,__  If Si >  r, then

c : Bgr~1 i—► B  but (si)c =  1 so s\ G Bgr~1 i.e. Si =  m r for some natural number 

m. Since c acts on the blocks as an r-cycle, each cycle of c must have length 

which is a multiple of r. This violates the g.c.d. condition unless r  =  1, in which 

case c is the identity element (a case we have explicitly excluded).

Thus we may assume that si < r and that (1, 2 , . . . ,  si) is a cycle of c. Thus 

the action of c on some of the blocks must be B  i—► Bg i—► • • • BgSl~x B. 

Now c must send r  +  1 either to 2 or r +  2, but (l)c =  2 so (r +  l)c =  r  +  2. 

Proceeding in the same way we deduce that c : r + l H r  +  2n> . . .  i_* r  +  «i. 

Now (r +  si)c 7̂  r  +  5i +  1 else the c-orbit of r  +  1 will be larger than the c-orbit 

of 1, so (r +  si)c =  r  +  l. Proceeding in the same way we obtain that (1, . . . ,  si), 

(r +  1, . . . ,  r +  si), (2r +  1, . . . ,  2r +  si) etc. are all orbits of c. We recall from 

Definition 6.1 that the cycle lengths are weakly decreasing and this ensures that 

divides r, and that the early part of the cycle structure of c is

(1,2, . . . ,  si)(si +  1, . . . ,  2si) •••((?/ -  l)si +  1, • • •, r)

where usi = r. The action of c on blocks is therefore via cycles of length si, and 

since cycle lengths weakly decrease, all cycles of c have length si. This violates 

the g.c.d. condition unless Si = 1. However, this would entail c being the identity 

element, a case which we have explicitly excluded. □

We have now shown that (c, g) is primitive. Before we demonstrate that it
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contains a transitive subgroup that acts primitively on its support we prove the 

following lemma which we shall need later.

Suppose that O =  {1,2, . . . ,  n}. If fc is a positive integer then a fc-cycle on Q 

is an element of Sym(n) with just one non-trivial orbit, and that orbit has length 

k.

Lem m a 7.14. Suppose that H  is a permutation group on S7 and that H  contains 

a k-cycle g. Suppose that B\, B 2 , . . . ,  Br is a block system for H then either:

1. The support of g is a subset of a single block;

2. The support of g is the union of m  blocks

Proof. Suppose for contradiction that the support of g contains elements from 

two different blocks Bi and Bj but that Bi is not a subset of the support of g. 

Now g is a single cycle so it acts transitively on its support. There exists an 

integer I such that Big1 =  Bj. However, as Bi is not entirely contained in the 

support of g, Big =  Bi so Big1 = Bi. Thus Bi = Bj which is absurd.

Thus for each i one of the following is true: the support of g is a subset of Bi, 

Bi is a subset of the support of g, or Bi is disjoint from the support of g. □

Lemma 7.14 tells us that when a group contains elements with a single non­

trivial orbit, these elements restrict the block sizes that can occur. Therefore, if 

we can construct a transitive subgroup of (g, c) that contains elements consist­

ing solely of suitably long cycles that have length coprime to the degree of the

subgroup, then we can deploy Lemma 7.14 to show it is primitive, the following

lemma shows this can be done.
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Lem m a 7.15. Let g = (1,2, . . . ,  n), n odd, and let c = C\C2 . . .  Ck be a standard 

shape representative in An with support of size n and not all cycles the same 

length, then (c, g) contains a primitive subgroup of degree1 less than 2(<n~v>

Proof. Let Z* be the length of q. Now c is a standard shape representative so 

k+i < U- Now as not all cycles are the same length there exists a cycle Ck> 

such that Ik' > h  but lk>+\ = h  so Ck> is the last cycle of length longer than 

Ik. Let d  = c~xg =  (1, si +  1, S2 +  1, . . . ,  Sk-i +  1) a cycle of length k. Now let 

c" =  d g = (1 +  Ik, Si +  1 + Ik, . . . ,  Sk> +  1 +  h, Sfc'+i +  1 +  h , ■ • • j Sk-1 +  1 -Mfc). 

Now for i < s^ , Si +  1 +  Ik is in the support of q+i and is not the first element 

so is not in the support of d. However, for s^ < i < k we get s* +  1 +  Ik = 

Si+i +  1 and so the support intersects that of c', finally Sk-i +  1 4* Z* =  1 so 

c" =  (1 +  Zfc, Si +  1 +  Ik, • • • , Sk' - 1 +  1 +  Zjfc, Sk'+l +  1, Sk'+2 + 1 , . . . ,  Sk - 1  +1,1). Now 

we let dn = d d l — (1, Si + 1 , . . . ,  Sk> +1,  Sk>-1 +  1 +  Z&, Sk' - 2  +  1 +  Z&,. . . ,  1 +  Ik) 

this is a cycle of length 2k' +  1. Now we consider the group C = (d,d") this 

group acts on k  +  k' letters. We intend to show C is transitive and primitive. 

Now each of the generators acts transitively on its support and both supports 

include 1, therefore C  acts transitively on its entire support.

Now we turn to primitivity. Let r be any divisor of k + k' now for there to be 

blocks of size r  Lemma 7.14 tells us that there are only four possible options:

1. k < r and 2 k' +  1 < r.

2. k < r and r\2 k' +  1.

3. 2k' + 1 < r  and r\k.

4. r\k and r\2k' +  1.

1We use the term degree of the subgroup to mean the size of its support, we hope this lax 
usage will not cause confusion



We show that none of these cases can occur:

1. This case cannot occur as it implies k + k' < < 2r so r cannot divide

k + k'.

2. In this case we have {l , s i  +  l, . . . ,s*;_i -f 1} in a single block, d" has 

support drawn from this block and other blocks. Lemma 7.14 tells us that 

the support of an element consisting of a single cycle must either include 

the whole of a block or none of it. However, the support of d" contains 1 

but does not contain Sk-i +  1 and hence this case cannot occur.

3. As before the support of d" must be drawn from a single block but neither 

intersects the support of d  trivially or is a subset of the support of d  so 

this case cannot occur.

4. Now k +  k' = mr and r\k so let k = m \r  so k' =  r(m  — m i) now r cannot 

divide 2 k' +  1 =  2r(m  — mi) +  1 so this case cannot occur.

We conclude that C  is primitive.

Finally we turn our attention to the degree of C. Now we want to maximise 

k +  A/, this will occur when the Cj are shortest therefore we want to only use 

4-cycles, 3-cycles and transpositions.

We deal with the case where c contains only 3-cycles and transpositions first. 

Now n =  Sk' + 2(k — k') = 2k +  k' so k = now Degree(C) = k + k' = 

+  k' = ^4̂  and this is maximised when k' is maximised so there are only 

two transpositions so k' = whereby Degree(C) =  2̂ n3~1‘).

Now if c contains a 4-cycle, then we assume it contains k" of them and we get
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n = 4k" +  3(kf — k") +  2{k — k') =  2k + k’ + k" so k = 71 k'2 k" and so

_ . n — k' — k" , n +  k' — k"
Degree(C) = k  + k =    \-k — ------- -------

This is maximised when k' — k" is maximised and this will occur when k! is 

maximum and k" is minimum so c contains a single transposition and a single 

4-cycle so kr = +  1 and Degree(C) =  □

Now for n > 7 we can deduce that (c, g) is at least 4-transitive and for n > 9 

is at least 5-transitive so for n > 7 it must be the alternating group. For n < 7 

the case is less clear. For n — 3 the only standard shape representative that has 

support size n is (1,2,3) =  g and (g) = An. However, for n = 5 the only shape 

with support size n is (1,2,3,4,5) and (g) < An.

7.3 Conclusion

We are now in a position to state the theorem in full.

Theorem  7.16. Let g = (1,2, . . . , n ) ; n odd, and let c be a standard shape 

representative in An. I f  the greatest common divisor of the cycle lengths of c is 

1, then (c,g) = An or (g); the latter only occurs when c = g or c — id.

Proof Clearly if c = g or id then (c, g) =  (g).

We have dealt with the case where the size of the support of c is less than 

n in Lemma 7.11. Finally where the size of the support of c is n we may apply 

Theorem 7.13 and Lemma 7.15 to show that (c, g) is primitive and has a transitive 

primitive subgroup of degree less than 2̂ n~1̂ and we deploy Theorem 7.12 to show 

that (c, g) is at least 4-transitive, and at least 5-transitive for n > 9 and hence 

A n. □
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Chapter 8 

Generating Sn from standard  

shape representatives

Having shown that the standard n-cycle together with most standard shape rep­

resentatives generates An when n is odd, we seek to extend this to the symmetric 

group. Clearly where n is odd this can only happen where the shape representa­

tive is odd.

For even n < 34 direct computation in GAP shows that Theorem 7.16 holds 

with Sn taking the same role as An with one exception. Our aim in this chapter 

will be to extend this to a formal proof. We begin by looking at the exception, 

this occurs when n = 6 and c =  (1,2) (3,4) the following lemma gives the answer 

in this case.

Lem m a 8.1. The subgroup of Sq generated by (1,2,3,4,5,6) and (1,2) (3,4) is 

isomorphic to S&

Proof. Let x ,y  E S$ be the permutations x  =  (1,2,3)(4,5), y = (1,4)(2,3).

Let P = ((1,2,3,4,5)) so P E Syl5(/S,5). There are six Sylow 5-subgroups
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of S5, each one generated by a unique element of the shape (1, 2, a, 6, c) where 

{a, 6, c} =  {3,4,5}. Thus we may identify each group via one of the six possible 

ordered triples with entries 3, 4 and 5. Now let P5 = P  = (3,4,5). A direct 

calculation yields that P& = Px = (5,3,4), Pi =  P x 2  =  (4,5,3), P2 = P x3 =  

(3,5,4), P3  =  P x" = (4,3,5) and P x5 = P4  = (5,4,3).

Conjugation by x on these Sylow 5-subgroups gives rise to the permutation

(1, 2,3,4,5,6) where the numbers are the subscripts of the groups. A similar 

calculation reveals that conjugation by y on these Sylow 5-groups gives rise to 

the permutation (1,2)(3,4).

There is homomorphism a : S5 — ► Sq defined by associating to each g G S 3  

the permutation which describes conjugation by g on the Sylow 5-subgroups of

S&.

Let N  =  Ker a. Since x  conjugates the Sylow 5-subgroups in a 6-cycle, then 

\Ss : Aj > 6 so \A$ : A 5 Pi N\ > 3 .  Now A$ is simple so n  N  is trivial so 

|AT| < 2 .

If N  had order 2, then it would be central in 65. The centre of S 5  is trivial

so N  is trivial and a  is a monomorphosm.

Now a : x 1—► (1,2 ,3 ,4 ,5 ,6) and y 1—► (1,2)(3,4).

Notice that x 2 = (1,3,2), x 3  = (4,5), [x,y] =  (1, 2,5,3,4).

Let L = (x,y) now as L contains both a 5-cycle and a transposition then it

must be S5  and we are done. □

Thus the subgroup of S& generated by (1, 2,3,4,5,6) and (1, 2)(3,4) is a copy 

of S3. This is not surprising because Aut Sq does not consist just of inner auto­

morphisms, and one might expect point stabilizers to be sent to interesting places 

by non-inner automorphisms of Sq.
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Having dealt with the exception we we now proceed as in Chapter 7 by demon­

strating some concrete generators of Sn constructively.

8.1 Shapes that do not generate S n

Clearly Lemma 7.1 extends to the symmetric group. We restate its more general 

form here.

Lem m a 8.2. Let g = (1,2, . . .  ,n) and let c be a standard shape representative 

in Sn. Then (c, g) =  {g) if and only if  c = g or c = id

Our computations in GAP tell us that Corollary 7.3 applies equally to the 

symmetric group, Lemma 8.3 extends this result.

Lem m a 8.3. Let <7 =  (1,2, . . . ,  n), and let c = C\C2 . . .  c* where

Ci (^t—1 d- &i—1 d* 2, . . . , SjJ

Sk = n and r|si — s*_ 1 or c = id then G = (g, c) < Sn.

Proof We partition {1,2, . . . ,  n} into equivalence classes modulo r and consider 

the action of powers of g and c respectively, both respect the partitions and hence 

G is imprimitive and so G < Sn □

8.2 Shapes that generate S n

We now turn our attention to standard shape representatives that generate Sn,

as before we deal with the case where the size of the support of c is less than n

first.
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8.2.1 Standard shapes w ith  support size less than  n

It is well known that the standard n-cycle and the transposition (1, 2) will gen­

erate Sn. We begin by giving a short proof of this result.

Lem m a 8.4. Let g =  (1, 2 . . . ,  n), and let c = (1,2) then G = (g, c) =  Sn

Proof. First we observe that every element in Sn can be written as a product of 

transpositions. Therefore we need only show that G contains all transpositions 

and we are done.

We may repeatedly conjugate by g to show that G contains all transpositions 

of the form (a, 0 +1) where addition is modulo n. We now use induction, observe 

that (a ,a + i) = — l)(a +  i — l ,a  +  i)(a,a  +  i — 1), the middle transposition

is of the required form and we may use induction on the two end transpositions 

and we are done □

We now consider the case where c has a single non-trivial orbit. Before we 

look at general cycles we deal with two special cases of 3-cycles.

Lem m a 8.5. Let g = (1,2, . . . , n ) ; n even, and let c = (1,2, a). Then G =  

== &n

Proof. If a =  n, then we let cf = c9 = (1,2,3). Now if 3 < a < n, then we let

c' =  [ c -V ]  =  (l,2,a)(2,a + l ,3)(l,a,2)(2,3,a +  l)

=  ( l ,a  + l ,3 ,2 ,a)( l ,a ,2)(2 ,3 ,a  + 1)

=  (1, a +  1,3) (2,3, a +  1)

=  (1,2,3)
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Observe that (d~lg) 9 ~ 3 =  (1,2 , . . .  , n — 2). We set up an iterative process. Let 

g0  = g and let gi+1 =  (d~lgi)9i 3, now gi = (1, 2, . . . ,  n — 2i) so gn= 2  = (1, 2) and 

we may apply Lemma 8.4 we are done. □

We now generalise this to cover any 3-cycle that has two numerically adjacent 

elements

C orollary 8 .6 . Let g = (1 ,2 ,... ,n), n even, and let c = (a,a + 1,6) then 

G — (g, c) = Sn

Proof. We note that cgl ° =  (1,2,6 — a +  1) so we may apply Lemma 8.5 □

We now prove a result which is useful for standard shape representatives that 

contain a 3-cycle, transpositions and 1-cycles only.

Lem m a 8.7. Let g = (1 ,2 ,... ,n) and let c be a standard shape representative 

in Sn consisting of a single 3-cycle plus transpositions and 1 -cycles. I f  one of g 

or c is an odd permutation, then G = (g,c) = Sn

Proof. Observe that c4 =  (1,2,3). Now if n is even, then we may apply Lemma 8.5 

directly. However, if n is odd, then this is not the case, instead we apply 

Lemma 7.10 to show that An < G  and since G contains at least one odd permu­

tation we conclude that G = Sn. □

We now turn our attention to the case where c consists of a single cycle. Of 

course if the cycle is of odd length and n is odd then we already know that (g , c) 

will be An rather than Sn.

Lem m a 8 .8 . Let g = (1,2 . . . ,  n), and let c =  (1 ,2 ,.. .,  m), 2 < m  < n, then

(An n .m  both odd 

Sn otherwise
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Proof. First we deal with the case where both m  and n are odd. In this case 

Lemma 7.10 applies and G = An.

Now if n is odd and m  is even, then consider (c5) -1 c =  (1,2, m+1). Lemma 7.9 

tells us that (g , (1, 2, m  +  1)) =  An. Now G > (g, (1, 2 , m + 1)) so G > An but G 

contains an odd element so G > An and as An is a maximal subgroup of Sn so 

we deduce G = Sn

This deals with all of the cases where n is odd and we turn our attention to 

the case that n is even. First observe that if m  =  n — 1, then gc~x = (n — l ,n )  

which we may conjugate by g2 to get (1,2) £ G and by Lemma 8.4 we are done. 

Equally, if m  =  2, then c =  (1,2) and we are done.

Now if 2 < m < n — 1, then we observe that c(c9)-1 =  (1,m  +1, m). Now let 

d  =  (1, m, m  +  I )91 m =  (1,2, n -f 2 — m). Now n +  2 — m ^ l , 2 a s  this would 

require m > n — 1 so we may apply Lemma 8.5 and we are done. □

Having dealt with transpositions and single cycles we now turn our attention 

to other standard shape representatives where the size of the support is smaller 

than n. We first examine the proof of Lemma 7.11 and note that it relied on 

Corollary 7.5. Unfortunately the analogue of Corollary 7.5 fails in Sn when 

b — a\n so we cannot use the same construction.

Instead we seek to expand on the proof given for An when the standard shape 

representative had support size n. First we note that Theorem 7.13 applies 

irrespective of whether the size of the support of c is n or not. Indeed when 

the size of the support is less than n the greatest common divisor condition is 

automatically met as c contains 1-cycles.

We first prove a result about c when c consists solely of transpositions.

Lem m a 8.9. Let g = (1 ,2 ,.. .,  n) ,n even, and let c — C1C2 . . .  Ck be a standard
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shape representative in Sn with the q, being disjoint transpositions and 2 k < n — 2 . 

Then G = {g, c) = Sn or G is isomorphic to S5

Proof. The case where G is isomorphic to S 5 occurs when n = 6 and k = 2 and 

this is shown in Lemma 8.1.

We now deal with the general case, we will show in all cases, except one, that 

G is Sn by showing that it is more transitive than any other group of that degree. 

In practice this means for all but n =  12 or 24 we need to show G is at least

4-transitive, for n = 12 or 24 we need to demonstrate G is at least 6-transitive as 

M12 and M24 are both 5-transitive. We use three constructions and convert each 

case to one of these:

1. We let

d = a ?  = (1, 2 ) (2 k + 1, 2 k +  2)

and let

c" =  c~lg = (1,3 , . . . ,  2 k +  1, 2 k +  2, . . . ,  n)

so c" is a cycle of length n —k+ 1 . Let C = (o', c"), clearly c" acts transitively 

on its support, this only leaves 2 but we may map any element to 2 via a 

suitable power of c" composed with d  so G is transitive. C has degree 

n — k + 2 and we may use Lemma 7.14 to show that C is primitive. We may 

now use Theorem 7.12 to show G is k — 1 transitive, so G is 6-transitive if 

k > 7  and 4-transitive if k > 5

2. If c =  (1,2)(3,4 ) .. .  (2k — 1,2k) and n > 6 and 2k +  1 prime, then let

d = ccP — (1 ,3 ,.. .,  2k — 1,2k +  1,2k, 2k -  2 , . . . ,  2).
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We let C  =  (d). Now d is of prime length so C is a transitive primitive

subgroup of G of degree 2k +  1 so by Theorem 7.12 G is at least (n — 2A;)-

transitive.

3. If c =  (1,2)(3,4 ) . . .  (2k — 1,2k) and n > 6 then, let

d  = cd* =  (1,3 , . . . ,  2k -  1,2k +  1,21b, 2k -  2 , . . . ,  2) 

d  is a cycle of length 2k +  1. Let

c" =  cc9* =  (1,2)(2 k +  1,2k +  2).

We let C — (d,d'). Now C  is of degree 2k -f 2. C is clearly transitive as

it is transitive on the support of d which only leaves 2k + 2 but we can 

map any element to 2k +  2 by mapping it it 2k +  1 and then applying c". 

Now Lemma 7.14 tells us that C is primitive as it contains a cycle of length 

2k — 1 which is coprime to the degree of C. We now apply Theorem 7.12 

to show that G is at least (n — 2k — l)-transitive.

We now consider how many transpositions c has:

1. k = 1. Now c =  (1,2) and we may apply Lemma 8.4 directly.

2. k = 2. Now c =  (1,2)(3,4). Now if n = 6, then we are in the special case. 

For n >  8 we use case 2 to show G is at least (n — 4)-transitive and so is at 

least 4-transitive, in particular for n > 12 G is at least 8-transitive.

/  2 \ g 23. k = 3. For n = 8 we observe that lee9  1 =  (1,2)(3,4) and we are in 

case 2 and G is at least 4-transitive. For n > 10 we observe that 2k +1 =  7
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so we are in case 2 and G is at least 4-transitive, and for n > 12 G is at 

least 6-transitive .

(  2 \ ff24. k = 4. For n = 10 we observe that fee5 ) =  (1,2)(3,4) and we are 

in case 2 and G is at least 6-transitive. For n =  12 we let d  =  ccg2 =

(1,2)(9,10) and let c" =  c'95 =  (2,3)(6,7). Now we consider:

c'" =  c'c" =  (1,2) (9 ,10)(2,3)(6,7) =  (1,3,2)(6,7)(9,10).

Now we may square d" to get (1,2,3) G G and Lemma 8.5 tells us that 

G =  Sn. Now for n > 14, we are in case 3, n — 2k — 1 > 5 so G is at least

5-transitive, in particular when n =  24, G is at least 15-transitive.

5. k = 5. For all n except 12 and 24 we can use case 1 and G is at least 4-

transitive. We need only worry about the two Mathieu groups. For n =  12 
(  2 \ 0 2we observe that fee5 I =  (1,2)(3,4) and we are in case 2 and G is at 

least 8-transitive. For n =  24 we observe that 2k +  1 =  11 which is prime 

so we are in case 2 and G is at least 14-transitive.

6. k = 6. For n ^  24 we may apply case 1 to show G is at least 5-transitive. 

For n = 24 we observe that 2k -F 1 =  13 which is prime so we are in case 2 

and G is at least 12-transitive.

7. k > 7 We may apply case 1 and G is at least 7-transitive.

□

We now turn our attention to proving an analogue of Lemma 7.15 for c with 

support of size less than n.
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Lem m a 8.10. Let g = (1 ,2 ,... ,  n), and let c = C\C2 .. .Ck be a standard shape 

representative in Sn with support size Sk < n and at least one cycle of length 

greater than 2. Then G = (c, g) contains a primitive subgroup. The degree of 

which is 2k +  2 if c contains no transpositions, and 2k +  1 otherwise.

Proof. We use the notation and construction of Lemma 7.11. We recall that: 

c' = c (c3)-1 =  (1, si +  1,52 +  1 , . . . ,  sk +  1, sk, sk- 1, . . . ,  Si)

and

c" =  (c9) lc =  (2, Si +  2, S2 + 2 , . . . ,  Sk-1 +  2,s k + 1, sk~i +  1, sk~2 +  1 , . . . ,  1)

Therefore, d  is a cycle of length 2k +1 . Now provided that the non-trivial orbits 

of c are not all of length 2 then let:

f (1,2)(sfc, sk +  1) c contains no transpositions
d" =  [c'c"] =

(l,2 )(sk'jSk'+i) otherwise

We consider the group C = (c',d").

Now in the case where c contains no transpositions, C has degree 2k +  2. 

C clearly acts transitively on the support of d  which only leaves 2 but we can 

reach 2 via a suitable power of d  and post-multiplying by d" so C is transitive. 

Lemma 7.14 tells us C is primitive as it contains a cycle one shorter than the 

degree of C which therefore has length coprime to the degree of C.

Now if c contains transpositions, then the support of d" is contained within 

the support of d  so C has degree 2k +  1 and is clearly transitive. We recall from 

the proof of Lemma 7.14 that if the support of a cycle is drawn from more than
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one block the cycle permutes the blocks. For contradiction we assume that C  has 

a block structure. Now as 1 and 2 are adjacent in d  they cannot be in the same 

block. However, 1 and 2 are in the same cycle in d" so d" must map the block 

containing 1 to the block containing 2. d” only moves two other elements and we 

conclude that these must constitute the remainder of the blocks including 1 and

2. Therefore, the blocks must be of size 2, but 2k +  1 is odd so blocks of size 2 

cannot occur so we conclude that C is primitive. □

We are now in a position to prove the analogue of Lemma 7.11.

Lem m a 8.11. Let g = (1 ,2 ,... ,n) and c be a standard shape representative in

Sn and let the size of the support of c be less than n. Then

G =  {g,c)= <

(g) c — g or c = id

An n odd and c an even element of Sn

Isomorphic to S$ n =  6 and c = (1,2) (3,4)

Sn otherwise

Proof The cases where c = g or id follow directly from Lemma 8.2. Similarly, 

the case where n is odd and c an even standard shape representative is covered by 

Lemma 7.11. The case where n = 6 and c =  (1,2)(3,4) is covered in Lemma 8.1.

We now turn our attention to the cases where one of g or c is an odd element. 

Clearly, G is transitive and we deploy Theorem 7.13 to show that it is also 

primitive.

We deal with the case where c consists solely of transpositions first. Now if n 

is odd and Sk < n — 2, then ccg2 = (1,2)(sjt -f 1, Sk +  2) and we can use Lemma 7.4 

to show An < G and conclude that, as G contains an odd cycle, G = Sn. If n is 

odd and Sk =  n — 1, then c(cg2̂  = (1,2, n) and conjugation by g yields (1,2,3)
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and we may apply Lemma 7.8 to show An < G and conclude that, as G contains 

an odd cycle, G = Sn.

Now if n is even and c consists solely of transpositions, then we may apply 

Lemma 8.9 and we are done.

We first note that, if c is a single cycle, then Lemma 8.8 assures us that

G — Sn.

Provided that G is at least 4-transitive it must be one of Sn, An, M n, M12, 

M23, or M24. We may rule out An as we have insisted that either c or g is odd. 

We will show that G is not one of the Mathieu groups by showing, for suitable n, 

that G is either 5 or 6 transitive. For all but n =  11,12,23, or 24 we will show G 

is 4-transitive. Now we can show G is highly transitive if either c has relatively 

small support or c contains some long cycles.

We construct C  as in Lemma 8.10. Now if c does not contain any transpo­

sitions, then C  is of degree 2k +  2 and is primitive and transitive therefore G is 

n — 2k — 1 transitive. Similarly, if c contains some transpositions, then C is of 

degree 2k +  1 and is primitive and transitive therefore G is n — 2k transitive.

Recall that \Supp(c)\ =  s*,. Now each cycle in c contains at least two elements 

so k < Now if Sk < n — 7, then we are done as G is at least n — 21̂  - 1  =  6- 

transitive. We have already insisted that the size of the support of c is at most 

n — 1. We now consider the remaining cases where n — 6 < S k < n  — 1.

1. Sk = n — 6 This implies G is at least 5-transitive. Now if c contains a 

transposition, then G is at least 6-transitive and we are done. If c contains 

a cycle of length at least 3, then k < +  1 =  and we deduce G is at

least 6-transitive.

2. Sk = n — 5 This implies G is at least 4-transitive. If c contains a cycle of
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length at least 4, then G is at least 6-transitive and we are done. This leaves 

only the case where c contains only 3-cycles and transpositions. If c contains 

two or more 3-cycles, then G is at least 6-transitive. If c contains a single 

3-cycle and transpositions, then c4 =  (1,2,3) and we can use Lemma 8.7.

3. Sk =  n — 4 This implies G is at least 3-transitive. If c contains a cycle of 

length at least 5, then G is at least 6-transitive and we are done. Equally, 

if c contains two 4 cycles or a 4-cycle and a 3-cycle, then G is at least

6-transitive and we are done. If c contains a 4-cycle plus transpositions 

then G is n — 2k transitive and k = so G is at least 6-transitive. This 

leaves only the case where c contains 2 3-cycles plus transpositions or a 

single 3-cycle. If c contains two 3-cycles plus transpositions, then n > 10 

as Sk > 6. Now c4 =  (1,2,3)(4,5,6) and is a standard shape representative 

and we can deduce G is at least 5-transitive and is at least 6-transitive for 

n > 11. If c has a single 3-cycle then, c4 =  (1,2,3) now if n is even, then 

we may apply Lemma 8.5 and we are done. If n is odd, then we may apply 

Lemma 7.8 to deduce An <  G and as G contains an odd cycle we deduce

C = Sn.

4. Sk =  n — 3 This implies G is at least 2-transitive. If c contains a cycle of 

length at least 6, then G is at least 6-transitive and we are done. Equally, 

if c contains two cycles of length at least 4, then G is at least 6-transitive 

and we are done. This leaves only 3 possible cases:

(a) The longest cycle in c is a 5-cycle. If c contains any other cycles, then 

G is at least 6 transitive. If not, then we may apply Lemma 8.8 and 

we are done.
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(b) The longest cycle in c is a 4~cycle. If c contains at least 2 4-cycles, then 

G is at least 6-transitive. If c contains at least 2 3-cycles, then G is at 

least 6-transitive. If c consists of a 4-cycle, a 3-cycle and possibly some 

transpositions, then c4 =  (5,6,7) and we may conjugate by g~3 to get

(1,2,3) G G. Now if n is even, then we can then apply Lemma 8.5. 

If n is odd, then we apply Lemma 7.8 to show An < G and deduce 

G = Sn. Now if c consists of a 4-cycle plus transpositions only then 

G is n — 2k transitive and k = so G is 5-transitive and n must be 

odd as the support is of even size so G = Sn.

(c) The longest cycle in c is a 3-cycle. If c contains any transpositions, 

then \Supp(c4)\ < n — 5 and we are in case 2. This leaves only the 

cases where c consists solely of 3-cycles. If c = (1,2,3), then we 

may apply Lemma 8.5. If c =  (1,2,3)(4,5,6), then n = 9 and G is 

9 — 4 — 1 =  4-transitive and we are done. If c =  (1,2,3)(4,5,6)(7,8,9), 

then n — 12 and we require G to be 6-transitive. Now observe that 

c(cff)_1 =  (1,4,7,10,9,6,3) which generates a transitive primitive 

group of degree 7 and Theorem 7.12 tells us G is at least 6-transitive.

sk = n — 2 If c contains a cycle of length at least 7, then G is 6-transitive

and we are done. This leaves only 4 possible cases.

(a) The longest cycle in c is a 6-cycle. If c contains any other cycle, then 

G is at least 6-transitive. If c contains a single 6-cycle, then we may 

use Lemma 8.8.

(b) The longest cycle in c is a 5-cycle. If c also contains a cycle of length 

at least 4, then G is at least 6-transitive and we are done. Otherwise c 

only contains 3-cycles and transpositions, in any case c6 =  (1,2,3,4,5)



and we may apply Lemma 8.8.

(c) The longest cycle in c is a 4~cycle. If c contains 2 4-cycles and any 

other cycle, then G is at least 6-transitive and we are done. If c 

contains any 3 cycles, then \Supp(c*)\ < n — 6 and we may conjugate 

c4 to make it a standard shape representative. Now k < and 

so G is at least 6-transitive as n > 9. This only leaves the case 

where c has 4-cycles and transpositions. Now if c has 2 4-cycles, then 

d  =  c2 =  (1,3)(2,4)(5,7)(6,8) and we consider c'c'9 = (1,5,9,7,3). 

(c'd9) is a transitive primitive subgroup of G of degree 5, so for n > 10 

Theorem 7.12 tells us that G is at least 6-transitive. Now if c has only 

one 4-cycle, then let d  = c2 =  (1,3)(2,4) and d d 9 = (1,5,3) and this 

generates a transitive primitive subgroup of G of degree 3 so for n > 7 

Theorem 7.12 tells us that G is at least 5-transitive and for n > 8 G 

is at least 6-transitive.

(d) The longest cycle in c is a 3-cycle. If c contains any transpositions then 

\Supp(c*)\ < n —4 so if n > 7, then G is at least 4-transitive, for n > 10 

G is at least 5-transitive and for n > 13 G is at least 6-transitive, this 

leaves only Myi but for n = 12 the only standard shape representative 

consisting of 3-cycles and transpositions with support size n — 2 has 

2 transpositions so \Supp(c4)\ = n — 6 and G is at least 7-transitive. 

Now if c consists solely of 3-cycles, then G is at least 4-transitive for 

n > 11, 5-transitive for n > 14, and 6-transitive for n > 17. Now if 

n = 4, then we may use Lemma 8.5 directly. Now if n = 8, then let 

d  = c (c5)-1 =  (1,4,7,6,3) now the cyclic subgroup of G generated by 

d  is of degree 5 and is transitive and primitive as d  has prime length,
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so by Theorem 7.12 G is at least 4-transitive. We now come to n =  11, 

now Afu is 4-transitive and we are only assured of 4-transitivity by our 

standard construction. Let d  = c — (1, 2,3,10,11) now (d) is

a transitive primitive subgroup of G of degree 5 so by Theorem 7.12 

G is at least 7-transitive.

Sk = n — 1 If c contains a cycle of length at least 8, then G is 6-transitive 

and we are done. This leaves 6 cases:

(a) The longest cycle in c is a 7 cycle. Now if c contains any other cycle, 

then G is 6-transitive. Otherwise c must be a single 7-cycle and we 

may use Lemma 8.8.

(b) The longest cycle in c is a 6-cycle. Now if c also contains a 4,5 or 6- 

cycle, then G is at least 6-transitive and we are done. Now if c contains 

only a 6-cycle and transpositions, then n > 9. Observe that c2 =  

(1,3,5)(2,4,6) now let d  =  c2 ((c2)5) 1 =  (1,7,5). We deduce that 

G contains a transitive primitive group of degree 3 and Theorem 7.12 

gives us G is at least 7-transitive. Now if c contains a 6-cycle, some

3-cycles and some transpositions then G is n — 2k transitive and k <

+  2 =  so G is at least 6-transitive. This leaves only the case 

where c has only a 6-cycle and 3-cycles. Now n > 10, let d  = c3 =  

(1,4)(2,5)(3,6) and observe that d d 9 =  (1,7,4), we deduce that G 

contains a transitive primitive subgroup of degree 3 so G is at least 

8-transitive for n > 10.

(c) The longest cycle in c is a 5-cycle. If c has more than one 5-cycle, then 

G is at least 6-transitive and we are done. If c has only one 5-cycle, 

then the other cycles have length coprime to 5 so there is a power of



c that is (1,2,3,4,5) and we may apply Lemma 8.8.

(d) The longest cycle in c is a 4-cycle. If c contains 3 4-cycles, then G is 

at least 6-transitive and we are done. If c contains any 3 cycles, then 

n > 8 and \Supp(cA)\ < n — 5, furthermore we may conjugate by a 

power of g so that we have a standard shape representative with at 

most cycles and so for n > 8 G is at least 5-transitive and for 

n > 11 G is at least 6-transitive. This leaves only the case where c 

has less than 3 4-cycles and no 3-cycles. Now if c has 2 4-cycles, then 

let d  = c2 = (1,3)(2,4)(5,7)(6,8) and we consider d d g = (1,5,9,7,3) 

now this generates a transitive primitive subgroup of G of degree 5, so 

for n > 9 we may use Theorem 7.12 to show G is at least 5-transitive 

and for n >  11 G is at least 7-transitive. Now if c has only 1 4-cycle, 

then let d  = c? = (1,3) (2,4) and d d 9 =  (1,5,3) and this generates 

a transitive primitive subgroup of G of degree 3 so for n > 7 we may 

use Theorem 7.12 to show G is at least 5-transitive and for n > 9 G 

is at least 7-transitive. This leaves the case where n =  5 in this case c 

must be (1,2,3,4) and we may apply Lemma 8.8.

(e) The longest cycle in c is a 3-cycle. If c contains any transpositions, 

then \Supp(c4)\ < n — 3 so G is at least 4-transitive for n > 6, 5- 

transitive for n > 11 and 6-transitive for n > 14, this leaves only 

M12. For n = 12 the only standard shape representatives consist­

ing of 3-cycles and transpositions with support size n — 1 are c =

(1,2,3)(4,5)(6,7)(8,9)(10,11) and c =  (1,2,3)(4,5 ,6)(7,8 ,9)(10,11), 

in the first case c4 =  (1,2,3) and we may apply Lemma 8.5. In the 

second case cfc?3} = (1,2,3,11,10) and we conclude that G has
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a primitive transitive subgroup of degree 5 and so by Theorem 7.12 

G is at least 8-transitive. Now if c consists solely of 3-cycles, then

G is at least 4-transitive for n > 13, and 6-transitive for n > 19.

We consider the cases where n = 4,7,10 separately. Now if n = 4, 

then we have a single 3-cycle and we may apply Lemma 8.5. If 

n = 7, then c =  (1,2,3)(4,5,6) and c =  (2,3,7) and so

by Theorem 7.12 G is at least 5-transitive. Finally, if n =  10 then 

c =  (1,2,3)(4,5 ,6)(7,8,9) and c — (2,3,10) and so by Theo­

rem 7.12 G is at least 8-transitive and we are done.

□

8.2.2 Shapes w ith  support size n

Finally we turn our attention to the case where c is a standard shape representa­

tive with support of size n. As before we generate a transitive primitive subgroup 

of G = (g,c) and then use Theorem 7.12 to show that G is highly transitive.

We begin by expanding Lemma 7.15 to cover even elements.

Lemma 8.12. Let g =  (1 ,2 ,. .. ,  n), and let c =  C1 C2 . . .  Ck be a standard shape 

representative in Sn with support of size n and not all cycles the same length, 

then G = (c, g) contains a primitive subgroup of degree less than —■=!

Proof We use the same construction as in Lemma 7.15 and observe that we may

still conclude that C is both transitive and primitive. We now turn our attention 

to the degree of C.

We want to maximise k +  k', this will occur when the e* are shortest therefore 

we want to only use 4-cycles, 3-cycles and transpositions.
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We deal with the case where c contains only 3-cycles and transpositions first. 

Now n = 3k' +  2(k — k‘) =  2k +  k' so k = now Degree(C) = k +  k' = 

+  k' = and this is maximised when k' is maximised so there is only one

transposition so k' = whereby Degree(C) =

Now if c contains a 4-cycle, then we assume it contains k" of them and we 

get n =  Ak" +  3(kr — k") +  2[k — k') = 2k +  k' + k" so k = n~*2~fc" and so 

Degree{C) =  k + k' =  + k' = n+k'~k" and this is maximised when

k' — k" is maximised and this will occur when k' is maximum and k" is minimum 

so c contains a single transposition and a single 4-cycle so k' =  -1- 1 and

Degree{C) =  ^  < □

Now for n > 8 we can deduce that G is at least 4-transitive and hence if

n  7̂  11,12,23, or 24, then G is either An or Sn.

8.3 Conclusion

We now conclude chapters 7 and 8 with a final summary of our main results from 

this section.

T heorem  8.13. Let g = (1 ,2 ,.. .,  n) and let c be a standard shape representative

in Sn. I f  the greatest common divisor of the cycle lengths of c is 1, then:

(g) c = g or c — id

An n odd and c an even element of Sn
G = (g,c) = {

Isomorphic to S§ n =  6 and c=  (1,2)(3,4)

Sn otherwise

Proof Clearly if c = g or id , then (c,g) = {g).
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Theorem 7.16 covers the case when n is odd and c is an even element. Equally, 

Lemma 8.1 deals with the case where n = 6 and c=  (1,2)(3,4).

This leaves only the cases where either n is even or c is an odd element. We 

have already dealt with the cases where the size of the support of c is less than 

n  in Lemma 8.11. We now turn our attention to the case where the size of the 

support of c is n. Lemma 8.12 tells us that G contains a transitive primitive 

subgroup of degree at most If n > 17, then we conclude that G is at least

7-transitive and we are done. If n > 11, then G is at least 5-transitive and if 

n > 8, then G is at least 4-transitive. This leaves only the cases where n < 8 or 

n = 12 where G could be M12. We deal with each in turn:

1. If n = 3, then the only element with support size n is c =  (1,2,3) =  g 

which we have ruled out.

2. If n =  4, then the only elements with support size n are c — (1,2,3,4) =  g 

which we have ruled out and c — (1,2)(3,4) which we have ruled out as the 

greatest common divisor of the cycle lengths is 2.

3. If n = 5, then the only elements with support size n are c =  (1,2,3,4,5) =  g 

which we have ruled out and c =  (1,2,3)(4,5) now c4 =  (1,2,3) and we 

may apply Lemma 8.11.

4. If n = 6, then the only elements with support size n are c =  (1,2,3,4,5,6) 

which we have ruled out, c =  (1,2,3)(4,5 ,6),c =  (1,2,3,4)(5,6), and c =

(1,2) (3,4) (5,6) all of which we have ruled out as the greatest common 

divisor of their cycle lengths is greater than 1.

5. If n = 7, then there are only 4 elements with support size n. We have ruled 

out the case where c =  (1,2,3,4,5,6,7) =  g. If c =  (1,2,3,4,5)(6,7), then
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c6 =  (1,2,3,4,5) and we may apply Lemma 8.11. If c =  (1,2,3,4)(5,6,7), 

then (c4)5 =  (1,2,3) and we may apply Lemma 8.8. If c =  (1,2,3)(4,5)(6,7),

then c4 =  (1,2,3) and we may apply Lemma 8.8.

6. If n =  12, then if c contains a single transposition, then the remaining 

support of c has size 10 so must contain a cycle of length at least 4 in which 

case C has degree at most 7 and Theorem 7.12 tells us that G is at least

6-transitive so cannot be M\2 . If c does not contain a transposition, then 

c has at most 3 cycles and so C has degree at most 5 and Theorem 7.12 

tells us that G is at least 8-transitive. Now if c contains more than one 

transposition then c is one of the following elements:

• c =  (1,2,3,4,5)(6,7,8)(9,10)(11,12) and c6 =  (1,2,3,4,5) so G has 

a transitive primitive subgroup of degree 5 and so G is at least 7- 

transitive.

• c =  (1,2,3)(4,5 ,6)(7,8)(9,10)(11,12) and c4 =  (1,2,3)(4,5,6) which 

is a standard shape representative with support size less than n so

No other shapes occur as all other shapes with support size 12 have the 

greatest common divisor of their cycles lengths greater than 1.

□
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Chapter 9

Proving groups prim itive using 

cycle shapes

Motivated by Lemma 7.14 and a result of Davenport and Smith [7] we turn our 

attention to whether we can prove a group primitive using information about the 

cycle structures of the elements of the group. Clearly where the actual generators 

are known in a concrete sense then it will be possible to reason about the action 

of the generators on specific elements of the set the group is acting on and show 

the group is primitive. We do not deal with this case here, instead we concentrate 

on the case where only the cycle decomposition of the group elements is known. 

This may seem like an unnecessary constraint but such a problem is real when 

considering polynomial factorisation.

We begin by considering the effects a prime length cycle has on the block 

structure that can occur.

Lem m a 9.1. Let G be a transitive permutation group of degree n and let c — 

C\C2 • • • cm G G where the Ci are disjoint cycles. I f  c contains a cycle, Cj, of prime 

length p, then one of the following is true:
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1. G is primitive.

2. The blocks of imprimitivity of G are of size greater than or equal to p and 

Cj has support drawn from a single block.

3. G has at least p blocks of imprimitivity.

Proof. Clearly G can be primitive. We now assume that G is imprimitive and 

consider the way the p-cycle could act on the blocks. Now if the blocks have at 

least p elements, then the support of the p-cycle could be drawn from a single 

block and we are done. However, if the blocks have size smaller than p , then the 

p-cycle must act on the blocks by permuting them. For contradiction we assume 

that the support of the p-cycle has at least two elements drawn from the same 

block, B. Therefore there must be a smallest power,k, of the p-cycle such that 

Bd? =  B  equally BCjk = B  and we deduce that Bcjk = B  for all a. Now p is 

prime so either k =  p or k is coprime to p. If k =  p , then our assumption that 

the support of Cj contained more than one element of B  is wrong. If k is coprime 

to p then ak will take every value between 1 and p and we conclude that the 

support of Cj is drawn from a single block. □

Now Lemma 9.1 may not seem overly powerful but the basic construction can 

be applied to cycles that are not of prime length and we now do this.

Lem m a 9.2. Let G be a transitive permutation group of degree n and let c = 

C\C2 .. .cm e G where the Ci are disjoint cycles. I f  c contains a cycle, Cj, of length 

I, then one of the following is true:

1. G is primitive

2. The blocks of imprimitivity of G are of size greater than or equal to I and 

Cj has support drawn from a single block
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3. The support o f Cj consists o f  ̂ elem ents drawn from  each o f d blocks.

Proof Clearly G can be primitive. We now assume G is imprimitive and consider 

the way Cj could act on the blocks. If the block size is at least I then clearly the 

support of Cj can be drawn from a single block. Now let

Cj ( a i ,  ot-2, • •.  j o?/)

and let B  be the block containing a\. Suppose that, B , B g , Bg2, . . .  Bgr ~ 1 are 

distinct, but that (ai)gr G Bg1 for some 0 < i < r. It follows that (oLi)gr G B  

else (ot\)gr~1 G Bg1-1. Thus Cj acts on r  blocks and the support of Cj contains 

precisely £ elements from each block. □

The real strength of Lemmas 9.2 and 9.1 is not when used on single cycles but 

by considering how each cycle may move a block. For motivation we consider g 

an element of a transitive group G of degree 30. First we consider the possible 

block sizes for the group they are {2,3,5,6,10,15}, now if our chosen element 

has the following cycle structure {9,7,5,5,4}, then we can begin to eliminate 

possible block sizes. We start with the 7-cycle, either the group has at least 7 

blocks or the blocks are at least size 7, this eliminates blocks of size 5 and 6 so 

the possible block sizes are {2,3,10,15}. Now for blocks of size 10 and 15 we 

need cycles where the sizes of the supports sum to 3 and 8 respectively (as they 

must act on a single block) and we see this cannot occur leaving only blocks of 

sizes 2 and 3. Now the 7-cycle must act on 7 blocks moving them in a cycle, 

the only way the remainder of each block could be moved consistently would be 

if g contained another 7-cycle or a 14-cycle but neither of these is true and we 

conclude that G is primitive.
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The above example shows the strength of prime length cycles whose length is 

co-prime to the degree of the group. They work in two ways the first is that for 

blocks larger than p to exist the element must have cycle(s) whose lengths sum 

to precisely the block size minus p. The second is that where they act on more 

than one block there must be enough elements in cycles of length divisible by p 

to cover a complete number of blocks. We now formalise this using the following 

result.

T heorem  9.3. Let G be a transitive imprimitive permutation group of degree n 

with blocks of size b and let c = C1C2 . . .  Cm £ G where the c* are disjoint cycles 

(possibly of length 1). I f  c contains a cycle,Cj, of prime length p, then either c 

contains cycles distinct from Cj whose lengths sum tob — p or c contains one or 

more cycles distinct from Cj whose length is divisible by p whose total support is 

of size p(b — 1).

Proof Now if the support of Cj is drawn from a single block, B, then that block 

is stabilised by c. Now let Ck be disjoint from Cj but have support drawn from 

B. If the support of Ck is not drawn entirely from B, then there exists a power 

of Ck such that Bclk ^  B  but B  is stabilised by c so this is absurd. We conclude 

that any cycle with support drawn from B  must have support a subset of B  and 

it follows that c contains cycles whose lengths sum to b — p.

Now if the support of Cj is drawn from more than one block, then by Lemma 9.1 

the support of Cj is drawn from precisely p blocks. Let B  be one of these 

blocks then we may label the blocks by the power of Cj that maps B  to it so 

BeJ =  B  =  Bo, Bcj = Bu Bcj = B 2 and so on. Now let Ck be another cycle 

whose support includes an element from B. Now if c* has support drawn from a 

block,B', other than one of Bi, then there exists a power of cjt such that Bcrk =  B'
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but B(fj = Bi but Bi ^  B' which is absurd so the support of Cfc is drawn from the 

Bi. Equally if Ck is of length I, then Bclk = B  but Bclj = B  only occurs when p\l 

so as the Bi are blocks of G we conclude that p\l and any cycle whose support 

is drawn from the Bi has length divisible by p. Finally we note that as each of 

the Bi are moved by c every element from each of the Bi must be involved in a 

non-trivial cycle and we are done. □

Previously we extended Lemma 9.1 to cover cycles of composite length. Clearly 

it would be useful to extend Theorem 9.3 to cover cycles of composite length as 

we are not guaranteed cycles of prime length exist. Where the support of a cycle 

is drawn from a single block the result transfers directly as we do not rely on the 

cycle being prime in our proof. Where the support is drawn from more than one 

block we know that it is drawn from ^ blocks for some divisor d o il. Now the 

same argument as above applies with ^ taking the same role as p and all of the 

cycles must have length divisible by  ̂ and the total size of their support must be 

* ( $ - ! ) •

C orollary 9.4. Let G be a transitive imprimitive permutation group of degree n 

with blocks of size b and let c = C\C2 . . .  Cm G G where the Ci are disjoint cycles 

(possibly of length 1). I f  c contains a cycle,Cj, of length I, then either c contains 

cycles distinct from Cj whose lengths sum to b — I or for some divisor,d, of I c 

contains one or more cycles distinct from Cj whose length is divisible by  ̂ and 

whose total support is of size

We conclude by considering how these results may be used in practice. Even 

with these results it seems unlikely that we would be able to prove a group 

primitive based on a single element unless it contained a long prime cycle together 

with relatively few cycles of length 1. However, if one had information on the
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cycle shapes of a number of group elements it becomes more likely that all block 

sizes will be eliminated. A possible iterative approach is outlined below:

A lgorithm  9.1. [Block elimination]

1. Let D = {d{\di divides Degree{G)}.

2. For each g 6 G remove from D those d{ that are incompatible with g.

3. If D = 0 and G is transitive then G is primitive.

Our constraint that we do not know the support of each cycle merely their 

shape means that we cannot carry information between group elements. If we 

did know the support of each cycle, then we would be able to specify the possible 

blocks and therefore could test if each element was consistent with a given set 

of blocks and not just a block structure by similar reasoning on how its support 

must act on blocks.
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Chapter 10

Conclusion

We conclude this thesis by drawing together the main results from each section.

In the first part of the thesis we examined those elements in Sn that have 

trivially intersecting cyclic groups but which nonetheless satisfy a word of length 

shorter than their order the main result of this section is:

T heorem  10.1. Suppose thatn  >  8, then there exist g, h G Sn with (g)n(h) = id, 

o(g), o(h) > n and there is a word l j  of length n on g and h with l j  =  1.

We also used a family of Frobenius groups where nearly all elements were 

of prime order to show that there are groups where two prime power elements 

of order p have a shortest word also of length p. We also gave a bound on 

the proportion of elements in a group which can have prime order. These are 

summarised by the following two results:

T heorem  10 .2 . Let p be a prime then there exists a group G and elements 

g,h e  G both of order p such that the shortest positive word on g and h that is 

not of order p is of length p.
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T heorem  10.3. Let G be a finite group and p a prime. I f  \G\ = pnq and p and 

q are co-prime then the proportion of p-power elements is at most (jpn — 1 )/pn

In the second part of the thesis we turned the problem on its head and looked 

at expressing elements of Sn and An as products of cycles of a given length. These 

results were largely known and are summarised via the following theorem:

T heorem  10.4. For all g £ An there exist x ,y  both l-cycles in An such that 

g = xy if and only if  I is odd and greater than or equal to lmin where:

n divisible by 4

|  (3n — 3) n — 1 divisible by 4

|  (3n — 2) n — 2 divisible by 4

|  (3n — 1) n — 3 divisible by 4

However, in the course of the work we also prove the following result:

Theorem  10.5. Let n >  3 be odd and let g — (1 ,2 ,.. .,  n) and let c be a standard 

shape representative in Sn then cg~2 is one of the following:

1. An n-cycle

2. An n — 1-cycle

3. Two disjoint cycles whose combined support is of size n

We also give specific conditions on when each of the above cases occur. Finally 

in the second part of the thesis we proved an interesting result regarding the 

element shapes that can arise from the product of two elements both of which 

have trivial stabilizer and are composed entirely of transpositions:

Theorem  10.6. Let n be even and Q, be of size n, and let n  be the set of elements 

in Sn composed of precisely n/2 disjoint transpositions then only elements with
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an even number of each cycle shape may be expressed as a product of two elements 

of II. Moreover, for each transposition only one point will appear in each cycle.

In the third part of the thesis we extended our arguments relating to express­

ing elements as products of a given shape to look at the groups generated by two 

elements of a given shape. In particular we looked at the groups generated by 

the n-cycle (1, 2 , . . . ,  n) and a standard representative of each conjugacy class of 

Sn. The main result of this section is:

T heorem  10.7. Let g = (1 ,2 ,... , n) and let c be a standard shape representative

in Sn. I f  the greatest common divisor of the cycle lengths of c is 1, then:

(g) c = g or c = id

A n n odd and c an even element of Sn
G =  (g,c) =

Isomorphic to S& n =  6 and c = (1, 2)(3,4)

Sn otherwise
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A ppendix A

Parker Vectors

A .l  Introduction

The Parker vector of a group was defined by Richard Parker and a detailed 

description can be found in [5] section 2.8. The Parker vector of a permutation 

group G of degree n is defined as P = {pi,P2 , • • • ,pn} & sequence of numbers 

with each Pi representing the average number of points moved by i-cycles for 

elements of G. This vector is always composed of integer entries and the sum 

of these entries will always be n. Our interest in the Parker vector, like that 

of Parker himself, stems from an original interest of the author in looking at 

polynomial factorisation and it is with these calculations in mind that the work 

of this chapter is undertaken.

A. 1.1 Parker vector for specific groups

The Parker vector for the symmetric group, Sn, is a sequence of l ’s and, for n ^ 6 , 

this is unique i.e. there is no other group with such a Parker vector. Similarly the 

Parker vector for the alternating group, An, is a sequence of l 's  ending in either
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{0,2} or {2,0} this is unique for all n. However, this unique mapping between 

groups and their Parker vector is not generally true and therefore except, in 

exceptional circumstances, it is not possible to identify a group using its Parker 

vector alone.

Extending this to Parker vectors for direct products of Smi we find that again 

the Parker vector will be of a specific type. Essentially the Parker vector for 

such a group will be the sum of the individual Parker vectors for each group. 

For example, the Parker vector for S 3 x 64 x S 2 is {3,3,2,1,0,0,0,0,0}. There­

fore, assuming we know a group is a product of Smi and we know the Parker 

vector for the group we can deduce the mi by repeatedly removing the largest 

group. In our previous example we could deduce the largest m* was 4 contribut­

ing {1, 1, 1, 1, 0 , 0 , 0 , 0 ,0} to the vector, subtracting this gives a residual vector of 

{2,2,1,0,0,0,0,0,0}. Repeating allows us to deduce the group also contains S3  

and then S 2 and we have a complete breakdown of the group. Of course, if our 

original assumption that the group is a direct product of Smi is incorrect then so 

is this analysis.

A . 1.2 Polynom ial factorisation

Let T  be a square-free univariate polynomial over Z. Now we consider Tp the 

reduction of T  when considered as a polynomial over Zp where p is a prime, and 

ignoring finitely many bad primes where p divides the leading coefficient. Now 

if we factorise Tp, in Zp, then the degrees of the irreducible factors are the cycle 

lengths of the Frobenius automorphism. Furthermore, as we have removed the 

bad primes the Frobenius automorphism lifts to an element of the Galois group 

Gt of T  over Z. Now if the lifting produces a random element of Gt for suitably
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large primes then we can use this to calculate the Parker vector of Gt . In order 

to calculate the Parker vector of a group it suffices to know the cycle shapes of 

all the elements of the group. Thus, given sufficient time, it would be possible to 

calculate the Parker vector for Gt to any required degree of certainty.

In general the Galois group for an irreducible polynomial will be Sm where m  

is the degree of the polynomial. Where this is the case we can use the sampling 

and reduction technique outlined above to find this with relative ease, experi­

mental work performed by Puttock [11] shows that, on average, this can be done 

using only 5 primes. Furthermore, by extending this to an arbitrary reducible 

polynomial its Galois group will, in general, be the direct product of finitely many 

Smi with ^  Smi =  n i the degree of the polynomial, with each of the Smi being 

the Galois group for one of the irreducible factors.

Assuming the the Galois group of a given polynomial is the direct product of 

Smi’s and that it is possible to calculate the Parker vector of a group via repeated 

random sampling of the group then it would be possible to use the information 

derived from repeated factorisations modulo p to determine the degrees of all 

of the factors in the polynomial. Indeed, p\ gives the number of factors in the 

polynomial. Algorithm A.l gives a high level overview of the approach that would 

need to be taken to calculate the ra^s using repeated factorisation.

A lgorithm  A .I. [Parker Factorisation]

1. Generate the Parker vector to required confidence retaining each factorisation

2. Find the longest factor and lift to a true factor, if this fails, then try another 

longest factor or search for more

3. Factorise the identified factor over each prime and remove from the data
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4- Repeat the removal of largest factors on the remainder until all factors are re­

moved

Using the approach outlined in Algorithm A.l is essentially a large scale data 

gathering exercise using a large numbers of factorisations and knowledge of the 

Parker vector’s properties to determine when to stop gathering data. While such 

an approach would certainly remove the combinatorial explosion often associated 

with polynomial factorisation the cost associated with gathering sufficient data 

to ensure the largest factor were known to any degree of confidence may wTell be 

too great to be of practical interest.

A .2 Similarity of Parker vectors

We have already noted that the Parker vector for Sn is unique for n ^ 6 .  However, 

when considering convergence of Parker vectors it is useful to know how close to 

the Parker vector for Sn the Parker vector for an arbitrary transitive group can 

be. GAP contains a library of all transitive permutation groups whose degree is 

23 or less. By enumerating the conjugacy classes of the group it is relatively fast 

to calculate the Parker vector for small groups. Table A.l shows the number of 

zero entries in the Parker vector for all small transitive groups whose degree is 

between 8 and 23, excluding Sn and An.
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n
~

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Table A.l: Number of zeros in Parker vector for small transitive groups

Total
number

of Number of zeros in Parker vector 
groups 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

48 1 5 12 14 15 1 0
34 0 0 6 10 10 4 2 0
43 0 3 8 8 11 11 2 0 0

6 0 0 1 0 1 1 0 2 1 0
299 0 0 8 13 33 114 94 35 2 0 0

7 0 0 0 0 0 2 0 1 1 2 1 0
61 0 0 2 6 4 7 11 12 7 9 3 0 0

102 0 0 0 2 8 17 20 20 19 10 4 2 0 0
1,952 0 0 0 3 7 4 15 63 178 165 316 970 230 1 0

8 0 0 0 0 0 1 0 1 0 0 2 1 1 1 1 0  
981 0 0 0 2 6 9 17 17 33 132 219 320 134 91 1 0 0

6 0 0 0 0 0  0 0 0  0 0 0 1 0 1 1 2 1
1,115 0 0 0 0 3 6 2 14 37 110 124 89 188 344 160 35 3

162 0 0 0 0 0 3 8 4 7 10 12 18 14 31 26 14 12
57 0 0 0 0 2  6 1 2  1 3 1 4 3 5 5 9 5

5 0 0 0 0 0  0 0 0  0 0 1 0 0 0 0 0 0



Table A.l shows that for larger n not only are no Parker vectors identical to 

those for Sn and An there is a significant difference between them. Davenport 

and Smith [7] have shown that if a transitive group contains a p-cycle with § < 

p < n — 3, then the group is at least 4-transitive and hence, assuming it is not 

one of the four Mathieu groups which are more than 4 transitive, is either Sn or 

An. Therefore we can put a bound on the minimum number of non-zero entries 

the Parker vector of a transitive group may have by enumerating the number of 

primes, p , in the range |  < p < n — 3. Table A.2 extends Table A.l to show 

the theoretical minimum number of zero entries in the Parker vector of transitive 

groups for various n.

Table A.2: Minimum zeros in Parker vector of transitive groups

n Minimum zeros
25 3
30 3
50 6
100 10
150 13
200 20
500 41

Applying this for 8 < n < 23 the theoretical bound is only achieved for n =  8 

and for all other n the theoretical bound appears to be conservative. However, 

for larger n we have no evidence save for this bound and must assume this is the 

best we can do. Working out the above figures for all n between 10 and 1,000 

gives the smallest number of zeros as 6.7% of n and the largest as 15% with the 

average being 8%. This bound only applies to transitive groups and therefore it 

is possible to find a Parker vector much closer to that of Sn for a non-transitive 

group, for example, the Parker vector for *S'n_2 x S 2 only differs from that of Sn
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in four places p1,p 2 ,pn- i,  and pn.

A .3 Convergence of Parker Vectors

To be of use in determining the factors of a polynomial the Parker vector would 

need to converge rapidly to its final version as without this convergence any 

algorithm would rapidly become less efficient than attempting to construct a 

factorisation from a small number of probes and lifting it to a final factorisation. 

In this section we discuss various methods for determining when a Parker vector 

is sufficiently determined to be of use in the factorisation of a polynomial.

A .3.1  Pointw ise M ethod

The most simple method for determining whether a Parker vector has stablised is 

to look at each entry within the vector in turn and determine how far from being 

an integer the particular entry is and terminating the search when all entries are 

within a given tolerance, ignoring the test one the first probe as this will always 

be an integer.

When constructing such an algorithm certain practical questions arise the 

first such question is what is an acceptable level of tolerance, p, to set on each 

entry in order to be reasonably confident that the vector returned is correct. In 

order to test the best level to set this a number of tests using Sn were performed. 

Table A.3 shows the effect of varying p on mean convergence time for small n. 

In addition to the effect on convergence times p affects the number of times the 

algorithm will terminate with incorrect results this is also shown.

Table A.3 shows that while for very small n a large tolerance leads to rapid 

convergence it also gives rise to an unacceptable number of errors. However, for
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Table A.3: Sensitivity to fi for 1,000 tests

n 0.1
Mean Fails

0.2
Mean Fails

0.25
Mean Fails

0.4
Mean Fails

5 295 25 69 102 44 131 17 290
6 445 5 109 61 68 104 24 319
7 653 1 154 31 90 115 32 324
8 807 0 205 30 132 41 44 314
9 996 0 251 16 164 31 51 280
10 1,262 0 314 8 198 25 65 237
15 2,475 0 646 0 417 3 154 82
20 3,929 0 1,010 0 660 1 251 44
30 - - 1,890 0 1,199 0 493 4

medium to large n the number of errors generated rapidly drops to zero with a 

massive gain in speed.

Table A.4 below shows the mean and upper /  lower decile number of probes 

to reach convergence for Sn for various n using pointwise convergence and a 

minimum number of probes set at n and n = 0.25.

Table A.4: Convergence times for 1,000 tests using pointwise algorithm and / i  =  

0.25

n Lower decile Mean Upper decile
5 8 44 100
6 10 68 152
7 13 90 190
8 32 132 269
9 45 164 319
10 60 198 375
15 168 417 743
20 305 660 1,077
30 632 1,199 1,882
40 1,025 1,867 2,856

This shows that pointwise convergence is exceptionally slow for large n. In-
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deed, the algorithm appears to have an average convergence time of about 3 x n18 

with the lower decile being 1.4 x n 1,8 and the upper decile being around 5 x n1-8. 

This approach is therefore clearly far too computationally expensive to be of any 

practical benefit in calculating potential factorisations. Indeed the only practical 

advantage that the pointwise method has over any other is its equal applicability 

to all groups as it does not make any assumptions about the underlying group 

structures.

While it is not particularly computationally expensive to calculate the vari­

ance of each point as it is merely involves dividing the running total of cycles of 

each length found by the number of probes it is a computation that is almost 

certainly of little benefit when the number of test conducted is small. Indeed it 

is reasonable to assume that incorrect termination is most likely to occur where 

the number of probes prior to detecting convergence is small. For this reason it 

is almost certainly worth generating a significant amount of data before testing 

convergence. As discussed earlier the lower decile for n falls at roughly 1.4 x n1-8, 

running the algorithm again with the convergence check only being run after n1-8 

probes gives the following results.

Table A.5: Convergence times for pointwise algorithm with late convergence test

n Lower decile Mean Upper decile
10 64 202 382
15 168 414 718
20 304 644 1039
25 480 968 1,578
30 655 1,233 1,949

From Table A.5 we can see that the late convergence test has no appreciable 

effect on any of the convergence times. More surprisingly it does not materially

153



effect the number of incorrect results reported proving that while the cost is 

minimal it does not help eliminate errors as hoped for.

A .3.2  P robabilistic m ethod

If one were to assume a priori that the probes were taken from a group that is 

the direct product of Smi as discussed in section A. 1.1 then one ought to be able 

to use this knowledge to improve the convergence time.

Indeed, if the primary concern is not, as in section A.3.1, to determine the 

entire Parker vector but merely to identify the biggest Smi used in forming the 

group the algorithm ought to be much better than 0 (n 18). We discuss one such 

method below.

In order to improve the effectiveness of the algorithm we would need to develop 

a test for when the longest single cycle, and hence the largest Smi, has been found. 

For this a little knowledge about Sn is essential.

Cycle d istribu tion  in Sn

The distribution of cycles in Sn is critical in understanding how quickly any 

probabilistic algorithm will converge. Indeed the Parker vector itself tells us a 

little about the distribution of cycles within a group and most importantly within 

Sn. The Parker vector represents the average number of points moved by cycles 

of each length in elements of the group. Therefore, if pi is the ith entry in the 

Parker vector for a group G then the average number of 2-cycles in elements of 

G is In general this does not helps us identify the probability of a random 

element of G containing an 2-cycle and a more complicated formula is needed, 

see below. However, if z > then each element may only contain one 2-cycle
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therefore the average number of 2-cycles and the probability of obtaining such an 

z-cycle are coincidental. Moreover, if an element contains such an 2-cycle, then 

it cannot contain any other /c-cycle with k > Therefore, if 2 > f ,  then the 

probability of finding a cycle longer than i in Sn is

” I
j=i+1 3

Indeed one can further extend this to calculate when sampling from Sn the prob­

ability that a /c-cycle of any length will occur in an element.

In order to identify the number of elements, K , with at least one fc-cycle we 

need to consider the following argument, based on standard inclusion/exclusion 

arguments. If we are trying to calculate elements with at least one fc-cycle, 

then the logical starting point is to consider how many possible fc-cycles can be 

generated from n elements and then how may ways the remaining n — k elements 

can be formed into cycles. However, such an approach will overcount where 

the remaining ordering contains a /c-cycle and these must be removed. Similarly, 

removing the overcounting of double k-cycles will undercount triple k-cycles which 

must be added back in and so on. We are left with the following equation:

K  =  £ ( - ! ) <  x Ki
i—1

With Ki being the number of elements in Sn which contain at least i k-cycles, 

given this sum we only need calculate each Ki. Such an element can be written 

in the form k\k 2 . . .  ki x tail where each kj is an independent k-cycle and the tail 

is any arrangement of the remaining n — ik  elements. k\ can be chosen in (£) 

ways, &2 in (n“fc) ways and in general kj can be chosen in (n_ .̂-1^) ways. Given
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k elements these can be arranged in k\ ways. However, when considered as cycles, 

1 in A: of these arrangements will be equivalent so each contributes (k — 1)! to the 

product. The tail in all cases can be written in (n — ik)\ ways, although this tail 

may contain further k-cycles. Putting all of this together we get the following:

=  X̂ x ( f e - 1)!

- < » - * ) ■  * n

Expanding the product we find that consecutive numerators and denominators 

cancel out leaving only the first denominator and last numerator which simplifies 

to the following:

n\
kl

However, in this expansion we will have included all arrangements of the i 

fc-cycles so have overcounted by i\ and the final answer is:

n!
i\kl

Therefore combining the formula for each together we obtain the full expres-
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sion of K

UJ
* - D - « r w

i= 1

j - f c - j  (  1 V + 1  
=  7Ii y r 1J _

i\kl
i= 1

In practice the group under consideration will only be the symmetric group 

if the polynomial is irreducible otherwise it will usually be a direct product of 

symmetric groups so the above argument helps little. However, once the formula 

for a symmetric group is known we can readily extend this to direct products of 

symmetric groups as each is independent. Thus, if G = Sn x Sm and there are 

K n elements of Sn which contain a k-cycle and K m elements of Sm then we can 

calculate K q the number of elements in G which contain a A>cycle. We know 

that if we pick any element where the contribution from Sn contains a fc-cycle 

then we may choose any element from Sm and vice versa. However, using this 

approach we have overcounted those elements where both Sn and Sm contribute 

a fc-cycle, the size of this overcounting will be K nK m. Therefore:

K q  —  t t i I K ji  ~ f "  t i \ K jji K j i K jyi

Alternatively, we could have constructed this sum by considering the number of 

elements in Sn and Sm respectively which contain no k-cycles, call these K n and 

K m respectively. K n is simply n! — K n and similarly K m — m\ — K m. Using this
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argument K q =  K nK m and therefore

K g =  \ G \ - K g 

=  n\m\ -  K nK m 

=  n\m\ -  (n! -  K n)(m\ -  K m)

—  7 T i \ K n  -t~ t i \ K jj i  K n K m

which is equivalent to that found above. However, if we were to wish to extend 

this further to arbitrary direct products of Smi’s then this approach is far more 

fruitful as the general equation is now:

*c = n ^ - n ^
i = l  i = l

n n

=  JJm J -  JJ(mJ -  K mi)
i = i i = l

= n ^ - n
i=i i=l

rrii

n
v .i= l

rrii

=i°i h-n
z=i

' jlk i<=l y j=l J

(  I r  I \  N
\ + l£ t v

/

i'-ki

=  \G\
f - AtJ (_X)A

j\k ji - n
i=1 j=0 /

These sums are relatively quick to calculate and give us the full description 

in terms of cycle shapes for direct products of symmetric groups.
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A .3.3 Im plem entation  o f a probabilistic approach

If one is prepared to assume that the group we are sampling from is a direct 

product of Smi’s then given sufficient sampling a cycle of length M  will be found 

where M  =Max(m*). We need only determine when we are sufficiently certain 

that we would have found a cycle of length M ' where M ' > M. This leaves the 

question of given M  what M ' should be considered, the easiest assumption would 

be to consider M ' =  M  +  1, in this case the probability that any given probe 

contains an (M  +  l)-cycle is and therefore the probability of not having 

found an (M + l)-cycle, if sampling from Sm+i after n probes is (l —

While for small M  this converges reasonably rapidly for larger M  convergence is 

slow. For M  as small as 20 it would take 48 probes in order to reach a confidence 

of only one in ten that the longest cycle had been found and nearer 150 probes 

would be required to reach a confidence of one in 1,000. While potentially far too 

expensive to be of practical use this is significantly better than the time taken 

for S 2 0  to converge using the pointwise algorithm.

In the cycle decomposition Cj of every element of a group which is the direct 

product of Smi’s each Cj is solely contributed by one of the Smi’s. Therefore the 

only M ' that we need to consider are those which can be formed by combining 

the lengths of c/s. By doing this in most cases it will be possible to show that 

any putative M ' > M  + 1. However, this will clearly not be the case if one of 

the groups concerned is S\ (for polynomials this would represent a linear factor), 

or two, or more, of the rrii sum to M  +  1. Unfortunately, trying to work out all 

possible arrangements of the c /s  for a given cycle is likely to be computationally 

expensive. Indeed, this is analogous to the combinatorial explosion we were 

aiming to avoid by examining the Parker vector. However, as we are sampling
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randomly from all group elements a proportion of the M-cycles will come from 

Sm if if exists. Unfortunately without further prior knowledge of a likely group 

structure it is hard to gain further structural information as gaining reliable 

distribution information on cycle shapes is likely to lead to similar convergence 

problems as the pointwise method which it is broadly analogous to.

We can build some improvements into the algorithm. If M  > |  then the 

M -cycle must be taken from our putative Sm> as we do not have sufficient points 

in the rest of the group for a different Sm>• Therefore at least where there is one 

large Smi and the smallest m* > 1 then we will be able to greatly improve our 

convergence.

In order to test the effectiveness of the proposed algorithm tests of all possible 

products of Smi’s were performed and the results grouped together according to 

n = mi- Both the average number of probes required to reach convergence 

and the number of times the algorithm returned an incorrect M  are shown, this 

increases with n , as the number of groups tested increases, the average gives the 

average number of incorrect results for each group. For each group 1,000 tests 

were performed in order to ensure stability in the results with the termination 

probability set to one in one thousand. In addition the same tests were performed 

using the pointwise convergence algorithm with /i =  0.25 to compare the relative 

convergence times. The average fails listed in the table give the average number 

of times out of the 1,000 tests for each group that the algorithm returned an 

incorrect result.

From Table A.6 it is clear that the probabilistic algorithm offers vastly superior 

convergence times to the pointwise algorithm. However, it should be noted that 

the pointwise algorithm suffers in two ways in this comparison. The first is that 

it often returns an incorrect result due to too rapid convergence, the second
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Table A.6: Convergence times for probabilistic and pointwise algorithms for direct 
products of 5mi’s

n Probabilistic Pointwise
Average Total Average Average Total Average

probes fails fails probes fails fails
10 34 21 0.50 62 477 7.69
15 45 123 0.70 117 913 5.19
20 55 434 0.69 185 937 1.49
25 63 1,497 0.76 256 1,374 0.70

is that it will sometimes take an exceptionally long time to converge therefore 

lifting the mean convergence time considerably. Further investigation shows that 

where the pointwise algorithm returns incorrect results it is where the number of 

probes used is small. However, the average convergence time for the probabilistic 

algorithm appears to be at worst O(n) much faster than we could hope for with 

a pointwise test. In addition it appears that the probabilistic termination test is, 

as expected, conservative in its estimation of a convergence giving an incorrect 

result far less frequently than one in a thousand.

While there is little improvement to be had from either method there is po­

tential for adoption of a hybrid method. Using the same groups as above it is 

possible to repeat the tests and gather data on when the Parker vector first con­

verges to the correct value. Using this it should be possible to devise a test which 

has the generality of the pointwise algorithm but which terminates much more 

rapidly.

While there is little extra concrete information that can be gained from exam­

ining cycle shapes we can still hope to improve the algorithm further. Currently 

the algorithm does not look at the convergence of the remainder of the Parker 

vector. Unfortunately there may be very little to be gained from this approach
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as in the limit this equates to performing a pointwise test, albeit on a limited 

number of points.

In addition we have discarded other information when forming the Parker 

vector namely the frequency with which i-cycles occur. The Parker vector cap­

tures some of the shape of the group but not all of it. If at the same time as 

one were constructing the Parker vector one constructs another vector based on 

the frequency with which z-cycles occur in a group irrespective of their multiplic­

ity it may be possible to lever more information from the same inspection. For 

example, the probability vectors of Sq x S 7  and S 5 x Sg are

{0.86,0.63,0.48,0.44,0.36,0.31,0.14,0.00,0.00,0.00,0.00,0.00,0.00}

and

{0.87,0.62,0.52,0.41,0.36,0.17,0.14,0.13,0.00,0.00,0.00,0.00,0.00}

These two vectors differ in 6 places whereas the Parker vectors only differ in 

2 places. It is not clear how practical it would be to observe these differences 

given their small size in all but two places.
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A ppendix B  

Word reduction using elem ent 

shapes

In this Appendix instead of looking at each element we instead consider the shape 

of an element and how this may reduce the number of words we need to test a 

given pair of elements in. In order to do this we must define a structure that 

captures the shape of an element. While it is possible to think of an element as 

a collection of cycles of given length we instead define the swirl of an element, in 

order to do this we must first define a swirl shape.

D efinition B .l  (Swirl shape). For n a natural number a swirl shape is a 

multi-set {rci,. . . ,  xn} where 0 < X{ < n — 1 and =  0 (mod n)

We now define the swirl of an element of Sn.

D efinition B.2 (Swirl). Let g G Sn. The Swirl of g: written Swirl(g), is the 

swirl shape obtained by calculating the right shift of each of { 1 ,...,  n} under g.

The definition is best illustrated by an example. Let g = (1,2,4,5,3) G S 5 . 

Now the right shift of 1 is 1 whereas the right shift of 5 is 3 and the complete
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swirl of £ is {1,2,1,3,3}. Of course we have not yet shown that the multi-set of 

Definition B.2 is a swirl shape. First we note the the largest possible right shift 

is n — 1 so the elements of the multi-set are drawn correctly. Next we observe 

that for each cycle in g the sum of the right shifts must be divisible by n  as the 

right shifts lead back to the first element hence the multi-set is divisible by n. 

Thus we have shown that a swirl is a swirl shape.

Observe that for g,h  G Sn the swirl of gh may be obtained from the swirls of g 

and h. To show how this may be done let us consider the image of a G { 1 ,.. . ,  n} 

under gh. Now the image of (a)gh =  ((a)g)h and considering this as a rotation 

it is the right shift of a under g followed by the right shift of (a)g under h. So 

the right shift of a under gh is the sum modulo n of an element from Swirl(g) 

and an element from Swirl(h). Therefore, Swirl(gh) is the pointwise addition 

of Swirl(g), considered as an ordered set, and some ordering of Swirl(h).

Next we observe that in our example the average of Swirl(g) is 2, a whole 

number, which prompts the following definition.

D efinition B.3 (Swirl num ber). The Swirl number of an element is the mean 

of the multi-set Swirl(g).

Of course we have not yet shown that the the swirl number is always a whole 

number, and hence that the swirl of an element is in fact a swirl shape although 

we may do so.

Lem m a B .l .  For g G Sn the swirl number of g is a whole number.

Proof. We first observe that the swirl of a transposition is {k, n — k, 0 , . . . ,  0} 

and hence its swirl number is 1. Now any element of Sn may be expressed as a 

product of transpositions and we have already shown that the swirl of a product
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of elements of Sn may be obtained by pointwise addition of some ordering of the 

swirls modulo n. Now as the swirl number of a transposition is a whole number 

the sum of its swirl is divisible by n. Therefore the pointwise addition of two 

swirls is divisible by n  and as the addition can only remove multiples of n so 

the resulting swirl is still divisible by n and hence the swirl number is a whole 

number □

We know that Swirl(gh) may be derived from Swirl(g) and Swirl(h). How­

ever, there appears to be no such relationship between the swirl numbers of 

elements. We can see this by considering g =  (1, 2 ,3,4) and h =  (2,4,3) as 

elements of 64 the swirl numbers of g and h are 1 and 2 respectively whereas the 

swirl number of gh is 1. Similarly, one may observe that the swirl number for

(1, 2)2 is zero whereas the swirl of (1, 2) is 1.

B .l  U sing swirls to find related elem ents

We now turn our attention to how we may use the swirl of an element to assist in 

determining whether two elements satisfy a given word. Now if g and h satisfy a 

word u, then we know that the swirl of u  is {0 , . . . ,  0} as no elements are moved. 

Furthermore, we have shown that Swirl(gh) may be obtained from Swirl(g) and 

Swirl(h) by a picking an appropriate ordering of each swirl and then conducting 

a pointwise addition modulo n. Now we may use this to consider the possible 

swirls that may arise for a given word length and given g and h.

We first turn our attention to the practical consideration of how many swirls 

there are for a given n. Table B.l gives both the number of swirls observed in 

practice both for all elements of Sn and for n-cycles.

We can see that for all but very small n the advantage of looking at swirls is
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Table B.l: Number of swirls

n
Sn
Actual Potential

n-cycles
Actual Potential

3 4 4 2 2
4 10 10 3 5
5 26 26 8 12
6 80 80 20 38
7 246 246 66 114
8 810 810 229 381

a considerably reduced number of potential pairs. However, the naive approach 

to determining if two elements can satisfy a word of length I is of order n\l as 

each swirl may be arranged in up to n! ways where it is a proper set. However, 

we know that we may fix g. Now if we choose g = (1 ,2 ,.. . ,  n), then the swirl is 

{ 1 ,1 ,...,  1} which has only one ordering and the problem is reduced to at most 

n\l~k where there are k g’s in u.

We consider the following two elements of S6, g =  (1,2,3,4,5,6) and h = 

(1,2,5,4,6,3), a simple calculation shows that their cyclic groups intersect triv­

ially. Now, Swirl(g) = {1,1,1,1,1,1} and Swirl{h) =  {1,2,3,3,4,5} and we 

know that in Se no 6-cycles whose cyclic groups intersect trivially satisfy the 

word g3 h2 gh, yet as Table B.2 shows the swirls may be arranged such that their 

sum is zero modulo 6.

B.2 Conclusion

We have shown that, while the number of swirls for n-cycles in Sn is considerably 

smaller than the number of n-cycles using them to eliminate pairs of elements 

is considerably more time consuming. Furthermore, we can see that we cannot

166



Table B.2: Swirl addition of (1 ,2 ,3 ,4 ,5 ,6) and (1 ,2 ,5 ,4 ,6 ,3)

1 1 1 1 1 1  
1 1 1 1 1 1  
1 1 1 1 1 1  
1 2 3 3 4 5
4 1 3 2 3 5
1 1 1 1 1 1  
3 5 2 3 1 4

conclusively deduce that elements satisfy a given word shape.

However, we see that, at least for small n, the number of possible swirl shapes 

and the number observed as swirls of elements in Sn are the same which prompts 

the following.

C onjecture B.2. For Sw a swirl shape on n there exists a g G Sn such that 

Sw = Swirl(g)

We have not been able to prove Conjecture B.2. However, we have tested 

whether it is true, at least for small n which it is for n < 12.
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A ppendix C

Swirls

We have seen in Appendix B that the notion of the swirl of an element does not 

appear to help us significantly in determining if two elements are related by a 

word. However, as we can see from conjecture B.2 there are interesting results in 

their own right regarding swirls and we take a little time here to explore some of 

these.

We start by considering the swirls that may arise from a single transposition. 

As before we consider a swirl as a pattern of clockwise shifts when the elements 

of Sn are arranged in a circle. Now in a transposition all bar two elements remain 

fixed so there are only two non-zero elements in the swirl, the remaining two must 

sum to a multiple of n, indeed the sum must be n as the multiple of n denotes the 

number of of complete circuits performed under the action of the cycle. Indeed, 

this leads to the observation that the swirl number of an element gives an upper 

bound on the number of disjoint cycles.

Lem m a C .l. The Swirl shape of a transposition in Sn is {m ,n  — ra ,0 ,.. .  ,0} 

where m  is an integer between 1 and n — 1

We now consider a cycle of length r. Again we know that n — r entries in the
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swirl are zero, as they are not moved by the cycle. Consider the way a swirl is 

formed from a permutation, each entry is the clockwise shift between adjacent, 

in the permutation, elements. Now for a cycle these must sum to a multiple of 

n, or our cycle would not be complete. Furthermore, the ordered multi-set of 

elements generated by a cycle must not have an interval sum equal to a multiple 

of n or the cycle would contain a “sub-cycle” as we would arrive back at the same 

element. However, simply because a given ordering of a swirl contains an interval 

sum equal to a multiple of n does not mean the swirl cannot arise from a single 

cycle. Consider the swirl {2,3,4,1,0} from an element of S 5  now this has two 

interval sums equal to 5 yet is the swirl of (1,4,3,5) as well as (1,3)(4,5). It 

would appear that we simply require that there is an ordering of the swirl such 

that no interval sum is a multiple of n, indeed this is sufficient.

Lem m a C.2. The swirl shape of a cycle is a swirl such that there exists an 

ordering of the swirl such that no interval sum is equal to a multiple of n, all 

such swirls arise from a cycle in Sn

Proof We start by proving that the swirl of a cycle has the required form. Let 

g be the r-cycle (a\, <22, . . . ,  ar) and let right shifts be {di, d2, • • • > dr}. Now for 

contradiction, assume that some interval sum £J” zd* = kn, this would imply that 

( a i , , am) is a cycle which can only be true if I =  1 and m  = r.

To show the converse we construct a cycle from the swirl. Order the swirl so 

that no interval sum is a multiple of n, now starting at 1 form the cycle by adding 

each element of the swirl in turn modulo n. We are assured that each successive 

element is unique by the fact that no interval sum is a multiple of n. □
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C .l Elem ents w ith a given swirl number

Having established the swirls for some basic elements we now turn our attention 

to the swirl number of elements. Colloquially the swirl number of an element 

encapsulates the number of complete circuits the element makes. We use this 

relaxed way of viewing the swirl number to prompt the following.

Theorem C.3. For t G { l . . . n  — 1} there exists a multi-set, m, drawn from 

{1 ... n — 1} such that the sum of the multi-set is nt and no sub-multi-set of m  

has a sum divisible by n.

Proof. We show this by constructing a multi-set with the given property. Con-
t lots

sider the multi-set {£, n — 1 , . . . ,  n — 1} its sum is certainly nt we need only show 

that the sum of no multi-set is divisible by n. We know that n — 1 and n  are 

co-prime and hence no subset consisting of n — 1 alone will be divisible by n. 

Similarly, if we choose r lots of n — 1 and t, then the sum would be rn  +  (t — r) 

which is only divisible by n if t — r is divisible by n but as r < t < n this is not 

possible and we are done. □

This allows us to deduce the following corollary:

Corollary C.4. For every t G {1.. . n — 1} there exists a (t + 1 )-cycle in Sn 

whose swirl number is t.

Proof. Form the cycle by starting at one and adding each element of the ir­

reducible multi-set of Theorem C.3 in turn. The result will be a cycle as no 

sub-multi-set is divisible by n and manifestly the swirl number is t. □

We may also observe that:

Corollary C.5. The maximum swirl number for a (t + 1 )-cycle is t.
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Proof. The multi-set used in the proof of theorem C.3 is the smallest with sum 

equal to nt and gives a cycle of length t + 1. □

Alternatively one may observe directly that the swirl number represents the 

number of complete circuits a cycle makes. No two adjacent elements may account 

for a complete circuit therefore the swirl number for a cycle must be less than 

the length of the cycle. Now Theorem C.3 shows that the limit is achievable in 

all cases.

C.2 M ulti-swirls

We remind ourselves of the definition of a swirl of g, it is the swirl shape obtained 

by calculating the right shift of each of { 1 ,.. . ,  n} under g. Embedded within this 

definition is the ordering of the elements we are calculating the right shift with 

reference too. However, in considering the proof of C.2 we rely on the ordering of 

the set we are calculating right shifts relative too. This prompts us to consider 

the effect of varying the order of the set. In order to do this we first need a 

definition.

Definition C .l (Circular ordering). Let I  be a set of size n, there are (n — 1)! 

ways of writing the elements of I  clockwise around a circle. We call these the 

circular orderings of I.

So far we have only considered one circular ordering, that is the natural one 

starting with 1 and with the numbers ascending clockwise around the circle. To 

motivate ourselves further we consider the transposition (1,12) in S 1 2 now if we 

use the natural ordering, then the swirl is {11 ,1 ,0 ,..., 0}. However, if instead 

we use the order {1,2,4,6,8,10,12,3,5,7,9,11}, then the swirl is { 6 ,6 ,0 ,..., 0}
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a distinct swirl shape. Indeed, as a single permutation and the identity form a 

group this shows us that the sets of swirls arising from two isomorphic groups 

may be different depending on the circular ordering chosen.

However, if instead of considering only a single swirl for each element we look 

at the multi-set of swirls arising from an element when all circular orderings are 

considered we find some interesting results. First we formalise the language.

Definition C.2 (Multi-swirl). Let g be an element of Sn and let I  = { 1 , . . . , n}. 

The multi-swirl of g is the set of swirls arising from all circular orderings of I.

While the swirl of an element is not constant we can see that the multi-swirl 

is constant. Furthermore we may see the following interesting result.

Theorem C.6. Conjugate elements have the same multi-swirl.

Proof. Let g be an element of Sn and let I  =  { 1 ,...,  n}, there are (n — 1)! circular 

orderings of / ,  let C be a circular ordering of I.

For a given C, the swirl of g is the multi-set of numbers r(i) where (i)g is r 

steps anticlockwise from i for i £ I.

Now suppose that h G Sn and C  is a circular ordering, now we consider the 

swirl of gh. So for each i in I  we are interested in the number of steps from i to

(i)(h_1̂ /i) as i varies. Suppose that i = (j)h  then our interest is in the number 

of steps from (j)h to ((j)/*) to-1 <7/1 = ((j)g )h .

Now we start varying over all possible circular orderings thus removing the 

action of h above and we are done. □

Thus we know that if two elements are conjugate then they share the same 

multi-swirl. However, we have not shown that if two elements share the same 

multi-swirl that they are conjugate. We can show that a swirl does not uniquely

172



belong in a single multi-swirl. To see this consider the swirl [0,1,2,3,4] this 

arises from (1,2)(3,4) and (1,2,3,4) which are in different conjugacy classes, 

indeed this is the only swirl of length 5 that appears in the multi-swirls of two 

conjugacy classes of £5. For the more general answer we turn to look at C3, 

now as C3 is abelian each element is in a conjugacy class of size 1. Now the 

multi-swirl of (1,2,3) is {[1,1,1], [2,2,2]} similarly the multi-swirl of (1,3,2) is 

{[1, 1, 1], [2 , 2, 2]}, hence two non-conjugate elements have the same multi-swirl.

This leads us to consider when two swirls can be in the same multi-swirl. 

Firstly they must share the same number of zeros as they arise from conjugate 

elements. Similarly, we must be able to form the same number of sub-swirls with 

the same size from each swirl. However, this is not sufficient, we consider the 

swirls [1,3,2,2] and [2,2,2,2] arising in £ 4 ,  the first only arises as the result of 

a 4-cycle whereas the second only arises from the product of two transpositions 

yet neither has any zeros and both have two potential sub-swirls of size 2 .

We have shown that conjugate elements have the same multi-swirl. However 

we can show that conjugate elements need not share the same swirl number as 

the swirl number is not constant as C varies. To see this consider (1,2,3) and

(1,3,2) with C = {1,2,3} they have swirl number 1 and 2 respectively whereas 

with C =  {1,3 ,2} the situation is reversed.

We now consider what other information may be contained in the multi-swirl. 

Certainly, the multi-swirl does not encapsulate the size of the conjugacy class. To 

see this we consider two conjugacy classes in Sq namely those containing (1,2,3) 

and (1,2,3)(4,5 ,6), now both conjugacy classes have size 40 yet the multi-swirl 

of (1,2,3) has 6 elements while that of (1,2,3)(4,5 ,6) has 9.

We may also see that the multi-swirls arising from a group depend on the rep­

resentation chosen. So far we have considered natural representations of groups,
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let us now consider two representations of C§ namely G =  (g = (1,2,3,4,5,6)) 

and H  = (h=  (1,2,3)(4,5)). Trivially the swirls arising from G are multi-sets of 

size 6 while those from H  are of size 5. This should not cause us concern provided 

the sizes of the multi-swirls correspond. However, table C.l shows this not to be 

the case.

Table C.l:: Sizes of multi-■swirls

G H
Element Size Element Size
id 1 id 1
9 20 h 4
a2 9 K2 4
a3 5 h3 2
a4 9 h4 4
ff5 20 h5 4

Indeed, as well as showing that the sizes of multi-swirls are not constant across 

representations of a group table C.l shows us that the relativities of sizes are not 

preserved with H  giving rise to only 3 distinct sizes of multi-swirl and G giving 

rise to 4. It is clear that we must specify the particular representation of the 

group under consideration, unless otherwise stated we will use the most natural.

C.3 Swirls in C p

While we are still not in position to prove Conjecture B.2 we start by considering 

the swirls that arise from the cyclic groups of prime order.

We start by considering the set of swirls that arise from Cp for p prime. Now 

g = (1 ,2 ,... ,p) generates Cp. Now the image of i under gn is i +  n mod p, from 

this we can see that the swirl arising from gn is {n ,. . . ,  n}.
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Lem m a C.7. All swirls of the form {2,2, . . . ,  1 } for a lll  < i  < p arise naturally 

from Cp

We now turn our attention to the multi-swirls arising from Cp. We start 

by considering the multi-swirl of <7, as defined above. First we deduce that the 

multi-swirl of g may only contain swirls for which there exists an ordering such 

that no interval sum of the swirl is a multiple of p as if no such ordering exists, 

then the swirl may only represent an element composed of more than one cycle. 

Furthermore, we know that no element may be zero as this would give rise to 

a cycle of length less than p. We now turn our attention to proving that this 

is a sufficient condition, we do this by giving the circular ordering required to 

generate the swirl. Starting with 1 we add each element of the swirl in order 

modulo p, now we are assured we never land on the same element as no interval 

sum is divisible by p. Moreover, as there are p elements in the swirl we exhaust 

all possibilities and we have found a circular ordering that gives rise to the swirl.

Theorem  C .8 . The multi-swirl for (1,2, . . .  ,p) consists of all swirls with only 

non-zero entries for which there is an ordering with no interval sum divisible by 

P-

We now look to Cp in general. Now every element of Cp is a p-cycle and the 

argument for g above holds we need only prove that a circular ordering exists. 

We do this by generalising the argument used above, again we start at 1 and 

mark the p — 1 positions on the circle and step round the circle by the number 

of steps given by the swirl element and record that element of the cycle, we are 

assured that we never land on the same point as no interval sum is divisible by 

V-

Theorem  C.9. The multi-swirl for h £ Cp for h ^  id consists of all swirls with
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only non-zero entries for which there is an ordering with no internal sum divisible 

by p.

This gives rise to the following obvious corollary.

C orollary C.10. All non-trivial elements of Cp have the same multi-swirl.

It is worth noting that although the elements of Cp are not conjugate within 

Cp they are conjugate within Sp. In examining our proof of theorem C.6 we see 

that while our proof relies on elements of Sn the result will hold equally in any 

group provided the elements are conjugate in Sn.
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