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Sum m ary

The human face is a fascinating, but extremely complex object; the research project 

described is concerned with the computer generation and animation of faces. However, 

the age old captivation with the face transforms into a major obstacle when creating 

synthetic faces. The face and head are the most visible attributes of a person. We master 

the skills of recognising faces and interpreting facial movement at a very early age. As a 

result, we are likely to notice the smallest deviation from our concept of how a face should 

appear and behave.

Computer animation in general, is often perceived to be “wooden” and very “rigid”; 

the aim is therefore to provide facilities for the generation of believable faces and convinc

ing facial movement. The major issues addressed within the project concern the modelling 

of a large variety of faces and their animation. Computer modelling of arbitrary faces is 

an area that has received relatively little attention in comparison with the animation of 

faces. Another problem that has been considered is that of providing the user with ad

equate and effective control over the modelling and animation of the face. The Facial 

Animation, Construction and Editing System or FACES was conceived as a system for 

investigating these issues.

A promising approach is to look a little deeper than the surface of the skin. A three- 

layer anatomical model of the head, which incorporates bone, muscle, skin and surface 

features has been developed. As well as serving as a foundation which integrates all the 

facilities available within FACES, the advantage of the model is that it allows differing 

strategies to be used for modelling and animation.

FACES is an interactive system, which helps with both the generation and animation 

of faces, while hiding the structural complexities of the face from the user. The software 

consists of four sub-systems; C o n st r u c t  and M o d ify  cater for modelling functionality, 

while A nim ate allows animation sequences to be generated and R e n d e r  provides for 

shading and motion evaluation.
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Preface

The following description is an organisational map to guide the reader through the struc

ture of the thesis. Four major sections constitute the overall form of the thesis.

In chapter 1, contemporary problems in the area of computer generated facial anima

tion are identified and the major goals of the research project established. This chapter 

also forms a discussion of the general area of face processing and ascertains the nature of 

typical applications that may benefit from a computer based approach to the generation 

and animation of faces. It provides a context within which the research undertaken may 

be considered. In addition, a brief overview of the Facial Animation, Construction and 

Editing System or FACES is provided.

Chapters 2, 3 and 4 cover the groundwork on which FACES has been developed. This 

groundwork forms the foundation upon which facilities for the user are provided. The 

anatomy of the head and face are examined in chapter 2 to demonstrate the importance 

of bone, muscle and skin to the objectives of the system. Development of a three-layer 

anatomical representation for the head is described in chapter 3, while simulation of facial 

motion is discussed in chapter 4.

Chapters 5, 6 and 7 describe the rationale behind the facilities provided in FACES. At 

this stage, emphasis is placed on the user’s perspective of the system. Chapter 5 is con

cerned with the modelling of faces and the functionality available in the C o n st r u c t  and 

M o d ify  sub-systems. Facial animation, motion specification and control are the themes 

of chapter 6, in which the A nim ate  sub-system is studied. Chapter 7 addresses render

ing in terms of generating visually realistic images, control over colour and evaluation of 

motion.

In chapter 8 we investigate issues relevant to the usability of the system and the user 

interface. Some thoughts are aired with regard to further development of the system in 

chapter 9, while chapter 10 concludes by drawing together the major achievements of the 

project.
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1.1 Introduction

For millenia mankind has been intrigued with the human face. As a result of this fasci

nation, an intense desire has developed to reproduce the facial form in a variety of media 

including painting, sculpture and photography. In recent decades, this objective has been 

pursued through the use of computer technology, in particular since Frederike Parke’s pi

oneering work in the early 1970s [115]. Today, the same interest is the motivation behind 

the research project described in this thesis. More specifically, the project is concerned 

with the computer generation and animation of faces.

Within the field of computer generated facial animation, there are several important 

issues which need to be addressed. In section 1.2 we shall examine these outstanding 

problem areas to establish the overall objectives of the project. Research was undertaken 

against a backdrop of aspects concerning the face; these are described in section 1.3. An 

overview of the software system resulting from the project is presented in section 1.4.

The face is used in many applications for as many different reasons, a few selected 

applications are described in section 1.5. A major advantage of a computer based approach 

is that it provides the potential for adaptation to different applications for a large variety 

of uses. Management of the research project is considered in section 1.6.

1.2 O bjectives o f th e Research P roject

In a similar manner to other areas of computer animation, facial animation falls into the 

two major categories of modelling and animation. The reason why representation and 

animation of synthetic faces is considered to be special and a major challenge is that our 

criterion for judging success is extremely stringent.

We are very familiar with faces and facial movement, mastering the skills to interpret 

faces at a very early age. We therefore have a well developed sense for distinguishing 

which expressions are natural for a face. The result is that we are likely to notice the 

smallest deviation from our concept of how a face should appear and behave. In fact, 

researchers have found that viewers axe unsympathetic to flaws, no matter how minor, in 

a model that claims to be realistic, while readily accepting the inadequacies of a model 

that is obviously a caricature [118, 176],

Synthesis of the face requires an interactive ability to create face models and to 

generate and control simulated expressions on such models. At present three major areas
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of research, each with its own specific problems, can be identified. These areas concern 

modelling, animation and user control, which form the major objectives of the research 

project in terms of:

• Investigation of methods for composing and creating synthetic faces.

• Animation of any face constructed within the system in terms of facial 

movement and non-verbal communication.

• Examination of the most appropriate techniques for giving the user control 

over both modelling and animation facilities.

1.2.1 M odelling

There is a requirement to be able to produce a wide range of faces. This issue is part of 

a more general problem; that of modelling and modifying irregular 3D structures. With 

regard to the face there are two sub-aspects which need to be dealt with. First of all, faces 

are irregular structures which cannot be as easily represented as regular geometric shapes. 

Secondly, faces vary from person to person. This latter aspect involves the investigation 

of conformation [118], which is concerned with modelling the form of different faces.

1.2.2 A nim ation

Generation of natural facial movement is an issue which is particularly important for 

communication. It is necessary to make face models and their movement more naturalistic 

and realistic, in the sense of improving accuracy in order to enhance comprehension. This 

involves investigation of the motion and behaviour of faces and comprises three further 

issues involving the generation of: facial expressions which are readily comprehensible; 

believable head movements and gestures; and speech-synchronised sequences.

Speech synthesis has been excluded as an initial goal since it is a major area of research 

in its own right [15,17, 53, 68,123,156]. However, note that facial animation does include 

some lip movement.

1.2.3 User Control

It is necessary to provide the user with a flexible, efficient and intuitive manner in which to 

create faces and to control the subtle movements that make up both facial expressions and
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lip movement for speech. This last area, regarding the provision of adequate control and 

support for users is becoming increasingly important. Users nowadays expect high-level 

systems such that they can specify which actions they would like to take place without 

being concerned about the esoteric details of how those actions actually occur.

1.3 Research C ontext

Several aspects with regard to the face were borne in mind during the development of 

the research project. These aspects concern: the functions of the face; the range of facial 

types; and the use of reality as a frame of reference.

1.3.1 Identification and Com m unication

The face serves two primary functions, those of identification and communication. Infinite 

variability of structure enables the face to be a unique form for each and every person. 

Such individuality provides the only attribute that guarantees visual identification. Other 

characteristics such as gait, voice and mannerisms are sometimes used; however, it is not 

until we see the face that we are certain of really knowing who a person is.

The face is also of great importance for communication in terms of both speech and 

facial expression. The significance of these modes of verbal and non-verbal communica

tion as individual factors should not be underestimated. When combined however, they 

become an even more powerful and versatile means of conveying information.

1.3.2 Range of Face Types

The appearance of the face can range from stylistic to realistic through to specific, ac

cording to the fidelity that an application requires in representing both the structure 

and movement of the face. These three types of facial structure should not be viewed 

as discrete classes, but rather as particular forms in a continuous range from which the 

preciseness of a model can be selected.

An example of the stylistic approach is caricature animation such as that used in Flack 

and Law’s highly popular television series called *Spitting Images’. Here exaggeration is 

used as a medium for communicating ideas and messages in order to entertain. The 

realistic category is distinguished by its requirements for an accurate portrayal of the 

human face and the plausibility of the motion. Such faces may be very useful for studies
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undertaken by psychologists for example. Models of specific faces are largely used in the 

field of medicine which requires a precise representation of particular faces in order to 

undertake pre-operative investigations.

1.3.3 R eality  as a Philosophy

The applications mentioned later in section 1.5 provide an indication of the most appro

priate method of meeting the goals of the project; each uses reality as a basis or frame 

of reference. Since the requirements of applications differ, it is necessary to make the 

system as flexible as possible while its potential is under investigation. Although there is 

a need to simulate components of the face, the complexity of the model will depend on 

the particular application.

Another reason for using reality as a basis is that one of the commonest criticisms of 

computer generated animation is that it lacks subtlety of movement. Computer animated 

characters tend not to be as ‘alive’ as those drawn by hand; they are generally perceived 

as being ‘wooden’ and very ‘rigid’. The closer a model corresponds to the ‘real thing’ the 

greater the opportunity for creating naturalistic, realistic and accurate facial expressions 

which are believable. Further, by basing a face model on the constraints of real faces, 

much of the structural complexity can be hidden within the model.

The aim however, is not to allow reality to constrain the functionality in the system. 

Wherever appropriate, the goal is to provide the user with facilities to take reality further 

and caricature it rather than merely to imitate it. Herein we encounter the familiar conflict 

between simulation and animation. Simulation involves exact modelling, with all the 

constraints that it entails, while animation is the use of a medium for communicating ideas, 

which often requires artistic license to improve comprehension by focusing on relevant 

information only. The view that underlies the research project is that not only do both 

simulation and animation have their place in facial animation, but that the facilities 

provided for the user can be enhanced by using reality as a frame of reference, while at 

the same time allowing the user flexibility to override constraints when necessary.

1.4 FACES

FACES is an acronym for the Facial Animation, Construction and Editing System. The 

project aims to provide a software emulation of the human face in 3D. This involves the 

interactive construction and modification of a head model and its subsequent animation.
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The hierarchical nature of FACES is illustrated in Appendix E; it consists of four 

sub-systems, named: C o n s t r u c t , M o d if y , A nim ate  and R e n d e r . The Co n s t r u c t  

and M o d if y  sub-systems enable changes to be made to the structure of the head, at 

both global and local levels, enabling distinct faces to be created. The A nim ate  sub

system caters for motion specification and control, permiting faces to be animated. The 

remaining part of the system, R e n d e r , facilitates the generation of shaded images. This 

includes control over colour which is important in determining the appearance of the face. 

Facilities for examining frames and for near real time playback of sequences also exist in 

the R en d e r  sub-system.

1.5 A pplications

Below are identified several applications which could benefit from a computer based system 

for modelling and animating the face. Note that the applications cover a large range of 

disciplines demonstrating the versatility and ubiquitous nature of the face.

1.5.1 A dvertising

Frequent use is made of characters and in particular facial animation in advertising to 

enable unambiguous messages to be broadcast. Expressions and gestures are both used 

to bring abstract and often inanimate forms to life. Examples include: models of animals 

such as tortoises, penguins and bears to advertise electricity, based on the original short 

animated film ‘Creature Comforts’ produced by Nick Park of Aardman Animations; the 

Big Dom advert for detergent, in which a bottle of detergent is portrayed as a man; and 

the credit card promoting itself as a ‘flexible’ friend through the use of facial expressions 

and body gestures.

The manual method of generating such sequences is to create physical models and 

then to painstakingly record their movement using stop-frame techniques. The time, 

expense and effort expended is therefore enormous. A computer based approach would 

not only provide speed, but also flexibility and cater for experimentation.

1.5.2 Entertainm ent

Entertainment, like advertising, also relies heavily on effective character and facial ani

mation. Both stylistic and the more realistic characters are in common use.
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Cartoon features from Walt Disney, Warner Brothers and others have put smiles on 

our faces for many years. Such animators are very skilled in the art of telling stories which 

are funny and endearing. They have mastered the art of creating empathy and human 

emotion towards what are intrinsically mere drawings. We find cartoons entertaining 

because the characters are in fact caricatures of human emotions and personalities. These 

aspects are communicated through both facial expression and bodily gestures.

An ex-Disney animator, Lasseter, has demonstrated the potential of 3D computer 

graphics for character animation. This has been exemplified by a number of short films, 

namely: ‘Luxo-Junior’, ‘Red’s Dream’, ‘Tin-Toy’ and ‘Knick-Knack’. These productions 

have shown that many of the techniques and principles used in conventional 2D charac

ter animation are equally applicable in 3D computer animation [87]. In terms of facial 

animation the most important of the principles are squash, stretch and exaggeration.

1.5.3 M edicine

Previews of corrective plastic surgery and dental treatment on specific faces are of great 

interest to both practitioners and patients alike [34, 192]. Such applications demand 

precise models of particular individuals based on the bone and soft tissue of the head. 

These techniques further require a means of interacting with the model and quantification 

of any changes that are made.

A computerised system, which incorporates an anatomically complete model of the 

head and face, would provide surgeons with the capability to plan, and even rehearse, 

complex operations without the need to undertake costly and potentially dangerous ex

ploratory surgery.

1.5.4 Speech Synthesis

In every-day life speech is probably the most important form of communication in com

mon use. However, facial expressions have an important complementary role to play in 

emphasising the tone of the audible signal in order to provide a clearer message [16].

There is a distinction to be made between producing synthetic sound and that of 

creating images of lip movements synchronised to a prerecorded sound track. Both of 

these processes require investigation and analysis of visible and acoustical speech sig

nals [15]. With regard to facial animation the focus has so far been on producing speech- 

synchronised animated sequences.
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A face model incorporating accurate speech synthesis could prove to be useful for the 

deaf and hard-of-hearing. Pearson describes methods of extracting features from images 

of the face and hands to enable deaf people to converse with one another over a telephone 

network using sign language [124].

Accurate speech synthesis is however, proving to be extremely difficult [15,17,53, 68, 

123, 156]. Most realistic talking sequences are still produced by tracing individual frames 

from live-action footage [115,131,175]. This is an extremely tedious, expensive and time- 

consuming process. A promising approach is to simulate the physical characteristics of 

the voice-producing parts of the head [90].

1.5.5 Crim inology

Recognition and identification of faces is an important aspect of human psychology, partic

ularly in the field of criminology. A considerable amount of research has been undertaken 

by psychologists with respect to the face. Particular issues addressed include how faces 

are represented in memory and which facial features axe used most often in the identifica

tion process. On the one hand answers to such queries can provide important guidelines 

for the construction of 3D computer models of realistic heads and faces. Conversely, a 

system for modelling faces and their motion could prove to be of great use in studying 

the recognition process itself [18].

Reconstruction of realistic faces from skeletal remains is of immense interest in forensic 

medicine as well as in archeology. Victims are sometimes found with no clue to their 

personal identification [141]. When other procedures such as dental checks cannot be 

used, facial reconstruction can be employed to assist in the identification of the victim. 

The process is a difficult one and consequently, there is only one person in the United 

Kingdom and very few in the world who have the required expertise [54, 141]. Facial 

reconstruction was first used by His in the 17th Century [85] to reconstruct the face of 

Bach, and more recently by a French anthropologist to create Mozart’s face from his 

skull [8, 65].

Neave, who is the leading proponent of the technique in this country, has employed 

facial reconstruction in both archeology and to aid in the identification of unknown per

sons. With considerable success, he has reconstructed the faces of: Philip II of Mace- 

don, King Midas, three Egyptian mummies and Lindow Man [106, 109, 141] as well as 

those of a Finnish nurse, Sabbir Kussam Kilu and Karen Price [107, 141]. However,
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reconstruction artists such as Neave, have always maintained that the method is not 

100 per cent accurate; the technique provides a likeness of the original person, but not a 

portrait [54, 107, 141]. In fact there has been considerable concern about the accuracy 

and reproducibility of results by different people and the amount of subjectivity on the 

part of the artist that can creep into the model [108, 170].

A computer based approach to the process of facial reconstruction would provide two 

advantages over a physical model. Firstly, it would reduce the amount of subjectivity 

that would otherwise be involved in the manual procedure. Secondly, there would be 

opportunity to make the model move, change expression and even appear to talk.

1.5.6 Com puter G enerated Characters

Over the past decade there has been unparalleled growth in the computer modelling and 

animation of human figures. They have become a standard feature of advanced research 

into animation techniques [3, 4, 5, 6, 7, 51, 82, 95, 97, 181, 184, 187]. Certain aspects 

of human communication are especially important as models on which to base synthetic 

actors in computer generated films [100, 132]. The stories depicted by such films require 

actors with human-like characters and personalities. People tend to want to see human 

characters in action since the overuse of special effects can quickly become tiresome. 

Research into human figure animation has been concentrated in the three major areas of 

face, hand and body animation. Face and hand modelling need special attention because 

they entail specific problems.

The modelling of human characters breaks down into two fields; in one characters are 

created anew, for example Nester Sextone and Dozo [93], while in the other characters 

are resurrected from the dead, for example Marilyn Monroe and Humphrey Bogart [100] 

and more recently Elvis [114]. There are moral, ethical and copyright issues associated 

with the second [148], while both share in the quest to model accurately the physical and 

behavioural characteristics of humans.

The ultimate goal is an integrated system for the creation and animation of synthetic 

actors. According to Magnenat-Thalmann and Thalmann [99,161] synthetic actors should 

ideally: appear and behave like real people; have their own personality; be conscious of 

their environments; be capable of obeying task-level commands; and have faces and bodies 

that deform naturally.

These ambitious goals are likely to  be undermined w ithout successful m odelling o f

U n iv e r s it y  O f  B a t h 9 M a n j u l a  P a t e l



M a k in g  F A C E S S y n t h e t ic  Fa c e s

the expressiveness of the face. It is only necessary to consider the number of close-ups 

of a character’s face that are currently used in films to convey to the viewer some deep 

emotion that the character is feeling.

1.6 Research M anagem ent

A variety of techniques were used throughout the duration of the research project. These 

ranged from information gathering activities to writing computer software for testing and 

evaluating particular ideas.

1.6.1 M ulti-D isciplinary Approach

It was clear from the outset that the nature of the face would demand a multi-disciplinary 

approach to the conduct of the research. The areas covered include biology, anatomy, 

forensic science, criminology, anthropology, psychology and art, as well as computer graph

ics and computer animation. Literature searches were undertaken in pertinent areas of 

each of these fields in order to grasp fundamental results, limitations and problems that 

still remained.

1.6.2 Interviews

Several personal interviews were conducted with the following people: Tony Kitson of 

the Scientific Research and Development Centre of the Home Office, with regard to the 

Photofit and Electronic-fit systems; Richard Neave, Director of Medical Illustration at the 

University of Manchester Medical School, in connection with facial reconstruction; and 

Johnathan Musgrave of the University of Bristol, in his capacity as lecturer in anatomy 

and anthropology. Each of these gentlemen imparted valuable information which influ

enced the development of FACES.

1.6.3 Hardware and Software

FACES is implemented in ANSI C for portability. Underlying the software for the system 

is a graphics library, called Gigalib [189], which was developed at the University of Bath.

The hardware configuration that was available during the development of the sys

tem comprised: two HLH Orion Super-Mini computers (running Berkeley UNIX 4.2); two
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Mitsubishi C9918NE 8-bit colour displays (1280 x 1024 resolution); two Summagraph- 

ics MM1102 digitising tablets with puck; a Howtek Scanmaster; a Matrix Camera and 

Cine Recorder; and an Apple II laser printer.

1.7 Sum m ary and Conclusions

The face fulfills two major purposes; these concern identification and communication. In 

addition, the appearance of the face may range from stylistic to realistic to specific.

There is no doubt that the face is a diverse and fascinating structure which is used 

in numerous and varied applications. All of these applications, which cover a broad 

spectrum, from advertising to criminology, could benefit from a computer based system 

such as FACES.

The applications considered suggest that an approach based on reality may hold 

promise in achieving the objectives of the FACES project. The first goal concerns the 

modelling of a variety of faces, an area which has to date received relatively little attention 

in comparison with the animation of faces. The second objective requires realistic anima

tion of any face modelled, while the third goal is to develop appropriate control facilities 

for the user. An additional requirement is the integration of all the objectives mentioned 

into one system. In order to develop an approach that uses reality as a frame of reference, 

it was necessary to undertake a research strategy based on the multi-disciplinary nature 

of the face.

Although caricatures are suitable for some applications, there is a major requirement 

for more realistic and expressive faces which are plausible. We shall therefore take the 

view that an animation system should provide flexible tools and leave the development 

of a character’s personality to skilled animators. As Thomas and Johnston explain [162], 

to produce good quality animation, whether by traditional methods or with a computer, 

necessitates familiarity and understanding of the principles of animation [87]. Such an 

understanding can come only from a thorough knowledge of what actually happens in 

reality; in other words it is necessary to have a benchmark from which abstractions can 

be made. It is only then that the user can develop a character by selectively exaggerating 

or de-emphasising particular attributes.
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2.1 Introduction

In this chapter we are concerned with the anatomy and physiology of the head and face. 

Bone, muscle, skin tissue and surface features, such as the eyes, form the major compo

nents of the head. In addition, the structure and motion of each of these fundamental 

elements have great influence over both the appearance and movement of the face. Conse

quently, the histology, myology and osteology which correspond to skin, muscle and bone
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respectively were studied, together with the eyes [62, 147], as an essential precursor to 

the development of FACES.

The structure and movement of skin is discussed is section 2.2. Major muscles of the 

face and their characteristics of movement are described in section 2.3. The skull, which 

forms the armature for the head and face, is presented in section 2.4. Eyes, which are 

important for both appearance and facial expression, are considered in section 2.5.

2.2 Skin

Facial skin is important because it covers a large part of the face. This makes skin a 

particularly memorable attribute of the face. Skin is significant in determining both the 

appearance and the movement of the face.

2.2.1 Structure

Human skin comprises several layers; it consists of the dermis and the epidermis which 

covers it. Beneath the dermis lies a layer of loose irregular connective tissue which forms 

the superficial fascia also known as the hypodermis or subcutaneous surface. This ar

rangement allows the skin considerable freedom of movement over the muscles and bones 

that lie underneath.

The visual appearance of facial skin is dependent on several factors including texture, 

depth and colouration. Texture depends mainly on the glands contained within the skin. 

Depth of the dermis varies over different areas of the face, for example the lips are very 

thick while the eyelids are thin and delicate. Colour is determined by blood circulation, the 

presence of pigments and health. Skin-tone also varies greatly from infancy to adulthood, 

as well as between males and females, and between different races.

2.2.2 M ovem ent

As well as being tough, flexible and highly elastic, the varying thickness of the dermis 

also affects the motion characteristics of the skin. Tension in the skin can be caused by 

the action of muscles, which is also likely to affect colouration. For example, states of fear 

and embarressment can cause paleness or blushing respectively.

The outer surface of the skin, the epidermis, is marked by three main types of mark

ings known as tension and flexure lines, and papillary ridges. Tension lines form a network
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of linear furrows of variable size. Flexure lines or skin joints correspond to folds in the 

dermis associated with habitual joint movement and to lines of attachment to the under

lying deep fascia. Papillary or friction ridges appear only on the palms of the hand and 

the soles of the feet.

Ageing reduces the elasticity of both the dermis and epidermis. This results in 

wrinkles, such as those under the eyes, and deepening of flexure lines from constant joint 

movement, for example around the region of the mouth.

2.3 M uscles

The form of the face is to a large extent dependent on the size, thickness and shape of 

the major muscles. However, the most significant role that muscles play is in determining 

facial movement.

2.3.1 Structure

Muscles lie between the bone and skin. Attachment at the bone end is known as the origin 

while the connection into the fascia of the skin is called the insertion. All facial muscles, 

with the exception of the orbicularis oris, emerge or have origins on the underlying bone 

and insert into the skin. The origins and insertions of the major muscles are described in 

Appendix A.

2.3.2 Contraction

All facial actions occur as a result of muscular contraction. Consequently, it is the inter

action of various muscles that causes expressions to appear on the face.

Muscles occur in a large variety of sizes, shapes and complexity, but they are essen

tially bundles of fibres that operate in unison. It is the arrangement of these fibres that 

determines both the relative strength and range of movement that a muscle can produce. 

For example, muscles with only a few long fibres have great range of movement and less 

strength, while muscles with many but short fibres have greater power and less range 

of motion. As a result, six general forms of muscle can be identified according to the 

bundling of their fibres, they are called: quadrilateral, fusiform, triangular or pyramidal, 

rhomboidal or penniform, bipenniform and spiral.

A majority of facial muscles can be classified into one of three groups [62]: parallel,
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oblique and spiralized. Names given to the muscle categories are indicative of the type 

of contraction that they cause; the orientation of the fibres that make up the muscles 

determine the direction of pull at their attachment. In each case the contraction is towards 

the attachment to bone. There are two types of muscular contraction isotonic, during 

which the muscle shortens and isometric, during which it develops tension but does not 

shorten; all facial muscles contract isotonically.

2.3.3 M ovem ent

Facial muscles are in general thin, voluntary and subcutaneous. They also occur in pairs 

so that there is one for each side of the face. Muscles tend to be considered according to 

the region in which they occur [62, 147], below we adopt a similar approach in examining 

their movement with respect to the forehead, eyelids, nose, mouth, cheeks and chin.

Forehead

At the top of the head the epicranius consists of the occipitofrontalis and the temporopari- 

etalis [62, 147]. Covering the dome of the skull, the muscular layer of the occipitofrontalis 

consists of four parts. The two occipitals lie at the back while the frontals cover the fore

head. The occipital slips draw the scalp backwards while the frontal slips act from above 

to raise the eyebrows and the skin covering the root of the nose. The frontal muscles 

come into play during actions such as glancing upwards and in expressions which involve 

raising of the eyebrows, such as surprise, horror or fright. Years of expressing emotional 

reactions in this manner gradually leaves horizontal wrinkles across the forehead.

Eyelids

A broad, flat, elliptical muscle called the orbicularis oculi forms the eyelids; this surrounds 

the eye socket and extends into the temporal region and cheek area. The muscle comprises 

three sections which are known as the orbital, palpebral and lacrimal parts. The palpebral 

portion closes the eyelids gently when sleeping or blinking. The act of blinking keeps 

the eyes lubricated to stop them from drying out. The lacrimal part compresses the 

lacrimal sac to restrain the flow of tears. The orbital portion retracts the skin of the 

forehead, temple and cheek, which causes the eyelids to close firmly to protect the eyes 

in an emergency. In strong contractions the entire orbicularis oculi is involved in causing 

the skin to be thrown into folds or ‘crows feet’, radiating from the lateral angle of the
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eyelids.

Raising the upper eyelid and exposing the front of the eyeball, the levator palpebrae 

superioris is an antagonist of the orbicularis oculi. The corrugator supercilli is a small 

pyramidal muscle located at the medial end of the eyebrow and goes deep into the frontal 

part of the occipitofrontalis and the orbicularis oculi. This muscle draws the eyebrow 

downwards and in a medial direction to produce vertical wrinkles in the forehead. The 

corrugator muscle also draws the eyebrow downwards in bright sunlight, as well as during 

a frown.

Nose

The procerus, nasalis and depressor septi form the muscles of the nose. The procerus 

is located at the bridge of the nose. Working together with the corrugator muscles, it 

produces transverse wrinkles in the skin between the eyebrows. Two sections known as 

the transverse and alar parts form the nasalis. The transverse part compresses the nasal 

aperture at the junction of the vestibule with the nasal cavity. The alar part draws the ala 

downwards and laterally, assisting in the widening of the anterior nasal aperture; these 

actions become apparent during deep respiration. The depressor septi is attached to the 

maxilla above the central incisor tooth and runs deep into the mucous membrane of the 

upper lip. This muscle assists the alar part of the nasalis in widening the nasal aperture 

during deep inspiration.

An antagonist to the nasalis is the dilator nares which dilates the nostril. Another 

muscle, which runs down from the sides of the bridge of the nose and past the nostrils 

to the upper lip, is called the levator labii superioris alaeque nasi. This muscle raises the 

upper lip and the wing of the nose. Together with the zygomaticus minor it forms the 

nasolabial furrow which extends from the side of the nose to the upper lip.

Mouth, Cheeks and Chin

Numerous muscles around the mouth and lips make this the most flexible area of the 

face. It is a region which is extremely important for articulation during both speech and 

mastication. One of the most prominent muscles in this region is the orbicularis oris, 

a thick sphincter muscle that makes up the bulk of the lips. The main function of the 

orbicularis oris is to close the lips. With the use of deep and oblique fibres the muscle 

can compress the lips against the teeth, bring them together and protrude them.
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During sucking and whistling, the buccinator or trumpeter muscle pulls the cheek 

inward. The muscles that cause smiles to be displayed are the zygomaticus major and 

minor, see Plate 6.5. Of the two, the major muscle pulls the corner of the mouth upward 

and backward, while the lesser muscle draws the upper lip upward and outward. The 

angle of the mouth during a grin is retracted by the risorius. The levator anguli oris 

raises the corner of the mouth, while the depressor anguli oris draws the corner of the 

mouth downward in an expression of sadness, as shown in Plate 6.5. Contraction of the 

levator labii superioris raises the upper lip. When working together with the zygomaticus 

the depressor labii inferioris draws down and everts the lower lip.

The front of the chin is covered by a small, thick muscle called the mentalis. It raises 

and protrudes the lower lip as well as wrinkling the skin and chin when expressing doubt 

for instance.

2.4 B one

Major differences in the form of individual heads occur due to several factors including 

age, race, gender and hereditary reasons [54,104,110]. In addition, variability in the size, 

shape and relative placement of the major bones is responsible for the overall shape and 

proportions of the head and face. These factors together with deviations in fat and fascia 

tissue are extremely important in determining the appearance of the face.

2.4.1 R ace, Gender and Age

With respect to race, the nature of the skull broadly varies between Negroid, Caucasoid 

and Mongoloid. The most salient racial differences occur with regard to nasal aperture 

breadth, orbital placement and shape, and alveolar prognathism [146].

A distinction that is often made concerns the structure of the mandible. Some groups, 

such as Polynesians for example, have mandibles whose lower border tends to be convex 

rather than straight. The result is that when they are placed on a flat surface, they rock 

and have therefore come to be known as ‘rockers’ as opposed to ‘non-rockers’ [70, 104].

Further variations occur due to gender and age. The male skull has larger proportions 

than that of the female. In particular, it has a larger dental arch; rounded orbits and 

heavy bossing over the forehead. The female skull has similar characteristics to those of 

a child; a small face with large eyes. It further has a light jaw and a pointed chin. The
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effects of ageing on the skull result mainly from ‘bonery absorption’, leading to a shrinking 

in the size of the maxillae and mandible, due to loss of teeth, as well as a thinning of the 

cranium. Such effects are however not as apparent as the dramatic loss of elasticity in the 

facial skin.

2.4.2 Arrangem ent

The front elevation of the skull has an oval profile which is wider at the top than at the 

bottom. A closer examination reveals that the skull consists of two parts, the cranium 

and lower jaw which is also known as the mandible [62, 147]. The upper part of the 

cranium protects the brain and is called the calvaria. The rest of the skull is known as 

the facial skeleton, of which the upper part is fixed to the calvaria and the lower part is 

the freely moving mandible.

Numerous bones make up the structural support provided by the skull, however only 

the most significant of these need to be considered for our purposes. The lower part of 

the skull, or facial skeleton, is very irregular and consists of several major bones and a 

number of discrete sections.

The forehead consists of the frontal bones which form the eyebrow ridge, and the 

upper parts of the eyeball sockets. Eye sockets form the recesses of the orbits which 

contain the eyeballs and their associated muscles. Each orbit has a conical shape which is 

made up of several major bones, notably the: ethmoid, lacrimal, maxilla, zygomatic and 

the sphenoid. The eye sockets determine the extent of the separation of the eyes to ensure 

binocular vision.

The prominent zygomatic bones form the cheek bones. They originate in the squamous 

part of the temporal bone which lies above the ear and extend around the facial skeleton 

to form the base of the orbit.

In the upper jaw the maxillae form the roof of the mouth and the floor of the nasal 

cavity and orbit. The upper teeth are embedded in these bones. The nasal bones separate 

the frontal processes of the two maxillae and form the upper boundary of the nasal 

aperture.

Forming the largest and strongest bone of the face, the mandible has a curved hor

izontal body which is convex forwards and two broad rami, which project upwards from 

the posterior end. The upper border of the bone, known as the alveolar part, contains 

sixteen sockets for the roots of the lower teeth.
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Relative sizes, shapes and distances between these major bones are infinitely variable. 

This variation is responsible for the unique characteristics of each face. For example, 

growth of the maxillae is responsible for elongation of the face, while prominence of the 

zygomatic bones determines the roundness of the face. These characteristics aid visual 

recognition of the face.

2.4.3 M ovem ent

The lower mandible is the only bone in the head which is capable of movement. This 

bone articulates with the temporal bone to form the temporomandibular joint. The upper 

jaw remains fixed while the lower jaw moves in a downward direction to open the mouth.

Speaking and chewing involve three main types of movement comprising elevation, 

depression and side-to-side grinding. Two strong muscles called the masseter and the 

temporalis act as elevators to close the jaw when biting or clenching the teeth. The medial 

pterygoids close the jaw and cause the mandible to protrude. A side-to-side grinding 

movement is produced when the lateral pterygoid muscles act alternately. Lowering of 

the jaw is caused by simultaneous contraction of these muscles.

2.5 Eyes

Eyes are a feature in themselves since they have a distinct form and specific motion 

characteristics. They are a particularly noticeable attribute and therefore significant to 

both the appearance and motion of the face.

2.5.1 Structure

The eyeball consists of three distinct elements [62, 147], namely: the white of the eye 

known as the sclera; the ins; and the pupil. The sclera is a dense, hard membrane 

which serves to maintain the shape of the eyeball. The iris is a delicate and adjustable 

diaphragm which surrounds the pupil orifice. The pupil itself controls the amount of light 

entering the eye. As a result of this function, the size of the pupil changes so that pupil 

dilation is apparent in emotions such as anger, surprise and fear which are depicted in 

Plate 6.5.
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2.5.2 M ovem ent

In addition to the muscles that raise and lower the eyelids, which have already been 

described in section 2.3.3, there are six pairs of muscle that are attached to the eyeballs 

and which move them within their sockets. These muscles are known as extrinsic muscles 

of the eyes. Intrinsic muscles modify the shape of the lens during focusing and regulate 

the amount of light entering the eye.

Four of the six pairs of extrinsic muscles are ‘straight’ muscles and are named accord

ing to their position relative to the eyeball and the actions that they perform. The muscles 

are known as the medial, lateral, superior and inferior rectus muscles. The remaining two 

muscles have a slanting or oblique arrangement and are called the superior and inferior 

oblique muscles.

When the eyes are functioning properly, both eyeballs move in coordination so that 

stereoscopic vision is achieved and maintained. Each eyeball can be considered to move 

around three axes. These are anteroposterior for rotational movements; vertical for ab

duction, adduction; and transverse for elevation and depression.

2.6 Sum m ary and Conclusions

An anatomical study of the human head has revealed that each of the layers: bone, muscle 

and skin has a profound influence over the conformation and motion characteristics of the 

face. Although all human faces have the same physcial structures, as far as form and 

appearance is concerned, the bones determine the overall size and proportions of the head 

and face; they vary with race, gender and age; the size, shape and thickness of muscles 

are influential factors which depend on the health of an individual; and the texture and 

colour of skin, as well as surface features are important because they are particularly visible 

attributes of the face. The motion of the face is dependent on: muscular contractions, 

of which three types can be identified; the elasticity of skin, which varies with age and 

health; and movement of features and organs such as the eyes and tongue.

Given the major objectives of the FACES project, it is clear that a three-layer com

puter model of the head is required for the research project to be viable and credible in 

meeting the goals outlined in section 1.2. To attain any degree of realism it is necessary 

to take account of the structure and motion of skin, muscle and bone since complex in

teractions occur between the layers. However, since each of the layers has very different
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characteristics in terms of structure and motion, it is necessary to treat them as separate 

entities for the purpose of modelling.
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3.1 Introduction

In this chapter we identify the characteristics which are necessary of a head model to 

facilitate conformation modelling and animation. Although an exact simulation is not 

a requirement, the model does need to be relatively realistic or ‘life-like’ in order to be 

comprehensible. It is necessary that the visible surface reflects changes in the underly
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ing muscle and bone structure. This feature is particularly important when the face is 

animated. Dynamic consistency is required so that the face remains recognisable while 

appearing to behave in a human manner.

Anatomical considerations such as those discussed in the previous chapter dictate 

the development of a three-layer model comprising skin, muscle and bone. However, as 

established in chapter 2, bone, muscle and skin have differing characteristics in terms 

of both form and motion [62]. The head consists of a rigid arrangement of bone called 

the skull. This is not only covered, but interleaved by an intricate layer of tissue or the 

muscles. The muscles are in turn overlaid by a semi-elastic deformable membrane, known 

as the skin. The head is therefore partially rigid and partially flexible. The implications 

of this on techniques for the modelling of the face are described in section 3.2.

A head model in FACES comprises a surface skin, referred to as the face, together 

with an underlying representation for the skull. The muscle layer connecting the bone and 

skin is modelled in terms of muscle vectors as proposed by Waters [175]. Development 

of each of these three layers is described in sections 3.3, 3.4 and 3.5. A model based on 

the anatomy of the head provides a method of unifying the three functions of creation, 

modification and animation of faces.

Careful representation and structuring of the three main anatomical layers is necessary 

since the model must also allow integration of modelling and animation functionality 

within one system. The aim is to be able to animate any face that is constructed within 

FACES. It is therefore also necessary to develop a representation that will accommodate 

user control in a natural manner. Extensions to the head model are discussed in section 3.6 

while the model for eye movement is described in section 3.7.

3.2 Facial M odelling

In order to provide facilities for modelling differing faces together with their animation, 

two types of modification are required. Conceptually, these can be regarded as either 

inelastic changes or elastic changes.

3.2.1 M orphology

As explained in chapter 2, differences in the morphology of the head result from variations 

in bone, muscle, skin and surface features. A separate, but related issue is that of growth
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and ageing. Such changes affect the structural characteristics of the head and are consid

ered permanent or long term changes. In modelling terms these changes to the structure 

of the head model can be viewed as inelastic modifications. Inelastic deformation can be 

effectively employed to develop a particular head and face, in effect defining its ‘neutral’ 

state without expression. Therefore, the C o n s t r u c t  and M o d if y  sub-systems, which 

are described in chapter 5, utilise inelastic changes to allow the user to model distinct 

faces. Inelastic changes enable a face to have unique features which faciliate identification.

3.2.2 M ovem ent

The other major function of FACES concerns the modelling of facial movement. In chap

ter 2 we saw that all such movement occurs as a result of muscular contraction which 

involves bone, muscle, skin and surface features of the face. This type of change is consid

ered to be temporary or short term in nature. With respect to modelling facial movement 

such changes are regarded as elastic changes. Muscle models which simulate muscular 

contraction are therefore used to cause transitory deformations of the face. A detailed 

description of the muscle models is provided in chapter 4.

3.3 R epresentation  o f Skin

The research project required an empirically derived ‘average’ head and face model on 

which to base the computer model. However, measurement of a large sample population of 

faces was prohibitive in terms of both time and finance. The data was therefore obtained 

from a plastic mask which is illustrated in Plate 3.1.

The mask provided a suitable alternative to an average face in two respects. Its use 

avoided reliance on a human face which would have resulted in the data being specific 

to a particular individual’s face. In addition, the mask neither has pronounced features 

nor does it exhibit any expression, thereby making it an ideal representation from which 

other faces can be moulded and developed.

In the head model developed, the facial skin is represented using a polygonal mesh, 

see Figure 3.1. This approach was adopted for several reasons. A polygonal mesh allows 

irregular shapes such as the facial features to be represented easily. The technique also 

enables both global and local geometric transformations to be applied. This allows the 

head to be moved, scaled or rotated as one structure, as well as permiting local deforma

tions to be applied to specific areas of the mesh to create facial expressions. Manipulation
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Plate 3.1: Plastic Mask

Data was acquired from a theatre mask rather than a real human face to avoid use of a 
mesh topology specific to one particular person. A mesh was drawn on the mask which was 
later digitised through stereo photogrammetry.

U n i v e r s i t y  O f  B a t h 25 M a n j u l a  P a t e l



M a k in g  FACES R e p r e s e n t a t io n  O f  T h e  H e a d

of a polygonal mesh is not as computationally expensive as that of surface patches. Fur

thermore, well-established, fast and efficient algorithms can be used for clipping, hidden 

surface removal and shading of polygonal meshes [21, 50, 60, 111]. In addition, hardware 

support with respect to rendering and matrix operations for rigid transformations is now 

widely available.

3.3.1 Techniques for Extraction o f Polygonal D ata

Lofting techniques, laser or light beam scans, photogrammetry and manual digitisation are 

all approaches which can be used to obtain a polygon or patch mesh. Lofting methods are 

often used in medical imaging. More specifically, Computed Axial Tomography (CAT) is 

used for hard tissue and Electro-Magnetic Resonance (EMR) for soft tissue [168]. Lofting 

techniques involve the extraction of ‘slices’ of 2D data. These cross-sections are later 

stacked and linked together to recreate a full 3D head model. Coarseness of the data can 

be varied by regulating the intervals at which slices are taken.

Laser and light beam scanning are capable of providing a high resolution of the 

surface detail. However, this is only possible if a large number of points are recorded, 

often amounting to as many as 70,000 [93]. Such large quantities of data pose problems 

regarding storage, manipulation and control of the data.

It was infeasible to use either lofting or laser scanning to digitise the mask since 

both approaches require specialised equipment. The two remaining alternatives were 

photogrammetry and manual digitisation; both of which first require a mesh to be drawn 

on the surface of the mask. Stereo photogrammetry was eventually used to record the 

topology of the mask. This technique was adopted because points recorded using a manual 

3D digitiser proved inaccurate due to insufficient rigidity of the mask and due to restrictive 

movement of the tool-tip.

3.3.2 D efinition o f Facial Topology

Approximation of a face involves sampling the surface at various points. The points are 

then connected to adjacent vertices to form a polygonal surface skin. The face is assumed 

to be approximately symmetrical about the central vertical meridian. A line was therefore 

drawn to represent this plane of symmetry on the mask. The right side of the mask was 

used to provide data for the right side of the mesh. This was then reflected about the 

vertical plane onto the left side to create a complete symmetrical face model.
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The human face is composed of many prominences and depressions. It is therefore 

necessary to select vertices at such topographical extremes to avoid losing the relief and 

consequently ‘smoothing out’ the features of the face. Major features such as the eye, 

nose and mouth were subsequently outlined to enhance their general shapes and to ensure 

that polygonal boundaries would coincide with both creases and colour boundaries of 

particular features. This technique avoided a ‘flattening’ of features during the shading 

stage when colours were interpolated between the boundaries of the polygons. Mesh lines 

were next constructed within the outlined features whilst maintaining continuity with the 

rest of the face. A larger number of polygons were used in areas of high curvature, in 

particular around the eyes, nose and mouth to capture the topography of the face.

Each vertex and facet which forms the mesh was uniquely numbered to facilitate easy 

referencing. The number of polygons was minimised to enable effective manipulation of the 

mesh and to avoid a ‘data explosion’ which can occur with laser scanning techniques [49]. 

Despite being labour intensive, such an approach does allow explicit control over those 

facets and vertices that are required. A further advantage of the approach is that various 

features such as the eyes and mouth can be isolated into discrete structures which can 

then be manipulated individually.

3.3.3 A cquisition of Topological D ata

Once a polygonal mesh had been defined, the mask was photographed from two orthogonal 

views, one from directly in front and the other from the side, 90° to the first. The views 

selected enabled the coordinate axes to define the symmetry of the face. Having obtained 

photographs of the mesh from both the front and side elevations, a program was written 

to enable the photographs to be manually digitised using a puck and tablet.

The first two points which were recorded established the coordinate frame and bound

ing box of the half face viewed in the photograph. All subsequent points sampled were 

mapped from the coordinate system shown in the photograph into screen device coordi

nates. Plate 3.1 shows the front elevation view taken at 0°, to provide the x-y coordinates 

of the facial mesh, while a side elevation at 90°, produced the y-z coordinates. According 

to Magnenat-Thalmann et al. the difference in angles should be greater than 15° and 

less than 165° [100]. Measurements of vertices were recorded carefully to ensure that the 

coordinate systems for both views corresponded with each other. A routine was then 

written to merge the data-sets to produce a 3D polygonal mesh model of the face mask.
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Despite the benefits of photogrammetry, the technique has two main shortcomings. 

Firstly, photographs are perspective projections and not orthographic. The resulting 

distortion in the coordinates was minimised through use of a long focal lens attached to 

the camera. The coordinates did nonetheless need some adjustment to counteract the 

effects of perspective distortion. Secondly, several points were not visible in both of the 

views; in such cases a best guess estimate was required for at least one of the coordinates.

The data-file for one half of the face model consists of a list of point indices and 

3D coordinates. This data is followed by connectivity information for each facet, which 

consists of the number of points that form the facet, followed by the corresponding vertex 

indices. After extensions to the original mesh model, which are described in section 3.6, 

the complete face model comprises a total of 494 points and 459 facets, see Figure 3.1.

3.4 R epresentation o f M uscle

A muscular layer, which comprises the most influential muscles of the face, lies between the 

skull and the surface skin mesh. The muscles are represented using muscle vectors [175]. 

The head of a vector is connected to the bone which represents the origin of a muscle, 

while the tail represents the insertion into the skin. The muscle models used to simulate 

muscle contractions are described in section 4.5.2.

During conformation modelling it is necessary for the user to be able to modify the 

physical form of the head without affecting the functionality of the muscle models. This 

requirement can be achieved by either of two methods. The first would enable the user to 

interactively implant muscles into a head model after it has been modified. The second 

approach would permit the system to modify automatically muscle vectors in accordance 

with changes to the structure of the head as specified by the user. This latter approach has 

been adopted initially since the former would require a sophisticated editing capability. 

Therefore the difference between inelastic and elastic modifications is modelled such that 

conformation changes affect both the origins and insertions of muscles, whereas expression 

deformations displace muscle insertions alone.

3.5 R epresentation o f Bone

Major bones of the head are modelled in the form of a polygonal mesh. At present a scaled- 

down version of the surface skin mesh, discussed in section 3.3, is used for convenience.
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Figure 3.1: M esh M odel

The full mesh model, derived from the mask illustrated in Plate 3.1, comprises a total of 
494 points and 459 facets. The left side of the face is a reflection of the right, so that the 
two sides are symmetrical.
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The skull mesh is further distinguished from the skin mesh through a lack of eyeballs and 

through colour. In particular, the skull is displayed in white while a skin-tone is used for 

the facial skin surface.

In order to provide modelling control over specific bones, it is necessary to group 

particular vertices to represent each bone. Grouping of vertices for this function is specific 

to the skull mesh and totally independent of the facial skin mesh.

3.6 E xtensions to  th e M esh M odel

Several essential features for facial animation include the neck, eyebrows, eyelids and 

eyeballs. These elements were incorporated into the initial polygonal skin mesh since 

the theatre mask lacked these features. Each feature was constructed for one side of the 

face while the corresponding feature on the other side is a mirrored reflection. Expansion 

of the model caused difficulties with respect to the maintainence of a 3D representation 

since two orthogonal views of the features were unavailable. As a result, coordinates were 

composed according to visual aesthetic judgement, see Figure 3.1.

3.6.1 Neck

The neck facilitates all movement of the entire head such as nodding and turning from 

one side to the other. Therefore the mesh model was extended to incorporate a neck 

consisting of two rows of vertices.

3.6.2 Eyebrows

Eyebrows convey a variety of information, according to vertical movement, as well as 

according to their overall shape and relationship to each other [41]. To include these 

features into the model several live faces were examined to determine their location on 

the forehead. Consequently, the eyebrows appear on the ridge of the forehead just above 

the eyes, as illustrated in Figure 3.1. Furthermore, they are slightly raised in the z- 

dimension, above the facial mesh to give the impression that they protrude above the 

skin. The shape of the eyebrows was determined by following the vertices around the 

upper part of the eye socket and the base of the forehead. Thickness of the brows was 

determined by visual aesthetic reasoning.
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Figure 3.2: C onstruction  o f E yeball

Eyeballs are produced procedurally through a surface of revolution technique. The profile is 
first defined in the y-z plane and then rotated about the z-axis to sweep out a hemi-sphere.

3.6.3 Eyelids

Realistic eyelids are particularly awkward to model since they consist of a very flexible 

and deformable skin that stretches over the eyeball. Tapering at each end to blend into 

the corners of the eye causes further difficulty. Consequently, eyelids were examined on 

several real faces to determine how they operate. Observation revealed that the top eyelid 

moves to a much greater extent than the lower eyelid. As a result, a convex mesh was 

constructed and scaled to conform with the eye sockets, see Figure 3.1. A row of vertices 

in the centre of the mesh was duplicated in order to facilitate opening of the eyelids.

3.6.4 Eyeballs

The eyeballs were formed procedurally by the use of a surface of revolution technique. A 

cross-sectional profile consisting of points forming the outer perimeter, mid-ring, iris-ring, 

iris and pupil was first defined in the y-z plane, as illustrated in Figure 3.2. This profile 

was then rotated about the z-axis to sweep out a hemispheric eyeball in 3D space. The 

number of points that make up each ring is dependent on a parameter which is passed 

into the routine. Controls for pupil dilation were incorporated in the form of a parameter 

to determine the size of the radius of the pupil. The resulting eyeball was then scaled and 

translated to fit into the eye sockets of the mesh model, as shown in Figure 3.1.
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3.7 Eye Focusing and Tracking

The model which has been developed, enables the eyes to both focus and track an object in 

3D space. The technique employed to facilitate these operations is similar to the approach 

used by Parke [116] and Waters [176]. The method functions in accordance to the 3D 

geometric model shown in Figure 3.3. Realistic results are achieved since the eyes actually

Left Eye

Target

Right Eye

Plan View

Target

Elevation View

Figure 3.3: E ye Focusing and Tracking M echanism

The geometry associated with eye focusing and tracking of objects in 3D space. The eyeballs 
can each rotate both horizontally and vertically, to provide two degrees of freedom.

focus on an object rather than staring aimlessly into oblivion. Such realism is particularly 

noticeable when a target object is close to the face, requiring each eyeball to rotate by 

differing amounts. To provide greater flexibility for the user, the system allows separate
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control over each eyeball so that special effects such as ‘fish-eyes’ and eyeball rolling can 

be achieved, see Plates 6.1 and 6.2.

Central coordinates of the left and right eyeballs form translation vectors which are 

used to position the eyeballs within the head. The target object has coordinates (x t , 

yt, Zt) and needs to be located in front of the face, otherwise it cannot be observed. 

The eyeballs can each rotate both horizontally and vertically, providing two degrees of 

freedom. Horizontal movement of each eyeball in the x-z plane is given by a rotation 

about the y-axis. The angle of rotation required in the x-z plane for the left eyeball to 

focus on the target is a/, which is obtained from equation 3.1. Similarly, the angle for 

the right eyeball to focus on the same point is a r , see equation 3.2. The two angles are 

determined as indicated in Figure 3.3.

tan(ai) = ~ — j -  (3.1)
zt -  Zi

tan(ar) = ^ (3.2) 
Zt -  zr

The z-axis is taken as being at 0° so that a positive angle results in anti-clockwise rotation 

and a negative angle in clockwise rotation. Vertical movement in the y-z plane is given by 

rotation about the x-axis. The corresponding angles are /?/ and (3r which are determined 

according to formulae 3.3 and 3.4.

tan{(3i) = ■■ . y t ~ ? 1 (3.3)
\J (x t -  x i)2 + (zt -  z^ 2

tan(Pr)  = - / ~ VtT ~ r 2 (3*4)
yJ{xt - x T) + { z t - z r)

3.8 Sum m ary and Conclusions

It is evident that realistic and accurate conformation modelling and animation necessi

tates the development of a three-layer head model. Conformation modifications can be 

thought of as structural or inelastic changes, while expression generation results largely 

from muscular contraction which can be modelled as elastic deformation.

To incorporate both types of modelling into FACES, a three-layer anatomical model 

of skin, muscle and bone has been developed. The topology of the skin mesh was derived 

from a plastic mask in order to acquire a face model without any particular traits; a 

face which can be subsequently modified by the user as desired. The resulting polygonal 

mesh was extended to include constituent components of the head such as the neck,
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eyebrows, eyelids and eyeballs. To make the research project tractable, other elements 

such as hair, ears, teeth and tongue have been omitted. This is not because such elements 

are unimportant, but rather because they are not germane to the issues currently being 

addressed as part of the project.

The three-layer model caters for construction and animation in a natural manner since 

it is based on real anatomical structures. The importance of the head model constructed 

is that it not only serves as a foundation which integrates the functionality of modelling 

and animation in one system, but that the model also enables varying strategies to be 

used for investigation of the form and movement of the face. It is proposed that Parke’s 

approach of using parameters for both conformation and animation [118] is too restrictive 

and that the two issues need to be examined separately.
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4.1 Introduction

Creation of a three-layer static head model was described in the previous chapter; next 

we turn our attention to the motion dynamics of that same model. Simulation of both 

naturalistic and realistic motion of complex objects, such as the face, remains a major issue 

even though this area has been the subject of much research in recent years [183,184,185].

Facial expressions are an inherent part of human characteristics. However, simulating 

facial movement is not a straightforward task. The surface skin is extremely elastic, 

flexible and deformable.

The way in which motion is generated is independent of the manner in which it 

is specified. Modelling of motion is examined in this chapter whilst issues relevant to 

motion specification and control are addressed in chapter 6. The method used to generate 

motion has implications for the type of control that can be made available to the user. 

In particular, trends towards greater complexity in animation increases the importance of 

developing techniques for convenient and automatic motion control.

We begin, in section 4.2, by examining the major problems that were encountered 

during the development of an animation system for faces. This is followed by a review of 

techniques for modelling facial movement which have been used in the past in sections 4.3 

and 4.4. We shall then proceed to examine the approach used within FACES to model 

the motion characteristics of the face in sections 4.5, 4.6 and 4.7.

4.2 Facial M ovem ent in FACES

Three major issues were addressed during the developmental stages of an animation sys

tem for faces. Firstly, how is facial movement to be generated? In particular, which 

mechanism is to be used to distort the mesh model? Secondly, which parts of the face 

need to move and in which combinations to create recognisable and meaningful expres

sions? Finally, when should particular parts move in relation to each other to generate 

plausible and convincing motion?

It is instructive to undertake a review of approaches that have already been devised, 

with the aim of identifying the advantages and disadvantages of each. Due to the irregular 

nature of the face, most models are based on a polygonal mesh representation, although 

there are the odd exceptions [123, 171]. Once a mesh model has been constructed, pro

duction of synthetic expressions and their animation involves the simulated motion of the
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mesh. Various methods of creating such movement have been developed over the years. 

The most realistic of these are based on the physical structure of the face. Modelling of 

motion falls into two broad categories [180, 182, 186, 187], they are known as kinematic 

and dynamic techniques. Characteristics of these two techniques for modelling motion are 

examined in sections 4.3 and 4.4.

Facilitating expression animation in a generic manner is a major requirement of 

FACES. More specifically, the system should allow any face constructed within it to be 

animated. This requirement necessitates that the solutions to the problems outlined be 

general and applicable to all faces.

From an investigation into the anatomy of the face we are aware that all facial move

ment occurs as a result of muscular contractions, see section 2.3. A natural corollory 

of this observation is that muscular movement should be simulated in order to distort 

the mesh model. The major advantage of this approach is that it has generality since 

all human faces comprise the same set of muscles. The techniques used to model elastic 

facial distortion are discussed in section 4.5.

An answer to the second issue, regarding which parts of the face are related, is pro

vided by the Facial Action Coding System which is better known as FACS [44]. It is a 

comprehensive system for coding facial expressions. The benefits and drawbacks of the 

system are described in section 4.6.

Timing and duration of facial movement are critical to the message that is eventually 

conveyed to the observer. This particular issue poses difficult problems since time-variance 

data for non-verbal communication is currently unavailable. The question of timing is 

discussed in more detail in section 4.7.

4.3 K inem atic M odels

In kinematic motion emphasis is placed on the production of believable visual effects; the 

illusion of realistic motion without having to model complex physical laws. Kinematic 

models produce motion from positions, speeds and accelerations. Many animation sys

tems are based on this approach since less computation time is required than for dynamic 

models. Furthermore, kinematic techniques are more intuitive to use. Four major cate

gories of kinematic model have been identified, they are interpolating, procedural, recorded 

and natural models [134].
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Interpolating models represent motion by a set of scenes each at a different location in 

time. A method of interpolation is used to simulate the process of inbetweening normally 

carried out by assistant animators in conventional 2D animation. In procedural models 

motion is described by an algorithm together with a set of input data. This technique is 

used to implement movements such as oscillations and circular motion, or motion specific 

to a particular application. Recorded models consist of stored data which has been ob

tained from precomputed or real motion, such as rotoscopy [29] for example. With natural 

models, motion is described using commands from a near natural language notation. A 

set of rules is applied to the parameters of the commands to produce the desired motion.

In conventional 2D animation the techniques of ‘squash and stretch’, arcs in the mo

tion and ‘slow-in and slow-out’ are used to imitate the effects of forces on mass. The 

equivalent of such effects in the context of computer animation are shape deformation 

and non-linear interpolation such as use of the cosine function to model inertia. Kine

matic methods that have been used for the generation of facial movement include shape 

interpolation, parameter interpolation, rotoscopy and performance driven animation.

4.3.1 Shape Interpolation

Parke’s original research, involving facial animation, was based on shape interpolation [115]. 

A polygonal mesh was produced using stereo photogrammetry in a similar manner to that 

described in section 3.3.3, but through the use of photographs of a real person taken from 

two different views [117]. Extreme poses, which formed keyframe data were also acquired 

using the same technique; the two photographs had to be taken simultaneously in order 

to capture an expression on a live face at a particular instance. Data-files were created for 

each of a number of different expressions to represent key expressions. Animation of the 

face was achieved through the use of a cosine interpolant to generate intermediate facial 

expressions.

For shape interpolation to be successful, the topology must be the same for both 

extremes of the mesh representation. In particular, the number of vertices defining the 

surfaces and their interconnections must be identical. This is not always the case and 

additional points may need to be calculated for one of the extremes until the conditions 

are satisfied [94].

Parke observed that shape interpolation produced good results when working in 2D 

as for cartoons, however the approach proved inefficient for 3D facial animation. In
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particular, the method required the complete specification of a large amount of data; it 

was necessary to collect data for each expression of each face and each keyframe had to be 

explicitly defined and stored. Another major drawback of shape interpolation is that the 

range of expressions which can be displayed is limited by the number of keyframe poses 

available.

Variations of the shape keyframe approach are nevertheless popular. It is possible to 

generate realistic and effective animation provided that a sufficient number of keyframes 

are used. MacNicol cites an example in which 18 frames out of every 30 were keyframes for 

each second of animation [93], Another example is the computer animated short film ‘Tony 

de Peltrie’, in which a Character Bank of Standard Expressions was developed through 

digitisation of real human expressions. Facial expressions for the computer character were 

achieved by mapping expressions or blends of several expressions onto the mesh model 

using the t r a n n a  and DADS systems [48]. An alternative approach was taken by Kleiser- 

Waiczak who successfully animated two characters, called Nestor Sextone and Dozo, by 

using the upper face largely for expressions and the lower parts for speech [119].

4.3.2 Param eter Interpolation

Prompted by the data-intensiveness and the associated restrictions of the shape interpo

lation approach, by 1974 Parke had managed to develop a parameterised method [116]. 

This enabled the animator to both create a face and configure expressions on it by speci

fying an appropriate set of parameter values. This model was also based on a collection 

of polygons, but this time the polygons were manipulated by a set of parameters which 

were interpolated. The objective was to create a model from which a wide range of both 

faces and expressions could be generated through a limited set of input parameters.

The rationale behind the use of parameters is that a set of differentiation or spec

ification criteria is required to distinguish between the members of a particular set. A 

‘complete’ set of criteria is one which allows any member of an object class to be speci

fied by selection of appropriate parameter values. The issue becomes one of the quality 

and scope of such parameters. More specifically, it is necessary to investigate the appro

priateness and efficiency of the chosen parameters, together with the range of faces and 

expressions from the ‘universe’ of faces and expressions that can be generated using those 

parameters.

The parameters selected by Parke were largely based on observation. They were sub
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divided into two main classes known as conformation and expression parameters. Those 

parameters concerning conformation dealt with attributes that vary from one individual 

to another, while expression parameters described variations between expressions.

Parameterised models are convenient for the user since only a limited amount of 

information needs to be manipulated. Such models are more flexible than those that use 

shape interpolation since vertices are grouped together into sub-structures which may be 

manipulated as a whole and independently of other groups of vertices. In contrast, shape 

interpolation requires a whole keyframe for even minor changes to the model.

The problem with Parke’s method of parameter interpolation is that specific vertices 

need to be identified for manipulation of particular parts such as the eyebrows and jaw 

for example. Since such actions are dependent on a particular mesh topology the vertices 

have to be built into the software, thereby reducing the generality of the system.

Pearce et al. [123] describe extensions to Parke’s model by development of a key

word interface to assist the user in creating expressions from which a library of partial 

expressions can be constructed. Each partial expression is specified through a set of 

key-words to describe the: part of the face to be manipulated; type of movement; initial 

and final frame numbers; a value for the parameter at the final frame; and the type of 

interpolation required, the default being linear.

4.3.3 R otoscopy

Rotoscopy and variations on the approach have produced the most realistic results to 

date [93, 188]. The technique is a way of extracting complex motion by taking tracings 

from live-action footage on a frame-by-frame basis. Traditional animators, such as those 

at the Disney Studios, used rotoscopy to achieve realistic animal motion in 2D [162]. 

Recording live-action motion with three cameras to capture the x, y and z views has also 

enabled the method to be used in 3D animation [29].

An alternative method of obtaining data for realistic motion is by the use of electro- 

gonyometers [24]. This method allows both kinematic and dynamic data to be obtained 

without the tedious process of tracing individual frames. Yet another approach derives 

control points from a video sequence of a live performance and spatially maps this infor

mation to conform to a synthetic face [122], Mapping takes into account differences in 

proportions between the two faces. The model is animated by deforming the texture and 

geometry of the synthetic face in the region of the control points.
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Rotoscopy has also been used for lip synchronisation. The lip shapes are traced off 

and either exaggerated or used directly [116, 175]. The biggest problem with rotoscopy 

is that it can only be used where actions have first been performed live. This severely 

reduces the scope for creating special effects. In addition, it is impossible to get motion 

descriptions for imaginary beings or conditions for which recordings cannot be obtained. 

Furthermore, the camera records everything with an impartial lack of emphasis, which 

for caricature animation is often inadequate.

4.3.4 Perform ance Driven Anim ation

Interactive real time performance models for face animation are a recent approach de

veloped by deGraf-Wahrman Productions [151]. Akin to the parameter interpolation 

approach, this method permits various facial actions to be predefined and later con

trolled interactively [140, 188]. Facial motions can be either autonomous or controlled 

by a puppeteer. This technique is analagous to traditional puppet models which can 

be ‘performed’ rather than animated. The method, which is also known as animation 

by enactment, provides animators with fluidity and flexibility of expression as well as 

spontaneous improvisation which have been neglected in other approaches.

4.4 D ynam ic M odels

Dynamics facilitates naturalistic movement patterns to imitate realism, which is the major 

benefit of this approach. The technique involves prediction of motion through analysis 

of the effects of forces and torques on mass. To apply dynamics models, objects to be 

animated need to be defined in terms of mechanical elements which include: material, 

mass, joints, rods and springs.

However, there are three major problems with using dynamics techniques [181]. 

Firstly, the equations tend to be complex and compute-intensive; they are solved numeri

cally to find the position for each moving point. This makes interaction using present day 

systems difficult. Secondly, due to the interaction between moving points, dynamics equa

tions are usually coupled and must be solved as a system of equations. This necessitates 

numerical techniques which are iterative and computationally expensive; in addition, the 

equations are often numerically unstable, giving widely ranging results. Finally, motion 

control is extremely difficult because it involves specification of the duration, magnitude 

and direction of forces; these are entities which tend not to be intuitive to control.
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Major dynamics based methods that have previously been used in facial animation 

include: tension nets, simulation of muscles and abstract muscle actions. These techniques 

are described below.

4.4.1 Tension N ets

Platt and Badler’s model is based on the anatomy of the head and comprises a three level 

representation to model the skin, muscles and bones [131]. Points at the three levels are 

connected by elastic arcs forming 3D networks or tension nets. Arcs connect a point to 

all adjacent nodes. Muscles are represented by arcs which stretch from each fibre-point 

to a point on the underlying bone and from the muscle to one or more skin points. Since 

different sections vary in terms of elasticity, information such as length parameters are 

stored on the arcs.

The basic action performable on the network is the application of a force, or tension, 

to selected parts of the network. When a force df is applied to a point p, the change in 

location is computed using equation 4.1.

d l = j  (4.1)

Here k is the sum of the spring constants, or elasticities at the point p. When a simple 

fibre contracts, a force is applied to a muscle point in the direction of the tail, or bone, 

point. This causes lesser forces to be propagated out from the initiating point across the 

face. Animation is achieved by dividing the contractions into n, each of force This 

assists in the distribution of the effects of simultaneous pulls over intermediate areas of 

the face.

The model has several disadvantages. Since an iterative technique is used, initial 

values are required for the length and elasticity of the arcs connected to both the skin 

and bone. Dynamics with respect to the lower part of the face, notably the mouth and 

jaw are not addressed. It is not clear to what extent complexities such as these can be 

dealt with by the model. Platt found that since the model attempts to emulate the low 

level intricacies of the face, the approach was unacceptably expensive in computational 

terms [130], Although the model does provide a close relation between the causes of facial 

actions and their simulation, a more feasible approach is to simulate the most significant 

characteristics of facial muscles.
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4.4.2 Sim ulation of M uscles

Also based on the anatomical structure of the face, Water’s model concentrates on the 

actual motivators of the dynamics in the face, that is the muscles [175]. The aim was 

to develop a general and flexible parameterised muscle model which would allow facial 

control without having to predefine the performable actions based on the topological 

representation of the model. Muscles, which exist in all human faces, are modelled so 

that the method is independent of any particular facial topology.

Facial skin is represented as a mesh in which each node has a finite degree of mobility. 

Linear and parallel muscles that pull, together with sphincter muscles, which squeeze, are 

modelled. Positioning of muscles is achieved through identification of key nodes on the 

face and enabling correspondence of these points to the 3D computer model. Animation 

occurs as a result of parameter interpolation. The model has recently been extended 

to a physically-based one, in which all three layers of skin, the epidermis, dermis and 

subcutaneous facia are modelled [159].

The approach has limitations in that it requires specific parameters such as muscle 

tension and elasticity to drive it. Such measurements are difficult to both acquire and 

use as a basis for expression synthesis. Research is currently being undertaken to derive 

automatically muscle parameters from video sequences of live performers [160].

4.4.3 A bstract M uscle A ctions

Abstract Muscle Action or AMA procedures are part of the Human Factory System which 

has been used for modelling human characters [96]. An AMA procedure is a specialised 

routine which simulates the specific action of a face muscle rather than modelling general 

types of muscle as in Waters’ case. This means that the user is provided with a more 

detailed and accurate level of control. The procedures operate on specific areas of the face, 

each of which must be defined when the face is constructed. Each procedure is responsible 

for actions which correspond to a particular muscle.

The AMA procedure level is considered to be the lowest level of access to the face. 

Two further higher levels, known as the expression and script levels, are also defined. 

Facial movements comprise phonemes and emotions both of these consist of combinations 

of parameters to the AMA procedures. The expression of a synthetic actor is characterised 

by: a unique face for the actor; a set of regions; and a set of parameter values. An actor’s 

personality can therefore be defined as the set of expressions for that actor.
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A script is a collection of multiple tracks [52], where each track is a chronological se

quence of keyframes. There is one track for each facial parameter or AMA procedure. A 

track may be modified and combined with the rest of the facial expression, making changes 

straightforward. Animation itself is performed by applying spline interpolation [80] to the 

mixed track. Consequently, the user works with expression interpolation rather than pa

rameter interpolation, which provides a higher level of access to facial animation. The 

Human Factory System has been used to generate the computer animated sequence en

titled ‘Rendez-vous a Montreal’ in which two synthetic actors emulate Marilyn Monroe 

and Humphrey Bogart.

4.5 M odelling Facial D ynam ics

At the lowest level generation of facial expressions in FACES is governed by muscle models. 

The models correspond to three types of muscle found in the face: parallel, oblique and 

spiralized [62] and are based on models which were first formulated by Waters [175].

There are several reasons why the muscle models are considered to be the most ap

propriate for use in FACES. To date, the models have produced the most convincing 

results observed; this is because they are based on reality. The technique is also topology 

independent which is necessary since FACES caters for the creation and modification of 

a multitude of faces. Topological independence is essential when modelling a variety of 

faces since each is likely to require a distinct topology for the purpose of recognition. 

More specifically, it is necessary to use an animation model that is applicable to any face; 

the muscle models operate in terms of anatomical muscles which form the basis of all 

human faces. The muscle models are also ideal as a foundation upon which FACS can 

be implemented; FACS describes facial expressions in terms of combinations of muscular 

contractions. The approach can also accommodate a three-layer anatomical model which 

has been deemed necessary for a viable and complete system for modelling and animating 

faces, see chapter 3.

The head model in FACES differs from the model developed by Waters. A complete 

anatomical model was not considered by Waters since the focus of his research was facial 

animation rather than the creation and modification of faces. Waters therefore concen

trates on the skin and muscular layers alone, which resulted in the omission of the explicit 

definition of the underlying skull [176].
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4.5.1 E lasticity  of Skin

Skin needs to be modelled accurately to produce realistic results because it is a particu

larly visible feature of the face. The difficulty with modelling skin is that it has a non

linear, anistropic stress-strain relationship. Furthermore, the stress-strain relationship is 

time-dependent because skin is also viscoelastic. Extensive literature on the mechanical 

properties of skin exists, but even the most sophisticated skin models axe greatly sim

plified because of complexity and computational constraints [86]. Waite and Komatsu 

argue that a B-spline representation adequately models the required elasticity [81, 171]. 

However, more sophisticated models, based on Finite Element Methods [61, 63, 86], have 

also been developed.

In FACES skin is modelled as an elastic mesh which deforms with the application 

of muscle contractions. This technique avoids the complexity and the computational 

requirements of a non-linear viscoelastic model which would require compute-intensive 

and iterative numerical techniques and would therefore be unsuitable for an interactive 

system.

4.5.2 M uscle Contraction

Mathematical modelling of the muscle models used in FACES is described in this section. 

Details regarding the development of the original models can be found in Waters’ doctoral 

thesis [176].

Facial muscles can be classified according to the orientation of their individual fibres. 

Consequently, three types of muscle can be identified as the primary motion muscles, 

these are linear, sphincter and sheet. Linear or parallel muscles pull in a single straight 

direction. Elliptical or circular muscles, also known as sphincter muscles, squeeze the skin 

to pull it in towards a central point. Sheet muscles behave in a similar manner to a series 

of parallel linear muscles spread over an area.

Muscles are modelled in terms of vectors, using a direction and a magnitude. Direc

tion is towards the point of attachment on the bone while magnitude is the amount of 

contraction. The disturbed area of skin known as the zone of influence, increases with 

muscle tension. FACS provides an approximation of this area of disturbance.
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Figure 4.1: G eom etry  o f  Linear M uscle M odel

The linear muscle contracts surrounding skin towards a static origin on the bone until the 
force dissipates to zero [176]. Only a proportion of the force is effective along the line of 
contraction since fibres become oblique in relation to the node of attachment.

Linear Muscles

A linear muscle contracts the surrounding skin towards a static node on the bone until, 

at a finite distance away, the force dissipates to zero, see Plate 4.1. The displacement can 

be approximated by multiplying the length of the muscle fibre by the cosine of the angle 

of the muscle fibre to the tendon [62].

Major parameters of the linear muscle model include the: area of flesh influenced by 

the muscle contraction; length of the muscle; and position of the muscle in 3D space 

relative to the underlying bone. The model assumes that there is no displacement at 

the point of attachment to the bone, but a maximum deflection at the point of insertion 

into the skin. The geometry of the model is illustrated in Figure 4.1. To calculate the 

displacement of a node P  on the mesh to P' within the segment V\ PrPa, a displacement 

towards V\ along the vector PVi is created. This gives

P* <xF(I(y A, R,P)
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Lx

Figure 4.2: G eom etry o f  Sphincter M uscle M odel

The sphincter muscle causes the tissue of the skin to be drawn together around a single 
point [176]. The points are squeezed together according to the major and minor axes.

Here P'  is a function of K , the muscle spring constant; an angular displacement

V fo .V ?PA = cosiu) = ------------ ^—
I ViVi II ViP I

and a radial displacement factor

R = C0S ( t J t )  [{P m VlP"PmVl 
cos ($E§fc) if p  in PnPrP,Pm

Sphincter M uscles

The sphincter muscle causes the tissue of the skin to be drawn together around a single 

point, see Plate 4.1. Since the points are squeezed together in a uniform manner, the 

angular displacement becomes redundant, and a major (Lx) and minor (Ly) axis are 

used, as shown in Figure 4.2. Now,

P' cxF(K,Lx,Ly,P)

Here K  is the muscle spring constant. The displacement of P  to Pf is given by

JIJpJTIJPy
F  = 1 —  ------- —----------

2y
LxLy
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Figure 4.3: G eom etry o f  Sheet M uscle M odel

Sheet muscles may be described as a series of almost parallel, linear fibres spread over an 
area [176]. The muscle model requires definition of a displacement parallel to the direction 
of the central muscle vector.

Sheet M uscles

Sheet muscles may be described as a series of almost parallel fibres spread over a region, 

see Plate 4.1. A particularly good example is the frontalis major which lies on the forehead 

and is responsible for raising the eyebrows.

The geometry of the sheet muscle model is shown in Figure 4.3. The muscle requires 

definition of a displacement parallel to the direction of the central muscle vector, so that:

P' ( x f ( K , d , P )

Where K  is the muscle spring constant and d is the dissipation of the force depending on 

which zone the node lies in

d = <
cos

COS

1 -  £■] for P  in ABDC

+ for P  in CDFE
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4.5.3 M uscle Interaction

Muscle contractions are by no means mutually exclusive, in fact it is seldom that a single 

muscle will act in isolation. Physically, some muscles tend to merge together and over-lay 

others so that their zones of influence overlap. In a dynamic environment, muscles will 

interact often pulling in conflicting directions and with differing amounts of force. Such 

actions need to be resolved in a consistent manner. The complication of simultaneous 

muscle pulls is automatically resolved by averaging out the tension during an action.

To simulate this process in FACES muscle vectors displace points from their current 

position rather than from their rest position. The effect of opposing muscles is therefore 

to move the node points to a location which is the average of several muscle displacements 

on a frame-by-frame basis. Plate 4.1 shows interactions that occur between two linear, 

two sphincter and two sheet muscle contractions.

4.5.4 Param eters o f M uscle M odels

Having decided to treat the conformation and animation aspects of the face separately, 

it was realised that a similar approach could be taken with regard to the specification of 

muscles. The parameters are therefore partitioned into those which influence structural 

characteristics and those which affect expression animation. All muscle data, with the 

exception of tension, is read in from a file for each head model. This data includes 

elasticity information which varies both between individuals and according to age. Such 

characteristics are concerned with conformation aspects rather than animation issues. 

Separation of conformation and animation parameters means that the user need only be 

concerned about control over animation parameters, such as tension, whilst generating 

moving sequences. Table 4.1 shows the parameters of the three muscle models and their 

ranges.

In FACES it is necessary to use nodes that lie on the skull and facial skin meshes, 

as heads and tails of vectors, since modifications in the C o n st r u c t  and M o d ify  sub

systems lead to changes in the coordinates of both meshes. This approach is in contrast to 

that of Waters who uses absolute coordinates to represent muscle origins and insertions.
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Param eter A bbreviation Range

Linear Muscle Model

Head of muscle vector h —

Tail of muscle vector t —

Start of fall-off radius R s 0.0 < Rs < 1.0

End of fall-off radius R f 0.0 < Rf  < 1.0

Zone of influence e o° < e < iso 0

Tension T 0.0 < T <  1.0

Muscle Spring Constant K 0.0 < K  < 1.0

Muscle Elasticity E 0.0 < E  < 1.0

Sphincter Muscle Model

Centre C —

Length of major axis Lx 0.0 < L x < 1.0

Length of minor axis Ly 0.0 < Ly < 1.0

Tension T 0.0 < T < 1.0

Muscle Spring Constant K 0.0 < K  < 1.0

Muscle Elasticity E 0.0 < E < 1.0

Sheet Muscle M odel

Head of central muscle vector h —

Tail of central muscle vector t —

Right-angle range R f 0.0 < Rf < 1.0

Tension T 0.0 < T  < 1.0

Extension x t o.o < X t < 1.0

Muscle Spring Constant K 0.0 < K <  1.0

Muscle Elasticity E 0.0 < E < 1.0

Table 4.1: Param eters o f  th e  th ree M uscle m odels

The muscle models provide an approximation to the biomechanics of muscle activity. Param
eters are required only for the three major types of muscle found in the face, namely: linear, 
sphincter and sheet.
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Plate  4.1: Linear, Sphincter and Sheet Muscles

From top to bottom, along the left of the plate, examples of skin deformation caused by 
single linear, sphincter and sheet muscle model contractions. From top to bottom, along the 
right of the plate, interactions that occur between two linear, sphincter and sheet muscle 
contractions.
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4.6 Facial A ction  Coding System

Use of muscle movement as a mechanism for simulating facial dynamics is realistic, but 

inadequate and inconvenient for creating meaningful expressions; it is also a very low- 

level approach to facial animation. A detailed analysis of real faces and their behaviour 

is necessary to determine: which particular muscles need to contract; by what amounts; 

and in which combinations to cause recognisable expressions to be generated.

A study undertaken by psychologists Ekman and Friesen, has resulted in the Facial 

Action Coding System or FACS [44, 45], which has already been mentioned. The system 

differentiates between all possible visually distinguishable facial movement and is free of 

any cultural interpretations placed on facial behaviour. FACS describes the set of all 

possible basic actions performable on the human face; actions such as raising the inner 

brow, or lowering the comers of the lips have been categorised.

Each basic movement is called an Action Unit, or AU. Such actions are based on 

the anatomy of the face, each being caused by either a single muscle or a small set of 

closely related muscles. Each AU consists of a minimal action in the sense that it cannot 

be broken down into smaller actions. AUs interact in order to build up a complete 

expression. FACS identifies 58 AUs which, separately or in various combinations, are 

capable of characterizing any human expression [44, 58]. The AUs classified within FACS 

are presented in Appendix B.

4.6.1 Suitability

FACS is the most suitable system for use in FACES for several reasons. FACS operates in 

terms of generic facial actions which are applicable to all human faces. Photographs which 

are presented in the FACS manual exemplify, but do not typify facial expressions. This 

form of generality is ideal for use in FACES since a major requirement of the system is 

that it enable the manipulation of a host of different faces. Actual expressions generated 

will therefore depend to a large extent on the conformation of the particular face.

AUs are realistic since the system has been derived from a detailed analysis of real 

faces. A model which emulates the effect of real muscles in the face ensures that the 

resultant facial expressions are within the range of natural human expressions.

Modelling realistic facial movement is difficult because of simultaneous activity and 

interdependence of numerous muscles. Combinations of specific muscles can be grouped
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together to form AUs which provide a higher level of control than individual muscles. 

Consequently, the user is insulated from the requirement to learn the muscular basis of 

the face.

FACS is a modular system which decomposes facial movements into basic components 

which serve as construction blocks to enable the user to build up composite expressions. 

This approach also resolves the problem of formulating complex parameter sets to repre

sent particular facial expressions. An expression can be viewed as a group of parameter 

values and AUs which together transform a neutral face into an expressive one. Having a 

series of AUs that need to be activated for an expression is particularly suitable for com

puter manipulation. FACS is not graphically oriented as are Labanotation [72], Sutton 

Notation [158] and Birdwhistell’s communication notation system [10].

In terms of the practicalities of developing a facial animation system, FACS has a 

further point in its favour. Use of a modular interface to facial movement allows AU rou

tines to be either simple or sophisticated without affecting the top-level interface. Such 

an arrangement caters for a great deal of experimentation in the low-level routines to 

accommodate the requirements of particular applications.

4.6.2 Lim itations

Despite the many benefits, FACS does have a few limitations. It should be borne in mind 

that the system was conceived as a notation for recognising and grading facial expressions 

rather than for their generation. A trained observer is supposed to view a static face and 

complete a score sheet to rate the expression in terms of AUs and their levels of activation. 

In order to make use of the system in FACES it was necessary to convert AUs into causes 

rather than measurements of movement. Fundamental problems are encountered when 

using FACS in a generative context which requires precise definitions since regions used 

to describe AUs and AUs themselves are both informally defined.

A further problem is that FACS deals solely with facial actions that reflect muscular 

movements. The system does not cater for aspects such as blushing, paleness or tear-filled 

eyes. These are important components of expressions which communicate a great deal 

about the emotional state of a person.
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4.7 Tim e-V ariance o f Facial M ovem ent

Timing of facial actions is critical to non-verbal communication. Bruce and Valentine [19] 

have found that the motion attributes of expressions provide far more information than 

that from a static pose or photograph. Static images do not clearly reveal unique and 

subtle messages, it is therefore necessary to take their variance over time into account.

However, the creation of believable facial motion is difficult since the task involves 

coordination of many simultaneous activities. In addition, there appears to be a dearth 

of important time-variance information in the literature. The problem has therefore been 

decomposed into three aspects in order to provide adequate control for the user. More 

specifically, the issues concern the pa th  of motion, duration  of motion and am ount of 

movement. Here we examine the principles behind the approach adopted; the mechanism 

for specification and control of facial movement is elaborated in chapter 6.

4.7.1 P a th  o f M otion

Our highly developed skills for interpretation of facial movement raises the problem that 

viewers will easily detect unnatural motion. AUs and their associated muscles have both 

differing rates of contraction and duration times. Yet, accurate time-variance data for 

muscular contractions is presently unavailable. In addition, FACS was developed as a 

system for coding static facial expressions and therefore does not describe the dynamics 

of muscle movement; it merely identifies the static position of muscles in a facial expres

sion. In effect, the system provides ‘keyframe’ data but gives no indication of the motion 

dynamics that should be used to generate naturalistic movement.

In FACES, this gap is filled through generation of motion using a parameterised 

keyframe approach. Specification of differing paths of motion is facilitated by the provision 

of four laws of motion, see Figure 4.4. At each frame, interpolated parameters are input 

to particular AU routines which pass the parameters on to the relevant muscles. The 

muscles in turn create contortions on the face mesh through the muscle models described 

in section 4.5.2.

Consider the value of a parameter p at frame t which lies between two keyframes s 

and e, then

P t =  Ps  + pa)n
where n is the total number of frames to be generated and / is the law of motion. The value
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Figure 4.4: The Four Laws of Motion

These four laws of motion represent techniques for performing interpolation. They simulate 
linear or constant speed, acceleration, deceleration and acceleration followed by deceleration.
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of pt depends on the law /. There are four common methods for interpolating between 

keyframes [94], they are shown in Figure 4.4. Constant speed or linear interpolation is 

the simplest case; I has a constant value of one for all frames, so that smooth motion with 

uniform velocity is achieved. This however is not very realistic. Conventional animators 

spend a considerable amount of time ensuring that movements are correctly “faired”, that 

is accelerated to and from rest. Fairing involves varying the ra te  at which the parameter 

value changes depending on how far the frame is between the two key frames.

With acceleration the interpolated value begins by changing slowly and speeds up 

as the end value is approached. The law used for modelling acceleration is given by 

equation 4.2

1 - “ * ( § £ )  (4-2) 
Deceleration can be modelled using the law expressed in equation 4.3, which slows down 

the interpolation as it reaches the end value.

sin g l )  (4.3)

To model acceleration followed by deceleration equation 4.4 can be used.

l-c o s( ir£ )
(4.4)

Attempts are currently being made to derive automatically numerical data regarding 

intensity and time-variance of facial actions. This is being pursued through the analysis of 

video sequences of a live person and use of the information to drive a computer model [159]. 

This principle was first advocated by Platt and Badler [131] who envisaged a camera- 

processor that could identify the activation of AUs.

4.7.2 D uration of M otion

The onset and duration of facial actions are important factors in the creation of the subtle 

nuances that inject so much information into facial movement. A major problem is that 

there appears to be no usable time-variance information available at present with respect 

to non-verbal communication. In FACES, control over duration is therefore provided 

by allowing the user to specify the start and end frames for each action as explained 

in section 6.6.3. Such regulation over individual facial actions provides the user with 

considerable flexibility and control.
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4.7.3 Am ount of M ovem ent

Another problem is that of determining what amount of tension to apply to the AUs in 

order to acquire various degrees of facial movement. FACS again does not provide any 

numerical data; instead, it relies on a human coder to make measurement judgements on 

a qualitative scale of comparison relative to the neutral face. The system defines six levels 

of activation for AUs, they are slight, marked, pronounced, severe, extreme and maximum. 

To provide flexibility, in FACES a continuous scale is used rather than the discrete levels 

listed in the FACS manual. The user therefore specifies a value ranging between zero and 

one, see section 6.6.3.

4,8 Sum m ary and Conclusions

Previous research has shown that it is not easy to create realistic, believable computer 

generated facial animation. Three particular problems have been identified, they are 

concerned with: how facial movement should be generated; which parts of the face need 

to move; and when specific parts should move in relation to each other.

Methods that have been used by previous researchers to simulate the movement of 

the face can be classified into either kinematics or dynamics approaches. Kinematics 

techniques are concerned with the generation of convincing visual effects without the 

burden of complex physical mathematical laws. A major benefit of dynamics models is 

that it is possible to achieve naturalistic and realistic movement. In the quest to attain 

realistic computer generated facial motion, a dynamics based approach has been adopted 

within FACES.

The dynamics of the face are modelled on the underlying muscles which axe the 

instigators of facial movement. The muscle models provide an approximation to the 

biomechanics of muscle activity. They are also an abstraction in that all faces have the 

same set of anatomical muscles. As a result, parameters are required only for the three 

major types of muscle found in the face: linear, sphincter and sheet.

The issue of providing the user with a higher and more meaningful level of control 

than through manipulation of individual muscles has been resolved by the use of FACS. 

AUs encapsulate related muscles to provide a meaningful interface over facial movement. 

In addition, FACS has been derived from real expressions and also provides generality.

Timing of facial movement is critical in order to convey specific messages. Due to a
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lack of readily available quantitative information in this area, detailed and flexible control 

is provided over individual facial actions to assist the animator in achieving the required 

time-variance over facial movement.
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5.1 Introduction

In this chapter we concentrate on the factors that distinguish human faces from one 

another, making them unique to each and every person and serving the principal function 

of identification. It is necessary to establish such factors in order to determine the type 

of modelling facilities that are required to provide effective control over the form of the 

head and face.

Note that there are two strands to the research in this area of facial processing. The 

first is concerned with using an automated method, normally based on image processing 

techniques, to perform the identification task itself. The second involves generation of 

facial images, using computers, which are subsequently to be recognised by humans. In 

the following sections we shall delve into the second of the two aspects.

Interactive modelling of different faces is an area which has received relatively lit

tle attention in comparison with the animation of faces. Within the area of modelling 

of arbitrary faces there are two issues which need to be addressed. The first concerns 

the representation of the face. This is not straightforward because faces are irregular 

structures; they are not composed of regular geometric primitives which can be easily 

represented through parameters, for example. Secondly, faces tend to vary from person to 

person. Unfortunately, there appears to be a lack of definitive data to indicate what it is 

that makes a face unique to a person. The deficiency of adequate and usable information 

regarding conformation of the face makes development of modelling facilities difficult.

However, the face is a popular object of study in many disciplines other than com

puter animation. Information that has been established within these fields is likely to 

have important implications for how faces should be modelled and represented using the 

computer as a medium. In section 5.2, we therefore begin by reviewing valuable lessons 

that have been learned by psychologists, criminologists, medical practitioners and artists. 

It is also necessary to examine computer based modelling techniques that have been de

veloped to represent irregular structures, this is accomplished in section 5.3. Finally, we 

shall study the functionality provided for conformation modelling in the C o n st r u c t  and 

M o d if y  sub-systems and the motivation behind its provision in sections 5.5 and 5.6.

Although colour is an influential factor in determining the appearance of the face, we 

restrict our attention to the form of the face in this chapter. Issues regarding colouration 

are addressed in chapter 7.

U n iv e r s i t y  O f  B a t h 60 M a n j u l a  P a t e l



M a k in g  F A C E S C r e a t in g  F a c e s

5.2 D eterm inants o f Facial Form and A ppearance

Variation in facial structure between individuals is much less understood than the ways 

in which a face varies from expression to expression. Nonetheless, it is possible to derive 

some rules and heuristics regarding the form of the face from several fields of study 

including: psychology, criminology, facial anatomy and art. Each of these areas is discussed 

in the following sections with a view to the identification of information pertinent to 

conformation modelling of the head and face.

5.2.1 Psychology of Recognition

Humans can distinguish very effectively between faces, even though all faces have the 

same basic features which appear in more or less the same relative positions. Results 

from research undertaken by psychologists indicate that memory for pictures is superior 

to that for words. Furthermore, memory for faces is better than that for other visually 

observed objects [194]. This is because memory for pictures involves recognition memory 

whereas memory for words involves recall memory. Humans are better at recognition 

than at recall. Such results have led researchers to investigate the processes that underly 

face recognition.

Representation in Memory

One hypothesis tested by Rhodes et al. [139] is whether the distinctive features of the face 

are exaggerated and encoded in terms of a caricature. They discovered that while cari

catures are not identified more accurately than realistic line drawings, they are identified 

twice as quickly. Furthermore, drawings in which distinctive aspects had been exaggerated 

by approximately 16 per cent were judged to be the best likenesses.

Another question asked by the same researchers was whether faces are represented 

and recognised by holistic comparisons with representations in memory, or by feature 

analytic comparisons. They used a caricature generator, developed by Brennan, which 

is based on a holistic theory of caricature [38]. Since caricatures were found to be more 

identifiable than accurate line drawings, there is some evidence to suggest that faces may 

be encoded and remembered through a holistic comparison with an ‘average’ face.

In addition, Laughery determined that a subject of a given race is a better recogniser 

of people of that same race than of other races [89]. These results are consistent with
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those of Carey et al. [25] which suggest that this ‘average’ face varies for each individual 

and is established through the process of viewing a large number of faces.

Classification of Significant Features

Attempts have also been made to discover which features are particularly important in 

facial recognition. Zavala found that the features most frequently used in identification 

are the nose, eyes, face shape, hair colour and the chin [195]. An interesting question 

is whether the techniques used by good identifiers differ from those employed by poor 

identifiers. Zavala’s study indicated that good identifiers concentrate on a small number 

of features; they also tend to notice facial marks such as moles, beauty marks and freck

les. These observations help to drastically reduce the number of alternative faces to be 

considered. In addition, poor identifiers tend to use features which are ‘complex’, while 

good identifiers appear to use features that are not particularly complicated.

Harmon raised a number of questions whilst investigating facial recognition, amongst 

them [67]: why are faces so readily recognisable? how accurately can a face be formally 

described? given a verbal description, how easily can a particular face be identified? what 

kinds of image degradation most seriously affect recognition? and how can a computer 

be made to recognise a human face? The last question led Harmon to classify 21 facial 

features which provide the most information in distinguishing one face from another [67]. 

These characteristic features of the face are presented in Table 5.1.

It should be noted that although evidence regarding the shape, position and size of 

features is useful for computer synthesis, it is by no means the only information that 

is used in recognising faces. Bruce and Young have identified seven distinct types of 

information that can be used in the process [20], they are: pictorial, structural, visually 

derived semantic, identity-specific semantic, name, expression, and facial speech codes.

5.2.2 C rim inology and Identification

The motivation behind a substantial amount of the psychological research into the pro

cesses of recognition and identification has been to assist victims of crime in the iden

tification of perpetrators. Despite the findings of Rhodes et al. [139], as ascertained in 

section 5.2.1, caricatures have not been used to represent faces. For the identification to 

be effective, it is necessary that the face is familiar to the witness. This however, tends 

to be rare in cases of crime. One technique that is in use, can be thought of as caricature
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F e a t u r e C h a r a c t e r i s t i c D e s c r i p t i o n

H air Coverage Full Receding Bald

Length Short Average Long

Texture Straight Wavy Curly

Shade Dark Medium Light Gray White

Forehead Receding Vertical Bulging

Eyebrows Weight Thin Medium Bushy

Separation Separated Meeting

Eyes Opening Narrow Medium Wide

Separation Close Medium Wide

Shade Light Medium Dark

Ears Length Short Medium Long

Protrusion Slight Medium Large

Cheeks Sunken Average Full

Nose Length Short Medium Long

Tip Upward Horizontal Downward

Profile Concave Straight Hooked

M outh Upper Lip Thin Medium Thick

Lower Lip Thin Medium Thick

Lip Overlap Upper Neither Lower

Width Small Medium Large

Chin Receding Straight Jutting

Table 5.1: Characteristics of Facial Features

Attem pts have been made to discover which features are particularly important in facial 
recognition. Harmon classified the 21 features, listed above, as those that are most useful 
in discriminating one face from another [67].
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generation of a type; a police sketch artist can produce a face from a victim’s description 

of the salient features of the criminal’s face. An alternative approach is to use a formal 

classification system based on feature identification such as the Identikit and Photofit 

systems.

Identikit and Photofit Systems

The Identikit and Photofit systems share the same principle in that a face can be composed 

from separate sets of features. However, the Identikit system involves composition of a 

face from line-drawn features, whereas photographs of features are used in the Photofit 

system.

The Photofit system consists of sets of features for the forehead and hairline, eyes, 

nose, mouth and chin. Three such ‘kits’ are available for male Caucasians, female Cau

casians and male afro-asians. Each kit comprises a catalogue of features together with 

a library of individual features mounted on strips of cardboard. Once chosen from the 

catalogue, features are selected from the library to create a composite face in a glass 

frame.

Despite being based on much psychological research, results from the Photofit system 

have been far from satisfactory. Investigation undertaken by Ellis et al. indicated that 

people have difficulty in making up a reconstruction of a face using Photofit [46, 47]. 

Performance of subjects seemed largely independent of memory factors. For instance, 

subjects were unable to construct better likenesses even when the target face remained 

in view! The researchers found that people differ markedly in their ability to reconstruct 

faces, so that those subjects who were adept at reconstructions made Photofit faces which 

were more easily identifiable. In addition, subjects found it difficult to compare isolated, 

individual features with those embedded in an appropriate context, that is, a face.

The results imply that the major impediment resides in the Photofit system itself. A 

possible reason for this failure may be due to an inadequate sampling of the population 

for each feature. Another reason may be because the system requires people to undertake 

a task which they are not familiar with; that is, fragmentation of a holistic precept or 

gestalt. More specifically, subjects frequently expressed difficulty in searching through 

numerous isolated features for an approximation to one seen within a total physiognomic 

context.

An examination of the Photofit system itself revealed other short-comings [78]. For
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example, features appear on strips of cardboard and fit into ‘slots’. Consequently, the 

capability to experiment through variation of distances between features is limited.

Electronic-Fit System

Recently a project was undertaken by Cadcentre Ltd. in collaboration with the Home 

Office’s Scientific Research and Development Centre to implement an Electronic-Fit or 

E-Fit system. The aim of this computer based photomontage system was to resolve some 

of the problems that had become apparent from the manual Photofit system.

Numerous experiments have shown that the identification performance of a witness 

deteriorates both with delay in the search process and with the number of other faces 

observed in the meantime [1, 194]. In particular, identification performance deteriorates 

after approximately fifty photographs have been viewed, so that the longer the series 

of pictures, the poorer the performance of the witness. Such results called for a rapid 

prescreening device to reduce the number of ‘mug-shots’ that the witness is required to 

view.

The E-fit system achieves this objective by taking a verbal description of the target 

face from the witness and using this to discard all irrelevant faces prior to viewing. Ad

ditionally, Harmon had identified that recognition can be enhanced by filtering out high 

frequencies such as those which result from sharp edges [67]. To improve the realism of 

composite photographs, the E-fit system merges the edges of features into the face. To a 

limited extent, the system also allows features to be scaled and moved within the context 

of a facial image.

5.2.3 Facial R econstruction and A nthropology

Facial reconstruction is the scientific art of sculpting a face onto a skull. While Identikit, 

Photofit, E-fit and police sketches are useful for identification of live missing persons 

or fugitives, this technique aids in the identification of unknown skeletal remains. The 

method is commonly used in archeology as well as forensic sculpture. The successfulness 

of the method has been demonstrated in several cases of criminal investigation which have 

involved unidentified skeletal remains [54, 107, 141].

Facial reconstruction involves taking a cast of the skull, usually in plaster. Plastic 

spheres are then inserted into the eye sockets. The next stage involves drilling small holes 

at specific anatomical sites, into which wooden pegs are inserted. The lengths of the pegs
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correspond to average tissue thickness measurements taken from predefined tables [138]. 

The muscular layers of the face are then built up, using clay, on the plaster cast support 

with the pegs as guidance.

The skull is therefore regarded as the armature of the face. From the bone structure 

can be determined the disposition of the facial features including the mouth, eyes and 

nose [141]. This method facilitates construction of the face from the surface of the skull 

outwards. Although the technique provides an indication of the overall size and shape of 

the head, together with the position of major features, it still remains extremely difficult to 

determine the exact shape of features since there is no live image for reference. The lower 

nose, mouth and ears tend to cause the greatest problems [54, 141], although there axe 

various heuristics which can help with the construction of these features [55, 56, 74, 153].

Several computerised approaches based on facial reconstruction have been developed. 

Most of these involve photographic or video superimposition [37, 169, 170]. Once a skull 

has been digitised, prescanned photographic images of people are mapped onto the model 

to determine whether the face ‘fits’ the skull.

Vanezis et al. describe a system which ‘grows’ facial tissue onto the digitised skull 

model to provide a facial mask [169]. The process probably consists of interpolation 

between tissue thickness at specific sites and subsequent ‘smoothing’ of the resultant 

surface. Predigitised features similar to those used in the Photofit system are then chosen 

and mapped onto the model of the skull. Features can be adjusted to provide a better 

correspondence with the skull through scaling and translation techniques. Voci gives an 

account of another very similar system which was used to create a specific face [170].

These computer based systems emphasise the point at which science stops and art 

takes over. The systems can handle well-defined aspects up to the point of creation of a 

facial mask from known relationships between the face and the underlying bone structure. 

However, the task of choosing specific features for the mask relies on personal judgement. 

It is readily acknowledged that a large number of faces could conform to a particular 

skull [27, 169, 170], consequently there are just too many variations involved.

5.2.4 M edicine and A natom y

The study of the face is widespread in the world of medicine; any amount of information 

that can be gleaned is likely to be pertinent to areas such as facial surgery and orthodon

tics. Many x-ray type techniques, such as use of lateral craniographs and cephalometric
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radiography [55, 56,153], have been devised in an attempt to understand the relationship 

between cranial features and soft tissue. As a result, some useful principles have been 

established [56,153], However, most such techniques operate on 2D or profile data, which 

tends to be of limited use when working in 3D.

Although computer technology has been in use for some time in planning facial 

surgery [191], simulations have been constrained because of the lack of quantitative analy

sis of 3D head and face data. To address this problem, Moss et al. have recently developed 

a 3D method which can provide objective, qualitative and quantitative descriptions of the 

face [103]. The system has been used to analyse the effects of reconstructive surgery on 

the face [34, 35,103], Various measures can be established by comparison of classifications 

of pre and post operative laser scans of the head. The method works by rendering the 

head data into a z-buffer. Depth values in the z-buffer are then processed to generate 

Gaussian curvature and mean curvature at each pixel. This data is used to classify the 

surface at each pixel into one of eight 3D primitive shapes.

The same method has also been used to establish average male, female and non- 

gender heads based on a sample population of ten male and ten female laser scans [34]. 

The technique has great potential for use in the measurement of growth and its effects on 

the morphology of the head.

5.2.5 Portraiture, Sculpture and Proportion

Many an artist and sculptor has studied the variations and proportions of the human 

figure. Well-established rules indicate a relationship between age and the size of an indi

vidual [150]; human figures are measured in terms of ‘heads’. As the body grows in height, 

the proportions change accordingly. For example, a one year old child is four heads high; 

at nine years of age the child is six heads high; and when at the age of fifteen the teenager 

is seven heads in height.

The Greeks considered proportion to be equivalent to beauty and based much of their 

work on the Golden Section [13]. In accordance with this a ‘perfect face’ would be one 

which has its brow a third of the way down from the hairline, while the mouth would be 

one third of the way up from the chin. Diirer and Da Vinci, Renaissance artists of the 

16th Century, were also preoccupied with proportion [113, 154] and established guidelines 

to relate different parts of the body based on divisions of sevenths. Such heuristics were 

also used to determine the relative proportions of the face and facial features.
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5.3 C om puter R epresentation o f  th e  Face

In recent years a number of methodologies have been employed to represent and model 

irregular surfaces. The major computer based techniques that have been used to represent 

the human form include: digitisation, interpolation, local deformation and composition 

from parts.

5.3.1 D igitisation

There is no doubt that the computer generated animation short film, ‘Tony de Peltrie’, 

which premiered at S igg raph  in 1985 [48] was a landmark in facial animation. However, 

the film, which lasts seven minutes and fifty seconds, was a culmination of four man-years 

of effort by a group composed of four artists and programmers. Tony’s head, as well as 

every other prop that appeared in the film had to be tediously and painstakingly digitised 

from a physical representation.

Many other researchers have also used digitised data [48, 97, 116, 175]. As discussed 

in section 3.3.1, several approaches can be used, but all of them require a physical rep

resentation of the model and most of the methods require a grid to be either drawn or 

superimposed on the face. Lofting and laser scans both require hardware which is spe

cialised and expensive. Lofting tends to be used primarily in medical applications which 

need precise data.

Laser and light beam scanning of human heads has recently become extremely popu

lar [103, 122, 160]. This technique is probably the most appropriate when a recognisable 

representation of a specific individual is required to overcome the viewers expectations of 

observing a realistic face. Although the method can be fast, with speeds of 15 seconds for 

obtaining 20,000 points [35], such large amounts of data cause problems with respect to 

storage, manipulation and control.

Photogrammetry and manual digitisation using a 3D device both entail the labour- 

intensive process of first drawing relevant facets on the surface. Several additional prob

lems arise with manual digitisation of human faces. Firstly, an expression has to be held 

fixed and unchanged for a considerable length of time. Secondly, many parts of the face 

are soft and therefore liable to distort during contact with the tool-tip, to cause inac

curacies in the recorded coordinates. Thirdly, some mechanical digitisers are limited in 

movement to certain degrees of freedom which causes difficulties during digitisation.
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Despite the potential accuracy, the process of digitisation can be extremely tedious 

and time-consuming. This is particularly apparent when the model is to be animated at a 

later stage, requiring a manual delineation of specific regions. Although this may not be 

a major problem for one face, it would become tiresome if the process had to be repeated 

for a large number of faces.

Terzopoulos and Waters have recently devised an automatic technique to perform just 

such a task on laser-scanned data [159]. In a process known as adaptive meshing, salient 

points are extracted from the scanned data. The number of points extracted is increased 

around areas of high curvature. Kurihara and Aral [83] describe an alternative approach 

which matches a 3D canonical model with photographs of individual faces. In both of 

these cases the model can be subsequently animated.

A major drawback of acquiring data from human heads is that the data is specific 

to a particular face. This is fine when it is necessary to develop models of existing 

people and indeed it is useful for testing animation models to check whether they produce 

similar expressions to those displayed by real people. However, a problem arises when it 

is necessary to create totally new characters with distinctive faces.

5.3.2 Shape Interpolation

3D shape interpolation between two predigitised faces can be used to generate new inter

mediate facial structures [100]. This method can provide very effective results, but there 

are difficulties due to the irregularity of the face. Individual faces differ to such a large 

extent that to represent them accurately and recognisably requires a differing number of 

vertices, facets and topology for each face. As a result, the interpolation process becomes 

complicated and requires a 1 to n correspondence between vertices and facets in the two 

structures to be interpolated [9, 69, 77].

There are two possible solutions to the problem. The first involves making facets and 

vertices in one face appear or disappear in order to make them correspond with the other 

face [9, 77, 100]. With the second method the two faces are re-structured according to a 

set of facets and vertices common to both [69, 100].

The greatest drawback of the shape interpolation approach is that two predigitised 

faces are necessary before a new model can be created. In addition, it is not possible to 

control local areas independently of the rest of the face.
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5.3.3 Local Deform ation

From the outset, Parke was aware of the need to model interactively a large number of 

facial shapes. His use of parameterisation was intended to enable concise criteria to en

capsulate every member of the ‘universe’ of faces. Parke used the method to address both 

face creation and animation [118]. Based on observation, the parameters were divided into 

the two categories of conformation and expression. Conformation parameters dealt with 

those aspects that vary from one face to another, as opposed to those that vary between 

expressions. Several techniques were used to implement operations involving conforma

tion parameters. For example, interpolation was used to vary the forehead from sloping 

to bulging; scaling determined the aspect ratio of the face; and translation facilitated 

movement of the chin in various directions.

Experiments were also undertaken to derive a general topology for the face, one which 

would be suitable for representing a large number of faces. The major reason for studying 

this issue was that the model required predefinition of regions, in terms of groups of 

vertices on which parameters operated. Only by maintaining the same topological mesh 

would the parameterisation remain applicable to many faces.

Magnenat-Thalmann et. al. describe several techniques for interactive selection of 

facial regions to be transformed [100]. This resolves the issue of having to predefine the 

regions. Four methods for implementing the transformation of regions are also described. 

These vary from manipulation of individual vertices to operations on groups of vertices.

The major restriction of using local deformation is that the number of vertices and 

facets remains constant. It is doubtful that one topological mesh can adequately represent 

a large number of human faces; faces which are totally unique and individual as people 

themselves.

5.3.4 K it o f Parts

The w h a t i s f a c e  system was an early face composition system which operated on static 

2D line-drawn faces [57]. The face of a male Caucasian alone was dealt with. Sets of 

features were extracted from the work of psychologists and supplemented with statistical 

tests on 255 photographs. These same photographs were used to establish an average 2D 

face, which could be modified by the user to create a new face. Editing facilities consisted 

largely of automated changes based on yes/no type answers to predetermined questions. 

The system made use of 17 line-drawn features of which 7 were left-right pairs. The
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major features used included: cheek lines, chin lines, ears, eyebrow outlines, lower eyelids 

including crow’s feet, upper eyelids, eyes comprising iris and pupil, forehead lines, hair 

outline, upper lip, lower lip, mouth lines, naso-labial lines, neck, lower and upper parts of 

the nose.

Despite the fact that E-fit is a more recent computerised system, the images produced 

are still static and 2D. In addition, the facial composites are totally devoid of expression. 

Since E-Fit uses image processing techniques, it is difficult to manipulate the faces in 3D. 

A volumetric approach would probably serve better than the surface techniques that are 

currently used.

However, a 3D approach based on the principles used in the Identikit and Photofit 

systems would first require a large set of features to be digitised, or otherwise represented, 

possibly through the use of parameters. Facilities would then be required to extract 

particular sections of a face and to insert other parts in order to form a composite face.

Magnenat-Thalmann et al. have demonstrated a technique for the composition of 

various parts of the human body to create a synthetic actor [98]. The method uses 

‘brothers’ which are points at which two body parts are to be joined together. Three 

non-colinear points on the boundaries of parts are also required to ensure that the two 

parts correspond in size. A similar technique could be developed for the composition of 

3D faces.

5.4 Conform ation M odelling in FACES

One of the greatest problems with computer generated facial animation is that the task 

of obtaining a 3D computer model must precede any other work. The problem lies not 

in the task itself, but in the subtle diversities in the form of the face. Unlike many other 

objects, the irregular nature of facial features has defied precise geometric description at 

a macro level and led researchers to acquire data for new models completely from scratch.

The usual way of obtaining face data is through the process of digitisation, which 

entails several problems, as explained in section 5.3.1. The major drawback is that the 

data acquired is specific to the particular physcial representation used in the digitisation 

process. There is therefore a major requirement for the interactive construction of models 

of arbitrary faces.

A major objective of the C o n s t r u c t  and M o d i f y  sub-systems is to overcome the
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problem of having to resort to digitisation whenever a new face model is required. This 

goal can be achieved by providing the user with a model of the head which can be inter

actively modified. Such a capability enables models which represent arbitrary faces to be 

created; the goal is to animate such models later on.

In FACES the user modifies the structure of a predefined head model in terms of 

changes to bone, muscle, skin and surface features. The head model notionally defines an 

‘average’ head and face as explained earlier in section 3.3. There are several reasons for the 

provision of a predefined head model. The validity of such an approach is substantiated 

by Carey et al. who have found evidence to suggest that we encode and remember facial 

information, relevant to a particular face, by comparison with an average face [25], see 

section 5.2.1.

Provision of an initial head model also gives the user a ‘head start’. It is clear that we 

are adept at recognising faces, but most people experience great difficulties in drawing or 

otherwise creating a face. In addition, a predefined head model provides a context within 

which modifications can be viewed. A major problem with systems such as Identikit and 

Photofit is that people are required to choose isolated features and then to compose these 

into a recognisable face. This task has proven to be extremely difficult to perform [46, 47], 

see section 5.2.2.

From a detailed investigation of the anatomy of the head and face, as described in 

chapter 2, it is apparent that although there is individual variability, all faces have a 

similar general form. In addition, the features appear in the same relative positions. 

These observations suggest that generic modelling is an appropriate technique to use in 

modelling the conformation of the head and face. A survey of the major disciplines that 

are concerned with the face has further indicated that modelling should be considered in 

terms of three levels; global, proportional and localised changes need to be accommodated.

Techniques used in facial reconstruction, as discussed in section 5.2.3, demonstrate 

that the rigid substructure of the skull determines the overall shape and proportions of 

the face [110, 146]. Although muscles and soft tissue change radically throughout life, it 

is the structure of the skull that determines , the general shape that we recognise as the 

head. The skull should therefore form the starting point for creating faces. Indeed, the 

problems encountered by Pixar Ltd., during the production of ‘Tin-Toy’, a short animated 

film featuring the modelling of a baby’s facial expressions, were largely attributed to the 

lack of an underlying bone structure [88].

A three-layer model based on the anatomy of the head is used in FACES because bone,
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CONSTRUCT

HEAD
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Read Save Interpolate-Heads Skull-Proportions

SKULL-REGION
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Figure 5.1: T h e C o n s t r u c t  Sub-System

S tru ctu re  an d  organ isa tion  o f  th e  C o n s t r u c t  su b -sy ste m  in  F A C E S. M od ifica tio n s t o  th e  

b o n e  stru ctu re  m ay  b e  perform ed a t th ree  levels: g lob a l, reg ion al an d  loca l.

muscle and skin all form an integral part of the modelling process. Modelling facilities are 

subdivided between the C o n s t r u c t  and M o d i f y  sub-systems such that the user works 

with the bony structure of the head in the C o n s t r u c t  part and the muscle, skin and 

surface features in the M o d i f y  sub-system.

5 .5  T he C o n s t r u c t  Sub-System

Since the skull forms the structural support for the head and face, it is insufficient to 

modify the surface facial skin alone as in the Human Factory System [96, 100]. Within 

the C o n s t r u c t  sub-system, the user can modify the structure of the skull to define the 

general shape and proportions of the head and face. Changes to the skull are automatically 

reflected in the muscle layer and the facial skin mesh, which wraps around the underlying 

skeletal base. Alterations to the bone structure lead to changes in the location of muscle 

origins, while the corresponding changes in the face mesh result in displacements to muscle
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insertions. Modifications to the skull therefore have implications for the dynamics of the 

muscle models; they are responsible for variations in the motion of differing head models.

The complete structure of the C o n s t r u c t  sub-system is shown in Figure 5.1, while 

the sub-system’s context within FACES is illustrated in Appendix E. To guide the reader 

through the hierarchical organisation of this part of FACES, menu structures are used to 

indicate clearly the options that are available at a particular stage.

At the highest level the C o n s t r u c t  sub-system consists of three major sections which 

enable modifications to be made to the skull at three levels of control. The sections are 

accessed through the following menu:

HEAD

SKULL-REGION

BONE

The h e a d  option caters for operations on the overall and global nature of the head, 

see section 5.5.1. s k u l l - r e g i o n  facilitates proportional changes as explained in sec

tion 5.5.2. The BONE option enables modifications at a local level to individual bones, see 

section 5.5.3.

5.5.1 G lobal Control

The h e a d  part of this sub-system provides two types of functionality. Firstly, it enables 

new head models to be brought into the system and secondly, it allows global amendments 

to be made to the structure of the head. The h e a d  menu-item itself allows access to the 

following options:

Exit

Read

Save

Interpolate Heads 

Sk ull-Proportions

Read and Save provide a communication link between FACES and disk storage. The Read 

option retrieves head model data from disk files, while Save writes head structures to disk 

files. The user is prompted for the names of data-files in both cases.

The Interpolate Heads option is a method for generating new head models through 

interpolation between two existing models. Evidence to support such a strategy can be
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found in Carey et al. [25] who claim the existence of a face-space, such that interpola

tion between two faces results in another face which belongs to the domain of all faces. 

In FACES, the process of generating new head models has been made flexible through 

provision of several interpolation techniques based on the laws of motion described in 

section 4.7.1. Intermediate models such as those depicted in Figure 5.2 are displayed 

on the screen. From these heads it is possible to select a head model and read in the 

corresponding data-flle so that the selection becomes the ‘current’ head that the user is 

working with.

At present such conformation interpolation is only possible between two models having 

the same topology. However, algorithms for interpolating between objects with differing 

topologies are available [9, 69, 77] and could be incorporated into the system at a later 

date.

A special aspect of working with the face is that it is essential to establish a cor

respondence between similar physical regions. For instance, a nose must be mapped to 

another nose, otherwise the resultant structure will become unrecognisable as a face.

Selection of the Skull-Proportions option facilitates global changes to the proportions 

of the skull and thereby to the head model. As discussed in section 5.2.1 the overall shape 

and proportions of the head and face are important factors in facial recognition [57, 194]. 

A 3D scaling facility enables alterations to the whole of the skull structure in each of 

the x, y and z dimensions, see Figure 5.3. In the case of an effect not being that required, 

an undo facility allows the change to be discarded.

5.5.2 Regional Control

s k u l l - r e g i o n , a major option in C o n s t r u c t , facilitates modifications to relative pro

portions of the facial skeleton. The structure of the skull has been subdivided into three 

regions known as the upper-skull, lower-skull and middle-skull. Each of these sections can 

be either stretched or compressed through the use of valuator bars as shown in Figure 5.4.

In the x-y plane, an upward movement of a bar stretches the region below the bar 

by a corresponding amount, while at the same time compressing the area above the bar. 

A downward movement of the bar reverses the effect. In the y-z plane movement of a 

valuator bar to the left causes compression, while that to the right results in stretching 

of the region. A stack-based undo operation allows the user to reverse changes that are 

not required.
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Figure 5.2: Generation of New Heads

Generation of new head models through interpolation between two existing head structures. 
It is possible to select any of the new head structures as the head model to be worked upon.
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Figure 5.3: Global Scaling of Skull

Global changes to the entire structure of the head through scaling. The overall shape and 
proportions of the head and face are important factors in facial recognition. In this case the 
skull has been reduced in width.
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5.5.3 Local Control

At the lowest level of the C o n s t r u c t  sub-system, invokation of the major option b o n e  

enables amendments to be made to more specific parts of the skull. The human skull 

comprises fourteen major bones [62, 147]. Of these, control is currently provided over 

the: frontal bone or forehead; nasal bone or upper-nose; zygomatic bone or cheeks and 

mandible or lower jaw. Each bone may be operated on through the menu shown below:

Exit

Forehead

Upper-nose

Cheeks

Chin

Facial reconstruction artists argue that such bones determine the size and position of 

the major facial features [54,110], see section 5.2.3. In addition, bones are rigid structures 

which are not capable of flexible deformation. An appropriate method for provision of 

control over such structures is through the use of rigid geometric transformations. Adjust

ments to individual bones can therefore be made through transformations such as Shift, 

Scale and Rotate, see Figure 5.5.

A particular aspect of working with the face is that some bones need to be treated as 

‘pairs’ and others as ‘single’ bones. Paired bones are those that are separate and distinct 

on the two sides of the face, they include the Cheeks and the Forehead. Single bones 

are those that are joined at the central vertical meridian such as the Upper-nose and 

the Chin. For paired bones the user may specify one of Left, Right or Both to constrain 

modifications to either one of the sides or to apply changes to both sides simultaneously.

Modifications to paired bones result in opposing actions for certain types of geometric 

deformations. For example, a Shift of the zygomatic bone outwards in the x-dimension 

involves movement of the left and right bones to cause the face to widen on both sides 

at the cheeks. Further, Rotate operations about the depth-axis cause one bone of a pair 

to be rotated clockwise and the other anti-clockwise. In the case of single bones, a Shift 

operation in the horizontal plane, on the nasal bone for example, causes both sides of the 

bone to move in the same direction. Similarly rotation about the depth axis results in 

a turning of both sides of the bone in the same direction. Whilst modifying particular 

bones it is possible to ignore alterations through the use of an undo operator.
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Figure 5.4: Changes to  Relative Proportions of the Head

The representation for the skull has been subdivided into three sections. The u pper-sku l l ,  

l o w e r - s k u l l  and m id d le - s k u l l  can each be stretched or compressed in the x-y and y-z planes.
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Figure 5.5: Modifications to Bone

At a local level changes can be made to specific bones. These determine the size and position 
of the major facial features. Bones may be treated as either paired or single.
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5 .6  T he M o d i f y  Sub-System

While it is the skull that determines the general proportions of the head, there are varia

tions in the surface attributes of the face which cannot be accurately determined from the 

underlying bone structure [54, 141]. More specifically, these differences relate to muscle 

thickness and soft features such as the lower nose, lips, eyes and ears, as explained in 

section 5.2.3. Such characteristics vary significantly between individuals and form the 

major reason why faces are perceived to be so different from one another. In addition, the 

soft features tend to be more important than bone structure since they are more visibly 

significant.

The M o d i f y  sub-system addresses conformation modelling with respect to variations 

in both muscle and surface characteristics. The structure of this sub-system is presented 

in Figure 5.6, while its position within FACES is shown in Appendix E.

When displayed on the screen, the skin mesh is distinguished from the skull mesh 

by its larger size, colour and the inclusion of the eyeballs. Whereas modifications to the 

skull in the C o n s t r u c t  part of the system indirectly affect the muscles and the facial 

features, the M o d i f y  sub-system caters for more subtle amendments by influencing only 

the characteristics of the surface skin and muscle insertions. To facilitate the creation of 

distinct faces, the sub-system has been organised into three major sections which provide 

global, regional and local control over the face. The three sections may be invoked through 

the following menu:

FACE

FACE-REGION

FEATURES

Facilities in the f a c e  option enable changes to muscle thickness, as explained in sec

tion 5.6.1. FAC E-r e g i o n  provides a method of altering relative proportions of the facial 

skin, as demonstrated in section 5.6.2. The f e a t u r e s  option which caters for localised 

changes to specific soft features is discussed in section 5.6.3.

5.6.1 Global C ontrol

Thickness of facial tissue is an important factor in fleshing out a face. As explained in 

chapter 2, muscle thickness varies between males and females [54], as well as with time and 

health. Global control over muscle thickness in provided within the f a c e  option. Using a
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MODIFY

FACE
I

Face-Proportions

FACE-REGION
i--------------- 1---------------.

Upper-Face Middle-Face Lower-Face

FEATURE
i------------------- 1---------------1— 1------------1-----------------1---------- 1

Eyebrows Eyeballs Eyelids Lower-Nose Lips Neck

Figure 5.6: T h e Modify Sub-System

The structure and organisation of the M o d i f y  sub-system in FACES. Variations in the 
surface attributes of the face cannot be accurately determined from the underlying bone 
structure. Changes to skin, muscle and surface features may be made at global, regional 
and local levels.

scaling function which operates in 3D, the user can change the underlying distance between 

the skull and the facial skin meshes. Such changes have an indirect effect on overall muscle 

thickness which is represented through the length of muscle vectors. Adjustments to the 

thickness of muscles has implications for the dynamics of the head during animation, see 

section 4.5.2. Subsequent to observing the effects of global changes to the face, the user 

may either Keep or Ignore the changes made.

Craniofacial measurements for the average thickness of soft tissue at particular sites 

on the skull are available from tables [138]. This data would be useful in facilitating 

control over individual muscles, but has yet to be incorporated into FACES.
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Figure 5.7: Changes to  Overall Proportions of the Face

Global changes to the proportions of the face do not affect the underlying skull structure, 
but have an indirect effect on overall muscle thickness. Modifications can be made in each 
of the x, y and z dimensions.
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5.6.2 R egional Control

The major option f a c e - r e g i o n , caters for alterations in the relative proportions of the 

face. Sculptors and portrait artists have for years used a variety of rules that relate parts 

of the face to each other, see section 5.2.5. The facial skin mesh has been divided into 

three sections known as the upper-face, middle-face and lower-face\ these are based on 

the regions used in FACS [44] since FACS is used as the basis for generating expressions 

in FACES. The upper face consists of the eyebrows and forehead; the lower face is the 

area from the chin to the upper lip; and the middle region comprises the area from the 

upper lip to the eyes.

As illustrated in Figure 5.8 valuator bars similar to those employed in s k u l l - r e g i o n  

are used to make changes to relative proportions of the face. In the context of regional 

modifications to the face, a stack-based undo operation is available to enable successive 

changes to be discarded when necessary.

5.6.3 Local Control

The FEATURES option comprises the final part of the modelling process. This involves 

refinement in the form of scaling and positioning of the soft features of the face, see 

Figure 5.9.

According to Ekman, individuals differ greatly with respect to the size, shape and 

location of their facial features [45]. Harmon, however, considered that it is not the shape 

and size of features that is critical, but the relative distances between them on the face [67]. 

From psychologists’ concern with the process of face recognition, it has been established 

that people notice differences in facial shape, eyes, eyebrows, nose, mouth and lips, and 

the chin [195]. But how these features differ from person to person has not yet been fully 

established. Therefore to cater for experimentation, geometric deformations are employed 

to modify soft features through the following menu:

Eyebrows

Eyelids

Eyeballs

Lower-nose

Upper-lip

Lower-lip

Neck
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Figure 5.8: Changes to  Relative Proportions of the Face

Relative proportions of the face can be altered through regional changes to the upper-face, 
middle-face and lower-face. Each section can be stretched or compressed in the x-y and 
y-z planes.
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Figure 5.9: Modifications to Features

Local control enables changes to individual surface features which can be either paired or 
single. According to Ekman, individuals differ greatly with respect to the size, shape and 
location of their facial features [45]. Harmon, considered that it is not the shape and size 
of features that is critical, but the relative distances between them on the face [67].
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As in the b o n e  section of the C o n s t r u c t  sub-system, some of the features are treated as 

pairs while others are single elements. For example, Eyelids, Eyebrows and Eyeballs are 

paired features over which independent control is available for the Left and Right sides, 

while the Lower-nose, Upper-lip, Lower-lip and the Neck are regarded as single features. 

With regard to adjustments to paired and single features, similar comments to those made 

under the b o n e  option, in section 5.5.3, apply. Undo functionality allows changes to be 

reversed when necessary.

5.7 Sum m ary and Conclusions

The functionality provided for modelling faces gives a considerable amount of control for 

personification of the subtle variations that occur in facial form. Plate 5.1 illustrates 

examples of faces that have been generated using FACES.

Although the recognition and generation of faces appear to be different sides of the 

same coin, we are adept at one, but not particularly skilled at the other. To assist the 

user in the interactive modelling of arbitrary faces, it is necessary to provide facilities that 

will allow a wide variety of faces to be represented. However, despite years of research 

there appears to exist little definitive data regarding the characteristic determinants of 

facial form.

Knowledge gained from several areas of study has been of importance in the devel

opment of the C o n s t r u c t  and M o d i f y  sub-systems. Psychologists concerned with the 

process of face recognition have identified that we remember faces by comparing them 

with an ‘average’ face. Research has also revealed the major facial features that are used 

to distinguish faces from one another. Work undertaken in criminology has demonstrated 

that a major drawback of systems such as Identikit and Photofit is that features are cho

sen and put together out of context. From techniques used in facial reconstruction we 

learned the importance of the skull and bones in determining the appearance of the face. 

Artists and sculptors have unveiled the significance of variation in relative proportions of 

the face.

The information gleaned from this range of disciplines has not only influenced the 

facilities provided in the C o n s t r u c t  and M o d i f y  sub-systems, but also the structure of 

the sub-systems themselves. It has been found that extensive and often subtle variability 

of the form of the human face makes it necessary to have a range of modelling controls at 

global, regional and local levels.
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P late 5.1: Modelling a Variety of Faces

G lobal, regional an d  local m odelling control w ith in  th e  C o n s t r u c t  and  M o d ify  sub
system s enab les th e  c reation  o f m any  different faces. T h e  top-left im age is th a t  of th e  
‘n e u tra l’ face, w ith o u t any m odifications. T he b o tto m  tw o im ages d em onstra te  charac teris
tics typ ical o f m ale and  fem ale faces.
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Plate 5.1: Modelling a Variety of Faces (Continued)

Within the CONSTRUCT sub-system the user works with the bone structure. Alterations 
to muscle thickness and surface features can be made through the M o d i f y  sub-system. 
Adequate control exists for the creation of many subtle effects.
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An investigation was also undertaken to identify techniques that are commonly used 

for the representation of irregular surfaces and in particular the face, in the general area of 

computer modelling. The benefits and the problems associated with digitisation, interpo

lation, local deformation and composition methods have had a bearing on the techniques 

used to implement facilities for conformation modelling of the head and face in FACES.
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6.1 Introduction

In the preceding chapter we considered the modelling facilities provided for the user to 

enable creation of static head models. Next we turn our attention to facilities for making 

such heads move, an issue which is addressed within the A n i m a t e  sub-system.

Motion control remains a central issue in the general area of computer generated
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Animation in FACES

Conformation Animation Facial Animation
(Structural/Inelastic) (Transitory/Elastic)

I I
Non-Verbal Communication Bodily Requirements

I------
Expressions

i____
Action Units

I
Muscles

Figure 6.1: Animation in FACES

Two types of animation sequence may be generated. Conformation animation gives the 
effect of a metamorphosis between faces. Facial animation is concerned with transitory 
movements of the face, that is temporary changes that reflect expressions.

animation [180, 182, 185, 197]. However, control over movement is even more important 

in facial expression animation since the timing and motion of facial changes are critical 

to the information that is eventually conveyed to the viewer.

The rationale behind the approach adopted towards the animation of faces and the 

motivation for the functionality in the A n i m a t e  sub-system are first presented in sec

tion 6.2. These are followed by a detailed study of the facilities provided in the sub-system 

for the creation, storage and retrieval of sequences consisting of moving faces.

6.2 A nim ation  in FACES

Within FACES it is possible to generate two types of animation sequence, see Figure 6.1. 

The first type is known as conformation animation. This is useful for creating sequences 

which represent a metamorphosis of one character into another. Demand for such special 

effects is demonstrated by the newspaper clip shown in Figure 6.2 [75]. Conformation 

animation is further discussed in section 6.5.

The second type of animation sequence is referred to as facial animation, although this 

includes head and eye movement as well as transitory changes to the face, see section 6.6.
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My image makers 
se t to work

And waved their 
magic wand

For this is what 
the voters want

Another 
Tory blonde

Figure 6.2: Interpolation between two well-known Faces

There is a demand for special effects such as this transformation of Michael Heseltine into 
Margaret Thatcher. This effect, courtesy of Steve Caplin [75], was achieved through an 
image processing technique.

Facial anim ation subdivides into movement pertaining to  non-verbal communication and 

th a t concerning ‘bodily requirem ents’. Bodily functions such as blinking are necessary 

simply to  make the face appear ‘alive’ when expressions are not being displayed.

The structural and movement aspects of the face are treated separately. This is to 

provide generality so th a t the user may create anim ation sequences which are equally 

applicable to  different head models.

An anim ation system further needs to incorporate amenities for the  longer term  stor

age of sequences than the duration of one session. It is therefore possible to store sequences 

in disk files. A textual format with keywords is used in order to make the files easy to  

both understand and modify. Sequences th a t have been saved may la ter be read back into 

the system as explained in section 6.7.

Creation of an anim ation sequence comprises a two stage process. A sequence is first 

defined in term s of the activities th a t are to  take place together with their time-variance. 

Individual frames th a t represent the sequence are generated at a la te r stage as described 

in section 6.8. Anim ation sequences therefore have two m anifestations, a definition and 

a series of frames generated from that definition. Generation of individual frames is per

formed through the process of interpolation which was discussed in section 4.3. A purely
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kinematic technique, that of shape interpolation, is used for conformation sequences, while 

a hybrid approach involving both kinematics and dynamics, in the form of parameter in

terpolation for muscular contraction, is employed for facial animation.

Within the A n i m a t e  sub-system emphasis is placed on the creation of facial anima

tion sequences. Use of individual muscles as a control interface to the user is regarded as 

being unacceptably low-level since such an interface would require the user to be familiar 

with the anatomy of the face. As an alternative strategy, two layers of control are pro

vided in the form of basic facial actions and the higher level of expressions. Consequently, 

there is a three-layer representation which underlies the control of facial movement; this 

consists of muscles, AUs and expressions.

6.3 T he A n im a t e  Sub-System

The overall structure of the A n i m a t e  sub-system is shown in Figure 6.3, while its context 

within FACES is illustrated in Appendix E. In order to navigate the reader through the 

hierarchical organisation of the A n i m a t e  sub-system, menus are used where appropriate 

to clarify the options available at particular stages.

At the top-most level, the sub-system has been divided into three major sections 

which facilitate the creation of animation sequences, their storage and retrieval, and the 

generation of frames which correspond to the definition of an animation sequence. The 

three major options are shown in the following menu:

MOTION SPECIFICATION

SCRIPTS

PENCIL-TEST

Sequences are first defined using the facilities in m o t i o n  s p e c i f i c a t i o n  and later gener

ated through the p e n c i l - t e s t  option. Animation sequences can be stored to and retrieved 

from disk files using the s c r i p t s  option. The data corresponding to a sequence is saved 

in the form of a text file known as a script.

6.4 Creation o f A nim ation  Sequences

m o t i o n  SPECIFICATION facilitates the creation of both conformation and facial animation 

sequences. Several further options are available within this major option, these are listed
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ANIMATE

MOTION-SPECEFICATION

i—
Faces

New-Sequence Faces
-------   1 i—

Expressions Select

Expressions Action-Units

Define Save

SCRIPTS

Read Write

Faces Expressions

PENCIL-TEST

Animate Interpolate-Faces Frame-Size

Figure 6.3: The A n i m a t e  Sub-System

T h e  s tru c tu re  an d  o rg an isa tio n  o f  th e  A n im a t e  su b -sy s tem  in FACES. T h re e  m a jo r  sections 
c a te r  for th e  specification , s to rag e  an d  re triev a l, as well as g en e ra tio n  o f an im a tio n  sequences.

in the menu below:

Exit

New-Sequence

Faces

Expressions

Action Units

The New-Sequence option initialises the system for the specification of a completely new 

animation sequence. This facility is of practical use whenever the user needs to start 

afresh. A further menu enables the user to decide whether it is the ‘current’ conformation 

or facial animation sequence which is to be replaced. Ordinarily, sequences are persistent 

and continue to exist until FACES is exited, or New-Sequence is chosen, or a script is 

read in.
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Head Models

head4

head3

head2

headl

0 1 2 3 4 5 6 7 n

Frames

Figure 6.4: Specification of a Conformation Animation Sequence

Specification of data for a metamorphosis sequence involving a transformation of headl into 
head2, followed by a transformation of head3 into head4. The user determines the duration 
and the law o f interpolation for each metamorphosis.

Invokation of the Faces option enables conformation animation sequences to be de

fined, while the Expressions and Action Units options cater for the specification of facial 

animation sequences.

6.5 Conform ation A nim ation

Selection of the Faces option in m o t i o n  s p e c i f i c a t i o n  allows the user to develop a  

conformation animation sequence. This defines a  series of physical transformations of one 

head model into another and corresponds to shape interpolation between the structure of 

head models.

For each metamorphosis in the sequence, the user is prompted for three pieces of 

information, see Figure 6.4. Firstly, the names of the datarfiles containing the start and 

end head models axe required. For either the start or end head it is possible to specify 

‘current’ which is a generic term to represent the head being used in FACES at that 

particular time. Secondly, it is necessary to specify the frames over which a metamorphosis 

is to take place; this is indicated in the form of initial and final frame numbers. The last 

piece of information required concerns the type of technique to be used during the shape
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interpolation process which is required to generate intermediate head structures. Here, 

the user may choose from a selection of four methods based on the laws of motion which 

are described in section 4.7.1.

6.6 Facial A nim ation

Facial movement can be associated with both non-verbal communication and bodily re

quirements. Within FACES particular emphasis has been placed on facial movement for 

expression animation, however as explained in section 6.6.1, this is only one component, 

albeit an important one, of non-verbal communication.

An encouraging approach to resolving the problem of the complex nature of facial 

movement is to develop a modular or ‘kit-of-parts’ technique for creating facial movement. 

This is discussed in section 6.6.2.

The task of creating convincing facial movement involves several aspects including 

the generation of meaningful expressions and plausible movement. Facilities for achieving 

these goals are described in section 6.6.3.

Additional movements involving the head and eyes are discussed in section 6.6.4. A 

higher level of control over facial movement is elaborated in sections 6.6.5 and 6.6.6 which 

are concerned with predefined expressions. Finally, section 6.6.7 views AUs in terms of 

bodily functions aside from expressions.

6.6.1 Expression and G esture in Em otion

Facial expressions together with body gestures provide non-verbal communication to con

vey important information regarding a person’s emotional state. Research is currently 

in progress to understand the connections between facial expressions, speech, hand and 

bodily gestures [68, 123, 125]. Ekman has identified two broad categories of expression 

which are known as emblematic and conversational punctuators [41]. Emblematic expres

sions have a verbal equivalent in common words or phrases, for example a cheeky wink. 

Conversational punctuators are facial signals which emphasise whatever is being said in 

words, such as nodding the head whilst saying ‘yes’.

There is however more to emotional experience than that reflected by outward appear

ance. Emotional feelings also influence additional aspects including a person’s: physiol

ogy, autonomic nervous system, brain reactions, verbal responses and memory [142, 143].
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Emotions axe highly personal and complex experiences. People often react differently to 

particular situations. The study of human behaviour is the domain of psychologists, we 

therefore limit our attention to providing the user with adequate tools for the creation of 

facial animation and view the task of injecting life and emotion into the character as one 

that can only be performed by the skilled animator through judicious use of these tools.

Although FACES provides a mechanism for generating facial distortion, it should be 

noted that there is still considerable debate regarding what constitutes a ‘real’ expres

sion as opposed to a ‘feigned’ one. It has been found that spontaneous expressions are 

symmetrical while deliberate expressions are stronger on the left side of the face [40]. 

In the 19th Century a physiologist, named Duchenne, tried to derive information about 

individual facial muscles through the application of electrical currents to both guillotined 

and live heads. Although the approach was arbitrary in that it was difficult to isolate 

particular muscles, Duchenne nevertheless catalogued his results through observation of 

muscle movements and their associated facial distortions. These findings identified the 

difference between a ‘true’ smile and an artificial smile generated by systematically con

tracting individual muscles. Further work in this area has enabled Ekman to distinguish 

this ‘Duchenne smile’ from other types of smile [42].

6.6.2 C om ponents o f Facial M ovem ent

As explained in chapter 4, to generate realistic facial movement, the motion characteristics 

of the face are based on the dynamics of muscle movement. To create animation sequences 

using individual muscles of the face would be an extremely cumbersome task. FACS is 

therefore used as the control interface between the user and the models that simulate 

muscular contractions.

FACS is a comprehensive system which defines fundamental basic actions known 

as Action Units (AUs). Each AU describes the contraction of one facial muscle or a 

group of related muscles. FACS defines 58 AUs which are presented in Appendix B. This 

repertoire of basic actions can be regarded as a ‘kit’ both for the creation of composite 

facial expressions and for the selection of actions to make the face appear to be alive.

To assist the user in the creation of facial animation sequences, 29 fundamental facial 

actions have been defined in FACES. They are based on the AUs of FACS. These primitive 

actions are presented in Table 6.1. Note that pupil-dilation is a supplementary action to 

those defined in the FACS manual [44]. Also, the facial actions implemented in FACES on
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Facial A ction A ction  U nit P aram eter R ange

Neutral-Face — —

Inner-Brow-Raiser AU-1 0.0 < Intensity  <1.0

Ou ter- B row- Rai ser AU-2 0.0 < Intensity < 1.0

Brow-Lowerer AU-4 0.0 < Intensity < 1.0

Upp er- Li d-Rai ser AU-5 0.0 < Intensity <1.0

Cheek-Raiser AU-6 0.0 < Intensity < 1.0

Lid-Tightener AU-7 0.0 < Intensity < 1.0

Lips-Towards-Each-Other AU-8, AU-25 0.0 < Intensity < 1.0

Nose-Wrinkler AU-9 0.0 < Intensity < 1.0

Upp er-Li p-Raiser AU-10 0.0 < Intensity < 1.0

Lip- Corner- P uller AU-12 0.0 < Intensity < 1.0

Lip-Corner-Depressor AU-15 0.0 < Intensity < 1.0

Lower-Lip-Depressor AU-16 0.0 < Intensity < 1.0

Chin-Raiser AU-17 0.0 < Intensity < 1.0

Lip-Stretcherer AU-20 0.0 < Intensity < 1.0

Lip-Pressor AU-24 0.0 < Intensity < 1.0

Lips-Part AU-25 0.0 < Intensity < 1.0

Jaw-Drop AU-26 0.0 < Intensity < 1.0

Cheek- PuflF AU-34 0.0 < Intensity < 1.0

Cheek-Suck AU-35 0.0 < Intensity < 1.0

Eyes-Closed AU-43 0.0 < Intensity < 1.0

Turn-Left AU-61 0.0 < Intensity < 1.0

Turn-Right AU-62 0.0 < Intensity < 1.0
Head-Up AU-53 0.0 < Amount < 1.0

Head-Down AU-54 0.0 < Amount < 1.0

Tilt-Left AU-55 0.0 < Amount < 1.0

Tilt-Right AU-56 0.0 < Amount < 1.0

Eyes-Track AU-61 to AU-66 -1.0  < x ,y  < 1.0, z  > 0.0

Pupil-Dilation — 0.0 < Amount < 1.0

Table 6.1: Facial Actions available in FACES

Listed above are 29 fundamental facial actions which have been defined within FACES. 
With the exception of pupil-dilation, all the actions are based on those defined in the 
FACS manual [44].
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occasion correspond to several FACS AUs; these are indicated where appropriate. Despite 

these differences, in the interests of clarity the low-level facial actions are referred to as 

AUs within FACES.

The AUs are implemented as calls to the lower level muscle models which are described 

in section 4.5.2. Such a scheme makes the muscular basis of the face transparent to the 

user. AUs are particularly suitable as a means of choosing which parts of the face to 

incorporate into a sequence. They provide a higher level of abstraction than muscles, so 

that the user does not need to understand the anatomy of the face before using FACES.

As illustrated in Table 6.1, AUs also have descriptive names, which the user can relate 

to. An important implication of the fact that AUs are generic and therefore applicable 

to all human faces, is that the user can create facial animation sequences which can 

be applied to any FACES head model. Distortions caused by AUs are naturalistic and 

believable since FACS was derived from a detailed analysis of real faces. This also means 

that AUs provide viable and realistic constraints on facial movement.

6.6.3 Expression Anim ation

There are two aspects to the generation of convincing, expressive sequences involving 

facial animation. First, the expressions need to be meaningful and second, motion should 

be plausible.

Meaningful Expressions

It is generally accepted that the eyes, eyebrows, eyelids and mouth are the most expressive 

areas of the face [118, 162, 174], However, no particular single element is paramount in 

the perception of an expression, rather the whole is greater than the sum of the parts. In 

FACES, the generation of expressions involves selection of particular AUs which cumu

latively distort the face to represent a meaningful message. Various combinations of the 

complete set of AUs are capable of representing more than 7000 expressions [58].

FACS divides the face into three regions, notably the upper, lower and middle face. 

AUs which operate in the upper area are concerned with the forehead and eyebrows. 

There are several visibly distinct actions involving the eyebrows [41]. AUs involved in 

the middle part affect the visible appearance of the face from the eyes to the top of the 

upper lip. The major actions include: raising the cheeks; lowering the brows; tightening 

of the eyelids; and contraction of the skin around the nose and the corner of the mouth.
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Dominating activities in the lower face arise from actions involving the lips and the jaw. 

This is exemplified by speech and mastication which involve the majority of muscles in 

this region.

Plausible Movement

The face is often the mirror of the soul; it frequently flashes messages for which words 

cannot be found. The speed with which facial movement occurs and the time over which 

the motion endures provide vital cues to vast amounts of information which is present in 

facial expression. Facial movement normally involves minor displacements, however the 

movement tends to occur in a series of rapid successions. Moreover, many actions last 

only a fraction of a second.

Unfortunately, as explained in section 4.7, data relating to the timing and duration of 

non-verbal communication is currently unavailable, making it impossible to incorporate 

such information into the system at present. Consequently, the facilities in the m o t i o n  

s p e c i f i c a t i o n  part of the sub-system are aimed at providing the user with detailed 

control over facial actions in conjunction with the flexibility to experiment in order to 

achieve the required motion and timing.

Creation of Facial Animation Sequences

To build up a facial animation sequence over several frames, the user selects AUs, from 

those presented in Table 6.1, through the Action Units option, see section 6.4. For each 

action chosen, it is necessary to specify information relating to duration, the law of motion 

and any parameters that the AU requires. A list of AUs and their associated parameters 

is given in Table 6.1. Note that for most AUs, only one parameter is required, that of 

intensity and amount.

Figure 6.5 summarises the specification of a facial animation sequence in terms of 

combinations of AUs and their corresponding timing. Duration defines the frames over 

which an action will take place; the user is prompted for the start and end frames. Intensity 

provides control over the degree of movement in the form of a parameter which ranges 

between zero and one. A value of zero indicates that the AU is to remain inactive, while a 

value of one is equivalent to maximum activation. The user specifies the initial and final 

intensity values for the start and end frames respectively. Finally, four laws of motion 

enable specification of differing paths of motion for each AU selected; a choice may be

U n iv e r s it y  O f  B ath 101 M a n ju l a  Patel



M a k in g  FACES A n im a t in g  Faces

Expressions or
Action Units

AU 5 
Anger 
AU1

Surprise 
AU 16

0 1 2 4 5 6 7 8 9  10 n
Frames

Figure 6.5: Specification  o f  a Facial A nim ation  Sequence

Specification of a series of AUs and predefined expressions to define a facial animation 
sequence. It is possible for actions to overlap in time, so that they may be active over the 
same frames, allowing parallel and synchronised motion to be achieved.

made from one of the following:

linear

accelerate

decelerate

accelerate-decelerate

A detailed description of the laws of motion and their effects are presented in section 4.7.1. 

The laws enable motion effects such as ‘ease-in and ease-out’, or ‘fairing’, to be simulated 

mathematically and correspond to four different techniques for interpolation between the 

start and end values of AU dependent parameters.

A choice of motion technique means that there is considerable scope for experimenta

tion in order to achieve the correct timing. In addition, some AUs are capable of operating 

on one side of the head independently of the other side. For such AUs the user needs to 

specify one of Left, Right or Both.

It is also possible for AUs to overlap in time, that is they may be active over the same
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frames, as demonstrated in Figure 6.5. This allows parallel and synchronised motion to be 

achieved. If conflicting AUs are active over the same time interval the resulting expression 

will be a ‘blended’ one. The scheme adopted gives the user fine control, both over the 

areas of the face to be involved and over the relative timing and duration of AUs, to 

facilitate creation of the subtle nuances that make facial movement so expressive.

Our familiarity with the movement of the face raises the possibility that the observer 

may easily detect unnatural motion. Consequently, to generate convincing motion it is 

often necessary to meticulously refine a sequence. To aid in this process, AUs do not 

need to be specified in time or frame order, making it straightforward to insert new 

actions into an existing sequence. This facility offers an explanation for why sequences 

are persistent in FACES. It is also the reason for the adoption of a two stage process for 

the creation of animation sequences. The user may experiment with the definition of a 

sequence independently from the generation of the frames.

6.6.4 A uxiliary M ovem ent

Eyes have consistently been cited as an important source of expressive information [118, 

137, 162, 175]. More specifically, the eyeballs play a significant role in maintaining atten

tion during conversation and provide clues as to where a person is ‘attending’ [127]. The 

capability to track a moving focal point in 3D space in the form of an AU for eye-tracking 

is therefore included. It is also possible to model movement such as horizontal and vertical 

eyeball rolling as illustrated in Plate 6.1. In fact, the user has separate control over the 

eyeballs to enable each to focus on a different point for special effects such as modelling 

‘fish-eyes’, see Plate 6.2. Control over pupil dilation is also available since this is an im

portant component of expressions such as surprise and fear [43], which are illustrated in 

Plate 6.5.

Since many AUs offer independent control over each side of the face, it is possible 

to create asymmetric effects such as winking shown in Plate 6.3. The ability to control 

the left and right sides of the face offers additional flexibilty to model behavioural quirks. 

Individuality of a face depends on behavioural characteristics as well as differences in 

physical attributes.

Both verbal and non-verbal communication involve substantial amounts of head move

ment or prosodic nodding. Movements such as turning, tilting and nodding cannot be 

excluded if naturalistic expression animation is required, see Plates 6.4 and 6.5
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Plate 6.1: Eyeball Rolling
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Plate 6.2: Fish-Eyes

Separate control over each individual eyeball enables special effects such as these ‘fish-eyes’ 
to be generated. It is possible for each eyeball to track a different target point.

Plate 6.3: Winking

Independent control over each side of the face allows asymmetric effects such as winking to 
be created. Many AUs are capable of operating on either one side or both sides of the face 
simultaneously.
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6.6.5 G eneric Expressions

Although AUs facilitate great subtlety in creating facial expressions, they are considered 

to work at too low a level for some purposes. Certain facial patterns are very common 

and can be easily identified as evidence of basic emotions. The user is therefore given 

the option to work at a higher level with predefined expressions. Such expressions can be 

considered to correspond directly to recognisable and meaningful emotions.

Through extensive research, psychologists Ekman, Friesen and Ellsworth categorised 

six fundamental facial expressions which are commonly understood by all humanity [58]. 

The expressions are called happiness, sadness, surprise, anger, disgust and fear. They axe 

provided in FACES as part of a predefined expressions library. Ekman and Friesen have 

outlined the essential characteristics of the face in showing the six generic expressions [43]. 

Figure 6.6 and Plate 6.5 illustrate the typical distortions employed to represent these 

expressions in FACES.

Predefined expressions are encoded in terms of AUs and their respective parameter 

values. For instance, anger comprises AU-4, AU-5 and AU-24, while sadness is composed 

of AU-1, AU-4 and AU-15. The consistency and generality of FACS makes it possible to 

apply such predefined expressions to any head model.

Access to high level expressions is provided through the Select Expression option, 

which in turn is accessed through the Expressions option under m o t i o n  s p e c i f i c a t i o n , 

see section 6.4. The user is provided with control over each expression in terms of duration, 

intensity and law of motion, in a similar manner to control over AUs, see section 6.6.3. 

Note that selections from the two sets of AUs and expressions may be freely intermixed, 

as demonstrated in Figure 6.5. Thus it is possible to choose a high level expression and 

amend it using lower level AUs.

6.6.6 N ew  Expressions

In addition to having access to the predefined generic expressions described in the previous 

section, the user can construct and save static expressions and thus establish a personal 

library of predefined high level expressions. More specifically, the user has the capability to 

combine primitive AU operations and represent the collection as a higher level expression. 

The Expression option allows access to several other options shown in the menu below:
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Figure 6.6: W ireframe Representation of Generic Expressions

From top-left to bottom-right, happiness, sadness, disgust, anger, surprise and fear, are 
universally recognised. Ekman and Friesen have outlined the essential characteristics of 
the face in showing the six generic expressions [43]. The expressions are predefined within 
FACES in terms of Action Units to provide a higher, emotional level of control. This diagram 
illustrates the typical distortions employed to represent the expressions.
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Plate  6.5: Generic Expressions of Emotion

Six expressions are universally recognised. Happiness: eyebrows rise (AU1, AU2); eye
lids compress (AU6); corners of lips rise and widen (AU12). Sadness: inner eyebrows 
draw together (AU1, AU2, AU4); eyes cast downwards (AU61); corners of mouth pull 
down (AU15). D isgust: upper lip and flanges of nose rise (AU10); lower lip rises (AU17); 
eyebrows lowered (AU4). Anger: eyebrows lowered and drawn together (AU1, AU4); eyelids 
wide open (AU5); lips pressed firmly against teeth (AU24).
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Plate 6.5: Generic Expressions o f Em otion (C ontinued)

Surprise: eyebrows raised high (AU1, AU2); eyelids wide open (AU5); jaw drops (AU26). 
Fear: eyebrows rise and draw together (AU1, AU2, AU4); eyelids wide open (AU5); corners 
of lips drawn backwards (AU20).

E xit

Backup

Select Expression 

Define Expression 

Save Expression

Define Expression enables the user to interactively ‘sculpt’ an expression on the face by 

selecting AUs from the same repertoire as that used in the creation of anim ation sequences, 

see Table 6.1. The process of creating a new static expression is illustrated in Figure 6.7.

For each AU selected the system prompts for relevant param eter values. In the 

m ajority of cases this involves specification of only one value, the intensity. Since a static 

expression is being developed, duration and time-variance information is unnecessary.

A stack based undo operator is available to  facilitate experim entation during the 

creation of new expressions. Once complete, the expression can be saved using the Save
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Expression option, when it must be given a name. As soon as the expression has been 

saved, it immediately becomes part of a predefined expressions database. From this 

database the expression can be selected for use in facial animation sequences through the 

Select Expression option as described in the previous section.

6.6.7 B odily  R equirem ents

Although most of the AUs implemented form significant components of facial expression, 

there are some actions which also serve the functional requirements of the face. These 

actions are important elements in maintaining the ebb and flow of facial movement, that 

is in making the face appear ‘alive’ even when expressions are not being displayed.

The eyes consist of eyelids and eyeballs, each of which provide different functions. 

Eye blinking is essential as a means of keeping the eyeball moist to stop the eyes from 

drying out. The eyelids blink once every 2-10 seconds during which time the eyes remain 

closed for an average of 0.15 second.

Eyeballs serve the major function of enabling vision. Each eyeball must be capable 

of rotational movement to allow the pupil to focus on a point in 3D space and thereby 

achieve and maintain stereoscopic vision. The pupil controls the amount of light which 

enters the eye, making dilation of the pupils an important aspect of vision.

Movement of the lower jaw is important in mastication and speech as well as in non

verbal communication. The head, in conjunction with the neck plays a significant role in 

movements such as turning from one side to the other, tilting and nodding, see Plate 6.4. 

Such movement does not necessarily form a part of non-verbal communication.

6.7 Storage and R etrieval o f Sequences

Having created an animation sequence it is useful to save it and read it back into FACES 

at some later stage. The major option s c r i p t s , in the A n i m a t e  sub-system, enables 

the user to save and retrieve both conformation and facial animation sequences. SCRIPTS  

allows access to the following further operations:

Exit

Backup

Read

Write
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Figure 6.7: Creation of New Expressions

New static expressions may be created through interactive sculpting using the same reper
toire of AUs as is available for generating facial animation sequences. Such expressions can 
be saved to form a library of predefined expressions.
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The Write option caters for the storage of animation sequences to disk files. Through 

an additional menu, the user may select which type of sequence, conformation or facial 

animation, is to be saved. The user is then prompted for a name by which to call the 

corresponding disk file.

Facial animation scripts are stored in terms of AUs and expressions, which are exactly 

the entities that the user works with. These scripts contain information regarding: an 

expression or AU; the frames over which it is active; the start and end parameter values; 

and the law of motion to be used for interpolation. Facial animation scripts therefore 

provide a definition of the timing, duration and combination of AUs and expressions that 

comprise a sequence.

Conformation animation scripts consist of the: names of data-files corresponding to 

the start and end head models; initial and final frames; and interpolation technique to 

be used for inbetweening. Conformation animation scripts therefore define a sequence 

of physical transformations of one head into another. Both types of sequence are stored 

as textual data making scripts easy to read, understand and modify with the use of a 

standard text editor.

The Read option facilitates retrieval of animation sequences from script files. When 

a script is read back into FACES, two options become available. If a sequence of the 

same type already exists in the system, the old sequence may be either overwritten by the 

new sequence, or the new sequence may be incorporated into the old. This feature allows 

several scripts to be merged into one.

6.8 G eneration o f Frames

Once the definition of an animation sequence has been created, it is necessary to generate 

the individual frames that comprise the sequence. Although real time playback is desir

able, the state of accessible technology does not permit 15-25 frames to be rendered every 

second. A facility is therefore provided for previewing wireframe representations. Even 

the production of wireframe images cannot be achieved in real time, however it does give 

the user an indication of what the sequence will look like in its final form.

Generation of frames is facilitated by a menu associated with the p e n c i l - t e s t  option 

which presents several additional operations:
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Exit

Animate 

Interpolate Faces 

Frame-Size

Invokation of the Animate option causes generation of a sequence of frames through the 

application of a facial animation sequence to the current head model, see Plate 6.6. A 

hybrid approach which draws on both kinematics and dynamics methods is used. Param

eter values at key frames define extreme facial movement while intermediate frames are 

generated through interpolation of parameter values. At each frame, for each active AU 

or expression, parameters are interpolated according to the path of motion for that action. 

Dynamic simulation of muscle contractions causes the actual distortion that represents 

facial movement.

In the Human Factory System, a face, expressions and scripts are considered to be 

an integral part of a particular synthetic actor [100]. In contrast, in FACES, head models 

and facial animation sequences are totally independent of each other. As a result, a facial 

animation sequence can be applied to any head model constructed within FACES.

The Interpolate Faces option enables generation of frames corresponding to a con

formation animation sequence. This describes a sequence consisting of interpolations be

tween the structure of head models. In this case, intermediate head models are generated 

through shape interpolation.

From one conformation sequence definition it is possible to generate two different 

sets of frames, as illustrated in Plates 6.7 and 6.8. When a facial animation sequence 

has been defined in the system, facial movements are generated on intermediate faces. 

However, when a facial animation sequence does not exist within the system, interpolation 

is performed without the application of facial movement so that inbetween faces have a 

‘neutral’ state.

A conformation animation sequence usually consists of references to particular head 

models that are to be used in the process of metamorphosis. However, whenever ‘current’ 

is encountered instead of the name of a data-file, the head model that is in use in FACES 

at that particular time is substituted.

The Frame-Size option allows interactive control over the size of frames to be gen

erated. This facility is of practical use during the development of sequences since the 

rendition time of a frame increases with its size.
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Plate 6.6: Facial Animation

A facial animation sequence showing winking followed by happiness on a different head models. This is possible because of the generic nature of the
face that would typically be perceived as being that of a woman. Generality Actions Units defined in FACS,
within FACES allows one facial animation sequence to be applied to many .
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Plate 6.7: Conformation Animation without Facial Movement

Conformation animation enables generation of sequences of metamorphoses woman, while the bottom sequence demonstrates the same man transform-
between head structures. This type of animation is achieved through sh ape  ing into another man with a longer face.
in t e r p o la t io n .  The top sequence shows the head of a man turing into a



Plate 6.8: Metamorphosis with Facial Animation

Selected frames from two sequences in which conformation and facial anima- illustrates metamorphosis of a female face into a different female face, again
tion have been combined. The top sequence is the face of a man transform- with facial movement applied to the physical transformation of the head
ing into a woman, with facial expressions overlaid. The bottom sequence model.
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6.9 Sum m ary and Conclusions

The A n i m a t e  sub-system addresses issues related to the animation of static head models. 

This sub-system enables two types of animation sequence to be generated. The first 

represents a sequence of physical transformations or metamorphoses of head models. The 

second is concerned with facial and head movement and can be further subdivded into 

movements which are used for non-verbal communication and movements such as blinking 

for the functional requirements of the face. Both types of sequence are first defined or 

created using the m o t i o n  s p e c i f i c a t i o n  part of the A n i m a t e  sub-system. The definition 

is later used to generate individual frames through the p e n c i l - t e s t  option. Examples of 

both types of sequence are presented in video sequences, see Appendix D.

In the absence of usable time-variance data for non-verbal communication the user 

is provided with detailed control over both low level facial actions and higher level ex

pressions, together with the ability to experiment. Control is available over the duration, 

intensity and path of motion of each facial action. The use of FACS as a control mechanism 

provides a natural interface which promotes the creation of believable expressions.

Animation sequences can be saved to and retrieved from disk files in the form of human 

readable scripts. Use of a textual recording technique makes script files readily modifiable 

by the user. An independent treatment of conformation and facial animation sequences 

provides convenience and flexibility. More specifically, facial animation sequences can be 

applied to either a single head model or to a sequence of interpolated heads as a result of 

the generality in FACES.
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7.1 Introduction

Facilities described so far in the C o n s t r u c t , M o d i f y  and A n i m a t e  sub-systems all 

display a wireframe representation of the head model. Once a satisfactory model of the 

head together with its motion has been developed, it is necessary to generate sequences 

which appear more realistic in visual terms. Within the R e n d e r  sub-system there are 

operations which cater for rendering, monitoring and motion evaluation of animation 

sequences.
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Motivation for the facilities provided in the R e n d e r  sub-system are described in 

section 7.2. The process of generating shaded images comprises several stages known as the 

rendering pipeline, these are discussed in section 7.3. This is followed by an explanation 

of the organisation of the R e n d e r  sub-system in section 7.4 and a detailed description of 

the functionality that it has to offer in sections 7.5, 7.6 and 7.7.

7.2 Rendering in FACES

The R e n d e r  sub-system in FACES provides for more than the term ‘render’ normally 

implies in computer graphics. As well as facilities for the generation of shaded images, an 

animation system should also provide a means both for viewing groups of frames and for 

evaluating the motion of animated sequences. Furthermore, an effective system should 

allow some control over which particular parts of a sequence are operated upon.

Although we have a 3D representation of the head and face, in order to view the 

model it is necessary to project it onto a 2D display screen. This process is known as 

viewing and involves mapping from modelling coordinates, in which the model is defined, 

into the coordinate system of the output device.

Viewing is followed by a journey through the rendering pipeline to produce a realistic 

3D image of the face. This process involves determination of visible parts of the model 

together with their shading. Both of these processes serve to enhance the visual realism 

of the computer generated face. Visible surface determination is important for the elim

ination of ambiguity that wireframe models can present, while shading makes apparent 

the shape of the face, as well as conveying relative depth. Calculations involved in the 

rendering process are time-consuming. The impetus for adopting certain algorithms and 

techniques is that a major requirement of FACES is that of speed; the system needs to 

be interactive, making rapid visual feedback vital.

Speed is also of the essence in evaluating the motion characteristics of a sequence of 

frames. Timing is especially important in non-verbal communication where rapidly chang

ing expressions can indicate extremely subtle meanings. Consequently, once a sequence 

has been generated, it is instructive to test the motion using a variety of speeds.

Colour is an important factor in the determination of the appearance of the face. 

Interactive control over the colouration of facial features is a major requirement for mod

elling different faces.
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7.3 T he R endering P ipeline

A realistic rendering of the 3D head model requires several stages of processing which 

include: viewing, visible surface determination, shading and application of an illumination 

model. The state of accessible technology does not currently permit realistic rendering in 

real time which requires 30 frames every second for film and 25 frames per second for video. 

Frames comprising an animated sequence are therefore rendered through an interactive 

batch process following a wireframe preview using facilities in the A n i m a t e  sub-system. 

As each frame is rendered, it is output to a graphics display to provide feedback to the 

user.

7.3.1 V iew ing

Viewing models based on the ‘synthetic camera’ can be elaborate [50]. Such sophistication 

is considered unnecessary in FACES. It is adequate to view the head model from the front 

using a parallel, or orthographic, projection [26]. This corresponds to a viewer position at 

infinity on the z-axis. Note that a right-handed coordinate system is used in FACES.

Coordinates obtained from digistisation of the mask can be regarded as a represen

tation of the skin mesh in either modelling coordinates or world coordinates. When read 

into FACES these coordinates are converted into a logical or normalised coordinate sys

tem such that each x, y and z coordinate value lies in the range -0.5 to 0.5. Whenever 

it is necessary to display parts of the head model, such as the skull or surface skin, the 

logical coordinates are transformed into the coordinate system of a canvas [189], which is 

a rectangular array of pixel values. Once the model has been rendered into the canvas, it 

can be displayed at any location on the output device.

7.3.2 V isible Surface D eterm ination

The problem of determining which surfaces are visible from a particular viewpoint is also 

known as hidden surface removal. In general, the process has two components. Firstly, 

surfaces must be sorted to find those which are closest to the observer. Secondly, an 

evaluation needs to be performed to discover which parts of surfaces are obscured by 

others closer to the observer. The calculations involved are time-consuming, therefore 

many algorithms concentrate on improving efficiency to increase speed.

A classification of hidden line and hidden surface removal algorithms due to Suther
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land et al.[157] has been widely adopted [50, 111]. This categorisation is based on whether 

an algorithm deals with object definitions directly or with their projected images. Three 

classes of algorithm are identified: Image Space, Object Space and List-Priority.

Image space algorithms work with projected data, in the coordinate space of the out

put device and capitalise on the limited resolution of the device. Such algorithms are 

particularly popular for raster devices and include scan line methods, the z-buffer algo

rithm and Warnock’s algorithm. Object space algorithms work in the coordinate system 

used to define the objects and involve methods such as the Weiler-Atherton algorithm 

and octree techniques. List-Priority algorithms tend to perform depth sorting in object 

space and scan-conversion in image space. Examples include the painter’s algorithm and 

the depth-sort or Newell, Newell and Sancha algorithms.

Execution Efficiency and Memory Requirements

The execution efficiency of visible surface determination algorithms is largely dependent on 

efficient sorting algorithms. Methods can be distinguished by the order of the dimensions 

in which they perform the sorting phases. For example, the depth-sort algorithm first 

sorts on z, then x followed by y. Scan line algorithms first sort on y, then x and finally 

on z. Area-subdivision techniques such as the Wamock and Weiler-Atherton algorithms 

do a parallel sort on x and y, and then a search in z. The z-buffer algorithm does no 

explicit sorting and searches only in z.

Another major consideration in the selection of a visible surface algorithm is the 

amount of memory it requires. The z-buffer algorithm, for example, has a large appetite 

for memory. The method needs a pixel-buffer and a z-buffer each of two dimensions to 

represent the resolution of the display screen.

Hidden Surface Removal in FACES

Advance knowledge of the properties of the images to be generated and the nature of the 

head model were taken into consideration during the development of the visible surface 

determination technique used in FACES. The structure of the head model led to the 

adoption of a hidden surface removal technique based on the list-priority category of 

algorithms.

Since it is only necessary to display the visible parts of the face, the sorting phase can 

be predetermined and therefore optimised. More specifically, the eyeballs are rendered
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first, followed by the facial skin mesh on top of which the individual features such as the 

eyebrows and lips are displayed. This technique amounts to a variation on the painter’s 

algorithm which involves over-painting of primitives.

A major drawback of the painter’s algorithm is that intersecting primitives and cases 

of cyclic overlap are dealt with erroneously. These problems do not arise with the head 

model in FACES since it comprises polygonal mesh representations, the components of 

which can be ordered correctly. A prior knowledge of the structure of the head model has 

therefore circumvented the need to precede the painter’s algorithm by a time-consuming 

sorting phase such as that required in the depth-sort algorithm. Such a sorting process is 

necessary for more general scenes containing an unknown amount of complexity.

7.3.3 Scan Conversion

The entire head model consists of polygons. The basic process of scan-converting polygons 

has been well-established for some time [11, 50, 111, 121, 179]. The overall strategy is 

to create and fill the polygon one scan line at a time, from the top to the bottom. It is 

necessary to determine which pixels on the scan line are within the polygon in order to 

set them to the appropriate intensity. However, calculation of the intersections between 

a scan line and a polygon can be time-consuming since each edge must be tested for 

intersection with each scan line. Scan line coherence, also known as edge coherence, is 

used to speed up the process since many of the edges intersected by scan line i are also 

intersected by scan line i-1. Coherence is thus used to exploit regularities and converts 

costly absolute calculations into less expensive incremental ones.

7.3.4 Illum ination M odel

Once a surface has been established els being visible it is then necessary to apply an 

illumination or reflection model. It is the task of this shading model to determine the 

quantity and quality of light which is reflected to the viewer from a visible point on a 

surface. This is a function of: the light source; its direction and strength; the viewer’s 

position; and the surface properties of the object.

Light sources which illuminate an object consist of two basic types; light-emitting and 

light-reflecting. Examples of fight-emitting sources include candles, fight bulbs and the 

Sun. Light-reflecting sources are the illuminated surfaces of other objects, such as the 

walls of a room, that are near the object being viewed. Many illumination models have
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been developed based on different types of light sources together with their particular 

characteristics, such as the distribution of light rays [112, 173].

In most illumination models, the light reflected from a surface is considered to com

prise two components: diffuse reflection and specular reflection. The diffuse component 

itself consists of two parts: ambient light and that light due to specific sources. The 

ambient part is ‘background’ light or the overall base level of illumination. Such light is 

uniformly incident and uniformly reflected.

Diffusely reflected light from specific sources is similar to ambient light, but is not 

uniformly incident. Light landing at a point on a surface varies in strength according to 

its direction. This is normally modelled using Lambert’s Cosine Law [50, 111]. Whereas 

diffuse reflections are uniformly distributed, specular ones are highly directional. Only 

those rays reflected towards the observer will be seen. Specular reflection is apparent on 

shiny surfaces in the form of highlights and can be calculated using Phong’s Model of 

Specular Reflection [21].

To simplify and minimise calculations in FACES, only one point light source at infinity 

is incorporated, so that all light rays are assumed to be parallel and directional. In 

addition, it is only necessary to consider ambient and diffuse reflection for the surface of 

the face, specular reflection is required only for highlights on the pupils.

Quest for Visual Realism

Illumination models traditionally used in computer graphics have little formal theoretical 

basis, but are popular because they produce attractive results with a minimum amount 

of computation. Other more sophisticated models have been developed in the pursuit 

of accurately rendered three dimensional images, visual realism being the ultimate goal. 

The Torrance and Sparrow Model was developed theoretically, based on the physics of 

light reflection [166]. This technique takes into account the concept of light reflected from 

tiny micro-facets. The Cook and Torrance Model accounts for the relative brightness of 

different materials and light sources in the same scene [33].

Global illumination techniques such as ray-tracing and radiosity account for the inter

action of light between all the surfaces in a scene. Ray-tracing is renowned for the simple 

manner in which it allows effects such as cast shadows, reflection, refraction, transparency 

and translucency to be incorporated into the basic algorithm [179]. However, the method 

is also well-known for the exorbitant amount of processing time that it requires. Radiosity
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eliminates the need for the ambient component by providing a more accurate treatment 

of inter-object reflections [32, 59, 73]. Luxurious effects such as interobject reflection, 

shadows and transparency are considered unnecessary for rendering faces and therefore 

have been omitted.

7.3.5 Shading Polygonal M eshes

Polygonal meshes are primarily used to model irregular and curved surfaces, such as 

the head model in FACES. The polygon is a basic primitive in computer graphics, it 

is frequently used for constructing entire scenes. Consequently, techniques for shading 

objects defined by polygonal meshes are well-established [21, 50, 60, 111]. There are three 

categories of method, the simplest of which is constant shading. This technique is also 

known as flat or faceted shading and involves the evaluation of an illumination model to 

determine a single intensity value which is used to shade an entire polygon. As a result, 

facets are visually distinguishable from each other, as demonstrated in Plate 7.1.

The need for a more curved appearance has prompted the development of smooth- 

shading techniques such as those of Gouraud and Phong. Gouraud shading tries to elim

inate intensity discontinuities for curved surfaces approximated by planar polygons [60]. 

Vertex normals are evaluated by averaging the surface normals of all facets that share 

the vertex. Intensities at these vertices are calculated using an illumination model. A 

polygon is then shaded by a linear interpolation of the vertex intensities along each edge, 

and then between edges along each scan line. Since intensities are interpolated, specular 

reflections which are dependent on the view direction are forfeited. Phong’s method of 

shading polygons interpolates the averaged surface normal vector rather than the intensity 

at every pixel [21]. This method allows specular reflections to be exhibited, but increases 

the computational cost of applying the illumination model.

Within FACES, Gouraud shading is used to display the smooth contours of the face 

because specular reflections would result in an artificial and shiny appearance. An added 

benefit is that Gouraud shading requires both fewer and less compute-intensive calcula

tions than Phong shading. At present highlights on pupils are rendered by extraction of 

particular facets since the position of the light source cannot be varied. An advantage 

of implementing shading through an interpolation technique, is that shading calculations 

can be incorporated into the process of scan conversion.
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Plate 7.1: Constant Shaded Face

C o n stan t, or faceted , shad ing  involves evaluation  of only one in tensity  for each facet [50, 110].
As a  resu lt o f th is , facets are visually d istinguishable from  each o ther.

7 .4  The R e n d e r  Sub-System

The complete structure of the R e n d e r  sub-system is illustrated in Figure 7.1 while 

its context within FACES is presented in Appendix E. As with the descriptions of the 

C o n s t r u c t , M o d i f y  and A n im a t e  sub-systems, the R e n d e r  sub-system is also ex

plained through the use of menus where appropriate. The sub-system comprises three 

m ajor options, which are listed below:

SHADE

STORYBOARD

PLAYBACK
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RENDER

SHADE
i------------------- 1------------------- 1

Shade-Frames Change-Colour
i i i I i

Skin Hair Eyes Lips Back-Ground

STORY-BOARD
i--------------1--------------1

Wire-Frame Shaded

PLAYBACK
i--------------1------------- 1

Wire-Frame Shaded

} = = !
Frame-Rate Single-Step

Figure 7.1: T he R e n d e r  S ub-S ystem

The structure and organisation of the R e n d e r  sub-system in FACES. Three major sections 
cater for shading, examination and near real time playback of animation sequences.

The SHADE option provides facilities for creating a  realistic rendition of individual frames 

in conjunction with interactive control over the colour of various parts of the face; this 

is discussed in section 7.5. The s t o r y b o a r d  option, which is described in section 7.6, 

enables visual changes between successive frames to be monitored, while the p l a y b a c k  

facility caters for the evaluation of motion as explained in section 7.7.

7.5 C olouration o f Features

It is important to realise the significance of colour in the visualisation process [167]. As 

well as enhancing the image, colour clarifies the information presented and helps in making 

apparent features that would be obscure in black and white pictures.

Colour images of the face are displayed on an output device which has a resolution of
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1024 by 1280 pixels. This monitor has a colour palette of 4096, however with 8 bit-planes, 

only 256 of these may be displayed at any one time. Advance knowledge of the contents 

of images enabled an optimisation of the colours that are loaded into the video look-up 

table or VLT. Colour entries are necessary for the functional requirements of the system, 

in terms of background and menu colours, as well as for shading the face. Altogether there 

are 8 different colours which must remain constant, leaving a total of 248 VLT entries 

available for the face model.

Shading images of the face requires only five basic colours to cater for: skin tone, hair, 

iris, sclera and lips. However, each of these features needs gradations of one hue. The 

colours of the smaller features, which include the lips, eyebrows, iris and sclera, are set up 

in bands of 32 gradations. Skin covers the greatest surface area of the face and therefore 

requires a larger spectrum of shades; 120 VLT entries are therefore allocated to skin tone.

The s h a d e  option in the R e n d e r  sub-system caters for both frame rendering and 

interactive modification of the colour of parts of the face. Default colour values are read 

in from a textual data-file which is provided as an argument when FACES is first invoked, 

see Appendix C.

The user may change the colour of skin, hair, eyes, lips and the background by 

specification of the hue in terms of values for red, green and blue components. An RGB 

colour cube model [50, 111] is used to specify the colour of the face. Each of the red, 

green and blue components range between zero and one. These values are mapped into a 

range of either 32 or 120 gradations depending on the feature of the face selected.

At present hair colour is restricted to affect the eyebrows alone. With regard to the 

eyes, control is available over the colour of the iris but not the pupil or sclera. All humans 

have a black pupil and white sclera, which are kept constant.

In addition, the user has control over both the first and last frames to be shaded. 

Such control enables experimentation with colours prior to a whole sequence of frames 

being rendered. Since the rendering process is optimised, FACES generates and outputs 

each Gouraud shaded image within a few seconds.

7.5.1 A ppearance

Colouration of features is an important component in distinguishing between races and 

between gender. For instance, we normally associate: yellow with Far Eastern cultures; 

white with Caucasions; a light tan with Europeans and people from the Middle East;
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brown with Asians; and black with Africans. Plate 7.2 demonstrates that a large range 

of skin tones can be represented in FACES.

Both hair and eye colour are also important in modelling the appearance of the face. 

For example, we tend to affiliate blue eyes and blonde hair with Europeans and dark eyes 

and dark hair with Asians and Africans. Colour is also a significant factor in our portrayal 

of gender; we associate red lips with females, for instance. Plate 7.3 shows colourations 

that are typically used to project images of male and female faces.

7.5.2 Em otion

The colour of the skin can reflect various states of emotion, for example blushing is asso

ciated with embarrassment, see Plate 7.4 and video sequence 5 in Appendix D. Another 

example is paleness due to shock or fear, as illustrated in Plate 7.5 and video sequence 6. 

Skin tone can also give an indication of the physiological states of the body, such as red 

for hot, blue for cold and green for envy.

7.6 Exam ination o f Frames

Story boards have traditionally been used in 2D cell animation to give the animator 

an impression of the key moments in the sequence [162]. The s t o r y b o a r d  option in 

the R e n d e r  sub-system serves a slightly different purpose. It allows examination of 

consecutive frames of a sequence by displaying individual frames next to each other, as 

illustrated in Plate 7.6. This facility is of invaluable help to the animator throughout the 

development of a sequence. It enables monitoring of changes that occur from one frame 

to the next. The user controls the first and last frames to be displayed, so that long 

sequences can be divided and inspected in groups of consecutive frames. STORYBOARD is 

capable of operating on both wireframe and shaded sequences of frames.

7.7 E valuation o f M otion

It is essential that the correct speed and duration of facial movement be achieved if a 

particular message is to be conveyed to the observer in an unambiguous manner. Testing 

the smoothness of generated motion is therefore of paramount importance.

The p l a y b a c k  option caters for near real time display of short sequences under user
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Plate 7.2: Examples of Skin Tones

Colouration of facial features is important for distinguishing between races. This plate 
illustrates a variety of skin tones in conjunction with differing head models and facial ex
pressions.
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Plate 7.2: Examples of Skin Tones (Continued)

Modelling facilities available within FACES, together with control over facial colouration, 
provides the capability to create both realistic and stylistic faces.
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Plate 7.3: Colouration of Features

Our portrayal of gender often includes variation of the colouration of particular features.
For example, we tend to associate smooth skin and red lips with female faces.

control. Individual static images of the face are over-laid in rapid succession to provide 

the illusion of motion. In a similar m anner to the s t o r y b o a r d  facility, it is possible to 

operate on both wireframe and shaded sequences, as well as to select sub-sequences of an 

anim ation sequence.

The user may select from two modes of display, either F ram e-R ate  or S in gle-S tep , in 

order to test the motion of a  sequence. W ithin the F ram e-R ate  option there are additional 

controls, such as over the pause rate  between frame updates and whether the sequence 

is to be cycled through in reverse order when the last frame is reached. Such control 

provides the anim ator with a considerable degree of flexibility to experiment with the 

tim ing of particular actions and to  test the motion at varying speeds before refinements 

are made to  the anim ation script. In Single-Step  mode, the user has to ta l control and 

frames are updated with the press of a puck button. Under both modes frames continue 

to  be displayed cyclically until the user decides to exit from the option.
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Plate 7.4: Blushing

Colour is important for conveying the emotional state of a person. This sequence demon
strates variation of skin tone over an animation sequence to produce the effect of blushing.

Plate 7.5: Paleness

This sequence shows the variation of skin tone through an animation sequence to produce 
the effect of paleness or pallor, which could be associated with shock or fear.

U n i v e r s i t y  O f  B a t h 1 3 3 M a n j u l a  P a t e l



U
n

iv
e

r
sit

y 
Of 

B
ath 

134 
M

a
n

ju
la 

P
a

t
e

l

Plate 7.6: The STORYBOARD Facility

The s t o r y b o a r d  facility can be of invaluable help during the development successive frames of a sequence. Control over the first and last frames to be
of a sequence; consecutive frames are displayed next to each other. This displayed enables sub-sequences to be selected,
facility allows animators to closely examine the changes that occur between
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Figure 7.2: The PLAYBACK Facility

This facility is used to appraise motion characteristics of an animation sequence. Two modes 
of operation, Frame-Rate and Single-Step provide controlled evaluation.
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7.8 Sum m ary and Conclusions

Although it is highly desirable to allow the user to work with realistic shaded images 

throughout FACES, the state of accessible technology does not permit this at present. In 

fact, rendering of each 3D image involves several time-consuming stages before the image 

eventually appears on the screen. With regard to visible surface determination, careful 

choice of sorting and coherence methods are vital since these two processes have important 

implications for the execution efficiency of an algorithm. Advance knowledge about the 

face and the type of primitives to be rendered has enabled considerable computational 

savings to be made in each of the processes of hidden surface removal, illumination and 

shading.

The user is provided with colour control over various parts of the face. This can be 

important in modelling appearance, in terms of race and gender, as well as emotional 

states such as embarrassment, shock and fear.

The s t o r y b o a r d  option is extremely useful as a means of tracing changes that occur 

from one frame to the next, while p l a y b a c k  puts control over motion evaluation in the 

hands of the user. Both s t o r y b o a r d  and p l a y b a c k  are capable of operating on either 

wireframe or shaded sequences. Viewing of wireframe images is useful for debugging 

purposes and for checking the motion before frames are rendered. These types of facilities 

are crucial for the user since timing and movement are the essence of animated work.
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8.1 Introduction

In this chapter we examine the system from the user’s point of view through consider

ation of the facilities which are provided, their appropriateness and practicality. It is 

necessary not only to consider the graphical operations to be performed but also how 

those operations are to be made available to the user.

The goal is to provide flexible tools which give the animator as much control as 

possible, without the burden of having to be concerned with the low-level mechanics of 

computer animation. The animator needs the ability to create expressive, suggestive and 

idiosyncratic sequences. Creativity must be enhanced, not stifled. Furthermore, simplicity 

and ease of use are essential to make the system user friendly.
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For the system to be readily usable, it is necessary in the first instance to provide the 

required functionality for a particular application; this issue is discussed in section 8.2 in 

terms of the amount and levels of control available for modelling, animation and rendering. 

However, provision of the required functionality in itself is rarely adequate, it is also 

necessary to present that functionality to the user in an effective manner. This issue 

involves careful design of the user interface and is further elaborated upon in section 8.3.

8.2 T he U ser’s C onceptual M odel

A user model serves to define concepts which relate to how a system operates in terms 

of: application concepts; the type of objects that can be displayed; and how those objects 

can be manipulated. The model therefore provides a context within which a dialogue can 

be developed between the user and the computer system.

Communication between people is rich, but often sparse, comprising of gestures and 

subtle expressions as well as spoken words. Richness of the interaction comes from a shar

ing of common knowledge, assumptions and environment or world. In order to duplicate 

such efficiency in human-computer interaction, it is necessary to model an application 

based on the user’s conceptual world. The interaction language should be as natural as 

possible, with operations and objects specified in terms normally used within the appli

cation area, so that the user does not need to learn new concepts and in particular those 

that relate to computer science.

The user is concerned with the functionality that the system can provide. With 

respect to FACES this amounts to the range of faces that can be modelled and the range 

of expressions that can be generated. A central issue here is that of control. As in other 

areas of computer animation [22, 185, 197], control in facial animation comprises two 

components. Firstly, what am ount of control should be provided for the user? Secondly, 

at what levels should that control be made available? As the complexity of animation 

models has increased, there has been a trend towards the incorporation of as much a 

priori knowledge into the software as possible, in order to aid the animator. However, the 

consequence is often that the user loses control over the low-level details.

Control can be viewed as Parke suggests in terms of the specification and regulation 

of parameters as a function of time [120]. In our case, we ascribe a general meaning 

to the word ‘parameter’, which is here used to represent characteristic criteria which 

facilitates control over specific aspects of both face modelling and animation. According
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to Parke, control can be divided into two main issues. The first concerns the development 

of ‘universal’ control parameterisations which incorporate conformation and animation 

together with speech, to enable an animator to ‘easily’ specify any individual face with 

speech and expression. Secondly, the development of optimal techniques to implement 

facial animation based on these universal control parameters.

The user is interested in: which parameters are available; whether they are adequate 

and appropriate; and how the parameters are manipulated. Quality of control, in con

junction with range, complexity and whether the parameters are intuitive to use are also 

of concern to the user. Implementors on the other hand need to establish: which param

eters should be provided; what type of user interface to the parameters should be made 

available; and which low-level implementation techniques and algorithms are suitable. In 

FACES, conformation modelling and animation are considered separate processes which 

require different types of control.

8.2.1 Control for M odelling

The face is a popular object of study in many disciplines such as medicine, anthropology, 

portraiture and criminology. Research undertaken in such fields indicates that several 

types of control are required to model arbitrary faces and heads. However, as explained 

in chapter 5, the derivation of parameters to control the form of the head and face are 

tenuous and less well understood than those for facial expression. This leads to problems 

in the development of a ‘universal’ set of parameters for conformation modelling.

In the C o n s t r u c t  and M o d i f y  sub-systems modelling capability is based on the 

anatomy of the head, to provide for naturalistic and intuitive control as well as realistic 

results. The head model itself is a three-layer structure which consists of bone, muscle and 

skin; these axe the three major components of the human head which influence appearance, 

see chapter 2.

The user is provided with several types of control at a variety of levels over the 

three layers. Global control facilitates changes to the overall shape of the head and 

face. Regional modifications cater for changes to relative proportions and local control 

allows alterations to specific bones and features, as explained in chapter 5. Modelling 

functionality in FACES caters for a range of controls and enables subtle variations to be 

made to the predefined head model as shown in Plate 5.1.
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8.2.2 Control for Anim ation

Development of motion is amongst the most time consuming activities of the animation 

process. It is possible for designers and animators to produce quality work using low-level 

techniques, but only as a result of spending hours to define meticulously a path or shape. 

Impressive animation sequences such as those involving the synthetic characters Nestor 

Sextone and Dozo have been produced, but they have required 18 out of every 30 frames 

in a second of animation to be keyframes [92].

More automated methods should allow the production of sophisticated animation with 

less user effort [185]. Techniques for controlling motion can be classified into the three 

general types known as Guiding, Animator and Task levels [134, 197]. At the Guiding 

level, motion is described explicitly at a low-level, by moving individual vertices of a model 

to define a keyframe, for example. Parameter interpolation also falls into this category, 

although it is at a higher level than shape interpolation. The problem at the guiding level 

is that complex movements require the animator to provide large amounts of data which 

can become tedious.

At the Animator level, the user may describe behaviour algorithmically in a program

ming notation. Use of programming languages is a powerful tool; it enables the animator 

to control the motion of any element, or set of elements, at different levels of abstraction. 

However, the user does need some knowledge of computer science, which is a drawback. 

Furthermore, some movements are difficult to specify algorithmically.

The Task level is a higher level of control in which motion is specified in terms of 

events and relationships such as ‘walking’, ‘grasping’ and ‘talking’. High level commands 

are employed to perform predefined or computable movements through the use of low-level 

motor programs [196].

Zeltzer argues for the need to integrate all three levels of control since no single mode 

can provide complete yet economical control [197]. The ideal system in Calvert et. al’s 

opinion is also one which provides varying levels of control [23] through the use of: nat

ural language input; detailed scripts which can be edited by the animator; and low-level 

movement instructions for ‘fine-tuning’. Control is necessary at all levels, with the ability 

to transcend levels of control because good animation often requires extensive fine-tuning 

and ‘tweaking’.
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Animation in FACES

The functionality provided in the A n i m a t e  sub-system enables the user to create the 

two types of animation sequence, known as conformation and facial animation, see chap

ter 6. In both cases the user has flexibility in defining a sequence since the activities that 

comprise a sequence do not need to be specified in a temporal order.

With respect to facial animation, the complexity of animating models which are as 

intricate as the face has meant that work has focused on making such control manageable. 

Use of parameter interpolation minimises the amount of user input required. The user has 

two levels of access to facial movement, through the AUs of FACS and through predefined 

expressions.

A major advantage of using FACS is that naturalistic and accurate facial expressions 

are generated. High level expressions can be considered to correspond to the task or 

goal-direction level of control, which enables the user to work at an ‘emotional’ level. The 

animator can therefore decide which actions are to occur without having to worry about 

the low-level details of how they happen.

Use of both levels of control has been simplified by minimising input parameters. 

Most AUs and all expressions require only one parameter, that of intensity, which is also 

intuitively easy to control since it ranges between zero and one. In a similar manner 

to predefined expressions, AU routines can also be viewed as ‘black-boxes’ with internal 

strategies which need not concern the user. Simulation of the dynamics of muscular con

traction frees the animator from the task of ensuring that the motion generated conforms 

with the laws of nature.

Control is also available over the duration and law of motion for each AU and ex

pression selected. This provides the user with a substantial amount of control over the 

particular parts of the face that need to be activated as well as the exact type of motion 

that the parts need to undergo in order to create expressive sequences, see section 6.6.3.

Furthermore, animation scripts are capable of being edited since they are stored in 

a human readable textual format, with keywords to aid comprehension. An additional 

benefit is that FACS provides generality, so that once animation sequences have been cre

ated, they can be applied to any head model. Thus the control provided for the animation 

of faces is flexible and the facilities in existence ensure that the low-level mechanics of 

computer animation are hidden from the user.
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8.2.3 C ontrol for Rendering

Creation of realistic faces in terms of both appearance and motion is necessary to make 

animation sequences convincing. Colour is an important component in determining ap

pearance, while generation of believable motion requires an amenity that allows the testing 

and appraisal of motion. Control over both of these aspects is provided within the R e n 

d e r  sub-system, which enables interactive control over the colour of various parts of the 

face, as well as near real time playback of sequences, see chapter 7.

8.3 D esign  o f th e U ser Interface

Ultimately, whether a system is used or not will depend on the quality of the user interface 

provided. Development of an effective interface requires a multi-disciplinary approach 

which takes account of all relevant human factors and ergonomics.

Major goals in the design of an interface for an interactive system are to: increase the 

speed of learning and speed of use; reduce the error rate; encourage rapid recall of how 

to use the interface; and increase the attractiveness of the system to potential users [50]. 

A good user interface should make all possible actions clear and guide the user through 

the application. It should be informative without being distracting; it should anticipate 

errors and provide mechanisms for graceful recovery from them. The interface should 

also provide a good visual design which promotes clarity, consistency and an attractive 

appearance.

8.3.1 Interaction

The user interface to FACES integrates the four components of the system to provide a 

uniform manner in which the animator is allowed access to the sub-systems. A limited 

amount of screen space has necessitated careful design of menus and other output in order 

to provide visual effectiveness. Three basic components need to be taken into account, 

they include: a work area; a menu area; and a region in which to output error messages and 

text to prompt the user for input. In FACES, error messages and other textual messages 

are output to a terminal while graphical output and interaction with menus takes place 

on a graphics display, through the use of a puck and tablet.

Use of menus relieves the user of the burden of remembering input sequences and 

options since presentation of a menu invokes the user’s recognition memory rather than
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recall memory [194]. Menus also provide a way of making only valid options available 

at any particular stage and therefore reduce the probability that the user will make a 

mistake. Additionally, it is possible to control both the precise placement and timing of 

appearance of menus.

Two types of menu are in use, they are known as fixed or permanent and pop-up 

or movable menus. In order to maximise the screen region available as a work area, a 

permanent horizontal menu-bar, located at the top of the screen, acts as the gateway 

which allows interactive access to the four sub-systems that comprise FACES:

C o n s t r u c t M o d i f y A n i m a t e R e n d e r E x i t

Whenever a top-level menu item, which represents a sub-system, is selected the relevant 

menu-box is highlighted and a list of the major menu options in that sub-system appears 

underneath the menu-item, see Figure 8.1. This pull-down menu remains on the screen 

until its parent menu-item is de-selected. The horizontal menu-bar and the pull-down 

menus associated with each of the four sub-systems are fixed to encourage the user to 

make a habit of choosing particular selections at a specific location.

The lower levels of the system make liberal use of pop-up menus. These movable 

menus have several advantages. Firstly, they can be placed near the current position of 

the screen cursor so that menu selection involves a minimum amount of hand and eye 

movement. Secondly, such menus can be made to disappear off the screen when they are 

not required, to release valuable screen space. Thirdly, since pop-up menus are transitory, 

it is unnecessary to erase the work area, which allows visual continuity to be maintained.

The top-down approach adopted is reflected in the hierarchical organisation of the 

system, see Appendix E. This approach prevents the user from being saturated with 

irrelevant detail; it is only necessary to be concerned with the particular task at hand. 

However, a hierarchical organisation necessitates the nesting of menus to a depth of several 

levels. The tedium of backtracking to higher levels is resolved by the provision of an 

Exit option in the pop-up menus. This helps a user to escape from a menu hierarchy. 

Furthermore, whenever it is available, the Exit option consistently appears as the first 

menu-item.

Permanent and pop-up menus enable parts of the system to be modeless and other 

parts to be guided [50, 111]. The user is able to choose freely from the menus associated 

with the sub-systems and their major options. Such a choice requires explicit activation, 

while pop-up menus appear automatically at relevant stages, to guide the user. This
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Figure 8.1: Top-level Menus

In order to maximise the screen region available, a permanent horizontal menu-bar, at the 
top of the screen, acts as the gateway which allows access to four sub-systems. Facilities 
within each of the sub-systems are revealed through pull-down menus.

strategy provides considerable flexibililty in the way th a t a user works, while at the same 

time ensuring tha t FACES has all the relevant information in order to  perform a particular 

function.

As far as possible the system checks to ensure th a t preconditions are met for correct 

operation. For example, selection of the A n im a te  option in  p e n c i l -t e s t  is meaningless if 

an expression animation sequence does not yet exist within the system and the user will 

be so informed.

8.3.2 Feedback

Feedback is an im portant component in any interactive system. Each input needs to be 

followed by a clear message to  indicate to  the user tha t input has been received and the 

information is being processed. To develop a continuous interactive dialogue the system
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must inform the user of what is happening at each stage.

With regard to menu selection, a feature in FACES is that a selected option remains 

highlighted until that option is exited. For example, selection of m o t i o n  s p e c i f i c a t i o n  

within the A n i m a t e  sub-system will cause the menu item to remain highlighted through

out the creation of an animation sequence. This is useful feedback as a constant indication 

of the state of the system. When the menu item reverts to the background colour, the 

system is ready for the next option to be selected.

Modelling operations on the head model and the creation of static high-level expres

sions result in ‘visual echoes’ in the form of an up-dated appearance of the model being 

displayed on the screen. During the creation of animation sequences, selections of AUs, 

expressions and associated parameter values are printed out on the user’s terminal. Error 

messages and mistakes, such as invoking the undo operation when an undo-stack is ex

hausted, result in audio feedback as well as textual messages in order to draw the user’s 

attention to the problem.

8.3.3 Experim entation

A system which provides the ability to ‘back up’ and recover from errors permits a user 

to explore confidently the capabilities of the system in the safe knowledge that the effects 

of any mistakes can be erased without damage. Error recovery can be implemented in 

several forms such as undo, abort, cancel and correct [50].

In FACES, the main method of recovery from errors is through an undo facility. This 

allows the effects of previous actions to be cancelled and removes the need for contin

ual confirmation of possibly dangerous actions. The undo operation is equivalent to an 

‘implicit-accept, explicit-reject’ strategy. An interactive system together with such an op

eration is a powerful method of catering for experimentation during both modelling and 

animation.

FACES provides two types of undo operation. Whilst making regional modifications in 

the C o n s t r u c t  and M o d i f y  sub-systems and defining new expressions in the A n i m a t e  

sub-system, the operation is stack-based so that the user may back-track as required. 

During global and local changes to the head and face, only one level of undo is provided. 

In addition, graceful recovery from erroneous menu selections is available through the Exit 

option in pop-up menus.

Experimentation is also of importance during motion generation, particularly since
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this is an area in which FACES provides limited built-in assistance, see chapters 4 and 6. 

It is essential that an animation system allows flexible, easy and rapid testing of mo

tion; preferably in real time. Such facilities are available within the R e n d e r  sub-system 

through the p l a y b a c k  option.

8.3.4 Practicality

Practicality is a very important factor in determining how often a system is eventually 

used. Several additional facilities are provided within the system to make the user’s life a 

little easier. FACES saves modified head structures and animation scripts to default files 

behind the scenes. This is to guard against a user’s memory problems as well as system 

faults!

A stand-alone version of the rendering process enables the user to generate shaded 

frames which comprise a sequence as a batch process separate to the system. The s t o 

r y b o a r d  and p l a y b a c k  facilities also exist as stand-alone utilities which are totally 

separate from FACES. This allows both wireframe and shaded images to be examined 

and animated sequences to be displayed independently of FACES, thereby avoiding the 

computational overheads associated with the system’s start-up.

8.4 Sum m ary and Conclusions

There are two aspects to encouraging the user to make effective use of an interactive 

system. Firstly, it is necessary to provide the correct functionality that a particular 

application requires in a manner which conforms with the user’s conceptual model of that 

application. Secondly, it is necessary to facilitate effective use of the system by designing 

an interface which is simple, intuitive, flexible and which does not obstruct the user. Both 

aspects entail careful consideration of many human factors.

Within FACES functionality is provided for modelling faces, animating and rendering 

them. Control over these operations is provided at several levels. The anatomical basis 

of the head model in conjunction with dynamic simulation of facial motion provides for 

naturalistic and intuitive control in addition to realistic results. Final assessment of the 

system will pertain to: the range of faces that can be modelled; the range of movements 

that can be generated; and the range of colouration that can be used to portray the face. 

Substantial control over each of these factors is available within FACES. Emphasis has 

been placed on making the complex and intricate nature of the face easily controllable.

U n iv e r s it y  O f  B ath 146 M a n ju l a  P atel



M a k in g  FACES F A C E S  F o r  T he  U ser

Implementation of the functionality in FACES has been influenced by a number of 

issues relating to ergonomics. Interaction with the system is made straightforward through 

the use of menus. Feedback is provided rapidly to maintain a continuous dialogue and 

error recovery encourages experimentation.
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9.1 Introduction

FACES consists of many facilities and desirable features that cater for the modelling, 

animation and rendering of the face. In addition, development of the system has revealed 

many new avenues which could be explored. Rudimentary facilities are provided which 

could be developed further in order to accommodate particular applications.

In this chapter we identify the major areas that could benefit from further research 

and development in the context of: the head model; dynamics of the face; modelling, 

animation and rendering facilities; speech synthesis and the user interface.

9.2 H ead M odel

The polygon based three-layer representation of the head and face, which was described 

in chapter 3, has been adequate for experimental purposes. However, there are several 

enhancements which could be beneficial.

9.2.1 Surface Patches

Although use of a polygonal mesh is a popular method for representation of the face, the 

technique remains a crude approximation to the smooth curves of a real face. Furthermore, 

shading algorithms for polygonal meshes smooth the centre of the mesh but leave a faceted 

silhouette edge. This problem becomes more apparent in an animated model than in a 

static image. Consequently, a surface patch representation, such as B-spline surfaces [71, 

171], may be more appropriate even though a surface patch model will make the system 

more compute-intensive and therefore slower.

9.2.2 A dditional Features

At present, the head model consists of only those components and facial features that 

are directly relevant to the research being undertaken. For a more complete system the 

model needs additional elements such as a tongue, teeth, ears and hair. There is also 

a further demand for superficial items such as spectacles, beards, moustaches and scars. 

Such details are important for increasing the range of faces that can be modelled as well 

as improving realism.
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9.2.3 M odelling Deform ation

Modelling controls in the C o n s t r u c t  and M o d i f y  sub-systems, which are described in 

chapter 5, provide considerable flexibility. However, for even more effective conformation 

modelling, the head model could facilitate not only ‘reasonable’ alterations to major parts 

of the face, but also accommodate more outrageous changes. For example, if a user decides 

to enlarge the eyes to take up half the size of the face, the surrounding regions would need 

to ‘give’ to maintain an acceptable and recognisable structure. Such considerations would 

enhance the facilities for creating stylistic or caricature faces.

9.3 M uscle D ynam ics

The muscle models, described in section 4.5.2, simulate the major characteristics of linear, 

sphincter and sheet muscles. There are however, two areas in which the models imple

mented do not provide a precise simulation of actual muscle and skin deformation. The 

first issue is concerned with the modelling of furrows, bulges and wrinkles in the skin. 

These features are caused by forces pressing the skin towards each other, resulting in 

a ‘buckling’ action. Ekman and Friesen have identified that forehead lines and certain 

wrinkles are a significant part of some expressions [43].

The second problem is that only surface deformation is modelled and therefore no 

account is taken of volumetric changes which occur within muscles. Such a consideration 

is necessary to accurately model facial deformation.

Both of these problems have recently been addressed by Waters and Terzopoulos 

through extension of Waters’ original anatomical model into a physically-based model. 

The recently developed model provides a more accurate simulation of both the structure 

and behaviour of skin [159]. Related work has been undertaken by Pieper, with particular 

emphasis on the manner in which skin ‘bulges’ and ‘buckles’ [129].

A less elegant, but also less compute-intensive method for the generation of creases 

in the skin is through the creation of discontinuities at salient facet edges, through dupli

cation of edges so that normal vectors will not be averaged during smooth-shading [116].
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9.4 M odelling Faces

There are several ways in which the modelling facilities in the C o n s t r u c t  and M o d i f y  

sub-systems could be extended to provide the user with further flexibility and control for 

the creation of a wide variety of faces.

Faces are a variation on a theme. In the case of realistic faces, the distinctions need 

to be of degree rather than kind, while for stylistic faces there is more scope for diversity 

in exaggerating particular features. In the absence of a ‘universal’ set of parameters for 

conformation modelling, a large variety of tools of varying nature are necessary to have 

any hope of capturing the diversities of the facial form.

Laser and light beam scans are probably the only reliable methods of acquiring a 

realistic physical likeness of a person. Such techniques need to be integrated into the 

system. Other types of facilities such as interpolation and face composition are more 

appropriate for creating new characters and caricatured faces.

9.4.1 Skull Prototypes

For a comprehensive system it is necessary to incorporate information regarding race, gen

der and age. At present, a scaled down version of the facial skin mesh is used to represent 

the skull, see section 2.4. While this has served a useful purpose for experimentation, it 

would be practical to have prototype skull models which represent race dependent bone 

structures based on the Caucasoid, Negroid and Mongoloid skull types. Furthermore, for 

each of these races there would need to be two models to represent each gender. Finally 

these models could be modified as a function of age.

9.4.2 Growth and A geing

Time alters the countenance of every face. Both the processes of growth and ageing have 

a profound influence over the changes that take place in the structure of the head and 

the appearance of the face. Moreover, it is apparent that faces age at different rates and 

intensities. An automated ageing facility would be extremely useful. However, all the 

studies undertaken to date have been concerned with 2D metrics which are difficult to 

apply in 3D systems. A number of people have investigated the processes of growth and 

ageing.

Thompson was one of the first to realise that geometric transformations could be
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employed to model morphological changes in the head and face. In his classic work, On 

Growth and Form, he used geometric and mathematical transformations [163], but offered 

no explanation for their use, preferring to emphasise the visual perception of the results 

obtained.

In 1959 Subtelny and Rochester [155] concluded that growth of the human head follows 

a somewhat orderly pattern, but is complex, with different parts of the head growing at 

different rates and at different times. Furthermore, all parts of the soft tissue do not 

directly follow the underlying skeletal profile.

Walker and Kowalski developed a method for the analysis, measurement and predic

tion of craniofacial growth by marking 177 anthropometric landmark points on cephalo- 

grams [172]. However, the method required substantial amounts of data before predictions 

could be made regarding the growth pattern of an individual.

Todd et al. [165] discovered that the cardioid strain transformation seems to corre

spond closely to the perceived growth sequence of the head from infancy to adulthood. 

Experiments were performed using a 2D profile of the head and several types of transfor

mation including, the Cardioid Strain: O' = 0; R' = R(1 — kcosO) and Revised Cardioid 

Strain: O' = 0; R' = R(1 + fc(l — cosO)) which provides improved results.

More recently, Bookstein has experimented with mathematical and statistical tech

niques in 2D based on orthogonal grid distortions after Thompson [12]. Results from 

such investigations could form the basis for the development of a computerised method 

for ageing faces.

9.4.3 Face C om position

The three-layer anatomical model, described in chapter 3, has proven to be extremely 

flexible. However, it does have implications for the implementation of a ‘kit-of-parts’ 

method for creating new faces. The process of fitting different parts into a face model 

becomes more complex since muscle and bone need to be taken into account in conjunction 

with the surface skin. Nonetheless, an Identikit type of approach is necessary to overcome 

the problems associated with representing grossly differing features with a fixed number 

of facets and vertices.

Despite the problems involved, a ‘kit-of-parts’ approach holds tremendous potential. 

For example, users could be allowed, not only to incorporate predefined features, but also 

to create their own parts with techniques such as surfaces of revolution [36, 128, 164]
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and Non-Uniform Rational B-Splines (NURBS). NURBS allow the concise and precise 

representation of quadric primitives such as spheres, cylinders and cones, as well as the 

representation of free-form surfaces [128, 164]. Such a facility would enable the construc

tion of both realistic and caricature faces.

A major issue here includes the management of intersecting surfaces [84, 126] and 

how these are blended together to form a 3D composite face. Problems similar to these 

are to be found in Computer Aided Geometric Design (CAGD) [66, 102]. Control over 

the modelling process could be subsequently enhanced through the provision of additional 

parameters for more subtle refinement to the features.

9.4.4 3D  Sculpting

Although conformation modelling is provided at global, regional and local levels, facilities 

for low-level modelling in terms of modifications to individual vertices and facets are cur

rently missing from the system. It would be desirable to have a facility which mimics the 

process of sculpting in 3D, but which operates through changes to facets and vertices [2]. 

One can envisage such a process that makes use of virtual reality and its associated 3D 

interaction devices, such as the data-glove, to allow users to ‘sculpt’ faces from a 3D ovoid, 

for example.

Some types of curves such as B-splines allow changes to be made locally without 

affecting the whole model. This is an extremely useful attribute for interactive modelling. 

Huitric and Nahas show that through the use of the Oslo algorithm [30], B-splines can be 

used to model shapes in the same way that a sculptor models clay or plasticine [105].

An alternative would be to use techniques that are already used in CAD/CAM/CAE 

applications which utilise solid modelling. Through the use of winged-edge datarstructures, 

in conjunction with Euler operators as a facility for amendments, the topological integrity 

of the model could be constantly maintained [101, 190].

There are other methods which could be investigated, such as free-form deforma

tion [144], fuzzy and soft object modelling, for instance. However, the aim should always 

be to keep the computational representation of the model transparent to the user, who 

should only be aware of working with a face in terms of bone, muscle, skin and surface fea

tures. Provision of certain rule-based modifications in the form of heuristics [55, 56, 153] 

would further improve the modelling capability available to the user.
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9.5 A nim ating Faces

The facilities described in chapter 6 provide substantial flexibility and control over the 

generation of facial animation sequences. Nonetheless, the functionality provided in the 

A n i m a t e  sub-system would benefit from the development of several areas, in particular 

those relating to the creation of expressive facial animation.

9.5.1 Skin W rinkles

Temporary skin wrinkling occurs naturally when someone laughs, grimaces or frowns. It is 

an important cue for discrimination between expressions [41]. For example, the forehead 

wrinkles when showing fear and ‘crows-feet’ radiate from the eyes when a person smiles. 

The muscle models implemented do not cater for such effects.

This shortcoming has recently been addressed by Terzopoulos and Waters [177]. They 

have turned to physically-based modelling and consider all three layers of the skin, which 

include the epidermis, dermis and subcutaneous layer. A further consideration would 

be the provision of wrinkles as part of an animated ‘ageing’ process [165] as opposed to 

transitory wrinkles which form a part of expressions.

9.5.2 Sm oother M otion

Good motion control is vital if any subtlety of expression variation is to be achieved. 

Linear interpolation lacks smoothness due to velocity discontinuities which may occur in 

both the path of motion and speed of motion. In general, it is insufficient to use a non

linear law since this provides non-linearity in time only and not in space. The resulting 

movement could be jerky, uneven and unnatural in appearance.

Refinement of motion control in the form of spline interpolation between keyframe 

parameters is desirable to give smoother motion [135, 152]. Approximating splines such as 

B-splines and ^-splines have second order continuity and therefore produce very smooth 

results [79, 80,128], however such techniques do require more time and computation than 

linear interpolation. Nonetheless, use of spline interpolation would make it possible to 

change the nature of the motion merely through modification of the values of bias, tension 

and continuity, to give the animator finer control.
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9.5.3 T im ing for Facial M ovem ent

As explained in chapters 4 and 6, there is a distinct lack of information with regard to the 

timing of facial movement. A further aspect of timing is that facial expressions are not 

generally a series of fixed poses; the face is continually mobile. Even when not involved in 

speech and expression the ebb and flow of facial movements must remain plausible at all 

times. Mere interpolation between static expressions is probably inadequate. The problem 

can be viewed as one analagous to that of co-articulation in speech synthesis [17, 68, 156] 

and requires further attention.

9.5.4 A  Parser for A ction U nits

In the interests of providing a general system with flexibility and scope for experimenta

tion, checks are at present not made on the combinations of AUs that are active simultane

ously. One enhancement that would be of great use to applications which require realistic 

constraints on the behaviour of the face, is an AU parser. This would manage conflict

ing AU activations in an ‘intelligent’ manner by checking the validity of combinations of 

particular AUs.

Another aspect of grouping various muscles to represent particular AUs is that the 

relative contractions of muscles are predetermined within the software. An alternative is 

to develop a scheme whereby muscles and their contractions can be altered. For example, 

through use of a textual file containing such information which can be edited. At run time, 

FACES would then establish the relationships between muscles and AUs by reading in 

the data-file.

9.6 Rendering Faces

Shading operations provided in the R e n d e r  sub-system enable a large range of faces to 

be represented, see Plate 7.2. The facilities provided could, nevertheless, be enhanced 

to provide more visually realistic images of the face. Rendering of realistic faces entails 

paying special attention to skin, hair and eyes.

9.6.1 Illum ination and Shading

To minimise computations, the shading strategy and illumination models used in tradi

tional computer graphics have been employed. For more accurate rendering of the face it
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would be necessary to take account of subtle effects such as motion blur [133] and possibly 

shadows under the eyes.

Illumination methods which model light reflection more accurately already exist, for 

example the Torrance-Sparrow [166], Cook-Torrance [33] and Hall-Greenberg [64] models. 

Such models could be incorporated into FACES for a more realistic image of the face. 

Note however, that the calculations tend to be much more compute intensive.

9.6.2 Skin Tone and Texture

At present Gouraud shading [60] is used to generate realistic faces. However, both 

Gouraud and Phong shading can result in an artifical smoothness which gives the im

pression that the model is made of plastic rather than natural skin. This is particularly 

disconcerting for faces that are meant to be human in nature and even more so for male 

faces.

All physical surfaces have a detailed structure visible to the human eye; this texture 

provides a tremendous amount of information about the nature of a substance. A means 

of conveying the texture of skin is required to communicate whether it is smooth or rough, 

its colour, reflectance and pigmentation.

The most popular method of resolving this problem is through the use of texture- 

mapping [193] which is an effective way to increase perceived detail. This is becoming a 

widely used method of overcoming the viewers expectations of seeing a ‘real’ face [83, 177] 

and would enhance the present facilities which are available for shading.

9.6.3 Colour for Em otion

One aspect of generating realistic faces is that skin colour tends to change depending on 

the emotional state of an individual. Opportunities for shading selected parts of the face 

are currenty limited, only eyebrows, lips, eyes and skin may be varied, placing a restriction 

on the effects that can be achieved.

The existing facility needs to be extended so that the colour of selected portions of 

the face can be varied with time to cater for emotional visual cues such as blushing due 

to embarrassment, or pallor due to fear or anger. A possibility is to use a variation of 

radiosity [31, 32, 73,145] which would cater for colour-bleeding between parts of the face.
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9.6.4 Hair

Rendering of hair is a major research area in its own right [28,105,149] and has therefore 

not been addressed within the FACES project. Aspects include texture, styles and growth 

as well as the shape of eyebrows, eyelashes, beards and moustaches.

Hair is often simulated using texture-mapping, but the result does not tend to be 

realistic. One complication is that highlights on the hair need to change as the head 

moves from one position to another. An alternative is to use particle systems [136] or 

anisotropic reflection models [76] which have proven effective for rendering hair and fur. 

Hair is an important factor in distinguishing between individuals, a solution to the problem 

of rendering realistic hair in all its forms would greatly enhance the system.

9.7 Speech Synthesis

Although speech synthesis has not been a goal of the FACES work to date, it is possible 

that the system could serve as a vehicle for investigation in this area of research. It would 

be necessary to extend the head model in FACES by incorporating a tongue and teeth 

since these components are important for speech analysis and synthesis; in particular for 

determining mouth shapes.

When modelling synthetic characters, a major enhancement would be to permit them 

to talk. At present, traditional cartoon animators take a simplified view and use a phonetic 

break-down of the sound-track as a basis for standard mouth shapes [178]: a, e and i are 

open vowels, requiring the lips and teeth to be apart; m, b and p are consonants produced 

with a closed mouth; u, o and w need the mouth to make an oval shape; and f and v sounds 

require the lower lip to be tucked up under the top set of teeth. This approach is adequate 

and effective for two main reasons. Firstly, the staging of bodily gestures emphasises the 

dialogue, so that attention is drawn away from the face and lips. Secondly, cartoon 

characters are not meant to be realistic and as a result, the observer’s expectations are 

reduced.

Realistic speech animation however, requires more than stylised lip and jaw move

ments. An inability to deal adequately with variation, intonation, co-articulation and 

rythm has often produced unnatural results. However, information on how to control the 

lips, jaw and tongue movements is difficult to acquire. In addition, it is not obvious how 

it should be applied [15, 17, 53, 68, 123, 156].
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Several automated approaches for speech animation have been based on some knowl

edge of the relationship between speech sounds and the configuration of the lips [68,123]. 

In the Human Factory System [96] speech synthesis is modelled in terms of 28 basic 

phonemes each consisting of lip motion and tongue positions.

9.8 U ser Interface

There is ample room for development of the user interface, described in chapter 8, in 

terms of improved interaction techniques, feedback, practicality and methods for exper

imentation. More appropriate input tools could also be provided. For example, many 

parameters are still input using the keyboard. A more friendly system would result if 

user aids such as iconised slide-bars and dials were to be provided on the screen. Icons or 

pictorial representations of actions would improve the interface as well as making it more 

universally understood.

In the longer term, FACES could itself contribute to the improvement of user in

terfaces for interactive systems. One can readily envisage a ‘talking face’ interface that 

would some day make the keyboard and other input devices obsolete.

9.9 Sum m ary and Conclusions

There are many ways in which FACES could be extended. At a fundamental level im

provements which affect the functionality that the system provides could be incorporated. 

Extensions at a more superficial level could influence how particular operations are pre

sented to the user.

The three-layer head model could be improved by the adoption of a surface patch rep

resentation, additional features and modelling capabilities. Simulation of muscle dynamics 

could be enhanced by taking account of volumetric changes in muscle mass. Facilities for 

conformation modelling would benefit from the incorporation of skull prototypes, a facil

ity for ageing, a kit-of-parts and a tool for 3D interactive sculpting. The motion aspects 

of facial movement could be improved through the incorporation of wrinkles in the skin, 

smoother motion through spline interpolation, additional timing information and an AU 

parser. Enhancement of rendering facilities could be effected through more sophisticated 

shading techniques, texture-mapping, an ability to control the colour of selected parts of 

the face with time and extensions to provide for the rendering of hair. Although speech
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synthesis entails specific problems, incorporation of a capability to mimic speech would 

in a sense ‘complete’ the system.

However, as the system currently stands, the areas that need earliest attention are 

those of conformation modelling and timing of facial movement for non-verbal communi

cation. Further development of these aspects would increase the range of faces that can 

be modelled as well as improving the facilities for generating expressive facial animation.
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10.1 Introduction

For years people have been obsessed with reproducing the complex and diverse nature of 

the face. In this thesis has been described a comprehensive computer based system with 

facilities for the creation, animation and rendering of faces.

In this concluding chapter major issues and achievements are summarised. Sec

tion 10.2 comprises a reminder of the major objectives of the research project and the 

philosophy behind the approach adopted.

Major points of interest from an anatomical study of the head and face are discussed 

in section 10.3, while significant characteristics of the representation of the head are 

summarised in section 10.4. Issues pertinent to the dynamics of facial movement axe
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highlighted in section 10.5.

Sections 10.6, 10.7 and 10.8 are concerned with the functionality that is provided 

within FACES for modelling, animation and rendering faces. Salient features relevant to 

the user interface of FACES are addressed in section 10.9, while section 10.10 is concerned 

with the further development of the system. Finally, section 10.11 concludes the thesis 

by drawing together the major achievements of the research project.

10.2 Synthetic Faces

The major benefit of a computer based system for modelling and animating faces, is that 

once the rudimentary facilities have been established, it is possible to adapt the system 

to many different applications. Moreover, other types of media, such as paint on canvas 

and plaster, do not lend themselves to modification and animation of the ‘model’.

Through an examination of the state of contemporary computer graphics and ani

mation regarding the face, three overall objectives were established for the project. The 

first concerned conformation modelling of the head and face which is important for iden

tification. The second involved generation of naturalistic facial movement, largely for 

non-verbal communication. The final goal was to investigate appropriate facilities for the 

user to enable flexible, efficient and intuitive control over the creation and animation of 

the face.

The need for generality has played a major role in the development of the system. It 

has been necessary to integrate functionality for the three major objectives of the project 

into one system, so that a large variety of faces can be created and subsequently animated. 

Use of reality as a frame of reference from which abstractions can be made has proven to 

be efficacious, as has the multi-disciplinary approach adopted in carrying out the research.

10.3 A natom y o f th e H ead and Face

A detailed anatomical study of the human head and face indicated that each of the funda

mental substances of bone, muscle and skin affect both appearance and motion. Despite 

the fact that all human faces have the same general physical structures, there is variability 

in the size, shape and relative distance of the major bones. This together with variations 

in the size and shape of muscular tissue determines the gross shape and proportions of 

the head and face. The skin and surface features hold sway in the recognition process
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because they are visibly significant parts of the face. The thickness and elasticity of skin 

varies over the face. Furthermore, elasticity of skin tends to diminish with age resulting 

in wrinkles.

The study also revealed that the major structures behave in a predefined manner, 

subject to local variations dependent on individual faces. All facial movement results 

from muscular contractions. Elasticity of skin and movement of features such as the eyes 

are also important factors in facial dynamics.

10.4 R epresentation  o f th e Head

Provision of the envisaged modelling and animation facilities necessitated development of 

a three-layer anatomical model of the head and face. Incorporation of bone, muscle, skin 

and surface features provides a basis for the creation of realistic faces and believable facial 

movement.

The three-layer model described in chapter 3, imparts several major advantages to 

the FACES project. The model enables the user to operate at an intuitive and abstract 

level involving use of anatomical descriptions rather than terms used in computer science. 

In addition, such a model is sufficiently flexible to represent and animate stylistic and 

realistic faces, see Plate 5.1.

The head model also acts as a foundation which is capable of accommodating both 

inelastic modifications for changes to the structure of the model and elastic deformations 

for modelling transitory facial movement. Furthermore, it enables unification of both 

types of functionality in one software system. The greatest advantage of the three-layer 

anatomical model is that it has allowed differing strategies to be used for implementing 

facilities for conformation modelling and animation of the face.

10.5 D ynam ics o f th e Head

Previous research has demonstrated that the generation of convincing facial movement is 

a difficult task. Early methods were based on kinematics techniques while more recent 

approaches have employed dynamic analysis to improve the realism of facial motion. The 

type of model used to generate motion influences the type of control that can be provided 

for the user.
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Development of an animation system for faces necessitated that three issues be ad

dressed. The first required a mechanism for distorting the head model and was resolved 

through dynamic simulation of muscle contractions. The second issue concerned the pro

vision of a higher and more meaningful level of control than manipulation of individual 

muscles; this has been solved by the use of FACS. The remaining problem concerned 

time-variance of facial actions and has been overcome by providing detailed and flexible 

control over individual actions.

The benefits of using muscular contractions to distort the face model are several. 

Firstly, muscles are the causes of facial movement which should therefore lead to believ

able facial movement. Secondly, muscles provide generality since all faces have the same 

anatomical muscles. Thirdly, it is only necessary to develop models and parameters for 

the three major types of muscle found in the face.

Many advantages arise from using FACS as the control interface between the user 

and the low-level muscle models. To start with, it is viable to apply AUs to any face 

model; such generality is vital to FACES. Secondly, AUs are described in terms of mus

cular contractions which can be grouped together to make the muscular basis of the face 

transparent to the user. Thirdly, FACS is a modular system, as a result combinations of 

AUs can be used to create composite expressions; a convenient and descriptive form of 

control over the areas of the face to be manipulated.

Relative timing of facial actions is crucial in non-verbal communication. Since hardly 

any time-variance information is available, it was necessary to decompose this problem so 

that adequate facilities could be provided for the user. As a result, for each facial action, 

the user has control over the path of motion, the duration of the motion and the degree or 

intensity of the movement. These facilities provide considerable and subtle control over 

facial movement.

10.6 Creating Faces

Although facial animation has received considerable attention from the research commu

nity, the requirement for a capability to produce a wide range of faces has been neglected 

in comparison. Most researchers use a method of digitisation to acquire data for a face 

model. This entails use of either specialised equipment or tedious and time-consuming 

manual digitisation or photogrammetry. The greatest drawback however, it that the data 

acquired is specific to the particular physical model used in the digitisation process.
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The problem of modelling a variety of faces is analogous to the general problem 

of representation and modification of irregular 3D structures. A lack of definitive data 

to indicate the determinants of facial form appeared to be a major obstruction to the 

development of suitable modelling facilities.

Nevertheless, exploitation of valuable information from a wide variety of disciplines 

has enabled functionality for effective conformation modelling to be provided. The infor

mation derived has not only influenced the facilities provided, but it has also determined 

the structure of the C o n s t r u c t  and M o d i f y  sub-systems. In particular, it was found 

that a means of modifying the structure of the head model at global, regional and local 

levels was required; this is reflected in the configuration of the C o n s t r u c t  and M o d i f y  

parts of FACES. Within the C o n s t r u c t  sub-system, modelling facilities are available to 

cater for changes to the structure of the skull, while within the M o d i f y  sub-system there 

is functionality to effect changes to muscles, skin and surface features.

The user is provided with a predefined model of the head and face for several reasons. 

The first is to provide an initial model which can be modified as desired. Secondly, a 

predefined model overcomes the problem of having to select isolated features; changes can 

be viewed within the context of a face. Thirdly, the head model notionally represents an 

‘average’ head.

Controls for the composition and modification of faces are abstractions of the processes 

used in the reconstruction of realistic faces [141]. Computer reconstruction systems such 

as that of Vanezis et al. [169] are aimed at reconstruction and identification of real people 

rather than the creation of new faces. They therefore require a physical representation 

of the skull which needs to be digitised before prescanned images of people are mapped 

onto the model. Whereas reconstruction of real human faces involves using the skull as 

the starting point, FACES goes back one stage to allow the skeletal basis of the face to 

be altered as a foundation for the creation of completely new faces.

Furthermore, all known automated attempts at realistic reconstructions cater only for 

static images. In FACES any face constructed is capable of being animated. This could 

serve as a useful stimulus in the identification task itself.

10.7 A nim ating Faces

Functionality contained within the A n i m a t e  sub-system caters for the creation, stor

age and retrieval of animation sequences. Two types of sequence may be created; they
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are known as conformation and facial animation sequences. Conformation animation se

quences define the metamorphosis of one head model into another, while facial animation 

sequences are concerned with head and face movement. An animation sequence is first 

defined and later used to generate a set of frames that correspond to that sequence.

Two levels of control are available over facial actions; these are low-level AUs and 

high-level expressions. Both of these are eventually converted into muscle contractions 

which cause distortions on the head model. Creation of a facial animation sequence 

involves: selection from a set of AUs or expressions; specification of the duration of the 

chosen action; input of initial and final values for associated parameters; and a choice 

of law of motion. Such a scheme provides detailed and subtle control over: each area 

of the face required; the speed of its motion; the degree of movement; and the motion 

path of the action. This amount of control is necessary due to a lack of readily available 

time-variance data for facial movement. The approach adopted provides the user with 

considerable control over the relative timing and duration of facial actions to promote 

creation of subtle nuances which contribute so much to expressive animation sequences.

In addition to having access to predefined generic expressions, it is also possible for 

the user to create new expressions by grouping specific AUs together. From the definition 

of a facial animation sequence it is possible to generate the frames that represent the 

sequence. This is achieved through a hybrid method involving kinematics for parameter 

interpolation and dynamics for the simulation of muscular contractions. Individual frames 

for a conformation animation sequence are generated through the kinematic technique of 

shape interpolation.

The two types of animation sequence may be saved to disk files for later use. The 

advantage of using a keyword based textual format is that the technique enables the 

scripts to be readily understood and modified by the user. It is also possible to either 

overwrite an old sequence by reading in a new one, or to merge the old and new sequences 

to form the new current sequence.

Conformation animation sequences and facial animation sequences exist as separate 

entities, so that a facial animation sequence may be applied to either a single head model 

or to a sequence of interpolated head models. Such generality is available because of the 

generic nature of FACS.
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10.8 R endering Faces

Functionality in the R e n d e r  sub-system is concerned with more than mere shading of 

facial images. Operations are provided which cater for colouration of facial features, 

examination of groups of frames corresponding to animation sequences and appraisal of 

motion.

A head model must pass through several time-consuming stages of the rendering 

pipeline before a shaded version of the face can be displayed. Many of the calculations 

involved in the processes are computationally intensive. An overriding concern in the 

implementation of FACES has been execution efficiency since the system was intended 

to be interactive. An advanced knowledge of the contents of images, the structure of the 

head model and the primitives to be rendered has enabled a substantial reduction to be 

made in the amount of computation required. Consequently, each image is rendered and 

displayed within a few seconds to provide rapid visual feedback to the user.

Colour is an important factor for conveying both appearance and emotion. Interactive 

control is therefore available over the colour of skin, hair, eyes and lips; hair only affects 

eyebrows at present. In addition, it is possible to regulate which particular frames are 

to be rendered by specifying the first and last frame numbers. This enables the user to 

experiment with the colouration of the face before a large number of frames are shaded.

An ability to view groups of consecutive frames in a sequence is of tremendous worth 

during the production of an animation sequence. It enables monitoring of changes that 

occur between successive frames of animation. Control is also available over sub-sequences 

to allow long sequences to be inspected.

Timing of facial movement is critical to non-verbal communication. It is therefore 

essential to provide a means of testing and evaluating the motion characteristics of a 

sequence. Once again, for flexibility, it is possible to invoke this facility on sub-sequences 

of a sequence. Two modes of display enable either near real time or single-step display of 

frames, with further controls in the Frame-Rate option for varying the speed of update. 

Both the s t o r y b o a r d  and p l a y b a c k  facilities are capable of operating on wireframe 

images as well as shaded frames. The advantage of this is that it is possible to check the 

sequence and its motion before individual frames are rendered.

U n iv e r s it y  O f  B ath 166 M a n ju l a  Patel



M a k in g  FACES C o n c l u d in g  R em ar k s

10.9 U ser Interface

User interface design can be contemplated at two levels. Firstly, at a fundamental level 

it is necessary to provide facilities which are appropriate to a particular application in 

a manner which complies with the user’s conceptual model of that application. At the 

second level it is necessary to consider how the operations can be presented to the user so 

as to provide effective control. Development of an efficacious user interface encompasses 

consideration of many human factors.

Functionality has been provided for creating different faces and for generating a large 

range of expressions on them. The major issue regarding these operations is the amount 

of control available to the user.

Use of an anatomical head model together with the use of dynamics to simulate move

ment provides for naturalistic and intuitive control as well as realistic results. Modelling 

control is provided over the skull, muscles, skin and surface features. Several types of 

control at varying levels are available. Changes to the broad nature of the head and face 

are possible through global control. Relative proportions can be altered through regional 

modifications, while changes constrained to individual bones and features provide local 

control.

With regard to the animation of faces, it is possible to create two types of sequence, 

namely conformation and facial animation. Controlling the motion of models which are 

as complex as the face is liable to be a tricky and time-consuming process. Emphasis has 

therefore been placed on making control for the user as compliant as possible.

Creation of sequences is simplified since activities do not need to be specified in frame 

or time order. Use of parameter interpolation and minimisation of parameters reduces 

the amount of user input required. Facial movement may be specified using descriptive 

basic actions or through an ‘emotional’ level using predefined expressions. Consequently, 

the muscular basis of the face is hidden from the user. Additonal direction is available 

over the interval of duration, law of motion and degree of movement of each facial action. 

Such detailed capabilities give the user generous control over regions of the face and their 

motion characteristics.

Other factors which are considered to be important to the user interface of FACES 

are interaction, feedback, experimentation and practicality of the system. Interaction 

with FACES is accomplished through fixed and pop-up menus. This strategy has several 

advantages. Menus remove the need for the user to remember input sequences and options,
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and thereby reduce the chance that the user will make a mistake. Use of two types of 

menu allows the system to be configured as partly modeless and partly guided to provide 

flexibility in the manner in which the user works.

Feedback to the user is vital in any interactive system. To help the user to keep track 

of processing, a menu selection remains highlighted until the option is exited. Modelling 

facilities for creating faces and high-level expressions all display a wireframe version of 

the model.

Error recovery is an important component in an interactive system. In FACES this 

is largely achieved through an undo operator and an exit option in pop-up menus. For 

practicality, FACES automatically saves modified head structures and animation scripts 

to default files behind the scenes. In addition, there are utilities separate to the system 

which cater for rendering, story board and playback operations.

10.10 Further D evelopm ent

Functionality for modelling, animating and rendering the face is extensive, but by no 

means exhaustive. There are many ways in which the system could be enhanced and 

developed further. Potential courses of action were outlined in chapter 9 for each of the 

major areas of research that FACES addresses.

Expression and behaviour animation can help in the development of a character’s 

personality. The use of a topology independent model for simulating facial movement 

opens up the possibility to endow human emotions and personalities on inanimate objects 

for character animation.

The natural path of development should lead towards the integration of facial move

ment, speech, hand and body gestures. So that, it may one day be possible to give some 

measure of autonomy to the characters we simulate by defining a repertoire of skills that 

they can carry out. For example, Breen and Wozny describe an approach to choreog

raphy in computer animation, in the form of a message-passing technique [14], in which 

actors possess their own behaviour characteristics. The role of the user will then become 

analagous to that of a director rather than an animator, with a task manager accepting 

high-level task descriptions [196].
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10.11 Sum m ary and Conclusions

FACES is an interactive system aimed at rapid feedback to increase productivity. The 

underlying philosophy is that of a system for rapid prototyping. This approach has the 

potential to save the user a considerable amount of both time and effort.

The system is based on the principle that software should not attempt to replace the 

skills of the animator, but provide a variety of flexible tools to assist in the creation of 

numerous effects. The computer should be a medium which animators can exploit and 

use according to their own individual skills. Any system that helps someone to perform a 

task which would otherwise be beyond their capabilities must surely be beneficial. FACES 

makes it possible for an untrained user to create expressive faces, as well as enhancing the 

talents of already skilled animators.

It has been confirmed that the use of a three-layer model based on the anatomy of the 

face is a flexible and appropriate method of integrating the dual functions of modelling 

and animation. Conformation modelling and facial animation are treated as being sepa

rate and distinct. This separation of functionality allows differing strategies to be used 

for modelling and animation, while using the three-layer representation as a common 

foundation.

FACES is a hybrid system in the sense that a parameterised approach is used for 

conformation modelling while dynamics is used to simulate facial motion. The trend is 

now towards physically based modelling to provide naturalistic, realistic and accurate 

effects which can be incorporated into computer software. This trend is necessary if the 

eventual goal is the creation of convincing synthetic actors.

FACES encapsulates a considerable amount of information regarding facial shape, 

movement and expression. It has tremendous scope; the applications are numerous and 

vary greatly. Man’s attempts to create a likeness of himself has been a starting point 

for many different disciplines such as art, portraiture, sculpture, medicine, robotics and 

recently computer animation. Our virtual worlds would be desolate indeed without char

acters that we can relate to and understand.
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M u sc le O rigin In se r tio n A c tio n
M u sc le s  o f  th e  S ca lp
Occipitofrontalis: 
Occipital parts Superior nuchal line of 

occipital bone
Galea aponeurotica Draws scalp backwards

Frontal parts Galea aponeurotica Skin of eyebrows and root 
of nose

Elevates eyebrows; wrinkles 
forehead; draws scalp forwards

M u sc les  o f  th e  E y e lid s
Orbicularis oculi Frontal, Maxillary and 

Zygomatic bones; Medial 
palpebral ligament

Skin around eye;
Lateral palpebral ligament

Elliptical muscle that occupies 
eyelids, surrounds the 
orbit, and spreads onto the 
temporal region and cheek; 
closes eyelids

Corrugator supercilli Brow ridge of frontal bone Skin of eyebrow Draws eyebrows together; forms 
vertical wrinkles in 
forehead above nose

M u sc le s  o f  th e  N o se
Procerus Lower part of nasal bone Skin between eyebrows Forms horizontal wrinkles across 

bridge of nose
Nasalis Maxilla next to incisor 

and canine teeth
Bridge and side of nose W idens anterior nasal aperture, 

especially in deep inspiration
Depressor septi Maxilla Septum of nose Draws septum down
M u sc les  o f  th e  M o u th
Levator labii superioris Maxilla Upper lip Raises upper lip and turns 

it outward
Zygomaticus Minor Zygomatic bone Upper lip Elevates upper lip
Zygomaticus Major Zygomatic arch Muscle and skin at angle 

of mouth
Draws angle of mouth upward 
and laterally

Levator anguli oris Canine fossa of maxilla Muscles at angle of mouth Raises angle of mouth
Mentalis Incisor fossa of mandible Skin of chin Raises and protrudes lower lip; 

wrinkles skin of chin
Depressor labii inferioris Mandible Skin and muscles of lower lip Draws lower lip downward 

and laterally



M u sc le O rig in In ser tio n A c tio n
Depressor anguli oris Mandible Muscles at angle of mouth Draws angle of mouth downward 

and laterally
Buccinator Mandible and Maxilla in 

region near molars
Muscles at angle of mouth Compresses cheeks against teeth; 

provides a stable lateral wall to 
oral cavity for pressure in speech, 
sucking and mastication

Orbicularis oris Maxilla and muscle fibres 
surrounding mouth

Fibres encircle mouth; some 
attach to skin and muscles 
at angle of mouth

Closes lips, presses lips against 
teeth, protrudes lips, and 
shapes lips in speech

Risorius Fascia of Masseter muscle Skin at angle of mouth Retracts angle of mouth
Levator labii superioris 
alaequae nasi

Frontal process of maxilla Skin of lip and ala of nose Draws upper lip upward and 
widens nostril

Masseter Zygomatic arch Angle of mandible Elevates mandible, closing jaw; 
small effect in lateral movements 
to same side or protrusion

Temporal Temporal fossa Coronoid process and ramus 
of mandible

Elevates mandible, closing jaw; 
draws mandible backwards after 
protrusion assists in lateral 
movements to same side

Lateral pterygoid Greater wing of sphenoid bone 
and lateral pterygoid plate

Tissues of temporomandibular 
joint and neck of mandible

Assists in opening of mouth, 
protrusion of jaw, and lateral 
movements to the opposite side

Medial pterygoid Pterygoid plate, palatine 
bone and maxilla

Ramus and medial surface of 
angle of mandible

Assists elevation and protrusion 
of mandible and lateral 
movements to the opposite side
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M a k in g  FACES Facial  A ctio n  C o ding  S yst em

A ction  U n it FACS N am e M uscu lar Basis
AU1 ♦Inner Brow Raiser Frontalis, Pars Medialis
AU2 ♦Outer Brow Raiser Frontalis, Pars Lateralis
AU4 ♦Brow Lowerer Depressor Glabellae; Depressor Supercilli; Corrugator
AU5 * Upper Lid Raiser Levator Palpebrae Superioris
AU6 ♦Cheek Raiser Orbicularis Oculi, Pars Orbitalis
AU7 ♦Lid Tightener Orbicularis Oculi, Pars Palpebralis
AU8 ♦Lips Toward Each Other Orbicularis Oris
AU9 ♦Nose Wrinkler Levator Labii Superioris, Alaeque Nasi
AU10 * Upper Lip Raiser Levator Labii Superioris, Caput Infraorbitalis
AU11 Nasolabial Furrowr Deepener Zygomatic Minor
AU12 ♦Lip Corner Puller Zygomatic Major
AU13 Sharp Lip Puller Caninus
AU14 Dimpler Buccinnator
AU15 ♦Lip Corner Depressor Triangularis
AU16 * Lower Lip Depressor Depressor Labii
AU17 ♦Chin Raiser Mentalis
AU18 Lip Puckerer Incisivii Labii Superioris; Incisivii Labii Inferioris
AD19 Tongue Out —
AU20 ♦Lip Stretcher Risorius
AU21 Neck Tightener —
AU22 Lip Funneler Orbicularis Oris
AU23 Lip Tightener Orbicularis Oris
AU24 ♦Lip Pressor Orbicularis Oris
AU25 ♦Lips Part Depressor Labii, or Relaxation of Mentalis or 

Orbicularis Oris
AU26 ♦Jaw Drop Masseter; Temporal and Internal Pterygoid Relaxed
AU27 Mouth Stretch Pterygoids; Digastric
AU28 Lip Suck Orbicularis Oris
AD29 Jaw Thrust —
AD30 Jaw Sideways —
AD31 Jaw Clencher —
AD32 Bite —
AD33 Cheek Blow —
AD34 ♦Cheek Puff —
AD35 ♦Cheek Suck —
AD36 Tongue Bulge —
AD37 Lip Wipe —
AU38 Nostril Dilator Nasalis, Pars Alaris
AU39 Nostril Compressor Nasalis, Pars Transversa and Depressor Septi Nasi
AU41 Lid Droop Relaxation of Levator Palpebrae Superioris
AU42 Slit Orbicularis Oculi
AU43 ♦Eyes Closed Relaxation of Levator Palpebrae Superioris
AU44 Squint Orbicularis Oculi, Pars Palpebralis
AU45 Blink Relaxation of Levator Palpebrae and Contraction 

of Orbicularis Oculi, Pars Palpebralis
AU46 Wink Orbicularis Oculi

Table B: S ingle A ction  U n its  in FACS

FACS defines the 58 Action Units [44] listed above. Action Units preceded by an asterisk (♦) 
have been implemented in FACES. Those preceded by a plus-sign (+) are not listed in the 
FACS manual, but have been added into the system to provide greater control.
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M a k i n g  FACES F a c i a l  A c t io n  C o d i n g  S y s t e m

A ction U nit FACS N am e M uscu lar Basis
AD51 *Head Turn Left —
AD52 *Head Turn Right —
AD53 *Head Up —
AD54 *Head Down —
AD55 *Head Tilt Left —
AD56 *Head Tilt Right —
AD57 Head Forward —
AD58 Head Back —
AU61 Eyes Turn Left —
AU62 Eyes Turn Right —
AU63 Eyes Up —
AU64 Eyes Down —
AU65 Walleye —
AU66 Cross-Eye —
AD67 + Focus Eyes —
AD68 -fPupil Dilation —

Table B: Single Action Units in FACS (Continued)
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M a k in g  FACES D a t a  F i le s  F o r  FACES

D efault Settings

The following is an example of a textual data-file from which FACES sets up default 
values.

XMAX 250 /♦ Irame width * /
BCOLOR 0.0 0.0 0.0 /* background colour * /

LT.IITEHSITY 1.0 /* light source intensity * /
LTJDRIGII 0.0 0.0 -1.0 /* light source position * /
LT_C0L0R 1.0 1.0 1.0 /* light source colour * /

MATERIAL skin
COLOR 1.0 1.0 1.0 /* skin tone * /

MATERIAL hair
COLOR 0.29 0.0 0.0 /* hair colour * /

MATERIAL eye.col
COLOR 0.35 0.0 0.0 /* eye colour * /

MATERIAL lip.col
COLOR 1.0 0.4 0.3 /* lip colour * /

PRIMITIVE lace / * object name * /
VAME MESH / * type ol primitive * /
PTS.FILE new.lace.pts /* associated data-lile * /

DISPLAY lace
MADE.OF skin

DISPLAY eyebrows
MADE.OF hair

DISPLAY eyes
MADE.OF eye.col

DISPLAY lips
MADE.OF lip.col
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M a k in g  FACES D ata F iles  F o r  F A C E S

A nim ation  Scripts

Animation sequences are stored in textual files for ease of comprehension and modification. 
An example of a facial animation sequence is followed by an example of a conformation 
animation sequence.

Facial A nim ation Sequence

An example of a facial animation sequence
EXPR 4 surprise
START.FRAME 10
END.FRAME 11
START.TENSION 0.3
END.TEHSION 0.9
LAV accelerate

EXPR 5 fear
START.FRAME 14
END.FRAME 17
STARTJTEHSION 0.2
END.TENSION 0.5
LAV linear

AU 5 Upper.Lid.Raiser
START.FRAME 18
END.FRAME 22
START.TENSION 0.0
END.TEHSION 0.5
SIDE both
LAV linear

EXPR 6 wink
START.FRAME 18
END.FRAME 22
START.TENSION 0.0
END.TEHSION 1.0
LAV linear

EXPR 0 happiness
START.FRAME 23
END.FRAME 27
START.TENSION 0.1
END.TEHSION 1.0
LAV decelerate
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M a k in g  FACES D a t a  F i le s  F o r  FACES

Conformation Animation Sequence

An example of a conformation animation sequence
FROM current
TO mem
START.FRAME 1
END.FRAME 4
LAV accelerate

FROM man
TO woman
START.FRAME 5
END.FRAME 8
LAV linear
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M a k in g  F A C E S V id e o  S e q u e n c e s

A nim ation  Sequences on V ideo

Several animation sequences have been recorded on a VHS video cassette to demonstrate 

the facilities and capability within FACES. The sequences were recorded directly off a 

graphics display device and hence show some jittering due to incompatibilities between 

the device and the video recorder. Nevertheless, the sequences do provide an indication 

of the type of effects that can be achieved using FACES.

S e q u e n c e T i m e L e n g t h R e v e r s e P a u s e

various-effects 40 secs 121 frames no 0.05

various-effects 20 secs 121 frames yes 0.0

m an-to-wom an 20 secs 27 frames no 1.0

man-to-wom an 20 secs 27 frames yes 1.0

blush 15 secs 10 frames no 0.0

pale 10 secs 10 frames no 2.0

wink 10 secs 15 frames no 0.0

vertical eye-roll 10 secs 10 frames no 0.0

horizontal eye-roll 10 secs 10 frames no 0.0

FACES system 8 mins, 10 secs

Table D: Video Sequences

Examples of animation sequences to demonstrate use of the facilities that are available in 
FACES. The sequences include conformation animation as well as facial animation.
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FACES

| CONSTRUCT]

___________ HEAD SKULL-EEGION BONE

Read Save Inierpolate-Heads Skull-Proportions Upper-Skull Middle-Skull Lower-Skull Forehead Upper-Nose Cheeks Jaw

FACE FACE-REGIONI
Face-Proportions Upper-Face Middle-Face Lower-Face Eyebrows Eyeballs Eyelids Lower-Nose Lips Neck

ANIMATE ~1

MOTION -SPECIFICATION SCRIPTS PENCIL-TEST

New-Seqoence Faces Expressions Actioo-Units Read Write Animate Inlerpolate-Faces Frame-Size

Expressions Select Define Save Faces Expressions

| RENDER |

SHADE STORY-BOARD PLAYBACKf____ 1_____,-------------------- ,-----1-----, ,___ I___ ,
Shade-Frames Change-Colour Wire-Frame Shaded Wire-Frame Shaded

Skin Hair Eyes Ups Background Fmmi-Rate ’ SingT^Step

Figure E .l: Structure o f FACES

FACES is an acronym for the Facial Animation, Construction and Editing System . The 
hierarchical organisation of the system is illustrated in this tree diagram which shows the 
four sub-systems that comprise FACES.
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Abstract

The aim of the Facial Animation, Construction and Editing Sys
tem (FACES) is to provide a software simulation of the human face. At
tention has focused on the face as an important means of non-verbal com
munication. The interactive composition and modification of the human 
head and its subsequent animation, have been identified as being of partic
ular interest.

The novelty of FACES is that it integrates the modelling and animation of 
faces using a three-layer anatomical model. FACES consists of four sub
systems: C o n s t r u c t , M o d i f y , A n i m a t e  and R e n d e r . The C o n s t r u c t  
and M o d i f y  sub-systems enable changes to be made to the structure of the 
head, at both global and local levels, enabling specific faces to be created. 
The A n i m a t e  sub-system caters for motion specification and control, so that 
real and exaggerated facial expressions can be animated. The R e n d e r  part 
of the system facilitates the generation of realistic images and their real-time 
playback.

In this paper we consider the system from the user’s point of view, examining 
the facilities which are provided, their appropriateness and practicality.

1 Presented a t  EUROGRAPHICS ’91, Vienna, September 1991



Introduction

Two of the most important functions of the human face are identification and communication. 
Reconstruction of realistic faces from skeletal remains is of immense interest in forensic medicine. 
At the moment facial reconstruction requires extensive effort and very skilled crafting to develop a 
clay model. Consequently, there is only one person in the UK and very few in the world, who have 
the required expertise [17]. Archaeologists currently employ similar techniques which are equally 
time- consuming.

A computer model has an important advantage over a physical one, namely that it can be made to 
move, change expression and even appear to talk!

Recognition and identification of faces is also an important aspect of human psychology, particularly 
in the field of criminology. The manual Identikit and Photofit systems have been found to be 
inadequate [4]. Although the more recent Electronic-Fit or E-Fit is a computerised system [8], 
the images produced are static and 2D. In addition, the facial composites are totally devoid of 
expression. A system for the modelling of faces and expressions could prove to be of great use in 
the identification process —this at present remains untested.

Within the entertainment industry, computer animation needs to facilitate character animation [9, 
10, 16] which is based on the caricaturing of human personalities and emotions. Both aspects 
can be communicated through facial expression and bodily gestures. This type of non-verbal 
communication has been exploited extensively in traditional cartoon animation [18].

Computer animation of synthetic faces has received considerable attention recently, it is considered 
a challenge for two main reasons: the face is an irregular structure, which varies from person to 
person. This problem is compounded by the motion of the face which involves complex interactions 
and deformations of both the features and skin. Also, faces are very familiar to us; we have a well 
developed sense for distinguishing which expressions are natural for a face. Consequently, we are 
likely to notice the smallest deviation from our perception of how a face should appear and behave.

A majority of facial movements result from either speech or the display of emotion; each of these 
is complex. Speech synthesis is a major area of research in its own right [1, 2] and is therefore not 
addressed in this project. We instead concentrate on the face as an important means of non-verbal 
communication.

Besides speech synthesis, two major problems can be identified: the creation and modification of 
faces, and control over facial animation. We present FACES —The Facial Animation, Construc
tion and Editing System as a means of investigating such issues. The hierarchical nature of this 
interactive system is shown in Figure 1. It comprises four sub-systems: C o n s t r u c t , M o d i f y , 

A n i m a t e  and R e n d e r .

The C o n s t r u c t  and M o d i f y  sub-systems enable changes to be made to the structure of the head 
and face at global and local levels to facilitate the creation of specific faces. The A n i m a t e  sub
system caters for motion specification and control, so that sequences of both real and exaggerated 
facial expressions can be created. The R e n d e r  part of the system enables the generation of realistic 
images, their examination and real-time playback.

In this paper we provide an overview of FACES to familiarise the reader with the function of each 
of the sub-systems. Further details and issues relevant to various parts of the system are discussed 
in [15].

1
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Figure 1: FACES: Facial Animation, Construction and Editing System
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Plate 1: Examples of Faces Constructed From One Facial Mesh

1 Constructing Faces

One of the greatest problems with investigating facial animation is th a t of acquiring a 3D computer 
model of the face. Many researchers have used digitised d a ta  [5, 10, 13, 14, 19]. This strategy has 
revealed several drawbacks; first and foremost a physical representation is necessary. Second, the 
digitising process can be extremely tedious and time-consuming. In addition, the data  acquired is 
specific to a particular face.

The C o n s t r u c t  and M o d i f y  parts of FACES attem pt to overcome these difficulties. Despite 
individual variability, it is apparent th a t all faces have a similar general form, suggesting th a t 
generic modelling may be appropriate. Together, the two sub-systems cater for the modelling of 
specific faces such as those illustrated in Plate 1.

A model of the head consists of three layers: the surface skin; a representation of the underlying 
skull; and a muscle layer connecting the bone and skin which is represented using muscle vectors [19]. 
W ithin the C o n s t r u c t  part of the system, the user works with the skull since this determines the 
overall proportions of the head and fane [11, 12]. All changes made to  the skull also influence the 
shape and proportions of the surface skin, the face.

The structure of the C o n s t r u c t  sub-system is shown in Figure 1. It comprises three major sections 
to  enable both global and local modifications to be made: h e a d , s k u l l - r e g i o n  and BONE.

The h e a d  option allows new head data  to be brought in to  FACES, with the aid of the following 
menu-items:

R ead
Save
In terpo la te  H eads 
S ku ll-P roportion s

3



Figure 2: Regional Modifications to the Skull

The R e a d  and S a ve  options provide obvious functions, they restore and save head structures to and 
from disk files. In terp o la te  H eads provides a  m ethod of generating new heads, through interpolation 
between two existing ones. This process has been made flexible by allowing the user a choice of 
interpolation techniques. Each of the interm ediate heads is displayed, and is then available to 
become the “curren t” head in FACES. Selection of the Sku ll-P roportion s  option caters for global 
changes to  the skull; these are performed with the use of a 3D scaling function.

The S K U L L - r e g i o n  option in C o n s t r u c t , is used to  make regional modifications to  the structure 
of the skull, which has been partitioned into three sections: upper-skull, low er-skull and m iddle-  
skull. The sections can each be stretched or compressed in both the x-y and y-z planes, as shown 
in Figure 2.

Further down the hierarchy, selection of the b o n e  option enables amendm ents to be made to 
more specific parts of the skull including: the fron ta l bone (forehead); nasal bone (upper-nose); 
zyg o m a tic  bone (cheeks) and the m andible  (jaw). The bones can be altered with the use of geometric 
deformations. Some of the bones are treated  as pairs while others are single. For paired bones the 
user may specify one of L eft, R ig h t or B oth  and thus gain control over a particular side of the head.

2 M o d ify in g  Faces

While it is the skull th a t determines the overall proportions of the head and face, there are variations 
in the surface characteristics of the face which cannot be accurately determined from the underlying 
bone structure. These include muscle thickness and soft features such as the eyebrows, eyelids, 
eyeballs, lower-nose, lips and neck. Such characteristics vary greatly from individual to individual. 
This is the m ajor reason why faces are so different from each other and therefore recognisable. The 
M o d i f y  sub-system addresses these aspects of face creation; am endm ents made using this part 
of FACES affect only the surface skin and muscle thickness. Modifications can be made at three 
different levels: FACE,  FACE-REGION and FEATURE.
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Within the f a c e  option the Face-Proportions facility allows global amendments to be made to the 
surface skin, again by the use of a 3D scaling function. Subsequent to seeing the effect of changes 
in relative proportions, both in C o n s t r u c t  and M o d i f y , the user may either Keep or Ignore the 
changes.

Selecting the f a c e - r e g i o n  option caters for alterations in the relative proportions of facial skin 
sections, of which there are three: the upper-face, middle-fa.ce and lower-face. The upper-face 
consists of the eyebrows and forehead; the lower-face is the area from the chin to the upper lip; 
and the middle region comprises the area from the upper lip to the eyes. In the context of regional 
modifications to either the skull or the face, a stack-based undo operation is available to facilitate 
experimentation.

The final part of the modelling process is refinement, involving scaling and positioning of the soft 
features of the face. Geometric transformations are used to modify such elements. Some of the 
features are treated as pairs while others are single features. For example eyelids, eyebrows and 
eyeballs are paired features and independent control is available over the left and right sides. During 
f e a t u r e  and b o n e  modifications, the undo facility operates only on the last change made.

3 A nim ating Faces

So far we have only considered the modelling of conformation aspects of a static head. Confor
mation is concerned with the structure of a head model, while animation addresses the motion 
characteristics of the face. The menu-hierarchy associated with the A n i m a t e  sub-system is illus
trated in Figure 1. This part of FACES enables a user to build up an animated sequence of the 
face once it has been modelled using C o n s t r u c t  and M o d i f y . The three major options within 
A n i m a t e  are: m o t i o n  s p e c i f i c a t i o n , s c r i p t s  and p e n c i l - t e s t .

3.1 C reating and Controlling Facial M ovem ent

m o t i o n  s p e c i f i c a t i o n  allows a user to create two types of animated sequence. The first comprises 
a sequence of facial expressions applied to a face and is illustrated in Plate 2. The other is useful 
for special effects such as transforming one character into another as demonstrated in Figure 3, 
courtesy of Caplin & Jeremy [7]. In FACES the two types of sequence are separate and distinct. 
The options available under m o t i o n  s p e c i f i c a t i o n  are:

New-Sequence
Faces
Expressions 
Action Units

The New-Sequence option initialises the system for the specification of a completely new animation 
sequence. It is useful whenever an animator needs to start afresh. Animation sequences are 
persistent, so that they continue to exist until FACES is exited, or New-Sequence is chosen, or 
a script is read in. By default, once a sequence exists in the system any further selections are added 
onto that sequence.
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Plate 2: Facial Expressions Generated Using FACES

Another 
Tory bionde

My image makers 
set to work

And waved their 
magic wand

For this is what 
the voters want

Figure 3: Interpolation Between Two Well-Known Faces
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3.1.1 C onform ation A nim ation

Selection of the Faces option allows a user to build up a sequence of face interpolations. For each 
interpolation the user is prompted for the names of the data-files containing the start and end 
heads; the start and end frames; and the law of interpolation to be used:

linear
accelerate
decelerate
accelerate-decelerate

For either the start or end head it is possible to specify “current” to represent the head being used 
in FACES at a particular time.

3.1.2 Expression Animation

FACES differs from the Human Factory System [10] in that faces and expressions are independent, 
so that expression sequences may be applied to any face or conformation sequence.

To build up an expression sequence over several frames, a user selects from either pre-defined 
Expressions or from the lower-level Action Units (AUs) listed in Figure 4. Selections from these 
two sets may be freely intermixed; they may also overlap in time, so that they are active over the 
same frames. Users have further flexibility because expressions and AUs do not need to be selected 
in time or frame order. Hence new expressions or AUs may be inserted into an existing sequence 
to refine it.

Motion in FACES is based on parameterised keyframe animation. The deformations result from 
the simulation of muscle contractions in the face. The user controls the start and end frames for 
each expression or AU as well as the law of interpolation to be used.

Generation of facial expressions is controlled by a three level hierarchy: muscles, AUs and expres
sions. The lowest level is based on three types of muscle: linear, sphincter and sheet [19].

Developing a motion description technique based on the anatomy of the face requires the user to 
learn the muscular basis. To avoid such inconvenience, the muscular level is hidden from the user, 
who is presented with access to the AUs shown in Figure 4. Each AU describes the contraction of 
one facial muscle or a group of related muscles. They axe derived from the Facial Action Coding 
System{FACS) [3]. FACS is based on a highly detailed analysis of real facial expressions. It results 
from a major body of work and identifies 58 AUs which separately, or in various combinations are 
capable of characterizing any human expression; this comprehensive approach is capable of dealing 
with more than 7000 expressions [6].

In addition to the creation of facial expressions and their control, there are further AUs to facilitate 
controlled motions of the entire head, to allow: turning, tilting and nodding.

Some AUs are capable of operating on either side of the face independently of the other; such 
control makes it possible to create asymmetric effects which axe important for some expressions 
such as winking and various other idiosyncracies.

As well as the facial surface conveying emotion, the eyes are one of the most important features
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Exit Backup
Neutral-Face Inner-Brow- Raiser
Outer-Brow-Raiser Brow-Lowerer
Upper-Lid-Raiser Cheek-Raiser
Lid-Tightener Lips-Towards-Each-Other
Nose-Wrinkler Upper-Lip-Raiser
Lip-Corner-Puller Lip-Corner-Depressor
Lower- Lip- Dep ressor Chin-Raiser
Lip-Stretcherer Lip-Pressor
Lips-Part Jaw-Drop
Cheek-Puff Cheek-Suck
Eyes-Closed Turn-Left
Turn-Right Head-Up
Head-Down Tilt-Left
Tilt-Right Eyes-Track
Pupil-Dilation

Figure 4: Action Units Available in FACES

in creating expressions [18]. They also play a significant role in maintaining attention during 
conversation. We therefore include the capability to track a given focal point in 3D-space, and also 
cater for horizontal and vertical eyeball rolling. In fact, each eyeball may focus on a separate point 
for special effects such as modelling cross-eyes. Blinking and pupil dilation can also be employed 
for further subtlety. Such fine control enables the animator to model both realistic and unrealistic 
effects.

Although AUs allow for great subtlety in creating facial expressions, they were felt to work at too 
low a level for certain purposes. The animator may therefore work at a higher emotional level with 
predefined expressions such as happiness, sadness and disgust. The intensity of any expression or 
AU is controllable to achieve the required degree of emotion.

3.2 C reating and Saving Expressions

As well as being able to create sequences of facial expressions, users may also construct and save 
away static expressions, and thus build up libraries of pre-defined expressions. A user has the 
capability to combine primitive AU operations into higher level emotions corresponding to familiar 
expressions such as anger, fear and surprise. These can then be selected for use in animation 
sequences. The Expression option in fact allows access to several others:

Select Expression 
Define Expression 
Save Expression

Define Expression enables a user to interactively sculpt an expression from the same range of AUs 
as are used in generating animation sequences. A stack-based undo facility is available to enable 
experimentation while creating expressions. When the user saves an expression away, it immediately 
becomes available for selection as part of the pre-defined expression database.
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3.3 Storing and Retrieving Animation Sequences

Having built up an animation sequence it is useful to save it away and read it back into FACES 
at some later time. The s c r ip t s  option in A n im ate  enables a user to do precisely this; it allows 
access to two further options:

Read
Write

Read and Write cater for the retrieval and storage of animation sequences from and to disk files.

Expression scripts are stored in terms of expressions and AUs, exactly the entities that the user 
works with. They indicate the expression or AU; the frames over which it is active; the start and 
end intensities and the law of motion to be used for interpolation. Conformation animation scripts 
comprise: the start and end heads; start and end frames; and the interpolation law to be used for 
inbetweening. The use of a textual recording technique makes the scripts easy to read, understand 
and modify using a standard text editor.

When scripts are read back into FACES, two options are available to the user. If an animation 
sequence is in existence, it may either be overwritten by the new script or alternatively the new 
sequence may be incorporated into the old.

3.4 Preview ing and T esting A nim ated M otion

The testing of motion is an essential aspect of generating sequences of animation. The pop-up 
menu associated with the PENCIL-TEST option allows a choice of the following operations:

Animate 
Interpolate Faces 
Frame-Size

Animate generates a wireframe preview of an expresion animation sequence applied to the current 
face. If a user is unhappy with the face it is possible to return to the C o n st r u c t  and M o d ify  
sub-systems. At present dissatisfaction with the expression sequence means that the user must 
either generate a completely new sequence, or exit FACES and edit the script corresponding to the 
sequence. A means of interactively modifying a sequence within FACES would be of use here.

The Interpolate Faces option caters for special effects such as transforming one character into an
other as demonstrated in Figure 3 [7]. It enables the generation of an animated sequence consisting 
of an interpolation between two faces. At this stage one of two effects is possible: if an animation 
sequence has been defined it is used to generate expressions on the inbetween face; if no animation 
sequence exists an interpolation is performed without facial expressions.

Testing the sm oothness o f the generated motion is accomplished within the pla y ba c k  facility in 
the R en d e r  sub-system , which is described in section 4.

The Frame-Size option allows interactive control over the size of the frames to be generated.
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4 R endering Faces

Once users are happy with the model of the head and its motion, they require a means of generating 
more realistic sequences. The structure of the R e n d e r  sub-system is shown in Figure 1. Using 
the options s h a d e , s t o r y b o a r d  and p l a y b a c k , it allows fully shaded, realistic images of an 
animated face to be generated.

s h a d e  caters for both the shading of the frames and the interactive modification of the colours of 
skin, hair, eyes, lips and the background. At present only the eyebrows are affected by hair colour. 
The user also has control over the first and last frames to be shaded so that experimentation with 
colours is possible before a whole sequence of frames is submitted to be shaded. The shading 
process itself is optimised and generates each colour image using Gouraud shading within a few 
seconds for rapid visual feedback.

The STORYBOARD option allows examination of consecutive frames of a sequence; it is illustrated 
in Plates 1 and 2. This facility can be of invaluable help to an animator during the development 
of a sequence. Again the user controls the first and last frames to be displayed.

p l a y b a c k  caters for the real-time display of short sequences under user control. The user may 
select either Frame-Rate or Single-Step display mode in order to test animated motion. Within 
the Frame-Rate option the user has additional control such as over the first and last frames to be 
displayed, and over the pause rate between frame updates. In Single-Step mode the user has total 
control and frames are updated with the press of a puck button. In both cases frames continue to 
be displayed cyclically until the user decides to exit. STORYBOARD and PLAYBACK are capable of 
operating on either wireframe or shaded sequences.

5 U ser Interface

The user-interface integrates the four components of the system, and provides a uniform manner 
in which the animator is allowed access to them. Since screen space is limited, two types of menu 
are in use: permanent and pop-up. At the top of the screen, a permanent horizontal menu-bar acts 
as the gateway which allows interactive access to the four sub-systems:

C o n s t r u c t  M o d i f y  A n i m a t e  R e n d e r  E x i t

Whenever a top-level menu-item is selected the relevant menu-box is highlighted and a list of the 
major menu options in the sub-system appears underneath it. The list remains on the screen until 
its parent menu-item is re-selected.

Parts of the system are modeless while others are guided. This gives users a considerable amount 
of flexibililty in the way that they work, while at the same time ensuring that FACES has all the 
relevant information in order to perform a particular task. As far as possible the system checks 
to ensure that preconditions are met for correct operation. For example, selection of the Animate 
option in p e n c i l - t e s t  is meaningless if an expression animation sequence does not yet exist within 
the system.

The hierarchical organisation of the system necessitates the nesting of menus to a depth of several 
levels. The tedium of backtracking to higher levels has been overcome by the provision of an Exit 
option in pop-up menus; it helps a user to escape from a menu hierarchy. Furthermore, whenever
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it is available the Exit option consistently appears as the first menu-item.

6 D iscussion  and Conclusions

FACES is an interactive system aimed at rapid feedback to increase productivity. The underlying 
philosophy is that of a system for rapid prototyping. This approach has the potential to save the 
user a considerable amount of both time and effort.

Many subtle and flexible controls exist over the modelling and animation aspects of the face. In 
addition, the use of interactive modifications together with an undo facility is a powerful method 
of catering for experimentation.

Nevertheless, the system does need to be developed further in order to facilitate realistic applica
tions. The major area that requires additional attention is the development of a cohesive heteroge
neous structure for the bone, muscle and skin. This structure will allow the thickness of individual 
muscles to be varied and volume changes in muscle mass to be accounted for during animation. 
We are also investigating the potential of a 3D Identikit type of approach for the construction of 
new faces.

The head model currently in use has been adequate for experimental purposes. For more usable 
applications, the model needs features such as tongue, teeth, ears and hair. There is a further 
requirement for superficial elements such as spectacles, beards, moustaches and scars.

In addition, some problems with maintaining the consistency of the mesh model have become 
apparent. One possible resolution is to convert to a patch model based on either Bezier or B-spline 
curves; this is however likely to make the system compute-intensive and therefore slower.

We provide limited opportunities for shading selected parts of the face: only eyebrows, lips, eyes 
and skin may be varied. This facility needs to be extended so that the colour of selected portions of 
the face can be changed to cater for emotional visual cues such as blushing due to embarrassment, 
or pallor due to fear or anger. At present the most realistic method of representing skin is by 
texture-mapping [20], which is currently lacking from the system.

There is also room for development of the user interface in providing more appropriate valuators 
and names for particular operations. For example b o n e  and f e a t u r e  modifications could be more 
aptly named.

In FACES conformation and animation are treated as separate and distinct. Composition and 
modification of faces is addressed by the C o n s t r u c t  and M o d i f y  sub-systems, while the motion 
aspects are dealt with in the A n i m a t e  sub-system. This separation of functionality allows differing 
strategies to be used for modelling and animation within a single system.

FACES encapsulates a considerable amount of information regarding facial shape, movement and 
expression. The system has tremendous scope; the applications are numerous and vary greatly. 
The implications of such a system are profound and liable to cause a few eyebrows to be raised!
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