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The mechanics and energy economy o f animal jumping and landing applied to autonomous robots

Summary

Irregular terrain is difficult for small robots to traverse, so the research in this thesis 

endeavours to develop a jumping robot as a solution to this problem. Gliding is 

proposed as a means of reducing the landing impact forces, and potentially extending 

the range of each jump. The biomechanics of jumping and gliding are introduced from 

fundamental principles, before various examples from nature are described and 

contrasted. Flying squirrels glide quickly between trees by stretching out their patagia, 

membranous skin folds spreading between the wrists and ankles. Several hypotheses 

exist to explain the evolution of gliding flight in these animals. These are investigated 

by filming northern flying squirrels leaping across a range of short distances while 

measuring the corresponding take-off and landing forces. Evidence is provided that the 

evolution of controlled flight was most likely stimulated by the need to reduce landing 

impact forces. A model is proposed for the skin structure of flying squirrel patagia, 

which is likely to be specialised from normal mammalian skin to facilitate gliding flight 

and the high speed transition to other arboreal locomotion. This predicts that the skin 

would be thin and its stiffness highest along the length of the animal, with the behaviour 

more elastic perpendicularly. Uni-axial tensile test results from a single southern flying 

squirrel are consistent with the hypotheses. A biomimetic jumping and gliding robot, 

Glumper, is described which relies on a power-amplifying energy storage and catch- 

release mechanism. A novel, bi-stable dog clutch device was developed that enables the 

robot to launch itself automatically using an on-board power supply. The robot has self

deploying gliding membranes and allowance is made in the design for the adjustment of 

pitch to improve landing control. After testing the performance of the robot, 

consideration is given to its power requirement for full autonomy.

Page 2 of 228



Table of Contents

Table of Contents

SUMMARY______________________________________  2

TABLE OF CONTENTS..................................................................  3

ACKNOWLEDGEMENTS.............................................................   7

1 INTRODUCTION..................................................................................................................................... 9

1.1 W hy a jumping robot? ......................................................................................................................... 9

1.2 B iomimetics........................................................................................................................................... 11

1.3 Example Applications....................................................................................................................... 13

1.3.1 Search and Rescue..................................................................................................................... 14

1.3.2 Low cost, high volume applications..........................................................................................15

1.3.3 Design for space .........................................................................................................................16

1.3.3.1 Existing space robots.................................................................................................................16

1.4 Thesis o u tlin e ......................................................................................................................................17

1.5 References -  Chapter 1 ....................................................................................................................19

2 LITERATURE REVIEW ............................................................................................................21

2.1 Ju m pin g ...................................................................................................................................................21

2.1.1 Biomechanics o f jumping............................   21

2.1.2 Take-off Techniques....................................................................................................................26

2.1.3 Biological approaches to jumping............................................................................................26

2.1.3.1 Pause and leap............................................................................................................................27

2.1.3.1.1 Catapult jumping mechanisms............................................................................................. 28

2.1.3.1.2 Bi-stable jumping mechanisms............................................................................................ 33

2.1.3.1.3 Flip jumping mechanisms.................................................................................................... 34

2.1.3.1.4 Direct actuation jumping mechanisms................................................................................. 35

2.1.3.1.5 Power amplification mechanisms not used for jumping......................................................39

2.1.3.2 Hopping.....................................................................................................................................40

2.2 Gl id in g ................................................................................................................................................... 43

2.2.1 Principles o f Gliding Flight...................................................................................................... 43

2.2.2 Gliding in nature.........................................................................................................................47

2.2.2.1 Birds...........................................................................................................................................47

2.2.2.2 Fish............................................................................................................................................ 48

2.2.2.3 Amphibians................................................................................................................................50

2.2.2.4 Reptiles...................................................................................................................................... 51

2.2.2.5 Mammals...................................................................................................................................53

2.2.3 Low Reynolds Number, Low Aspect Ratio Aerodynamics..................................................... 54

2.2.3.1 Rigid vs. Flexible Wings............................................................................................................56

2.3 Ro b o ts .................................................................................................................................................... 56

Page 3 of 228



The mechanics and energy economy o f animal jumping and landing applied to autonomous robots

2.3.1 Overview o f Exploratory Robots............................................................................................... 56

2.3.2 Jumping Robots...........................................................................................................................59

2.3.2.1 ‘Pause and Leap’ robots.............................................................................................................59

2.3.2.1.1 JPL Hopper........................................................................................................................... 59

2.3.2.1.2 Monopod............................................................................................................................... 61

2.3.2.1.3 Jumping mini-Whegs............................................................................................................ 61

2.3.2.1.4 Scout robot............................................................................................................................ 62

2.3.2.1.5 Deformable jumping robot................................................................................................   63

2.3.2.1.6 Sandia hopper....................................................................................................................... 64

2.3.2.1.7 Airhopper.............................................................................................................................. 65

2.3.2.1.8 Pendulum.............................................................................................................................. 66

2.3.2.2 Hopping robots...........................................................................................................................67

2.3.3 Micro Air Vehicles...................................................................................................................... 70

2.3.4 Planetary exploration rovers.....................................................................................................73

2.4 References -  Chapter 2 .............................................................................................................. 74

3 TAKE-OFF AND LANDING FORCES AND THE EVOLUTION OF CONTROLLED 

GLIDING IN NORTHERN FLYING SQUIRRELS (GLAUCOMYS SABRINUS)............................ 81

3.1 INTRODUCTION TO STUDY...................................................................................................... 81

3.2 MATERIALS AND METHODS....................................................................................................85

3.2.1 Animals........................................................................................................................................ 85

3.2.2 Apparatus.....................................................................................................................................85

3.2.3 Experimental Design...................................................................................................................87

3.2.4 Calibration................................................................................................................................... 88

3.2.5 Results processing....................................................................................................................... 88

3.2.6 Jumps observed, General Mixed Model, and other statistics................................................. 91

3.3 RESULTS......................................................................................................................................... 92

3.4 DISCUSSION...................................................................................................................................97

3.4.1 Take-off.........................................................................................................................................98

3.4.2 Gliding performance................................................................................................................... 99

3.4.3 Landing...................................................................................................................................... 101

3.4.4 Evolution o f gliding...................................................................................................................104

3.5 CONCLUSIONS AND IMPLICATIONS TO JUMPING ROBOT.......................................... 107

3.6 References -  Chapter 3 .............................................................................................................109

4 FUNCTIONAL ATTRIBUTES OF FLYING SQUIRREL SKIN -  A PRELIMINARY 

STUDY............................................................................................................................................................... I l l

4.1 Introduction................................................................................................................................ I l l

4.1.1 Desirable material properties for flying squirrel patagia..................................................... 112

4.1.2 Physical characteristics o f mammalian skin.......................................................................... 116

4.2 Modelling the structure of flying squirrel skin.............................................................119

4.3 Experimentation..........................................................................................................................121

Page 4 of 228



Table of Contents

4.3.1 Introduction to mechanical testing o f  skin ................................................................................ 121

4.3.2 Procedure........................................................................................................................................122

4.3.2.1 Animals.................................................................................................................................... 122

4.3.2.2 Uniaxial Tensile Tests.............................................................................................................. 123

4.3.2.3 Cutting test samples.................................................................................................................124

4.3.2.4 Dehydration prevention............................................................................................................126

4.3.2.5 Data Analysis........................................................................................................................... 126

4.3.3 Results................................................................................     127

4.3.3.1 Skinthickness.......................................................................................................................... 127

4.3.3.2 Mechanical properties.......................................      127

4.3.4 Discussion.......................................................................................................................................131

4.4 T ips for future researchers on this su b jec t ..........................................................................133

4.5 Conclusions and implications for the jumping robot.........................................................135

4.6 References -  Chapter 4 ..................................................................................................................136

5 ROBOT DESIGN................................................................................................................................... 138

5.1 Design Requirements Specification ...........................................................................................138

5.2 Design Detail -  Glum per ................................................................................................................142

5.2.1 Winding mechanism.......................................................................................................................150

5.2.2 Head/foot pieces............................................................................................................................. 155

5.2.3 Gliding membranes........................................................................................................................156

5.2.4 Design fo r  Assembly..................................................................................................................... 157

5.3 Robot performance..........................................................................................................................159

5.3.1 Jumping performance...................................................................................................................159

5.3.2 Efficiency o f  the jumping energy storage mechanism..............................................................161

5.3.3 Effect o f  mass reduction................................................................................................................163

5.3.4 Gliding performance......................................................................................................................165

5.4 Power requirem ent..........................................................................................................................169

5.4.1 Flexible solar cells.........................................................................................................................170

5.4.2 Solar power experiments...............................................................................................................172

5.5 D iscussion  o f  p e r fo rm a n c e ........................................................................................................... 178

5.5.1 Jump height - comparison with nature....................................................................................... 179

5.5.2 Jump height -  comparison with previous jumping robots............................   181

5.6 References -  Chapter 5 .................................................................................................................. 183

6 FUTURE W ORK................................................................................................................................... 184

6.1 Further study recommended on flying sq u irrels ...............................................................184

6.2 Further development work required on Glum per ...............................................................184

6.3 Design issues....................................................................................................................................... 186

6.4 Potential for weight reduction ................................................................................................. 188

6.5 Materials selection for space d esig n ...................................................................................... 193

6.6 Control Sy stem .................................................................................................................................194

Page 5 of 228



The mechanics and energy economy o f animal jumping and landing applied to autonomous robots

6.7 References -  Chapter 6 .................................................................................................................. 197

7 CONCLUSIONS.................................................................................................................................... 198

7.1 Conclusions on experimental methods.................................................................................... 198

7.2 Conclusions on  the robot..............................................................................................................199

APPENDIX 1 -  HIGH SPEED CAMERA FILMING OF JUMPING INSECTS.............................. 207

Locusts ............................................................................................................................................................... 207

Leafhoppers...................................................................................................................................................... 208

References -  Appen d k  1 ...............................................................................................................................209

APPENDIX 2 -  PREVIOUS PROTOTYPE JUMPING ROBOTS....................................................... 210

Jumping devices storing energy in elastom ers................................................................................... 210

JHB PR O T O T Y PE ..................................................................................................................................................212

Construction detail.................................................................................................................................. 213

Jumping performance..............................................................................................................................214

Tri-legged torsion spring ju m pe r ............................................................................................................. 217

Performance o f torsion spring jumper M k l..........................................................................................218

Glumper - M k I .................................................................................................................................................220

Jumping performance..............................................................................................................................222

References -  Appendix 3 ...............................................................................................................................224

APPENDIX 3 -  ADDITIONAL PERFORMANCE DATA..................................................................... 225

APPENDIX 4 -  PUBLISHED ARTICLES................................................................................................. 228

Page 6 of 228



Acknowledgements

Acknowledgements

Firstly I would like to thank my two supervisors Dr. Adrian Bowyer and Dr. William 
Megill for everything they have done to help me produce this Ph.D thesis. The 
combination of these two contrasting personalities has provided an ideal balance, which 
has been crucial to my personal development as a researcher working at the boundary 
between the giant disciplines of Engineering and Biology. In particular I would like to 
thank Adrian for all the time he has given me over the past three and a half years. I shall 
miss our regular meetings, which have stimulated countless ideas and encouragement 
thanks to his seemingly infinite wisdom on all things, combined with a friendly, humble 
character and a great sense of humour. Likewise, it has been a privilege to work with 
William, a man who always knows the answer and for whom nothing is impossible. His 
help in setting up an international collaboration provided a launch pad for the direction 
of this research, and the quality of the final thesis owes much to many useful, 
productive discussions, and at times, thorough but constructive criticism.

I should like to warmly thank John Scheibe for all his time, help and hospitality during 
my stay at SouthEast Missouri State University (USA). The experimental work 
described in Chapter 3 of this thesis was carried out together, and he was very generous 
with his time and expertise during the building of equipment and throughout this study 
on flying squirrels. He takes great care of his colony, and his excellent knowledge of 
these animals and the advice he has given me throughout my research has been 
invaluable.

I would also like to thank the Royal Academy of Engineering, UK, whose travel grant 
made this particular collaborative project possible. Thanks also to Stephen Coombes in 
the Instrumentation Section of the Mechanical Engineering Department at the 
University of Bath, for his time and expertise, which were so important during the 
design and construction of the instrumented take-off branch used for this study. I would 
like to acknowledge Bijan Pashay, in the Department of Physics at SouthEast Missouri 
State University, who gave up many late hours on several days to help diagnose and fix 
some serious PCB faults that arose during the course of the experimentation in 
Missouri. I am additionally indebted to Nicole Augustin, in the Department of Maths at 
the University of Bath, for advising me on the selection and presentation of statistics in 
the resulting paper (published in the Journal of Experimental Biology). Additionally I 
would like to acknowledge Christine Bowyer for giving up an afternoon to cut and sew 
the robot’s wings for me.

It has been a pleasure to work in the Centre for Biomimetic and Natural Technologies at 
the University of Bath. I have been fortunate to have several productive yet informal 
discussions with the leader of this group, and one of the Godfathers of research in 
biomimetics, Professor Julian Vincent. I would also like to thank Dr Francisco Rojo 
Perez, formerly a member of our research group and now at the Technical University of 
Madrid, for all the technical advice he gave me prior to and during the experiments of 
flying squirrel skin detailed in Chapter 4 of this thesis. Similarly, a big thank you must

Page 7 of 228



The mechanics and energy economy o f animal jumping and landing applied to autonomous robots

go to Dr Richard Bomphrey, a post-doctoral researcher on this project for the first eight 
months. He made many valuable contributions towards the high-speed filming of 
leafhoppers, prototyping of the jumping mechanisms, and associated materials 
experimentation during the early stages of this research. The high-speed camera 
equipment used to record leafhoppers jumping was borrowed from the EPSRC loan 
pool. It was also the EPSRC who provided a three year grant to fund this Ph.D, for 
which I am most grateful.

The Department of Mechanical Engineering at Bath is very well organised, and is full of 
very helpful and sociable people, which has greatly facilitated the completion of my 
Ph.D here. I have benefited enormously from sharing lab-space and an office with many 
fine colleagues. Our lunch-time and tea-time discussions, although usually reserved for 
more important things such as the differentiation of midgets from dwarfs, have also 
often challenged my preconceptions and introduced new ideas to my research work. 
Collectively known as the knuckle-runners, I should like to thank all my fellow 
researchers who have helped to provide such a fun and inspiring work environment. In 
particular I would like to name the following people for their friendship and occasional 
advice: Rhodri Armour, Dr. David T Branson III, Keri Collins, Dr. Rorie Edmunds, Dr. 
Thomas Hesselberg, Veronika Kapsali, Matt Liston, Paul Riggs, Dr. Ken Savage, Ed 
Sells, Dave Stewart and Jen Wladichuk. Last but certainly not least, I would like to 
devote my warmest thanks to Marina, and my family, for all their ideas, discussion, and 
of course, love and support which have helped to make these last years some of the 
happiest of my life.

Page 8 of 228



Introduction

Chapter 1

Introduction

The aim of the research described here is to design, make and test a small, autonomous 

and inexpensive jumping robot for traversing irregular terrain, using a low-power 

locally-available energy source.

1.1 Why a jumping robot?

As the size of a moving object decreases, it becomes more likely to meet an obstacle of 

similar or larger size than itself, and therefore it will encounter rough terrain more often. 

This is called the “Size-Grain Hypothesis” (Kaspari and Weiser 1999), which is 

defined as an “increase in environmental rugosity with decreasing body size”. So a 

small robot, whether it walks, rolls or jumps will need the ability to cover rough terrain 

more frequently than a larger robot.

The majority of robot locomotion utilises wheels, which are very efficient at covering 

smooth terrain, but such vehicles are unable to pass obstacles of greater than half their 

wheel diameter. One exception is Shrimp, a space rover designed for improved mobility

Fig. 1 -  Graphical representation of the size-grain hypothesis
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which has its wheels mounted on high, articulating bogeys, enabling it to climb 

obstacles of up to twice its wheel diameter (Estier, Crausaz et al. 2000). Wheeled robots 

tend to have good manoeuvrability and could skirt around some obstacles, but others, 

such as a flight of stairs, walls or perimeter fences, would still halt progress completely. 

Walking robots are better able to cope with rough terrain, but generally rely on more 

complex control systems. The multiple degrees of freedom required for each leg 

demand several actuators to control them, meaning that the power and computational 

requirements are likely to be large. There are some novel ‘walking’ robots with very 

few actuators such as Rhex (Altendorfer, Moore et al. 2001) and Whegs™ (Quinn, Offi 

et al. 2002). The latter example has three legs rotating around the same axle, with equal 

angular spacing between them (120°). This design combines the simplicity of wheels 

with the adaptability of legs, particularly since each wheel is independently driven 

allowing them to align with each other when climbing. However, although legged 

vehicles have a surprising ability to clamber over rough terrain, they are still unlikely to 

get past obstacles of higher than double their leg length.

Perhaps the most effective way of travelling over rough terrain would be to fly over it. 

Micro-air vehicles are not hindered by obstacles on the ground, but are energetically 

expensive, resulting in limited power-source life (or power requirements that cannot be 

met continuously from the surroundings), and are hence unsuitable for some 

applications. The periodic nature of jumping allows time for recharging energy from the 

surroundings, making it a more sensible approach to designing a fully-autonomous 

rough-terrain robot. The inspiration for jumping robots comes from the fact that many 

natural organisms use jumping to traverse rough terrain. A jumping robot will be able to 

store energy recovered from the environment by compressing an elastic mechanism that 

can quickly release all the energy in one jump. This elastic energy storage is ideal for 

autonomous applications, because the amount of rest time is not critical and hence low 

power but locally available energy sources can be exploited, such as solar cells for 

example. The principle of solving design problems by applying ideas observed in nature 

is generally referred to as biomimetics.
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7.2 Biomimetics

Looking at natural systems for inspiration is something that thinkers have been doing 

throughout the ages. In fact, it would be very difficult for anyone not to be influenced 

by what they see and know. Perhaps the earliest known record of this comes from the 

Chinese, who tried to make an artificial silk more than 3000 years ago (Vincent, 

Bogatyreva et al. 2006). In more recent times, the concept of copying from nature has 

become known by several names, such as biomimetics, bionics, biomimesis, 

biomimicry, biognosis and biologically-inspired design. At present there is no standard 

framework for biomimetic design, meaning that in order to solve a technical problem, 

researchers generally have to investigate any biological systems that seem appropriate 

in the hope of finding a good solution that can be translated to an engineering prototype. 

As such, biomimetics tends to happen in reverse, when engineers try to replicate some 

interesting natural phenomenon only after its functional principles have been discovered 

by a biologist. This may be about to change though, as researchers at the University of 

Bath are working on an ambitious project to catalogue all known biological approaches 

for any given required design problem (Vincent, Bogatyreva et al. 2006).

Sceptics of the biomimetics design methodology often cite the wheel as conclusive 

proof that nature doesn’t always find the best solution to a problem, in this case 

transport. Their argument is pretty convincing: that no biological systems have axles or 

wheels. However, this is not quite true. The bacterial flagellum is a rigid helical 

structure, rotated from its base where it connects to the bacterium's body, driving the 

cell through liquid media as if it was a propeller. Although a controversial topic, there is 

apparently no doubt that the flagellum is rotated as a whole, and therefore it can be 

compared to the wheel and axle (Silverma.M and Simon 1974; LaBarbera 1983). 

However, clearly this would not have been apparent to early man, but it is conceivable 

that a rolling organism might have triggered the inspiration for the first wheel. 

Examples of these include the salamander, Hydromantes platycephalus, the jumping 

slug, Hemphillia dromedarius and the desert spider, Carparachne aureoflava. All 

choose to roll downhill for rapid escape in response to threat (Henschel 1990; Garcia- 

Paris and Deban 1995; Ovaska, Chichester et al. 2002). Much harder to miss might have 

been the Russian thistle, Solsala tragus, more commonly known as tumble weed. This

Page 11 of 228



The mechanics and energy economy o f animal jumping and landing applied to autonomous robots

bush becomes more spherical as it ages, and dries and detaches from its root after death, 

allowing it to be carried long distances by even light winds, scattering its seeds as it 

rolls (Carnes 2003).

The key to a successful biomimetic design is realising at what level to imitate the 

natural system. Little would be gained by producing exact copies of successful 

organisms, but rather, by understanding the underlying mechanisms, the designer can 

optimise geometries and materials to match their application requirements. The main 

requirements set out for this research project were to investigate how and why jumping 

is used in nature, including considering what strategies are used to maximise range or to 

minimise landing impact forces or both. Above a certain size, being able to safely land a 

jump becomes as important as the take-off. It will be shown in Appendix 1 (page 207) 

that locusts occasionally land on their heads with no obvious ill-effects, whereas it is 

common knowledge that a cat will always attempt to orientate itself such that it can 

spread its impact force over all four extended limbs and its arched back (McDonald 

1960). At least two deliberate strategies have evolved in order to best prepare animals 

larger than insects for landing. Some, such as kangaroos and rabbits, reorient 

themselves while in the air, enabling some of their landing energy to be stored in elastic 

elements of their legs and feet upon contact with the ground. This additional energy 

then contributes directly towards the following jump. Conversely, flying squirrels, sugar 

gliders and other gliding species (it will be shown in this thesis) glide to reduce their 

resultant landing forces. Therefore, assuming that the atmosphere is sufficient, or the 

intended flight speed high enough, then gliding might be considered as a means to 

control the jumping robot whilst it is off the ground.

Gliding increases the range of a jump, and also allows for the active selection of a 

landing site, in addition to more controlled impact forces on landing. An alternative 

method of increasing the distance travelled in a jump would have been to design a 

spherical robot, such that it would bounce or roll further when it hits the ground. Rolling 

in nature was introduced above (such as the tumbleweed example described) but there 

are no clear examples of organisms which actively jump into a roll. The possible 

exception is the jumping slug, Hemphillia dromedarius. Although not spherical, these 

slugs employ fast twitch muscles to help them quickly roll away when threatened, 

occasionally leaving the substrate in the process (Ovaska, Chichester et a l 2002).
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However, the decision was taken at the outset of this research project that the ‘jumping 

and gliding’ strategy would be adopted, due to its relative prominence over ‘jumping 

and rolling’ in nature.

In the following literature review chapter, the principles of jumping and gliding will be 

introduced, and example animals reviewed for each. This knowledge will then be used 

to develop a design requirements specification list to focus the development of the 

robot. In an attempt to maximise the versatility of the final design, no single application 

has been specified for the robot, but the additional requirements associated with space 

exploration will deliberately be considered owing to the obvious suitability for this task. 

The following section will introduce the potential applications for an autonomous robot 

capable of traversing rough terrain.

7.3 Example Applications

A remotely operating device capable of traversing irregular or unknown substrates 

should have several potential applications, but becomes indispensable in scenarios 

where it is not possible to send a person, such as exploring distant locations in space, or 

searching places which could be hazardous to health. In this section, some potential 

applications will be introduced, although no military possibilities are considered or 

described because of the author’s personal convictions. Although beyond the scope of 

this thesis, it is expected that the successful development of a jumping robot through 

this research project will ultimately contribute towards the introduction of jumping as 

an alternative gait available to other sophisticated autonomous robots, with multiple 

locomotor modes preparing them for every potential situation.

At the outset of this research, emphasis has been placed on autonomy, the ability of the 

robot to continue operating without requiring external input. This establishes a need for 

the robot to be capable of running from some locally-available, low-power energy 

resource. Nature’s approach to achieving good jumping performance when limited by 

power capability, as introduced previously, is to amplify the available power by 

building up energy slowly and storing it in some way before releasing it rapidly. Details
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of the various power amplification mechanism found in jumping organisms will be 

reviewed in Section 2.1.3 (starting on page 26). Consequently, such a fully autonomous 

robot will be more suited to applications where speed of operation is not important, such 

as space exploration. Nonetheless, a successfully-developed jumping mechanism would 

still be useful for other more time-dependent applications, such as search and rescue, 

where autonomy could be sacrificed in preference for a superior power source with 

limited life.

1.3.1 Search and Rescue

Search and rescue operations often utilise highly-trained dogs, which can quickly find 

their way over unknown terrain and have the additional advantage of their acute sense 

of smell. Artificial devices tend to be fragile, however, but some lightweight and fairly 

robust artificial noses also exist. Communication with a dog requires a handler and is 

clearly limited, whereas a robot could be fitted with a vision (even night-vision) system 

and transmitter for remote control. Mechanical devices require little or no maintenance 

when not in operation, in contrast to dogs which require constant attention, putting a 

constraint on the number that can be accommodated by one search and rescue team.

Speed is critical for search and rescue missions, with life usually dependent on success. 

For example, an explosion in a nuclear power station would result in leakage of 

dangerous radioactivity, but a swarm of scout robots capable of being remotely operated 

and passing over any debris should help to locate survivors. Unless large, these devices 

would not be able to help in moving rubble, but could be used to transmit information 

and reassure anyone trapped until an alternative means of extraction can be arranged. 

Similarly disasters which cause buildings to collapse, such as earthquakes and terrorist 

attacks, tend to trap people in large amounts of unstable rubble causing high risk to any 

people searching for trapped survivors. If jumping robots could be made small enough, 

it may be possible to drop them through holes in the surface to explore the hazardous 

voids below.
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Although not specifically a search and rescue application, a similar device could also be 

used for obtaining scientific measurements from equally inhospitable environments, 

such as volcanoes, caves or large-scale pipelines requiring inspection.

1.3.2 Low cost, high volume applications

If a simple, inexpensive jumping design could be developed, this would open up new 

potential applications within the leisure and recreation market. The individual 

production cost decreases with increasing volumes in an ever improving cycle. An 

obvious example might be the creation of jumping toys for children, pets or perhaps 

executives. Full autonomy would not be necessary, and small rechargeable batteries 

should be ideal.

Hunting sports are increasingly becoming under pressure from animal rights protesters 

and many forms are being prohibited entirely. A jumping target would make range 

shooting more enjoyable, perhaps with a concealed pool of cheap robots jumping 

randomly into view from a given area. It may be possible to fit a sacrificial layer of 

armour to each device for protection of vital components, enabling the more 

sophisticated jumping mechanism to be re-fitted with new armour when necessary and 

reducing overall costs.

Perhaps the most valuable potential application for a swarm of inexpensive jumping 

robots, if such could be produced, would be the clearing of minefields. It is a highly 

publicised problem that armed landmines have been left throughout some of the most 

desolate, war-torn landscapes of the world, killing and maiming innocent people long 

after battles have finished. For whatever unfortunate reason, governments have not 

invested in making these areas safe, and it is invariably some of the world’s poorest 

people who are affected. Sadly, however, the negative publicity has not prevented the 

design and use of continuously more aggressive forms of landmines in subsequent 

conflicts. It seems feasible that saturating these areas with small, independent robots 

would make them safe, with each device continuing to jump randomly about until it 

lands on a mine, exploding on impact.
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1.3.3 Design for space

One possible and useful application for a jumping robot would be for the exploration of 

celestial bodies in space such as other planets, moons, or large asteroids. In the latter 

cases, any efficiency advantage of hopping or jumping locomotion will likely be further 

increased as a result of lower gravitational fields. It will be challenging, though, to build 

something that can repeatedly survive hard landings, particularly in the extreme 

conditions found on other celestial bodies such as very low temperatures. Any design 

intended for use in space must be of minimum mass and volume, due to the exceedingly 

high cost of transport. For the same reason, damage tolerance, reliability and 

adaptability all become essential requirements.

When considering space technology, it is important to be aware of the unique 

implication to the use of biomimetics as a design tool. The principals of evolution have 

allowed highly efficient designs to be derived in natural systems for a very specific set 

of conditions. Often these conditions are subject to change, such as resource availability 

and risk of predation, causing slightly different optimisations to dominate in future 

generations. Some space environments are very different to those found on earth, and so 

for these examples, biomimetics may be less useful. For example, if designing a 

jumping robot for exploration of a celestial body without an atmosphere, then there 

would be no advantage in enabling the device to glide. In fact, this would increase 

rather than decrease the resultant landing force, due to the additional mass.

1.3.3.1 Existing space robots

Very few examples of space robots have ever been successfully operated away from 

Earth. In all cases, designs have been kept simple, with proven technologies being 

preferred to any potential performance benefits owing to the huge financial (and 

potentially political) consequence of failure. Progress has therefore been slow, both in 

terms of the number of metres per day that these robots have explored, and in the 

development of the associated technology. A perfect example of the difficulty involved 

in executing planetary exploration missions is illustrated by the demise of Beagle 2, a
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European Space Agency (ESA) explorer which was due to land on Mars on 25th 

December 2003. This spacecraft contained several years and millions of pounds worth 

of scientific equipment, and should have provided the most in-depth analysis of the 

Martian environment ever attempted. It was successfully ejected from Mars Express on 

19th December 2003, but nothing has been heard from it since, and the mission is 

presumed lost.

1.4 Thesis outline

In this chapter, the need for alternative transport modes for autonomous robots has been 

introduced. Likewise, the principle of biomimetics has been justified as a sensible 

design approach for this problem, and hence the goal of this thesis has been set -  to 

create a robot suitable for full autonomy that both jumps and glides. Finally, some 

example applications were suggested.

Jumping is used by many animals to escape when trapped, or in the case of kangaroos, 

for long distance, energy-efficient locomotion. The biomechanics of jumping will be 

introduced from fundamental principles in Chapter 2, before the various examples from 

nature are described and contrasted in the hope that the detail of their mechanisms might 

inspire the design phase of this research. Gliding is a simple way of extending the range 

of each jump, while simultaneously reducing impact forces, and this will be considered 

together with some more example species. The literature review continues with an 

overview of low-Reynolds-number, low-aspect-ratio aerodynamics and concludes by 

evaluating existing types of robot locomotion that have been developed for the traversal 

of rough terrain. As mentioned above, for example, wheeled robots generally cannot 

pass any obstacle of greater than half their wheel diameter.

In Chapter 3, a study is carried out on flying squirrels, seeking, through observation and 

the measurement of take-off and landing forces, to clarify why these animals developed 

their unique gliding ability and diverged evolutionarily from normal squirrels. It was 

expected that this study would provide useful information for the development of the 

robot, owing to the fact that flying squirrels regularly jump and glide while traversing 

an arboreal habitat which would be difficult for any robot. Experimental performance
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and behavioural evidence will be presented suggesting that flight in flying squirrels may 

have evolved out of a need to control landing forces. Northern flying squirrels were 

filmed jumping from a horizontal branch to a much larger vertical pole. These were 

both slightly compliant (less than 1.9mm/N), and instrumented using strain gauges so 

that forces could be measured. Take-off and landing forces were both positively 

correlated with horizontal range between 0.5 and 2.5 m, (r = 0.355 and r = 0.811, 

P<0.05), but not significantly different to each other at each range tested. Take-off 

forces ranged from 1 to 10 bodyweights, and landing forces were between 3 and 10 

bodyweights. Glide angles increased rapidly with horizontal range, approaching 45° at 

3 m, above which they gradually decreased, suggesting that northern flying squirrels are 

optimised for long distance travel. Northern flying squirrels are shown to initiate full 

gliding posture at ranges of less than 1 m, without landing any higher than an equivalent 

ballistic projectile. However, this gliding posture enables them to pitch upwards, 

potentially stalling the wing, and spreads the landing reaction force over all four 

extended limbs. At steeper approach angles of close to 45°, flying squirrels were unable 

to pitch up sufficiently and landed forelimbs first, consequently sustaining higher 

impact forces.

Flying squirrels are capable of a range of transport modes, and can quickly change from 

one to the other. The rapid transition from gliding to climbing in particular led to the 

hypothesis that the skin of flying squirrels must be specialised from that of other 

mammals, otherwise a large gliding membrane would become a tripping hazard. This is 

addressed in Chapter 4, a preliminary study investigating the likely structure and 

composition of flying squirrel that might have evolved to facilitate their unique 

requirements.

In Chapter 5, all the principles learnt from the various biological examples are compiled 

into a design requirements specification for an autonomous robot. The design of the 

final, functioning robot prototype is described, which was developed so as not to 

prohibit space applications. Consequently, springs were preferred to elastic elements for 

energy storage, because the latter would become too brittle in the extreme low 

temperature environments of space. Power is amplified by storing energy slowly in four 

metal torsion springs, compressed using a heavily geared, low power motor to wind in 

cord around a capstan. The robot jumps only when the robot is fully compressed, which
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causes a dog clutch to disengage, allowing almost instantaneous release of the capstan. 

A worm gear design prevents the robot from exerting torque against the motor when not 

powered, allowing the use of irregular energy sources such as solar power. An 

additional motor drives the winding mechanism quickly between the two ends of the 

robot, allowing it to jump upwards no matter which way up it lands. Like flying 

squirrels, the jumping robot developed in this thesis deploys its gliding membranes 

immediately during take-off, reducing detrimental mid-air rotation. Likewise, provision 

is made for it to be able to control its angle of attack during gliding by shifting its centre 

of mass, improving aerial control and potentially reducing landing forces.

The prototype weighs 0.7 kg and is able to store 21.5 joules of energy, which would 

enable it to jump 3.1 m vertically on Earth if it was 100% efficient. The experimental 

results show that the robot can raise its centre of gravity by 1.6 m on average, making it 

52% efficient, with an average clearance height of approximately 1.17 m. The addition 

of gliding membranes reduced the total range of the robot during forward jumps, but 

also reduced the landing velocity and hence impact force. Experiments with flexible 

solar panels showed that sufficient power for autonomous jumping could be obtained by 

covering the wings with these solar cells and adjusting the gear ratio of the compression 

motor.

This thesis contains roughly equal quantities of biological and engineering research. For 

the benefit of readers from both disciplines some basic ideas (for example, the meanings 

of words like dorsal and ventral, or the equations of motion of ballistic bodies) have 

been explained in rather more detail than would have been needed for just one 

specilialism.
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Chapter 2 

Literature Review

This review will attempt to give a thorough overview of each of the three main themes 

within this Thesis: jumping, gliding and robots, in turn. Jumping is introduced with a 

look at the biomechanical principles behind it, including take-off techniques. Two 

distinct jumping strategies are found in nature, ‘Pause and Leap’ and ‘Continuous 

Hopping’. These are introduced and then many specific biological examples are 

discussed within these categories. Finally, gliding is formally reviewed, beginning with 

the underlying aerodynamic principles. Biological examples are then considered from 

each of the five classifications of vertebrates. More detail is then given of low- 

Reynolds-number, low-aspect-ratio aerodynamics and within this context, rigid and 

flexible wings are compared. Finally, this literature review concludes with a look at the 

current status of robotic locomotion in general, before focussing on some of the 

jumping and hopping robots that have so far been developed. Micro air vehicles are also 

considered.

2.1 Jumping

2.1.1 Biomechanics of jumping

In order to jump, an animal needs to generate a rapid acceleration of its body mass away 

from the ground substrate, causing it to leave the surface entirely. It is only necessary 

for a portion of the mass to be accelerated, so long as this is travelling fast enough for 

the conservation of momentum to carry the remainder of the mass with it. Fig. 2 shows 

this idea modelled as a spring and mass system, and, if the spring became rigid after 

take-off, conservation of momentum equations would give:
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MVi = (M +m)V2
Equation 1

Since the basic principle is always the same, the best jumping performance can be 

achieved by maximising Vi and the ratio of M to m.

I l l
m

/ / / V / / / / / /
Fig. 2  -  Sketch  show ing the m echanics of the jump

In order for a system to achieve its largest jump, it needs to produce the maximum 

possible energy in a single event. In nature, active muscles are the most common means 

of initiating locomotion. These have the ability to contract or generate tension and if 

they do both simultaneously, can perform mechanical work. (Bennet-Clark 1976)

Neglecting air resistance, the maximum energy that the animal can produce will be 

converted directly into kinetic energy:

K.E. = 14 mv2
Equation 2

Where m is the mass o f the animal, and v is its take-off velocity. The kinematic 

equations for calculating the maximum height and range of ballistic projectiles ignoring 

wind resistance are well known.

Peak height: A = (vsin ̂
2 g

Equation 3
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. , . 2sin20And maximum range: x = v -------
g

Equation 4

Where g is the acceleration due to gravity and 0 is the take-off angle. These equations 

and all subsequent kinematic equations can be found in any elementary physics text 

book.

It is clear from Equation 4 that the maximum horizontal range is achieved when the 

take-off angle is 45°. Likewise, in order to maximise the height of a jump, the ideal 

take-off angle is 90°. By combining either Equation 3 or Equation 4 with Equation 2, 

we see that both the maximum height h, and the maximum range x, are proportional to 

the energy produced by the muscle divided by the total mass. Therefore, by assuming 

that the work done by a muscle is proportional to its mass (Gabriel 1984), then the 

jumping performance is directly dependent on the percentage of the body that is muscle 

directly involved in the jump. It follows then that if the proportion of the body mass 

made up of jumping muscle is consistent, and neglecting other factors such as air 

resistance, all animals should in theory be able to jump to the same height independent 

of their size. However, Henry Bennet-Clark (1976) suggests that larger animals are 

limited by energy availability, where as the performance of smaller animals is limited 

by high power requirements. Looking first at this latter point, the energy required for a 

jump is usually applied to the ground through extension or rotation of the legs, and the 

take-off force can only act while these are in contact with the ground. Therefore, the 

length of the leg also has a direct influence on jumping performance, and in order to 

improve this many insects and other small animals use ‘biological catapults’ - energy 

storage mechanisms - as a means of generating higher power from their muscles. The 

proof that shorter leg length requires higher power actuation is demonstrated below.

The equation for an accelerating body is:

v2 = w2 +2 as
Equation 5
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where u is the initial velocity, a is the acceleration and s is the distance through which it

is accelerating (the leg length). Therefore, from equations 3 and 4 again, we can see that

the height and range will improve directly with increased leg length. The power output

can be related to either energy or force using the standard equations, 6 and 7 below:

p  Energy 
time

Equation 6

P = Fv = mav
Equation 7

Therefore, for an animal jumping from rest, equations 5 and 7 can be combined to give:

2s
Equation 8

Hence, the smaller the leg length, the higher the specific power requirement to reach a 

given take-off velocity, and therefore range and height.

Muscles have been shown many times (one example being via physiological 

measurements on tree-frog legs - Peplowski and Marsh, 1997) to have a limited power 

output, proportional to the maximum speed at which they can operate. However, with 

decreasing size, power becomes more important than energy to jumping performance, 

warranting the need for amplification. Catapults are a good example of a power 

amplifier, because they can launch a missile much faster than it is possible to move a 

human arm, even though that is where the energy comes from. Work is done by the 

operator’s arm muscle to stretch the elastic part of the catapult, which stores this energy 

until it’s released, recoiling much more rapidly than it was loaded. Therefore the power 

output is greater than the power input (Alexander 2003).

For maximum agility, the mass of the skeleton shouldn’t be too high, leading to a trade

off with structural strength. It is obviously in the best interests of the animal to keep any 

jumping forces well within the safe limits of its skeletal material (Bennet-Clark 1976). 

Lindstedt, Reich et al. (2002) discuss that the highest forces relative to energetic cost 

are achieved by eccentric contractions (when an actively contracting muscle is 

lengthened due to external forces). This property, in combination with the location of
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tendons (tensile elastic elements), enables additional performance to be gained from 

using a counter-movement prior to jumping. Elastic strain energy is stored during the 

initial eccentric contraction, which is then recovered and added to the mechanical work 

generated during the subsequent shortening of the muscle (Lindstedt, Reich et al. 2002). 

This behaviour is adopted by many animals, including humans, for improved jumping 

performance.

Any animal that displays increasing jump distances with increasing size is likely to be 

employing an energy storage mechanism (Gabriel 1984). It shall be shown in the next 

section that some insects employ the compression of the material resillin, which has a 

low Young’s modulus but a high energy storage capacity of more than 2 Jg'1 (a value 

superior to spring steel), and a very fast and almost 100% recovery. Others, in contrast, 

store energy in the bending of skeletal elements.

The isometric force of a muscle can be defined as the tension generated by contracting a 

muscle that is restricted such that its length cannot change. Jumping requires high 

power output and it has been shown that when a muscle works at maximum power, the 

highest force that it can deliver is only one third of the isometric force (Bennet-Clark 

1976). However, if an animal generates the power required by storing energy in a 

spring-like element, it can be assumed that Hooke’s law applies so the output force can 

be said to be:

F = —kx 
2

Equation 9

Here the spring constant, k is equivalent to the isometric force of the muscle when the 

strain, x is at the full isometric extension. This means that by not operating at its 

maximum power, the muscle is actually able to deliver one half of the total isometric 

force to the energy storage mechanism rather than one third. Therefore, by minimising 

the losses and mass of such a power amplification system, up to 50% more energy is 

available for jumping using energy storage than from direct actuation. With increasing 

size, it becomes harder to keep the mass of such a system low enough to make use of 

this effect, explaining the trend that larger animals have all evolved with direct actuation 

(as opposed to spring storage) as the primary means of jumping.
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2.1.2 Take-off Techniques

Whatever the original reason for the development of their jumping ability, animals tend 

to utilise all their resources, and so it is likely that the jumping gait will be employed for 

alternative purposes. Maximising the height or range of a jump is something that will be 

learnt naturally through experience, although it could be innate too in some animals. 

The optimum strategies for high and long jumps by humans were modelled by 

Alexander (1990). His model supported the strategies already employed by athletes in 

these two sporting disciplines. This is that for high jumpers, it is best to run up with a 

low centre of mass and set down the take-off foot at a shallow angle of about 45°. By 

contrast, long jumpers need to maximise their speed during the run up, and set their leg 

at a steeper angle. Alexander’s model was later developed to more accurately represent 

muscle and tendon properties in order to investigate the action of knee extensor muscles 

during long jumps (Seyfarth, Friedrichs et al. 1999; Seyfarth, Blickhan et al. 2000). In 

the first of two separate papers, Seyfarth (1999) demonstrates that increasing the touch

down velocity of the take-off leg results in a higher vertical momentum and hence 

improves the range. The conclusions drawn from the later paper were that jumping 

performance improves with increasing muscle strength but is insensitive to changes in 

the speed of the muscle or compliance of the tendon. The leg extensor muscles are 

highly stretched during take-off and Seyfarth also shows that by arranging elastic 

elements in series with this muscle, the duration of this lengthening and dissipation can 

be increased, resulting in enhanced eccentric forces and hence improved jumping 

ability.

2.1.3 Biological approaches to jumping

The Biomechanics section above demonstrated why size is an important influencing 

factor on the way in which an animal will jump. Animals jump to escape predators, 

capture food, and in some cases (such as rabbits and kangaroos) it is the favoured 

method of locomotion. There are two distinct patterns that can be observed. Locusts, for 

example, travel using single jumps followed by a rest period to recharge and re-orientate 

(Bennet-Clark 1975). This can be categorised as the ‘pause and leap’ method and is
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common in insects and other small animals such as frogs. The alternative approach is 

continuous hopping, where energy is recovered during the landing and used in the 

following jump, a technique employed by kangaroos in order for them to travel large 

distances across open country (Alexander 1975). For general locomotion, one would 

expect that the animal would attempt to get maximum performance by using the 

optimum take-off angle for example, whereas rapid acceleration is most critical when 

jumping is used primarily as an escape mechanism. In this section, examples of jumpers 

from both categories are reviewed.

Nature evolves to make the best of the tools and materials that it has, and jumping is a 

useful type of locomotion that has been optimised by many animals, of all sizes. The 

dog, for example, manages to generate extra energy for jumping by employing counter

movements in combination with its already powerful leg musculature, such that the 

elastic extensors of the ankle, knee and hip are stretched prior to shortening. The muscle 

loading is such that the peak force occurs at the start of the impulse and falls as the 

animal accelerates, hence producing a high-energy output from a single contraction 

(Alexander 1974). In human beings, improved performance is achieved by swinging the 

arms simultaneously with jumping, increasing the amount of momentum in the direction 

of the jump (Ashby and Heegaard 2002).

2.1.3.1 Pause and leap

Within this broad category are all of the insect jumpers, perhaps due to the higher level 

of control sophistication required for continuous hopping to be energetically 

advantageous. Owing to their small size, insect leg length is limited and in addition, 

they are more affected by air resistance so power amplification is essential for jumping. 

As a result, many different specialisations have evolved in insects to enable effective 

jumping, some of which have even developed so far as to hinder simple walking 

(Bennet-Clark 1977). Three broadly defining categories of catapult mechanisms, bi

stable designs and flippers will be introduced below, with example insects described for 

each. It will be shown that larger animals, which employ direct actuation of muscles in 

order to jump, are also able to amplify this power generated to improve their jumping.
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2.1.3.1.1 Catapult jumping mechanisms

Maximising relative leg length is advantageous to jumping performance irrespective of 

scale. This increases the work done during take-off, which is the product of muscle 

force and the distance through which it is exerted (equivalent to the leg length). Many of 

the best insect jumpers have greatly enlarged jumping limbs. The metathoracic legs of 

grasshoppers and locusts, for example, are only actually used for jumping and are very 

much larger than the other pairs of legs (primarily used for walking and stability). It was 

shown by Bennett-Clark (1975) that locusts are able to achieve a high jumping impulse 

by moving these legs at a velocity much higher than is possible for the muscles to work 

at by pre-loading energy into a quick release mechanism. Energy is stored in the 

bending of specialised sclerotised tanned cuticle, such as the semi-lunar processes (the 

half-moon shaped pieces in the knee joint -  as shown in Fig. 3), by the contraction of 

the large extensor tibiae muscles of the two metathoracic legs. As the tibia rotates in 

towards the femur, the extensor tendons are stretched until a catch locks into place 

(Bennet-Clark 1975). This catch is engaged only when the leg is fully flexed, when the 

strap-like flexor tendon is relaxed. To understand how this works, this tendon can be 

considered as a belt, which when in tension, runs smoothly over the slippery top surface 

of Heitler’s lump as the leg rotates. This flexor tendon belt bifuricates into strands at the 

distal end, (nearest to the knee joint), which are connected to either side of the tibia. 

This leaves a pocket of tissue in the middle of the resulting fork, which naturally 

becomes hooked around the wrong side of Heitler’s lump when the tendon is fully 

relaxed (at full leg flexion). In this position, considerable extensor tension can be 

developed without the tibia being able to move. The locust can then release this catch 

whenever it needs to by relaxing separate, smaller flexor muscles (Brown 1967; Heitler 

1974; Bennet-Clark 1975).
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Fig. 3  -  Physiology o f locust leg

Diagram A sh ow s the external anatom y with the hatched regions representing flexible cuticle. The tibia is susp en d ed  from the distal end  

of the sem ilunar p rocess, heavily sclerotised tanned cuticle with a half-moon sh ap e that provides som e of the energy storage, attached  

by flexible cuticle to en ab le articulation. Diagram B show s the simplified internal anatom y of the leg including the pocket in the flexor 

tendon which is naturally pulled down around Heitler's lump when the tibia is in the fully flexed position. This acts a s  a catch which 

en ab les  additional exten sor tension to be d eveloped, and it is held in place by the small, flexor tibiae m uscle until it's relaxed for take-off.

(Bennet-Clark 1975).

Bennet-Clark showed that each metathoracic leg contains less than 4 mg for energy 

storage, but can store the equivalent energy to 70 mg of muscle (1975). Meanwhile, 

thanks to suitable geometry, these legs are able to achieve almost constant acceleration 

(and hence force) throughout the impulse. This has two benefits. Firstly, it minimises 

the peak force that the skeletal elements must be able to safely absorb, thus allowing 

them to operate at closer to their structural limits, which in turn enables more energy to 

be safely stored. Secondly, the chance of the leg losing contact with the substrate before 

all the energy has been exerted is greatly reduced, which might otherwise occur at the 

point of peak force. Such optimisation would seem highly relevant to the design of a 

jumping robot.

Bush crickets are also in the order Orthoptera, and, like locusts and grasshoppers, are 

able to jump well as a result of their long hind legs, which in this case are more than 

four times the length of the front legs. However, Burrows and Morris (2003) show that 

the jumping mechanisms are not identical. In crickets, an initial full flexion of the hind
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legs is not required, and the semi-lunar processes are not bent at all during the course of 

the jump.

A closely-related insect to the locust is the false stick insect, Prosarthria teretrirostris, 

which uncharacteristically for a stick insect is able to jump and kick. Although it mostly 

looks and behaves like a real stick insect, it has hind legs that are up to 2.5 times as long 

as the front or middle legs, which give rise to a similar jumping style to the orthopterans 

(locusts and grasshoppers). However, an additional feature of interest in this study is 

that this insect stores 7% of its jumping energy transiently in the bending of its skeletal 

structure (i.e. not in its legs). This partially compensates for its inability to store energy 

in the semi-lunar process, which is significantly less developed than in locusts (Burrows 

and Wolf2002).

Work by Bennet-Clark (1967) and an extensive study of the flea by Rothschild et al. 

(1975) showed that the secret to its impressive jumping ability was the rapid release of 

stored energy (Bennet-Clark and Lucey 1967). The pre-loading takes place prior to a 

jump as the flea crouches down with the coxa, femur and tibia (on the third pair of legs) 

all tightly folded together, and parallel, forming an ‘N* shape. This compresses a large 

pad of the rubber-like material, resilin, in the pleural arch (see Fig. 4) and also gives the 

flea maximum possible leg extension in the jump. The compressed resilin stores energy, 

and is held in place by a coxal catch, which is only released at the initiation of the jump 

by a rapid twitch of the trochantal depressor muscle. Leverage from the depressor 

apodeme tendon acts simultaneously with the resilin to cause the trochanter and femur 

to rotate around their hinges and accelerate upwards in the process. This acceleration is 

very rapid, and continuously increasing while force continues to be exerted through the 

tibia and its relatively powerful spines against the substrate (Rothschild 1975). This is 

the optimum force profile for ensuring that the flea does not leave the substrate until all 

the force has been exerted through it.
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Fig. 4 -  Diagram show ing the elastic storage m echanism  for jumping in the flea.

(Rothschild 1975)

a) is a sketch  o f the lateral view  of a flea in the relaxed state, and b) is the sa m e  diagram show n with the femur raised ready for jumping. 

This co m p resses  the resilin pad along the line of force in the pleural arch, while sim ultaneously extending the tendon labelled 'depressor 

of trochanter’. The link plate is a lso  rotated bringing the m eso- and m etathoracic seg m en ts  2 and 3  into line, and partly engaging the 

medial thoracic hook. The location of the coxal catch, which holds the system  in p lace prior to jumping, is a lso  shown.

The performance of the flea relative to its body length is very impressive, but the design 

would not work if scaled to a significantly larger size. Any increase in length during 

such scaling increases the volume as the cube, and hence the mass would quickly 

become too large for jumping due to the mechanics and the structural and energy 

storage properties of the materials involved. Froghoppers (also known as Spittlebugs) 

actually exceed the ‘height jumped relative to body length’ of a flea (Burrows 2003). In 

the process, they exert a force o f 414 times their body weight due to the very rapid (less 

than a millisecond) rotation and extension of their relatively short hind legs. Burrows 

suggests that this energy is once again stored in resilin, possibly also storing some in an 

extra large tendon. The hind legs are not used in normal walking, but rather are just 

dragged along behind the insect. However, they are always cocked and ready for an
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escape jump thanks to a locking mechanism and some huge jumping muscles necessary 

to overcome it. Leafhoppers are very similar to froghoppers, although no literature 

currently exists on their jumping ability. Consequently some high-speed camera 

experiments were carried out by the author for comparison. It was demonstrated in these 

experiments (see Appendix 1 on page 207) that leafhoppers are capable of generating 

similarly rapid accelerations during take-off to those reported for froghoppers.

Bristletails, Petrobius, jump using two mechanisms employed independently. The main 

propulsive force comes from a very rapid tail beat lasting 2-8 ms, induced by a relaxing 

of the dorsal abdominal muscles, which straightens and forces the ventral surface of the 

abdomen against the ground. Energy is stored during the slower loading of this tail, 

hence its inclusion in the catapults section. It could otherwise equally have been 

reviewed in the upcoming “flips” section because during the rotation of the tail, the 

bristletail also swings the head and front end of the body (where the majority of the 

mass is) upwards, thus raising its centre of gravity even higher. This second movement 

can considerably influence the direction of the jump depending on its exact timing 

relative to the initial tail beat. In order for the tail beat to reach such high speeds, normal 

musculature alone is insufficient. However, no catch mechanism has been found and it 

is proposed that the catapult action depends on the dynamic balance between dorsal 

longitudinal muscles and deep oblique muscle (Evans 1975).

One of the fastest animal mechanisms ever recorded is that of the strike of trap-jaw ants, 

Odontomachus bauri, which occasionally propel themselves away from danger using 

their jaws. These ants can close their large mandibles at speeds ranging from 35 to 64 

ms"1. The speed and consequent force exerted (which can exceed 300 bodyweights) 

allows these ants to utilise their jaws for distinct purposes, such as capturing prey and 

ejecting intruders from their nest. By angling their heads towards a hard substrate, their 

strike becomes an escape mechanism as it has enough power to propel them rapidly 

away from danger. These high speeds are actually achieved using slower, higher force 

muscles (with relatively longer sarcomere lengths, a concept explained in Section 

2.1.3.1.4 on page 35) compared to the jaws of other similarly sized ants. These powerful 

muscles are required to open the jaws, storing energy in the bending of cuticular 

elements, apodemes, and in the closer muscle itself as they do so until a catch 

mechanism engages. When the ant chooses to strike, a smaller, highly specialised
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trigger muscle unlocks the catch, rapidly releasing the stored energy to accelerate the 

mandible (Gronenberg, Tautz et a l 1993; Gronenberg 1995; Paul 2001).

2.1.3.1.2 Bi-stable jumping mechanisms

When Springtails jump, their entire body rotates as they travel through the air. This is 

due to the location of their springing organ, the manubrium, which rapidly unfurls from 

a position directly under the centre of gravity at the posterior end of their abdomen. The 

manubrium is a bi-stable mechanism, meaning that it is stable in both the flexed or 

extended positions but not in between. As a result, standard relatively slow muscle 

contraction (which appears to flex the entire body of the springtail) is enough to force 

the manubrium into the unstable position, but it rotates very rapidly to get through to the 

more stable, extended position, thrusting the springtail forwards in the process 

(Brackenbury and Hunt 1993).

VT

OEN

HAM

BP4

BR4

BRb

-  BP5

Fig. 5 -  Ventral view  of the Springtail jumping m echanism  

show n in the folded position (a), and open  (b).

The click beetle usually makes its jump from an upside down position (lying on its 

back). It starts by arching its back as an initial counter movement, before rapidly jack- 

knifing its body upwards at the joint between the prothorax and mesothorax. This 

process of arching pre-loads energy into the skeletal structure o f the beetle, and the 

system is then held in the ready state by friction from a peg (see Fig. 6). The release of 

the peg causes the violent reverse in body curvature due to its bi-stable nature, moving
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the position of the centre of gravity rapidly upwards giving the momentum required for 

the beetle to leave the ground (Evans 1972; Evans 1973).

2.1.3.1,3 Flip jumping mechanisms

This category includes all the insect jumpers which have developed alternative ways of 

power amplification for jumping to the catapult and bistable ideas described previously. 

One that doesn’t seem to employ any such mechanism, for example, is the jumping 

millipede, which still manages to jump quite successfully even without any large 

muscular jumping legs. It turns its head and the first few segments forward to grip the 

substrate, whilst the rest of the legs run forward, forming a vertical loop. Eventually the 

front o f the millipede is overtaken forcing it upwards, and with it much of the mass of 

the insect, resulting in complete separation from the ground. It lands with its body in a 

U-shape, before falling onto its side and very quickly swinging its head forward and 

commencing running again for a short distance before the next jump (Evans 1973).

The winged stick insect Sipyloidea sp. is also able to jump, but using a quite different 

mechanism to the false stick insect, described in the Catapults Section above. In this 

case jumping is initiated is by the insect rapidly swinging its abdomen simultaneously 

with the extension of its middle and hind legs (Burrows and Morris 2002).

The Mediterranean fruit-fly larva is, like any other fly larva, a soft-bodied organism 

without legs that relies on hydraulic-based locomotion. Generally, such organisms are 

only able to crawl slowly around, but during the most vulnerable stage of its 

development, this maggot is able to escape its ant predators and reach speeds of up to 

0.5ms'1 by leaving the ground. Initially, it rolls itself up and hooks its mouthparts onto

Fig. 6 -  The click-beetle lies on its back to initiate a jump. 

Diagram taken from E vans’ paper (1972).
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its posterior cuticle, before contracting its helical muscles to create tension in the body 

wall. Eventually the system starts to become unstable, somewhat resembling a bent 

sausage-shaped balloon, before a final wave of muscle contraction travelling from the 

back to the front of the maggot disengages the mouth hooks. Recoil from the elastic 

strain energy stored in the cuticle is then enough to thrust the tail towards the substrate 

and the head away from it, launching the fruit fly larva into the air (Maitland 1992).

92°

90“

81 “

8 m m

Fig. 7 -  D iagram s show ing how the fruit-fly larva is able to jump 

The left hand diagram sh ow s how it rolls itself up and hooks its mouthparts onto its posterior cuticle before tensing the m u scles in its 

body wall. The system  b eco m es unstable, allowing the larvae to re lease  it, and the elastic recoil s en d s  it spinning into the air a s  show n

on the right hand diagram.

2.1.3.1.4 Direct actuation jumping mechanisms

Frogs and toads have evolved to have large powerful hind-limbs, which allow them to 

jump far or swim fast when under threat. However, results from several studies show 

that muscle power alone is not sufficient to explain the excellent jumping performance 

achieved (Marsh and Johnalder 1994; Peplowski and Marsh 1997; Wilson, Franklin et 

al. 2000). Isolated frog muscle has been mechanically tested to determine the amount of 

power that can be produced by contraction, and this is significantly less than the power 

(calculated from ballistic equations) necessary to project a frog a given distance and 

height. As an example, Cuban tree frogs (Osteopilus septentrionalis) can execute jumps 

requiring peak instantaneous muscle powers more than seven times higher than can be
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generated by their hindlimb muscles (Peplowski and Marsh 1997). Yet, unlike the 

catapult and bi-stable jumpers described earlier, no clear catch mechanism to release an 

energy storage device has yet been found in frogs.

tendon

m uscle fibre bundle

muscle fibre

fibre enlarged

myofibril, contracted

nucleus

sarcom ere

light H-zone

dark Z-bandlight l-band

m yosin actin

myofibril, exten d ed

Fig. 8 -  Exploded view  of a m uscle show ing the sarcom ere length 

(Larousse 1995)

It has been shown that frogs are optimised for jumping, because the design of the length 

of the leg muscles relative to the positions of the joints means that the output force 

remains constant during the shortening. In contrast, for animals that generate cyclical 

movements (such as fish swimming), the muscle force declines progressively during 

shortening to allow the subsequent extension to initiate with little resistance (Lutz and 

Rome 1994). The muscle fibres operate at the optimal shortening velocities, and over 

the range of sarcomere lengths where most tension is generated. (The Sarcomere length 

determines the amount o f myofilament overlap in each muscle fibre, and is labelled in 

the exploded diagram of a muscle, Fig. 8) (Lutz and Rome 1996). Roberts and Marsh 

(2003) modelled the system, and concluded that work output and peak power output can 

be improved by adding an elastic element in series with the muscle. This elastic
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mechanism also allows muscles to generate accelerations, force and velocity trajectories 

that are not possible from standard muscle contractions. They also improved the 

performance of their model by arranging an effective mechanical advantage (EMA) of 

the muscle that increases continually throughout the contraction. It is suggested that this 

acts as an inertial catch, such that energy is stored in the series elastic element at the 

beginning of the jump allowing the delayed release of energy at increased power in the 

advanced stages of the take-off (Roberts and Marsh 2003).

Fig. 9 -  Four fram es from a high-speed video seq u e n c e  of a frog jump.

Frame 2  depicts the point w here half of the plantaris m uscle fascicle shortening h as  occurred (Roberts and Marsh 2003).

Useful from the perspective of building a jumping robot is some research by Kargo et 

al. (2002). They simulated experimental models of frogs, and in particular investigated 

the possible actions of the different skeletal joints. They found that a unique extra 

degree of freedom in the knee, allowing internal rotation between the tibia and the 

fibula was crucial to bringing the frog’s feet under the body and hence enabling 

maximal jump distances. The relative position of the foot that the force acts through to 

the main body will therefore be an important design consideration for any jumping 

robot.
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Bushbabies, Galago senegalensis, have excellent jumping ability and a vertical jump 

was observed by Hall-Craggs in 1965 of 2.25 m, approximately 6 times the body length 

of the individual. This would be impossible without some power amplification 

mechanism. Prior to jumping, energy is stored initially during a counter-movement as 

the bushbabies crouch down and the hip extends. As the animal begins to squat jump, 

further tension loading of the large muscle-tendon complex in the thigh continues after 

knee-extension has begun and is held until the moment of peak power requirement. 

Only then, for the last 13 ms of push-off, are the knee-extensors suddenly released such 

that all of the stored energy in the system is released simultaneously (Aerts 1998).

Dogs and horses are other good examples of direct-actuation jumping. Alexander 

(1974) showed that the principal extensor muscles in the hip were being contracted to 

shorten continuously throughout the take-off of a jumping dog. In contrast, the extensor 

muscles of the knee and ankle are stretched first during the take-off, and are then able to 

do more work as they shorten. He concludes that most of the energy storage is in 

tendon. Tendon is a highly elastic material, primarily made from a type I collagen 

(Puxkandl, Zizak et al. 2002), and it is capable of storing more energy relative to its 

weight than muscle.

In quadrupeds, both the fore and hind limbs are used to generate the work required for a 

given jump. Research on horses has shown that although the forelimbs create a larger 

impulse on the ground, it is the final push-off from the hind limbs that is most critical to 

a successful jump (Dutto, Hoyt et al. 2004). The joints of the hind limbs were also 

shown to be absorbing power overall for the first 40% of the ground contact, with the 

animal able to accelerate continually for the remainder of the take-off primarily thanks 

to a late burst of energy from the metatarsophalangeal (MP) joints. The MP joints, also 

known as fetlock joints, are below the horse’s ankle and there is not a large muscle mass 

acting across them. Instead they are controlled by tendons, and it was proposed that 

elastic energy is stored here and released optimally late in the jump. Horses also employ 

energy storage when galloping, which enables them to move their legs faster than the 

maximum operating speed of the controlling muscles (Wilson, Watson et al. 2003). This 

is achieved by the storage of energy elastically in the extended biceps muscles, releasing 

a burst of energy to increase the power of protraction.
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Parry (1959) shows that a very different example o f a direct-actuation jumping 

mechanism is employed by saltacid spiders. It is suggested that the spiders manage to 

convert an applied hydraulic force (from haemocoelic blood pressure) into a rapid 

extension of their fourth pair o f legs (Parry 1959). These spiders are also capable of 

accurate targeting, and can vary both the magnitude and velocity o f their take-off (Hill 

2001).

Fig. 10 -  Take-off im age seq u e n c e  of a Saltacid spider (Parry 1959).

2.1.3.1.5 Power amplification mechanisms not used fo r  jumping

There are other elastic storage mechanisms found in nature that are not used for 

jumping. For example, the Mantis shrimp, Odontodactylus scyllarus, is able to smash 

the shell of its prey by amplifying the power of its punch. It delivers a punch 

approximately 2-3 cm from its body in just 3 ms, thanks to high energy storage and 

release in its saddle-shaped exoskeletal spring and lever mechanism. The saddle, 

modelled as an orange spring in Fig. 11, is compressed slowly by muscles until a catch 

is engaged. When released, the two pivot points (shown as a red point and a white point 

in part c of Fig. 11) are forced to rotate in opposite directions as the spring rapidly
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extends, considerably amplifying the force owing to the massive leverage (Patek, Korff 

et al. 2004).

Saddle

Fig. 11 -  Mantis shrimp punch m echanism , 

a, h igh-speed  cam era im ages, b, a sketch of the sadd le-sh ap ed  elastic storage m echanism , and c, a m echanical m odel of the system . 

Here, the red point marks the attachm ent point of the rigid link betw een the punching arm and the body, which c a u s e s  it to rotate sharply 

around the white point marking its centre of rotation. (Patek, Korff e t al. 2004).

A chameleon’s tongue also accelerates at a faster rate than could be achieved by muscle 

alone. Researchers have dissected chameleon tongues revealing an elastic collagen 

tissue sandwiched between the tongue bone and the accelerator muscle. They have 

discovered that this collagen structure is the biological catapult that propels the tongue 

tip in much the same way a bow delivers an arrow (de Groot and van Leeuwen 2004).

2.1.3.2 Hopping

Hopping refers to the repeated jumping used by some animals as a general means of 

locomotion. The smallest animals known to adopt this motion are kangaroo rats. This
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apparent size limit may be related to the fact that as mass decreases, so the potential 

terminal velocity decreases, and hence there is less landing energy to retrieve. It is also 

fair to say that insects have simpler nervous systems and are therefore less able to 

control their landing. However, the point should be made that frogs have relatively quite 

sophisticated brains and yet often do not control their landing. Kangaroos provide the 

best example of hopping in nature, and can jump up to 13 m in a single hop and travel at 

nearly 65 km/h. The morphology of the kangaroo has clearly developed to improve its 

hopping locomotion, with its large hind limbs and feet relative to much smaller 

forelimbs, and a large tail that it can use as a counterbalance. When walking, at speeds 

less than about 6 km/h, kangaroos have very organised changes of gait between using 

the forelimbs, tail or hind limbs as supports. At higher speeds, they begin to bounce on 

their hind limbs, and remarkably, require less oxygen (and hence are using less energy) 

as speed increases to an optimum (Dawson 1973). This cruising tends to have a 

frequency of 2.5 hops per second, with each hop ranging from 0.7 -  6 m at a peak 

height of about 0.5 m (Bennet-Clark 1976). The reason for this is due to a very efficient 

storage of energy in their long Achilles tendons, which behave like springs and can 

store and release up to 70% of the energy from the previous jump. The hopping gait also 

leads to a better overall jumping performance, just in the same way that human beings 

are able to jump higher and further from a running rather than a standing start 

(Alexander 1974).

C- -•

Fig. 12 -  Outline drawing o f a kangaroo at the m om ent when the force exerted on the ground is vertical (Alexander 1975).
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Biewener et al. (2004) used surgical techniques to directly measure the forces and 

length variation in the tendons of wallabies during locomotion in the hopping gait. They 

observed that while the foot was in contact with the ground, the length of the major 

muscles remained almost constant with the tendons instead stretching and recoiling like 

springs (Biewener, McGowan et al. 2004). The frequency at which a kangaroo hops 

influences the maximum vertical displacement reached at the mid-point of each bounce. 

It is the slower, flat trajectories that are preferred giving the animal superior range with 

each hop and resulting in a longer contact duration with the ground, which is directly 

proportional to the ground reaction force (Blickhan 1989).

Some research has suggested that morphology favouring elastic energy recovery limits 

an animal’s potential for mechanical power generation (Biewener 1998; Daley and 

Biewener 2003). However, yellow-footed wallabies were shown to generate substantial 

amounts of power, sometimes even in excess of the maximum capability of vertebrate 

skeletal muscle (McGowan, Baudinette et al. 2005). Rock wallabies approach high 

jumps at a steady velocity and with a relatively low angle of attack (45°-55°), a similar 

style to that of human high jumpers. The main difference in strategy for high jumping 

compared with normal hopping is that the leg stiffness almost doubles. The result is that 

more of the horizontal kinetic energy input into the jump can be converted directly into 

vertical kinetic energy.

Energy recovery is not just restricted to animals that hop continuously. In large animals, 

such as the dog, elastic elements of the leg are able to absorb much of the impact on 

landing (Alexander 1974). Most of the elastic energy is stored in tendons, which then 

contribute work towards the next movement.

In summary, two jumping patterns have been reviewed in this chapter, ‘pause and leap’ 

jumping or ‘continuous hopping’. Continuous hopping has enabled some animals to 

recycle energy from each landing in a sequence of jumps, which requires a more 

sophisticated level of control than is necessary for the ‘pause and leap’ jumpers. Power 

amplification has been shown to be essential for smaller animals, but it is also usefully 

employed by larger animals such as horses. This generally relies on the pre-loading of 

energy into a catapult-like catch-release mechanism capable of a very high-speed action. 

In locusts and fleas, physical catch-release mechanisms can be observed, whereas power
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amplification in larger jumping animals seems to rely on temporal catches, achieved 

through optimal usage o f their specific biomechanical arrangements.

2.2 Gliding

2.2.1 Principles of Gliding Flight

Gliding is generally defined as unpowered flight. Given enough initial altitude, a free- 

falling object will eventually reach equilibrium, where the force generated by air 

resistance against its body is equal to its weight. At this point, it will no longer 

accelerate, continuing to fall at its terminal velocity. Any asymmetric body will 

experience the two perpendicular forces of lift and drag against it when moving through 

a fluid, where drag is a force against the direction of motion. Equilibrium is reached 

when the resultant of the lift and drag forces acting on the falling body are equal to its 

weight, as shown in Fig. 13.

F

Glide
Angle

mg
Direction of 

motion

Fig. 13 -  Free body diagram show ing that the resultant of the lift (L) and drag (D) forces, F, m ust b e equal to its weight (m *g) at

equilibrium.

The angle o f descent or glide angle (labelled 6 in Fig. 13) can then be determined from 

the ratio of lift to drag forces by simple trigonometry as shown in Equation 10:

Lift to Drag ratio,

L _ 1
D tan#

Equation 10
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In literature on aerial locomotion in animals, a generally accepted convention uses the 

Lift to Drag ratio to make the distinction between gliding and parachuting (Oliver 1951; 

Rayner 1991). Where L/D <1, the descent is at less than 45° to the vertical and this is 

defined as parachuting. An animal can be said to glide, therefore, only if it can achieve 

shallower descents (at angles of less than 45° to the horizontal, where L/D >1).

Shape is important in determining the amount of lift that an aerofoil will generate in a 

stream of air, as is the angle o f  attack, which is the relative angle of the aerofoil to the 

airflow. Both of these things were important discoveries at the turn of the 19th century 

by George Cayley. In what could be described as an early example of biomimetics, his 

work was inspired by watching birds gliding with their wings fixed in one position, and 

by examining the body-shape of the trout, which offers minimum resistance when 

swimming through water (Anderson 1978). Many years later, biomimetics was also the 

key to the next major advancement in aerofoil design. Otto Lilienthal studied the 

structure of bird’s wings through dissections, and experimented with his findings to 

refine Cayley’s cambered aerofoil towards the now familiar asymmetrical shape shown 

in Fig. 14.

Cambered airfoil Symmetric airfoil

Fig. 14 -  The approximate cross-sectional sh a p es  of a cam bered and a symmetrical aerofoil. Beneath  are drawn their respective graphs 

for the coefficient of lift Ci against an gle of attack, a. The cam bered aerofoil can gen erate lift at negative an g les of attack. (Anderson

1978)

In order to understand why shape is so important to the amount of lift generated by a 

surface, this review will briefly describe some basic aerodynamic principles. Except 

where stated, much of this long established theory was taken from the following book, 

Introduction to flight its engineering and history (Anderson 1978), which provides a

<*L *0
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well-structured introduction to the topic. Consider the air flow around the cambered 

aerofoil in Fig. 14. Streams of air molecules striking the front of the aerofoil (the 

leading edge) will be forced to flow either underneath or over the top of it. Due to its 

cambered shape, air molecules flowing over the top surface o f the aerofoil have to travel 

further than the equivalent stream following the flatter under-surface. As a result, they 

travel faster. At this point, it is necessary to digress slightly further to introduce 

Bernoulli’s theorem.

Bernoulli did some experiments with airflow through a Venturi tube, which narrows to 

a throat in the middle as shown in Fig. 15. If a crowd of people were to walk down a 

passageway of this shape, they would naturally slow down and become more densely 

packed at the throat. However, Bernoulli discovered that the reverse is true for air. The 

velocity o f the air is higher as it travels through the throat, and the pressure decreases. 

Consequently, he developed his theorem, fundamental to all aerodynamics, which 

states: At any two points along the same streamline in a non-viscous, incompressible 

fluid in steady flow, the sum o f the pressure, the kinetic energy per unit volume, and the 

potential energy per unit volume has the same value (Anderson 1978).

■>

Fig. 15 -  Diagram of a Venturi tube, in which air s p e e d s  up to g e t through the throat.

The consequence of the air flow being faster on the top surface of the wing is that the 

pressure is lower than that underneath -  the aerofoil acts like half a Venturi tube with 

the other half open to the surroundings. This pressure gradient causes a force upwards in 

the aerofoil and is often referred to as negative pressure. Some lift is also generated by 

the positive pressure of the airflow striking the slightly cambered underside of the wing. 

Another consequence of positive pressure beneath a wing and negative pressure above 

it, is that air will inevitably spill up over the wing tips. The resultant vortices cause an 

induced drag in addition to the friction drag introduced earlier. It follows then, that as 

aspect ratio (A.R, the ratio of wing length or span to its width or chord) increases, the
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effect of this induced drag decreases. It is likely that for this reason, gliding birds 

(discussed in Section 2.2.2, page 47) tend to have high aspect ratio wings (Savile 1962; 

Norberg 1990).

Increasing the angle of attack of an aerofoil in relation to the air flow causes an increase 

in the amount of lift produced as shown in Fig. 14 and Fig. 16. The relationship is linear 

until the wing stalls causing a rapid decrease in lift. Stalling is caused by flow  

separation, where due to the viscosity of the air and the skin friction of the wing, the air 

flow over the top surface of the aerofoil becomes detached and does not reach the 

trailing edge. This is also sketched in Fig. 16. This alters the pressure distribution 

around the wing such that the total lift is much lower, and the drag force much larger. 

The relationship between lift coefficient and the angle o f attack depends to some extent 

on the cross-sectional shape of the wing. Fig. 14 demonstrates that the cambered 

aerofoil design is able to generate lift even at negative angles of attack.

Separated flow

Fig. 16 -  Graph of Lift coefficient against angle of attack for a cam bered aerofoil, which p eak s w hen the wing stalls. This is due to flow 

separation, a s  show n by the stream lines in separate diagram s of attached and separated  flow (A nderson 1978).
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Flow separation, and hence stall, is not just dependent on angle of attack, but will also 

occur when the air flow over the wing drops below a critical velocity. In order to glide 

more slowly, an increased wing area is required (Norberg 1990). The flow separation 

can also be postponed by adding slots to the wings. The air speed increases as it is 

forced through the slots, generating a jet of faster flowing air along the top surface of 

the wing (Savile 1962).

2.2.2 Gliding in nature

Gliding has been adopted as a means of locomotion by several species in five of the 

vertebrate classes. These classes are birds, fish, amphibians, reptiles and mammals, and 

certain examples from each are described below.

2.2.2.1 Birds

Birds generally flap their wings in order to generate the required lift for flight. The 

frequency with which they beat their wings is inversely proportional to their size, with 

the smallest examples, hummingbirds, flapping their wings at between 50 and 200 Hz 

(Tobalske, Altshuler et al. 2004). At the other end of the spectrum, some of the largest 

birds only use flapping intermittently to maintain a high enough speed for gliding with 

their large wings in a fixed position. This gliding in birds is usually referred to as 

soaring. Due to the high flight speeds and large wing areas required, soaring tends to be 

adopted by birds living in suitably sparse environments, such as mountains, deserts, 

plains and coasts. Vultures, Catharsis aura, birds of prey and many seabirds such as 

albatrosses, Diomedeidae, and gannets and boobies, Sulidae, are all examples of soaring 

birds, each having characteristic high aspect ratios. The best glide ratios (L/D) for birds 

of prey are 15:1 and 10:1 for vultures. The wandering albatross, Diomedea exulans, 

weighs around 9 kg and can achieve glide ratios of 23:1 (Norberg 1990).

In habitats where large aspect ratio is not advantageous, bird wings are smaller but have 

extensive slotting. This enables them to be able to generate extra lift and travel more
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slowly without stalling (as described in section 2.2.1 on Page 43). Flexion of their wings 

allows birds to reduce their wing area and accelerate quickly, but at the expense of 

altitude. The success of birds is testament to the design of feathers. These have 

exceptional strength to weight ratio and resilience, whilst still permitting flexibility 

where required. The shape of the feathers allows the birds to manipulate the wingtips in 

flight, and open and close slots for superior control. However, feathers give birds yet 

another aerodynamic advantage by being several times more porous to downward 

moving air than upward through the wing. As a result, air is drawn through the top 

surface of the wing and released underneath during flight. Air flow over the wing which 

would otherwise be turbulent due to skin friction is more laminar because it’s 

effectively flowing over a layer of air molecules (being sucked through the wing). This 

mechanism of reducing skin friction drag also used in the aircraft industry and is known 

as Boundary Layer Control (Savile 1962).

2.2.2.2 Fish

Flapping flight has been observed in two species of fish; the butterfly fish (Pantadon) 

and the flying hatchet fish (Gasteropelecus, Camegiella) are able to beat their pectoral 

fins owing to relatively well-developed pectoral muscles (Davenport 1994). However, 

this review will focus on Exocoetidae, commonly referred to as flying fish, which have 

developed many specialisations towards gliding during their evolution.

There are two main types of exocoetid flying fish, two-winged and four-winged. Both 

have greatly enlarged pectoral fins, which are used to generate lift when held out of the 

water. The four-winged variety, cyanopterus, also have enlarged pelvic fins which 

contribute lift but also function as stabilisers in much the same way as the tail of an 

aircraft. These fins cannot be folded and are also required for swimming, so high aspect 

ratios are not possible but they are further specialised for flight in that the top surface is 

very smooth, with all the structural ribs placed on the lower surface (Breder 1930). 

Flying fish have a cigar shaped body with a flattened ventral surface which promotes 

extra lift during gliding. They also have a distinctive, asymmetrical hypocercal tail, the 

lower lobe being much longer and stiffened. This allows the fish to taxi across the 

surface of the water with its wings spread and almost all of its body above the water
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level, propelling itself by oscillating the small piece o f fin still in the water. The fish can 

therefore fly much faster, and it is thought that the enlarged, wing-like fins evolved to 

support this as an escape mechanism rather than specifically to allow gliding away from 

the water (Davenport 2003). Flight is energetically expensive for the fish, so it is not 

thought that it has developed to save energy in travelling long distances (Davenport 

1994). Another reason for this is hypothesis is that when not taxiing, the position of the 

centre of mass in two-winged flying fish, exocoetus, is such that it naturally wants to 

pitch upwards and stall. The enlarged pelvic fins of the four-winged flying fish 

compensate for this, and are likely more recently developed.

Dorsal fin

D ihedral

C audal fin

Pec to ra l fin

P e lv ic  fin

Fig. 17 -  Lateral sketch of a  cypselurid (four-winged) flying fish taxiing, with a front view  of its gliding position below, demonstrating the

relative positions of all the fins (Davenport 1994).

The ability to accelerate away from danger very quickly and leave the water entirely 

before re-submerging somewhere else is clearly a useful response to threat, although it 

is much more effective at night when the predator cannot follow the prey’s shadow. The 

typical behavioural pattern of flying fish is as follows. They swim at high speed 

(approximately 10 ms'1 or 20-30 body lengths per second) keeping their fins close to 

their body immediately prior to take-off, leaving the water at about 30°. Momentarily, 

the entire fish is out of the water, before the base of the tail fin re-enters and beats 

rapidly (50-70 strokes per second) during the taxi phase. After this they pitch upwards 

and leave the water entirely, gliding on their wings which are positioned in a slight 

dihedral (V-shape) for superior stability but at the expense of lift. A common
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misconception is that Exocoetidae flap their wings, because of the noise they make 

during flight. However, the whole fish is actually rolling from side to side around its 

longitudinal axis at high frequency. This means that as one wing tilts upwards, the other 

is tilting downwards, ruling out flapping flight (Breder 1930). It has also been 

demonstrated that flying fish will almost always fly into the wind. At heights of below 

0.5 m from the water, it has been shown that the flying fish take advantage of ground 

effect, the generation of extra lift due to the proximity of the wings to the water’s 

surface (Davenport 1994). They can reach heights in the region of 8 m above sea level 

and travel up to 300 m in 30 s in a single jump by repeated taxiing. Controlled re-entry 

is possible because flying fish draw their pelvic fins forwards at the end of flight, 

maximising drag like air brakes on an aircraft.

Another specialisation of these flying fish are their eyes, which are large and the cornea 

has a flattened pyramidal shape to allow focus in both water and air. (The usual curved 

cornea of most fish species would result in short-sightedness in air). Additionally, the 

head of the flying fish has an inverted triangular shape when viewed from the front, 

optimised for looking down at the water during gliding. Unlike other gliders, body size 

varies a great deal within species, ranging from juveniles of a few cm, to examples close 

to 40 cm in length. The wing loading (weight per unit area of wing surface) is 

comparable to that of birds and bats, and in the case of the largest flying fish, similar to 

that of cormorants or pelicans (Davenport 1992).

2.2.2.3 Amphibians

Among amphibians, only frogs have been shown to exhibit aerial locomotion. However, 

this would be classified as parachuting rather than gliding because the glide angle is 

steeper than 45°. The Malayan frog, Rhacophorus nigropalmatus, has lateral flaps of 

skin on its limbs and long, fully webbed toes. The ability of a frog to parachute was 

shown to be primarily behavioural in a study by Cott (1926). He compared a Brazilian 

tree frog, Hyla venuosa, with two comparable European frogs, a common terrestrial 

frog, Rana temporaria, and a tree frog, Hyla arborea. The Brazilian frog was dropped 

from 43.7 m and always managed to stretch its limbs out to the side and keep its belly 

downward, parachuting to land at a point 27.4 m away from the vertical line. The
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European frogs, however, were frantic during their vertical fall, turning over and over 

and landing hard (Oliver 1951). At the time of writing, no data exists to quantify by 

how much this unique morphology is able to reduce the landing impact forces of the 

flying frogs. Emerson and Koehl (1990), experimented with models of the flying frog in 

a wind tunnel, and concluded that their evolution was directed more towards improving 

manoeuvrability than maximising horizontal range. This is contrary to the observation 

by Savile (1962) that steering capability would be of little use because the frog is short

sighted.

Fig. 18 -  Front view  of a flying frog performing a banking m anoeuvre, followed by top v iew s of a flying frog with its w ebbed ap p en d ages  

positioned for flying and nonflying locomotion (Em erson and Koehl 1990).

2.2.2.4 Reptiles

The most famous gliding reptile is undoubtedly the gliding lizard, Draco, with its 

dragon-like appearance when the wings are deployed and its long tail. Fig. 19 shows 

both a dorsal and a ventral sketch of Draco, which - like many other gliders - is found in 

the forests of South East Asia.

banking a n g le

vertical

flying nonflying
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Fig. 19 - Dorsal and ventral v iew s o f Draco (Shine 1998).

An example glide trajectory for a large, Draco fimbriatus (mass 21.6 g), and a small 

species of Draco, Draco melanopogon (mass 2.95 g) are shown in Fig. 20 (McGuire and 

Dudley 2005). Both examples are clearly gliding (the glide angle is shallower than 45°), 

but the smaller of the two species is able to achieve superior performance.
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Fig. 20 -  Exam ple glides for a large, Draco fimbriatus (m ass  21 .6  g), and a sm all sp e c ie s  of Draco, Draco melanopogon (m ass 2 .95  g)

taken from McGuire (2005).
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Most of the world’s specialist gliders live in either South or Southeast Asia, the latter 

being home to a small group of tree snakes that remarkably choose to glide. They take

off by rapidly uncoiling themselves from a branch, and then flatten their entire body 

into a characteristic s-shape as shown in Fig. 21. This presumably maximises their 

surface area for lift generation, enabling them to glide to the ground or another tree to 

avoid predators, or chase aerial prey. In tests from a take-off branch of height 9.62 m, 

the flying snake, Chrysopelea paradisi, reached a minimum glide angle of 28±10° 

(Socha, O'Dempsey et al. 2005).

Fig. 21 -  Flying snak e gliding in its distinctive s-sh ap ed  posture and flattened body, viewed from below. This picture w as taken from

www.flvinQ snake.ora.

2.2.2.5 M am m als

The only mammals capable of flapping flight are bats, which are not as sophisticated as 

birds, and hence tend to be small, slow flyers. Red squirrels are able to parachute in 

much the same way as the gliding frogs, by stretching their legs out and holding them 

steady, maximising the surface area resisting the fall. It is believed that this behaviour is 

a pre-cursor to the evolution of true patagia, as found on flying squirrels and many other 

similar mammals such as colugos and flying oposums (Savile 1962). The patagia is a 

larger and more developed piece of skin attached between the wrists and ankles, and
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enables these mammals to glide at shallow angles, and also make impressive 

manoeuvres such as 180° turns. For these reasons, and because flying squirrels have 

evolved great versatility in locomotory mode (being able to walk, run, climb, jump and 

glide), they have been selected for further study here. In addition, northern flying 

squirrels often weigh over 200g, and similar species in South East Asia (such as the 

Colugo, and Japanese Giant Flying Squirrels) are much larger and heavier, so a robot 

designed using the same principles should be able to carry a reasonable payload and not 

run into any problems with scaling. In the following chapter, (Chapter 3, on page 81), 

experimental work will be described giving the initial reason for their divergence from 

non-gliding squirrels. Afterwards, their patagia will be investigated to see if this is 

noticeably different from normal mammalian skin (Chapter 4, page 111).

2.2.3 Low Reynolds Number, Low Aspect Ratio Aerodynamics

In comparison with high-speed passenger planes, birds, gliding animals and micro-air- 

vehicles (MAVs) are operating at low Reynolds numbers, (normally less than 2xl05). 

Reynolds number is an important dimensionless value, calculated from the density (p), 

viscosity (/x) and relative velocity (V) of a fluid in freestream conditions, and the local 

distance along the surface of interest (x) as shown in Equation 11 (Anderson 1978).

_  p V x  Re, =

Equation 11

Classical aerodynamic theory is accurate for high Reynolds numbers in the region of 

1x10 , but has been found to be inadequate for dealing with low aspect ratio wings (A.R 

< 2) at low Reynolds numbers (Torres and Mueller 2004). A robot that jumps into a 

glide will not reach very high speeds, and hence low Reynolds number aerodynamic 

theory applies. Therefore it is necessary to review this area, which after some brief 

interest early in the twentieth century has only recently begun to receive much attention 

with the introduction of MAVs. The performance, such as maximum lift to drag ratio, of 

standard aerofoil shapes has been shown to be vastly reduced at low Reynolds numbers,
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primarily due to laminar boundary-layer separation (Pelletier and Mueller 2000). The 

free shear layer does not normally change to turbulent flow in time to reattach to the 

aerofoil surface and as soon as this separation point reaches the leading edge, the wing 

is stalled (Mueller and DeLaurier 2003).

Low aspect ratio has some potential advantages, such as the ability to fly more slowly 

without stalling, and a more useful internal volume. Structural strength and impact 

tolerance are also superior. The main disadvantage is the much larger induced drag, 

caused by air leaking over the much larger wingtip. Original work by Zimmerman 

(1935) showed that the performance of low aspect ratio wings was highly dependent on 

planiform shape, that is, the top view of the aerofoil. This work was extended by Torres 

and Mueller (2004), who experimented with the planiform shapes drawn in Fig. 22. The 

most efficient shape for aspect ratios of less than 1 was the inverse Zimmerman at high 

angles of attack. In other conditions, the elliptical shape produced more favourable 

performance.

AR Rectangular Zimmerman
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Fig. 22  -  Low asp ect ratio planiform sh a p es  tested  by Torres and Mueller (2004)at low R eynolds numbers. In this diagram, the top

surface of the sh a p es  is the leading edge.

Torres and Mueller (2004) have also shown that the linear relationship between 

coefficient of lift and angle o f attack no longer applies at aspect ratios below 1.5. Here 

the wing can be seen to have two sources of lift, linear and non-linear. The former is the
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lift considered previously, created by circulation around the aerofoil, and the non-linear 

lift is created when the wing-tip vortices form cells of low-pressure on the top surface. 

As a result, there is a non-linear increase in lift with angle of attack, allowing flight at 

much higher angles of attack before stalling. The location of the centre of lift was 

shown to move towards the rear of the wing with increasing angle of attack.

Present knowledge suggests that at low Reynolds numbers, low aspect ratio wings can 

fly more slowly without stalling and are inherently more stable. However, they are 

strongly disadvantaged by the need to fly at high angle of attack in order to achieve 

acceptable lift/drag performance (Mueller and DeLaurier 2003).

2.2.3.1 Rigid vs. Flexible Wings

At low angles of attack (below 6°) flexible wings do not generate as much lift as rigid 

equivalents. At 15°, the lift coefficient is still 2% lower, but the flexible wing generates 

a lift to drag ratio 1.5% larger due to the high frequency vibrations produced. This 

vibration causes an effective shape change with a beneficial increase in effective 

camber, but a reduced overall angle of attack. With careful optimisation, flexible wings 

have the potential to outperform rigid wings at low aspect ratio and Reynolds number 

(Shyy 2005).

2.3 Robots

2.3.1 Overview of Exploratory Robots

The size-grain hypothesis was introduced in the previous chapter, explaining that as 

robot size decreases, the relatively size of obstacles in its surroundings increases. This is 

particularly relevant to wheeled robots, which although simple to control, struggle to 

cope with irregular terrain because they can only drive over objects of up to half their
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wheel diameter. Some intelligent designs have managed to improve this performance, 

the best known at the time of writing being the SHRIMP ‘high mobility wheeled rover’ 

shown in Fig. 23 (Estier, Crausaz et al. 2000). This is able to pass obstacles of up to 

twice its wheel diameter and even climb stairs thanks to an independently driven front 

wheel on an articulating front fork. This fork has spring suspension to ensure optimal 

ground contact, and will simply rise up and over any obstacle smaller than twice its 

wheel diameter. All the wheels are driven, and the two bogeys on each side have 

deliberately high ground clearance to prevent grounding.

Fig. 23  -  S id e  view  of the 6 w heeled  rover, SHRIMP, d esign ed  at the A utonom ous S y stem s Lab at the E cole Polytechnique Federale de  

Lausanne. The front of the robot is the blue articulated w heel. Below is a seq u e n c e  of im ages dem onstrating how it m an ages  to p a ss

ob stac les of more than its w heel diam eter (Estier 2000).

Walking robots are generally more successful than those with wheels when travelling 

over rough terrain for the same reason that all terrestrial vertebrates (except snakes) 

have legs. Body pitches can be used to swing the front legs up high and onto the top of a 

surface, dragging the remaining legs up behind them. However, traditional walking 

robots have been difficult to control due to the use of separate actuators for each leg and 

others for pitching moments. Much effort has been spent in reducing the number of 

actuators in such robots, for weight reduction amongst other things. One such example 

is the K2T Inc. crab robot, which uses a drive chain of clutches and cables to control 17
T \ v fjoints with 5 motors (Quinn 2002). Following on from these, the Whegs series of 

robots use just 1 drive motor. Whegs, or wheel-legs are driven like wheels, but consist 

of three equally spaced, compliant leg spokes. Two and three axled versions have been
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built, and are able to move quickly over irregular ground. When encountering large 

obstacles, passive gait adaptation is achieved by a compliant drive mechanism, allowing 

the two front whegs to synchronise and hence reach further up and hopefully over the 

obstruction (Schroer 2004).

Fig. 24  -  Top: S eq u e n c e  o f im ages show ing the W h egs VP robot climbing an ob stacle 7 inches high. Bottom: Diagram show ing how  

com pliance in the drive o f the w h egs allows for superior climbing perform ance (Schroer 2004).

The locomotion of walking robots resembles that of some insects, such as cockroaches. 

However, there is still a maximum size of obstacle which they can successfully get 

over, and this is dependent on the leg length. Many insects are also equipped with an 

alternative locomotory mechanisms, such as sticky feet for climbing vertical walls or 

walking upside down, wings for powered flight or a jumping mechanism. Jumping 

mechanisms were introduced in some detail in section 2.1.3 of this thesis (beginning on 

page 26). Recently, jumping has been introduced to some robots as an alternative means
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of locomotion over rough terrain; examples are described in the following section. 

Another obvious solution to the rough ground problem is to fly over it, and many small 

flying robots, (micro air vehicles: MAVs) have been developed, which will be discussed 

in Section 2.3.3, on page 70. Finally, the latest planetary exploration robots to be 

successfully operated away from Earth will be introduced in Section 2.3.4 (page 73).

2.3.2 Jumping Robots

Although kangaroos and most of the jumping insects reviewed in this thesis have two 

jumping legs, they are not used independently in this gait and so for robotic design the 

system should still be considered as a monopod. Very few robots have been developed 

that can jump, with the majority of research effort in this area focussing on the complex 

stability control required for a device to make successive hops. At the time of writing, 

all of the projects reviewed have investigated one-legged models of jumping, whether 

the robot be designed to pause and leap or hop around continuously. Of course, the only 

possible way for a monopod to move around is by jumping. The robots will be 

classified as either ‘pause and leap* or ‘continuous hopping’, depending on which of 

these two jumping strategies found in nature that they more closely resemble.

2.3.2.1 ‘Pause and Leap’ robots

2.3.2.1.1 JPL Hopper

The most sophisticated robotic jumper to date is probably the ‘Minimally actuated 

hopping rover for exploration of celestial bodies’ built in collaboration with NASA in 

the Jet Propulsion Laboratories (JPL) at the California Institute of Technology (Hale 

2000). Its designers experimented with alternative jumping mechanisms, with the 

underlying goal of minimising the number of actuators. They showed that it was 

possible to use a single actuator to control both the jumping and directional operations, 

as well as being able to pan an on-board camera. In the final design, the energy for
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jumping was stored in the tension of a steel tension spring, mounted in a 6-bar linkage 

geared mechanism.

Fig. 25  -S k e tch  show ing the mounting of the stee l tension spring horizontally within a  6-bar linkage m echanism  in the JPL hopper. (Hale

2000)

The reason for the design of this linkage is to produce a steady build up of leg thrust 

with increasing leg extension, which reduces the chance of premature lift-off (after 

which all further stored energy in the system is wasted). This robot was designed for 

space applications, and as such, the actual jumping performance on earth is 

unexceptional. However, the vertical height reached of 0.9 m, and the consequent 

horizontal range o f 2.0 m would both be improved if jumping was taking place on a 

planet or moon with a lower gravitational field. Additionally, the final design shown 

does seem to have a second actuator for the self-righting mechanism (Hale 2000; 

Burdick and Fiorini 2003).

GfesiBwi ^
Traaunis5:<H\^sy
Clutch

Foot

Fig. 26 -  S ch em atic drawing of the JPL hopper. This is a single-actuator jumping robot with m ass  concentrated in the motor and 

transm ission, which is com p ressed  from the top right to the bottom left of this figure. Take-off an gle is determ ined by rotation of this

w hole m echanism  relative to the foot. (Hale 2000)
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2.3.2.1.2 Monopod

Another robot to store energy in metal coil-springs (this time in compression), Monopod 

was developed by Allison (2002) at the University of Utah in order to compete in three 

events at the 2002 Robo-Olympics: the high jump, long jump and obstacle course. The 

spring is compressed by driving a ball-screw mechanism with an integral clutch 

allowing rapid release o f this relatively massive element upward and away from the 

foot. This robot does not need to be remote controlled as it is complete with a 

controlling microprocessor, all the necessary sensors and an onboard power source. This 

robot weighed 2.4 kg, but was still able to achieve a range of 30.5 cm while reaching a 

maximum vertical height of 51 cm in the process.

Fig. 27  - Monopod Jumping Robot (Picture courtesy of J a m es Allison)

2.3.2.1.3 Jumping mini-Whegs

A third robot to store its energy in a metal coil-spring (in tension) is Jumping Mini- 

Whegs™ (Fig. 28). This robot is particularly versatile because jumping is an additional 

transport mode to the walking wheel concept of the Whegs series of robots, as 

introduced previously in this chapter. These allow it to move quickly over smooth 

ground, but it can also get over larger obstacles thanks to its jumping apparatus. A 

motor closes the four-bar linkage shown in Fig. 28, causing the coil spring to extend.
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This is then released automatically when the spring reaches full extension. The current 

evolution of this design weighs 191 g, and is able to reach a peak jump height of 19 cm. 

It is also possible to steer the whegs at the front of the robot (like car wheels) to achieve 

direction control during either form of locomotion.

Fig. 28 -  Jumping Mini-WhegsTM. Picture copyright of C a se  W estern R eserve Universtiy (2006).

2.3.2.1.4 Scout robot

Another jumping robot that adopts the ‘pause and leap’ strategy was built as a design 

solution to the tricky problem in robotics of climbing stairs. Stairs provide a difficult 

challenge to robots that are intended for search and rescue in hazardous urban 

environments. Stoeter and Papanikolopoulos (2005) investigated ways of closing the 

control loop to allow miniature scout robots to be fully autonomous in this application. 

A 12 cm long cylindrical robot was built with toothed wheels at each end, which stores 

energy by bending a sprung metal foot for jumping (Fig. 29). Despite its small size, it is 

able to carry a camera and analogue video transmitter, but with an average staircase 

having 13 stairs it is a slow climber due to the time required to winch the foot in. (This 

mechanism is not described in the paper, but it is presumably the traditional winch 

design of a wire - attached at one end to the foot - being wound around a motorised 

pulley.) Servomotors automatically control the launch angle of the robot, which 

deliberately positions itself a distance back from the step equivalent to half of its 

horizontal range, such that it will be at the peak of its trajectory as it reaches the step
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(Stoeter and Papanikolopoulos 2005). It can successfully climb most staircases owing to 

a peak jump height capability of 30 cm.

Fig. 29  -  Scout robot (Picture courtesy of University of M innesota)

2.3.2.1.5 Deformable jumping robot

So far all the jumping robots reviewed have been able to jump by storing energy slowly 

in the bending of spring metal, and releasing it rapidly to amplify the power. To date, 

only one jumping robot has been developed which stores energy in an elastomer, which 

was developed at Ritsumeikan University in Japan and will be referred to in this thesis 

as Deformable. This circular robot (40 mm diameter) is made up of shape memory 

alloys (SMA), which can be contracted by applying appropriate voltages to one half of 

its actuators, causing it to buckle and storing energy in its rubber shell. Extending these 

SMA actuators again causes the rubber wheel to quickly return to its original form and 

the resultant shift in centre of mass causes it to leave the ground, reaching a peak 

clearance height of 8 cm (Fig. 30). However, the application of this technology is so far 

limited given that it only weighs 3 g but requires a much heavier cable tether to supply 

the necessary voltage to the SMA actuators.
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Fig. 30  -  D eform able jumping robot reaching a clearance height of approximately 8  cm . (courtesy of Ritsumeikan University, Japan)

2.3.2.1.6 Sandia hopper

The US Sandia National Laboratory have developed a ‘hopper’ that is powered by the 

combustion of hydrocarbons that fire a piston into the ground to generate the take-off 

force (Fig. 31). Like the above NASA robot, this is a ‘pause and leap’ jumper, trying to 

maximise its jump energy, but then hitting the ground in an uncontrolled landing and 

self-righting afterwards. It is entirely contained inside a small, plastic shell and shaped 

something like the children's toy Weeble®, so that it naturally rights itself after each 

jump. In this position, the piston points towards the ground but slightly askew from the 

vertical. This means that directional control can be achieved by rotating these internal 

mechanisms according to a compass. The combustion chamber then fires, the piston 

punches the ground, and the hopper leaps. The performance claimed for this robot is a 

jump height o f just under lm, and that a full tank of gas (approx 20 grams of fuel) is 

enough for the jumper to travel up to five miles. The versatility of this design is 

demonstrated by the fact that an alternative version can be made to jump 3 to 5 metres 

in the air, by combusting a larger volume of fuel for each jump. The advantage of this 

combustion design comes from the high energy density o f hydrocarbons, which are 

compatible with small size applications and allow much higher jumps to be achieved 

than would be possible with simpler mechanical spring systems. However, even though 

planetary exploration is suggested as a possible application, no mention is given to the 

fact that the fuel requires an oxygen based atmosphere to bum. An oxidizing agent 

could be used as fuel in a reducing atmosphere however, or an explosive in an inert
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atmosphere or vacuum, but the life o f these robots is limited by the finite amount of fuel 

in the tank (German 2000).

Fig. 31 -  Photo o f the working part o f the Sandia hopper. This is mounted in a hem ispherical shell which is w eighted like a W eeble®  toy

to en sure that the piston alw ays fires downwards for jumping.

2.3.2.1.7 Airhopper

The other jumping robot to store its energy for jumping in a fluid is Airhopper (Tokyo 

Institute of Technology), which relies on the expansion of compressed air to rapidly fill 

and extend pneumatic cylinders. Each leg is made up of a four bar linkage and driven 

by two individual pneumatic cylinders (Fig. 32). This robot was designed to be use in 

earthquake search and rescue operations, and is able to clear a height of 68 cm even 

though it weighs 20 kg, far heavier than any of the other jumping robots reviewed 

(Kikuchi, Ota et al. 2003).

Page 65 of 228



The mechanics and energy economy of animal jumping and landing applied to autonomous robots

Fig. 32  -  Airhopper jumping robot. Photo courtesy of the Tokyo Institute of Technology, Japan.

2.3.2.1.8 Pendulum

The final ‘pause and leap’ style jumping robot studied at the time of writing this thesis 

jumps by rapidly swinging a pendulum, and so is in some way comparable to the ‘flip’ 

jumpers discussed in Section 2.1.3.1.3, page 34. Fig. 33 shows a sketch of this robot, 

which sits on a flat foot, and has a pendulum arm mounted at the top of a central pole. A 

servo motor swings the pendulum which causes the whole structure, (720 g), to leave 

the ground by 6 cm. A similar robot successfully employed multiple counter-rotating 

pendulums to climb some small steps. However, it should be noted that the pendulum 

robots did not have their power sources onboard, and had no control over their direction 

(Hayashi and Tsujio 2001).
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Fig. 33  -  Pendulum driven jumping m achine (Hayashi and Tsujio 2001)

2.3.2.2 Hopping robots

Some research has been carried out that looks into robots that hop continuously, rather 

than pausing and leaping. The advantage of this system is that the mass is not such a 

critical issue, allowing more batteries to be mounted on-board. Alexander (1990) shows 

that running animals can save energy and reduce unwanted heat production by bouncing 

along on springs, principally the tendons (Alexander 1990). Further energy savings are 

made from the use of return springs that halt the legs at the end point of the swing, and 

by using compliance in the feet. Fig. 34 shows how return springs would look on a 

hypothetical robot. All of these ideas could be applied in robotics, but so far most of 

these projects seem to have focussed on the complex stability-control operation required 

for balance. This means that for every hop in the sequence, the centre of mass and the 

position of the leg must be accurately controlled during flight ready for impact (De 

Man; Zeglin 1998; Kuswadi, Ohnishi et al. 2003; Vermeulen 2003). As a result, none of 

the machines are fully autonomous, with some needing help starting and others 

requiring external power supplies, etc. The Kuswadi design, for a specific example, 

resembles a pogo stick but requires an umbilical power cable to allow pneumatic 

actuation to be employed. In its current state it is only able to rotate around a central 

axle due to a rigid linkage designed to keep the robot upright.
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Fig. 34  - Diagram show ing how return springs might b e used  to help maintain the swinging of a leg in a hypothetical robot.

The design of a monopod robot for continuous and stable forward hopping requires 

accurate control of the leg angle. It is therefore necessary to maximise the ratio of body 

inertia to leg inertia in order to reduce body pitching during the leg swing, because only 

the relative angle between the body and the leg can be actuated. As a consequence of 

this, and a need to keep the overall mass of the system as low as possible, most of the 

hopping robots look very similar: a horizontally long body with the mass concentrated 

at the ends, as in Fig. 36 (Gregorio 1994). This weighs 15 kg and a tethered running 

speed of 1.2 ms'1 is reported.

Fig. 6  - Photograph of an exam ple hopping robot, which typically com prise of a single leg supporting a horizontally orientated body. This 

exam ple is called Prismatic Planar Hopping Robot and w a s  d eveloped  in the Department o f M echanical Engineering at McGill University,

Montreal, C anada. (Gregorio 1994).
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Another such hopping robot is the 3D Bow Leg Hopper, which takes advantage of a 

flexible, arc-shape leg to store energy from each landing as it hops continuously. The 

centre o f mass is right above the leg for accurate control of the body with limited 

actuation. The robot uses feedback from distance sensors and gyroscopes to control 

servo motors that move counterweights in order to actively balance the body during 

flight (Zeglin 1998). Experiments with this robot mounted on a boom as shown in Fig. 

35 reported recovery of 70% of its energy between successive hops reaching a peak 

height of 50 cm. The total mass of this machine was 4 kg including 3 kg of ballast boom 

weight and a running speed of 1 ms'1 has been achieved.

Fig. 35  -  The bow  leg hopper. (Zeglin 1998).

Massachusetts Institute of Technology’s Uniroo is a hopping robot has been been based 

closely on the kangaroo (see Fig. 5). Unlike many of the other hopping robots, Uniroo 

is not symmetrical, and has a heavy, articulated leg (as opposed to having linear 

actuation). A further difference is that the hip is offset from the centre of mass and it has 

a tail, which is constrained to one degree o f freedom. A natural looking pitching was 

observed during locomotion as a result of the heavy leg swinging between strides. The 

total weight was 6.6 kg and some of the resulting kinetic energy was successfully 

recovered from each landing thanks to coil springs mounted in the ankles. Forward
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velocities of up to 1.8 m s'1 were achieved during the experimentation, faster than the 

other two hopping robots introduced (Zeglin 1993).

2.3.3 Micro Air Vehicles

The surface detail o f the irregular terrain to be traversed will influence the precise 

orientation of the robot foot immediately prior to take-off. Pause and leap jumping

accordingly but this might prove difficult for a hopping robot bouncing along at high 

speed. Likewise, the viscosity of the surface or areas of liquid could pose problems for a 

jumping robot that might require careful path planning to avoid. The performance of a 

micro air vehicle, however, is not dependent on the quality of the substrate it is flying 

over.

Fig. 36  -  MIT's Uniroo hopping robot (courtesy M assach usetts  Institute of Technology).

robots should be able to compensate for this by adjusting their take-off angle
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The flight of MAVs occurs at low Reynolds numbers, and increasingly also uses low 

aspect ratio wings. Section 2.2.3 describes low-aspect-ratio, low Reynolds number 

aerodynamic theory, and can be found on Page 54. Current MAV designs can be 

separated into three distinct categories: Firstly, there are traditional fixed wing planes, 

which generate lift when propelled through the air as described in the aerodynamic 

theory in section 2.2.1 on Page 43. Some effort has been put into trying to recreate 

flapping flight, commonly found in birds and insects, in MAVs but with only limited 

success. Finally, there are omithopters with rotating wings, which generate both thrust 

and lift.

Fig. 37 shows a sketch of five fixed-wing MAVs drawn approximately to scale, where 

the wingspans of the Sender and Dragon Eye are just over a metre. This image, and 

much of the information presented from this paragraph was published in a review paper 

by Mueller and DeLaurier (2003). Credit should be given for the inspiration of many of 

these designs to initial development by generations of model aircraft hobbyists. The 

Sender was designed with the intention of full autonomy, with an onboard global 

positioning system (GPS). Such autonomy was never achieved, but it could fly at a 

cruising speed of 90 km/h for up to 2 hours, powered electrically. The Dragon Eye, 

currently being manufactured by Aero Vironment Inc. and BAI Aerosystems is also 

powered electrically, and can fly for 30 -  60 minutes at 65 km/h. This vehicle 

successfully controls its own flight using GPS for navigation, and can also carry a 

payload such as camera. The high-speeds required by these larger MAVs in order to fly 

hinders their usefulness for exploration of clustered environments, such as a forest. The 

MITE 2 is smaller, also electric, and can fly at 30 km/h carrying a useful payload with 

its wingspan of 36 cm. The Black Widow, developed by Aero Vironment Inc. is one of 

the smallest MAVs that can carry a useful payload. It has an un-laden weight of 80 g, 

and a wingspan of 15.2 cm. It is able to fly at 50 km/h whilst carrying a colour video 

camera and transmitter for 30 minutes before its batteries run out.

Equally small, but with a mass of just 40g, is the flexible winged MAV developed at the 

University of Florida. All the examples discussed so far have had rigid wings. The 

advantage of the flexible wing is its superior adaptation to stall but it can also change 

shape which makes it more agile. Powered electrically, it can fly at speeds between 20 

and 40 km/h for about 15 minutes, carrying both a camera and transmitter (Shyy 2005).
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NRLSENDER

NRL MITE 2

BLACK WIDOW MAV

NRL DRAGON EYE

UF MAV

Fig. 37 -  S k e tch es  of so m e MAVs drawn approximately to sca le , w here the w ingspans o f the S en d er and Dragon Eye are just over a 

metre. The sm allest is a flexible winged MAV developed  at the University of Florida, with a 15.2cm  span. (Mueller and DeLaurier 2003)

Two Omithopters that have been flown successfully are the Harris/DeLaurier and the 

MicroBat. Only the former is able to carry a payload of up to 227 g, and its 

reciprocating engine rotates its wings at 3 Hz, enabling 3 minutes of flight at 55 km/h. 

The MicroBat weighs in at just 12 g and hence it can fly much slower, just 20 km/h. 

The frequency of revolutions is 12 Hz, but the electric power source can only maintain 

flight for 6 minutes and the throttle, elevator and rudder are all manually controlled. 

These omithopters highlight one of the main problems with the MAV concept, which is 

that they have high power consumption, restricting their use in fully autonomous 

exploration applications.
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2.3.4 Planetary exploration rovers

Fig. 38  -  An artist im pression of how the exploration rovers. Spirit and Opportunity would look like on Mars. C ourtesy NASA/JPL-Caltech

The only planetary exploration robots operating at the time of writing this thesis were 

built by NASA (National Aeronautics and Space Administration, USA), who 

successfully landed two rovers, Spirit and Opportunity onto Mars in January 2004. 

These identical six-wheeled buggies are 1.6 m long, and were deliberately landed on 

opposite sides of the Red Planet, with their primary objective to look for geological 

evidence that Mars once had enough water to support life (Fig. 38). These Rovers are 

powered by large arrays of high performance solar panels, storing electrical energy in 

two 8-amp-hour lithium batteries. Early in their life, these arrays were able to produce 

about 900 watt-hours o f energy per Martian day, or sol. (This is about 40 minutes longer 

than an Earth day). Both Spirit and Opportunity have surpassed their life expectancy, 

and by strategically driving them through solar-rich areas, the panels are still providing 

up to 410 watt-hours per Martian sol. However, this power requirement inevitably limits 

the potential area which can be explored, something that was already limited by the 

speed of the robots. Since its landing, Spirit has recorded a wheel odometry of 6896 m 

in 1087 sols, which is not quite the same as total distance travelled which would assume 

no loss of traction. Some wheel slip is highly likely on the sandy Martian surface, but
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even if ignored, this rover has only managed to travel 6.3 m per sol. Opportunity has 

managed slightly better, travelling 9918 m in 1068 sols at an average of 9.3 m / sol 

(NASA 2007). The implication of this slow rate of progress for planetary exploration 

becomes more apparent when it is remembered that such wheeled rovers must 

manoeuvre around any obstacle larger than their own wheel diameter. There is certainly 

room for improvement in the design of robot locomotion for space applications, and so 

it is worthwhile considering as a potential application for the jumping robot to be 

developed in this research.
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(Glaucomys sabrinus)

Chapter 3 

Take-off and landing forces and the evolution of 
controlled gliding in northern flying squirrels 

(Glaucomys sabrinus)

At the outset of this research, it was decided that examination of animal jumping and 

landing should provide the basis of a robot design for traversing irregular and unfamiliar 

terrain. Of all the animals considered during the literature review, Flying squirrels 

seemed most worthy of additional investigation -  in part due to a lack of present 

literature explaining the reason for the evolution of their unique gliding capabilities. 

Flying squirrels, like all gliding mammals, can utilise many forms of locomotion, 

including bounding, jumping, gliding and climbing. Any robot that could rely on such a 

range of transport modes, and particularly the ability to climb, would clearly be well 

suited to rough terrain exploration. However, a fully autonomous robot for use in space 

applications, for example, has the additional, important consideration of energy 

economy. Where time is not a constraint, jumping allows energy to be stored very 

slowly, allowing even the most patchy power resource eventually to prime the jumping 

mechanism, which amplifies the power in a quick release jump. Once airborne, gliding 

could potentially extend range, and should simultaneously reduce landing impact force 

at no additional cost. Therefore, it was decided that the research effort into both flying 

squirrels, and the design of an autonomous robot, should focus on jumping and gliding. 

This chapter has also been published as a paper in the Journal of Experimental Biology 

(Paskins, Bowyer et al. 2007).

3.1 INTRODUCTION TO STUDY

Gliding mammals can generally be found in large forest habitats, and are particularly 

prominent in the South Eastern Asian rainforests. An interesting ecological fact is that 

the spacing between trees in these forests is significantly more distant than in the other
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rainforests of the world. This seems to have favoured the evolution of gliders rather than 

animals with prehensile tails, such as monkeys which prevail in Africa and South 

America. There are also two gliding mammal species in North America, northern flying 

squirrels, Glaucomys sabrinus, and southern flying squirrels, Glaucomys volans. Flying 

squirrels can certainly be considered to be a successful species, tending to live up to 

50% longer than their less aerodynamically sophisticated cousins. They are capable of 

fast arboreal transport in often steep areas of woodland which provides a difficult 

environment for other animals to traverse.

There are three principal hypotheses to explain the divergence of flying squirrels from 

other types of squirrel. The first, suggested by Norberg (1985), is that gliding may have 

evolved as a means of reducing the energetic cost of foraging. The squirrel can jump 

and glide from one tree to the next, enabling it to cover greater distances within the 

canopy more quickly than would be possible by climbing down and moving across the 

forest floor. Scheibe et al. (2006) suggested that rather than reducing cost of transport, 

gliding may offer a means of foraging over a larger area in a certain time, making them 

better able to exploit a patchy food resource than non-gliders of similar size. The third 

hypothesis is that gliding evolved primarily as an escape mechanism (Scheibe, Figgs et 

al. 1990; Keith, Scheibe et al. 2000). Tree squirrels react to disturbances by moving to 

the opposite side of their tree, whereas flying squirrels climb upwards and then glide to 

another tree. However, Scheibe and Robins (1998) also noted that this behaviour may 

increase susceptibility to attack from their most likely predator, owls. A fourth 

hypothesis is proposed: that the patagia, the flexible membranes which squirrels stretch 

by fully extending their forelimbs and hind limbs, evolved to reduce or control landing 

forces. Evidence to support this comes from work by Caple et al. (1983) who calculated 

that increasing the amount of lift available to a body from 0 to 5% would not noticeably 

lengthen the jump nor allow much turning, but would give the animal significantly 

improved control around the pitch and roll axes. Norberg (1985) argued that although 

this is true if the lift to drag ratio is unaltered, if the incremental increase was in the 

aspect ratio (a lengthening of the wings), then the range would in fact increase 

proportionally and so this should not be disregarded. Of course, none of these four 

hypotheses are mutually exclusive.
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This chapter will investigate these hypotheses through experimental determination of 

the performance and behaviour of these animals. By measuring take-off and landing 

forces, it is proposed to quantify the advantage flying squirrels can achieve as a result of 

their unique morphology. The outcome of these measurements will be directly affected 

by substrate compliance. The majority of previous studies measuring ground reaction 

forces used rigid force measuring devices, while Demes et a l (1999) and Bonser (1999) 

investigated the effects of substrate compliance on ground reaction forces. The former 

found that take-off forces were higher than landing forces when testing seven primate 

species of varying body sizes using compliant apparatus, contradicting previous studies 

based on rigid platforms. Some of the take-off force is used in bending the compliant 

branch before toe-off, whereas the reaction force on landing is damped as the substrate 

yields in the direction of motion, allowing more time for deceleration. Likewise, Bonser 

(1999) showed that the magnitude of landing forces for starlings was lower than their 

take-off forces. He proposed both that the birds used their wings to decelerate during 

landing, and that additional energy is dissipated in deflecting their compliant perch 

during take-off.

In arboreal locomotion, flying squirrels must generate higher take-off forces when 

jumping from narrow (and hence compliant) tree branches, and encounter their highest 

impact forces when landing on rigid tree trunks. Compliant substrates have been 

instrumented for this study, and so take-off forces are expected to exceed landing forces 

over short distances. At higher ranges, the squirrels will have accelerated due to gravity 

and their landing force will likely increase unless the squirrel can use its morphology to 

slow itself aerodynamically. Therefore the hypothesis that gliding in the squirrel 

evolved primarily to enable aerodynamic control of its landing speed can be rejected if 

measured landing forces continually rise at high ranges.

It is possible for animals to utilise stored elastic energy within a branch by timing their 

take-off with its motion. However, Demes (1995) did not find primates to take 

advantage of this, which supports Alexander’s (1991) proposition that they would not 

intentionally recover this energy. Therefore flying squirrels are not expected to take 

advantage of the recoil of the instrumented branch in this study either. However, they 

have been observed using a bounding gait before launching with both fore and hind feet 

together at the end of a platform just before take-off (Keith, Scheibe et al. 2000). It is
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probable that this bounding is used to maximise take-off velocity and hence increase 

range.

The northern flying squirrel {Glaucomys sabrinus) is the larger of two species of North 

American flying squirrel, although still much smaller than some species found in S.E 

Asia (Ando and Shiraishi 1993). Flight is made possible by the presence of patagia, a 

morphological feature which has evolved independently several times in vertebrates, the 

earliest known being from the Mesozoic era (Meng, Hu et al. 2006). By manipulating 

their limbs, flying squirrels are able to actively modify the shape of this lift-generating 

surface during flight. Thorington and Heaney (1981) compared body proportions of 

flying squirrels with tree squirrels to determine what morphological changes might be 

attributed to gliding. Increased leg length allows more energy to be expended during 

take-off, offering superior horizontal range. In comparison with other similar-sized 

squirrels, the forelimbs of flying squirrels are significantly longer, a trait which has 

almost certainly evolved to improve aerodynamics during gliding (Essner 2002). This is 

further improved by the styliform cartilage, a flexible projection from the wrist held 

upward from the rest of the lift surface during gliding. This combines with the manus 

(or hand, which points ventrally towards the mid-line of the squirrel) to form a wing-tip 

very similar to a NASA designed winglet as shown by Thorington et al. (1998), who 

proposed that it reduces induced drag by diffusing and directing vortices away from the 

patagia. Smaller flying squirrels tend to have greater manoeuvrability and agility, 

whereas the larger species must glide faster to achieve the same glide ratio.
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3.2 MATERIALS AND METHODS 

3.2.1 Animals

Study animals came from a laboratory colony of northern flying squirrels housed in the 

Department of Biology at Southeast Missouri State University. Two young females and 

a young male were chosen because they were consistent performers in previous 

kinematic work. All animals were bom in the same week and were approximately 27 

months old. The mass, wing span and wing area of each animal is given in Table 1. 

Other members of the colony were required for other projects and were not available. 

The colony had been maintained on a diet of pecans, walnuts, sunflower seeds, 

mushrooms and birdseed in a large, temperature-controlled room (20°C) for five years. 

The room is on a continuous 12 hour light/dark cycle. There are various branches and 

sufficient space for jumping and gliding to take place. Initially, measurements were 

made in the squirrel lab, but longer glides were measured i n a 7 m x  1 4 m x 7 m  bam on 

the university farm.

3.2.2 Apparatus

As flying squirrels often land on tree trunks, allowing vertical variation in contact point, 

a vertical landing pole was used, based on the design of Demes et al (Demes, Jungers 

et a l 1995; Demes, Jungers et al 1996; Demes, Fleagle et al 1999). The squirrels were 

acclimated to it for several months prior to experimentation and used it regularly. It was 

constructed in two pieces: a 1.52 m long PVC tube (114 mm DIA) covered in carpet and 

marked at 10 cm intervals (for calibration and image analysis), mounted 80 cm of the 

way up a 2.41 m long galvanised steel tube (23 mm DIA). A concrete base secured this 

steel tube which had four strain gauges (FLA-2-11-3L, TML, Tokyo, Japan) equally 

spaced around its circumference and aligned vertically (Fig. 39). A half-bridge circuit 

was used for each tension/compression pair so that force parallel and perpendicular to 

the squirrel’s direction of motion could be determined. The compliance of the pole was
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measured to be 1.5 mm/N at the free end, gradually decreasing down the pole, reducing 

to 0.2 mm/N close to the fixed end and the resonant frequency was 2.2 Hz.

Carpet /  Strain gauges 
/ in two ,

/  perpendicular 1
■ oairs —

Rope

kill! 3 Strain gauges 
in two
perpendicular
pairs

Landing pole
Fig. 39  -  A diagram of the experimental set-up, show ing the instrumentation used  to m easu re take-off and landing forces including the 

carpet-covered landing pole, the rope-covered take-off branch and the location of the strain gau ge pairs on each . A lso show n are the 

m easu rem en ts u sed  to an a lyse the results, relative to an approximate squirrel trajectory: A -  The controlled horizontal d istance betw een  

the end of the take-off branch and the vertical landing pole, B -  The total d istance covered in the glide calculated from the exact

horizontal d istance (C) and the drop (D).

For the take-off branch, a horizontal cantilevered beam was designed to mimic a tree 

branch because Vemes (2001) observed that northern flying squirrels predominantly 

launched from a crouched, horizontal position. Four standard linear strain gauges (CEA- 

13-240UZ-120, Vishay, Basingstoke - UK) were mounted in 2 pairs, 50 mm from the 

fixed end of the 10 mm square aluminium bar (Fig. 39) and connected in a half-bridge 

circuit. Alignment was simplified because the chosen gauge width was almost as large 

as the 10mm width of the aluminium bar, but not critical because any cross-talk was 

eliminated during calibration. The aluminium branch was covered by tightly wound 

rope to simulate the surface of a tree branch. The strain gauges were protected using 

polystyrene foam, which was itself covered by plastic. A length of 4 x 9 cm timber was
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fixed vertically to the wall, and drilled with mounting holes every 10 cm to allow height 

adjustment of the launch branch. The design of the branch was such that the compliance 

was similar to that of the landing pole, measured to be 1.9 mm/N at the free end and 

decreasing as would be expected towards 0.0 mm/N at the fixed end. The resonant 

frequency of the take-off branch was 17.3 Hz. The signal output from the strain gauges 

on both instruments were amplified using AD524 chips or equivalent and the sampling 

rate was 250 Hz. There was no need to acclimatise the squirrels to the take-off pole as -  

unlike the landing pole -  they had no choice over whether or not to use it.

3.2.3 Experimental Design

The take-off branch was raised as the experimental range increased such that the angle 

between the tip of the branch and the base of the landing pole remained consistent at 

approximately 55°. This experimental design was chosen because it was not possible to 

set-up short jumps at high altitudes with the equipment and in the locations available, 

and the squirrels were unable to reach the landing pole unless given sufficient starting 

height. Animals were released individually onto the instrumented branch and responded 

by running along the branch, usually pausing and then leaping to the instrumented 

landing pole. The horizontal range was increased progressively in 0.5 m increments 

above a minimum of 0.5 m to ensure the capture of the leap to glide transition point 

below which squirrels merely leap around, and above which the flying squirrels achieve 

aerodynamic advantage over other types of squirrel. Analysing this range of arboreal 

locomotion was considered to be more critical for investigating the initial divergence of 

flying squirrels.

Three digital video cameras (Canon GL2, Sony TRV 108, and Panasonic NV-DS55B) 

were used to film jumps. The first was positioned to capture take-off angle, the second 

to capture lateral landing angle and the third to capture a ventral view of landing. In the 

large squirrel bam it was not possible to mount a camera level horizontally with the 

take-off branch, so the resultant images represent frames perpendicular from the known 

camera angle. A minor trigonometric correction was therefore employed. Horizontal 

measurements were unaffected but it was necessary to adjust all vertical distances by 

dividing them by the cosine of the projection angle between the camera and the branch.
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3.2.4 Calibration

With strain gauges, large changes in the external environment are potentially 

significant, so a record of temperature was kept using two I-buttons (Maxim Integrated 

Products, California), fixed to the top and bottom of the 4 x 9 cm timber stud 

respectively. These recorded temperature every hour. This daily verification of 

calibration was particularly important because testing was carried out in two contrasting 

environments; a temperature-controlled laboratory, and a hot and humid metal bam.

Only the landing forces were measured by converting the output from strain gauges into 

force, for which a static calibration was performed daily by applying forces to different 

points along the pole. Resultant steady signals were used to draw calibration graphs that 

established the force constant, k, where F = kx, F is force (N) and x is the measured 

strain signal (V). Forces equivalent to between 1 and 10 bodyweights were applied 

producing good linearity across the full range of marking points on the pole. (On 

average, the square of the Pearson product moment correlation coefficient, r2 =1.00 in 

line and 0.99 transverse to the expected direction of motion.) Position of the animal 

along the instrumented poles was taken into account and a linear equation allowed the 

correct calibration to be used at any point. The cross-talk magnitudes were 13% and 

17% accordingly for parallel and transverse forces. Cross-talk, in this context, is the 

unwanted output signal measured on one pair of strain gauges for a force applied 

perpendicularly. The frequency response of the equipment was sufficient to measure 

impulses generated by the squirrels. The effect of temperature on the calibration was 

found to be unimportant, as although it varied considerably between the two test areas, 

calibration graphs remained consistent throughout the study.

3.2.5 Results processing

Although both could measure force in two directions, neither the take-off branch, nor 

the landing pole were capable of measuring forces along their long axes. To overcome 

this limitation, video footage from laterally positioned cameras was recorded to 

determine the angle of action of the force, which allowed the force vector to be resolved 

in 3D from the two measured force components. This was an acceptable procedure for 

the landing forces because the squirrels were arriving at angles perpendicular to the
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pole. For the median data point at medium range, 1.5 m, a trigonometric calculation 

showed that a 5° shift in measured landing angle would cause a 10% change in the 

resultant force. During take-off the squirrels were consistent in their behaviour, always 

choosing to move towards the free end of the branch and jump away in the same 

direction. However, the resulting shallow take-off angles mean that a 5° measurement 

error leads to an unacceptable 39% change to the median resultant force at 1.5 m. 

Hence, resultant take-off forces had to be calculated by integrating the output from the 

strain gauges with respect to time, so that measured take-off velocity could be used to 

determine the acceleration. This was multiplied by the known mass of each flying 

squirrel for all jumps to calculate the resultant force. The frame rate of the lateral take

off camera was 30 fps so an estimate of velocity between the first two consecutive 

frames after toe-off could be obtained by measuring the change in position of the centre 

of mass. The resultant force calculated by this method is the total force required to 

accelerate the squirrel to its actual take-off velocity based on its known acceleration 

profile. This method does not take into account losses caused by deforming the branch, 

but is completely independent of the accuracy in measurement of take-off angle.

The video records were digitised using edge-detection software which tracked the 

outline of the squirrel in each frame of a sequence of images from the laterally 

positioned camera (LabView -  National Instruments, Austin TX). The tail was 

deliberately excluded from this outline, because it constitutes only a small percentage of 

the total weight of the animal and was often dorsally flattened and moving at high 

velocity outside the plane of the images. The centre of the region enclosed by the lateral 

outline of the squirrel was used as an approximation for its centre of mass and could be 

tracked from frame to frame, enabling both the landing point on the pole, and the angle 

of impact to be determined. Hence the resultant reaction force for each landing squirrel 

could be calculated.

To measure the take-off angle of the squirrel, principal components analysis was 

applied in the Lab View squirrel tracking program to find the best-fitting ellipse to the 

outline detected in each frame. The take-off angle was taken to be the angle between the 

major axis of this ellipse and the axis of the branch in the final frame before toe-off. 

This program was also used to estimate the change in pitch during the landing sequence 

shown in Fig. 40. Another program was written in NI Labview to determine the wing
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span and wing area of each squirrel from ventral images of a glide. Lateral images were 

used in conjunction with these to ensure that only frames in which the squirrels were in 

plane with a calibration bar were used for these measurements.

Fig. 40  -  V ideo stills of the squirrels in the three postures observed. A show s the forelimbs being abducted prior to th e hind limbs leaving 

the substrate during take-off, and how the take-off angle, 0, is calculated a s  the angle b etw een  the branch and the major axis of the best- 

fitting ellipse to the squirrel (excluding its tail). B sh ow s normal gliding flight, C sh ow s the landing from the side and D show s a ventral 

view  landing on the pole on the left. In C, the last few fram es of a landing se q u e n c e  have b een  superim posed onto on e im age to 

dem onstrate the landing behaviour, although the penultimate frame had to b e omitted for clarity. In this short, 1m jump, the squirrel 

initially p itches upwards and flattens its body and tail against the direction o f motion. Immediately prior to landing, the head is tilted 

backwards while th e limbs are all pushed forwards with the tail sim ultaneously rotated back so  that it is parallel with the ground.

A calculation was performed to determine the percentage of bodyweight supported 

during each measured glide, relative to the equivalent ballistic trajectory (that is the 

trajectory of an object with the same take-off velocity and angle subject to no drag or 

lift). For a simple free-falling mass, the gravitational force acting downwards is opposed 

by any lift generated. The resultant force acting on the body is hence:

F  = ma = mg -  L
Equation 12
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Where m = mass (kg), a = resultant acceleration (ms' ), g  is gravitational acceleration 

(9.814 ms"2) and L is the lift force (N). The percentage weight supported is simply this 

lift force divided by the animal weight. Measured take-off angle, 0, velocity, v (ms-1), 

and jump duration, t (s), are sufficient to calculate the vertical drop, y  (m), from the 

resultant acceleration using the standard kinematic equation below:

1 2
y  = (vsinO)t -  —at

Equation 13

Therefore, by combining Equation 12 and Equation 13 an expression can be derived for 

the overall lift force generated during the glide:

r , ,2 tvs in0 - y  
L = m (g - ( -------2---- - )

Equation 14

3.2.6 Jumps observed, General Mixed Model, and other statistics

Table 1 shows the number of jumps of each animal at each range specified, for the 79 

take-offs and 53 corresponding landings measured. No landing force data was obtained 

for the shortest range jumps of 0.5 m, but with this exception, all measured take-off 

forces have a corresponding landing force. Only one squirrel, young female 1, 

performed in the bam but it did not leap to the force pole at distances greater than 2.5 m, 

landing instead on the ground beyond the instrumented pole. This was the only animal 

to perform at all ranges tested. Unfortunately, young female 2 only cooperated at 0.5, 1 

and 1.5 m and the young male at 0.5 and 1 m. Owing to the number of missing data 

points, the typical multivariate ANOVA could not be applied to this data, and so a 

general mixed model (Krueger and Tian 2004) was applied to both take-off and landing 

forces, with range as a fixed factor and squirrel ID a random factor. Unless otherwise 

stated, all correlation statistics use Pearson’s product moment correlation.
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3.3 RESULTS

Video stills from the lateral camera illustrate the consistent take-off, gliding and landing 

postures of the squirrels (Fig. 40). During take-offs, the forelimbs were abducted prior 

to toe-off enabling the squirrel to immediately adopt gliding posture. During gliding all 

limbs were abducted creating a cambered wing surface held at a small positive angle of 

attack. The tail was dorsally flattened, presumably to generate lift. Prior to landing, the 

squirrel pitched upwards keeping its body and tail in line and flattened against the 

direction of motion. Immediately prior to landing, the head tilted backwards while the 

limbs were all pushed forwards with the tail simultaneously rotated back so that it was 

parallel with the ground. In the example landing sequence (Fig. 40), the pitch angle of 

the body changed from approximately 22.5° relative to the horizontal, towards 90° 

immediately prior to landing.

Squirrel
ID

W ing
S p a n
(cm )

Wing
A rea
(cm 2)

L eap
d is tan ce

(m)

M ass 
on  day  

of 
testing

(g)

T ake-off fo rce  (in units of 
bodyw eight)

Landing force (in units of 
bodyw eight)

C oun t M ean S tan d ard
Deviation C ount M ean S tan d ard

Deviation

0 .5 272 9 3.70 1.99 - - -

Y oung 1 274 6 4 .64 1.17 6 3 .47 .37
fem a le 28.0 511 1.5 267 10 4 .36 1.64 10 4 .88 .35

1 2 256.5* 7 5 .57 1.53 7 7.58 .96

2 .5 256.5* 5 5.91 1.49 5 6 .16 .54

Y oung 0 .5 200 8 2 .56 1.28 - - -
fem ale 27 .5 500 1 201 10 5.21 2 .47 10 3.56 .30

2 1.5 198 11 3.30 1.70 11 4 .28 .21

Y oung 25 .9 554
0.5 259 9 3.38 0 .96 - - -

m ale 1 260 4 6 .97 1.23 4 3.79 .44

Table 1 -  Summary table of all the m easured forces generated by northern flying squirrels during leaping and landing. There are 79 take

offs but only 53  corresponding landings because no landing force data w as obtained for the shortest range jumps of 0 .5  m. Only one  

individual, young fem ale 1, performed in the bam but it would not land on the force pole at distances greater than 2.5 m. Unfortunately, 

for reasons beyond our control, young female 2  only cooperated at 0 .5 ,1  and 1.5 m and the young m ale at 0 .5  and 1 m.

* indicates that the squirrels seem ed to lose a considerable percentage of their weight before testing at this distance. The reason for this 

is  unknown but it could have been caused  by the change of environment a s  th ese tests were carried out in a bam, which w as very hot

and humid compared to the temperature-controlled lab.

In the bam, the squirrels tended to have a steeper approach and did not pitch up very 

much prior to landing. The head still tilted backwards but the tail was rotated forwards 

towards the vertical. As a consequence of the lower angle of attack, the forelimbs 

contacted the pole first causing the body to rotate around rapidly onto the hind limbs
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due to the conversion of linear to angular momentum. Occasionally the tail was 

cambered such that the inside of the curve faced the landing pole. In some jumps, the 

squirrels were clearly banking or turning in the penultimate frames to correct 

misalignment with the pole and in one instance, a subject landed on the side of the pole. 

As it was simple to calculate the forces for these jumps too, these results were included 

in our analysis.

Generated during: 
□  Take-off-YF1 
H3 Landing - YF1 
0  Take-off-YF2 
S3 Landing - YF2 
dH Take-off - YM 
§  Landing - YM

10 .0 0 -

8 .0 0 -

^  6.00 -  
-Q  

0)
e
o

LL <0
4 . 0 0 -

2 .0 0 -

0 .0 0 -

0 .5 1 1.5 2 2 .5

L e a p  d i s t a n c e  (m )

Fig. 41 -  A box plot directly comparing the landing forces with the corresponding take-off forces for three of the flying squirrels (young 
fem ales 1 and 2, and young m ale) at each  horizontal range (from the end o f the take-off branch to the landing pole). The stars and circles 

show  va lu es  that w ere outside the interquartile range, the former being statistically significantly far away.

A summary of take-off and landing forces recorded as a multiple of bodyweight is 

shown in Table 1. There was considerable variation between take-off and landing forces 

measured for each squirrel at each distance. Take-off forces normalised by body weight 

increased significantly with leap distance (Fig. 41; r = 0.323, p = 0.004). The same box 

plot also shows the positive correlation between landing forces and horizontal range (r =

0.816, p <  0.001).

The general mixed model introduced above provides statistical verification that 

normalised take-off forces were significantly dependent on range (Fs, n .5 = 45.182, p < 

0.001) but not squirrel identity, (p = 0.602). Likewise, landing forces were dependent 

on range (F^ 9 .5  = 409.341, p < 0.001) but independent of the particular squirrel (p =
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0.548). The means and 95% confidence intervals produced by the mixed model are 

plotted in Fig. 42.

9 1 
8

7 - 
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I  5
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2 

1

0 - 
0

Fig. 42  -  A graph show ing the output from the mixed m odel statistics of m ean take-off and landing forces at ea ch  horizontal range. The 

error bars represent th e 95% con fid en ce intervals. By ignoring the few  jum ps at 2m , when the squirrel consistently landed at the more 

rigid b a se  of the pole, the square of the Pearson  product m om ent correlation coefficient (the r-squared value) im proves from 0.61 to 0.99.

All landing and take-off forces are not correlated to one another (r = 0.094, p = 0.507). 

A paired sample t-test comparing landing force with its corresponding take-off force for 

each jump was not statistically significant (t5i = 0.374, p = 0.710). The standard 

deviations of the mean forces for each animal at each distance are shown in Table 1. 

Standard deviation in take-off forces at each range is clearly larger than that for landing 

forces. Excluding the 0.5 m range, for which there is no landing force data, the standard 

deviation ranges from 1.37 to 6.10 units of bodyweights for take-off force, compared 

with only 0.04 to 0.92 bw for landing.

Landing force is positively correlated with angle of descent (r = 0.740, p < 0.001).

The outputs from all strain gauges were recorded simultaneously enabling the duration 

of each glide to be measured. There is, unsurprisingly, a strong positive correlation (r =

0.923, p < 0.001) between glide distance and glide duration. Mean glide velocity based 

on the linear distance from take-off to landing position and not the actual trajectory, was

□ Take-off 
O Landing 

 Linear (Landing)

[]

0.5 1 1.5 2  2.5 3

□stance (m)

Page 94 of 228



Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels

(Glaucomys sabrinus)

strongly positively correlated (r= 0.951 , P < 0  .001) with horizontal range. This reached 

4.5 ms'1 across a horizontal range of 2.5 m.

Squirrel ID
□  Young female 1
□  Young female 2
□  Young male

Leap distance (m)

Fig. 43  -  Graph of the average take-off an gle for each  individual flying squirrel a s  a function o f the horizontal d istance travelled in the 
jump (labelled C in Fig. 3). This implies that the squirrels are planning ahead  which in turn m ay imply that they are considering their

landing.

Average take-off angle for each squirrel at each distance was negatively correlated with 

range (Fig. 43; r = -0.684, p < 0.001).

Fig. 44 shows the percentage o f bodyweight supported by lift during gliding, as a 

function of horizontal range. The average value for each squirrel at each range is plotted 

against horizontal range and the error bars represent plus and minus one standard 

deviation. At ranges of 1.5 m and above, the squirrel was able to support the equivalent 

of approximately 40% of its weight by gliding, but none when jumping only 1 m or less. 

The advantage gained by gliding increases with range (r = 0.609, p < 0.001).
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Fig. 44  -  Graph of the percentage of bodyweight supported by lift during gliding a s  a  function of horizontal range. Data points are 
average va lu es  for each  squirrel at each  range and the error bars represent plus and minus o n e  standard deviation.

Landing force was found to be significantly correlated to the position of impact on the 

pole (r =-0.713, p <  0.001).

Glide angles increased steeply with horizontal range until they reached approximately 

45° beyond 2.5 m, (Fig. 45), the angle at which gliding is distinguished from 

parachuting, after which they gradually improve as seen by a strong, negative 

correlation between the 17 longest jumps (r = -0.816, p < 0.001). At this point, only one 

animal was still performing but it did not land on the pole, and instead glided past it and 

landed on the floor.
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Fig. 45  -  Scatter plot show ing how the glide angle in creases with horizontal range until it reach es approximately 45°, represented by a 
dash ed  line, after w hich the glide ratio begins to improve slightly. High take-off an g les  and limited time spent in the air are the factors 

responsible for the low va les of glide angle across low ranges. Glide angle is strongly negatively correlated with range ab ove 4  m 
(r = -0 .816 , p<0.001) w here higher glide sp e ed s  en ab le northern flying squirrels to exhibit superior lift to drag ratios.

3.4 DISCUSSION

In this study, take-off and landing forces were measured for northern flying squirrels 

traversing various distances between compliant substrates. Extensive analysis of video 

of their movements was also carried out. The results provide more insight into the 

evolution of gliding in these mammals. And observations are linked, where possible, to 

the following four hypotheses for the divergence from other tree squirrels:

1. To reduce energetic cost of foraging.

2. To maximise the potential foraging area in a given time without thought to 

transport cost.

3. To improve predation escape capability.

4. To enable superior control of landing.

Take-off, landing and gliding performance are discussed separately.
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3.4.1 Take-off

Flying squirrels generated take-off forces ranging from 1.08 to 9.57 bodyweights. The 

amount of force was proportional to the distance the animal travelled (Fig. 41). It is 

logical that squirrels generate a larger take-off force to go further, as ballistic theory 

dictates they require a higher velocity in order to cover the distance. However, there 

must be a maximum force the squirrel can generate. The results presented here suggest 

this might be approximately 10 bodyweights, which is equivalent to occasional high 

jump forces at shorter ranges. (These occasional jumps support the idea that flying 

squirrels jump more forcefully when startled, incidentally.)

The highest take-off angle recorded was 35° and this occurred at the shortest range of 

0.5m, which was short enough that landing position was often higher than take-off 

position. Take-off angle decreased as range of the jump increased (Fig. 43) but this may 

have been influenced by a confounding factor, the height of the branch. With sufficient 

height the animal can afford a shallower take-off angle, allowing it to generate a higher 

horizontal velocity. According to ballistic theory, in order to maximise range the 

optimum take-off angle from the ground is 45°. However, this has been shown to 

decrease as the relative height of the take-off point increases, and it can be determined 

from equation below (Linthome 2001):

R = v2 sin 2 0
2 g

1+ (l+  1
X"

 ̂ v sin 0 )

Equation 15

Where R is the horizontal range of the projectile, v is the velocity at take-off, 8 is the 

take-off angle, g is gravitational acceleration and h is the height difference between 

launch and landing. Therefore, using the experimental data, it was possible to compare 

the average take-off angle adopted by the squirrel with the optimum value for the 

corresponding average vertical drop, as shown in below:
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Horizontal Range 
(m)

Average measured 
vertical drop (m)

Average measured 
take-off angle 

(degrees)

Calculated 
optimum take-off 

angle (degrees)
0.5 0.04 26.4 44
1.0 0.31 20.2 38
1.5 0.89 16.0 27
2.0 1.56 15.2 23
2.5 2.28 12.7 21

Table 2  -  Table showing the average measured take-off angle adopted by young fem ale 1 at all horizontal ranges tested, together with 

the calculated optimum value for the corresponding average vertical drop.

At every range tested, this flying squirrel was adopting a take-off angle considerably 

lower than the calculated optimum value calculated, approximately 60% (SD = 4.5%). 

However, the optimum value is based on ballistic theory, and does not take lift or drag 

into account, and Fig. 44 demonstrates that the study animals were capable of 

generating lift equivalent to 40% of their bodyweight. Therefore it is quite possible that 

the flying squirrels in this study were deliberately adopting optimum take-off angles for 

maximum range.

Overall velocities of the squirrels increased with range. The animals usually ran and 

jumped immediately after release onto the branch, but occasionally it was necessary to 

startle them. It is unknown if the apparent levelling off of glide angle that was observed 

for longer jumps is a general trend because results could not be obtained for longer 

leaps.

3.4.2 Gliding performance

Squirrels used lower glide angles in the lab, but angles near 45° (parachuting) for the 

longer ranges of 2 m and above in the bam. This may have been a behavioural change 

due to unfamiliarity, and is based on only one squirrel at these ranges. In a study 

describing the kinematics of two southern flying squirrels, Glaucomys volans, glides 

from both animals were shorter and significantly steeper after moving to a new test 

arena (Bishop 2006). Here, however, measured glide angles improved with increasing 

range (Fig. 45) and are comparable with similar distance results from two field studies 

of northern flying squirrels (Vemes 2001; Scheibe, Smith et al. 2006), so it is more
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likely a consequence of the need for this species (the larger of the two North American 

species) to reach a higher velocity before it is able to exhibit superior aerodynamic 

performance. Average glide velocities measured in this study increased with range as 

would be expected. Observations of the Japanese giant flying squirrel on long glides 

(Ando and Shiraishi 1993) sometimes showed an initial steep descent with the glide 

angle decreasing with increasing velocity, until both became constant. Likewise, Vemes 

(2001) observed that northern flying squirrels dropped steeply prior to gliding, and often 

even managed to gain altitude slightly, just before landing. The squirrels in this study 

may have initiated a similar behaviour, but the possible ranges were too short for the 

effect to be noticed. This would help to explain why field observations of northern 

flying squirrels have reported significantly better glide ratios. Scheibe et al. (2006) in 

Alaska, USA, evaluated 168 glides from 82 different squirrels with mean glide 

distances of 12.46 m and 14.39 m in successive years, and corresponding mean glide 

angles were 41.31° and 36.31°. Vemes (2001) reports a mean angle of descent of just 

26.8° for glides which were longer, averaging 16.4 m. Gliding behaviour is therefore 

likely to be optimised for significantly longer ranges than were possible in this study.

Flying squirrels use their patagium as a low-aspect-ratio wing, which has good 

aerodynamic stability at the relatively low speeds involved, generating lift at high 

angles of attack of up around 40 degrees without stalling (Torres and Mueller 2004). 

This shape allows the squirrel to overcome any detrimental rotational momentum that it 

might have generated during take-off. In the present study, forelimbs were always 

protracted and abducted before the hind limbs left the substrate, allowing the angular 

momentum produced to be transmitted directly to the branch, even over the shortest 

leaps of just 0.5 m. Although the wrists and elbows are still flexed at this point, Essner 

(2000) argued that this behaviour enabled the squirrel to begin gliding earlier, resulting 

in a flatter trajectory with more immediate manoeuvrability and control. Gliding 

performance of each squirrel was quantified by calculating the percentage of its 

bodyweight supported during each glide, which showed that flying squirrels exploited 

their unique morphology to generate lift at ranges greater than 1.5 m (Fig. 44). 

However, these values were negative over 0.5 m implying that the squirrels generated 

down-force. It could be that the combination of steep take-off angles with immediate 

initiation of gliding results in their large patagial surface area working against the 

squirrels on these steeper take-off angles. Alternatively the estimate for the percentage
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bodyweight supported could be slightly conservative. In any case, it has been 

established that the transition from leaping to gliding occurs at a horizontal range of 

between 1 m and 1.5 m for northern flying squirrels. They are not able to benefit from 

gliding over distances of less than 1 m, so although the resultant glide angles may 

appear to be superior at these ranges, this is only a consequence of the higher take-off 

angles and limited time in the air.

3.4.3 Landing

Landing forces varied between 3.01 and 9.52 times bodyweight. The impact force on 

the landing pole was proportional to the range of the leap. This is expected because the 

measured gliding velocity increased with horizontal distance, reflecting the effects of 

gravitational acceleration.

The correlation of measured landing force with the contact position of the animal on the 

pole is due to the compliance decreasing towards the fixed end. Higher forces were 

experienced by squirrels landing lower down on the pole where it was relatively stiffer 

and did not deflect so far. This is inevitable because the kinetic energy of the squirrel 

becomes the product of reaction force and deceleration distance -  proportional to the 

deflection of the pole given that leg length remains constant. This has an important 

implication for the use of compliant substrates when quantifying forces for comparison. 

Ideally, only forces measured at points of equal compliance should be compared 

directly, or there should be a random scattering of landing positions. This was the case 

for the present results, with the exception of the 2 m range, at which the squirrel 

consistently landed at the base of the pole. The reason for this is unknown, because the 

angle between the base of the landing pole and the tip of the take-off branch was 

consistent at 55° for all ranges. However, by removing the data from the 2 m range (7 

data points out of 53), a strong linear relationship can be observed between the means of 

the other 46 jumps where more compliance was available, Fig. 42. The square of the 

Pearson product moment correlation coefficient (the r-squared value) improves from 

0.61 to 0.99 when the 2 m data is ignored. Such a good linear fit means that the flying 

squirrels adopt a consistent landing technique. On stiffer substrates, a similar but 

steeper, linear increase in landing force with range would be expected.
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Over short leaping distances, take-off forces are not significantly different from landing 

forces (Fig. 41; t-test). This fits with the expectation (see Section 3.1, page 81) that 

landing forces would not be higher than take-off forces on compliant substrates, as they 

are on rigid platforms (Demes, Jungers et al 1995).

Landing force was correlated with angle of descent, suggesting the squirrels are better 

able to absorb landing impacts with a flatter approach. Some of the impact force is 

likely absorbed as a result of the consistent landing posture observed, which it seems the 

squirrels were unable to accomplish with steeper approaches. During shallower glides 

the squirrels are able to increase their drag force by transforming the patagia and 

distichous tail from a cambered surface with low angle of attack, high lift and low drag, 

to a more parachute-like surface orientated against the direction of motion. 

Additionally, this posture enabled the squirrel to absorb the remaining impact forces 

more evenly over its four extended limbs on contact. Aerodynamically, the flying 

squirrel has a low aspect ratio (close to 1) and glides at low speed so an angle of attack 

in excess of 40° would be required for it to stall in flight (Torres and Mueller 2004). The 

squirrel has additional aerodynamic implications associated with its morphology, such 

as its fur, so it is not possible to measure whether or not they are actually stalling from 

the video footage. However, it is clear from the example landing sequence shown in 

Fig. 40 that the pitch angle of the body has increased to effectively 90° immediately 

prior to landing, supporting the theory that they deliberately stall themselves (Alexander 

1995).

Caple et al (1983) state that the vector sum of angular momentum must be conserved 

during any mid-air movement of a body with no lift or drag. Although flying squirrels 

will also be able to generate some external force from their patagium, this could help 

explain the origin of some of the consistent landing movements observed. For example, 

the rotations of the head and tail backwards would directly counteract the thrusting of 

the limbs ventrally although it is equally likely that the head tilt may be for defence 

against accidental impact. A falling cat also uses counter-rotations in order to right itself 

when falling from an upside down position (McDonald 1960). Calculations by Caple et 

al (1983) also show that some of the morphological features of flying squirrels, such as 

long forelimbs with dense, distally located mass (hands and feet) and a lightweight tail 

that can produce lift are optimisations for controlling pitch and roll. The results show

Page 102 of 228



Take-off and landing forces and the evolution of controlled gliding in northern flying squirrels

(Glaucomys sabrinus)

that the squirrels were able to reduce landing forces by pitching upwards as they 

approach, and it is this behaviour that may have applied selective pressure to these 

morphological features rather than the desire to maximise glide range, which increases 

negligibly in comparison. Increasing forelimb length allows the landing energy to be 

absorbed over a larger distance. Likewise, the flexed back on impact should further 

reduce the peak landing force. A falling cat also tries to land with its back arched and all 

four limbs outstretched towards the ground (McDonald 1960).

Unfortunately the squirrels could not be persuaded to land on the pole above the 

relatively small horizontal range of 2.5 m, compared to their normal arboreal glide 

distances (Vemes 2001; Scheibe, Smith et al. 2006). They chose instead to deliberately 

manoeuvre past the landing pole and land on the floor. It is possible that the squirrels 

may have a sense for a maximum speed at which they can safely or comfortably land on 

a stiff or unknown substrate for a given approach angle. Glide angles achieved at ranges 

between 3 and 6 m exceeded 45° (Fig. 45), which would normally be defined as 

parachuting rather than gliding (Oliver 1951), and so it is speculated that this is likely to 

be the most difficult distance for northern flying squirrels to land. The steeper approach 

angles inhibit their ability to pitch up and absorb the landing across all four limbs 

simultaneously, and there is more energy to dissipate due to the inevitable increase in 

velocity with range. Velocity continues to increase above the proposed awkward range 

but this also improves the flying squirrel’s aerodynamic ability, allowing a progressive 

improvement in approach angle and consequent landing posture. It is likely that these 

animals would try to avoid making hard landings on tree trunks at this unfavourable 

range. Vemes (2001) reported that in 21% of his 100 glides observed, northern flying 

squirrels landed on the ground or in dense undergrowth. The other landings were on 

trees and it should be noted that the mean glide distance was much higher in the Vemes 

study than in this research. Likewise, Scheibe et al. (2006) noted that sometimes 

squirrels released onto a tree trunk at breast height did not climb and glide, choosing 

instead to jump to the ground and run to a nearby tree. Future experimental designs 

should consider that northern flying squirrels might be more likely to land on an 

instrumented pole positioned at a high rather than medium horizontal distance from the 

take-off position, but this would necessitate an arena allowing sufficient take-off height.
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The equation for the linear relationship between landing force and range on the 

compliant part of the pole is shown on Fig. 42 and can be used to predict the landing 

force at longer ranges than were measured. However, the squirrels would not keep 

accelerating indefinitely during long glides, but rather their speed would stabilise as 

they approach terminal velocity. Scheibe et a l (2006) reported maximum glide 

velocities of close to 12 ms'1 although the weighted means were 6.26 ms'1 and 8.11 ms'1 

in two consecutive years. These values are much higher than the highest observed speed 

of 4.5 ms'1 although this was measured across a relatively much shorter horizontal glide 

distance. With more time in the air, squirrels must be able to control their trajectories, 

otherwise they would be subject to extremely high impact forces. Depending on 

substrate compliance, the equation from Fig. 42 can be used to calculate that squirrels 

trying to land an ordinary 16 m glide would be subject to impact forces of upwards of 

28 body weights if they did not slow themselves, perhaps by pitching up and employing 

air braking.

3.4.4 Evolution of gliding

Hypothesis 1 that gliding developed to reduce the energetic cost of foraging supposes 

that the squirrels’ primary objective should be to maximise range in every jump while 

minimising the loss in altitude. It was shown that the individuals in this study 

consistently used take-off angles of approximately 60% of the calculated optimum value 

for a ballistic projectile. Therefore it is quite possible that these flying squirrels were 

employing optimum take-off angles when the effect of lift and drag is considered. As 

expected, the advantage gained by gliding increases with range. This vertical advantage 

achieved relative to the ballistic trajectory enables flying squirrels to reach trees beyond 

normal jumping range, or reduces the amount of climbing required after a glide is 

completed, thus saving energy. Range-reducing aerial manoeuvres were frequently 

observed, but these alone are insufficient evidence to reject the energetic cost of 

transport cost hypothesis.

If gliding evolved to maximise the foraging area that could be reached in a given time, 

as proposed by Hypothesis 2, then the squirrels would be expected to glide at high 

velocities. It has been shown here that velocity increases with range, and flying squirrels
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can generate higher lift forces when travelling further, so the hypothesis that gliding is 

an optimisation to maximise speed and potential foraging area cannot be rejected.

Hypothesis 3 is that gliding evolved primarily to facilitate escape from predation. One 

might expect that an escaping squirrel would jump horizontally, or downwards given 

sufficient altitude, in order to ensure that it did not decelerate due to gravity. Bonser 

(1996) proposed that starlings may deliberately vary take-off trajectory for predator 

avoidance, but the present study shows a negative correlation of the take-off angle with 

range, suggesting that during this experimentation at least, flying squirrels choose a 

take-off trajectory to suit their intended destination. Caple et al. (1983) stated that all 

gliders pre-select a landing site, which must be large enough to allow some vertical 

variation in the contact point. Vemes (2001) also observed that flying squirrels appeared 

to think about their intended flight path before launching and the present study gives no 

evidence to suggest otherwise. Given that the squirrels seem to exhibit this behaviour 

even during the jumps which were initiated by startling, it seems unlikely that gliding 

evolved primarily for escape, at least not from high-speed chases.

The ability to make sudden aerial direction changes could potentially help to lose a 

predator. However, Scheibe (1990) reports that their most likely aerial predator is the 

owl, and it is unlikely that such sophisticated fliers would be troubled by the relatively 

clumsy swerving squirrel.

Hypothesis 4 relates the development of flight to the control of landing. Even at the 

comparatively short ranges in this study, direction changes were seen being introduced, 

perhaps aided by the observed rapid beating of the tail from side to side. Additionally, 

last-second manoeuvres were observed, such as banking and using the tail as a rudder, 

implying that flying squirrels are able to make precise adjustments to improve their 

landing. As range increases, any error in take-off trajectory would become more 

significant without aerial control; in this case squirrels could face serious consequences 

for misjudging long leaps at the top of the forest canopy.

Flying squirrels choose to initiate a full gliding posture even though they do not produce 

significant lift during glides of less than a metre, suggesting that this behaviour is 

innate. It might be that the squirrel is simply throwing its arms out conveniently widely
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for rapid rotation of the joint in order to gain forward momentum during take-off. They 

do exhibit a consistent landing behaviour at these distances, with the gliding posture 

enabling them to pitch upwards as they approach and spread the landing reaction force 

over all limbs. It is likely that the squirrels deliberately stall themselves by this quick 

increase of their angle of attack immediately prior to landing.

Landing control of pitch and roll improves much more rapidly than range for the same 

incremental improvements in forelimb length and tail surface area. Increasing forelimb 

length simultaneously reduces the landing force further by increasing the deceleration 

distance. Landing force was correlated with angle of descent, suggesting flying squirrels 

were unable to pitch up sufficiently to execute the evenly-distributed four-limbed 

landings when approaching steeply, demonstrating the utility of aerial control in longer 

jumps. The final argument is that without reducing the impact force through postural 

control prior to landing, northern flying squirrels would have to sustain impact forces of 

upwards of 28 bw.

Evolution of gliding in flying squirrels has undoubtedly reduced their energetic cost of 

transport, while improving potential foraging area and response to predation, but this 

thesis concludes that the selective pressure for their divergence from tree squirrels might 

have been the improvement of landing control.
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3.5 CONCLUSIONS AND IMPLICATIONS TO JUMPING ROBOT

Take-off and landing forces generated by northern flying squirrels are both positively 

correlated with horizontal range, at least up to 2.5 m. The maximum take-off force 

measured was 9.57 bodyweights, although the squirrels would occasionally produce 

close to this force when jumping only short distances, most likely a natural behavioural 

response to alarm. Take-off forces were not significantly different to the corresponding 

landing forces on these similarly compliant substrates. They are able gliders, abducting 

all limbs to create a wing-like surface which is held at a low angle of attack for 

maximum lift/drag ratio. Glide angle increased rapidly with horizontal range up to 

approximately 4 m, before progressively improving suggesting that gliding in northern 

flying squirrels is optimised for significantly longer ranges than were possible in this 

study.

Any compliant force measuring device will likely have some variation in its compliance 

along its length. In the case of a cantilever beam, this begins to behave more like a rigid 

instrument towards its fixed end. Valuable comparisons can only be made between 

forces measured at known points of equal compliance. If this is not possible, then 

sample sizes should be chosen to ensure a random scattering of landing positions.

In order to draw solid evolutionary conclusions it would have been preferable to obtain 

equivalent data for a sequence of species from non-gliding genera, such as grey 

squirrels (Sciurus), through to the most highly developed forms such as the Japanese 

giant flying squirrel (Petaurista). This was not possible, but Glaucomys was viewed as a 

valid compromise because it is a relatively primitive gliding squirrel (Johnson-Murray 

1977). The hypothesis that gliding evolved in flying squirrels to reduce the energetic 

cost of transport could not be rejected, although the study animals were observed to 

make aerial manoeuvres occasionally, which would result in a lower landing position. 

The flying squirrels in this study did not attempt to make either unplanned or 

deliberately unpredictable take-offs, casting doubt on the theory that gliding might 

improve predatory escape response.
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Gliding might have evolved to maximise the foraging area that could be reached in a 

given time. High glide speeds were measured and this velocity increases with range, but 

the development of improved landing control is a necessary consequence of faster 

flight. Evidence is provided that if northern flying squirrels could not slow themselves 

aerodynamically from terminal velocity, prior to landing, they would have to be able to 

sustain impact forces of upwards of 28 bw. Flying squirrels seem to innately adopt a 

gliding posture on take-off, even during leaps of less than a metre when no vertical 

advantage is gained, but this leaves them better prepared for aerial control. At these low 

distances, a consistent landing strategy was exhibited by flying squirrels allowing the 

impact force to be spread over all four limbs and their arched back, thanks to a dramatic 

pitch upwards immediately prior to contact with the pole. This rapid increase of their 

angle of attack immediately prior to landing is likely a behaviour evolved to enable 

rapid deceleration by stalling, although this would have greater effect at high speeds. 

Therefore, the major conclusion from this chapter is that at divergence, small glide 

producing surfaces were developing in flying squirrels allowing mid-air adjustments in 

pitch and roll, and improving their resilience during high speed arboreal transport.

The implications of these conclusions to the development of a jumping robot are that 

integrating gliding should certainly be considered as a means to both control landing 

orientation and reduce impact force. Flying squirrels start to extend their patagia during 

take-off, before their hind limbs leave the substrate, and so the robot might also benefit 

from extending some kind of gliding membrane during the jump cycle. Attempting to 

deploy once airborne could cause detrimental mid-air rotations, where as incorporation 

into the jump mechanism utilises already amplified power from its otherwise low grade 

energy. In order to reduce their landing forces, flying squirrels attempt to control their 

angle of attack such that their membranous wing is parallel to the landing surface. A 

robot that jumps into a glide would likely also benefit from some kind of pitch control, 

to prevent it from nose-diving, (in which case the membranes would only accelerate it 

due to their additional mass and the comparative lack of drag). In the same way, it could 

potentially orientate itself so as to store some of its kinetic energy on landing, reducing 

the total impact force, although this should not be a requirement. This study also 

showed that sufficient forward speed is important for a glider. This carries an 

implication for the take-off angle of the jumping robot being developed.
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Chapter 4

Functional attributes of flying squirrel skin -  A
preliminary study

The study of Northern Flying Squirrels in the previous Chapter concluded that the 

unique aerial capabilities of these animals developed primarily to control their landing 

posture for impact force reduction, potentially to enable faster arboreal travel. This 

morphology simultaneously extends the range of the jump at little or no additional 

energetic cost, and an equivalent means of landing preparation became a design 

requirement for the jumping robot in development for this Ph.D research project. This 

chapter will seek to further inspire this design by considering how the gliding 

membranes (patagia) of flying squirrels are specialised to facilitate the transition 

between the various transport modes available to these animals.

4.1 Introduction

Gliding has evolved as a means of enhancing arboreal locomotion in a very similar, yet 

independent way in several mammal and marsupial species. Flying squirrels, colugos 

and flying oposums all have patagia, a larger and more developed piece of skin attached 

between the wrists and ankles, which they choose to stretch when jumping from a tree 

by fully abducting their limbs. The consequent large surface area of this skin enables 

them to glide at shallow angles, and also make impressive aerial manoeuvres such as 

180° turns (Savile 1962). However, there is a compromise between maximising the 

surface area of the skin available for aerial locomotion, while not impeding normal 

arboreal locomotion such as running up, down and around tree-trunks. Flying squirrels 

are adept at both kinds of locomotion, with their skin apparently held elastically in folds 

tight against their bodies during climbing (personal observation). Johnson-Murray 

(1977) speculates that the patagium is pulled towards the body by contraction of 

humerodorsalis and flexor carpi ulnaris musculature.
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Fig. 46 illustrates some of the terminology used throughout this chapter to describe the 

directional properties of flying squirrel skin.

Dorsalo

Both

Ventral

Lateral

Fig. 46  -  Diagram matic representation of a Southern flying squirrel detailing the biological term s used  in this chapter relating to the

position and orientation of its skin.

4.1.1 Desirable material properties for flying squirrel patagia

During their normal arboreal locomotion, flying squirrels frequently land on tree trunks 

then immediately climb upwards towards the top before taking off again to continue 

their journey. It was discussed in the previous chapter that flying squirrels rapidly 

abduct their forelimbs into the gliding posture during take-off. Consequently, their 

patagia must be able to stretch quickly to enable rapid, momentum-producing arm 

swing on take-off and also retract quickly on landing so as not to be a trip hazard during 

subsequent walking or bounding. Puncture resistance is another desirable property for 

flying squirrel skin, due to their being nocturnal and travelling at high velocity, making 

numerous landings on trees dotted with small snags and other irregularities. In addition, 

their own claws are necessarily sharp to ensure good purchase on vertical substrates, 

increasing the risk of accidental skin tearing, which would be difficult to avoid in the 

event of a fight between squirrels. Therefore damage tolerance is essential in both the
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ability to heal quickly, and in the potential to continue gliding and foraging successfully 

after injury without continuously reopening any wound. Ideally the gliding membrane 

would still be as lightweight as possible, reducing the animal’s total mass and thus 

improving glide ratio. At the same time, this wing should be capable of sustaining high 

wing loading, with a reasonable element of safety margin. This is particularly important 

for females during pregnancy, which must carry more weight while also needing to 

forage more than usual.

During a normal glide, flying squirrels hold their membrane out at a positive angle of 

attack and with some camber (when viewed in profile), as shown by a simplified model 

in Fig. 47. This means that the ventral skin is subjected to positive pressure while the 

dorsal skin is under negative pressure. At low angles of attack, which minimises drag, it 

is this negative pressure which produces the majority o f the lift force. The steeper the 

angle of descent, the more important positive pressure becomes, as the drag created 

makes up more and more of the total lift force.

Negative pressure

Positive pressure

Fig. 47  -  Simplified m odel of a flying squirrel, v iew ed laterally during normal gliding at an an gle of attack, a, and a d escen t angle, 0. The 

lower half o f the diagram sh ow s how positive pressure acts  on its ventral skin, while the dorsal surface is subjected to negative pressure. 

To clarify, negative pressure refers to a lower pressure than that of the surrounding air, and positive pressure refers to higher pressure.

Page 113 o f 228



The mechanics and energy economy of animal jumping and landing applied to autonomous robots

It is possible to draw a parallel here between a flying squirrel and a sailing boat. When 

sailing into the wind, a horizontal lift force is generated by the stiff camber produced on 

the mainsail, the resultant shape being similar to that of an aerofoil. Therefore, when 

designing main sails, high stiffness is vital to improving speed and the angle to which 

the boat can sail relative to the on-coming wind (It is not possible to sail directly into 

the wind -  see Fig. 48). Therefore for flying squirrels to be able to glide quickly, at a 

low angle of attack, they would also want to be able to form their patagia into a stiff, 

cambered aerofoil shape. Hence, as for the close-hauled sail, high longitudinal stiffness 

would be a desirable mechanical property for their patagial skin. This would allow the 

flying squirrel to accurately control the precise camber of its wing with small 

movements o f its limbs either forwards or backwards.

WIND

UPWIND SAILING 
(CLOSE HAULED)

BEAM REACHING

L < -

T
D

DOWNWIND SAILING 
(RUNNING)

T
D

Fig. 48  -  Diagram show ing how the lift and drag forces b ecom e relatively more important for propelling sailing boats depending on wind

direction.
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There is a compromise between the stiffness and strength of a sail -  the stiffer 

something is, the less able it is to absorb high stresses by stretching and hence it is more 

prone to tearing. When sailing downwind (the wind blows from behind the boat) where 

drag force rather than lift is what drives the boat forwards, a spinnaker sail gives best 

performance. If the spinnaker was made of high stiffness material like a mainsail, much 

of the wind would spill over its sides and the frequent flapping would increase the 

likelihood of tearing. However, reducing stiffness permits higher tear strength while 

catching more wind, in much the same way as a parachute works. It was shown in the 

previous chapter that flying squirrels deliberately pitch up immediately prior to landing, 

and hence more closely resemble a running spinnaker than a close-hauled mainsail 

during this phase of the locomotion. However, a compromise is therefore required, as it 

was discussed previously that high longitudinal stiffness would be desirable for gliding 

at low angle of attack during the main phase of flight. Assuming that their patagia had 

high longitudinal stiffness required for this close-hauled phase, it would therefore be 

advantageous for the skin to be much more compliant in the lateral direction for 

improved air braking performance, and damage tolerance. A more deformable surface 

of the patagia may also help to reduce induced drag (caused by air spilling up over the 

wing-tips due to the pressure gradient described).

Hundreds of years of sail making have taught that sails can be improved by using 

thicker materials where the loads are highest (Whidden and Levitt 1990). More recently, 

computer generated stress maps have been used to demonstrate that mainsail loads are 

highest on the leading edge, the edge of the sail that the wind reaches first, while 

spinnaker loads radiate from the comers (Lasher, Sonnenmeier et a l 2005). Seams 

aligned to the load are used both to add strength, and to allow the use of thicker panels 

in areas subjected to higher stress within the sail (Whidden and Levitt 1990). Therefore 

the thickness of flying squirrel skin may not necessarily be uniform throughout the 

patagia.

Before addressing the hypotheses described above, it is useful to review the literature on 

mammalian skin.
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4.1.2 Physical characteristics of mammalian skin

Mammalian skin is made up of three layers, the epidermis, the dermis and the 

hypodermis. The outer layer of skin is the epidermis, which is comprised primarily of 

dead cells. Inside that is the dermis, about twenty times thicker and containing hair 

follicles, blood vessels, muscles, nerves, oil and sweat glands. The hypodermis is a very 

thin layer of tissue underlying the dermis. The overall behaviour of the skin can be 

traced to the structural properties of its main constituent, the dermis. It is effectively a 

composite of elastin and collagen fibres embedded in a viscous, hydrated matrix. The 

elasticity of the elastin fibres compliments the strength of the more prominent (60-80%) 

collagen fibres (Reihsner, Balogh et al. 1995).

Starcher, Aycock et al. (2005) suggested that with the exception of humans, the primary 

function of elastin fibres in normal mammalian skin is in the movement and/or 

placement of hair. In humans and bat wing skin however, which do not have fur, it 

seems likely that maintaining skin elasticity must be its primary function. The elastin 

aspect of squirrel skin dermis in particular was shown (in the same paper) to be 

unusually shallow, with hair follicles penetrating less than one fifth of the depth of the 

skin. Consequently, all of the elastin fibres are concentrated at the base of these 

follicles, and extend in all directions through the dermis to contact other follicles.

The skin of bat wing is uniquely different from other mammals, with elastin fibres 

dominating (Hollbrook and Odland 1978). Bat wing skin is used for generating lift, 

thrust and transmitting stresses during flight in addition to its usual protective and 

regulatory functions. The membrane is supported by a regular, approximately 

orthogonal mesh of collagen and elastin fibre bundles, with the latter dominating (Fig. 

49). It is thought that these elastic components may help to keep the wing tightly folded 

during climbing and roosting, etc, but also facilitate passive contraction when the wings 

are flexed (Swartz, Groves et a l 1996).
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(b)

Fig. 49  -  T he layout o f fibre bundles in a typical bat wing, (a), taken from Swartz, G roves e t al. (1996). A lso show n is a  cross-section  

through on e of th e se  fibre-bundles, (b), show ing the predominant elastin fibres (white) surrounded by collagen  fibres (black).

The wing membranes o f bats have been shown to be considerably thinner than what 

would be predicted from the regular pattern of scaling described for most mammals 

(Swartz, Groves et al. 1996). The wing membrane of bats comprises two layers of 

unusually thin epidermis on either side of a relatively thin dermis/hypodermis compared 

with the thicker, single-layered skin of the bat’s body which is more comparable with 

other mammals. This thickness is intrinsically linked to the mechanical properties of the 

bat wing, controlling the 3D shape characteristics of the membrane during flight. 

Thinner skin also reduces the overall mass to be transported during flight, which would 

allow a superior lift/drag ratio and consequent range for a glider.

The properties of skin are dependent on direction. Langer (1861) investigated the 

elliptical wounds formed by piercing skin with small circular holes. By joining up the 

major axes o f these ellipses over the whole body, he was able to demonstrate the lines 

of tension on the skin surface (Langer’s lines, Fig. 50). The practical effects of these 

lines o f tension were further explored by Ridge and Wright (1966), who showed that 

one-inch-square sections of skin would shrink when cut out due to the removal of this 

tension. There was more shrinkage in the direction of Langer’s lines as a consequence 

of the relaxation of greater tension. Surgeons were already aware of this effect, 

recognising that incisions made along Langer’s lines are naturally pulled together, thus 

healing more quickly and minimising scarring (Gibson, Stark et al. 1971). Simple load 

vs extension graphs showed that specimens taken parallel to Langer’s lines would not
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extend as far as those taken perpendicularly (Ridge and Wright 1966). Strain hardening, 

where deformation causes an increase in resistance to that deformation, occurs at lower 

strains when parallel to Langer’s lines. Therefore, mammalian skin must be considered 

as an orthotropic material, a material which has contrasting properties in two orthogonal 

directions.

Langer's lines 
horizontal across 
human back

Fig. 50  -  Langer's lines are the lines of principal tension around the skin surface, show n here on a human. This figure w a s modified from

G ibson, Stark e t al. (1971).

The reason for the orthotropic nature of skin depends on the preferential direction of its 

collagen fibres, which were shown through histological testing to follow Langer’s lines 

(Cox 1942). Ridge and Wright (1966) confirmed this and further explained the resulting 

skin properties by modelling it as a simplified 2D lattice structure (Fig. 51), although in 

reality it would be a 3D matrix. The mean fibre angle is less than 45° in the direction of 

Langer’s lines, and hence samples taken in this direction will require relatively less 

extension (than for a higher fibre angle) before all fibres begin to line up parallel to one 

another. Further extension will require the fibres to be strained, requiring more force 

than fibre reorientation. It can also be seen that extending specimens taken across the 

Langer’s lines will result in a smaller fibre area (i.e. the number of fibres available at 

each end of the sample) and greater orientated length, all of which contributes towards 

the orthogonal differences in the resulting load-extension graphs observed.
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L A N G E R ' S
LINES

< 4 5

Fig. 51 -  Simplified 2D  lattice m odel o f skin proposed by Ridge and Wright (1966) to explain how the primary orientation of collagen  

fibres can  produce the orthogonal difference betw een  m echanical properties of skin. This diagram is a modification of two diagram s from

the sa m e paper.

4.2 Modelling the structure o f flying squirrel skin

It is generally considered that mammalian skin does not vary much between species, 

with the exception of bat skin, for which Swartz, Groves et al. (1996) concluded that the 

structural design of these soft tissues is influenced by selective forces in the same way 

as the harder skeletal elements and overall wing shape are. It is probable that flying 

squirrel skin would be similarly specialised for its unique role.

It has been shown that in normal mammalian skin, collagen fibres are predominantly 

orientated close to the direction of Langer’s lines, the lines of primary tension in the 

skin. Therefore in order for flying squirrel patagia to have higher longitudinal stiffness 

than lateral, as was proposed to be advantageous for aerodynamic control, Langer’s 

lines would be expected to run primarily from head to foot.

The fact that bat skin is known to have higher elastin content than normal mammalian 

skin suggests that flying squirrel skin too may have relatively more elastin fibres, which 

would be advantageous both to the wing aerodynamics, and in keeping their patagia 

tightly folded away during walking and running. The particularly shallow network of
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elastin reported for squirrel skin may have afforded flying squirrels the opportunity to 

evolve a thinner, and highly elastic membrane structure. Thinner skin would seem a 

highly likely specialisation for flying squirrel skin, which would advantageously reduce 

the total mass o f the animal and yet still provide sufficient insulation because it would 

normally be bunched up (when the limbs are not abducted in the gliding posture), 

effectively acting as a thicker insulating layer.

Considering the ideal properties of high longitudinal stiffness, and high lateral elasticity, 

it is proposed here that the flying squirrel membrane may resemble a bi-directional 

composite of two different types of fibre, as demonstrated in Fig. 52. The higher 

stiffness fibres (most likely collagen) would primarily be oriented longitudinally, with 

some much more elastic fibres (perhaps but not necessarily elastin) running orthogonal 

to them in a matrix. The resultant composite behaviour would be similar to that of a 

weave of the two fibres. This suggested structure would suppose that flying squirrel 

skin is composed of proportionally much more elastin than is found in other normal 

mammalian skin.

Fig. 52  -  Dem onstration of cross matrix proposal for the primary orientation of fibres in flying squirrel skin, in the gliding position, w hen all 

the fibres are extended . The black lines represent fibres with higher stiffness, perhaps collagen, predominantly parallel to the long axis of 

the animal. The red lines indicate the principle direction of the more elastic fibres, perhaps elastin, orientated transversely so  a s  to 

elastically collect in the longitudinal fibres towards the body w hen  the arm s are not abducted.
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The additional springiness in the lateral direction of the proposed structure would be 

advantageous to the animal, because the direction of this elastic behaviour acts to pull 

the patagia in tight towards the body from the sides during normal quadrupedal 

locomotion. This amount of skin would otherwise present a tripping hazard. When 

walking or bounding, all four legs move forwards and backwards with respect to the 

body axis with very little sideways motion. In this way, the skin is being stretched 

slightly along the length of the squirrel. Only the deliberate abduction of the flying 

squirrel’s limbs for gliding would stretch the membrane against the direction of 

elasticity described, which would become conveniently stiffer at high strains. At this 

point only a much smaller protraction of the limbs away from each other (towards the 

head and tail respectively) is necessary to stiffen the membrane in the longitudinal 

direction, which should enable the animal to precisely control the camber of its wing. 

Finally, the proposed bi-directional matrix structure should ensure a rapid retraction of 

the membrane again on landing owing to the high elasticity of the elastin fibres.

The gliding lizards, Draco volans, also have highly specialised patagia, with high 

elasticity. On stretching these into the erect gliding position, these naturally retract back 

to their original state even on preserved specimens (Russell and Dijkstra 2001). It was 

shown in the same paper that the accurate folding in of the flight membranes is aided by 

the elastic properties of its skin, together with bands of elastin running transverse to the 

protracted ribs. Bands of collagen connect the distal ends of the ribs and are pulled taut 

during gliding, giving the patagia a prominent rim, and the bands of elastin are 

simultaneously placed under tension. The architecture of collagenous networks within 

the membrane is said to result in regional differences in mechanical properties, which 

improve the aerodynamics of the wing (Russell and Dijkstra 2001). Such specialisation 

of the membrane towards gliding in Draco adds credibility to hypothesis in this chapter 

that flying squirrel skin would be similarly optimised.

4.3 Experimentation

In order to briefly test the credibility of the patagial skin structure hypothesis developed 

above, a southern flying squirrel, Glaucomys volans, was obtained so that mechanical 

testing could be performed to look for evidence of an orthogonal difference in skin
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stiffness. A mouse, Mus muscuius, was also obtained in order for a direct comparison of 

skin thickness.

4.3.1 Introduction to mechanical testing of skin

Mechanical testing of skin is of great interest, particularly in the field of plastic surgery, 

but it is subject to many difficulties and as such there is much variation in both the 

methods and results. In vitro testing refers to skin which has been removed from the 

body. In theory, this allows more option when choosing the test method, and testing to 

destruction can be carried out. However, the mechanical properties of skin are highly 

dependent on water content, which is likely to alter soon after removal from its natural 

environment. In vivo testing ensures that the skin behaves normally, but is subject to 

ethical restrictions. Standard equipment cannot be used, as the measurements are 

influenced by other structures the skin is attached to, not least itself. Consequently, the 

range of reported measurements for the Young’s modulus of human skin, which have 

been achieved using commercially available in vivo systems, has varied considerably, 

between 0.01 and 100 MPa (Wan Abas and Barbenel 1982; Rodrigues 2001).

Lanir and Fung (1974) developed an experimental system for two-dimensional testing 

of soft tissues for use on rabbit skin. Biological tissues were assumed to be 

incompressible like a liquid, meaning that three-dimensional mechanical properties 

could be obtained from these 2D tests. However, this required a complex arrangement 

of sensing equipment and feedback cameras in order to accurately control the strain 

applied to both axes of the square test-pieces. For this brief investigation, in vitro 

uniaxial tensile testing of flying squirrel skin samples was performed for convenience. 

This method is commonly used and perfectly valid for determining materials properties, 

but it cannot account for the affect of surrounding tissues (Lanir and Fung 1974). Dog- 

bone shaped samples are used for uniaxial tensile testing to minimise the effects of 

stress concentrations in the grip-contacting region of the material. The middle segment 

of the sample has uniform cross-sectional area, which is assumed to undergo a uniform 

reduction as the sample is subjected to tension. This shape also allows materials 

properties to be calculated based on changes in geometry, because it can be assumed 

that loads will act directly on the relatively long and narrow central section.
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4.3.2 Procedure

4.3.2.1 Animals

The test animal was a male southern flying squirrel, Glaucomys volans, of unknown age 

that had been imported from a colony at SouthEast Missouri State University. This 

animal had died naturally and been frozen within 24 hours of death. It had been 

packaged in a cool box full of dry ice to prevent defrosting during transit, and then kept 

frozen and only allowed to thaw overnight before the day of testing. It was weighed to 

be 62.5 g immediately prior to testing.

In order for a comparison of skin thickness, a mouse, Mus mus cuius, was also obtained 

from the Department of Pharmacy at the University of Bath, frozen after use in another 

experiment which had not affected its skin. This was also allowed to thaw overnight 

prior to testing, and it weighed 29.5 g.

4.3.2.2 Uniaxial Tensile Tests

Initial visual inspection of the southern flying squirrel obtained for experimentation 

revealed that there were many clear striations or folds orientated along the length of the 

squirrel (Fig. 53). It was possible to pull open these folds completely, which 

approximately doubled the width of the original sample. Langer’s lines of strain could 

not be oriented perpendicular to such folds or they would naturally be pulled apart, so it 

is likely that the majority of the collagen fibre bundles making up the flying squirrel 

skin are oriented parallel to its main axis. Interestingly, this finding is opposite to the 

primary direction of Langer’s lines reported in other mammals such as humans and 

mice (Gibson, Stark et al 1971). This is also evident in Fig. 50, which shows the 

horizontal Langer’s lines across the human back. Consequently, uni-axial mechanical 

tests were only carried out on dog-bone-shaped test samples cut parallel to, and 

perpendicular to the spine.
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Fig. 53  -  V iew  of a longitudinally oriented test sam ple of southern flying squirrel skin, approximately 20  mm long and 6 mm wide, looking 

at the ventral side. The im age looks blurry owing to the white fur, but horizontal striations are still clearly evident, a s  highlighted.

Standard test strips were cut from the skin, some orientated along the length of the 

animal, and others at 90° to its long axis using the cutter described below. The ends of 

these were glued to plastic mounts with cyanoacrylate adhesive. The mounts were 

clamped vertically within an Instron 4202 tabletop tensile test machine. All the tests 

were carried out at the same strain rate, 5 mm/min, to ensure that the results would not 

be affected by strain rate sensitivity. At high strain rates in particular, ultimate tensile 

strength has been shown to increase with strain rate (Haut 1989; Dombi, Haut et al. 

1993; Shergold, Fleck et al. 2006). A consistent method for mounting the samples in the 

testing machine was used to avoid issues arising from differences in lo, the length at 

zero strain. Problems would arise if the samples were subjected to differing amounts of 

pre-straining in the machine prior to calibration and testing, so the top pneumatic clamp 

was applied first, and then the sample lowered vertically into the jaws of the second 

clamp, hanging only under its own weight. Given that the size of both the sample and 

the plastic mounting tabs were both consistent, it is reasonable to assume that any error 

in lo should also be consistent, if  not negligible.

4.3.2.3 Cutting test samples

A scalpel was not sufficient to cut the standard dog bone shape test pieces required for 

tensile testing (Edsberg, Cutway et al. 2000). Instead a custom made cutter was made
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by heating Stanley-knife blades to soften them, then bending them in a milled die using 

a vice. Two such blades, bent in symmetrically opposite directions, were then bolted to 

a block of mild steel against a thin, machined flat on each side (Fig. 54). This allowed 

repeatable, accurately sized dog bone shaped test-pieces to be punched out cleanly using 

a hammer. Blades could be easily changed to avoid blunting, which would pre-strain the 

samples.

A B

Fig. 54 A -  Punch for accurately cutting d og-bone-shaped  test sam ples from the skin. B -  S im ple die used  to sh ap e  the Stanley knife

blades used  in the cutter.

The dimensions of the dog bone test shapes are shown in Fig. 55. The effective length 

of the sample is 20mm, and width is 5.5mm. The flying squirrels were pinned out in a 

gliding posture prior to cutting, once again to try to keep lo as similar as possible 

between tests.

10 *

5.5

60

lf
20 '
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Fig. 55  -  D im ensions of d og bone test p ieces u sed  in all experim ents in mm.
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After ensuring that the animal was completely defrosted by lightly manipulating the 

limbs, it was pinned out face-up and with its limbs spread to approximate a gliding 

posture. Test samples were cut through both surfaces of the skin simultaneously, after 

which the newly created edges were quickly smeared with petroleum jelly to minimise 

any exposure to the air. The size of the dog-bone test shapes was chosen so that it was 

possible to cut skin samples through both the ventral and dorsal skin simultaneously, 

either longitudinally or laterally, and these two layers of skin would remain firmly held 

together throughout the test procedure. This method is based on an assumption that 

there would be no difference in tensile properties between the two layers (ventral and 

dorsal) of skin.

4.3.2.4 Dehydration prevention

The decision to carry out experiments on flying squirrel skin in vitro required a means 

of preventing dehydration prior to or during testing. Vaseline™ petroleum jelly was 

gently smeared onto both sides of the skin immediately prior to removal from the body 

following Hepworth, Gathercole et al. (1994), who employed a similar method 

successfully to prevent the dehydration of egg capsules after removal from dogfish for 

tensile testing. The petroleum jelly coating acts as an oily barrier, preventing water from 

passing to or from the skin. It was important to keep this layer thin, to minimise the 

increase in pre-loading on the sample.

4.3.2.5 Data Analysis

Stress strain curves were drawn by calculation from the force-extension data from the 

Instron tensile tester. This required the dimensions of the dog bone test shape as 

described in Fig. 55 in conjunction with the thickness of the skin, measured to the 

nearest 0.01mm using a micrometer. The stress and strain were determined using 

Equation 16 and Equation 17 below:

F
< j -  —

A
Equation 16
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Where a is engineering stress, F is the measured force and A is the original cross- 

sectional area of the test piece. True stress would require that the instantaneous area be 

used in place of the original cross-sectional area in the above equation.

dls  — —
h

Equation 17

Where e is the engineering strain, 51 is the change in length of the test sample and lo is 

its original length. In order to measure true strain, instantaneous length would need to 

be substituted for the original length in this equation.

Engineering stress and strain are only accurate for small extensions, and the 

consequence of using these approximations in tensile testing is that stiffness will be 

underestimated. However, it is assumed that the error introduced will be negligible in 

comparison to the existent experimental uncertainty, owing to the high compliance of 

the test material.

4.3.3 Results

4.3.3.1 Skin thickness

In order to draw stress-strain curves, the thickness of skin samples was measured. The 

skin from flying squirrels was thinner (approx. 0.25mm) than that of mouse skin 

(approx. 0.35mm). These measurements are likely to be an overestimate because they 

were made without first shaving the animals. However, the comparison should be fair 

owing to the use of the spring-loaded ratchet thimble on the micrometer, which slips at 

a certain torque ensuring that the fur is compressed to the same degree for both animals. 

This method was used because it was feared that damage might be caused to the skin if 

shaved prior to testing, but there would be no value in measuring the thickness after 

stretching it. Therefore, all values of stress calculated in this study might be slightly
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conservative, but this will not affect the direct comparisons between the different flying 

squirrel test samples.

4.3.3.2 Mechanical properties

It was possible to cut out six test samples from the southern flying squirrel using the 

cutter decribed, three oriented longitudinally and three laterally. Fig. 56 shows all the 

resulting stress against strain curves on one pair of axes to enable visual comparison. 

All have the characteristic J-shape associated with mammalian skin, and for an 

equivalent amount o f strain, the longitudinal samples are subjected to higher stress than 

the equivalent lateral samples, hence the steeper curves. The lateral samples, in contrast, 

can tolerate much larger strains before failure.

Lateral

-  -  Longitudinal

1.5

0.5

E n g in e e r in g  S tra in

Fig. 56 -  Graph show ing stress against strain for all six sam ples of southern flying squirrel skin. It is clear that the three longitudinal 

sam p les represented by dash ed  lines have the steep est curves and reach the h ighest va lu es  of stress. In contrast, the three lateral

sam p les can  cop e with much larger stains before failure.
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Fig. 57 shows the data for the longitudinal samples separately for clarity. A straight line 

was overlaid by hand to demonstrate that all three curves strain harden to a linear region 

of approximately the same gradient, when the strain is more than 0.4. The gradient of 

this line is the Young’s modulus, also referred to as the stiffness of the skin, and is 

estimated to be 4.8 MPa for these longitudinal samples. The ultimate tensile strength 

(UTS) and failure strain can be read from the graph as indicated by the arrows. The 

UTS ranges from 1.93 to 3.00 MPa, and all samples fail catastrophically while the strain 

is between 0.7 and 0.9.

3 U ltim ate  -+ 
T ensile  

S t r e n g th
 Longitudinal -1
-  -  Longitudinal - 2 

Longitudinal - 3

2.5

2
Failu re
S tra in4.8 MPa

1.5

1

0.5

0
0 0.2 0.4 0.6 0.8 1

E n g in e e r in g  S tra in

Fig. 57  -  S tress  Strain graph show ing only the three longitudinal sam ples. It can  b e s e e n  that the stress  on each  test sam ple in creases  

w hen strain is applied, and so m e  perm anent deformation is present when the strain is taken back down again. The curve then continues  

from approximately the sam e point w hen the strain is reapplied again. A straight line h as b een  added to show  that the strain hardened  

section of all three curves h as  approximately the sam e gradient. This gradient is equivalent to the Young’s  m odulus or stiffness of the 

skin sam p les in this region of the curve, which is approximately 4 .8  MPa. The arrows indicate how the Ultimate Tensile Strength and

Failure Strain can  be easily  read from the graph.

Similarly Fig. 58 shows the stress against strain graph for the laterally orientated 

samples of skin. Initially, the typical J-shaped curve can be seen although the stiffness 

of the strain hardened section of these curves is between approximately one third and 

two thirds of the value for the longitudinal samples. In all cases, the UTS is reached 

when the strain is between 0.7 and 0.9, although the values range from only 0.95 to 

1.47, lower than the longitudinal equivalents. Instead of complete failure though, these 

lateral samples continue to extend considerably further with a new, much lower stiffness
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value. The resultant failure strains are between 1.2 and 1.8, up to double those achieved 

by the longitudinal test pieces.

3.20 MPa Lateral 1

-  - Lateral 2

Lateral 31.45MPa

0.27 MPa

0.4

0.5 1.5
E n g in e e r in g  S tra in

Fig. 58 -  Graph show ing stress  against strain for the laterally orientated sam p les of skin. T he lines show  how the stiffness (Young's 

modulus) of the strain hardened linear section s of th ese  curves ch a n g es  with increasing strain.

Another interesting result is demonstrated in Fig. 59. This shows the middle example 

stress against strain curve for the two orientations, zoomed in to show its behaviour at 

low values o f strain in more detail. The longitudinal sample visibly yields during its 

extension but the lateral one does not. This observation is consistent with data from the 

other four test pieces, although these are not included in the figure for clarity.

This suggests that the physiological strain range for the southern flying squirrel is less 

than 0.3 when stretching its patagia longitudinally. However, it should be able to stretch 

its skin much further in the lateral direction (by limb abduction) without causing 

damage.
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 Lateral

Longitudinal

Yield points?

0.4 -

0.1 0.2 0.3
E n g in e e r in g  S tra in

0.4 0.5 0.6 0.7

Fig. 59 -  C lose up show ing only the early section  of the stress  strain graph for the skin of a  southern flying squirrel. Only the middle curve 

for each  o f the two sam ple orientations is displayed for clarity. There is ev id en ce that the longitudinal sam ple starts to yield a s  the  

engineering strain ap proaches 0 .3  (circled), which is not evident in the lateral equivalent. This observation is a lso  consistent with respect

to the other four curves not displayed in this figure.

4.3.4 Discussion

This study set out to investigate whether or not flying squirrel skin differs from normal 

mammalian skin as a result of its integral function as a membranous wing. 

Unfortunately though, there is little or no value in comparing the specific values of 

stiffness, strength and failure strain measured here with equivalent results obtained for 

other types of mammalian skin in other studies. This is due to the difficulties in 

measurement and the consequent wide variation discussed previously. It is, however, 

acceptable to make comparisons within just this data set derived from a consistent test 

procedure.

The data presented here demonstrates a clear difference in mechanical properties 

between the two orthogonal orientations of the skin. The values of stiffness and ultimate 

tensile strength measured for the longitudinal samples were all higher than those 

measured from lateral test pieces, although these could all tolerate a higher strain before 

failure. In fact, the longitudinal samples were seen to yield at strains o f less than 0.3,
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with no similar yielding seen for the lateral equivalents. This is consistent with the 

observation that flying squirrel skin remains tight into the sides of the animal during 

normal arboreal locomotion. Therefore this would be subjected to relatively higher 

strains when the limbs are fully abducted for gliding than the largest likely for 

longitudinal skin, which would be when the forelimbs and hindlimbs are moved away 

from each other.

An observation was made during this experimentation that lateral samples sprang in on 

themselves more after removal from the squirrel. It was shown in the theory introduced 

in section 4.1.2, (page 116), that most shrinkage would occur in the direction of 

Langer’s lines for normal mammalian skin, implying therefore that these ran laterally 

across the animal. Skin stiffness is normally highest parallel to the Langer’s lines, so 

patagia must consist of some fundamentally different material in order for it to be 

higher in the longitudinal direction, which it was predicted would be more useful during 

gliding flight. More shrinkage would thus be expected in the direction of these lines 

(contrary to the actual finding). However, this observation could be explained by the bi

directional composite structure proposed in this chapter (Fig. 52).

The stress-strain curves in Fig. 58 add weight to the argument that the majority of 

collagen fibres would likely be orientated transversely to these laterally cut skin 

samples. The first peak would thus be the catastrophic failure of some of the stiffer 

collagen fibres in the composite acting against the strain direction, but the remaining 

material, with its lower stiffness, is able to absorb much larger strains until it finally 

breaks. This occurs at a much lower UTS than that required to break the primary fibres, 

so perhaps this is the breaking of more elastic secondary fibres, possibly elastin, after 

which the matrix material of the composite no longer holds together.

Considering the bi-directional composite model proposed for flying squirrel skin, the 

folds observed running along the length of the animal (Fig. 53) could be explained by it 

having a high quantity of pre-strained elastic fibres running across them perpendicularly 

in a flat piece of material. Thus relaxing the more elastic fibres would cause the 

bunching together of the stiffer fibres oriented orthogonally to them.

Page 132 of 228



Functional attributes o f flying squirrel skin -  preliminary study

Using an identical procedure for each, the skin of the southern flying squirrel was 

measured to be thinner than that of a mouse, even though the latter was less than half 

the size. This is consistent with the prediction that thinner skin would be an ideal 

morphological attribute for a flying squirrel. However, there would likely be a trade-off 

between the associated aerodynamic advantages of a lighter weight material, and its 

strength and damage tolerance.

4.4 Tips for future researchers on this subject

This chapter was only a brief diversion into the important field of materials science in 

search of inspiration for the development of an autonomous jumping robot, the main 

objective of this thesis. However, it should provide a solid platform for any future 

research in the area, as the experimental procedure described details some useful, 

inexpensive solutions to the many obstacles presented by such in vitro mechanical 

testing of skin.

Importantly, a novel and inexpensive solution is presented for cutting out the dog-bone 

shaped test pieces preferred for mechanical testing without pre-straining the soft, 

biological material. The design is comparable to a pastry cutter in operation, and 

constructed from replaceable Stanley knife blades to keep it sharp.

One of the most critical aspects of the design of soft tissue tensile testing experiments is 

determining the point of zero strain for each test sample, lo. It is virtually impossible to 

set up samples of such a compliant material as skin such that they are under zero load in 

the relatively large and cumbersome tensile testing machine. This is calibrated after 

each sample is loaded, so any pre-strain will have a direct consequence on that 

measurement and subsequent calculations. A consistent and reliable test procedure must 

therefore be adopted to ensure that genuine differences can be detected when comparing 

samples against each other. In this study, the arbitrary length of lo was chosen to be the 

length of the dog bone shaped test piece suspended under its own weight, plus that of 

the plastic tab at the free end. By clamping the top end into the machine first, this could 

be raised and lowered until the bottom tab sat between the jaws of the lower clamp, 

which were then closed pneumatically. The cutting tool used allowed good repeatability
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of shape, and the plastic tabs were all of identical size and material. Therefore the total 

weight, and hence the load which pre-strains each sample should be consistent so long 

as the layer of petroleum jelly on each side of the skin was of equal thickness in all 

experiments.

It has been shown that females have higher wing loading than males (Thorington and 

Heaney 1981) and therefore it would be necessary to separate the sexes in any 

mechanical testing.

Age effects are also likely to be important. The elasticity of skin decreases with age as 

the elastic fibres degenerate owing to relatively poor repair and regenerative capacity of 

elastin fibres (Starcher, Aycock et al. 2005). The squirrel tested here was of unknown 

age, but were this study to be repeated in future, care should be taken to investigate the 

behaviour of skins from animals of a variety of known ages.

Page 134 of 228



Functional attributes o f flying squirrel skin -  preliminary study

4.5 Conclusions and implications for the jumping robot

It was thought likely that the skin of flying squirrel patagia would be highly specialised 

owing to the unique physiological requirements. A model was proposed for the structure 

and composition of patagial skin, based on observed physical characteristics, accepted 

theory regarding mammalian skin and consideration of the ideal mechanical behaviour. 

It was predicted that this skin would be thinner than would be expected by scaling from 

other similar mammals, and combine high longitudinal stiffness with high elasticity in 

the lateral direction. Uni-axial tests carried out on a single southern flying squirrel 

produced results which were consistent with these hypotheses, and so this research is 

presented as a useful starting point for future research into this question. Although it 

would have been interesting to develop this brief experimentation into a full study on 

the mechanical properties of flying squirrel skin, it was considered too much of a 

diversion from the main objective of the thesis, which was to develop an autonomous 

robot. In order to confidently test the proposed model, such an investigation should 

include a histological test to determine the elastin content of flying squirrel skin, 

together with its primary fibre direction. These are likely to differ both from other small 

mammals, and in different areas of the patagia. During this research, a novel and 

inexpensive technique for cutting out test samples of biological tissue such as skin was 

successfully demonstrated.

Much can be learnt from this study and applied to the design of the jumping and gliding 

robot discussed in the following chapter. The robot will similarly require a gliding 

membrane that is damage tolerant, puncture resistant, and can deploy rapidly during the 

high-power jump cycle. Making this membrane as thin as possible with respect to the 

properties mentioned above would also clearly be an advantage. Flying squirrels are 

able to walk, run and climb in addition to jumping and gliding, so when designing this 

robot, it would be advantageous to avoid prohibiting any other form of locomotion if 

such were to ultimately become integrated into the design. Therefore, a gliding 

membrane with an elastic element which naturally folds it away during the longer, 

winding-in cycle of the robot would be ideal.
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Chapter 5 

Robot Design

The aim of this research set from the outset was to design a small, autonomous and 

inexpensive jumping robot for traversing irregular terrain, using a low power, locally- 

available energy resource. This chapter will begin with the design requirements 

specification which was drawn up after consideration of the broad range of jumping 

specialisations that have evolved in nature. Perhaps the first key design decision for the 

robot was to choose between the two distinct jumping strategies observed in nature, 

‘pause and leap’ or ‘continuous hopping’, introduced in Chapter 2. Of these, the ‘pause 

and leap’ strategy would seem much better suited to an autonomous jumping robot, 

where absences and irregularities in the power supply could be accommodated during 

the ‘pause’ phase. Hopping requires a more sophisticated level of control, and 

continuity, demonstrated by the fact that animals with more primitive cognition 

(including all the insect jumpers) utilise the ‘pause and leap’ approach. Furthermore, at 

the outset of this research project a ‘jumping and gliding’ robot was proposed, due to its 

relative prominence over ‘jumping and rolling’ in the natural world. However, the 

advantage of gliding would be a reduction in impact forces, which would directly 

reduce the amount of energy that could be recycled by a hopping mechanism, so a 

‘pause and leap’ robot was be developed.

5.1 Design Requirements Specification

Table 3 shows the final design requirements specification for the jumping and gliding 

robot to be developed, together with the biological inspiration for each item.
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Biological Inspiration Design Requirement

Animals must eat in order to convert and store the 

energy required by its muscles for locomotion. The 

food resources available are generally of a lower 

than necessary energy density. It was shown in the 

introduction that power is the performance limiting 

factor in small jumping animals and insects, for 

which the specific energy available from muscle 

contraction alone is insufficient. Power amplification 

is achieved by operating their muscles at lower than 

maximum speed, and storing the energy for rapid 

release.

In order to be fully 

autonomous, the robot must 

be able to ready itself for a 

jump using a locally available 

energy source.

Different animals store energy in different ways. For 

example, fleas and leafhoppers store energy in 

resilin, a rubber-like material, in compression. 

Larger mammals, such as humans and dogs, store 

energy in tension in tendons, primarily made from 

collagen. Locusts, however, store their energy in 

stiffer skeletal cuticle, in bending.

Energy should be stored 

somehow, ready for a jump 

when instantaneous release is 

required.

Most jumpers have relatively long jumping limbs. A long leg length (relative to 

overall robot size) should be 

chosen for further power 

amplification.
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The large jumping (metathoracic) legs of the locust, 

for example, are held in the flexed position by a 

natural catch caused by a belt of tendon becoming 

hooked around a lump of cuticle (see Section 

2.1.3.1.1, page 28). Fleas also rely on a mechanical 

catch.

A catch mechanism is 

required to ensure that the 

robot can remain in the 

charged condition until its 

next jump without requiring 

additional energy to hold it 

there.

Even the most primitive insects are able to orientate 

themselves prior to jumping to ensure that they jump 

away from the ground. Locusts, for example once 

again, were shown in Appendix 1 to display little or 

no control on landing, frequently landing on their 

heads. However, they can quickly find their feet and 

jump again almost immediately if necessary.

The robot must jump upwards 

no matter which orientation it 

lands in.

For an organism to jump, a suitably massive element 

of its body needs to be accelerated away from the 

remaining mass. By considering conservation of 

momentum and neglecting losses, greatest jump 

height is achieved by maximising the ratio of the 

accelerated mass to trailing mass which directly 

increases take-off velocity.

During jumping, the robot 

must maximise the ratio of 

the accelerated mass to 

trailing mass.

Most animals deliberately jump in the direction that 

they would like to travel.

The robot must be able to 

orientate itself prior to 

jumping.
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All animals, irrespective of size can jump to 

approximately the same height as shown in the 

Literature Review, but the additional mass of the 

required payload will have less detrimental effect on 

the peak height of larger animals.

The robot must be able to 

carry a useful payload, such 

as an environmental sampling 

device.

In all animals, it is essential to the preservation of 

life that delicate organs are protected from excessive 

impact during locomotion. Connections are not rigid, 

so forces are damped by these softer tissues.

Some animals, such as flying squirrels, are able to 

glide, enabling them to reduce their landing impact 

forces aerodynamically.

The robot must be able to 

carry any sensitive electronic 

equipment without it 

sustaining any damage during 

the jumping and landing 

cycles.

Flying squirrels were observed to fully abduct their 

limbs during take-off, deploying their gliding 

membranes, (patagia), in the process. This behaviour 

occurred even during leaps when it was 

demonstrated that the squirrels achieved no resultant 

advantage in landing altitude.

The robot should have 

membranous wings to enable 

gliding, and these should 

deploy automatically and 

fully during take-off.
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It was shown in Chapter 3 that flying squirrels 

choose to pitch upwards, rapidly increasing their 

angle of attack, immediately prior to landing in order 

to reduce impact forces.

Similarly, flying fish deliberately employ air braking 

to slow themselves down prior to re-entering the 

water, by positioning their pelvic fins forwards, and 

angled against the motion.

The robot should have the 

ability to control its angle of 

attack during the gliding 

phase to enable effective air 

braking as it lands.

In nature, all components must be manufactured 

following a group of natural rules during embryo 

development.

Industrial designers do not 

have this limitation but it 

must be possible to create and 

assemble the required 

components according to 

what current technology 

permits.

Table 3  -  Table presenting the design requirements specification for the jumping and gliding robot to be developed.

One final requirement was specified, which has no particular biological source:

• The robot should be constructed from materials that could be adapted for use in 

space applications.

5.2 Design Detail -  Glumper

During this research, a number of prototype jumping mechanisms were created along 

the way to reaching a satisfactory design solution for a robot which can both jump and 

then glide. Descriptions of these early prototypes can be found in Appendix 2, but a 

photograph of the final robot design for this thesis is shown in Fig. 60. It has been called
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Glumper, so named because it is a merge of the two relevant descriptive words, 

‘Gliding’ and ‘Jumper’. In the following section, the design details of Glumper will be 

introduced with respect to the requirements outlined previously.

Fig. 60  -  Photograph of Glumper winding itself in im mediately prior to take-off.

The photograph of Glumper (Fig. 60) shows its four long legs, each with a torsion 

spring “knee” at its midpoint, distributed perpendicularly between a “head” and an 

identical “foot”. A triangular shaped membrane mounted between each leg element and 

along the axis o f the robot acts as its gliding wings. By way of introduction to some of 

the more complex design solutions, an overview of the discrete steps required for 

Glumper to jump is given in Fig. 61.
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(a) (b) (c) (d)

Fig. 61 -  A sketch  to introduce the step s  required for com pression  and re lease  o f Glumper, showing: (a) A m echanism  is freely 

su sp en d ed  on a cord betw een the head  and the foot, which can  wind in the cord to com p ress the robot, (b) This com pression m echanism  

can be attached to w hichever end of the robot is uppermost, (c) W hen the robot b eco m es  fully com p ressed  a  clutch re lea ses  the cord 

and the robot jum ps upwards, (d) After landing the clutch requires resetting and the p rocess  can repeat. The gliding m em branes are

omitted from this figure for clarity.

The first requirement specified for this robot was that it must be able to ready itself for a 

jump using a low grade energy source. Glumper is able to achieve this using a small 3 V 

motor, but this low power motor can still generate relatively high torques simply by 

gearing it down sufficiently. As a consequence, the time taken to charge the jumping 

mechanism increases, but this is only of secondary importance for applications 

requiring complete autonomy, where the maximum lifetime of the robot takes 

precedence.

Next it was specified that energy should be stored somehow and instantaneously 

released into a jump. Energy could be stored by extending or compressing rubber-like 

materials, such as the high-performance elastics used in modem catapults. Fleas, for 

example, store energy by compressing resilin pads and so the early prototype jumpers 

were built using elastic bands and silicon rubber, as described in Appendix 2, (page 

210). However, these demonstrated that energy is lost with time in the loaded state due 

to stress relaxation. Locusts, by contrast, store energy in the bending of more rigid, 

structural elements, such as their semi-lunar processes which act as leaf springs. 

Another requirement, however, was that the robot should be constructed from materials 

that could be adapted for use in space applications. Although rubbers have the capacity 

to store a lot o f energy, this property is severely affected by temperature and time. At 

cold temperatures, rubber-like materials become hard and brittle, causing them to fail 

before much energy has been absorbed. The time taken to charge the robot is likely to 

be slow, and extreme environments present the most useful applications for a jumping 

robot. Therefore storing energy in bending should provide a more suitable approach,
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and Glumper stores energy in the rotation of four heavy-duty steel torsion springs. 

These are made from 3.75 turns of 4 mm diameter spring steel rod, which are mounted 

in the knee-like hinge-joints of four legs and constrained symmetrically between the 

two ends of the robot.

A long leg length (relative to overall robot size) was specified to amplify the power 

produced by releasing these compressed torsion springs. Glumper’s legs are each made 

from two hinged carbon-fibre reinforced plastic (CFRP) rods, 0.5 m long with an 8 mm 

outside diameter, and a 4 mm internal diameter. These rods have very high specific 

stiffness and are reinforced by two steel rings, one at each end, allowing the legs to fully 

compress the torsion springs. If the legs were less stiff they would themselves bend 

before the springs were fully compressed, reducing the total jump energy. However, 

although the low specific stiffness of carbon-fibre was ideal for this prototype, this 

would not be a suitable material for space applications. Carbon is something that 

instruments are searching for when looking for evidence of life on other celestial bodies, 

so it is important to avoid transporting some from earth. However, glass-fibre reinforced 

plastic (GFRP) offers even higher stiffness to weight ratio, as can be seen in the 

selection charts produced by Ashby, (Fig. 62), which were created specifically for 

choosing the optimum materials for engineering design (Ashby 1992).
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The reinforcement rings are made from 2 mm thick mild steel, and are stuck to the 

surface of the rods using both an epoxy resin based glue, and an interference fit. Their 

primary function is to strengthen the legs by preventing the carbon-fibre rods from 

splitting. Where the legs connect to the two ends of the robot, the ring is just 6 mm long 

(to keep the weight to a minimum), and has a through hole to enable rotation around an 

M3 mounting bolt (see Fig. 63 below). The other ring is longer at 14 mm, which 

incudes a 6 mm thicker-walled section beyond the length of the underlying carbon-fibre 

rod. Here the internal diameter of the steel ring is 4 mm rather than 8 mm, giving a total 

thickness o f 10 mm. A tapped through hole allows for the insertion of two M3 grub 

screws into each, which tighten down onto the torsion springs.
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A B
Fig. 63  -  Rendering from Solid E dge V .17 show ing the two typ es of reinforcement rings used  at each  end of the carbon-fibre leg p ieces. 

A -  At the k n ees, the stee l ex ten d s 6 mm further than the carbon-fibre leg, with this section  o f the tube having a thicker wall diam eter and 

a tapped through hole. This allow s the spring to be held in place by grub screw s from both sid es. B -  At the en d s of the leg the 

reinforcement ring is only 6 mm long, and has a through hole allowing the leg to rotate about an M3 bolt mounted through the h o les in the

head/foot p iece  a s  shown.

It was specified that the robot must jump upwards no matter which orientation it lands 

in, which seems a superior solution to simply incorporating a self-righting mechanism 

because this adds dead weight to the system (weight that does not contribute towards 

the jump). Glumper folds down flat as its torsion spring knees are compressed, and 

consequently can be in only one of two orientations prior to take-off, in the same way 

that a coin can only land ‘heads’ or ‘tails’. By making the robot symmetrical such that 

its head and foot are identical, and by separating the compression mechanism (together 

with any other mass, such as the payload) from the energy storing frame, bi-directional 

jumping can be achieved. Prior to each jump, the decoupled mass must be rigidly 

connected to whichever of these end pieces is determined to be uppermost.

Another important specification to be inspired by nature was the requirement for a catch 

mechanism to ensure that the robot can remain in the charged condition until its next 

jump without requiring additional energy to hold it there. A neat design solution for this 

design problem developed for Glumper was the incorporation of a worm gear into the 

compression mechanism. This has the dual advantage o f increasing motor torque, while 

preventing energy stored in the system from acting directly against the motor’s stall 

torque in the event of complete power loss. Such a design is essential when considering
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using solar power, which would obviously be subject to large variations at different 

hours of the day, reducing to nothing during the night. The compression mechanism will 

be housed in a control box, which will be described more fully in the following section.

It is clear that in order to be useful, this jumping robot must be able to carry a useful 

payload, such as a camera and transmitter. Therefore, sizes should be chosen for the 

best compromise between the low weight and small final volume preferred for space 

applications, and the payload requirements, given the current technological limits on 

necessary components. The current evolution of Glumper weighs 700 g, and has a 

maximum standing height of 0.5 m. The performance of this robot, including an 

investigation into the effects of increasing and decreasing weight to the resultant 

clearance height, will be detailed later in this chapter.

Of similar importance regarding the payload, the robot must also be able to carry any 

sensitive electronic equipment without it sustaining damage during the jumping and 

landing cycles. Landing impacts are likely to be the most damaging. Therefore 

Glumper’s compression mechanism and potential payload will not be rigidly connected 

to the extremities of the robot, which contact the ground first on landing. Instead, 

compression will be achieved by the winding around a capstan of a cord connecting the 

two end pieces of the robot, (full details of this winding mechanism are given in the 

next section). By choosing a suitable cord length, it will be slack when released at take

off, and hence absorb some of the landing impulse due to the slight increase in force 

duration. The flying squirrel research in Chapter 3 has also shown that landing forces 

can be further reduced by equipping the robot with membranous wings to enable 

gliding, which should deploy automatically and fully during take-off. Deployment of 

the gliding membranes during take-off avoids any complications that would otherwise 

be caused by the need to conserve angular momentum in mid-air. Glumper naturally 

adopts this behaviour because it has four triangular-shaped gliding membranes spanning 

the gap between its legs and the mid-line between the two identical end pieces. Section 

5.2.3 on page 156 details the selection of membrane material, how it is attached and its 

folding and deployment.

The robot should have the ability to control its angle of attack during the gliding phase 

to enable effective air braking as it lands. Given that the mass of Glumper’s
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compression mechanism for this jumping robot is localised in a box which is free to 

move between its two end pieces, it would be possible to control the pitch angle by 

incorporating one additional motor. This drives a pulley quickly along a toothed belt, 

loosely attached (to avoid excessive strain during jumping) between the head and foot 

of the robot, thus moving the centre of mass either forwards or backwards during 

gliding flight depending on motor direction. This particular design was chosen because 

it can also serve as the mechanism by which the control box attaches itself to the top of 

the robot between jumps.

A B
Fig. 64  -  Pitch-up and foot attachm ent m echanism . A -  Solid E dge rendering to show  how the control box w as d esign ed  with a profiled 

curve included to guide the toothed belt tightly around the pulley. B -  Photograph show ing the pulley and toothed belt in place. The pulley 

w as bored out to allow the interference fit o f an 8  mm rapid prototyped insert, which m ates with the motor output shaft at o n e  end and the

M3 locating bolt at the other.

Finally, the robot must be able to re-orientate itself prior to jumping. An additional 

motor or a complex gear selection arrangement would allow an eccentric mass, such as 

a battery, to rotate horizontally around the control box by up to 180° in either direction 

from its natural position. The slight protrusion of the end pieces from the legs means 

that Glumper naturally rests on only two legs, giving it eight possible resting states, four 

one way up and four the other. The rotation should cause the centre o f mass to shift 

sufficiently to rock it from one pair o f legs to an adjacent pair, such that the resulting 

take-off direction changes by 90°. Unfortunately time did not permit such a mechanism 

to be designed for Glumper, although details of how this will function are given in the 

future work section of this thesis (Section 6.2, page 184).
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5.2.1 Winding mechanism

The control mechanism to compress and release Glumper is housed in a small box 

made, like many of its components, from ABS, (acrylonitrile butadiene styrene), the 

plastic output from a Stratasys rapid prototyping machine. A small 3 V motor with a 

gear ratio of 1:200 is used to drive a worm-gear arrangement which slows it by another 

50:1 ratio. The driven gear has four holes in it, which locate four small aluminium 

locating rods protruding from a capstan that is held against it on the same shaft by a 

compression spring. Fig. 65 shows a diagram of this capstan, showing how the 

aluminium bars are located in an additional wall to ensure no skew, and hence allow 

clean transition in and out of the drive gear. The drive shaft running through the capstan 

is stepped such that the capstan can be pushed away from its drive gear with a linear 

movement of the shaft, compressing the ‘return spring’ in the process. This compression 

spring, which normally keeps the capstan engaged on the drive gear, is not acting 

directly against the capstan but against a circlip approximately 1 mm away. This means 

that the capstan is able to freewheel on the shaft (when away from the drive gear).

Fig. 65  A -  Rendering of an assem b ly  drawing show ing how the capstan sits on a stepped  shaft, and how the four aluminium drive rods 

are located in an additional wall to prevent skew . B -  Photograph show ing how additional h o les in the capstan walls m ake it p ossib le to 

secu re  th ese  rods, which have a tapped internal thread, using M2 screw s. The location of th ese  drive rods into h oles in a driven gear, 

which sits adjacent on the wider section of the stepped shaft, en ab le the capstan to wind in a  cord, (shown a s  secu red  by a large knot), 

and h en ce com p ress the robot. The circlip, com pression  spring and w asher which normally hold the capstan located in the drive gear are

also  shown.
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The two free ends of a length of high-strength nylon fibre cord are attached to the 

capstan by pulling them each through a hole in the middle wall of the capstan, (using a 

small hook crafted from a paperclip), and tying a large knot in them so that they cannot 

return through the same hole. From here, this cord loops around smooth, non-rotating 

pulleys in one of the two end pieces, back through a guide hole in the control box and 

around the identical pulley at the other end of the robot. Thus winding in the string 

around the capstan causes the robot to compress. This would subject the ABS capstan to 

a significant torque at the attachment point of the cord, but the design is such that it is 

the much stronger aluminium rods which absorb this loading.

The friction acting against the required linear movement of the stepped shaft to push the 

capstan away from the drive gear is very high when the robot is highly compressed, 

such that separate linear actuation would require high force. However, this design 

avoids the need for any such device, by using a hinged lever to pull the shaft out when 

both ends of the robot are pulled in against the control box. The end of the stepped 

capstan shaft has actually been threaded using an M3 die. The hinged lever has a slot in 

it which this shaft passes through, and an M3 nylon locking nut can be tightened to any 

position along the thread. By turning this nut one way or the other, the exact linear 

movement of the capstan shaft on depression of the hinged lever can be accurately 

controlled.

In order to make sure that the robot doesn’t jump until fully compressed, this hinged 

lever is constrained by a latch, held closed by a small torsion spring, which is only 

released when the other end of the robot is pulled tight against the opposite side of the 

control box. At this moment, the capstan disengages from the drive gear, freewheeling 

as the cord unwinds rapidly and causing the robot to jump into the air. Fig. 66 shows a 

view of the partially complete control box to clarify how the vertically compressing 

robot can pull the capstan shaft only when the blue latch is moved away from the end of 

the red hinged lever.

Fig. 67B and C are photographs showing the hinged lever in the closed and open 

position respectively, and the nylon locking nut which drags the shaft with it is clearly 

visible in both images.
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Fig. 66  -  R endering from Solid Edge v .17  of the control box show ing the red hinged lever and its blue retaining clip. S o m e com ponents, 

such a s  the over-centre m echanism , the worm and drive gears, have been omitted for clarity. There would a lso  b e an M3 nylon locking 

nut sitting c lo se  to the hinged lever on the capstan shaft, causing it to b e  pulled sid ew ays when the latter rotates.

An over-centre mechanism on the hinged lever prevents premature re-engaging, which 

would otherwise happen as soon as the robot left the ground (due to the compression 

spring on the capstan shaft).

Fig. 67A shows the components added to the control box to make the over-centre 

mechanism. There is an M3 bolt with its top sawn off and replaced by an approximately 

hemi-spherical blob of solder, with a small but very stiff compression spring around it. 

(It was necessary to add this solder blob at very high temperature to ensure strong 

adhesion.) The spring acts against a nut on this solder bolt when the mounting piece is 

fixed in place with two additional M3 bolts, which screw into nuts recessed so that flush 

in the opposite wall of the control box to avoid interference with the hinged lever. 

Adjustment of the nut on the solder bolt allows control of the force with which it is held 

protruding into a hole in the side of the closed hinged lever. Opening of this lever 

requires significant initial force but once overcome, it moves quickly to the fully open 

position and is held open by the returning sprung solder bolt. It is thus important that the 

compression spring used for the over-centre mechanism is stronger than the one on the 

capstan shaft.
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B  C

Fig. 67  -  Photographs showing: A -  The individual com ponents making up the over-centre m echanism . T h ese  are an M3 bolt with the top  

saw n off and replaced by an approximately hemi-spherical solder blob, an M3 nut, a small but very stiff spring, and a mounting piece  

containing h o les for the sprung solder bolt, and two additional mounting M3 bolts, which screw  into nuts re cesse d  so  that flush in the 

op posite  wall of the control box to avoid interference with the hinge. B -  This photograph sh ow s the hinge in the c lo sed  position, when  

the rounded end  of the bolt is located in a hole in the sid e of the hinge. C -  This sh ow s the sa m e  hinge being held in the open position by

the assem b led  over-centre m echanism .

After a jump, the hinged lever needs to be reset past the over-centre spring again in 

order that winding can be re-initialised. This is achieved without the need for a separate 

actuator thanks to the design of the worm drive. Rather than directly coupling the worm 

gear to the motor output shaft, the motor instead drives a piece of ABS which holds a 

brass square-section bar of 4 x 4 mm. Glumper’s worm gear has a slightly larger brass 

square-section hollow bar of 5 * 5 mm mounted through its centre, allowing it to float 

freely along the other square bar. Driving the motor in one direction will cause the 

worm gear to inch itself along the driven gear (on the capstan shaft) until it presses 

against the RP piece driven by the motor, after which continued rotation turns the driven
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gear and hence the capstan. By reversing the direction of the motor, the worm inches 

itself back along the driven gear away from the motor, and pushes a follower (sitting in 

a recess to guide it) towards the hinged lever. On contact, this has sufficient force to flip 

it back up past the over-centre spring ready for the next jump. This design requires high 

friction on the gear driven by the worm, which is achieved by mounting it in a tight fit 

against the side wall of the control box.

A  C

Fig. 68  -  Floating worm gear 'hinged-lever reset' design . A -  Photograph of com ponents show ing, (from top), a p iece of RP with a  grub 

screw  in it to couple the motor to the square-section  drive bar below. The worm gear h as a  mating square-section  tube running down its 

centre enabling it to float along the drive bar, and push the follower at the bottom of the picture in the p rocess. B -  Photograph  

dem onstrating how th ese  com ponents a ssem b le  together. C- Photograph show ing this m echanism  a s  it looks in Glumper’s  control box.
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5.2.2 Head/foot pieces

The two ends o f the robot are of the same design, as shown in both a Solid Edge 

rendering (Fig. 69A) and photograph (Fig. 69B). They are each constructed of two 

pieces in order to facilitate Glumper’s assembly and construction. The outer parts have a 

rounded base which will allow Glumper to roll from one pair of legs to another prior to 

a jump simply by moving its centre o f gravity once the orientation mechanism to do this 

has been developed. They also contain four perpendicular recesses with bolt holes to 

enable Glumper’s legs to be mounted here, each free to rotate in one plane only. Each of 

the two mating parts has a fixed pulley shape which fits into a recess in the outer part, 

(seen on the left hand side of Fig. 69 A), constraining a cord which runs smoothly over it 

between the top and bottom of the robot, and through the conical protrusion to the 

capstan in the control box. The mating parts on the head and the foot also have some 

indentations which help to grip the slightly slack toothed belt which runs from the head 

to the foot of the robot. The two mating pieces are clamped tightly together by M3 bolts 

as shown in Fig. 69B. This photograph also shows a square of high friction material 

which has been glued to the base to reduce slippage during take-off.

Fig. 69A  -  R endering o f an assem bly  drawing show ing a head or foot p iece  for Glumper. It is essentia lly  two p iec es  of rapid prototyped 

ABS, bolted together using M3 nuts and bolts. On the right hand sid e of the lower p iece  in this drawing, indentations can be s e e n  which 

grip the end of the toothed belt, which runs betw een this and another identical assem bly. The cord which w inds around a capstan to 

com p ress the robot runs over the fixed pulley sh ap e  (seen  on the left hand s id e  of the lower p iece  in this figure) and down through the 

centre of the conical protrusion at the b ase . This is naturally guided towards the hinge lever, which the cord is pulled through to get to the 

capstan, eventually pushing it open  for take-off. B -  Photograph show ing this assem b ly  on in position on Glumper. This a lso  sh ow s a

A B

sm all patch o f black rubber, attached with cyanoacrylate, which redu ces the likelihood of slippage during take-off.
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The depth of these end pieces determines the take-off angle of the robot, such that 

making them deeper would cause a shallower trajectory. For the prototype of Glumper 

presented in this Thesis, relatively small end pieces were chosen so that the robot jumps 

approximately vertically when launched automatically from a flat horizontal surface. It 

was shown in the literature review that the impressive jumping performance of frogs is 

helped by their unique knee joints, which enable the feet to be brought further under the 

body and prolong the duration of the impulse. In vertical jumping, the take-off force 

exerted by Glumper on the ground acts approximately perpendicularly, minimising the 

risk of slippage. It would be worthwhile for any future researchers to consider adding 

some frog-inspired articulation to the eventual end pieces, the size and design of which 

would need to be chosen accordingly in order to enable Glumper to take-off effectively 

at a specific angle.

5.2.3 Gliding membranes

Four individual membranes are conveniently fitted to fill the triangular shaped spaces 

between Glumper’s four articulated legs and the central axis of the robot. Consequently, 

there is a gap in the gliding membrane along this central axis, which is necessary to 

enable the compression and pitch control mechanism to move freely between the two 

ends of the robot when required. Secondarily this also simplifies the selection of 

materials, which would otherwise need to be highly deformable because these wings are 

naturally pulled outwards as the robot changes shape during compression. However, the 

resultant gap between the membranes should not prohibit gliding from taking place, just 

as the horizontally flattened, s-shaped body of the flying snake is capable of impressive 

gliding even with relatively large gaps in the resulting surface (as can be seen in Fig. 21, 

page 53).

During a typical jump, it is expected that Glumper will naturally roll (rotate around its 

central axis) once airborne so that it is gliding on any two opposite wings, in order to 

balance an otherwise inevitable pressure difference. The geometry of Glumper is such 

that the resulting aspect ratio of the wings during such a glide is approximately one. 

This means that Glumper should (in principle) be able to glide at much higher angles of 

attack without stalling than would be possible for higher aspect ratio wings, as
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discussed in the literature review (Section 2.2.3, page 54). This is an essential factor in 

the design because Glumper will naturally launch at a relatively high angle of attack in 

order to gain sufficient altitude during a jump. In the same section, it can be seen from 

work by Torres and Mueller (2004) that an elliptical wing gives superior performance 

than rectangular, Zimmerman or Inverse Zimmerman shapes when the A.R = 1. The 

diamond shape formed between two opposite wings on Glumper more closely 

resembles an ellipse than any of the other shapes tested in that work.

It was also shown in the literature review that bird wings are made from feathers which 

are more porous to air flowing through from the top surface (Section 2.2.2.1, page 47). 

However, it is not possible to incorporate any such material specialisation to positive 

effect with Glumper, owing to the fact that it is equally likely to be gliding on any two 

of its four wings, and either way up.

Glumper’s gliding membranes are made from rip-stop nylon, the same fabric used in 

parachutes and kites due to its ideal high strength, tear resistance and low weight 

properties. Four triangular pieces were cut out to fit the space between the head, foot 

and each torsion spring knee of Glumper’s legs. All three sides of these triangular sheets 

were folded over and a seam added using a sewing machine. This allowed the creation 

of tubular sections to fit over the carbon-fibre leg pieces, and acted solely as a 

strengthening device down the centre of the robot, where the edge of the membrane 

might frequently contact the moving control box. This design keeps the membranes in 

place without hindering compression of the robot. During compression, the membranes 

naturally fold out gradually to one side or the other, well away from any of the moving 

parts of the jumping mechanism and hence are unlikely to catch on anything that could 

cause damage.

5.2.4 Design for Assembly

Due to the high force required to turn the capstan in order to compress Glumper’s 

relatively stiff torsion springs, it was important to ensure that the worm gear could not 

work itself away from the drive gear. The simple solution would be to mount both the 

worm drive shaft and the driven capstan shaft in fixed holes in the control box.
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However, this is not possible because the circlip (which allows a compression spring on 

the shaft to keep the capstan engaged without preventing free rotation) needs to be 

pushed on from the end using a tool and a vice. Therefore, slots of the same diameters 

as the stepped shaft were cut in one half of the control box to allow the capstan shaft 

assembly (Fig. 70) to be slid in from the side. The control box thus constrains the shaft 

vertically, and the assembled components restrict forwards and backwards movement to 

compression of the spring only. The motor and worm gear can only be mounted 

afterwards, as these are located to push against the driven gear from the open side of the 

mounting slot, so that slippage at this end is impossible.

Fig. 70 -  V iew  o f control box with worm shaft a ssem b ly  removed to reveal the slots that m ake it p ossib le to slide in the pre-assem bled

capstan shaft (including drive gear).

The distant end of the capstan shaft is also constrained to move only linearly thanks to 

the subsequent mounting of the hinged lever. This has a slot in it which can easily be 

passed over the end o f the shaft before its location around a pivot bolt in the control 

box.
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5.3 Robot performance

It is slightly problematic to determine whether or not a robot is performing well without 

reference to a specific application. Glumper was designed with thought to several 

potential applications, but suitability for use in space exploration became a design 

requirement so it would seem suitable to consider this when analysing its performance. 

Surface exploration of other planets requires that the vehicle is able to move across 

completely irregular terrain. Therefore, for optimal performance the robot should be 

able to jump over the largest possible obstacle, whilst being of the smallest possible 

volume and mass to minimise the cost of transport.

5.3.1 Jumping performance

In order to capture the peak height of Glumper during jump testing, a Redlake Images 

Motionscope high-speed camera was used at a frame rate of 125 Hz to film each jump. 

Every fifth frame of an example sequence is shown in Fig. 71 below.

Page 159 of 228



The mechanics and energy economy of animal jumping and landing applied to autonomous robots

0.40 s 0.44 s 0.48 s 0.52 s

Fig. 71 -  Example seq u e n c e  of im ages show ing Glumper jumping vertically.

Scion Image is useful internet freeware that can handle sequences of images, and output 

the pixel co-ordinates o f all the points clicked on by a user in order, 

(www.scioncorp.com). The software was used to determine the height o f the head and 

the foot of the robot in each frame of each image sequence captured during testing. In 

order for this method to be valid, the robot was placed such that it jumped in a plane 

parallel to the camera lens, and a graded cardboard tube was arranged in line with it for 

calibration purposes.

Thus Table 4 was produced detailing both the peak height and mean clearance height 

reached by Glumper during four consecutive vertical jumps, launched automatically and 

powered by its two onboard lithium cells.
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Jump number Peak height -  head (m) Peak height -  foot (m)

1 1.89 1.26

2 1.82 1.19

3 1.72 1.10

4 1.72 1.13

Average (m) 1.79 1.17

Standard Deviation (m) 0.08 0.07

Table 4  -  Measured peak heights of Glumper launching itself approximately vertically, powered by two onboard rechargeable lithium 

cells. The total m ass of Glumper (complete with its membranous wings) w as weighed on the day of testing and found to be 700 g.

5.3.2 Efficiency of the jumping energy storage mechanism

In order to determine the efficiency of Glumper’s energy storage and release 

mechanism, it was necessary to determine how much energy it is capable of storing. 

This could be demonstrated by measuring the force required to fully compress the robot, 

and plotting a force-displacement graph. The area under this graph (Fig. 72) is 

equivalent to the energy stored. It can be seen that some energy is lost due to hysteresis, 

but this graph was made by compressing and releasing the robot at 50 mm/min when the 

robot would actually release instantaneously. Nonetheless, the minimum amount of 

energy stored in a fully compressed Glumper can still be approximated by estimating 

the area under the lower curve on this graph. This curve is almost linear, so the area of 

the triangle made between this line and the axis becomes:

Energy = l/2 x Fmax * x ^

(where Fmax and Xmax are the maximum values of measured force and displacement 

respectively).
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F o r c e - D i s p l a c e m e n t  g r a p h  f o r  G i m p e r  j  i m p i n g  r o b o t
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Fig. 72  -  Graph show ing Force against D isplacem ent for Glumper w hen com p ressed  using an Instron table-top com pression  testing  

m achine at a sp eed  of 50mm/min. S eries 1 show s the h ysteresis in the system  a s  the m achine co m p resses  and then re lea ses  the robot,

and S eries 2 and 3 show  that the results are repeatable.

Using the output data from the Instron machine, Fmax = 97 N at Xmax = 443 mm, meaning 

that approximately 21.5 joules of energy is stored when Glumper is fully compressed. 

From this figure, the maximum height that Glumper could reach can be calculated by 

assuming that all this energy would be converted to potential energy at the peak of a 

vertical jump if it was 100% efficient. From the potential energy equation below, and 

the known mass of Glumper without any additional payload (700 g during testing), it 

follows that the centre o f mass of a 100% efficient Glumper jumping vertically would 

reach 3.1 m on Earth. In testing, the top o f Glumper reached an average peak height of 

only 1.8 m. A large concentration of its mass is in the control box which is physically 

attached to the top of the robot when it jumps. Consequently its centre of gravity has 

been estimated to be 15 cm beneath this peak, which would equate to an efficiency of 

53%.

PE = mgh
Equation 18
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5.3.3 Effect of mass reduction.

The parasitic mass of the robot, (the mass of the skeletal structure including the foot, 

legs and springs) is 0.414 kg with the gliding wings attached, compared with 0.395 kg 

without. Experiments were performed to measure the peak height cleared by the robot 

both with and without these wings by adding various weights to the top end piece before 

manually compressing it and launching it vertically. A ruler was used to ensure that the 

robot was always compressed such that there was a 10 cm gap between the head and the 

foot, which is equivalent to the amount of compression it would be subjected to if 

launching autonomously with its control box. A high-speed camera was used to film the 

jumps, and it was expected that there would be an optimum weight for the eventual 

control box. (At very small masses, air resistance would adversely affect the peak height 

achieved). Scion Image was used to determine the maximum distance from the ground 

of the lowest extremity of the robot in each frame. The results are plotted in a graph 

(Fig. 73) and it can be seen that the optimum total mass of the robot is less than the 

current frame weighs, whether or not the wings are attached. Therefore, there is no 

momentum advantage gained by the additional mass of the control box accelerated 

away from the foot of the robot. A similar experiment was performed using Glumper 

Mkl, and the same results can be seen in Appendix 2 on page 210.
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Fig. 73  -  Graph show ing that adding m a ss  to Glumper’s  basic frame reduces its peak clearance height both with and without its w ings 

attached. There must be an optimum value of weight to ach ieve maximum clearance, but this cannot b e quantified b eca u se  it occurs at a 

lower m ass  than that of the present fram e structure alone. The graph w as produced by m easuring the peak height of both the head and  

foot of the robot repeatedly for every given condition, and plotting the average values. Microsoft Excel w as used  to plot a polynomial 

trendline through the centre of th ese  head and foot points for both the w inged and non-winged m easurem ents, and the respective  

equations o f the resulting curves are displayed. Finally, the average m easured peak height of Glumper’s  head and foot for autom atic 

launches is show n for com parison, firstly powered by on e and then with two onboard lithium cells, the latter setup  proving to b e m ore 

consistent and reducing the winding time, but adding 50 g  to the weight. The error bars represent plus and minus on e standard deviation

from the m ean s in all c a se s .

Fig. 73 allows the efficiency of Glumper’s launch mechanism to be calculated in 

relation to the manually released jumps. The triangles labelled ‘Auto 700 g’ represent 

the jump height data presented in Table 4, corresponding to an automatically releasing 

Glumper with its wings fitted and operating from its two onboard Lithium cells 

connected in Series. The total time for wind-in using this power source is 435 seconds. 

The equations of the two curves can be used to predict the height reached by the centre 

of the robot, either with or without its nylon wings attached, for a given mass. In this 

way, it is possible to show that the mid-point of (the winged) Glumper should have 

reached a height of 2.06 m if manually released, when it actually peaks at 1.48 m due to 

energy losses during automatic launching. This equates to a relative efficiency of 

71.7%, with the losses likely to be primarily due to friction in the rapidly unwinding of 

the string from the capstan (as it passes through locating holes and around the pulley 

shaped pieces on the head and foot). It should be noted that even the manually released
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launches are only 66.5% efficient when compared with the total energy storage capacity 

measured for the torsion springs, as discussed in Section 5.3.1 on page 159. Some of 

this energy loss can be attributed to vibration in the torsion springs causing the top and 

the bottom of the robot to oscillate towards and away from each other during its climb 

away from the ground. There will also be some loss of energy through friction and 

conversion to sound.

5.3.4 Gliding performance

It can be seen from Fig. 73 that the presence of its wings cause a reduction in Glumper’s 

peak jump height, even when making an allowance for the increased weight. This is 

presumably the result of the drag force caused by air resistance acting against the 

membranes, both during and after unfolding, although the design is such that these are 

in plane with the direction of motion which should minimise this drag force. 

Experiments were carried out to test what effect the presence of gliding membranes has 

on the peak clearance height and total range of a forwards jump. Up until now, all the 

data presented has been concerned with approximately vertical jumping, but in order for 

Glumper to be able to make useful progress, the depth of its end pieces will ultimately 

need to be increased such that Glumper is angled forwards when in its compressed state. 

For the purposes of these experiments, a fixed take-off angle of 63° to the vertical was 

used, established by launching Glumper from an inclined ramp. The use of this ramp 

rather than deliberately developing deeper end pieces to adjust the take-off angle of the 

robot was both less time consuming, and minimised the likelihood of the foot slipping 

during take-off from the artificially smooth surfaces in the laboratory (though these 

could have been roughened, of course).

Graphs are presented showing the trajectories followed by the two end points of 

Glumper, (labelled head and foot where the foot was the end in contact with the 

ground), during six jumps launched automatically at an angle of 63° to the horizontal 

and powered by its onboard rechargeable lithium batteries. In the first three jumps the 

wings were present (Fig. 74), and for the second three they were removed (Fig. 75). 

Considering the mean peak height reached by the robot in these tests, the presence of 

the wings reduces this by 4 cm from 1.77 m (SD = 3 cm, n = 3) to 1.73 m (SD = 9 cm, n
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= 3). Likewise, the mean peak clearance height falls from 1.17 m (SD = 5 cm) to 1.10 

cm (SD = 9 cm).

 Head 1Head and foot positions - wings attached
Foot 1

 Head 2

 Foot 2

—  Head 3 

Foot 3

0.8
0.6
0 .4

0.2

0 .5 2 .5

X (m)

Fig. 74  -G raph show ing the trajectories followed by Glumper's head and foot during three jum ps launched automatically at an angle of 

63° to the horizontal and powered by its onboard rechargeable lithium batteries. [Colours hard to distinguish]

 H e a d l (nw)

 F o o tl (nw)

 H ead2  (nw)

 F oo t2  (nw)

 H ead3  (nw)
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Fig. 75  -  Graph show ing the trajectories followed by Glumper’s  head and foot during three jumps launched at an an gle of 63° to the 

horizontal. T h ese  jum ps w ere powered by the onboard rechargeable lithium batteries, but the m em branous w ings had been  removed

from the robot.
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Fig. 76 plots the trajectories followed by the mid-point between the two ends of 

Glumper for these six jumps. It is clear that the presence of the wings actually reduces 

the total range of the jump rather than extending it as was intended, presumably owing 

to the additional mass and drag force noted previously. With regard to impact force 

reduction, the other role of the gliding membranes, evidence is provided in Appendix 3 

(page 225) that the wings do reduce the vertical velocity o f the robot even over the short 

trajectories presented above. Likewise, they reduce the total velocity at the moment of 

impact, but this is also a direct consequence of the resultant reduction in horizontal 

range. This result can be related directly to the flying frog, introduced during the 

literature review (Section 2.2.2.3, page 50), which is able to gain some aerial control 

and slow itself while falling but is not so successful at increasing its horizontal range 

travelled.

W ings

No w ings

0.8 -

0.4 -

0.5 1 1.5

Horizontal distance (m)

2.5

Fig. 76 -  Graph show ing the trajectories followed by Glumper’s  centre position during six jum ps launched automatically at an angle o f 63° 

to the horizontal, three with and three without its m em branous w ings attached. Unfortunately, under th ese  conditions, the p resen ce  of the 

w ings actually reduces the total range of the jump rather than extending it a s  w as hoped. (This is  presum ably d ue to air resistan ce and 

increased weight). It can  be s e e n  that in all but on e of the jum ps, the centre o f the sp a c e  occupied  by Glumper reach es a clearance  

height of 1.4  m, with the exception being a winged launch peaking approximately 15 cm  lower.

Drop tests were set up to prove that the wings were successfully reducing Glumper’s 

impact velocity, over a mandatory distance of 3.6 m, chosen because it seemed a height
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which might reasonably be achieved with successful weight reduction on the basis of 

Fig. 73. The results are shown in Table 5 and it can be seen that the wings both prolong 

the jump and reduce the impact velocity, independent of the orientation of the wings or 

the position of the compression mechanism.

How released? Time taken 
to drop 3.6 

m(s)

Final velocity 
(m/s)

As % of 
ballistic

Wings flat, 
mechanism central

0.92 6.7 66.3%

Wings flat, 
mechanism at end

0.99 7.5 74.3%

Wings diagonal 0.98 8.1 80.2%
No wings 0.81 10.1 100%

Table 5  -  Table showing the time taken for the robot to fall 3.6 m, with and without the wings and with the control mechanism located 

centrally in all c a se s  except where specified. This table also show s the final velocity reached by Glumper in each  of the various drop

tests. All values shown are the average of two m easurem ents.

Therefore, Glumper’s gliding membranes should start to have a more positive effect on 

performance if sufficient weight can be removed from the robot, which should also 

simultaneously improve peak jump height and the lift to drag ratio during gliding. This 

principle is clearly demonstrated in Fig. 20, (page 52), which shows that the smaller of 

two otherwise similar species of gliding lizard, (Draco), achieves a much superior glide 

angle. Hypothetically, however, reducing the weight too much could also lead to a 

reduction in performance, owing to air resistance against the wings which would cause a 

relatively larger drag force against the ascending robot. Additionally, an increase in 

horizontal velocity would improve the ultimate glide angle of the robot. This is 

demonstrated by the fact that soaring birds and flying fish achieve the shallowest glide 

angles in nature owing to their respective abilities to propel themselves to relatively 

high horizontal velocities immediately beforehand. A slight improvement in gliding 

performance might therefore be achieved by launching Glumper at a shallower angle, 

although this would have negative implications to its peak clearance height and so the 

appropriate compromise would need to be found by experimentation.

Considering the flying squirrel once again, it was stated in Chapter 3 that although these 

animals protract and abduct their forelimbs during the launch, full gliding posture is 

only adopted once airborne by extension of the wrists and elbows. Perhaps therefore, 

Glumper might benefit from the incorporation of a delay in the full deployment of its
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gliding membranes, thus reducing drag while it attempts to gain altitude. All the 

modifications discussed in this section are central to the suggestions for further work in 

the next chapter, as would be the development of a method for altering Glumper’s pitch 

angle (while gliding) to the resultant trajectory by a suitable control system.

5.4 Power requirement

Throughout the initial trials of Glumper, it was powered using a small, laboratory bench 

power supply capable of delivering several Amperes of current. A digital multi-meter 

was used to measure the voltage and current drawn by Glumper every 30 seconds 

during its compression and release. Therefore, from Equation 19 below, it was possible 

to plot a graph of electrical power against time (Fig. 77). The results were used to select 

two rechargeable lithium ion cells, weighing 50 g each, which were mounted on board 

the Glumper control box for use in the performance testing. These were wired in series 

to give a theoretical operating voltage of 7.4 V, (although this was actually measured to 

be 8.05 V during compression) and a maximum rated current dissipation of 2 A, five 

times the maximum requirement measured at the moment of take-off to be 0.4 A. These 

batteries were deliberately over-specified to ensure consistent and repeatable usage 

during testing. Fig. 77 demonstrates that Glumper can compress itself ready for jumping 

much more quickly using the batteries than the bench top power supply, owing to the 

higher operating voltage. In both cases, the peak electrical power required for Glumper 

to jump is approximately 3.2 W. The simple equation for deriving electrical power 

output (P) from the measured voltage (V) and current (I) is:

P = V x I
Equation 19
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Fig. 77  -  Electrical power consum ed by Glumper’s  com pression  m echanism  against time, calculated from the voltage and current 

m easured throughout its entire com pression cycle. The graph sh ow s that the peak power requirement is the sa m e  (approximately 3 .2  W) 

w hether driven by the bench top power supply at a continuous voltage of 5.89V , or the two rechargeable lithium cells  wired in ser ies

(which have a  m easured output voltage of 8  V).

5.4.1 Flexible solar cells

At the outset of this research, solar panels were proposed as a potential source of energy 

for an autonomous jumping robot. Solar panel technology has developed to a very high 

level, largely as a result of their use in space applications. On Earth the Sun’s radiation 

is diffused and scattered by the environmental conditions, but in space it delivers a 

constant power of 1370 W/m at the radius of the Earth’s orbit. If considering using 

solar panels for exploration of a planet or moon further from the sun, then the available 

power will reduce according to Newton’s inverse square law. The use of solar panels in 

space applications has created a need for increasingly stronger and lighter solar panels 

that can be protected during launch and deployed once in orbit. As a result thin-film 

photovoltaic cells are increasingly more available, and the prices are reducing. These 

thin-film technologies use layers of semiconductor materials only a few micrometers 

thick, attached to an inexpensive backing such as glass, flexible plastic, or stainless 

steel.
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On Earth, the intensity of the Sun’s radiation varies enormously and solar panels are 

capable of producing very high voltages, so loads are generally not connected directly 

(to avoid damage to sensitive electronics). Instead, it is usual to integrate a charge 

controller (or regulator) and a battery. This also allows energy to be generated during 

hours of sunlight, and stored for use at other times. The charge controller prevents the 

solar panel or array from overcharging the battery, which itself serves to store energy 

for the system. The quality of power is also improved, because the battery can be 

discharged as required to supply a variable electrical load.

Fig. 78 -  Photograph show ing on e of the Photon T echn ologies Powerfilm® flexible solar m odules rolled and held under a ruler to

dem onstrate its flexibility and size .

Fig. 78 shows a flexible panel manufactured by Photon Technologies. A number of 

these flexible solar panels were bought in order that experiments could be performed to 

evaluate the feasibility of using them to power Glumper. In principle, these solar panels 

could be easily attached to Glumper’s gliding membranes owing to their light weight 

and flexibility. The panels would need to be connected together into an array, with the 

maximum voltage and current preset by connecting them in series or parallel as required 

(see Fig. 79). However, another thing that must be taken into account when making the 

relevant calculations is that it is only possible for lA of the panels to be directly pointing

Page 171 of 228



The mechanics and energy economy of animal jumping and landing applied to autonomous robots

at the sun, assuming that equal numbers are mounted on each of the membrane wings. 

The results from these solar panel experiments will be detailed in the following section.
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Connection in parallel increases the current Connection in series increases the voltage

Fig. 79  -  Demonstration of how to connect up the Solar Array to gen erate the required output (Photon Technologies).

5.4.2 Solar power experiments

Photon Technologies Powerfilm® flexible solar modules are specified as generating 

0.15 W each of power in bright (Earth) sunlight for a panel of 15 * 3 cm (Photon 

Technologies, Colorado Springs, CO, USA.) Their flexibility, lightweight and size 

would make them ideally suitable for mounting on Glumper’s membrane wings. 

Importantly, only two wings could ever be directly pointing at the sun irrespective of 

robot’s orientation, which is enough area for 45 panels. Hence, a maximum power of 

6.75 W is theoretically available and Glumper’s control mechanism thus satisfies the 

requirement that it should be able to ready itself for a jump using a locally available 

energy source. From the plot of electrical power against time for the rechargeable 

lithium cells (Fig. 77), the total electrical energy required to power a jump, (the area 

under this curve), was estimated to be 643.8 joules. Therefore, the efficiency of the 

conversion of electrical energy into strain storage energy is approximately 3.3%, with 

some of this deficit clearly being converted into heat.

In order to verify that it would indeed be possible to connect these particular flexible 

solar panels (in series and in parallel as necessary) to drive the measured load required 

by Glumper’s compression mechanism, some experiments were set up to test them. The
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open circuit voltage measured for a single solar panel was approximately 4 V, slightly 

higher than the manufacturer’s rating which was given to be 3 V. Thus two of the 

flexible solar panels were soldered together in series, giving them an open circuit 

voltage of 7.84 V together, approximately equivalent to the output from the 

rechargeable lithium batteries currently fitted to Glumper. Together these solar cells 

could be considered as a battery, which was then connected across a range of load 

resistors in turn, while positioned on a flat horizontal surface in direct sunlight. It is 

important to note that for these experiments, no attempt was made to try and achieve the 

best possible power output from these cells, which would require them to be oriented 

perpendicular to the direction of the sunlight during the mid-afternoon when the 

available solar power is highest. Instead the intention was to prove that these particular 

flexible solar cells could be used together, to reliably generate enough power from a 

non-optimal position on a normal day. These experiments were conducted at 3 pm in 

Bath in the UK, on a slightly hazy but sunny day in April 2007.

While voltage measurements were recorded with the two solar cell battery connected 

across each load resistor, the voltage through a larger array of 10 of these solar panels 

was simultaneously measured to ensure that the sun’s intensity was consistent between 

tests. These voltages were measured using two channels of a Measurement Computing 

‘PMD 1208 LS’ Analogue to Digital converter, at a sampling rate of 10 Hz. The output 

from each channel could be stored simultaneously, and the two solar panels connected 

in series, and the ten panel parallel array were positioned side-by-side on a flat 

horizontal surface (as shown in Fig. 80) to ensure a fair comparison.

Page 173 of 228



The mechanics and energy economy of animal jumping and landing applied to autonomous robots

Fig. 80  -  Photograph show ing solar cell experim ental apparatus in u se

From the closed circuit voltages measured, the current could be determined using 

Ohm’s Law (Equation 20 below):

V = IR
Equation 20

Fig. 81 is a plot showing how the measured output voltage from the two solar cells 

(connected in series) increases with the load resistance, while Fig. 82 shows that the 

resultant current falls, as would be expected.
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Fig. 81 -  Graph show ing how the m easured output voltage of the solar cell in creases  with the value of the load resistor across  it.
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Fig. 82  -  Graph show ing how the current flowing through the load resistor drops a s  its resistance increases.

The effective load of d u m p er’s compression mechanism could also be found from 

Equation 20. Therefore, using the measured maximum value of current drawn by the 

motor, at the moment immediately prior to jumping, 0.4 A, and the known output 

voltage, 8 V, this equates to a load of 20 ohms. By considering the two solar cells as one 

battery, it was possible for every data point to determine the number o f such batteries 

that would need to be connected in parallel in order for the effective load resistance felt
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by all together to be 20 ohms. In each instance, the total current produced should be 

equal to the measured current at the respective data point multiplied by that total 

number of batteries. Hence it is possible to calculate the total electrical power that 

would be generated by a given number of the Photon Technologies flexible solar cells, 

(under these specific conditions), and the results were plotted in Fig. 83. By definition, 

this graph assumes that all the individual solar cells are divided into two equally sized 

parallel arrays, both of which are then connected together in series to generate the 

desired operating voltage of approximately 8 V. The additional lines on the graph show 

that 45 panels, (equivalent to one quarter of the maximum number that could be fitted to 

the area o f Glumper’s membrane wings, which allows for the fact that the others would 

be shaded from the sun to varying extent), could only produce 0.63 W if used to power 

the robot’s compression mechanism.

0.8

0.6

0.4

0.2

100 150 200
Total number of flexible solar cells

Fig. 83  -  Graph show ing how the electrical power (W) available for the Glumper com pression  could be increased by adding more panels. 

An assum ption is m ade that all th ese  flexible solar ce lls  are divided into two equally sized  parallel arrays which are then connected  

together in ser ies  to give the desired operating voltage of approximately 8  V.

However, it was stated previously that Glumper’s compression mechanism requires 

approximately 3.2 W at the instant of take-off. Therefore these 45 small panels would 

only be able to produce 25% of the maximum power requirement, although this does 

not take into account the fact that most of the other solar cells on Glumper’s wings, 

though shaded, would likely still be able to contribute some power to the system.
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Although this is a disappointing result, the consequence is not critical because the 

power requirement of Glumper can easily be reduced with more gearing.

A simple experiment to demonstrate the effect of increasing the gearing of Glumper’s 

compression mechanism to its power requirement was carried out. This was effected by 

removing one end of the cord from the capstan, and tying it instead straight to the 

housing just beneath. Consequently, the capstan is only winding in one end of the cord 

instead of both, more or less doubling the time taken to compress the system. Fig. 84 

shows the resulting current against time graph. The time taken to compress and release 

Glumper has increased from 7.25 to 13.5 minutes, while the maximum power 

requirement has decreased to 1.84 W. This approximately demonstrates the expectation 

that doubling the gear ratio would halve the power needed. It has been stated from the 

outset that the speed of the robot is unimportant in comparison with the requirement that 

it should be fully autonomous, and hence able to power itself from a locally available 

power source. Although the power requirement determined by this experiment was still 

marginally too high for an area of the flexible solar cells equivalent to the size of 

Glumper’s wings, it can be seen that by choosing a suitable gear ratio, they should 

become sufficient. Throughout the testing, the motor driving Glumper’s compression 

mechanism had a total gear ratio of 10000:1, and from these experiments it seems likely 

that this would need to be increased to about 40000:1 in order to effect a reliable 

transition from batteries to the flexible solar cells.

Page 177 of 228



The mechanics and energy economy of animal jumping and landing applied to autonomous robots

0.25

0.2

0.15

0.05

200 400

Time (s)

800600

Fig. 84  -  Current against time graph for Glumper after modification to reduce the gear  ratio further. At the instant of re lease, after 810  

seco n d s  (13 .5  minutes), the current drawn w as 0 .23  A, equating to a  maximum power requirement of 1.84 W.

5.5 Discussion o f performance

When launched at an angle of 63° to the vertical, Glumper has an approximate 

horizontal range of 2 m with the wings attached, and 2.4 m without, excluding any 

additional distance that might be travelled as it bumps and rolls to a complete stop. If 

Glumper was modified to be powered by flexible solar panels, with a total gear ratio of 

40000:1, then its total winding in time should be 29 minutes. Therefore, left to operate 

continuously for 24 hours, it would average 94.8 m per day with wings, and 119.2 m per 

day without (on Earth and assuming it could orientate itself to continue a straight path 

and was uninfluenced by external factors such as wind). This is dependent on the robot 

choosing a path with no obstacles greater than approximately 1 m in height. On Mars, 

both the range and clearance height of the robot would be significantly higher owing to 

the smaller gravitational force acting on the robot. Even without taking this into account 

however, the data compares very well with NASA’s planetary rovers currently 

exploring Mars, Spirit and Opportunity, which are averaging 6.3 m and 9.3 m per
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Martian day. (Note, this also includes the Martian night when no solar power is 

available).

It has been shown that Glumper’s gliding membranes do not increase jumping range in 

its present design state, but they do help to reduce the landing impact force.

5.5.1 Jump height - comparison with nature

Glumper’s performance is directly compared with some suitable jumping animals in 

Fig. 85, which shows jump height against object length for each. This figure also 

displays equivalent data for all the existing jumping robots introduced in the literature 

review (Section 2.3.2, page 59). The animal data was taken directly from Bennet-Clark 

(1977). The horizontal lines show energy density and the sloping lines are a measure of 

power per unit weight, derived from Equation 21 below which relates power (P), mass 

(m) and leg length (s) to maximum height, h, for a vertical jump where g is the 

acceleration due to gravity (Bennet-Clark 1977):

h = 2 sP
K m  J

3 1
x  —  

2 g
Equation 21

The power to weight ratio of direct muscle action in animals has a practical limit of 100 

W/kg (Bennet-Clark 1977). Hence, all the animals above that line in Fig. 85 are 

producing more power than their muscles can deliver, requiring some additional energy 

storage mechanism. In fact, all the animals shown are above that line, demonstrating 

that power amplification is usual for animals when jumping.
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Fig. 85  -  Height of jump versus length of a selection  of anim als (outlined markers) and robots (solid markers). The graph a lso  show s  

required specific  energy and specific power to produce a jump assum ing that the objects accelerate through their own body length and 

that there is no air resistance. This graph w as com piled by Rhodri Armour in a  joint paper (Armour, Pask ins e t al. 2007).

At the outset of this chapter, optimal performance of a jumping robot for use in 

planetary exploration was declared to require maximisation of height together with 

minimisation of mass and volume to reduce the cost of space transport. Considering Fig. 

85 the closer the robot sits to the top left comer of the chart, the better. This is 

equivalent to a maximisation of power density, represented by the diagonal lines, which 

is consistent with the finding in the principles of jumping section o f the literature review 

(page 21) which proved that decreasing size demands increased power to achieve 

equivalent height.

Looking parallel to these lines of power density in Fig. 85, Glumper performs rather 

well compared to the animals that would not be considered to be specialised jumpers, 

sitting directly between the domestic cat and the antelope (and thus producing 

equivalent specific power). The jump heights recorded by specialised jumpers, such as 

fleas, frogs and the lesser galago demonstrate a superior power density.
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5.5.2 Jump height -  comparison with previous jumping robots

A number of prototype jumping devices are introduced in Appendix 2, (page 210), 

which were built to demonstrate design ideas throughout this research process. 

However, none of these were capable of fully automatic compression and release 

meaning that valid performance comparisons with Glumper (or any of the existing 

jumping robots reviewed in Chapter 2) could not be made.

From Fig. 85 it can be seen that in terms of both energy density and power density, 

Glumper outperforms all the existing jumping robots reviewed in Section 2.3.2 of this 

thesis, (page 59), with one exception. This was the Sandia robot, which is propelled by 

the combustion of propane and this superior performance would be expected because 

the energy density of hydrocarbons is much higher than that of springs. Interestingly, 

the author can think of no comparable biological transport modes. The use of 

combustion to power jumps was not considered in this research, due to the primary 

requirement of autonomy. Other potential applications are also prohibited by this 

design. In confined areas, for example, exhaust gases could pose a problem and on other 

planets, the lack of oxygen in the atmosphere would prevent the burning of fuel (though 

high explosives could obviously be used, and in a reducing atmosphere oxygen could be 

used as a fuel). The robots with either helical or bending springs as their energy storage 

medium, including Glumper, outperform the remaining devices. This does not even take 

into account that those devices, Airhopper, Pendulum and Deformable all rely on 

external power giving them an immediate weight advantage. It is not clear from this 

sample whether one type of metal spring consistently outperforms any other, although 

no difference was expected. The only elastomer-based jumping robot does not jump 

particularly high, and the absence of other published devices storing energy in 

elastomers might be confirmation of their unsuitability for slow pause-and-leap jumping 

devices owing to stress relaxation.

Power density can be increased by either increasing power or reducing mass. More 

power can be produced by generating higher force or reducing its time of action over a 

given distance. In animals this is limited by the maximum power output of muscle 

resulting in the use of energy storage. Therefore the performance limiting factor for a
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jumping robot is its energy storage and release mechanism. The mass reduction 

experiment conducted demonstrates clearly the advantage of reducing unnecessary 

weight. It is possible to eliminate mass from engineering systems through optimisation 

techniques such as FEA and by changing materials, whereas nature’s jumpers are 

already highly optimised as a result of natural selection. The Sandia robot has already 

proved that it is possible to outperform nature’s jumpers by using a hydrocarbon based 

energy storage and release mechanism, which requires the use of high performance 

materials in its construction. Such materials are unavailable to natural organisms due to 

their additional practical constraints, such as the need for reproduction.

One compromise that is faced when designing a rover for space exploration is that it 

needs to carry a useful payload, such as a vision system, or scientific data collection 

equipment. This mass has to be allowed for when choosing the optimum size of the 

robot, because a set payload will have a greater implication on the clearance height of 

smaller, lighter designs. Glumper’s total mass was 700 g, including its four wings. Fig. 

85 demonstrates that it could absorb the additional weight of a small payload, perhaps 

100 g, without a large decrease in jump height.

The overall performance of the biomimetic jumping and gliding robot Glumper, freshly 

developed for this Ph.D research, is good. It has been shown to achieve most of its 

design requirements successfully, and is able to jump higher and further in a single leap 

than all but one of the comparable robots found in the literature search, and to jump as 

well as some good but non-specialised, jumping animals such as cats and antelope.
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Chapter 6 

Future Work

The scope of this research was broad ranging and interesting to the author. This section 

will briefly introduce some of the work which he feels should be undertaken to best 

further this research. It will be split into two categories, depending on whether it 

concerns the biology of flying squirrels, or the development of the jumping robot, 

Glumper.

6.1 Further study recommended on flying squirrels

It would be useful to repeat the study described in Chapter 3 using larger sample sizes, 

and if possible, across a greater range of distances.

It would also be useful to study flying squirrel skin under a suitable microscope in order 

to identify the proportion and orientations of collagen and elastin fibres within its matrix 

structure. A similar method to that reported in Chapter 4 could then be used to fully 

evaluate the hypotheses determined in the same chapter for the structure of skin in 

flying squirrel patagia.

6.2 Further development work required on Glumper

A mechanism for orientating Glumper prior to take-off could be developed; this would 

be essential in enabling the robot to choose its destination. This could be achieved by 

rotating an eccentric mass around the middle of the box housing Glumper’s 

compression mechanism using a small additional motor and a suitable gear 

arrangement.

Page 184 of 228



Future Work

It was shown theoretically that Glumper should be able to power itself for jumping 

using 45 of the flexible solar cells according to their maximum specification supplied by 

the manufacturer, Photon Technologies. It was shown experimentally that, on a normal 

April day in Bath at least, covering both sides of all Glumper’s gliding membranes with 

flexible solar cells should provide sufficient power for the robot to jump if the gear ratio 

was increased to 40000:1 for the motor driving the compression. It would be interesting 

and worthwhile to obtain the required number of cells and prove this experimentally. 

Such an experiment should verify that Glumper does achieve the original requirement of 

converting locally available solar energy into jumping locomotion, and also under what 

weather conditions. If this did not work for some reason, then the gear ratio of the 

compression mechanism could be adjusted accordingly. The time taken to compress the 

robot could thus be re-evaluated for estimating its average speed in an exploratory 

mission. Further experiments should be performed to determine whether or not the 

motors can be run directly from the solar panels, or if a charge controller is required. In 

this way it might also be possible to store some of the energy in super capacitors, an 

emerging electrical energy storage technology.

Flying squirrels are able to quickly switch between locomotion modes, and it was 

demonstrated in Chapter 4 that their patagia naturally retract away to avoid hindering 

the animal when it is not gliding. Glumper’s gliding membranes naturally fold out to the 

sides as the robot compresses, and it should not be possible for them to catch on 

anything as they straighten unless an object somehow moved into the middle of a folded 

wing once the robot was mostly compressed. Unlike flying squirrels, Glumper was only 

capable of two forms of locomotion, jumping and gliding. In future, it would be highly 

advantageous for additional transport modes to be incorporated into this robot to 

improve its versatility. The use of wheeled rolling where possible, for example, would 

likely increase the life of the robot because it is subjected to relatively high impact 

loading during jumping. Assuming it had sufficient power, Glumper could save time by 

compressing its jumping mechanism while in motion, and hence it would be vital that 

its gliding membranes were out of the way. A flying squirrels inspired solution would 

thus be to incorporate an elastic element into the robot’s wings to pull them tightly 

together while the robot compresses. However, such a solution would cause a small 

opposing force slowing the resultant acceleration of the robot away from the ground
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during take-off. It must be added that this same force would therefore be helping the 

winding motor slightly during compression.

It is essential for flying squirrels to be able to swiftly change between several transport 

modes, so that they can quickly cover a sufficient distance in order to escape a predatory 

attack. A jumping robot is not necessarily faced with exactly the same time pressure, 

and hence trying to imitate the patagia may not be the optimum solution. The elastic 

element to the membranes proposed in the previous paragraph could be replaced instead 

with an additional mechanism to deliberately fold the gliding membranes away after a 

jump, and release them again immediately prior to the succeeding one. For example, a 

small motor could be used to draw fitted cords through each of the wing panels to bunch 

them together. It would be worthwhile for future research to include experimenting with 

such a design, which should facilitate the integration of other useful locomotion systems 

into the jumping and gliding robot presented in this thesis.

6.3 Design issues

In this section, the design issues that became apparent during the performance testing of 

Glumper will be highlighted, together with suggested improvements which could be 

implemented in the future. One obvious outstanding design issue is that Glumper lacks 

an orientation mechanism, although it is not thought that this would pose a significant 

design problem.

While testing the final version of Glumper, it also became clear that the toothed belt and 

winding cord should be arranged differently to improve the balance of the suspended 

control box. Specifically, the toothed belt should be clamped directly in the centre of 

both the head and the foot, while the fixed pulley (that the cord follows through the 

mating pieces to the head and foot) should be repositioned such that the free ends of the 

cord are symmetrically located either side of this belt. Improved balance should have 

the additional advantage of reducing the friction on the cord during winding, meaning 

that it might be possible to use a smaller, faster motor for the pitch-up/attachment 

mechanism.
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(a) (b)
Fig. 86  A -  Sketch  o f an end connecting p iece show ing how the force acting on it by pulling on the loop of cord, (coloured green  here), is 

not currently acting through its centre. B -  Proposed resolution, with the toothed belt m ounted down the centre-line of the robot instead, 

and the cord p a ss e s  either sid e of this so  that the force cau sed  by winding this cord around a capstan a c ts  down the centre line of the

robot.

The following weaknesses are more critical, because they were all responsible for 

catastrophic failures of the robot at some point during testing:

Glue joint between leg and spring holding steel 

reinforcement ring

Reason: Araldite breaks away from both surfaces 

due to shear forces.

Solution: Use better adhesive and tighter fit. 

Rough up the edge of the carbon-fibre before 

applying glue.

Worm gear with square-section tube insert

Reason: Forces are too high for this low-spec 

plastic.

Solution: Use more suitable material such as 

aluminium and machine in one piece.

Page 187 of 228



The mechanics and energy economy of animal jumping and landing applied to autonomous robots

Toothed belt.

Reason: Prone to snapping due to the sudden high tensile forces. 

Solution: leave some slack in the system during assembly.

End pieces

Reason: These components are made as small as 

possible (to minimise mass) from the low quality 

ABS that the Rapid prototyping machine uses, but 

then subjected to repeated high impact loading.

Solution: Make a mould (using vacuum moulding 

for example) so that this component can be made 

from a stronger plastic such as reinforced epoxy.

6.4 Potential for weight reduction

It is clear from Fig. 85 that mass reduction will have an immediate positive impact on 

the peak height reached by Glumper when it jumps. It was also discussed in the 

literature review that heavier gliders must glide faster in order to achieve a given glide 

angle, so mass reduction is doubly advantageous towards an improvement in robot 

performance (Section 2.2.1, page 43). Table 6 below shows a complete list of 

Glumper’s components together with a photograph for each, their role in the structure or 

mechanism, and corresponding masses. This information was collated in order to 

highlight where these important weight savings could be made. Suggestions for how 

weight could be reduced are given in the right hand column.
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Robot frame structure:

Description Photo Total mass 
( g )

Ideas for weight 
reduction

Torsion springs 

Q T Y -4

118.2 Difficult. Requires 
springs with a higher 
energy density.

Carbon fibre tubes 
used for the legs 
Q TY - 8

128

Large steel
reinforcement rings to 
hold springs 
QTY - 8

56

Small steel 
reinforcement rings 
Q TY -8

21

Head and foot 
(identical design) 
Q T Y -2

37.1 A reduction in size, 
and hence weight, is 
feasible if using a 
material with superior 
mechanical properties 
to the ABS from the 
RP machine.

Head and foot mating
pieces
Q T Y -2

it*,

V

9.6

Nuts and bolts for 
head and foot 
assemblies.

12.9 Use nylon rather than 
steel if sufficient.

Screws to locate the 
legs in the head and 
foot pieces.
Q TY -8

9.4 Use nylon rather than 
steel if sufficient.
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Grub screws to fix 
torsion springs into the 
robot legs 
QTY - 16

2.8

Wings \

— IPM ^vy

19.0

Table 6A -  Breakdown of all the com ponents com prising Glumper’s  frame structure including its w ings. The total m a ss  of all th e se  parts

is 4 1 4  g.

Compression mechanism:

Description Photo Total 
mass (g)

Ideas for weight 
reduction

Small box for 
compression 
mechanism including 
sprung retaining clip 
QTY - 1

*\

#

47.3 This component is 
quite large in order 
to get the required 
structural rigidity 
from low quality 
ABS.

Small motor complete 
with internal gearbox, 
switch and associated 
wires 
Q T Y -2

81.8 It might be 
possible to reduce 
the number of 
motors to one, by 
using ratchet 
gearing.

Two rechargeable 
lithium cells connected 
in series with 
mounting piece and 
associated bolts.

109 Replace with as 
few flexible solar 
panels as necessary 
for the robot to 
jump.

Drive gear 
QTY - 1

3.8

Shaft, circlip and 
capstan assembly

12.4

Compression spring, 
washer and lock nut

1.8

Cord 
QTY - 1

1.2
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Bi-stable spring 
assembly - ......&. »

f t

4.2

Hinge lever 
QTY - 1

•tot

6.5

Hinge lever bolt 
QTY -  1

2.1

Toothed belt 
QTY - 1

4.1

Drive pulley with 
insert for motor 
mounting 
QTY - 1

,̂ ss . __
•>" . .

SS—■ 5.0

Pulley locating bolt 0.9
Follower to reset hinge 
lever

1.4

Worm gear

V
2.1

Square section drive 
shaft

\
2.0

Motor coupling and 
grub screw

. . . "  f i?>

0.7

T able 6B -  A breakdown of how much all the individual com ponents parts of Glumper’s  com pression m echanism  w eigh. The total m ass

of com pression  m echanism  = 2 86 .3  g.
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The largest mass contributor to this prototype jumping robot, Glumper, were its 8 steel 

reinforced CFRP leg pieces, which make up 29.3% of its total mass. Next are the four 

heavy duty torsion springs, which comprise a further 16.9% of the total mass. These 

springs are able to store a large amount of energy by bending them a short distance, and 

so consequently they must be subjected to large forces. It is for this reason that the leg 

pieces needed to be so strong and stiff in order to compress them sufficiently, driving 

their weight up in the process. Thus future optimisation should enable the compromise 

to be addressed, between reducing the size and weight of these related components, 

while still maximising the amount of energy storage capacity of the robot.

The next heaviest components of the robot were its rechargeable lithium cells, which 

made up 15.6% of the total mass. However, it has been shown that it might be possible 

to power Glumper from some lightweight flexible solar cells attached to its gliding 

membranes. These weigh 0.76 g each, so the maximum number of panels that could 

feasibly be added, 180 (which does not take into account the area lost due to the shape 

of the cells not fitting the geometry of the wings) would weigh 136.8 g, one third more 

than the weight of the lithium cells. It may be better not to attach the maximum number 

of cells possible, but rather to adjust the gear ratio of the compression motor sufficiently 

so that fewer cells are necessary, and thus the robot would have the potential to jump 

higher and further when ready, albeit less frequently.

Finally, it was suggested throughout the table that further weight reductions should be 

possible by using materials with superior specific mechanical properties, allowing size 

reduction. This would begin a domino effect, enabling the size of the numerous 

connecting nuts and bolts to be reduced also.

In summary, significant size reduction of Glumper’s control box could be made by 

selecting materials with higher specific strength and stiffness. This has the two-fold 

advantage of weight reduction, and allows additional compression of the robot body so 

that more energy is stored before release. Clearance height could also potentially be 

improved by adjusting the attitude of the robot during flight, in much the same way as a 

human high-jumper chooses to pass the bar horizontally.
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6.5 Materials selection for space design

The majority of Glumper’s components were made from ABS using a Stratasys rapid 

prototyping machine. The poor mechanical properties of the ABS used determined the 

sizes and shapes used in many of the structural components but ultimately, however, 

these could be redesigned for manufacture from higher performance materials chosen 

depending on final application. Space applications in particular have demanding 

materials requirements, which will be highlighted below. Using materials with superior 

specific properties will allow weight reduction to be achieved, the importance of which 

will be discussed in the following chapter about Glumper’s performance and 

suggestions for future work.

Spacecraft materials are typically subjected to large temperature variations. Satellites, 

for example, go into and out the earth shadow region as they orbit, leading to a change 

in their surface temperature in the range of -160 to 180 °C (Dunn 1997). To some 

extent, however, an exploratory robot could be protected slightly from such extremes 

during transit if stored carefully well within the craft, perhaps close to on-board 

electronics which are particularly sensitive to temperature changes. On arrival, the robot 

would only be subjected to the relatively milder range of surface temperatures on the 

planet or moon being explored. These temperatures will still be extreme relative to 

earth, causing the materials to become more brittle, so these would need to be specified 

so that fracture toughness would be acceptable for both the destination and transport 

conditions.

Extremes of temperature are not the only difficulty facing spacecraft designers. The 

materials also need to be able to perform under vacuum conditions, and could be 

subjected to an atmosphere quite different to that of Earth. Vacuum conditions reduce 

the likelihood of corrosion, which normally requires oxygen to be in the atmosphere, 

but materials with low out-gassing properties would be essential because some 

polymers and metals would decompose or sublimate respectively. The rate at which 

atoms and molecules leave the surface of a material in a vacuum increases with 

temperature. Radiation does not affect metallic materials considerably, but organic 

materials can be damaged by ionisation as a result of the various protons and electrons
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freely travelling through space from cosmic rays, solar emissions and radiation belts 

(Dunn 1997). An additional general point of note for the designer is that it must be 

possible to pack the robot very carefully for transit to its final destination in order to 

prevent fatigue damage caused by excessive vibration during launch. The launch craft 

must also be able to discharge any electrical potential built up on its journey, (which can 

reach tens of thousands of volts), so that any sensitive electronics in the robot are never 

subjected such large potential differences.

Focussing specifically on Glumper’s design, its moving parts such as the long legs, and 

the hinged-lever, capstan and stepped shaft in the control box would be subject to the 

additional problems resulting from friction and wear. On earth, binding between moving 

surfaces is prevented by an oxide layer, and friction can be reduced by using a lubricant. 

In a vacuum, however, this layer can be disrupted by outgassing unless special 

lubricants are used such as molybdenum disulphide (Dunn 1997). All Glumper’s 

moving components contain interfaces between different types of material, so testing 

would be required to ensure that those selected finally do not encounter problems due to 

their different coefficients of expansion. This problem is also particularly relevant to the 

choice of composite material for Glumper’s long jumping legs.

Reinforced epoxy based composites, such as the GFRP and CFRP have been proposed 

for use in Glumper’s legs due to their high specific strength and stiffness properties. 

Some composites of carbon fibres and epoxy resin are already used on structural 

components such as antennas, solar cell panels and truss structure in spacecraft (Gao, 

He et al. 2005). However, the thermal expansion coefficient of carbon fibres can be an 

order of magnitude lower than that of the epoxy matrix causing thermal stresses. 

Consequently, much vacuum thermo-cyclic testing work is being carried out to develop 

improved structural composite materials for use in spacecraft (Gao, He et al. 2005).

6.6 Control System

Glumper has been carefully designed in order to try and minimise the quantity of 

actuators and sensors required, without increasing complexity. Although it was not 

possible to develop a fully functioning autonomous control system with the time and
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resource available, the requirements are shown in a function block diagram, Fig. 87. 

This would control Glumper’s two lightweight, low power DC motors using four 

sensory inputs, as described below.

Firstly, a mechanical push sensor is required to detect whether or not the hinged-lever is 

in the closed position prior to compression taking place. If not, the capstan would not be 

located in the drive gear, so rotating the motor would not compress the robot. The 

design of Glumper is such that the motor driving this capstan, (Motor 1 in Fig. 87), need 

never be switched off, running whenever it has power available with the direction 

determined by the output of this mechanical push sensor. A simple contact sensor would 

be sufficient, with one part mounted on the hinged-lever, and the other mounted on the 

wall of the control box which it rests against while in the closed position.

A gravity sensing switch is also required to determine which way up Glumper is, such 

that Glumper’s second motor (Motor 2 in Fig. 87) can be driven to whichever is 

uppermost prior to take-off. A suitable example for this task would be a mercury gravity 

switch, which generally consist of liquid mercury in a sealed tube with electrical 

contacts at one end. When the one end is higher than the other, gravity will pull the 

mercury down to complete the electrical circuit through these contacts. Otherwise, 

(when the robot is upside down), the mercury will move away from the contacts, 

breaking that circuit. Such a solution would be adequate on Earth, but not if the robot 

was being intended for space applications, because mercury freezes at -38.83°C. 

However, a mechanical switch could be created to work in exactly the same way, only 

using a solid conducting cylinder instead of the mercury. The exact size and materials 

would need to be chosen carefully such that the conductor would slide easily to and 

from the contact depending on robot orientation.
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Fig. 87  -  Control Diagram illustrating the sim ple control system  required for a  fully autonom ous version of Glumper to operate  

successfully . I take it all the b oxes are legible w hen printed.

An accelerometer could also be used to detect which way up the robot is, in place of 

such a gravity switch. This could also detect the sudden acceleration that would occur 

during take-off, and a second spike in the accelerometer signal would be detected soon 

afterwards during landing. Fig. 87 shows how the control system is designed such that 

Glumper continues to monitor its vertical and horizontal orientation until it receives a 

positive input from the accelerometer to indicate that it is airborne. At this point the 

diagram includes reference to a pitch control algorithm that has not been explored in
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great detail. This would need to determine the angle of attack of the airborne Glumper, 

(perhaps through sensors mounted on its extremities), and adjust it accordingly by 

moving the control box rapidly between the head and the foot to shift the centre of 

mass. This can be achieved by driving Motor 2, which drives a pulley along a toothed 

belt that spans between the two ends of the robot, dragging the control box along it in 

the process.

It is beyond the scope of this thesis to decide how this exploratory robot would 

determine for itself where to go, but clearly it would need the ability to re-orientate in 

between leaps. A simple solution would involve the mounting of an additional motor on 

the control box to rotate this eccentric mass on its axis and thus cause the robot to lean 

accordingly. Fig. 87 shows when the control system would have to choose whether the 

orientation was correct, and if not, drive this orientation motor in response. Future 

development work should attempt to implement this control system, and experiments 

should be set up to observe how Glumper copes in different environments with various 

obstacles.
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Chapter 7 

Conclusions

The primary aim of this Ph.D research was to design a small, autonomous and 

inexpensive jumping robot for traversing irregular terrain using a locally-available 

energy source. Such terrain poses problems for traditional wheeled, tracked and legged 

designs and the incorporation of jumping was deemed a useful addition to the repertoire 

of existing locomotion systems available to robots owing to the diversity of jumping 

mechanisms found in nature. Suitable example organisms were sought and investigated 

throughout the biomimetic design process, inspiring the prototype solution, Glumper, 

which was presented in this thesis.

Two distinct patterns of jumping were observed in natural systems, ‘pause and leap’ 

which refers to single jumps followed by a rest period to recharge and re-orientate, and 

‘continuous hopping’ where energy is recovered during landing and used in the 

following jump. The ‘pause and leap’ strategy, prevalent in insects and small animals 

such as frogs, was selected for the development of this biomimetic jumping robot 

because ‘continuous hopping’, although efficient, is more energy intensive and relies on 

sophisticated control and a continuous, reliable power source.

7.7 Conclusions on experimental methods

In the flying squirrel study the use of compliant poles in the determination of take-off 

and landing force measurements facilitates the simulation of real life test environments, 

which is important in comparative biology, but it is essential that the variation in 

compliance along the length of such poles be taken into consideration. In the case of the 

cantilever beam discussed in Chapter 3, this begins to behave more like a rigid 

instrument towards its fixed end. Valuable comparisons should only really be made 

between forces measured at known points of equal compliance. Given that this will not
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always be possible, then sample sizes should be chosen to ensure a random scattering of 

landing positions.

While experimenting with procedure for performing tensile testing experiments on soft 

biological tissues in Chapter 4, a novel and inexpensive means of cutting dog-bone 

shapes from such material was successfully demonstrated.

7.2 Conclusions on the robot

Choosing the appropriate robot size was also an important decision with regard to 

dum per’s potential for use in space exploration. The “Size-Grain Hypothesis” was 

introduced which points out that with decreasing body size, a moving object becomes 

more likely to meet an obstacle of similar or larger size to itself which it must negotiate 

in order to continue in that direction. However, the economic cost of transport is a 

significant factor in space missions, so ideally any exploratory robot would be of 

minimum volume and mass. It was demonstrated from first principles in Chapter 2 of 

this thesis that with decreasing body size, power amplification becomes essential in 

enabling the smallest animals to jump well due to the limits imposed by the operating 

speed of the actuator, which is muscle. This can be observed in the variety and 

sophistication of the power amplification mechanisms found in insects. Examples of 

each were presented under three broadly defining categories of catapult mechanisms, bi

stable designs and flippers, although it was also shown that larger animals, which 

employ direct actuation of muscles in order to jump, are also able to amplify this power 

generated to improve their jumping. Therefore it became clear that a biomimetic 

jumping robot should be able to store energy somehow, and the principle of the catapult 

mechanisms seemed most suitable for the task. These are so called because energy is 

pre-loaded slowly into a quick release mechanism in much the same way as the catapult 

elastic is pulled back and then released, causing it to accelerate at a much higher speed 

than could be achieved by the arm that was operating it.

Glumper was developed with no one specific application intended, although the 

additional requirements associated with space exploration were deliberately considered 

owing to the obvious suitability for this task. This is reflected in the decision not to use
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elastomers as an energy storage material, owing to their degradation in performance at 

extreme temperatures. Instead Glumper stores the majority of its jumping energy in four 

steel torsion springs and takes inspiration from the power amplification mechanisms 

found in insects. Springs are also better suited for this role than elastomers owing to the 

highly detrimental effect of stress relaxation, as demonstrated in the early prototype 

jumping robot, JHB (see Appendix 2, page 210). As in the catapult mechanisms 

described for locusts and fleas, a physical catch was incorporated into the design to hold 

the catapult mechanism ready for a jump without the need for additional power. This is 

necessary owing to the original requirement that the robot should be able to use a 

locally available energy source, which may therefore be intermittent in addition to 

having a low power output. Glumper’s catapult release mechanism is slowly engaged by 

driving a capstan which winds in a cord causing the robot structure to compress and 

store energy in the springs. The capstan is driven by a worm gear, which both increases 

the torque provided by the motor, and acts as the catch to prevent the robot from 

releasing itself prematurely in the event of a loss of power (because the resulting force 

acts against the teeth of the worm gear rather than directly against the motor stall 

torque). Rapid release of the system relies on a dog clutch to quickly disengage the 

capstan from its drive gear, which was a process requiring more power than available 

from the small winding motor. Thus the increased torque available through this motor’s 

gearing is utilised by designing Glumper to auto-release when fully compressed. Further 

inspiration was drawn from the insect jumpers when developing this release 

mechanism, which incorporates a bi-stable component to ensure that the dog clutch 

fully disengages and cannot reengage during take-off. It was also demonstrated from 

first principles in Chapter 2 that maximising leg length (relative to body size) also 

amplifies the power generated by the jumper. Glumper is of octahedral shape, with four 

legs that each comprise of two 0.5 m lengths of CFRP tube articulating around torsion 

spring “knees”. The standing height of the robot is also about 0.5 m owing to the fact 

that it rests on two of these knees and the torsion spring forms a right angle when not 

compressed. With these sizes, Glumper’s peak clearance height during approximately 

vertical jump tests averaged 1.17 m (n = 4, SD = 0.07 m). This means it can clear 

objects of more than twice its own height, which compares favourably with wheeled 

robots, which can generally only pass obstacles of up to half their wheel diameter.
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Above a certain size, being able to safely land a jump becomes as important as the take

off. It was shown that a locust will land on its head with no obvious ill-effects, in 

contrast to cats, which are well known for their ability to try and re-orientate themselves 

and spread the impact force over their extended limbs and arched back. Part of the 

objective for this Ph.D research project was to investigate the biological approaches to 

jumping, including consideration of what strategies are adopted to maximise range 

and/or minimise damage. This naturally led to the consideration of gliding flight as a 

means to control the jumping robot while airborne. In the introduction to gliding in 

Chapter 2, it was shown that this can increase the range of a jump while also allowing 

for active selection of landing site.

In Chapter 3, a study was carried out on flying squirrels, selected as an ideal case-study 

animal to inspire this research owing to the fact that they regularly jump and glide 

through a difficult arboreal habitat. The study aimed to clarify why these animals 

developed their unique gliding ability, and diverged evolutionarily from normal 

squirrels, through the observation and measurement of take-off and landing forces. The 

results showed that take-off and landing forces generated by northern flying squirrels 

were both positively correlated with horizontal range, at least up to 2.5m. The 

maximum take-off force measured was 9.57 bodyweights, although the squirrels would 

occasionally produce close to this force when jumping only short distances, most likely 

a natural behavioural response to alarm. Take-off forces were not significantly different 

to the corresponding landing forces on these similarly compliant substrates. They were 

shown to be able gliders, abducting all limbs to create a wing-like surface which is held 

at a low angle of attack for maximum lift/drag ratio. Glide angle increased rapidly with 

horizontal range up to approximately 4 m, before progressively improving suggesting 

that gliding in northern flying squirrels is optimised for significantly longer ranges than 

were possible in this study.

This study could not reject the hypothesis that gliding evolved in flying squirrels to 

reduce their energetic cost of transport, even though they were observed to make 

deliberate aerial manoeuvres, which would increase the drop in altitude during the jump. 

The measured take-off angles provide evidence that the individuals in this study may 

well have been adopting optimum trajectories.
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It seems less likely that gliding evolved primarily to improve the predatory escape 

response of flying squirrels, owing to the fact that they did not attempt to make either 

unplanned or deliberately unpredictable take-offs in this study.

It was concluded that gliding might have evolved to maximise the foraging area that 

could be reached in a given time. High glide speeds were measured and this velocity 

increases with range. However, the development of improved landing control becomes 

increasingly important with faster flight and evidence was provided that if northern 

flying squirrels could not slow themselves aerodynamically prior to landing, they would 

have to be able to sustain impact forces of more than 28 times their bodyweight.

Therefore, the major conclusion from Chapter 3 is that at divergence, small glide 

producing surfaces were developing in flying squirrels allowing mid-air adjustments in 

pitch and roll, and improving their resilience during high speed arboreal transport. 

Supporting evidence comes from the fact that these animals seem to innately adopt a 

gliding posture on take-off, even during leaps of less than a metre when it was shown 

that no vertical advantage was gained. However, this posture has the advantage of 

allowing them superior aerial control, and this was reflected in a consistent landing 

strategy over these distances. These northern flying squirrels were able to spread their 

landing impact force over all four limbs and their arched back, thanks to a dramatic 

pitch upwards immediately prior to contact with the pole. It was concluded that this 

rapid increase of their angle of attack immediately prior to landing is likely a behaviour 

evolved to enable rapid deceleration by stalling, something that would have had a 

greater effect at higher speeds.

Several features of the prototype jumping robot presented were inspired by flying 

squirrels as a consequence of the study. Most obviously, membranous wings were 

incorporated into the design to enable gliding, which always deploy automatically and 

fully during take-off. Attempting to deploy these once airborne would cause detrimental 

mid-air rotations and their actuation would have additional energetic cost, where as 

incorporation into the take-off utilises the already amplified power of the release 

mechanism. In order to reduce their landing forces, flying squirrels attempt to control 

their angle of attack such that their membranous wing is parallel to the landing surface. 

A mechanism to enable pitch control was thus incorporated into Glumper, which served
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an additional purpose of enabling its compression mechanism to attach to either end of 

the robot. This means that whichever way round Glumper lands, it can ready itself for 

the next jump without having to turn over.

It was demonstrated in Chapter 5 that Glumper did not manage to benefit from the 

potential increase in range which it was hoped that the addition of gliding membranes 

would provide. The lift to drag ratio of the gliding robot would have been greater, and 

hence gliding performance improved, if the total mass of Glumper was less. Apart from 

weight reduction, a useful piece of future work would be to explore the effect of 

launching Glumper at various take-off angles, because there should be an optimum 

angle allowing sufficient height in the jump to be reached, while maximising forward 

velocity which has a direct influence on the glide ratio achieved.

Glumper’s wings were made from rip-stop nylon, chosen because of its light weight and 

damage resistance. Further investigation into flying squirrels in Chapter 4 of this thesis 

suggested that their skin might be highly specialised to improve flight performance. It 

seems likely that the skin of southern flying squirrels is thinner than would be expected 

by scaling from other similar mammals, which would give an overall reduction in 

weight, and hence, improved gliding performance. It was suggested that elastin fibres 

could potentially play a crucial role in facilitating the stretching of the membrane when 

limbs are abducted and protracted for gliding flight, while causing it to fold away neatly 

again on landing. A structural model was proposed for flying squirrel skin which 

explained how it could be optimised for a range of transport modes including running, 

jumping, gliding and climbing, and able to quickly change from one to another. This 

supposes that patagial skin is a composite material comprising of two different types of 

fibre, arranged orthogonally to one another. The fibres running primarily along the 

length of the animal would have higher stiffness, enabling flying squirrels to precisely 

control the camber of their wings with small adjustments of their limbs. Unless its limbs 

were abducted in the gliding posture, much more elastic fibres oriented laterally would 

relax causing the stiff, longitudinal fibres to bunch together side-by-side and close to the 

body of the squirrel. Without such a specialisation, the additional skin required by 

flying squirrels for gliding would be a tripping hazard, and the presence of highly elastic 

fibres in the proposed skin structure improves its damage tolerance.
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Glumper’s wings naturally fold out to the side as its legs are compressed ready for 

jumping. They did not catch on anything or present a trip hazard to the robot during 

testing, but this prototype was only designed to jump and glide. It would be 

advantageous in future to integrate this technology with alternative transport modes 

such as walking or wheeled rolling, in which case it might be useful to incorporate an 

additional mechanism to keep the wings safely tucked away until required. However, 

this would present a compromise between facilitating the additional transport modes, 

and the maximum area of each membrane that would still be available for collecting 

solar energy when the robot was not gliding.

A critical requirement for the robot was that it should be able to carry sensitive 

electronic equipment without it sustaining any damage during the jumping and landing 

cycles. Glumper was designed so that its electronic components would all be housed 

centrally with its compression mechanism. This is connected to the external frame of 

the robot only by cord and a toothed belt, neither of which are held rigidly in tension 

during the landing impact, and so the impulse is reduced slightly. Although no 

particularly sensitive electronic components were ever used during testing, the fact that 

no motors, batteries, switches or connectors were damaged during the numerous 

impacts was a good sign. In contrast, damage was sustained by other structural 

components and the toothed belt during the same tests, owing to under specification of 

the materials for these parts. The presence of Glumper’s gliding membranes was shown 

in Chapter 5 to cause a decrease rather than the expected increase in horizontal range, 

although they did reduce the resulting landing impact velocity, and hence force 

sustained by the robot. It would be useful to carry out optimisation experiments for 

these wings, which could potentially improve the resultant lift to drag ratio of the 

gliding robot. The wings also have an important secondary function, providing the 

necessary area for collecting solar energy (were this power resource to be adopted).

The requirement that this jumping robot should be constructed from materials that could 

be adapted for use in space applications was fulfilled. Although the actual materials 

used would not be suitable, (for example the many ABS components used to make the 

compression mechanism would be subject to outgassing under vacuum conditions), the 

avoidance of elastomers in the design means that high performance materials intended 

for use in space could be substituted easily.
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Two rather self-explanatory requirements for the jumping robot were that it must be 

designed for manufacture, and that it should also be as simple and cheap as possible, to 

satisfy all the stated requirements. It was possible to put Glumper together on a 

relatively modest budget, within the bench fees awarded to this Ph.D project 

(approximately £750 was spent in total). Although many of the component parts were 

fabricated in a rapid prototyping machine, these were not generally highly complex, and 

so could also have been machined using more conventional cutting technology such as 

saws, mills and drills. A lathe was required to produce the stepped shaft and the worm 

gear, and a soldering iron to connect the motors and switches, but otherwise assembly 

was simple, requiring only the bolting together of components using a screwdriver, a 

spanner and an Allen key.

In vertical jump tests, the average change in Glumper’s estimated centre of mass 

between the pre-launch state and the peak height was 1.6 m (n = 4, SD = 0.07 m). It was 

shown using an Instron compression testing machine that Glumper can store 21.5 joules 

of energy, meaning that its energy storage and release mechanism is 52% efficient.

The efficiency of the two lithium cells used to power Glumper during the performance 

tests was only 3.3%. It was also shown that it should be possible to make Glumper fully 

autonomous with respect to its power source, through experimentation with some 

commercially available flexible solar panels. This would however require a reduction in 

the gear ratio of the motor which currently drives Glumper’s compression mechanism.

It was also demonstrated, based on the experimental data for launches at an angle of 63° 

to the vertical, that Glumper should be able to travel much larger distances each day 

than NASA’s Martian exploratory rovers Spirit and Opportunity. It would be necessary 

to incorporate path planning algorithms into any such control system, to ensure that 

Glumper navigate around any obstacles that were too large, or could position itself such 

that it reaches other large obstacles when its peak clearance height is at a maximum.

Mass reduction was shown to be critical to both the jumping and gliding performance of 

Glumper. It was also shown that almost half of the total mass of the robot is shared 

between its legs and the torsion springs that they compress. Therefore, optimisation of
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the compromise between maximising the amount of energy storage, while minimising 

the mass of these components should enable a large amount of weight reduction. 

Likewise, choosing superior materials would enable the various components of the 

compression mechanism to be reduced in size, having the twofold advantages of 

reducing the mass and increasing the distance through which the springs can be 

compressed.
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Appendix 1 -  High speed camera filming of jumping 

insects

In the early stages of this research, a Redlake Images Motionscope high-speed camera 

was used by the author to film two species of jumping insect: Desert locusts, 

Schistocerca gregaria, and leafhoppers, from the family Cicadellidae, the exact species 

o f which used is unknown (there are over 20,000 species of leafhopper).

Locusts

Both adult locusts (which jump into flight) and their nymphs (which are wingless) were 

filmed and it was clear that both were able to generate the impressive jumping impulse 

as a result of the high velocity of their leg movement. Quantitative measurements have 

shown that the locust energy storage mechanism is very efficient, with approximately 

80% of the stored energy converted into kinetic energy during the jump. The impulse 

lasts 25-30 ms and in this time, the locust can reach a take-off velocity of 3.2 ms'1 

thanks to a peak acceleration of 180 ms'2. This is equivalent to a peak power output of 

0.75 W (Bennet-Clark 1975).

Fig. 88  -  H igh-speed cam era footage o f a locust nymph being prompted to jump.
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Another observation o f the high-speed filming work was that the locusts did not attempt 

to control their landing and were even observed landing headfirst, before immediately 

righting themselves (Fig. 89). However, perhaps this is because they are sufficiently 

light that even landing at their terminal velocity would not be enough to damage their 

hardened cuticular exterior. Terminal velocity is the limiting velocity a free falling body 

can reach, when its drag force equals the gravitational force acing on it and this can be 

approximated using the following equation:

V
T C

Equation 22

Cd is the coefficient of drag, p is the density of air and A is the cross-sectional area; so 

by modelling the falling locust is a flat plate against the motion of the air, of 1cm2, and 

using the standard equation for kinetic energy (Equation 2, section 4.1), the locust has 

an absolute worst-case kinetic energy of 0.29 joules on impact.

Fig. 89  -  H igh-speed cam era seq u e n c e  of a locust nymph landing a sm all jump head first.

Leafhoppers

Burrows (2003) showed that froghoppers are out-jumping fleas relative to their body 

size. He reported accelerations of between 2800 and 4000 ms'2 on jumps captured with 

a high-speed camera at 2000 fps. These lead to an average take-off velocity o f 2.8 ±0.1 

ms'1: impressive considering the leg length is only approximately 3 mm. Leafhoppers 

are closely related to froghoppers, and have a similar ecology, so this work was
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reproduced at the same maximum frame rate of 2000 fps for comparison. A sequence of 

images showing one such take-off is shown in Fig. 90.

Fig. 90  -  H igh-speed cam era seq u e n c e  of a  leafhopper taking off (2000fps). The length of the hard cuticular body w as m easured a s

6.1m m .

Digital Vernier callipers were used to measure the length of the leafhopper after the 

experiments. With this information, Scion Image (useful internet freeware that can 

handle sequences of images, and output the pixel co-ordinates of all the points clicked 

on by a user in order, www.scioncorp.com) was used to determine the total distance 

moved by the leafhopper between each frame. In order for this method to be valid, the 

leafhopper needs to be jumping in a direction parallel to the camera lens, which 

unfortunately reduces our sample size to just 2 usable jumps. It seems that although still 

impressive, leafhoppers do not jump quite so well as froghoppers. The take-off velocity 

measured from the clearest recording was 2.5 ms'1 (SD = 0.3ms'1), achieved due to a 

peak acceleration of approximately 2200 ms'2 (SD =190 ms'2).

References -  Appendix 1
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Appendix 2 -  Previous prototype jumping robots

In this Ph.D research, biomimetic principles were applied to develop an autonomous 

robot capable of jumping and gliding in order to traverse rough terrain. Only the final 

prototype design, Glumper, was described fully in the Thesis but this contains many 

design features that were tested and developed in earlier prototypes which will be 

introduced in this Appendix.

Jumping devices storing energy in elastomers

The underlying principle derived from successful insect jumpers was to use an elastic 

energy storage mechanism for power amplification. Fleas and leafhoppers store energy 

in resillin, an elastomer, in contrast to locusts which primarily store energy by bending 

hard cuticular elements. Owing to the high performance of both fleas and leafhoppers 

relative to their body length (reported in Section 2.1.3.1, page27), the first prototype 

employed an elastomer based energy storage mechanism. The basic concept was to 

accelerate a portion of its mass away from the ground as quickly as possible by 

instantaneously releasing energy stored in a normal elastic (rubber) band. It is only 

necessary for a portion of the total mass to be accelerated, so long as this is travelling 

fast enough for its momentum to carry the remainder of the mass with it.

A model was built from balsa wood and plasticine to prove the principle (Fig. 91). This 

prototype stands 150 mm tall, and was able to consistently make jumps of 1 m, 

approximately 7 times its own height using a mass ratio of 3:4 (frame:payload).
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Fig. 91 -  Sim ple balsa m odel to prove the catapult jumping design.

The m odel is 150m m  tall, and w as released  from rest on the w ooden  table-top.

This first prototype had successfully demonstrated the jumping principle, and so the 

design was developed to improve its performance. This was achieved by simultaneously 

enhancing the energy storage capacity and reducing the weight. Stiff, lightweight 

materials were selected allowing multiple elastic bands to be extended over a greater 

distance before release. Fig. 92 is a photograph of the resulting device, which travels 

several metres when pulled back and released (manually). The body is a 5 mm diameter 

aluminium tube which has a shorter, heavier tube around it attached using elastic bands.

Page 211 of 228



The mechanics and energy economy of animal jumping and landing applied to autonomous robots

This can be pulled down to the ground, extending the elastic bands, and then released to 

launch.

Fig. 92  -  Photo o f su ccessfu l elastic jumping m echanism

Having engineered these two naturally inspired catapult jumping mechanisms, the next 

step was to try and develop something capable of carrying a payload and launching 

itself automatically. The resulting prototype was called JHB, which stands for jumping 

hanging basket, because an actual horticultural hanging basket was used for the hemi

spherical base.

JHB prototype

Fig. 93 shows a sketch of the JHB prototype, which like the previous devices is a 

monopod. Energy is primarily stored in the extension of silicon rubber tubes, although 

some additional energy is stored in stiff, vertical, bow-shaped spars. The idea for that 

aspect of the design comes from the false stick insect, described in the literature review 

(Section 2.1.3.1.1, page 28), which gains a further 7% recovery of elastic energy 

through flexion of its tibia. A launch mechanism would need to pull the mass into the 

foot of the robot, stretching the rubber and bending the spars back as shown. On release, 

the stored energy in the elastic and the spars launch the mass upwards, carrying the 

frame behind it.
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attachments

(elastic storage - spring?) 

mass

bending spar

impact protection
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Fig. 93  -  Labelled sketch  of the JHB prototype 

The launch m echanism  w inds in the m ass  into the foot of the robot, stretching the rubber and bending the spars back in the opposite  

direction of their natural bow sh ap e (for extra stiffness). On re lease, the stored energy in the elastic and the spars launch the m ass

upwards, carrying the frame with it a s  it travels.

Construction detail

Composite materials were chosen for the stiff bow-shaped spars of the design, and the 

lay-up process o f the GFRP required the pre-preparation of moulds in the required bow 

shape. These were prepared using 2mm thick sheet-steel, cut and shaped to the chosen 

curve using a roller-bender. It was then necessary to prepare the surface thoroughly, by 

smoothing the surface with beeswax to eliminate any potential surface roughness before 

lay-up could begin. After making the resin, layers of glass-fibre sheet were laid down, 

and more resin applied using a roller to force it into any spaces. Extra stiffness along the 

length of the bows was obtained by using bi-directional glass-fibre webbing for the 

external surfaces. It was also possible to make the bows progressively less stiff along 

the length, by interweaving gradually shorter lengths of the glass-fibre matt during the 

lay-up process. Not including the bi-directional external surfaces, six and nine pieces of 

multidirectional glass-fibre matt were laid up to make the bottom half of the spar thicker

rubber
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than the top. The spars were arranged so that they would be bent in the recurve 

direction, meaning that more force would be required to pull them a given 

displacement, and hence more energy is stored in the process.

At the top of the GFRP spars, holes were drilled and long bolts put through, facing 

inwards, and fixed with soft washers and a nut. The protruding ends of these bolts were 

then covered with tight fitting plastic covers. The elastic part of the design, silicon 

rubber tubes were initially intended for use in a slingshot and hence likely to have 

favourable energy storage properties. These were ideal because two tubes came pre

connected via a leather thong, allowing for two of these thongs to be connected at right 

angles to the central mass leaving four free ends of elastic at 90° to each other as 

required. These tubes were easily forced over the protruding bolt ends at the top of each 

spar, but due to the effect of the high negative Poisson’s ratio of rubber, pulling them 

off again under tension was not possible. (A negative Possion’s ratio means that 

straining a material in the longitudinal direction causes a negative lateral strain so in this 

case the internal dimension of the tube is decreasing.) The spars were then mounted 

onto a hemispherical foot, and foam padding added all over the external surfaces of the 

structure to limit damage from the uncontrolled landings.

Jumping performance

Unfortunately, the GFRP bows constructed were found to be both too heavy, and yet 

still not stiff enough. Too much bending in the bows meant that the elastic was not 

being stretched as far as it usefully could be. It was considered that the specific stiffness 

of these spars could potentially be increased by laying up an I-section beam if this did 

not make the structure too vulnerable to buckling. Further improvements might have 

been made to the properties by laying up custom composites using high-quality fibres 

(such as Kevlar fibres for example) and resins. As a consequence of the high weight of 

JHB frame, another heavy mass was required in the middle to generate the launching 

momentum. The total mass of the prototype was 3.5 kg when a launch mass of 0.5 kg 

was used.
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Fig. 94  -  The h igh-speed cam era w as used  to film the prototype jumping.

While designing a self-winding mechanism for autonomy, it was observed that unless 

the load and release of the elastic storage mechanism was immediate, the performance 

was considerably reduced. A Motionscope high-speed camera was used to record the 

prototype in action for direct comparison with various parameters of biological subjects 

and those of future prototypes. An interesting hovering effect was seen as the two 

masses sprung back and forth relative to each other, occasionally meaning that the 

initial height reached was not actually the peak height of the jump. Altering the stiffness 

of the spars, the elastic or the ratio of the masses would enable the tuning of this effect, 

which otherwise may reduce the maximum height achievable in the jump.

Fig. 95 shows both the first peak and maximum vertical clearance height of each jump 

of this prototype, when subjected to different conditions. These heights were measured 

by digitising the high-speed camera images using the method described in Section 5.3.1, 

(page 159), o f this thesis. Calibration was achieved by measuring known lengths that 

were in a plane perpendicular to the camera. The accuracy of this method is limited 

because it doesn’t account for any movement of the prototype in the dimension away
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from or towards the camera, but this should be a negligible error since the jumps were 

approximately vertical. The different conditions applied to the prototype included 

varying the weight of the launch mass (the mass that is accelerated upwards to begin the 

jump) during manual launches, restricting circumferentially the amount of outward 

flexion possible by the spars and or coupling the mass to the frame rigidly such that 

take-off happens earlier. The potential advantage of this last idea is to avoid energy 

being absorbed by the elastic which would otherwise have to pull the rest of the frame 

with it at the moment of take-off.

60

50

40

30

Launched by hand □ Max
■ First peak

O)
<D
X 20

10

0

Automatic launching

0.25kg 0.5kg 1kg launch Mass and M ass Mass and Shortened
launch launch m ass spars restricted, spars free elastic, 
m ass m ass restricted spars free m ass

restricted

Fig. 95  -  Initial and peak heights of Prototype 2 jumping under different conditions.

All the automatically launched jumps used a launch mass of 0.5 kg. In the hand- 

launched jumps, the mass and spars were free, so a direct comparison with the 

automatic launcher reveals as suspected, that energy is being lost with time spent in the 

loaded position. Within the hand-launched tests, it can be seen that the best result came 

from the lightest launch mass, peaking at just over 0.5 m. Further reduction may 

improve performance up to a critical point where the momentum will become 

insufficient. Comparison of the automatically triggered jumps shows that best results 

were achieved by restricting circumferentially the amount o f outward flexion possible 

by the spars and simultaneously coupling the mass to the frame rigidly. Much more 

testing could have been carried out to converge on the optimum strategies for the 

jumping design presented in this section. However, it was felt that the deterioration of

Page 216 o f 228



Appendices

properties with temperature and time (associated with elastic materials) would limit 

potential applications, such as planetary exploration, so this work was never undertaken.

Tri-legged torsion spring jum per

Experiments conducted with JHB demonstrated that elastic rubbers were not an 

appropriate energy storage mechanism and that weight reduction would be key to a 

successful jumping robot. Locusts store most of their energy in the bending of stiff, 

cuticular elements and so springs (which also store energy in bending) were the natural 

alternative. In a comparison of mechanical energy storage systems, a spring was shown 

to be more efficient in torsion than in compression (Alexander 1990). Therefore this 

prototype uses torsion springs as articulating knee joints between six 0.5 m long steel- 

reinforced carbon fibre rods. The robot stands at approximately 0.7 m tall before 

compression, which takes it down to less than 10 cm before release.

Fig. 96  -  Crude sketch  of the third prototype and a photograph of the reinforced carbon fibre-rods connected  by a torsion spring

An automated winding mechanism was successfully added this time, although in order 

to keep the mass to a minimum a small, heavily geared motor was chosen increasing the 

time taken for compression. The design consisted o f a cord fixed to the centre of the 

top-piece of the robot and fed through a loop in the centre of the foot. Winched in the 

cord on a motorised pulley mounted in the top-piece caused the robot’s legs to bend, 

storing energy in the springs. Having the additional weight of the motor and associated 

components at the top of the robot is an advantage when considering the underlying 

conservation of momentum principle behind the design, but the cost is a reduction in
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stability. Additionally, careful design of the foot would be required to enable the robot 

to right itself as the winching takes place.

Ideally, the contact time with the substrate should be maximised during the thrusting 

contact phase of the cycle. The longer impulse allows the force-time distribution curve 

to reduce architectural and material problems associated with peak forces for any given 

energy transfer. This would also reduce the likelihood of the point-of-contact slipping 

in non-vertical jumping.

Performance of torsion spring jumper Mk1

During the development of this robot it became apparent that four legs rather than three 

would facilitate the incorporation of gliding membranes into the design. Work begun on 

a four legged device before a release mechanism was ever successfully tested on the tri- 

legged design, and hence the only performance data available comes from manually 

launched jumps.

Fig. 97  -  The third jumping prototype in action, taken with the h igh-speed cam era. The b a se  of the m echanism  clears a height of

approximately 1.5 m when manually re leased .
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Fig. 98 shows the vertical displacements plotted against time for 3 consecutive jumps, 

released manually by pushing down and letting go. They were measured by digitising 

the images by hand, using the technique described previously in section 5.3.1 (page 

159). Once again, calibration was achieved by measuring known lengths and the 

accuracy of this method is dependant on jumps not moving away from or towards the 

camera.
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Fig. 98  -  Vertical d isplacem ent against time for 3  consecutive , manually re leased  jum ps o f Prototype 3.

There will be some losses associated with this launch method due to friction and the 

difficulty of removing hands quickly enough during the launch. However, in 2 o f the 3 

jumps analysed here, the base of the robot clears 1.5 m, with the top piece over 2 m 

from the ground for over a tenth of a second. This could be a useful height to reach were 

a camera to be mounted here.

In the key area o f weight reduction, a significant improvement has been made from its 

predecessor. Each carbon fibre leg weighs 56.5 g and this figure includes the steel 

reinforcing connecting pieces mounted around each end. The mass of each spring is 

29.5 g, and the total mass of this tri-legged jumper tested was 650 g including the motor 

and gears necessary for the winding mechanism. The potential energy of the system can 

be calculated for its maximum jumps using the standard equation (Equation 18), which 

is approximately 10 joules. A quick back-calculation shows us that this design would 

still able to make a vertical jump o f 1 m with an additional payload of 325 g attached.
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G lum per- Mk1

Glumper Mkl is the predecessor to the robot discussed in this Thesis. It will be seen 

that Glumper Mkl shares many of the same principles as the final Glumper design, and 

that many of the differences in construction between the two were changes that became 

necessary when upgrading to larger springs. The larger springs have much greater 

energy storage capacity, but require the application of higher force to load them. As a 

result, weak points in the design were continually discovered and improved, finally 

resulting in the reliable solution described in the thesis.

The design stores energy in four torsion springs that allow a maximum torque of 

approximately 1.8 Nm each. These are mounted in the hinge-joints of four legs, 

constrained symmetrically between a head and foot (actually identical). The legs are 

each made from two hinged carbon-fibre rods, 0.5 m long and 4 mm in diameter (see 

Fig. 100 below).

The control mechanism to compress and release the robot is housed in a small box 

made, like many of its components, in a rapid prototyping machine. A small 3 V motor 

with a gear ratio of 1:200 is used to drive a worm-gear, (thus slowing it by another 

50:1). The driven gear has two M3 bolts protruding from it, which turn a capstan that is 

held against it on the same shaft by a compression spring. This spring is not acting 

directly against the capstan but against a circlip approximately 1 mm away. This means 

that the capstan is able to freewheel on the shaft (when not located on the bolts of the 

drive gear). The two ends of a length of high-strength nylon fibre cord are fixed to the 

capstan and looped around bars in both the head and foot, such that rotation causes 

these to be pulled together. This design is favourable because the control box is freely 

suspended within the central space surrounded by the robot’s legs, meaning that landing 

impact forces are partially absorbed by the cord.

The drive shaft running through the capstan is stepped such that the capstan can be 

pulled away from its drive gear with a linear movement the shaft. The friction acting 

against this movement is very high when the robot is highly compressed, such that 

separate linear actuation would require high power. However, this design avoids the
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need for any such device, by using a hinged lever to pull the shaft out when one end of 

the robot is pulled in against the control box. In order to make sure that the robot 

doesn’t jump until fully compressed, this hinged lever is constrained by a latch, held 

closed by a small torsion spring, which is only released when the other end of the robot 

is pulled tight against the opposite side of the control box. At this moment, the capstan 

disengages from the drive gear, freewheeling as the cord unwinds rapidly and causing 

the robot to jump into the air.

Capstan located 
on drive gear by a 
spring

Forcing lever 
over-centre 
pulls capstan 
shaft away

Fig. 99  -  S id e  view  of control box show ing how the hinged lever pulls the capstan  aw ay from its drive gear.

An over-centre mechanism on the hinged lever prevents premature re-engaging, which 

would otherwise happen as soon as the robot left the ground (due to the compression 

spring on the capstan shaft). It is important that the compression spring used for the 

over-centre mechanism is stronger than the one being compressed on the shaft. Fig. 99 

shows two side views of the control box, showing the hinge (with its over-centre spring) 

in each of the stable positions. After a jump, the hinged lever needs to be reset past the 

over-centre spring again in order for winding to begin again. This is achieved by 

reversing the direction of the motor as the worm gear is free to float along the square- 

section drive shaft that it is driven by. In this reverse direction, a conical shaped piece 

behind the worm is driven towards a guide on the hinged lever, flipping it back up past 

its spring ready for the next jump. This design requires high friction on the gear driven
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by the worm, which is achieved by mounting it in a tight-fit against the side wall of the 

control box.

Fig. 100 -  Photograph of the robot winding itself in shortly before jumping.

In order for the robot to jump upwards, a gravity hook was to be developed to ensure 

that, whichever way up the robot lands, the control box always attaches itself to the top 

side prior to take-off. However, the flying squirrel study demonstrated the advantage of 

pitch control during flight, which inspired the combined pitch control and attachment 

mechanism described for Glumper in this thesis (section 5.2.1, page 150). For the 

purposes of obtaining performance data for this prototype, the control box was simply 

tied to the top o f the robot using cord.

Jumping performance

The parasitic mass of the robot, (the mass o f the skeletal structure including the foot, 

legs and springs) is 0.169 kg at present. Experiments were performed to measure the 

peak height cleared by the robot with various weights added to its head before manually 

compressing it fully and launching it vertically. A high-speed camera was used to film 

the jumps, and it was expected that there would be an optimum weight for the eventual 

control box. (At very small masses, air resistance would reduce the peak height 

achieved). Scion Image was used to determine the maximum distance from the ground 

of the lowest extremity of the robot in each frame. The results are plotted in a graph
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(Fig. 101) and it can be seen that the optimum total mass of the robot is less than the 

current frame weighs. Therefore, there is no momentum advantage gained by the 

additional mass o f the control box accelerated away from the foot of the robot.

2 5

1.5

0.5

0.1 0.2 0.3

Total robot m ass  (kg)

0.4 0.5

Fig. 101: Graph show ing that adding m ass  to the basic frame of the robot redu ces its peak clearance height. There must b e an optimum 

value of weight to ach ieve  maximum clearance, but this cannot be quantified b eca u se  it occurs at a lower m ass  than the fram e alone.

An Instron table-top machine was used to compress the robot body to investigate the 

energy storage potential of the current design. Fig. 102 shows the resulting force- 

displacement graph from compressing the robot by 350 mm. Around 400 mm 

displacement would have been possible, but this would not be an accurate reflection of 

the robot's capabilities because the position of the control box will prevent full 

compression.

2  aoi 
8 0.008

50 100 150 200 250 300 350

Displacement (rrrr)
400

Fig. 102: Force -  d isplacem ent graph for robot body under com pression.

The energy stored in the robot’s springs and body is equivalent to the area under this 

force-displacement curve, which is approximately 2.8 joules. Using the potential energy 

equation, P.E = mgh, and neglecting losses, a prediction can be made for the height that 

the centre-of-mass of our automated design described above ought to be able to reach.

Page 223 of 228



The mechanics and energy economy o f animal jumping and landing applied to autonomous robots

Table 7 shows this prediction to be approximately 1 m. Visual inspection of repeated 

jumps against a vertical, extended tape-measure demonstrated that the approximate 

clearance height of the bottom of this robot was 0.6 m. The height reached by the 

centre-of-mass of the robot is actually much higher, approximately 0.9 m, because the 

control box (more than a third of the mass) was fixed to the top of the robot during these 

performance tests. This extra height could be useful if a camera was mounted on the 

control box, for example.

Total 
mass (kg)

Accelerated mass 

(kg)

Predicted height of 
C.of.G (m)

Approx height of C.of.G 

(m)
Approx clearance 

height (m)

0.284 0.115 1 0.9 0.6

Table 7: Performance data for prototype jumping robot

A more accurate method of measuring the jump height could not be used because this 

prototype winding mechanism was irreparably damaged during preliminary testing and 

this was never rebuilt.

References -  Appendix 3
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Appendix 3 -  Additional performance data

This appendix contains some additional graphs relating to the performance of 

Glumper’s gliding membranes during the jump tests launched at an angle of 63° to the 

horizontal, which were introduced in Section 5.3.4, page 165. Six jumps were recorded 

in total, three normal and three more after the removal of Glumper’s nylon wings. The 

trajectories of the mid-point between the head and foot of the robot were determined by 

manually digitising a sequence of images recorded by a high-speed camera, and these 

are compared for all six jumps in Fig. 76 on page 167. Given that the recordings were 

captured at a known frame rate, it was possible to determine the velocity of this robot 

centre between neighbouring frames (Fig. 103). The noise is a consequence of human 

error during the manual digitisation of the image data, caused by low resolution. It can 

be seen in all cases that the robot accelerates quickly to around 6 ms'1 before slowing 

down as it reaches the peak of its jump (although it does not reach 0 ms'1 because it is 

still travelling forwards at this moment). Afterwards the robot accelerates again due to it 

dropping under gravity until it lands. The trendline function in Microsoft Excel was 

used to fit a best fit line to the section of each curve where Glumper is freely dropping 

under gravity, as highlighted in red in Fig. 103. This was carried out to try and establish 

whether or not the nylon wings were reducing the impact velocity under the given 

experimental conditions. The three graphs on the left hand side show that the winged 

Glumper tended to impact at just above 4 ms'1, marginally slower than the wingless 

launches when impact velocities reached almost 6 ms'1.
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Fig. 1 0 3 -  Graphs com paring the m easured velocity against tim e for e a c h  of the six jum ps o f Glumper when launched at an an gle o f 63

d eg re es  to the horizontal.

Although Fig. 103 would appear to suggest that Glumper’s landing impact force is 

reduced by the presence of its wings, it does not take into account the fact that these 

increased its weight and restricted its movement slightly, resulting in a reduction in 

range. Therefore the apparent reduction in impact velocity may be due entirely to the 

fact that the initial horizontal velocity was smaller so Fig. 104 compares only the 

vertical drop velocity against time during landing for each of the six jumps. This would 

seem to be reasonable, because the central point of Glumper peaked at approximately 

the same height of 1.4 m in all but one of the tests. Once again the trendline function 

(Microsoft Excel) is used to help distinguish between the curves, this time using a 

polynomial equation. In spite of the noise, there does seem to be a clear levelling off of 

these curves for the winged Glumper, reaching a vertical impact velocity in all cases of
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approximately 3.5 cms’1. The non-winged equivalent curves are marginally steeper, all 

reaching vertical impact velocities of more than 4 cms’1.

W t a 0 S - 2 No wings - 2

y = -O 157&<2 + 0314a< - Q 1207 
FT=0.6644

y  = -0  1234x* + 02022k -  Q 1213

004
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0.2 Q8 0 4

T ln r» (s)

Fig. 104  - Graphs com paring only the vertical drop velocity against time for each  of the six jum ps of Glumper w hen launched at an angle

of 63  d eg re es  to the horizontal.
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Appendix 4 -  Published articles

Two articles were published during the course of this Ph.D project, which are included 

unaltered in this final Appendix. The first is titled “Take-off and landing forces and the 

evolution of controlled gliding in northern flying squirrels, Glaucomys sabrinus”, and is 

published in the Journal of Experimental Biology. The latter is titled “Jumping robots: a 

biomimetic solution to locomotion across rough terrain”, and is published in 

Bioinspiration and Biomimetics, a relatively recent journal from the Institute of Physics.
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Summary
Flying squirrels are well known for their ability to glide 

between trees at the top of a forest canopy. We present 
experimental performance and behavioural evidence that 
flight in flying squirrels may have evolved out of a need to 
control landing forces. Northern flying squirrels were 
filmed jumping from a horizontal branch to a much larger 
vertical pole. These were both slightly compliant (less than 
1.9 mm N-1), and instrumented using strain gauges so that 
forces could be measured. Take-off and landing forces 
were both positively correlated with horizontal range 
between 0.5 and 2.5 m (r=0.355 and r=0.811, respectively, 
P<0.05), but not significantly different to each other at 
each range tested. Take-off forces ranged from 1 to 10 
bodyweights, and landing forces were between 3 and 10 
bodyweights. Glide angles increased rapidly with 
horizontal range, approaching 45° at 3 m, above which 
they gradually decreased, suggesting that northern flying

squirrels are optimised for long distance travel. We show 
that northern flying squirrels initiate full gliding posture 
at ranges of less than 1 m, without landing any higher than 
an equivalent ballistic projectile. However, this gliding 
posture enables them to pitch upwards, potentially stalling 
the wing, and spreads the landing reaction force over all 
four extended limbs. At steeper approach angles of close to 
45°, flying squirrels were unable to pitch up sufficiently 
and landed forelimbs first, consequently sustaining higher 
impact forces. We investigate four hypotheses to explain 
the origin of flight in these animals and conclude that the 
need to reduce landing impact forces was most likely to 
have stimulated the development of aerial control in flying 
squirrels.

Key words: flying squirrels, Glaucomys sabrinus, jumping, gliding, 
kinetics, substrate reaction forces, biomechanics.

Introduction
There are three principal hypotheses to explain the 

divergence of flying squirrels from other types of squirrel. The 
first suggestion (Norberg, 1985) is that gliding may have 
evolved as a means of reducing the energetic cost of foraging. 
The squirrel can jump and glide from one tree to the next, 
enabling it to cover greater distances within the canopy more 
quickly than would be possible by climbing down and moving 
across the forest floor. An alternative suggestion was that, 
rather than reducing cost of transport, gliding may offer a 
means of foraging over a larger area in a certain time, making 
flying squirrels better able to exploit a patchy food resource 
than non-gliders of similar size (Scheibe et al., 2006). The third 
hypothesis is that gliding evolved primarily as an escape 
mechanism (Scheibe et al., 1990; Keith et al., 2000). Tree 
squirrels react to disturbances by moving to the opposite side 
of their tree, whereas flying squirrels climb upwards and then 
glide to another tree. However, this behaviour may increase 
susceptibility to attack from their most likely predator, owls

(Scheibe and Robins, 1998). We propose a fourth hypothesis: 
that the patagia, the flexible membranes that squirrels stretch 
by fully extending their forelimbs and hindlimbs, evolved to 
reduce or control landing forces. There is published evidence 
to support this (Caple et al., 1983), where it was calculated that 
increasing the amount of lift available to a body from 0 to 5% 
would not noticeably lengthen the jump nor allow much 
turning, but would give the animal significantly improved 
control around the pitch and roll axes. Of course, none of these 
four hypotheses are mutually exclusive.

This paper will investigate these hypotheses through 
experimental determination of the performance and behaviour 
of these animals. By measuring take-off and landing forces, we 
propose to quantify the advantage flying squirrels can achieve 
as a result of their unique morphology. The outcome of these 
measurements will be directly affected by substrate 
compliance. The majority of previous studies measuring 
ground reaction forces used rigid force measuring devices, 
while others investigated the effects of substrate compliance on
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ground reaction forces (Demes et al., 1999; Bonser, 1999). 
Demes et al. found that take-off forces were higher than landing 
forces when testing seven primate species of varying body sizes 
using compliant apparatus, contradicting previous studies 
based on rigid platforms (Demes et al., 1999). Some of the take
off force is used in bending the compliant branch before toe- 
off, whereas the reaction force on landing is damped as the 
substrate yields in the direction of motion, allowing more time 
for deceleration. Likewise, Bonser showed that the magnitude 
of landing forces for starlings was lower than their take-off 
forces (Bonser, 1999). He proposed both that the birds used 
their wings to decelerate during landing, and that additional 
energy is dissipated in deflecting their compliant perch during 
take-off.

In arboreal locomotion, flying squirrels must generate higher 
take-off forces when jumping from narrow (and hence 
compliant) tree branches, and encounter their highest impact 
forces when landing on rigid tree trunks. Compliant substrates 
have been instrumented for this study, and so we expect take
off forces to exceed landing forces over short distances. At 
higher ranges, the squirrels will have accelerated due to gravity 
and their landing force will likely increase unless the squirrel 
can use its morphology to slow itself aerodynamically. 
Therefore our hypothesis that gliding in the squirrel evolved 
primarily to enable aerodynamic control of its landing speed 
can be rejected if measured landing forces continually rise at 
high ranges.

It is possible for animals to utilise stored elastic energy 
within a branch by timing their take-off with its motion. 
However, primates do not seem to take advantage of this 
(Demes et al., 1995), which supports the proposition 
(Alexander, 1991) that they would not intentionally recover 
this energy. Therefore, we do not expect flying squirrels to take 
advantage of the recoil of our instrumented branch either. 
However, they have been observed using a bounding gait 
before launching with both fore- and hind-feet together at the 
end of a platform just before take-off (Keith et al., 2000). It is 
probable that this bounding is used to maximise take-off 
velocity and hence increase range.

The northern flying squirrel Glaucomys sabrinus is the larger 
of two species of North American flying squirrel, although still 
much smaller than some species found in SE Asia (Ando and 
Shiraishi, 1993). Flight is made possible by the presence of 
patagia, a morphological feature which has evolved 
independently several times in vertebrates, the earliest known 
being from the Mesozoic era (Meng et al., 2006). By 
manipulating their limbs, flying squirrels are able to actively 
modify the shape of this lift-generating surface during flight. 
The body proportions of flying squirrels were compared with 
those of tree squirrels to determine what morphological 
changes might be attributed to gliding (Thorington and Heaney, 
1981). Increased leg length allows more energy to be expended 
during take-off, offering superior horizontal range. In 
comparison with other similar-sized squirrels, the forelimbs of 
flying squirrels are significantly longer, a trait that has almost 
certainly evolved to improve aerodynamics during gliding

(Essner, 2002). This is further improved by the styliform 
cartilage, which is a flexible projection from the wrist held 
upward from the rest of the lift surface during gliding. This 
combines with the manus (or hand, which points ventrally 
towards the mid-line of the squirrel) to form a wing tip very 
similar to a NASA designed winglet (Thorington et al., 1998), 
who proposed that it reduces induced drag by diffusing and 
directing vortices away from the patagia. Smaller flying 
squirrels tend to have greater manoeuvrability and agility, 
whereas the larger species must glide faster to achieve the same 
glide ratio.

Materials and methods
Animals

Study animals came from a laboratory colony of northern 
flying squirrels Glaucomys sabrinus (Shaw 1801) housed in the 
Department of Biology at Southeast Missouri State University. 
Two young females and a young male were chosen because 
they had been consistent performers in previous kinematic 
work. All animals were bom in the same week and 
approximately 27 months old. The mass, wing span and wing 
area of each animal is given in Table 1. Other members of the 
colony were required for other projects and were not available. 
The colony has been maintained for 5 years on a diet of pecans, 
walnuts, sunflower seeds, mushrooms and birdseed in a large, 
temperature-controlled room (20°C). The room is on a 
continuous 12 h:12 h light:dark cycle. There are various 
branches and sufficient space for jumping and gliding to take 
place. Initially, measurements were made in the squirrel lab, 
but longer glides were measured in a 7 mX 14 mX7 m bam on 
the university farm.

Apparatus
As flying squirrels often land on tree tranks, allowing 

vertical variation in contact point, we used a vertical landing 
pole based on the design of Demes et al. (Demes et al., 1995; 
Demes et al., 1996; Demes et al., 1999). The squirrels were 
acclimated to it for several months prior to experimentation and 
used it regularly. It was constructed in two pieces: a 1.52 m 
long PVC tube (114 mm o.d.) covered in carpet and marked at 
10 cm intervals (for calibration and image analysis), mounted 
80 cm of the way up a 2.41 m long galvanised steel tube 
(23 mm o.d.). A concrete base secured this steel tube, which 
had four strain gauges (FLA-2-11-3L, TML, Tokyo, Japan) 
equally spaced around its circumference and aligned vertically 
(Fig. 1). A half-bridge circuit was used for each tension/ 
compression pair so that force parallel and perpendicular to the 
squirrel’s direction of motion could be determined. The 
compliance of the pole was measured to be 1.5 mm N-1 at the 
free end, gradually decreasing down the pole, reducing to 
0.2 mm N-1 close to the fixed end and the resonant frequency 
was 2.2 Hz.

For the take-off branch, a horizontal cantilevered beam was 
designed to mimic a tree branch because northern flying 
squirrels predominantly launch from a crouched, horizontal
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Table 1. Summary table o f  a ll the measured forces generated by northern flying squirrels during leaping and landing

Squirrel ID
Wing span 

(cm)
Wing area 

(cm2)
Leap 

distance (m)
Mass on day 
of testing (g)

Take-off force (bw) Landing force (bw)

Count Mean ± s.d. Count Mean ± s.d.

YF1 28.0 511 0.5 272 9 3.70±1.99 - -

1 274 6 4.64±1.17 6 3.47±0.37
1.5 267 10 4.36±1.64 10 4.88±0.35
2 256.5* 7 5.57±1.53 7 7.58±0.96

2.5 256.5* 5 5.91 ±1.49 5 6.16±0.54

YF2 27.5 500 0.5 200 8 2.56±1.28 - -

1 201 10 5.21±2.47 10 3.56±0.30
1.5 198 11 3.30±1.70 11 4.28±0.21

YM 25.9 554 0.5 259 9 3.38±0.96 _ _

1 260 4 6.97±1.23 4 3.79±0.44

YF, young female; YM, young male; bw, body weight.
There are 79 take-offs but only 53 corresponding landings because no landing force data was obtained for the shortest range jumps of 0.5 m. 

Only one individual, YF1, performed in the bam but it would not land on the force pole at distances greater than 2.5 m. Unfortunately, for 
reasons beyond our control, YF2 only cooperated at 0.5, 1 and 1.5 m and YM at 0.5 and 1 m.

♦Squirrels seemed to lose a considerable percentage of their weight before testing at this distance. The reason for this is unknown but it could 
have been caused by the change of environment as these tests were carried out in a bam, which was very hot and humid compared to the 
temperature-controlled lab.

position (Vemes, 2001). Four standard linear strain gauges 
(CEA-13-240UZ-120, Vishay, Basingstoke, UK) were 
mounted in two pairs, 50 mm from the fixed end of the 10 mm 
square aluminium bar (Fig. 1) and connected in a half-bridge 
circuit. Alignment was simplified because the chosen gauge 
width was almost as large as the 10 mm width of the aluminium 
bar, but not critical because any cross-talk was eliminated 
during calibration. The aluminium branch was covered by 
tightly wound rope to simulate the surface o f a tree branch. The 
strain gauges were protected using polystyrene foam, which

Take-off

branch

C arpet /  Strain g a u g e s  
/  in tw o ,

/  p erp endicu lar ' 
pairs - -j j f i

=  llll =

Strain g a u g e s  
- - in tw o

p erp en d icu lar
pairs

R op e

Landing p o le

was itself covered by plastic. A length of 4 c m X 9 c m  timber 
was fixed vertically to the wall, and drilled with mounting holes 
every 10 cm to allow height adjustment of the launch branch. 
The design of the branch was such that the compliance was 
similar to that of the landing pole, measured to be 1.9 mm N_l 
at the free end and decreasing as would be expected towards 
0.0 mm N_1 at the fixed end. The resonant frequency of the 
take-off branch was 17.3 Hz. The signal outputs from the strain 
gauges on both instruments were amplified using AD524 chips 
or equivalent and the sampling rate was 250 Hz. There was no 

need to acclimatise the squirrels to the take-off pole as, 
unlike the landing pole, they had no choice over whether 
or not to use it.

Experimental design 
The take-off branch was raised as the experimental range 

increased such that the angle between the tip o f the branch 
and the base o f the landing pole remained consistent at 
approximately 55°. This configuration was chosen because 
it was not possible with our equipment, and in the locations 
available, to set up short jum ps at high altitudes, and the

Fig. 1. A diagrammatic representation of the experimental set-up, 
showing the instrumentation used to measure take-off and landing 
forces including the carpet-covered landing pole, the rope- 
covered take-off branch and the location of the strain gauge pairs 
on each. Also shown are the measurements used to analyse the 
results, relative to an approximate squirrel trajectory. (A) The 
controlled horizontal distance between the end of the take-off 
branch and the vertical landing pole, (B )  the total distance covered 
in the glide calculated from the exact horizontal distance (C) and 
the drop (D).
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squirrels were unable to reach the landing pole unless given 
sufficient starting height. Animals were released individually 
on the instrumented branch and responded by running along the 
branch, usually pausing and then leaping to the instrumented 
landing pole. The horizontal range was increased progressively 
from a low distance of 0.5 m, to capture the leap-to-glide 
transition point, below which squirrels merely leap around, and 
above which the flying squirrels achieve aerodynamic 
advantage over other types of squirrel. Analysing this range of 
arboreal locomotion was considered to be more critical for 
investigating the initial divergence of flying squirrels.

Three digital video cameras (Canon GL2, Sony TRV 108, 
and Panasonic NV-DS55B) were used to film jumps. The first 
was positioned to capture take-off angle, the second to capture 
lateral landing angle and the third to capture a ventral view of 
landing. In the large squirrel bam it was not possible to mount 
a camera level horizontally with the take-off branch, so the 
resultant images represent frames perpendicular from the 
known camera angle. A minor trigonometric correction was 

1 therefore necessary to adjust all vertical distances measured 
i from this take-off footage.

| Calibration
\ With strain gauges, large changes in the external 
j  environment are potentially significant, so a record of 

temperature was kept using two I-buttons (Maxim Integrated 
Products, Sunnyvale, CA, USA), fixed to the top and bottom 
of the 4 cmX9 cm timber stud, respectively. These recorded 
temperature every hour. This daily verification of calibration 

j was particularly important because testing was carried out in 
two contrasting environments; a temperature-controlled 
laboratory, and a hot and humid metal bam.

Only the landing forces were measured by converting the 
output from strain gauges into force, for which a static 
calibration was performed daily by applying forces to different 
points along the pole. Resultant steady signals were used to 

I draw calibration graphs that established the force constant, k, 
| where F=kx; F is force (N) and x  is the measured strain signal 
| (V). Forces equivalent to between 1 and 10 body weight units 
{ (bw) were applied, producing good linearity across the full 

range of marking points on the pole. (On average, the square 
of the Pearson product moment correlation coefficient ^=1.00 
in line and 0.99 transverse to the expected direction of motion.) 
Position of the animal along the instrumented poles was taken 
into account and a linear equation allowed the correct 
calibration to be used at any point. The cross-talk magnitudes 
were 13% and 17%, respectively, for parallel and transverse 
forces. Cross talk, in this context, is the unwanted output signal 
measured on one pair of strain gauges for a force applied 
perpendicularly. The frequency response of our equipment is 
sufficient to measure impulses generated by the squirrels. The 
effect of temperature on the calibration was found to be 
unimportant, as although it varied considerably between the 
two test areas, calibration graphs remained consistent 
throughout the study.

Results processing
Although both could measure force in two directions, neither 

the take-off branch nor the landing pole were capable of 
measuring forces along their long axes. To overcome this 
limitation, video footage from laterally positioned cameras was 
recorded to determine the angle of action of the force, which 
allowed the force vector to be resolved in 3D from the two 
measured force components. This was an acceptable procedure 
for the landing forces because the squirrels were arriving at 
angles perpendicular to the pole. For the median data point at 
medium range, 1.5 m, a trigonometric calculation showed that 
a 5° shift in measured landing angle would cause a 10% change 
in the resultant force. During take-off the squirrels were 
consistent in their behaviour, always choosing to move towards 
the free end of the branch and jump away in the same direction. 
However, the resulting shallow take-off angles mean that a 5° 
measurement error leads to an unacceptable 39% change to the 
median resultant force at 1.5 m. Hence, resultant take-off forces 
had to be calculated by integrating the output from the strain 
gauges with respect to time, so that measured take-off velocity 
could be used to determine the acceleration. This was 
multiplied by the known mass of each flying squirrel for all 
jumps to calculate the resultant force. The frame rate of the 
lateral take-off camera was 30 frames s-1 so an estimate of 
velocity between the first two consecutive frames after toe-off 
could be obtained by measuring the change in position of the 
centre of mass. The resultant force calculated by this method 
is the total force required to accelerate the squirrel to its actual 
take-off velocity based on its known acceleration profile. This 
method does not take into account losses caused by deforming 
the branch, but is completely independent of the accuracy in 
measurement of take-off angle.

The video records were digitised using edge-detection 
software, which tracked the outline of the squirrel in each frame 
of a sequence of images from the laterally positioned camera 
(LabView -  National Instruments, Austin, TX, USA). The tail 
was deliberately excluded from this outline, because it 
constitutes only a small percentage of the total weight of the 
animal and was often dorsally flattened and moving at high 
velocity outside the plane of the images. The centre of the 
region enclosed by the lateral outline of the squirrel was used 
as an approximation for its centre of mass and could be tracked 
from frame to frame, enabling both the landing point on the 
pole, and the angle of impact to be determined. Hence the 
resultant reaction force for each landing squirrel could be 
calculated.

To measure the take-off angle of the squirrel, principal 
components analysis was applied in the LabView squirrel 
tracking program to find the best-fitting ellipse to the outline 
detected in each frame. The take-off angle was taken to be the 
angle between the major axis of this ellipse and the axis of the 
branch in the final frame before toe-off. This program was also 
used to estimate the change in pitch during the landing 
sequence shown in Fig. 2C. Another program was written in 
NI Labview to determine the wing span and wing area of each
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A Fig. 2. Video stills of the squirrels in the three 
postures observed. (A) The forelimbs being 
abducted prior to the hindlimbs leaving the 
substrate during take-off, and how the take-off 
angle, 0, is calculated as the angle between the 
branch and the major axis of the best-fitting 
ellipse to the squirrel (excluding its tail). (B) 
Normal gliding flight, (C) landing from the side 
and (D) a ventral view landing on the pole on 
the left. In C, the last few frames of a landing 
sequence have been superimposed onto one 
image to demonstrate the landing behaviour, 
although the penultimate frame had to be 
omitted for clarity. In this short, 1 m jump, the 
squirrel initially pitches upwards and flattens its 
body and tail against the direction of motion. 
Immediately prior to landing, the head is tilted 
backwards while the limbs are all pushed 
forwards with the tail simultaneously rotated 
back so that it is parallel with the ground.

squirrel from ventral images o f a glide. Lateral images were 
used in conjunction with these to ensure that only frames in 
which the squirrels were in plane with a calibration bar were 
used for these measurements.

A calculation was performed to determine the percentage of 
body weight supported during each measured glide, relative to 
the equivalent ballistic trajectory (that is the trajectory of an 
object with the same take-off velocity and angle subject to no 
drag or lift). For a simple free-falling mass, the gravitational 
force acting downwards is opposed by any lift generated. The 
resultant force acting on the body is hence:

F = M ba = M hg - L ,  (1)

where A/b=mass (kg), a=resultant acceleration (m s-2), g  is 
gravitational acceleration (9.814 m s-2) and L  is the lift force 
(N). The percentage weight supported is simply this lift force 
divided by the animal’s weight. Measured take-off angle, 0, 
velocity, v (m s-1), and jum p duration, t (s), are sufficient to 
calculate the vertical drop, y  (m), from the resultant 
acceleration using the standard kinematic equation below:

y  = (vsin0)f -  ^at2 . (2)

Therefore, by combining Eqn 1 and Eqn 2 we get an expression 
for the overall lift force generated during the glide:

L  = A/b[g-(2rvsin0-y)/t2] . (3)

Jumps observed, general m ixed model, and other statistics
We measured 79 take-offs and 53 corresponding landings 

with the number o f jum ps o f each animal at each range 
specified in Table 1. No landing force data were obtained for 
the shortest range jumps of 0.5 m, but with this exception, all 
measured take-off forces have a corresponding landing force. 
Only one squirrel, young female 1, performed in the bam but 
it did not leap to the force pole at distances greater than 2.5 m, 
landing instead on the ground beyond the instrumented pole.

This was the only animal to perform at all ranges tested. 
Unfortunately, young female 2 only cooperated at 0.5, 1 and
1.5 m and the young male at 0.5 and 1 m. Owing to the number 
of missing data points, the typical multivariate ANOVA could 
not be applied to our data, and so a general mixed model 
(Krueger and Tian, 2004) was applied to both take-off and 
landing forces, with range as a fixed factor and squirrel ID a 
random factor. Unless otherwise stated, all correlation statistics 
use Pearson’s product moment correlation.

Results
Video stills from the lateral camera illustrate the consistent 

take-off, gliding and landing postures of the squirrels (Fig. 2). 
During take-offs, the forelimbs were abducted prior to toe-off 
enabling the squirrel to immediately adopt gliding posture. 
During gliding all limbs were abducted creating a cambered 
wing surface held at a small positive angle of attack. The tail 
was dorsally flattened, presumably to generate lift. Prior to 
landing, the squirrel pitched upwards keeping its body and tail 
in line and flattened against the direction o f motion. 
Immediately prior to landing, the head tilted backwards while 
the limbs were all pushed forwards with the tail simultaneously 
rotated back so that it was parallel with the ground. In the 
example landing sequence (Fig. 2C), the pitch angle o f the 
body changed from approximately 22.5° relative to the 
horizontal, towards 90° immediately prior to landing.

In the bam, the squirrels tended to have a steeper approach 
and did not pitch up very much prior to landing. The head still 
tilted backwards but the tail was rotated forwards towards the 
vertical. As a consequence of the lower angle o f attack, the 
forelimbs contacted the pole first, causing the body to rotate 
around rapidly onto the hindlimbs due to the conversion of 
linear to angular momentum. Occasionally the tail was 
cambered such that the inside o f the curve faced the landing 
pole. In some jum ps, the squirrels were clearly banking or
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Fig. 3. A box plot directly comparing the landing forces with the 
corresponding take-off forces for three of the flying squirrels (young 
females YF1 and YF2, and young male YM) at each horizontal range 
(from the end of the take-off branch to the landing pole). Asterisks 
and circles show values that were outside the interquartile range, the 
former being statistically significantly far away.

turning in the penultimate frames to correct misalignment with 
the pole and in one instance, a subject landed on the side o f the 
pole. As it was simple to calculate the forces for these jumps 
too, these results were included in our analysis.

A summary o f take-off and landing forces recorded as a 
multiple o f body weight is shown in Table 1. There was 
considerable variation between take-off and landing forces 
measured for each squirrel at each distance. Take-off forces 
normalised by body weight increased significantly with leap 
distance (Fig. 3; r=0.323, P=0.004). The same box plot also 
shows the positive correlation between landing forces and 
horizontal range (r=0.816, PcO.OOl).

The general mixed model introduced above provides 
statistical verification that normalised take-off forces were 
significantly dependent on range (Fs.n.5=45.182, PcO.OOl) but 
not squirrel identity (P=0.602). Likewise, landing forces were 
dependent on range (F4i9 5=409.341, PcO.OOl) but independent 
o f the particular squirrel (P=0.548). The means and 95% 
confidence intervals produced by the mixed model are plotted 
in Fig. 4.

All landing and take-off forces are not correlated to one 
another (r=0.094, P=0.507). A paired sample r-test comparing 
landing force with its corresponding take-off force for each 
jum p was not statistically significant (fsi=0.374, P=0.710). The 
standard deviations o f the mean forces for each animal at each 
distance are shown in Table 1. Standard deviation in take-off 
forces at each range is clearly larger than that for landing 
forces. Excluding the 0.5 m range, for which there is no landing 
force data, the standard deviation ranges from 1.37 to 6.10 bw

9

8
°  Take off 
o Landing 
—  Linear (landing)
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Fig. 4. A graph showing the output from the mixed model statistics of 
mean take-off and landing forces at each horizontal range. The error 
bars represent the 95% confidence intervals. By ignoring the few 
jumps at 2 m, when the squirrel consistently landed at the more rigid 
base of the pole, the square of the Pearson product moment correlation 
coefficient (the r2 value) improves from 0.61 to 0.99.

for take-off force, compared with only 0.04 to 0.92 bw for 
landing.

Landing force is positively correlated with angle of descent 
(r=0.740, P<0.001).

The outputs from all strain gauges were recorded 
simultaneously, enabling the duration o f each glide to be 
measured. There is, unsurprisingly, a strong positive 
correlation (r=0.923, PcO.OOl) between glide distance and 
glide duration. Mean glide velocity based on the linear distance 
from take-off to landing position and not the actual trajectory, 
was strongly positively correlated (r=0.951, PcO.OOl) with 
horizontal range. This reached 4.5 m s-1 across a horizontal 
range o f  2.5 m.

Average take-off angle for each squirrel at each distance was 
negatively correlated with range (r=-0.684, PcO.OOl) (Fig. 5).

Fig. 6 shows the percentage of body weight supported by lift 
during gliding, as a function of horizontal range. The average 
value for each squirrel at each range is plotted against 
horizontal range and the error bars represent plus and minus 
one standard deviation. At ranges o f 1.5 m and above, the 
squirrel was able to support the equivalent of approximately 
40% of its weight by gliding, but none when jum ping smaller 
distances. The advantage gained by gliding increases with 
range (r=0.609, PcO.OOl).

Landing force was found to be significantly correlated to the 
position of impact on the pole (r=-0.713, PcO.OOl).

Glide angles increased steeply with horizontal range until 
they reached approximately 45° beyond 2.5 m (Fig. 7), the 
angle at which gliding is distinguished from parachuting, after 
which they gradually improve as seen by a strong, negative 
correlation between the 17 longest jum ps (r=-0.816, PcO.OOl). 
At this point, only one animal was still performing but it did 
not land on the pole, and instead glided past it and landed on 
the floor.
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Fig. 5. Average take-off angle for each individual flying squirrel as a 
function of the horizontal distance travelled in the jump (labelled C in 
Fig. 3). This implies that the squirrels are planning ahead, which in 
turn may imply that they are considering their landing. Asterisk and 
circles, see Fig. 3.

Discussion
In this study, take-off and landing forces were measured for 

northern flying squirrels traversing various distances between 
compliant substrates. Extensive analysis o f video recordings of 
their movements was also carried out. To our knowledge no 
such data has been published before and we believe our results 
provide more insight into the evolution of gliding in these 
mammals. W e link our observations, where possible, to the 
following four hypotheses for the divergence from other tree 
squirrels: (1) to reduce energetic cost of foraging; (2) to 
maximise the potential foraging area in a given time without 
thought to transport cost; (3) to improve predation escape 
capability; and (4) to enable superior control of landing.

Take-off, landing and gliding performance are discussed 
separately.

Take-off
Flying squirrels generated take-off forces ranging from 1.08 

to 9.57 bw. The amount o f force was proportional to the 
distance the animal travelled (Fig. 3). It is logical that squirrels 
generate a larger take-off force to go further, as ballistic theory 
dictates they require a higher velocity in order to cover the 
distance. However, there must be a maximum force the squirrel 
can generate. Our results suggest this might be approximately 
10 bw, which is equivalent to occasional high jum p forces at 
shorter ranges. (These occasional jum ps support the idea that 
flying squirrels jum p more forcefully when startled, 
incidentally.)

The highest take-off angle recorded was 35° and this 
occurred at the shortest range o f 0.5 m, which was short enough 
that landing position was often higher than take-off position. 
Take-off angle decreased as range o f the jum p increased
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Fig. 6. Percentage of body weight supported by lift during gliding as 
a function of horizontal range in flying squirrels (young females YF1 
and YF2, and young male YM). Values are means for each squirrel at 
each range ± 1 s.d.

(Fig. 5) but this may have been influenced by a confounding 
factor, the height o f the branch. With sufficient height the 
animal can afford a shallower take-off angle, allowing it to 
generate a higher horizontal velocity.

Overall velocities of the squirrels increased with range. The 
animals usually ran and jum ped immediately after release onto 
the branch, but occasionally it was necessary to startle them. It 
is unknown if the apparent levelling off of glide angle that we 
observed for longer jum ps is a general trend because we did 
not obtain results for longer leaps.

Gliding performance
Squirrels used lower glide angles in the lab, but angles near 

45° (parachuting) for the longer ranges o f 2 m and above in the 
bam. This may have been a behavioural change due to 
unfamiliarity, and is based on only one squirrel at these ranges. 
In a study describing the kinematics o f two southern flying 
squirrels Glaucomys volans, glides from both animals were 
shorter and significantly steeper after moving to a new test 
arena (Bishop, 2006). However, our measured glide angles 
improved with increasing range (Fig. 7) and are comparable 
with similar distance results from two field studies o f northern 
flying squirrels (Vemes, 2001; Scheibe et al., 2006), so it is 
more likely a consequence o f the need for this species (the 
larger of the two North American species) to reach a higher 
velocity before it is able to exhibit superior aerodynamic 
performance. Average glide velocities measured in this study 
increased with range as would be expected. Observations of the 
Japanese giant flying squirrel on long glides (Ando and 
Shiraishi, 1993) sometimes showed an initial steep descent 
with the glide angle decreasing with increasing velocity, until 
both became constant. Likewise, northern flying squirrels 
dropped steeply prior to gliding, and often even managed to 
gain altitude slightly, just before landing (Vemes, 2001). The 
squirrels in this study may have initiated a similar behaviour, 
but the possible ranges were too short for the effect to be 
noticed. This would help to explain why field observations of 
northern flying squirrels have reported significantly better glide
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Fig. 7. Scatter plot showing how the glide angle increases with 
horizontal range until it reaches approximately 45°, represented by a 
broken line, after which the glide ratio begins to improve slightly. 
High take-off angles and limited time spent in the air are the factors 
responsible for the low vales of glide angle across low ranges. Glide 
angle is strongly negatively correlated with range above 4 m 
(r=~0.816, P<0.001) where higher glide speeds enable northern flying 
squirrels to exhibit superior lift to drag ratios.

ratios. In Alaska, USA, Scheibe et al. evaluated 168 glides from 
82 different squirrels with mean glide distances of 12.46 m and 
14.39 m in successive years, and corresponding mean glide 
angles were 41.31° and 36.31° (Scheibe et al., 2006). Vemes 
reports a mean angle o f descent o f just 26.8° for glides which 
were longer, averaging 16.4 m (Vemes, 2001). Gliding 
behaviour is therefore likely to be optimised for significantly 
longer ranges than were possible in this study.

Flying squirrels use their patagium as a low-aspect-ratio 
wing, which has good aerodynamic stability at the relatively 
low speeds involved, generating lift at high angles o f attack of 
up around 40° without stalling (Torres and Mueller, 2004). This 
shape allows the squirrel to overcome any detrimental 
rotational momentum that it might have generated during take
off. In the present study, full gliding posture was always 
initiated before the hindlimbs left the substrate, allowing the 
angular momentum produced by forelimb abduction to be 
transmitted directly to the branch, even over the shortest leaps 
o f just 0.5 m. It has been argued (Essner, 2000) that this 
behaviour enabled the squirrel to begin gliding earlier, resulting 
in a flatter trajectory with more immediate manoeuvrability and 
control. We quantified the gliding performance o f each squirrel 
by calculating the percentage o f its bodyweight supported 
during each glide and showed that flying squirrels exploited 
their unique morphology to generate lift at ranges greater than
1.5 m (Fig. 6). However, these values were negative over
0.5 m, implying that the squirrels generated down-force. It 
could be that the combination o f steep take-off angles with 
immediate initiation o f gliding results in their large patagial 
surface area working against the squirrels on these steeper take

off angles. Alternatively our estimate for the percentage body 
weight supported could be slightly conservative. In any case, 
we have established that the transition from leaping to gliding 
occurs at a horizontal range o f 1.5 m for northern flying 
squirrels. They are not able to benefit from gliding over 
distances o f less than 1 m, so although the resultant glide angles 
may appear to be superior at these ranges, this is only a 
consequence of the higher take-off angles and limited time in 
the air.

Landing
Landing forces varied between 3.01 and 9.52 times body 

weight. The impact force on the landing pole was proportional 
to the range o f the leap. This is expected because the measured 
gliding velocity increased with horizontal distance, reflecting 
the effects o f gravitational acceleration.

The correlation of measured landing force with the contact 
position of the animal on the pole is due to the compliance 
decreasing towards the fixed end. Higher forces were 
experienced by squirrels landing lower down on the pole, 
where it was relatively stiffer and did not deflect so far. This 
is inevitable because the kinetic energy o f the squirrel becomes 
the product of reaction force and deceleration distance -  
proportional to the deflection o f the pole given that leg length 
remains constant. This has an important implication for the use 
of compliant substrates when quantifying forces for 
comparison. Ideally, only forces measured at points of equal 
compliance should be compared directly, or there should be a 
random scattering of landing positions. This was the case for 
our results, with the exception o f the 2 m range, at which the 
squirrel consistently landed at the base of the pole. The reason 
for this is unknown, because the angle between the base of the 
landing pole and the tip o f the take-off branch was consistent 
at 55° for all ranges. However, by removing the data from the 
2 m range (7 data points out of 53), a strong linear relationship 
can be observed between the means o f the other 46 jumps 
where more compliance was available (Fig. 4). The square of 
the Pearson product moment correlation coefficient (the r2 
value) improves from 0.61 to 0.99 when the 2 m data is 
ignored. Such a good linear fit means that the flying squirrels 
adopt a consistent landing technique. On stiffer substrates, we 
would expect a similar, but steeper, linear increase in landing 
force with range.

Over short leaping distances, take-off forces are not 
significantly different from landing forces (Fig. 3; r-test). This 
fits with the expectation (see Introduction) that landing forces 
would not be higher than take-off forces on compliant 
substrates, as they are on rigid platforms (Demes et al., 1995).

Landing force was correlated with angle o f descent, 
suggesting the squirrels are better able to absorb landing 
impacts with a flatter approach. Some o f the impact force is 
likely absorbed as a result o f the consistent landing posture 
observed, which it seems the squirrels were unable to 
accomplish with steeper approaches. During shallower glides 
the squirrels are able to increase their drag force by 
transforming the patagia and distichous tail from a cambered
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surface with low angle of attack, high lift and low drag, to a 
more parachute-like surface orientated against the direction of 
motion. Additionally, this posture enabled the squirrel to 
absorb the remaining impact forces more evenly over its four 
extended limbs on contact. Aerodynamically, the flying 
squirrel has a low aspect ratio (close to 1) and glides at low 
speed so an angle of attack in excess of 40° would be required 
for it to stall in flight (Torres and Mueller, 2004). The squirrel 
has additional aerodynamic implications associated with its 
morphology, such as its fur, so it is not possible to measure 
whether or not they are actually stalling from our video footage. 
However, it is clear from the example landing sequence shown 
in Fig. 2C that the pitch angle of the body has increased to 
effectively 90° immediately prior to landing, supporting the 
theory that they deliberately stall themselves (Alexander, 
1995).

Caple et al. stated that the vector sum of angular momentum 
must be conserved during any mid-air movement of a body 
with no lift or drag (Caple et al., 1983). Although flying 
squirrels will also be able to generate some external force from 
their patagium, this could help explain the origin of some of 
the consistent landing movements observed. For example, the 
rotations of the head and tail backwards would directly 
counteract the thrusting of the limbs ventrally, although it is 
equally likely that the head tilt may be for defence against 
accidental impact. A falling cat also uses counter-rotations in 
order to right itself when falling from an upside-down position 
(McDonald, 1960). Caple’s calculations (Caple et al., 1983) 
also show that some of the morphological features of flying 
squirrels, such as long forelimbs with dense, distally located 
mass (hands and feet) and a lightweight tail that can produce 
lift, are optimisations for controlling pitch and roll. We show 
that the squirrels were able to reduce landing forces by pitching 
upwards as they approach, and it is this behaviour which may 
have applied selective pressure to these morphological features 
rather than glide range, which increases negligibly in 
comparison. Increasing forelimb length allows the landing 
energy to be absorbed over a larger distance. Likewise, the 
flexed back on impact should further reduce the peak landing 
force. A falling cat also tries to land with its back arched and 
all four limbs outstretched towards the ground (McDonald, 
1960).

Unfortunately the squirrels could not be persuaded to land 
on the pole above the relatively small horizontal range of 2.5 m, 
compared to their normal arboreal glide distances (Vemes, 
2001; Scheibe et al., 2006), choosing instead to deliberately 
manoeuvre past the landing pole and land on the floor. It is 
possible that the squirrels may have a sense for a maximum 
speed at which they can safely or comfortably land on a stiff 
or unknown substrate for a given approach angle. Glide angles 
achieved at ranges between 3 and 6 m exceeded 45° (Fig. 7), 
which would normally be defined as parachuting rather than 
gliding (Oliver, 1951), and we speculate that this is likely to be 
the most difficult distance for northern flying squirrels to land. 
The steeper approach angles inhibit their ability to pitch up and 
absorb the landing across all four limbs simultaneously, and

there is more energy to dissipate due to the inevitable increase 
in velocity with range. Velocity continues to increase above the 
proposed awkward range but this also improves the flying 
squirrel’s aerodynamic ability, allowing a progressive 
improvement in approach angle and consequent landing 
posture. It is likely that these animals would try to avoid 
making hard landings on tree trunks at this unfavourable range. 
Vemes reported that in 21% of his 100 glides observed 
(Vemes, 2001), northern flying squirrels landed on the ground 
or in dense undergrowth. The other landings were on trees and 
it should be noted that the mean glide distance was much higher 
in the Vemes study than ours. Likewise, Scheibe et al. noted 
that sometimes squirrels released onto a tree trunk at breast 
height did not climb and glide, choosing instead to jump to the 
ground and run to a nearby tree (Scheibe et al., 2006). Future 
experimental designs should consider that northern flying 
squirrels might be more likely to land on an instrumented pole 
positioned at a high rather than medium horizontal distance 
from the take-off position, but this would necessitate an arena 
allowing sufficient take-off height.

The equation for the linear relationship between landing 
force and range on the compliant part of the pole is shown on 
Fig. 4 and can be used to predict the landing force at longer 
ranges than we were able to measure. However, the squirrels 
would not keep accelerating indefinitely during long glides; 
rather their speed would stabilise as they approach terminal 
velocity. Maximum glide velocities of close to 12 m s_l have 
been reported (Scheibe et al., 2006), although the weighted 
means were 6.26 m s-1 and 8.11m s-1 in two consecutive 
years. These values are much higher than our highest 
observed speed of 4.5 m s-1, although this was measured 
across a relatively much shorter horizontal glide distance. 
With more time in the air, squirrels must be able to control 
their trajectories, otherwise they would be subject to 
extremely high impact forces. Depending on substrate 
compliance, we can use the equation from Fig. 4 to calculate 
that squirrels trying to land from an ordinary 16 m glide 
would be subject to impact forces of upwards of 28 bw if they 
did not slow themselves, as we have shown, by pitching up 
and employing air braking.

Evolution o f gliding
Hypothesis 1

Hypothesis 1 that gliding developed to reduce the energetic 
cost of foraging supposes that the squirrels’ primary objective 
should be to maximise range in every jump while minimising 
the loss in altitude. Therefore, from ballistic theory we would 
expect the squirrels to jump at close to the optimum take-off 
angle of 45°, but they did not. As expected, the advantage 
gained by gliding increases with range. This vertical advantage 
achieved relative to the ballistic trajectory enables flying 
squirrels to reach trees beyond normal jumping range, or 
reduces the amount of climbing required after a glide is 
completed, thus saving energy. However, during this study 
flying squirrels did not try to take off at 45°, which would be 
expected for maximising range, and take-off angle decreased
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with range. However, the non-optimum take-off angles and 
frequently observed range-reducing aerial manoeuvres are 
evidence to suggest that energetic transport cost is not of 
primary importance to flying squirrels.

Hypothesis 2
If gliding evolved to maximise the foraging area that could 

be reached in a given time, as proposed by Hypothesis 2, then 
we would expect the squirrels to glide at high velocities. We 
have shown that velocity increases with range, and that flying 
squirrels can generate higher lift forces when travelling further, 
so we cannot reject the hypothesis that gliding is an 
optimisation to maximise speed and potential foraging area.

Hypothesis 3
Hypothesis 3 is that gliding evolved primarily to facilitate 

escape from predation. One might expect that an escaping 
squirrel would jump horizontally, or downwards given 
sufficient altitude, in order to ensure that it did not decelerate 
due to gravity. Bonser and Rayner proposed that starlings may 
deliberately vary take-off trajectory for predator avoidance 
(Bonser and Rayner, 1996), but we have shown a negative 
correlation of the take-off angle with range, suggesting that 
during this experimentation at least, flying squirrels choose a 
take-off trajectory to suit their intended destination. Caple et 
al. stated that all gliders pre-select a landing site, which must 
be large enough to allow some vertical variation in the contact 
point (Caple et al., 1983). Vemes also observed that flying 
squirrels appeared to think about their intended flight path 
before launching and we saw no evidence to suggest otherwise 
(Vemes, 2001). Given that the squirrels seem to exhibit this 
behaviour even during the jumps that were initiated by 
startling, it seems unlikely that gliding evolved primarily for 
escape, at least not from high-speed chases.

The ability to make sudden aerial direction changes could 
potentially help to lose a predator. However, their most likely 
aerial predator is the owl (Scheibe et al., 1990), and it is 
unlikely that such sophisticated fliers would be troubled by the 
relatively clumsy swerving squirrel.

Hypothesis 4
Hypothesis 4 relates the development of flight to the control 

of landing. Even at the relatively short ranges in this study, we 
observed direction changes being introduced by rapid beating 
of the tail from side to side. Additionally, last-second 
manoeuvres were observed, such as banking and using the tail 
as a rudder, implying that flying squirrels are able to make 
precise adjustments to improve their landing. As range 
increases, any error in take-off trajectory would become more 
significant without aerial control; in this case squirrels could 
face serious consequences for misjudging long leaps at the top 
of the forest canopy.

Flying squirrels choose to initiate a full gliding posture even 
though they do not produce significant lift during glides of less 
than 1 m, suggesting that this behaviour is innate. It might be 
that the squirrel is simply throwing its arms out conveniently

widely for rapid rotation of the joint in order to gain forward 
momentum during take off. They do exhibit a consistent 
landing behaviour at these distances, with the gliding posture 
enabling them to pitch upwards as they approach and spread 
the landing reaction force over all limbs. It is likely that the 
squirrels deliberately stall themselves by this quick increase of 
their angle of attack immediately prior to landing.

Landing control of pitch and roll improves much more 
rapidly than range for the same incremental improvements in 
forelimb length and tail surface area. Increasing forelimb 
length simultaneously reduces the landing force further by 
increasing the deceleration distance. Landing force was 
correlated with angle of descent, suggesting flying squirrels 
were unable to pitch up sufficiently to execute the evenly 
distributed four-limbed landings when approaching steeply, 
demonstrating the utility of aerial control in longer jumps. 
Given the reported values of terminal velocity for flying 
squirrels, and the measured landing forces on compliant 
substrates that increase with range, we know that if the squirrels 
could not slow themselves or improve landing posture 
aerodynamically prior to landing, they would have to sustain 
impact forces of upwards of 28 bw.

Evolution of gliding in flying squirrels has undoubtedly 
reduced their energetic cost of transport, while improving 
potential foraging area and response to predation, but we 
conclude that the selective pressure for their divergence from 
ground squirrels was the improvement of landing control.

Conclusions
Take-off and landing forces generated by northern flying 

squirrels are both positively correlated with horizontal range, 
at least up to 2.5 m. The maximum take-off force measured was 
9.57 bodyweights, although the squirrels would occasionally 
produce close to this force when jumping only short distances, 
most likely a natural behavioural response to alarm. Take-off 
forces were not significantly different to the corresponding 
landing forces on these similarly compliant substrates. They are 
able gliders, abducting all limbs to create a wing-like surface, 
which is held at a low angle of attack for maximum lift/drag 
ratio. Glide angle increased rapidly with horizontal range 
up to approximately 4 m, before progressively improving, 
suggesting that gliding in northern flying squirrels is optimised 
for significantly longer ranges than were possible in this study.

Any compliant force-measuring device will likely have some 
variation in its compliance along its length. In the case of a 
cantilever beam, this begins to behave more like a rigid 
instrument towards its fixed end. Valuable comparisons can 
only be made between forces measured at known points of 
equal compliance. If this is not possible, then sample sizes 
should be chosen to ensure a random scattering of landing 
positions.

It seems unlikely that gliding evolved in flying squirrels to 
reduce the energetic cost of transport even though the measured 
lift generated would lessen the amount of climbing required. 
Take-off angle decreased with range without getting close to 
45°, the value for maximum ballistic range, and further height
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would be lost to the aerial manoeuvres occasionally observed. 
The flying squirrels in this study did not attempt to make either 
unplanned or deliberately unpredictable take offs, casting doubt 
on the theory that gliding might improve predatory escape 
response.

Gliding might have evolved to maximise the foraging area 
that could be reached in a given time. High glide speeds were 
measured and this velocity increases with range, but the 
development of improved landing control is a necessary 
consequence of faster flight. We provide evidence that if 
northern flying squirrels could not slow themselves 
aerodynamically from terminal velocity, prior to landing, they 
would have to try and sustain impact forces of upwards of 
28 bw. Flying squirrels seem to innately adopt a gliding posture 
on take off, even during leaps of less than 1 m when no vertical 
advantage is gained, but this leaves them better prepared for 
aerial control. At these low distances, a consistent landing 
strategy was exhibited by flying squirrels, allowing the impact 
force to be spread over all four limbs and their arched back, 
thanks to a dramatic pitch upwards immediately prior to contact 
with the pole. This rapid increase of their angle of attack 
immediately prior to landing is likely a behaviour evolved to 
enable rapid deceleration by stalling, although this would have 
greater effect at high speeds. We conclude that at divergence, 
small glide producing surfaces were developing in flying 
squirrels allowing mid-air adjustments in pitch and roll, and 
improving their resilience during high-speed arboreal transport.

List of symbols and abbreviations
a resultant acceleration (of centre of gravity)
bw body weight
F force
g gravitational acceleration
k force calibration constant
L lift force
Mb body mass
f2 the square of the Pearson product moment 

correlation coefficient
t jump duration (time between take off and 

landing)
V velocity
X strain gauge signal voltage
y vertical drop
0 take-off angle
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Abstract
This paper introduces jumping robots as a means to traverse rough terrain; such terrain can 
pose problems for traditional wheeled, tracked and legged designs. The diversity of jumping 
mechanisms found in nature is explored to support the theory that jumping is a desirable 
ability for a robot locomotion system to incorporate, and then the size-related constraints are 
determined from first principles. A series of existing jumping robots are presented and their 
performance summarized. The authors present two new biologically inspired jumping robots,
Jollbot and Glumper, both of which incorporate additional locomotion techniques of rolling 
and gliding respectively. Jollbot consists of metal hoop springs forming a 300 mm diameter 
sphere, and when jumping it raises its centre of gravity by 0.22 m and clears a height of 0.18 
m. Glumper is of octahedral shape, with four ‘legs’ that each comprise two 500 mm lengths of 
CFRP tube articulating around torsion spring ‘knees’. It is able to raise its centre of gravity by 
1.60 m and clears a height of 1.17 m. The jumping performance of the jumping robot designs 
presented is discussed and compared against some specialized jumping animals. Specific 
power output is thought to be the performance-limiting factor for a jumping robot, which 
requires the maximization of the amount of energy that can be stored together with a 
minimization of mass. It is demonstrated that this can be achieved through optimization and 
careful materials selection.

[Ml This article features online multimedia enhancements

1. Introduction

The aim of the research reported in this paper is to produce 
a small, autonomous and inexpensive jumping robot for 
traversing irregular terrain. It will use a locally-available 
energy resource. Given the breadth of successful jumping 
organisms present in nature, biomimetics will deliberately be 
used to aid the design and development.

The majority of robot locomotion utilizes wheels, which 
are very efficient at covering smooth terrain, but these vehicles 
are unable to pass obstacles of greater than half their wheel 
diameter. One exception is Shrimp, a space rover designed 
for improved mobility which has its wheels mounted on high, 
articulating bogeys, enabling it to climb obstacles of up to

twice its wheel diameter (Estier et al 2000). Wheeled robots 
tend to have good manoeuvrability and could skirt around 
some obstacles, but others, such as a flight of stairs, walls or 
perimeter fences, would still halt progress completely.

Walking robots are better able to cope with rough terrain, 
but generally rely on more complex control systems. The 
multiple degrees of freedom required for each leg demand 
several actuators to control them, meaning that the power and 
computational requirements are likely to be large. There are 
some novel ‘legged’ robots with very few actuators such as 
RHex (Altendorfer et al 2001) and Whegs™ (Quinn et al
2002), which combines the simplicity of wheels with the 
adaptability of legs. However, although legged vehicles have 
a surprising ability to clamber over rough terrain, they are
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unlikely to get past obstacles of higher than double their leg 
length.

Tracked vehicles are often chosen for traversing rough 
terrain but there are still limitations on the maximum obstacle 
height that can be overcome. This height is dependent on 
various factors including the dimensions of a tracked unit, the 
positioning of its centre of gravity and the friction between the 
track and the terrain. Tracked robots are typically dimensioned 
specifically for the terrain requirement and therefore it is 
difficult to determine a generic maximum obstacle height. 
Lui (2005) presents a useful analysis of the stair-climbing 
ability of a simple tracked robot which results in a maximum 
obstacle height but this is representative of a specific case only. 
Obstacles that are taller than half the length of a tracked robot 
are likely to be impassable unless the centre of gravity is far 
from the geometric centre of the device.

In summary, traditional ground robot locomotion 
techniques seem to be limited to traversing obstacles of a 
similar order of magnitude as their size. Jumping robots may 
be able to traverse obstacles an order of magnitude larger than 
their own size.

As the size of a moving object decreases, it becomes more 
likely to meet an obstacle of similar or larger size to itself, and 
therefore it will encounter rough terrain more often. This is 
called the ‘size-grain hypothesis’ (Kaspari and Weiser 1999) 
which is defined as an ‘increase in environmental rugosity with 
decreasing body size’. So a small robot, whether it walks, 
rolls or jumps will need the ability to cover rough terrain more 
frequently than a larger robot

The most effective way of travelling over rough terrain 
would be to fly over it. Micro-air vehicles are not hindered 
by obstacles on the ground, but are energetically expensive, 
resulting in limited power-source life or power requirements 
that cannot be met continuously from the surroundings, and 
are hence unsuitable for some applications. The periodic 
nature of jumping allows time for recharging energy from the 
surroundings, making it a more sensible approach to designing 
a fully-autonomous rough-terrain robot.

Looking at nature, we find that many animals employ 
jumping as a tactic for traversing obstacles. Some jump to 
escape predators or capture food, while for others, such as 
kangaroos, it is the favoured method of locomotion. There are 
two distinct jumping patterns that can be observed. Locusts, 
for example, travel using single jumps followed by a rest 
period to recharge and re-orientate (Bennet-Clark 1975). This 
can be categorized as the ‘pause and leap’ method and is 
common in insects and other small animals such as frogs. The 
alternative approach is continuous hopping, where energy is 
recovered during the landing and used in the following jump, 
a technique employed by kangaroos in order for them to travel 
large distances across the bush (Alexander and Vemon 1975). 
Continuous hopping requires a higher level of sophistication in 
control, and this, combined with the lack of recoverable kinetic 
energy due to insects small mass means that all the insect 
jumpers are in the ‘pause and leap’ category. They tend to 
have little or no control in the air, landing ungracefully before 
getting back to their feet and sometimes launching again.

In order for a biological system to achieve its largest jump, 
it needs to produce the maximum amount of energy in a single

event. In nature, muscles are the most common means of 
initiating locomotion. These have the ability to either shorten 
or generate tension and if they do both simultaneously, they 
can perform mechanical work (Bennet-Clark 1976). (It is 
also possible to store muscular energy for jumping in spring
like structures; this will be covered below.) Neglecting air 
resistance and losses due to the slipping of the feet on the 
ground, all the work done by the animal will be converted 
directly into kinetic energy:

K E =  \m v 2 0)
where m is the mass of the animal, and v is its take-off velocity. 
The kinematic equations for calculating the maximum height 
and range of ballistic projectiles ignoring wind resistance are 
well known.

Peak height, h:

h =

And maximum range, x:

(v sin#)2 
2g

x =  v
, sin 20 

g

(2)

(3)

where g is the acceleration due to gravity and 6 is the take-off 
angle. These equations and all subsequent kinematic equations 
can be found in any elementary physics text book. It is clear 
from (3) that the maximum horizontal range is achieved when 
the take-off angle is 45°. Likewise, in order to maximize 
the height of a jump, the ideal take-off angle is 90°. By 
combining either equation (2) or (3) with equation (1), we see 
that both the maximum height h, and the maximum range x, 
are proportional to the energy, or work done by the muscle, 
divided by the total mass. Therefore, by assuming that the 
amount of mechanical work done by a muscle is proportional 
to its mass (Gabriel 1984), then the jumping performance is 
dependent on the percentage of the body that is muscle directly 
involved in the jump. It follows then that if the proportion 
of the body mass taken up by jumping muscle is consistent 
across a range of animal sizes, and neglecting other factors 
such as air resistance, all animals should in theory be able to 
jump to the same height (Hill 1950). However, Henry Bennet- 
Clark suggests that larger animals are limited by the maximum 
amount of mechanical work which their jumping muscles are 
capable of developing, whereas the performance of smaller 
animals is limited by high power requirements (Bennet-Clark 
1977). What the first half of this statement means is that 
larger animals would have to dedicate a higher proportion 
of their total mass to jumping muscles. Looking in more 
detail at this latter point, the energy required for a jump is 
usually applied to the ground through extension or rotation 
of the legs, and the take-off force can only act while these 
are in contact with the ground. Therefore, the length of the 
leg also has a direct influence on jumping performance and 
in order to overcome this many insects and small animals 
use ‘biological catapults’—energy storage mechanisms—as a 
means of generating higher power from their muscles. The 
proof that shorter leg length requires higher power actuation 
is given below.
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The equation for an accelerating body is
v2 =  u2 + 2as (4)

where u is the initial velocity, a is the acceleration and s is 
the distance through which it is accelerating, which in biology 
is typically directly proportional to the leg length. Therefore, 
from equations (2), (3) and (4), again we can see that the height 
and range will improve directly with increased leg length.

The power output, P, can be related to either energy or 
force using the standard equations (3) and (6):

p _  energy 
tune

P  =  Fv — mav. (6)

Therefore, for an animal jumping from rest, (4) and (6) can be 
combined to give

Hence, the smaller the leg length, the higher the specific power 
requirement to reach a given take-off velocity, and therefore 
range and height.

By combining (2) and (7), we get the following equation 
which relates power, mass and acceleration distance to height, 
h, for a vertical jump (Bennet-Clark 1977). This equation will 
be used later on to evaluate jumping robot performance:

Owing to their small size, an insect’s leg length is limited 
and on top of this, insects are more affected by air resistance 
so power amplification is essential for jumping. As a result, 
many different specializations have evolved in insects to enable 
effective jumping, some of which have even developed so far as 
to hinder simple walking (Bennet-Clark 1977). Grasshoppers 
and locusts have metathoracic legs that are only used for 
jumping and that are very much larger than the other pairs 
of legs that are primarily used for walking and stability. It 
was shown by Bennett-Clark (1975) that locusts are able to 
achieve a large jumping impulse by moving these legs at a 
velocity much higher than is possible by direct muscle action 
by pre-loading energy into a quick-release mechanism. Energy 
is stored in spring-like cuticular elements by the extensor 
leg muscles after a physical catch has been engaged (Heitler 
1974). This elastic energy storage is comparable with a 
catapult, which is pulled back slowly against a high force, and 
then travels much faster when released. Other examples of 
such catapult mechanisms include fleas (Bennet-Clark 1975, 
Bennet-Clark and Lucey 1967, Rothschild et al 1975) and 
froghoppers (Burrows 2003), both of which are very small 
but can jump more than 100 times their body length. Bi
stable mechanisms inherent in their structure are also used by 
some insects to store energy for jumping including springtails 
(Brackenbury and Hunt 1993) and click beetles (Evans 1973).

Power amplification is by no means restricted to the insect 
jumpers. Even larger animals, such as dogs, which use direct 
actuation of muscles to jump, can generate more power by 
storing energy in tensile elastic elements during a counter
movement immediately prior to jumping (Alexander 1974).

Another point to consider is that in order to maximize 
either distance or height, the energy-to-mass ratio must be 
as large as possible (equations (l)-(3)). The physical size 
has no effect on the jump unless air resistance is considered. 
Increased energy requires stronger structures to react the 
higher forces, but improving strength generally increases the 
mass thus negating some of the benefit of higher energy levels. 
To minimize the requirements on the structure, the force should 
remain constant, below a threshold, throughout the time of the 
jump rather than peak. Constant force would imply constant 
acceleration, and hence velocity and power would rise linearly 
with time to a maximum at take-off.

Owing to the low density energy availability specified 
for our jumping robots, the ‘pause and leap’ strategy will be 
much more suitable than ‘continuous hopping’. This allows a 
robot as much time as necessary to recharge and re-orientate 
itself between jumps. In principle, jumping robots should 
be able to clear obstacles much larger than themselves with 
simple construction and direction control. This could enable 
a jumping exploration robot to be smaller and cheaper than 
the equivalent wheeled or walking robot, which would be 
particularly desirable for space applications where volume and 
mass are at such a premium. There is also potential for many 
simple jumping robots to be employed together, in place of 
a single conventional robot, allowing a semi-sacrificial team 
mission strategy to be employed.

2. Existing designs

This section highlights a series of existing pause-and-leap 
jumping robots, grouped by energy storage medium and the 
capabilities of each are summarized later in table 4. Most 
existing jumping robots can operate under earth gravity, but 
there is an important range of microgravity jumping robots that 
are not discussed here since their application is specifically for 
very low gravity environments such as surface exploration of 
asteroids and other interstellar bodies (Nakamura et al 2000, 
Raibert 1986, Shimoda et al 2002, Yoshimitsu et al 2003). 
Other ‘jumping’ robots not described here include a series of 
hopping robots which continuously jump (Brown and Zeglin 
1998, Okubo et al 1996, Paul et al 2002, Raibert 1986, Wei 
et al 2000). This is because of different design problems which 
include active balancing and dynamic stability.

2.1. Coil spring based designs

Researchers at NASA Jet Propulsion Laboratories (JPL) and 
Caltech have developed a series of jumping robots called 
‘Hoppers’ (Fiorini and Burdick 2003)—one of which is 
pictured in figure 1(a). Of the coil spring designs mentioned 
here, these robots jump the highest. Each is based around a six- 
bar linkage and coil spring leg mechanism and it is this that is 
the most interesting feature. The force-displacement profile of 
this leg system results in a nonlinear spring profile that has been 
produced from a linear coil spring. This gradual increasing 
release force rises to a peak before it reduces, ensuring that 
the acceleration of the device rises for as long as possible until 
take-off. This is in contrast to a typical spring where the force

S67



R Armour et al

Figure 1. Existing jumping robots: (a) JPL Hopper (prototype 2) courtesy NASA/JPL-Caltech, (b) Monopod hopper courtesy of James 
Allison, (c) Jumping Mini-Whegs™ courtesy of Case Western Reserve University, (d) Scout robot courtesy of University of Minnesota, (e) 
Sandia Hopper courtesy of Sandia Corporation, ( / )  Airhopper courtesy of Tokyo Institute of Technology, (g) Deformable Soft Robot 
courtesy of Ritsumeikan University.

would be highest at the start. This is very important for light 
weight jumping robots which may undergo premature lift-off 
(Hale et al 2000) where the device jumps before all of the 
energy is released.

The coil spring based robot that achieved the second 
greatest leap is the Monopod robot developed by Allison 
(2002) at the University of Utah— a photograph of which is 
presented in figure 1(6). Unlike the JPL hopper, here the coil 
spring is compressed, but again a motor driven lead screw is 
used to input the energy into the system. The compressed 
spring fires a piston attached to the head of the main chassis 
of the robot upward and away from the foot.

The final coil-spring-based jumping robot was not 
originally designed as a jumping robot at all, rather it was 
designed as a simple ‘walking’ robot. Named Mini-Whegs™ 
after the hybrid of wheels and legs it has at its comers, 
that combine ‘simplicity, robustness and reliability to provide 
a desirable combination of speed, mobility and versatility’ 
(Morrey et al 2003). The 9J version of the robot, depicted in 
figure 1(c), is powered by a motor which rotates all four of 
the ‘whegs’ at the same time at a single speed. The jumping 
capability was added to improve its ability to get over larger 
obstacles. Jumps are achieved by employing a four-bar linkage 
and coil spring. The spring is stretched using a second motor 
within the chassis and releases automatically when the spring 
is fully extended.

2.2. Bending spring based designs

The Scout robot (Stoeter et al 2002) was developed as 
a platform for distributed robotic systems where multiple 
devices would work in conjunction to achieve a common

mission goal. The basic robot is cylindrical with a wheel 
at each end allowing motion on smooth surfaces and is shown 
in figure 1 (d). For jumping, a steel spring foot is bent by a 
winch and cable, thus storing energy for a subsequent jump.

2.3. Fluid powered designs

Researchers at the Sandia laboratories developed the Sandia 
hopper (Weiss 2001) pictured in figure 1(c). Utilizing 
the combustion of liquid propane to fire a piston into the 
ground, jumps can be achieved through the acceleration of 
the heavier upper body. The device jumps semi-randomly 
making general progress in the required direction rather than 
accurate progression from one point to another. The hopper 
adopts a weighted self righting system (not pictured) and a 
steering system that takes a bearing from an internal compass 
before moving an off-centre control mass which tilts the device 
in the intended direction of the jump.

The second fluid-based jumper uses the expansion of 
compressed air to rapidly fill and extend pneumatic cylinders. 
The Tokyo Institute of Technology ‘Airhopper’ (Kikuchi et al
2003), shown in figure 1 ( / ) ,  has a tubular body with four 
widely-spaced legs providing a stable platform. Each leg 
consists of a four bar linkage driven by a pair of pneumatic 
cylinders.

2.4. Momentum-based designs

At the time of writing only one robot uses momentum to 
initiate a jump. When a human jumps vertically, as well 
as compressing the legs which release most of the jumping 
energy, the arms are also swung upwards in a pendulum fashion
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(a) (b)

Figure 2. (a) Photograph of Jollbot, (b) CAD model of Jollbot.

to improve the jump height. A number of papers suggest 
that the arm swing improves vertical jumping performance in 
humans by around 10% (Vanezis and Lees 2005). The team at 
Kagoshima university have used this phenomenon to develop 
a pendulum jumping machine (Hayashi and Tsujio 2001). By 
swinging a servomotor actuated arm, the machine is able to 
make a small vertical jump. A forward jump has been difficult 
to reproduce with a single pendulum, but a robot with multiple 
counter-rotating pendulums has successfully climbed small 
steps.

2.5. Elastomer-based designs

The department of robotics at Ritsumeikan University in Japan 
has developed a 40 mm diameter tethered deformable robot 
that can roll and jump using shape memory alloy (SMA) spokes 
within a soft rubber shell (Sugiyama and Hirai 2004). When 
a voltage is applied to the SMA spokes they contract, moving 
the centre of mass of the robot towards the rubber hoop. By 
controlling which SMA actuators contract and when, the entire 
robot is able to roll along. The rubber element acting as the tyre 
for this wheel-like structure is integral to its ability to jump. 
To jump, the SMA actuators contract on one half of the wheel 
causing the rubber wheel to buckle. As the SMA actuators 
begin to extend, the rubber wheel rapidly returns to its original 
form launching the device into the air as shown in figure 1(g). 
A spherical robot is also being developed to experiment with 
the possibility of three-dimensional motion.

3. Requirement specification

In addition to the typical engineering requirements, such 
as manufacturability and cost minimization, several specific 
requirements for a biomimetic jumping robot are highlighted 
in table 1, together with their biological justification.

4. New designs

The two designs presented below were developed by the 
authors of this paper as potential approaches to traversing

irregular terrain. In each case, a novel jumping mechanism has 
been developed based on the biomimetic design requirements 
specification given above, although both store energy in their 
respective forms of metal springs for instantaneous release.

4.1. ‘Jollbot’

The main skeletal structure of this robot comes from the metal 
semi-circular hoops. These hoops are the springs that provide 
the energy for jumping and make up the outer rolling surface. 
By compressing the sphere along a central axis joining the 
nodes/mounting points of the hoops, energy is stored within 
this outer structure. If this energy is rapidly released then the 
device will jump in the direction of the axis assuming that there 
is no slipping at the ground contact point. Direction control of 
the jump is achieved by adjusting the centre of gravity (CofG) 
of the device slightly leaning the axis over before launch. A 
photo and CAD model of the device is shown in figure 2 and 
the jumping procedure for the device is shown pictorially in 
figure 3.

Rolling is achieved by orienting the central axis parallel 
to the ground, and adjusting the centre of gravity of the sphere. 
Direction control of rolling is possible by moving the centre 
of gravity out of line with the ground contact area. This 
is summarized in figure 4. Having an entirely driven outer 
surface of the device would help it cover uneven terrain and 
the low ground contact pressure would enable it to traverse 
soft surfaces such as sand, snow or brush.

The combined jumping and rolling motion results in its 
name— Jollbot.

4.1.1. Additional requirements. In addition to the general 
design requirements for an autonomous jumping robot 
(table 1), the design of this robot considers those requirements 
relating specifically to rolling, which are shown in table 2.

4.1.2. Design detail. The first design requirement is that 
the robot must be able to ready itself for a jump using a 
locally available energy source. Jollbot is powered by a 
4.8 V 600 m A h battery pack which supplies two 4.8 V 
standard model servos and a radio control receiver. The servos,
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T able 1. Requirem ent specification based upon biological inspiration.

Biological inspiration Design requirem ent

Anim als m ust eat in order to convert and store the energy required by its 
m uscles for locomotion. The food resources available are generally o f 
a low er than necessary energy density. I t was shown in the introduction 
that pow er is the perform ance lim iting factor in small jum ping anim als and 
insects, for w hich the specific energy available from  m uscle contraction 
alone is insufficient. Pow er amplification is achieved by operating their 
m uscles at lower than m axim um  speed, and storing the energy for rapid 
release.

In order to be fully autonomous, 
the robot m ust be able to ready 
itself fo r a  jum p using a  locally 
available energy source.

Different anim als store energy in different ways. For exam ple, fleas 
and leafhoppers store energy in resilin, a  rubber-like m aterial, in 
com pression. Larger m am m als, such as hum ans and dogs, store energy 
in tension in tendons, prim arily m ade from  elastin, another m aterial with 
rubber-like properties. Locusts, however, store their energy in harder 
skeletal cuticle, in bending.

M ost jum pers have relatively long jum ping limbs.

The large jum ping (m etathoracic) legs o f  the locust, for exam ple, are held 
in the flexed position by a natural catch caused by a belt o f tendon 
becom ing hooked around a  lum p o f  cuticle (Bennet-Clark 1975,
Brown 1967, H eitler 1974). Fleas also rely on a mechanical catch.

Even the m ost primitive insects are able to orientate them selves prior to 
jum ping to ensure that they jum p away from  the ground. Locusts, for 
exam ple display little or no control on landing, and were frequently 
observed landing on their heads by one author (Paskins 2007). However, 
they can quickly find their feet and jum p again alm ost im m ediately 
if  necessary.

For an organism  to jum p, a suitably massive elem ent o f its body needs to 
be accelerated away from  the rem aining mass. By considering conservation 
o f m om entum  and neglecting losses, greatest jum p height is achieved 
by m axim izing the ratio o f  the accelerated mass to trailing m ass which 
directly increases take-off velocity.

M ost anim als deliberately jum p in the direction that they would like to 
travel and naturally it would be useful if  the robot could do likewise.

The additional m ass o f the required payload would be relatively less 
detrim ental to the peak jum p height o f larger animals.

In  anim als, such as hum ans, it is essential to the preservation o f  life that 
delicate organs are protected from  excessive im pact during locomotion. 
Connections are not rigid, so forces are dam ped by these softer tissues. 
Some anim als, such as flying squirrels, are able to glide, enabling them 
to reduce their landing im pact forces aerodynamically.

Energy should be stored 
somehow, ready for a jum p 
when instantaneous release is 
required.

A  long leg length (relative to overall 
robot size) should be chosen 
for further pow er amplification.

A  catch m echanism  is required to 
ensure that the robot can rem ain in 
the charged condition until its next 
jum p w ithout requiring additional 
energy to hold it there.

The robot m ust jum p upwards 
no m atter which orientation it 
lands in.

During jum ping, the robot must 
m axim ize the ratio o f the 
accelerated mass to trailing 
mass.

The robot m ust be able to 
orientate itself prior to jum ping.

The robot m ust be able to carry 
a useful payload, such as an 
environm ental sam pling device.

The robot m ust be able to carry 
any sensitive electronic 
equipm ent w ithout it sustaining 
any dam age during the jum ping 
and landing cycles.

which have been modified to allow continuous rotation, have 
integral gearboxes allowing sufficient torque to be developed 
for storing the jump energy within the hoop springs, and for 
rotating the slightly off-axis centre of gravity for jump steering 
and powered rolling control. As jump energy is stored in the 
hoop springs, it is possible to compress them slowly using a 
low power source. Jollbot cannot be powered by a locally 
available energy source as it is currently designed but it may 
be possible to use photovoltaic cells incorporated into a skin 
covering the device.

The second requirement states that jump energy should 
be stored, ready for instantaneous release when required. The 
metal hoop springs allow energy to be stored in a stable 
material that is unaffected by stress-relaxation. The spherical 
form of the robot allows pre-stressed spring elements to be 
used thus enabling more energy to be stored for a given 
displacement than would be possible to standard unstressed 
springs. Jump energy is stored in the hoop springs by a 
centrally mounted compression mechanism. The compression 
mechanism sits on a chassis which is fixed to the top or
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Figure 3. Jumping methodology for Jollbot.
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Figure 4. Rolling methodology for Jollbot.

Table 2. Additional design requirements based upon biological rolling.

Biological inspiration Design requirement

The Web-toed Salamander (Garcia-Paris and Deban 1995) and 
Namib Golden Wheel Spider (Henschel 1990) form wheel-like 
shapes to enable them to roll passively down sloping surfaces 
more quickly than would be possible by running.
Tumbleweed (Antol et al 2003) is able to cover many miles of 
comparatively flat surfaces being driven solely by the wind. The 
slight bouncing motion caused by its off-centre centre of gravity 
(CofG) enables it to roll over small obstacles.

Only two animals are able to Toll’ using their own physiology
for power—the Mother-of-Pearl Moth caterpillar (Brackenbury 1997),
and the stomatopod shrimp, Nannosquilla decemspinosa,
(Caldwell 1979, Full etal 1993)—both of which can semi- 
continuously roll along flat and upward sloping surfaces by 
adjusting their centre of gravity within a wheel-like form.

Robot should be able to roll passively.

Robot should be able to roll actively.
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Figure 5. Photograph showing detail of guide, face cam and slider 
roller in Jollbot.

‘head’ of the robot, and consists of a model servo rotating 
a continuously variable length crank connected directly to the 
‘foot’ at the opposing side of the sphere. As the servo rotates, 
the head and the foot of the robot are pulled together storing 
energy in the springs.

The variable length crank mechanism was developed after 
initial testing with a simple fixed length crank with an over 
running one-way clutch mechanism. To maximize the stored 
energy, the compression system, powered by a constant-torque 
motor, should adapt to the required compression force. As the 
hoop springs are compressed, the force required increases with

displacement. Therefore, when using a fixed length crank the 
required rotary torque increases as the deflection increases. 
By introducing a crank that varies in length as it rotates, 
the output force can vary while the input torque remains 
constant. This has been achieved by using a guide, face cam 
and slider roller as shown in figure 5. This revised mechanism 
outperformed the fixed length crank mechanism since it is able 
to compress more hoop spring elements using the same model 
servo. Unfortunately, the mechanism substantially increased 
the overall weight of the device; however, it is not yet fully 
optimized.

As the motor rotates the guide, the face cam ensures 
the slider roller moves in a specified path and therefore at 
a variable crank length around the servo axle. The face cam 
was designed to be replaceable for tuning purposes. The cam 
that finally worked the best kept the slider roller at a constant 
radius for a short time slowly compressing the sphere. As 
the guide rotates towards 90°, the radius of the cam reduces 
slightly, and between 90° and 180° rotation the radius reduces 
further to ease the loading on the motor. As soon as the 180° 
position is reached, the slider roller is free to move in the 
axial direction because of the cam profile and the slot along 
the guide. This straight axial release of the spring energy 
ensures that none is wasted unnecessarily as would be the case 
with a rotating fixed length crank. The guide then continues 
to rotate beginning another energy storage phase. Figure 6 
shows a pictorial representation of the compression phase of 
Jollbot, illustrating how the crank length continuously varies 
throughout the rotation of the servo. This whole process takes 
1.44 s which is comparatively slow compared to the release 
phase which takes only 0.24 s as shown in figure 7.

The third requirement relates to maximizing leg length 
to further improve power amplification. Although Jollbot 
has no ‘legs’ in the traditional sense, the effective leg length 
is approximately one quarter of the diameter of the sphere 
since that is the length through which the robot travels before 
takeoff. With optimization, it should be possible to increase 
this length to around half the diameter of the sphere but without

F igure 6. Pictorial representation of the compression phase of Jollbot.

F igure 7. Pictorial representation of the jumping phase of Jollbot.
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Figure 8. Jollbot jump direction and rolling mechanism.

significant re-design of the compression mechanism, this ‘leg’ 
length cannot be increased further.

The fourth design requirement states that a catch 
mechanism is required to ensure that the robot can remain 
charged until its next jump without requiring additional energy 
to hold it in that position. Jollbot has a simple catch mechanism 
which relies on an unstable equilibrium point at complete 
compression and just before release. With the current manual 
remote control system, it proved very difficult to stop the 
mechanism at the required point on the cam.

The fifth design requirement says that the robot must jump 
upwards no matter which orientation it lands in. This is only 
achievable with careful control and positioning of the centre 
of gravity within the spherical shape of Jollbot. The centre of 
gravity was estimated by suspending the device on threads 
secured at various points. The CofG is inline and below 
the thread, so by combining images of the device hanging 
in different orientations the CofG can be found. In its current 
iteration, Jollbot’s centre of gravity lies slightly towards the

‘head’ of the robot which results in toppling upon landing, 
from which it is not possible to recover. If the centre of gravity 
was slightly below the equator line, perhaps by adjusting the 
position of the battery pack, then Jollbot would always roll 
onto its ‘foot’ after a successful jump.

The sixth requirement states that the ratio of accelerated 
mass to trailing mass should be maximized. This is achieved 
by attaching the relatively heavy main chassis, consisting of 
the compression and steering mechanisms and motors, directly 
to the head of the robot.

The seventh design requirement relates to the direction 
control of jumps. By releasing jump energy at an angle to the 
vertical, it should be possible for Jollbot to make projectile 
jumps. Jump direction is controlled by rotating the slightly 
off-axis centre of gravity around the head-foot axis using a 
second model servo. The servo is mounted onto the main 
chassis and drives itself around a gear fixed to the spherical 
shell of the robot as displayed in figure 8. This enables the 
entire central chassis and its associated components to twist, 
adjusting the centre of gravity and therefore the lean of the 
main jumping axis. The semi-spherical form of the foot and 
hoop springs when compressed allows the robot to lean in any 
direction as shown in the video stills in figure 9. Full testing 
of this jump steering mechanism was not undertaken since it 
proved difficult to control both servos accurately to ensure the 
‘compress and hold’, ‘choose direction’ and ‘release’ stages 
occurred in series. The absence of a stable catch, as discussed 
above, was the main contributing factor.

This same jump steering mechanism is also intended as the 
powered rolling mechanism for travelling along level surfaces, 
over small obstacles, and even up sloped surfaces. Since the 
centre of gravity does not lie exactly along the head-foot axis, 
rotating the chassis around the axis should move the centre of 
gravity outside the area of contact of the hoop springs with the 
ground. This mechanism did not perform as anticipated since 
the area of contact was too large with the few hoop springs

Figure 9. The jump direction control of Jollbot.
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on the device. The axial location of the centre of gravity also 
meant that keeping the axis horizontal for rolling was very 
difficult.

The presented Jollbot device does not have any provision 
for direction control whilst rolling because steady-state rolling 
was initially more important. Tilting the internal axis from its 
normal horizontal position would cause the robot to lean over 
and make gentle turns in the direction of the axis tilt.

Due to the spherical shape of the robot, Jollbot will 
passively roll down surfaces, and bounce off obstacles, 
particularly after a jump. The spherical form also ensures 
that there are no body extremities that can get caught on 
obstacles. The springs on its outer surface will also absorb 
much of the impact energy from collisions and landing, thus 
protecting sensitive equipment from damage. However, if 
the robot were to land directly on its ‘head’ then the chassis 
would take much of the impact force but it is felt that that 
would be an uncommon occurrence. If the robot were covered 
with a suitable skin, then complete environmental protection 
may be achievable for all internal components. These internal 
components would include the electronics and control system 
required for autonomy consisting of elements such as position 
and ranging sensors, a vision system, environmental energy 
recovery system, data logging or transmitting equipment, 
amongst others. A stable non-rolling platform is possible 
at the transition between rolling locomotion and a jumping 
one for assessment of the area surrounding the robot. Jollbot 
could carry additional payloads with an expected reduction in 
jumping performance, but it has the benefit that they will be 
enclosed within a safe structure.

4.1.3. Robot performance. In order to measure the jumping 
performance of the robot, a Redlake Images Motionscope 
high-speed camera was used to film each jump at pre-selected 
frame rate. Scion Image (useful internet freeware that 
can handle sequences of images, and output the pixel 
coordinates of all the points clicked on by a user in order, 
www.scioncorp.com) was used to determine the height of the 
different components of the robot in each frame. In order 
for this method to be valid, the robot was always placed such 
that it jumped in the plane parallel to the camera lens, and 
both a horizontal and a vertical calibration performed using 
graduated markers.

The jumping performance o f the 0.3 m diameter Jollbot is 
illustrated in the high speed camera images in figure 10 taken 
at a rate of 50 Hz. From the images, it was determined that the 
robot raises its centre o f gravity by 218 mm through the course 
of the jump, which is approximately 2 /3  its entire height. It 
can clear a height of 184 mm.

The efficiency of various mechanisms within the robot 
can be determined by comparing the energy of the device 
in different states. A comparison between the electrical 
energy consumed and the energy stored within the system 
gives a conversion efficiency for the compression mechanism. 
Comparing the energy stored with the potential energy of the 
robot at peak height illustrates the efficiency of the release 
mechanism.

Figure 10. High speed camera images illustrating the jumping 
performance of Jollbot: (a) resting state of Jollbot, diameter =
294 mm, (b) 1.44 s later, Jollbot is ready to jump after compressing 
65 mm, (c) 0.24 s later, Jollbot is at its peak jump height, clearing 
184 mm, (d ) 0.22 s later Jollbot hits the ground and absorbs impact 
energy in the slight compressing of the sphere.

The electrical energy consumed is found from (9): 

electrical energy(J) =  voltage(V) x current(A) x time(s).

(9)

The potential energy stored in the jumping system is equivalent 
to the area under a force-displacement curve.

The potential energy stored in a mass suspended at a height 
is defined in (10) where; m =  mass (kg), g =  acceleration due 
to gravity (m s“2), h =  change in height of CofG (m).

PE  =  mgh. (10)

In Jollbot’s case, the servo draws a peak current of ~  1.2 A from 
the 4.8 V battery pack over the 1.44 s compression. From (9), 
this gives a total energy consumption of 8.3 J. Since the current 
increased throughout the compression, it is felt that this is far 
larger than the actual energy consumption and logging of the 
current values throughout the short compression time would 
give a more accurate value.

The energy stored within the robot’s spring system was 
estimated from the area under a force displacement curve 
produced through testing on an Instron compression testing 
machine. This resulted in approximately 1.1J of stored energy.

The potential energy of the device was determined using 
(10), where the mass of the robot is 0.465 kg and the change in 
height of the CofG is 0.218 m. This results in 1 J of potential 
energy.

Comparing the first two energy measurements with one 
another, results in a conversion efficiency of 14% for the 
compression mechanism. Comparing the second two energy 
measurements results in a mechanism release efficiency of 
91%.
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Table 3. Additional design requirements based upon biological gliding.

Biological Inspiration Design Requirement

Flying squirrels have been observed to fully abduct their limbs during take-off, The robot should have membranous
deploying their gliding membranes, patagia, in the process. This behaviour 
occurred even during leaps when it was demonstrated that the squirrels 
achieved no resultant advantage in landing altitude (Paskins et al 2007).

Flying squirrels choose to pitch upwards immediately prior to landing, rapidly 
increasing their angle of attack in order to reduce impact forces 
(Paskins et al 2007).
Likewise, flying fish deliberately employ air braking to slow themselves down 
prior to re-entering the water, by positioning their pelvic fins forwards, and 
angled against the motion (Davenport 1994).

wings to enable gliding, and these 
should deploy automatically and fully 
during take-off.

The robot should have the ability to 
control its angle of attack during 
the gliding phase to enable effective 
air braking as it lands.

Figure 11. Photograph of Glumper winding itself in, taken 
immediately prior to take-off.

4.2. ‘Glumper’

The concept behind Glumper was for a robot which would 
jump and then glide, in the hope that this would simultaneously 
extend range and reduce impact forces. As such, two further 
biomimetic requirements specifications are shown in table 3 
as they are only relevant to Glumper.

The photograph of Glumper (figure 11) shows its four 
long legs, each with a torsion spring ‘knee’ at its midpoint, 
distributed perpendicularly between a ‘head’ and a ‘foot’. 
A triangular shaped membrane mounted between each leg 
element and along the axis of the robot acts as its gliding 
wings. By way of introduction to some of the more complex

design solutions, an overview of the discrete steps required for 
Glumper to jump is given in figure 12.

4.2.1. Design detail. The first requirement specified for 
this robot was that it must be able to ready itself for a jump 
using a locally available energy source. Small motors can 
still generate relatively high torques with sufficient gearing, 
which is ideal for autonomous applications where the time 
taken to charge the jumping mechanism is of secondary 
importance to the maximum achievable performance. Next 
it was specified that energy should be stored somehow and 
instantaneously released into a jump. Although elastomers 
have the capacity to store a lot of energy, this property is 
severely affected by temperature and time. In the loaded state, 
energy is lost with time due to stress-relaxation and at cold 
temperatures, rubber-like materials become hard and brittle, 
causing them to fail before much energy has been absorbed. 
The time taken to charge the robot is likely to be long, and 
extreme environments present the most useful applications for 
a jumping robot, so storing energy in bending should provide 
a more suitable approach. Therefore, Glumper stores energy 
in the compression of four heavy-duty torsion springs, made 
from 3 1 turns of 4 mm diameter spring steel rod, which are 
mounted in the knee-like hinge-joints of its four legs.

A long leg length (relative to overall robot size) was 
specified to amplify the power produced by releasing these 
compressed torsion springs. Glumper’s legs are each made 
from two hinged carbon-fibre reinforced plastic (CFRP) rods, 
0.5 m long and with very high specific stiffness so that they 
almost fully compress the torsion springs without bending 
themselves. If it required less force to bend the legs than to

(a) (b) (c) (d)

Figure 12. A sketch to introduce the steps required for compression and release of Glumper, showing (a) a mechanism is freely suspended 
on a cord between the head and the foot, which can wind in the cord to compress the robot. (b) This compression mechanism can be 
attached to whichever end of the robot is uppermost, (c) When the robot becomes fully compressed a clutch releases the cord and the robot 
jumps upwards. (d ) After landing the clutch requires resetting and the process can repeat. The gliding membranes are omitted for clarity.
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(a)

♦

(c) (d)

Figure 13. (a) Photo of the capstan shaft assembly, showing how it is driven by locating bolts through the drive gear on the left of the image, 
and the compression spring against which it can be released by pulling on this stepped shaft. (b) Rendering from Solid Edge v.17 of the 
control box showing the hinged lever (the darkest shaded component) and its retaining clip beneath (highlighted in a slightly lighter shade). 
Some components, such as the bi-stable mechanism and the gears have been omitted for clarity, (c) The bi-stable mechanism, consisting of a 
compression spring, a nut and bolt with a hemispherical end. (d ) The worm gear sits on a brass square-section drive shaft, but is free to 
move along the axis such that rotation in one direction pushes the follower (shown on the right of the image) and the reverse direction turns 
the capstan driving gear shown in (b).

compress the springs, the total energy stored would be less 
once the robot had reached full compression.

The mechanism to allow steady compression and rapid 
release of Glumper is comparable to a dog clutch. A capstan 
gradually winds in a loop of cord which passes through both 
ends of the robot in order to compress it. The capstan is free 
to rotate on the narrow section o f a stepped shaft, between the 
step and a circlip. Normally a compression spring on the shaft 
pushes against the circlip to keep some protruding rods from 
the capstan engaged with corresponding holes in its drive gear 
(which sits on the thicker section of the same shaft). Thus 
the capstan can be disengaged by linear actuation of the shaft, 
allowing the cord to unwind rapidly under the tension of the 
compressed robot. The capstan drive gear is turned by a worm 
gear that is forced to rotate by a small motor, but is free to float 
axially between two points to perform a secondary function 
that will be discussed shortly. Another advantage of using a 
worm gear to drive the capstan is that, in the event of power 
loss, the robot will remain in its partially compressed position 
because the stored energy does not act directly against the 
motor stall torque. Such a design is essential for irregular 
power sources such as solar cells.

The friction acting against the required linear movement 
of the stepped shaft to push the capstan away from the 
drive gear is very high when the robot is highly compressed, 
such that separate linear actuation required for release would 
need high power. To avoid that problem, a hinged lever 
automatically pulls the shaft outwards to release the dog clutch 
when both ends of the robot are pulled in against the control 
box. Figure 13{b) shows a view of the partially complete 
control box to illustrate how the vertically compressing robot 
can pull the capstan shaft only when a release latch is moved 
away from the end of the hinged lever (both components are 
highlighted in the figure using dark shades). An M3 lock 
nut must be fitted on the capstan shaft (in order for it to 
move at all when the hinged lever is depressed), and the 
position of this nut allows full adjustment of the resultant linear 
movement of the shaft. A bi-stable mechanism on the hinged 
lever was necessary to prevent premature re-engagement of 
the capstan before it is fully unwound. This is due to the 
compression spring on the capstan shaft. A hemisphere is 
held protruding into a hole in the side of the closed hinged 
lever by a stiffer compression spring, such that moving the 
lever requires significant initial force but once overcome, it
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moves quickly to the fully open position, being held there 
by the returning hemisphere. This hemisphere was achieved 
rather crudely by depositing a solder blob on a sawn off M3 
bolt, as shown in figure 13(c).

After a jump, the hinged lever needs to be reset in order 
that winding can be restarted. This is achieved without the 
need for a separate motor thanks to the ability of Glumper’s 
worm gear to slide along its driveshaft between two physical 
stops depending on which direction it is driven in. Driving the 
shaft in one direction causes the worm gear to inch itself along 
the teeth of the driven gear until it reaches the motor output 
shaft, after which continued rotation turns the driven gear and 
hence the capstan. By reversing the direction of the motor, 
the worm inches itself back along the teeth of the driven gear 
away from the motor, pushing a recessed follower as it travels. 
This is guided towards the hinged lever and on contact, this 
has sufficient force to flip it back past the bi-stable catch ready 
for the next jump. This ‘sliding worm’ design requires high 
friction on the gear driven by the worm, which is achieved by 
mounting it fairly tightly against the side wall of the control 
box.

An important advantage of Glumper’s design is that 
any potential payload will not be rigidly connected to the 
extremities of the robot. By choosing a suitable cord length, it 
will be slack when released at takeoff, so the time of action of 
the landing force on the control box increases, and hence the 
total impulse is lower. Thus the risk of damage to any sensitive 
electronic equipment within the control box is reduced during 
the repeated jumping and landing cycles.

This research required a robot with membranous wings to 
enable gliding, which should deploy automatically and fully 
during take-off. Deployment of the gliding membranes during 
take-off avoids any complications that would otherwise be 
caused by the need to conserve angular momentum in mid-air. 
Glumper naturally adopts this behaviour because it has four 
triangular-shaped rip-stop nylon membranes spanning the gap 
between its legs and the mid-line between the head and foot. 
The robot should have the ability to control its angle of attack 
during the gliding phase to enable effective air braking as it 
lands. The mass of Glumper’s compression mechanism is 
localized in a box which is free to move between its head and 
foot, so the pitch angle can be controlled by incorporating an 
additional motor. This drives a pulley quickly along a toothed 
belt, loosely attached between the head and foot of the robot, 
thus moving the centre of mass either forwards or backwards 
during gliding flight depending on motor direction. This 
design also enables the control box to attach itself to whichever 
of the two ends of the robot is uppermost in between jumps, 
so the robot can jump upwards no matter which orientation it 
lands in, and the ratio of accelerated mass to trailing mass is 
maximized.

The requirement that the robot must be able to orientate 
itself prior to jumping could be achieved by rotating an 
eccentric mass, such as the battery pack, around the control 
box. The slight protrusion of the head/foot from the legs 
means that this rotation should cause the centre of mass 
to shift sufficiently to rock Glumper from a stable position 
resting on one pair of legs to a stable position on another, but 
unfortunately no such mechanism has yet been developed.

Although an autonomous control system has not yet been 
developed, only the direction of Glumper’s two lightweight, 
low power dc motors would need to be controlled at present, 
and this could be achieved by using a small number of sensory 
inputs. Ultimately this control system would need to be 
expanded to include direction control and decision making.

4.2.2. Robot performance. In vertical jump tests, the average 
change in Glumper’s estimated centre of mass between the 
pre-launch state and the peak height is 1.6 m (n =  4, SD =  
0.07 m) and its peak clearance height averages 1.17 m (n =  4, 
SD =  0.07 m). In order to determine the efficiency of 
Glumper’s energy storage and release mechanism, the force 
required to fully compress Glumper was measured using an 
Instron compression testing machine. From the area under 
the resulting force-displacement curve, it is estimated that 
Glumper is able to store 21.5 J of energy. If the launch 
mechanism was 100% efficient, the maximum height that 
Glumper could reach can be predicted by assuming that all 
this energy would be converted to potential energy at the peak 
of a vertical jump. The total weight of Glumper during testing 
was 700 g, so a hypothetical vertical increase in the height of 
its centre of gravity of 3.1 m should be possible, meaning that 
its energy storage and release mechanism is actually only 52% 
efficient.

A multi-meter was used to measure the current drawn 
by Glumper every 30 s during its compression and release. 
The total time for wind-in using its two rechargeable lithium 
ion cells (wired in series with an operating voltage of 8 V) 
is 435 s. The current rises steadily, rising sharply just before 
take-off when it reaches 0.4 A, equivalent to a peak electrical 
power requirement of 3.2 W. Solar power is an example 
of a locally available energy resource for many potential 
robot applications. On Earth the Sun’s radiation is diffused 
and scattered by the environmental conditions, reducing the 
maximum power delivered from the 1370 W m 2 available in 
space at the radius of the Earth’s orbit. Photon Technologies 
Powerfilm® flexible solar modules are specified as generating 
0.15 W each of power in bright sunlight for a panel of 
15 x 3 cm (Photon Technologies, Colorado Springs, CO, 
USA). Their flexibility, low weight and size would make them 
ideally suitable for mounting on Glumper’s membrane wings. 
Importantly, only two wings could ever be directly pointing 
at the sun irrespective of robot orientation, which is enough 
area for 45 panels. Hence, a maximum power of 6.75 W 
is theoretically available and Glumper’s control mechanism 
thus satisfies the requirement that it should be able to ready 
itself for a jump using a locally available energy source. By 
plotting the electrical power against time, the total electrical 
energy required to power a jump (the area under this curve) 
was estimated to be 80.5 J. Therefore, the efficiency of the 
conversion of electrical energy into strain storage energy is 
approximately 3.3%, with some of this deficit clearly being 
converted into heat.

The effect of reducing mass on jump height was 
demonstrated in an experiment using the Glumper robot 
without its control box. The mass of this structure including the 
foot, legs and springs was 375 g. Various weights were added
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Figure 14. Graph showing that adding mass to Glumper’s basic frame reduces its peak clearance height both with and without its wings 
attached. The graph was produced by measuring the peak height of both the head and foot of the robot repeatedly for every given condition, 
and plotting the average values. Microsoft Excel was used to plot a polynomial trendline through the centre of these head and foot points for 
both the winged and non-winged measurements, and the respective equations of the resulting curves are displayed. The average height of 
Glumper’s head and foot for automatic launches is shown for comparison, powered by one (654 g) and then with two onboard lithium cells 
(700 g). The error bars represent ±  1 standard deviation from the means in all cases.
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Figure 15. Graph showing the trajectories followed by Glumper’s centre position when launched automatically at an angle of 63° to the 
horizontal, with and without its membranous wings.

to its head before manually compressing it and launching it 
vertically. A ruler was used to ensure that the robot was always 
compressed such that there was a 10 cm gap between the head 
and the foot, which is equivalent to how much it compresses 
when launched by its automatic launch mechanism. The 
results are shown graphically in figure 14, and it can be seen 
that the optimum total mass of the robot would be less than 
its current frame weight. No momentum advantage would be 
gained by adding mass to the current control box to improve 
the ratio of accelerated to trailing mass of the robot. Glumper’s 
total mass was 700 g, including its four wings, which in total 
weigh 19 g. One of the initial requirements was that the 
jumping robot must be able to carry a useful payload, such as 
a camera and transmitter for example. Figure 14 demonstrates 
that it should be able to absorb the additional weight of the

example payload, perhaps 50 g, without a large decrease in 
jump height.

It can be seen from figure 14 that more energy is lost 
when Glumper launches itself automatically, which is likely 
due to friction as the cord unwinds from the capstan. It is also 
clear that the wings cause a reduction in peak jump height, 
presumably owing to air resistance.

Figure 15 shows the trajectories followed by Glumper’s 
centre position during six jumps launched automatically at an 
angle of 63° to the horizontal, three with and three without 
its membranous wings attached. The presence of the wings 
actually reduces the total range of the jump rather than 
extending it as was intended. This might change with weight 
reduction, which should simultaneously improve peak jump 
height and the lift to drag ratio during gliding. However, the
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reverse may also be true because air resistance against the 
wings would also be relatively more effective acting against 
the ascending robot. Unfortunately it has not been possible to 
test the effect of altering Glumper’s pitch angle, while gliding, 
to the resultant trajectory because a suitable control system 
was never developed, and the flight time was typically short 
prohibiting remote control.

5. Discussion

Table 4 compares the performance data of Jollbot and Glumper 
with equivalent data for the existing jumping robots introduced 
previously in order to facilitate the evaluation of the two new 
designs. The maximum jump height for each robot is assumed 
to be the change in height of its centre of gravity between the 
pre-launch state and its peak height. It is important to consider 
that the other robots were not developed using the biologically 
inspired design specification presented in this paper and may 
have had other objectives.

The definition of the performance of a jumping robot 
depends entirely on the specific requirements of an application. 
Here we have chosen to evaluate the robots above based on a 
space exploration application no matter their actual intended 
application. Surface exploration of other planets requires that 
the robot is able to move across rough terrain, so the robot 
should jump over the largest possible obstacle, whilst also 
being of the smallest possible volume to ensure that it takes 
up as little room as possible in the launch craft. Being of 
small size also means that many can be sent in place of a 
larger exploration rover, or that one robot could be used in 
conjunction with other exploration devices.

Figure 16 is adapted from (Bennet-Clark 1977) and 
shows jump height against object length for all of the robots 
reviewed including some data on animals for comparison. An 
assumption is made that all animals and robots presented here 
can only accelerate through a distance equal to their leg length. 
Owing to the fact that all the animals and robots presented here 
have similar aspect ratios, body length becomes an acceptable 
measure of both leg length and object size. The horizontal lines 
show energy density and the sloping lines are a measure of 
power per unit weight, derived from (8). The power to weight 
ratio of direct muscle action in animals has a practical limit 
of 100 W kg-1 (Bennet-Clark 1977). Hence, all the animals 
above that line in figure 16 are producing more power than 
their muscles can deliver, indicating some additional energy 
storage mechanism.

Optimal performance of a jumping robot for use in 
planetary exploration was declared to require maximization 
of height together with minimization of mass and volume to 
reduce the cost of space transport. Considering figure 16, the 
closer the robot sits to the top left comer of the chart, the 
better. This is equivalent to a maximization of power density, 
represented by the diagonal lines, which is consistent with 
the statement in the introduction that decreasing size demands 
increased power to achieve equivalent height.

Glumper achieves a superior power density to Jollbot. The 
power density of approximately 20 W kg-1 achieved by Jollbot 
is also inferior to that of all the natural examples displayed.

Vertical Jump Height versus Object Length
2 5 kW/kfl 500 W/kg

100 W/kg

Sandi

10 J/kg

5 J/kg

2 5 J/kg

MinM
0.1

■  Pendulum

0.01

0.001
0.001 0.010 0.100 1 000 10.000

Object Length (m)

Figure 16. Height of jump versus length of a selection of animals 
(outlined markers) and robots (solid markers). The graph also shows 
required specific energy and specific power required to produce a 
jump assuming that the objects accelerate through their own body 
length and that there is no air resistance.

Looking parallel to the lines of power density in figure 4, 
Glumper has comparable performance to the animals that 
would not be considered to be specialized jumpers, sitting 
directly between the domestic cat and the antelope. The jump 
heights recorded by specialized jumpers, such as fleas, frogs 
and the lesser galago all demonstrate a superior power density.

In terms of both power density and energy density, 
Glumper outperforms all the documented jumping robots 
in figure 16 with the exception of the Sandia robot, which 
is propelled by the combustion of propane. This superior 
performance would be expected because the energy density 
of hydrocarbons is much higher than that of springs, and 
the authors can think of no comparable biological transport 
modes. The use of combustion to power jumps was not 
considered in this research, due to the primary requirement 
of autonomy. Other potential applications are also prohibited 
by this design. In confined areas, for example, exhaust 
gases could pose a problem and on other planets, the lack 
of oxygen in the atmosphere would prevent the burning of fuel 
(though high explosives could obviously be used). Springs 
are the next best energy storage medium, because the robots 
with either helical or bending springs, including Glumper and 
Jollbot, outperform the remaining devices. This does not even 
take into account that those devices, Airhopper, Pendulum 
and Deformable all rely on external power giving them an 
immediate weight advantage. It is also clear from figure 16 
that Jollbot was outperformed by other robots with equivalent 
energy storage mediums. It is not clear from this sample 
whether one type of metal spring consistently outperforms 
any other although no difference was expected. The only 
elastomer-based jumping robot does not jump particularly 
high, but the absence of other published devices storing energy
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Tbble 4. Robot details and jum ping capability.

Robot
Energy storage 
m edium

Jum p 
height (m)

Jump
distance (m)

Weight
(kg)

S izeL  x W x H  
(m) Control Pow er source

Jum p steering 
method

JPL H opper (V2) M etal helical spring 0.9 2 1.3 0.15 x  0.15 x  0.15 Radio controlled O nboard batteries Rotating foot
M onopod M etal helical spring 0.51 0.305 2.4 0.15 x  0.2 x  0.3 Autonom ous 

(from  IR  sensors)
O nboard batteries Rotating foot

Jum ping Mini 
W hegs

M etal helical spring 0.18 N ot known 0.191 0.10 x  0.08 x  0.05 Radio controlled O nboard batteries Turning robot 
before launch

Sandia Fluid powered 3 3 2.5 0.1 x  0.1 x  0.2 Follows built-in 
compass

L iquid propane M oving centre 
o f gravity

A irhopper Fluid powered 0.68 0 20 1.5 x  1.1 x  0.5 Remotely controlled 
v ia cable tether

External com pressed 
air supply

(N ot possible 
unless legs ‘w alk’)

Pendulum M om entum 0.06 0 0.72 0.25 x  0.1 x  0.25 Remotely controlled 
v ia cable tether

~ 9  V  pow er 
supply

N o steering 
possible

Deform able Elastom er 0.08 0 0.003 0.04 x  0.02 x  0.04 Remotely controlled 
v ia cable tether

External pow er 
supply

(N ot possible 
unless spherical)

Scout M etal bending spring 0.3 0.25 0.2 0.09 x  0.11 x  0.05 Radio controlled O nboard batteries Turning robot 
before launch

Jollbot M etal bending spring 0.218 0 0.465 0.3 x  0.3 x  0.3 Radio controlled O nboard batteries M oving centre 
o f gravity

G lum per M etal bending spring 1.6 2 0.7 0.5 x  0.5 x  0.5 M anually activated Onboard batteries N ot im plem ented

R 
Arm

our et al
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in elastomers was unexpected. This may be due to the gradual 
loss of energy resulting from stress relaxation during the pause 
inherent in a pause-and-leap robot.

Power density can be increased by either increasing 
power or reducing mass. More power can be produced by 
generating higher force or reducing its time of action over a 
given distance. In animals this is limited by the maximum 
power output of muscle resulting in the use of energy storage. 
Therefore the performance limiting factor for a jumping 
robot is its energy storage and release mechanism. The 
mass reduction experiment conducted on the Glumper robot 
demonstrates clearly the advantage of reducing unnecessary 
weight. It is possible to eliminate mass from engineering 
systems through optimization techniques such as FEA and 
by changing materials, whereas nature’s jumpers are already 
highly optimized as a result of natural selection. The Sandia 
robot has already proved that it is possible to outperform 
nature’s jumpers by using a hydrocarbon-based energy storage 
and release mechanism, which requires the use of high 
performance materials in its construction. Such materials 
are unavailable to natural organisms due to other practical 
constraints, such as reproduction.

6. Future work

It has been shown that the clearance height of the robots in 
development by the authors could be improved by weight 
reduction, increasing the force or reducing its time of action.

In the case of Jollbot, although its performance could be 
improved by optimization of the component materials, it is 
probable that the performance of this evolution of Jollbot is 
limited by the design of its compression mechanism, which 
is unable to produce more force. Specifically, a revised 
mechanism is being designed to provide greater force and 
allow for greater compression of the springs. Jumping force 
will be improved by changing to glass-fibre springs. The poor 
rolling performance will be improved through the development 
of a new system allowing for more movement of the centre of 
gravity of the robot.

Significant size reduction of Glumper’s control box is 
intended by selecting materials with higher specific strength 
and stiffness. This has the two-fold advantage of weight 
reduction, and allows additional compression of the robot body 
so that more energy is stored before release. Clearance height 
could also potentially be improved by adjusting the attitude 
of the robot in much the same way as a human high-jumper 
chooses to pass the bar horizontally. Finally, flexible solar 
panels should be added to see if the compression mechanism 
can be powered by these directly, and hence the relatively large 
mass of the batteries could potentially be removed.

Note. Additional videos and colour images of Jollbot and Glumper are 
available from the online version of this journal.
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