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Summary

In Part I we study certain random processes in the phase-plane (£, x) € R2. In particular, 
we consider their windings around the origin, and the processes formed by setting A +(s) 
(respectively, X ~(s)) to be the position when the process first moves to the right of t  = s 
(the left of t  = —s ). The mathematical description of the link between these X  processes 
and the phase-plane process involves a type of Wiener-Hopf Factorization.

An account of the analysis for a particular well-studied case in Chapter 3 reveals an 
unexpected isomorphism between seemingly esoteric but naturally occurring spaces and 
the more common Sobolev Spaces.

A detailed exposition of the analysis, which previous work has avoided, shows how delicate 
the structures of some of the operators are. We focus here on the strange but crucial result 
tha t these isomorphisms axe built from operators which are contractions, many with the 
same upper bound for their norms of l / \ / 2 .

More surprising results, this time of an algebraic nature, axe found in the form of theorems 
discovered via numerical calculation. These arise when the process on the lower half plane 
is a Markov Chain. Again, the contraction result is proved, this time by means of an 
identity which provides a link between the X  processes and two other Markov Chains, 
which is itself of great interest.

In the shorter Part II, we look at a computational method for dealing with randomly 
grown networks and give the results of the programs. In an attem pt to model a fairly 
wide class of biological processes, we transfer the mechanics of those processes to a more 
general setting.
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N otation  for Part I

A  := B  

(f,9)n

A  is defined to be equal to B  
Integral f  fgdfj, over the support of fi p. 41

Cb(X) Space of bounded continuous functions on X p. 16
C 2b{X)

E x

Space of functions /  G Cb(X)  with bounded 
and continuous first and second derivatives 

Expectation for the process started at x
p. 23 
p. 13

E, E +, E~ State space E  is a disjoint union E + U E~ p. 13

7 7  =  \ / 2A p. 16
£(t,x) or L(t, x) Local time p. 13
n Poisson measure on excursions p. 20
h Poisson measure on U* p. 21

nunx

Px

Excursion entrance measure 
and its Laplace transform 

Probability measure for the process started at x
p. 21
p. 14

n ±:^ Half winding operators from E ± to E ^ p. 13

-Rx Resolvent of killed Brownian Motion p. 17
R+ One point compactification of [0 , oo) p. 23
R x f (x ) Resolvent operator p. 16
R \{x ,dy ) Resolvent density p. 17

r t+5 Tt Times at which <fi first leaves (—oo,t)  and (—t, oo) p. 13
u, u , u*

<$>t

Space of excursions, of marked excursions
and of the union of both marked and unmarked 

A fluctuating time change
p. 21
p. 13

W 2(R+)

w ±

Sobolev space of functions /  : R+ —> R+ 
with / ,  f  and f "  all in L2(R+ )

W ± =  n ±n T, the full winding operators
p. 42 
p. 14

l{x)

[KW]

Constant function l(x ) =  1 

Reference Kennedy & Williams (1990) p. 69
[LMRW] Reference London, McKean, Rogers & Williams (1982a) p. 32
Vol. I Reference Rogers & Williams (1994) p. 23
Vol. II Reference Rogers Sz Williams (1987) p. 48
[W] Reference Williams (1991) p. 15
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Chapter 1

Introduction

1.1 Springs and Time

In his 1963 paper A winding problem for a resonator driven by a white noise, Henry 
McKean defines the phase plane for a  resonator—such as a forced or damped spring— 
which is perturbed by a standard Brownian Motion, B.  The equation governing the 
system is of the form
(1.1) u  +  c\{u)u +  C2 {u) = B.

He then considers various questions concerning windings around the origin in the phase 
plane for the simplest case of c\ = C2 =  0. Thus u is a Brownian Motion, u  is the integral 
of tha t process and the phase plane is the graph of (u,u). If we write fa for the additive 
functional u, the phase plane is the graph of B t against fa.

This is very close to the familiar time-change using a perfect continuous homogeneous 
additive functional, with one alteration—the value of the functional may go down as well 
as up. The many and intriguing abstractions, simplifications and generalisations prompted 
by this investigation in the intervening thirty-five years have brought to light unexpected 
and often baffling half-answers. Thus the questions have become problems involving many 
areas of algebra, analysis and probability.

We move from McKean’s scenario of a phase plane and think of the process as a generalised 
time change in which time can flow in either direction.
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1.2 Definitions and N otation

The following definitions apply throughout Part I. A state space E  is decomposed into 
E + and its complement, E~.  The process X ( t ,u )  E E  is defined by the operator Q. 
Depending on the nature of E,  this will either be an infinitesimal generator of a continuous 
stochastic process or a Q-matrix of a Markov Chain. (In the former case, we will denote 
the generator by A )  The function V  : E  —► E is non-negative on E + and non-positive on 
E ~  and defines the additive functional 0  and its inverses by

(1.2) 0 * :=  / V p Q d s ,
Jo

(1.3) r+  :=  : 0t >  and r ” := gf{£ : —0* >  it}.

In the case considered by McKean, E  is the real line decomposed into R+ and R_, X  is 
a Brownian Motion, and V (x ) =  x. Note that when we decompose the real line, or some 
part of it, into E + and E ~ , the origin, 0, will always become part of E~.

The function V  tells us how fast, and in which direction, time is running. We wish to 
generalise this concept. Certainly if V  is bounded, we can, by the occupational density 
formula, rewrite (1.2) as

(1.4) (f>t = f t V { X s)d s =  [  £{t,x)V(x)dx
Jo Je

where I  is the local time normalised such that

[  f ( X s)ds = f  £(t,x)f(x)dx .
Jo Je

Let us use local time to extend the notation of (1.4) and write, for a measure

(1.5) f  f { X s)dvs{X)  := f  £(t,x)f{x)dv(x).
Jo Je

Provided the process (X t ,4>t) visits the origin at positive times with zero probability, 
we can talk about its windings around the origin. We define the half-winding operators 
probabilistically as

(1.6) n + - / ( x ) = E I / ( X ( r 0- ) )  and a ~ +g(y) = E„ fl(X(r0+))

where x  € E + , y  G E~  and E* is the expectation taken with respect to the probability 
measure when the process X  is started at x. Thus the half winding operators give the 
expected values of a function evaluated at the (random) point on the 0  =  0 axis after the

13



A

Figure 1-1: A full winding from x  to x'

process has wound round from E ± to E T . Let the full winding operators be defined by

(1.7) w +f(x) =  n +- i r +/(x )

and similarly W ~ f(y )  = II t' n +_ f(y) .  Methods (rather than a serious of brilliant but ad 
hoc techniques) for calculating these operators have always proved frustratingly elusive. In 
Chapter 3 we offer a specific case of a transform method first suggested by Ivan Graham. 
However, beyond the question of finding the kernels defining these operators is the largely 
ignored question of identifying their domains and ranges. We look in some detail at the 
answer to this, and at the relationships between the spaces as suggested by what Williams 
(1991) calls the Wiener-Hopf Factorization.

The first steps at pinning down connections between these winding processes and another 
equation (from Kennedy and Williams (1990)) which may also be called a Wiener-Hopf 
Factorization are taken in Chapters 4 and 5.

In cases where one or both of E + and E~  are discrete, some of these operators are matrices, 
and we will refer to the entries of these matrices by notation such as W ~(y,y ').  This 
example has the simple probabilistic meaning of {first winding of the process around 
the origin is from y to y'}. We will also refer, where appropriate, to such quantities as 
n + -(a:, dy), being the probability density of half winding (with apologies for the neologism) 
from x  to y.
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Chapter 2

A First Exam ple

This chapter aims to establish the main existence results of Williams (1991) (to which we 
shall refer as [W]) for a  specific continuous state-space Markovian process, rather than  for 
a discrete Markov chain. This involves careful consideration of some analytical aspects 
tha t were unnecessary in tha t paper. It also provides a relatively explicit introduction to 
both  the discrete and the continuous results of varying degrees of generality given later.

Sections 2.2 and 2.3 of this chapter deal with Markov processes on [0 , oo) tha t behave 
like Brownian Motion away from zero. These are called Feller Brownian Motions and are 
discussed further in the appendix, Section A.I. Standard results mentioned there will be 
used without further comment.

The two sections on Feller Brownian Motions do not directly deal with winding problems, 
bu t much of our notation will anticipate those uses of the processes.

Many of our operators, in particular the half-winding operators, resolvents and trans­
formed entrance laws of excursion theory, will adhere to the following notation. The 
notation is intended to be entirely standard and obvious and is defined only with the 
intention of avoiding, not creating, confusion.

(2.1) N o ta tio n : Let W  be some subset of the real line or complex plane and let W  be the 
sigma-algebra of measurable sets of W . For a function A : W  x W —> C, write

A f ( w ) : = f  A(w, dz)f(z) .
Jw

I f  the measure A{w , •) has a mass at z, then write

A{w,z) := A (w ,{z})

15



and if  it is absolutely continuous with respect to Lebesgue measure, write

a(w,z)  := A (w ,d z) /d z .

To denote, say, the operator A  acting on the function z  h-»- exp(7 z) evaluated at the point 
w, write

A(eT )(w)

with the dot standing for the “dummy” variable of integration.

The structure of the chapter is as follows. We discuss resolvents in general and the resolvent 
of killed Brownian Motion on the space of continuous bounded functions in particular. We 
then find the resolvents and generators for two Feller Brownian Motions. In Section 2.4 
we define a time change for a Brownian Motion which gives rise to a Wiener-Hopf process 
around the origin. For this process, we find the full and half winding operators and see 
tha t the processes X  and X + are given by our two Feller Brownian Motions. We then 
prove the central result of this theory, the Wiener-Hopf factorization and finish the chapter 
by exploring the structure tha t can be seen when the operators are defined for L 2 spaces.

2.1 Resolvents and Killed Brownian M otion

For A >  0, let 7  := \/2A >  0. We will use this definition of 7  both here and in subsequent
sections.

A family of bounded operators { R \  : A > 0} on a Banach Space B  is a contraction 
resolvent if

•  | | A H a || <  1 for A >  0 and

• the resolvent equation holds for A, p > 0,

R \  — Rp +  (A — p )R \R ^  =  0.

A contraction resolvent is an SCCR (Strongly Continuous Contraction Resolvent) if it also 
satisfies, for all /  G B,

•  HARa/ -  / | |  -¥ 0 as A -* 00.

For an SCCR, the range R \ B  is a dense subspace of B  and independent of A.

In these sections, we use the Banach Space B  := C)>(R+ ) with the uniform norm.
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A space of continuous, bounded functions with the uniform norm is the natural space 
for probability. In probabilistic terms, R \  is given by AR \ f ( x )  =  E 2/ ( X t )  where T  
is independent of the process and has exponential distribution with rate A. From this 
definition it is clear tha t AR \  is a contraction since E x f i X r )  <  ||/||oo almost surely. In 
contrast to  L 2 spaces, functions are well defined at every point and so there is no problem 
if P { A t =  b} > 0 for some point b—we know that we can evaluate functions there.

The natural space to use is therefore C&(R+ ). However, for the HilleYosida theorem 
to apply, we require a dual space of measures and the Riesz Representation Theorem. 
Many texts use the space of functions which^vanish at infinity, a space for which the 
Riesz Representation Theorem applies. Another strategy, and one which provides a space 
containing the constant functions, is to  consider continuous bounded functions on R +, the 
one point compactification of M+ .

Towards the end of this chapter, we shall consider resolvents defined on L 2 spaces.

For A >  0 , the equality R \  = (A — A ) -1 holds between the SCCR and A ,  the infinitesimal 
generator of the process. In particular, the domain of the generator A  is the image of 
the whole space under R \ .  We will use the standard notation tha t for measurable sets T, 
\ R x ( x , r )  = Px{ X T e  r}. Then, following (2.1), R \ f { x )  = f  R \ ( x ,d y ) f (y ) .

The resolvent of killed Brownian Motion is given by

/* OO
~ R \f (x )  =  7 -1  J  ( e-7|x-y| -  e-7|x+J/|) f{y)dy.

We define killed Brownian Motion on M~ and denote its resolvent, which is essentially the 
same object, by ~R\ also.

Note th a t the resolvent of killed Brownian Motion is not strongly continuous on C(M+). 
It maps C(R+) into the space C2(R+) fl { /  : /(0 ) =  0}, which is not a dense subspace 
for the uniform norm. Since A ~ R \ f{ 0) =  0 for all A, A ~ R \ f  does not in general tend to 
f  pointwise and hence certainly not in the uniform norm. Of course we have pointwise 
convergence if and only if / ( 0) = 0 , and we then have uniform convergence.

The resolvent is only an SCCR on the smaller space C(R+) fl { /  : /(0 ) =  0}.

The lack of strong continuity arises from the fact that the killed process jum ps from 0+ 
to the coffin state, and hence 0 in effect acts as a branch point to a state at which the 
function is zero. Let us consider the resolvent of Brownian Motion absorbed at 0, which is 
given by

(2 .2) -R x f ( x )  + = 7 “ '  f °  f(y )d y  + A -‘e " ^ / ( 0).

17



This maps C(M+ ) to C2(M+), which is a dense subspace. Thus absorbed Brownian Motion, 
being a continuous process, has a strongly continuous resolvent on C(M+).

This is a  nuisance for the theory of Feller Brownian Motions since these processes have a 
clear relationship with a killed Brownian Motion. A Feller Brownian Motion and a killed 
Brownian Motion behave in identical fashions away from zero and then, when the killed 
Brownian Motion dies at 0, the Feller Brownian Motion does something and then behaves 
like another killed Brownian Motion until it next hits zero. Thus we would wish to express 
the resolvents of Feller Brownian Motions as at (2.2) where this decomposition is clear. 
However this is not necessarily the correct path since, for example, the strongly continuous 
domain (by which I mean the largest subspace of the domain on which the resolvent is 
strongly continuous) for the Feller Brownian Motion which is absorbed at zero is larger 
than the strongly continuous domain of killed Brownian Motion.

We finish this section with three lemmata.

(2.3) Lem m a: For continuous bounded f ,  the function ~ R \ f  is twice continuously dif­
ferentiable with

(2.4) ~ R \f (x )  =  J  ( -sg n (z  -  y)e~7 |l“y| +  e_7|a:+y|) f (y )d y  

and
(2.5) ~ R \f{x )  =  - 2 f ( x )  +  2A ~ R \f (x ) .

Proof: This can be shown by calculating the derivatives explicitly. □

The following lemma sets out the logic we will use on occasion to prove tha t a certain 
subspace is the image of a resolvent, and that the resolvent is injective.

(2.6) L em m a: . Let R \  be a resolvent on a Banach Space B  and suppose that there is an 
operator A  whose domain, D, includes R \ B  and that for any f  £ B ,  (A — A ) R \ f  =  / .  
Then if  there exists a subspace C  such that R \ B  C C  C D and for f  £ C, (A — A ) f  =  0 
implies that f  = 0, then R \ B  = C and R \  is a bijection from B  to C.

Also, if  R \  is an SCCR, then A  restricted to C is the infinitesimal generator given by the 
resolvent R \ .

Proof: For f  £ C, suppose that R \(X  — A ) f  = g. Therefore g £ R \ B  C C. By applying 
(A — ^4) to the equation, we have (A — A ){ f  — g) = 0  and so /  — g =  0 . Hence f  £ R \ B  
and (A — A)  is a two-sided inverse for R \  which is therefore a bijection. □

(2.7) Lemma: Let { R \ f { 0) : A >  0} be a family of linear functionals on C(R+ ) sat­
isfying 0 < f < l = > 0 <  X R \f(0 )  < 1 for all A >  0. Define R \ f { x )  := ~ R \f{x )  +

18



exp(—j x ) R \ f ( 0 ) .  Then if  the image of C(R+) under R x is independent of X then R x is 
a contraction resolvent

Proof: Since A ~ R \l (x )  is just the probability that Brownian Motion killed at 0 is alive at 
an exponential time, it is equal to 1 — exp(—72;). Therefore,

|AiiA/(x ) | <  |A +  e -^ |A f iA/(0 ) | <  (1 -  e - ^ ) | | / |U  +  e ^ l / l l a o  =  | | / |U

and so || II <  1- 

We know tha t

(2 .8) ^A -  ~Rxf(x) = f{x )  and ^A -  e~JX =  0

•2
and so (A — \ - ^ ) R xf  =  / .  Hence R \ , possessing a left inverse, is injective and we have a 
bijection between C(R+) and its image (assumed to be independent of A) under R x with 
(A — being the two sided inverse.

For /  6  C(R+) let g =  R ^ f  so (/i -  \ - ^ ) g  =  / .  Then R xf  =  g -  (A -  p )R xg and so 

(R x -  Rp +  (A -  n )R xR y ) f  = g -  (A -  p )R xg -  g +  (A -  p )R xg =  0, 

and therefore R x satisfies the resolvent equation and hence is a contraction resolvent. □

2.2 Sticky Brownian M otion

2 .2 .1  D e fin it io n

The first of our two Feller Brownian Motions is referred to as sticky Brownian Motion (or 
more precisely, reflected sticky Brownian Motion). This is a Brownian Motion on (0 , oo) 
but it lingers a little too long at the origin—it actually spends positive real time there and 
the local time at zero is defined accordingly els

(2.9) i t :=  m -1  I{X (s)=o}ds

for some mEiss m  > 0. We have m -1  rather than m  in the expression because for a small 
mass m, we want to build up local time more quickly. Then an excursion performed at 
a given local time will occur at a smaller real time. Thus the smaller the mass, the less 
time the process spends at 0 .

Throughout we will take the normalization of local time for Brownian Motion to be as
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given in T rotter’s theorem so tha t for a bounded measurable function /  the local time L  
is such tha t

f  f ( B s)ds = f  f (x )L ( t ,x )d x .
Jo Jr

As we mentioned briefly in the introduction, we use the following notation:

(2.10) N o ta tio n : I f  a signed measure v  on M."*" is absolutely continuous with respect to 
Lebesgue measure, Leb, there exists a function f  such that dv{x) =  f(x)dLeh(x) = f(x )d x .  
For a diffusion X  on R+ , define dv3(X ) by

dvs {X) = }{X ,)ds  =  - £ ^ - ( X 3)dLeb(s) 
aLeo

and let us generalise this in the obvious way to other measures for which f  may be a 
generalised function. When a local time L  exists, then it can be used to define di/s(X) via

f  f ( X s)dvs(X) = f  f(x )L (x ,t)d i '(x ) .
Jo Jo

We define X , the sticky Brownian Motion, in a way deliberately reminiscent of Chapter 1. 
Let the measure v  on R+ be Lebesgue measure together with a mass m  a t the origin. We 
use the measure v  to define the time change

r t  roo
(2 .11) ijjt :=  / di/s(B)  = / I i B >0\ds +  m L ( t ,0), ou :=  inf{£ : rp t  > u}

Jo Jo+ *>o

for a Brownian Motion B t . Then the sticky Brownian Motion is given by X (t)  := B(o(t)).  
Compare this with (1.2) and (1.3).

We are using the notation tha t L  is the local time of the Brownian Motion and i  the local 
time of the sticky Brownian Motion.

An alternative description is via excursion theory—see Appendix A.2 for standard nota­
tion, definitions and results. If U is the set of all Brownian excursions, and L t the local 
time of the Brownian Motion at zero, then there is a Poisson measure n  on U such that for 
E and T  measurable subsets of U and R+ , the number of excursions in E occurring whilst 
the local time is in T  has a Poisson distribution with parameter n(E)Leb (r) G [0, oo]. 
If we transform the Brownian Motion to sticky Brownian Motion via (2.11), then each 
excursion from 0 remains intact. However, instead of occurring as a Poisson Process on 
U x  R+ , the space of excursions against local time L t , the excursion points occur on the 
space of excursions against the weighted real time at zero, It. Each excursion is shifted 
forward in (real) time by an amount proportional to the local time when it occurs.
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2 .2 .2  T h e  R e so lv e n t

We use excursion theory to find the resolvent of sticky Brownian Motion.

(2.12) Theorem : The resolvent of sticky Brownian Motion, R \ ,  is

(2.13) R xf ( x )  =  ~ R xf(x )  +  e - ^ R x f iO )

acting on C(R+ ), where ~Rx is the resolvent of Brownian Motion killed at 0 and

(2.14) R , m  :=  H r j, +  1) +  / f  e - ^ / ( x ) d x )  .

Proof: Recall th a t ~ R x f{x ), the resolvent of Brownian Motion killed at zero, is given by 

~ R \ f ( x )  =  7 ” 1 r  f(y )dy .

We write nt for the entrance measure, so n*/ is the expected value of /  evaluated at the 
point £* where £ is an excursion chosen according to n. Then since the excursions of sticky 
Brownian Motion are Brownian, the Laplace transform of the excursion entrance measure 
is given by
(2.15) nx{dx) = e~Jxdx x  > 0

where 7  =  \/2A. T hat is, the probability tha t an excursion is alive and in the set T at 
exponential time T  is n,\(r) =  f r nx(dx). We write n x f  for / nx{dx)f(x).

The set of all excursions is denoted by U. We now “mark” the process X  (or, equivalently, 
we mark each of its excursions independently) at rate A on the real time axis. Some 
of the excursions now contain a mark, and we will write U* for the set of excursions 
containing a mark. The set of all excursions, marked and unmarked, is now the disjoint 
union U* := U U U* and let us write h  for the excursion measure on this larger set. See 
Appendix A.2 for further details. We also define the null marked excursion <9, denoting 
the event of a mark occurring while the process is at zero. This has non-zero probability 
as the process spends positive time at the origin.

Let T  be the real time of the first mark. Thus T  has exponential distribution with rate 
A and It  has exponential distribution with rate equal to the rate of marked excursions, 
h(U* U {<9}). Since the rate  of arrival of these excursions is the reciprocal of the mean 
inter-arrival time (measured in local time),

n(C/* U {a})"1 =  Eo[<r]
r 00

=  E 0 /  e~Xid£{t)
Jo
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(2.16)

1*00

=  E o yo m ~ l e~XtI{Xt=Q}dt

=  (m A J^ P oflr  =  0} =

E o[^r] =  ra_ 1# A(0 ,{0}).

We obtain the last-exit decomposition (2.18), which expresses Po{-^t 6  T} as an integral 
over the last exit time of the process from 0 , although for us the more im portant but less 
intuitive result is in fact its Laplace transform (2.17). We use result (A.4) and the two 
methods for marking a process to deduce tha t for T C R+ \  {0},

R X(0,T) =  A_ 1Po{Ar E T}

=  A- 1P{lst marked excursion G V at the mark}

=  A- 1P{£r G r |£  is marked}
_  A- i n ({^T g r »  _

n(U* U {a})
roo

(2.17) flA(0 , r )  =  nx (r)E  o I e~xtdl(t)
Jo

(where £ denotes an excursion chosen randomly according to the measure n). Inverting 
the Laplace transforms gives us the decomposition

(2.18) ¥ 0{ X t G T} =  E o [ l nt. s(r)d£{s).
Jo

From (2.16), we may write (2.17) as

(2.19) ra- 1.RA(0, (0})nA(r)  =  R \(0 ,T )

and set T =  R+ \  {0} to obtain

m - 1AflA(0 ,{ 0 } K (R + \{0}) =  AflA(0 ,R + \{ 0 } )

=  P0{ X T ±  0}

=  1 — Po{X r =  0}

=  l - A i ? A(0,{0}).

Hence, since n A({0}) =  0,

(2.20) HA(0, {0}) =  (A +  m _ 1AnAl )_1

where l(:r) :=  1 for all x. Note tha t from (2.15) n Al  =  7 -1 and so A +  Am- 1n Al  =
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7(7717 +  l)/2 m . By (2.19) and for 0 ^ T,

(2-2i) flA(o,r)= -m ln^ r \  =
X + m ^ X n x l  7(7717 +  1)

and so

roo
R \ f  (0) =  i*A(0 ,{ 0 } )/(0 )+  /  R x(0 ,dx)f(x )

J 0+
/(0 ) +  77l_177A/  771/(0) +  n x f

X +  A- 17iAl  i l i i r n  +  1)

Finally, by (A.5),
(2 .22) R xf ( x )  = ~Rxf(x)  +  e ^ xR xf (  0).

□
As w ith absorbed Brownian Motion, sticky Brownian Motion is a continuous process and 
the image of C(R+ ) under the resolvent is a dense subspace. Its resolvent is strongly 
continuous on the whole of C(R+).

By the HilleYosida theorem, there exists a unique strongly continuous contraction semi­
group with Rx as its resolvent. From this we can construct what Rogers & Williams (1994) 
(to which we shall refer as Vol. I) calls a Feller-Dynkin process. By inverting the resolvent 
we can find the infinitesimal generator of this process. This is the subject of the next 
subsection.

By a  Feller-Dynkin process on R+ we mean one generated by a Strongly Continuous 
Contraction Semigroup Pt on C(M+) with the property tha t Po =  !■> the identity.

The HilleYosida theorem relies on the generator having a dense subspace as its domain. 
W hen this condition fails, as it does for the Feller Brownian Motion of the next section, 
we have to consider the more general class of Ray processes.

2 .2 .3  T h e  G e n e r a to r

(2.23) T h eo re m : For the space of continuous bounded functions with limits at infinity, 
the generator of sticky Brownian Motion is given by

(2.24) A f  =  \ f "

with domain
(2.25) C2{ W )  n  { /  : / '(0 )  =  m /"(0)}
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where C 2(R+) is the space of functions f  : R+ i-» R with a limit at oo and f , f  and f n 
all bounded and continuous.

Proof: Since we have found the resolvent, we use the result th a t the domain of the generator 
is the range of the resolvent and

(2.26) (A -  A ) R \ f  = f .

By Lemma 2.3, for continuous bounded / ,  the function ~ R \ f  and hence R \ f  is twice 
continuously differentiable. Thus R \ f  is in C 2(R+). Now by (2.26)

! £ * * / ( * )  =  [ ' ■ * * / ( * )  +  « ' 7 X- R a / ( 0 )]

=  - f ( x )  + \ - R xf ( x )  + \ R xf(0)

= (XR\ — I) f  (x)

= A R \ f ( x )

and so A  is half the second derivative. Also, by (2.4)

(Rxf)'(  0) =  2 n \ f  — 'yRxf (0)

Or, t  -  m / ( ° ) + " A /
1 /  . 1 \1 ( 7 7 7 1 + 1 )

m /(0) +  'ym(n\f)
1(7771 +  1)

=  m [ - 2/ ( 0) +  7 2fiA/ ( 0)] =

(RxfY (0)  =  m {R xf)" (  0)

(2.27) + ^ ( 0 )  =  Ag{ 0)

for g in the domain of A.  Now for a function h 6  C 2(R+ ) satisfying this condition, 
Ah — \h "  = 0 implies tha t h — 0. Therefore, by Lemma 2 .6 , A  has domain C2(R+ ) n  { /  : 
/'(0) =  m/"(0)}. □

Lemma 2.7 now confirms tha t R \  is indeed a contraction resolvent.

This is the usual, and natural, definition of A  for probabilistic purposes as was noted 
earlier. Let us expand the domain of A , losing continuity of the functions in its range. We 
let A  act on the whole of C 2(R+ ) and let

C9 9R1 A f ( r \  /  W W  X > °
A m  U / ' M  . - 0
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which maps into bounded measurable functions.

Note th a t this definition tallies with Dynkin’s Formula tha t

<40 E 0Te

where Te is the hitting time of x  =  e. Excursions hitting level e occur at rate 2e for 
reflected Brownian Motion and the length of time such an excursion takes to hit e is of 
order e2 (see Lemma 3.20). Therefore E qT£ = m E  o£(Te) +  o(e2) and

.4/(0) =  lim /  ̂  ~ ^  = 4 - /'(o ) .
e|o 2me  +  o(e2) 2m

2.3 A Process w ith  Non-local Behaviour

2.3.1 D efinition

The second Feller Brownian Motion, denoted X + , is a process th a t upon hitting 0 im­
mediately re-enters according to the measure n-+(0, dx) := m -1 exp(—x/m )dx .  This is 
a finite measure and so, in contrast to Brownian Motion or sticky Brownian Motion, the 
first excursion (or the next excursion) is identifiable. The points t  for which l im ^  X + (s) 
is zero form a discrete set on the real time axis with only finitely many in any finite inter­
val. The origin, although never entered by the process, is included in the state space as a 
branch point. We will follow the notation (2.1) and write II l" /(0) for / R+ II *"(0, d x ) f(x )  
and 7r l'( 0 ,a;) for m -1  exp(—x /m ) .

It is probabilistically intuitive th a t the process X + is well-defined by the description above. 
We know how to construct a Brownian excursion beginning at x > 0 and can easily imagine 
how we might perform the necessary formalities required to concatenate a finite number 
of them  using the exponential distribution as given above. However, to deal with the 
analytical problems of Wiener-Hopf theory, we must take more care.

The process X + is not a Feller-Dynkin process—a fact which complicates our analysis. If 
we start the process at 0 , it jum ps away instantly and so the semigroup Pt for the process 
started  at position 0 and at time 0 has the density Po(0,dx) =  m -1  exp(—x /m )d x  which 
is not the identity measure. We have, more importantly, also lost strong continuity of our 
semigroups. The closer we start to the origin, the sooner we are likely to jum p and so we 
do not have uniform convergence of AR \ f  to /  as A —> oo or (equivalently) P t f  to /  as 
t  4. 0. Both of these pointwise convergences fail to be uniform near 0 and Pt does not map 
(7 (R+) to C(R+ ) as it creates a discontinuity at 0 .
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The significant result of this is tha t the image of C (R+) under the resolvent is not a dense 
subspace. This means extra work in defining the semigroup or generator and proving 
uniqueness. Fortunately, the process is a Ray process and this extra work is done for us 
by Ray’s Theorem.

2 .3 .2  T h e  R e so lv e n t

Let R \  be a contraction resolvent on C(R+) with R \  1 =  1.

(2.29) D efinition: For a  >  0, a function f  E C(K+) is called an a-super-median function

if
0 <  \R \+ af  < f  VA > 0 .

We can construct Ray processes from Ray resolvents. The theorem which does this relies 
on the idea tha t if the family of super-median functions is sufficiently rich then we can 
define the semigroup from these functions alone. This is in contrast to Feller-Dynkin 
processes for which the image of R \  is dense, which allows the semigroup to be defined 
more directly.

(2.30) D efin ition: The resolvent R \  is a Ray resolvent on C(R+) if the union over a  > 0 
of all a-super-median functions separates points in R+ .

Such resolvents uniquely define a semigroup, a generator and a  Ray process on R+ .

(2.31) Theorem : The resolvent for the Feller Brownian Motion X + defined above is
given by
(2.32) R + f ( x ) =  -R x f ( x )  + e - ^ R i f (  0) 

where

^  = -  D r  ( e~x/m -  e~71) ^

on the space C(R+ ). As before, ~R\ is the resolvent for Brownian Motion killed at 0.

Proof: We again use ltd  Excursion Theory. Since we have only finitely many approaches 
to the origin in a finite interval, local time counts the number of excursions from zero. 
Note tha t if X(0) = 0  then £(0+) =  1 otherwise £(0+) =  0 and so we define

h  •= € (0 ,t] : =  o j j  +  ^{x(0)=0}-

The excursion measure n(E) (or n(E) for the measure of marked and unmarked excursions) 
is the probability th a t the next excursion lies in 5  C U (or S e t / * ) .  The local time when 
an excursion in some set E arrives is geometrically distributed and we still have tha t
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E i  =  [7 1 (H )] 1. The Laplace Transform of the entrance measure is given by

roo
(2.34) n \{ r )  =  /  l l~ +{0,dx) ~Rx{x,T)

Jo

being the jum p measure II *" followed by killed Brownian Motion. We obtain a version 
of (2.16),

roo
(2.35) E 0 [ < r l  =  I S o /  e~xt(U(t) =  n(U , ) ~ 1

Jo

(the marked null excursion d  is absent, since the process does not spend positive time at 
the origin) and the calculation leading up to (2.17) again yields

roo
(2.36) i?t(0,r) =nj(r)E0 /  e~xt<U(t)

Jo

and so roo
(2.37) R t f ( 0 )  = ( n i f ) E 0 e~xtdt(t).

Jo

The process is honest and so A-1  =  72j(0,R+ ) =  R J  1(0) where l(x ) =  1 for all x , and so

(2.38) R t f (  0) =
_  R t m  _  n xf

A I^1(0) AnAl ’

as required—the integral in (2.37) is a normalising constant. The resolvent is completed 
as before and as described in the appendix to obtain (2.32). The final step, determining 
n A/ ,  is performed using

roo
(2.39) n x f  =  /  m ~ l e~x/rn ~Rxf ( x )d x

Jo

and a straight calculation and use of Fubini’s theorem yields

(2.40) n x(dX) = ( e - / »  -  e“71) dx

and roo
n \ f  = /  nx(dx)f (x )

Jo

2m ( _i \ m
(2-41) nAl  = (m -  7 ) =  +
and therefore

□
(2.42) T h eo re m : The resolvent R ^  is a Ray resolvent 

We must first prove the following lemma.
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(2.43) L em m a: The space R^C(R+) is equal to C2(R+) n C n (E+) where

Cn (IF) :=  C ( W )  n { /  : ir+/(0) = /(0)}.

Proof: We know from Lemma 2.3 that functions f  are twice continuously differentiable, 
and tha t (A — \ - ^ s ) R \ f  =  /•  Since II~"+ (e“ 7‘)(0) =  m ~ l (7  +  m -1 )-1 ,

U~+R+f(0)  =

(2.44)

and so the image is contained in Cn(R+) as well as in C2(R+).

Note th a t we used the identity n \ f  =  U.~+(~R\f )(0)  as at (2.34). This is probabilistically 
clear. Excursions of this process (which determine the left hand side of the equation) start 
according to the distribution II  ̂ and then behave like killed Brownian Motion, which is 
a description of the right hand side.

For a function /  in C2(R+) D Cn(R+), (A — |g j r ) /  =  0 implies tha t /  =  0. Thus by 
Lemma 2 .6 , this result is proved. □

Proof: (Of Theorem 2.42) For any positive function /  6 C(R+), R af  is an a-super-median 
function, a fact easily proved from the resolvent equation,

n-+ ~ R \f  (0) + R t f (  0)n -+(e-7 )(0) 
* R i f { ° )  n \ f  H—7  m  + 1 

R t f ( 0 )  (An*l) +
7  m  + 1

R i f (  0)

0 <  ARi+aR+f = R tf  -  Ri+J  < R t f■

Hence amongst super-median functions we have all twice differentiable functions in Cn (R+) 
and so they certainly separate points. As a concrete example to prove tha t Cn(R+) is not 
trivial, take f ( x )  = /3(ma -f l)e~ ax — a(m/? +  l)e - ^x for any 0 <  a  < (3. Thus R ^  is a 
Ray resolvent. □

2 .3 .3  T h e  G e n e ra to r

We define the generator G+ of X + to be the operator whose domain is the image under 
R \  of the largest subspace of C(R+ ) on which R \  is strongly continuous and is such tha t 
(A -  G + ) - 1 =  Rx.

(2.45) L em m a: The space Cn(R+) is not dense in C(R+).
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Proof: The linear functional /  (II +/)(0 ) — /(0 ) is a bounded operator, since

| ( i r + / ) ( 0) -  / ( 0)| <  H/Hoo +  | / ( 0)| <  2 II/IU .

It is non-trivial since, for a  > 0, the function f ( x )  :=  (m a  +  l)e x p (—ax)  is mapped to 
—ma.  The result is then immediate as the kernel of a bounded linear functional, here 
equal to C'n (M+), cannot be a dense subspace. □

Thus the resolvent is not strongly continuous on C(M+ ), that is, ||A.Ra/ — /||oo“A  0 as 
A —> oo. We can see this because \ R \ f ( 0 )  II *"/(0) as A —>■ oo and so for /  as defined 
in the previous lemma’s proof, (AR \  — / ) / (0 )  is bounded away from zero as A —> 0. In 
fact, we knew tha t the resolvent could not be a strongly continuous contraction resolvent 
on C(R+ ) because those conditions would be sufficient for it to have a strongly continuous 
contraction semigroup and the branch point at 0 tells us tha t this could not be so.

We can see tha t the resolvent is strongly continuous on C u  (R+) and so the generator has 
R \ C n (R+) for its domain.

(2.46) T h e o re m : The process X + has generator G+ given by G+f  =  \ f n with domain 
comprising all functions f  6  C 2(R+) satisfying

(2.47) i r +/(0 )  =  /(0 ) and I T +G +/(0) =  G+f {  0).

Proof: This is proved by Lemmas 2.43 and 2.6. □

For a function g+ satisfying II ^^(O ) =  <7+(0), integration by parts tells us that

1 r°° / 1
(2.48) n - +G+S+(0) =  —  f  e - ^ mg'i(x)dx =  ~ ^ g ' +( 0)

and so if we have satisfying (2.47), then

(2.49) -pV (°) =  m 9+(°)

which should be compared with the condition on sticky Brownian Motion at (2.27). Note
tha t this holds only because we restricted R \  to that part of its domain for which strong
continuity holds.

As mentioned in the previous section, for a Strongly Continuous Contraction Semigroup 
on a Banach Space B  defining a process X , the generator A  is given by

(2.50) » / ( , ) : =  K

which is a nicely intuitive understanding of the generator. Of course, we expect this to be
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true for X + only on the space where strong continuity holds. If we start X + a t zero, it 
immediately jum ps into (0, oo) according to II_+ and so the formula at (2.50) acting on a 
function g+ in the domain of G+ gives

lim E . g+( X + ) - g+(0) =  lim n ^ ( E J g +. ( ^ ) ] ) ( 0) - g+(0) =  n -+ G +ff+(0)
£4.0 £  e |0  £  1

which is not equal to G+g+ (0) unless g+ = R x f +  for some /+  G C u (R+).

The Wiener-Hopf factorization proved in [W] is for finite dimensional Markov Chains, 
with Q-matrices rather than infinitesimal generators. For finite chains with state space S , 
the “domain” of the Q-matrix is trivial—if we keep everything real, then it is R5 . For 
infinitesimal generators, it is not obvious what the domain should be, or whether the 
factorization holds for any given domain. The use of resolvents helps us to identify the 
domains th a t will give the results analogous to those in [W].

2.4 A  Generalisation of V

We have given analytical descriptions of the two Feller Brownian Motions X  and X +. 
We now tu rn  to the connection provided by Wiener-Hopf techniques between these two 
processes.

Suppose th a t the standard one-dimensional Brownian Motion B,  started a t the origin, is 
time changed via

(2.51) (t>t = J0 J{B(s)>°}rfs ~ met== Jo s&n (B s)dus(B )

where i t  is the local time at the origin. The density V ( B s)ds at (1.2) has been replaced 
with sgn(Bs)dvs{B) where v  consists of Lebesgue measure on R+ =  E + and a mass m  a t 
the origin.

The function sgn, to be consistent with our convention tha t 0 G E~, is equal to -1-1 on 
(0 , oo) and —1 on {0}. Once we have performed the time change of (2.51) and (1.3), the 
half-line (—oo,0) plays no further role in this chapter.

2.5 Some Full and H alf W inding Results

If the process is started at zero, the local time (which grows roughly like y/t) will dominate 
for small t , and fa will thus be negative. For large t, fa will drift to infinity. T hat is, the
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process started a t 0 immediately moves to the left and we have Tq almost surely strictly 
positive.

(2.52) Theorem : The half-winding densities for the time-change at (2.51) are given by

(2.53) IT1 (x, 0) =  e“x/m 

and
(2.54) II ^(0, d x ) = m ~ 1e~x/Tndx.

Proof: Let 0 — m ~ l and consider :=  exp(—\Q2<f)t)f+(Bt) where /+  is given by

/ + ( * * 0  • - ^ { x > 0 } ^  d * - ^ { x < 0 }

and I  is the indicator function. The (weak) second derivative of /+ , f+(d:r), is equal to 
the measure

f+(dx) = 02f+{x) I{x>Q}dx -  0 f+(O)6{x=o}dx

(where d is the usual Dirac delta function) and so 62f +(Bt)d^t = d f ”(Bt). Although /+  
is not C 2 a t 0, we can apply Ito’s formula to N *  by using a reflected Brownian Motion 
and restricting /+  to  U {0}. For a Brownian Motion, B,  with local time at zero £, let

(2.55) (3t :=  t  sgn(J3t)dBs, X t := (3t +  \ l t
Jo

and
</>* := t — mlt .

Thus d X t = d/3t +  \d lu  d[X\t = dt and d(f>* = dt — m d l f  We still use the same nor­
malization of local time, and thus Tanaka’s formula implies the presence of a half in the 
definition of X  in (2.55).

Now we can redefine N + using X .  This has removed the times when B t <  0 and the value 
of N + is constant. Let iVt+ =  exp(—%02<f)f)f+(Xt).  The reflected Brownian Motion X  is 
a semi-martingale, (3 is a local martingale and Ito’s formula for N  gives

dN+  =  e - i* 2*' [ - \ e 2S+(Xt)dt + \ e 2m f+ ( X t )dit

+ + U'(xt)det + y ' i (x t)di\

=  ee- ^ ^ - >xd0t .

Therefore JVt+ is a local martingale.

When Bo >  0, the quantity N f  is bounded over the time interval t 6  (0, Tq ), since 4> is
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positive until tha t time. Therefore iVt+ is a true martingale on [0,r0 ).

By the optional stopping theorem, E xN +(t q ) = N +(0) and we deduce that

(2.56) E xN +(t q ) = Px{process half winds round to 0} =  n + - (x,0) =  e~x/m 

thus obtaining one of the two half winding operators.

We repeat this procedure exactly on N f  := exp(^7 2(f)t)f-{Bt) for any 7  >  0 and for the 
function
(2.57) f - ( x )  = [(m7 2)-1  cos j x  +  7 -1  s in 7 x]/{;c>0} +  (m 72)-1 ̂ {*<0}

for which 7 2 f-(Bt)d(f>(Bt) =  —df!L(Bt). As with N +, N ~  is a local martingale and since 
it is bounded on the interval t  €  (0, Tq ) it is therefore a true martingale up to time Tq\ 
We start the process at 0 and, by the optional stopping theorem, N ~ ( 0) =  E qN ~ ( t q ), 
and so

/_ (0 ) =  (m72)~1 =  II“ + /_(0)

(2.58)
v ' roo

=  / II- + (0, dx) [(77172)-1  COS72; +  7 -1  s in7 a;]
Jo

holds for all strictly positive values of 7 . The key uniqueness theorem of Section 3 in 
the paper by London, McKean, Rogers & Williams (1982a) (to which we will refer as 
[LMRW1]) tells us tha t if for. some measure II_+ (rr, •),

roo
(2.59) E * /_ (X ( r0+) ) =  /  n -+ (x ,d y ) f - ( y )

Jo

holds for all functions /_  of the form (2.57), then II~+(x,dy) is the half winding density. 
Now,
(2.60) (77172)-1  =  m -1  J  e~x/m [(m72)-1  cos70; +  7 _1 sin7 a:j dx

and so
(2.61) II *”(0, dx) = m ~ l e~xlTndx

is the half winding density. □

Write V(x)  := sgn(a:). On [0,00), Af+(x)  = \02V(x ) f+ (x ) . Note tha t V'“ 1A /+  is con­
tinuous at 0 since — m - 1/^_(0+) =  /+ (0+ ). Thus we can say th a t /+  is an eigenfunction 
for V ~ lA  with eigenvalue \0 2. Similarly, /_  is an eigenfunction for V ~ lA  with eigenvalue
_ I ^ 2  

2  1 *

The spectrum of V ~ lA  is U {(2m2)-1 } and, as we shall see, the Wiener-Hopf factor­
ization decomposes the operator V ~ 1A  according to its positive and negative eigenvalues.
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Figure 2-1: The processes X t+ and X t

(2.62) T h eo rem : The full winding operator W is

r°o i
(2.63) IF - (0,0) := /  I T + (0, dx)U+~(x, 0) =  - .

Jo 2

Proof: This follows from the definitions of II l~ and II+~. □

We see, as we would expect from scaling properties of Brownian Motion, that W _ (0,0) 
is independent of m. Also, since the process started at x  =  0 only has a probability of 
one half of returning to <f> =  0 , lim in f* -^  (f>t is strictly positive and so for large times the 
process drifts to <p =  -f oo.

The norms of II-+  and II"1 are both 1 in the uniform norm, since II_+1(0) =  1 and 
II+“ 1 (0) =  1.

2.6 T he Tw o Subprocesses, X + and X~

We have the process X , sticky Brownian Motion defined on [0, oo), as shown plotted 
against 4> in Figure 2-1. Its generator is given by A> defined at (2.28), on the domain 
C2(R+) D {m /"(0) =  /'(0)} . We also know, from equations (2.53) and (2.54), how the 
time changed process half winds around the origin.
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Figure 2-2: Translating the Time Axis

The subprocesses X + and X  are defined by

(2.64) X? := X(t+), Xt~ :=  X (r f )

each on the appropriate half space E + or E~. They are shown in bold in Figure 2-1, X + 
to the right of 4>t = 0 and X~ to the left. Let us call the generators of these processes G+ 
and G~ and, when we have found the domains, let us denote the functions on which they 
act by adding subscripts; /+  and /_ .

It is clear that it should be possible to decompose the process X  into the two subprocesses 
X + and X~. It also seems plausible that, given X + and X~,  together with the half 
winding operators, we could reconstruct the law of the entire process X. We shall do this 
and express the result using an isomorphism between the domains of the three generators.

Analysis of the process X ~ , with its solitary state 0, in which it stays until the process 
dies, will not detain us for long. We need only determine the rate at which the process 
dies.

(2.65) T heorem : The process X~ consists of a solitary state 0 which the process leaves 
(to enter a coffin state) at rate (2m 2)-1 .

Proof: As X ~  is a Markov process, it lives for an exponential time. Say that it dies at 
rate a.

The probability that the winding process, started at y > 0, will half wind round to 0 is 
n+"(i/,0 ) =  exp(—y/m).  This is also the probability that the process X ~  will live for
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time Ho where Ho is the hitting time of x  =  0 for the winding process started at y. To 
see tha t this is the case, we start the winding process at height y  and wait for it to hit 
zero, which it does at time Ho as in Figure 2-2. Now we consider this to be the starting 
point of a  process X ~  identical in law to the process X ~  and defined using the winding 
process, bu t with the time axis shifted to the right by time Ho. For the winding process to 
complete a half-winding, X ~  must live for time Ho. Therefore, since the winding process, 
up to the time it hits zero, behaves like Brownian Motion, we use a standard result to say 
tha t

n + -(y ,0 )  =  e~y!m = [°° ¥y{H„ e dt}e~at =  E  x[e"“Ho] =  e~y^
J 0

and s o q  =  (2m 2)-1 . □

This result can also be seen from the proof of Theorem 2.52. The generator of the process 
X ~  corresponds to positive eigenvalues of V ~ lA —if \62 is an eigenvalue of V ~ lA  then 
—\ 6 2 is an eigenvalue of G~.  Hence G~ = (2m 2)-1 .

The process X + is more interesting. I t is the Feller Brownian Motion of Section 2.3, the 
analysis of which we have already studied. This is immediate now tha t we have calculated 
the half winding operator n  (̂O, dx).

2.7 The Isomorphism

For functions /+  in the domain of G+ and functions /_  in the domain of G- , we consider 
the mapping

(2 .66)

Given ( / + , / - ) in C&(R+) x R, let

/_(0) = 2(/-(0)-n-+/+(o))
/+ (* ) =  / + ( * ) - e -* /”7 _(0)

then (/+ , /_ )  is in Cb(R+) x R and (/+ , /_ )  maps to ( / + , f ~ )  under (2.66). Therefore the 
mapping is surjective. Since it is linear, to prove injectivity only requires showing th a t 
( / + , / - ) =  0 implies tha t ( /+ ,/_ )  =  0. So, suppose that =  0. Then /+(0) =
— exp(—x /m ) f - (Q )  and so / - (0) =  | / - ( 0) =  0. Therefore the map is an automorphism 
on C&(R+ ) x R. We also have the following theorem.

(2.67) Theorem : The mapping at (2.66) takes { ( /+ ,/_ )  : /+  in domain of G+, /_  in 
domain of G - } isomorphically to the domain o /sgn - 1*4.
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Proof: We define A  as at (2.28) and then take as its domain the space of functions /  =  
for which sgn~1( x ) A f  is continuous and bounded. Since the multiplication by 

sgn-1  changes the sign of the function at 0, we require

(2.68) /  G C62( l+ )  and m /"(0 ) =  - / '( 0 ) .

We know tha t the mapping is bijective between its domain and range.

Suppose tha t ( /+ ,/_ )  and ( / + , / - ) are functions in C 2(R+) x R related via (2.66). Then 
/+  is in the domain of G+ if and only if II- + / + (0) =  /+ (0) and II- + /" (0 )  =  /+ (0). The 
function ( / + , / ” ) is in the domain of A  if and only if / + (0) =  / “ (0) (for continuity) and 
/ + satisfies — m / +,,(0) =  / + (0).

Since / + (0) =  /+(0) +  /_ (0) and / ” (0) =  II- + /+(0) +  /_ (0 ), the first of each of the 
pairs of conditions are equivalent. (Note that this implies tha t there is an isomorphic 
relationship between the extended domains where strong continuity does not hold. We 
now go on to prove tha t the smaller domains of strong continuity are also isomorphic.)

Integration by parts gives

n-+/"(o)

and thus the second two conditions are also equivalent. □

This result shows the largely ignored difficulty of pinning down the correct domains. The 
domain of A  as given at (2.25) is the natural (and dense) domain for sticky Brownian 
Motion. I t suggests the domain given in (2.68) for the domain of sgn- 1(:r)A  This in tu rn  
is isomorphic to the domain of Strong Continuity of G+ given at (2.47), which is not a 
dense subspace, and neither is it the natural domain for G+ .

To end the section, let us interpret the isomorphism (2.66) in terms of the winding process. 
It tells us tha t to  evaluate f +(x) we must start the process at x, and allow it to half 
wind round to E ~  where it hits some point y, say. Then f +(x) is the expected value of 
f+(x)  +  f -{y) -  We evaluate f ~  in a similar way.

If we formally invert the mapping then we obtain

/+(*) = (/-n+-n-+)-I(/+W-n+-/-W)
/_(*) = (7-n-+n+-)-1(/-(x)-n-+/+(x))

roo
= /  m ~ 1e~x/mf" (x ) d x

Jo
=  —m-1/+(0) -  m ~ 2f +(0) +  m_2r r +/ +(0)

= -m _1/+(°)
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Figure 2-3: Inverting the Isomorphism

which we can expand as a power series and then also interpret probabilistically. To eval­
uate /+ (#), start the process at x  and let it wind around the origin. Then f+{x) is the 
expectation of the sum of f +(Xt) for every time the process crosses (j){t) =  0  whilst in E +, 
minus the sum of f~ {X t )  for every time the process crosses <f)(t) =  0  whilst in E~. See 
Figure 2-3 where to calculate f+(x),  for each of the points along 4>t =  0, we evaluate and 
sum f +(X t ) (for points marked ©) or —f ~( Xt )  (for points marked ©). Again, f ~  has a 
similar interpretation and so we may write

(2.69)

(2.70)

/+ (*) =  E

f - { x )  E

E f +w -  E /'(*■)
*(0=o

x t eE+
*(t)=o

X t£E~

E r w -  E
<t>(t)=o 
Xt 6E“

^(t)=0
x t eE +

For the process we are considering, we have the result that IF - (0,0) is equal to one 
half and so eventually (f>{t) drifts to infinity. If we write /+ (r )  =  ° (W +)nf +(x) —
E S ° (^ ~ )nn _+/+(a:) and note that (VF+ )n+1 =  n + _ (W_ )nII_+ then we see that the 
expectations defining and /_  are bounded for bounded functions.
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2.8 The W iener-H opf Factorization

We have now completed the main work of the chapter. Before seeing the advantages of 
placing the results in a Hilbert Space setting, we prove the central result—the Wiener- 
Hopf factorization as expressed in Theorem 2.71. The subtleties of this result, w ith which 
we have already dealt, are those aspects concerning the domains and isomorphisms. All 
tha t remains is to verify a number of identities.

(2.71) T h eo re m : The following equality holds on functions ( /+ ,/_ )  as in Section 2.7—

Proof: Take a pair ( /+ , /_ )  with /+  in the domain of G+ and /_  in the domain of G~. 
Then,

sgnW‘U (n-+ T- ) ( £ )  = sgn(*r u  ( M f ! ( 0)f; T ( 0) / m )
(2.73)

= (  \ n  + ^e-x/m/-(0)
V -&/;(«>) + 2̂ /-(0) )  '

Also

/  /+  n + -  \  /  g + o \ (  U \  = (  i + n + "  \  /  i /+
I, n - +  / -  J \  o - G ~  )  \  f -  )  \  n - +  i -  ) \  —< ?-/_ (o)

(2.74)

where —G ~ f - ( 0) =  (2m2)_ 1/_ (0 ) and so, using (2.48) this equals 

(2 75} (  +  )  =  (  i f +  + 2 )K ' ; V in-+/f(0) + ̂ /_(0) )  v - Jt/i(0) + ̂ /-(O) )'
Therefore (2.75) and (2.73) are equal and

(  1+ n + "  , (  I+  n + “  (  G+ 0
(276) ( n - +  i -  sg n (x )_ ^  U-+ / - H o  —G~ )

□
This constitutes a factorization of sgn(ar) l A  into its negative eigenvalues (the eigenvalues 
of + G +) and positive eigenvalues (the eigenvalues of —G~).
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2.9 Exploiting Sym m etry

We consider for a moment the Markov Chain situation. In [W], the Markov Chain X  on 
the finite state space E  has Q-matrix Q which is symmetric with respect to a measure m  
on E.  The inner product

( f,  9) '= ^ 2  f i m i9i

is defined and since Q is m-symmetric, there are results to tell us th a t the chain is uniquely 
described by the Dirichlet Form £ ( f ,g )  :=  — (/, Qg). (See Fukushima (1980) for the 
general Hilbert space setting. Applying this to Markov Chains is a great simplification of 
the theory given there.)

The theorem in [W] states th a t there exist inner products {•,•)+ for functions on E + and 
(•,•)_ for functions on E ~  such tha t

(2 77) i f ,  Vg) = (/+,9+>+ -
£( f , 9)  = e+U+,9+) +

where the mapping between /  and ( /+ ,/_ )  is given by (2 .66) as usual and the quadratic 
forms are given by £ + ( /+ ,g+) = - ( f + , G +g+)+ and £ _ (/_ ,# _ ) =  The
operators G + and G~ axe symmetric with respect to these non-standard inner products.

The analytic definition of a Dirichlet Form is as follows. A symmetric, non-positive definite 
bilinear form £  defined on a dense subspace of a Hilbert space i f  is a Dirichlet Form if 
it is Markovian and closed. Let V{£)  denote the domain of the Dirichlet Form and write 

{f, g) for £ ( / ,  g) +  A(/, g) .

A form is closed if whenever some sequence f n in V[£] satisfies £ \{ fn — fm, fn — fm)  -> 0 
as n, m  —> oo then there exists some /  6  V[£\ such tha t £\ ( fn — / , / „  — / ) —>• 0 as n  —> oo.

There exists a one to one correspondence between closed symmetric, non-positive definite 
bilinear forms on H  and non-positive definite self-adjoint operators on H.

A form is Markovian if whenever /  6  !>[£] then g := 0 V /  A 1 is also in T>[£\ and

£{g,g) < £ ( /,/)■

A Dirichlet Form is regular if the space T>(£) fl { /  : /  € Cf,(R+ ) , /  has compact support} 
is dense in T>(£) with respect to  the norm £\ and dense in { /  : /  G C{,(R+ ), /  has compact 
support} with respect to the uniform norm.

If a regular Dirichlet Form is defined on a Hilbert space carrying a standard inner product, 
tha t is if H  = L 2(E , m) for some measure m, then it defines a unique symmetric Markovian

39



process. In fact, this process is a Hunt process; it is strong Markov, right continuous and 
quasi-left continuous.

If the inner product is not standard, then the correspondence between Dirichlet Forms 
and Hunt processes breaks down. Even in the simplest case of finite state Markov Chains, 
a non-standard inner product can yield Dirichlet Forms corresponding to a symmetric, 
non-negative definite Q which is not a Q-matrix. Given a process X  wih Q-matrix Q and 
a non-standard inner product (•, •)+, we will call £+(f ,g)  :=  — ( /, Qg)+ the quadratic form 
related to X , or just the related quadratic form, and reserve the name Dirichlet Form for 
a standard inner product where the relationship between the form and the Hunt process 
is well established.

Neither of the inner products (•,•)+ and (•,•)- in [W] is standard and so there is no general 
theory th a t says tha t the quadratic forms and £ -  define the processes X + and X  . 
Nevertheless, (2.77) does exhibit the structure of the analysis underlying the Wiener-Hopf 
factorization. The Dirichlet Form £  is defined with respect to a standard inner product 
and so does define the Markov Chain X .  Future work establishing the exact relationship 
between quadratic forms and stochastic processes for non-standard inner products would 
tidy up this area of the theory.

Most of the above comments also apply to our continuous state space situation although we 
no longer have the simple situation tha t Cb{E) =  L 2(E, m).  Therefore to  show rigorously 
tha t the Dirichlet Form, or the associated resolvent or generator on the Hilbert space, 
defined the process, we would have to show th a t the objects on the Hilbert space defined 
the corresponding objects on the spaces of continuous functions. This is what Fukushima 
does for symmetric processes and standard inner products and provides the motivation 
for the definition of regularity of a Dirichlet Form. Since the constant functions are not in 
the closure (under the uniform norm) of the space of continuous L2(R+,i/) functions, to 
make the transition from a Dirichlet Form on L2 (R+, v) to a resolvent on C (R +) requires 
the imposition of the result tha t R ^ l  =  A-1 .

We now return to the case where X  is sticky Brownian Motion. If we consider the resol­
vent of this process and define R \ ( x , y )  as in (2 .1) with respect to i/, so tha t R \ f ( x )  = 
f  R \{x ,y ) f {y )v (dy) ,  then for x, y > 0,

i i  i . i e- 7l®+vl
Rx(x,y) = T - V 7'1-"1 -  e -^ +"l) +  —  = Rx(y,x)§7(7771 +  1)

and when x  =  0, R\{0,  y) = R \ (y ,  0). Thus sticky Brownian Motion is a symmetric process 
with respect to the measure v  and can be defined by a Dirichlet Form on the Hilbert space 
H  = L 2( R+ ,i/).
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Define the generator A  as at (2.28) on W'2(R+ , is), a subspace of H  :=  L2(R+ ,i^). (The 
measure v  is Lebesgue measure on R+ with a mass m  a t the origin.) The inner product 
on H  is defined by

roo

( f ,9)v = mf{0)g(0)  +  /  f (x )g(x )dx  
Jo

for L 2 (R+ , v) functions /  and g and the Dirichlet Form for X  is given by

roo
(2.78) £v(f ,g)  =  ~ ( f , A g ) u = i  f ,(x)g,(x)dx.

Jo

This is defined initially for functions /  and g in the domain of A.  To obtain the domain 
V{£v), we take the closure of the domain of A  with respect to the Dirichlet Form. Therefore 
V(£v) is equal to PF1(R+ ,i/). The la tter equality in (2.78) holds by integration by parts 
(and since -4/(0) := (2m)” 1/ ' (0)). Note tha t since v  has a mass at zero, L2(M+ ,i/) 
functions are well defined at zero.

In the same way, we define the generator G + by G+/+  =  \ f n on the domain W 2(1R+ , Leb)fl 
{/ : n~+/+(0) = /+(0)} which is dense in L2(R+ ,Leb).

We have the useful result tha t the half winding operators are adjoints of one another, 
(II h)* =  n+", in th a t the kernels for the operators with respect to the measure v  satisfy 
II_+ (0,a;) = n +“ (a;,0). Therefore (U.~+f +, g - ) u-  = ( /+ ,I I+ - p_)v+. Furthermore, these 
operators are both  contractions. Unlike most other examples, here the norms of II+_ and 
n~+ are both  easily calculated. We find that

(2.79) ||n+-||2 =  ||n-+||2 =  2- 2 .

The value of the square root of one half for the norm is by no means restricted to this 
simple case. We shall see tha t it occurs either as the norm or as an upper bound for the 
norm in many situations.

If we write the mapping (2.66) (now acting on the space L2(R+ , „)) as (7 +  T ) ( /+ , /_ )  
where T ( /+ , /_ )  =  (II- + / _ , n - + / +), then from (2.79),

WT(UJ-) III = ||n+-/_||! + ||n-+/+||!
(2-80) <  KII/-II2 +  II/+II2)

= ill(/+,/-)lli
_  1

and we see tha t T  is a contraction with norm no greater than 2 2. The mapping at (2.66) is 
therefore invertible and hence an automorphism on L 2{R+ , v). It takes functions ( / + , f ~ )  
in the domain of A  to the space of functions (/+ , /_ )  for /+  in the domain of G+ and /_  
in the domain of G~.  Assuming tha t ( / + , /  ” ) is in the domain of A,  then it is immediate 
tha t /+  is in W 2(R+ , Leb). The continuity of ( / + , f ~ )  guarantees tha t II l‘/+(0) =  /+(0).
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We have already observed tha t the operators we used to describe killed Brownian Motion 
are not strongly continuous. This arises from the fact tha t functions for which /(0 )  is zero 
are not dense in the space C&(R+) with respect to the uniform norm and thus the image 
of the resolvent is not a dense subspace. We show here tha t the resolvent ~R\  of killed 
Brownian Motion is an SCCR on the space H  = L2(R+ , Leb). The image of its domain 
in H  also contains only functions for which /(0 ) =  0, but is nevertheless dense in H  with 
respect to the inner product.

As well as showing it to be strongly continuous, we must show tha t the resolvent has norm 
satisfying ||A “Ra ||2 <  1- We use the following lemma to prove this.

(2.81) L em m a: Suppose that a is a non-negative function on R+ x R+ for which there 
exist finite constants cx and Cy such that

roo roo

/  \a(x,y)\dx < cx 'iy > 0 and /  \<r(x,y)\dy < Cy Var >  0.
Jo Jo

Define E f ( x )  :=  f R+ o (x ,y ) f (y )dy  on L2(R+ ). Then E is a bounded operator on L2(R+ ) 
with norm less than y/cxCy.

Proof: For h G L 1(R+ ),

roo roo roo

/  \Eh[x)\dx <  /  /  \a{x,y)\dx \h(y)\dy
Jo Jo Jo

by Fubini and this is bounded above by cx ||/i||i. Thus 'Eh is in L 1(M+ ).

Now take /  G L 2(R+ ). By Cauchy-Schwartz,

|£ / ( z ) |  <  /  [M x ,2/) |1/2] [|cr(a;,?/)|1/2|/(?/)|] dy < >/cy(E ( /2)(a:))1/2
J o

and since f 2 is.an L 1(R+ ) function, [E (/2)(a:)]1/ 2 is an L 2 (R+ ) function and so

| |S / (x )||2 <  y/cf&yJWPh = v ^ l l / l b -

Therefore | |S ||2 <  D

(2.82) L em m a: The operator ~R\ is an SCCR on L 2(R+).

Proof: W ith cr(x,y) = 7 - 1(exp(—̂j \ x  — y\) — 7 -1  exp(—7 |a: +  y|)) in Lemma 2.81, we see 
tha t the resolvent ~R\  is a bounded operator on L2(R+ ). We can take cx = Cy — A-1  and 

thus ||A ~.Ra||2 <  1-

The image of H  under ~R\  is the dense subspace { /  G W 2(R+ ) : /(0 ) =  0} and therefore 
the resolvent is strongly continuous. □
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This result gives us in tu rn  the result that our other operators based on the resolvent for 
killed Brownian Motion are contractions and hence are well defined resolvents.

2.10 Inner Products and Dirichlet Forms

We enrich the structure of the isomorphism (2.66) of Section 2.7 by finding inner products 
(•,•)+ and (*,•)- on L2(R+ ,i/+ ) and L2({0} ,^ “ ) which satisfy

(2.83) {f,sgn(x)g)„ = ( f +,g+)v+ -  ( f~ ,g ~ )v-  = {f+,9+)+ ~  ( /- ,5 -> -*

As usual, we use the notation

( f + \  = (  f + +  n + _ / -  ^  ( 9+ \  =  (  g+ +  n + ” 9-  ^
\ f - )  V n-+/+ + f -  ) '  \ 9 ~ )  \ n-+ff+ + g -  ) '

(2.84)

We now reformulate the Wiener-Hopf factorization (2.72) in terms of Dirichlet Forms.

(2.85) T h eo re m : There exist unique inner products (-,*)+ on (0, oo) and (*,•)_ on {0} 
and quadratic forms and £_ related to the processes X + and X  such that

(2 .86) ( f ,sgn(x)g) l/ = ( f+,g+)+ - ( f - , g - ) -

and, for functions f  and g in the domain of A,  and their images under (2.66),

(2.87) £ / ( / ,  0 ) = £ + ( /+ ,0+)

Proof: Using the result (n-+)* =  n+“ (so (U+~ f - ,g + ) u+ is equal to ( f - , U ~ +g+ )„-),

( f,sgn{x)g)v = (f+ +  n +“ /_ ,# +  +  U+~ g - )u+ -
- ( U . - + U  +  f - , U ~ +g+ + g - ) u-  

(2-88) =  ( U ,g + )v+ + ( U + - f . , U + - g - U -
- ( U - + U , U ~+g+)„- -  (/-,0-)„-

=  </+,0+)+ -  i f - , 9 - ) -
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gives the expressions for the inner products as

(f+,9+)+ =  (f+,9+)v+ ~  ( n - +f + , U - +g+)u-
r  oo

=  /  f +g+ - m I l - + f +(0)n-+g+(0)
(2.89) °

(/_,<?_>_ = ( f - , g - ) u- -(n+-/_,n+-p_)v+
=  §m /_(0)p_(0).

The inner product (•, •)+ is a true inner product, because II-+  has norm less than l / \ /2 .

These inner products (and hence the quadratic forms) must be unique, since we have 
obtained them  constructively. The related quadratic forms for the X + and X ~  processes 
are given by

roo

£+{f+>9+) = ~ ( f + ,G +9+)+ = \ \  f+9+
(2.90) °

£_ (/-,< ?-) =  - ( / - , G - 5_)_ =  ^ / _ ( 0)p_(0)

for functions in the domains of G+ and G~. (Recall th a t n - + /+(0) =  /+(0) and tha t 

pV(°) =  - m I I - +^ ( 0).)

Using the definition of A  a t (2.25), we can write

(2.91) =  - H U  +  n + - /_ ,« #  +  (n+-g_)">„+-

- 2̂ ( n _ + /+  +  °) +

and see tha t this equals £+ (/+ , <7+) +  £ _ ( /_ ,g_) as below.

Integration by parts gives
(2.92) n - +G+g+(0) =  -G + g + ( 0) 

and hence the terms in (2.91) involving /+  and 5+ are

-*(/+.ff+V -  2k(n-+/+,s;(0)),-=
(2.93) —(/+) G+g+)v+ + ( n -+ /+ ,G +g+ (0 ) )„ -=

- ( /+ ,G + g +>1/+ -  (n-+/+,n-+G+g+(0)),- =  £+ (/+ , g+).

By direct calculation, the /_  and g_ terms are

(2.94) - i < n ( n + - g _ ) " > , + -  £ < /_ ,  (n + -g _ ) '(0 ))„ - =  £ - ( / - , g_).

By (2.54)

(2.95) <n+- / - , g ^ + =  < / - , n - +g " ) tl-  =  i( /_ ,g V (0 ) )„ -
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and so the /_  and g+ cross terms cancel. Finally, either by the symmetry of the Dirichlet 
Form, or by one more calculation, the /+  and g-  cross terms axe found to cancel.

Therefore we have inner products and quadratic forms satisfying

{f,sgn{x)g)v =  (f+,g+)+ -  ( / - , £ - ) -
(2.96)

£v(f>9) =  £+(f+,9+) +

□
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Chapter 3

T he Canonical Continuous Case

3.1 Definitions

We now consider the im portant case of Brownian Motion on R time changed as at (1.2) 
with V(x)  = sgn(rr), so E + = (0, oo) and E~  =  (—oo, 0]. An approximation of this is 
shown in Figure 1-1 on page 14. The expressions for the operators can be found in [W], 
bu t the analysis is wholly absent there and also, a fortiori, proofs concerning domains, 
ranges and isomorphisms.

This case is worthy of careful study as it can give results for more complicated cases via 
transformations, as in McGill (1989b).

We will follow the same general scheme as Chapter 2. Thus although we begin with a 
process on R (Brownian Motion), we will later decompose it into the X + and X ~  processes 
on R+ and R~ respectively. For this reason it is helpful to adopt the superscript and 
subscript notation from Section 2.10 and, anticipating later definitions, let

(3.1)

and similarly for other functions. Again, once we have defined the operators related to 
these processes, we will use f  = ( / + , / - ) for functions in the domain of sgn-1  ̂ 4 and /+  
and /_  for functions in the domains of G+ and G ~.

Following the notation of Chapter 2, we define the operator
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on the domain

(3.3) { / : / + €  W 2(K + ) ,/ -  €  W^KT ) ,/+ (0 + )  =  / " ( 0 ),(/+ )'(0 + ) =  ( /- ) '(0 )}

where W 2 denotes a Sobolev space, W ^ R ^ ) := { / : G L 2(B^)}.

In fact, this domain is simply W 2(R). The reason for expressing the domain as at (3.3) is 
for comparison with the domains of G+ and G~.  As before, we shall find an operator which 
maps ( / + , f ~ )  in the domain of A  to (/+ , /_ )  in the domains of G+ and G~ respectively. 
These pairs of functions will both lie in W 2(R+ ) x W 2(R- ) and both will have two further 
conditions imposed upon them. Those two conditions for this domain are / + (0+) =  /~ (0 )  
and 0+) =  ( /~ ) /(0). Two conditions for /+  and /_  will emerge later, although we
note here tha t the conditions on /+  must be independent of /_  and vice versa. The 
interdependence of the two functions is factorized out by the transformation.

Note th a t the processes will be described by operators on L 2 spaces from the beginning. 
In the previous section, we were dealing with a transient process and so the inverse of the 
isomorphism (2.66) could be calculated probabilistically for bounded continuous functions, 
even though the half winding operators were not contractions in the uniform norm. The 
situation was simpler because although the half winding operators were not contractions, 
the full winding operators were. Here we have a balanced process which is not transient. 
Properties of Brownian Motion tell us tha t “the Brownian Motion will eventually perform 
a large enough excursion to bring 4>t back to zero.” (The probability of (pt drifting to 
infinity must be either one or zero, since it is an event depending on the tail cr-algebra. 
However, it must be equal to the probability of drifting to —oo and hence both probabilities 
must be zero.) Therefore the full winding operators are not L°° contractions and if, for 
example, we tried to find the inverse of the function l(rr) using (2.69), we would be faced 
with the difference of two unbounded sums. Since the process is recurrent, the full winding 
operators are not contractions on the continuous bounded spaces either. We also see tha t 
the mapping (2.66) is not invertible on C{,(R+ ) x C ^R - ), since n  l_l(a;) =  1 and so sgn(ar) 
is m apped to zero.

Also define
(3.4) A cf ( x )  = \ f " {x )

(where /" (0 ) is defined to be /" (0 —)) on / + E C%(R+ ), f ~  E C 2(R~), / + (04-) =  / _ (0) 
and { f +Y{0+) =  (/~ ) '(0 ). Note that this maps into the space Cf,(0, oo] x Cb[—oo,0].
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3.2 Calculation of II +

The first result pertaining to this case can be found in [W] and other papers. However, 
we prove the result here using Mellin Transforms in a way which tantalisingly suggests 
a more generally applicable method and also yields the new result on the norm of the 
half-winding operators.

( 3 . 5 ) T h eo re m : For x  < 0, the half-winding density is given by

(3.6) ir+z+o*) = /  -7 ^ ^ 2\ f +(y)dvJo 7T{X +  y*) 

which, as an operator on L2(R+ ), has norm 2~ 2 .

Proof: As in Section 2.5, we use the optional stopping theorem on a martingale, this time 
of the form N f  := exp ( |  A2 </>*)/(£?*) for a bounded continuous function / .  For this to be 
a local martingale, we require A cf ( x )  =  — £A2sgn(x ) f( x ) ,  which is solved by

■{(3-T) / ( * )  =  < +  * > °
exp(—A|x|) x  < 0

for any A >  0 . Note tha t there is no non-trivial solution of A f ( x )  = —̂ A2sgn(x ) f( x )  (that 
is, for /  G W 2(R)) and so we are forced to work with the generator A c in the continuous 
bounded space C*,(R+) x Cb(R- ) (so we allow, as we must, discontinuities in A f  a t the 
origin).

Ito ’s formula is valid here, as /  is C 1 everywhere and has a bounded and measurable 
(weak) second derivative, in th a t there exists a bounded, measurable function f "  such 
th a t

/ 'M  “  f '{y) = f  f n(w)dw.
Jy

For this result, see Rogers Sz Williams (1987) (Vol. II), Section IV.45 although the proof 
there can be simplified by decomposing the second derivative into its positive and negative 
parts. Then the function is a difference of two convex functions and a previous result then 
applies.

As in Chapter 2 , the local martingale N ~  is bounded on [0 ,Tq"] and we deduce via the 
Optional Stopping Theorem tha t for x  < 0,

r  00

(3.8) / - ( * )  =  E jJV -( t+ )  =  I I - + /+ ( x ) =  /  n - +(x,dy)f+(y)
Jo

for some measure II ^(x, dy). Again, by the theorem in [LMRW1], if we can find n  *" that 
solves (3.8) for all functions of the form (3.7), then we have found the transition density
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II + (x,dy) .  So now we need not worry about domains at all. We are finding the half 
winding density, and to do this we only need to find a measure II l_(x, dy) satisfying (3.8).

To find this density, we take the Mellin Transforms of / + and / “ , to be denoted /+  and

/ “ , so _  _
f+ ( s ) :=  [  x s~l f +(x)dx f ~ ( s ) :=  f  x s~1f ~ { - x ) d x .

Jnt+ Jr+

If we look at Re(s) =  | ,  this is a Fourier Transform by another name. For an L 2(R+ ) 
function / ,  we can define g(x) :=  exp(x /2)/(ex p x ) which is an L2(R) function with

ll/lb  =  W I2 and / ( !  +  iu) = g(u), 

where g is the Fourier Transform. Therefore as a function on the line Re z  =  | |/ ||2  =

ll/ll*

For our functions / + and f  from (3.7), 

(3.9)
f+(s)  = X - sT ( s ) y /2 s in ( f  +  f )
f~ ( s )  = \ ~ ° r  (s) 

on 0 <  Re s <  1 and so if we set

V 1 /7T S 7T\
(3.10) «(s) :=  —̂= cosec ^ —  +  - J

then f ~ ( s ) =  II |- / + (s) =  « (s)/+ (s) and so the operator II  ̂ is a multiplier in the 
transform space. The inverse Mellin Transform of k is

(3.11) k ( x )  : =  ^
7 r (l  +  X 2 )

and Mellin Transform theory results tell us that for x  G l "

(3.12) n  ~+f +(x) = j  y~1K ( - x / y ) f +{y)dy = f  f +(y)dy
Jo Jo 7x[xz +  y z)

and so
(3.13) II- + (x, dy) =  dy.

7r(xz +  y£)

(Note tha t —2xy  >  0 in this integral.) Now viewing II- + as a multiplication operator on 
L 2({z : Re z = |} )  and since ||/ ||2  =  H / H 2 ,  we deduce the result tha t ||II_ +||2 =  ||II *"H2 
and so,

(3.14) l|n_+||2 =  sup \ k { s ) \  = sup 1 = -i=.
{Rea = i> yeR v  2 cosh7/ V2

□
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See C hapter 6 for another proof tha t this operator has norm 1 / \ / 2 .

By symmetry, II+ -  is defined by

(3.15) II+~ f~ (y )  = j  yf ~ 2̂ V f~{x)dx  y > 0
J-oo 7r(xz +  yz)

and is also a contraction. The mapping defined at (2.66) is also an isomorphism for the 
canonical case definitions.

We now see tha t we do indeed have the result

(3.16) I T + I M  =  r =  1
Jo t t ( x z  +  y l )

where l(x )  =  1 for all x  < 0 (see Gradshteyn and Rhyzik (1980) p.369). This confirms 
th a t the time changed process, started at x  < 0 will almost surely do a half winding and 
so Px{ ^  <  oo} =  1.

3.3 The X + and X ~  processes

We will consider the process X + and its generator G+ only. Symmetric results will also 
hold for X~.  The process X + behaves like a Brownian Motion away from zero (it is a 
Feller Brownian Motion), and so G+ is half the second derivative away from zero. We will 
calculate G+f+(0) to find the domain of the generator.

The behaviour of X +, or of the time changed process ((fit, X t ), at the origin is not as simple 
as in the local time case of Chapter 2. There, we had Tq > 0 almost surely—we could 
identify the “next” excursion. Here, Tq =  0 almost surely and, just as there is no first 
excursion from zero of a Brownian Motion, so there is no first jum p into (0, oo) of X +.

It is easy to understand the behaviour of X + if we start the winding process at x  <  0. It 
will jum p into (0, oo) at time 0 according to the measure H~+(x ,dy ). However, it is not 
true to say tha t if we start at x = 0 it re-enters according to n  h(0 , dy) as this measure 
is zero away from 0 and is singular at 0. If we consider the behaviour of Brownian Motion 
(and see Figure 1-1), we realise that X + must make some jum ps from zero to y > 0.

As is proved in, for example, McGill (1989b), the process X + can be defined via the 
Laplace transform of its excursion measure, which is given by

roo
(3.17) n x (dx )=  y~3/2 ~Rx (y,dx)dy.

Jo
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Informally, this says tha t X + jumps into (0, oo) according to the (infinite) measure a;-3 /2. 
Formally, the (local time) rate of arrival of excursions starting in T C R+ is given by some 
constant multiple of the possibly infinite integral

j  x  3/2dx.
T

We will prove tha t (3.17) is a valid definition later.

3 .3 .1  C a lc u la tio n  o f  G +f ( 0)

V ia  E x c u rs io n  T h e o ry

We use excursion theory to determine the value of G+f ( 0) and the domain of the operator 
in the canonical case.

(3.18) T h eo re m : For the canonical case, G+f ( 0) =  \ f " ( 0) with domain

(3.19) C f t F )  Cl ( /  : j H  * - 3/2 [/(x) -  / ( 0)] dx =  o )

(3.20) L em m a: Let H y denote the hitting time of level y  for a Brownian Motion. Then

i) WX{H0 < H S} =  £ = £

a ) r x{Hc < H 0} =  I

« i) E x [H0\H0 < He] = j ( 2 e  — x)

iv) E x [He\He < H„] =

Proof: The first two axe standard results, and the last two can be deduced via differentiation 
from

(3.21) E . [ e- » . | g . < * o  ] =  £S:nh> -^ .
L J x  sinh(e v  2a)

□
Let Te be the crossing time of e for the process X +, tha t is, Te := in f{ t: X t+ >  e}.

(3.22) T h eo re m :
£2

(3.23) E T e =  y .
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Proof: Let us categorise each excursion from 0 as follows

T y p e  l(as): Excursions starting at x  > e.

Rate =  x~^!2dx = : pi(dx)

T y p e  2(x):  Excursions starting at x  < e and hitting e.

Rate =  e~l x ~ l!2dx = : P2 {dx)

T y p e  3 (x ): Excursions starting at x <  e and not hitting e.

Rate =  e-1 (e — x)x~3/2dx =: ps{dx)

— T y p e  3s (x):  Excursions starting at 6 < x  < e and not hitting e.

Rate =  pz{dx)

Only ty p e  3 are of infinite rate.

Let us stop the process after exponential (rate a) local time. Given two Poisson processes 
of rates (3 and 7 , the expected number of /3-events by the time of the first 7 -event is 7 -1 /?. 
Thus the expected number of ty p e  35 excursions is o r 1 (3$ where

(3.24) j3s = J  Pz{dx) =  Total rate of ty p e  3̂ excursions.

The probability tha t a ty p e  3s excursion starts at x  is (3S 1 pz{dx)/dx  and so

(3.25) E [length of a ty p e  35] =  (3jl J  p^(dx)^(2e — x)

(3.26)

(3.27)

x± . £ x - w i e - x ) (2 e - x )d

- V  [ 4 e V / 2 -  2ex3/ 2 + %x3>2
3e(3& L 5

Therefore the expected length of real time elapsed by exponential rate a  local time due 
to ty p e  3s excursions is E [length] x E [number] =

(3.28)
1

3 EOL
4 e V / 2 -  2ex3/2 +  - x 5/2 

5
e 4e3/2

—y —~—  as 8 4- 0 .
x 5 a
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The to tal rate of ty p e  2 excursions is given by

(3.29) f  P2 {dx) =  f  x ~ lt2dx =  - 7 = .

7o ./o y/£

The to tal rate of ty p e  1 excursions is given by

roo roo  9
(3.30) /  P i ( d x )  =  I x ~ ^ ' 2 d x  =  —p.

Je Je v £

Thus excursions exceeding e occur at rate 4e-1 / 2 and ty p e s  1 and 2 occur with equal 
probability. T hat is, given tha t the process has exceeded e, there is probability one half 
th a t it jum ped above e and probability one half tha t it jum ped to a point below e and 
then crossed it continuously.

By these results, the time elapsed due to ty p e  3 excursions by Te, the time at which X + 
exceeds e, is

4 \ / e £2
(3-3 i> V t - t

The starting distribution for ty p e  2 excursions is

p2{dx) dx y/e dx 
{ } P([0,e]) ey/E 2 2 ^

and thus the expected time for a ty p e  2 excursion to hit e is given by

. f e dx
(3>33) Jo 2y?X

dx E2 — X 2 _  1

0 2 y / x i  3 6 \fe
2eV / 2 -  | * 5/2'

5
4e2
15"

The expected time to  exceed e is therefore

(3.34) E T c =  g  +  1.0 +  =  £
ty p e  3 ty p e  1 ty p e  2

Proof: of Theorem 3.18

We find G+f ( 0) using Dynkin’s formula that for /  € C 2(E + )

r + t m  . E o /(X + (T £) ) - / ( 0 )
( ) G / ( 0) =   g j T ------------ •

To be finite, we require the numerator to tend to zero as e tends to zero.

□
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Using / e°° x  z!2dx =  2/y/e  and the fact that this is the total rate of ty p e  1 excursions, 

E 0f ( X +(Te)) = j ° °  J (x)Pl(dx)

(3.36)

/O 0  +  / ( 0) +  ^ j f  x  3/2(/(a;) - f { 0 ) ) d x

Since /  is bounded and C 1 near 0 , / 0°° x  3/2(/(x ) — f(0))dx  is finite and so the limit of 
E o f ( X +(Te)) as e tends to zero is /(0 ) as required.

By an application of l’Hopital’s rule,

G + /(0 ) =  U m ( ^ { i / ( e )  +  ^ £ V 3/2/ ( x ) < ix - / ( 0 ) }

=  ^  ( J )  { /,(£) +  4 7 ?  . T  x ' 3/2M dx ~  i /(£ )}

(3.37)

which, to  be finite, requires

(3.38) lim
e |0

1 roo  1

+  ~ Q e  Je  2  ~  d x  ~  2 e  ~
=  0 .

This certainly requires tha t / 0°° x  3/2(/(x ) — f(0))dx  =  0, and when this condition holds,

^  / ° V 3/2[/(x) - /(0)]dx =

(3.39)

and so (3.38) holds for functions /  for which

roo
(3.40) /  X - 3 / 2 (f ( x ) -  /(0 )) dx =  0.

Jo

Therefore,

(3.41) G + /(0) =  Um ( 1 )  { / '(e )  +  x - 3/2/(x )d x  -  ± / ( e)}

and multiplying top and bottom  by \fe gives

(3.42) G + /(0 ) =  Um ( J ? ^ )  {  V ?/'(e) +  \  J ~  x - ^ f ( x ) d x  -  ^ / ( e ) }  •
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Figure 3-1: Expected time to exceed e 

Applying l’Hdpital’s rule, we obtain

G+/(0 ) =  Um ( ^ 172)  jv ? /" ( e )  +  |e _ 1/2 / '(e )  -  ^ ~ 3/2f(e)

(3-43) -  ^ = / '( £ )  +  \ e - 3/2f ( e ) } =  t/"(0)

for C 2(R+ ) functions satisfying (3.40). □

V ia  M artin g a les

We now derive the result of Theorem 3.22 assuming the domain of G+ and using a mar­
tingale method.

(3.44) T heo rem : Assume that the process X + is defined by the generator G+ f  = \ f "  on 
functions f  6 C$(R+) satisfying (3.38). Then Theorem 3.22 holds.

Proof: For a fixed e > 0, define the function

/(x )  =  J  - ( * - « ) ( *  +  §) * < *
( 0  X  >  £

and let M t = f { X ^ )  + 1. Then JR+ r _3/2[ /( r )  — f(0)\dx  =  0  and so /  satisfies (3.38). 
Now /  is in the closure of the domain of G+, and if f v —> /  as 77 4. 0 then

lim G+f r)(x) = <rf—>0

\ f " ( x )  =  - 1  0 < X  <  £

X  =  £

0 X  >  £.
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Thus Ito ’s formula says that

dMt =  lim G +} v(X?)dt  + dt

and since this is zero on [0,Te) whenever X q < £, then Mt is a true martingale up to  tha t 
time.

The process M  jum ps when X  hits e and increases with the local time at tha t point. Since 
we stop M  at Te, the local time is zero and we have no contribution from the S£ function.

Therefore, by the optional stopping theorem, for x < e,

f{x)  =  E x(f(X(T e ) )  +  Te) =  E xTe =  - ( x  - e ) ( x  +  e/3)

and in particular, (3.23) holds. □

We can also deduce, via martingales, the result that Po{-^+ (Te) =  e} = \  by considering

Nt : =  g ( X + )  : =  ~ ( X +  +  e ) / { x < t } .

Since g satisfies (3.38), we can approximate it by continuous piecewise linear functions gv 
which are zero on (e +  77, 0 0 )  and then approximate the gv by functions g% in the domain of 
G+ with G+g%(Xt) zero on [0,Te]. Then N?  is a martingale with iV^Te) equal to zero if 
X + (Te) >  e +  77 and so, letting rj —> 0, if X + (Te) ^  e then N(Te) = 0. If X + (Te) = e then 
N(Te) =  1. Therefore, by the optional stopping theorem, <7(0) =  ]?o{-X’+ (2e) =  e} =

3 .3 .2  T h e  r e so lv e n t o f  G +

For A ^  M, define 7  and 7  to have positive real parts such that j 2 =  2A and -y2 =  —2A. 
We will adopt this notation for the remainder of the chapter.

(3.45) T h eo re m : The resolvent of X + on Cf,(M+) for  A G C \  is given by

( 3 . 4 6 )  R + f ( x ) =  -Rxf{x )  +  - j&Te-T*

where
roo

(3.47) n j /  =  /  x~3/2 ~R\f(x)dx .
Jo

Proof: We first take A > 0 and define X + via its entrance measure as at (3.17). Then 
using excursion theory as in Chapter 2 , this is immediate provided tha t the functions in 
the image space of this mapping are well defined. Since /  is bounded, n ^ f  will be finite
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if and only if n x l  is finite. T hat this is the case can be shown by evaluating

• roo roo ,  . roo
7 _1 I x -3/2  I {e- i \ x-y\ — e- 7l*+y|\ dydx  =  27-2  j a;-3 /2 (1 — e~JX) dx.

Jx=o Jy=o v '  Jx=o

If 7  has a positive real part then this is a finite integral and so n ^ l  <  oo.

We extend R x f  by analytic continuation to all values of A away from (where 7  does 
not have positive real part). We thus see that the expression gives the resolvent for the 
process for all values A G C \ R “ . □

The above expression for R ^  also holds for L 2(M+) functions. The resolvent of killed 
Brownian Motion, ~R\, maps L2(M+ ) into W 2(E+ ) and has the property th a t ~R\f(Q) = 
0. Therefore, \nx f \  <  00 for /  6  L 2(R+) since L2(R+ ) functions which are zero and 
differentiable at the origin give a finite result when integrated against a;-3 /2.

Similarly, we have th a t the resolvent R x := (A +  G~)~l is given by

(3.48) R ^ f ( x )  =  -  ~ R -x f ( x )  + p 4 r e ,z
Xnx l

where
(3.49) n \ f  = [  M ‘ 3/2 -R x f ( x )d x

J —00

and 7 2 =  —2A with the real part strictly positive. This holds for A G C \  R+ .

By Fubini’s theorem, we may write /  as

roo
/  ~ R x(~ 3/2) (x) f( x )dx

Jo

which, as we have seen, is finite for any /  € L2(R+ ). Therefore, ~R\(-~3/2)(x) is also in 
L2(R+).

We can derive the resolvent of V~b4, which we will denote heuristically using excursion 
theory ideas. The Laplace Transform of the entrance law for reflected Brownian Motion 
is / R+ e~JXf( x )dx .  Since (A — V ~ 1(x)A) = —((—A) — V ~ 1(—x)A)  we expect the Laplace 
Transform of the entrance law for “Reflected Brownian Motion on Mr time changed to be 
travelling backwards in time” to be — / R_ e^xf(x)dx .  Then the transformed entrance law 
for the wound process, modulo an irrelevant constant, would be a combination of these 
two. This is proved in Theorem 3.51 below.

We must be careful in our terminology. There is a perfectly standard winding process 
t  t-> ((p(t),Xt) on the phase plane K2. This is not the process we are considering. Our 
more unorthodox process has a one dimensional state space, with time capable of flowing
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in both  directions. Rather than  being a two dimensional process tha t does wind about the 
origin, it is the result of taking a one dimensional process which has been wound around 
the origin according to some function V.  Thus when we speak of the generator of the 
wound process, we mean V ~ 1(x)A  where A  is the generator of the process tha t is being 
wound.

(3.50) L em m a: We have
1 _  1 

A n jl  2yJyK

Proof: Since A ~Ra10e) is ju st the probability tha t a Brownian Motion started a t x  has 
not hit zero by an exponential time, it is equal to 1 — e~l x . Therefore

roo
A n^l =  A I x~3' 2 ~ R \ l ( x )d x  

Jo
roo

= / *-3/2(l -  e - ^ d x  = 2v*y r(-i)  = 2y / y n .
Jo

□

3.4 The W ound Process

We must be aware which operators have a clear probabilistic meaning and which are 
analytical objects only. The usual interpretation of a resolvent, tha t is, the expected value 
of a function evaluated a t X ?  for an exponential random variable T, does not apply to 
the resolvent of the wound process. However, we must calculate this resolvent in order 
to show the relationship between it and the resolvents tha t do relate directly to standard 
stochastic processes and do have standard stochastic meanings. The resolvent for the 
wound process is valid only for A ^  R and so it is not meaningful to talk about stopping 
a process at a random exponential time of rate A.

(3.51) T h eo re m : The resolvent of the wound process (that is, the resolvent o f V ~ lA )  is 
given by

(3.52) S xf ( x )  = {

-Rxf +(x) + ^ J r e - i x x  >  0 
An* 1

— - R _ a / - ( : t )  +  p j r e > x  x  < 0  
n \

where A ^ R,
roo rO

(3.53) n \ f  :=  I e~l x f +{x)dx — /  eJxf~ (x )d x
J o  J —oo

and f + and f ~  are the restrictions of f  to and R- .
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Proof: We have

From the form of (3.52) we know tha t S \ f  lies in W'2(R+ ) x W 2(R- ). Suppose tha t it 
is C 1 a t the origin and is therefore in the domain of A.  Then, by the definition of ~R\,  
(A — V ~ 1( x ) A ) S \ f ( x )  = f ( x )  and so our proof tha t S \  is the resolvent of V ~ l A  would be 
complete.

Therefore we must prove tha t S \  f  and its first derivative are continuous at the origin.

Since ~R\  is the resolvent of Brownian Motion killed at zero, both ~ R \ f +(0) and 
~ R _ x f~ (0) axe zero and S \ f  is therefore continuous at the origin.

Next we look at the first derivative. Since \x — y\ =  (x — y)sgn(x — y),

R xf +(x)\ =  [  [-sgn(rr -  y)e 7,1 yl +  e ^ x+y\] f +(y)dy
ix  I x=o Jo L 1 x—o

Similarly

Thus, using 7 7  1 =  —7 7  x,

roo rO
(1 -  7 7 -1 ) /  e~'YVf +{y)dy + (1 +  7 7 _1) /  e ryf~{y)dy

JO J —00

(1 +  77  l ) i f  e TO/ + (y)dy -  /  e7y/  (y)dy)

( S ' a / ) ' ( 0 - )

and the proof is complete. □
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3.5 The W iener-H opf Factorization

V ~ lA

We now come to the central equation of the theory, the factorization (3.55). For the 
Canonical Case, most of our work has been concerned with finding the right domains, 
and this is the main obstacle to proving the factorization. It is quite simple to show tha t 
the equation, if it makes sense at all, is true. It is harder to show tha t it is true, and 
sensible, for exactly those functions for which we require it to be true. The result tha t 
the isomorphism (2 .66) defined by the n ±T operators takes the product of two spaces, 
each with an unusual side condition and maps them exactly to the Sobolev space W 2(R) 
is certainly an unexpected one.

(3.54) Theorem : The expression 

/  t  t t H —  \ - 1

(3.55)

holds for functions  ( / + , / _ )  in the domains of G+ and G~ .

We prove the following lemma at the end of this section.

(3.56) Lemma: The functions

i) -R x('~V2)(x)
ii)  - i 2 A ( I I ( - , y ) ) ( a : )

Hi) I I + ” ( e ^ ' ) ( : c )

iv)  ~ . R a ( I I ( x ,  • ) ) ( < / )

are all ( ^ ( M * )  in x and, under the operator A — fnap to

x~3/2, Tl(x,y), and ~  n ( * » ! / )  +  I ” * “ 3 / 2 ~R \ ( ~ 3/2)(y)

respectively.

From the result of the lemma we see tha t

is well-defined and zero and so the bracketed expression, being zero at 0 and at infinity, 
must be identically zero and hence

-Rx(~3/2)(x) =  2 j ^ ( n + - ( e ^ ' )  -  e -^ )(x ).
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Proof: (of Theorem 3.54) We prove the result tha t for x > 0 and for A ^  M,

(3.57) S xf ( x )  = R i f + ( x )  +  n

where

' = ( ; - ) = ( - t x ;:)
first for /_  =  0, then for /+  = 0. Then the result for general (/+ , /_ )  holds by linearity and 
for all x  G M by symmetry. The generator version (3.55) and the resolvent version (3.57) 
together with its counterpart on M~ axe equivalent and thus the theorem will be proved.

Choose x  > 0 and let /_  =  0 . Define f +(y) :=  f+(y)  for y > 0 and f~{y )  := U~+f+(y)  
for y <  0. We must prove tha t S \ f ( x )  =  R ^ f +(x). That is,

(3.58) - R x U ( x )  + =  ~RxU(x) + ̂ f±e-
A A

which reduces after cancellation to

(3.59) M  =  T ^ F -
A n A l  A n ^ l

A glance back at Lemma 3.50 and equations (3.47) and (3.53) tells us tha t this, when 
written out in full, becomes

Jq | ( 7 _1 + 7 _ 1)e"7X -  (7 -1 +  7 _ 1)n +~(e7')(x) -  ~i?A(-_3/2)(a ;) | f+(x)dx = 0

(3.60)

and so we require the bracketed expression to be identically zero.

Note th a t the square of (7 -1 +  7 -1 ) is 27_ 17 _1 and so

(3.61)

2

=  — 7 _ 1 . 4ir

By the results in Lemma 3.56, the bracketed expression in (3.60) is a combination of the 
exponentials exp(—7 a;) and exp(7 2 ). Since it is zero at x  = 0 and x  =  00, it is identically 
zero.

Still w ith x  > 0, we let /+  =  0. Define f +{y) := U+~ f - ( y )  for y > 0 and f~{y)  :=  f - ( y )
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for y < 0. We must prove tha t S \ f ( x )  = II+ R _ xf - ( x ) .  T hat is,

(3.62) -R An + - / _ ( i )  +  P ^ r e - T *  =  - n + -(~R_xf_ ) (x )  +  ^ ^ n + - ( e ’ )(x).
AnAl  AnA 1

Writing this out in a similar way to (3.60) as an integral of some function against /_  we 
require the following expression to be zero,

- iJA(n(-,y))(x) +  { n + - (er )(y) -  e"™}

(3.63) +  ~R-x(u(x ,  •))(») -  - 4 7 n + - (e ’ -)(*) ~R-x (-~i/2)(y)-AnAl
-2

Applying the operator (A — and using the results of Lemma 3.56 yields zero, and 
hence (3.63) is again a combination of the exponentials exp (7a;) and exp(—7a:). As x  tends 
to infinity, the expression tends to zero for all y and so we need only prove tha t it is zero 
at x  =  0. T hat is, tha t

(3.64) (7 - 1 +  r 1) { n + _ (er )(y) -  e ~ ^ }  -  ^  - f l_ A( - 3/2)(y) =  0 .

This expression is zero at y = 0 and as y —> oo and so applying (—A — we obtain
zero once more and see tha t (3.63) is indeed identically zero.

This completes the proof of the theorem. □

Proof: (Of Lemma 3.56) Parts i ) and ii). We know that the functions in i) and ii) are 
both well defined and, by inverting ~R\,  we have the result given.

We use the three facts tha t II-1 1 =  1 ,

(£ + $ )n(*’y) = -il ( a ! v r */2

(let us use the notation IL ^ r, y) for the derivative with respect to x) and tha t x l lx (x , y) —> 
0 as x  —y 0 .

Part Hi). By integration by parts,

roo
/  n „s (x,y)[e-™  -  l]dy =  -2 A n + -(e ’  )(x)

JO

and
i ^ n + - ( er ) (x )  =  /o°° n» i(x ,y )[e_^!' — l]dy

=  — Jir>(n s«(x ’ V) + ^ ( z y r 3/2)[e~™ -  1 }dy
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and therefore

(a - ^ )n+~(e"') (x)= r  ^ {xy)~3/2[e~™ -  =j / J x-3/2-

P art iv). Note tha t we are differentiating with respect to x, not y, and so ~R\( I l (x , •))(?/) 
does not map to n (x ,i/).

Again by integration by parts (in which all the boundary term s are zero)

roo
7 -1 /  [e-'1’!” -*'! -  e-'i'l” +»l]n„„(a:, w)dw =

Jo

roo
= -  [sgn(y -  w)e~1\w~y\ +  e~ ^w+y^]Uw(x,w)dw

Jo

roo
=  7 /  [e-Tl“,-»l -  2S(y -  w)e-̂ w~̂  -  e-'>,l”,+!'l]n(x,tt>)dw 

Jo

= -2II(x, y) +  7 2 "i?A(n(x, .))(y).

So

d?
-Rx(H(x,  •))(») =  7 -1  / “ [e-T'l’"-*'! -

=  - 7 _1 j f V 7 -  e-Tl“,+!'l] ( i W x , «,) +  j  dw

= 2n(x , y) -  72 -i?A(n(x, -))(y) -  3? * ~ 3/2 -R A(--3/2)(y)

and

(A_^ ^ 2) = - u (x>y) + | ^ ~ 3/2_^ (" 3/2)(y)

as required. □

3.6 Dirichlet Forms

We finish these two chapters concentrating on the analysis of Wiener-Hopf techniques by 
finding, as before, inner products and related quadratic forms on the spaces satisfying 
the equations (3.66) and (3.67) below. This provides us with another way of viewing 
the Wiener-Hopf factorization and the structure behind it. We also prove that G+ is 
self-adjoint with respect to ('> •)+ and similarly for G and (•,•)-.
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(3.65) T h eo re m : There exist inner products (•,•)+ o n L 2(M+ ) and (*,•)- on L 2(M. ) such 
that the Dirichlet Form £  and the quadratic forms and S -  associated with the processes 
satisfy
(3.66) ( f ,sgn(x)g)J/ =  (f+,g+)+ -  {f - , g _)_

and

(3.67) £v{f ,g)  = £ f ( / + ,0 + ) + £ - ( / - ,£ _ ) ,

for functions f  and g in the domain of A  and their images /+  and /_  under the isomor­
phism.

Proof: This is essentially the same theorem and proof as in Theorem 2.85. We define the 
inner products as before with

(f+,9+)+ :=  {f+:9+)v+ — (n  +f+ ,U~+g+)l/-

( / - i f f - ) -  := ( / - , g - > „ - - ( n + - / - , n +- S-)„ +

where the measures v + and v~  axe Lebesgue measure on R+ and M r . By the isomorphism 
between the domains and the same calculation as at equation (2.88), we see tha t (3.66) 
holds. By the definition of a Dirichlet Form associated with a process, we have tha t

(3.68) € ( f ,g )  = - ( f , A g ) v

and the quadratic forms and £ -  axe defined similarly. Writing £ ( f ,  g) in terms of /+  
and /_  using the Wiener-Hopf factorization gives us

- ( / +  +  n +- f - , G +g+ -  n +-G -g _ )„+ +  (n ”+ /+ +  /_ , i r + G + 5+ -  G ~ g-)v- .
(3.69)

Multiplying this out shows tha t the terms involving /+  and g+ and /_  and g-  are equal 
to £+ (/+ , 0+) and £ - ( f - , g - )  and, using the adjointness of n -1 and n  •■, the cross terms 
cancel so tha t
(3.70) £ ( / , 0 ) = £ + ( /+ ,0+ ) + £ _ ( / _ ,0_).

□
We finish our work on the Canonical Case with the following result.

(3.71) L em m a: G+ is self-adjoint with respect to the inner product (•,•)+.

Proof: A function g+ is in the domain of G+* if there exists an h (and this h will be unique) 
such tha t for all /+  in the domain of G+ ,

(G+f+,g+)+  = (/+>M+
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and then G+*g+ is defined to be equal to h.

The symmetry of the operator G+ follows from the self-adjointness of A  as follows. For a 
function /+  in the domain of G+ , let /  equal /+  on R+ and II-+/ + on M~ and similarly 
for functions g+ and g. Then

(.f+ , G +g+)+ = -£+(/+>  g+) = = - £ { g J )  = (9 + , g +u ) +  = (G+f+,g+)+.

Then for /+  and g+ in the domain of G+ ,

(G + U ,g +)+ = (/+ , G+g+)+ 

and so g+ is in the domain of G+* and G+*g+ =  G+g+.

We must prove tha t /+  in the domain of G+* also lies in the domain of G+.

For A not in the spectrum of G+ and /+  in the domain of G+*, we define g+ to be 
R + ( X - G + ' ) f +. Then g + is  in the domain of G+ and hence of G+*. Thus

(A - G +* )U  = (A ~ G +)g+

= (A - G + * )9+

and so (A -  G+*){f+ -  g+) = 0 .

Then for h € L2(M+ ),

0 =  ((A -  G+*)(U -  g+),Rth)+ = ((/+  -  g+), (A -  G+)R+h)+ =  (/+  -  g+, h)+

and hence / + =  g+ and f+ is in the domain of G+. Therefore G+ and G+* have identical 
domains and hence are equal. □



Chapter 4

A tom ic M easures I — M ass at Zero

In this and the following chapter we consider the Wiener-Hopf decomposition of a Brow­
nian Motion time changed via measures consisting of a finite number of atoms on R~ 
and Lebesgue measure on R+. One motive for studying such a case is the possibility of 
performing numerical calculations. Approximate values for measures and operators on the 
atoms and for probabilities can be computed and these results suggest the (occasionally 
surprising) theorems of later sections.

The atomic measures allow us to work with finite dimensional function spaces and the 
analysis is greatly simplified. Chapters 4 and 5 investigate instead a certain algebraic re­
lation buried inside the structure underlying these processes. This is not a total departure 
from the earlier chapters. Proving that the half winding operators are contractions is still 
the prim ary aim, if not the primary result.

4.1 The Theory

We begin with strictly positive masses m o ,m i,. . .  ,m n distributed over the negative real 
line. Let Ri  be the position of the i th mass, such tha t R q = 0 and define the inter-mass
distances di := Ri — Ri+i > 0 for i =  0 ,1 , ----- , n  — 1. Let S  := {i?o, -Ri, - . . ,  Rn}  and let
the measure v  be as shown in Figure 4-1 with Lebesgue measure on R+ and masses mi  at 
Ri  (E R“ . The measure restricted to R-  is denoted v ~ .

As stated in (2.1), we will write n H (x, Ri) for n + - (r, {R*}), the (strictly positive) prob­
ability th a t the usual winding process given by Brownian Motion time changed by v  and 
started at x  >  0 half winds round to mass i.
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m n m n- i  • • • 7712 m  i mo

d f i — i  d \  d o  q
Lebesgue measure on E+ .

Figure 4-1: A Measure with Atoms

We time change Brownian Motion as previously using the measure v  (no reversal of time 
or signed measures yet—this is straight time change with an additive functional). The 
resulting process, A , is now a Brownian Motion on (0, oo) and a Markov Chain on S \{R q} .  
The behaviour a t 0 is, as always, rather more subtle. From the time when the process 
A  enters the state Ri  for i G { 1 ,2 ,...  ,n}, we can represent the Brownian Motion as a 
series of excursions away from Ri. The process X  leaves the state Ri when the Brownian 
Motion performs a positive excursion of height at least di- i  or a negative excursion of 
height at least d{ (take dn — oo). The time at which X  leaves Ri is rrii times the local 
time accumulated by the Brownian Motion at Ri  when such an excursion occurs. A 
positive excursion hitting R i - i  arrives at exponential local time at rate d ~ \  and a negative 
excursion hitting Ri  arrives at exponential local time at rate d j l . Thus the process X  
jum ps from state Ri  to Ri~i  a t rate (d i - \m i )~ l and to Ri+i a t rate (diirii)-1 .

W hen the process is at Ro =  0 it jum ps to R \  after an exponential length local time at 0 at 
rate (dom o)-1 - Whilst at zero, it performs positive excursions according to the Brownian 
Motion excursion measure n.

For a function / ,  let us write /  =  ( / ,  f) where f  is the vector on S  ( f (Ro)  f { R i )  ■ * •  f ( R n ) ) T - 
Let [f]jt denote the k th element f { R k )• The generator of the process, A , is given by

1 d d _ [ i f " ( z ) on R+
(4.1)

2 d v d x f ~  \  i  ([<M * +  m 0 1/ /(0+)/{*:=o}) at x  = Rk

(see, for example, Vol. II Section V.47) where

( —Co Co 0 . 0 0 0 \

Co — (co +  Cl) c i  . 0 0 0

(4.2) Q :=  M ~ l
0 0 0 . C-n—2 (Cn,--2  +  C n_l) Cn—1

I  o 0 0 0 Cn—1 Cn_l /

and Ci :=  dt_1. The value of A f  at Ri  is half the change in the derivative divided by 
the mass. The left hand derivative at Rn must be zero, else the function would not be 
bounded. We also define the S  x S  m atrix V , whose only non-zero entry is Vqo =  tuq l .
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We now reverse time when the Brownian Motion is below zero, so <j> is defined as at (1.2) 
with the function there called V (x ) equal to sgn(x) and the winding process X  is defined 
as usual. We find a local martingale of the form Nt :=  exp(—§A2<f>(t))f(Xt) by solving

(4.3) (|A 2 -  sgn_ 1(a:)^4)/(a;) =  0

for bounded continuous functions. Thus /  is the exponential function exp(—As) on M+ 
and is piecewise linear on R“ . We can, and do, normalise the eigen-functions so tha t 

/ ( 0) =  1.

Since / '(0 + )  =  —A and we require [f]o =  1 by continuity, we deduce tha t [Vf]* =  
Tno 1I{k=o}- Therefore to find the eigen-function on 5 , we must solve

(4.4) ( Q -  AF +  A2/ ) f = 0

subject to [ f ]0 =  1. This is a polynomial in A of degree 2|Sj. We assume (and later prove) 
tha t it has exactly \S\ strictly positive roots and label these Ao <  Ai <  • • • <  An. We write 
ej  for the solution corresponding to the root Aj. Let f j  = where ej  satisfies (4.4)
with A =  Aj  and f j{x)  :=  exp(—Ajx)  on x  > 0. The optional stopping theorem applied to 
Nt  w ith X q = x  gives

(4.5) No = e~*i* =  E JVT- (0) =  £ n + - ( : r ,  Jk )[e3-]fc.
k

By considering all |5 | solutions, we see tha t there must exist some m atrix II such th a t 
II+~ (x ,R j )  = [eill]j where

(4.6) ex =  ( e~*°x e~XlX • • • e~XnX j  .

Therefore, defining K  by Kij := [ej]i, we have tha t for all x  > 0,

(4.7) ex =  £xT1K and hence II =  K ~ x and II+ _ (x, Rj) = [£xII]j.

Since our present aim is to find plausible results, which we later prove, we assume the 
II-duality result: U~+(Rj ,dx)  = [M~1UTe^]jdx.  The full winding operator W ~  is then 
given by

(4.8)

Let
(4.9)

roo  r roo
W . - = /  n - +(Ri , d x ) n +- { x , R j ) =  /  M ~ l TlT £ l £ xI ldx  

J Jo Jo

Qij =  /  U l e x ] .. dx = f  e~(Xi+Xj)xdx = ^  -Jo L Lj J0 \ i  + \ j
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and so
(4.10) w ~  =  M ~1n r ©n.

By following this procedure, the matrix W ~  can be computed numerically.

4.2 The Theorem s

The program ’s results (see Appendix C) suggest the theorem tha t ||W - || =  § for any 
combination of masses, provided mo at the origin is positive.

(4.11) T h eo re m : For Lebesgue measure on R+ and a finite number of atoms on 1R“ , 
including one atom at 0, the full winding operator W ~  has norm one half.

We define a m atrix T_ by taking the positive eigenvalues A o ,...,A n and their related 
eigenvectors e j  for the quadratic equation (4.4), and setting

(4.12) r_ej = —Aj e j

for each positive eigenvalue Aj .  We define T+ similarly, with

(4.13) r +f t  =  A+f+

for each negative eigenvalue, Ay < 0 and eigen-vector f t .

A theorem also suggested by the results is that 17+ — {I — 2 W ) T -  which, as we shall see, 
almost immediately implies the first.

Note tha t since Q is a strict Q-matrix, it has eigen-value 0 and hence A =  0 is a solution 
to (4.4).

(4.14) T h eo re m : For the matrices defined above,

(4.15) r+ = (j-2W)r_.

4.3 P roof of Theorem  4.11

In Subsection 4.3.1 we recall facts from Kennedy & Williams (1990) (= [KW]). By using 
the methods of [KW], we enrich the structure: for example, the T_ operator does not 
feature in the [LMRW1] story. However, it is the case tha t G~ =  — \ T 2_. The relevance of 
Subsection 4.3.1 to Theorem 4.11 will to some extent already be apparent.
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4.3.1 W iener-H opf factorization o f a quadratic

W ith notation as before and for a n S x 5  matrix G, let G* denote the adjoint of G with 
respect to L 2(S, v~),  so that, for column vectors u, v  in R5 ,

(4 16) <  U ,G*V > :=  u T m G *v  = <  G u>v >=  u t Gt M v, so  that G* = M ~ 1GTM.

Let Q denote the set of real S  x S  matrices with non-negative off-diagonal elements and 
with non-positive row sums; and let Qo consist of those elements of Q for which all row 
sums are exactly 0 . T hat is, Q is the set of Q-matrices and Qo the set of strict Q-matrices. 
Let Q E Qo, and assume tha t Q is v~-symmetrizable in that

(4.17) Q =  Q*; equivalently, M Q  is symmetric.

Let V  be any real diagonal S  x S  matrix.

In [KW] it is shown tha t there exists a unique pair ( r _ ,r + )  of elements of Q such that

(4.18) t2i - t v  + Q = (ti  -  r ;) (t /  + r_) = (ti + r i ) ( t i  -  r+),

I  denoting the identity S  x S  matrix. As consequences, we have

(4.19) r ; - r _  = v,

and
(4.20) r;r_ = - q  = nr+.

It can immediately be verified that

(4.21) r^_ -  ^ r +  +  Q = 0, T l  + VT_ +  Q = 0.

We shall be interested only in the case when Q is irreducible (in tha t for any disjoint 
partition S  = Si  U S2 of S  into non-empty sets, we can find i E Si  and j  E S 2  with 
Q i h j )  >  0) and V  has non-negative diagonal entries which are not all zero. We now 
assume tha t we are working with tha t case. Then T + E Qo, and T_ E Q \  Qo- We can 
find a basis (ej : j  E S) of Rs and strictly positive numbers which we write (Aj : j  E S) 
such that
(4.22) (A21 — A j V  +  Q)ej =  0; T_ej =  —A jej.

Note tha t the Q of Section 4.1 is irreducible.
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4.3.2 A n algebraic identity

We continue with the notation of the last subsection. The key step will be to apply the 
following lemma to the case when W  is the W ~  of (4.10).

(4.23) L em m a: Suppose that the eigenvalues (—Aj  : j  E S) of T_ are distinct. Suppose 
also that an S  x S  matrix W  satisfies

(4.24) {Wek, e j ) =  ( j , k € S ) .

Then
(4.25) (I  -  2W)r_ = r+.

Proof: From (4.22) and (4.20), we have

(4.26) A |(e j,e fc) -  Aj ( V e j , e k) = ~ {Q e j ,ek) = {T - G j , r +Gk), 

and since Aj  ^  0 and T - e j  = —XjGj, we have

(4.27) \ j ( e j , e k) -  (V e j , e k) = - ( e j , T +e k).

Next, from (4.26) and the fact tha t Q = Q* and V  =  V*, we have

Aj(GjjGfc) Aj( V e j , ek) Xk(Gj}Gk  ̂ Xk(VGj^ e^),

so tha t
(4.28) ( G j , G k ) = (j ±  k).

By combining (4.27) with (4.28), we have

(4.29) ( r+ e fc,e j)  =  ( V G j , G k ) =  Xk {Gk , G j )  (j ±  k).
A j Ak

From (4.27) with k = j ,  we have

(4.30) ( r+ e j ,e j)  =  —A j(Gj,Gj) +  {VGj,Gj).

Next, from (4.24),

((I -  2W)T-Gk,Gj) = - X k({I - 2 W ) G k,Gj) = - X  k{Gk,Gj) +
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Hence, using (4.28) and (4.29),

({I -  2W)r_efc,ej ) = Afc(efc,eJ) = (r+efc,ej) (j ^  fc),

and, from (4.24), and (4.30),

((/ -  2W')r_ei ,ei ) = —Xj (ej ,e j ) +  (Vej ,e j )  =  (T+ej.ej).

Hence, the lemma is proved. □

We suppose tha t the eigenvectors ej of T_ are all normalized (see Note below) so tha t

(4.31) ej(0) =  1.

Then, since V (0 ,0) =  m (0)-1 , we have

(4.32) (Vej , e k) = l  = (ej , V l ) J

1 here denoting the vector (1 ,1, . . . ,  1)T on S.

Note. Suppose th a t ej  is an eigenvector of T_ such tha t ej  (0) =  0. Then Vej  = 0, and

0 =  (A2j l  -  Aj V  +  Q)ej = (A] l  +  Q)ej.

But the tri-diagonal nature of Q would now imply tha t ej = 0. Hence the normalization
(4.31) is possible. □

4.3.3 The key to  duality

We now tu rn  to the operator n   ̂and use the notation tha t n ~+f ( R j )  =  f£° tv(j , x ) f ( x )d x .  
To find 7r(‘, •) requires the solution of

(4.33) A f c  (x) =  - |A 2sgn (x)/* (x),

and we choose the normalization {fx) '{  0+) =  1- This has the solution on x  >  0 of

(4.34) fx  (x) =  fx  (0)cos ^ x  +  ^ _1 sin  ̂ x i

and on x  < 0 ,
(4.35) (\ 2I - Q ) f x  = V l  ( A # 0).

These eigen-functions are easier to find since the function space is two dimensional and so 
we can specify the function’s value at zero independently of its derivative.
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Since Q = Q* and T2 +  VT_ +  Q =  0, we have from (4.35) and (4.32), for A ^  0, and 
with (•,•) as the v~  scalar product,

l  =  ( e j ,F l )  =  <ei , ( A ? / - Q ) f 5T>

= ((Ap  -  Q ) e j t f r > = { ( x p  + r2_ + vr_)ei, f a )
=  (A] +  Al)(ej, f  a > -  Xj(Ve j t f  a > =  (A2 +  A2) ( e j , f J )  -  X jf^O ),

whence

A2 +  A2 J W  +  A ^ + a J  

=  J  e~x’y { /^ ( 0)cos Ay +  A-1  sin Ay} dy
r oo

=  /  e~XjVf \ ( y ) d y -Jo

roo
f" ( .)  =  / n{-,y)fo{y) dy,

Jo
and we have the following theorem.

(4.36) T h eo re m : The map nr(-, y) on S  is characterized by

(e j,^ (-,y )) = e _AJy, 

so that if  £j is the function in (0 , oo) with

£j(y) = e ~ Xjy,

then with (II *")* : L 2(S,u~)  —» L2(0, oo) the Hilbert-space adjoint o fH  we have

(n-+)*ej- = £j.

This analytic expression of the ‘duality principle’ really states tha t the other half winding 
operator II"1 is just (II- + )*. We have

sgn(')_ 1̂ 4ej =  + ± \ 2£j on (0, oo) U S,

if wre regard ej  as the extension to S  of £j .

But
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4 .3 .4  C o m p le t io n  o f  p r o o f  o f  T h eo rem  4 .11

Suppose tha t —Aj  is an eigenvalue of T_ and that T_e =  —Aje. Then, by equation (4.18),

(Xjl  + Q)e = XjVe.

The tri-diagonal nature of Q now implies tha t the eigenspace of T_ corresponding to 
eigenvalue —Aj  is one dimensional, and so all eigenvalues of T_ are distinct.

Let W ~  denote the full winding operator

w ~  := i r + ( i r + ) * ,

so tha t W ~  =  (W~)* as an S  x S  matrix. We need only show tha t

\ \ w - \ h  = i-

Now we have, using Theorem 4.36 and equation (4.32),

(ek, w - ej) =  (et , n - + (n -+ )* e i > =  < (ir+ )* e t , (n-+)*e.,>
J/“  1/1

= Ut £■) = [°° e~Xiye~Xl‘y dv = __-___^ ’£>K+ J0 e e w -  Xj + \ k -  xj + xk ■

Since we have proved tha t T_ has distinct eigenvalues, we can now apply Lemma 4.23 to 
deduce tha t

{ I - 2 W - ) T -  =r+.

Now r +  G Q0 and so T + l =  0, so that the Perron-Frobenius eigenvalue of T+ is 0. Thus 
there exists a positive row vector p  on S  with pl?+ =  0. Since T_ is invertible, we have 
p(7  — 2W ~ )  = 0, and therefore

p  W ~  = |p .

But W ~  is a positive matrix, and hence its Perron-Frobenius eigenvalue is The proof 
of Theorem 4.11 is complete. □

4 .3 .5  A  N o te  o n  a R e la te d  P a ir  o f  P r o c e sse s

In [KW], the operators T_ and T+ occur as the Q-matrices of two different processes. 
In our case, those processes may be thought of as being constructed as follows. Take 
a Markov Chain Y  with Q-matrix Q on the set of masses S. Now let time evolve as a 
Brownian Motion, but when the process is in state 0, the Brownian Motion has added to it
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a positive drift of magnitude m g1. The two processes we consider, call them  Y + and Y ~ ,  
are constructed by setting Yt+ to be in the same state as the Markov Chain Y  when the 
Brownian Motion (plus drift when in state 0) first exceeds t. Similarly Yt~ is constructed 
by taking the state of the Chain Y  when the Brownian Motion first drops below —t. Then 
the Q-matrices for Y + and Y ~  are T+ and T_.

Clearly, the equation (4.25), containing as it does the Q-matrices of these two chains, must 
express some fact about the process. Also, we would expect the full and half winding oper­
ators for the Wiener-Hopf theory to have some interpretation in terms of these processes. 
This is in fact the case. These relations are not obvious, although they are fairly easily 
proved if correctly guessed.

Further investigation of these relations would certainly prove interesting and could also 
uncover more structure of these Wiener-Hopf operators.
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Chapter 5

A tom ic M easures II — N o M ass at 
Zero

We have shown th a t if there is a non-zero mass at the origin then the full winding operator 
has norm exactly one half. A natural extension would seek the more general result for a 
completely arbitrary set of masses. Extensive numerical examples (together with a strong 
prior belief) suggest tha t \ \W~1| < |  for cases with no mass at zero. Naturally, if a mass 
is removed, a full winding becomes less likely and so we would expect ||W ~|| to decrease. 
However, beyond this Wiener-Hopf question, the equation (4.25) suggests tha t W ~  must 
have some other probabilistic interpretation. The Kennedy-Williams paper tells us how 
to construct the Markov Chains with Q-matrices T+ and T_ and we have proved the 
algebraic relationship (4.25) between them.

We prove tha t ||W - || <  \  and also find an equation analogous to (4.25) although it should 
be noted tha t the [KW] results do not apply here. In particular, T+ is not necessarily a 
Q-matrix.

5.1 M ass at the Origin

To recapitulate last chapter’s notation, we are given masses distances
do, d \ , . . . ,  dn_i and e >  0. Place a mass e at the origin. Define M , the diagonal m atrix 
of masses with entries e , m  1, 7712, . . .  ,m n and the Q-matrix Q := M _1C, where C  is the
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symmetric m atrix

(  —Co co 0
Co - ( c o  +  c i )  Cl

(5.1) C  :=
0

V 0
Cn—2 (Cn—2 4" Cn—i)  Cn— 1

0 Cn—1 Cn— 1 )

and Cfc :=  dk 1 (1 <  A: <  n — 1). Let V be the n  +  1 by n  +  1 m atrix with

(5.2) Voo := —1/e , Vij := 0 for all other pairs (*, j) .

We proceed as before, with the single change of notation that mo =  e and solve the 
equation

( \
1 \

(5.3) (Q +  x )
0

V 0 /
where e* is a vector of size n, and obtain n  +  1 positive and n +  1 non-positive values 
for A and the corresponding vectors e^. Let us order the solutions A2n+i <  • • • <  An+i =  
0 <  A0 <  . . .  <  An. It is clear from the differential equation leading to (5.3) tha t if 
A(e) —y A <  oo as e tends to zero then the first component of e,\ tends to 1 -I- Ado-

We use these vectors to define the matrices T+ and T_, which we know to be Q-matrices;

(5.4)

(5.5)

A <  0

A > 0 r_

1

eA

1

ex

=  A

=  -A

eA

1

eA

Now construct the n  +  1 by n +  1 matrices K  and J  whose columns consist of the vectors 
corresponding to the positive and the non-positive solutions A respectively. Let II :=  K ~ l . 
The probability distribution on the masses after a half winding when the process is started 
at a point x  >  0 is given by (exp(—Aqx) exp(—Aix) . . .  exp(—Anrr))II.

Apart from the definition of J ,  this is all as defined in the previous chapter.
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5.2 N o M ass at the Origin

We define corresponding matrices in n  dimensions and use a tilde to denote tha t we 
are in the case with no mass at the origin. Thus M  is a diagonal m atrix with entries 
mi,rri2 , . . . ,  m n, and Q is an n  by n matrix defined using di, d,2 , . . . ,  dn- \ .

The problem in the case of no mass at the origin leads us to require the solution of

(5.6) (Q +  A2)e,x —

 ̂ A/mi  ̂
0

V 0 J

subject to e* having first element 1 +  Ado and A ^  0. This condition on the first element 
of the eigen-vector is the only place where do occurs.

5.3 M atrix Limits

5 .3 .1  F in ite  so lu tio n s  as e -*  0

Suppose tha t we have a solution to (5.3) given by A(e) and e,\(e) which tend to finite limits 
A and e* as e —> 0. Then we can easily show that A and eA also give a solution to (5.6). 
We use these solutions to form the matrices K  and J  which are related to K  and J  via

1 . . .  1 1 >| (  1 1 . . .  1 \
1

K  = ___ J  =
K w J

\ ) I  1 )

for some vector w and define II := K  1. Now define T_ to be the m atrix with eigen-vectors 
eA corresponding to eigen-values — A <  0 and similarly for F+ with A <  0 .

5 .3 .2  T h e  U n b o u n d ed  S o lu tio n

Using the equation obtained from (5.3), we find that there is a solution A which is equal to 
1/e +  1/do — e/do +  0 (e 2). From this we can deduce tha t the corresponding eigen-vector
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is equal to 

(5.8) eA

( 1 \
—e2/rriido +  0 (e3) 

£A/mim2dodi +  0 (e 5)

\ /
which in tu rn  allows us to deduce that, for some vector u independent of e, the structure 
of T_ is

/  - 1 uT \ f  ^ O 1 0(1) \ (  0{e) 0 • • •  0 ^

0 0 0(e)
0 £ - '  + 0 + 0 ( e 2 )
: 0 f_ O ( e )

V 0 ) I o ) {  0 ( e 2 ) 1
r_ =

(5.9)

For all solutions bounded as e —Y 0, we therefore require that uTe \  =  1 and so

(5.10) uT = ( l  • • • 1 ) II, Uj =  Po+{half wind to j th mass}

where Po+ indicates tha t we start the process at x > 0 and take the limit as x  tends to 
zero. There is a discontinuity of the behaviour at 0. For all x > 0, <f>t is positive at small 
times, and for x  = 0 , 4>t is negative at small times.

Using the relations T+ — T!_ =  V  and r i r + =  —Q and the structure already obtained, 
we find tha t

r_ =

(  _1
UT  \ - d o 1 v T  \

0 0
0 e~l + 0
* 0 ; f _

0 J l  0 /

+

(5.11) +

h 0 ••• 0 ^

l /mido
0

0(1)
e 4- 0(e2)

0

where k\ =  —(mido) X(1 0 ---0 )u  +  1/do and v ls independent of e. We also find that 
“T(f_  — dp1) =  (—do1 0 - - • 0).

From this representation of T _, we can prove the following lemma.
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(5.12) L em m a: The determinant o /T _  is non-zero.

Proof: Since the matrix T_ is symmetric, its determinant is given by the product of its 
eigen-values. As e —Y 0 , all but one of these eigen-values axe bounded away from 0 and 
from oo and the remaining one is of order e~ \  Therefore the determinant of T_ is of order
_ - i

Computing the order of the determinant again using (5.9), we see tha t the only way 
in which a term  of order e~l could arise is by the multiplication of —e-1  and det T_. 
Therefore det r_ must be non-zero. □

We can immediately write down the result that

(5.13) r+ = n  + v  =
(  - d o 1

M ~ l u r* +  0 { e)

and hence for A <  0,

(5.14) +
eA

A

f+eA M ~ lu +  T*_ex
+  0(e)

and, using (1 • • • 1)J  xeA =  (1), T+eA =  + M  lu = (r!_ +  M  1it(l • • • 1)J  x)eA
and so
(5.15) f  + =  f * +  M _ 1u (l • ■ • I ) / " 1.

5.4 The Full W inding M atrix

We know tha t K  has the structure

(5.16) K  =

and thus we can deduce that its inverse II has the structure

(5.17) n =

—u
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This makes probabilistic sense. It says tha t for a very small mass at the origin, the process 
started at 0 will half wind round to the mass at the origin with probability approaching 
one and to the other masses with probability approaching zero. Also, when the process is 
started away from 0 , the probability of half winding to the mass at the origin is almost 
zero and the probabilities of hitting the other masses are close to the probabilities in the 
case with no mass at the origin. The process is only affected by the mass at the origin 
when it is a t the origin. Starting the process at the origin here is shorthand for “start the 
process at x  and take the result as x  —> 0.” The origin is in E~  and not in E +.

Knowing the structure of II and the value of the unbounded A allows us to write down the 
structure of the full winding matrix W ~  as

(  1/2 uT /  2 \

(5.18) W  =

\

W ~

J

-1- higher orders

which again makes probabilistic sense. Given a single mass at zero, the probability of 
completing a winding from zero to zero is one half. As the mass is reduced, the size of the 
excursion from the origin will also reduce. Therefore, for a small mass at the origin, the 
presence of the other masses will have little significance and we would expect —>• f.
Given th a t it does not perform an almost immediate winding back to zero (which occurs 
with probability one half), the process restarts close to zero, where the chance of hitting the 
other masses is given by the vector u. Hence the top row of W ~ . The left hand column 
is completed from the fact that W ~  is self-adjoint with respect to M .  Probabilities of 
windings between other masses will tend to the values they take when the mass at the 
origin is absent.

Note: T hat the size of the winding when one mass is present tends to zero as e tends 
to  zero is strongly implied by the form of n _+ in Chapter 2 . W ith a small number of 
implicit assumptions, we can show that the expected time of the first winding (when it 
occurs) tends to zero. We can scale the reflected Brownian Motion so tha t Bt  := c2B(t /c)  
and place a mass e := c2e at the origin. Then the local time at 0 for the scaled Brownian 
Motion is given by I(t) = c~l t(t /c).  Then if T  and T  are the random times of the first 
winding (possibly infinite) then

T  =  inf {£ — e£t =  0} =  inf j t — c~lel{ct) =  0 j  

=  inf jc£ — il(ct) =  0 j  =  c~lT.

Therefore if we let f ( x )  := E [T|T < oo] when e = x, then c f ( x ) =  f ( c 2x). Therefore 
/(0 + )  =  limn_>oo(2- 27la;) =  \imn-+002~nf (x )  = 0. This assumes that /  is finite some­
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where. If we assume continuity of /  then we have that f ( x )  =

It is now clear th a t the following theorem holds.

(5.19) T h eo re m : For any finite arrangement of masses on R-  \  {0},

\\W-\\ <

Proof: The result follows from the fact tha t eigen-values are continuous functions of the 
entries of a matrix. As e tends to zero, the matrix W ~  tends to

(  i /2 uT /  2

Wo := lim W  =
£—►0 0 W -

V

Let us write Qo,Oi, . . .  ,0n for the eigen-values of this matrix. The eigen-value with the 
largest absolute value is 0q =  |  and the remaining eigen-values 0i, #2>. . . ,  0n  are the eigen­
values of W ~.  These all have modulus less than or equal to one half by continuity. We 
now show tha t for j  > 0 , \9j \  is strictly less than one half.

Suppose th a t W ~  has eigen-value 6 =  Then it has at least one eigen-vector satisfying 
W “ v  =  |v .  We use the result of Theorem 5.20, the proof of which does not depend on 
this result, to say tha t for this vector v, T+(I — 2W _ )v =  0 and hence T _v =  0 and the 
determinant of T_ is therefore zero. This is a contradiction of Lemma 5.12. Therefore \  
is not an eigen-vector of W ~ .

Furthermore, W ~  is a strictly positive matrix and so has a Perron-Frobenius eigen-value, 
tha t is, a positive eigen-value which is strictly greater than the absolute value of all the 
other eigen-values (see Seneta (1981)). Since this eigen-value must be in the range (0 , | )  
we have \0j \  < |  for j  > 0 . □

If we normalize the first eigen-vector such tha t [vo]o =  1 we have tha t \ u r +VqW ~  =  %Vq , 
or tha t uT =  v ^ ( /  — 2W~).  Inverting the ubiquitous (I  — 2W ~ )  as a power series, the 
equation uT (I  — 2W - )-1  =  \ q , says that the ith. entry [vo]i is the sum

00

Y  2fcPo{Pass through i after k windings and a half}.
k=0

We finish the work on atomic measures by proving this analogue to (4.25).
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(5.20) T h eo re m : In contrast to the case for mass at the origin,

(5.21) f + ( I - 2 W ~ )  =  f _ .

Proof: F irst note tha t (1 0  • • • 0) J  =  (1 • • • 1) and (1 0  • • • 0 )( / — 2W  ) =  (0 —uT ) to 
order e. From this we can deduce that

(5.22)

We know, in the case with mass at the origin, that

(5.23) ( / - 2 r ) r _  =  r +

or, equivalently, tha t
(5.24) r  + ( /  -  2W ~)  =  T_ +  2V ( I  -  W~).

The left hand side of this is equal, to order e , to

LHS =

(  0 

0

\ 0

- M ~ l uuT +  f  I  ( I -  2 W~)
=  r _  +  2 V ( J -  W ~ )

and so — M  1uuT +  T^_(I — 2W  ) =  T_ or, from (5.22) and (5.15),

(5.25) ( M ~ l u{ 1 • • • 1)J -1 +  f l ) ( 7  -  2W~) = f+ (7  -  2W ~ )  = f .

□
This also tells us tha t the v1 in (5.11) is equal to d0 1(uT +  (10  • • • 0)(J — 2W  ))
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Chapter 6

Other W inding Operator R esults

In this chapter we present results for other cases where the norms of the half winding 
operators can be calculated explicitly. Proofs and derivations of the half winding operators 
can be found in Rogers & Williams (1984).

We begin with a theorem from Toland and Williams (1998).

(6.1) T h eo re m : Consider Brownian Motion on R time changed in the usual way with the 
measure

i/+ =  Leb on (0,oo); v~ =  c2 x Leb on [—1,0], v~ =  0 on (—oo, —1) 

and wound about the origin via V (z) =  sgn(x). Then

yj2c
(6.2) l|n_+||2 = t / c <  1, 

1 +  c
2"~3 if  c > 1.

The winding process is given by Brownian Motion reflected at —1, with time below the 
origin scaled by c and travelling in the negative direction. The maximum value of the 
norm occurs when c > 1. Thus we have the upper bound of l / \ /2  for Brownian Motion 
with a reflecting barrier at —1.

Note tha t we can use Brownian scaling to deduce that the operators have norms given 
by (6.2) when v~  =  c2xLeb on any finite interval [—k, 0]. We can do this by scaling the 
Brownian Motion and using the idea that for a fixed Brownian path, the value of II_+/(a:) 
is unaffected for any dilation of time. We scale both time and space to transform reflecting 
Brownian Motion on [—l,oo) into reflecting Brownian Motion on [—k, oo) by defining
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B t = k B (k  2t). Using tildes to denote objects relating to the scaled Brownian Motion, 
we have 0* =  k2(f>{k~2t) and Tq =  fc27g\ Therefore if f ( k x ) = f (x ) ,  then

fi-+/(Arx) = E kxf (B( f+))  = E kJ ( B ( k 2r+))
= E J ( k B ( r + ) )  = E xf (B (r+ ))  =  U~+f(x) .

Then, from the fact that ||/ ||2  =  >/fc||/|l2i we have ||II- + |j2 =  |jn~ + ||2.

(6.3) P roposition: For the Canonical Case of Brownian Motion wound about the origin 
via V(x)  =  sgn(rr), the half winding operators, given in Chapter 3, have norm l /y/2.

Proof: We use a specific case of the result in Theorem 319 from Hardy, Littlewood and 
Polya (1934). Suppose tha t K ( x , y )  is non-negative and homogeneous of degree —1 so 
tha t K ( x , y )  =  aK(ax ,ay)  for a G  M and K (x ,y )  = K (y ,x ) .  Then

roo  ! poo  ! poo ! (]*. poo !

/  K ( x , l ) x ~ 2dx = K (  l , ^ -1 )^ - 2 — = K ( l , y ) y 2— = K ( l , y ) y ~ 2dy 
Jo Jo x  Jo y Jo

and writing K(r)  K(r,  1), the H~LrP result says that the map

r°°(6.4) f ( x )  I K ( r ) f ( r x )d r
Jo

on L2(R+ ) has norm
poo
/  K(r)i  
Jo

• l !2dr.

We let

K{r) := n +-(r,l) =
7r(l +  r 2)

so tha t the operator n +~ is given by the mapping (6.4). Then we can calculate the norm 
to be

i i  ( r jr  *'~ar =
'o

as required. □

(6.5) P ro p o s itio n : For the case above, but with v~ = c2xLeb on Mr for some c >  0,

||n+-||2 =  [°° K {r )r~ 1/2dr = —  [tan- 1 ^ 00 =  2 "1/2
Jo  7T L J 0

This case, which reduces to the previous on setting c =  1, has half winding density given 
by the kernel

TT+_ / N 2caxa |2/|1_asin(7ra/2)
H^ { x , y ) : = --------  2 2 ,---2\-------7x\crxl  +  yL)

for x  >  0 and y <  0 and where c-1 =  tan(7ra/2).
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This defines a mapping from L2(R+,Leb) to L 2{Mr, c2Leb) and so to find the norm we can 
set K (r)  =  II+ - ( l , r )  as previously and then evaluate / 0°° cK{r)r~l!2dr. Thus, using the 
notation and result of Lemma 6.7,

l|n+- 2 =
r  oo

/  cK{r)r~l!2d 
J o

27T c1+aI(2 , \  — a, c) sin —

n a
c o s f ( i - a )  / Sm 2

□
Note th a t duality of the half winding operators implies that ||II_ + ||2 =  ||II+ - ||2. For 
the norms of these operators, interchanging R+ and R-  is equivalent to performing the 
mapping c y-t c~l . In each case, the measure on M~ has density equal to c-1 times the 
density of the measure on R+ . For this reason, the norm of the operator is invariant under 
c i-» c~l .

Before giving one last case and proving the contour integration result, we compare our 
results.

v + norm

c2xLeb on [—k , 0] 0 <  c < 1 Leb on (0, oo) y/2c / (1 +  c)
c2xLeb on [—Aj, 0] c >  1 Leb on (0, oo) 1 / \ /2
c2xLeb on (—oo,0] c > 0  L ebon(0 ,oo ) V ^c/(l +  c)
Finite number of atoms Leb on (0, oo) l / \ /2

including one a t zero.

We see th a t the norms do not behave continuously as limits axe taken. If we attem pted to 
use the results of Chapter 4 to approximate Lebesgue measure on [—k,0] then the limit 
of the m atrix norm gives the L 2 norm only when c >  1. Similarly, as the interval [—A;, 0] 
increases towards (—oo, 0], the limit of the norm is the norm of the limit only when c <  1.

(6.6) P ro p o s itio n : For the measure

[ x^dx x > 0
{ c2+(3xPdx x < 0
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where P > — 1, the norm of the half winding operator is given by

l|n-+||2 = ||n- | |2 = ^M
1  +  C

where 6 = 7r/(2 +  P), a  6 (0,1), sin([l — a?]£) =  csina:<$ and C6 = ca sina£.

Proof: The operator II-+  is a map from L 2(R+ ,y@dy) to L 2(R~ , c2+̂ x^dx).  Define the 
operator H  by

H f  =  c*f*+1x*fiI l - +(x -* fif )

as a m ap from L2(R+ , dy) to L 2(Mt  , dx). Since the maps /  x~ Pl2f  from L2(R , dx) to 
L2(R+ ,y^dy)  and /  i-> cP/2+lxP!2f  from L 2(MT ,c2+̂ x^dx)  to L 2(Mr ,dx)  axe isometries, 
the norm  of IIH and the norm of H  must be equal.

The kernel for the operator II_+ is given by

C xay^~a~̂P
7r(x,y) =

(cx)2+P +  y2+P 

and so

=  Cc*

where

1  i  PO O  j
H f ( x )  =  / 'K{x,y)y~^pf{y)dy

Jo
1 roo r \ p + l - a  * oo

Jo c2+f> +  r W f( -r x )d r  =  Jo K ( -r V (-r x '>d r

Q c^0+lr l -a + i0
K(r)  := £ ; 2 + / 3  _ j _  r 2 + ( 3

Therefore by the H_L"P result, the norm is equal to

1  . 1 / 3!  r o o  7 - 2 — a + 2  P  1
p - +||2 = m 2Cc^ +1 f  c2+ff + r2+pdr = C c ^ +1l ( 2 ,  i  -  a\p ,c ) .

Then since Z(2, |  — a |/? , c) =  <5c- , l - 2- “cosec(<5(| — a  +  §)) and (P +  2)<5 =  7r, the norm 
is equal to

yfcsmaS y /c sm a8
s in (^ |^  +  \  — o:)J cos(a — £)£

Since csinatf =  sin(<5 — a8), trigonometric identities give us c =  2 sin |  cos |  cot a8 — 
cos2 |  +  sin2 |  and so c +  1 =  (2 sin | )  cos |  cot a8 +  sin Then we use this result with

3S |  +  sin ! '

y/c sin ad

the fact tha t cos(a — \)5 = sina<5(cot a J  cos |  4- sin to finish the proof:

cos(t* -
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■Ji
cot a8 cos |  +  sin |  

2^/csin |  
c +  1

□
(6.7) L em m a: For c > 0 and a  > (3 +  1 >  0,

f
X(a,/3,c) := / 

Jo

o o  r /3

-dr =
7 T C '0+1-a

c“ -f r a a:sin J(/? +  1) ’

Proof: F irst, to find X(2,/?, c), define f ( r )  continuously in the complex plane C minus a 
cut from 0 into the lower half plane by

f{r )  =
c2 +  r 2"

Figure 6-1: Contour Integration

The chosen branch of r@ is shown in Figure 6-1. This function has poles at r — =tic  and 
the residual value at ic is given by

.. (r — ic)rP (/? +  1 )r& — (3icrP~llim — =------------=  lim-------
r-*ic c2 +  r 2 2 r

2 ic 

2 i

Therefore using contour integration over the semi-circle in Figure 6-1 we obtain (1 +  
el7rP) 1(2, (3, c) =  7rc/3_1el/j7r/2 and hence

l(2,(3,c) =
7rc1, / * — i

2 cos ^
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Now for general a, transform r and c to s and d via r a = s2 and ca = d2. Then using the 
previous result, we prove the lemma,

Z(a,/J,c) = — 1 ( 2, —(/J + 1) — l ,d\  
a  \  a  J
2 7 T d a ( ^ + 1 _ a )

2a  cos +  1) -  1]
7T C P + l - a  ■

a s in J ( /?  +  1)‘

□
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Chapter 7

A C onnection w ith Other Work

In the closing chapter of Part I we look briefly at a probabilistic factorization tha t arises 
from consideration of a random walk. It is this that is most commonly referred to as a 
Wiener-Hopf factorization and is closely linked to our wound processes. In this way, we 
connect our results to a larger body of work, further details of which can be found in 
Kennedy (1994) and (1997), Asmussen (1998) and Feller (1971).

Let Yi, l2> • be independent random variables, each with distribution F(dy)  on R having
some finite mean fi. Assume 0 <  F(0) <  1. Then define So :=  0 and Sn :=  YlZ=i ^  f°r
n  = 1 ,2 ,__  This is the random walk associated with the distribution F  as shown in
Figure 7-1.

Consider the stopping times r+ and r_ , known as the first strict ascending and first weak 
descending ladder times, given by

T+ :=  inf{n > 0 : Sn > 0} and r_  := inf{n >  0 : Sn <  0}.

T hat the descending ladder times are weak is equivalent to our convention that 0 G E~.  
Denote the distributions of the random values S( t+) and S (r - )  by F+ and F- .  Then the 
following Wiener-Hopf factorization holds—

(7.1) (5 o - F )  = (60 - F +) * ( 6 o - F _)

where Jo denotes a unit mass at the origin and * is the convolution of the two distributions.

It is clear tha t there is some relationship between this and the processes and stopping 
times we have so far considered. The ladder times look very much like the half winding 
times when the process is started at 0. In both cases we consider the first time at which
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Figure 7-1: The Random Walk Sn with Jump Distribution F

a fluctuating additive functional first becomes either positive or negative and find the 
distribution of the process at that time. We now make this connection precise.

Define a right continuous Markov process X  starting at 0 which, while away from the origin 
drifts back towards it at rate 1 and upon approaching the origin jumps away according to 
the distribution F.

Figure 7-2: A Simple Winding Process

Let Y  be a random variable with distribution F. The process we have defined then has 
generator A  given by

x > 0
E sg n (Y )/'(Y -)  x =  0
+ f '{x ) x < 0

on the domain C'1(R+ ) x C^M- ) subject to the two conditions /(0 + ) =  / ( 0 - )  and 
E f ( Y )  = /(0 ). We see again the two conditions on the domain, which will correspond
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via the usual kind of isomorphism to two different conditions, one each on the domains of 
G+ and G ~ .

Now change time as usual using the definitions E + := (0, oo), E~  :=  (—00,0] and V(x)  :=
sgnfz). S tart the wound process at the origin, let so =  0 and then let

Si+ 1 :=  inf < lim X ut =  0 > for i — 0 ,1 ,2 ,___
U > S i  J

If we now build the random walk S  and the wound process (X , p) using the same sequence
Yi, I 2, . . .  for each, then we have

Sn — P(^n)

for n  =  0 ,1 ,2 ,  This is illustrated in Figures 7-1 and 7-2.

Remark: A problem arises if the density of the Y{s has non-zero mass at the origin. The 
random walk and the wound process are no longer almost surely equivalent—we cannot 
see in the wound process jumps of size zero in the random walk. If Y\ — S\  =  0 then 
r_  =  1 and <S'(r_) =  0, but s -  ^  0 and X (s_ ) is not necessarily equal to 0. We therefore 
assume th a t =  0} =  0.

The first strict ascending ladder time corresponds to the first time X  approaches zero 
when <j> > 0 and occurs at time sn for some random n. Let us call this time s+. Then 
<p(s+) =  <S'(r+). However, since the process drifts at rate one, the value of p(s+) is equal 
to the value of X  when p  was last equal to 0. Thus, the value of S  at the first ladder time 
is the same value of X  a t the first half winding time. The same is true for the descending 
ladder time, where S-  is the first sn > 0 for which 4>(sn) <  0.

We therefore have, with our usual notation, that the distribution n -+(0, dx) is equal to 
F+ (dx) and the distribution n + (0-f,dx) is equal to F_(dx).

If we were given the two distributions F+ (dx) and F - (d x ), then we could immediately 
describe the X + and X ~  processes. They drift towards the origin at rate one and jum p 
away from it according to the distributions F+ and F- .  Therefore the domains of the 
generators G+ and G~ consist of functions /+  and /_  where /+  G C,1(R+ ) and /_  G 
C ^ R - ) subject to the conditions that E f +(Y+) = /+(0) and E /_ (Y 1 ) =  /_ (0) where 
Y+ and YL have distributions F+ and F- .

The Wiener-Hopf factorization given at (7.1) is a factorization of random variables. It 
therefore decomposes a function, namely, the distribution. The factorizations we have been 
considering are decompositions of random processes, which involve factorizing generators 
and their domains.
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Part II

Sim ulating Network Growth
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Chapter 8

Introduction

In this shorter second part, we present the development and results of computer simulations 
of randomly generated networks.

The work was prompted and to some degree guided by biologically motivated ideas of 
Dr. Alan Rayner (University of Bath). Much work has been done to attem pt to use Brow­
nian Motion and related processes to model the growth of blood vessels near a cancerous 
tumour.

Chaplain & Anderson (1996) model angiogenesis (the growth of blood vessels) by looking 
in some detail a t the mechanism behind such growth. They achieve this by using a system 
of three coupled partial differential equations with terms representing the concentrations 
of three substances in the blood which in turn affect growth probabilities. Results given 
in the paper of simulations on a grid show networks exhibiting anastomosis (joining of two 
growths) and the “brush border” , a dense growth on the edge of the network nearest the 
tum our. Both of these features are observed in angiogenesis. The structures presented 
in the paper axe qualitative and allow general deductions to be made, such as how soon 
anastomosis occurs after initial growth or whether the proliferation of sprouts near the 
tum our is sufficient to cause the formation of a brush border.

Stokes Sz Lauffenburger (1991a) concentrate on one of the three substances—a type of 
cell—considered by Chaplain and Anderson. They model the movement of individual 
cells, which form vessels behind them  as they migrate through the surrounding tissue. The 
trajectory of each of the cells is modelled by an integrated Ornstein-Uhlenbeck process (see 
Stokes &; Lauffenburger (1991b)). The results in the paper give the fine structure of the 
vasculature systems they produce. They attem pt to set the parameters for the simulation 
using experimentally obtained values.
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The kinds of patterns that are exhibited by blood vessels in angiogenesis can also be found 
in other biological settings. Similar networks are formed, for example, in the vein system 
of a healthy leaf or in the paths that certain fungi take during different phases of growth. 
Attempts to use random processes to generate pictures that look qualitatively like real 
life often succeed in demonstrating one or other particular feature of the development of 
such networks, but it was felt that it may be possible to find more universally applicable 
models. We present here an attempt to use a computer to model the growth of a general 
stochastic network.

A problem inherent in computer modelled simulations is a tendency to begin with the 
results and then to engineer a program to reproduce them or to make discoveries, not about 
the original problem, but purely about the implementation of the model. For example, 
one may develop a program to model these structures which includes a term controlling 
how strongly the direction of growth is attracted towards the tumour. To discover that 
the experimentally observed level of anastomosis does not occur when this parameter 
is set too high is not to have investigated the model or the mechanism of the original 
structures, but to have realised that vessels growing in parallel do not meet. Similarly, 
if great proliferation occurs near the tumour, then part of the model must allow this to 
be reproduced. However, there is possibly only a slight difference between a program 
which shows a natural way in which proliferation can occur and a program which has been 
specifically designed to reproduce known results.

Figure 8-1: A Random Network

The primary purpose of these simulations might be said to be geometrical. We would like 
to discover how the shape of the network might affect the growth of the network. When 
parts of a network start to grow, they behave independently of one another up until the 
time at which they meet. It is the joining, or fusing, of two separate strands of the network 
to form a loop that determines the geometry. In contrast to other simulations, we put 
most emphasis on this fusing and the change in flow around the network that it causes, 
rather than on the behaviour of the tips of the branches.
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Figure 8-2: Shortly Before Anastomosis

We shall look in some detail at a method for dealing with an entire network’s geometry 
that balances the two demands of storage and processing time made by any computer 
program. In view of the problem inherent in modelling noted above, we have aimed to 
keep the model simple in order to extract more structure from the programs than we 
put into them. Results will be presented which seem to produce networks and network 
development with a rich structure, but some of these results are unstable in the sense that 
they occurred for very specific parameters and even then only for a few “lucky” runs of 
the program.

In Figure 8-1, the thickness of the lines represents their resistance to the flow—thicker 
lines representing lower resistances—and where loops have formed, the colour indicates 
the amount of flow, as shown in the bar along the top, from smallest flow to largest.

In Figures 8-2 and 8-3 we see an example of two branches joining and causing a large 
flow diversion away from the original vessel and up towards the tumour, supposed to be 
located at the top of the figures.

8.1 A  B iological S ettin g

We briefly and simplistically give the principal factors believed to be responsible for the 
development of blood vessel networks which have grown as a response to the presence of 
a tumour.
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Figure 8-3: Shortly After Anastomosis

When a tumour develops, it produces chemicals which promote the growth of new blood 
vessels. We refer to this growth of blood vessels as angiogenesis. They sprout from 
some existing blood vessel and grow towards the tumour. When two collide they fuse, or 
anastomose. This puts these new vessels in a parallel formation with the original one.

• New blood vessels are formed by the presence of microvessel endothelial cells (MEC) 
in the blood stream.

• The tumour produces chemicals that cause the MEC concentration to rise.

• The wall of an existing vessel degrades and the MEC migrate into the surrounding 
tissue forming sprouts of new blood vessels.

• When two of these sprouts meet, they anastomose, blood flows in the new vessel, 
and the process repeats.

We reduce these ideas to the abstract notion of a network being driven from below by 
the flow of the network (by the MEC in the blood) and attracted from above by some 
attractor (by the chemicals from the tumour). We take the attractor to be uniform along 
some line parallel to the original vessel. We therefore assume that the vessel is far from 
the tumour, or the tumour is fairly large, to justify the uniformity of the attractor.

In this way, we distance ourselves from this specific biological case and can consider a 
stochastic network per se.
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Chapter 9

The Structure as an Electrical 
Network

To generalise the setting, we consider the growth of an electrical network of wires and fix 
the voltage along one wire. In the case of blood vessel growth, this represents the original 
vessel. This voltage is kept fixed under the assumption tha t flow at a distance from the 
tum our is unaffected by the new growth. By storing the voltages at the points of the grid 
and the resistance of the wires, we can calculate the electrical current along them.

We first see how this is achieved, then see what probabilities axe used to obtain the results 
described.

9.1 The Electrical Network

The program randomly constructs an electrical network on a grid, beginning with a single 
line along one of the edges of the square. We define “grid” and “network” as this sentence 
suggests. The grid is a set of points and the network is composed of the subset of the grid 
joined by wires together with those wires. The ends of the initial wire are kept at constant 
voltages 0 and 1. Wires grow diagonally upwards from this base edge. For example, a 
simple growth is shown in Figure 9-1, with the voltages of the initial wire labelled.

No growth occurs from the ends of the initial wire. Neither do we allow growth from 
points with 0, 3 or 4 adjacent points. Adjacent means connected by a single wire segment. 
In Figure 9-1, we allow growth from A or D, as they have 2 and 1 adjacent points, but 
not from B or C, which each have 3 points adjacent.
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Figure 9-1: A simple network

We would like to use a fine grid with the wires fairly widely spaced so that the model 
approximates to some continuous limit. To write a program capable of generating suffi­
ciently complex structures, we must store the network in a way that is compact in terms 
of memory and that also allows quick calculation of voltages and of resistance between 
points.

9 .1 .1  P o in ts , V ertices  and N o d es

We distinguish between three types of location.

• A Point refers to a position on the grid, which may or may not be part of the 
network.

The other two types of location are more topological than geometrical. The distance 
between them, as represented on the grid, may be zero. For example, we assume that “in 
reality” two wires do not hit head on, but that one reached the point of intersection first 
and the second wire hit it some way down from the tip. So, what looks like A on the grid 
is in fact stored as a A or its mirror image. This occurs at Point A in Figure 9-1.

• A Vertex exists at any Point in the network which is not in the middle of a wire. 
That is, it is a junction where a wire has hit another or it is the loose end of a 
wire. The Vertices are numbered and their present positions stored in arrays. As 
mentioned above, two Vertices may coexist at a single Point. In fact two vertices 
will exist anywhere on the grid (except the base line) where a A or x  occurs.

In the example above, the network contains 23 Points and 14 Vertices, two at position A. 
In fact, we also introduce a Vertex 0 attached to our original two Vertices 1 and 2.
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We now divide the network into “Clusters” . Cluster 0 consists of all Vertices with flow 
through them. From this we may explain the addition of Vertex 0. We imagine an electrical 
cell placed at 0 and define Cluster 0 to be all those Vertices through which this cell causes 
current to flow. (Note tha t in Figure 9-1, of the two Vertices at position A, only one has 
flow through it.) In the same way, we label all such self-contained circuits in the network 
as being Clusters. The labelling of the Clusters is quite intuitive; it is the “lowest” Vertex 
in the Cluster and the position of the imaginary cell. However, although we can easily see 
which Vertex is the lowest by looking at the network, lowest does not equate to smallest 
numbered.

In each Cluster, there are im portant and unimportant Vertices. Consider Cluster 0 in 
Figure 9-1 and suppose tha t everything not a part of this Cluster has been removed. We 
have remaining the wire from Point 0 to Point 1 and the wires up to Point A. Vertices B 
and C are im portant; they are at a junction of Cluster 0 where the flow branches. Vertex E 
is unim portant. Once we have stripped away everything not in Cluster 0, (which includes 
the wire DE), Vertex E is just a point in the middle of a wire. The single Vertex remaining 
a t position A is similarly unimportant. The only im portant Vertices in Cluster 0 axe the 
original two Vertices together with B and C. We also include Vertex 0.

• A Node of Cluster c is an im portant Vertex which is in Cluster c. Vertex c is always 
im portant.

The idea is th a t we want to reduce the network to its simplest form before we calculate 
the voltages. Calculating voltages involves the inversion of a m atrix and so we want the 
matrix to be as small as possible. We do this by first disregarding everything not in 
Cluster 0, since only Cluster 0 has flow in it. Then we discard all the remaining Vertices 
which are not Nodes, because by now non-Node Vertices lie in the middle of wires and 
are unim portant. However, we must keep track of the other Clusters because these may 
later be part of Cluster 0. If two wires join to allow current to flow through some Vertex, 
then current will flow through all Vertices in the same Cluster. This is one advantage of 
tracking the development of the network in this way.

In the example, 14 Points have flow through them. However, only 8 are Vertices and only 4 
are Nodes, namely, B, C and the two original Nodes. Thus we need only invert a 4 x 4 
matrix, rather than a 14 x 14 one.

By storing the grid in this way, we can quickly find the voltages of the network.
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9 .1 .2  T h e  T ree S tru ctu res  and N etw ork  S tru ctu re

We make great use of the fact that the network is very nearly a tree structure. A tree 
structure is easy to store. At each Vertex, we only need to know the unique Vertex below 
it, and we can navigate around the tree. In our case, until two wires hit, we have a tree 
structure which we store in the array e x i t l .

i node e x i t l c lu s te r
0 0 - -
1 0 0 0
2 0 7 0
3 - 1 0
4 - 3 3
5 - 3 0
6 - 5 5
7 - 5 0
8 - 13 13
9 - 7 7
10 - 11 11
11 - 9 9
12 - 11 11
13 - 9 9
14 - 13 13

3 5 71 2

Figure 9-2: A tree structure

In Figure 9-2, the diagram of the tree is equivalent to the columns headed i  and e x i t l  in 
that either the diagram or the columns can be reproduced from the other. (A null value 
is represented by The array entry node [vx] is given the value c if vx is an important 
Point of Cluster c. Otherwise it is null.

The array e x i t l  gives us the full tree structure. The array c lu s te r  also gives a tree 
structure, but instead of tracking through a Cluster one Vertex at a time, when a Vertex 
in a Cluster is reached, the next move is directly to the base Vertex of the Cluster. In 
Figure 9-2, the path down the tree from Vertex 9 is 9-7-5-3-1-0 (look at e x i t l ) .  However, 
as soon as we reach Vertex 7, we are in Cluster 0, so the path down the tree given by the 
array c lu s te r  is 9-7-0.

Since in our example, most of the Vertices are not in any Cluster (only Cluster 0 exists so 
far) the array c lu s te r  is almost a duplicate of e x i t l .  We need to know, for each entry of 
c lu s te r ,  whether it is duplicating e x i t l  and sending us back one vertex, or whether it is 
sending us all the way to the base Vertex of a Cluster. In the example from Figure 9-2, the
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answer is clear. Travelling from Vertex 9 to Vertex 7 must be stepping back one Vertex 
because there is no Cluster 7. From 7 to 0 must be travelling to a base vertex, because 
there is a Cluster 0. Since there is a Cluster c if and only if Vertex c is an important 
Vertex of Cluster c, i.e., if and only if node [c]=c, we know which role c lu s te r  is playing 
for each Vertex.

The array c lu s te r  stores the minimum amount of information necessary to determine 
which Vertices have flow through them. However, it forgets.the internal structure of all 
the Clusters. The array e x i t l  does not lose this information.

Of course, the network is not a tree. When two wires join, a Cluster grows or a new 
one is formed and a richer structure appears. This extra structure is stored in the array 
e x i t 2 in a similar way to e x i t l .  The way in which the tree structure is lost is that a 
Vertex hits another wire and there are now two ways of travelling down the network from 
that location. For example, suppose Vertex 14 hits wire 11-12. See Figure 9-3. Now 
Vertex 12 is above Vertex 14 and Vertex 14 is above Vertex 13 (as before) and 11. We set 
e x i t2 [14]=11.

i node e x i t l e x it2 c lu s te r
0 0 - -
1 0 0 0 0
2 0 7 - 0
3 - 1 1 0
4 - 3 - 3
5 - 3 1 0
6 - 5 - 5
7 - 5 1 0
8 - 13 - 13
9 9 7 7 7
10 - 11 - 11
11 - 9 9 9
12 - 14 - 14
13 - 9 7 9
14 - 13 11 9

3 5 7 21

Figure 9-3: First loop formed

Since “loose” Vertices (the only Vertices that can anastomose) are always even-numbered, 
the odd-numbered entries in e x i t 2  appear redundant. We use them to record the wire 
from which the odd numbered Vertex grew. In the above diagram, Vertex 13 is on wire 7-8, 
as is Vertex 9. These are both labelled 7.
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9.1.3 U pd ating  the Structure

Now let us look in more detail at the joining of vertices.

Suppose Vertex 6 grows to join wire 13-8 as in Figure 9-4. First, we find which of 8 and 13 
is higher (higher means further from Cluster 0 in the tree structure C lu ste r) and whether 
the existence of the wire is stored in array e x i t l  or ex it2 . In this case, we see that 8 is 
higher and that e x i t l  [8] =13.

If 8 and 13 were in the same Cluster then 6 would now be a junction of the Cluster and 
hence would become a Node of this Cluster. However, here 13 is in Cluster 9 and 8 is not 
in any Cluster.

Now the program looks down the network to find which Cluster will grow or whether a 
new one will form. (One or other of these will occur.) It looks down the network from 
Vertices 6 and 13. It is clear by observation that 6 joins Cluster 0 at Vertex 5 and 13 joins 
it at 7. Also, no higher numbered Cluster is encountered on both of the paths. Since 5 
is lower than 7, meaning that it is closer to 0 in the tree structure given by e x i t l ,  let us 
describe this by saying that Vertices 13 and 6 meet at 5.

i node e x i t l e x it2 c lu s te r
0 0 - - -

1 0 0 0 0
2 0 7 0 0
3 - 1 1 0
4 - 3 - 3
5 0 3 1 0
6 - 5 13 0
7 0 5 1 0
8 - 6 - 6
9 0 7 7 0
10 - 11 - 11
11 - 9 9 0
12 - 14 - 14
13 0 9 7 0
14 - 13 11 0

3 5 71 2

Figure 9-4: Second loop formed

However, it is not so easy for the computer to follow the diagram. We find their meeting 
point by putting one finger on 6 and one on 13 and moving down through the vertices 
and Clusters until we find the first Cluster on both paths. We want the computer to do
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the same. One way of doing this would be to work out both paths down and then cross 
check to find the first Cluster on both paths. This is obviously an inefficient method. We 
want to move pointers down each path in the sure and certain hope tha t if a Cluster lies 
on both  paths, the pointers will arrive there simultaneously. A nice property th a t would 
allow this method would be if c lu s te r  [c] <c. Then we could move whichever pointer was 
at a higher number until their numbers matched. However, the network does not possess 
this property.

A property it does possess is that a wire cannot grow from a higher numbered wire. T hat 
is, for odd Vertices vx, e x i t2  [vx] <vx. Also, two Vertices always meet at an odd-numbered 
Vertex. A bit of thought shows that we can use the tree structure given by e x i t l  for even 
Vertices and e x i t2  for odd Vertices and employ the same strategy to the one suggested 
in the previous paragraph of reducing the higher number.

In this example, we start with our pointers at (6,13). Since Vertices never meet a t an 
even Vertex, we move away from Vertex 6 and set the pointers to (5,13). Vertex 5 is on 
wire 1 and Vertex 13 is on wire 7, so 13 must be higher than 5 and we move to (5,7). 
Now Vertices 5 and 7 are on the same wire (wire 1) and we need only determine which is 
the lower of the two (it is of course Vertex 5). Since Vertex 5 is in Cluster 0, the fusing of 
Vertex 6 will enlarge Cluster 0. If Vertex 5 had been a Vertex not in any Cluster then a 
new Cluster (labelled 5) would have formed.

We now go back to our original Vertices 6 and 13, armed with the information th a t they 
meet at a point in Cluster 0. We travel down from each of the two Vertices using the tree 
structure given by c lu s te r  and setting everything in our path to be a part of Cluster 0.

Some of the Vertices become Nodes of Cluster 0. All Nodes of the Clusters encountered 
on the way down become Nodes of Cluster 0. Here, only Vertex 9 falls into this category. 
Also, the first Vertex of any Cluster we encounter becomes a Node, in this case, Vertex 13 
for Cluster 9 and Vertices 5 and 7 for Cluster 0.

Finally, the arrays e x i t l  and e x it2  are updated.

9 .1 .4  N a v ig a t in g  th e  tr e e

Using this system, every edge between Vertices is labelled exactly once. We introduce 
arrays r e s t l  and r e s t2  to store the resistances of the wires along these edges, the entries 
in these arrays corresponding to the entries in e x i t l  and e x i t 2.

We wish to find all the paths between Nodes in Cluster 0. There are three types of 
these paths. If n is a Node of Cluster 0 and m := ex itl[n ]  is in Cluster 0 then we can
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Grid Tree

1
» »

One Loose Vertex

2 >: X On a Wire

3
•  »

/X Two Vertices, One Loose

4 X X One Attached Vertex

5 X X Two Attached Vertices

6 X X One Attached Vertex

Figure 9-5: Correspondence between tree and grid

follow the unique path in Cluster 0 from Vertex m to the next Node. The same applies if 
m :=exit2[n] is in Cluster 0 and m is even. The third kind of path occurs if there is an 
even numbered Vertex n which is not a Node but for which e x i t l  [n] and ex it2 [n ] are 
both in Cluster 0. We must follow the paths from both of these vertices until we reach 
Nodes. In our example, we have paths 5-3-1, 7-5, 9-7 and 13-9 of the first type, 2-7 of 
the second and 5-6-13 and 13-14-11-9 of the third type.

The ideas outlined above, together with the algorithm for finding e x it2 [2 n + l] , form the 
basis of the part of the program which stores the network.

Further parts of the program relate this structure to the actual grid. It is important 
to realize the correspondence between the grid and the tree. Figure 9-5 sets out this 
relationship modulo symmetric patterns.

The possibility of new growth exists only in the situations given in 1, 2 or 3. Growing from 
a Point looking like 1 or 3 would cause a loose Vertex to move to a new position, while 
growing from a Point like 2 causes a new wire to grow. Likewise, if a wire grows, then it 
must either add a Point to the network, or join to an existing point looking like 1, 2 or 6.
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9.1.5 N avigating th e grid

One advantage of this way of storing the information has been mentioned, namely, tha t 
calculating the voltages is much easier and faster. The other main advantage is tha t we 
can run through all of the network in a systematic manner. We therefore need not waste 
time scanning empty sections of the grid when determining where growth occurs. We scan 
the base line separately as it does not have the same properties as the rest of the grid. 
We can then scan through from Vertex 3 to the current highest numbered Vertex and see 
if there is a wire either north-west or north-east of the vertex. If either (or both) of these 
wires axe present, then we can follow the unique path upwards in tha t direction until we 
hit another Vertex. The only exception to this is tha t if two Vertices exist at the same 
Point, we only check upwards from one of them. This is easily done, because the tree 
structure still knows which is higher, and so we only go upwards from the higher Vertex 
at any point.

This method is used for scanning through the wires, through the Points and also for 
scanning through Cluster 0 when plotting the flow.

9.2 Algorithm s for Calculating Probabilities

In this section we describe the way in which the program decides whether a wire will grow, 
die or change resistance.

9 .2 .1  P r o b a b ility  o f  G ro w th  o f  a  W ir e

We consider each Point of the network in turn, calculate a probability for its growth and 
then use this and a uniform random variable to determine whether growth actually occurs.

The value of the probability of growth depends on three factors; the height of the Point, 
the distance (in terms of resistance) between that Point and the nearest flow, and the size 
of tha t flow. The higher the point, the closer it is to the attractor at the top and so the 
higher the probability of growth. Similarly, a higher rate of flow simulates growth and 
raises the probability.

The probability is given by the expression “1 in F f f  + R * r  + H / h ” , where F , R  and H  are 
variables set by the user and the lower case variables are the values of the distance to the 
nearest flow (r, as distance is measured in terms of resistance), the size of the flow at tha t 
point ( /) ,  and the height (h ). In theory, this expression is not guaranteed to give a value
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below 1, but in practice, all of our probabilities are in fact very small (to approximate to 
continuous time).

The probability of growth at a particular Point represents the probability of a loose wire 
at tha t Point growing up to the next level. If there is no loose wire at tha t Point, a new 
sprout must grow and we multiply the growth probability by a fixed amount. This is 
because the attractor and the flow are taken to stimulate growth only, not budding of new 
sprouts.

9 .2 .2  C h a n g es  in  R e s is ta n c e  o f  W ires

We allow the resistance (or in the case of angiogenesis, we may think of the diameter) of 
the new connections to alter over time. In angiogenesis, it is observed tha t a small number 
of dominant paths carrying most of the flow develop. Therefore we seek to decrease the 
resistance of “good” paths and increase the resistance of less used paths. Altering the 
resistances also promotes the growth of a stable and simple final structure, rather than an 
intricate web of wires across the whole grid.

We employ a feedback effect so tha t wires carrying a heavy load have their resistances 
lowered and wires whose load is small have theirs increased. Other than a positivity 
constraint, there are no bounds to the values the resistances can take. If the resistance of 
a wire reaches a certain level, it is depicted as a dead wire.

9 .2 .3  K illin g  o f  W ir e s

We wish to kill wires which seem to be redundant, that is, carrying little or no flow. In fact, 
rather than  removing wires, which complicates the network and destroys the structure on 
which the program relies, we give the wire a very large resistance.

The obvious idea is to look at the flow in a wire and then kill it with some probability 
related to the value of th a t flow. However, all newly created wires carry zero flow, and 
would have a high chance of being killed immediately. To give them a chance to participate 
in the network, we do not use the flow, /(n ), to determine whether to kill. Instead, we 
use a value J ( n ) which is given some initial value J(0) > 0  and is then altered using the 
present current to J ( n ) =  AI{n)  +  (1 — A) J(n  — 1), thus giving us a weighted average.

Wires carrying no flow do not have their resistances altered, although these wires may be 
killed.
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9 .2 .4  D ir e c t io n  o f  G ro w th

Wires always grow towards the attractor (that is, upwards) bu t there is no preference 
between left and right. However, tips are attracted by the nearby presence of other wires. 
This is incorporated because of the result that in more than two dimensions, the wires 
would not collide at all if left to grow in random directions.
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C hapter 10

Results

The first piece of output, shown in Figure 8-1, demonstrates the general appearance of 
the networks obtained. At first, sprouts appear in series with one another. Without 
anastomosis, the network would consist of these single sprouts and tree-like structures. 
Figure 10-1 shows a network before anastomosis has caused the flow to alter. The fusing 
of the sprouts causes the series network to become a parallel one, and current flows round 
the loops.

Figure 10-1: A Structure with no flow

These loops may or may not flourish, as seen in Figure 8-1, depending on whether or not 
sufficient flow is diverted through them. This means that if a number of paths are possible, 
the one with the lowest resistance is most likely to survive. Figures 8-2 and 8-3 show how 
the main flow can be diverted away from the original vessel and up towards the attractor 
to such an extent that this new path and not the original vessel carries most of the flow.

A succesful divertion of flow can cause the process to repeat, as in Figure 10-2 where a 
second loop has formed on top of the first.
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Figure 10-2: A Secondary Growth

It will be seen that the flow tends to choose one dominant path and that other paths inside 
this loop quickly die away. This agrees with observed networks in biological settings.

We now mention two results which were observed and whose occurrence is capable of 
explanation but which occurred maybe only once over a large number of random runs 
with the same parameters. They are included because they are features of network growth 
which may have some practical relevance and could possibly be stable results for slightly 
different models to the one used here.

Something similar to the brush border mentioned in the introduction was seen on occasion. 
Indeed, the effect of being close to the attractor is to stimulate growth, and if this effect 
is strong enough then something like a brush border will appear. See Figure 10-3 where 
this effect has been forced. More interesting is the occasional observation of a sudden 
change in the growth and budding rate, often at a single point where anastomosis has 
just occured. We would expect that the sudden introduction of flow to a point close to 
the attractor would immediately raise the growth probability and give rise to a sudden 
emergence of growth from that single point. Although this occasionally was observed in 
varying degrees, the difficulty in finding parameters for which it was a common feature 
leaves doubt as to whether it is truly a feature of this model. Emergence at a point is an 
observed feature of fungal movement.

A second feature of the networks which was difficult to reproduce for different runs of the 
program was the joint effect of killing the new sprouts and the speed of growth. It was seen, 
on a few occasions, that an increase in the rate of growth in a network did not necessarily 
produce a more healthy network. Since this model has the seemingly reasonable property 
that vessels are most likely to die if they have no flow through them, it is possible for a 
slower network to outgrow a faster one. In the latter case, a new sprout will develop and



Figure 10-3: An example of a network with a denser structure at the top

will grow quickly before any other vessels grow near enough for anastomosis to occur. It 
therefore has no chance to carry any flow and, being very long, is susceptible to being 
killed. In this way, the network develops a sequence of dead, trailing vessels carrying no 
flow to the attractor. A slower growth results in small, less easily killed vessels which are 
more likely to join to other nearby growths being formed. These growths have had time 
to grow because the smaller wires last longer on average than the longer ones. In this way, 
the slower network gradually pushes the flow forwards and manages sustainable growth, 
while the faster network over-reaches itself and fails to advance the flow at all.

In our model, this feature, if it is there at all, is difficult to distinguish from background 
noise. However, it may be the case that there is, for the reason given, an optimal growth 
rate linked to the rate at which vessels die and that other implementations of these ideas 
may be able to confirm or refute this.

«
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A ppendix A

Standard R esults

In this chapter we give standard results and references for the two areas of Feller Brownian 
Motions and Excursion Theory.

A .l  Feller Brownian M otions

A Feller Brownian Motion is a Markov process on [0, oo) tha t behaves like a standard 
Brownian Motion away from 0. Details can be found in §5.7 of Ito & McKean (1974).

A reflected Brownian Motion is a familar example of a Feller Brownian Motion. It has 
generator Q given by Qf = \ f "  acting on the set of C%(R+) functions with / '(0 )  =  0. 
Killed Brownian Motion, another Feller Brownian Motion, has generator Q f = \ f "  with 
domain C%(R+) D { /  : /(0 )  =  0}.

Feller showed tha t all such processes have generator Qf  =  \  f "  with a domain tha t can be 
specified by a quadruple (pi,P2 ,P3 iPi), unique up to multiples, where P i,P 2>P3 >  0 and 
P4 is a positive measure on with f ( x  A l )p 4 (dx) finite. The domain of Q is the set of 
C%(R+) functions satisfying

r oo
(A .l) pif{0)  + P 2/ ' ( 0) +P3Qf(0)  +  /  ( f (x)  -  f{0))p4{dx) = 0.

Jo

The numbers p\  and P2 , as we saw above, can be thought of as specifying the rates of 
killing and reflection. The value p$ is related to the stickiness at zero. See Section 2.2, 
where a reflecting Brownian Motion is delayed at the origin and so in the definition of 
the domain as given at (2.25) we have p\  and p± both equal to zero and P2 ->P3 7̂  0. The 
measure p± is the discontinuous jum p measure out of 0, as can be seen at (2.47).
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If v + is Lebesgue measure on M+ and v~  is some measure on R ~ , then the process X + 
formed via the now familiar procedure in Part I will be a Feller Brownian Motion. The 
process X + cannot be sticky at zero, since 0 G E ~ . Therefore the resultant Feller Brownian 
Motion will have domain specified by (pi,P2505P4)-

In Section VI.50 of Vol. II the resolvents of Feller Brownian Motions are found using 
excursion theory and these results are used to find the resolvents of the two Feller Brownian 
Motions in Chapter 2.

A .2 Ito Excursion Theory

A .2 .1  E x c u r s io n  T h e o r y  D e sc r ip tio n  
o f  B ro w n ia n  M o tio n

We briefly recall the basic results of Ito Excursion Theory as applied to reflected Brownian 
Motion, partly as the simplest way to define the notation of Part I.

Reflected Brownian Motion is decomposed into its excursions away from 0. An excursion 
is a continuous function £ : R+ —> R+ U {#} such that £(0) = 0  and if # (£ )  :=  inf{£ >  
0 : £t =  0 or £t_ =  0} then £(£) =  d  for all t  > # (£ ). Let U denote the set of all such 
functions. The state d  represents a coffin state and we kill the excursions when they hit 0.

The path  of a Brownian Motion can now be described by specifying each excursion and the 
local time at zero a t which it occurs, tha t is, by describing a point process on U x R+ . Ito ’s 
central result was to show that this is a Poisson point process and there exists a measure 
n  on U such tha t for H C U and T C R +, the number of points in S x T is Poisson with 
param eter n(H)Leb (r). This parameter may be infinite. For example, reflected Brownian 
Motion performs infinitely many excursions of height less than e > 0 by any positive time. 
We are ignoring measurability conditions.

We define the entrance law, n* to be the measure such that for T C R+ ,

n((r) := n({e:$4e r , J f ( 0 > t } ) .

This is the entrance law in the sense tha t n tP “ =  n t+s where P~  is the transition semi­
group for killed Brownian Motion.

We also define the Laplace transformed entrance law,

r oo

(A.2) n \(dx) := /  e~Xirit{dx)dt.
Jt=o
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For all t  > 0, we have nt({0}) =  0, since the process dies on hitting 0. Therefore, 
n A({0}) =  0 also.

A .2 .2  M a rk in g  th e  E x cu rs io n s

The great drawback of excursion theory is tha t it deals with local time, which can be 
difficult to relate to real time. To overcome this difficulty, and also to introduce a powerful 
technique, we mark the real time axis, independently of the process, with a Poisson process 
of rate A. We now differentiate between marked and unmarked excursions. A marked 
excursion is one which contains a mark. Let U* denote marked excursions and U := UUU* 
denote all excursions, marked and unmarked.

The Poisson nature of the markings means tha t we can perform this procedure in two 
equivalent ways. We can mark the real time axis and decompose tha t into marked and 
unmarked excursions, or decompose the process into excursions and then m ark each ex­
cursion individually at rate A. Let n  denote the Poisson excursion measure on U.

We mark the process as above and let T  be the real time of the first mark. Then since T  
occurs a t an exponential time independent of the process and for a subset T C R+

(A.3) \ R x(x,r) = fx{x t e r } .

Let H s  be the local time at which an excursion in the set H C U occurs. Then for A  and 
B  subsets of U with n(A) <  oo, standard Poisson process results tell us tha t

(A.4)

Let A  be a Feller Brownian Motion and let ~X  denote that process killed when it hits zero. 
Then we use the Strong Markov Property at Ho the hitting time of 0 and the memoryless 
property of the exponential random variable T  to deduce that

R xf ( x )  =  A_1E x} ( X t )

=  A_1E x\ f (XT); H0 > T] +  A ^ E  x [ / ( X T ) ;  H0 <  T)

=  A_1E  , [ / ( - I T); H0 >  T] +  A ^ P ^ A i) <  T } E 0[/(X r)]-

Then since PX{T >  Ho} = E x exp(-X H o), we have

Rxf(x)  =  - « * / ( * ) +  A - 1 E x [ e - A» ° ] E 0 [ / ( X r ) ]
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(A.5) =  - R xf (x )  +  e - i xRxf(0).

Therefore to find the resolvent of a Feller Brownian Motion, it suffices to find R \ f { 0).
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A ppendix B

Some Num erical R esults

The following pages contain program results. The results relating to Chapter 4 for a mass 
mo at the origin are on pp. 118— 121 and the results relating to Chapter 5 for mo —► 0 on 
pp. 122— 127.
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Mass 0: mo =  1.00
Mass 1: m i =  1.00 do =  1.00

Characteristic equation for Q — VO +  02 is

04 -  03 -  2.00 02 +  0 =  0

which has roots
9£ =  0.44504187 =  0.0
0J- =  1.80193774 0 f =  -1.2469796

TTr_ /  0.400968868 0.178447934 
W  =

\  0.178447934 0.178447934 

Characteristic equation for W ~  is

x 2  -  0.57942 x  +  0.03971 =  0

which has roots

0.07941680 0.5

r+  _  / -1.445042 0.801938 \ T ~ _  (  -0.445042
~  V 0.445042 -0.801938 ) ~  \  0.801938

0.445042 \  
-0.801938 )
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Mass 0: mo =  1.00
Mass 1: m \  =  100.00 do =  2.00

Characteristic equation for Q — V9 + 6 2  is

04 -  03 -  0.505 6 2  +  0.49 0 =  0

which has roots
f  =  0.00971588 =  0.0

=  1.36679976 (9f =  -0.3765156

TTr_ ( 0.368059626103473980 0.482365060468602447 
W  =

\  0.004823650604686025 0.482365060467679241

Characteristic equation for W  is

x 2  -  0.85042 x +  0.17521 =  0

which has roots
0.35042469 0.5

-1.363235975 1.3279660964 \  _  /  -0.363235975 0.3632359755
0.0036323598 -0.013279661 )  ~  \  0.0132796610 -0.013279661
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Mass 0: mo =  1.00
Mass 1: m \  =  3.00 do =  5.00

Characteristic equation for Q — VO + 8 2  is

04 -  03 -  0.267 02 +  0.067 6  = 0

which has roots
0J- =  0.16487142 0q =  0.0

= 1.17829778 0 f =  -0.3431692

TTr_ f  0.444570807430946846 0.216950660409590795 W =
\  0.072316886803196923 0.216950660409527152

Characteristic equation for W  is

x 2  -  0.66152 x  +  0.08076 =  0

which has roots

0.16152147 0.5

r+  _  / -1.148901568 0.5828028891 \ r -  _  (  -0.148901568 0.1489015683
~  V 0.0496338561 -0.194267630 / ”  1 0.1942676297 -0.194267630
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Mass 0: mo =  1.00
Mass 1: m \  =  3.00 do =  7.00
Mass 2: m \  =  5.00 do =  9.00

Characteristic equation for Q — VO -f 02 is

e 6 - e 5 -  o.25o 04 +  o.io7 e3 +  0.95 02 -  0.010  =  0

which has roots
0jf =  0.06876172 0^ =  0.0
0^ =  0.28170085 0 f  =  -0.3395610
0 j  =  1.13130970 6 2  = -0.1422113

W ~  =
Z' 0.453989786622365166 0.160546074685967405 0.114744182433550099

0.053515358228655802 0.134535317542425981 0.164214290186336653
0.022948836486710020 0.098528574111802006 0.145301335111560487 J

Characteristic equation for W  is

x3 -  0.73383 x 2 +  0.11919 x  -  0.00114 =  0

which has roots
0.01016350 0.22366294 0.5

r+ =
I  -1.114209726 0.4329812284 0.2274283579 ^

0.0351021895 -0.248586894 0.1224832927
\  0.0017806313 0.0625558909 -0.118975647 )

T~ =
/  -0.114209726 

0.1443270762 
 ̂ 0.0454856716

0.1053065685
-0.248586894
0.0734899756

0.0089031576 
0.1042598181 
-0.118975647 j
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B .l  Small M ass at Zero

Let me denote Lebesgue measure on 1^", a mass e at nought and unit masses at —1 and —2. Let
us denote a function by (/, e) where /  is a function on K+ and e is a vector giving the value of
the function at the atoms. The function is linear between the masses, and constant below —2. We 
wish to solve

(B-1) 5 ; d r ^ ’e> = iA2t f ’- e>2* d7Yl£(LX
for bounded, continuous functions, twice differentiable away from the masses and with left and right 
first derivatives at the masses. For negative A, this will enable us to construct certain martingales.

We first consider the two dimensional problem, when e = 0. Let f(x ) := exp (—Ax) and let

(B 2) Q := (  _ i )

so that

(B-3> h ^ ' e> = i (A2̂ e + (~oA) ) -
By continuity, we require ei =  1 + A and so we must solve 

(B.4) (Q + A2)eA = ( A J

subject to this condition. The solutions, which are solutions to the equation A4 + A3 — 3A2 — 2A4-1 = 
0, are given below.

approx A exact A e*

-1.8794 2 cos ^ /  -.87939 \  
\  .34737 J

-1 2 cos ^

.34730 2 cos ^ L /  1.3473 
\  1.5321 J

1.5321 2 cos (  2.5321 \  
\  -1.8794 )

A ( )
Given these quadratic eigenvalues and eigenvectors, we construct T+ and T_ via T+e^ = — Ae*

!tt 
9for A > 0 and r_ e A = AeA for A < 0. Thus, letting ij := 2 cos

r (n-l l l  “2 1 = ( - 1-0642 63042
+ V 1 -r , )  \  .53209 -.81521

/  2 cos ^  ° \  _  (  -1.8794 0 \
I 2 cos ^  2 cos ^  ) I .34730 -1  )
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The fact that T_ is a Q-matrix here is a coincidence.

We construct T+ and T_ in the same way for the three dimensional problem with e > 0. Continuity 
now gives the condition ei =  1 and we solve

(B.6) (Q +  A2)eA =
(

where Q := - 2
1

0 >\ 
1 

-1
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£ r+ eigenvectorsT
(  -.83811 .36811 .16188 \ ( 1 1.1244 1.1882 )

2 .51959 -1.2431 .51959 | ( 1 0 - 1 )
^ .15664 .50691 -.84336 ) ( 1 -3.0379 1.6286 )

/' -1.4789 .68251 .28463 N
\ ( 1

1.2036 1.3097 )

i .39074 -1.20362 .54620
( 1

.59436 -.83084 )
\, .088156 .52111 -.83083 ,/ ( 1 -.76352 .28464 )
/  -2.6238 1.2675 .50111 \ ( 1 1.2656 1.4054 )

1 / 2 .27030 -1.1638 .57171 ( 1 1.3912 -1.2093 )|
^ .041576 .53005 -.82227 j ( 1 -.17080 .024409 )
/  -4.7525 2.3810 .89909 \

1 ( 1
1.3039 1.8533 )

1/4 .17168 -1.1290 .59296
( 1

1.9393 -1.5257 )
\  .016452 .53379 -.81773 j ( 1 --.046329 .0020473 )
/  -8.8510 4.5483 1.6600 \  ( 1 1.3249 1.4973 )

1/8 .10080 -1.1029 .60837 ( 1 2.2317 -1.6993 )
\  .0055723 .53437 -.81588 j  ( 1 -.012925 .00016490 )
/  -16.916 8.8316 3.1529 \ ( 1 1.33591.5144 )

1/16 .055606 -1.0858 .61824 ( 1 2.3809 -1.7885 )
\  .0016740 .53380 -.81530 ; ( 1 -.0035061 .000012250 )
( -32.955 17.361 6.1181 > ( 1 1.3416 1.5232 )

1/32 .029393 -1.0757 .62398 ( 1 2.4564 -1.8339 )
 ̂ .00046403 .53313 -.81517 } ( 1 -.00092156 .848 x 10“ 6 )

f  -64.977 34.397 12.036 >
1/64 .015142 -1.0701 .62710 -

 ̂ .00012259 .53266 -.81516 }
f  -128.99 68.455 23.865 >

1/128 .0076892 -1.0672 .62873 -
^ .00003153 .53239 -.81518 ;1
j(  -256.99 136.56 47.520 N\

1/256 .0038751 -1.0657 .62957 -1^ .00000800 .53224 -.81519 j1

^ 0  |(  —(1 + e-1) .53209e-1 .184796- 1  ̂
e -1.0642 .63041 

.53209e2 .53209 -.81521 j

( 1 1.3473 1.5321 )
( 1 2.5321 -1.8794 ) 

1 ( 1  - £2 e4 )

1( -1.0642 .63042  ̂
I .53209 -.81521 J

| ( 1.34730 1.5321 ) 
( 2.5321 -1.8794 )
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£ r_ eigenvectors

2 (

< -.33811 .25979 .078320 \  
.73621 -1.2431 .50691 

 ̂ .32377 .51959 -.84336 j

( 1 1 1 )
( 1 -.95497 -2.3441 ) 
( 1 -6.1316 3.5271 )

1
(  -.4789 .39074 .08816 \  

.68251 -1.2036 .52111 
V .28463 .54620 -.83083 /

( 1 1 1 )
( 1 -.52111 -1.6825 ) 
( 1 -3.5133 1.9190 )

1/2 j
( -.62375 .54060 .083152 \  

.63373 -1.1638 .53005 
 ̂ .25056 .57171 -.82227 )

( 1 1 1 )
( 1 -.28299 -1.3427 ) 
( 1 -2.2030 1.1222 )

1/4
(  .75253 -.68673 -.065808 \  

.59524 -1.1290 .53379 
 ̂ .22477 .59296 -.81773 )

( 1 1 1 )
( 1 -.15101 -1.1705 ) 
( 1 -1.5457 .72951 )

1/8 j
(  -.85101 .80643 .044578 > 

.56854 -1.1029 .53437 
^ .20750 .60837 -.81588 )

| ( 1 1 1 )
( 1 -.078867 -1.0846 ) 

' ( 1 -1.2149 .53648 )

1/16
(  -.91648 .88970 .026783 > 

.55197 -1.0858 .53380 
^ .19705 .61824 -.81530 )

i ( 1 1 1 )
( 1 -.040465 -1.0420 ) 

' ( 1 -1.0481 .44128 )

1/32 j
(  -.95544 .94059 .014849 > 

.54253 -1.0757 .53313 
^ .19119 .62398 -.81517 )

| ( 1 1 1 )
( 1 -.020521 -1.0209 ) 

f ( 1 -.96406 .39412 )

1/64
( -.97693 .96908 .0078458 N 

.53745 -1.0701 .53266 
 ̂ .18807 .62710 -.81516 ,

( 1 1 1 )
( 1 -0.010337 -1.0104 ) 

( 1 -.92181 .37066 )

1/128 j
( -.98825 .98422 .0040368 N 

.53481 -1.0672 .53239 
 ̂ .18645 .62873 -.81518 }

( 1 1 1 )
( 1 -.0051882 -1.0052 ) 

( 1 -.90062 .35897 )

1/256 j
f -.99407 .99202 .0020480 N 

.53346 -1.0657 .53224 
^ .18563 .62957 -.81519 ,

\ ( 1 1 1 )
( 1 -.0025991 -1.0026 ) 

/  ( 1 -.89001 .35313 )

-» 0
/  - 1  1 0 \ 

.53209 -1.06418 .53209 
\  .18479 .63041 -.81520 j

( 1 1 1 )
( 1 0 - 1 )

( 1 -.87938 .34729 )
0 (  -1.8794 0 \ ( 0 - 1  )

I .34730 - 1  j ( -.87939 .34730 )

The eigenvectors for T+ are used to form a matrix, K , with Kij := e(Aj)i and we define U := K
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£ -five Rts -ive Rts n
.23188 0 /  .31634 .27373 .31634 \

2 1.0000 -.76980 .56657 --.045860 -.43343
1.6927 -1.6548 \  .11708 -.22787 .11708 )
.28463 0 /  .12972 .31104 .37864 \

1 1.3097 -.83083 .37437 .28584 -.54852
1.9190 -1.6825 \  .49591 -.59688 .16989 )
.31536

° 1
( .043925 .31398 .39754 \

1 /2 1.4664 -.88838 ' .068954 .35146 -.36557
2.8280 -1.7214  ̂ .88712 -.66544 -.031962 j
.33129 0 /  .013432 .30759 .39978 \

1/4 1.5070 -.93327 .014199 .29447 -.27185
4.8609 -1.7660 \  .97237 -.60206 -.12793 )
.33930 0 (  .0038330 .30163 .39840 N

1 /8 1.5210 -.96296 .0034737 .26572 -.23745
8.9095 -1.8068  ̂ .99269 -.56735 -.16096 j
.34330 0 ' .0010391 .29776 .39696 N

1/16 1.5268 -.98039 .00088664 .25210 -.22297
16.947 -1.8372 v .99807 -.54986 -.17399 y
.34530 0 ' .00027203 .29555 .39603 '

1/32 1.5295 -.98990 .00022641 .24548 -.21636
32.971 -1.8563 , .99950 -.54103 -.17967 ,
.34630 ° /' .00006971 .29437 .39550 '

1/64 1.5308 -.99487 .00005739 .24221 -.21320
64.985 -1.8673 \  ̂ .99987 -.53658 -.18230 ,
.34680 0 f .00001765 .29376 .39522 '

1/128 1.5315 -.99742 .00001446 .24058 -.21166
128.99 -1.8732 t .99997 -.53434 -.18356 i
.34705 °  /f .00000444 .29344 .39508 V

1/256 1.5318 -.99870 .00000363 .23977 -.21089
257.00 -1.8763 \v .99999 -.53321 -.18418 ;I
.34730

0 1
( 0 .29313 .39493 \

-► 0 1.5329 - 1 0 .23896 -.21014
00 -1.8794 'V 1 -.53211 -.18478 )

.34730
1.5329

.29313 .39493

.23896 -.21014

We define 0  by 0*j := (Ai + Xj) 1 and W := 11*011.
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e W~ E-vals Left E-vecs

» 1

( .37954 .10461 
.20922 .10052 

 ̂ .17552 .094572

.087762 \  

.094572 

.091958 j

.5
.071302

.00071799

( .61625 .20394 .17981 )
( -.61926 .45581 .54419 ) 
( .12477 -.96017 .87523 )

1
/  .38145 

.14045 
 ̂ .10477

.14045

.13131

.11935

.10477 \  

.11935 

.11435 )

.5
.12536

.0017552

( .51175 .26668 .22157 )
( -.47398 .46541 .53459 ) 
( .09763 -.93707 .90237 )

1/2
/  .40100 

.087804 
\  .056165

.17561

.15872

.13853

.11233 \  

.13853 

.13055 )

.5
.18671

.0035552

( .42759 .32176 .25065 )
( -.33306 .48065 .51935 )
( .069388 -.90936 .93061 )

1/4
/  .42867 

.051601 
\  .027870

.20640

.18038

.15135

.11148 \  

.15135 

.14039 )

.5
.24352

.0059236

( .36812 .36439 .26749 )
( -.21451 .49921 .50079 ) 

( .044634 -.88167 .95537 )

1/8
/  .45461 

.028750 
 ̂ .013310

.23001

.19560

.15900

.10648 \  

.15900 

.14564 j

.5
.28758

.0082830

( .33033 .39374 .27593 )
( -.12745 .51674 .48326 )
( .026283 -.85879 .97372 )

1/16 j
( .47373 

.015362 
.0063260

.24579

.20519

.16322

.10122  ̂

.16322 

.14823 )
.31703

.010128

( .30825 .41192 .27982 )
( -.070931 .53002 .46998 ) 
( .014481 -.84286 .98552 )

1/32 |
' .48573 

.0079756 
v .0030434

.25522

.21072

.16543

.097388 '
.16543
.14947

\  5.33459
/ .011332

( .29614 .42229 .28158 )
( -.037710 .53856 .46144 ) 

( .0076406 -.83315 .99236 )

1/64 |
' .49254 

.0040693 
 ̂ .0014853

.26043

.21371

.16657

.095061 ' 
.16657 
.15007

.5
.34429

.012030

( .28975 .42787 .28238 )
( -.019491 .54346 .45654 ) 

( .0039307 -.82772 .99607 )

1/128 |
' .49618 

.0020561 
v .0007326

.26319

.21527

.16714

.093775 ' 
.16714 
.15036

\ .34941 
/  .012407

( .28647 .43078 .28276 )
( -.0099159 .54611 .45389 ) 
( .0019944 -.82484 .99801 )

1/256 |
' .49807 

.0010336 
v .0003636

.26460

.21607

.16743

.093097 '
.16743
.15050

\  5.35204
/  .012604

( .28480 .43226 .28294 )
( -.0050020 .54748 .45252 ) 
( .0010047 -.82336 .99900 )

-> 0
/  .5 .26604 .092396 \  

0 .21688 .16772 
\  0 .16772 .15064 J

.5
.35472
.012806

( .28312 .43376 .28312 ) 
( 0 .54889 .45111 )

( 0 -.82184 1 )

0 /  .21688 .16772 \ .35472 ( .54889 .45111 )
I .16772 .15064 J .012806 ( -.82184 1 )

For non-zero mass at nought, we have proved the relationship (/ -  2W  )T+ = T_. For zero mass 
at nought, we have T_(/ — 2W~) = T+.
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A ppendix C

Program s for Calculating Full 
W inding Operators

This appendix contains the C code programs used to find the norms of the half winding 
operators for Chapters 4 and 5.

The definitions in NormN.h (p. 130, column 1, lines 13-26) allow us to pass matrices and 
vectors between routines using pointers. We can also use the easily read notation of Mx 
(A ,i ,  j )  for the ( i ^ t h  entry of an N  by N  matrix A  and Vr (w ,i)  for the ith  entry of 
a vector w  of dimension N . The notation DMx and DVr refer to matrices and vectors with 
dimensions twice the size.

The main routine is in NormN. c (p. 131, 1, 20-37). The program requests the input of the 
masses and the distances between them and stores their reciprocals.

The routine F indPoly (p. 134,1,5) constructs the matrix Q and then finds the co-efficients 
of p (A) :=  det (Q — XV  -I- A2) by solving

\
p (l) f  1 1 1 1 ^
P( 2) =

1 2 22 2215l

, P(2|S| +  1) . I  1 2 |5 | +  1 (2|S1 +  1)2 - • (2|5| +  1)2I5I j

so th a t p (A) =  (1 A • • • A2l5l)p and [p]*, is the coefficient of Xk. The program assumes tha t 
this polynomial has distinct roots and (in FindRoots, p. 135, 1, 7) repeatedly differentiates 
the polynomial. The root of the linear polynomial obtained by the final differentiation is
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found and then, inductively, the roots of the k degree polynomial are found using bisection 
on each of the k intervals formed by dissecting the real line at the roots of the k — 1 degree 
polynomial.

The routine CalcW (p. 135, 2, 13) finds the solutions to (Q — XV  +  A2) =  0, a task easily 
performed due to the tri-diagonal structure of the matrix. Then W ~  is calculated using 
equation 4.10.

Procedures concerned with displaying the results are omitted.

Some results from these programs are given in Appendix B.
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N orm N .h
/♦F inding  the Norm of P i-+Pi+ -  David ♦ /  
/ ♦ f o r  th ree  masses. Maries ♦ /
t in c lu d e  <stdio .h>  
t in c lu d e  <s td l ib .h >  
t in c lu d e  <math.h>

t d e f in e  N 2 /♦FOR OTHER DIMENSIONS, 
CHANGE DEFN OF N+/

/♦THEN touch ♦ .c  and compile ♦ /

t d e f in e  
td e f  ine  
td e f in e  
t d e f in e  
td e f  ine  
td e f in e  
t d e f  ine  
td e f in e  
t d e f in e  
t d e f  ine  
td e f in e

EPS
DEPS
Mtrx
M x(A,i , j)
Vctr
V r (v . i )
DMtrx
DMx(A,i,j)
DVctr
DVr(v.i)
DVctr

IE-15
IE-50
str u c t  Matrix 
( ♦ A ) .x [ i ] [ j ]  
s tr u c t  Vector  
( ♦ v ) . x [ i ]
s tr u c t  DoubleMatrix 
( ♦ A ) .x [ i ] [ j ]  
s tr u c t  DoubleVector 
( ♦ v ) . x [ i ]
s t r u c t  DoubleVector

Vctr {double x[N];>;
Mtrx {double x [N ][N ];>;
DVctr {double x[N+N];>;
DMtrx {double x[N+N][N+N] ;};

/♦OUTPUT^/
ex tern  FILE ♦fp .+fq;

/♦ROOTS AND MASSES AND THEIR POSITIONS^/ 
ex tern  Vctr thetaV,♦theta,thetamV,

♦thet am, mV, ♦m, dV, ♦d;

/♦MATRICES^/
extern  Mtrx PiM,+Pi,kM,+k,MM,+M,AM,+A,QM,+Q; 
extern  Mtrx EfnM,^Efn,EfnmM,+Efnm,GpM,+Gp,GmM,

void PrintRightVectorMult(Mtrx * k ,  Vctr ^v,
Vctr ♦ » ,double t h e t a . i n t  a c c ) ; 

void PrintLeftVectorMult (Vctr ♦v, Mtrx ^B,
Vctr ♦w,double t h e t a , i n t  acc);  

(5) void PrintEqtn ( in t  n , i n t  acc);
void PrintDeterminant (Mtrx ♦A, in t  n ) ;

/♦MATRIX^/

(10) void MatrixEquals( Mtrx * k ,  Mtrx +B); 
void DMatrixEquals(DMtrx * k ,  DMtrx ♦B); 
void TransposeMatrix ( Mtrx +A);
void DTransposeMatrix (DMtrx * k ) ;
void MatrixMult(Mtrx * k ,  Mtrx +B, Mtrx ^C);

(15) void RightVectorMult( Mtrx +A, Vctr +v,
Vctr ♦w);

void DRightVectorMult(DMtrx * k ,  DVctr +V,
DVctr +w);

void LeftVectorMult(Vctr +V, Mtrx +B, Vctr +w); 
(20) double Cofactor( Mtrx ♦A.int n , i n t  m); 

double DCofactor(DMtrx ♦A.int  n , i n t  m); 
double Determinant ( Mtrx ♦A.int n ) ; 
double DDeterminant (DMtrx * k , in t  n ) ; 
void InvertMatrix( Mtrx * k ,  Mtrx +B);

(25) void DInvertMatrix(DMtrx * k ,  DMtrx +B);
void FindRightEFn (Mtrx ♦A,Vctr ^B,double th e ta )  
void FindLeftEFn (Vctr ♦A.Mtrx ♦B.double t h e ta ) ;

/♦CALCULATIONS /̂
(30)

void FindPolyO;  
double q(double x . i n t  n ) ;
double RootBetveen(int n,double l o ,  double h i ) ;  
void F indRoots(int n ) ;

(35) void CalcWO ;
void CharEqtn(Mtrx +A);

♦Gm; void CalcNormQ;

/♦POLYNOMIAL CO-EFFS AND R00TS+/ /♦CONTROL /̂
extern  DMtrx pDM,+p,rootDM,+root; (40)

void S t a r t ( ) ;
/♦EIGENVALUES AND EIGENVECTORS /̂ void F in i s h O ;
extern  Vctr evalV,+eval,wV,+w; void InputDataQ;

void SetqO ;
/♦DISPLAY^/ (45) void warn(double x ,double

void Eigenvectors(Mtrx *k

void  l i n e O ; void GammaPlusO ;
double ex ( i n t  n ) ; void GammaMinusO ;
v o id  s i g  (FILE ♦ ft ,d o u b le  x ,  in t  n ) ; 
in t  len gth  (double x ) ; (50)
void  pwr (FILE ♦ ft ,d o u b le  x , i n t  n ) ;
vo id  d isp  (FILE ♦fp ,double  x,  in t  n ) ;
vo id  PrintMatrix(FILE ♦ f t ,  Mtrx ♦A.int acc);
void  DPrintMatrix(DMtrx ♦A.int acc);
void  PrintMatrixMult(Mtrx * k ,  Mtrx +B, (55)

Mtrx ♦C.int acc);
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N orm N .c
/♦F inding  the  Norm of P i-+ P i+ -  David ♦/
/♦ f o r  three  m asses. Maries ♦/
• in c lu d e  "NormN.h"

FILE ♦ fp .+ fq;  /♦OUTPUT*/ (5)
/♦ROOTS AND MASSES AND THEIR POSITIONS^/

Vctr thetaV,♦theta,mV,^m,dV,+d;
Vctr thetamV.♦thetam;

Mtrx PiM, + P i , kM, +k, MM, +M; /♦  SINGLE ♦ / (10)
Mtrx AM,+A,qM,+q,EfnM,^Efn; /♦MATRICES^/
Mtrx GpM,+Gp,EfnmM,+Efnm,GmM,+Gm;

/♦POLYNOMIAL CO-EFFS AND R00TS+/
DMtrx pDM,+p,rootDM,+root; (15)

/♦EIGENVALUES AND EIGENVECTORS /̂
Vctr evalV,+eval,wV,+w;

m ain(){  (20)

S t a r t ( ) ;
InputD ataO ;
FindPolyO ;
l i n e ( ) ;  (25)
f p r i n t f  (fp,"\nEquation formed from

th ese  va lues i s : \ n " ) ;
PrintE qtn(N +N -l,5 );
FindRoots(N+N-l) ;
C a l c P i O ; (30)
l i n e Q  ;
CalcNormO ; 
l i n e Q  ;
E ig e n v e c t o r s ( P i , e v a l ) ;
GammaPlusO; (35)
GammaMinusO ;
F i n i s h O ;

131



Control, c
/♦Finding the  Norm of P i-+Pi+-  
/♦ fo r  three  masses,  
t in c lu d e  "NormN.h"

void S t a r t ( ) {

David ♦ /  
Maries ♦ /

(5)

theta=ftthetaV; 
thetam=ftthetamV; 
m=fanV;
d=ftdV; (10)
Pi=ftPiM;
k=fckM;
M=&MM;
A-ftAM;
Q=ftQM; (15)
p=ftpDM;
root=ftrootDM;
eval=ftevalV;
w=fcwV;
Gp=ftGpM; (20)
Gm=ftGmM;
Efn-ftEfnM;
Efnm=ftEfnmM;
fp=fopen("output. t x t " , "w");
fq=fopen("m essages .txt" ,"w"); (25)
f p r i n t f  (fp ,"F inding norm of Pi Pi fo r

Lebesgue Measure on R+"); 
f p r i n t f  ( fp ,"  and %i masses in  R-. \n" ,N);  
f p r i n t f  (fp ,"000 denotes l e s s  than %4.lg",DEPS); 
fp r i n t f  (fp,"\nxEy denotes x ♦ 10“y. (30)

xey denotes x ♦ 10“- y ." ) ;  
f p r i n t f  ( f p , "\nExponent of ++ or —

denotes ou ts id e  [ -9 9 ,+ 9 9 ] . \ n " ) ; 
fp r i n t f  ( fq ,  "Finding norm of  Pi Pi fo r

Lebesgue Measure on R+"); (35) 
f p r i n t f  ( fq ,"  and %i masses in  R - . \n \n " ,N ) ; 
f p r i n t f  (fq,"Warnings and m e ssa g es: \n \n " ); 
l i n e ( ) ;

",i);

for  ( i=0; i<N ;i+ +){
V r ( m , i ) = - l ;
V r (d , i )= -1 ;

}
fo r  (i=0;i<N;i++)  

while (Vr(m ,i)<0){
p r in t f  (" Enter mass %i 
scanf ("7 , lf" ,f t (V r(m ,i) ) ) ;
V r (m ,i )= l /V r (m ,i ) ;

>
fo r  ( i= 0 ; i< N -l ; i+ + )  

while (V r (d , i )< 0 ){
p r in t f  (" Enter d is ta n ce  from mass 7,i

to  mass %i : " , i , i + l ) ;  
scanf ("*/,lf " , f t ( V r ( d , i ) ) ) ;
V r ( d , i ) = l / V r ( d , i ) ;

}
fo r  ( i= 0 ; i< N - l ; i+ + ){

fp r in t f  (fp,"\nMass %i : " , i ) ;  
disp  ( f p , l / V r ( m , i ) ,8 ) ;
f p r in t f  ( fp ,"  Distance to  mass %i : " , i + l )  
disp  ( f p , l / V r ( d , i ) ,8 ) ;

>

fp r in t f  (fp,"\nMass 7,i : " ,N-1);  
disp  ( f p , l / ( V r ( m ,N - l ) ) ,8 ) ;

(40)
void F in i s h ( ) {

fp r i n t f  ( f p ," \ n \ f " ) ;  
f c lo s e  ( f p ) ;
f c lo s e  ( f q ) ; (45)
system ("emacs —title=NormN_Messages —g

91x42+0+0 m essages . tx t  ft"); 
system ("emacs — title=NormN_Output —g

91x42+150+150 o u tp u t . tx t  ft"); 
p r in t f  ("\nCompleted\n"); (50)

void SetQ(){  
in t  i , j ;

M x(q,0 ,0 )=-(V r(m ,0))+ (Vr(d ,0));
Mx(q, 0 , 1 ) =-Mx(Q, 0 ,0 ) ;  
fo r  (j=2;j<N;j++)

Mx(q,0 ,j)=0;

fo r  ( i= l ; i< N - l ; i+ + ) {  
fo r  ( j = 0 ; j < i - l ; j + + )

M x(q ,i , j )=0;
M x(q,i , i - l ) = ( V r ( m , i ) ) + ( V r ( d , i - 1 ) );  
M x ( q , i , i+ l ) = ( V r ( m , i ) ) + ( V r ( d , i ) ) ; 
Mx(q, i , i)=-Mx(q, i , i -1 ) -M x (q , i , i + 1 ) ; 
fo r  (j=i+2;j<N;j++)

M x(q ,i , j )=0;

fo r  (j=0;j<N-2;j++)
M x(q,N-l,j)=0;

M x(q,N-l,N-2)=(Vr(m ,N-l))+(Vr(d,N-2)); 
M x(q,N -l,N -l)=-M x(q ,N -l ,N -2);

void InputData(){  
in t  i ;

(55)

void warn(double x ,double  a ,double  b , i n t  n ){  
in t  i ;

i = - l ;
while  (x < l){
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x=x*10;
i++;

>

f p r i n t f  ( fq ," \n \n  1000 ITERATIONS
COMPLETED WHILE FINDING ROOT"); (5) 

f p r i n t f  ( fq ," \n  Accuracy=10,'-%i
root between " , i ) ;

d isp  ( f q ,a ,2 0 ) ;  
f p r i n t f  ( fq ,"  and");
d isp  ( f q ,b ,2 0 ) ;  (10)
f p r i n t f  ( fq ," \n

polynomial at  1st  value = "); 
d isp  ( f q , q ( a , n ) ,20 );  
f p r i n t f  ( fq ," \n

polynomial a t  2nd value = "); (15) 
d isp  ( f q , q ( b , n ) ,20 );  
f p r i n t f  ( f q ," \ n \ n " ) ;

>

void  Eigenvectors(Mtrx *A,Vctr *u){ (20)
in t  i ;
Vctr vV,*v;

v=ftvV;
f p r i n t f  (fp,"Right e igenvectors  : \n");  (25)
f o r  ( i= 0 ; i< N ;i+ + ){

F in dR ightE Fn(A ,v ,V r(u ,i) ) ;
RightVectorMult (A,v,w);  
PrintR ightV ectorM ult(A ,v ,w ,V r(u ,i ) ,10 );

> (30) 
l i n e ( )  ;
f p r i n t f  ( fp ," L eft  e igenvectors  : \n");  
f o r  ( i= 0 ; i< N ;i+ + ){

F in dL eftE F n (v ,A ,V r(u , i ) ) ;
LeftVectorMult (v,A,w); (35)
P rin tL eftV ectorM u lt(v ,A ,w ,V r(u ,i ) ,10);

>

>
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CalcN.c
/♦F inding  the Norm of P i-+Pi+-  David ♦/
/ ♦ f o r  th ree  masses. Maries ♦ /
t in c lu d e  "NormN.h"

void  F in dP oly (H  (5)
DMtrx AM,+A,CM,+C;
Mtrx BM.+B;
DVctr wV,+w,uV,+u; 
i n t  i , j , k ;
double x ,y ;  (10)

u=&uV;
C=&CM; 
w=fewV;
A=fcAM; (15)
B=ftBM;
SetQO ; 
x=1.0;
f o r  (k=0;k<N+N;k++){

MatrixGquals(Q, B ); 
f o r  ( i=0;i<N ;i++)

M x(B ,i , i )=M x(B ,i , i )+x+x;  
M x(B,0,0)=M x(B,0 ,0)-(Vr(m ,0)+x);
Vr (w, k)=Determinant(B, N );
Vr (w,k)=Vr (w ,k ) / (k + l) ;  
x = x + l .0;

>

x = l .0;
f o r  ( i=0;i<N+N;i++){  

y=1.0;
f o r  (j=0;j<N+N;j++H  

M x(A ,i , j)=y;
y=y*x;

>

x = x + l .0;
>

DInvertMatrix (A,C);
DRightVectorMult(C,w,u); 
f o r  ( i=0;i<N+N;i++){

M x (p ,N + N -l , i )= V r(u , i) ;
>

(25)

(30)

(35)

(40)

i=0;
i f  ( q ( lo ,n )+ q (h i ,n )> 0 ){

f p r i n t f  (fq,"\n^+++++++++++") ;
f p r i n t f  (fq ,"\nAttempting to  f in d  root between"); 
disp ( f q , l o ,1 2 ) ;  
f p r i n t f  ( fq ,"  and"); 
disp ( f q , h i , 1 2 ) ;
f p r i n t f  (fq ,"\nPolynomial of degree 7 ,i",n);
f p r in t f  ( fq ,"  takes values");
disp ( f q , q ( l o , n ) ,12 );
f p r i n t f  ( fq ,"  and");
disp  ( f q , q ( h i , n ) ,12 );
f p r i n t f  ( fq ,"  at th ese  p o in ts" );
f p r i n t f  ^ ." .^ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ \n " )  ;

double q(double  x , i n t  n ){  
i n t  i ;  
double v a l ;

v a l= 0 .0 ;
f o r  ( i=0; i<= n; i++ )

v a l= v a l+ (M x (p ,n , i ) )+ p o w (x , (d o u b le ) i ) ; 
return  ( v a l ) ;

double RootBetween(int n,double l o ,  double h i ) {  
in t  m id sg n ,h is g n , i ;  
double mid;

hisgn=-l; 
if (q(hi,n)>0) 

hisgn=l;
(20) while  (hi-lo>DEPS){

if (fabs(q(hi,n)) <DEPS){
fprintf (fq,"\n\n HIT ROOT");
disp (fq,hi,20);
fprintf (fq," on ITERATION 7,i

where polynomial =",i);
d isp  ( f q , q ( h i , n ) ,20 );  
return ( h i ) ;

>
if (fabs(q(lo,n))<DEPSH 

fprintf (fq,"\n\n HIT ROOT");
disp (fq,lo,20); 
fprintf (fq," on ITERATION 7,i

where polynomial =",i);
disp (fq,q(lo,n),20); 
return (lo);

>

i++;
if (i==1000){

warn(hi-lo,lo,hi,n); 
mid=lo;
i f  (fabs (q (h i ,n ) )< fa b s  ( q ( l o , n ) ) )  

mid=hi;
f p r i n t f  ( fq ,"  Chosen root ");
d isp  ( fq ,m id ,20);

(45) f p r i n t f  ( fq ," \n " );
return (mid);

>
m id = (h i /2 ) + ( lo /2 ) ; 
m idsgn=-l;

(50) i f  (q(mid,n)>0)  
midsgn=l; 

i f  (midsgn+hisgn==l) 
hi=mid; 

e l s e
(55) lo=mid;

>
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f p r i n t f  ( fq ,"  
disp  (fq ,m id ,2 0 );  
f p r i n t f  ( fq ," \n " ) ;  
return (m id);

void F indRoots(in t n ){  
in t  i , j ;
double s t e p ,n e w , lo ,h i ;

Chosen root "); Mx(root, N+N-l,0)=0;
fo r  (j=0;j<N ;j++){

Vr(thetam,j)=Mx(root, N + N - l , j ) ;
V r(theta ,j)=M x(root ,N +N -l ,j+N );

(5) f p r i n t f  ( fp ," \n th e ta + [ / ( i ]= " , j )  ;
d isp  ( f p , V r ( t h e t a , j ) ,10 );  
f p r i n t f  ( fp ,"  the ta -[% i]» " , j ) ;
d isp  ( f p ,V r ( th e ta m ,j ) ,10 );

>
(10) >

(25)

f o r ( i = n - l ; i > 0 ; i — ) 
f o r ( j = i ;  j>=0; j ~ )

M x ( p , i , j ) = M x ( p , i + l , j + l ) * ( ( f l o a t ) j + 1 . 0 ) ; 
M x ( r o o t ,1 ,1 ) = - M x ( p , l ,0 ) /M x ( p , l , l ) ; 
fo r  ( i= 2 ; i< = n ; i+ + ){  

s t e p = l .0;
l o = q ( M x ( r o o t , i - l , l ) , i ) ; 
new =M x(root,i -1 ,1)-1;  
new=new-step; 
step=step*2;  
while  (q (n ew ,i )* lo > 0 ){  

new=lo-step;  
step=step*2;

>

f p r i n t f  ( f q , "\n\nFINDING ROOTS OF
POLYNOMIAL DEGREE %i  with C0-EFFS",i); 

fo r  ( j * i ; j > = 0 ; j — ){
f p r i n t f  ( fq ," \n C o -e f f  o f  x~%i " , j ) ;  
d isp  ( f q , M x ( p , i , j ) ,20 );

> (30) 
Mx(root, i , 1 ) =RootBetween( i ,new, Mx(root, i - 1 ,1 ) ) ;  
s t e p = l .0;
h i = q ( M x ( r o o t , i - l , i - l ) , i ) ; 
new=Mx(root, i - 1 , i - l ) + l ; 
step=step*2;  
while (q (n ew ,i )* h i> 0 ){  

new=new+step; 
step=step*2;

>

M x ( r o o t , i , i ) =
R o o tB e t w e e n ( i ,M x ( r o o t , i - l , i - l ) ,n e w ) ; 

i f  ( i>2)
fo r  ( j= 2 ; j< i; j+ + )

Mx(root, i , j)=RootBetween(i,M x(root, i - 1 , j - 1 ) ,
M x ( r o o t , i - l , j ) ) ;

}
f p r in t f  (fp ," \nR oots  of polynomial are: \n");  
fo r  ( j= l ; j< = n ;j+ + ){

f p r i n t f  ( fp ,"  ");
d isp  ( f p ,M x ( r o o t ,n , j ) ,10);  
f p r i n t f  ( fp ,"  ");
f p r i n t f  (fp,"where polynomial*"); 
disp  ( f p ,q ( M x ( r o o t ,n , j ) ,n ) ,10 );  
f p r i n t f  ( fp ," \n " ) ;

>

i f  (n==N+N-l){

void CalcW(){ 
in t  i , j  , i 2 , s , t ;

(15) double v a l ,x ;
Mtrx AM,*A;
Vctr BV,*B;

A=ftAM;
(20) B=ftBV;

fo r  ( i« 0 ; i< N ; i+ + ){  
x = V r ( t h e t a , i ) ;
MatrixEquals(Q, A ); 
fo r  ( i2=0;i2<N;i2++)

M x(A,i2 ,i2)=M x(A,i2 ,i2)+x*x;  
Mx(A,0,0)=M x(A,0,0)-(Vr(m,0)*x);
M x(E fn ,i ,0 )= l;
Mx (Ef n , i , 1) *-Mx (A, 0 ,0 )  /Mx (A, 0 ,1 )  ; 
fo r  ( j = l ; j < N - l ; j + + ) {

M x (E fn ,i , j+ l)= -(M x (A ,j , j - l ) * M x ( E f n , i , j - 1 ) ) -
(Mx(A,j, j ) * M x ( E f n , i , j ) ) ; 

M x(E fn ,i , j+ l )= M x (E fn , i , j+ l ) /M x (A ,j , j + 1 ) ;
>

>

(35) InvertMatrix (Efn,k);  
fo r  ( i=0;i<N;i++)  

f o r  ( j= i; j< N ;j+ + ){  
val=0 .0;
f o r  (s=0;s<N;s++)

(40) for  (t=0;t<N;t++)
val=val+(Mx(k, i , s ) * (Mx(k, j , t ) ) ) / (V r ( th e ta , s)

+ V r ( t h e t a , t ) );
M x ( P i , i , j ) = v a l* ( V r ( m , i ) ) ;
M x (P i , j , i ) = v a l* ( V r ( m , j ) ) ;

>

l i n e O ;
f p r in t f  (fp,"The operator Pi +- Pi -+ equa ls \n");  
P r in tM a tr ix ( fp ,P i ,20 );

}
(50)

void CharEqtn(Mtrx *A){ 
in t  i , j ;
Mtrx BM,*B,CM,*C;
Vctr wV,*w,uV,*u;

(55) double x ,y ;
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u=feuV; 
w=ftwV;
B=&BM;
C=fcCM; 
x = l .0;
for (i=0;i<N;i++){

MatrixEquals(A,C); 
f o r  (j=0;j<N;j++)

Mx (C, j , j ) =Mx(C, j , j ) - x ;
Vr (w ,i)=Determ inant(C ,N); 
i f  (N*/.2==l)

Vr (w ,i)= -Vr ( w , i ) ;
Vr (v , i )= V r  (w , i) - (p o w (x ,(d o ub le )N ))  ; 
x=x+1.0;

>
x * l .0;
f o r  ( i= 0 ; i< N ;i+ + ){  

y=1.0;
f o r  (j=0;j<N;j++){

M x(B ,i ,j )= y;
y=y*x;

>

x=x+1.0;
>
InvertMatrix (B,C);
RightVectorMult(C, w, u ) ; 
f o r  ( i= 0 ; i< N ;i+ + H  

M x (p ,N , i )= V r(u , i ) ;
>
Mx(p,N,N)=l; 
f o r ( i = N - l ; i > 0 ; i — ) {  

f o r ( j = i ;  j>=0; j — ){
M x (p , i , j )= M x (p , i+ l , j + 1 ) * ( ( f l o a t ) j + 1 .0 ) ;

>

>

>

void  CalcNorm(){ 
in t  j ;

CharEqtn(Pi);
f p r i n t f  ( fq ," \n \nF or  the  matrix Pi P i:" );
PrintDeterminant ( P i , 8);
f p r i n t f  ( f p , " \nC haracter ist ic  equation for

t h i s  matrix i s
PrintEqtn (N,7);
F indRoots(N); 
f o r  (j=0;j<N ;j++){

V r(ev a l , j )= M x (ro o t ,N ,j+ 1 ) ;
>

>

void GammaPlus(){
Mtrx BM,*B,CM,*C; 
in t  i , j ;

TransposeMatrix(Efn);
B=&BM;
C=&CM;

(5) fo r  ( i=0;i<N ;i++)
fo r  (j=0;j<N;j++)

M x ( B , i , j ) = - M x ( E f n , i , j ) * V r ( t h e t a , j ) ; 
InvertM atrix(Efn.C);
MatrixMult(B, C, Gp);

(10) l i n e Q ;
f p r i n t f  ( f p , "\nGamma p lus equals : \n");  
PrintMatrix ( fp ,G p ,1 2 ) ; /*
f p r i n t f  ( fp ," \n\nM atrix  of e ig e n v e c to r s : \ n " ) ; 
PrintMatrix ( f p .E f n ,1 2 ) ;* /

(15) f p r i n t f  ( fp ," \n " ) ;  
fo r  ( i=0;i<N;i++)

V r ( t h e t a , i ) = - V r ( t h e t a , i ) ;
E ig en v ec to rs (G p ,th eta );

}
(20)

void GammaMinus(){ 
in t  i , j , i 2 , s , t ;  
double v a l ,x ;
Mtrx AM,*A,CM,*C;
Vctr vV,*v,uV,*u;

A=ftAM; 
v=ftvV; 
u=ftuV;
fo r  ( i* 0 ; i< N ;i+ + ){  

x=V r(thetam ,i);
MatrixEquals(q, A); 
for  (i2=0;i2<N;i2++)

Mx(A, i 2 , i2)=Mx(A, i 2 , i2 )+ x * x ; 
Mx(A,0,0)=Mx(A,0,0)-(Vr(m,0)*x);
Mx(Efnm,0,i)=l;
M x(E fnm ,l , i)= -M x(A ,0 ,0) /M x(A ,0 , l) ; 
for  ( j = l ; j < N - l ; j + + ) {

M x(E fnm ,j+ l , i )*-(M x(A,j, j - l )*M x(E fnm ,j-1 , i ) ) -  
(Mx(A,j, j )* M x (E fn m ,j , i ) ) ; 

Mx(Efnm,j+1, i )=M x(E fnm ,j+ l , i ) /M x(A ,j , j + 1 ) ;
}

>

O&CM;
fo r  ( i=0;i<N;i++)  

fo r  (j=0;j<N;j++)
M x(A ,i , j)=M x(E fnm ,i ,j )*V r(thetam ,j); 

InvertMatrix(Efnm.C);
MatrixMult(A,C,Gm); 
l i n e ( ) ;
f p r in t f  (fp,"\nGamma minus equals : \n");  
PrintMatrix (fp,Gm,12); 
f p r in t f  ( fp ," \n " );
Eigenvectors(Gm,thetam); >

(25)

(30)

(35)

(40)

(45) 
\n") ;

(50)

(55)
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M atrixN .c
/♦Finding the  Norm of P i-+Pi+-  David ♦/
/ ♦ f o r  three  masses. Maries ♦/
t in c lu d e  "NormN.h"

void  MatrixEquals(Mtrx *A,  Mtrx ♦B){ 
in t  i , j ;

fo r  ( i=0;i<N ;i++)  
fo r  (j=0;j<N;j++)

Mx ( B , i , j ) = M x ( A , i , j ) ;

int i,j ;
double val;

fo r  ( i=0;i<N ;i++){
(5) va l= 0 .0;

for  (j=0;j<N;j++)
v a l = v a l+ ( ( M x ( A , i , j ) ) ^ ( V r ( v , j ) ) ) ; 

Vr(w,i)=val;
>

( 10) >

void DMatrixEquals(DMtrx ♦A, DMtrx +BH 
in t  i ,  j ;

fo r  (i=0;i<N+N;i++)  
fo r  (j=0;j<N+N;j++)

DMx (B , i , j )= D M x (A , i , j ) ;

void TransposeMatrix (Mtrx +A){ 
Mtrx BM,+B; 
in t  i , j ;

B=fcBM;
fo r  ( i=0;i<N ;i++)  

fo r  (j=0;j<N;j++)
M x (B , i , j )= M x (A ,j , i ) ; 

MatrixEquals (B, A);
>

void DTransposeMatrix (DMtrx * k ) {  

DMtrx BM,+B; 
in t  i , j ;

B=feBM;
fo r  (i=0;i<N+N;i++)  

fo r  (j=0;j<N+N;j++)
DMx(B,i, j)=DMx(A,j, i ) ; 

DMatrixEquals (B,A);

void MatrixMult(Mtrx * k ,  Mtrx ^B, Mtrx +C){ 
in t  i , j , k ; 
double v a l;

fo r  ( i=0;i<N ;i++)  
fo r  (j=0; j<N; j++M  

v a l= 0 .0;
fo r  (k=0;k<N;k++) 

val=val+M x(A,i,k)+M x(B,k ,j);
M x(C ,i , j )= va l;

>
}

void RightVectorMult(Mtrx * k ,  Vctr ♦v, Vctr

void DRightVectorMult(DMtrx +A,DVctr +V,DVctr * v ) {  

in t  i , j ;  
double val;

(15)
fo r  (i=0;i<N+N;i++){  

val=0.0;
fo r  (j=0;j<N+N;j++)

val=val+((DMx(A, i , j ) ) ♦ (DVr(v, j ) ) ) ;
(20) DVr(w,i)=val;

>

>

void LeftVectorMult(Vctr ♦v, Mtrx +8, Vctr ♦w){ 
(25) in t  i , j ;

double val;

for  (j=0;j<N;j++H 
val=0.0;

(30) for  (i=0;i<N;i++)
val=val+Vr(v , i)+Mx(B, i , j ) ;

Vr(w,j)=val;
>

}
(35)

double Cofactor (Mtrx * k ,  in t  i ,  in t  j ) {
Mtrx BM,+B; 
in t  i a ^ b . j a ^ b ;

(40) B=&BM; 
ib=0;
fo r  (ia=0;ia<N;ia++)  

i f  ( i a ! = i ) {  
jb=0;

(45) for  (ja=0;ja<N;ja++)
i f  ( ja ! = j ) {

Mx (B , ib , jb )= M x (A ,ia , ja ) ; 
jb + + ;

>
(50) ib++;

}
return (Determinemt (B ,N-1));

>

(55) double DCofactor (DMtrx * k ,  in t  i ,  in t  j ) {
♦w){ DMtrx BDM,+B;
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int ia,ib,ja,jb;
double val;

B=&BDM; 
ib=0;
f o r  (ia=0;ia<N+N;ia++) 

i f  ( i a ! = i ) {  
jb=0;
f o r  (ja=0;ja<N+N;ja++) 

i f  ( j a ! = j ) {  
val=DMx(A, i a , j a ) ;
DMx ( B , ib , jb )= v a l ;  
jb++;

>

ib++;
>

val=DDeterminant (B,N+N-l); 
r etu rn  ( v a l ) ;

>

double Determinant (Mtrx *A ,in t  n ){  
double det;  
i n t  i , j , s ;
Mtrx BM,*B;

i f  (n==l)
return  (Mx(A,0,0));

B=&BM; 
det=0 .0 ;  
s = l ;
f o r  ( i = l ; i<n;i++)  

f o r  ( j= l ; j< n ; j+ + )
M x ( B , i - 1 , j - l ) = M x ( A , i , j ) ; 

f o r  ( i= 0 ; i< n ; i+ + ){
det=det+s*M x(A ,0 ,i)*D eterm inant(B ,n-l) ;
s = - s ;
f o r  ( j= l ; j< n ; j+ + )

M x(B,j-l ,i )=M x(A,j , i )  ;
>

return  ( d e t ) ;
>

double DDeterminant (DMtrx *A,int n){  
double det;  
in t  i , j , s ;
DMtrx BDM,*B;

i f  (n==l)
return  (DMx(A,0,0));

B=fcBDM; 
det=0 .0;  
s = l ;
fo r  ( i= l ; i< n ; i+ + )  

f o r  ( j = l ;j<n;j++)
D M x (B ,i-1 , j - l )= D M x (A ,i , j ) ; 

fo r  ( i= 0 ; i< n ; i+ + ){

det=det+s*Mx(A, 0 , i)*DDeterminant(B, n - 1 ) ; 
s = - s ;
fo r  ( j= l ; j< n ; j+ + )

DMx(B, j - 1 , i)=DMx(A,j, i ) ;
(5) >

return ( d e t ) ;
>

void InvertMatrix(Mtrx *A, Mtrx *B){
(10) Mtrx TransAM,*TransA; 

in t  i , j  , s , t ; 
double det;

TransA=&TransAM;
(15) f p r i n t f  (fq,"\n\nFINDING INVERSE OF"); 

P rin tM a tr ix ( fq ,A ,7 ) ;

det=Determinant(A,N);
PrintDeterminant (A,8);

( 20)
i f  ( f a b s ( d e t ) <0.0001){

f p r in t f  (fq ," \n********"); 
f p r in t f  ( f q , "\nWARNING :

SMALL DETERMINANT IN ‘ INVERTMATRIX’\ n " ) ; 
(25) f p r i n t f  (fq,"determinant = %10.8f" , d e t ) ;

f p r i n t f  ( fq ," \n******** \n \n" );
>

d e t= l /d e t ;
(30)

i f  ( f a b s ( d e t ) <0.0001){
f p r in t f  (fq," \n********"); 
f p r in t f  (fq,"\nWARNING :

LARGE DETERMINANT IN cINVERTMATRIX’\n");  
(35) f p r in t f  ( fq ," r ec ip r o ca l  of  determinant =

*/.10.8f",det);
fp r i n t f  ( fq,"\n********\n\n") ;

>

(40) MatrixEquals(A,TransA);
TransposeMatrix (TransA); 
s = l ; 
t = l ;
i f  (N*/.2==0)

(45) t = - l ;
for  ( i=0;i<N ;i+ +){  

fo r  (j=0;j<N;j++){
Mx(B, i , j ) =det*Cofactor(TransA, i , j ) * s ; 
s = - s ;

(50) }
s=s*t;

>

}

(55) void DInvertMatrix(DMtrx *A, DMtrx *B){
DMtrx TransADM,*TransA;
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int i,j,s,t;
double det,val; void FindLeftEFn (Vctr *v,Mtrx *B,double t h e t a ) {  

Mtrx CM,*C;
TransA=&TransADM;

det=DDeterminant(A,N+N); 
d e t = l / d e t ;

DMatrixEquals(A, TransA); 
DTransposeMatrix (TransA); 
s = l ; 
t = - l ;
fo r  (i=0;i<N+N;i++M  

fo r  (j=0;j<N+N;j++){
v a l=D C ofactor (T ran sA ,i , j ) ;
D M x(B ,i , j )= det*va l*s; 
s = - s ;

>

s = s * t ;
>

>

void  FindRightEFn (Mtrx *A,Vctr *v,double  
Mtrx CM,*C;
Vctr vV,*v;  
in t  i , j , k ;  
double x;

C=ACM; 
v=fevV;
MatrixEquals(A,C); 
f p r i n t f  (fq ," \nTa daaa\n"); 
fo r  ( i=0;i<N ;i++)

M x (C ,i , i )= M x (C , i , i ) - th e ta ;
PrintMatrix ( fq ,C ,1 0 );  
fo r  ( i = 0 ; i < N - l ; i++)  

fo r  ( j= i+ l; j< N ;j+ + ){  
x = - M x ( C , j , i ) /M x ( C , i , i ) ; 
M x (C ,j , i )= 0 .0 ;  
f o r  (k=i+l;k<N;k++)

Mx(C,j,k)=Mx(C,j,k)+x+Mx(C,i,k);
>

f o r  ( i= 0 ; i< N - l ; i+ + )
V r(w,i)=0;

V r (w ,N - l )= l ; 
f o r  ( i= N -2 ; i> = 0 ; i— ) {  

RightVectorM ult(C,w,v); 
V r ( w , i ) = - V r ( v , i ) / ( M x ( C , i , i ) ) ;

}
x=0.0;
fo r  ( i=0;i<N ;i++)  

x=x+V r(w ,i); 
i f  ( f a b s ( x ) >0.001) 

fo r  ( i=0;i<N ;i++)
V r(w , i )= V r (w ,i ) /x ;

(5) C=&CM;
MatrixEquals (B,C);  
TransposeMatrix (C ); 
FindRightEFn ( C ,v , th e ta ) ;

(10) >

(15)

( 2 0 )

t h e t a ) {

(25)

(30)

(35)

(40)

(45)

(50)

(55)
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