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SUMMARY

Recent improvements in biosensor technology have led to the development of novel 

enzyme electrodes. However, the potential application of many enzymes to be 

applied for use in enzyme electrodes has been severely restrained because of their 

absolute requirement for the coenzyme NAD. One solution to the problem is to 

covalently bind NAD to the surface of these enzymes to form intrinsically active 

enzyme-coenzyme conjugates. These conjugates could then be applied for use in 

reagentless enzyme electrodes.

This report investigates the application of established enzyme-coenzyme conjugation 

techniques for a range of dehydrogenases. NAD conjugates were formed using 

glutaraldehyde and carbodiimide coupling techniques, with lactate dehydrogenase, 

glutamate dehydrogenase and alcohol dehydrogenase. The amount of coenzyme 

incorporated per enzyme subunit was determined, along with the activity of the 

conjugates in the absence of exogenously added coenzyme (intrinsic activity). An 

intramolecular reaction mechanism was determined for a lactate dehydrogenase-NAD 

conjugate coupled using glutaraldehyde. An interesting inhibitory effect by 

glutaraldehyde on alcohol dehydrogenase was observed and terephthalaldehyde was 

used successfully as an alternative coupling reagent.

A novel coenzyme conjugation method was investigated: thiolated NAD derivatives 

were synthesised, characterised and then coupled to thiol groups present on the 

surface of lactate dehydrogenase to form disulphide linked enzyme-coenzyme 

conjugates.

The conjugates showed varying degrees of coenzyme incorporation and intrinsic 

activity, although the latter failed to approach the activity in the presence of 

exogenous coenzyme in all cases.

Lactate dehydrogenase-NAD was incorporated into an enzyme electrode for lactate to 

demonstrate the potential of enzyme-coenzyme conjugates for use in enzyme 

electrodes. Although the biosensor was unstable, a linear response was obtained 

between 0.5 and 10 mM lactate.
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CHAPTER 1

General Introduction

Enzymes make excellent analytical tools. By measuring the initial rate of the reaction 

that takes place between an enzyme and its corresponding substrate, a means of 

specific and quantitative detection of a vast range of biological molecules is provided. 

Enzymes can be used in this way for the efficient detection of substrates, cofactors, 

activators, inhibitors and even some synthetic molecules (Buckmann and Carrea,

1989). For many years now, the initial rate of an enzyme-catalysed reaction has most 

commonly been measured by monitoring a change in optical absorbance between a 

reactant and its corresponding product (Chaplin and Bucke, 1990). For example, the 

reactions of the NAD-dependent dehydrogenase enzymes have been monitored by 

following the change in concentration of the coenzyme NADH at 340nm using a 

spectrophotometer. Unfortunately, the spectrophotometric method becomes 

undesirable when a large number of repetitive assays need to be performed because 

valuable enzyme, and in many cases coenzyme, must be added each time an assay is 

performed. In addition, the spectrophotometric assay is time-consuming and must 

often be performed 'off-site' in a suitably equipped laboratory. For the many situations 

where the routine on-site analysis of biological substrates is required - for example, for 

clinical diagnosis, for 'real time' monitoring in the food and drink industries or for the 

collection of environmental data - such disadvantages must be overcome. Fortunately, 

the development of the biosensor has provided a very attractive alternative to the 

spectrophotometric assay. Ideally, a biosensor is a portable, user-friendly device which 

can provide selective, rapid and repeated measurements of a biological substrate 

without the addition of exogenous reagents. The structure and function of a typical 

biosensor will now be considered.
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1.1 Biosensors

A biosensor is an analytical device which can convert a biological response into an 

electrical signal. The generalised construction of a biosensor is shown in Figure 1. /, 

which also illustrates how a biosensor works:

/
crude
sample
containing
analyte

immobilised 
semipermeable biological

membrane preparation

-mmmmk

Smmgmgm

/ /

transducer electronic circuitry information
output

KEY
Analyte

Other small molecules in crude sample 

Protein molecules in crude sample

Physicochem ical signal 

Processing and am plification o f  signal

Figure 1.1: Representaion o f a generalised biosensor

The substrate to be analysed (the analyte) diffuses through pores in an outer 

membrane, which serves to exclude interfering substances, and into the vicinity of an 

immobilised biological preparation. The analyte reacts with the selective biological 

material and a product is formed. A physicochemical signal is emitted as a result of this
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reaction and it is detected by a suitable transducer which then converts it into an 

electrical signal.

An immobilised enzyme preparation is often used as the biological component of a 

biosensor. In addition to enzymes, the immobilised biological preparation can also 

consist of antibodies, whole cells (tissues) or even organelles (Hall, 1990; Turner et al, 

1987) but, so far, most biosensor research has concentrated upon the development of 

enzyme-based devices (Lowe, 1985; Mascini, 1993; Gronow, 1985).

Upon reaction with its substrate, an enzyme yields several powerful physicochemical 

signals. One of these signals may take the form of a change in the redox state of the 

solution immediately surrounding the enzyme and it may be detected by an 

amperometric* electrode, which can therefore act as a transducer (Schumann and 

Schmidt, 1992). Alternatively, potentiometric** electrodes can be employed to act as 

transducers to detect changes in the ion concentration of a solution brought about by 

an enzyme-catalysed reaction. The physicochemical signal emitted by an enzyme 

reaction may also take the form of a change in the optical properties of the enzyme 

solution; this signal can be detected by an optical fibre (Scheper and Buckmann, 1990). 

An enzyme-catalysed reaction may often be characterised by a change in the acoustic 

properties of the solution in the vicinity of the enzyme, and piezoelectric crystals have 

recently been used to detect this change (Griffiths and Hall, 1993). Nearly all enzyme 

reactions are, to varying extents, exothermic and small changes in the temperature of a 

solution can be detected by thermistors (Gronow et al, 1985).

The development of biosensors has been made possible due to technological advances 

in the field of microelectronics which have allowed the response of the transducers

* An amperometric electrode operates at a fixed potential and directly monitors any change in current 
brought about by a change in the redox state of the solution in the direct vicinity of the electrode.
** A potentiometric operates at a constant current and monitors the change in potential between two 
half cells.
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described above to be converted into an electrical signal which can then be output as a 

digital display (Figure 1.1). With the possible exception of optical fibres, transducers 

other than electrodes have had limited research activity, although there is now an 

increasing interest in the use of more unconventional transducers for biosensor 

construction. At the present moment enzyme electrodes are, by far, the most actively 

researched biosensor devices (Mascini, 1993). Despite this fact, the development of 

enzyme electrodes is being restrained. In order to help explain why this should be so, 

the origins of the enzyme electrode will now be described.

1.2 Enzyme electrodes and enzyme immobilisation

The story of the biosensor began in the 1950s when the voltage bias of a platinum 

electrode was set so that the rate of current flow depended on the rate at which oxygen 

diffused through a surrounding plastic membrane (Lessler and Brierly, 1969). In 1962 

glucose oxidase was immobilised onto the surface of this oxygen electrode, and the 

first enzyme electrode was formed (Updike and Hicks, 1966) (Figure 1.2).

Glucose oxidase
Glucose + 0 2 \ Gluconic acid +H20 2

The enzyme electrode was sealed with a semipermeable membrane, so that the analyte, 

glucose, could diffuse in and the non-dialysable enzyme could not diffuse out. As 

illustrated in the above equation, any decrease in the concentration of oxygen could be 

directly related to the concentration of glucose in solution - a glucose-sensitive 

electrode had been constructed. However, as had been hoped, the electrode could not 

be used to measure blood sugar levels because it was seriously affected by fluctuations 

in the oxygen tension of sample solutions that were not related to the glucose 

concentration. It was nevertheless a very important discovery which is still finding 

applications today (Atkin, 1992).
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cross-section 
through electrode

platinumsilver

cellulose acetate
membrane

immobilised enzyme _____

polycarbonate
membrane

O" ring

substrate
Figure 1.2: Assembly o f a simple glucose oxidase enzyme electrode 

Enzyme immobilisation

Immobilisation of the enzymic component is essential to the formation of a successful 

enzyme electrode because it allows repeated use of the enzyme preparation, thereby 

increasing the productivity of the enzyme by separating the enzyme from the 

substrate/product phase. Immobilisation also allows the enzyme electrode to be 

'reagentless' because fresh enzyme need not be added each time the electrode is used. 

Finally, in many cases immobilisation helps to increase the stability of the enzyme 

molecules (Guilbault, 1984). Several successful methods of enzyme immobilisation 

are known:
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A. Covalent binding to a 
macromolecular support 
(e.g. dextran or poly- 
ethyleneglycol) or an 
electrode surface

B. Adsorption to an electrode 
surface or carbon support

©

©

©
©

C. Entrapment

i. Entrapment by a 
semi-permeable 
membrane

ii. Entrapment 
by a polymeric 
matrix

Covalent binding

The covalent binding of an enzyme to a soluble or insoluble support (see diagram 

above) ensures a strong anchorage of the enzyme and decreases the possibility of the 

enzyme leaching into free solution. This method does, however, suffer from relatively 

poor enzyme loading, averaging 0.02g enzyme / (g matrix) (Chaplin and Bucke, 1990), 

although it has been used successfully in the construction of dehydrogenase-based 

enzyme electrodes. For example, Laval and his co-workers immobilised lactate 

dehydrogenase onto a vitreous carbon electrode using carbodiimide-mediated 

coupling, resulting in the formation of a lactate dehydrogenase-modified electrode for 

lactate (Laval et al, 1984). Glutaraldehyde cross-linking and cyanogen bromide 

activation methods have also been used (Miyamoto et al, 1991; Guilbault, 1984). The 

possibility of covalent immobilisation inhibiting the enzyme in some way must be kept 

in mind using this sort of immobilisation technique (see Section 5.1.3).
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Entrapment

Because of their large molecular size, enzymes can often be entrapped by cross- 

linking into the internal structure of a polymeric membrane. This method has also 

been used successfully in the construction of dehydrogenase-based enzyme electrodes. 

In one application lactate dehydrogenase was entrapped in a gelatin membrane along 

with oxalate oxidase and combined with an oxygen electrode, forming a bienzyme 

electrode for glyoxalate detection (Schubert et al, 1990). The cross-linking method 

leads to a high density of immobilised enzyme activity but complicates the 

construction of the enzyme electrode, leading to increased manufacturing problems 

and extra expense.

A simpler method is to entrap the enzyme molecules behind a dialysis or cellulosic 

membrane. The pore size of the membranes used is smaller than the molecular size of 

the enzyme molecules to be immobilised.

Adsorption

This is the most established and most basic method of enzyme immobilisation with a 

wide applicability to many enzymes. It involves the adsorption of enzyme molecules 

onto an insoluble support, typically made of a carbon material. Adsorption occurs 

upon the formation of several salt links between the enzyme and the support, although 

hydrophobic forces are also involved (Guilbault, 1984). High loading of up to lg 

enzyme / (g matrix) is possible (Chaplin and Bucke, 1990), although desorption 

sometimes occurs, especially upon variations in the surrounding conditions such as 

pH, temperature and solvent (Gronow et al, 1985).

1.3 Application o f enzyme electrodes

Since the glucose oxidase enzyme electrode was discovered, and increasingly with the 

development of immobilisation techniques such as those described above, and micro­

electronic techniques (Penner and Lewis, 1991), enzyme electrodes have been 

discovered for a number of substrates. Enzyme electrodes have been marketed for
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use in the medical industry (for example, for the in vivo treatment of diabetics) 

(Turner, 1985), in the food and fermentation industry (for example for the detection of 

sucrose, lactose, lactate and alcohol) (Williams, 1992), in microbiology (Mullen and 

Vadgama, 1986), in pharmaceutical manufacture and in environmental control (Hall,

1990). Although several enzyme electrodes are now commercially available, they 

usually exploit the reactions of hydrolases, isomerases, oxidases (oxygen dependent) 

and other enzymes not requiring dissociable organic coenzymes. Application of organic 

coenzyme-dependent enzymes, particularly oxidoreductases and ATP-dependent 

phosphotransferases, has been more limited. The development of enzyme electrodes 

incorporating these enzymes has been restricted because the resulting biosensors are 

not 'reagentless': they require the addition of coenzyme each time a sample is 

measured. Not only does this decrease the user-friendliness of the biosensor, it also 

adds considerably to the cost of its use, with NAD, for example, costing around 

£1,100 / mol* . Unfortunately NAD- and ATP-dependent enzymes comprise more than 

a third of all known enzymes, there being over 250 NAD-dependent enzymes alone 

(Mosbach, 1978). The potential for the specific detection of important analytes such as 

lactate, ethanol and glutamate cannot be ignored. The demand for the rapid, on-site 

determination of these particular substrates will be discussed - firstly, to illustrate the 

need for commercially available enzyme electrodes for the substrates of coenzyme- 

dependent dehydrogenases and, secondly, because lactate dehydrogenase, alcohol 

dehydrogenase and glutamate dehydrogenase are of particular interest to this study.

Lactate is an important analyte in many fields. In medicine, quick and frequent 

determination of lactate is often required: a change in serum lactate levels is indicative 

of anoxia which can be caused by heart disease, coronary artery disease or pneumonia; 

lactate levels are also related to muscle disease, lymphomas, overinsulation in 

diabetics, and levels of shock (Mizutani et al, 1983). Lactate is an important ingredient 

in the production of food and can be monitored in order to follow fermentation

* Sigma Chemical Co. catalogue, 1993
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processes (Adamowicz and Berstein, 1987). Even though lactate dehydrogenase is 

readily available, very selective for lactate and is independent of fluctuations in oxygen 

concentration, it is not yet available as part of a biosensor because of its dependence 

on NAD (Schumann and Schmidt, 1992).

Ethanol is also a very important analyte, being the most common toxic substance in 

legal cases (Turner et al, 1987). The accurate, rapid, on-site analysis of ethanol is vital 

in drink-drive cases. Acute alcohol toxication also requires fast and reliable analysis of 

ethanol. Ethanol is also an important analyte for the fermentation industry. NAD- 

dependent alcohol dehydrogenase - potentially an excellent enzyme for the detection of 

ethanol in a biosensor, being relatively cheap and readily available - has yet to be 

incorporated into a successful biosensor. In addition, the different specificities found 

between mammalian and yeast alcohol dehydrogenases could be exploited (Branden et 

al, 1975): a biosensor for a whole range of alcohols could be made by incorporating 

horse liver alcohol dehydrogenase, whilst an ethanol-specific biosensor could be made 

using baker's yeast as a source of the enzyme. Finally, although glutamate, too, is of 

great importance as an analyte it has usually been detected by biosensors that are only 

generally specific for amino acids (Turner et al, 1987). Glutamate is of great import in 

the food industry and in medicine for the detection of amino acid synthesis disorders 

and myocardial infarction (Henry et al, 1974). Altered glutamate levels are also 

indicative of hepatic and jaundiced diseases which are becoming increasingly common 

in industrialised countries (Turner et al, 1987). Glutamate dehydrogenase is readily 

available from several sources (Smith et al, 1975) but, again, because it is dependent 

upon the coenzyme NAD for activity it has not been incorporated into an enzyme 

electrode for the determination of glutamate.

Although biosensors are now commercially available for lactate and ethanol (Scheller 

et al, 1985) and have been researched for glutamate (Kauffinann and Guilbault, 1992), 

they exploit the reactions catalysed by oxygen-dependent oxidases and so are subject
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to variations in surrounding oxygen levels, as described above for the glucose oxidase 

enzyme electrode. It is now known that systems dependent on oxygen are unstable and 

are not versatile (Huck et al, 1984). If improved biosensors are to be constructed for 

substrates such as those described above and a whole range of others, a way must be 

found to incorporate coenzyme-dependent enzymes into reagentless biosensors.

The above examples clearly illustrate the great potential for the use of NAD-dependent 

dehydrogenases in biosensors. If compact probes based on coenzyme-dependent 

dehydrogenases are to be commercially available in the future, the coenzyme problem 

must be solved in such a way as to maintain the 'reagentless' state and low cost of the 

biosensor. The most effective way to achieve this would be to retain and regenerate the 

highly dissociable coenzyme within the biosensor, alongside the enzyme. There have 

been several attempts at accomplishing this, with varying degrees of success. In order 

to consider fully the possibilities that are available, methods of coenzyme 

immobilisation and retention used for applications other than enzyme electrodes will 

also be discussed.

1.4 Coenzyme immobilisation

In order to construct a successful NAD-dependent dehydrogenase-based enzyme 

electrode, the coenzyme must be retained in a way that maintains its substrate activity 

and does not interfere with its mobility or mediator properties. At the same time a high 

concentration of coenzyme is required and 'leaching' of the coenzyme must be limited 

in order to generate a strong physicochemical signal (Miyamoto et al, 1991). A 

number of different coenzyme immobilisation strategies have been studied. The 

immobilisation of NAD usually involves derivatisation of the coenzyme, although some 

attempts have been made to immobilise the unmodified coenzyme.
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1.4.1 Physical entrapment o f NAD

The method of using membranes to entrap coenzyme molecules alongside enzyme 

molecules is limited because the small coenzyme molecules must be retained and yet 

the substrate and product molecules, whose size is often of a similar order of 

magnitude to the coenzyme, must be allowed to diffuse freely to and from the sample 

solution. However, a reagentless electrode for lactate was constructed by immobilising 

unmodified NAD along with lactate dehydrogenase using a chemically modified 

dialysis membrane (Blaedel and Engstrom, 1980). The membrane was acetylated so 

that NAD molecules could not pass through, but the substrate and product molecules 

could freely diffuse through the modified membrane, reportedly due to their slightly 

smaller size. The resulting enzyme electrode showed poor sensitivity to lactate 

although the response time was rapid, if rather erratic. In a more recent study NAD 

was sandwiched between a layer of ADH which was fixed by glutaraldehyde in the 

direct vicinity of the electrode surface, and an outer layer of BSA, also fixed with 

glutaraldehyde and which was permeable to ethanol but not to NAD. The electrode 

was described as sufficiently stable, but with quite low sensitivity (Miyamoto et al,

1991). Despite these attempts, a method has yet to be established whereby free NAD 

can be totally retained by a suitable semipermeable membrane.

Free NAD has been immobilised by physical entrapment, along with ADH, into the 

pores of a polyethyleneimine matrix in the construction of a biosensor for ethanol 

(Dominguez et al, 1993b). The cationic network present on the surface of 

polyethyleneimine matrix reportedly attracted the overall negative surface charge of 

the ADH molecules by electrostatic attraction. The positively charged polymer was 

also thought to act as an electron transport network, enhancing the transfer of 

electrons from reduced coenzyme to the electrode surface. The resulting electrode 

showed a linear response and was sensitive to 2pM ethanol. Unmodified NAD has also 

been immobilised into the pores of a collagen membrane, but with limited success 

(Morikawi etal, 1978).
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1.4.2 Covalent binding o f NAD to a macromolecular support 

The effective size of a coenzyme molecule can be increased by covalent linkage to a 

water-soluble or -insoluble macromolecular support such as dextran or agarose 

(Mosbach et al, 1976). These enlarged coenzyme molecules are non-dialysable and can 

therefore be easily entrapped by a semipermeable membrane. NAD is usually 

derivatised via its catalytically insensitive adenine moiety (Figure 1.3a) and is attached 

to the support via a molecular spacer arm (Schmidt and Dolabdjian, 1980; Mansson 

and Mosbach, 1987). For example, the NAD derivative 

^[(aminohexy^carbamoylmethylJ-NAD (N6AHCM-NAD) (Figure 1.3b) contains an 

aliphatic amine function attached to the adenine ring via a long hexamethylene chain. 

This particular derivative has proved to be a popular choice for the covalent 

immobilisation of NAD because its long spacer arm allows the NAD moiety to 

protrude outwards from the macromolecular support, where it is accessible to 

enzymes.
adenine moiety nicotinamide

moiety
NH2

c
o

^ n h 2

\
o

o — p —o —P —o

o

OH OH

O

OH OH OH OH

ribose and phosphate moieties

Figure 1.3 a: The structure o f NAD.
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HN —  CĤ —CO - N H - C ^ -  0 %  CH^ CI^— CĤ —CĤ —NHj

R-P-P-R-Nm

Figure 1.3b: The structure ofN 6[(aminohexyl)carbamoylmethyl]-NAD
R= ribose; P = phosphate group, Nm = nicotinamide group

Immobilisation of NAD onto water-insoluble supports has proved to be far from ideal 

(Schmidt and Grenner, 1976). For example, the efficiency of the bound NAD moiety 

of Sepharose-N6AHCM-NAD, designed chiefly for use in affinity chromatography, is 

very low when used as a coenzyme with alcohol dehydrogenase or lactate 

dehydrogenase (Mosbach, 1978; Ukeda et al, 1989a). The NAD derivative is over 

70% inaccessible because of steric hindrance by the matrix backbone of the insoluble 

support. Despite this drawback, an agarose-NAD preparation was used in the 

construction of a reagentless electrode for lactate by constraining the macromolecular 

coenzyme alongside lactate dehydrogenase in the direct vicinity of the electrode 

surface using a cellulosic membrane. The electrode showed low sensitivity and a slow 

response time to lactate (Blaedel and Jenkins, 1976).

When NAD is immobilised onto soluble supports the coenzyme is largely accessible: 

80% of the NAD moieties of dextran-N6AHCM-NAD are enzymically reducible 

(Mansson and Mosbach, 1987). Dextran-enlarged NAD molecules have been 

succesfully immobilised, usually by entrapment with a dialysis membrane, in both the 

construction of enzyme reactors (Fu Gu and Chang, 1987) and enzyme electrodes. For 

example, N6AHCM-NAD has been covalently bound onto dextran and coentrapped 

with lactate dehydrogenase and glutamate dehydrogenase within a dialysis bag
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containing an ammonia-sensitive electrode. The resulting device was sensitive to 

glutamate (Mosbach, 1978).

In the synthesis of another macromolecular coenzyme, NAD was coupled to alginic 

acid using carbodiimide-mediated coupling (Aizawa et al, 1976a). The resulting 

macromolecular NAD was actually more stable than free NAD and could be made 

soluble or insoluble by adjustment of the pH. Alginic acid-bound NAD was 

successfully electrocatalytically regenerated but it has yet to find an application in 

enzyme electrodes.

A popular method by which to synthesise a water-soluble molecular weight-enhanced 

NAD derivative is by coupling an NAD derivative that usually contains an aliphatic 

amine attached at the adenine ring of NAD (e.g. N6AHCM-NAD) to 

polyethyleneglycol, or PEG (Okada and Urabe, 1987; Ottalina et al, 1990; Yomo et al, 

1989; Kulys et al, 1991). With most dehydrogenases, there is only a small loss in the 

substrate activity of the coenzyme and this method has become widely used in the 

immobilisation of NAD, especially with recent improved methods for synthesising 

PEG-NAD (Buckmann, 1987; Buckmann and Carrea, 1989). However, the application 

of PEG-NAD will probably be restricted for use in enzyme reactors, as it has not 

proved to be suitable for use in the construction of reagentless biosensors. For 

example, a fibre-optic biosensor was formed using PEG-NAD which was entrapped by 

a dialysis membrane in direct vicinity of the tip of a fluorometer sensor, alongside 

either alcohol dehydrogenase or formate dehyrogenase. The electrode showed poor 

stability and a limited accessibility of the NAD moiety of PEG-NAD was reported 

(Scheper and Buckmann, 1990). In another study, PEG-NAD was entrapped alongside 

glucose-6-phosphate dehydrogenase by a cellulosic membrane in the construction of a 

reagentless enzyme electrode using glucose-6-phosphate dehydrogenase. The electrode 

was again unstable, in this case due to a reported loss of coenzyme; the electrode also 

demonstrated a slow response time. In this study it was suggested that most of the
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PEG-bound NAD molecules could not reach the electrode surface and that the 

presence of the PEG polymer restricted the transfer of electrons from the NAD 

molecules to the electrode surface (Skoog et al, 1991). These suggestions were 

echoed in a recent attempt to form an enzyme electrode using physical entrapment of 

PEG-NAD alongside one of several dehydrogenases: the resulting electrode 

demonstrated poor activity and stability and a non-linear, unstable response. It was 

found that the viscosity of the PEG molecule slowed the transfer of electrons from the 

enzymically reduced coenzyme molecules to the electrode surface (Schumann and 

Schmidt, 1992). Thus, although PEG-NAD is a very useful non-dialysable NAD 

derivative, it cannot provide the high concentrations of accessible coenzyme with 

unhindered mobility properties that are required for the construction of successful 

enzyme electrodes. Other water-soluble macromolecular NAD derivatives include 

polyethyleneimine-NAD and polylysine-NAD, both of which have yet to find 

successful applications (Wykes etal, 1972; Zappelli etal, 1975).

NAD has also been immobilised by copolymerisation (Fuller et al, 1980). An acrylic 

derivative of NAD was made and subjected to radical copolymerisation in the presence 

of acrylic monomers. A polyacrylamide was formed with NAD molecules covalently 

bound onto the matrix. The enlarged NAD molecules were soluble and enzymically 

active. This method was used to construct an enzyme reactor by entrapping the 

enzyme molecules in pores of the matrix (Yamazaki and Maeda, 1987; Yamazaki and 

Maeda, 1982). However, this method has not been widely applied, probably because of 

problems associated with enzyme leakage. This particular coenzyme immobilisation 

technique would probably suffer similar drawbacks to PEG-NAD and agarose-NAD if 

applied to the construction of enzyme electrodes.

A variation on the theme of the molecular weight enhancement of NAD in order to 

ease its immobilisation is to attach NAD covalently to a membrane. In an attempt to fix 

free NAD in the vicinity of an electrode surface, Blaedel and Jenkins (1976)



16

immobilised NAD alongside LDH by covalently linking both enzyme and coenzyme 

to a cellulosic membrane using glutaraldehyde. Unfortunately, the electrode showed 

poor sensitivity. NAD has also been covalently immobilised, along with alcohol 

dehydrogenase, onto the inside of a nylon tube. However, this form of immobilised 

NAD will probably not be used in the formation of enzyme electrodes because of the 

physical restraints imposed by the presence of the nylon tube (Laidler and Mazid, 

1987).

1,4.3 Other methods o f coenzyme immobilisation

In previous constructions of enzyme electrodes, the coenzyme has been immobilised 

onto the actual electrode surface. In one study, NAD was immobilised onto a platinum 

electrode surface with the help of a urethane polymer. The resulting enzyme electrode 

demonstrated a low specificity for its substrate (Phadke et al, 1991). This method of 

coenzyme immobilisation must be carefully considered as the immobilisation of both 

enzyme and coenzyme at the electrode surface is not easy and, with certain electrode 

materials, can lead to the decomposition of both enzyme and coenzyme. The 

drawbacks of this method are further discussed in Section 5.1.2.

Finally, a unique method in which NAD can be supplied to the electrode surface has 

been developed: pores were bored into a graphite rod electrode, filled with a solution 

of lOmM NAD and pressurised (Skoog and Johansson, 1991). In this way NAD was 

supplied to glucose dehydrogenase at the electrode surface. The electrode was 

sensitive to lpM of glucose and used only 11 pi of NAD per hour - a 500-fold saving 

of coenzyme compared to using a bulk solution of lOmM NAD. However, this 

technique only optimised conditions of NAD supply, and, because it did not adhere to 

the principle of a reagentless biosensor, will not be further considered here.

An alternative and attractive way with which to immobilise a coenzyme alongside the 

enzyme that requires it for catalysis is to attach it covalently to the surface of the



17

enzyme molecule. In this way a holoenzyme can be formed which should be able to 

catalyse the NAD-dependent reaction in the absence of free coenzyme. Before the 

advantages of using this coenzyme immobilisation technique are considered, the 

reasons why the enzyme-coenzyme method is also attractive with respect to coenzyme 

regeneration will first be explained. This will be discussed after a consideration of the 

methods of coenzyme regeneration that are available.

1.5 Coenzyme regeneration techniques

There are three main ways in which NAD can be regenerated with respect to the 

construction of an enzyme electrode: firstly, enzyme-catalysed regeneration, whereby 

the reduced or oxidised coenzyme can be regenerated by an appropriate NAD- 

dependent coenzyme-recycling enzyme (,Figure 1.4); secondly, NAD can be 

regenerated by a redox chemical with a suitable redox potential, such as phenazine 

ethosulphate {Figure 1.4); lastly, the electrode itself can act as a coenzyme 

regenerator, usually by oxidation of the reduced coenzyme, NADH. The problem with 

using redox mediators is that they are often unstable and may denature the enzyme 

component of the enzyme electrode (Schumann and Schmidt, 1992; Huck et al, 1984). 

Until recently, the most desirable method of coenzyme regeneration was enzyme- 

catalysed regeneration because of the specificity and efficiency of enzyme reactions. 

However, this method requires the immobilisation of a second enzyme in the enzyme 

electrode which complicates construction of the enzyme electrode and can also add to 

instability. This method also requires the presence of substrate for the second enzyme 

and hence is not reagentless. In addition, if an oxygen-dependent coenzyme-recycling 

enzyme such as NAD oxidase is used, the enzyme electrode will also suffer from 

oxygen-dependency, as described previously (Huck etal, 1984).



= analyte-specific enzyme ^  = NADH oxidase

Figure 1.4: Three methods o f coenzyme regeneration in enzyme electrodes
1. Enzymic regeneration by, for example, NADH oxidase. The substrate of the coenzyme-recycling 
enzyme is usually regenerated by the electrode. If oxygen-dependent coenzyme-recycling enzymes 
are used, the enzyme electrode becomes unreliable due to its dependence upon the oxygen tension of 
the sample.
2. Regeneration by a redox mediator (M ), for example, phenazine methosulphate or ferrocene. The 
redox mediator must have a redox potential that allows it to oxidise NADH spontaneously. The 
oxidised mediator (Mox) is regenerated at the electrode surface.
3. Electrocatalytic regeneration at the electrode surface.

Electrocatalytic regeneration of NAD is fastly becoming the more popular 

regeneration method; this is largely due to recent improvements in electrode surfaces 

enabling NADH to be oxidised at a reduced overpotential (Section 5.1.1), 

Electrocatalytic regeneration is, ultimately, the more desirable method of coenzyme 

regeneration because enzyme electrodes can be constructed using a minimum number
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of components, as is now explained. When the coenzyme, say NAD, is regenerated by 

oxidation of NADH at an amperometric electrode surface, a flow of electrons passes 

from NADH to the electrode surface; this eventually leads to a finite current which is 

passed through the electrochemical cell: the electrode acts as both a transducer and a 

coenzyme regenerator. At the same time, NAD acts as both a coenzyme for the 

enzyme and a mediator of the physicochemical signal between the enzyme and the 

transducer. NAD can do this because it is a highly dissociable, non-integrative 

cofactor unlike, say, FAD.

A contribution to the electrode current is only made by NADH molecules in the direct 

vicinity of the electrode surface (Nemst layer). Therefore, the response time of the 

electrode is linked to the probability that NADH molecules reach the electrode 

surface. The strategy of NAD-dependent electrode studies has consequently been to 

immobilise the coenzyme alongside the enzyme at the electrode surface. In order to 

avoid coenzyme "leaching” the coenzyme must be covalently bound but, as described 

previously, the use of macromolecular supports for such coenzyme binding has led to 

interference in enzyme electrode operation and added to its instability. The simplest 

answer would be to bind the coenzyme to the surface of the enzyme. The enzyme 

could then be immobilised at the electrode surface by one of a number of established 

techniques {Section 7.3), and the coenzyme should be able to interact with both the 

active site of the enzyme and the electrode surface {Figure 1.5).

In summary, the formation of enzyme-coenzyme conjugates could provide an 

effective way to solve the problem of coenzyme-dependency of enzyme electrodes 

incorporating NAD-dependent dehydrogenases. The potential advantages of forming 

such conjugates are now summarised:
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M
\ •

M y
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KEY

electrode surface • enzyme

■ oxidised coenzyme 1 oxidised substrate

■ reduced coenzyme 1 reduced substrate

Figure 1.5: Diagram showing how an enzyme covalently bound to an enzyme via a 
long spacer arm can interact with both the active site and an electrode surface.
a. Enzyme-coenzyme conjugate immobilised in direct vicinity o f electrode surface
b. Spacer arm allows NAD interact with enzyme active site resulting in the formation o f a binary complex.
c. In the presence o f  reduced substrate a ternary complex is formed between NAD, substrate and enzyme.
d. After catalysis NAD oxidises the substrate molecule and NADH is formed.
e. The oxidised substrate dissociates from the active site
f. The spacer arm allows NADH to swing out o f the active site and come into contact with the area o f potential gradient at the 
electrode surface. The overpotential o f  the electrode is set to oxidise NADH, resulting in the formation o f  NAD (a.)

1. The covalent fixation of coenzyme would ensure strong immobilisation and the 

"leaching" problems that are associated with physical entrapment or adsorption 

methods would not occur.

2. A macromolecular NAD derivative is formed that does not require the presence of 

polymers that can hinder electron transfer processes and be generally detrimental to 

the functioning of the electrode.

3. The enzyme-coenzyme conjugate could be immobilised as one catalytic unit in the 

construction of an enzyme electrode without the need for addition of coenzyme
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immobilisation supports. This both simplifies electrode construction and minimises 

problems that may occur during manufacture.

4. Perhaps one of the most attractive advantages is that an increased interaction between 

enzyme and coenzyme may actually lead to an increased stability of both coenzyme and 

enzyme. For example, water has been shown to degenerate organic coenzymes, but in 

the active site of a dehydrogenase enzyme water is excluded (Lowry and Passoneau, 

1972). In addition, the binding of NAD to the active site of an enzyme has been shown 

to contribute to the increased stability of the enzyme during catalysis (Villaume et al, 

1990). It can be concluded that if the normally dissociable coenzyme, NAD, were to 

spend more of its time in contact with the enzyme binding site, the stability of both 

enzyme and coenzyme would be increased and an enzyme electrode constructed using 

an enzyme-coenzyme conjugate would have greater stability than a similar enzyme 

electrode constructed using a more conventional coenzyme immobilisation technique.

5. Immobilisation of coenzyme onto the surface of an enzyme present at the electrode 

surface ensures optimisation of the proximity of the physicochemical signal generated 

by the enzyme (i.e. reduced coenzyme) to the electrode surface.

6. An enzyme-bound coenzyme should be able to interact with other enzyme active sites 

and redox compounds as well as the active site of the enzyme molecule it is bound to, 

and so it could be used as a self-contained NAD regeneration unit in other 

applications.

7. The effects of covalently binding an enzyme to a coenzyme would, if nothing else, be 

interesting from a theoretical point of view, for example, to observe the effects of 

conjugate formation upon the kinetics and stability of the enzyme involved.

The aim of this project was to investigate the possibility of using the enzyme-coenzyme 

method of coenzyme immobilisation to construct improved enzyme electrodes for 

substrates of NAD-dependent dehydrogenases.
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Although research into this novel immobilisation technique is still in its embryonic 

stage, a number of studies involving enzyme-coenzyme conjugates have been carried 

out.

1.6 Previous studies involving enzyme-coenzyme conjugates

As Table 1.1 shows, there has been an increasing interest in enzyme-coenzyme 

conjugates. Conjugates have been constructed using several different enzymes but so 

far only NAD has been used as a coenzyme. The covalent linkage formed between the 

enzyme and coenzyme has proved to be stable in all of the studies attempted so far. 

Covalent modification of enzymes can lead to a loss of enzyme activity and this must 

be considered before the construction of a conjugate. In fact, the earliest attempts at 

forming enzyme-coenzyme conjugates failed because of a serious inhibition of enzyme 

activity and they are not reported here (Woenckhaus et al, 1983). Reactive amino acid 

side chains present on the surface of enzymes have been used as anchorage points; the 

side chains of the acidic amino acids, glutamate and aspartate, and those of lysyl 

residues have been used. There has been only one study where cysteine, generally the 

most reactive enzyme residue, has been used as an anchorage point for the covalent 

attachment of coenzyme (Persson et al, 1991). During conjugate construction, 

molecular spacers between bound coenzyme and the enzyme surface have been used 

with the accessibility of the bound coenzyme to the active site in mind. The length of 

spacer arms used has varied around lnm apart from attempts where a polymer was 

employed as the spacer arm, the length of which was 25nm. There now follows a 

discussion of the properties of each enzyme-coenzyme conjugate constructed to date; 

they are classified according to the constituent enzyme of the enzyme-coenzyme 

conjugate. Terms pertaining to the study of enzyme-coenzyme conjugates will firstly 

be defined:
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The intrinsic activity of an enzyme-coenzyme complex is defined as the catalytic 

activity present in an enzyme-coenzyme complex in the absence of exogenously added 

coenzyme. During an assay non-coenzymic substrate is present at saturating 

concentrations.

Specific activity is defined as the catalytic activity generated by an enzyme or enzyme- 

coenzyme complex in the presence of exogenously added coenzymic and non- 

coenzymic substrate, both of which are present at saturating concentrations._________

1.6.1 Lactate dehydrogenase (LDH)*

NAD NADH + H+

+ LACTATE ~ ^ J - .N + PYRUVATE
(LDH)

The first successful LDH-coenzyme conjugate prepared comprised 0.8 molecules of 

NAD coupled per LDH subunit (M.W. 35,000) and used glutaraldehyde as a cross- 

linking reagent (Section 3.4.1) (Venn et al, 1977). A condensation reaction between 

the amino group of NAD and a terminal aldehyde group of glutaraldehyde produced a 

Schiff base linkage (Gacesa and Whish, 1977), whilst the other terminal aldehyde 

reacted with e-amine groups of lysyl residues. In total, there are 23 lysyl residues on 

pig heart LDH (Klitz et al, 1977) and so not many of these were accessible during 

coupling. Attempts were also made to couple the NAD derivative N6AHCM-NAD to 

LDH. 2.2 molecules of the NAD derivative were coupled per LDH subunit. The 

hexamethylene spacer of N6AHCM-NAD was thought to increase the availability and 

reactivity of the coenzyme amine function which has low reactivity due to electron 

delocalisation and low accessibility for reaction due to steric hindrance by the purine 

ring. The results showed no evidence that the hexamethylene spacer gave LDH-bound

* The pig heart isoenzyme of LDH was used, unless stated otherwise.
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NAD a better chance of interacting with an active site. The intrinsic activity of the 

LDH-N6AHCM-NAD conjugate was 0.8% of the specific activity of the conjugate, 

whereas the intrinsic activity of the LDH-NAD conjugate was 0.6% of its specific 

activity despite there being less than half as many bound coenzyme molecules per 

subunit. The specific activity of each conjugate was between 24 and 28% of the 

specific activity of unmodified LDH. The complex was only partially stable due to a 

loss of covalently bound coenzyme but in a subsequent study a modification of the 

method was designed. The Schiff base linkages formed between glutaraldehyde and 

both enzyme and coenzyme were stabilised by reduction wth potassium borohydride 

and, as a consequence, there was no loss of conjugated coenzyme (Gacesa and Venn, 

1979) {Table 1.1). The latter study confirmed the results of Venn et al and it was 

established that the length of spacer arm attached to the coenzyme was important 

during coupling between enzyme and coenzyme. These studies describe the only 

enzyme-coenzyme conjugates to date that have been prepared using unmodified NAD. 

In a later study, NAD was derivatised with various spacer arms of length between 0.4 

and 1.0 nm, each one possessing a terminal aromatic amino group. Upon reaction with 

nitrous acid these groups formed diazonium functions which are suitable for reaction 

with a variety of amino acids present on the surface of an enzyme with the resulting 

formation of azo bridges {Figure 1.6a & b) (Woenckhaus et al, 1983). During the 

coupling reaction, a dead-end ternary complex was formed between LDH, NAD and a 

pseudosubstrate, oxalate. This complex served to stabilise the interaction between the 

NAD derivative and the active site; it was thought that the NAD derivative, with the 

spacer pointing out of the binding site, was more likely to become anchored to an 

amino acid residue that was near the coenzyme binding site and consequently, more 

likely to be available for interaction with the active site after covalent binding. The 

dead-end ternary complex was also formed to protect "sensitive" active site residues 

from unwanted modification. Up to 1.0 molecule of substrate-reducible coenzyme was 

incorporated per LDH subunit, comparable to the glutaraldehyde



Table 1.1: Comparison of properties of enzyme-coenzyme conjugates prepared to date

Enzyme LDH ADH GlcDH MDH FDH

Coenzyme
i. NAD 

ii.N6AHCMNAD 

(Fig 1.3b)

Imidoester, acyl 
azide and 

carbodiimide NAD 
derivatives 

(Fig 1.6 e & f )

Diazonium and 
imidoester NAD 

derivatives 
(F ig l .6 f ;g & h )

N6AHCM-NAD 

(Fig 1.3b)

N«ADCM-NAD 

(Fig 1.6d)

PEG-NAD 

(Fig 1.6c)

N«AHCM-NAD 

(Fig 1.3b)

PEG-NAD 

(Fig 1.6c)

N6AHCM-NAD 

(Fig 1.3b)

Spacer length
(rim)* i. 0.8

ii. 2.2

0.3-1.7 1.4-1.8 1.4 1.7 25 2.4 25 1.4

NAD/subunit 
(molar ratio)

i. 1.7

ii. 0.9
0.8-2.1 0.4-0.9 1.6 0.5 2.1 1.0 1.2 0.2

Specific 
Activity (%)**

i. 24

ii. 28
50-90 80-90 37 52 92 5 80 116

Intrinsic 
activity (%)***

i. 0.6

ii. 0.8
— 40-50 40 53 2 82 0.1 13

Author & Gacesa & Venn Warth et al Schafer et al Mansson et al Goulas Nakamura et al Persson et al Eguchi et al Kato et al
Year 1979 1989 1986 1978 1987 1986 1991 1986 1987

Coupling
Method

Glutaraldehyde 
reacts with amine o f 
coenzyme and e- 
amine o f enzyme 
lysines

Imidoester and acyl 
azide functional 
groups react with e- 
amine o f enzyme 
lysines.
Carbodiimide -see 
Mansson et al

Imidoesters react 
with e-amine o f 
enzyme lysyl 
residues

Carbodiimide 
activation o f enzyme 
acidic residues for 
reaction with amine 
o f  coenzyme

Carbodiiinide 
activation o f enzyme 
acidic residues in 
presence of 
pseudosubstrate

DHBT activates 
reacts with amine 
groups o f PEG and e 
-amine o f enzyme 
lysyl residues

SPDP reacts with 
amine o f  coenzyme 
derivative and e- 
amine o f enzyme 
lysyl residues

DHBT activates 
reacts with amine 
groups o f  PEG and e  

-amine o f enzyme 
lysyl residues

Carbodiimide 
activation o f enzyme 
acidic residues for 
reaction with amine 
o f coenzyme

Length includes distance from N6 amine of NAD to point of attachment of original enzyme. Note: cross linkers will be included.
^Expressed as a percentage of the specific activity of the unmodified enzyme.

Expressed a a percentage of the specific activity of the modified enzyme.
Abbreviations: SPDP = N-succinimidyl 3-(2-pyridylthio) propionate; PEG = polyethyleneglycol; DHBT = 3,3'-(L6-dioxo-l,6-hexanediyl) bis-2-thiazolidinethione.

LDH = lactate dehydrogenase; GlcDH = glucose dehydrogenase; MDH = malate dehydrogenase; ADH = alcohol dehydrogenase; FDH = formate dehydrogenase
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coupling method described above, which also used lysyl residues as coenzyme 

attachment sites. The loss in specific activity due to chemical modification of LDH was 

between 0 and 20%. Although it was reported that the bound coenzyme molecules 

could be reduced, no results for intrinsic activity were given. Woenckhaus's group has 

carried out further coupling experiments using LDH (Schafer et al, 1986). NAD was 

derivatised to form N6-[(aminobutyl)carbamoylmethyl]-NAD and N6-[aminobutyl]- 

NAD, and these spacer arms were then activated with an aromatic imidoester group 

(Figure 1.6f & g), the resulting spacer arms being 1.4 and 1.8nm in length, 

respectively. Imidoesters react with e-amine groups of lysyl residues to form stable 

amidinium bonds. Only 10-20% of the specific activity of LDH was lost upon 

modification using the coenzyme derivatives, although the KM value of LDH for free 

NAD was significantly increased: between ten and twenty times the normal amount of 

NAD was required to achieve maximum velocity. It was clear that the presence of 

bound coenzyme had interfered with the reaction between enzyme and free 

coenzyme, suggesting that the association between enzyme and coenzyme was 

increased by covalent fixation of the coenzyme to the enzyme. Up to 0.9 NAD 

derivatives were incorporated per LDH subunit, but only 40-60% of these were 

reducible as determined by the increase in absorbance at 340nm upon coenzyme 

reduction. The values for intrinsic activity were good, being between 40 and 50% of 

the specific activity of the modified enzyme.

More recently, the Woenckhaus group attempted to determine the molecular spacer 

length that was required between covalently-bound coenzyme and enzyme in order to 

achieve an optimum interaction between the coenzyme and the active site (Warth et al, 

1989). It must, however, be pointed out that this would also depend upon the method 

of coupling used, i.e. which amino acids are modified and the chemical nature of the 

spacer arm involved. During their study, Woenckhaus and his co-workers proposed 

that if a coenzyme is bound far from the enzyme active site (labelled non-specific 

incorporation) the rate of its reduction will be slower than that
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O O
[ —L (C R )—

n = ~70

d. o
R = _NH— CH— it — NH—(C^CH, 0)2— CH2— CH — NH 2

NO,
e. oh o

R = NH—CH_ i — (|j __
2 A

NH—(CĤ — NH
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O C H

R =  — N H — (C H j^—  N H

R= _NH —  CH —  — N H - (CH ) _  NH—  ii —CH— CH-
2 *6  2 2

Figure 1.6: Coupling chemistry used in past studies in the formation o f enzyme- 
coenzyme conjugates. Red colouring shows terminal groups that were not included in the final 
spacer arm structure

of a coenzyme bound in a greater proximity to the active site (specific incorporation) 

but the study assumed that the interaction between coenzyme and enzyme was 

predominantly intramolecular and that bound coenzyme molecules would not interact 

with the active sites of neighbouring LDH molecules. NAD derivatives with spacer 

arms of length between 0.3 and 1.7nm were investigated. A number of different 

reactive functional groups were involved: NAD containing acyl azide groups formed 

amide bonds with e-amine groups of lysyl residues; carboxyl-containing NAD- 

derivatives were coupled to lysyl residues by carbodiimide-activation, or else amine- 

containing NAD derivatives were coupled to acidic enzyme residues using the same 

coupling reagent (see Section 3.4.2). Finally, aromatic imidoester NAD derivatives 

were used as described above (Figure 1.6/& g). It was found that the optimum spacer 

length of the NAD derivatives used was between 1.2 and 1.7nm, as determined by the
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reducibility of the bound derivatives. Hence, a lower limit on the optimum spacer 

length was defined for these couplings. Between 50 and 90% of specific activity of 

native LDH was retained after modification, and the incorporation of coenzyme was 

comparable to previous studies with between 1.4 and 2.1 molecules incorporated per 

LDH subunit. Imidoester-coupled derivatives were reported to have a higher specific 

incorporation than carbodiimide coupled derivatives, but this was probably because the 

imidoester derivatives contained longer spacer arms. In an extension of this study, bis- 

NAD, an NAD dimer formed by treatment of N6CM-NAD with adipic acid dihydrazide 

(Figure 1.7) (Mosbach, 1979; Siegbahn et al, 1986) was used to orientate the active 

sites of alanine dehydrogenase and lactate dehydrogenase so that they were opposite 

each other in order to create a more efficient coupled enzyme regenerating system 

{Figure 1.8). The enzyme molecules were fixed in this position by cross-linking using 

dimethyl suberimidate so that an NAD derivative that was covalently bound to the 

LDH molecule could go from the active site of one enzyme to another. The NAD 

derivative used contained an imidoester group (spacer length 1.7nm) and because it 

could interact with active sites of both enzymes it was self-regenerating {Figure 1.8).

NAD-NH-CH -CO-NH-NH-CO-(CH.) -CO-NH-NH-CO-CH -NH-NAD
2  v 2 '4  2

Figure 1.7: The structure o f bis-NAD
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Figure 1.8: Preparation o f a self-contained coenzyme-regenerating enzyme reactor. 
The active sites of two enzymes (alanine dehydrogenase and LDH) are orientated using bis-NAD so 
that they are opposite each other. The enzymes are cross-linked in this position and the bis-NAD 
removed. An NAD molecule covalently bound to one of the enzymes (LDH) now has access to both 
active sites and by passing from one to the other can be continually self-regenerated.

Recently, a self-contained semi-synthetic lactate oxidase was constructed by covalently 

binding NAD to LDH* along with the redox mediator 5-ethylphenazine (Yomo et al, 

1992). 5-Ethylphenazine was oxidised in the presence of oxygen and it, in turn, 

oxidised NADH, regenerating the coenzyme which had been reduced in the presence 

of lactate. Both NAD and 5-ethylphenazine were first covalently bound to PEG (MW 

3000) which was itself then bound to LDH using the spacer 3,3'-(l,6-dioxo-l,6 

hexanediyl) bis-2-thiazolidinethione (DHBT). Incorporation of coenzyme was quite 

low at 0.3 molecules of PEG-NAD per subunit, but almost all of these coenzyme 

molecules were enzymically reducible. A low interaction between bound NAD and the 

redox mediator was reported because the covalently-bound NAD molecule was 

"hiding" in the active site of the enzyme. 80% of the specific activity of the LDH was 

maintained after modification and again the KM value of the enzyme for free coenzyme

* From rabbit muscle
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increased upon modification, due to competitive inhibition with bound NAD. This 

method was not considered for use in enzyme electrode experiments because of the 

undesirable involvement of PEG (section 1.4.2).

1.6.2 Alcohol dehydrogenase (ADH)**

NAD NADH + H+

ACETALDEHYDE 
adh)

The first enzyme-coenzyme conjugate study using ADH involved the covalent fixation 

of the amino group of N6AHCM-NAD to carbodiimide-activated acidic residues 

present on the surface of the enzyme, resulting in the formation of amide linkages 

(Mansson et al, 1978; Mansson et al, 1982). Of the 31 acidic amino acid groups in 

horse liver ADH (Branden et al, 1975) only 1.6 were modified with coenzyme per 

ADH subunit (M.W. 40,000). As was the case with LDH it seemed that very few of 

the reactive surface groups were accessible for coupling with coenzyme. One quarter 

of the bound NAD derivatives were deemed enzymically reducible with a second 

enzyme. Modification of ADH molecules led to a 73% reduction in specific activity but 

the intrinsic activity was relatively large at 16% of total specific activity of the native 

enzyme. In this study, Mansson and his co-workers showed how the mechanism of 

intrinsic activity could be determined. It was argued that if an intramolecular 

mechanism was predominant (Figure 1.10), the rate constant of the intrinsic reaction 

would be independent of the enzyme concentration and the reaction would therefore 

be of the first order. However, if an intermolecular reaction prevailed

 + ethanol “
adh)

** All attempts to covalently bind NAD to ADH so far have used the horse liver enzyme.
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KEY

NAD/NADH 

—  molecular spacer arm 

enzyme with active site

intramolecular activity

intermolecular activity

Figure 1.10: Representation o f the two mechanisms by which intrinsic activity can be 
generated by an enzyme-coenzyme conjugate

the rate constant would be dependent on the enzyme concentration and the reaction 

would be of the second order. This theory is explained in more detail in Section 

3.13.1.4. The intrinsic activity generated by the ADH-N6AHCM-NAD conjugate was 

due to an intramolecular mechanism. Evidence for a closer enzyme-coenzyme 

interaction upon covalent binding of coenzyme was again provided: the inhibitory 

effect of AMP was reduced markedly after enzyme modification, probably because of 

increased competition of the covalently bound coenzyme with the inhibitor. An attempt 

was initially made to perform the coupling reaction during the formation of a dead-end 

ternary complex between ADH, N6AHCM-NAD and the pseudosubstrate pyrazole. 

However, during ternary complex formation no intrinsically active coenzyme became 

coupled to the enzyme. It was thought that the ternary complex was sterically blocking
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an acidic amino acid residue, so that the coenzyme derivative could not become 

coupled near the active site. In a later study an NAD derivative with a similar, but 

slightly longer spacer arm than N6AHCM-NAD (1.4nm), N6[N-(8-amino-3,6- 

dioxaoctyl)carbamoylmethyl]-NAD (1.7nm) (Figure 1.6d), was also coupled to ADH 

using carbodiimide during the formation of a ternary complex with pyrazole (Goulas, 

1987). In this case, the bound coenzyme derivative was intrinsically active, probably 

because the longer spacer arm allowed it to reach the active site when anchored to an 

acidic residue that was accessible during ternary complex formation. The incorporation 

of coenzyme was lower than the value reported by Mansson and his co-workers (Table 

1.1) at 0.5 molecules per subunit and the specific activity was slightly higher at 52%. 

The difference of these values reflects the blockage of an accessible acidic residue by 

the ternary complex. This study emphasised the importance of spacer length of the 

coenzyme to be coupled and also showed that the use of ternary complex formation 

may block the optimum site of covalent binding of a coenzyme with respect to its 

active site interaction.

The ADH-N6AHCM-NAD conjugate described above has become the most 

thoroughly investigated enzyme-coenzyme conjugate, and the results reported by 

Mansson and his co-workers have become established. The enzyme-bound coenzyme 

was shown to be enzymically active with LDH and MDH (Mansson et al, 1979; 

Mansson et al, 1982). In 1980, the conjugate was incorporated into an enzyme 

electrode for ethanol in the only study of its kind known to date (Torstensson and 

Johansson, 1980). Kinetic studies on the conjugate revealed that the coenzyme was 

bound in an open form (coenzyme not associated with coenzyme-binding-site) and 

available to interact with other active sites only 5% of the time when reduced and 30% 

of the time when oxidised. This study demonstrates that, when bound, the dissociation 

constant, K ,̂ for the oxidised and reduced coenzyme reflects that of free NADH and 

NAD (Kovar and Klukanova, 1984).
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In another coenzyme-coupling approach using ADH, NAD derivatives were attached 

to residues on the surface of the enzyme via azo-bridges, as described in Section 1.6.1 

(Woenckhaus et al, 1983). Up to 1.0 NAD moiety was incorporated per enzyme 

subunit and between 30 and 80% of the specific activity of native ADH remained after 

modification. Quantitative values for intrinsic activity were not reported but the bound 

coenzyme molecules were enzymically reducible. Woenckhaus's group also fixed N6- 

[(4-aminobutyl)-carbamoylmethyl]-NAD to ADH, but the conjugate was not well 

characterised: 0.3 molecules of coenzyme were incorporated per ADH subunit and the 

bound coenzyme was reducible.

1.6.3 Glucose dehydrogenase (GlcDH)

NAD NADH + H+

GLUCOSE ~----  ̂ \ + GLUCONOLACTONE
(GDH)

The first study on GlcDH-coenzyme conjugates involved the covalent binding of 

PEG-NAD to the surface of GlcDH from Bacillus megaterium (Nakamura et al, 

1986). The cross-linker 3,3'-(l,6-dioxo-l,6 hexanediyl) bis-2-thiazolidinethione 

(DHBT) (Figure 1.6c) was used to activate amino groups of the linear hydrophilic 

polyethyleneglycol (MW 3000) molecule to react with e-amine groups of surface lysyl 

residues of glucose dehydrogenase. The spacer arm (DHBT-PEG) was around 25nm 

long, and 2.1 PEG-NAD molecules were incorporated per GDH subunit (MW 30,000) 

; 80% of these bound NAD moieties were enzymically reducible. Only 8% of the 

specific activity of GlcDH was lost after modification. The intrinsic activity was 

calculated as 2% of the specific activity of the conjugate. A remarkable improvement 

in the interaction between PEG-NAD and GlcDH was demonstrated upon formation 

of the GlcDH-PEG-NAD conjugate. Although free PEG-NAD is, in general, a good
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substrate for dehydrogenases its activity with glucose dehydrogenase is only 0.08% of 

that of free NAD (Nakamura et al, 1986). However, it was found that upon formation 

of a glucose dehydrogenase-PEG-NAD conjugate the bound coenzyme showed an 

astonishing 10,000-fold improvement in substrate activity; in fact enzyme-bound 

PEG-NAD was a more active substrate than free NAD. The reason for the increase in 

substrate activity of the coenzyme was put down to an apparent increase in 

concentration upon the covalent binding of the coenzyme near the enzyme active site - 

a so-called "anchimeric" assistance effect where the enzyme "feels like it's in a more 

concentrated coenzyme solution". This study greatly demonstrated the potential of 

enzyme-coenzyme conjugates. The GlcDH-PEG-NAD conjugate was subsequently 

used as an NAD regeneration unit in enzyme reactors for several dehydrogenases 

(Nakamura et al, 1988). However, this conjugate is probably unsuitable for use in 

enzyme electrodes because of the unsuitability of the PEG molecule to electrocatalytic 

regeneration of coenzyme (Section 1.4.2).

Recently, genetic engineering techniques were applied to the formation of an enzyme- 

coenzyme conjugate (Persson et al, 1991). Native GlcDH from Bacillus subtilis 

contains no cysteine residues. A three-dimensional computer model of the structure of 

GlcDH was used to find the most suitable area on the surface of the enzyme to 

introduce a single cysteine residue which could then be specifically coupled to a thiol- 

containing coenzyme. An aspartate residue of the native enzyme was replaced by a 

cysteine residue using the technique of site-directed mutagenesis. A thiol-containing 

NAD-derivative was made by attaching jV-succinimidyl 3-(2-pyridyldithio)propionate 

(SPDP) to N6AHCM-NAD (Figure 1.6i). The advantage of this technique was that the 

site of coenzyme coupling was precisely defined. The molecular ratio of coenzyme to 

GlcDH subunit was 1.0, confirming that all of the introduced cysteines had reacted 

with the coenzyme derivative. The intrinsic activity of the conjugate was 82% of the 

specific activity of the modified enzyme. However, the specific activity of the 

modified enzyme was only 5% of that of native GlcDH with free NAD because of the
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poor reactivity of the thiol-containing NAD derivative. An intramolecular reaction 

mechanism was responsible for the intrinsic activity generated by the conjugate. The 

bound coenzyme could successfully interact with LDH in an enzyme reactor, and 

lactate and gluconic acid were produced from pyruvate and glucose. The disadvantage 

of this approach is that its success can not be predicted for the majority of NAD- 

dependent enzymes that inherently possess several cystyl residues.

Finally, a semisynthetic glucose oxidase was recently constructed by covalently 

binding 5-ethylphenazine-PEG-NAD to GlcDH (Yomo et al, 1991) as described for 

LDH in Section 1.6.1. 1.2 NAD molecules were bound per subunit, and the bound 

coenzyme was reported to be enzymically reducible.

1.6.4 Malate dehydrogenase (MDH)

Only one enzyme-coenzyme conjugate study involving MDH is known: MDH from 

Thermus thermophilus, a heat-stable enzyme, was linked to NAD via a long PEG 

spacer (MW 3000) using DHBT (see above) (Eguchi et al, 1986). The high molecular 

weight of PEG-NAD allowed the degree of chemical modification to be detected by 

electrophoresis and the randomness of the chemical modification approach was 

demonstrated. The MDH-PEG-NAD preparation was quite heterogeneous: there were 

four different bands present after electrophoresis of the conjugate. Two of the bands 

possessed 1.2 PEG-NAD molecules bound per enzyme subunit (native subunit MW = 

35,000), whilst the other two bands possessed 0.8 and 0.5 molecules of PEG-NAD 

bound per subunit. One of the fractions containing 1.2 PEG-NAD molecules per

NAD NADH + H+

+ MALATE + OXALOACETATE
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subunit also contained the highest amount of protein and this fraction was used for 

further investigations. Over 80% of the bound NAD molecules were reducible. The 

specific activity of the modified enzyme was over 80% of the native enzyme but the 

intrinsic activity was only 0.07% of the specific activity. Enzyme-bound NAD was 

calculated to be dissociated from the active site 36% of the time. This figure was 

slightly higher than the 30% obtained for the ADH-N6AHCM-NAD conjugate, 

probably because of the larger length of the polyethyleneglycol spacer arm involved 

(25nm). Again, the KM of the modified enzyme for free NAD was increased after 

modification, this time by three-fold.

1.6.5Formate dehydrogenase (FDH)

NAD NADH + H+

+ FORMATE 
FDH

+ CO
FDH

There has been only one enzyme-coenzyme conjugate study involving FDH: 

N6AHCM-NAD was bound to FDH using the method of Mansson et al (1978) 

(Section 1.6.2). The amine function of the coenzyme was coupled directly to acidic 

residues of FDH by carbodiimide activation (Kato et al, 1987). 0.2 molecules of 

substrate-reducible NAD were bound per FDH (M.W. 36,000) and the specific activity 

of the modified enzyme was 16% greater than that of the native enzyme. This was a 

marked difference to 63% inhibition of ADH reported by Mansson et al (1978) using 

the same coupling technique (Table 1.1). There was also a difference in the intrinsic 

activity, it being 12.9% of the specific activity of the FDH-N6AHCM-NAD conjugate 

compared to 40% for the ADH-N6AHCM-NAD conjugate. This serves to illustrate 

that the success of a particular coupling technique will depend to a large extent on the 

constituent enzyme of the enzyme-coenzyme conjugate.
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One may conclude that past studies on the preparation of enzyme-coenzyme 

conjugates have proved that the interaction between a covalently bound coenzyme and 

enzyme is feasible and is worth investigating as a favourable alternative to other 

methods of coenzyme retention and regeneration in enzyme electrodes. The length of 

the molecular bridge between enzyme and bound coenzyme appears to be important 

for an effective conjugate preparation. Although a maximum limit on the optimum 

length of such a bridge has not yet been set it has been shown that a spacer length of 

over 1.2nm is desirable for the coupling of certain coenzyme derivatives with LDH 

(Warth et al, 1989). The presence of a covalently linked coenzyme in the active site 

has been supported by increased KM values of the modified enzymes for free coenzyme 

(Yomo et al, 1992; Schafer et al, 1986), the reduced effects of an inhibitor upon a 

coenzyme-modified enzyme (Mansson et al, 1978), a weakened interaction of a 

coenzyme-modified enzyme with affinity ligands (Eguchi et al, 1986) and increased 

thermostability of modified enzymes (Schafer et al, 1986). It has been shown that an 

intramolecular reaction prevails upon the binding of coenzyme to enzyme, although 

this may not necessarily be true for all conjugates studied in the future (Mansson et al, 

1978; Persson et al, 1991; Eguchi et al, 1986 and Nakamura et al, 1986). Although all 

but one of the enzyme-coenzyme conjugates synthesised have involved the use of pre- 

derivatised NAD, the attraction of using unmodified NAD must not be discounted. Not 

only would the use of unmodified NAD reduce costs and simplify the manufacture of 

future applications of enzyme-coenzyme conjugates, but the derivatisation of NAD 

usually leads to a certain loss of biological activity of the coenzyme.

A quick glance back at Table 1.1 shows that the approach to enzyme-coenzyme 

conjugate formation has been quite random in nature. There have been recent calls for 

more research to be carried out into forming enzyme-coenzyme conjugates in order to 

improve the knowledge of coenzyme coupling effects, to optimise the spacer lengths 

and to find the best coupling chemistries that can be used to form the link between
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enzyme and coenzyme (Buckmann and Carrea, 1989). Cysteine, the amino acid that is 

generally the most reactive present on the surface of an enzyme, has only been 

exploited in one rather complex study that required the use of genetic engineering 

techniques. A simple chemical modification approach may be just as effective, if not 

more so, and would apply to a wider range of NAD-dependent dehydrogenases. There 

is also a need for further construction of enzyme-coenzyme conjugates using more 

established coupling techniques to include a range of dehydrogenases in order to 

establish which of these methods is more generally applicable.

It is clear then that more work needs to be carried out before enzyme-coenzyme 

conjugation can be fully exploited to make possible the construction of commercial 

enzyme electrodes for substrates of NAD-dependent dehydrogenases. There has only 

been one study involving the incorporation of enzyme-coenzyme conjugates into 

enzyme electrodes (Torstensson and Johansson, 1980). An ADH-N6AHCM-NAD 

conjugate synthesised via carbodiimide coupling (Section 1.6.2) was used to prepare a 

reagentless electrode for ethanol by the immobilisation of the conjugate onto the 

surface of an amperometric electode. The success of the study was limited: the bound 

coenzyme was catalytically active for only one cycle, reportedly due to degeneration of 

the coenzyme at the graphite electrode surface. It seems that this study may have 

caused a loss of interest in the use of enzyme-coenzyme conjugates in enzyme 

electrodes. However, new electrode materials are now available and electrocatalytic 

coenzyme regeneration has since been greatly improved (Section 5.1.1). There is now 

a need for fresh electrode studies in order to demonstrate the potential of enzyme- 

coenzyme conjugates using up-to-date technologies.

The aims of this study are therefore laid out as follows:
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1.7 The aims o f this study

1. To use coupling methods that have been successful in the past for selected enzyme- 

coenzyme couples to investigate their applicability to a wider range of dehydrogenases. 

As discussed above, past investigations have been rather randomly executed and a 

more organised approach is required to increase the knowledge of a wide range of 

enzyme-coenzyme conjugates before their potential for use in enzyme electrodes can 

be fully realised. Those coupling techniques involving polyethyleneglycol were not 

considered because of their inapplicability to enzyme electrodes (Table 1.1). Because 

the complex methods of Woenckhaus and his co-workers (Woenckhaus et al, 1983; 

Schafer et al, 1986; Warth et al, 1989) did not convey any real advantages over the 

simpler, more established techniques of glutaraldehyde or carbodiimide-mediated 

coupling, these latter techniques were used to find out whether they were generally 

applicable {Table 1.1). Both of these techniques also had their individual advantages. 

The carbodiimide-coupling technique developed by Mansson et al (1978) gave rise to 

high intrinsic activities in both FDH- and ADH-coenzyme conjugates and would 

therefore be likely to generate a large physicochemical signal in the presence of 

substrate. However, the use of carbodiimide to couple unmodified NAD to enzymes 

has yet to be reported. In fact, the glutaraldehyde coupling method of Venn et al 

(1977) is the only method so far reported that is able to form conjugates from 

unmodified NAD. Both glutaraldehyde and EDC have proved to be stable when used 

in electrode studies (Aizawa et al, 1976; Miyamoto et al, 1991).

The enzymes chosen for use in coupling experiments were pig heart LDH, ADH from 

yeast, and bovine liver glutamate dehydrogenase, partly because of the commercial 

interest for the detection of lactate, ethanol and glutamate, respectively {section 1.3). 

LDH has been used in both enzyme electrode and enzyme-coenzyme conjugate 

experiments with success. LDH is in several ways a 'typical' dehydrogenase and was 

used as a model dehydrogenase in this study. It is also a relatively inexpensive enzyme,
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as is yeast ADH. YADH was also chosen to compare its coenzyme conjugates to those 

of liver ADH. These two enzymes differ in many ways: perhaps most importantly, 

YADH is more specific for, and has a higher activity with, ethanol and could therefore 

be used to form a more specific and more sensitive enzyme electrode for ethanol. The 

yeast enzyme is also less expensive as it is easily obtained from baker's yeast. A 

glutamate dehydrogenase-coenzyme conjugate has not yet been constructed despite 

the interest in its substrate.

The coenzyme derivatives N6AHCM-NAD and N6CM-NAD were synthesised for 

coupling to the above enzymes because they have spacers of different length and 

chemical nature, but are on the same synthetic pathway starting from NAD (Mosbach 

et al, 1976). Attempts were also made to couple unmodified NAD.

2. To perform novel coupling experiments in an attempt to exploit the reactivity of 

cysteine residues as anchorage sites for coenzymes. BSA was used as a 'template' of a 

typical protein surface to achieve successful protein-coenzyme conjugates before LDH 

was used as a model dehydrogenase to demonstrate the potential of this approach. 

Extra thiol groups were introduced onto the surface of BSA and LDH to investigate 

the effect of increased incorporation of coenzyme. Unmodified NAD and the NAD 

derivatives described above were further derivatised to form thiol-containing 

coenzymes which would readily form disulphide bridges with cysteine residues. As a 

result, novel NAD derivatives were synthesised that may be of interest for future 

applications involving immobilised coenzymes

3. To synthesise and characterise the LDH-NAD and LDH-N6AHCM-NAD conjugates

described by Gacesa and Venn (1979) (Table 1.1) and incorporate them into an

enzyme electrode for lactate in an attempt to demonstrate the potential of enzyme-

coenzyme conjugates for use in reagentless biosensors. Improved electrode materials
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were used and the enzyme electrode constructed involved a minimal number of 

components.
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CHAPTER 2 

Materials and Methods

2.1 Materials

2.1.1 General materials

All chemicals used in the preparation of buffers and solutions, along with all solvents and 

assay reagents, were from BDH Laboratory Supplies (Dorset, UK), Sigma Chemical Co. 

(Dorset, UK) or Fisons Scientific Equipment (Loughborough, UK) and were of AnalaR 

grade or equivalent. Gases were supplied by BOC (London, UK). Bovine serum albumin 

(fraction V) was from Sigma Chemical Co. (Dorset, UK). GFC Millipore and Whatman 

No.l filter papers were from Whatman (Kent, UK). Optiphase "Safe" scintillation cocktail 

was obtained from FSA Laboratory Supplies (Loughborough, UK).

2.1.2 Enzymes and enzyme purification

Lactate dehydrogenase, E.C. 1.1.1.27 (pig heart, 480 U* /mg or bovine heart, 600 U/mg), 

malate dehydrogenase, E.C. 1.1.1.37 (pig heart, 480 U/mg) and alcohol dehydrogenase, 

E.C. 1.1.1.1 (horse liver, 1-2 U/mg or baker's yeast, 320 U/mg) were obtained from Sigma 

Chemical Co. (Dorset, UK). Glutamate dehydrogenase, E.C. 1.4.1.3 (bovine liver, 170 

U/mg) and phosphodiesterase, E.C. 3.1.4.1 (Crotalus durissus venom, 1.5 U/mg) were 

from Boehringer Mannheim UK (East Sussex, UK).

* lactate dehydrogenase U/mg = fimol of pyruvate reduced /min/mg 
malate dehydrogenase U/mg = pmol of oxaloacetate reduced /min/mg 
alcohol dehydrogenase U/mg = pmol of ethanol oxidised /min/mg 
glutamate dehydrogenase U/mg = jimol of oxoglutarate reduced /min/mg 
phosphodiesterase U/mg = pmol of phosphate hydrolysed /min/mg
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Charcoal (activated for adsorption, granular, 10-18 mesh) was obtained from BDH 

Laboratory Supplies (Dorset, UK).

Dialysis membrane (visking tubing size 3-20/32") was from Medicell International 

(London, UK).

2.1.3 Cross-linking reagents

25% Glutaraldehyde (Grade 1), 1-ethyl-3-(dimethylaminopropyl) carbodiimide, 1,6- 

diaminohexane and 2-aminoethanethiol were from Sigma Chemical Co. (Dorset, UK). N- 

hydroxysuccinimide and terephthalaldehyde were from Aldrich Chemical Co. (Dorset, 

UK), and 2-iminothiolane ("Traut's reagent") was from Pierce Chemical Co. (USA) c/o 

Life Science Laboratories (Luton, UK)

2.1.4 Column chromatography

All chromatography columns and Sephacryl S-100 were from Pharmacia (Uppsala, 

Sweden). Dowex 1X8-400 (Cl") and Dowex 50W-400 (H+) were from Sigma Chemical 

Co. (Dorset, UK).

2.1.5 Synthesis o f thiol-agarose

Sepharose 4B was obtained from Pharmacia (Uppsala, Sweden), whilst epichlorohydrin, 

2,2-dipyridyldisulphide ("Aldrithiol") and dithiothreitol were from Aldrich Chemical Co. 

(Dorset, UK).

2.1.6 Thin layer chromatography

PEI-Cellulose and Cellulose-F precoated thin layer plates (20 x 20cm) were from Camlab 

(Cambridge, England)
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2.1.7 High Performance Liquid Chromatography

The ODS Hypersil™ column (4.6mm x 15cm) was from Anachem (London, UK) and was 

run using LDC/Milton Roy HPLC equipment.

2.1.8 Electrode materials

The electrode materials were kindly donated by Cambridge Life Sciences (Ely, UK). 

Activated carbon (5% Pt on Vulcan XC27R) manufactured by E-Tek is available from 

Mastik, Massachusets, USA.

2.2 Methods

2.2.1 Standard spectrophotometric dehydrogenase assays, carried out by monitoring the 

oxidation or reduction o f NADH at 340nm

All enzymes and reagents were kept on ice and allowed to warm to assay temperature 

when required. Each sample was analysed in triplicate.

Lactate dehydrogenase

0.10ml of 23mM sodium pyruvate and 0.05ml of 12mM NADH were added to 2.83ml of 

lOOmM potassium phosphate buffer, pH7.0, and mixed. The enzyme sample (0.02ml) was 

then added to start the reaction.

Alcohol dehydrogenase

0.1ml of 95% ethanol (w/v), 0.1ml of 2.2M semicarbazide, pH 6.5, 0.2ml of 28mMNAD 

and 0.1ml of lmg/ml BSA were added to 2.5ml of 75mM glycine-sodium pyrophosphate 

buffer, pH 9.0 and mixed. The enzyme sample (0.02ml) was then added to start the 

reaction.
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Glutamate dehydrogenase

0.2ml of 0.2M 2-oxoglutarate, 0.05ml of 12.8M ammonium acetate, 0.03ml of 12mM 

NADH, 0.10ml of 25mM EDTA and 0.05ml of O.lmM ADP were added to 2.5ml of 

0.1M imidazole.HCl buffer, pH7.9, and mixed. The enzyme sample (0.02ml) was then 

added to start the reaction.

Malate dehydrogenase

0.1ml of 15mM oxaloacetate and 0.05ml of 12mM NADH were added to 2.83ml of 

lOOmM potassium phosphate buffer, pH 7.5, and mixed. The enzyme sample (0.02ml) was 

then added to start the reaction.

2.2.2 Coenzyme recycling assays using phenazine ethosulphate (PES) as a redox 

mediator and either diclorophenolindophenol (DCPIP) or 3-[4,5-dimethylthiazol-2-yl]-

2,5 diphenyltetrazolium bromide (MTT) as colourimetric redox indicators

The DCPIP-PES chemical recycling assay for dehydrogenase activity.

This assay was based on the method of Venn et al, 1977. Specific activity: 0.05ml of 

ImM dichlorophenolindophenol, 0.05ml of 40mM phenazine ethosulphate, 0.05ml of 

60mM NAD and 0.05 ml of either 1M lactate (for lactate dehydrogenase assay) or 0.5M 

glutamate (for glutamate dehydrogenase assay) were added to 0.70-0.79ml of ice-cold 

lOOmM potassium phosphate buffer, pH 7.5, and mixed. The reaction was kept in the dark 

and was initiated by the addition of 0.01-0.10ml of enzyme sample. The reaction was 

followed by monitoring the change in absorbance of the solution at 610nm in a 

spectrophotometer and each sample was assayed in triplicate. Intrinsic activity: The assay 

was carried out as above, except for the omission of NAD, the volume of which was made 

up with buffer.
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The MTT-PES chemical recycling assay fo r dehydrogenase activity 

This assay was adapted from the method of Nisselbaum and Green (1969). Specific 

activity: 0.05ml of 12mM 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide. 

0.8ml of 3mM phenazine ethosulphate and 0.05ml of lOOmM NAD were added to ice- 

cold buffer, pH 7.4, made up of lOOmM triethanolamine, lOOmM nicotinamide and either 

500mM ethanol (for alcohol dehydrogenase assays) or 20mM glutamate (for glutamate 

dehydrogenase assays). The buffer was added so that the volume of the assay was between 

2.90 and 2.99ml before the addition of 0.01-0.10 ml of enzyme sample. The reaction was 

mixed and kept in the dark and the change in absorbance at 556nm recorded between 5 

and 30 minutes after the start of the reaction. Intrinsic activity: The assay was carried out 

as above, except for the omission of NAD, the volume of which was made up with buffer.

The MTT-PES chemical recycling assay for the measurement o f NAD concentration.

This assay was based on the method of Nisselbaum and Green (1969): 0.05ml of 12mM 3- 

[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide, 0.80ml of 3mM phenazine 

ethosulphate and 0.10ml of a sample of NAD or NAD derivative were added to lOOmM 

triethanolamine/ lOOmM nicotinamide/ 500mM ethanol buffer, pH7.4, to a final volume of 

2.90ml and mixed. 0.10ml of yeast alcohol dehydrogenase (lmg/ml) was added to initiate 

the reaction, which was kept in the dark, and the rate of the reaction was calculated from 

the change in absorbance at 556nm between 5 and 15 minutes after the reaction start. 

Each sample was assayed in triplicate. NAD solutions of concentration beween 0 and 

0.05mM were used as samples from which to prepare a calibration curve. In cases where 

alcohol dehydrogenase-coenzyme conjugates were assayed, lactate dehydrogenase was 

used as the assay enzyme: lOOmM triethanolamine/ lOOmM nicotinamide buffer, pH 7.4 

was used and lactate was present at 50mM in the assay. 0.10ml of lactate dehydrogenase 

(1.5 mg/ml) was added to initiate the reaction.
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2.2.3 Measurement o f KM

0.1ml of 1.2M lactate and 0.1ml of a coenzyme sample (0.01 - ImM) were added to 2.78 

ml of 0.1M sodium pyrophosphate buffer, pH 7.0 and mixed. Finally, 0.02ml of freshly 

dialysed beef heart LDH (0.02mg/ml) were added to start the reaction which was followed 

at 340nm in a spectrophotometer. The rate of change in absorbance at 340nm was plotted 

against the concentration of coenzyme in the assay to obtain a substrate saturation curve. 

Perpendicular lines were drawn from the x and y axes to each point on the saturation 

curve, and the extrapolation described by Eisenthal and Comish-Bowden (1974) was used 

to determine the KM value of the enzyme for the coenzyme.

2.2.4 Preparation o f the NAD derivatives hfCM-NAD and bfAHCM-NAD

The synthesis of the above derivatives was based on the method of Mosbach et al (1976). 

rfCM-NAD

15g of iodoacetic acid was dissolved in a minimum amount of double-distilled water and 

the solution neutralised using 2M lithium hydroxide. NAD (5g) was added and the pH 

adjusted to pH 6.5 using 2M lithium hydroxide. The pH was maintained twice daily and 

the reaction kept in the dark at room temperature. The conversion was followed using 

TLC and HPLC, and when at least 90% of the NAD had reacted, the pH was lowered to 

pH 3.0 using 6M hydrochloric acid. Two volumes of ice-cold 95% ethanol were added 

and the whole solution poured into 10 volumes of vigorously stirred ice-cold 95% ethanol 

before the mixture was left overnight at 4°C. The precipitate was filtered and washed with 

ethanol and ether (250ml of each) and dissolved in 150ml of 0.1 M triethanolamine buffer, 

pH 8.5. Sodium dithionite (2.5g) was added to the solution which was then left for 2 

hours in the dark at room temperature. The reduction was terminated by bubbling a stream 

of oxygen through the solution for 20mins, followed by lmin of a stream of nitrogen. 2M
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sodium hydroxide was added to the solution until the pH reached pH 11.5. The alkaline 

solution was heated at 75°C for 60mins, and then cooled on ice. The reduced coenzyme 

was enzymically oxidised at room temperature by adjusting the pH of the solution to pH

7.5, and adding 10ml of 2M Tris.HCl, 2.5ml of fresh acetaldehyde and 500 units* of yeast 

alcohol dehydrogenase. The oxidation reaction was followed by monitoring the decrease 

in absorbance at 340nm in a spectrophotometer. After the oxidation was complete the 

solution was acidified to pH 3.5 using 6M hydrochloric acid and 1 volume of 95% ethanol 

was added. The solution was poured into 10 volumes of vigorously stirred ice-cold 95% 

ethanol, left at 4°C overnight, filtered, washed with ethanol and ether, and dried in a 

vacuum dessicator. The IS^CM-NAD was used in this form in coupling experiments, but 

the kinetic properties of the coenzyme were determined after further purification, as 

follows: a chloride-charged Dowex 1-X8 (200-400 mesh) anion exchange column (2.5 x 

30cm) was loaded with a solution that contained the crude precipitate of l^CM-NAD 

(40ml, in water, pH 8.0). The column was washed with 250ml of double-distilled water, 

followed by 5mM calcium chloride, until the pH of the effluent had decreased to pH 2.8. 

A step gradient of 500ml each of 5, 10, 20, 30, 40 and 50mM of calcium chloride was 

applied. The effluent between 1.6 and 2.5 litres was collected and neutralised with calcium 

hydroxide solution. The purified N6CM-NAD solution was concentrated to 5ml on a 

rotary evaporator and freeze-dried. The pure N5CM-NAD obtained was stored at -20°C 

in a sealed container, containing a packet of hygroscopic silica gel, before analysis.

ifAHCM-NAD

2.25g of crude N5CM-NAD was dissolved in 30ml of 2M 1,6-diaminohexane 

dihydrochloride, prepared by lowering the pH of 1,6-diaminohexane to pH 5.0 using 

hydrochloric acid. EDC (0.7g) was dissolved in 2.5ml of water and added to the solution; 

the pH was kept at pH 4.8 by adding 1M lithium hydroxide or 1M hydrochloric acid. After

* one unit will reduce lfimol acetaldehyde per minute at pH 7.0 and 25°C
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4 h, the pH of the solution was increased to pH 6.5 and I volume of 0.5M lithium 

chloride in ethanol was added; a precipitate was obtained using ethanol, as described 

above. The precipitate, which contained a strongly red by-product, was dried in a 

vacuum. N6AHCM-NAD was used in this form in coupling experiments, but was 

purified further before kinetic characterisation, as follows. The crude N6AHCM-NAD 

precipitate was dissolved in 40ml water (pH 8.0) and passed through a lithium- 

charged Dowex 50W-X8 (200-400 mesh) cation exchange column (2.5 x 30cm). The 

effluent was adjusted to pH 6.0 with hydrochloric acid and then passed through a 

chloride-charged Dowex 1 X8 (200-400 mesh) anionic exchange column (2.5 x 30cm) 

and the final effluent adjusted to pH 6.8. The pure N6AHCM-NAD was concentrated 

on a rotary evaporator to 5ml, before freeze-drying, and storage at -20°C in a sealed 

container containing a packet of hygroscopic gel.

2.2.5 Preparation o f dehydrogenase-coenzyme conjugates coupled using 

gl utar aldehyde.

This preparation was based on the method of Gacesa and Venn (1979). Solid 

coenzyme (0.075mmol) was dissolved in a solution containing 2ml of 50mM sodium 

acetate buffer, pH 5.7 and 3ml of 25% glutaraldehyde. The mixture was left at room 

temperature for 4 h before 10 volumes of chilled 95% ethanol were added. The 

solution was then left in a freezer for 5 hr, and the resulting precipitate was spun 

down in a Sorvall RC-5B centrifuge at 35,000g at a tube temperature of -10°C. The 

pellet was thoroughly washed in ice-cold 95% ethanol and redissolved in 1ml of 0.1 M 

potassium phosphate buffer, pH7.5. 1.5ml of dehydrogenase (1.4mg/ml) which had 

been freshly dialysed against 3 x 2  litre portions of 0.1 M phosphate buffer, pH 7.5, 

for a total of 18 hr, was added to the modified coenzyme solution and left for 24min at 

4°C. 4M ethanolamine.HCl (0.05ml) was added and left for 30 minutes to stop the 

reaction. The pH was adjusted to pH 8.5 using 0.2M sodium hydroxide, and solid 

potassium borohydride was slowly added to a final concentration of 25mM. The 

solution was left for 20 minutes before the pH was reduced to pH 7.0. The solution 

was left to stand for 2 hours, or until the effervescence had stopped, before it
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was applied to a Sephacryl S-100 gel filtration column (80 x 1.5cm), with 0.1M potassium 

phosphate, pH7.5, as running buffer. Any remaining non-covalently bound coenzyme was 

removed using charcoal {Section 2.2.10)

2.2.6 Preparation o f dehydrogenase-coenzyme conjugates coupled using 

terephthaladehyde

7.5pmol of coenzyme was added to a solution of yeast alcohol dehydrogenase (8mg in a 

total of 1.6ml) which had been freshly dialysed against 3 x 2  litre volumes of 50mM 

sodium phosphate buffer, pH 7.5, for a total of 18hrs. 100% formamide was added to 5%. 

0.2ml of 0.5% terephthalaldehyde in 10% formamide / water (v/v), heated to 40°C in a 

water bath, was added to the solution which was then left for 12 hours at room 

temperature. 4M ethanolamine.HCl (0.05ml) was added and mixed periodically for 30 

mins to stop the reaction. The conjugate was then reduced and purified as described above 

for glutaraldehyde-coupled conjugates.

2.2.7 Preparation o f dehydrogenase-coenzyme conjugates coupled using carbodiimide 

Carbodiimide coupling of amine-containing coenzyme was carried out according to the 

method of Mansson et al (1978). 5pmol of coenzyme, NAD or N6AHCM-NAD, was 

added to enzyme (50nmol with respect to subunit concentration), in 1ml of 50mM 

triethanolamine buffer, pH 7.5. The enzyme was dialysed against 3 x 2  litre portions of 

0.1M triethanolamine buffer, before use. EDC (0.025mmol) and iV-hydroxysuccinimide 

(0.012mmol) were supplied in four or two equal portions, respectively, at 12 hour 

intervals. The pH was maintained at pH7.5 in a Radiometer pH-stat using sodium 

hydroxide. After 48 hours, the reaction was stopped by adding 2M glycine buffer, pH7.5, 

to a final concentration of 0.1M. The coupling solution was then applied to a Sephacryl S- 

100 gel filtration column (1.5 x 80cm), using 0.05M sodium bicarbonate, pH7.5, as
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running buffer (section 2.2.19). Any remaining non-covalently bound coenzyme was 

removed by charcoal adsorption {section 2.2.10).

Carbodiimide coupling of carboxyl-containing coenzymes was carried out as follows. 

0.01 mmol of coenzyme was dissolved in 1ml of water and brought to pH7.5 using 1M 

sodium hydroxide in a Radiometer pH-stat. 0.1 mmol of EDC and 0.06mmol of N- 

hydroxysuccinimide were added and the pH maintained at pH7.5. After 4 hrs at room 

temperature, the mixture was added to 50nmol enzyme (with respect to subunit 

concentration) in 1ml 0.1 M potassium phosphate buffer, pH7.0 (LDH) or triethanolamine 

buffer, 50mM, pH7.5 (ADH and GDH). After 48 hrs the enzyme-coenzyme conjugate was 

purified as described above.

2.2.8 Synthesis o f thiolated nucleotide derivatives

a.) Thiolated derivatives o f NAD and adenosine

7.5, 15, 75, or 225 mg of solid 2-iminothiolane was added to 1ml of triethanolamine 

buffer, 50mM, pH 8.0 containing 6pmol of adenosine or NAD. The reaction was carried 

out at 4°C or 24°C for up to 96 hours and was also attempted at pH 8.5 (50mM sodium 

pyrophosphate), pH 10 (borate) or pH 7.0 (sodium phosphate buffer). The thiolated 

derivative was purified as described below.

b.) Thiolated derivatives o f N6AHCM-NAD

6|imol of the NAD derivative was added to lml of 50mM triethanolamine buffer, pH 8.0 

or pH 9.0, followed by 15mg of Traut's reagent. The reaction was left at 4°C for 2 hours. 

The thiolated derivative was purified as described below.
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c.) Thiolation o f N6CM-NAD

0.014mmol ofN6CMNAD was added to 0.3mmol of 2-aminoethanethiol in 1.5ml of water 

and the pH was adjusted to 4.5. O.lmmol of EDC and 0.06mmol of A-hydroxysuccinimide 

were added and the pH maintained at 4.5 using 0.1M hydrochloric acid or 0.1M lithium 

chloride in a Radiometer pH-stat and left for 2hrs at room temperature. The solution was 

purified as follows.

The aqueous coenzyme solution was dissolved in 10 volumes of chilled 95% ethanol and 

left at -20°C until a precipitate had formed. The precipitate was centrifuged, washed with 

ethanol and this precipitation and purification process repeated several times. Finally, the 

precipitate was dissolved in 0.5ml of double distilled water and freeze-dried before 

analysis.

2.2.9 Measurement o f protein concentration using Coomassie Brilliant Blue G250 

Coomassie reagent was prepared according to the method of Sedmak and Grossberg 

(1977). To 1.00ml of reagent, 0.90-1.00ml of saline were added and the solution was 

mixed. Protein sample was added to a final volume of 2.00ml, the solution mixed and left 

for 5 mins before the absorbance was read at 620nm. The value was compared with a 

calibration curve prepared using known concentrations of samples of the protein under 

assay.

2.2.10 Removal o f traces o f non-covalently bound coenzyme from protein solutions using 

activated charcoal

Solid charcoal, activated for adsorption, was added to a gel-filtrated protein solution in a 

ratio of 1 part charcoal to 1 part protein (w/w) in an eppendorf tube, at room temperature. 

The solution was agitated briefly in a whirlimixer at intervals of 5 mins for a total time of
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30mins, before the solution was spun in a microfuge for 5mins. The supernatant was taken 

for analysis, and the pellet discarded.

2.2.11 Protein concentration usingpolyethyleneglycol

The dilute protein solution was concentrated against polyethyleneglycol (M.W. 20,000) by 

placing the solution in a length of sealed dialysis tubing, and then covering the tubing with 

flakes of solid polyethyleneglycol, in a tray. The outside of the tubing was thoroughly 

washed with distilled water to remove all traces of polyethyleneglycol before the protein 

solution was extracted from the dialysis tubing.

2.2.12 Thiolation and activation o f protein surfaces using Traut’s reagent, 2- 

iminothiolane and dipyridyldisulphide

This method was based on that of Jue et al (1978). 0.1ml of Traut's reagent (4mg/ml) was 

added to 0.9ml of dialysed BSA (2mg/ml) or LDH (1.2mg/ml) in 50mM triethanolamine 

buffer, pH 8.0. The reaction was left for 2 hrs before gel filtration at 4°C using a 

Sephacryl S-100 column (1.5 x 60cm).

Activation 0.05ml of dipyridyldisulphide (lmg/ml for BSA activation or 0.6mg/ml for 

LDH activation), in 50% acetone/water (v/v), was added to 0.95ml of BSA (lmg/ml) or 

LDH (lmg/ml) and the reaction was followed to completion by monitoring the release of 

pyridine-2-thione at 343nm in a spectrophotometer. The DPDS-thiolated protein was 

purified by gel filtration on a Sephacryl S-100 column (1.5 x 60cm).

2.2.13 The effect o f dipyridyldisulphide on the specific activity o f dehydrogenases 

0.00-0.20ml of dipyridyldisulphide (lmg/ml) in 50% acetone/water (v/v) was added to 1ml 

of dialysed enzyme (0.2mg/ml) in 50mM triethanolamine buffer, pH 8.0 and left for 3 

hours at 4°C. Each enzyme was then dialysed against 3 x 2  litres of 50mM phosphate 

buffer, pH 7.5 before a standard assay for residual specific activity at 340nm.
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2.2.14 Formation o f protein-coenzyme conjugates linked via a disulphide bond.

0.3pmol of thiolated coenzyme derivative was added to 1ml of 0.70 mg/ml DPDS- 

activated LDH solution or 0.5nmol thiolated coenzyme was added to 0.70mg/ml DPDS- 

activated BSA in 50mM triethanolamine buffer, pH 8.0. The mixture was agitated with an 

overhead stirrer at room temperature and the reaction was followed intermittently by 

observing the change in absorbance of the solution at 343nm. The reaction was complete 

after 2 hrs and was left for a further hour at room temperature. The protein-coenzyme 

conjugate was purified on a Sephacryl S-100 gel filtration column (1.5 x 80cm) at 4°C, 

concentrated using polyethyleneglycol, washed with activated charcoal (1:1 [w/w]) and 

stored at 4°C for no longer than 12 hrs before analysis.

2.2.15 Preparation o f activated thiol agarose

Thiol agarose was prepared as according to Dean et al (1986): lOOg of 6% Sepharose 4B 

beads were thoroughly washed with water and collected on a sintered glass funnel under 

suction. The gel was suspended in 80ml of 1M sodium hydroxide and 2.5ml of 

epichlorohydrin was added. The suspension was gently agitated using an overhead stirrer 

for 15mins at room temperature and then for 4hrs at 60°C in a water bath. The resulting 

epoxy beads were washed with water until neutral, followed by 5 volumes of 0.5M sodium 

phosphate, pH 6.2. The beads were immediately filtered under suction - no air was 

allowed to pass through the beads - and 100ml of 2M sodium thiosulphate added. The 

beads were stirred in the thiosulphate for 8hrs at room temperature before they were 

washed in 15ml of 8mg/ml DTT in ImM EDTA. After 30mins at room temperature the 

beads were removed from the reduction solution and filtered under suction, making sure 

that no air passed through the beads. The thiol agarose was washed with 1 litre each of i.)

0.1M sodium bicarbonate containing 1M sodium chloride ii.) ImM EDTA, and iii.) 

lOmM sodium acetate, pH4.0, containing ImM EDTA. The beads were not stored in their 

reduced state, but immediately activated as follows: The beads were washed with 50%



56

solution of acetone/water (v/v) before suspension in 50% acetone/water (v/v) containing 

dipyridyldisulphide (lOOmg). The suspension was agitated for 2 hrs using an overhead 

stirrer. The DPDS-activated thiol agarose beads were washed with several volumes of 

50% acetone/water (v/v) followed by several volumes of ImM EDTA, pH7.0. They were 

stored at 4°C in degassed phosphate buffer, 0.1M, pH 7.0 containing ImM EDTA.

2.2.16 Activated thiol agarose column

A small graduated plastic column (0.5x10cm) fitted with a reservoir was packed with 5ml 

of swollen, activated thiol agarose beads. The gel was thoroughly washed with several 

volumes of sodium pyrophosphate, 0.1M, pH 8.0 (running buffer), and checked to see that 

the absorbance of the eluant at 343nm was zero. The sample was carefully loaded using a 

pipette, onto the top of the gel bed and allowed to run in. Running buffer was then 

carefully added until the reservoir was loaded. The column was run under gravity with a 

flow rate of 5ml per hr. The sample was eluted and washed through until the absorbance 

of the eluent at 343nm remained at zero. Any material that had bound to the activated 

thiol ligands was then eluted using a solution of 3mM DTT in running buffer. The 

concentration of bound sample eluted was calculated using A343 values against a blank 

solution containing 3mM DTT. The molar extinction coefficient of pyridine-2-thione was 

8100/M/cm at 343nm. Each time the gel had been used it was discarded and a fresh 

column made up using stored DPDS-activated thiol agarose.

2.2.17 Measurement o f radioactivity

Acid-insoluble radioactivity was measured as follows. To the ice cold protein sample, 

ice-cold 100% trichloroacetic acid was added to a final concentration of 20%. If the 

sample volume was below 1ml, it was made up to 1ml before the addition of 

trichloroacetic acid using 0.2 mg/ml BSA in water as a co-precipitate. The sample was left 

on ice for at least 1 hr, before the precipitate was passed through a GFC filter disc
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(previously washed with 2ml of ice-cold 5% trichloroacetic acid) in an ultrafiltration 

tower, under suction. The disc was washed with 1 Oml of 5% trichloroacetic acid, before it 

was dried in a warm oven. The disc was then placed in a scintillation vial and 2ml 

Optiphase "Safe" scintillation cocktail was added. The whole vial was shaken before it was 

assayed for radioactive counts as described below.

Total radioactivity was measured as follows: At least 0.2ml of sample solution was 

added to Optiphase "Safe" scintillation cocktail in a scintillation vial, 10 parts of scintillant 

to 1 part of sample solution, mixed thoroughly and counted for radioactivity. The samples 

were counted in a Packard Tri-Carb liquid scintillation spectrometer for at least 5mins 

with the 3H and 14C "windows" open. The counting efficiency of the spectrometer was 

determined as 60% for 3H and 98% for 14C using respective dated samples of known 

count values given in disentegrations per minute.

2.2.18 Thin layer chromatography

All thin layer chromatography experiments were performed at room temperature using

0.1M, 0.3M and 0.5M lithium chloride on PEI-cellulose pre-coated plastic sheets, or 1M 

isobutyric acid : aqueous ammonia (5:3 v/v), saturated with EDTA, on Cellulose-F pre- 

coated plastic sheets. Before use, the thin layer sheets were washed by soaking in 2M 

sodium chloride for 60mins, rinsing with distilled water, soaking with distilled water for 

60mins, and drying at room temperature. 95% ethanol was added to each nucleotide 

sample to a final concentration of 50%, before it was applied at the origin, 1.0cm from the 

labelled bottom of the thin layer sheet using a 10-100pl capillary tube. Each spot was 

dried using a stream of cool air. The thin layer sheet was placed in a glass tank containing 

solvent to a height of 0.5cm, and the tank was sealed. When the solvent front had reached 

at least 4cm from the top of the sheet, the sheet was extracted from the tank and left to
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dry at room temperature. The sheet was analysed for nucleotide spots using an ultra-violet 

lamp set at 250-280nm.

2.2.19 Gel filtration chromatography

Gel filtration was performed at 4°C using a Sephacryl S-100 column, bed volume 1.5cm x 

80cm (Chapter 3 and Chapter 4) or 1.5 x 60cm {Chapter 4), with a flow rate of

0.2ml/min. In all cases the gel was swollen overnight in running buffer, before the column 

was packed. The fractions were collected in a dropwise manner, under gravity using an 

LKB Redirac fraction collector. Each sample (l-3ml) was carefully applied to the top of 

the gel bed using a pipette, and allowed to run in. The buffer was then carefully applied to 

the top of the bed until the rest of the column was filled, and the buffer reservoir was 

attached to the column. Before use, each freshly-packed column was calibrated using Blue 

Dextran 2000 and riboflavin. The eluted fractions were stored at 4°C or taken for 

immediate analysis.

2.2.20 Ion exchange chromatography

A Pharmacia ion exchange column (2.5 x 30cm) was packed with Dowex 1-X8 (200-400 

mesh; chloride charged) or Dowex 50W-X8 (200-400 mesh; lithium charged). The Dowex 

beads were thoroughly washed with double-distilled water before use. Each column was 

run under gravity at a flow rate of 0.5ml/min; the sample (40ml) was applied and collected 

as described for gel filtration chromatography.

2.2.21 High performance liquid chromatography (HPLC)

HPLC was carried out at room temperature using an ODS Hypersil™ column (0.48 x 

15cm) at 1800 lb/in2 with a flow rate of lml/min. All buffers and solvents were filtered 

through a millipore filter and then degassed by bubbling helium through them for 5mins. 

Before use, the column was left to equilibrate with lOmM of potassium dihydrogen
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phosphate buffer, pH6.8, (running buffer) for at least 3min using a flow rate of 

lml/min. 0.5ml of nucleotide sample (~0.2mg/ml), in either water or running buffer, 

was injected into the loading chamber. The sample was loaded, and a linear gradient 

of 0-30% methanol in running buffer (v/v), over 30 min, was applied to the column 

simultaneously. The eluted nucleotide material was analysed using an ultraviolet 

meter, set at 260nm, connected to a chart recorder. The purity of the applied sample 

was calculated from the area under each eluted peak on comparison with a standard 

sample.

2.2.22 Enzyme-electrode preparation and operation

Electrode preparation and operation was carried out at room temperature but all 

solutions used were stored at 4°C. 0.25ml of enzyme preparation (l-2mg/ml) in 0.1 M 

potassium phosphate buffer, pH 7.5, was mixed with 25 mg of adsorptive carbon in an 

eppendorf tube; the suspension was agitated occasionally over a period of 60 min. The 

eppendorf tube was microfuged for 5 min, or until a clear supernatant was obtained. 

The supernatant was discarded and the carbon pellet was mixed with 40pl of a 

commercial teflon binder solution using a microspatula, until a paste formed. The 

paste was compressed onto a 3cm2 layer of conductive carbon paper by firmly 

drawing the edge of a glass slide over the carbon paste. The electrode preparation was 

left to dry for 15 min and stored, if necessary, in PESK buffer, pH 7.4 at 4°C; PESK 

buffer comprised lOOmM sodium dihydrogen phosphate, 50mM EDTA (disodium 

salt) and lOOmM sodium chloride. Discs of 2mm diameter were cut out of the 

enzyme-electrode surface using a hole-punch, and inserted into the linings of one of 

two titanium-lined working electrodes, with the enzyme-carbon layer facing upwards 

(see Figure 5.5). The electrodes were covered with a polycarbonate membrane (pore 

size 50nm) held in place with a rubber "O" ring. The half-cell was connected to a 

Ag/AgCl reference electrode and the whole cell screwed into place at the bottom of a 

solution reservoir. The reservoir was supplied with PESK buffer, pH7.4, and an 

overpotential of 150mV applied to the cell using a potentiometer. The enzyme
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electrode was left until a steady current was flowing through each working electrode, the 

current being measured using a twinned-pen chart recorder.

Electrode operation

PESK buffer was removed from the solution reservoir using a plastic pipette and excess 

liquid was removed from the outer surface of the polycarbonate membrane using a cotton 

bud. The sample, containing the analyte, was pipetted into the solution reservoir (1.5ml) 

and mixed using an overhead stirrer. The electrode response due to the change in current 

was measured on the chart recorder. The solution chamber was rinsed out with PESK 

buffer, pH 7.4 and each electrode allowed to reach a steady current, before the application 

of the next sample.
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CHAPTER 3

Preparation o f dehydrogenase-coenzyme conjugates coupled via amine- and

carboxyl- functional groups

Introduction

The topics dealt with in the first part of this chapter are outlined in Figure 3.1.

NAD (3.1) ENZYME COUPLING REAGENT
(3.4)(3.3)

NAD DERIVATIVE 
(3.2.1)

COUPLING REACTION
__________________ QJL

PURIFICATION
A ASSAY (3.2.2) PURIFICATION 

OF ENZYME-COFACTOR 
COMPLEX 

, (3.6)

DETERMINATION OF 
MOLECULAR RATIO 

COFACTOR/ENZYME SUBUNIT 
J (3.7)

ACTIVITY
ASSAYS

! (3-8)

INCORPORATION INTO 
AN ENZYME ELECTRODE 

(Chapter 5)

Figure 3.1: An overview o f the approach used in the synthesis and characterisation 
o f dehydrogenase-coenzyme conjugates coupled via amine- and carboxyl- groups. The 
numbers in brackets relate to sections of the first part of this chapter.
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Figure 3.1 also serves as an overview of the approach used to synthesise and study 

enzyme-coenzyme conjugates synthesised via carboxyl and amine groups in this study.

A number of different dehydrogenases, coenzymes and coupling reagents were used to 

prepare a variety of dehydrogenase-coenzyme conjugates. As can be seen in Figure 

3.1, each dehydrogenase was coupled to its natural coenzyme, NAD, or else the 

nucleotide was first modified to form a derivative of NAD which was then used for 

coupling. Each NAD derivative was characterised before use in order to validate its 

synthesis and to ensure that it had significant biological activity as a coenzyme.

Two coupling methods were used. The first method involved the use of a 

homobifimctional dialdehyde to link an amine group present on the coenzyme to one of 

the several amine groups found on the surface of the protein. The second method 

employed a carbodiimide reagent to link either an amine group present on the 

coenzyme to one of several carboxyl groups of the protein, or a carboxyl group 

present on the coenzyme to one of several amine groups of the protein.

Three different dehydrogenases were used in these modification studies: lactate 

dehydrogenase, alcohol dehydrogenase and glutamate dehydrogenase. The relevant 

properties of each enzyme, along with the reasons for using them, can be found in the 

second part of this chapter which also describes the properties of the dehydrogenase- 

coenzyme conjugates that were synthesised.

Meanwhile, the first part of this chapter describes the individual steps of the approach 

used to generate these conjugates and presents the preparative results that arose from 

the use of this approach.
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PART ONE: The approach used to synthesise enzyme-coenzyme conjugates

3.1 NAD

Figure 3.2: The structure o f NAD, showing suitable points for derivitisation. The 
nicotinamide moiety is involved in catalysis and the ribose and phosphate moieties are involved in 
enzyme recognition. Although the adenine moiety is also involved in enzyme recognition, chemical 
modification at this position is least likely to lead to a serious loss in substrate activity of the 
coenzyme. The points that may be easily derivatised are shown: (a) ribosyl linkage, (b) phosphate 
linkage, (c) linkage at C-8 of adenine moiety, (d) linkage at N-l of adenine moiety, (e) linkage at N<> 
of adenine moiety.

The structure of NAD is illustrated in Figure 3.2 Although several potential 

modification sites for linkage to an enzyme molecule are evident, NAD modification 

studies have shown that very few sites are acceptable for modification if the 

biological activity of the coenzyme is to be maintained (Lowe et al, 1980).

From NAD-binding studies with lactate dehydrogenase (Holbrook et al, 1975), 

alcohol dehydrogenase (Branden et al, 1975) and glyceraldehyde 3-phosphate 

dehydrogenase (Rossman et al, 1974) the following conclusions were drawn:
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1. The pyridine nucleus is the active centre of the NAD molecule and so it is very 

sensitive to modification.

2. The phosphate moieties are involved in generating the active conformation of the 

NAD molecule, and their modification results in a total loss of biological activity.

3. The ribose moieties bring about orientation of the coenzyme by hydrogen bonding to 

enzyme side chain residues in the active centre, and so they are also sensitive to 

modification.

4. The adenine nucleus is important in coenzyme binding, although substitution here 

results in NAD derivatives with relatively high biological activity.

The adenine moiety has, in fact, been established as the most desirable moiety for 

derivatisation. The most reactive sites on the adenine ring are the N-l, N6, and C-8 

positions (Figure 3.2).

During NAD binding, the adenine moiety is buried in a hydrophobic pocket found in 

the active centre of the enzyme (for an example of this see Figure 3.19). Within this 

hydrophobic pocket, the N-l position of the adenine ring is involved in hydrogen 

bonding with side chain residues of the enzyme active centre. Derivatives formed by 

substitution at this position are generally not good substrates. The effects of 

modification at the N-l and N6 positions upon the substrate activity of the coenzyme 

have been studied in detail (Hendle et al, 1993). It was found that NAD derivatives 

formed by modification at the N-l position of NAD had KM values with lactate 

dehydrogenase that were between 10 and 40 times larger than the values of similar 

derivatives formed by modification at the N6 position. Moreover, the kcAT/KM ratios 

were 25-250 times lower for the N-l modified derivatives, making the N6 position the 

more desirable position for modification. X-ray diffraction techniques confirmed the 

suitability of the N6 amine position as a site for modification, by showing that it 

pointed away from the active centre and into the surrounding solution, making it
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easily available for reaction with an approaching molecule (Rossman et aly 1974; Grau 

et al, 1981) (Figure 3.3).

The other suitable position for modification of the adenine nucleus is the C-8 position 

(Mosbach, 1978). In theory, several types of modification reaction could occur here 

because it is relatively electrophilic in nature, but at the same time is susceptible to 

electrophilic attack (Lister, 1971)

Indeed, it would appear that modification of the adenine nucleus at the N6 position, 

and to a lesser extent at the C-8 position, preserves the orientation of NAD in the 

active centre (Schmidt and Dolabdjian, 1980). Upon modification of these positions 

the substrate activity of the coenzyme is not seriously affected (Buckmann and Carrea, 

1989). Consequently, the C-8 and N6 positions of the adenine ring have been modified 

in several studies. Comparing the two positions, it generally follows that those NAD 

derivatives formed by modification of the N6 position bind to dehydrogenases with 

greater affinity than similar derivatives formed by modification of the C-8 position 

(Mosbach, 1978).
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Figure 3.3: Representation o f the solvent accessibility of the fa m in e  group o f an NAD molecule
when bound at the active centre o f pig H4 LDH. NAD and lysine residues are shown as ball and stick models.
Key for atoms: blue = nitrogen, red = oxygen, grey = carbon, pink = phosphate (hydrogens not shown).
Key for surrounding protein: coiled ribbons = a-helix, arrows = parallel p-sheet.
The picture was prepared using the data o f  Grau et al 1981, on a M olscript™  package. The bound NAD molecule is actually a 
molecule o f  S-lac-NAD which was designed to simulate the ternary complex structure formed between LDH, NAD and lactate.
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Thus, the N6 amine group of the adenine ring was chosen as the site of NAD 

modification in these studies. In fact, the most desirable scenario was to couple 

unmodified NAD directly to dehydrogenases, via the N6 group of the adenine ring. 

However, in the past, the introduction of a bifunctional spacer arm attached to the N6- 

amine group appeared to increase the reactivity of the coenzyme towards coupling 

reagents. This increase in reactivity probably resulted because the spacer arm 

effectively moved the amine functional group away from the undesirable effects of the 

adenine ring (Figure 3.4) which may hinder the coupling reaction in two ways (Gacesa 

and Venn, 1979). Firstly, it may sterically hinder the approach of the coupling reagent, 

and secondly, the resonance effects of the ring may reduce the nucleophilic character 

of the N6 amine group, and so explain its poor reactivity towards coupling reagents 

(Mosbach, 1978). In this study, coupling reactions were performed using both natural 

NAD and NAD derivatives, which had fimctionalised spacer arms attached to the N6 

amine group.

The modified coenzymes were included, then, in an attempt to improve the properties 

of NAD as a coupling ligand. The following section describes the NAD derivatives that 

were synthesised, and also compares their coenzymic properties to those of their 

parent nucleotide, NAD.

3.2 NAD derivatives

The NAD derivatives N6[(aminohexyl)carbamoylmethyl]-NAD (N6AHCM-NAD) and 

N6carboxymethyl-NAD (N6CM-NAD) (Figure 3.4) were synthesised according to 

Mosbach et al (1976). An overview of the synthesis of each derivative is shown in 

Figure 3.5. The reasons for modification of NAD at the N6 position are described in 

the previous section.
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Figure 3.4: The structure o f (A) N6carboxymethyl-NAD and (B) N6[(aminohexyl)-
carbamoylmethylJ-NAD. R= ribose; P = phosphate group; Nm = nicotinamide moiety. Both derivatives possess 
reactive aliphatic functional groups (shown in colour).

N6AHCM-NAD has been extensively used as a precursor for the synthesis of 

immobilised NAD preparations (Lindberg etal, 1973; Schmidt and Dolabdjian, 1980; 

Lowe, 1978; Mosbach et al, 1976). It introduces to NAD a spacer arm attached at the 

N6 position of the adenine ring. The arm includes a hydrophobic region and a 

terminal amine group which may be easily derivatised. The alkyl amine group has a 

pKa value of 11.5, substantially improving the basic properties and the nucleophilic 

character of the original coenzyme, which possesses an aromatic amine group with a 

pKa below 5.0 (Streitwiesser and Heathcock, 1985).
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Figure 3.5: The synthesis o f N6carbamoylmethyl-NAD (N6CM-NAD) and
N6[(aminohexyl)carbamoylmethyl]-NAD (N6AHCM-NAD) starting from NAD
R= ribose; P= phosphate; Nm = nicotinamide moiety.

N6CM-NAD is conveniently found on the synthetic route going from NAD to 

N6AHCM-NAD (Figure 3.5). It also introduces to NAD a reactive group which is a 

suitable site for further derivatisation, although it has been less widely used as a 

precursor for immobilised NAD. In contrast it has a spacer arm which is short and 

hydrophilic in nature. The carboxyalkyl group carries a negative charge at neutral pH, 

the pKa value being slightly less than 4.0 (the pKa of ethanoic acid) due to the 

inductive effect of the purine ring (Streitwiesser and Heathcock, 1985).
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Upon the study of several different spacer arms attached to the N6-adenine position of 

NAD, Hendle et al (1993) observed that a negative charge and a short spacer was of 

minor importance with respect to substrate activity of the coenzyme, whereas the 

introduction of positive groups resulted a slight increase in the KM value of the 

coenzyme. Conversely, Schmidt and Dolabdjian (1980) suggested that a hydrophobic 

spacer arm extended the hydrophobic binding region of NAD, improving the affinity of 

the enzyme for the coenzyme, and hence improved the substrate properties of the 

coenzyme.

Thus, the two NAD derivatives described above were chosen because of the 

contrasting properties of their spacer arms. The derivatives were used in coupling 

experiments, along with unmodified NAD to investigate which characteristics of a 

spacer arm, if any, are more favourable towards coupling reactions with an enzyme.

3.2.1 The synthesis o f NAD derivatives

A drawback in the method of synthesis used by Lindberg et al (1973) with 

modifications by Mosbach et al (1976) (Figure 3.5) is that there is a 70-90% loss of 

nucleotide material. A large amount of material is lost during the final purification step

i.e. during ion exchange chromatography. The total purification of N6CM-NAD 

requires passing the crude derivative through two ion exchange gradients, and a further 

two such ion exchange steps are required to purify N6AHCM-NAD: In order to avoid 

these laborious and inefficient purification steps in this study, ion exchange 

chromatography was omitted during the preparation of coenzyme derivatives for use in 

enzyme-coupling experiments. Each of the crude derivative preparations was 

considered adequate for use in coupling experiments because the only impurities would 

be nucleotides and they would not interfere with the coupling reactions. Mosbach et al 

(1976) showed that alkylation of the phosphate entities of NAD did not occur during 

the preparation of N6CM-NAD {Figure 3.5, step 7), and that during the preparation of 

N6AHCM-NAD the carbodiimide-promoted attachment of the 1,6-diaminohexane
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spacer did not result in phosphorimidate formation {Figure 3.5, step3). It therefore 

follows that in a crude preparation the reactive carboxyl- or amine- functional groups 

will only be present on either N6CM-NAD or N6AHCM-NAD, respectively. During 

HPLC analysis of final "pure" derivative preparations analysed after the ion exchange 

steps, Kahle et al (1981) observed that ion exchange purification had been successful 

only to a certain extent and the nucleotide impurities still prevailed.

3.2.1.1 HPLC analysis o f NAD derivatives

The purity of each derivative preparation taken for use in coupling experiments in this 

study was estimated using Reverse Phase Liquid Chromatography (RPLC), a form of 

High Performance Liquid Chromatography (HPLC), in order to determine the actual 

percentage purity of the crude preparations.

In RPLC, the stationary phase, typically hydrocarbonaceous in nature, is inert and is 

less polar than the mobile phase which is usually a non-u.v.-absorbing organic solvent 

such as methanol or acetonitrile. It is the polarity of the mobile phase which determines 

the elution time of the material under investigation. Although the mechanism of RPLC 

is not completely understood, it is known that under a mobile phase of decreasing 

polarity (or an increasing concentration of organic solvent), substances are eluted in 

order of increasing hydrophobicity (Cooke and Olsen, 1980).

The hydrophobic properties of N6CM-NAD and N6AHCM-NAD are different because 

of the different spacer arms attached at the adenine moiety. RPLC of these derivatives 

has been investigated by Kahle et al (1981) who noted that HPLC performed better 

than TLC, showing impurities that TLC did not detect. Kahle et al used a strongly 

acidic mobile phase (pH 2.0-2.5) to elute the derivatives. A milder mobile phase is 

reported here, with a good separation being achieved at neutral pH (pH6.8). An 

octadecylsilane (ODS) material was chosen as the stationary phase, and a 0-30% 

methanol gradient as the mobile phase, (personal communication, Dr. A. Mayes) in
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order to elute nucleotide material in order of increasing hydrophobicity. Commercial 

preparations of N6CM-NAD and N6AHCM-NAD were also subjected to RPLC, to 

confirm the elution times of the corresponding derivatives present in the crude 

preparations. The elution times of each coenzyme derivative and unmodified NAD are 

shown in Table 3.1.

Table 3.1

Purity of NAD derivatives used in coupling experiments

Coenzyme Elution time / min. Purity (%)a

NADb (10.8)c 97

N6CM-NAD 9.1 (9.1) 60

N«AHCM-NAD 16.7(17.1) 68

a Purity measured using RPLC: 500(il nucleotide material (0.2mg m l'1) was applied to an 
ODS Hypersil column equilibrated with KH2P 0 4 buffer (lOmM, pH 6.8) and eluted with 
a 0-30% methanol gradient over 30 min; flow rate = 1ml min'l elution profile scanned at 
260nm and purity calculated from the area under each peak.
k NAD was purchased from Sigma Chemical Co. who estimate its purity to be -98%  
c Figures in brackets represent elution times o f commercially prepared derivatives, 
obtained from Sigma Chemical Co.
Elution time is given as the time the peak appeared after the application of 
sample (t=0)

The longer elution time of 16.7 mins for N6AHCM-NAD compared with 10.8 mins 

for NAD would seem to be due to the hydrophobic property imposed on the structure 

of NAD by the addition of a "hexyl" spacer arm. Similarly, the shorter elution time of 

9.1 min. for N6CM-NAD confirms the more hydrophilic nature of its spacer arm.

Each crude derivative preparation was 60-70% pure, indicating that each derivative 

was present in substantial proportions before ion exchange purification, and that the 

preparations were suitable for use in coupling experiments.

RPLC proved to be a convenient and effective way to analyse NAD derivative 

preparations and it had excellent separation properties. It would appear that 

substitutions at the adenine N6 amine position of NAD dramatically altered its elution
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time, making a rapid analysis of the purity and hydrophobicity of each structure 

possible.

The next step was to confirm the correct synthesis of the desired derivatives using 

TLC and to ensure that each derivative prepared had siginificant biological activity by 

using them as cofactors in dehydrogenase-catalysed kinetic assays. Before such 

characterisation, however, the derivatives were fully purified using ion exchange 

chromatography (Mosbach et al, 1976) to remove any traces of unmodified NAD from 

the derivative preparations.

3.2.2 Characterisation o f NAD derivatives

The NAD derivatives were characterised by measuring their Rf values using thin layer 

chromatography (TLC) and by assaying them for their activity as substrates for 

dehydrogenases.

3.2.2.1 Thin layer chromatography

During TLC, the Rf value of a nucleotide, as opposed to nucleosides and bases, 

depends largely upon the salt concentration of the solvent (Randerath and Randerath, 

1967). Its mobility with respect to other nucleotides is determined by its pH-dependent 

net negative charge, whilst the arrangement of non-ionisable groups is also important. 

Both of these properties differ between NAD and its N6-modified derivatives, N6CM- 

NAD and N6AHCM-NAD, and subsequently a succesful separation of these 

nucleotides has been achieved using TLC (Lindberg et al, 1973). The Rf values for 

N6CM-NAD and N6AHCM-NAD have been published (Mosbach et al, 1976), 

providing a convenient way with which to confirm the synthesis of these derivatives.
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Therefore, after purification with ion exchange chromatography, each NAD derivative 

was subjected to TLC on polyethyleneimine-cellulose (PEI-cellulose) sheets as 

described in Materials and Methods.

Table 3.2
Thin layer chromatography of NAD derivatives

Rf values in chromatography systems

Coenzyme O.lMLiCl 0.5M LiCl

NAD 0.5 K0.51) 0.7 (0.74)

N6CM-NAD 0.2 (0.17) 0.8(0.81)

N6AHCM-NAD >0.9b (>0.95) >0.9 (>0.95)

a Figures in brackets denote values recorded by Mosbach et al (1976) 

b R f values above 0.90 could not be recorded accurately due to spot diffusion
TLC was performed on PEI-cellulose coated plates at room temperature. lOpl o f each coenzyme (1 mg/ml) was spotted onto a 
plastic sheet pre-coated with PEI-cellulose using a lOpl capillary tube, 1.5 cm from the labelled bottom o f the sheet.The sheet was 
then placed upright in a glass tank containing lithium chloride solution to a height o f 0.5cm. After the solvent front had reached 2- 
4cm from the top o f the sheet, the sheet was removed from the tank and dried using a stream o f cool air. The sheet was then 
analysed for nucleotide spots under ultra-violet light.

Table 3.2 shows that the Rf value for each derivative was in good agreement with 
values reported previously.

3.2.2.2 Substrate activity

Each derivative was assayed for its activity as a reducible coenzyme using two types 

of assay.

1. The rate of reduction of the coenzyme by a dehydrogenase was monitored at 340nm 

in a standard assay. If the derivatives were enzymically reducible, they would show 

an absorbance maximum at 340nm due to the addition of a hydride ion to the 

nicotinamide moiety upon reduction altering the absorption properties of the pyridine 

nucleus. The concentration of the coenzymes in assays with lactate dehydrogenase 

(pig heart) and alcohol dehydrogenase (yeast) was lxl(HM, the KM values of the 

respective enzymes for NAD being 2.7x10-4 and 7.5x10'5M (Schafer et al, 1986). It
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was anticipated that if the derivatives were conjugated to enzyme molecules they 

would not be present in a large excess of their KM values and so assaying them at this 

concentration would provide conditions similar to those prevailing in their practical 

use. However, this concentration was primarily chosen to give a convenient rate of 

change in absorbance at 340nm.

2. A coenzyme-recycling assay was used, again employing alcohol dehydrogenase 

and lactate dehydrogenase. This assay also depends upon the enzymic reduction of the 

coenzyme, but here the reducing equivalents are chemically reoxidised by phenazine 

ethosulphate (Figure 3.6). The reoxidised coenzyme units are then re-available for 

catalysis. Such recycling of coenzyme units makes it possible to assay very low 

concentrations of coenzyme but more importantly it provides a method with which to 

assay the activity of the enzyme-coenzyme conjugates in the absence of exogenous 

coenzyme. The problem with assaying enzyme-coenzyme conjugates is that the 

formation of product will be limited by the amount of fixed coenzyme unless the 

reduced cofactors can be reoxidised by a second process. Chemical reoxidation by 

phenazine ethosulphate is one such process. The redox process can be monitored by 

following the change in the spectrophotometric absorbance of a redox indicator such 

as DCPIP or MTT. In this way the substrate activity and recyclability of each 

coenzyme is monitored indirectly (Figure 3.6). Two redox indicators were used: 

3(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) was used in assays 

with alcohol dehydrogenase, and dichlorophenolindophenol (DCPIP) was used in 

assays with lactate dehydrogenase; the dyes have absorbance changes which can be 

monitored at 556nm and 610nm, respectively. The free coenzyme derivatives were 

assayed using the coenzyme-recycling assay to ensure that they were recyclable and 

also to ensure that their activity as substrates in a recycling assay was substantial 

compared to that of NAD. The results from both assays are given in Table 3.3.
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Table 3.3

NAD derivatives as coenzymes for alcohol dehydrogenase and lactate dehydrogenase

Reduction rate with ADH Reduction rate with LDH

standard assay4 chemical recycling assayb standard assay4 chemical recycling assay0 KMLDHd

Coenzyme pmol min'* mg'* (%) A556min (%) pmol min'* mg'* (%) Adornin'1 (%) (xlO^M )

NAD 79 100 0.40 100 12 100 0.90 100 2.7

N6CM-NAD 42 54 0.31 77 8.0 67 0.51 57 7.9

n 6a h c m -n a d 69 88 0.23 58 6.2 52 0.47 52 6.6

Substrate activities of the derivatives are also given in % activity relative to NAD (100).

4 Coenzyme reduction rates were determined at 340nm with yeast alcohol dehydrogenase and porcine heart lactate dehydrogenase at pH 9.0 and pH 7.0, respectively. Coenzyme concentration was 
O.lOmM.
ADH assay solution: 2.60ml glycine-sodium pyrophosphate buffer (75mM), 0.1ml ethanol (95%); 0.1ml semicarbazide (2.2M), 20pl YADH 
(5p.gml‘1), 0.1ml cofactor sample (O.lOmM).
LDH assay solution: 2.78ml sodium phosphate buffer (lOOmM), 0.1ml lactate (1M), 20 |il pig heart LDH (20p.gml'!), 0.1ml cofactor sample (O.lOmM).
b The cycling experiment was carried out at pH 7.4 using a MTT/PES redox couple with yeast alcohol dehydrogenase. To 1.95ml TEA/nicotinamide/ethanol buffer (lOOmM / lOOmM / 0.5M, respectively), was added 
100(0.1 coenzyme present at 0.1 pM in the assay solution. 50pl of 12mMMTT, 800p.1 of3mM PES and lOOpl of yeast alcohol dehydrogenase (SOpgml'1) were also added.
c The cycling experiment was carried out at pH 7.5 using a DCPIP/PES redox couple with porcine heart lactate dehydrogenase. To 0.75ml phosphate buffer (lOOmM) were added 100pi coenzyme present at lOpM in 
the assay solution, 50pl of ImM DCPIP, 50pl of 40mM PES, and 50pl of lOOmM lactate, and 0 .1ml lactate dehydrogenase (lOOpgml'1).
d Km was determined with beef heart lactate dehydrogenase at 340nm using a NAD concentration range of lxlO"5- 1x10'3M. Assay solution: 2.78ml sodium phosphate buffer (pH 7.0, lOOmM), 0 .1ml lactate (1M), 20 
pi beef heart lactate dehydrogenase (20pgml'1), 0.1ml cofactor sample.
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Results from the standard assay show that N6AHCM-NAD had a very good substrate 

activity with alcohol dehydrogenase, it being 88% of the substrate activity of the 

natural coenzyme, NAD. The activity of N6CM-NAD was somewhat lower at 54%. In 

contrast, N6CM-NAD was the better coenzyme for lactate dehydrogenase, its substrate 

activity being 67% of the substrate activity of NAD, compared to an activity of 52% 

for N6AHCM-NAD. Whatever the individual substrate activity, the derivatised NAD 

molecules seem to make good cofactors for dehydrogenase enzymes, confirming the 

results of Lindberg et al (1973). It was important to know that derivatisation at the N6 

position did not dramatically affect the coenzyme properties of the NAD molecule, so 

that if a serious loss in substrate activity was found upon immobilisation of a 

coenzyme, derivatisation of the original NAD molecule could not be to blame.

Results from the recycling assay also illustrate the excellent coenzyme properties of the 

derivatives. N6CM-NAD was a slightly better substrate for both dehydrogenases, its 

activity with lactate dehydrogenase and alcohol dehydrogenase relative to NAD 

(100%) being 77% and 57%, respectively, compared to values of 58% and 52% for 

N6AHCM-NAD. These values serve to demonstrate the excellent recycling properties 

of each derivative.

The results do not show any strong differences between N6AHCM-NAD and N6CM- 

NAD with respect to their suitabilty as coenzymes with these enzymes. This indicates 

that a hydrophobic arm does not necessarily convey better coenzyme properties than a 

hydrophilic arm, in contrast with the results of Lowe (1977) in studies of immobilised 

cofactors derivatised at the C-8 position. Conversely, the results support the theory of 

Hendle et al (1993) who observed that shorter, negatively charged spacer arms 

attached at the N6 position make the least difference with respect to the substrate 

activity of NAD. However, the results discussed here refer to the analysis of cofactors 

that are in free solution. Upon immobilisation to an enzyme the character of the spacer 

arm may prove to have a stronger influence on the substrate activity of the coenzyme.
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3.2.2.3 Km values o f LDH for NAD and its derivatives

Thie Km values of lactate dehydrogenase for each NAD derivative were also 

dettermined to show whether derivatisation of NAD had affected the affinity of the 

enzyme towards the coenzyme. The direct linear plot was used to estimate the KM 

values and an example is shown in Figure 3.7 (Eisenthal and Comish-Bowden, 1974).

0.8 -
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0.6 -

0.3 -

0.3 - 0.2 - 0.1 0.0  0.1 0.2 0.3 0.4 0.5 0.6

[Sub s tra te ]  (mM)

Figure 3.7: Estimation o f the KM value o f lactate dehydrogenase for NAD using the
direct linear plot. Km was determined with beef heart lactate dehydrogenase at 340nm using a NAD concentration range of 

lxlO '5- 1x 10‘3M. Assay solution: 2.78ml sodium phosphate buffer (pH 7.0, lOOmM), 0.1ml lactate (1M), 20/d beef heart lactate 
dehydrogenase (20/xgml1), 0.1ml NAD sample. The velocity of NAD reduction at 340nm was plotted against [NAD] to obtain a 
substrate saturation curve; lines are then drawn and extrapolated as shown to give the -Km value of NAD (Eisenthal and Comish- 
Bowden, 1974).

The estimated KM value for each derivative is presented in Table 3.3. The KM values 

given are actually apparent KM values because the non-coenzymic substrate (lactate) is 

present at saturating concentrations. The KM values of lactate dehydrogenase for 

N6CM-NAD and N6AHCM-NAD are similar, at around three times the KM for NAD.
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Derivatisation of NAD probably resulted in an alteration of its coenzyme binding 

properties, causing an overall reduced affinity between enzyme and coenzyme, and 

hence an increase in KM. Comparing the two NAD derivatives, the enzyme has slightly 

more affinity for N6AHCM-NAD, its KM value being 6.6xl04M compared to a value 

of 7.9xlO_4M for N6CM-NAD, the value for the natural coenzyme being 2.7xlCHM. 

Therefore, although substrate assays show that N6CM-NAD is reduced by lactate 

dehydrogenase at a faster rate than the more hydrophobic derivative, the enzyme 

would appear to have slightly less affinity for it. The hydrophobic arm may convey 

better enzyme-binding properties than a hydrophilic arm, perhaps acting as an 

extension of the hydrophobic binding properties of the adenine ring (Schmidt and 

Dolabdjian, 1980) but at the same time the arm may affect the reduction rate of the 

bound coenzyme. It must be noted, however, that differences in KM and substrate 

activity values between the two derivatives are not at all striking.

It was next felt necessary to analyse the stability the NAD derivatives to ensure that 

they were each sufficiently stable for use in further studies.

3.2.Z4 Stability o f NAD, N6CM-NAD and N6AHCM-NAD

During the characterisation of each NAD derivative, its stability in solution was 

measured over a two month period. Stability studies were carried out to rule out the 

possibility that any instability of the enzyme-coenzyme complexes might be inherited 

from the coenzyme ligand. As the overall aim of this project was to investigate 

enzyme-coenzyme complexes and their applicability to enzyme electrodes, it was 

essential that the enzyme-coenzyme complexes were stable, at least for a few weeks, to 

make their incorporation into an enzyme electrode worthwhile.

The NAD derivatives were stored at a low concentration (0.17mM) in buffered 

solutions at room temperature and at 4°C to simulate the environment to which each 

coenzyme would be subjected after being incorporated into an enzyme-coenzyme
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complex. Each derivative was assayed for substrate activity using alcohol 

dehydrogenase in a coenzyme-recycling assay with MTT and PES; this was the same 

assay that would be used to measure the substrate activity of each coenzyme derivative 

after its incorporation into an enzyme-coenzyme complex.
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Figure 3.8: NAD derivative stability at 4°C (A) and at room temperature (B).» =
N^AHCM-NAD; □  N^CM-NAD; O = NAD. Coenzyme reduction rates were determined using yeast alcohol dehydrogenase (30p, 
g/ml) in a coenzyme-recycling assay with MTT and PES, coenzyme being added to 0.5p.M. Assay solution: to 1.95ml 
TEA/nicotinamide/ethanol buffer (lOOmM / lOOmM / 0.5M, respectively), pH 7.4, were added 100p.l coenzyme present at 0.5p.M in 
the assay solution, 50pl of 12mM MTT, 800pl of 3mM PES and lOOp.1 of yeast alcohol dehydrogenase.

The stability results are presented in Figure 3.8. It is clear that NAD and its derivatives 

are quite stable, with overall activities at room temperature remaining above 80%, 

even after fifty days. Considering, also, that the immobilisation of biological structures 

often has a stabilising effect, the stability of each coenzyme was clearly sufficient and 

the cofactors were now rendered suitable for use in coupling experiments with 

enzymes.

3.3 Enzymes

The NAD-dependent enzymes, lactate dehydrogenase, alcohol dehydrogenase and 

glutamate dehydrogenase were used in coenzyme-conjugation experiments with the
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coupling reagents glutaraldehyde and carbodiimide. Due to a strong inhibitory effect 

observed when glutaraldehyde was mixed with alcohol dehydrogenase, terephthal- 

aldehyde, an aromatic aldehyde, was also studied as a possible replacement cross- 

linking dialdehyde in studies with this particular enzyme. The enzyme side residues 

chosen for conjugation reactions were the polar side chains of lysine, glutamate and 

aspartate. In all three dehydrogenases, these residues are present on the outer surface 

of the enzyme molecule where they are available for reaction with coupling reagents. 

Further details of each enzyme, its role in coupling reactions, and the reason for its 

study are presented in the second part of this chapter, which also describes the results 

generated from studying enzyme-coenzyme complexes incorporating these enzymes.

Each enzyme was obtained commercially, either in a lyophilised form (yeast alcohol 

dehydrogenase) or in a concentrated ammonium sulphate solution (pig heart lactate 

dehydrogenase and beef liver glutamate dehydrogenase). Before use, each enzyme was 

therefore extensively dialysed against an appropriate buffer to remove unwanted salts 

and to ensure that the enzyme was buffered at an appropriate pH and that it was 

present at the correct concentration for use in a coupling reaction.

3.4 Coupling Reagents

Initially, two different coupling reagents were chosen for use in enzyme-coenzyme 

coupling experiments involving amine and carboxyl functional groups: these were 

glutaraldehyde and l-(3-dimethylaminopropyl)-3-ethyl-carbodiimide.HCl (EDC). As 

the studies progressed, terephthalaldehyde was also investigated as a coupling reagent 

although, for simplicity, its basic coupling mechanism may be regarded as similar to 

that of glutaraldehyde. More detail of the aromatic dialdehyde will be given in part two 

of this chapter. The reasons for using glutaraldehyde and EDC and details of their 

individual coupling mechanisms will be described presently.
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3.4.1 Glutaraldehyde

The structure of the homobifunctional reagent, glutaraldehyde, is shown in Figure 3.9. 

It is usually used to cross-link molecules via their primary amine groups. The coupled 

product incorporates the glutaraldehyde molecule into its structure i.e. glutaraldehyde 

acts as a molecular spacer between the conjugated molecules.

° *  + °C - C  H - C H - C H - Q .
H H

Figure 3.9: The structure o f glutaraldehyde

Reaction with proteins

Glutaraldehyde has been widely used in protein cross-linking studies (Lundblad and 

Noyes, 1984). The chemistry of glutaraldehyde is not simple although it is generally 

agreed that it reacts with proteins to form Schiff base structures (Figure 3.10)

It is thought that glutaraldehyde reacts with the terminal amine groups of lysyl residues 

to form a,co-Schiff bases and that this mechanism predominates in the reaction of 

glutaraldehyde with proteins (Lundblad and Noyes, 1984). The formation of Schiff 

bases should be readily reversible in the absence of reducing agents such as potassium 

borohydride. This has not always proved to be the case, however, and in some studies 

the reaction between glutaraldehyde and proteins was found to be irreverisble without 

the addition of a reducing agent (Richards and Knowles, 1968). Glutaraldehyde has a 

tendency to polymerise in solution and in this form it can irreversibly react with 

primary amines by vinyl addition (Figure 3.10). Glutaraldehyde coupling is 

consequently undefined (Hemeansson et al, 1992). Whatever the mechanism of 

glutaraldehyde, the reaction with amines occurs rapidly at alkaline pH and therefore 

glutaraldehyde is suitable for use as a coupling reagent with dehydrogenase enzymes 

which are generally stable between pH 7.0 and 9.0.
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Reaction with proteins

Glutaraldehyde has been widely used in protein cross-linking studies (Lundblad and 

Noyes, 1984). The chemistry of glutaraldehyde is not simple although it is generally 

agreed that it reacts with proteins to form Schiff base structures (Figure 3.10)

It is thought that glutaraldehyde reacts with the terminal amine groups of lysyl 

residues to form a,co-Schiff bases and that this mechanism predominates in the 

reaction of glutaraldehyde with proteins (Lundblad and Noyes, 1984). The formation 

of Schiff bases should be readily reversible in the absence of reducing agents such as 

potassium borohydride. This has not always proved to be the case, however, and in 

some studies the reaction between glutaraldehyde and proteins was found to be 

irreversible without the addition of a reducing agent (Richards and Knowles, 1968). 

Glutaraldehyde has a tendency to polymerise in solution and in this form it can 

irreversibly react with primary amines by vinyl addition (Figure 3.10). 

Glutaraldehyde coupling is consequently undefined (Hemeansson et al, 1992). 

Whatever the mechanism of glutaraldehyde, the reaction with amines occurs rapidly at 

alkaline pH and therefore glutaraldehyde is suitable for use as a coupling reagent with 

dehydrogenase enzymes which are generally stable between pH 7.0 and 9.0.
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a. Schiff Base formation

H
I
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glutaraldehyde
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Nucleophilic amine attacks carbonyl carbon atom. A molecule of water 
is lost and the resultant Schiff base is stabilised by reduction 
with potassium borohydride.
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b. Vinyl addition
CHO

R -N :

CH

CH

H CHO
I |

R -N — C ” CH^"CHj“CH“ CH2—CHO 

CH
I
CH

»H
C—CH— CH—CHO C—CH— CH—CHO

CHO 1;H0
polymerised glutaraldehyde

Nucleophilic addition of amine at a vinyl group of a glutaraldehyde polymer 
leaves a stable product with multiple formyl groups which may then partake in 
further coupling reactions with primary amine groups..

Figure 3.10: Coupling mechanisms o f glutaraldehyde

Glutaraldehyde is fairly specific for the e-amine groups of Lys residues, although it has 

also been known to react with other nucleophilic groups present on the surface of 

proteins such as the cysteine thiol group, the imidazole ring of histidine and the 

phenolic hydroxyl group of tyrosine residues (Lundblad and Noyes, 1984).

Reaction with nucleotide coenzymes

Glutaraldehyde has been used on several occasions to immobilise adenine nucleotide 

cofactors. It was used to attach adenosine triphosphate (ATP) to both the insoluble 

polysaccharide matrix, Sepharose (Gacesa and Whish, 1978) and the soluble
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polysaccharide matrix, dextran (Gacesa and Whish, 1977; England et a/,1979). In 

these studies a Schiff base mechanism was proposed for the reaction between 

glutaraldehyde and the N6-amine group of adenine nucleotides because the 

immobilisation was reversible in the absence of borohydride reducing agent (Gacesa 

and Whish, 1978). In another study, in which NAD was coupled to lactate 

dehydrogenase, the conjugated product was also stabilised by borohydride reduction, 

which again suggested a Schiff base mechanism as Schiff bases are stabilised in the 

presence of reducing agents (Gacesa and Venn, 1979, Section 1.6.1). However, Ukeda 

et al (1989a) pointed out that there was no direct evidence for an unambiguous 

structural assignment of the product and therefore the Schiff base mechanism could not 

be confirmed. They agreed that ATP seemed to react with glutaraldehyde via a Schiff 

base mechanism, but similar reaction with NAD showed a complicated pH dependence 

that could not be explained by a simple Schiff base mechanism. Consequently, it was 

suggested that there was a diversity in the binding mode of NAD to glutaraldehyde. 

However, the functional groups involved in the reaction were not under question, as 

Ukeda et al also observed that the presence of the N6 amine group of NAD and the 

terminal aldehyde groups of glutaraldehyde were both fundamental to the reaction. 

During their studies, Ukeda et al were able to use glutaraldehyde to co-immobilise 

NAD with alcohol dehydrogenase and diapharase onto Sepharose (Ukeda, 1989b).

The method of Gacesa and Venn (see above) was used to make conjugates coupled via 

glutaraldehyde in this study. Their results are discussed in detail in Section 1.6.1 and in 

the second part of this chapter. Gacesa and Venn used the preassembly approach, 

where the NAD-glutaraldehyde adduct was first formed before being introduced to the 

enzyme solution {Section 3.5). They observed that 30% of specific activity of lactate 

dehydrogenase was maintained using this technique, and therefore that conditions of 

excess glutaraldehyde did not seriously inhibit enzyme activity. N6AHCM-NAD was 

also successfully coupled using the same technique. The conjugates formed were stable 

after reduction with potassium borohydride.
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Although the coupling chemistry of glutaraldehyde cannot be clearly defined, its use 

enables NAD to be coupled directly to an enzyme without a laborious derivatisation 

process. This in itself, along with the desirable properties described above, merits its 

inclusion as a coupling reagent in this study.

The other coupling technique used involved the direct conjugation of carboxyl and 

amine groups by a carbodiimide-mediated reaction.

3.4.2 Carbodiimides

Rr N = C = N — R2 

Figure 3.11 General structure o f a carbodiimide.

Unlike glutaraldehyde, carbodiimide reagents mediate coupling reactions and as such 

they are not incorporated into the final coupled product. They are generally used to 

link a carboxyl group of one ligand to an amine group of another, forming a conjugate 

containing a peptide bond. They possess a central carbon atom with twinned double 

bonds (Figure 3.11) and they add carboxylic acids by 1,2-addition to give 

intermediates from which amides may be formed. The coupling mechanism has been 

studied in detail (Albertson, 1952) and is shown in Figure 3.12.

Reaction with proteins

Carbodiimides have been used extensively to modify the carboxyl groups of the 

aspartyl and glutamyl residues of proteins (Lundblad and Noyes, 1984). The reagent 

activates a protein-bound carboxyl group for attack by a suitable nucleophile, such as 

an amine group, as shown in Figure 3.12 (Hoare and Koshland, 1966). Carboxyl 

modification requires a protonated carboxyl group and therefore an acidic pH, but the 

conditions are more amenable to protein stability than other carboxyl- modification
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techniques and a carbodiimide reaction at mild pH, although slow, is still possible 

(Mansson et al, 1978). The yields of carbodiimide couplings can also be enhanced by 

using A-hydroxysuccinimide {Figure S. 12b). The 0-acylurea intermediate formed 

during carbodiimide coupling {Figure 3.12a) is subject to hydrolysis, resulting in 

decreased coupling efficiencies. The use of Y-hydroxysuccinimide in conjuction with 

the carbodiimide reagent enables the formation of active esters that are more resistant 

to hydrolysis than the 0-acylurea intermediate, and hence an increase of conjugated 

material results.

Carbodiimide-mediated reactions have been found to be highly controllable and the 

selective modification of one residue is often possible. For example, an aspartate 

residue (Asp 101) found in the active site of lysozyme was selectively modified by 

using a low excess (five to ten fold) of carbodiimide (Yamada et al, 1981). Cysteine 

and tyrosine have also been known to react with carbodiimide by the same anion attack 

mechanism as glutamate and aspartate, but these residues are found in special 

activating environments created by other protein residues (Lundblad and Noyes, 

1984). Carbodiimides have also been used to modify the basic amine acid residues of 

proteins, such as lysine, and to a lesser extent histidine and arginine (Theodoropoulos 

and Craig, 1955). This sort of modification has been used less often, presumably 

because an excess of nucleophile was found to promote the carbodiimide reaction 

(Albertson, 1952). The modification of macromolecular basic residues with nucleotides 

using carbodiimide reagents has, however, proved feasible (see below).
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a. Mechanism o f carbodiimide reaction

O
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c a r b o d iim id e

Carbodiimides activate carboxylic acid groups to react with primary amines. 
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O-acyl urea activated intermediate urea derivative

Water-soluble carbodiimides (e.g. EDC) are released as a soluble urea 
derivative after displacement by a nucleophile,

b. Role ofN-hydroxysuccinimide

The O-acylurea intermediate described above 
is subject to hydrolysis and therefore 
NHS is used to form active esters of 
the intermediate which are resistant 
to hydrolysis. In this way NHS enhances 
the yields of carbodiimide couplings.

c. Structure o f  EDC
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EDC {l-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride}

Figure 3,12: EDC and carbodiimide coupling o f amine- and carboxyl-containing 
compounds
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The ability of carbodiimide reagents to modify both the acidic and basic residues of 

proteins allowed the use of both NAD derivatives synthesised in this study. Either the 

carboxyl group of N6CM-NAD could be activated for nucleophilic attack by lysyl 

residues of dehydrogenases, or the carboxyl-containing residues of dehydrogenases 

could be activated for nucleophilic attack by the terminal amine group of N6AHCM- 

NAD.

Reaction with nucleotide coenzymes

In an early study, umodified NAD was coupled to e-aminocaproic acid ligands on 

Sepharose beads using dicyclohexylcarbodiimide (Larsson and Mosbach, 1971). 

However, the coupling reaction took 20 days and the reaction was thought to occur 

via ester formation with the adenine ribose hydroxyl groups of NAD. Carbodiimide has 

been used in the popular water soluble form, l-(3-dimethylaminopropyl)-3-ethyl- 

carbodiimide.HCl (EDC) (Figure 3.12c.), to modify both amine and carboxyl 

containing derivatives of NAD. It has been used in several studies to derivatise 

carboxyalkyl side chains attached to the amine group of the adenine ring of NAD. In 

fact, this is the method by which N6CM-NAD was converted to N6AHCM-NAD in 

this study (section 3.2) (Lindberg et al, 1973). A similar carbodiimide-mediated 

reaction was employed by Okuda et al (1985a&b) to synthesise new derivatives of 

NADP (again starting from a carboxyalkyl side chain attached to the adenine N6 

position) and also by Okada and Urabe (1987) to attach a vinyl-containing lysine 

derivative to a carboxyl-containing derivative of NAD, forming a self-polymerisable 

NAD molecule.

Because the attack of carbodiimide-activated species is promoted by an excess of 

nucleophilic amine groups, as discussed above, and because N6CM-NAD is slightly 

unstable under the acidic conditions of the carbodiimide coupling, it might be expected 

that carboxyalkylated NAD derivatives are unsuitable for use with EDC. However, 

carboxyl-containing NAD molecules have been coupled to amine-containing water-
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soluble and insoluble macromolecular supports with success. Using EDC, Zappelli et 

al (1975) immobilised an NAD derivative carrying a ©-carboxyalkyl side chain 

attached to the N6 adenine position, to polyethyleneimine, polylysine, and aminohexyl- 

Sepharose. The immobilised NAD derivatives showed a slight decrease in their original 

substrate activity, each activity being 60% of the corresponding activity in free 

solution, but a stable amide linkage was effected. Similarly, Okada and Urabe (1987) 

coupled N6-(2-carboxyethyl)-NAD to polyethyleneglycol (PEG) using carbodiimide. 

The resulting PEG-NAD complex performed well as a coenzyme with several 

dehydrogenases.

NAD derivatives containing aminoalkyl side chains have also been coupled using EDC, 

mainly for use as affinity ligands (Mosbach, 1978). Carboxy-activated PEG has been 

linked to N(l) 2-aminoethyl-NAD and similar NAD derivatives have been immobilised 

to other macromolecular supports (Buckmann and Carrea, 1989). In fact, this sort of 

coupling has been used to couple NAD derivatives to the surface of dehydrogenases. 

Mansson et al (1978) used carbodiimide to mediate a reaction between N6AHCM 

NAD and acidic surface residues of alcohol dehydrogenase. The water soluble 

carbodiimide, EDC, was again used in excess and the urea by-product washed off with 

water. The specific activity of the modified enzyme was 37% of that of native alcohol 

dehydrogenase, indicating that carbodiimide-coupling does not seriously inhibit the 

catalytic action of dehydrogenases. 0.3-1.6 coenzyme molecules were covalently 

incorporated per subunit molecule. Carbodiimide was similarly employed by Kato et al 

(1987) to couple N6AHCM-NAD to formate dehydrogenase (Kato et al). They found 

that the specific activity of the modified enzyme was actually 16% higher than the 

specific activity of the native enzyme, confirming that carbodiimide reagents were 

suitable for use with dehydrogenases. A carbodiimide-mediated reaction was again 

used by Warth et al (1989) to link NAD derivatives to lactate dehydrogenase. Several 

different NAD derivatives were used, all formed by NAD modification at the N6- 

adenine position and with either a carboxyl- or amine-containing group attached. The
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amine group of the derivative was coupled to carbodiimide-activated carboxyl groups 

present on the surface of lactate dehydrogenase; alternatively the carboxyl group of 

N6CMNAD was activated and then mixed with an LDH solution to react with the 

enzyme lysyl residues. Each modified lactate dehydrogenase preparation showed only a 

slight decrease in specific activity - between 30-40% of the specific activity of the 

original LDH was lost upon modification. Between 1.0 and 2.0 coenzyme molecules 

were incorporated per LDH subunit and this did not depend upon whether the 

carbodiimide-activated carboxyl group was present on the enzyme or on the coenzyme 

(These enzyme-coenzyme conjugates are discussed in more detail in Section 1.6).

The NAD derivative-dehydrogenase coupling attempts described above fail to mention 

any attempt to couple the unmodified coenzyme, NAD, to dehydrogenase enzymes 

using EDC even though NAD has been successfully coupled to Sepharose using a 

water-insoluble carbodiimide (Larsson and Mosbach, 1971). No attempts have been 

made to couple unmodified NAD using the more favourable water-soluble 

carbodiimide, EDC, and therefore, attempts were made to immobilise unmodified 

NAD using EDC in this study.

3.5 The coupling reaction

Coenzyme, enzyme and coupling reagent were mixed together in solution. The order 

of addition and the reaction time varied depending on the method used (Materials and 

Methods).

In this study the preassembly approach to conjugate synthesis was used, whereby the 

structure of the coenzyme used was defined before its addition to the coupling mixture. 

The advantages of this method, as opposed to one where the spacer-ligand assembly is 

built up on the enzyme surface, have been reviewed (Mosbach, 1978). Because the
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coenzyme ligand has a defined structure and can be characterised before conjugation, 

useful information can be obtained about its chemical and kinetic properties. In 

addition, if a spacer is attached to NAD it can introduce a functional group that is 

more reactive than any of the functional groups present on the unmodified molecule. 

This means that there is little doubt as to which group will be involved in the coupling 

reaction, and the site of linkage to the enzyme can therefore be defined. The 

preassembly approach also avoids an excess of spacer groups being attached to the 

protein surface because the reactive NAD ligand can be isolated from excess spacer 

groups beforehand. An excess of attached spacer groups with hydrophobic or 

hydrophilic character may interfere with the action of the enzyme involved.

Ternary complex formation

In some previous studies a substrate derivative was added to the coupling mixture so 

that a "dead-end" ternary complex was formed between the enzyme, its coenzyme and 

a substrate derivative (Section 1.6.2). The presence of coenzyme and substrate bound 

at the active site is thought to protect 'sensitive' amino acid residues from unwanted 

modification. These sensitive residues are usually found in or near the active centre, 

where the coenzyme and substrate binding sites are also found. A ternary complex was 

formed during the coupling of enzyme-coenzyme conjugates involving lactate 

dehydrogenase (Woenckhaus et al, 1983) and alcohol dehydrogenase (Goulas, 1987; 

Schafer et al, 1986). Oxalate and pyrazole were used, respectively, as substrate 

analogues.

In our studies a ternary complex was not formed during the coupling reaction. This 

decision was taken because in enzyme-coenzyme coupling studies carried out in the 

past without the formation of a "dead-end" ternary complex during coupling, the 

specific activity has never been seriously affected, the lowest value observed being 

30% of the native enzyme for a lactate dehydrogenase-NAD conjugate (Gacesa and 

Venn, 1979). Moreover, Mansson et al (1978) found that the coupling of N6AHCM-
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NAD to LADH was only possible in the absence of pyrazole, and so ternary complex 

formation was abandoned. It is therefore conceivable that the best position on the 

enzyme for the covalent binding of a coenzyme, with respect to proximity of the 

coenzyme binding site, may be unaccessible during ternary complex formation. Goulas 

(1987) compared different coupling experiments which were carried out either with or 

without the formation of a ternary complex during the coupling reaction. The results 

did not appear to be dramatically different. The intrinsic activity of LADH-coenzyme 

complexes formed during ternary complex formation was 27% of the specific activity 

of the modified enzyme, whilst that for LADH-coenzyme complexes formed in the 

absence of pseudosubstrate was 13%.

The case for ternary complex formation during coupling experiments is clearly not 

strong. In order to simplify the approach, the technique was omitted in this study.

3.6 Purification o f prepared enzyme-coenzyme complexes

Once the coupling reaction was complete, the next step was to isolate the enzyme- 

coenzyme complex from unreacted coenzyme, so that any intrinsic activity detected 

later could be attributed solely to the presence of covalently-bound coenzyme. Gel 

filtration has proved to be an effective method for achieving such a separation as long 

as a "baseline" separation between protein material and free nucleotide material is 

achieved (Venn et al, 1977). However, in one enzyme-coenzyme study, a quantity of 

free coenzyme was found in the protein fractions after a "baseline" separation by gel 

filtration (Mansson et al, 1978). The impurity made up to a third of the total coenzyme 

present, although surprisingly this non-specifically bound coenzyme did not appear to 

have any substrate activity.
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In our study a series of experiments was set up to ensure that a negligible amount of 

free coenzyme would be present in conjugate solutions after gel filtration, as reported 

in the following section.

3.6.1 Gel filtration chromatography

f ree co f a c t o r
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3 0
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Figure 3.13: Elution profile o f a typical separation o f a dehydrogenase-coenzyme 
complex from uncoupled coenzyme by gel filtration chromatography. 
GltDH=Glutamate dehydrogenase
A Sephacryl S-100 column (80 x 1.5cm) was used to separate a glutaraldehyde-coupled glutamate dehydrogenase-N^AHCM-NAD 

complex from uncoupled N^AHCM-NAD. The column was run at 4°C with a flow rate o f 0.2ml min'1. Fractions were collected in 

2.0ml volumes in a dropwise manner using an automatic fraction collector. The fractions were then immediately taken for analysis to 

determine the following properties:
protein concentration: measured using Coomassie method; 50fil of each fraction was mixed with 2ml of a 50:50 mixture o f saline 

and Coomassie Brilliant Blue G reagent and left for 5mins. The absorbance o f the mixture was then read at 620nm and the protein 

concentration calculated from a standard curve.

3H-NAD counts: 200p.l o f each fraction was mixed with 2ml Optiphase "Safe"scintillant in a scintillation vial and counted in a LKB 

scintillation counter for 15 mins in triplicate, using a 14C window and a 3H window. Counting efficiency was calculated as 60% for 

3H and 98% for 14C by calculating the efficency o f the machine when counting a dated standard sample o f 3H-labelled material. The 

counts per minute were then adjusted to give disintegrations per minute (dpm).

Figure 3.13 shows a gel filtration elution profile for a glutamate dehydrogenase- 

coenzyme complex incorporating N6AHCM-NAD coupled via glutaraldehyde. The
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elution profile is typical of all the enzyme-coenzyme complexes studied. Other elution 

profiles can be found in the relevant section for each dehydrogenase in part two of this 

chapter. The protein-containing fractions had a tendency to separate into two minor 

peaks upon elution. In most cases, the first peak contained more conjugated coenzyme 

than the second peak, although this was not always the case. A small amount of free 

NAD was present in peaks 1 and 2 (Figure 3.13), as measured by adding a sample of 

3H-NAD to an enzyme-coenzyme conjugate before gel filtration (see below). Because 

the latter protein fractions (peak 2) contained 80% of the free 3H-NAD found in the 

protein fractions, only the first half of the protein-containing fractions were used in 

subsequent studies. This precaution was taken to ensure beyond doubt that the amount 

of free NAD was always negligible. In fact, the following series of experiments was set 

up to show that the amount of free coenzyme in both peakl and peak 2 was negligible. 

The actual values are given below.

3.6.2 Experiments to confirm effective isolation o f enzyme-coenzyme complexes from 

free coenzyme by gel filtration chromatography

1. A known amount of free 3H-NAD was added to a previously coupled enzyme- 

coenzyme mixture before it was subjected to gel filtration. The total proportion of free 

coenzyme remaining in the conjugate peak after gel filtration could then be calculated 

{Figure 3.13, top diagram). A small amount of free coenzyme did remain with the 

protein fractions.

It was calculated that the protein fraction containing the most free coenzyme contained 

up to 0.01% of the total 3H-NAD added (this was the highest percentage obtained 

from two separate runs of the above experiment). The highest amount of coenzyme 

added in a coupling reaction was lOmg. Therefore, l.Opg (0.01% of lOmg) would be 

the highest amount of free coenzyme present in any protein-containing fraction. As 

only a small amount of each fraction was taken for subsequent assay (up to lOOpl from
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a 2ml fraction volume) then a maximum of only 0.075 nmol of coenzyme would be 

present duing final assays after gel filtration. This concentration of free coenzyme was 

considered to be a negligible amount because it was well beyond the detection limits of 

both the Nisselbaum-Green recycling assay for NAD, and the other less sensitive 

assays used to measure the endogenous activity present in enzyme-coenzyme 

conjugates. All assays could not detect below 0. lnmol of NAD.

This result was confirmed by the following sets of experiments.

2. Protein-containing fractions were collected after gel filtration, and the protein 

denatured in 8M urea. This would release any coenzyme that was not covalently bound 

to the enzyme into the surrounding solution. The protein was precipitated, centrifuged 

and the pellet removed. The supernatant was then analysed for free NAD using the 

Nisselbaum-Green recycling assay which is sensitive to >0.lnmol NAD. No coenzyme 

could be detected.

3. ''Dummy” conjugation experiments were also carried out. Here the experimental 

conditions were identical to a typical conjugation experiment, apart from the omission 

of the coupling reagent - again, no coenzyme could be detected, either using the 

Nisselbaum-Green recycling assay or by analysing lOOpl of each protein-containing 

sample using TLC. The presence of >0.5nmol of nucleotide material can be detected 

on PEI-cellulose TLC plates under ultra-violet light (Randerath and Randerath, 1967).

After the above experiments were completed it was assumed that the only coenzyme 

present in protein fractions was enzyme-bound via a covalent linkage. However, after 

gel filtration of native dehydrogenases, small quantities of coenzyme were evident. The 

native and modified enzymes were therefore further purified after gel filtration by 

washing with activated charcoal (Section 3.8.1).
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After purification, each enzyme-coenzyme preparation was ready to be characterised 

and was analysed to determine both the extent of conjugation and the size of any 

intrinsic activity present.

3.7 Determination o f the success o f the coupling reaction - the calculation o f the 

amount o f coenzyme conjugated to each enzyme molecule

In order to determine the extent of conjugation between coenzyme and enzyme, the 

molar ratio of bound coenzyme to enzyme subunit was determined for a purified 

enzyme-coenzyme preparation. This was achieved using two different methods: one 

method served to determine the molar ratio of nucleotide to enzyme protein, while the 

other determined the molar ratio of reducible coenzyme to enzyme protein.

3.7.1 Determination o f ratio o f coenzyme molecules to enzyme subunit molecules by 

exploitation o f the ultra-violet absorption properties o f an enzyme-coenzyme complex. 

Because an enzyme-coenzyme complex contains nucleotide coenzyme material (A™ax 

260-270nm) and protein material (Â ax 280-290nm) the individual concentrations of 

each can be determined simply by taking two different absorbance readings in the ultra­

violet region of the spectrum. Immediately after gel filtration the absorbance of each 

fraction was recorded at 266nm and 290nm and, by using the equation system first 

applied by Mansson et al (1978), the concentration ratio of coenzyme to enzyme could 

be calculated. The procedure involves the formation and solvation of two simultaneous 

equations as shown Figure 3.14:
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a[E]+x[NAD] = A266 

*[E] +y[NAD] = Aj90

Enzyme Molar absorption coefficient 
a b

LDH
GltDH
YADH

a = 1.33 mg^mlcnr1 
a = 1.23 mg^mlcnr1 
a = 1.22 mg^mlcnr1

b = l^Omg^mlcnr1 
b = 1.13 mg^mlcnr1 
b = l.lSmg^mlcnr1

Coenzyme Molar absorption coefficient
X y

NAD ^OOOcnWM-1 lbOOcnWM-1
N6CM-NAD l^SOOcm-M-1 2000cm-1M-1

N6AHCM-NAD 20,000cm-1M-1 lSOOcm^M-1

Figure 3.14 The equation system used to estimate the individual concentration o f 
coenzyme and enzyme in an enzyme coenzyme complex where a and b represent the molar absorption

coefficient of each enzyme used, and x and y  represent the molar absorption coefficient of each coenzyme used. The molar absorption 
coefficients were calculated from the absorbance of solutions of known concentration. Purified samples of both enzyme and coenzyme 
were taken and the absorption of their solutions were read at 266nm and 290 nm. The Beer-Lambert law was applied to calculate E, 
the molar extincton coefficient.[ A=E.c.l, where A=absorbance, E= molar absorption coefficient, c= concentration of solution (M), 
and 1 = length of light path (= 1cm)]

The figures are based on the molar absorption coefficents at 266 and 290nm for each 

coenzyme and enzyme used. The coefficients were calculated by reading the 

absorbance of samples of known concentrations at those wavelengths {Figure 3.14).

This spectrophotometric method has been validated by Mansson et al (1978) by 

measuring coenzyme concentration using both 14C-labelled coenzymes and phosphate 

concentration determination of NAD, and by measuring protein concentration with the 

Lowry method. This method is a convenient way with which to measure the 

concentrations of coenzyme and enzyme in an enzyme-coenzyme conjugate. However, 

because the biological activity of the bound coenzyme is of paramount importance to 

the ability of an enzyme-coenzyme complex to act as a self sufficient catalytic unit an
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additional method was used to determine whether the bound coenzyme was actually 

reducible.

3.7.2 Determination o f the molar ratio o f reducible coenzyme to enzyme subunit 

The amount of covalently bound coenzyme available for reduction by a second enzyme 

was determined to give an indication as to what proportion of the immobilised 

coenzyme molecules were active. Although such a measurement would not be the 

same as a direct measurement of the coenzyme available for reduction with the same 

enzyme to which it was bound, it would provide an indication of the accessibility of the 

bound coenzyme and provide for an interesting comparison. The amount of protein 

available was determined using the Coomassie method, whilst the amount of bound 

coenzyme available for reduction by a second enzyme was determined using the 

Nisselbaum-Green recycling assay (Figure 3.6) with alcohol dehydrogenase and/or a 

similar recycling assay using lactate dehydrogenase.

Once the proportion of reducible bound coenzyme had been established, the specific 

activity of the modified enzyme and the endogenous catalytic activity of the enzyme- 

coenzyme complex was determined.

3.8 Activity determinations

After purification, each enzyme-coenzyme complex was assayed for intrinsic activity 

and specific activity: The intrinsic activity was measured by using a coenzyme- 

recycling assay, otherwise the activity would be limited by one catalytic cycle for each 

reducible enzyme-bound coenzyme. Assays for intrinsic activity should detect whether 

a bound coenzyme is available for catalysis, either with the very same enzyme molecule 

to which it is bound (intramolecular reaction), or with neighbouring enzyme molecules 

in solution (intermolecular reaction). The specific activity was also determined using a 

coenzyme-recycling assay in order to provide a consistent approach for comparison
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with the intrinsic activity results. Specific activities were measured in order to 

estimate whether the coupling process had seriously decreased the efficiency of 

enzyme catalysis. Any serious inactivation of the enzyme would probably decrease 

the chances of obtaining a good intrinsic activity with its coenzyme complex.

Two types of coenzyme-recycling assay were used: one employed a DCPIP/PES 

redox couple and the other employed an MTT/redox couple (Figure 3.6). Whenever 

the same enzyme preparation was assayed for activity using both recycling assays, the 

two assays showed good agreement in terms of (pmoles substrate) converted / min / 

mg protein. The results from both assays were, therefore, converted into the same 

units (pmol/min/mg) making it possible to directly compare the activities of different 

enzyme-coenzyme complexes that had been assayed using the different recycling 

assays.

During initial use of the DCPIP/PES recycling assay, a problem was encountered: 

upon assay of a native dehydrogenase with no covalently bound coenzyme, a 

significant decrease in absorbance at 610nm was observed. This absorption decrease 

must have been due to the oxidation of a reduced species by the redox dye, 

dichlorophenolindophenol (see Figure 3.6b) which consequently resulted in a change 

of its absorption properties at 610nm. The decrease in absorbance was too large and 

erratic to simply be taken into account in an assay for the intrinsic activity of a 

enzyme-coenzyme conjugate. In an attempt to identify the reduced species and to 

eliminate the problem some interesting results were obtained.

3.8.1 Modification o f the DCPIP recycling assay

The theory behind the DCPIP assay is explained in section 3.2.2.2. The decrease in 

absorbance, due to oxidation of DCPIP, upon addition of native enzyme but without 

addition of coenzyme is a phenomenon that has been observed before (Slater et al, 

1964; Bemofsky and Schwann, 1973). Several explanations have ensued, including 

proposals that a substance present in the tissue sample interferes with the assay, that
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there are protein sulfhydryl groups present which have a redox activity low enough to 

be able to reduce an NAD molecule (Bernofsky and Schwann, 1973), or that there are 

coenzyme impurities remaining in a supposedly purified sample. Because companies 

selling enzymes admit to the presence of coenzyme in their samples, the latter theory 

was tested first. The decrease in absorbance might be due to the presence of free NAD, 

tightly bound to the enzyme by non-covalent forces.

After dialysis and gel filtration of native lactate dehydrogenase, an absorbance decrease 

of 0.03 Agjo/min/mg was still evident in the DCPIP/PES recycling assay. In order to 

totally remove all non-covalently bound coenzyme a charcoal washing procedure was 

employed (Velick et al, 1953). Each enzyme solution was washed with activated 

charcoal which strongly adsorbs any non-covalently bound NAD.
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Figure 3.15.'The adsorption o f NAD by charcoal, lmg of active charcoal was added to 1ml o f NAD 

(concentration at zero time = 70p.M, 60p.M, 30pM, 20pAl or 10p.M) in H20  at room temperature, and mixed periodically for 30 

min, before NAD concentration was measured at 266nm.
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As illustrated in Figure 3.15, activated charcoal was very effective at adsorbing NAD 

in free solution, removing up to 25pmol NAD (gm charcoal)-1. Because activated 

charcoal is also known to adsorb protein, the NAD-washing protocol was applied to a 

protein solution to determine how much protein was lost. Charcoal-washing of lactate 

dehydrogenase or alcohol dehydrogenase solutions with a charcoal :protein ratio of 1 : 1  

(w/w) in all cases resulted in a loss of 5-10% of protein material, independent of 

whether each enzyme had been covalently modified with coenzyme or not. The loss of 

this small amount of protein material during the washing of an enzyme-coenzyme 

sample was deemed to be acceptable.

Native dehydrogenases that had been washed with activated charcoal showed an 

undetectable decrease in absorbance when analysed for intrinsic activity with the 

DCPIP/PES recycling assay (Figure 3.16) - the reduced species was no longer present 

in solution.

A similar stability of the blank rate occurred upon the addition of phosphodiesterase 

(PDE) to a native dehydrogenase solution prior to the DCPIP/PES assay (.Figure 

3.16), although the effect was somewhat reduced, with 30% of the absorbance 

decrease remaining. PDE is an enzyme which catalyses the hydrolysis of phosphate 

esters. There are two such esters present in the structure of NAD and PDE breaks it 

down into AMP and NMN, components having no biological activity in this system. 

Thus NAD was effectively removed

These results add weight to the theory that the presence of NAD associated with 

native dehydrogenases through non-covalent forces leads to an apparent intrinsic 

activity in the DCPIP recycling assay. Pre-washing of dehydrogenase solutions with 

active charcoal before assaying is a convenient and effective way to make 

measurements of actual intrinsic activities easier to follow, the only drawback being a 

small loss of protein.
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Figure 3.16: The effect o f charcoal washing and phosphodiesterase (PDE) addition 
on the instability o f the blank rate in the DCPIP recycling assay. «  = blank rate after gei

filtration; □ = rate after charcoal-washing; O = rate after PDE addition. Assay solution: 0.75ml lOOmM potassium phosphate buffer 
(pH 7.5), 2pmol PES, 50nmol DCPIP, 50pmol lactate and lOOp.1 LDH (lm g ml"1). Charcoal washing: 0.1 mg active charcoal was 
added to 1ml of enzyme solution at room temperature, and mixed periodically for 30mins before assaying. Phosphodiesterase (PDE) 
addition: lOp.1 Crotalus durissus terrificus PDE (lm g ml'1) was added to 0.5 ml of enzyme solution, mixed and left at room 
temperature for 60mins before assaying.



105

PART TWO: Properties o f enzyme-coenzyme conjugates

The first part of this chapter dealt with the approach used to prepare and analyse 

enzyme-coenzyme conjugates synthesised via amine and carboxyl functional groups. 

The results that were generated from this approach will be presented in this section. 

The results are categorised depending on the constituent enzyme of the enzyme- 

coenzyme complex. Relevant properties of each enzyme used will also be discussed 

here, whereas the properties of each coenzyme and coupling agent used were 

discussed in part one of this chapter.

Certain aspects of each dehydrogenase that may have affected the formation and 

properties of their coenzyme conjugates are now considered.

3.9 General properties ofNAD-dependent dehydrogenases

The three-dimensional structure of a coenzyme-dependent enzyme often includes the 

presence of a deep cleft, formed between the interface of two major domains. This 

cleft serves as a coenzyme "docking bay" (Anderson et al, 1979) and is often present 

in NAD-dependent dehydrogenases. Amongst the dehydrogenases that possess the 

classic double-domain structure (Figure 3.17) are lactate dehydrogenase (Adams et al, 

1970), malate dehydrogenase (Hill et al, 1972), glyceraldehyde-3-phosphate 

dehydrogenase (Buehner et al, 1974), alcohol dehydrogenase (Eklund et al, 1976) and 

glutamate dehydrogenase (Rice et al, 1987). Another structural motif that is common 

to these enzymes is a region of alternating parallel P-sheets and a-helices. At the 

centre of this motif is often found the NAD-binding loop, a flexible stretch of peptide 

which, upon substrate binding, creates a more favourable environment for substrate 

catalysis (Hill et al, 1972; Baker et al, 1992a). The general function of the two major 

domains is now clear: one organises molecular assembly and provides residues for the
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binding of non-coenzymic substrate, while the other carries the NAD-binding 

capability (Baker et al, 1987).

It is not surprising, then, that most dehydrogenases appear to have the same mode of 

NAD binding, even though the residues involved may differ (Moras et al, 1975). The 

strategy of all NAD-dependent dehydrogenases is to orient the C-4 position of the 

nicotinamide ring of the coenzyme towards the reactive centre of the substrate on the 

enzyme surface (Zubay, 1988). The coenzyme is bound in an open structure (Baker et 

al, 1992a), the adenine ring being sandwiched between hydrophobic residues, whilst 

the ribose and phosphate and sometimes the nicotinamide moieties are involved in 

hydrogen bond interactions with residues of the enzyme.

Because of the similar mode of NAD-binding, the same approach could be used in this 

study to prepare a number of different dehydrogenase-coenzyme conjugates. 

However, certain properties that were unique to each enzyme would undoubtedly 

affect the formation of the individual enzyme-coenyme conjugates. For example, the 

sensitivity of the enzyme to modification or the availability of certain residues for 

reaction with the coupling reagent may differ between dehydrogenases. Each 

dehydrogenase will now, therefore, be discussed independently.

3.10 Lactate dehydrogenase: properties relevant to its conjugation with coenzymes

Lactate dehydrogenase (LDH) is one of the most thoroughly investigated of the NAD- 

dependent dehydrogenase enzymes. It has many potential commercial applications 

(Section 1.3). Along with alcohol dehydrogenase, it has proved to be amenable to the 

formation of conjugates with NAD or NAD derivatives (Venn et al, 1977; Warth et al, 

1989; Schafer et al, 1986; Yomo et al, 1992). Consequently, LDH was chosen as a
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model dehydrogenase in this study and two of the LDH-coenzyme conjugates formed 

were incorporated into enzyme electrode systems {Chapter 5).

LDH is an NAD-dependent enzyme and it catalyses the reversible reaction of 

pyruvate to lactate, a reaction which is found at the end of the glycolytic pathway.

LDH
LACTATE+ NAD+ o  PYRUVATE + NADH + H*

The equilibrium of the above reaction lies very much to the left, with an equilibrium 

constant, Keq, of around 3xl0'5M at pH 7.0, in phosphate buffer, at 25°C (Hakala et 

al, 1956). Because the ultimate interest lay in the reverse reaction, the pH of the 

intrinsic activity assays was raised slightly, to pH 7.5-8.0, in order to help shift the 

reaction equilibrium towards lactate oxidation. The lactate oxidation reaction was 

important because of the eventual enzyme electrode applications of the LDH- 

coenzyme conjugates where lactate would be the substrate of analytical interest. In 

addition, the coenzyme is more successfully regenerated from its reduced state 

(NADH) to its oxidised state (NAD) by the electrode used, and so the lactate 

oxidation reaction could be more easily monitored than the pyruvate reduction 

reaction in the enzyme electrode.

3.10.1 Structure

LDH exists as a tetramer of MW 140,000, consisting of subunits of MW 35,000 (see 

Figure 3.17). Each of these subunits is globular, apart from an elongated peptide 

stretch at the N-terminus. Two major structural forms of the subunit exist: the M 

chain, usually found in anaerobic tissues and the H chain, usually found in aerobic 

tissues. The chains differ in amino acid composition and they also possess different 

physical, kinetic and immunological properties (Everse and Kaplan, 1974). 

Nevertheless, the M and H chains can readily combine with each other in any
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combination to form a tetramer, and consequently five isoenzymes of LDH are 

known: H4, MH3, M2 H2, M3H and M4 . The isoenzyme chosen for use in these studies 

was H4  LDH from pig; the reasons for its choice are explained below. The subunits of 

LDH have been shown to act independently of the each other and to bind NAD at the 

same rate (Holbrook et al, 1975). Each subunit was treated as a separate catalytic unit 

in this study.

Each LDH molecule can bind one molecule of NAD per subunit, each subunit 

consisting of a catalytic domain and a nucleotide binding domain {Section 3.9). In pig 

fLi LDH, the latter domain consists of around 150 amino acids out of a total of 333 

residues (Eventoff et al, 1975). LDH shows an ordered substrate binding mechanism: 

NAD must bind before lactate can and, after catalysis, pyruvate leaves before the 

coenzyme (see Figure 1.5) (Holbrook et al, 1975). Upon transition from a binary 

complex (coenzyme bound to enzyme) to a ternary complex (coenzyme and substrate 

bound to enzyme) a pronounced confirmational change occurs in each LDH subunit 

(Holbrook et al, 1975). This structural movement includes the closing of a flexible 

peptide loop over the active centre to provide a favourable environment for catalysis 

(Grau etal, 1981).

A basic scheme for the catalytic mechanism of LDH is shown in Figure 3.18. As with 

all other NAD-dependent dehydrogenases, the pyridine ring of NAD is the active 

nucleus of the coenzyme, while the remainder of the molecule is responsible for 

enzyme binding and recognition. Several studies with LDH have confirmed the 

importance of the ribose, phosphate and, to a lesser extent, the adenine moieties in 

coenzyme binding (Everse and Kaplan, 1974). X-ray crystallographic studies have 

been carried out at low resolution on various LDHs and have confirmed the role of 

these moieties (Adams et al 1970, Eventoff et al, 1975, Grau et al, 1981). In the case 

of pig H4  LDH, X-ray diffraction data was obtained at 0.27nm resolution (Grau et al, 

1981). Figure 3.19 shows the bonds that form between the pig H4  LDH and NAD
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Figure 3.17: One subunit o f LDH showing two domains (green and yellow) separated 

by the coenzyme-binding cleft. A molecule o f NAD is shown bound in the catalytic position.
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Figure 3.18. The catalytic mechanism at the active site o f lactate dehydrogenase. The 
nicotinamide moiety of NAD accepts a hydride ion from lactate in the oxidation reaction, and 
donates a hydride ion in the reduction of pyruvate. Substrate is shown in blue, and hydrogen bonding 
is denoted by dotted lines.

during coenzyme binding, and illustrates the relative availability of the C-8 and N6 

positions of the adenine ring for modification by solvated reagents. Indeed, Grau et al 

(1981) observed that in pig H4 the amine group of NAD protruded noticably further 

into the solvent when bound to LDH than it did in the dogfish M4 isozyme. The data 

of Grau et al was used to prepare Figure 3.3, which clearly illustrates the solvent 

accessibility of the adenine N6 group of NAD when it is bound to pig H4 LDH.

Having established that the N6 amine of NAD appears to be a suitable position for 

attachment of one end of a molecular bridge between LDH and the coenzyme, we 

shall now consider the opposite end of the bridge and the most suitable positions for 

its anchorage to the surface of the LDH molecule.



Figure 3.19 Diagrammatic representation of a molecule o f NAD bound at the catalytic site 
o f p ig  heart LDH. Hydrogen bonds are denoted as dotted lines.
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There are several reactive residues commonly found on the surface of proteins. The e- 

amine group of lysyl residues and the side chain carboxyl groups of aspartyl and 

glutamyl residues are amongst the most widely used in modification and immobilisation 

studies. They were used in this study as points of attachment for NAD.

3.10.2 e-Amine groups o f lysyl residues

Structural studies show that the main source of solvent accessible amine groups 

present on the protein surface are most commonly the e-amine groups of lysyl residues 

(Creighton, 1993). As discussed in Section 3.4, glutaraldehyde was used to attach each 

amine-containing coenzyme to LDH via the enzyme's lysine amine groups, and 

carbodiimide was used to attach the carboxyl containing coenzyme, N6 CM-NAD to 

LDH, also via its surface amine groups.

LDH has been immobilised using e-amine groups as anchorage points for spacer 

groups in previous studies. For example, chicken H4  LDH was immobilised onto 

alkylamine-derivatised glass beads using both glutaraldehyde coupling and 

carbodiimide coupling (Stolzenbach and Kaplan, 1978). The immobilised enzyme was 

stable, immobilisation actually improving its stability, and over 50% of its lactate 

activity remained.

3.10.2.1 Solvent accessibility

The total lysine content of pig H4  LDH has been reported by Klitz et al (1977) in their 

primary structure determination of the enzyme. There were 24 lysyl residues per 

enzyme subunit out of a total of 333 residues. Because the location of polar and 

hydrophobic side chains in LDH has been reported to be typical of that in most other 

proteins (Holbrook et al, 1975) it was assumed that many of these lysyl residues were 

present on the protein surface where they were available for interaction with reactive 

ligands present in free solution. In an X-ray crystallographic structure determination of
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dogfish M4  Apo-LDH, which is very similar in primary structure to pig H4  LDH (Klitz 

et al, 1977), the relevant solvent accessibility of each residue was calculated (Abad- 

Zapatero et al, 1987). The surface of each amino acid residue, X, was normalised with 

respect to the same residue (X) as found in the tripeptide Gly-X-Gly. If the enzyme 

residue had a side chain accessible surface area which was greater than 2 0 % of its 

available area in the extended Gly-X-Gly tripeptide, it was labelled accessible, and if 

the value was greater than 5%, it was labelled partially accessible. 18 out of 29 lysyl 

residues were accessible, and another 6  partially accessible, leaving only 17% of lysyl 

residues inaccessible to the solvent. The terminal amino group of pig H4  LDH is 

acetylated in nature, and so it will not be subject to modification by either 

glutaraldehyde or carbodiimide reagent.

3.10.2.2 Sensitivity

Certain lysyl residues of LDH are involved in interactions with other residues, and so 

their modification may affect the functioning of the enzyme. Around five lysyl residues 

per subunit are thought to form ion pairs with negatively charged residues, such as 

glutamate or aspartate, and another six are thought to be involved in hydrogen bond 

interactions (Holbrook et al, 1975). Lys 58 of LDH is thought to be involved in 

hydrogen bonding with one of the hydroxyl groups of the adenine ribose of NAD. 

There is also thought to be a lysine generally present at the 250 position which is 

involved in interaction with the carboxyamide group of the nicotinamide ring of NAD. 

However Lys 250 was not recognised in X-ray crystallography studies of pig H4  LDH 

(Grau et al, 1981). If any of the above residues are accessible to solvent, their reaction 

with modification reagent may affect the activity of LDH. Indeed, as we shall now 

discuss, there does appear to be a lysyl residue that is sensitive to modification in both 

pig H4  and M4  LDH isoenzymes.

The modification of lysyl residues with pyridoxal 5'-phosphate is known to cause a 

reduction of enzymic activity in many dehydrogenases, including lactate dehydrogenase
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(Chen and Engel, 1975). The effect of this modification upon the activity of LDH is of 

particular interest to us because pyridoxal 5'-phosphate is similar to glutaraldehyde in 

that it reacts with primary amine-containing protein residues to form Schiff bases (see 

diagram below). Upon modification, up to 6 6 % inactivation of LDH pyruvate activity 

was observed. Activity was totally restored after dialysis but inhibition was made 

permanent by reduction with sodium borohydride, indicating that the inactivation was 

related to Schiff* base formation. Although several lysyl residues were modified, only 

one was responsible for the loss of activity. One interesting observation was that the 

incorporation of pyridoxal 5'-phosphate could be increased from 1.3 to 5.8 molecules 

per LDH subunit if the modified protein was first purified before the addition of a 

second aliquot of pyridoxal 5-phosphate. However, further modification was 

accompanied by a further deterioration in activity to 9% of the original enzyme 

activity, and so this technique was not employed in this study to increase the 

incorporation of glutaraldehyde. Another important observation was that when 3mM 

NAD was added to the reaction mixture, the inhibition effect was reduced by 40%. 

The inhibitory effect of pyridoxal 5'-phosphate may go some way to explaining the 

7C% inactivation of LDH caused by modification with an NAD-glutaraldehyde adduct 

as described in Section 1.6.1 (Venn etal, 1977).

Chen and Engel (1975) suggested that modification of a specific lysine by pyridoxal 5'- 

phosphate may sterically hinder the catalytic action of LDH. This theory was 

supported by the work of Pfleiderer et al (1968) who found that 14 of the 24 e-amino 

groups of pig H4  LDH could be acetylated without loss of activity. Chen and Engel 

suggested that it is possible that the structure of pyridoxal 5'-phosphate is such as to 

direct the reagent towards certain lysyl residues and the inhibitory effect that was 

observed may be a property that is unique to pyridoxal 5'-phosphate and molecules of 

similar structure. However, carbodiimide-mediated modification of pig H* LDH lysyl 

reiidues (with NAD derivatives) has also been carried out, and a 35-40% inhibition of 

acivity was observed (Warth et al, 1989).
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3.10.2.3 Location o f lysyl residues relative to the coenzyme binding site 

If the immobilised NAD molecule is to be catalytically active with the very same 

enzyme subunit to which it is bound, it is imperative that solvent-accessible lysyl 

residues are present in the vicinity of the coenzyme binding site so that the immobilised 

coenzyme molecule can interact with the active centre. In order to discover whether 

there are lysyl residues in sufficient proximity to the coenzyme binding site of pig H4  

LDH, the data of Grau et al (1981) was used to design a diagramatic representation of 

all the lysyl residues of Pig H4  LDH that were located in close proximity to the N6  

group of an NAD molecule bound at the active centre {Figure 3.20). This exercise was 

also performed to give some idea of length of the spacer that would be required to 

provide a flexible link between the e-amine of the lysyl residue and the N6  amine group 

of NAD. Figure 3.20 shows there are four such "proximal" lysyl residues and they are 

present at the edge of the coenzyme-binding cleft, at the interface between the two 

major domains. The suitability of each proximal lysyl residue as a coenzyme anchorage 

site will now be discussed.
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Lysine 243: the e-amine group of Lys 243 is 1.73nm away from the amine group of 

an NAD molecule bound at the active site. If N6 AHCM-NAD was coupled to Lys 243 

via glutaraldehyde it would have a total spacer length of at least 2.1nm and the NAD 

moiety would probably be within comfortable reach of the coenzyme binding site. 

However, although the e-amine of Lys 243 protrudes outwards, away from any 

interfering neighbouring residues, the molecular spacer between LDH and the NAD 

molecule would have to be extremely flexible in order to allow the coenzyme to 

interact with the active site (Figure 3.20).

Lysine 58: this residue is thought to interact with the hydroxyl groups of the adenine 

ribose of NAD (Holbrook et al, 1975). Although its e-amine group is only l.lnm  

away from the amine group of NAD, it seems to be the most inaccessible e-amine of 

the four proximal lysyl residues. This residue may also be protected from modification 

in the conditions of excess coenzyme that prevail during conjugation experiments. 

Lysine 121: the e-amine group of Lys 121 is 1.3nm away from the amine group of 

bound NAD and it protrudes into the solvent. As such, it may function as a good 

anchorage site, either for N6 AHCM-NAD or NAD coupled via glutaraldehyde or 

N6 CM-NAD coupled via carbodiimide.

Lysine 83: this is another good candidate; its e-amine group is only 1.2nm away from 

the N 6  position of the adenine ring of the bound NAD, and it clearly protrudes into the 

surrounding solvent.

If the mechanism of intrinsic activity of an LDH-NAD complex is intramolecular, 

then it is hard to see how N6 CM-NAD coupled directly, via carbodiimide, to any of 

the above lysyl residues will interact with the catalytic centre. It must be stressed that
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Figure 3.20: Representation o f the E-amine groups of four "proximal" lysyl residues in relation to 
the adenine moiety of an NAD molecule bound at the active centre o f pig H4LDH. n a d  and residues 
are shown as ball and stick models.
Key for atoms: blue = nitrogen, red = oxygen, grey = carbon, pink = phosphate (hydrogens not shown).
Key for surrounding protein: coiled rihbons = a-helix, arrows = parallel (i-sheet.
The picture was prepared using the data o f Grau et al 1981, on a Molscript^^ package. The bound NAD molecule is actually a 
molecule ofS-lac-NAD which was designed to simulate the ternary complex structure formed between LDH, NAD and lactate.

lys 83
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this is a theoretical exercise, is highly speculative and was only performed for pig heart 

LDH, for which appropriate data is available. This exercise was carried out to see if it 

would be possible to predict the success of each LDH-coenzyme conjugate on the 

basis of its spacer length. The accuracy of this prediction relies on a complete 

intramolecular reaction between NAD and LDH. Nevertheless, the three-dimensional 

structure of pig H4  LDH does show that an intramolecular reaction, with possible 

anchimeric effects* is theoretically feasible.

3.10.3 Carboxyl-containing residues

LDH has been immobilised onto derivatised glass beads via its surface acidic residues 

using a carbodiimide reagent (Stolzenbach and Kaplan, 1978); the final preparation 

was stable and only a small decrease in activity resulted. Perhaps the best examples of 

the modification of LDH with small ligands via carbodiimide coupling are actual 

previous coenzyme conjugation studies. No serious loss in activity has yet been 

reported, the specific activity of a native enzyme after modification remaining between 

65-90% of its original activity (Warth et al, 1989; Schafer et al, 1986).

3.10.3.1 Solvent accessibility

According to the amino acid sequence analysis of pig H4  LDH carried out by Klitz et 

al (1977) there are 69 carboxyl-containing amino acids, comprising 36 aspartyl and 33 

glutamyl residues. Many of these are present on the protein surface, where they are 

readily accessible (Holbrook et al, 1975). As with lysyl residues, the solvent 

accessibility of each glutamyl and aspartyl residue of dogfish M4  LDH has been 

calculated (Abad-Zapatero et al, 1987). There were only 12 glutamyl residues in 

dogfish M4  LDH, five of which were accessible, another one of which was partially 

accessible. There were 22 aspartyl residues, eight of which were accessible and another

* Effect of "close concentration" of coenzyme covalently bound to enzyme upon enzyme activity at a 
particular coenzyme concentration. For further explanation refer to Section 1.6.3
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eight partially accessible. In summary, out of all the carboxyl-containing residues, 65% 

showed a degree of accessibility. If it is assumed that the same degree of accessibility 

exists for each residue in pig H4  LDH, then there will be 44 accessible carboxyl- 

containing residues compared to 2 2  accessible lysyl residues. It will be interesting to 

see whether more coenzyme molecules were incorporated when carboxyl-containing 

residues or lysyl residues were used to anchor the coenzyme to LDH.

3.10.3.2 Sensitivity

Although no reports of inactivation of LDH caused by modification of a specific 

carboxyl residue could be found, the side chains of certain aspartyl and glutamyl 

residues have been reported to be involved in ionic and hydrogen bond interactions 

with coenzyme, substrate, or other enzyme residues. Thus their modification may 

contribute towards a certain degree of enzymic inactivation (Holbrook et al, 1975). 

For example, the carboxylate group of Asp 168 is involved in hydrogen bonding with 

the essential catalytic His 195 and has been reported in pig H4  LDH (Grau et al, 1981), 

and in other forms of LDH (Holbrook et al, 1975). Asp 53 and Asp 30 are also 

thought to be involved in coenzyme binding interactions in LDH. It must be stressed 

that some "sensitive" active centre residues will be protected by an excess of 

coenzyme, the bound coenzyme molecule acting as a physical barrier to the action of 

modificaton reagents. Conditions of excess coenzyme exist during the conjugation 

experiments.

3.10.3.3 Location o f aspartyl and glutamyl residues relative to the coenzyme binding 

site

The data of Grau et al (1981) was used to prepare a representation of any acidic 

residues in close proximity to the active site of pig heart LDH (Figure 3.21). This 

exercise was performed to give some idea of the length of spacer required to provide a 

flexible link between the carboxyl carbon atom of proximal acidic residues and the N6  

atom of NAD when bound at the active site.
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Asp 53: Although the carboxyl group of Asp 53 is only 0.8nm away from the N6  atom 

of the adenine ring of NAD, it becomes buried upon coenzyme binding and is 

involved with hydrogen bond interactions with the adenine ribose moiety of NAD 

(Grau et al, 1981). It will probably not be available for covalent modification in the 

presence of coenzyme and modification of this residue may have undesirable effects 

upon the coenzyme affinity of LDH.

Asp 57: The carboxyl group of this residue lies 1.2nm away from the N6  position of 

NAD. It protrudes into the solvent and may be a suitable anchorage point for 

N6 AHCM-NAD, the spacer arm of which is 1.4nm in length.

Asp 82: The carboxyl group of this residue is 1.4nm away from the N6  atom of NAD 

and it may also be a suitable anchorage point for N6 AHCM-NAD.

Glu 56: The proximal glutamyl residue is only l.Onm away from the adenine ring of 

the active site-bound coenzyme and may also be a suitable anchorage position for 

N6 AHCM-NAD, although it is not clear whether this residue protrudes into the 

surrounding solvent.

Because there are no appropriate acidic residues close enough to allow a covalently 

bound NAD molecule (coupled via carbodiimide) to interact with the active centre, it 

could be argued that LDH-NAD conjugates coupled using carbodiimide will not have 

intramolecular activity in the absence of exogenously added coenzyme.

The properties of LDH have been discussed in detail because it is used as a model 

dehydrogenase enzyme in this study. We shall now briefly consider aspects of the 

other enzymes used: glutamate dehydrogenase and alcohol dehydrogenase.
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Figure 3.21: Representation o f the z-amine groups o f four "proximal" acidic residues in relation 
to  the adenine moiety o f an NAD molecule bound at the active centre o f pig H4LDH. n a d , glutamyl
and aspartyl residues are shown as ball and stick models.
Key for atoms: blue = nitrogen, red = oxygen, grey = carbon, pink = phosphate (hydrogens not shown).
Key for surrounding protein: coiled ribbons = a-helix, arrows = parallel P-sheet.
The picture was prepared using the data o f Grau et al 1981, on a M olscript^^ package. The bound NAD molecule is actually a 
molecule o f  S-lac-NAD which was designed to simulate the ternary complex structure formed between LDH, NAD and lactate.

I
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3.11 Glutamate dehydrogenase: properties relevant to coenzyme conjugate formation

I f  the approach used in this chapter is to be applicable to a wide range of 

dehydrogenases, then it must work with those enzymes of a more complex nature. 

Glutamate dehydrogenase (GDH) was partly chosen because of its many complex 

characteristics.

GDH is an NAD(P)-dependent enzyme which catalyses the reversible reaction of a- 

ketoglutarate to glutamate.

GDH
glutamate + NAD+ + H20  <=> a-ketoglutarate + N H / +NADH + H+

NADP-specific GDHs are usually involved in ammonia assimilation, whilst NAD- 

specific GDHs are involved in glutamate catabolism. The equilibrium of the above 

reaction lies very much to the left, with an equilibrium constant, Keq, of lxlO"14M in 

Tris buffer at pH 8.0 and 25°C. The equilibrium of the reaction is strongly dependent 

upon ionic strength (Smith et al, 1975). As with LDH, we are interested in the NAD 

reduction reaction because of the method of coenzyme regeneration and our interest in 

glutamate as a substrate (Section 1.3). Ox liver was chosen as the source of GDH in 

our studies because this form of the enzyme is amongst the most thoroughly 

investigated of GDHs; it is readily available and relatively inexpensive.

3.11.1 Structure

In its smallest catalytically active form, liver GDH exists as a hexamer of six identical 

subunits, the molecular weight of each ox liver GDH subunit being around 56,000 and 

consisting of around 500 residues (Bell and Bell, 1984; Ozturk et al, 1992). So far 

attempts to crystallise ox liver GDH in a form suitable for X-ray analysis have failed. 

X-ray crystallographic studies have, however, been carried out on another NAD-
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dependent GDH from Clostridium symbosium. Although this is a bacterial GDH, its 

primary structure is very conserved on comparison with those of vertebrate GDHs 

(Baker et al, 1987). X-ray diffraction studies have been performed at 0.60nm 

resolution (Rice et al, 1987) and more recently at 0.19nm resolution (Baker et al, 

1992a). The three dimensional structure was typical of NAD-dependent 

dehydrogenases in that it possessed two globular domains with an intervening cleft. 

The NAD molecule bound in an open conformation as it did in other dehydrogenases 

(Baker et al, 1992b). Earlier studies showed that the adenine moiety of NAD could be 

replaced with other bases without loss of function (Smith et al, 1975).

3.11.2 Allosteric behaviour

In contrast to LDH, the subunits of GDH demonstrate complex allosteric behaviour. 

There are thought to be six catalytic and regulatory sites present in each ox liver GDH 

subunit. These comprise a catalytic NAD binding site, a regulatory NAD binding site, 

two ADP regulatory sites and two GTP regulatory sites (Ozturk et al, 1992). The 

enzyme is inhibited by GTP and high concentrations of NADH but is activated by 

ADP. NAD binds with less affinity at the regulatory site in comparison to the catalytic 

site, although the opposite is the case for NADH. It is not surprising, then, that NAD- 

binding in GDH is a complex process with non Michaelis-Menten kinetics (Bayley 

and O'Neill, 1972).

3.11.3 Polymerisation

Another unusual property of GDH is that its hexamers have a tendency to polymerise 

with an increasing concentration of enzyme; this is probably due to complementary 

areas of electrostatic attraction on the surface of each hexamer (Olson and Anfinsen, 

1952). Enzymic activity is independent of the degree of polymerisation and 

polymerised GDH subunits are fully active (Josephs et al, 1973). However, the 

availability of some residues for modification will no doubt be reduced, the higher the 

concentration of enzyme. For this reason, GDH concentration was kept below 2 mg
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ml- 1  during modification reactions in an attempt to maintain the availability of surface 

residues. Polymerisation of the hexamers also has a light scattering effect, resulting in a 

misleading increase in the spectrophotometric absorption properties of GDH. For 

example, it has been observed that for a 0.5 mg ml' 1 solution of ox liver GDH, 20% of 

the extinction at 280nm was due to light scattering caused by polymerisation of the 

hexamers (Josephs et al, 1973). This was therefore taken into account in the 

measurements of GDH concentration here in this study. During glutaraldehyde cross- 

linking studies on GDH (Josephs et al, 1973), it was observed that at higher 

concentrations (>lmg ml'1) an insoluble gel tended to form when a 50-100 excess of 

glutaraldehyde was used. The formation of such a gel in our study was avoided by 

keeping the GDH concentration below 2mg ml- 1  during modification studies.

3.11.4 Kinetics

GDH subunits are not kinetically equivalent with respect to substrate activity (Syed 

and Engel, 1984). However molar ratios of coenzyme:enzyme were expressed in terms 

of subunit concentration for ease of comparison with LDH conjugates. The kinetics of 

NAD-dependent GDHs are difficult to measure because of their complex allosteric 

behaviour and most kinetic studies have been carried out on NADP-dependent GDHs. 

The mechanism was generally thought to be a partial random order mechanism, in 

which substrate and coenzyme could bind to the enzyme in any order (Smith et al, 

1975), although more recent reports suggest that, in the presence of ADP, glutamate 

binds before the coenzyme; this is, again, very unusual for a dehydrogenase enzyme 

(Syed et al, 1991).

The effects of chemical modification upon different GDH residues are now considered. 

Amino acid comparisons of different GDH enzymes have shown that their primary 

structures are similar to each other, but distinct from those of other dehydrogenases. 

GDHs have an especially high arginine : lysine ratio (Moon et al, 1972).
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3.11.5 e-amine groups o f lysyl residues

Amino acid analysis of ox liver GDH revealed 33 lysyl residues (Moon et al, 1972). 

Assuming that they are of the same order of accessibility as the lysyl residues of 

dogfish M4  LDH {section 3.11.2) then there would be plenty of these residues 

available for interaction with solvated reagents, despite the high arginine : lysine ratio 

of GDH. Lysine modification studies with ox liver GDH showed that in the presence of 

a 100-fold excess of pyridoxal 5-phosphate with respect to subunit concentration, the 

glutamate activity of the enzyme decreased to 1 0 % of the original activity (Syed and 

Engel, 1984). Although 4-5 lysyl residues were modified, only one modified residue 

was thought to be responsible for inactivation: Lys 126*. Lys 126 is essential for 

activity towards glutamate and is uniquely reactive in all GDHs studied because it has 

an abnormality low pKa (7.7-8.0 at 30°C) (Smith et al, 1975). Acetylation of Lys 126 

leads to an 80% loss in activity. Other important lysyl residues of ox liver GDH include 

Lys 143, Lys 425 and Lys 428 which are all present at regulatory sites (Dombrowski et 

al, 1992). Modification of Lys 126 was completely prevented in the presence of 

NADH, GTP and a-ketoglutarate, although no other substrate combinations were 

investigated. A separate investigation by Piszkiewicz et al (1971) observed that NAD 

alone did not protect against loss of activity in the presence of pyridoxal 5'-phosphate, 

as was the case for LDH. However, Josephs et al (1973) found that they were able to 

cross link polymers of GDH in a 50-100 excess of glutaraldehyde with respect to 

subunit concentration, with no substrates present with only a 2 0 % loss in activity, 

although some allosteric properties were affected. This again suggests that 

modification of lysyl residues with pyridoxal 5'-phosphate and glutaraldehyde does not 

affect enzyme activity in quite the same way.

* According to the numbering of Smith et al (1975)
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3.11.6 Carboxyl-containing residues

There are 61 carboxyl containing residues in ox liver GDH, comprising 29 aspartyl and 

32 glutamyl residues (Moon and Smith, 1972). As with LDH , there are probably more 

accessible carboxyl groups than amine groups (Creighton, 1993). Although there is 

some evidence that carboxyl residues are involved in side chain interactions with 

residues from other subunits (Smith et al, 1975), no reports of inhibition being caused 

by the specific modification of a glutamate or aspartyl residue in GDH could be found.

3.12 Alcohol dehydrogenase: properties relevant to coenzyme conjugate formation

Alcohol dehydrogenase (ADH) was chosen for use in these studies because of the 

interest in ethanol as an analyte (Section 1.3) and because coenzyme conjugation 

studies have never been carried out on the yeast enzyme. Yeast alcohol dehyrogenase 

(YADH) is distinct from mammalian forms of ADH, usually purified from liver 

(LADH), in that it has a narrower substrate specificity and is 30 times more efficient at 

catalysing the oxidation of ethanol, as shown in the reaction below (Branden et al, 

1975). In addition, YADH is a tetramer whereas LADH is a dimer.

ADH
ACETALDEHYDE + NADH + H+ o  ETHANOL + NAD+

Tie equation constant, K e q ,  for the above reaction is around 8  x 10'12M, in phosphate 

buffer, pH7.0, 20°C (Backlin, 1958). As with LDH and GDH the concerned was with 

the NAD reduction reaction because of the interest in ethanol as an analyte and the 

potential method of coenzyme regeneration in an enzyme electrode.
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3.12.1 Structure

The molecular weight of each YADH subunit is 36-37,000, and the native enzyme 

exists as a tetramer of MW 140-150,000 (Branden et al, 1975). There is thought to be 

one coenzyme binding site per subunit, although several studies have estimated the 

value to be slightly less (Branden et al, 1975). The lower estimates are thought to be 

caused by a degree of negative cooperativity between subunits. Although the three- 

dimensional structure of liver alcohol dehydrogenase (LADH) has been studied 

extensively (Eklund et al, 1981; Eklund et al, 1976; Cedergen-Zeppezauer et al, 1983) 

there was no interpretable X-ray crystallographic data for YADH available until 

recently. Ramaswamy et al (1994) have obtained data at 0.32nm resolution but have 

not yet published their findings. However, over half of the primary sequence has been 

determined (Jomvall, 1973) enabling a comparison with corresponding peptide 

segments of LADH. Such comparisons show that the NAD-binding mode of YADH is 

similar to that of other dehydrogenases. Differences between certain residues in the 

substrate binding cleft give YADH a smaller substrate pocket, which reflects its 

narrower substrate specificity. Unlike LDH and GDH, YADH is a zinc-containing 

enzyme; the metal ion is linked to the ligands Cys 46, Cys 174, the imidazole of His 67 

and either a water, ethanol or acetaldehyde molecule, depending on the state of 

catalysis.

3.12.2 Reaction mechanism

The reaction mechanism for LADH is shown in Figure 3.22 and the reaction 

mechanism of YADH is thought to be similar.
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Figure 3.22: The catalytic mechanism o f liver alcohol dehydrogenase. The nicotinamide 
moiety of NAD accepts a hydride ion from ethanol in the oxidation reaction and donates a hydride 
ion to acetaldehyde in the reduction reaction. Hydrogen bonds are shown as dotted lines and the 
substrate is coloured in blue.

3.12.3 Kinetics

A partial random order mechanism for ethanol oxidation (NAD or ethanol accepted 

first) with a compulsory order for product dissociation was reported (Dickson and 

Monger, 1973), although a compulsory ordered mechanism has been suggested by 

Plapp et al (l 973) between pH 7 and pH 9.
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Because there is no three-dimensional structure and no complete amino acid sequence 

available for YADH we cannot say how many glutamyl, aspartyl or lysyl residues are 

available for modification. It is probably safe to assume, however, that several of each 

residue will be present on the surface of the enzyme, where they are accessible to 

solvated reagents. We shall now consider the "sensitivity" of certain residues in 

YADH.

3.12.4 e-amine groups o f lysyl residues

Lys 228 of YADH is thought to be involved in hydrogen bonding with the 0-3' atom 

of the adenine ribose of NAD. Chemical modification of this residue in LADH with 

picolinamide increased the dissociation rate of the enzyme-coenzyme complex (Plapp 

etal, 1973) and, because the dissociation of NAD from the enzyme is a rate limiting 

step, the catalytic turnover of LADH was increased by tenfold. Pyridoxal 5'-phosphate 

modification has been reported for LADH, but not YADH. The results for LADH 

modification were very similar to those results obtained for LDH and GDH: after 

pyridoxal 5'-phosphate modification the residual activity was 2 0 % (McKinlee-McKee 

ard Morris, 1972). The inactivation was related to Schiff base formation and again 

there was thought to be an essential lysyl residue in the enzyme. Up to 11 lysyl 

residues were modified by pyridoxal 5'-phosphate, showing that several lysyl residues 

in LADH are solvent-accessible. LADH was completely protected from inhibition in 

the presence of saturating concentrations of NAD. Glutaraldehyde has been used to 

stibilise a YADH preparation that had been pre-immobilised onto porous glass 

(Qoshima et al, 1981). Although there was no siginificant decrease in activity caused 

by an excess of glutaraldehyde, enzymic activity had already been reduced by 82% 

af.er the enzyme had been immobilised onto glass (acrylamide monomers had probably 

modified cysteine residues of YADH).
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3.12.5 Carboxyl-containing groups

Carboxyl groups near the active site zinc are important for catalysis in YADH 

(Ganzhom and Plapp, 1988). Asp 49 forms a hydrogen bond with the imidazole group 

of His 67, and Glu 6 8  is located behind the metal ion, opposite the binding site. These 

acidic residues are thought to neutralise the positive charge of the metal ion and 

modification of these residues may cause a reduction in the activity of the enzyme. In 

LADH, Asp 223 hydrogen bonds to the 0-2' atom of adenine ribose of NAD; it is 

present in many other dehydrogenases and is probably present in YADH (Eklund et al, 

1981; Plapp et al, 1973).

Properties o f enzyme-coenzyme conjugates synthesised

Each dehydrogenase-coenzyme complex was purified using gel filtration 

chromatography to remove excess coenzyme that had not conjugated to the enzyme 

(Section 3.6.1). The appropriate protein fractions were concentrated, if necessary to 

around 1  mg ml' 1 against solid polyethyleneglycol and then washed with activated 

charcoal to remove any traces of non-covalently bound coenzyme still present. The 

modified enzyme was then characterised. The amount of coenzyme bound to each 

enzyme subunit was determined in two ways - either with respect to the total 

nucleotide concentration (called the total molar ratio) or with respect to the reducible 

coenzyme concentration (called the active molar ratio) bound to each subunit.

Experimental error

The synthesis approach described in part one was carried out once for each conjugate 

synthesised. In general, the results showed close agreement upon duplication although, 

where a large discrepancy arose (more than 2 0 %), the experiment was again repeated. 

The synthesis of ADH-coenzyme conjugates using glutaraldehyde was only carried out 

once because it was found that glutaraldehyde had a strong inhibitory effect on the 

ADH {Section 3.15.1.2).
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3.13 Properties o f lactate dehydrogenase-coenzyme conjugates

The properties of the LDH-coenzyme conjugates were investigated in detail because 

LDH was used as models for other enzyme-coenzyme conjugates.

3.0  - I
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Figure 3.23: Separation o f LDH-N6AHCM-NAD conjugate from uncoupled coenzyme 
by gel filtration chromatography
A Sephacryl S-100 column (80 x 1.5 cm) was used to separate a glutaraldehyde coupled LDH-N^AHCM-NAD complex from 
uncoupled N6AHCM-NAD. The column was run at 4°C with a flow rate of 0.2ml min"1. Fractions were collected in 2ml volumes in 
a dropwise manner using an automatic fraction collector. The eluted fractions were taken immediately for analysis to determine their 
absorbance at 280nm in a spectrophotometer.

A gel filtration elution profile for LDH-N6 AHCM-NAD is shown in Figure 3.23. It is 

also typical of other LDH-coenzyme elution profiles, and as with GDH-coenzyme 

conjugates, two minor protein peaks were observed, although the second peak was 

less obvious with the LDH conjugates. Protein fractions were taken from only the first 

peak for further analysis because of the reasons described in Section 3.6 which also 

provides further evidence of a complete separation of free coenzyme from the protein 

fractions.
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3.13.1 Conjugates coupled using glutaraldehyde

3.13.1.1 Coenzyme incorporation

Values for the "total" and "active" molar ratio of NAD or N6 AHCM-NAD to pig heart 

LDH subunit are presented in Table 3.4. Only 0.5 molecules of NAD were 

incorporated per subunit compared to 1.8 molecules of N6 AHCM-NAD. Similar 

values were obtained by Venn et al (1977) and they suggested that the difference in 

incorporation was due to the presence of the long hexamethyl spacer arm on the NAD 

derivative, rendering it more sterically available for interaction with enzyme residues. 

The lower incorporation of NAD was probably also due to the lower reactivity of its 

amine group towards glutaraldehyde meaning that less coenzyme-glutaraldehyde 

adducts were available for reaction with surface LDH residues. The bound NAD 

derivative was also slightly more available for intermolecular reaction with a second 

enzyme, ADH, with 67% of covalently bound N6 AHCM-NAD molecules being 

reduced compared to only 40% of bound NAD molecules. The extra accessibility of 

the derivative may be indicative of the steric advantage conveyed by the "hexyl" arm, 

enabling the NAD moiety of N6 AHCM-NAD to protrude further into the solution 

where it is more accessible for interaction with neighbouring ADH molecules. Despite 

the advantages gained in the use of N6 AHCM-NAD, the results confirm that NAD 

itself can be conjugated to an enzyme using glutaraldehyde, thus avoiding the laborious 

preparation involved in the synthesis of its N6-modified coenzyme derivatives.

3.13.1.2 Specific activity

Modification of LDH with glutaraldehyde resulted in a decrease in the lactate activity 

of the enzyme {Table 3.4). The activity was reduced to 12% of the activity of native 

LDH after modification with an excess of NAD-glutaraldehyde adduct, and to 25% 

afer modification with an excess of N6 AHCM-NAD-glutaraldehyde adduct.
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Table 3.4
Properties o f  lactate dehydrogenase-cofactor complexes synthesised using glutaraldehyde coupling

Enzyme Molar ratio cofactor /  LDH subunit Activity (Umg- ¥

Total4 Active4 %b Intrinsicd Specific

LDH 0.0 0.0 0 0.00 18.9

LDH-NAD 0.5 0.2 40 0.09 2.3

LDH-N6AHCM-NAD 1.8 1.2 67 0.12 4.7

a"Total" molar ratio determined using A2̂  and A29q values. "Active" molar ratio determined using MTT/PES coenzyme-recycling assay with ADH 
and using Coomassie method to determine protein concentration.
^("active" molar ratio of coenzyme:enzyme subunit/ "total" molar ratio of coenzyme:enzyme subunit) x 100. 
c Umg"1 =pmole min'1 (mg enzyme)"1 Both intrinsic and specific activities were determined in a 

recycling assay with a DCPIP/PES redox couple. 0-0.1ml of enzyme sample (~lmg/ml) were added, 
d Intrinsic activity is defined as the acivity of the enzyme(-coenzyme) in the absence of exogenously added coenzyme but in the presence o f other 
substrate to saturating concentration. The specific activity is determined in the presence of 3mM NAD.

3.13.1.3 Intrinsic activity

The intrinsic activity of each LDH-coenzyme conjugate is shown in Table 3.4. The 

values are of the same order of magnitude as those of Gacesa and Venn (1979) who 

observed an intrinsic activity of 0.06 Umg" 1 for the LDH-N6 AHCM-NAD conjugate, 

and 0.04 Umg' 1 for the LDH-NAD conjugate*. As expected, the charcoal-washed 

native enzyme showed no intrinsic activity.

When covalently bound, NAD was a more active coenzyme than N6 AHCM-NAD in 

terms of substrate activity with LDH. Despite there being three times as many 

N6 AHCM-NAD molecules bound per subunit, the intrinsic activity of its LDH- 

conjugates was only 0.12 Umg' 1 compared to a value of 0.09 Umg' 1 for the LDH- 

NAD conjugate. The difference in substrate activity between NAD and its "hexyl"- 

containing derivative are similar when each coenzyme is assayed in its free state (Table 

3.3), N6 AHCM-NAD being 12% less active as a substrate for LDH in comparison to 

NAD. The intrinsic activity of each conjugate was only a fraction (2-4%) of the

*Values converted into Umg-1 for ease of comparison, assuming a DCPIP extinction coefficient of 
21,000/M/cm (Armstrong, 1964)
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specific activity of the modified enzyme. Similar results were reported by Gacesa and 

Venn (1979).

Kinetic studies were carried out in order to determine whether the intrinsic activity of 

the LDH-coenzyme conjugates was generated through an inter- or intramolecular 

reaction.

3.13.1.4 Kinetic studies on the intrinsic activity o f LDH-N6AHCM-NAD: an inter- or 

intra- molecular mechanism?

Figure 1.10 represents the two principal types of interaction that are possible between 

LDH and coenzyme in a LDH-coenzyme conjugate - an wfermolecular reaction and an 

j>tframolecular reaction. Both mechanisms of interaction may contribute towards the 

overall intrinsic activity of an enzyme-coenzyme conjugate. In order to find out 

whether one mechanism predominates over the other, a simple logarithmic plot of 

vdocity versus enzyme concentration was used (Mansson et al, 1978). The theory 

behind this plot will now be explained for a LDH-NAD conjugate, although it would 

aho apply to the other enzyme-coenzyme conjugates discussed in this study.

If each LDH-NAD molecule behaves as a self-sufficient catalytic unit requiring only 

nen-coenzymic substrate for catalysis (intramolecular mechanism), then it follows that 

tte rate of the reaction will be proportional to the concentration of individual catalytic 

urits, all other factors (including non-coenzymic substrate) being constant. It will 

therefore be a first order reaction and a rate equation can be written as follows 

(Crockford and Knight, 1964).

v, = k, [LDH-NAD]

orlogarithmically,

log v, = log k, + log [LDH-NAD]
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A plot of log Vi versus log [LDH-NAD] should give a straight line with a gradient of 1. 

However if intrinsic activity is generated by an intermolecular reaction, where an LDH 

molecule interacts with NAD bound to neighbouring LDH molecule, then the rate of 

the reaction will be proportional to the product of the concentrations of the two 

enzyme molecules. The reaction will be a second order reaction and a rate equation 

can be written as follows,

v2 = k2 [LDH-NAD] 2

or logarithmically,

log v2 = log k2 + 2 log [LDH-NAD]

In this case a plot of log v2 versus log [LDH-NAD] will give a straight line with a slope 

of 2. The latter case should also be true for a system which contains native LDH and a 

corresponding concentration of NAD added exogenously.

Mansson et al (1978) were able to confirm the validity of this technique and they 

observed an intramolecular mechanism for intrinsic activity generated by an LADH- 

N6 AHCM-NAD conjugate. They were able to confirm the mechanism by immobilising 

the LADH-coenzyme conjugate onto Sepharose 4B, thus reducing drastically the 

probability of an interaction between neighbouring LADH molecules - the intrinsic 

activity was hardly affected, thus confirming the intramolecular mechanism.

Figure S. 2 shows a plot of log velocity versus log enzyme concentration for two 

systems:

A. LDH-N6 AHCM-NAD, with 1.8 "active" molecules covalently bound per subunit.

B. Native LDH with 2.0 molecules of exogenously added N6 AHCM-NAD per LDH 

subunit.
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Figure 3.2$*. Logarithmic plot o f reaction velocity versus enzyme concentration for i.
LDH-N*AHCM-NAD complex with 1.8 molecules of coenzyme bound per subunit (O), ii. native LDH and free N^AHCM-NAD 
with 2:1 ratio of coenzyme to subunit (•). The enzyme concentration is given as subunit concentration in the assay mixture. Reaction 
velocity was determined at pH7.5 using a DCPIP/PES recycling assay. Various concentrations of enzyme sample were added to: 
0.75ml lOOmM phosphate buffer, 50/xl ImM DCPIP; 50/d 40mM PES; 50/d 1M lactate; 10/d of various concentrations of NAD 
were also added to the native LDH assays

As expected, the slope of the linear plot for the native enzyme in the presence of free 

coenzyme is very close to 2 (1.9) because reactivity is generated through an 

intemolecular mechanism. The slope for system A was closer to 1 (LI).  It would 

seem that the main mechanism of intrinsic activity for the LDH-N6 AHCM-NAD 

conjugate is intramolecular, because the reaction is very close to being a first order 

reaction. It may be worth pointing out that at an enzyme concentration of 63/liM, both 

free enzyme and enzyme-coenzyme conjugate had the same activity with a coenzyme 

ratio of around 2:1 whether coenzyme was covalently bound or not. In other words, 

the enzyme-coenzyme system was more efficient below an enzyme subunit 

concentration of 63/xM even though the specific activity of the modified enzyme was 

less tlan half of that of the native enzyme.
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Tlhis experiment illustrates that comparisons between enzyme-coenzyme conjugate 

activity and the activity of an unmodified enzyme with a corresponding concentration 

off free coenzyme cannot be directly made because the kinetic mechanisms differ. 

However, from an economical standpoint the two systems can be compared at a

defined enzyme concentration to see which is the more efficient.

3..13.1.5 Stability o f the intrinsic activity present in a LDH-N6AHCM-NAD conjugate 

It was important to establish that the intrinsic activity of the LDH-coenzyme 

conjugates was sufficiently stable to justify their incorporation into an enzyme 

electrode system. Before the stability of the LDH-N6 AHCM-NAD conjugate activity 

was determined, the stability of its component parts was measured. The stability of 

N 6 AHCM-NAD in free solution at various temperatures is given in Section 3.2.2.4. 

The activity remained above 80% after 50 days at room temperature. Figure 3.23b

shows the stability of native LDH at 4°C and at room temperature.
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Figure 3.2^S ta b ility  o f pig H4 LDH at 4°C (o) and at room temperature ( • ) .  l d h  was

stored at lmgmT* in lOOmM phosphate buffer, pH7.5. Assay mixture'. 20pl of 20pg/ml LDH sample were added to 2.83ml lOOmM 
phosphate buffer, pH 7.5; 0.1ml 500mM lactate; 50pl lOOmM NAD. The reaction velocity was followed at 340nm in a 
spectrophotometer.
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Figure 3.2$c:The stability o f the intrinsic (internal) activity found in a LDH- 
N6AHCM-NAD conjugate at room temperature (M), at 4°C(D) and at -20°C (O).
Reaction velocity was determined at pH7.5 using a DCPIP/PES redox couple. 100/xl of lmgml  ̂ enzyme-coenzyme sample were 
added to: 0.75ml lOOmM phosphate buffer, 50jil ImM DCPIP; 50jil 40mM PES; 50jul 1M lactate.

The native enzyme was sufficiently stable when stored in phosphate buffer for ten days 

at 4°C, with residual specific activity remaining above 80%. The stability of the LDH- 

N6 AHCM-NAD conjugate is shown in Figure 3.23c.Considering the stabilities of its 

constituent parts, the formation of an enzyme-coenzyme conjugate does not seem to 

have detrimental effects upon the stability of the enzyme or the coenzyme. Residual 

intrinsic activity remains above 75% after 14 days when stored at 4°C or -20°C in 

phosphate buffer. The stability was deemed sufficient for use of the conjugate in 

enzyme electrode studies (Chapter 5).

3.13.2 Carbodiimide Coupling

Carbodiimide coupling involves the covalent fixation of coenzyme via either amine- or 

carboxyl-containing residues. We may therefore expect to see differences between
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conjugates formed related to the type of residue that anchors the coenzyme to the 

enzyme.

3,13.2.1 Coenzyme incorporation

The values for molar ratio of coenzyme to LDH subunit are presented in Table 3.5.

Table 3.5
Properties o f lactate dehydrogenase-cofactor complexes synthesised using carbodiimide coupling

Enzyme Molar ratio cofactor /  LDH subunit Activity (U/mg)c

Totala Active %b Intrinsic Specific

LDH 0.0 0.0 0.00 18.9

LDH-NAD 0.3 0.3 100 0.01 15.0

LDH-N6CM-NAD 1.8 0.3 17 0.01 14.1

l d h -n 6a h c m -n a d 1.0 0.2 20 0.01 7.8

a"Total" molar ratio determined using A2̂  and A2po values. "Active" molar ratio determined using MTT/PES coenzyme-recycling assay with ADH 
and using Coomassie method to determine protein concentration
L

("active" molar ratio of coenzyme:enzyme subunit/ "total" molar ratio of coenzyme:enzyme subunit) x 100. 
c Umg'1 =jimole min'1 (mg enzyme)'1 Both intrinsic and specific activities were determined in a

recycling assay with a DCPIP/PES redox couple. 0-0.1ml of enzyme sample (~lmg/ml) were added.

The covalently bound NAD derivatives were poor substrates for recycling by a second 

enzyme, in this case ADH. It would seem that the direct coupling of the derivatives to 

LDH results in an enzyme-coenzyme bridge that is too short to allow the NAD

molecule to interact with the active centre of the second enzyme (ADH). The

glutaraldehyde-coupled conjugates would therefore be expected to have a higher 

proportion of reducible coenzyme molecules, and this was indeed the case. NAD 

appears to be successfully coupled using carbodiimide and A^hydroxysuccinimide as 

was observed by Larsson and Mosbach (1971) although a water-insoluble

carbodiimide, dicyclohexylcarbodiimide, was used by them. The N6  amine group of 

NAD reacted with a carbodiimide activated cation at the same order of magnitude as it 

did with glutaraldehyde with 0.3 molecules incorporated per subunit using 1-ethyl-3 - 

(3-dimethylaminopropyl)-carbodiimide hydrochloride compared to 0.5 molecules
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incorporated using glutaraldehyde. Carbodiimide coupling is, therefore, another 

method by which unmodified NAD can be incorporated onto the surface of an enzyme 

molecule. This has not been reported before.

Comparing the two NAD derivatives, 1.8 molecules of N6 CM-NAD were incorporated 

per LDH subunit compared to 1.0 molecule of N6 AHCM-NAD. We can therefore 

conclude that although the acidic residues have been reported to have a greater solvent 

accessibility (Section 3.10.3.1), lysyl residues are no less amenable with respect to the 

anchoring of NAD derivatives to LDH via carbodiimide coupling.

3.13.2.2 Specific activity o f modified LDH

15-50% of the original lactate activity of LDH was lost during carbodiimide coupling 

experiments (Table 3.5). Hence, with the LDH-coenzyme conjugates, the use of 

carbodiimide was more desirable, with respect to maintaining the original activity of 

the enzyme, than the use of glutaraldehyde which showed -70% reduction in activity.

3.13.2.3 Intrinsic activity

The intrinsic activity of each conjugate was well below the expected values for native 

LDH with a corresponding concentration of coenzyme added exogenously. 

Considering that Mansson et al (1978) found that a carbodiimide-coupled LADH- 

N*AHCM-NAD conjugate had an activity of 4.2pmol mhr1 (mg protein) - 1 and that this 

wis 15% of the specific activity of the native enzyme, the result for the LDH- 

NAHCM-NAD conjugate at 0.01 pmol min-^mg protein) - 1 was disappointing and 

represented less than 0.5% of the specific activity of the modified enzyme. It appears 

thit the "zero length" spacer provided by carbodiimide coupling is either too short to 

erable the NAD molecule to interact with the active site of the molecule it is bound to, 

or it is too short to interact with neighbouring enzyme molecules. The low intrinsic 

activity of the carbodiimide-coupled N6 CM-NAD complex was predicted in our 

studies of lysyl residues that were proximal to the active centre (Section 3.10.2.3)',
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there were no lysyl residues that were close enough to allow an anchored N6 CM-NAD 

molecule to interact with coenzyme binding site. The nearest accessible lysine was

1.1 nm away (Lys 58). The small amount of intrinsic activity may have been generated 

through an intermolecular mechanism. The only conjugate with a spacer arm long 

enough to reach the active centre was LDH-N6 AHCM-NAD, with a spacer arm of 

1.4nm. However, this conjugate did not possess a higher intrinsic activity and it may 

have been that this length was still not long enough to allow a flexible link. It is more 

likely, however, that the coenzymes did not become anchored at the proximal lysyl 

residues.

Even though the conditions of glutaraldehyde coupling caused a 70% decrease in LDH 

activity, the intrinsic activity of each of the final conjugates was higher than the 

intrinsic activity of those conjugates synthesised using carbodiimide. If the higher 

intrinsic activity was due to the longer bridge that was provided by the glutaraldehyde 

between the enzyme and coenzyme then this bridge may also allow a better interaction 

between the covalently bound coenzyme and the electrode surface. For this reason 

gbtaraldehyde-coupled LDH-NAD and LDH-N6 AHCM-NAD were incorporated into 

ar enzyme electrode system (iChapter 5). After these studies GDH and ADH were 

conjugated to NAD and its derivatives using the same coupling methods.

3.14 Properties o f glutamate dehydrogenase-coenzyme conjugates

Section 3.6.1 shows a typical gel filtration elution profile for a GDH-coenzyme 

conjugate.
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3.14.1 Glutaraldehyde-coupled conjugates

3.14.1.1 Coenzyme incorporation

The values for the molar ratio of glutaraldehyde-coupled coenzyme to GDH subunit 

are shown in Table 3.6. The extent of conjugation was relatively large with around five 

molecules of unmodified NAD incorporated per subunit of GDH. Before comparison 

with LDH it must be noted that the molecular weight of the ox liver GDH subunit is

56,000 compared to 35,000 for pig H4  LDH. However, even when this is taken into 

account, six times as many NAD molecules were incorporated into GDH, via 

glutaraldehye coupling, than in LDH. This may reflect a difference in the accessibility 

of surface lysyl residues in LDH and GDH. Incorporation of N6 AHCM-NAD into the 

latter enzyme was even more extensive with 6 . 6  molecules of coenzyme incorporated 

per subunit. This was twice as many molecules as were incorporated into LDH, again 

taking into account the molecular weight difference. The rates of reduction of the 

bound coenzymes were excellent, with 90% of both coenzymes being available for 

catalytic interaction with a second enzyme in an intermolecular reaction with LDH or 

ADH. This suggests that the bound coenzymes were more solvent accessible or were 

subject to less steric hindrance by surrounding residues in GDH than in LDH. The 

accessibility of a bound coenzyme was not obviously related to the length of the spacer 

arm involved.
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Table 3.6
Properties o f  glutamate dehydrogenase-cofactor complexes synthesised using glutaraldehyde coupling

Enzyme Molar ratio cofactor /  GDH subunit Activity (U/mg)c

Total Active %b Intrinsic Specific

GDH 0.0 0.0 - 0.000 0.15

GDH-NAD 5.0 4.7 94 0.012 0.06

GDH-N6AHCM-NAD 6.6 5.7 86 0.018 0.16

a "Total molar ratio determined using and A29Q values. "Active" molar ratio determined using MTT/PES coenzyme recycling assay with ADH
and using Coomassie method to determine protein concentration.
k % of active molar ratio of coenzyme:enzyme subunit/total molar ratio of coenzyme:enzyme subunit
cBoth intrinsic and specific activities were determined in a recycling assay with a DCPIP/PES redox couple and a MTT/PES redox couple, both 
assays being in good agreement (S.D. =2.4%).

3.14.1.2 Specific activity

Glutaraldehyde had no strong inactivation effects upon beef liver GDH. Indeed 

coupling with the NAD analogue resulted in no loss of activity whatsoever. As was the 

case with LDH, the inactivation effect of glutaraldehyde was slightly greater when it 

was attached to NAD than when it was attached to N6 AHCM-NAD.

3.14.1.3 Intrinsic activity

The intrinsic activities of GDH-NAD and GDH-N6 AHCM-NAD were 20% and 11% 

of the specific activity of modified enzyme, respectively, and greater than the 

corresponding activities of glutaraldehyde-coupled LDH-coenzyme conjugates.

Evidence for an intramolecular mechanism is apparent for these conjugates because 

their intmsic activity is noticeably higher than the activity generated by native LDH in 

the presence of a corresponding concentration of coenzyme, added exogenously. This 

may be a result of an apparent "close concentration” of coenzyme around the LDH 

active site. The more efficient catalytic unit is again the N6 AHCM-NAD conjugate, its 

intrinsic activity being 50% greater than that of the GDH-NAD conjugate. NAD was 

not a more active substrate for GDH than its analogue, when it was covalently bound 

to GDH, the opposite being the case for LDH conjugates. Even though, on 

average, 0.76 NAD molecules were bound to the GDH
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molecule for every 1.0 N6 AHCM-NAD molecule, the intrinsic activity generated by 

the GDH-NAD conjugate was only 6 6 % of the activity generated by the GDH- 

N6 AHCM-NAD. This was probably because of the shorter bridge that exists between 

NAD and the enzyme; thus more bound N6 AHCM-NAD molecules were able to reach 

the GDH active sites.

Because the GDH-NAD conjugate possessed substantial intrinsic activity, the activity 

of the conjugates in the absence of exogenous coenzyme was compared to the activity 

of unmodified GDH with a corresponding concentration of coenzyme, exogenously 

added. The glutaraldehyde-coupled GDH-NAD preparation was assayed at a 

concentration of 0.1 mg/ml using the MTT/PES recycling assay (Methods and 

Materials). The GDH-NAD conjugate was over five times more efficient at 0.1 mg/ml 

than the same concentration of unmodified GDH assayed with the same molar ratio of 

coenzyme per subunit: the activity of the latter system was 0.002 U/mg compared to 

an intrinsic activity of 0.012 U/mg for the enzyme-coenzyme conjugate. However, if an 

intramolecular mechanism is assumed for the GDH-coenzyme conjugates, such 

comparisons are of limited value as the efficiency of the systems will vary according to 

the protein concentration used.

3.14.2 Carbodiimide-coupled conjugates

3.14.2.1 Coenzyme incorporation

As can be seen in Table 3.7, good incorporation of coenzyme derivatives onto the 

GDH surface was also achieved using carbodiimide coupling, with between 5 and 7 

molecules of each NAD derivative being incorporated. However, it would seem that 

unmodified NAD is better coupled using glutaraldehyde, both with LDH and GDH, 

with only 1.6 molecules being incorporated with carbodiimide compared to 5.0 

molecules with glutaraldehyde. NAD incorporation via carbodiimide coupling was the 

same per 1000 MW both in GDH and in LDH. Again, there does not seem to be a
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significant difference between coupling via acidic residues and lysyl residues on the 

enzyme surface. It was also apparent that each bound coenzyme was less available for 

reduction with a second enzyme when coupled directly using carbodiimide. That is, 25- 

34% of each directly bound coenzyme was available for reduction with a second 

enzyme, compared to an availability of more than 80% when coupled via 

glutaraldehyde.

Table 3.7
Properties o f glutamate dehydrogenase-cofactor complexes synthesised using carbodiimide coupling

Enzyme Molar ratio cofactor /  GDH subunit Activity (U/mg)c

Totala Active %h Intrinsic Specific

GDH 0.0 0.1 - 0.000 0.22

GDH-NAD 1.6 0.4 25 0.000 0.19

GDH-N6CM-NAD 5.9 2.0 34 0.020 0.09

g d h -n 6a h c m -n a d 6.8 2.0 29 0.021 0.18

a"Total" molar ratio determined using A26g and A290 values. "Active" molar ratio determined using MTT/PES coenzyme-recycling assay with ADH 
and using Coomassie method to determine protein concentration (Materials and Methods)
^("active" molar ratio of coenzyme:enzyme subunit/ "total" molar ratio of coenzyme:enzyme subunit) x 100.
Boli intrinsic and specific activities were determined in a recycling assay with a DCPIP/PES redox couple and an MTT/PES redox couple, the two 
assays in close agreement (S.D. 2.4%). 0-0.1ml of enzyme sample (~1 mg/ml) were added.

3.14.2.2 Specific activity

The specific activities displayed in Table 3.7 show that carbodiimide modification did 

not seriously affect the activity of GDH, the largest reduction in specific activity being 

55% for the GDH-N6 CM-NAD conjugate. There may be a lysyl residue in GDH which 

is sensitive to carbodiimide coupling; this may possibly be Lys 126 as discussed in 

Section 3.11.5. However, it must be noted that this sensitive residue was not modified 

by glutaraldehyde under the conditions used because there was no loss of activity.
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3.14.2.3 Intrinsic activity

The GDH-NAD conjugate did not possess any intrinsic activity. The direct link that is 

provided between GDH and NAD by carbodiimide coupling was therefore too short 

for interaction with the active site of the enzyme to which it was bound. There does 

not appear to be an accessible acidic residue that is close enough to the active centre 

(intramolecular), or that protrudes far enough into the surrounding solution to 

generate activity (intermolecular). However, the intrinsic activity generated by each of 

the N6 CM-NAD and N6 AHCM-NAD derivative conjugates was quite acceptable with 

respect to the specific activity of the modified enzymes, being 2 2 % and 1 1 %, 

respectively. The intrinsic activity for each conjugate was 4-5 times greater than that 

expected from an intermolecular mechanism at an enzyme concentration of 0 . 1  mg/ml. 

Again, N6 AHCM-NAD was the best overall catalytic unit in terms of units per mg of 

protein. Glutaraldehyde and carbodiimide-coupled conjugates were comparable in 

terms of intrinsic activity.

3.15 Properties o f alcohol dehydrogenase-coenzyme conjugates

A gel filtration elution profile for ADH-N6 AHCM-NAD is shown in Figure 3.24. It is 

typical of other ADH-coenzyme elution profiles, and as with GDH-coenzyme 

conjugates, two minor protein peaks were observed. Section 3.6.1 provides evidence 

of a complete separation of free coenzyme from the protein fractions.
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Figure 3.24: Separation o f ADH-N6AHCM-NAD conjugate from uncoupled 
coenzyme by gel filtration chromatography
A Sephacryl S-100 column (80 x 1.5cm) was used to separate a terephthalaldehyde coupled ADH-N6AHCM-NAD complex from 
uncoupled N6AHCM-NAD. The column was run at 4°C with a flow rate of 0.2ml min"1. Fractions of 2ml were collected in a 
dropwise manner using an automatic fraction collector. These fractions were taken immediately for analysis to determine their 
absorbance at 280nm (A280) in a spectrophotometer.

3.15.1 Glutaraldehyde-coupled conjugates

3.15.1.1 Coenzyme incorporation

As can be seen in Table 3.8, 1.2 NAD molecules were incorporated compared to 0.5 

molecules in glutaraldehyde-coupled LDH-coenzyme conjugates. However, more 

NAD molecules were incorporated onto the surface of GDH (5.0 moles per mole 

subunit). A similar situation was seen for the bound derivative, N6 AHCM-NAD, where

3.5 molecules were incorporated per subunit compared to 1.8 molecules with LDH 

and 6 . 6  molecules with GDH. Surprisingly, the accessibility of the covalently-bound 

NAD for interaction with a second enzyme, LDH, in a DCPIP/PES recycling assay 

was actually higher than the accessibility of the covalently bound N6 AHCM-NAD: 

41% of bound NAD molecules were available for reduction by a second enzyme 

(LDH) compared to only 17% of bound N6 AHCM-NAD molecules. These results may
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reflect a difference in the structure of the active sites of LDH and ADH, the second 

enzymes.*

Table 3.8
Properties o f alcohol dehydrogenase-cofactor complexes synthesised using glutaraldehyde coupling

Enzyme Molar ratio cofactor / ADH subunit Activity (U/mg)c

Total* Active %b Intrinsic Specific

ADH 0.0 0.1 0 0.00 120

ADH-NAD 1.2 0.5 41 0.00 0.40

ADH-N6AHCM-NAD 3.5 0.6 17 0.00 0.00

a"Total" molar ratio determined using A266 and A290 values. "Active" molar ratio determined using DCPIP/PES coenzyme-recycling assay with LDH 
and using Coomassie method to determine protein concentration
^("active" molar ratio of coenzyme:enzyme subunit/ "total" molar ratio of coenzyme:enzyme subunit) x 100.
cBoth intrinsic and specific activities were determined in a recycling assay with an MTT/PES redox couple. 0-0.1ml o f enzyme sample (~1 mg/ml) 
were added.

3.15.1.2 Specific and intrinsic activity

A strong inhibitory effect was observed after glutaraldehyde modification of YADH.

Because there was almost total inhibition of enzyme activity it was not surprising that 

no intrinsic activity could be detected. In order to investigate this inhibitory effect, 

further experiments were carried out which eventually led to the successful 

employment of an alternative bialdehyde reagent.

3.15.1.3 The effect o f various aldehydes on the specific activity o f YADH

In order to confirm that the inhibition of YADH in the presence of excess 

glutaraldehyde was actually due to the glutaraldehyde, the enzyme was mixed in 

increasing amounts of this cross-linking reagent. The ethanol activity of the treated 

YADH was then measured in the MTT/PES chemical recycling assay. As Figure 3.25 

shows, inhibition became apparent at higher concentrations of glutaraldehyde.

* The second enzyme experiments are to show that the bound coenzyme is available for reduction in 
intermolecular enzyme reactions. ADH was used as a second enzyme in studies of the LDH-coenzyme 
conjugates, whereas LDH was used as a second enzyme in studies of ADH-coenzyme conjugates.
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Figure 3.25: Effect o f excess glutaraldehyde on the specific activity o f YADH. 2 0 ^  of

glutaraldehyde solution of varying strength was added to a lmgml'1 buffered YADH solution and mixed. After 2 hours the enzyme 

was assayed in a MTT/PES recycling assay. To 1.95ml (lOOmM TEA/1 OOmM nicotinamide/ 500mM ethanol) buffer, pH7.8 were 

added 0.1ml lOOmM NAD, 50fxl 12mM MTT and 0.8ml 3mM PES. The molar ratio of glutaraldehyde to YADH subunit was 

calculated knowing that the strength of the stock solution was 25%.

Because of the complexity of the chemistry of glutaraldehyde (section 3.4.1) the loss 

of activity could be due to a number of reasons. Glutaraldehyde is not absolutely 

specific for lysyl residues; it has also been known to react with thiol groups, imidazole 

groups and hydroxyl groups (Ji, 1980). In order to investigate whether inactivation 

was due to the reactive aldehyde group, the effect of excess aromatic aldehyde, 

benzaldehyde (Figure 3.26), upon YADH activity was examined.

CHO

Figure 3.26: The structure o f benzaldehyde
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Benzaldehyde has previously been used in substrate studies with YADH (Bowen et al, 

1986). Benzaldehyde was not a substrate, but inhibited the enzyme by 22% when in a 

400-fold molar excess of the YADH subunits in phosphate buffer, at 22°C and at pH

7.0 for 1 hour. This amount of inhibition would be acceptable if, for example, an 

aromatic dialdehyde was used as a homobifunctional coupling reagent. Thus, the effect 

of an aromatic dialdehyde upon YADH activity was also examined under our 

conditions. This experiment was complicated because the aromatic dialdehydes are 

only slightly soluble in water and so an organic solvent was required that had no effect 

on the catalytic activity of YADH. Two solvents were investigated: formamide and 1,3 

dioxan . As can be seen in Figure 3.27, dioxan had a serious detrimental effect upon 

the activity of YADH, and so only formamide was used in further experiments 

involving YADH.

The effect of various excesses of benzaldehyde upon the activity of YADH is shown in 

Figure 3.28. Inhibition only became apparent when the benzaldehyde was present in 

150-fold excess over the YADH subunit. The loss of activity was around 20% when 

the benzaldehyde was present in 180-fold excess over the subunit concentration.

This led us to investigate the possibility of using an aromatic dialdehyde as a 

bifunctional coupling reagent in the place of glutaraldehyde. Terephthalaldehyde was 

the molecule of choice and its structure is shown in Figure 3.29.
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Figure 3.27 The effect o f organic solvents, formamide and dioxan, on the activity o f 
YADH.
•  = formamide; ■ = dioxan. A 0.8ml solution of YADH (2mgmr') in lOOmM phosphate buffer, pH 7.5 was made up and left at 
4°C. 0.2ml of 100% formamide or dioxan was added. 0.1ml of the solution was taken for assay at intermittent periods using a 
MTT/PES recycling assay for YADH activity. To 1.95ml (lOOmM TEA/ lOOmM nicotinamide/ 500mM ethanol) buffer, pH7.8, 
were added 0.1ml lOOmM NAD, 50pl 12mM MTT, 0.8ml 3mM PES.
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Figure 3.28: Effect o f excess benzaldehyde on the specific activity o f YADH. 20^  of

benzaldehyde solution (50% formamide) were added to 1ml o f a lmgml'1 YADH solution (10% formamide) and mixed. After 2 

hours the enzyme was assayed in a MTT/PES recycling assay: to 1.95ml (lOOmM TEA/ lOOmM nicotinamide/ 500mM ethanol) 
buffer, pH7.8) were added 0.1ml lOOmM NAD, 50pl 12mM MTT, 0.8ml 3mM PES.
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CHO

CHO

Figure 3.29: The structure o f terephthalaldehyde

The structure of terephthalaldehyde is more defined than glutaraldehyde because it 

does not have polymeric forms in solution. Therefore, any conjugates that it forms will 

be more clearly defined in structure than those formed with glutaraldehyde (Ji, 1980). 

Terephthalaldehyde would also act as a bridge of around 0.6 nm in length between the 

enzyme and coenzyme. Interestingly, the dialdehyde did not seriously inhibit YADH, 

even in a large excess over the subunit concentration, as shown in Figure 3.30. This 

was somewhat surprising, because although the coupling of terephthalaldehyde is 

defined, it is very hydrophobic and aromatic in nature.

W 0 0.5 2 5 10 20 100 200

Mo la r  r a t i o  T e r e p h t h a l a l d e h y d e  : YADH S u b u n i t

Figure 3.30: Effect o f excess terephthalaldehyde on the specific activity o f YADH.
20jxl of terephthalaldehyde solution (50% formamide) was added to a 1 mg/ml YADH solution in 10% formamide and mixed. After 2 

hours the enzyme was assayed using a MTT/PES recycling assay: to 1.95ml (lOOmM TEA/ lOOmM nicotinamide/ 500mM ethanol) 
buffer, pH7.8, were added 0.1ml lOOmM NAD, 50pl 12mM MTT, 0.8ml 3mM PES.
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Terephthalaldehyde was not a substrate for YADH as are some aromatic aldehydes 

(Bowen et al, 1986; Long et al, 1989). The reagent was used in the same way as 

glutaraldehyde, except it was first dissolved in 1 0 % formamide before addition to the 

reaction mixture.

3.15.2 Terephthalaldehyde-coupledADH-coenzyme conjugates

3.15.2.1 Coenzyme incorporation

It was exciting to find that more coenzyme molecules were incorporated using 

terephthalaldehyde than using glutaraldehyde. That is, 3.2 molecules of NAD were 

bound, on average, compared to only 1.2 when glutaraldehyde was used. With the 

derivative, 5.1 molecules of N6 AHCM-NAD bound to the enzyme compared to only

3.5 with glutaraldehyde coupling. The relative electron deficiency of the carbonyl 

atoms of terephthalaldehyde causes it to be less reactive with primary amines but it 

would appear that the aromatic dialdehyde gives rise to conjugates with extra stability, 

enabling more coenzyme molecules to remain anchored to lysyl residues. The 

percentage reduction of each coupled coenzyme was of the same order of magnitude 

as the glutaraldehyde-coupled coenzymes: 25% of the bound coenzyme molecules 

were available for reduction with a second enzyme (LDH) compared to the 17-41% 

seen with glutaraldehyde. This may be a reflection of the shorter spacer length of 

terephthalaldehyde compared to glutaraldehyde.

3.15.2.2 Specific activity

As shown in Table 3.9, there was no inhibition of YADH activity after 

terephthalaldehyde-mediated coupling. The enzyme appeared to be soluble throughout 

the coupling experiment, despite the presence of the water-insoluble reagent, 

terephthalaldehyde. No precipitate was evident, although it was possible that any 

insoluble protein was lost during purification. Protein insolubility would not show up
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as a reduction in specific activity of the enzyme because the assays were carried out 

after purification.

Table 3.9
Properties o f  alcohol dehydrogenase-cofactor complexes synthesised using terephthalaldehyde coupling

Enzyme Molar ratio cofactor / ADH subunit Activity (U/mg)c

Total* Active %b Intrinsic Specific

ADH 0.0 0.1 - 0.01 115

ADH-NAD 3.2 0.8 25 0.29 124

ADH-N6AHCM-NAD 5.1 1.3 25 0.65 127

a"Total" molar ratio determined using A2gg and A29o values. "Active" molar ratio determined using DCPIP/PES coenzyme-recycling assay with LDH 
and using Coomassie method to determine protein concentration
^("active" molar ratio of coenzyme.enzyme subunit/ "total" molar ratio of coenzyme:enzyme subunit) x 100.
cBoth intrinsic and specific activities were determined in a recycling assay with an MTT/PES redox couple. 0-0.1ml of enzyme sample (~lmg/ml) 
were added.

3.15.2.3 Intrinsic activity

Considering the high specific activities of the modified enzymes, the intrinsic activities 

were quite disappointing. The intrinsic activity of the ADH-NAD and ADH-N6 AHCM- 

NAD conjugates represented only 0.2% and 0.65% of their specific activities, 

respectively.

Terephthalaldehyde would seem to be an alternative coupling reagent to 

glutaraldehyde, with the added advantage that it does not affect the specific activity of 

YADH. The final structure of enzyme-coenzyme conjugates coupled using 

terephthalaldehyde is also more defined, but it must also be noted that the link between 

enzyme and coenzyme would be more rigid.
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3.15.3 Carbodiimide-coupled conjugates

3.15.3.1 Coenzyme incorporation

Table 3.10
Properties o f  alcohol dehydrogenase-cofactor complexes synthesised using carbodiimide coupling

Enzyme Molar ratio cofactor / ADH subunit Activity (U/mg)c

Totala Active %b Intrinsic Specific

ADH 0.0 0.1 - 0.00 140

ADH-NAD 0.4 0.5 100 0.10 6.0

ADH-N6CM-NAD 1.5 1.0 75 0.16 7.4

ADH-N^AHCM-NAD 4.5 0.7 15 0.01 9.2

a"Total" molar ratio determined using A266 and A29q values. "Active" molar ratio determined using DCPIP/PES coenzyme-recycling assay with LDH 
and using Coomassie method to determine protein concentration
^("active" molar ratio of coenzyme:enzyme subunit/ "total" molar ratio of coenzyme:enzyme subunit) x 100.
0 Both intrinsic and specific activities were determined in a recycling assay with an MTT/PES redox couple. 0-0. lml of enzyme sample (~1 mg/ml) 

were added.

Incorporation of unmodified NAD was poor with, on average, less than half of the 

YADH subunits having an NAD molecule attached (Table 3.10). This also was the 

case with the LDH-NAD conjugate couple formed using carbodiimide. Incorporation 

of N6 AHCM-NAD was good at 4.5 moles incorporated per mole of subunit. However, 

N6 CM-NAD coupled only to the extent of 1.5 moles per mole subunit. This suggests 

that there are more accessible carboxyl groups than accessible lysyl residues in YADH. 

Surprisingly, the accessibility of each bound coenzyme to recycling with a second 

enzyme (LDH) seems to increase with a decreasing length of spacer arm.

3.15.3.2 Specific activity

YADH is sensitive to the carbodiimide coupling conditions and shows a significant 

decrease in specific activity when treated in this way. Native YADH was subjected to 

the same conditions as occurred in the conjugation except that l-(3-
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dimethylaminopropyl)-3-ethyl-carbodiimide.HCl and Y-hydroxysuccinimide were 

omitted. Thus, the inhibition of activity seen in the modified enzymes must be due to 

the modification of the enzyme by the coupling reagent.

3.15.3.3 Intrinsic activity

The intrinsic activity of the ADH-N6 AHCM-NAD conjugate was only 0.1% of its 

specific activity. The intrinsic activity was higher (3%) for the ADH-N6 CM-NAD 

conjugate suggesting that modified lysyl residues were in a more suitable position for 

coenzyme anchorage than were the carboxyl residues of YADH. The intrinsic activity 

of the ADH-NAD conjugate was 1.6% of its specific activity. Another surprising 

property of the carbodiimide-coupled YADH-coenzyme conjugates was that the 

intrinsic activity was lowest in the conjugates that possessed the highest spacer length 

between the enzyme and coenzyme. One explanation may be that if a long spacer arm 

is bound in very close proximity to the active site, it may not be able to fold or curl up 

so that it can insert the NAD moiety into the active site. This explanation assumes an 

intramolecular reaction.
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CHAPTER 4

Enzyme-coenzyme conjugates coupled via a disulphide bridge

Introduction

A novel method for coupling NAD to an NAD-dependent dehydrogenase is via a 

disulphide bridge. Such a linkage could be formed by the oxidative dimerisation of two 

sulphydryl groups, one of which is attached to the protein and the other attached to the 

coenzyme (Figure 4.1).

Figure 4.1: The "disulphide" method o f enzyme-coenzyme conjugate formation_____

In order to couple NAD to a dehydrogenase in this way, attempts were made to 

synthesise a free sulphydryl-containing NAD derivative that would react specifically 

with free sulphydryl groups present on the surface of a protein. Protein sulphydryl 

groups may be inherently present on the surface of the native enzyme where they are 

found in cystyl residues. The sulphydryl group of cysteine is, in general, the most 

reactive functional group present on a protein surface (Liu, 1977), readily undergoing 

oxidative dimerisation with another sulphydryl group to form a disulphide bridge. 

Some dehydrogenase enzymes, however, may not possess thiol groups that are 

accessible to the surrounding solvent, but such groups can be introduced onto the 

protein surface using a thiolating reagent.

oxidative
dimerisation

Enzyme Enzyme

0 ^ >  = NAD
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A coupling reaction involving thiol dimerisation would be more specific than the 

carbodiimide and glutaraldehyde coupling reactions described in Chapter 3, for which 

certain side reactions are known. The results presented in Chapter 3 also suggested 

that a successful approach to enzyme-coenzyme conjugate formation will be limited, 

depending on the sort of dehydrogenase used. For example, although glutaraldehyde 

could be used to couple NAD to LDH and GDH, it could not be used to couple NAD 

to YADH because of the serious inhibitory effect that it caused. The same could be 

said of the approach described in this chapter: a "disulphide" coupling approach will 

not be suitable for use with dehydrogenases that are sensitive to thiol reagents, for 

example YADH and LADH, because of the covalent modification of thiol groups that 

is involved. Nevertheless, there were several reasons why the formation of a 

disulphide-containing spacer arm covalently linking an enzyme to its coenzyme was of 

interest:-

1. Enzyme electrode studies using enzyme-coenzyme conjugates formed using 

glutaraldehyde suggested that the link formed between the enzyme and coenzyme 

might be unstable under the conditions of electrode operation (Chapter 5), and it 

would be interesting to find out whether a different sort of molecular link would be 

more stable in the environment of an enzyme electrode system. The redox value, E0, 

for SH/SS* systems averages between -0.2V and -0.3V at pH 7.0 (Liu, 1977). 

Consequently, a disulphide bridge linkage formed between an enzyme and its 

coenzyme would be stabilised under the oxidising conditions of an enzyme electrode 

that are required to regenerate NAD from NADH (a potential of +0.15V is applied to 

the enzyme electrode).

2. Although rotation about a disulphide bond is restricted, such a connection formed 

between an enzyme and coenzyme may allow the spacer arm to be more flexible than

* SH = free sulphydryl group; SS = disulphide bridge
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either the peptide bond or Schiff base connections that were used in carbodiimide- 

mediated conjugations and in those conjugations made via glutaraldehyde.

3. A disulphide bond linkage is a reversible one; it can easily be broken by reduction 

with a suitable reagent, such as dithiothreitol, thus providing an excellent method with 

which to confirm that the intrinsic activity of an enzyme-coenzyme conjugate is due to 

the presence of covalently bound coenzyme.

To date, only one study is known that deals with the binding of a coenzyme to an 

enzyme via a disulphide bridge linkage (Persson et al, 1991; Section 1.6.3). A single 

cystyl residue was incorporated into glucose dehydrogenase using site-directed 

mutagenesis, followed by the coupling of a thiolated NAD adduct, synthesised from 

N5AHCM-NAD and vV-succinimidyl-3-(2-pyridyldithiopropionate), to the cysteine 

sulphydryl group (see Figure 1.6i). This approach was quite complex, requiring the 

use of genetic engineering techniques. The native glucose dehydrogenase that was 

used did not, unlike most dehydrogenases, contain any cystyl residues, and so it was 

not subject to inhibition by thiol-containing molecules. Consequently, the technique 

could not easily be applied to most dehydrogenases, which inherently contain cystyl 

residues in their structure.

Figure 4.2 outlines the approach used in the synthesis of protein-coenzyme conjugates 

coupled via a disulphide linkage in our study. Several steps were common to the 

approach used in the production of enzyme-coenzyme conjugates linked via amine and 

carboxyl groups (Chapter 3).

i
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Figure 4.2: An overview o f the approach used in the synthesis and characterisation o f 
protein-coenzyme conjugates coupled via a disulphide bridge. The numbers in brackets relate to

relevant sections of Chapters 3 & 4..

The approach described here differs from that used in the previous chapter, mainly 

because both coenzyme and enzyme are modified in order to introduce thiol groups 

before conjugation. The first part of this chapter deals with the approach used to 

introduce thiol groups into the structure of NAD and onto protein surfaces. Bovine 

serum albumin (BSA) was chosen as a model protein: experiments were carried out to 

see if NAD could be covalently coupled onto the typical globular protein surface of 

BSA using the "disulphide method" before further attempts were made to form an 

enzyme-coenzyme conjugate using LDH as the constituent protein. If BSA could be
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conjugated to NAD, as well as serving as a protein model, it would be of interest as a 

control in the enzyme electrode applications because it would not have catalytic 

activity. The covalent coupling of a coenzyme molecule to a macromolecule such as 

BSA also provides a number of ways in which the coenzyme can be immobilised, for 

example, by entrapment behind a dialysis membrane or by adsorption. The water- 

soluble macromolecular conjugate could then be used as an immobilised coenzyme unit 

{Figure 4.3).

Figure 4.3: Use o f BSA-NAD conjugate as immobilised NAD unit.________________

As in the previous chapter, this approach involved the preassembly of the constituent 

parts (in this case thiolated enzyme and thiolated coenzyme) before they were brought 

together in a coupling reaction {Figure 4.1). The advantages of the "preassembly 

approach" are described in section 3.5.

= NAD/NADH

= Dehydrogenase

= BSA

The second part of this chapter describes the properties of the protein-coenzyme 

conjugates that were synthesised.
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PART ONE: The approach used to synthesise dehydrogenase-coenzyme conjugates 

limked via a disulphide bridge,

4A  The synthesis o f a thiolated NAD derivative

Ira order to synthesise a protein-NAD conjugate linked via a disulphide bridge, a 

thiolated NAD derivative was required (Figure 4.1). The amine group of the adenine 

ring of NAD was chosen as the point of derivatisation because modification at this 

position does not lead to a serious loss in the substrate activity of NAD and also 

because this position does not become buried during the interaction of the coenzyme 

with the enzyme binding site, {section 3.1). The oxidative dimerisation of 6 - 

mercaptopurine-NAD {Figure 4.4) with protein sulphydryl groups was considered for 

its simplicity but it was not attempted because of the unreactive nature of the aromatic 

sulphydryl group of 6 -mercaptopurine-NAD, caused by the electron delocalisation 

effects of the aromatic ring. The proximity of the bulky adenine ring to the sulphydryl 

group in 6 -mercaptopurine-NAD might also have sterically hindered the approach of a 

protein-bound thiol ligand during coupling reactions. Moreover, an enzyme-coenzyme 

conjugate formed by oxidative dimerisation of 6 -mercaptopurine-NAD and a surface 

cystyl residue of a dehydrogenase would undoubtedly possess a spacer arm that would 

be too short to allow a flexible interaction between the bound coenzyme and the active 

site.

SH

R-P-P-R-Nm

Figure 4.4: The structure o f 6-mercaptopurine-NAD
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Attempts were made to introduce an aliphatic sulphydryl group into the structures of 

NAD and the two NAD derivatives previously synthesised, I^AHCM-NAD and 

N^CM-NAD (<Chapter 3). Each of these NAD derivatives contains a functional group 

that is both more reactive and more accessible to modification reagents than the amine 

group of NAD, and they are therefore easier to derivatise. If the two NAD derivatives 

could be thiolated, they would result in the formation of enzyme-coenzyme conjugates 

with longer spacer arms than would be found in those conjugates formed using a 

similarly thiolated NAD. The criteria used to synthesise a thiol-containing NAD 

derivative will now be discussed taking, in turn, derivatisation of the primary amine- 

containing coenzymes, NAD and N^AHCM-NAD, and the carboxyl containing 

coenzyme, N^CM-NAD.

4.1.1 Thiolation o f NAD and rfAHCM-NAD

The structures of NAD and N^AHCM-NAD are shown in Figure 1.3. The primary 

amine group of N6 AHCM-NAD is a stronger nucleophile than the aromatic amine of 

NAD, because of the electron delocalisation effects caused by the aromatic character 

of the purine ring. Although the pKa of a primary aliphatic amine is 10.5, the pKa of the 

aromatic amine of aniline {Figure 4.5) is 4.6 (Finar, 1967).

NH

Figure 4.5: The structure o f aniline

The pKa of the amine group of NAD is difficult to measure because it is actually less 

basic than either of the endocyclic nitrogen atoms (Abrams and Kallen, 1976). The 

presence of endocyclic nitrogen atoms in an aromatic ring causes it to be relatively 

electron deficient, thus accentuating the delocalisation effect and making the amine of
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adenine even less reactive (Streitweiser and Heathcock, 1985). Despite these 

unfavourable characteristics, attempts were made to modify the amine position of 

NAD because it showed a certain reactivity with both glutaraldehyde and 

carbodiimide-activated carboxyl groups (Chapter 3). In addition, if a simple one-step 

thiolation of NAD could be achieved it would prove interesting, for example, as a 

simple coenzyme immobilisation technique or in the reversible formation of NAD 

dimers for use in enzyme studies.

A heterobifimctional reagent was employed to introduce a free sulphydryl group into 

the structures of NAD and N6 AHCM-NAD. The prerequisites of such a reagent 

included:

1. An amine-reactive group for attachment to the primary amine of the coenzyme.

2. A terminal sulphydryl group for oxidative dimerisation with a protein thiol.

3. In the case of NAD, an intermolecular spacer between the amine-reactive and 

sulphydryl groups to act as a spacer arm in the final enzyme-coenzyme conjugate 

(Figure 4.1).

Traut's reagent, 2-iminothiolane, described below, was chosen for this role because, 

not only does it possess the properties described above, but it is also simple to use, 

relatively inexpensive and has been successfully employed in the past to introduce thiol 

groups onto protein surfaces (Jue et al, 1978).

4.1.1.1 Traut's reagent (2-Iminothiolane)

Traut's reagent, 2-iminothiolane {Figure 4.6), has most often been used as a protein 

modification reagent.
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( VNHjCl
+

S

Figure 4.6: The structure o f Traut's reagent, 2-iminothiolane

It reacts with primary amines to introduce thiol groups, as shown below.

+

NH£1" + R-NH2
+

S

Figure 4.7: The reaction o f Traut's reagent with primary amines 

Originally, the structure of Traut's reagent was reported to be a straight chain 

compound, 4-mercaptobutyrimidate, although in 1978, Jue et al reported its true ring 

structure. The reagent contains a substituted imidoester which reacts with amines to

maintaining the structure and function of dehydrogenases. Upon oxidation, amines that

reversibly cleaved by mild reduction; this suggests the absence of N-alkylimidate 

linkages caused by side reactions, a property typical of other imidates (Jue et al, 1978). 

The reagent undergoes slow hydrolysis in aqueous solution, but this is dependent on

groups become slowly exposed (Jue et al, 1978). The reagent has a 

spectrophotometric absorption maximum at 248nm, the molar extinction coefficient 

being 8840cnr1M'1, a property that is lost upon its reaction with amines. The reaction 

between Traut's reagent and primary amines can be easily followed by monitoring the 

decrease in absorbance at 248nm in a spectrophotometer.

form an amidine group. It is water soluble and reaction with amines is optimal between 

pH 7 and pH 10, so it may be used under the mild conditions that are suitable for

have been modified with Traut's reagent react with proteins to form linkages that are

temperature: the presence of free thiol groups is minimal at 7°C but at 25°C the thiol

Traut's reagent introduces a thiol group that is 0 .8 nm away from the point of 

derivatisation of the modified molecule. It has been successfully used to introduce up
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to 43 thiol groups onto the protein surfaces of the 3OS ribosome of Escherichia coli 

(Jue et al, 1978) and has been widely used in studies of the topography of ribosomal 

proteins (Guile et al, 1988) and in the modification of liposomes (Lasch et al, 1987).

Before the reagent was used in the present study it was analysed to confirm some of its 

characteristics. The percentage of free sulphydryl groups in a solution of Traut's 

reagent made up in 50mM triethanolamine.HCl buffer, pH 7.0 was determined at 24°C 

using Ellman's reagent (see below). 5% of the reagent's molecules possessed a free 

sulphydryl group. However, as expected, this figure was dependent upon the 

temperature, being reduced to only 2% at 4°C. In addition, at 4°C the concentration of 

free sulphydryl groups remained stable, but at 24°C a slow increase of 0.5% h r 1 free 

sulphydryl groups was observed.

Next, the reaction of Traut's reagent with glycine was monitored to confirm that the 

reaction of the reagent with a primary amine results in a stoichiometric production of 

free sulphydryl groups (Figure 4.7). The glycine was added in a 13-fold molar excess 

of Traut's reagent and left to react for 24 hours at 4°C (Figure 4.8). The release of 

thiol groups was monitored using Ellman's reagent (see below). As can be seen the 

reaction was in fact 85% complete after only one hour.



166

3.0

2.4

0.6

0.0
0 0.5 1.0 1.5 2.0 24

Tim e (hours)

Figure 4.8: The reaction o f Trout’s reagent with glycine: • = glycine added (40^moi m i'1; a=
glycine absent The reaction was carried out at 4°C in 2ml of TEA, 50mM, pH 8.0. Traut's reagent was added to 3|imol m N  and the 
reaction was monitored by following the release of free sulphydryl groups upon the reaction of Traut's reagent with primary amine 
groups of glycine using Ellman's reagent as follows: A 0.2ml sample of the reaction mixture was added to 1.6ml of phosphate buffer, 
0.1M, pH8.0 and 0.2ml of Ellman's reagent (4mgml‘^) in a cuvette and mixed thoroughly. After ISmins the absorbance of the 
solution at 412nm was recorded and the concentration of sulphydryl groups calculated from a calibration curve.

4.1.1.2 Ellman's Reagent

Ellman's reagent is one of the most popular reagents for the determination of thiol 

groups. The reaction of 5,5-dithiobis-(2-nitrobenzoic) acid with a free thiol group 

results in the release of 2-nitro-5-thiobenzoic acid, which has a characteristic yellow 

colour, and a molar extinction coefficient of 13,600 cnHM* 1 at its absorption maximum 

of 412 nm (Lundblad and Noyes, 1978). The structure and mechanism of reaction of 

Ellman's reagent is shown in Figure 4.9.
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COOH COOH COOH COOH

■n 2o  v
R-SH

-  R-S— S

5,5'-dithio-bis-(2-nitrobenzoic acid) 
[Ellman's reagent]

nitrothiobenzoate
(yellow)

Figure 4.9: Structure and mechanism o f Ellman's reagent

The reaction can be carried out at neutral or mildly alkaline pH. A calibration curve 

was made using cysteine solutions of various concentration to give a plot of the 

absorbance at 412nm versus the concentration of free sulphydryl groups in the assay.

4.1.2 Thiolation o fN 6CM-NAD

Attempts were also made to modify N6 CM-NAD, a carboxyl containing NAD 

derivative. Heterobifunctional reagents possessing both a carboxyl-reactive function 

and a thiol group are not commonly used. 2 -aminoethanethiol, cysteamine, was chosen 

to introduce a thiol group by carbodiimide-mediated reaction of its amine function with 

the carboxyl group of N6 CM-NAD. The low pH required to promote the 

carbodiimide-mediated reaction should also help to maintain the thiols in a reduced 

form, the pKa of an -SH group being 9.2 (Glazer, 1977). The spacer arm obtained 

from such a modification would be more polar in character than the spacer arms that 

would be obtained for the amine-containing coenzymes modified with Traut's reagent 

and would therefore provide an interesting comparison. 2-Aminoethanethiol would 

contribute 0.5nm in length to a spacer arm formed between the enzyme and coenzyme. 

The functional groups of 2-aminoethanethiol should also show normal reactivity, i.e. 

amine and thiol functions should not influence each other's reactivity: a sulphydryl 

group is less electronegative than a hydroxyl group whose presence does not affect the 

function of the amine group in ethanolamine, the alcohol equivalent of 2 - 

aminoethanethiol (Sidgewick, 1966). In fact, 2-aminoethanethiol has been used in 

genetic studies as a cross-linker between two oligonucleotides: 06-phenyl-2'- 

deoxyinosine was used to activate the C- 6  atom of the adenine ring of the nucleotide,
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enabling a reaction between the C- 6  atom and the amine group of 2-aminoethanethiol. 

A cross-link was then formed between two modified nucleotides by oxidative 

dimerisation of their thiol groups. However, this technique required the use of complex 

organic synthesis for the 06-phenyl-2'-deoxyinosine activating agent (Ferentz and 

Gregory, 1991).

A fundamental step that was used in both the purification and assay of newly 

synthesised thiolated NAD derivatives will now be discussed, that is, covalent 

chromatography using an activated thiol-agarose column.

4.1.3 Preparation and use o f activated thiol-agarose: the assay o f compounds 

containing a thiol group using covalent chromatography

A convenient and very specific way with which to assay newly synthesised thiol- 

containing compounds is to use a thiol-specific chromatography column which will 

separate the thiol compound from compounds not possessing thiol groups. The 

procedure of Dean et al (1986) was used to synthesise a thiol agarose gel as 

summarised in Figure 4.10. The hydroxyl groups of Sepharose 4B, the support matrix, 

are subjected to epoxide-activation with epichlorohydrin in order to form a 

thiosulphate. The latter group was then reduced with dithiothreitol (DTT) to produce 

free thiol groups. If the thiol-agarose beads are used in the free thiol form, oxidising 

conditions are required to enhance the binding of the thiolated sample by oxidative 

dimerisation. This, however, also causes cross-linking between molecules of the 

thiolated sample that are being assayed and can seriously interfere with the sample 

binding. The thiol groups of the gel were therefore activated with dipyridyldisulphide 

(DPDS) {Figure 4.10) making possible the spontaneous and reversible reaction of the 

free thiol groups of the sample with the gel under mild conditions. This activation also 

reduces the liability of thiol-agarose to oxidation by atmospheric oxygen, a reaction 

which is enhanced under alkaline conditions. The binding of a thiolated ligand onto
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activated thiol agarose can be easily monitored in a spectrophotometer because 

pyridine-2-thione, a product of the reaction between DPDS-activated thiol-agarose and 

free thiol groups (Figure 4.10), has an absorption maximum at 343nm, and an 

extinction coefficient of SOSOM^cnr1 .Finally, the product, pyridine-2 -thione also has 

the sulphur moiety as a thione which is unreactive in this system and thus there is no 

tendency for the reaction to be reversible.

The capacity of the synthesised gel was examined at pH 8.0 and was found to have 0.9 

|imol PDS per ml swollen gel; therefore, the thiol group binding capacity must also be

0.9|imol per ml swollen gel. This figure was calculated from the absorbance of eluted 

fractions at 343nm after the addition of a solution of DTT (3mM). The efficiency of 

the gel at high capacity was then examined using a cysteine solution. Here a cysteine 

sample (4.1pmol) was added to 5ml of swollen DPDS-activated thiol agarose gel with 

a total capacity of 4.5pmol). Each fraction was assayed for free thiol groups using 

Ellman's reagent to detect any cysteine that did not bind to the column.

5 0 0  -

4 0 0  -

2
3 30 0  -

X
CO

1 2 0 0  -

1 0 0  -

-

s

+ 3mM DTT

•  •  •  •  I I I
0 5 10 15 20  25

Fraction No.

Figure 4.11: The efficiency o f the activated thiol agarose column: o.5mi of a lomgmi*1

cysteine solution (4.1 nmol) was added to a gel of capacity 4.5pmol. In other words the column was run at near maximum capacity. 
Bed volume = 5ml, flow rate = 10ml hr**, fraction volume = 0.6ml, running buffer = 50mM phosphate, pH8.0. Fractions were 
collected in a dropwise manner using an automated fraction collector and the thiol content of each fraction was determined using 
Ellman's reagent as follows: A 0.2ml sample of the reaction mixture was added to 1.6ml of phosphate buffer, 0.1M, pH8.0 and 0.2ml 
of Ellman's reagent (4mgml"^) in a cuvette and mixed thoroughly. After 15mins the absorbance of the solution at 412nm was 
recorded and the concentration of sulphydryl groups calculated from a calibration curve.
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It was calculated that 6 % of the cysteine did not bind, giving an efficiency of 94% at a 

high loading capacity (90%) (Figure 4.11). The presence of cystine in the cysteine 

solution may have contributed towards the small inefficiency of the column. Cysteine 

was used to test the efficiency of the thiol-agarose because it is analagous to the thiol- 

containing protein samples that were being investigated.

Enough activated thiol-agarose was made so that it could be freshly used each time a 

column was required. The gel was not regenerated and was only used once.

4.1.4 Modification o f NAD with Traut's reagent

A number of different attempts were made to modify NAD using Traut's reagent. The 

reaction was first carried out at 24°C and at pH8.0 with a reaction volume of 1ml, and 

with various excesses of Traut's reagent. The reaction was monitored in a Radiometer 

pH-stat to ensure that there were no changes in pH, and the thiolation of NAD was 

followed by monitoring the increase in free thiol groups due to the reaction of Traut's 

reagent with the primary amine of NAD.

According to this analysis only 0.85% of the NAD molecules were modified when the 

Traut's reagent was present in a 10-fold molar excess over NAD concentration (Figure 

4.12). The rate of the reaction was only slightly above the rate of hydrolysis of Traut's 

reagent alone in solution. A series of experiments was then carried out in an attempt to 

improve the reaction:
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Figure 4.12: The reaction o f Traut's reagent with NAD: * = n a d  added (6 pmoi/mi); o = n a d
absent. Error bars represent range o f error for five separate experiments. The reaction was carried out at 24°C in 1ml o f TEA, 
SOmM, pH 8.0. Traut's reagent was added to 60pmol ml'^ and the reaction was monitored by following the release o f free 
sulphydryl groups upon the reaction o f Traut's reagent with primary amine groups o f NAD using Ellman's reagent as follows: A 
0.2ml sample o f the reaction mixture was added to 1.6ml o f phosphate buffer, 0.1M, pH8.0 and 0.2ml o f Ellman's reagent 
(4mgml‘ ^) in a cuvette and mixed thoroughly. After ISmins the absorbance o f the solution at 412nm was recorded and the 
concentration o f sulphydryl groups calculated from a calibration curve.

1. The excess of Traut's reagent in the reaction mixture was increased from 10-fold to 20- 

fold, 100-fold and 500-fold molar excess over NAD concentration in an attempt to 

improve NAD modification by mass action.

2. The pH of the reaction was varied in an attempt to improve the nucleophilicity of the 

amine group: the reaction was attempted at pH7.0, pH8.5 and pHlO.

3. The volume of the reaction was decreased to lOOpl and carried out with a 10-fold 

excess of Traut's reagent over NAD concentration at pH8.0.

4. The reaction was carried out at 4°C and left for up to 96 hours in attempt to slow the 

natural hydrolysis of Traut's reagent so that more of it was available to react with 

NAD for a longer period of time.
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Despite the attempts described above the thiolation of more than 0.85% of the NAD 

molecules could not be achieved.

The small fraction of putatative thiolated NAD was isolated from excess Traut's 

reagent by purifying the nucleotide material by precipitation in ethanol, followed by 

centrifugation and thorough washing of the nucleotide pellet. (Traut's reagent is 

soluble in chilled ethanol). This process was repeated several times in order to remove 

all traces of unreacted Traut's reagent. At this stage the molar ratio of thiol groups to 

NAD was determined to be 0.6%. The sample was then passed down an activated 

thiol-agarose column (Figure 4.13).
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Figure 4.13: The binding o f thiolated 3H-NAD to an activated thiol agarose column:
O.fml of a solution containing 40fimol NAD (l|im ol of putatative thiolated NAD) was added to a gel of capacity 4.5|imol. Bed 
voiime = 5ml, flow rate = 10ml hr"*, fraction volume = 0.5ml, running buffer = phosphate, pH 8.0, 50mM. The NAD sample added 
to die column contained 400,000 cpm/mg. Fractions were collected in a dropwise manner using an automated fraction collector and 
the radiactive counts present in each sample measured as follows: 200jxl of each fraction was mixed with 2ml Optiphase "Safe" 
schtillant in a scintillation vial and 3H-NAD counts measured in a LKB scintillation counter for 15 minutes in triplicate. The 14C and 
3H "windows" were open during counting and counting efficiency was calculated as 60% for 3H and 98% for 14C by calculating the 
eff ciency of the machine when counting a dated standard sample of 14C or 3H-labelled material. The counts per minute were adjusted 
to jive the disentegrations per minute (dis/min).



174

Only a tiny fraction (<0.5%) of the 3 H-NAD was eluted upon addition of DTT and so 

the 0.85% conversion of NAD observed might have been due to residual thiol from the 

Traut's reagent.

To confirm that the N6  amine of NAD was unreactive with Traut's reagent, the 

reaction was also attempted using 3 H-adenosine under the various reaction conditions 

listed above. No thiolation of 3 H-adenosine occured. It was therefore concluded that 

an adenine amine group was unreactive with Traut's reagent.

The poor reactivity of NAD with Traut's reagent was disappointing considering that 

the amine of NAD showed reactivity with both the glutaraldehyde and carbodiimide- 

activated carboxyl groups described in the previous chapter.

4.1.5 Modification o f N6AHCM-NAD with Traut’s reagent

The amine of N6 AHCM-NAD appeared to be reactive with a 20-fold molar excess of 

Traut's reagent at pH 8.0 and at 24°C. Attempts were made to improve the reactivity 

of the amine group by increasing the pH from pH 8.0 to pH 9.0 but it was surprisingly 

slightly less reactive at the higher pH {Figure 4.14). It was calculated that 33% of 

N6 AHCM-NAD reacted at pH 8.0 and 26% at pH 9.0.

Traut's reagent was removed from the nucleotide preparation by ethanol extraction. A 

control was run to ensure complete removal of unreacted Traut's reagent from the 

nucleotide material as follows: A solution containing NAD and Traut's reagent was 

made up, the volume and concentrations corresponding to the N6 AHCM-NAD 

reaction mixture. Glycine was then added in a 4-fold molar excess of Traut's reagent, 

aid left for 90mins to form the sulphydryl groups. The NAD was precipitated in chilled 

ethanol, centrifuged at 30,000g and -5°C, and the pellet washed with ethanol. The
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washing procedure was repeated until no free thiol groups could be detected by 

Ellman's reagent.
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Figure 4.14: The reaction o f Traut's reagent with N6AHCM-NAD at pH8.0 (•) and
pH  9.0 ( O) The reaction was carried out at 4°C in 1ml of 50mM TEA, pH 8.0 containing 6 pmol N6AHCM-NAD. Traut's 
reagent was added to 1 2 0 pmol ml'^ and the reaction was monitored by following the release of free sulphydryl groups upon the 
reaction of Traut's reagent with primary amine groups of N^AHCM-NAD using Ellman's reagent as follows: A 0.2ml sample of the 
reaction mixture was added to i .6 ml of phosphate buffer, 0.1M, pH8.0 and 0.2ml of Ellman's reagent (4mgml’^) in a cuvette and 
mixed thoroughly. After 15mins the absorbance of the solution at 412nm was recorded and the concentration of sulphydryl groups 
calculated from a calibration curve.

After purification, the molar ratio of sulphydryl groups to N6 AHCM-NAD was 

measured using Ellman's reagent. Assuming the molar extinction coefficient of 

N6 AHCM-NAD to be 21,000 cm^M*1, the ratio was 0.37.

In order to confirm accurately the amount of thiolated coenzyme that had been 

prepared, 3 H-N6 AHCM-NAD was synthesised starting from 3 H-NAD, as described in 

section 3.2.1. The tritium atom was attached to the C-2 of the adenine ring and so 

remained unaffected during the preparation. The final preparation contained
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radioactive counts of 20,800 dpm per mg of derivative. 3 H-N6 AHCM-NAD was 

modified with Traut's reagent as described above and a sample added to a DPDS- 

activated thiol-agarose column (Figure 4.15).
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Figure 4.15 The binding o f thiolated 3H-N6AHCM-NAD to DPDS-activated thiol 
agarose:
—  = binding of unthiolated 3H-N6AHCM-NAD. A 0.5ml sample of thiolated derivative was added to the column ( 6  mg ml‘^;20,800 
dpm mg‘b  of capacity 4.5pmol. Axis break represents addition of a solution of 3mM DTT. Bed volume = 5ml, flow rate = 10ml hr" 
*, fraction volume = 0.5ml, running buffer = 50mM phosphate, pH 8.0, column run at 25°C. Fractions were collected in a dropwise 
manner using an automated fraction collector and the radioactive counts present in each sample measured as follows: 2 0 0 |il o f each 
fraction were mixed with 2ml Optiphase "Safe" scintillant in a scintillation vial and 3H-NAD counts measured in a LKB scintillation 
counter for 15 minutes in triplicate. The 14-C and 3-H "windows" were open during counting and counting efficiency was calculated 
as 60% for 3H and 98% for 14C by calculating the efficiency of the machine when counting a dated standard sample of 14C- or 3H- 
labelled material. The counts per minute were than adjusted to give the disentegrations per minute (dis/min).

28% of 3 H-N6 AHCM-NAD bound to the column, and was eluted with DTT. This 

figure compares well to the ratio of sulphydryl groups to coenzyme molecules 

determined above (37%) and the percentage of derivative that reacted with Traut's 

reagent according to the concentration of free thiol groups released (33%). The 

efficiency of the column (94%) may account for the binding being slightly lower than 

would be expected if 37% of the coenzyme molecules were thiolated.
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The substrate activity contained in each fraction eluted from the DPDS-activated thiol- 

agarose column was measured using the Nisselbaum-Green recycling assay with 

alcohol dehydrogenase (Figure 4.16), bearing in mind that N6 AHCM-NAD had 58% 

of the substrate activity of NAD in this assay (Table 3.3).
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Figure 4.16: The binding o f thiolated N6AHCM-NAD to a DPDS-activated thiol 
agarose column measured in terms o f its substrate activity:
A0.5ml sample of thiolated derivative containing 4mg N6AHCM-NAD was added to the column of capacity 4.5|imol. Bed volume = 
5ml, flow rate = 10ml h r ' \  fraction volume = 0.5ml, running buffer = 50mM phosphate, pH 8.0, column run at 24°C. Fractions were 
collected in a dropwise manner using an automated fraction collector, and analysed for coenzyme activity using the Nisselbaum- 
Green recycling assay for NAD as follows: The cycling experiment was carried out at pH 7.4 using a MTT/PES redox couple with 
yeast alcohol dehydrogenase. To 1.95ml lOOmM TEA/ lOOmM nicotinamide/ 500mM ethanol buffer, was added lOOp.1 of diluted 
coenzyme sample. 50pl o f 12mM MTT, 800pl of 3mM PES and lOOp.1 of yeast alcohol dehydrogenase (30p.gmT^) were also added. 
The reaction was monitored by following the change in absorbance at 556nm over lOmins.

If the substrate activity of N6 AHCM-NAD was unaffected after modification with 

Traut's reagent, then the portion of NAD that bound to the column might be expected 

to contain 28% of the activity of the total nucleotide preparation applied to the column 

(because this was the percentage of 3 H-N6 AHCM-NAD that bound to the column). 

However, the portion of nucleotide that bound to the column contained only 11.5% of 

the total substrate activity of the nucleotide material. This low activity, which was 53%



178

of the expected activity, could either be due to the presence of NAD, a more active 

substrate for alcohol dehydrogenase than N6 AHCM-NAD, in the N6 AHCM-NAD 

preparation or it could indicate a difference in activity between N6 AHCM-NAD and its 

thiolated derivative. In order to determine which was the case, the thiolated NAD 

derivative was precipitated in ethanol, centrifuged, dissolved in phosphate buffer and 

freeze-dried. The substrate activity was 55% of the normal activiy of N6 AHCM-NAD, 

here determined with ADH in an MTT/PES recycling assay. The molar ratio of 

sulphydryl groups to N6 AHCM-NAD could not be determined accurately at this stage 

because traces of DTT were still present in the preparation, and there was not enough 

thiolated derivative left to re-precipitate in ethanol to remove residual DTT.

Further evidence for the derivatisation of N6 AHCM-NAD with Traut's reagent was 

provided using thin layer chromatography.

Thin layer chromatography (TLC) o f thiolated TPAHCM-NAD

After Traut's reagent was removed from a HS-N6 AHCM-NAD preparation (see 

above), the nucleotide material was analysed using TLC.

Considering the net charge of each derivative, the Rf values follow the pattern that 

might be expected from past TLC results of N6-derivatives of NAD (Lindberg et al, 

1973). Other factors may have also influenced the final Rf values, such as molecular 

size and shape, and charge distribution. At the pH of the solvent (pH 5.0) N6 AHCM- 

NAD will possess a net charge of 0, but the thiol-modified derivative will have a single 

net negative charge because the protonated amine is no longer present and the Traut's 

molecule does not introduce an overall charge.
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Table 4.1
Thin layer chromatography o f a thiolated l^AHCM-NAD derivative

Rf values in chromatography systems

Coenzyme O.lMLiCl 0.5M LiCl

N6AHCM-NAD >0.90a >0.90

h s -n 6a h c m -n a d 0.67±0.05 0.70+0.03

a Rf values above 0.90 could not be recorded accurately due to spot diffusion
TLC was performed on PEI-cellulose coated plates at room temperature. 10p.l of each coenzyme (1 mgml) was spotted onto a 
plastic sheet pre-coated with PEI-cellulose using a lOp.1 capillary tube, 1cm from the labelled bottom of the sheet. The sheet 
was placed upright in a glass tank containing lithium chloride solution to a height of 0.5cm. After the solvent front had 
reached 2-4cm from the top of the sheet, the sheet was removed from the tank and dried using a stream of cool air. The sheet 
was then analysed for nucleotide spots under ultra-violet light.

4.1.6 Thiolation o f N^CM-NAD by carbodiimide-mediated addition o f 2- 

aminoethanethiol

The conditions for the reaction of N6 CM-NAD with 2-aminoethanethiol were based on 

those described by Lindberg et al (1973) for the carbodiimide-mediated modification 

of N6 CM-NAD with diaminohexane (Materials and Methods). 2-Aminoethanethiol 

was added in excess of N6 CM-NAD in 1.5ml water, and the reaction carried out at 

pH4.5. The pH of the reaction was kept constant by the addition of hydrochloric acid 

in a Radiometer pH-stat. The reaction was judged to be complete after 50 minutes, 

when there was no further change in pH. The reaction was left for a further 60 minutes 

at room temperature before the thiolated derivative was isolated from unreacted 2 - 

aminoethanethiol by ethanol precipitation under which conditions the thiol reagent is 

soluble. When no traces of thiol groups could be detected in a control sample 

containing NAD and 2-aminoethanethiol at corresponding concentrations, the molar 

ratio of sulphydryl groups to N6 CM-NAD was found to be 0.51 by using Ellman's 

reagent. Here the assumption is that N6 CM-NAD has an extinction coefficient of 

19,000 M^cnr1 at 266nm.
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The thiolated derivative was then purified and separated from unreacted N6 CM-NAD 

and traces of carbodiimide by using a DPDS-activated thiol agarose column. In order 

to determine accurately the amount of thiolated N6 CM-NAD, 3 H-N6 CM-NAD was 

synthesised starting from 3 H-NAD {section 3.2.1) and a product containing 35,000dpm 

per mg of final derivative was obtained. A solution containing 2.0mg of the latter was 

added to the column {Figure 4.17), of which 42% bound. The sample applied to the 

column had a ratio of thiol groups to coenzyme of 0.51 and it was therefore concluded 

that most of the modified coenzyme molecules contained one sulphydryl group each. 

If, for example, most of the modified coenzyme preparation had passed straight 

through the PDS-thiol agarose column, then it would have been concluded that a 

minority of the coenzyme molecules contained most of the thiol groups.
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Figure 4.17 The binding o f thiolated 3H-N6CM-NAD to activated thiol agarose:
—  = binding of unthiolated 3H-N6CM-NAD. A 0.5ml sample of thiolated derivative was added to the column (3 mg mT^;35,000 

dpm m g 'h  of capacity 4.5pmol. Axis break represents addition of a solution of 3mM DTT. Bed volume = 5ml, flow rate = 10ml hr' 
*, fraction volume = 0.5ml, running buffer = 50mM phosphate, pH 8.0, column run at 24°C. Fractions were collected in a dropwise 
manner using an automated fraction collector and the radioactive counts present in each sample measured as follows: 200pl of each 
fraction were mixed with 2ml Optiphase "Safe" scintillant in a scintillation vial and 3H-NAD counts measured in a LKB scintillation 
counter for 15 minutes in triplicate. The 14C and 3H "windows" were open during counting and counting efficiency was calculated as 
60% for 3H and 98% for 14C by calculating the efficiency of the machine when counting a dated standard sample of 14C- or 3H- 
labelled material. The counts per minute were than adjusted to give the disentegrations per minute (dis/min).
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The thiolated N6 CM-NAD derivative was isolated from DTT by repeated precipitation 

in ethanol; it was then centrifuged and then freeze dried in phosphate buffer. The ratio 

of sulphydryl groups to N6 CM-NAD in this final preparation was 0.91, confirming the 

presence of unmodified N6 CM-NAD before purification using the PDS-thiol agarose 

column. The substrate activity of the pure HS-N6 CM-NAD was also determined, using 

the Nisselbaum-Green recycling assay, to be 23% of the activity of NAD.

Further evidence for derivatisation of N6 CM-NAD was provided using thin layer 

chromatography.

Thin layer chromatography o f thiolated N^CM-NAD

After separation of the thiolated nucleotide preparation from all traces of 2- 

aminoethanethiol, the nucleotide material was subjected to analysis by TLC.

Table 4.2
Thin layer chromatography of a thiolated PPAHCM-NAD derivative

Rf values in chromatography systems

Coenzyme O.lMLiCl 0.5M LiCl

N6CM-NAD 0.18±0.01 0.82±0.03

h s -n 6c m -n a d 0.51±0.05 0.15±0.04

TLC was performed on PEI-cellulose coated plates at room temperature. IOjllI of each coenzyme (1 mgml) was spotted onto a 
plastic sheet pre-coated with PEI-cellulose using a lOpl capillary tube, 1cm from the labelled bottom of the sheet. The sheet 
was placed upright in a glass tank containing lithium chloride solution to a height of O.Scm. After the solvent front had 
reached 2-4cm from the top of the sheet, the sheet was removed from the tank and dried using a stream of cool air. The sheet 
was then analysed for nucleotide spots under ultra-violet light.

Considering the net charge of each derivative, the R f  values were as expected from 

past TLC of nucleotides (Lindberg et al, 1973). At the pH of the solvent (pH5.0) 

N6 CM-NAD will have a net charge of -2, but the SH modified derivative will have
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only a single negative charge (-1 ) because the acidic carboxyl group is no longer 

present and the 2 -aminoethanethiol molecule does not introduce charge overall.

A comparison of the properties of each of the thiolated NAD derivatives is shown in 

Table 4.3. NAD was not used in conjugation experiments with proteins because of its 

poor reactivity with Traut's reagent.

Table 4.3
Summary o f characteristics o f thiolated NAD derivatives

Coenzyme
Conversion1

(%)

% Bound to 
activated thiol 

agarose 
column

Substrate 
activity with 

ADH 
(%ofNAD)

HS-NADb 0.60c <0.5 ~

HS-N6CM-NADd 51 42 23

HS-N6AHCM-NADb 37 28 47
a Percentage conversion from original unthiolated coenzyme. This figure was calculated by 
determining the ratio of sulphydryl groups to coenzyme molecules, after purification, with 
Ellman's reagent

b Thiolated using Traut's reagent

c Could not be confirmed

d Thiolated using carbodiimide and 2-aminoethanethiol

4.2 The preparation o f proteins for oxidative dimerisation with a thiolated coenzyme 

adduct

4.2.1 Considerations for the modification ofproteins by a thiolated coenzyme adduct

If an enzyme-coenzyme conjugate formed via a disulphide linkage is to have intrinsic 

activity it is important that the constituent enzyme is not seriously inhibited by covalent 

modification of its surface thiol groups. Relevant experiments were carried out, as will 

be described, but first the number of thiols inherently available in native BSA, our 

protein model, and in native LDH will be considered along with a brief consideration 

of the relative properties of dehydrogenases in general.
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4.2.1.1 Bovine serum albumin (BSA)

The molecular weight of BSA is 66,000. It has been widely reported that there is only 

one accessible thiol group in BSA, Cys 34 (Shaw et al, 1984) despite there being 26 

cysteine groups in the primary sequence of BSA reported by Dayhoff (1976). Most of 

these cysteine groups are presumed to be buried in the interior of the protein structure 

or involved in disulphide bond interactions. Only one case is known in which NAD has 

been covalently attached to the surface of a BSA molecule (Wahl and Chang, 1987). 

Carbodiimide coupling was employed to create a peptide bond between the carboxyl 

surface residues of BSA and the NAD derivative N6 AHCM-NAD. An active 

preparation of immobilised NAD was obtained, although the conjugate was not well 

characterised.

Introduction o f extra thiol groups onto the surface o f BSA

There are 61 lysyl residues in BSA (Dayhoff, 1976), of which at least 30 are available 

for modification by a bifunctional reagent (Pierce Chemical Company, 1990), and so 

the introduction of thiol groups onto the protein surface by Traut's reagent should 

prove feasible.

4.2.1.2LDH

The pig heart (H4) isoenzyme of LDH was used and its general properties are 

described in Section 3.10. Pig H4  LDH contains 5 cystyl residues. In the dogfish 

muscle isoenzyme there are 7 cystyl residues of which none were reported to be either 

accessible or partially accessible in a study carried out by Abad-Zapatero et al (1987). 

The function of the cystyl residues of LDH is not well understood (Klitz et al, 1977). 

The pig H4  isoenzyme of LDH is unique among LDHs in that the essential thiol, Cys 

165, reacts with maleimide while the enzyme is in its native state, whereas in other
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esses it must be denatured first (Holbrook et al, 1975). However, protection from 

modification by the presence of coenzyme was reported. Indeed, modification of pig 

H  LDH by para-mercuribenzoate was completely prevented in the presence of 

ccenzyme (Holbrook et al, 1975).

Tie essential cysteine, Cys 165, is l.Onm from the substrate binding site and is 

accessible only from the active centre. Any molecule modifying this thiol will be 

siuated between Asp 168 and His 195, preventing movement of His 195 towards the 

active centre and therefore preventing the formation of a hydrogen bond from the 

inidazole of His 195 to lactate or pyruvate, which is essential for substrate 

stibilisation during catalysis. However, upon coenzyme binding the coenzyme 

biiding loop is lowered, introducing a molecular barrier, so that Cys 165 will be 

imccessible to an approaching molecule. The peptide around the essential cysteine of 

LDH was sequenced (Holbrook and Stinson, 1970) and was found to be homologous 

to sequences found in YADH, LADH and G-3-PDH for which a similar scenario 

night be expected.

Irtroduction o f extra thiol groups onto the surface o f LDH

Ai reported in Chapter 3, 24 lysines are present in pig H4  LDH isoenzyme. 83% of 

these residues showed some degree of accessibility in the dogfish muscle isoenzyme, 

and so the introduction of thiol groups by Traut's reagent should prove feasible.

4.1.1.3 Other dehydrogenases

ADH contains 8-9 cysteine groups per subunit and is seriously inhibited by thiol 

reigents or thiol oxidation (Branden et al, 1975). Consequently, an approach 

involving the binding of a thiolated NAD adduct would not be suitable for LADH or 

YADH. The strong inhibitiory effect is due to modification of the two essential cystyl 

residues that bind to the catalytic zinc atom. No protection from inhibition is afforded 

by coenzyme. Conversely, any inhibitory effects observed in GDH due to thiol
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modification are prevented by the presence of coenzyme (Smith et al, 1975). Whether 

the inhibition is due to a catalytic role of one or more cystyl residues is dubious but it 

may, instead, be due to protein unfolding caused by modification of cystiene thiol 

groups. Maleimide modification does not result in inhibition, even in the absence of 

coenzyme, thus illustrating that the extent of inhibition is largely dependent on the thiol 

reagent used (Smith et al, 1975). In bovine liver GDH, the enzyme used in our study, 

there are no reactive cystyl residues present i.e. none are accessible to solvated 

reagents. This is probably due to steric hindrance or hydrophobic protection caused by 

the surrounding enzyme structure (Rasched and Bayne, 1982). Bovine liver GDH 

contains 33 lysyl residues (see section 3.11.5), and so there should be several 

accessible amine groups that are available to react with Traut's reagent on the surface 

of GDH.

Malate dehydrogenase (MDH) was also used in our thiol modification studies. The 

overall function and NAD-binding mechanism of MDH is similar in many ways to 

LDH (Roderick and Banaszak, 1986). The enzyme from rat mitochondria was used, 

and this is also similar to pig H4  LDH which contains 7 cystyl and 24 lysyl residues, in 

that it contains 8  cystyl residues and 26 lysyl residues. The thiol modification of, and 

the NAD conjugates formed by MDH and LDH in this study, may therefore be 

expected to be similar.

In summary, previous studies suggest that the introduction of thiol-containing reagents 

to LDH, GDH and perhaps MDH should be feasible, without a serious loss in activity 

due to thiol modification.

In order to investigate whether or not covalent thiol modification inhibits native 

dehydrogenases, and to what extent, various dehydrogenases were modified with a 

thiol reagent in the following study.
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4.2.2 The effect o f dipyridyldisulphide (DPDS) upon the activity o f various 

dehydrogenases

Dipyridyldisulphide (DPDS) is very reactive with free thiol groups and so can be used 

in cysteine modification studies. Upon reaction with cysteine, DPDS introduces a 

bulky thiopyridine group (Figure 4.18) and so any steric hindrance or detrimental 

hydrophobic effects that a bifunctional reagent might cause should become apparent 

upon modification with DPDS.
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Figure 4.18: Modification and activation o f cystyl residues with DPDS

In order to solubulise DPDS, a small amount of acetone is required in an aqueous 

solution. Because acetone is known to react with amine groups (Lundblad and Noyes, 

1984) a corresponding amount of acetone was added to a control enzyme sample to 

ensure that any inhibition was not caused by reaction with acetone. No inhibitory
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effects were observed upon any of the dehydrogenases tested. It must also be noted 

that the coenzyme was not added in any of the DPDS-modification experiments, and 

so no protection of sensitive active site residues was afforded by its presence.

The effect of various concentrations of DPDS upon the activity of LDH, GDH, 

YADH, LADH, and MDH was investigated. Various volumes (0-200pl) of a lmgml1 

solution of DPDS in 50% (v/v) acetone:water were added to a 1ml solution containing 

HOpgml' 1 of dehydrogenase, mixed and left at room temperature for 60mins before 

extensive dialysis. Each enzyme was then assayed for specific activity using a standard 

assay at 340nm, to detect the reduction or increase in the concentration of NADH.

As was expected thiol modification of ADH resulted in strong inhibitory effects, 

especially at larger excesses of DPDS (Figures 4.19 & 4.20). This was probably due to 

the modification of cystyl residues bound to the catalytic zinc.
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Figure 4.29: The effect o f excess DPDS on the specific activity o f LADH. The specific
activity o f the enzyme was measured as follows: To 2.5 ml of 7SmM glycine-sodium pyrophosphate buffer, pH 9.0 were added 0.1ml 
of 2.2M semicarbazide; 0.1ml of 95% ethanol (v/v); 0.2ml of 28mM NAD; 0.1ml of 0.3M glutathione, and finally 20pl of enzyme 
sample. The solution was mixed and the rate of the reaction followed by monitoring the increase in absorbance at 340nm.



188

o
Q_

CTJ
E

300 -i

2 4 0
I

~  1 8 0 -

o
<

120  -

6 0  -
-i-

co
1 10 5 0 100 2 5 0  CONTROL

Molar E x c e s s  of  DPDS/YADH Subunit

Figure 4.20: The effect o f excess DPDS on the specific activity o f YADH. The specific
activity of the enzyme was measured as follows: To 2.5 ml of 75mM glycine-sodium pyrophosphate buffer, pH 9.0 were added 0 .1ml 
of 2.2M semicarbazide; 0.1ml of 95% ethanol (v/v); 0.2ml of 28mM NAD; 0.1ml of 0.3M glutathione, and finally 20p.l of enzyme 
sample. The solution was mixed and the rate of the reaction followed by monitoring the increase in absorbance at 340nm.
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Figure 4.21: The effect o f excess DPDS on the specific activity o f GDH. The specific activity

of the enzyme was measured as follows: To 2.5 ml of Imidazole buffer, 0.1M, pH 7.9 were added 0.2ml of 0.2M oxoglutarate, 
0.05ml of 12.8M ammonium acetate, 0.03ml of 12mMNADH, 0.1ml of 26mM EDTA, 0.05ml of 0.1M ADP, and finally 0.02ml of 
enzyme sample. The solution was mixed and the rate of the reaction followed by monitoring the decrease in absorbance at 340nm.
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Figure 4.22: The effect o f excess DPDS on the specific activity o f LDH. The specific activity

of the enzyme was then measured as follows: To 2.83 ml of sodium pyrophosphate buffer, 0.1M, pH 7.0 were added 0.1ml of 23mM 
sodium pyruvate, 0.05ml of 12mM NADH, and 0.02ml of enzyme sample. The solution was mixed and the rate of the reaction 
followed by monitoring the decrease in absorbance at 340nm.
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Figure 4.23: The effect o f excess DPDS on the specific activity o f MDH. The specific

activity of the enzyme was measured as follows: To 2.83 ml of 0.1M phosphate buffer, pH 7.5 were added 0.1ml of 15mM 
oxaloacetate; 0.05ml of 12mM NADH and 0.02ml of enzyme sample. The solution was mixed and the rate of the reaction followed 
by monitoring the increase in absorbance at 340nm.
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However, the results also showed that LDH, GDH and MDH were not seriously 

inhibited, especially when bearing in mind that any inhibition might be reduced in the 

presence of coenzyme which acts as a physical barrier to "sensitive" active site 

residues. Another way, perhaps, in which to reduce any inhibitory effects and also to 

dramatically improve the incorporation of NAD-SH adducts onto protein surfaces is to 

introduce thiol groups by modifying surface lysyl residues using Traut's reagent. The 

presence of extra thiol groups may prevent inhibition by decreasing the molar excess of 

thiol adduct to sensitive thiol groups.

4.2.3 Modification o f proteins with Traut's reagent in order to introduce free 

sulphydryl groups

Traut's reagent, described in Section 4.1.1, was used to modify the surface amine 

groups of proteins in order to introduce free sulphydryl groups. The protocol of Jue et 

al (1978) was employed, which has been used extensively to modify the proteins of the 

3 OS ribosome of Escherichia coli.

4.2.3.1BSA modification

The reaction of Traut's reagent with BSA was monitored at 248nm to confirm that a 

reaction occurs between Traut's reagent and protein residues (the intact Traut's 

molecule has an absorption maximum at 248nm which is lost upon its reaction with 

amine groups).
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Figure 4.24: The reaction between Traut's reagent and bovine serum albumin (BSA):
O = BSA added; *  = BSA absent To 1ml of 2mgmH BSA in 50mM TEA buffer, pH8.0, 2mg of Traut's reagent was added The 
reiction was monitored for lOmins at room temperature by following the decrease in absrobance at 248nm due to the reaction of 
Traut's reagent with a primary amine group and the conversion rate calculated knowing that the extinction coefficient of Traut's 
reigent was 8840cm"*M"* at 248nm.

The reaction rate, calculated from Figure 4.24, with a 17:1 molar excess of Traut's 

reagent over the surface lysine concentration, was 0.6|dM/min with respect to the 

modification of amine groups, assuming that 32 out of 64 lysyl residues are accessible 

(see below). However, when the same conditions of excess are applied using glycine, 

the rate is 7.0pM/min. The slower rate of the BSA reaction is probably due to steric 

hindrance of the approach of Traut's reagent caused by surrounding protein residues. 

After BSA had been modified it was isolated from unreacted Traut's reagent using a 

Sephacryl ST 0 0  gel filtration column. As can be seen in Figure 4.25, a baseline 

separation was effected.
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Figure 4.25: The elution profile o f a typical separation o f a thiolated BSA 
preparation from unreacted Traut’s reagent by gel filtration chromatography: =
glycine absent; 0 .= 5pmol glycine added to each fraction.
A Sephacryl S-100 column (60 x 1.5cm) was run at 4°C with a flow rate, of 0.2mlmin'*. Fractions were collected under gravity in 
2.2ml volumes in a dropwise manner using an automated fraction collector. The eluted fractions were taken for analysis to determine 
the following properties:-
Protein concentration: measured using the Coomassie method. 50pl of each fraction were mixed with 2ml of a 50:50 mixture of 
Saline:Coomassie Brilliant Blue G and left for 5minutes. The absorbance of the solution was then read at 620nm and the 
concentration calculated from a standard curve made from BSA solutions of known concentratioa
Sulphydryl concentration: A 0.2ml sample of the reaction mixture was added to 1.6ml of 0 .1M phosphate buffer, pH8.0 and 0.2ml 
of Ellman's reagent (4mgml'^) in a cuvette and mixed thoroughly. After 15mins the absorbance of the solution at 412nm was 
recorded and the concentration of sulphydryl groups calculated from a calibration curve.

Evidence for the modification of BSA by Traut’s reagent was provided by adding 

glycine to each fraction eluted from the gel filtration column, effecting a reaction 

between the primary amine group of glycine and the excess, unreacted Traut's reagent 

resulting in the formation of sulphydryl groups. By monitoring each fraction for any 

increase in free sulphydryl group concentration after this reaction, the presence of any 

unreacted Traut's reagent in the protein-containing fractions was detected. As can be 

seen in Figure 4.25, there was no increase in sulphydryl concentration after the 

addition of glycine in the protein-containing fractions (first peak) - the Traut's reagent 

was present in a reacted state because the sulphydryl groups had been formed.
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However, in the second peak there was an increase in the concentration of sulphydryl 

groups resulting from reaction of unreacted Traut's reagent with excess glycine.

The protein-containing fractions were pooled and concentrated to lmgml' 1 against 

solid polyethyleneglycol. By measuring the protein concentration using Coomassie 

reagent and the sulphydryl concentration using Ellman's reagent, a preparation of 

modified BSA (BSA-[SH]), with 31 sulphydryl groups incorporated per mol of BSA 

was obtained. Further evidence for the incorporation of free thiol groups onto the 

surface of BSA was provided by>

1. Passing the modified protein down an activated thiol agarose column (Section 

4.1.3). From Figure 4.26 it was calculated that 165 nmoles of pyridine-2-thione were 

displaced from the DPDS-thiol agarose column per mg of thiolated BSA molecule, 

whereas 27nmol were displaced per mg of native BSA molecule.



194

0.75 -i

0 .6 0  -

E
o> 0 .4 5  -  
E

3mM DTTc
0 .30  -v4->o

L_
CL

0.00
0 5 10 15 20 25

Fraction No.

Figure 4.26: The binding o f thiolated BSA to an activated thiol agarose column.
• = thiolated BSA,A = native BSA. 0.5ml of BSA solution (1.75mgmT^) was applied to the column. Bed volume = 5ml, flow rate = 
10ml h r ' \  fraction volume = 0.5ml, running buffer = phosphate, pH 8.0, 50mM, column run at 24°C. Fractions were collected in a 
dropwise manner using an automated fraction collector and the protein concentration of each fraction measured using the Coomassie 
method: 0.05ml of each fraction were mixed with 2 ml of a 50:50 mixture of saline:Coomassie Brilliant Blue G and left for 5minutes. 
The absorbance of the solution was then read at 620nm and the concentration calculated from a standard curve made from BSA 
solutions of known concentration.

The reaction of all of the 31 sulphydryl groups introduced onto the surface of BSA 

with activated thiol ligands on the modified agarose column may not have been feasible 

due to steric limitations imposed by the dimensions of the thiol agarose beads {Figure 

4.27).
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^  DPDS-activated thiol agarose bead 

^  protein with surface thiol groups

Figure 4.27: Possible steric limitations o f protein-thiol binding to a DPDS-activated 
thiol-agarose column. After a few of the protein thiol groups have formed disulphide bridges with 
the agarose beads, the protein may be held in position so that its remaining thiol groups cannot 
interact with the DPDS-activated thiol groups of the agarose beads.

The bound BSA was eluted with DTT and the protein-containing fractions pooled. The 

DTT was removed by gel filtration and the protein material concentrated and analysed 

as described above. There were, on average, 31 sulphydryl groups per BSA molecule 

indicating that, because the number of thiol groups did not increase after fresh 

reduction with DTT, the conditions used for protein purification and analysis were not 

conducive to the oxidation of free thiol groups.

2. Reaction o f thiolated BSA with DPDS. This was attempted for two reasons: firstly, 

to qualitatively confirm the incorporation of sulphydryl groups into BSA by monitoring 

the increase in absorbance at 343nm due to the release of pyridine-2-thione, and 

secondly, to activate the protein for conjugation with thiolated coenzyme adducts in
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the same way that thiol agarose was activated to react with thiolated NAD adducts 

{Figure 4.28).

+

DPDS

IActivation of 
surface thiol groups 
with DPDS

L_IC-

thiolated
coenzyme

pyridine-2-thione

Protein-coenzyme conjugate

Figure 4.28: Scheme for activation o f protein surfaces for thiol dimerisation with 
thiol-containing coenzyme adducts - the "disulphide" method o f protein-coenzyme 
conjugate formation

Activation of protein thiol groups with DPDS would reduce the possibility of cross- 

linking between thiolated coenzyme derivatives and intramolecular cross-linking



197

between BSA thiol groups caused by the oxidising conditions that would, otherwise, 

be required. Activation would also make conjugation under mild conditions possible, 

without the introduction of strong oxidising conditions detrimental to proteins and 

enzymes. It was calculated that 28 moles of free sulphydryl groups were present per 

mole of thiolated BSA molecule compared to 31 moles detected by Ellman's reagent 

and only 1 . 0  mole of thiol groups was present per mole of freshly reduced native 

BSA.compared to 1.8 moles detected by Ellman's reagent.

The effect of various excess of Traut's reagent upon the incorporation of free 

sulphydryl groups into BSA was investigated (Table 4.4). As can be seen, up to 32 

lysyl residues were available for modification with Traut's reagent when it was present 

at high excess.

Table 4.4

The effect o f varying excess o f Traut's reagent during 
modification o f BSA upon the incorporation offree 

sulphydryl groups

Molar excess 
2-iminothiolane/ 

BSA

Moles of [-SH] 
detected per mole 

of BSA 
(maximum 

possible = 64)*

0 1 . 8

1 0 7.6
25 1 2

50 25
1 0 0 31
2 0 0 32
500 32

2mg o f BSA was added to one o f the following volumes o f a solution o f 2mgml"^ Traut's reagent in 
50mM triethanolamine, pH 8.0 in a reaction vial. The solution was made up to 1ml with 
triethanolamine buffer: 0.00ml, 0.02ml, 0.05ml, 0.10ml, 0.20ml, 0.40ml, and 1.0ml, giving respective 
molar excesses o f Traut's reagent over BSA molecule o f 0, 10, 25, 50,100, 200 and 500. The reaction 
was left at room temperature for 4 hours before gel filtration with Sephacryl S-100 at 4°C and further 
analysis.

* or 65 including N-terminal amine group
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It was decided that conditions of 100-fold molar excess of Traut's reagent per 66,000 

molecular weight were adequate for subsequent protein-modification experiments.

A model for protein modification by Traut's reagent had now been established and so 

dehydrogenase enzymes were modified with Traut's reagent in a similar manner.

4.2.3.2. Modification o f lactate dehydrogenase (LDH), glutamate dehydrogenase 

(GDH), malate dehydrogenase (MDH).

A 100-fold molar excess of Traut's reagent over LDH and MDH subunit (MW 35,000) 

and GDH subunit (MW 56,000) was used in the modification reactions. Each enzyme 

thiolation reaction was treated and purified as described for the BSA model.

1. LDH

The activity of LDH after modification with Traut's reagent was analysed using a 

DCPIP/PES recycling assay (Figure 3.6) and it was 85 % of the specific activity of the 

native enzyme. This small reduction in activity was comparable to the 18% inhibition 

caused by DPDS-modification of thiol groups {Figure 4.22) and so may have been 

caused by a residue of free thiol groups present in the Traut's reagent. However, 

because only 2% of the Traut's reagent molecules had formed thiol groups at 4°C 

{section 4.1.1), the inhibition of LDH may also have been due to lysine modification by 

the Traut's reagent.

After gel filtration, the thiolated LDH was analysed for thiol group concentration with 

Ellman's reagent and protein concentration was determined using Coomassie reagent. 

On average, 7 thiol groups were intoduced onto the surface of each LDH subunit. The 

introduction of thiol groups was confirmed by passing the thiolated LDH solution 

down an activated thiol agarose column {Figure 4.29).
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Figure 4.29: The binding o f thiolated LDH to an activated thiol agarose column.
• = thiolated LDH, O = native LDH. 0.5ml of LDH solution (l.lOmgml*^) was applied to the columa Bed volume = 5ml, flow rate 
= 10ml hr*l, fraction volume = 0.5ml, running buffer = 50mM phosphate, pH 8.0, column run at 24°C. Fractions were collected in a 
dropwise manner using an automated fraction collector and the protein concentration of each fraction measured using the Coomassie 
method: 50pl of each fraction were mixed with 2ml of a 50:50 mixture of saline: Coomassie Brilliant Blue G and left for 5minutes. 
The absorbance of the solution was then read at 620nm and the concentration calculated from a standard curve made from LDH 
solutions of known concentration.

The thiolation of LDH resulted in improved binding to the thiol agarose column: only 

10% of a sample of native LDH, that had been freshly reduced with DTT (and excess 

DTT removed by gel filtration), bound to the column compared to 77% of the 

thiolated LDH sample, indicating the presence of extra thiol groups.

GDH and MDH were modified with Traut's reagent and analysed as described for 

LDH; the results are summarised in Table 4.5, along with the LDH modification 

results.
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Table 4.5
Characterisation o f dehydrogenases modified using Traut's reagent

Enzyme
Molar ratio 

[SH]/subunita
% Binding to 

activated thiol-agarose 
column

Activityb 
(% of native enzyme)

LDH 0.84 1 0 1 0 0

LDH-[SH] 7.6 77 85
GDH 2 . 2 32 1 0 0

GDH-[SH] 9.2 35 9
MDH 0.32 2 . 1 1 0 0

MDH-fSH] 7.2 49 71
^Protein concentration: measured using the Coomassie method. 50pl of each fraction were mixed with 2ml of a 50:50 mixture of 
Saline:Coomassie Brilliant Blue G and left for 5minutes. The absorbance of the solution was then read at 620nm and the concentration 
calculated from a standard curve made from enzyme solutions of known concentration.
Sulphydryl concentration: A 0.2ml sample of the reaction mixture was added to 1.6ml of 0.1 M phosphate buffer, pH8.0 and 0.2ml of 
Ellman's reagent (4mgmT^) in a cuvette and mixed thoroughly. After 15mins the absorbance of the solution at 412nm was recorded and 
the concentration of sulphydryl groups calculated from a calibration curve prepared using cysteine standards.
b Activity of LDH and MDH determined using a DCPIP/PES recycling assay and activity of GDH determined using an MTT/PES 
recycling assay in presence of 3mM NAD and saturating concentrations of respective substrates.
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Figure 4.30: The binding o f thiolated GDH to an activated thiol agarose column.
• = thiolated GDH, O  = native GDH. 0.5ml of GDH solution (1.50mgmH) was applied to the column. Bed volume = 5ml, flow rate 
= 10ml h r 'l , fraction volume = 0.5ml, running buffer = 50mM phosphate, pH 8.0, column run at 24°C. Fractions were collected in a 
dropwise manner using an automated fraction collector and the protein concentration of each fraction measured using the Coomassie 
method: 50pl of each fraction were mixed with 2ml of a 50:50 mixture of saline:Coomassie Brilliant Blue G and left for 5minutes. 
The absorbance of the solution was then read at 620nm and the concentration calculated from a standard curve made from GDH 
solutions of known concentration.
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Figure 4.31: The binding o f thiolated MDH to an activated thiol agarose column.
• = thiolated MDH, O = native MDH. 0.5ml of MDH solution (1.70mgmT*) was applied to the column. Bed volume = 5ml, flow 
rate = 10ml hr'*, fraction volume = 0.5ml, running buffer = , 50mM phosphate, pH 8.0, column run at 24°C. Fractions were 
collected in a dropwise manner using an automated fraction collector and the protein concentration of each fraction measured using 
the Coomassie method: 50 j j .1 of each fraction were mixed with 2ml of a 50:50 mixture of saline:Coomassie Brilliant Blue G and left 
for 5minutes. The absorbance of the solution was then read at 620nm and the concentration calculated from a standard curve made 
from MDH solutions of known concentratioa

As can be seen, a similar incorporation of thiol groups was achieved for each 

dehydrogenase subunit, 7.2 moles being incorporated onto the surface per mole of 

MDH subunit; the incorporation of thiols onto the surface of GDH was slightly higher 

at 9.2 because of the presence of more accessible lysyl residues. The binding of native 

GDH to the thiol-agarose column was surprising because of reports of the absence of 

any accessible cystyl residues on the surface of GDH (Rasched and Bayne, 1982) 

{Figure 4.30). The binding was hardly improved upon by thiolation. The topography 

of the GDH molecule may have been such as to allow protruding DPDS-activated thiol 

groups of the agarose beads to react with cystyl residues that are buried within the 

enzyme structure. The improved binding of MDH caused by thiolation was comparable 

to that of thiolated LDH, with binding being improved by 47% after thiolation {Figure
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4.31). The inhibitory effect of Traut's reagent modification upon MDH was also similar 

to the inhibition of LDH, indicating further similarities between LDH and MDH. The 

strong inhibition of GDH, 91% of the activity being lost, was probably due to 

modification of the sensitive Lys 126 residue by Traut's reagent (Section 5.77.5).

BSA and LDH were now ready for conjugation with the previously prepared thiolated 

coenzyme adducts {Section 4.7)

PART TWO: Conjugation experiments

BSA, LDH, thiolated BSA and thiolated LDH were activated with DPDS as described 

in Section 4.2.3. To a purified, DPDS-activated protein solution, thiolated coenzyme 

derivative was added in a 15-fold molar excess over BSA molecule or LDH subunit. 

The reaction was followed by observing the change in absorbance of the solution at 

343nm due to the release of pyridine-2-thione. When the reaction was complete, the 

putatative protein-coenzyme conjugate was subjected to gel filtration to remove all 

traces of free thiolated coenzyme. It was then concentrated, if necessary, using 

polyethyleneglycol, washed with activated charcoal and stored at 4°C for no longer 

than 12 hours before further analysis (for details see Materials and Methods).

The "active" and "total" molar ratio of coenzyme to enzyme was determined as 

described in the legend to Table 4.6.
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4.3 BSA-coenzyme conjugates formed by reaction o f HS-N6CM-NAD with activated 

thiol groups on the protein surface

The results from the analysis of a BSA-N5 CM-NAD conjugate preparation are shown 

in Table 4.6. Native BSA did not react with the thiolated N6 CM-NAD derivative, 

probably because the reaction conditions were not suitable for oxidative dimerisation 

between the one solvent-accessible cysteine of BSA and the sulphydryl group of the 

coenzyme. Activation of the single cysteine thiol group with DPDS promoted the 

binding of 0.3 thiolated coenzyme molecules per BSA molecule, although none of 

these bound coenzyme molecules could be detected in a second enzyme recycling 

assay with alcohol dehydrogenase (see "active" ratio).

Table 4.6
The properties o f BSA-N6CM-NAD conjugates

Molar ratio of coenzyme:protein
Conjugated protein Total* Activeb
BSA 0 . 0 0 . 0

Activated BSAC 0.3 0 . 0

Activated BSAd-[SH] 4.2 4.5
& "Total" molar ratio of bound nucleotide to protein was determined by reading the absorbance of the 
conjugate solution at 266nm and at 290nm and calculating, with known extinction coefficients for BSA and 
N6CM-NAD at both of these wavelengths, the separate concentrations of BSA and N6CM-NAD by the 
solvation of simultaneous equations (section 3.7).

h  "Active" molar ratio of bound coenzyme to BSA molecule was determined by assaying for coenzyme in a 
recycling assay with ADH.The cycling experiment was carried out at pH 7.4 using a MTT/PES redox 
couple with yeast alcohol dehydrogenase. To 1.95ml (lOOmM TEA/ lOOmM nicotinamide/ 500mM ethanol 
buffer was added lOOp.1 coenzyme present at O.lpM in the assay solution. 50|il of 12mM MTT, 800p.l of 
3mM PES and lOOp.1 of yeast alcohol dehydrogenase (30figmT*) were also added. The protein 
concentration was determined in a Coomassie assay: 0.1ml of sample was added to 1.9ml of a 50:50 mixture 
of saline: Coomassie reagent and left for 5mins before reading absorbance at 620nm.

C A native BSA solution was subjected to a 50-fold excess of DPDS and purified before conjugation with 
HS-N6CM-NAD.

d  BSA was first treated with a 100-fold excess of Traut's reagent and purified before activation with a 50- 
fold excess of DPDS, followed by conjugation with HS-N6CM-NAD.
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The thiolated BSA molecule contained 30 activated thiol groups per molecule and so it 

was not surprising that its conjugate with N6 CM-NAD contained the highest number 

of covalently bound coenzyme molecules per BSA molecule, with 4.2 N6 CM-NAD 

moles detected per mole of BSA. The bound coenzyme molecules demonstrated a 

complete interaction with the active site of alcohol dehydrogenase in the second 

enzyme recycling assay, 4.5 active molecules of thiolated N6 CM-NAD derivative being 

detected per molecule of BSA. This suggested that the chemical nature of the spacer 

arm did not interfere with the interaction between BSA-bound N6 CM-NAD and the 

active site of ADH, and it was of a suitable length to allow flexibility into and out of 

the active site of the second enzyme.

Although only 14% (4.2 out of 30) of the activated thiol sites were modified with 

coenzyme, the conjugation could probably be improved upon by increasing the excess 

of thiolated coenzyme.

Further evidence for the presence of covalently bound coenzyme on the surface of 

BSA was provided by the following experiment: -

Binding o f thiolated 3H-N6CM-NAD to DPDS-thiolated BSA.

The radioactive coenzyme, 3 H-N6 CM-NAD, was conjugated to DPDS-thiolated BSA 

as described previously. After purification by gel filtration chromatography, the protein 

was concentrated using polyethyleneglycol, washed with activated charcoal to a final 

concentration of 0.80 mgml'1, precipitated and the acid-insoluble radioactive counts 

measured. As Figure 4.32 shows, a significant amount of radioactivity was detected in 

the precipitated conjugate.

The amount of radioactivity detected, 704 dpm (mg protein)'1, represented only 2.1 

moles of coenzyme per mole of BSA compared to estimates of 4.2-4.5 using other 

methods, but this was calculated using the protein concentration estimated before
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precipitation with trichloroacetic acid. A significant amount of conjugate material was 

probably lost during the process of precipitation and filtration. The experiment serves 

to qualitatively support the covalent fixation of coenzyme to BSA via a disulphide 

bridge linkage.
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Figure 4.32: Radioactive counts present in a BSA-coenzyme conjugate synthesised
Using thiolated ^H-N^CM-NAD: The conjugate was concentrated using polyethyleneglycol to a concentration of 
0.80 mgml'^, and precipitated by adding trichloroacetic acid to 20% and leaving to stand at 4°C overnight The precipitate was 
collected under suction on a GFC Millipore filter, and the radioactive counts collected by washing the filter paper with 3ml optiphase 
in a scintillation vial. The counts were then measured in a LKB scintillation counter for IS minutes in triplicate. The 14C and 3H 
"windows" were open during counting and counting efficiency was calculated as 60% for 3H and 98% for 14C by calculating the 
efficiency of the machine when counting a dated standard sample of 14C or 3H-labelled material. The counts per minute were than 
adjusted to give the disentegrations per minute (dis/min)

4.4 BSA-coenzyme conjugates formed using HS-N6AHCM-NAD

Because the proposed mechanism of the reaction of activated BSA with HS-N6 CM- 

NAD and HS-N6 AHCM-NAD was the same, i.e. reaction of an aliphatic thiol group 

attached to the coenzyme with DPDS-activated thiol groups attached to BSA, it was
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expected that similar amounts of the two thiolated NAD derivatives would bind to 

BSA, and this was indeed the case (Table 4.7). 0.2 molecules of thiolated N6 AHCM- 

NAD bound to native BSA that had been activated with DPDS, compared to 0.3 

molecules of HS-N6 CM-NAD, and 3.3 molecules bound to thiolated BSA that had 

been similarly activated, compared to 4.2 molecules of HS-N6 CM-NAD. However, 

there was a marked difference in the accessibility of the bound coenzyme derivatives to 

alcohol dehydrogenase in the second enzyme recycling assay, with only 0.8 out of 3.3 

N6 AHCM-NAD molecules being active. This could have been caused either by the 

spacer arm being too long or by the chemical nature of the spacer arm interfering with 

the interaction between the coenzyme with the second enzyme.

Table 4.7
Properties o f BSA -N6AHCM-NAD conjugates

Molar ratio of coenzyme:protein
Conjugated protein Totala Activeb
BSA 0 . 0 0 . 0

Activated BSAC 0 . 2 0 . 0

Activated BSA-[SH]d 3.3 0 . 8

** "Total" molar ratio of bound nucleotide to protein was determined by reading the absorbance of the 
conjugate solution at 266nm and at 290nm and calculating, with known extinction coefficients for BSA and 
N6AHCM-NAD at both of these wavelengths, the separate concentrations of BSA and N6AHCM-NAD by 
the solvation of simultaneous equations (section 3.7).

"Active" molar ratio of bound coenzyme to BSA molecule was determined by assaying for coenzyme in a 
recycling assay with ADH.The cycling experiment was carried out at pH 7.4 using a MTT/PES redox 
couple with yeast alcohol dehydrogenase. To 1.95ml (lOOmM TEA/ lOOmM nicotinamide/ 500mM 
ethanol) buffer was added lOOp.1 coenzyme present at O.lpM in the assay solution. 50p.l of 12mM MTT, 
800pl of 3mM PES and lOOpl of yeast alcohol dehydrogenase (30p.gml"^) were also added. (Materials and 
Methods) The protein concentration was determined in a Coomassie assay: 0.1ml of sample was added to 
1.9ml of a 50:50 mixture of saline:Coomassie reagent and left for 5mins before reading absorbance at 
620nm.

® A native BSA solution was subjected to a 50-fold excess of DPDS and purified before conjugation with 
HS-N6AHCM-NAD.

BSA was first treated with a 100-fold excess of Traut's reagent and purified before activation with a 50- 
fold excess of DPDS, followed by conjugation with HS-N6AHCM-NAD.
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After the promising results of the BSA conjugates formed using thiolated N6 CM- 

NAD, attempts were now made to form LDH-coenzyme conjugates and to discover 

whether such conjugates possessed intrinsic activity

4.5 LDH conjugates formed using HS-N^CM-NAD

The results from the analysis of an LDH-N6 CM-NAD preparation are shown in Table 

4.8.

Table 4.8
Properties o f LDH-N6CM-NAD conjugates

Conjugated enzyme

Molar ratio of coenzyme:protein Activity (U/mg)e
Total4 Activeb Intrinsic Specific

LDH 0 . 0 0 . 0 0 . 0 0 17.5
Activated LDH° 0 . 1 0 . 0 0 . 0 0 3.9
Activated LDH-fSH|d 2.3 1.7 0.27 5.1

"Total" molar ratio of bound nucleotide to protein was determined by reading the absorbance of the conjugate solution at 266nm and at 
290nm and calculating, with known extinction coefficients for LDH and N6CM-NAD at both of these wavelengths, the separate 
concentrations of LDH and N6CM-NAD by the solvation of simultaneous equations (section 3.7).

h  "Active" molar ratio of bound coenzyme to LDH molecule was determined by assaying for coenzyme in a recycling assay with ADH.The 
cycling experiment was carried out at pH 7.4 using a MTT/PES redox couple with yeast alcohol dehydrogenase. To 1.95ml (lOOmM TEA/ 
lOOmM nicotinamide/ 500mM ethanol) buffer was added lOOp.1 coenzyme present at 0.1 in the assay solution. 50jxl of 12mM MTT, 
800p.l of 3mM PES and 100fol of yeast alcohol dehydrogenase (30(igmT^) were also added. The protein concentration was determined in a 
Coomassie assay: 0.1ml of sample was added to 1.9ml of a 50:50 mixture of saline:Coomassie reagent and left for 5mins before reading 
absorbance at 620nm.

C A native LDH solution was subjected to a 50-fold excess of DPDS and purified before conjugation with HS-N6CM-NAD.

d  LDH was first treated with a 100-fold excess of Traut's reagent and purified before activation with a 50-fold excess of DPDS, followed by 
conjugation with HS-N6CM-NAD.

^  Both intrinsic and specific activities were determined in a recycling assay with a DCPIP/PES redox couple.

Native LDH did not conjugate with the thiolated N6 CM-NAD derivative, probably 

because the oxidising conditions required for oxidative dimerisation were not used. 

The small loss in specific activity (7.1% because activity of the untreated native
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enzyme = 18.9 Umg-1) was probably due to the modification of one or more cystyl 

residues by the thiolated coenzyme. LDH activated with DPDS showed only a small 

degree of conjugation with, on average, only a small fraction of the subunit molecules 

(-10%) containing a bound coenzyme molecule. The 5 cysteines of pig H4  LDH were 

largely inaccessible to both DPDS and, therefore, thiolated coenzyme. The most 

successful enzyme preparation was the thiolated preparation, activated with DPDS, as 

was the case with the BSA conjugates. 2.3 moles of N6 CM-NAD were bound per mole 

of LDH subunit, showing 73% of their normal substrate activity in a second enzyme 

recycling assay with alcohol dehydrogenase.

Activity

The intrinsic and specific activity of each LDH-coenzyme conjugate was also 

determined using a DCPIP/PES coenzyme recycling assay {Section 3.8). A further loss 

of activity of each of the activated and thiolated enzyme preparations was apparent 

upon conjugation with the thiolated coenzyme. The specific activity of the thiolated 

LDH was slightly higher, at 27%, than that of the unthiolated DPDS-activated LDH, 

which had only 20% of the activity of native LDH. This suggests that thiolation affords 

some protection against inhibition by reaction with thiolated coenzyme by reducing the 

possibility of reaction of an activated native cystyl residue with coenzyme.

Intrinsic activity was only generated by the coenzyme-conjugate formed by the thiol- 

modified enzyme. It was 5% of the specific activity of the conjugate or 1.3% of the 

specific activity of native LDH.

The following experiment was carried out to confirm that the intrinsic activity 

generated by the LDH-N6 CM-NAD conjugate was due to the presence of coenzyme 

covalently bound to the surface of LDH via a disulphide bridge linkage:-
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Treatment o f the enzyme-coenzyme conjugate with DTT

lpmol DTT was added to 1ml of a LDH-N6 CM-NAD conjugate solution (0.4 mg ml-1) 

which was then agitated with an overhead stirrer at room temperature for 30mins. 

After gel filtration with Sephacryl S-100 the conjugate was again assayed for intrinsic 

and specific activity. The intrinsic activity of the conjugate had totally disappeared, 

confirming that the previous intrinsic activity was caused by the presence of coenzyme 

that was covalently bound to the surface of LDH via a disulphide bridge and was 

interacting with the active site of the same LDH molecule that it was bound or with 

neighbouring LDH molecules. However, the specific activity of the molecule after 

DTT treatment was reduced from 5.1 Umg- 1  to 4.2 Umg-1. It was hoped that if the 

original inhibition was due to covalently bound coenzyme the activity might have been 

restored upon reduction of the disulphide linkages by DTT.

4.6 LDH conjugates formed using HS-N6AHCM-NAD

The results from the analysis of LDH-coenzyme conjugates formed using thiolated 

N 6 AHCM-NAD derivative are shown in Table 4.9.

Native LDH activated with DPDS again showed only a small degree of conjugation, 

with, on average, up to 1 0 % of the subunit molecules containing a bound coenzyme. 

This figure was the same for both thiolated N6 CM-NAD and N6 AHCM-NAD. The 

thiolation of an enzyme undoubtedly improves the chances of conjugate formation with 

a thiolated coenzyme, with 2.7 moles of coenzyme binding per mole of LDH subunit 

with only a 15-fold excess of coenzyme. Again, this result compares well with the 

N 6 CM-NAD result. However, the bound N6 AHCM-NAD molecules showed only 33% 

of their normal substrate activity with ADH in the second enzyme recycling assay, 

whereas bound N6 CM-NAD molecules possessed 73% of their normal activity. A 

similar result was obtained from assay of the BSA conjugates and it suggested that the 

spacer arm formed between thiolated N6 CM-NAD and the protein surface was more
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suitable for interaction of the coenzyme with a second enzyme than the spacer arm 

formed by similar conjugation of a thiolated N6 AHCM-NAD molecule. This 

suggestion was supported by the results for the intrinsic activity.

Table 4.9
Properties o f LDH-N6AHCM-NAD conjugates

Molar ratio of coenzyme:protein Activity6

Conjugated enzyme Total* Activeb Intrinsic Specific
LDH 0.0 0.0 0.00 16.9

Activated LDH0 0.1 0.0 0.00 3.5

Activated LDH-[SHld 2.7 0.9 0.05 8.6
^  "Total" molar ratio of bound nucleotide to protein was determined by reading the absorbance of the conjugate solution at 266nm and at 
290nm and calculating, with known extinction coefficients for LDH and N6AHCM-NAD at both of these wavelengths, the separate 
concentrations of LDH and N6AHCM-NAD by the solvation of simultaneous equations (Section 3.7).

"Active" molar ratio of bound coenzyme to LDH molecule was determined by assaying for coenzyme in a recycling assay with ADH.The 
cycling experiment was carried out at pH 7.4 using a MTT/PES redox couple with yeast alcohol dehydrogenase. To 1.95ml lOOmM TEA/ 
lOOmM nicotinamide/ 500mM ethanol buffer was added IOOjj.1 coenzyme present at 0.1 (J.M in the assay solution. 50fj.l of 12mM MTT, 
800fj.l of 3mM PES and 100p.l of yeast alcohol dehydrogenase (30pgml~b were also added. The protein concentration was determined in a 
Coomassie assay: 0.1ml of sample was added to 1.9ml of a 50:50 mixture of saline: Coomassie reagent and left for 5mins before reading 
absorbance at 620nm.

c  A native LDH solution was subjected to a 50-fold excess of DPDS and purified before conjugation with HS-N6AHCM-NAD.

d  LDH was fust treated with a 100-fold excess of Traut's reagent and purified before activation with a 50-fold excess of DPDS, followed by 
conjugation with HS-N6AHCM-NAD.

0 Both intrinsic and specific activities were determined in a recycling assay with a DCPIP/PES redox couple.

Activity
The intrinsic and specific activity of each LDH-coenzyme conjugate was also 
determined using a coenzyme recycling assay with dichlorophenolindophenol indicator 
(Section 3.8). The activity of each of the DPDS-thiolated enzyme preparations was 
further reduced by conjugation with the thiolated coenzyme. The specific activity of 
the thiolated LDH was higher, at 45%, than that of the unthiolated LDH that was 
activated with DPDS, which possessed only 18% of the activity of native LDH.

Intrinsic activity was, again, only generated by the conjugate formed using the 
thiolated enzyme. It was only 0.6% of he specific activity of the conjugate, and 0.2% 
of the specific activity of native LDH. The intrinsic activity of the LDH-N6 AHCM- 
NAD conjugate did not compare well with that of the LDH-N6 CM-NAD conjugate 
which possessed an intrinsic activity that was ten-fold greater.
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CHAPTER 5

The incorporation of LDH-coenzyme conjugates into a reagentless enzyme

electrode for lactate

Introduction

This chapter is included to demonstrate that an enzyme-coenzyme conjugate 

preparation is able to act as the fully contained catalytic constituent of a reagentless 

enzyme electrode for lactate. A full consideration of recent developments in enzyme 

electrode technology, relating to the use of NAD-dependent dehydrogenases, was 

made before attempting to construct a lactate biosensor using preparations containing 

NAD covalently bound to LDH. The reasons for interest in an amperometric biosensor 

for lactate are given in the General Introduction.

The LDH-NAD and LDH-N6 AHCM-NAD conjugates that contained a glutaraldehyde 

cross-linker were used in the preparation of enzyme electrodes because they each 

included a methylene-containing spacer arm which was most likely to allow the 

enzyme-bound coenzyme the greatest freedom of movement between active sites of 

the LDH molecules and the electrode surface (Figure 1.5). Each of the LDH- 

coenzyme conjugates formed using carbodiimide-mediated coupling possessed a 

shorter spacer arm. In addition, the LDH-coenzyme conjugates that were synthesised 

using glutaraldehyde coupling possessed a ten-fold higher intrinsic activity than those 

formed using carbodiimide coupling. They were therefore likely to generate a larger 

electrode response when immobilised on to the surface of an enzyme electrode in the 

presence of lactate.

The length of the molecular link between the adenine N6  position of NAD and the 

polypeptide backbone of the LDH molecule was at least 1.5nm for the LDH-NAD
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conjugate and at least 3.1nm for the LDH-N6 AHCM-NAD conjugate. The longer 

spacer arm of LDH-N6 AHCM-NAD would be expected to provide a more flexible link 

allowing the enzyme-bound coenzyme a greater freedom of movement and greater 

accessibility into the surrounding environment. This was supported by the results 

reported in Chapter 3 which showed that the LDH-coenzyme conjugate containing the 

extra hexamethylene spacer contained coenzyme that was 27% more accessible to the 

active sites of ADH molecules in free solution.

The approach used to construct the lactate biosensor using LDH-NAD and LDH- 

N6 AHCM-NAD conjugates will be discussed in Part One of this chapter followed by a 

description of the properties of the final enzyme electrode in Part Two.

Part One

5.1 A consideration o f recent developments in the technology used to construct 

enzyme electrodes incoporating NAD-dependent enzymes

Figure 5.1 displays the layout of a generalised enzyme electrode constructed using an 

NAD-dependent enzyme. Several decisions must be taken before constructing such a 

device: namely, how the enzyme is to be immobilised, how the coenzyme is to be 

retained and regenerated, and which type of electrode material is to be used. These 

issues will now be discussed, in turn.



213

ii
s c d > sIII
S

IIII
I
I

semipermeable
membrane

Figure 5.1: Generalised layout o f an enzyme electrode based on an NAD-dependent 
enzyme. The enzyme and coenzyme must be immobilised in the same phase, usually in the intimate 
vicinity of the electrode surface, to enable coenzyme to be regenerated and the reaction between 
enzyme and substrate to be detected.

5 .1.1 Coenzyme regeneration

Electrocatalytic coenzyme regeneration is becoming the preferred method of 

regeneration in the construction of NAD-dependent enzyme electrodes, and the 

reasons why this method of coenzyme regeneration was chosen were discussed in 

Section 1.5. The substrates of NAD-dependent dehydrogenases that are of analytical 

interest - for example, ethanol, lactate, glutamate, glucose and glycerol - are all 

oxidised during catalysis by their corresponding dehydrogenases and electrons are 

passed to the coenzyme NAD which is consequently reduced to form NADH. Thus, 

the coenzyme must be regenerated by oxidation, and only very rarely by reduction. 

This is indeed fortunate because the electrocatalytic oxidation of NADH is, by far, an 

easier reaction to achieve, although the corresponding reduction is also possible 

(Aizawa et al, 1976b). The formal potential of the NADH/NAD couple is -520mV vs 

Ag/AgCl* (Schumann and Schmidt, 1992; Dominguez et al, 1993a), reflecting that the 

oxidising potential of NAD is actually quite low. However, this figure was determined

* This overpotential was actually reported versus a standard calomel electrode and recalculated for 
consistency for reference against a Ag/AgCl electrode in this chapter using standard tables given in 
the literature (Bard and Faulkner, 1980)

, , electrode surfaceimmobilised
enzyme and
coenzyme
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enzymatically and the practical electrocatalytic oxidation of NADH actually requires an 

overpotential of +700mV vs Ag/AgCl in order to proceed (Kulys et al, 1991). 

Unfortunately, when such a high overpotential is used the oxidation of NADH 

proceeds via the irreversible formation of radicals which facilitate the formation of 

NAD dimers and other side products (Elving et al, 1976). The application of large 

overpotentials also generally leads to increased electrode fouling and a high level of 

background interference from other redox compounds. Despite these difficlties, 

Bonnefoy and his co-workers were able to demonstrate that the electrocatalytic 

regeneration of NAD from NADH was greater than 99.99% pure with respect to its 

enzymic activity (Bonnefoy et al, 1988). In addition, a reagentless enzyme for lactate 

was constructed by Blaedel and his co-workers who were able to slightly reduce the 

overpotential required to oxidise NADH to 450mV vs Ag/AgCl by using a glassy 

carbon electrode in place of a platinum electrode (Blaedel and Engstrom, 1980). In this 

study, LDH was immobilised alongside NAD by entrapment with an acetylated dialysis 

membrane. However, although the lactate electrode was quite sensitive, detecting 

down to 3p,M lactate, it demonstrated a largely non-linear dependence and the 

response time was quite sluggish ( at least 7mins). Moreover, the overpotential used in 

this study was still too high for lactate detection in a 'dirty' solution containing redox 

substrates other than NADH (Heller, 1992). In fact, the optimum range of 

overpotential for an amperometric biosensor is beween -150 and 50mV vs Ag/AgCl 

(Dominguez et al, 1993 a). Fortunately, there are now ways in which the minimum 

overpotential required to oxidise NADH can been reduced, as will now be described.

Redox mediators

A redox compound capable of oxidising NADH may itself be electrocatalytically 

oxidised at a lower overpotential than NADH. Such a compound can act as a redox 

mediator between the coenzyme and the electrode surface. Suitable mediators can also 

be immobilised in the same phase as the coenzyme, for example by covalent fixation, to 

keep the enzyme electrode in a 'reagentless' state. The use of mediators has
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significantly reduced the overpotential required to regenerate NAD in recent studies. 

For example, the covalent fixation of quinones to the electrode surface reduced the 

required overpotential to between 50 and 200mV vs Ag/AgCl, but the reported low 

stability of this system has restricted its application (Cenas et al, 1985; Kulys et al,

1991). A similar decrease in overpotential was obtained upon the use of phenazines 

and phenoxines as mediators, but again the resultant enzyme electrodes were unstable 

(Schumann and Schmidt, 1992). More succesful mediators have been found: electrodes 

made from the conducting organic salt N-methylphenazinium tetracyanoquinodi- 

methanide (NMP TCNQ') suffered no deterioration in response to NADH after several 

days (Albery and Bartlett, 1984; Kulys et al, 1991). Ferricyanide or ferricinium ions 

deposited onto electrode surfaces also act as stable mediators (Cass et al, 1984; Yon 

Hin and Lowe, 1987). Such electrodes can oxidise NADH at an optimum overpotential 

of between 0 and 200mV vs Ag/AgCl. More recently, phenazine methosulphate acted 

as a succesful mediator when it was immobilised by adsorption onto a graphite 

electrode (Miyawaki and Yano, 1993) but other reports suggest that phenazine 

methosulphate may be harmful to enzyme preparations (Huck et al, 1984). Also 

recently, tetrachloro-/?-benzoquinone was found to be a particularly stable quinone and 

its recent adsorption onto the surface of a graphite electrode also resulted in a stable 

electrode preparation (Schumann and Schmidt, 1992).

The use of redox catalysts for the electrochemical oxidation of NADH has significantly 

decreased the overpotential required to oxidise NADH. However, the long term 

stability of these electrodes is bound to be limited when the mediator is immobilised by 

adsorption because of leaching effects. The covalent linking of mediators to the 

electrode surface implies the functionalisation of the electrode. Unfortunately, certain 

useful electrode materials, such as platinum, are not very efficient in such 

functionalisation processes. Platinum electrodes are often preferred because of the 

reduction in electrode fouling and the ease with which they can be developed by 

machining (Schumann and Schmidt, 1992). Functionalisation of platinum electrodes
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can now be easily achieved by the growing up of a conductive polypyrrole matrix onto 

the electrode surface. By covalently binding redox mediators to the surface of this 

matrix, very stable electrodes have been prepared that catalyse the oxidation of NADH 

at an overpotential between 150 and 250mV vs Ag/AgCl (Schumann and Schmidt,

1992).

Carbon paste electrodes

Recently, the value of carbon paste as an electrode material in the construction of 

dehydrogenase-based biosensors has been assessed (Persson et al, 1993). The use of 

carbon paste results in low background currents and the organic environment that 

predominates is not detrimental to the biocomponent. Chemical modification of carbon 

paste electrodes is possible and results in electrodes with increased stability at alkaline 

pH, and so the electrodes that are formed are suitable for use with the alkaline-stable 

dehydrogenase enzymes. An ADH-based biosensor for alcohol was made by chemical 

modification of a carbon paste electrode with a polymer containing a covalently-bound 

phenothiazine dye. The overpotential applied was lOOmV vs Ag/AgCl (Persson et al,

1993). Another promising carbon paste electrode for ethanol detection was 

constructed by the entrapment of ADH and NAD in a polyethyleneimine matrix 

(Dominguez et al, 1993b).

Because of its favourable characteristics, especially with respect to dehydrogenase- 

based biosensors, carbon paste was chosen as the electrode material in the construction 

of enzyme electrodes described here. Moreover, an activated carbon material was 

available from the collaborating body, Cambridge Life Sciences, that did not require 

chemical modification to achieve NADH oxidation at a low overpotential. This 

activated carbon paste will now be described.

In 1988, Bennetto used a commercial electrode source as a glucose sensor following 

the simple adsorption of glucose oxidase to the electrode material (Bennetto, 1988).
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The electrode material consisted of a platinum-treated carbon mixture which was 

mixed with a teflon binder material to form a paste, before being compressed onto a 

carbon substrate. An electrode prepared using this activated carbon possesses the 

following properties which are conveyed by the material used.

1. The electrode functions as a solid platinum electrode, presumably due to the activation 

treatment with colloidal platinum; the electrode is consequently prone to less fouling, 

and, at the same time, is less expensive to produce.

2. The electrode operates at a lower operating potential than a platinum electrode; it is 

able to reduce NADH at an overpotential of+150mV vs Ag/AgCl.

3. The electrode is expected to have a longer lifetime compared to electrodes operated at 

high overpotentials, due to less interference and fouling. The stability of an enzyme 

electrode constructed using this electrode material is determined by the catalytic 

component, only.

4. Because the material is predominantly made of carbon, high enzyme loading by 

adsorption is possible.

5. The simplicity of the electrode construction overcomes major manufacturing problems.

The ability of the activated carbon paste electrode to regenerate NAD at a reduced 

overpotential was confirmed before experiments were carried out using the enzyme- 

coenzyme conjugates. &
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Oxidation o f reduced coenzyme at an overpotential of+J50mV vs Ag/AgCl using an 

activated carbon paste electrode

A description of the electrode set-up is given in section 5.3. The response of the 

activated carbon paste electrode to 0.0, 1.0, 2.0, 4.0 and 5.0 mM solutions of NADPH 

was examined, and the results shown in Figure 5.2. Although NADPH was used in 

place of NADH, the two coenzymes have a very similar oxidising potential (Elving et 

al, 1976).
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Figure 5.2: The response o f an activated carbon paste electrode to NADPH at an 
applied overpotential of+150mV vs Ag/AgCl.
The response shown has been corrected with respect to a working electrode containing no activated carbon at its surface. Electrode 
preparation: activated carbon particles (25mg) were mixed with 0.25ml phosphate buffer, lOOmM, pH 7.5 and spun down in a 
microfuge ( 5 mins). A commercial teflon binder material (0.04ml) was added to the pellet and mixed to form a paste. The paste was 
compressed onto the surface of a carbon support material (Toray1 paper) using a glass slide and left to dry for 15mins. A disc (0.2cm 
in diameter) was cut out and inserted into the linings of a working electrode The cell halves were assembled (reference = Ag/AgCl) 
and a potential of+150mV was applied to the cell, which was then left to attain a steady current before NADPH samples in PESK 
buffer were added to the sample cell, and the response recorded.

The electrode clearly responded well to NADPH with a change in current of 

400nA/mM NADPH due to the oxidation of NADPH at a low overpotential of

+150mV.
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5.1.2 Coenzyme immobilisation

The problem of coenzyme retention is solved, in our case, upon immobilisation of the 

enzyme because the coenzyme molecules are covalently bound to the enzyme 

molecules. Because the coenzyme is strongly bound to enzyme, any leaching will be 

due to the method of enzyme immobilisation. An enzyme electrode has been prepared 

using this sort of coenzyme immobilisation technique only once before (Torstensson 

and Johansson, 1980). An ADH-N6 AHCM-NAD conjugate preparation, synthesised 

by carbodiimide-activation of accessible surface acidic residues of ADH (Mansson et 

al, 1978) was adsorbed onto the surface of a glassy carbon electrode to form a 

biosensor for ethanol. However, a large overpotential was required to regenerate the 

coenzyme (550mV vs Ag/AgCl) and the enzyme-coenzyme conjugate was only 

intrinsically active for one catalytic cycle, reportedly due to decomposition of NADH 

at the surface of the glassy carbon electrode. Despite these problems it was pointed out 

that a more stable electrode could be attained by using a modified electrode surface 

and an electrode material that allows the oxidation of NADH at a reduced 

overpotential. The idea of a self-contained enzyme-coenzyme conjugate acting as the 

biocatalytic component of an NAD-dependent enzyme-electrode was still a good one: 

the problems that arose were electrochemical in nature.

The question still remains of how to immobilise the enzyme-coenzyme conjugate in our 

study.
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5.1.3 Enzyme immobilisation

Immobilisation of enzyme, in our case, is partly required to fix the enzyme in the close 

vicinity of the electrode surface so that each enzyme-bound coenzyme molecule can 

move 'back and forth' from the active sites of the LBH molecules to the electrode 

surface for regeneration {Figure 1.5). :

The possibility of covalent immobilisation {Section 1.2) inhibiting the enzyme is 

particularly relevant to the immobilisation of enzyme-coenzyme conjugates: the 

enzyme has already been covalently modified and, in most cases, its specific activity 

reduced as a consequence. Because of this, and because there are less surface residues 

on the enzyme available for covalent modification, this method of immobilisation was 

not chosen. The cross-linking method (entrapment) leads to a high density of 

immobilised enzyme activity but complicates the construction of the enzyme electrode 

{Section 1.2). This method has, however, been used in the preparation of 

dehydrogenase-based biosensors {Section 1.4) (Blaedel and Jenkins, 1976; Kulys, 

1991). The adsorption method was chosen for the immobilisation of the LDH- 

coenzyme conjugates in this study because:

1. It allowed a high enzyme loading. The adsorption method would allow a high density 

of intrinsic enzyme activity in the closest proximity to the electrode surface

2. It maintained the simplistic theme of the activated carbon paste electrode: the carbon 

electrode surface also acted as the adsorption support.

3. It was the most non-invasive of the immobilisation methods in that it was least likely 

interfere in the 'back-and-forth' movement of the enzyme-bound coenzyme to and from 

the electrode surface.
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Any desorption that might have occurred was minimised by maintaining constant pH, 

temperature, solvent conditions and ionic concentration throughout the electrode 

experiments. It was reasoned that desorption would not significantly affect the 

electrode experiments, which lasted up to a few hours at a time.

In order to confirm that the desorption effect would not affect the electrode studies, an 

experiment was carried out to investigate the stability of an enzyme preparation 

adsorbed onto the activated carbon material.

5.2 The stability o f LDH immobilised by adsorption onto an activated carbon 

electrode surface.

The criteria for successful adsorption of the enzyme was that a significant amount of 

active enzyme must be adsorbed to the carbon paste and its activity must remain stable 

for at least several hours. In order to examine the success of adsorption, native LDH 

was adsorbed to the activated carbon particles and an activated carbon paste prepared. 

The LDH activity present on the paste was measured intermittently over a period of 

several days. The method of Bennetto (1988) was modified to adsorb LDH onto 

activated carbon particles as follows:

Preparation o f immobilised LDH

Native LDH was mixed with activated carbon particles in a ratio of 10:1 (v/w) 

phosphate buffer. The suspension was left for one hour before the activated carbon 

was spun dow, the supernatant discarded and the pellet containing the adsorbed LDH 

formed into a paste by the addition of a teflon binder material. The paste was spread 

onto a layer of a conductive carbon paper or support and left to dry. The immobilised 

enzyme preparation was then stored in PESK buffer; one preparation was stored at
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room temperature and another at 4°C. The potential enzyme electrode material was 

analysed for LDH activity intermittently, over a period of 28 days.

Assay o f immobilised LDH for activity

A sample disc was cut out of the electrode material, using a punch of 0.5cm in 

diameter, and assayed for LDH activity (legend Figure 5.4). After assay, the 

immobilised enzyme disc was dried in a warm oven and weighed. The LDH specific 

activity present per mg of electrode material was then calculated.

The stability of the immobilised LDH preparations at 4°C and at room temperature are 

shown in Figure 5.4.
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Figure 5.4 The stability o f LDH activity present on activated carbon pastes prepared
by adsorption o f LDH. o = storage at 4°C; ■ = storage at room temperature. A sample disc was cut out of the 
bioelectrode material (see text) using a punch of 0.5cm in diameter, and added to a cuvette containing: 2.6ml lOOmM phosphate 
buffer, pH 7.5; 0.1ml 25mM pyruvate; 0.05ml 12mM NADH. The solution was mixed with an overhead stirrer and the absorbance 
of the solution at 340nm was measured at intermittent periods to monitor the decrease in NADH concentration. After assay, the 
immobilised enzyme disc was dried in a warm oven and weighed. The LDH specific activity present per mg of electrode material was 
then calculated.
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As can be seen, it was very important to store the prepared carbon pastes at 4°C 

because the stability at room temperature deteriorated rapidly after 3 days. However, 

on the third day, the LDH activity present on the pastes had only dropped slightly 

indicating that any desorption effects occurring within a few hours use of the pastes 

would not seriously convey instability into an enzyme electrode prepared from them.

In summary, each LDH-coenzyme preparation was immobilised onto the surface of an 

activated carbon paste electrode by adsorption. An overpotential of 150mV vs 

Ag/AgCl was applied to the electrode which was sufficient to oxidise any LDH-bound 

NADH that might be formed upon the addition of lactate solution.

5.3 Construction o f an enzyme electrode

A simplified representation of the enzyme electrode is shown in Figure 5.1, whilst a 

diagram of the apparatus used is shown in Figure 5.5.

Each LDH-coenzyme conjugate solution was concentrated against solid 

polyethyleneglycol before immobilisation onto the surface of adsorbtive activated 

carbon particles as described above. The final concentrations of each LDH-coenzyme 

conjugate used are shown in Table 5.1. Once the carbon paste biosurface had been 

prepared, discs of 0 .2 cm diameter were cut out of it using a punch and inserted into 

the lining of a working electrode (Figure 5.6).
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WE = working electrode 
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Figure 5.5: Diagram o f the apparatus used to study a reagentless enzyme electrode 
for lactate incorporating LDH-coenzyme conjugates. Purpose of the counter electrode is to 
account for any potential difference occurring between the reference and working electrodes.

As Figure 5.5 shows there were two working electrodes. This allowed the response of 

two different enzyme electrodes to the same substrate to be studied at the same time; 

an electrode containing an LDH-coenzyme conjugate could be run alongside one 

containing native LDH and no coenzyme.
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Figure 5.6: Photographical representation o f the construction o f an enzyme 

electrode.
A  = t i t a n i u m  e l e c t r o d e  l i n i n g ;  B  =  p l a t i n i s e d  c a r b o n  s u r f a c e  ( w i t h  a d s o r b e d  e n z y m e ) ;

C  = p o l y c a r b o n a t e  m e m b r a n e :  D  =  " O "  r i n g
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Table 5.1
Properties o f enzyme-coenzyme conjugates before and after

use in electrode studies

Activity (U/mg)
Protein

Enzyme Intrinsic Specific concentration
(mg/ml)

LDH 0.00  0 . 0 0 18.9 18.0 1.1

LDH-NAD 0.09  0.07 2.3 2.0 1.0

LDH-N6AHCM-NAD 0.12 0 . 1 0 4.7 3.9 2.0
Figures in bold denote activities of conjugates after a 14-day electrode
study period

The electrodes were covered with a polycarbonate membrane (pore size 50nm) which 

was held in place with a rubber 'O' ring (Figure 5.6). This membrane provided a 

physical barrier against interfering proteins that might be present in the sample 

solution. The cell halves were assembled and the solution chamber filled with PESK 

buffer, pH 7.4. An overpotential of +150mV was applied to the cell using a 

potentiometer and the cell was then left until a steady current was reached in both 

working electrodes (30mins). The current flowing through each electrode was 

recorded on a twinned-pen chart recorder. A sample solution containing lactate was 

pipetted into the solution chamber and any change in the current of each working 

electrode was measured by the chart recorder. The response time was generally 

between 1 and 2 minutes. The cell was washed with PESK buffer and each electrode 

allowed to reach a steady current against a blank buffer solution before the addition of 

the next lactate sample (5 minutes).
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Part Two

5.4 Properties o f reagentless NAD-dependent enzyme electrodes constructed using

LDH-coenzyme conjugates

5.4.1 Response to lactate

Native LDH was used to prepare a control enzyme electrode which did not possess 

immobilised coenzyme. The response of this control electrode was examined alongside 

the LDH-coenzyme conjugate electrode for each lactate measurement.

5.4.1.1 Response o f enzyme electrodes prepared using an LDH-NAD conjugate

The modified-enzyme-containing carbon paste electrode was constructed and tested 

immediately after preparation. An electrode was constructed several times, but no 

discernible response to lactate concentrations of 0.5mM, 2mM, lOmM, lOOmM or 

500mM was obtained.

5.4.1.2 Response o f enzyme electrodes prepared using an LDH-rfAHCM-NAD 

conjugate

The modified-enzyme-containing carbon paste electrode was constructed and tested 

immediately after preparation. The average responses of the electrodes prepared to 

concentrations of lactate ranging from 0.5 to lOmM are shown in Figure 5.7.

The corrected or 'real' response, was calculated by subtraction of the response obtained 

from the electrode prepared using native LDH from the response obtained from the 

electrode prepared using the LDH-N6 AHCM-NAD conjugate. A clear difference in the 

two responses was evident, the difference in response being 12nA/mM lactate greater 

for the coenzyme-containing electrode. The response was linear for the concentration 

range measured, 0.5-10mM, and the detection limit was between 0.5 and ImM.
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Figure 5.7: The response o f a reagentless enzyme electrode for lactate o = uncon-ected

response; •  = corrected response; ■ = control response. Electrode preparation: activated carbon particles (25mg) were mixed with 
0.25ml LDH or LDH-N6AHCM-NAD in lOOmM phosphate buffer, pH 7.5 and spun down in a microfuge ( 5 mins). A commercial 
teflon binder material (0.04ml) was added to the pellet and mixed to form a paste. The paste was compressed onto the surface of a 
carbon support material (Toray' paper) using a glass slide and left to dry for 15mins. A disc (0.2cm in diameter) was cut out and 
inserted into the linings o f a working electrode The cell halves were assembled (reference = Ag/AgCl) and a potential of +150mV 
was applied to the cell, which was then left to attain a steady current, before lactate samples in PESK buffer were added to the sample 
cell, and the control and normal response recorded on a twinned-pen chart recorder.

The response to lOOmM lactate was also measured using an electrode prepared in the 

same way as the LDH-N6AHCM-NAD electrode, but using an unplatinised carbon 

preparation as the electrode base. A clear difference in response can be seen {Figure 

5.8)', the response of the latter was lower at 5nA/mM lactate. In addition, the response 

time of the electrode was slower (3 mins) and less linear when the lactate concentration 

was varied.
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Figure 5.8: Comparison o f responses o f reagentless enzyme electrodes for lactate
prepared using different electrode materials. Electrode preparation: activated carbon particles (25mg) 
were mixed with 0.25ml LDH or LDH-N6AHCM-NAD in lOOmM phosphate buffer, pH 7.5 and spun down in a microfuge ( 5 
mins). A commercial teflon binder material (0.04ml) was added to the pellet and mixed to form a paste. The paste was compressed 
onto the surface of a carbon support material (Toray1 paper) using a glass slide and left to dry for 15mins. A disc (0.2cm in diameter) 
was cut out and inserted into the linings of a working electrode The cell halves were assembled (reference = Ag/AgCl) and a potential 
of+150mV was applied to the cell, which was then left to attain a steady current, before lactate samples in PESK buffer (Materials 
and Methods) were added to the sample cell, and the control and normal response recorded on a twinned-pen chart recorder.

5.4.2 Reproducibility o f the lactate response

The reproducibility of the lactate response generated by the same enzyme electrode 

could not be measured because of an instability effect (see below). However, Table 5.2 

shows the reproducibility of the response to lOmM lactate constructed by using three 

different fresh preparations of LDH-N6 AHCM-NAD adsorbed to activated carbon.

It is clear that there was a definite increase in response to lOmM lactate due to the 

covalent immobilisation of NAD onto molecules of LDH.
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Table 5.2
Reproducibility o f lactate response

Preparation Control response Uncorrected response Corrected response

A 7.9 20.5 1 2 . 6

B 6 . 8 20.7 13.9
C 9.0 19.2 1 0 . 2

Mean 7.9 2 0 . 1 1 2 . 2

S.D. 1 . 1 0.82 1 . 8

Control response = response from electrode prepared with native LDH 
Uncorrected response = response from electrode prepared with LDH-N^AHCM-NAD 
Corrected response = Uncorrected response - control response
Electrode preparation: activated carbon particles (25mg) were mixed with 0.25ml LDH or LDH-N6AHCM-NAD in lOOmM 
phosphate buffer, pH 7.5 and spun down in a microfiige (5  mins). A commercial teflon binder material (0.04ml) was added to the 
pellet and mixed to form a paste. The paste was compressed onto the surface o f a carbon support material ('Toray' paper) using a 
glass slide and left to dry for 15mins. A disc (0.2cm in diameter) was cut out and inserted into the linings o f a working electrode 
The cell halves were assembled (reference = Ag/AgCl) and a potential of+150mV was applied to the cell, which was then left to 
attain a steady current, before lactate samples in PESK buffer (Materials and Methods) were added to the sample cell, and the 
control and normal response recorded on a twinned-pen chart recorder.

5.4.3 Electrode stability

After the electrode material prepared using the LDH-N6 AHCM-NAD conjugate was 

subjected to 6  days storage in PESK buffer at 4°C a cell was again constructed and the 

response of the electrode to lactate concentrations between 0.5 and lOmM measured. 

The response was again rapid and linear, but had decreased in size to 7.2nA, 60% of 

the original response. Desorption of enzyme heavily contributed towards this 

instability {Figure 5.2). However, the half-life of the electrode material was 

dramatically reduced when the enzyme-coenzyme conjugate paste was incorporated 

into a polarised electrode, with an overpotential of+150mV.

The responsive enzyme electrode prepared using LDH-N6 AHCM-NAD adsorbed onto 

activated carbon particles demonstrated a pronounced lack of stability when used for 

extensive periods. The instability did not depend on whether activated carbon or 

untreated carbon was used as the electrode base.
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For example, the enzyme electrode that initially gave rise to the response shown in 

Figure 5.7 was also tested after 3 hours of polarisation. A comparison of the corrected 

responses, before and after polarisation is given in Figure 5.9. As can be seen, the 

response to lOmM lactate was very much reduced, in fact, to only 28% of the original 

response, indicating a half-life of 1.5 hours.
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Figure 5.9: Comparison o f enzyme electrode response to lactate after 3 hours o f  
polarisation at an overpotential o f 150mV VS Ag/AgCl ■ = before polarisation; O  = after polarisation.
Electrode preparation: activated carbon particles (25mg) were mixed with 0.25ml LDH or LDH-N6AHCM-NAD in lOOmM 
phosphate buffer, pH 7.5 and spun down in a microfoge ( 5 mins). A commercial teflon binder material (0.04ml) was added to the 
pellet and mixed to form a paste. The paste was compressed onto the surface of a carbon support material (Toray1 paper) using a glass 
slide and left to dry for 15mins. A disc (0.2cm in diameter) was cut out and inserted into the linings of a working electrode The cell 
halves were assembled (reference = Ag/AgCl) and a potential of +150mV was applied to the cell, which was then left to attain a 
steady current, before lactate samples in PESK buffer (Materials and Methods) were added to the sample cell, and the control and 
normal response recorded on a twinned-pen chart recorder.

The response of a fresh electrode preparation to lOmM lactate was measured 

repeatedly at ten minute intervals. As Figure 5.10 shows a half-life of 1.5 hours was 

confirmed.
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Figure 5.10: Instability o f enzyme electrode response to repeated applications o f
lOmM lactate. Electrode preparation: activated carbon particles 25mg were mixed with 0.25ml LDH or LDH-N^AHCM- 
NAD in lOOmM phosphate buffer, pH 7.5 and spun down in a microfiige ( 5 mins). A commercial teflon binder material (0.04ml) 
was added to the pellett and mixed to form a paste. The paste was compressed onto the surface of a carbon support material (T'oray* 
paper) using a glass slide and left to dry for 15mins. A disc (0.2cm in diameter) was cut out and inserted into the linings of a working 
electrode. The cell halves were assembled (reference = Ag/AgCl) and a potential of+150mV was applied to the cell, which was then 
left to attain a steady current, before lactate samples in PESK buffer (Materials and Methods) were added to the sample cell, and the 
control and normal response recorded on a twinned-pen chart recorder.

Further investigations were then carried out into the cause of this stability. An LDH- 

N6 AHCM-NAD activated carbon paste disc was inserted into the lining of each 

working electrode; both electrodes were polarised with an overpotential of +150mV. 

The response of each electrode to 5mM lactate was measured; one electrode was then 

disconnected from the potentiometer, whilst the other remained polarised, and each 

electrode left for 5 hours. No electrode response to 5mM lactate could be obtained 

from the polarised electrode after 5 hours, whereas the response from the unpolarised 

electrode remained the same {Table 5.3). Upon addition of a solution of 3mM NAD in 

PESK buffer, a steady response of llOnA was obtained in the polarised electrode, 

indicating that the immobilised enzyme was still fully active, because the current
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obtained from the fresh electrode in the presence of 3mM NAD was 120nA (Table 

5.3).

Table 5.3
The effect o f an applied overpotential of+150mV upon the intrinsic and specific 

activities o f immobilised LDH-N6AHCM-NAD

Polarisation time Current change (nA)
(hrs) + 5mM lactate + 5mM lactate + 3mM NAD

0.5 50 (57)“ 120 (109)
5.0 2(49) 110(103)

a Figures in brackets represent response of a similar working electrode that was left unpolarised overnight
Responses shown for LDH-N6AHCM-NAD activated carbon paste electrode after polarisation time showrLElectrode preparation: 
activated carbon particles (23mg) were mixed with 0.25ml LDH or LDH-N^AHCM-NAD in lOOmM phosphate buffer, pH 7.5 and 
spun down in a microfuge ( 5 mins). A commercial teflon binder material (0.04ml) was added to the pellet and mixed to form a paste. 
The paste was compressed onto the surface of a carbon support material (Toray1 paper) using a glass slide and left to dry for 15mins. 
A disc (0.2cm in diameter) was cut out and inserted into the linings of a working electrode. The cell halves were assembled (reference 
= Ag/AgCl) and a potential o f+150mV was applied to the cell, which was then left to attain a steady current, before lactate samples 
in PESK buffer {Materials and Methods) were added to the sample cell, and the control and normal response recorded on a twinned- 
pen chart recorder.

As Table 5.3 shows the instability of the electrode was only increased when an 

overpotential was applied to the cell. The specific activity of the enzyme moiety of the 

LDH-N6 AHCM-NAD conjugate was unaffected by the applied overpotential, 

indicating that the loss of intrinsic activity of the enzyme-coenzyme conjugate was due 

to a loss in functioning coenzyme.
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CHAPTER 6 

Conclusions

The adenine-modification of NAD can be used to introduce functional groups that can 

improve the coupling chemistry of the coenzyme with respect to its conjugation to 

proteins. To this end, N6 CM-NAD and N6 AHCM-NAD were synthesised and the 

properties of the final derivatives were in good agreement with those found in previous 

similar syntheses (Lindberg et al, 1973). The derivatives showed good substrate and 

recycling activity with both ADH and LDH, both activities ranging between 52 and 

8 8 % of the corresponding activities of unmodified NAD. The KM of LDH for each of 

the free coenzyme derivatives was three times larger than the corresponding KM for 

NAD, but past enzyme-coenzyme conjugate studies have shown that the behaviour of 

an enzyme towards a coenzyme derivative can change dramatically upon the covalent 

linkage of the derivative to the enzyme surface (Nakamura et al, 1986). Hence, 

although the affinity of LDH for NAD in free solution was slightly reduced upon 

modification of the coenzyme, the effect of the covalent binding of the NAD 

derivatives in the vicinity of the active site of the enzyme may improve the substrate 

activity of each of the derivatives.

Table 6.1
The effects o f various coupling techniques upon the specific activity o f the enzyme

Enzyme
Glutaraldehyde

Coupling methodb 
Carbodiimide Terephthalaldehyde "disulphide"c

LDH 1 2 -2 2 a 41-79 — 30-49

ADH 0.0-0.3 4-6 100 —

GDH 40-100 41-86 — —

a in units of pmoles/min/mg protein 
b used to couple NAD, N6AHCM-NAD (and N6CM-NAD)
c Involves the modification of lysyl residues with Traut's reagent, followed by DPDS modification, followed by modification with 
thiolated coenzyme molecules

Upon modification of a dehydrogenase using glutaraldehyde or carbodiimide coupling 

techniques, a reduction in the specific activity of the enzyme generally occurred, but
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this was usually not serious (Table 6.1). A notable exception was the glutaraldehyde 

modification of yeast ADH, with an almost total loss of enzyme activity occurring after 

modification. It was subsequently found that the aromatic dialdehyde, 

terephthalaldehyde, may provide a good alternative to glutaraldehyde as a coupling 

reagent in cases where glutaraldehyde is not suitable.

There was no detectable loss in specific activity of the yeast ADH after modification 

with terephthalaldehyde. Previous dehydrogenase modification studies using pyridoxal- 

5-phosphate go some way to explaining the loss in activity of the dehydrogenases after 

modification with glutaraldehyde as the mechanism of reaction of pyridoxal-5- 

phosphate with lysyl residues is thought to be the same as that of glutaraldehyde. 

However, glutaraldehyde also reacts with other amino acid residues such as cysteine, 

histidine and tyrosine (Habeeb and Hiramoto, 1968). Similarly, carbodiimide 

compounds are also known to react with residues other than glutamate or aspartate 

and so the loss in specific activity cannot be totally put down to modification of 

sensitive acidic residues. Chemical modification using glutaraldehyde and carbodiimide 

is random in nature and, although they are established coupling reagents, the reason for 

any loss of specific activity cannot be clearly defined. In this respect the "disulphide" 

coupling approach taken in Chapter 4 is preferable: it is a more specific coupling 

technique.

In order to establish, firstly, the number of coenzyme molecules incorporated onto an 

enzyme surface and, secondly, the intrinsic activity of an enzyme-coenzyme conjugate, 

the isolation of the conjugate from all traces of free coenzyme must first be confirmed. 

During the preparation of each enzyme-coenzyme conjugate a "baseline" separation of 

the protein material from free coenzyme on a Sephacryl S-100 gel filtration column 

was sufficient to ensure that there were no traces of free coenzyme that were 

detectable by the sensitive coenzyme-recycling assay of Nisselbaum and Green (1969). 

In addition, the conjugates were washed with activated charcoal which removed any 

non-covalently bound coenzyme that was firmly bound to the enzyme by electrostatic, 

hydrophobic or other forces. It was established that any coenzyme that was detected in 

any of the assays used was covalently bound.
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From the analysis of the total number of bound coenzyme molecules per enzyme 

subunit, it could be inferred that, proportionately, more GDH and ADH residues were 

accessible for coupling than LDH residues. The difference in average coenzyme 

incorporation of the GDH subunit could not be accounted for by its larger molecular 

weight (56,000) compared to LDH (35,000) or ADH (36,000). The table below shows 

the average number of coenzyme molecules incorporated per 1 0 0 0  molecular weight 

of subunit for the glutaraldehyde and carbodiimide coupling of N6 AHCM-NAD to 

GDH, ADH and LDH. It must be noted that past studies with malate dehydrogenase 

have shown the chemical modification of enzymes with coenzymes to be a random 

process, with not all enzyme subunits having coenzyme incorporated to an equal 

extent (Eguchi et al, 1986). The "total" molar ratio of coenzyme to enzyme subunit 

can only be taken as an average value. The coupling of N6 AHCM-NAD was 

indicative of the proportion of incorporation of the other coenzymes used, NAD and 

N6 CM-NAD.
Table 6.2

Incorporation ofN6AHCM-NAD into various dehydrogenases 
using glutaraldehyde or carbodiimide-mediated coupling

techniques

Enzyme Coupling method

Glutaraldehyde Carbodiimide

LDH 0.05 0.03

ADH 0 . 1 0 0.13

GDH 0 . 1 2 0 . 1 2

Values represent the number o f N6AHCM-NAD molecules incorporated per 1000 MW of 
subunit.They were estimated by measuring the 266/290nm absorbance ratio o f an enzyme- 
coenzyme conjugate solution

As can be seen, despite the hexameric contacts formed between surfaces of the 

glutamate dehydrogenase subunits compared to the tetrameric contacts of the LDH 

subunit surfaces, proportionately more lysine and acidic residues were available for 

coupling on a GDH subunit surface. Glutaraldehyde and carbodiimide coupling 

methods did not differ in their success with respect to coenzyme incorporation. In 

general, more N6 AHCM-NAD molecules were incorporated than either NAD or 

N6 CM-NAD molecules using glutaraldehyde, terephthalaldehyde, carbodiimide and



237

the "disulphide” coupling techniques. The reactive amine function of this derivative 

enabled the coenzyme to be used in all of these couplings. The long "hexyl" spacer 

arm of N6 AHCM-NAD is 1.1 nm longer than the spacer arm of N6 CM-NAD and 

1.4nm longer than NAD, which does not possess a spacer arm. The longer spacer arm 

of N6 AHCM-NAD could have enabled the terminal amine function of the coenzyme 

to act as an effective probe, making it more accessible to enzyme residues in folds and 

clefts on the globular surface of the enzyme molecule. The amine of N6 AHCM-NAD 

was also more reactive than the amine function of NAD, which is subject to the 

electron delocalisation and steric hindrance effects caused by the proximity of the 

purine ring. The coupling experiments performed using N6 AHCM-NAD served to 

further establish the usefulness of this coenzyme as an activated NAD derivative.

Although carbodiimide-mediated reaction is promoted by an excess of nucleophilic 

amine there was no obvious difference in the incorporation of N6 CM-NAD or 

N 6 AHCM-NAD (Table 6.3). In the use of N6 CM-NAD in carbodiimide-mediated 

coupling experiments, the coenzyme was itself activated and in excess of the 

nucleophilic amine of the enzyme subunits, this did not seem to influence the success 

of carbodiimide-mediated amide bond formation.

Table 6.3
Difference in incorporation o f carboxyl- and amine- 

containing NAD derivatives onto enzyme subunit surfaces 
using carbodiimide coupling

Enzyme Coenzyme
n 6c m -n a d  n 6a h c m -n a d

LDH 1 . 8  1 . 0

GDH 5.9 6 . 8

ADH 1.5 4.5

Considering the reported accessibility of lysyl, aspartyl and glutamyl residues of LDH 

it is not known why only a small fraction of them was available for coupling with 

coenzymes. Over half of the 24 lysyl residues of pig heart LDH are completely 

exposed. However, despite a large excess of coupling reagent and coenzyme, no more 

than two of these residues reacted with glutaraldehyde or carbodiimide to incorporate
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coenzyme onto the enzyme surface. Incorporation of coenzyme was slightly greater 

using terephthalaldehyde; the small aromatic molecule may have reached lysyl residues 

that the polymeric aliphatic glutaraldehyde molecule could not, but still no more than 

three lysyl residues were modified. The apparent low accessibility of surface residues 

was also found in the case of the GDH and ADH coenzyme-modification studies; far 

more lysyl and acidic residues were expected to be accessible to modification than 

were actually modified. Low coenzyme incorporation has also been observed in past 

enzyme-coenzyme conjugate studies, with often less than one coenzyme being 

incorporated per subunit. One reason for this may be the hindrance of the approach of 

coupling reagent or coenzyme derivative by surrounding enzyme residues. This 

hindrance may be steric or may be due to hydrophobic or charge repulsion effects. For 

example, the approach of the hydrophobic spacer arm of N6 AHCM-NAD towards a 

carbodiimide-activated acidic residue may be repelled by the surrounding hydrophilic 

surface residues. Even though a lysyl or acidic residue may be exposed, the reactivity 

of the residue may be reduced by the conditions of the microenvironment created by 

surrounding enzyme residues. This has indeed been known to happen in previous 

protein modification studies (Lundblad and Noyes, 1984) and this may be another 

reason which explains the low incorporation of coenzyme molecules. It can also be 

envisaged that, when one or two bulky coenzyme molecules have been covalently 

bound to a subunit they form physical or chemical barriers to the approach of further 

coenzyme derivatives towards the appropriate subunit residues. Whatever the reason 

for the low coenzyme incorporation, the formation of a successful enzyme-coenzyme 

conjugate with high intrinsic activity is not necessarily related to the number of 

incorporated coenzyme molecules. All coenzymes were incorporated to some extent 

using the coupling methods employed in this study and this led to the chance that some 

molecules would bind near the active site where they would be available for interaction 

with the coenzyme binding site, and would therefore form enzyme-coenzyme 

conjugates with high intrinsic activity.

An "active" molar ratio of covalently-bound coenzyme to enzyme subunit was 

determined to indicate the activity of the bound coenzymes with neighbouring enzyme 

molecules, in other words the intermolecular substrate activity of the bound 

coenzymes. On the whole, a substantial proportion of bound coenzyme molecules were
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intermolecularly active, proving that coenzyme molecules bound to one enzyme can 

act as immobilised coenzymes for other enzyme reactions. Initially, it was thought that 

the success of the intermolecular activity of a bound coenzyme would be related to the 

length of the spacer arm separating it from the surface of the enzyme anchor, the 

longer spacer arm allowing the coenzyme to protrude further into the surrounding 

solution where it would be more available for interaction with the active sites of 

neighbouring enzyme molecules. However, the intermolecular activity of a bound 

coenzyme did not seem to be dependent on any one factor. For instance, the long 

spacer arm of N6 AHCM-NAD did not seem to make the NAD moiety any more 

accessible for interaction with a neighbouring enzyme molecule than NAD or N6 CM- 

NAD. The same could be said for the spacer arm of N6 CM-NAD compared to the 

non-existent spacer arm of NAD. The lower substrate activity of each of the NAD 

derivatives was taken into account during the calculation of intermolecular substrate 

activity and so this could not explain why the longer spacer arms did not provide a 

better interaction between the bound NAD moiety and surrounding enzyme molecules. 

If we look at the availability of carbodiimide-coupled LDH-coenzyme conjugates we 

can see that 100% of the 0.3 NAD molecules bound, on average, per subunit were 

available for reaction with ADH. However, only 20% of the 1.8 N6 AHCM-NAD 

molecules bound per subunit and only 17% of the 1.0 N6 CM-NAD molecules were 

available for reaction with a second enzyme. The NAD molecules were likely to bind 

to the most accessible activated residue on the LDH surface whereas the spacer arms 

of the NAD derivatives made them more accessible to other more buried activated 

residues. The availability of covalently bound N6 AHCM-NAD, for example, to a 

neighbouring enzyme molecule could be explained if the residue anchoring the bound 

NAD molecule was the only position that was accessible to neighbouring enzyme 

molecules, and only 20% of the N6 AHCM-NAD molecules were bound at this 

position. The intermolecular activity of the bound coenzyme molecules may be 

interesting as the enzyme-coenzyme conjugates may be used in this way as coupled 

regeneration units, for example, in enzyme reactors. It also shows that the bound 

coenzyme molecules may be available to interact with an electrode surface when the 

enzyme-coenzyme conjugates are immobilised in the close vicinity of the potential 

gradient of an electrode. However, it must be noted that, with respect to enzyme 

electrodes there was also a requirement for an intramolecular activity of the
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conjugates. The covalently bound coenzymes that can interact with an electrode 

surface must also be able to interact with the active site of a neighbouring enzyme- 

coenzyme molecule or the active site of the enzyme to which it is bound to, in order 

for coenzyme regeneration and the generation of a physicochemical signal (reduced 

coenzyme) to occur. However, intramolecular activity would probably be more 

successful because the enzyme molecules were not free to diffuse and interact when 

immobilised at the electrode surface and thus an intermolecular reaction would be 

restricted.

By using the kinetic method first applied by Mansson et al (1978) it was possible to 

determine a predominantly intramolecular mechanism for the intrinsic activity of the 

glutaraldehyde-coupled LDH-N6 AHCM-NAD conjugate of Gacesa and Venn (1979). 

Thus, the method of Gacesa and Venn used to couple coenzyme to LDH was firmly 

established and suggestions made by Eguchi et al (1986) that conjugate formation in 

this particular case was dubious, were refuted. The glutaraldehyde-coupled LDH- 

N 6 AHCM-NAD conjugate adds to the increasing list of other enzyme-coenzyme 

conjugates that have an intramolecular mechanism for their intrinsic activity: ADH- 

N6 AHCM-NAD coupled via carbodiimide (Mansson et al, 1978), GlcDH-PEG-NAD 

(Nakamura et al, 1986) and GlcDH-SPDP-N6 AHCM-NAD (Persson et al, 1991). The 

presence of an intramolecular mechanism proved for the LDH-N6 AHCM-NAD 

conjugate that some of the bound molecules were able to interact with the active site. 

The intermolecular mechanism was probably less dominant for two reasons: firstly, 

the conjugated coenzyme was covalently bound to the enzyme and was therefore in a 

permanent close contact with the active site of the enzyme molecule. It therefore has 

more chance of reacting than coenzymes that are covalently attached to neighbouring 

enzyme molecules which are freely diffusing through solution. Secondly, the bound 

coenzyme probably interferes with the reaction between the active site of an enzyme 

and coenzyme molecules attached to surrounding enzyme molecules.

Because the mechanism of intramolecular and intermolecular activity is different, a 

direct comparison could not be made between the activity of an enzyme-coenzyme 

conjugate and the activity of an unmodified enzyme with a corresponding 

concentration ratio of free coenzyme to enzyme subunit. The chances of an enzyme-
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coenzyme molecule with an intramolecular mechanism reacting with substrate is 

independent of the enzyme concentration in solution, but an unmodified enzyme 

molecule with a corresponding ratio of free coenzyme in solution has more chances of 

interacting with coenzyme with a higher enzyme concentration. In other words, the 

two systems cannot be compared because one is dependent upon the enzyme 

concentration, while the other is not. However, we can compare activity at a defined 

concentration of enzyme to give us a comparison of the efficiency of the two systems. 

For example, as was seen in Figure 3.24, at an enzyme subunit concentration of less 

than 63 (iM (2mg/ml), the LDH-N6 AHCM-NAD conjugate was more efficient in terms 

of pmoles lactate converted / min / mg protein, despite the modified enzyme having 

only 1 2 % of the specific activity of the unmodified enzyme. Above this concentration 

the unmodified enzyme in the presence of free coenzyme became more efficient. 

Despite the efficiency of the LDH-N6 AHCM-NAD conjugate, below a certain enzyme 

concentration the intrinsic activity of the conjugate was only 2.5% of the activity of the 

conjugate in the presence of exogenously added coenzyme. In order to realise fully the 

potential of enzyme-coenzyme conjugates it was hoped that the intrinsic activity of the 

conjugates would have been comparable to the specific activity of the conjugate. The 

enzyme-coenzyme conjugate with the highest proportion of intrinsic activity to specific 

activity was the GDH-NAD conjugate formed using glutaraldehyde, with the intrinsic 

activity of this conjugate representing 20% of its specific activity. The activity of this 

conjugate was also compared to the activity of native GDH in the presence of a 

corresponding ratio of free coenzyme, both enzymes being present in a recycling assay 

at 0.2mg/ml. The conjugate was ten times more active at the defined concentration 

than the native enzyme with an equal ratio of coenzyme (exogenously added) per 

enzyme subunit.

Despite the greater efficiency of the enzyme-coenzyme conjugates at a lower enzyme 

concentration, the fact remains that a full interaction of covalently bound coenzyme 

with the enzyme active site does not seem to have been realised in any of the 

conjugates synthesised in this study. In order to understand why this was the case we 

shall now consider the intrinsic activity of the LDH-coenzyme conjugates in relation to 

their spacer lengths. The proximity of suitable lysyl residues to the coenzyme binding 

site of pig heart LDH was discussed in Section 3.10. The e-amine groups of the most



242

suitable residues were 1.3nm (Lys 121) and 1 .2 nm (Lys 83) away from the N6  amine of 

an NAD molecule catalytically bound at the active site. This distance was thought to 

reflect the approximate length of a suitable spacer arm. Indeed, the minimum limit for 

the optimum length of a spacer arm was set at 1.2nm by Warth et al (1989) using pig 

heart LDH. The length of the spacer arm of N6 AHCM-NAD coupled using 

glutaraldehyde was at least 2 .1 nm but the intrinsic activity of the conjugate was only 

0.12 U/mg - only 2.5% of the specific activity of the conjugate. The spacer arm, in this 

case, may have been too long and not flexible enough too allow the NAD moiety to 

interact with the active site. It seems more likely, however, that most of the 1.8 

N6 AHCM-NAD molecules bound per subunit did not bind at one of the desired 

lysines. Chemical modification of enzymes to introduce coenzymes, especially using 

glutaraldehyde which polymerises readily in solution, is a very random approach and it 

may well be that a more defined approach is needed in order to fully realise the 

potential of the enzyme-coenzyme conjugate. The spacer length of the glutaraldehyde- 

coupled LDH-NAD molecule was at least 1.2nm because an intrinsic activity was 

obtained at 0.09U/mg, 4% of the specific activity of the modified enzyme. This proves 

that the glutaraldehyde polymerises to a certain extent as a single glutaraldehyde 

molecule would only introduce to an LDH-NAD conjugate a spacer arm of 0.7nm in 

length and would not allow the bound coenzyme to interact with the active site. If we 

look at carbodiimide-coupled conjugate formed between activated coenzyme carboxyl 

groups and lysyl residues of LDH, it can be seen that the intrinsic activity was less than 

0.2% of the specific activity of the modified enzyme. This reflects that the 0.3nm 

spacer of LDH-N6 CM-NAD is too short to allow the lysine-bound coenzyme to 

interact with the active site of LDH. The small intrinsic activity observed was probably 

due to an intermolecular reaction mechanism. In Section S. 10 it was also found that the 

carboxyl carbon atom of each of 3 accessible acidic residues were within 1.0-1.4nm of 

the adenine moiety of an NAD molecule catalytically bound at the active site. As 

expected, the LDH-NAD conjugate coupled via carbodiimide which did not have a 

spacer arm had an intrinsic activity that was less than 0 .2 % of the specific activity of 

the modified enzyme, but so did the LDH-N6 AHCM-NAD conjugate, which had a 

spacer arm of 1.4 nm. It would seem that the coenzyme did not bind to any of the 

suitable acidic residues described.
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Attempts at forming enzyme-coenzyme conjugates via a disulphide bond were made to 

observe the effect of a higher incorporation of coenzyme, and to see if the specific 

reaction of cystyl residues with thiol-containing coenzyme derivatives would lead to 

the formation of enzyme-coenzyme conjugates with intrinsic activity. In an effort to 

form a thiolated NAD derivative the inertness of the N6amine group of NAD was 

demonstrated: all attempts to react NAD with the iminium-activated carbon of 2- 

iminothiolane failed despite attempts to vary pH, temperature, excess of 2- 

iminothiolane and reaction volume. Attempts were also made to modify NAD using 

the A-hydroxysuccinimide-activated carbon of A-hydroxysuccinimidyl-iS'-acetylthio- 

acetate. Again the coenzyme failed to react, probably due to the steric hindrance or 

poor nucleophilicity of the amine group. It seems a defined reaction of the amine is 

difficult to achieve, but Dimroth rearrangement of N-l modified NAD is now possible 

under mild reaction conditions and this may be an alternative way in which the 

unmodified coenzyme can be thiolated (Buckmann, 1987).

a + —
NHjCl

HN — CH—  GO—  NH— CH—  CH—  CH—  CH— Ctf— CIH-NH—  C—  CH—  CH—  CH-  SH 
2 2 2 2 2 2 2  2 2 2

R-P-P-R-Nm

b.

HN —  CH—  CO—  N H -  CH —  CH—  SH 
2 2 2

R-P-P-R-Nm

Figure 6.1: The structures o f thiol-containing NAD derivatives, (a.) 
N6thiobutyrimidate-[(aminohexyl)carbamoylmethyl]-NAD and (b.) N6(2-thioethane)- 
1-carboxamido-methyl-NAD

The aliphatic amine group of N6 [(aminohexyl)carbomylmethyl]-NAD was more 

reactive with 2-iminothiolane than the amine of NAD. 37% of the N6 AHCM-NAD
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molecules were thiolated, although only limited attempts were made to optimise the 

reaction conditions. The proposed structure of the new derivative is shown in Figure 

6.1. The thiolated coenzyme has a total spacer length of 2.2nm consisting of a hexyl 

and propyl stretch with an intervening amidine bond and a terminal thiol group. A 

different modification was carried out to thiolate the carboxyl-fimction of N6 CM- 

NAD: an excess of 2-aminoethanethiol was added in the presence of a small amount of 

carbodiimide to promote the formation of an amide bond between the coenzyme 

carboxyl function and the amine function of 2-aminoethanethiol. The extent of 

thiolation was 51% and the structure of the thiolated coenzyme is shown in Figure 6.1, 

the total spacer length is 0.9nm.

The substrate activity of each of the thiolated coenzyme derivatives was determined at 

saturating concentrations in a recycling assay with ADH. Upon thiolation, the substrate 

activity of N6 AHCM-NAD was reduced from 51% of the substrate activity of 

unmodified NAD to 31%. Similarly, the thiolated N6 CM-NAD had 23% of the 

substrate activity of NAD compared to a value of 77% for N6 CM-NAD alone. These 

thiol-conataining NAD derivatives have a better substrate activity with ADH than the 

SPDP-N6 AHCM-NAD dervative described by Persson et al (1991) did with glucose 

dehydrogenase, but glucose dehydrogenase is known to be sensitive to changes at the 

adenine position of NAD (Nakamura et al, 1986). The introduction of a thiolated 

methylene chain at the amine and carboxyl functions leads to a further decrease in 

substrate activity compared to the original derivatives. We can conclude that the 

extension of the spacer arm weakens the efficiency of the enzyme-coenzyme 

interaction perhaps by interfering unfavourably with the enzyme residues surrounding 

the coenzyme binding site of ADH. However, the thiolated coenzymes have significant 

substrate activity and they may be useful for the specific and reversible anchorage of 

coenzymes to thiol residues in coenzyme immobilisation applications. In our study it 

was possible that the covalent anchorage of the coenzymes to the enzyme molecule 

might improve the interaction and increase the substrate activity of each coenzyme 

derivative.
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In order to form successful enzyme-coenzyme conjugates using the thiolated 

coenzymes it was essential that the dehydrogenases used were not seriously inhibited 

upon modification with thiol-containing adducts. In order to investigate this, the 

activity of each of several dehydrogenases was compared before and after 

modification with dipyridyldisulphide (DPDS). None of the native cystyl residues of 

LDH were completely accessible for reaction with DPDS and this may explain the 

small loss of activity of LDH upon treatment with DPDS despite reports that LDH 

was inhibited in the presence of maleimide. This study supports past observations that 

inhibition by thiol modification in dehydrogenases depends, to a large extent, on 

which thiolation reagent is being used (Smith et al, 1975). Because cystyl residues of 

the pig heart LDH were not accessible to any significant extent, the thiolation of lysyl 

residues was carried out in order to enable the increased incorporation of thiolated 

coenzyme. The potential of this method was demonstrated using BSA. Out of 64 lysyl 

residues, 31 had detectable thiol groups after BSA modification, reflecting the 

availability of lysyl residues on the protein surface to small molecules like 2 - 

iminothiolane. Although the same proportion (48%) of modified lysyl residues was 

not recorded for LDH, 7.6 lysines were modified out of 24 (31%). This was higher 

than the coenzyme incorporation achieved using glutaraldehyde and carbodiimide 

reagents, demonstrating that the potential of the lysyl residues as anchorage sites had 

not been fully realised. The incorporation of a large number of thiol groups was 

confirmed when DPDS was used to activate the thiol groups for coupling with 

thiolated coenzyme molecules under mild conditions. It was consequently concluded 

that the thiol groups were in a largely accessible state before modification with DPDS 

and had not become involved in interaction with side chain residues of the enzyme. 

However, when the DPDS-activated thiol groups were added to thiolated coenzyme 

molecules, only a small proportion of the DPDS-thiol groups reacted: on average, 3.3 

HS-N6 AHCM-NAD molecules and 4.2 HS-N6 CM-NAD molecules were incorporated 

onto the surface of BSA, representing modification of 12 and 18% of the DPDS 

activated thiol groups, respectively. The coenzyme incorporation was slightly 

improved in the case of LDH, with 2.7 HS-N6 AHCM-NAD and 2.3 HS- 

N6 CM-NAD molecules being incorporated per LDH subunit, representing 

modification of 38% and 32% of the available DPDS-thiol residues. The low 

incorporation can be partly explained by the fact that only a 15-fold excess of 

thiolated coenzyme to enzyme subunit was used; however it is still not clear
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why more residues did not react. Modification of the introduced thiol groups with 

DPDS would have led to the structure shown below.

iJ h  2 C1‘ f f ^ |

C _CH_CH_CH_CH NH _C_CH CH CH S _ S / X N ^
T  2  2  T  I T T

enzyme
surface

Figure 6.2: Structure o f a PDS-thiolated lysine residue, original lysine shown in blue

The DPDS-activated thiol seems very accessible to the surrounding solvent. It may be 

that the long spacer arm "flops about" too much and eventually finds a place on the 

enzyme surface where it forms hydrophilic, hydrophobic or electrostatic interactions 

with side chain residues of the enzyme surface which means that the pyridyl-2 - 

disulphide (PDS) group does not protrude into solution. Although the availability of 

the PDS-thiol groups was confirmed on reduction with DTT, it could be envisaged 

that the thiolated coenzyme molecule was not as accessible as DTT to the same areas 

of the enzyme surface. This explanation is a speculative one but the evidence showed 

that the reactivity of the PDS-thiol and coenzyme thiol groups were not to blame- the 

problem was one of accessibility. It was also possible that the bound coenzyme 

molecules hindered the approach of other coenzyme molecules towards activated thiol 

groups on the enzyme surface. Attempts were made to activate the thiolated 

coenzyme with DPDS in an attempt to react it with free thiol group on the enzyme 

surface, but the extra loss of coenzyme during the purification step of the coenzyme 

that was required proved too costly: not enough PDS-thiol coenzyme could be 

obtained in a pure form.

Despite the incorporation of coenzyme being lower than expected using the 

"disulphide" coupling technique, the incorporation of coenzyme onto the surface of 

LDH was higher than with glutaraldehyde and carbodiimide coupling methods, and
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was also slightly more defined in that any loss in specific activity of the conjugate 

could be attributed to thiol modification. An intermolecular substrate activity of the 

coenzymes coupled to BSA and LDH was evident. 74-100% of the covalently bound 

N6 CM-NAD molecules, but only 24-33% of the N6 AHCM-NAD molecules, were 

accessible to a second enzyme, emphasising that the intermolecular activity of an 

enzyme-coupled coenzyme does not depend on spacer length.

The intrinsic activity of the "disulphide" coupled LDH-N6 CM-NAD conjugate was 5% 

of the specific activity of the modified enzyme, but the intrinsic activity of the LDH- 

N6 AHCM-NAD conjugate was only 0.6% of its specific activity. The total length of 

the spacer arm of the LDH-N6 CM-NAD conjugate was 1.9nm, measured from the s- 

amine of the lysine anchor to the N6amine of the NAD molecule. This was greater than 

the minimum spacer length of 1 .2 nm determined by the distance of the nearest 

accessible lysyl residue to the active site. An intramolecular mechanism was probable 

for the intrinsic activity of the LDH-N6 CM-NAD conjugate because the percentage of 

specific activity seemed too high for an intermolecular mechanism as the coenzyme 

was present at a concentration of 30 times less than the KM of LDH for free NAD. The 

spacer length of the LDH-N6 AHCM-NAD conjugate was 3.2nm, and may have been 

too long to allow the NAD moiety to interact with the coenzyme binding site.

Although thiol modification has shown how many thiols can be introduced onto the 

surface of LDH without a serious loss in enzyme activity, a way of coupling coenzyme 

to a significant proportion of these thiols was not found. The chances of one of the 

thiolated lysines that are proximal to the active site being modified with thiolated 

coenzyme remained low.

Although there is a relationship between the length of the spacer arm and the intrinsic 

activity of the conjugate, spacer arms that are sufficient in length do not seem to allow 

a full interaction with the enzyme active site. Because the chemical modification of 

enzymes is undefined and rather random in nature there is no easy way of knowing 

whether this was because the coenzymes were unable to bind near enough to the active 

site. After these studies it appeared that the chemical modification technique to 

covalently bind coenzymes to enzymes was not sufficient to fully realise the potential
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of enzyme-coenzyme conjugates. In order for enzyme-coenzyme conjugates to be fully 

exploited for use in enzyme electrodes, the intrinsic activity should approach the 

specific activity of the enzyme-coenzyme conjugate in order to generate a maximum 

physicochemical signal. Only two of the past chemical modification studies have 

reported a high intrinsic activity (Mansson et al, 1978 and Schafer et al, 1986); the 

intrinsic activity was around 40% of the specific activity of the modified enzymes 

involved. One of the studies involved the carbodiimide coupling of N6 AHCM-NAD to 

LADH, but our study has shown that success of this approach cannot be applied to 

LDH, GDH or ADH, and cannot, therefore, be seen as generally applicable. In 

addition, an attempt by Kato et al (1987) to apply the carbodiimide method to FDH, 

resulted in a conjugate with an intrinsic activity representing only 1 0 % of its specific 

activity.

The randomness of the chemical modification approach has been demonstrated in this 

study, particularly by the availability of bound coenzyme molecules to neighbouring 

enzymes. In most cases, the loss of specific activity after modification could not be 

defined because the modification reagents involved were not absolutely selective. Only 

one ordered and defined approach has so far been studied to form an enzyme- 

coenzyme conjugate - that of Persson et al (1991) who exploited the fact that native 

glucose dehydrogenase contains no cysteine residues. A single cysteine residue was 

introduced at an accessible position in the vicinity of the active site by site-directed 

mutagenesis and exactly one thiolated coenzyme molecule was attached per glucose 

dehydrogenase subunit. It was probably no coincidence that the resulting enzyme- 

coenzyme conjugate had the highest percentage of intrinsic activity compared to 

specific activity of any conjugate studied so far at 85%. Despite the extra work 

involved in this approach, which required the use of genetic engineering techniques, it 

may be worthwhile in the long run. As was pointed out, although only glucose 

dehydrogenase and glucose-6 -phosphate dehydrogenase contain no cysteines in their 

native structure, the cysteines of other dehydrogenases may be replaced by other 

residues using site-directed mutagenesis. In addition, results from this study here show 

that the cysteines of LDH, MDH and GDH are almost totally inaccessible to 

modification with DPDS and so a cysteine introduced at an accessible position, 

proximal to the active site, would be almost totally exclusively modified by DPDS, to
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react with a thiolated coenzyme under mild conditions. The advantages of this more 

defined approach are several fold. The exact location of the incorporated coenzyme is 

known and conclusions can be drawn about surrounding residues; the exact spacer 

length of the conjugate is known in relation to its proximity to the active site and by 

introducing different spacer arms the optimum length of a spacer arm can be 

established. The specific activity of the enzyme is more likely to be maintained because 

the enzyme will only be modified at one insensitive position.

Electrode studies

The glutaraldehyde-coupled LDH-NAD and LDH-N6 AHCM-NAD conjugates were 

chosen over carbodiimide-coupled conjugates for incorporation into enzyme electrodes 

because the glutaraldehyde spacer arm gave the best chance of the enzyme-bound 

coenzyme reaching the electrode surface, as was indicated by assaying the LDH- 

N 6 AHCM-NAD conjugates for intermolecular activity: 67% of the 1.8 N6 AHCM- 

NAD molecules bound per LDH subunit were accessible to ADH in a coenzyme 

recycling assay compared to only 20% of 1.0 N6 AHCM-NAD molecules that were 

available in a carbodiimide-coupled conjugate. The glutaraldehyde-coupled conjugates 

were also chosen because they possessed a higher intrinsic activity, at 0.12U/mg for 

the LDH-N6 AHCM-NAD conjugate and 0.09U/mg for the LDH-NAD conjugate. The 

intrinsic activity of each carbodiimide-coupled conjugate was only O.OlU/mg. The 

higher intrinsic activity of the glutaraldehyde-coupled conjugates meant that they 

would have a greater chance of generating a higher physicochemical signal upon 

immobilisation onto the surface of an electrode, and therefore a larger electrode 

response would be obtained. It was also known that the LDH-N6 AHCM-NAD 

conjugate had an intramolecular mechanism; if the mechanism had been intermolecular, 

intrinsic activity may not have been present upon immobilisation of the enzyme by 

adsorption to the electrode surface which makes diffusion of enzyme molecules 

impossible. The loss of adsorbed enzyme was less than 60% over 28 days at 4°C and 

the loss of enzyme activity observed over the first few hours was not enough to affect 

the electrode experiments.
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Figure 6.3: A schematic o f the theoretical mechanism behind the lactate response o f 
an enzyme electrode constructed using an LDH-coenzyme conjugate

A simplified representation of the mechanism of the enzyme electrode is shown in 

Figure 6.3. The LDH-coenzyme conjugate adsorbed at the surface of the electrode 

forms a ternary complex between covalently bound coenzyme, lactate and enzyme. 

Lactate is oxidised to pyruvate and the covalently bound coenzyme is reduced. 

Pyruvate is released into the surrounding solvent and some of the enzyme-coenzyme 

molecules are positioned so that the spacer arm allows the reduced NADH moiety to 

swing out of the active centre of the enzyme and into the vicinity of the potential 

gradient at the electrode surface. Here, NAD is regenerated by the electrocatalytic 

oxidation of NADH. In this way a steady current, or finite electrode response, is 

eventually obtained in the presence of lactate.

There was no electrode response at all from an enzyme electrode constructed using an 

LDH-NAD conjugate preparation but an electrode response of 12nA/mM lactate was 

obtained from an enzyme electrode constructed using an LDH-N6AHCM-NAD
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preparation. From this we can infer that the spacer arm of the glutaraldehyde cross­

linker was not long enough to allow NAD to reach the surface of the electrode but the 

presence of an extra (aminohexyl)carbamoylmethyl spacer arm allowed the coenzyme 

to interact (Figure 6.4). It seems unlikely that the intrinsic activity of the LDH-NAD 

conjugate was generated by an intermolecular mechanism, and so this cannot be an 

explanation for the lack of electrode response.

A  B

enzyme 
adsorbed 
in vicinity 
of electrode 
surface

NH NH

HN

NH

covalently 
bound NAD 
moietv

area of 
potential 
gradient

electrode
surface

Figure 6.4: Schematic showing how the longer spacer arm o f LDH-N6AHCM-NAD 
conjugate (B) might allow the bound coenzyme to be regenerated by the electrode 
whereas the spacer arm o f the LDH-NAD conjugate (A) might not.
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Interestingly, in the presence of exogenous NAD the electrode response of 12nA/mM 

lactate was only increased to 24nA/mM. This was surprising because the specific 

activity of the LDH-N6 AHCM-NAD conjugate free in solution was over 40 times 

greater than the intrinsic activity. The enzyme-coenzyme conjugate immobilised at the 

electrode surface had reached 50% of its potential activity without the presence of 

exogenous coenzyme. It is not clear why there was so little specific activity but a 

similar response was obtained for a control enzyme electrode prepared using native 

LDH. The intrinsic activity was better represented when electrocatalytic regeneration 

was used than chemical regeneration in a coenzyme-recycling assay, where the intrinsic 

activity was only 4% of the specific activity and therefore, the electrode would seem to 

be a more favourable and efficient method of regeneration of enzyme-bound coenzyme 

than a chemical recycling assay. The small size of the electrode response in the 

presence of free coenzyme could be due to a small amount of adsorbed enzyme and 

attempts must be made to find out how much enzyme was adsorbed and to improve 

the immobilisation. It must also be noted that most of the free NAD would diffuse 

away from the area of potential gradient at the electrode surface whereas the bound 

coenzyme is fixed in its vicinity. It could also be that the exogenous coenzyme cannot 

reach the enzyme for catalysis; its access could be slowed down by the activated 

charcoal paste, although past studies have shown that the free NAD can diffuse 

through a carbon paste (Dominguez et al, 1993a)

The activated carbon paste electrode had a potential response of 400nA/mM free 

NADH in bulk solution. The size of the enzyme electrode response will have to 

approach this order of magnitude for commercial application (Turner et al, 1987). The 

good response time of 1 - 2  mins was probably due to the proximity of the enzyme- 

coenzyme conjugate to the area of potential gradient at the electrode surface.

The stability of the electrode was poor. This was not due to the electrode materials 

used or the stability of the conjugate alone. The functional electrode had a half-life of 

less than 1.5 hours which is not long enough for commercial applications. Wallace and 

Coughlin (1978) found that NADH can be decomposed at a graphite electrode surface
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and Torstensson and Johansson (1980) showed that the reduced coenzyme was 

degenerated at an activated glassy carbon electrode surface. In our case, experiments 

demonstrated that the instability was not due to a denaturing of the enzyme which 

remained stable for 12 hours in a polarised electrode. The stability of the intrinsic 

activity only decreased rapidly when an overpotential was applied to the cell; the 

intrinsic activity remained unaltered if the electrode was left unpolarised between 

lactate measurements. The instability seemed to be due to a loss in functioning 

coenzyme upon polarisation of the electrode. This may be because the covalently- 

bound coenzyme becomes adsorbed onto the carbon electrode surface after a while but 

this does not happen without the application of an overpotential. Another explanation 

was that the link between coenzyme and enzyme could also be affected by the 

polarisation of the cell due to an unstable coupling chemistry in the presence of an 

overpotential of+150mV. The NAD moiety, itself, may also have been degenerated in 

some way. In the only other study of an enzyme-coenzyme conjugate in an enzyme 

electrode, carbodiimide-coupled ADH-N6 AHCM-NAD was adsorbed onto an 

activated glassy carbon electrode and, although instability due to loss of coenzyme 

substrate activity was observed, no connection was made between stability and 

electrode polarisation (Torstensson and Johansson, 1980). It may be worth 

constructing enzyme electrodes using conjugates with different coupling chemistries or 

using different enzyme immobilisation techniques.

Despite the instability problems it was demonstrated that an enzyme-coenzyme 

conjugate was able to act as a fully contained catalytic constituent of a reagentless 

enzyme electrode. The biosensor had a rapid response time, unlike devices constructed 

using membrane entrapment or macromolecular support techniques to immobilise 

coenzymes.

Even though measures were taken in this study to ensure that there were accessible 

residues near active centre of LDH the chance that they would be modified using the 

chemical modification approach was low because few coenzyme molecules became 

incorporated. Consequently, the intrinsic activity of the enzyme-coenzyme conjugates
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was generally disappointing. In order to improve the performance of reagentless 

enzyme electrodes constructed using enzyme-coenzyme conjugates the cause of 

instability observed must be more clearly defined and the response of the electrode in 

the presence and absence of exogenous coenzyme must be improved. Several goals 

were reached during the course of this study:

a. Established chemical coupling techniques were used to form enzyme-coenzyme 

conjugates using several dehydrogenases. It was found that the chemical modification 

approach was too random in nature to be successful for a wide range of NAD- 

dependent dehydrogenases.

b. Novel NAD derivatives were synthesised containing a very useful terminal thiol group 

attached to a spacer arm on the adenine moiety of NAD.

c. New coupling techniques were established which may prove useful for future 

applications. Terephthalaldehyde was used as an able replacement for glutaraldedehyde 

in a case where the effect of glutaraldehyde modification upon the activity of the 

enzyme was too costly and a "disulphide" coupling technique was developed which 

may be used in the future to exploit the reactivity and specificity of cysteine residues.

d. The potential of reagentless enzyme electrodes constructed using enzyme-coenzyme 

conjugates was demonstrated.
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