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ABSTRACT

The interactions between precious metal ions of palladium, platinum and 

rhodium with a secondary oxide, C e0 2 on an alumina support have been studied 

using atomistic simulation techniques. Existing potentials for ceria are 

compared and modified to provide a suitable model for this study, and a potential 

representing short range interactions between metal ions and the oxygens of ceria 

is derived. We show that the presence of noble metals modifies the ceria 

surfaces which may be correlated with the catalytic activity which is known to be 

enhanced as a consequence of the noble metal-ceria interactions (SMSI). 

Furthermore, we find that ceria is further modified when interfaced with an a - 

A120 3 support as a direct result of the interface.

We examine pure ceria surfaces to identify active surfaces which provide an 

oxygen source for the oxidation of CO, which is an important reaction in 

removing toxic exhaust products. A new procedure (following Sayle 1992) has 

been developed to model routinely thin film interfaces between any two oxide 

materials with hexagonal symmetry. A study of defect formation of the interface 

has shown enhanced catalytic activity of ceria thin films.
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CHAPTER 1

INTRODUCTION
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1.1 Introduction

Catalytic processes are used in the modem chemical industry to limit the 

emission of polluting gases. Automobile exhaust catalysts are used to convert 

toxic polluting molecules emitted by internal combustion engines to harmless 

products. The main products of the combustion of gasoline (a mixture of 

hydrocarbons) are carbon dioxide and water which are non-toxic. However, the 

minority products including carbon monoxide, nitrogen oxides (NO, N 0 2) are 

highly toxic and the uncombusted hydrocarbons are potential green house gases. 

One way to reduce these emissions is to use the three way catalytic converter to 

convert the three main classes of pollutants by the oxidation and reduction 

reactions summarised in table 1 .1 .

Table 1.1 Reactions in Automotive Exhaust Catalysts

CO + */2 0 2 co2 (1)
Hydrocarbons + *0 2 —̂ co2 + h 2o (2 )

h 2 + l/2  0 2 h 2o (3)

CO + NO -» »/2 N2 + co2 (4)
H2 + NO -> ^2  N2 + h 2o (5)

Hydrocarbons + NO -> n 2 + h 2o + co2 (6)
5/2 H2 + NO —> n h 3 + h 2o (7)

CO + H20 -> co2 + h 2 (8 )

Hydrocarbons + h 2o —> CO + co2 + h 2 (9)
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The three way catalyst is made of palladium, platinum and rhodium metals 

deposited on a ceramic support which is usually based on an alumina substrate 

with an additional oxide ceria. The role of ceria in catalytic activity 

enhancement is of crucial importance and is a major theme o f the work described 

in this thesis.

1.2 Recent Developments

1.2.1 Experimental

The effect of ceria on the activity of a transition metal-ceria/alumina catalyst 

includes the promotion of the catalytic activity, the increase of the thermal 

stability of the support and the increase of the stabilisation of dispersed transition 

metals.

Ceria, when added to the alumina support, acts as an 'oxygen storage' component 

of the automobile catalyst due to its capacity to undergo a relatively rapid change 

in oxidation state upon changes in the redox potential of the exhaust gases. In 

the fuel rich condition, ceria promotes the oxidation activity by providing oxygen 

for carbon monoxide and hydrocarbon oxidation; and in the fuel lean condition, 

its reduced state removes oxygen from the gas phase to widen the air-fuel ratio 

thus promoting the conversion of nitrogen oxides; hence allowing the three 

major pollutants to be removed (Gandhi et al. 1976, Yao et al. 1977, Yao and Yu 

Yao 1984, Yao and Kummer 1987, and Shyu et al. 1988b). Ceria is also used to 

improve the dispersion of noble metals (Yao and Yu Yao 1984, Su et al. 1985, 

Su and Rosthschild 1986, Duplan and Praliaud 1991), and to stabilise the y- 

A120 3 oxide support (Harrison et al. 1988). The role of ceria in automobile
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exhaust catalysts is subject to the interaction between ceria and noble metals 

which is a function of the particular metal, ageing temperature and gaseous 

environment (Engler et al. 1989); the nature of which is proposed to be due to 

the formation metal-cerium alloy, in particular P^C e (Summers and Ausen 

1979), the formation of anionic vacancies in ceria (Sanchez and Garquez 1987) 

and the reduction of cerium (Yao and Yu Yao 1984). Yao 1984 also showed that 

palladium, platinum and rhodium metals promote the reduction o f Ce4* to Ce3+ 

and thus facilitate the charge transfer from metal to cerium which results in the 

higher oxidation states of the metals, and hence increases the oxygen storage 

capacity of ceria.

The interaction between the metal atoms and the oxygen vacancies in reducible 

oxide supports has been proposed to be responsible for the strong surface metal- 

support interaction, SMSI (Sanchez and Gazquez 1987), in particular, the strong 

Pt-ceria interaction which may have a profound effect on the oxygen storage 

capacity of ceria. (Metcalf and Sundaresan 1986, Jin et al. 1987). The 

interaction of C e0 2 with noble metals greatly affects both the metal dispersion in 

alumina and the activity of the three way conversion catalyst (Summers and 

Ausen 1979).

The oxidation state of cerium in cerium based catalysts (Ce/Pd/Al20 3) has been 

investigated for both surface species by X-ray photoelectron spectroscopy (XPS) 

and in the bulk by X-ray absorption spectroscopy (XAS). Both techniques 

indicate that the reduction of ceria is more pronounced on the surface than in the 

bulk (Normand et al. 1988). The formation of lattice oxygen vacancies in ceria, 

which plays an important part in the oxidation of CO (Jin et al. 1987), is 

associated with the reduction of Ce (IV) to Ce (III). This may lead to the
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formation of a distinct Ce20 3 phase or in the presence of aluminium to cerium 

aluminate CeA103 (Geller and Raccah 1970). The formation of the latter is 

catalysed by the oxidation of Pd to PdO ( Shyu et al. 1988b and Hicks et al.

1990) and Pt to PtO (Shyu and Otto 1989).

Under moderate oxidising condition, the addition of ceria to a low loaded 

Rh/Al20 3 catalyst results in a modification of the kinetics of CO oxidation which 

is due to the suppression of CO inhibition effects (the negative first-order 

dependence of the reaction rate on CO concentration) and the decrease in the 

apparent activation energy for the CO oxidation reaction. The mechanism 

involves C 0 2  formation and is via a surface three phase reaction, i.e. between 

adsorbed CO, Rh metal and lattice oxygen derived from the neighbouring ceria 

(Oh and Eickel 1988). Another mechanism such as the disproportionation 

reaction (2CO —» C + C 0 2) has been demonstrated for the CO dissociation at 

room temperature which is activated by the partially reduced surface o f C e0 2 by 

H2 (Li et al. 1991). In addition to the enhancement of CO oxidation by Pd, Pt 

and Rh (Yu Yao 1984), by Pd (Shyu et al. 1988) and Pt (Summer and Ausen 

1979); ceria was also found to influence strongly the reduction of NO by 

increasing the rate of NO dissociation and low temperature N 2 desorption which 

may be responsible for the CO-NO reaction kinetics, in particular the systems 

Rh/Al20 3 (Oh 1990) and Rh, Pt/Al20 3 (Loof et al. 1991). The effects of ceria 

are associated with the interaction of highly dispersed metal with oxygen 

vacancies in the reduced ceria support. There is also evidence for oxygen 

migration from ceria to the precious metal Rh, this effect has been observed in a 

near room temperature study by Zafiris and Gorte (1993) who followed CO 

adsorption on Rh/Ce02 by TPD. In the reduction of NO, Rh is believed to be 

partially oxidised and the dissociation of NO and N2 desorption are modified.
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Finally, we note that surface structures can be studied by the analysis of their 

LEED pattern which gives information about single and double steps present at 

the surface, while the intensity of the spectra gives information about bond 

lengths and angles. However, the interpretation of the data is often difficult, 

with multi-scattering being a major problem. Recently, very significant 

advances have been made to improve the analysis of LEED intensity spectra. 

These include the development of an automated tensor LEED program and 

developments towards direct inversion methods based on the principles of 

holograph to give three-dimensional structures (King 1993). Recent structural 

investigations include metal surface structures, adsorbate-induced restructuring 

(adsorption of CO, N on W). LEED has also been used by Cotter et al. (1988) to 

identify the arrangements of atoms of the overlaying material on the MgO 

substrate and XPS to quantify the coverage of the BaO overlayer. Experimental 

results such as these are valuable in ascertaining the interfacial structural 

configuration to enable comparisons to be made with the calculated interfacial 

structural configurations. On the other hand, simulation methods provide a 

powerful tool for studying the nature of the behaviour of defective materials at 

the atomic level, and at the same time they provide and predict information about 

favourable reactions between defects and metal oxides which sometime do not 

easily yield to conventional experimental studies. The next section gives a brief 

account of the lattice simulation study in relation to surfaces and interfaces 

together with some previous theoretical work on ceria.
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1.2.2 Lattice Simulation

Over the last twenty years, computer simulation techniques have been 

extensively developed and continue to provide a powerful tool for studying the 

properties o f a wide range of materials, especially at the atomic levels. Starting 

with the alkali halides, Boswarva and Lidiard (1967) showed that atomic 

simulation could be employed to study bulk lattice and defect properties. Now 

we can simulate both bulk and surface defect properties from simple structures 

to highly complex systems such as superconductors (Islam and Ananthamohan

1991). It is essential that simulation work reproduces the results available for 

known characterised systems, if we are to be confident of the predictions made 

from simulation work on systems or problems which have not been studied 

experimentally.

The modelling of surface properties of ceramic materials and the investigation of 

processes that occur at the surfaces and interfaces of ionic materials were 

undertaken first by Mackrodt and Stewart (1977), and Tasker (1979a). Another 

important development was the free energy minimisation technique for the 

calculations at elevated temperatures by Parker and Price (1988) which 

calculates solid state phase diagrams of minerals (Price et al. 1987). The 

inclusion of temperature effects in calculations later led, for example, to 

interesting observations on zeolites which are found to contract rather than 

expand on heating (Tschaufeser 1992).

Recently, modelling studies of the metal-metal oxide interface based on the 

image theory have been reported by Finnis (1991, 1992) and Duffy (1992). An 

alternative approach to investigate the electronic properties of the metal-metal
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oxide interface directly using local density approximation techniques have been 

described by Blochl et al. (1989), Freeman (1989), Schonberger et al. (1992). 

These techniques, which are still being developed and modified, will provide 

information about energies and bonding at the interfaces between metals and 

oxide materials which will be of great value in the study of many catalytic 

reactions.

Simulation work on cerium dioxide was first undertaken by Butler et al. (1983) 

who investigated the effects of the dopant ion radius on dopant-vacancy 

interactions in C e02. The results show that there is a strong dependence of the 

dopant-vacancy binding energies on the dopant radius, which is a general feature 

achieved in the ionic conductivity of various halides and oxide crystals. Later, 

Cormack et al. (1989) found that isolated Sc3+ substitutional ion in doped ceria 

is stabilised by the distortion of the surrounded cage of eight oxygen ions. 

Recently, the solution energy of Ce44- in U 0 2.x was studied in the stability of 

fission products in uranium-dioxide by Grimes and Catlow (1991).

The aims of this work are therefore first to understand the structure and 

properties of both bulk and surfaces of C e02, surface studies are, however, more 

important as they provide information directly related to catalytic reactions 

which normally take place on the surface. Next, we study the interaction 

between metal ions e.g. Rh3+, Pd2+ and Pt2+ and oxygen vacancies both in the 

bulk and on the surfaces of the crystal; these defects are found (as described 

earlier) to improve activity of catalyst significantly. Processes such as migration 

and segregation of the defects will also be studied in order to investigate the 

mechanism of the enhancement of activity. The interaction between the pure 

and impurity containing surfaces of C e0 2 and small molecules is also considered



17

for the case of CO oxidation and NO reduction. Finally, the work will be 

extended to study the interaction between ceria and alumina together with defect 

properties at the interface between the two materials. This will enable us to 

investigate the effect of the presence of an interface between two supported 

oxides on catalyst activity with special emphasis on the formation of interfacial 

oxygen vacancies.
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CHAPTER 2

THEORETICAL METHODS
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2.1 Introduction

In this chapter we describe the theoretical methods employed in the thesis to 

calculate the three dimensional bulk, two dimensional surface and interfacial 

energies. We also summarise in the appendix the crucial question of the 

procedure used in calculating the long range Coulomb summation.

2.2 Calculations of defect energies in the bulk of ionic crystal - 

CASCADE

The bulk defect calculations presented in this thesis are based on the Mott- 

Littleton method (Mott and Littleton 1938) developed originally by Lidiard and 

Norgett (1972) and implemented in the HADES (Harwell Automatic Defect 

Evaluation System) code (Norgett 1972, 1974) for cubic crystals. For the 

calculations in this work, its successor, the CASCADE (Cray Automatic System 

for the CAlculation of Defect Energies) code (Leslie 1982) was employed. In 

the latter program, the Mott-Littleton methodology has been generalised for 

systems of any symmetry (Catlow et al. 1982). The major problem associated 

with the calculation of the defect energy is the treatment of relaxation about the 

defect. This can be overcome by assuming that the relaxation is greatest in the 

immediate vicinity of the defect and then falls rapidly at distances away from the 

defect.

For the calculations of bulk defect energies, the crystal around the defect is 

divided into two regions: an inner region I centred on the defect, where all the 

ions around defect are allowed to relax explicitly; and an outer region II which is 

extended to infinity, and is treated by a quasi continuum approximation. Region
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II is further subdivided into an inner region Ha and an outer region lib (figure 

2.1). The significance of which is discussed below. The total energy of the 

system E, can be written as:

E = Ej(x) + E1>2(xy) + E2(y) (2.2.1)

Where Ej(x)

Ei,2 (x,y)

EjCy)

X

y

the energy of the inner region

the interaction energy between regions I and II

the energy of the outer region lib

the independent coordinates of ion positions in region I

the ion displacements in region II

The energy of outer region, E2(y) cannot be calculated exactly because it 

contains an infinite number of displacements. We assume however that the 

distance between the defect and the innermost ions of region II is sufficiently 

large that we can describe the response of the outer region using the harmonic 

approximation for the ion displacements arising from the electric field generated 

by the defect. Therefore E2(y) can be represented by a quadratic function of y.

E2 (y) = ^(yT.A.y) (2.2.2)

where A is the force constant matrix and yT is the displacement matrix. By 

substituting equation (2.2.2) to equation(2.2.1) and assuming ions in region II are 

in equilibrium positions, y! , i.e. the net forces acting on ions in region II is zero, 

then:
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(2.2.3)

Thus equation (2.1) becomes:

(2.2.4)

The total relaxed energy of the system, E, can be determined first by direct 

minimisation with respect to x, (the displacements in region I), i.e. using the 

criterion dE/dx = 0. This is possible in principle, but, it is difficult to apply in 

view of the complicated nature of the total energy E as a function of x. An easier 

method is ensuring the force on each ion in region I is zero:

We now calculate the energy of the defect by considering an explicit two-body 

representation for E, the energy of the perfect lattice;

8  E
0 (2.2.5)

8  x

(2.2.6)

where 'Ey is a suitable pair potential (chapter 3) and R are the appropriate lattice 

coordinates. Similarly, the energy of the lattice containing the defect is given 

by;
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Ed = £  H  (|li - £j|) (2-2.7)
1 > J

where r are the displaced coordinates. The energy of the defect, therefore, is 

simply given as the difference in the lattice energy with and without the defect:

e = z  K 0& - ii|) - ¥• - BjD]
j>j

(2 .2 .8)

As discussed by Catlow et al. (1982), the summation can be usefully rearranged 

to give the following:

E  =  z  h  ( | t i  -  I I I )  -  %  ( | R .  -  R j D ]  +  2  [%i ( | i i  -  4  -  %  ( | R .  - 1 , D ]
i£l
jel

ie l
jefl

L ien  
jell

(|l. - 1 ,1) -  J - V n  (|Ri - £j|)
°  - j

• (l, -R ,)

(2.2.9)

where the three terms can be identified with E : » ^ 1 2  and E2 respectively.
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Region I

I

Region lib —» ©o

CASCADE

Defect

Figure 2.1 Two regions strategy used for the calculations of defects in the bulk

of the crystal - CASCADE
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2.2.1 Mott-Littleton approximation

The interactions in region I are purely local and are treated explicitly for the 

ionic crystal. In the neighbourhood of region I (i.e. in region Ha), the 

interactions between region I and region H comprise both short range and long 

range terms which can be calculated by direct summation. Away from the 

region I, region Hb is treated so that the displacement/interaction is due entirely 

to the Coulombic field of the defect. The treatment of this long range region I- 

region Hb interaction has been developed from the classical polarisation theory 

of Mott and Littleton (1938). This theory approximates the response of the 

lattice at a radius R from defect centre (in region I) of charge Q in terms of a 

polarisation P where:

and 8  is the dielectric constant of the lattice. The contribution to the total energy 

of the system from the region I /  region Hb interaction is given by:

Where Mj is the Mott-Littleton parameter for the sub lattice and is given for a 

dielectrically isotropic crystal by:

P = Q r  ( l- 8 "1) / 4 7 t|r | 3 (2 .2 .10)

1,2
2  jellb R

(2 .2 .11)

M 5 = (?.2.12)
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Where a  is the polarisability of the kth sub-lattice. For the more general case of a 

dielectrically anisotropic crystal, Eb 1>2 can be written as:

E?,2 = - f X
^ jellb

£ M f . R “.R?

R;
(2.2.13)

Where the sum over all j refers to ions in region II and a  and p refer to Cartesian 

coordinates. This method is only valid when the sizes of region I and Ila are 

chosen to be large enough so that the defect energy no longer changes with 

increase in region size. In this work, the values of region I size and cut-off 

potential are set as 3.5 l.u. and 3.0 l.u. respectively for the calculation of defect 

energies. These values were chosen after performing calculations as a function 

of region size and cut-off potential which reveal that increasing these values only 

varies the oxygen vacancy energy very little (figure 2.2.a and b). They also 

allow the calculations to be performed with an acceptable amount of computer 

time.

We note that the calculation of point defect energies at surfaces and interfaces is 

based on the same principle but defects are now on the open surface of the 

material.
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Figure 2.2 Variation of defect energy in the bulk of the crystal using

CASCADE

a) Oxygen vacancy as a function of region I size

b) Oxygen vacancy as a function of cut-off potential



27

2.3 Calculations of extended pure and defect energies of surfaces

MIDAS

The ionic crystal structures near surfaces and heteroepitaxial interfaces are 

modelled using the computer code MIDAS (Tasker 1978) (Minimisation for 

Interfacial Defects And Surfaces). Extended planar defects that maintain two 

dimensional periodicity can also be considered provided that the net charge on 

the crystal is zero. Energies calculated using this code are energies at constant 

surface area.

The program considers the crystal as a stack of planes periodic in two 

dimensions (figure 2.3). The stack is divided into two regions (using a scheme 

similar to that developed by Norgett in the HADES code), i.e. we employ a 

region I, where the ions are allowed to relax independently of each other, and a 

region II, where the ions are held fixed relative to each other. Region II is 

included to ensure the potential of an ion at the bottom of region I is correctly 

calculated. The top of region I is the free surface (figure 2.3.a) unless two such 

blocks are placed together enabling the lattice energy of the perfect crystal or a 

grain boundary to be calculated (figure 2.3.b). When modelling a perfect crystal 

or grain boundary, region II may however move as a whole, enabling the crystal 

to 'expand' or 'contract'. An interface can be created by a vector displacement or 

rotation of block I with respect to block n. If block I is displaced relative to 

block II by a vector within the interfacial plane, a stacking fault is produced and 

a vector displacement perpendicular to the interface results in the formation of a 

sheer plane. Rotations of block I with respect to block II about an axis 

perpendicular to the interfacial plane results in a twist grain boundary and 

parallel to the interfacial plane a tilt grain boundary is formed. The program also
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enables two dissimilar crystal structures to be placed together enabling a 

heteroepitaxial interface to be simulated (chapter 6). The vector displacements 

and rotations also apply to these systems enabling the modelling of epitaxial 

structure.

The surface energy Es , per unit area can be defined as:

where the energy is summed over all ions in plane n and is the bulk energy. 

This calculated value can be compared directly to the experimental determined 

surface energy when the latter are available.
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Figure 2.3 Schematic representation of the crystal regions for the calculations 

of defect energies at the a) surface and b) interface of materials.
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2.4 Calculations of the point charge defect energies near the surface 

in ionic crystal - CHAOS

The calculation of point defect energies at surfaces or near interface regions of 

ionic crystals can be calculated using the computer code CHAOS (Computer 

simulation HAdes On Surfaces) (Duffy and Tasker 1983a). It is based on the 

HADES program (section 2.2) with necessary modifications (described below) 

to account for the existence of a surface or interface (figure 2.4). The defect 

energy is given as the difference in  energy between the perfect crystal and that 

containing the point defect. The spherical crystal region is constructed as a 

series of circular discs lying parallel to the surface, with the radius decreasing 

with increasing distance from the centre of the hemisphere.

The relaxed structure of the perfect surface obtained from the MIDAS program 

(section 2.3) is used as the starting point for the calculation of point defect 

energies. The existence of the surface necessitates modifications relating to the 

two-dimensional periodicity of the reference configuration. In bulk crystal 

calculations, the Madelung energies are calculated using a three-dimensional 

Ewald Summation (Ewald 1921) which is inappropriate to surface calculations. 

In CHAOS, a two dimensional lattice summation method developed by Parry 

(1975a, 1975b) is employed. The Ewald method for calculating the Madelung 

energies in systems maintaining 3-dimensional periodicity is described in 

appendix A 1.1 and the Parry method which addresses the calculation of the 

Madelung energies in systems maintaining 2-dimensional periodicity is 

discussed in appendix A 1.2.
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The calculation of the ionic displacements and energy of the continuum is also 

modified as a result of the surface or interface. For HADES, the energy of the 

continuum is calculated (assuming cubic symmetry) by a discrete 1/R4 

summation (equation 2.2.11); but this assumes there is no structural deviation 

from the perfect crystal structure away from the defect (i.e. in region II). This is 

true for three dimensional lattices. However for surface or interface calculations, 

the modification of ionic positions or indeed interplanar spacings at the surface 

or interface regions must be addressed. In CHAOS, the energy is calculated by a 

combination of a discrete sum of planar integrals around the interface for all 

planes in regions I and II defined by the MIDAS code, and a volume integral 

over the remainder of the crystal. The planar integrals therefore take explicit 

account of the dilation of the crystal at the interface:

Eub -  - Q2/2 (EPlanar+ EVolume) (2.4.1)

E P la n a r 2rcR(dR) (2.4.2)

E V o lu m e (2.4.3)

where Rp is the perpendicular distance from the origin and plane p, Mj is the 

Mott-Littleton displacement factor for sublattice j, Qj is the total defect charge, T 

= (Rllb2 - rp2)172 and R is cut-off radius.
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The response of the interface or surface ions, to an electric field, is taken to be 

identical to that of the bulk ions (i.e. they have the same Mott-Littleton 

coefficients). This is clearly an approximation as the environment at the surface 

deviates from the bulk. For ionic materials with little surface relaxation such as 

C e02 (111) the effect is minimal. However, for materials with large surface 

relaxation such as dipolar surfaces and especially interfaces, this approximation 

may not be trivial. CHAOS has been extended to accommodate this effect by 

calculating the Mott-Littleton coefficients for the bulk and surface ions. The 

modified coefficients are then used to determine the displacements and 

polarisation energies of the ions close to the surface or interface. This 

necessarily increases the computational time and was not included in the work in 

this thesis, although its inclusion would provide a useful extension to this work.
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CHAOS

Region I

egion Ilal

Region ITb —» °o

Figure 2.4 Two regions strategy used for the calculations of point charge 

defects at the surface of ionic crystal - CHAOS
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2.4.1 Surface Madelung Potential

The relaxed perfect surface structure, generated by the MIDAS program 

(discussed in section 2.3), is used as a reference state for the calculation of point 

defect formation energies using the CHAOS program. The Madelung energies 

calculated by the MIDAS code for surfaces are significantly lower at the surface 

plane than in the interior of the crystal. This energy generally increases and 

reaches a constant value as going further into the bulk. However, this constant 

value will never reach the bulk equivalent value which is calculated by 

CASCADE, because of the different methods by which the boundary conditions 

are defined when considering three-dimensional bulk and two-dimensional 

surface.

For the bulk defect calculation, there are no effects due to the terminating 

surface or interface because the calculation refers to an infinite system. In 

contrast, in surface calculations, two-dimensional boundary condition apply; 

after relaxation, there will be a perturbation of the surface dipole layer which 

creates an electric potential which acts through out the bulk of the crystal. This 

leads to a shift in Madelung field near surface region (Duffy and Stoneham 

1983).

The shift in Madelung field is a result of a dipole induced by ionic relaxation 

near surface and calculated as qV where V is the shift in potential by defect of 

full ionic charge, q. The magnitude of the shift V is dependent on the relaxation 

of ions on the surface and therefore will be different for different surfaces. In 

this work, the shift in Madelung potential of ceria is 1.73eV for the (310)
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surface, 1.35eV for the (110) surface, and 4.793eV for (111) surface. All 

calculations of charged defects at surfaces are adjusted for this term.

2.4.2 Image charge effect

A surface or interface implies a discontinuity in the dielectric constant and 

therefore the energy associated with the defect must also include a contribution 

from the image charge induced as a result of the defect. The dielectric 

discontinuity at the interface of two materials, will alter the polarisability of the 

oxide around the defect near the interface (Stoneham and Tasker 1987). From 

classical electrostatics, the energy of a charge near the dielectric interface is 

calculated as

Q

Eimae' 4 z e ,
^1 ~ ^ 2  

V£ 1 + e 2 J
(2.4.4)

Where

Q : the charge of defect

8j : the dielectric constant of the oxide which bears the defect, ceria (£j = 20)

e2 : the dielectric constant of the second material e.g. A120 3 (e2 = 11)

vacuum (e2 = 1)

z : the distance of defect from the interface of surface

For defect calculations at ceria surfaces, because the value of (£} - e2) is positive, 

the effect of the image charge at the oxide surface is to repel the charged defect 

from the boundary. This reduces the stability of the charged defect as it 

approaches the surface. This effect however is very small compared to ionic 

relaxation effects. When oppositely charged defects are brought towards the 

surface/interface as a neutral bound pair, the charge on one defect in oxide will
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interact with the image charge of the other and vice versa, hence, the pair will 

not be repelled from the surface.

When calculating the displacements of the ions in region Ila and the polarisation 

energy of region Hb, the image charge is induced via the defect at a distance d/ 2  

(where d is the interplanar spacing) above the uppermost ion on the top plane of 

the material containing the defect. At present the CHAOS program adopts a 

dielectric constant of 8 2  = 1 for the second material and is therefore only strictly 

applicable to free surfaces.

2.5 Energy Minimisation Methods

In static simulations, the ion positions are adjusted so that the forces acting on 

each ion in region I are zero, i.e. to satisfy equilibrium condition in equation 

2.2.5. Initially, a configuration is specified for the system; then the energy E(x) 

is calculated, using the interatomic potentials, which are a function of all the 

structural variables, x . The structure is then adjusted, using an iterative scheme 

until the system achieves a minimum energy configuration. This is achieved by 

a Newton-Raphson method which requires the first and second derivatives in the 

minimisation procedure.

The gradient (dE/dx) alone may be used to direct the minimisation. This is the 

well known conjugate gradient technique, the values of variable x in the (n+ l)th 

iteration are related to those in the nlh iteration by:

x(n+1)= x(n) + 0 ) s ( n) , (2.5.1)



Where O )  is a numerical constant chosen for each iteration to optimise the 

efficiency of the minimisation. The displacement vector s(fl) uses information on 

the previous values of the gradients to speed the convergence, therefore:

S(n+1> =  -  g (n> +  g(n+l)g(n) ^ (2.5.2)

where p1 (2.5.3)

and g(n) are vectors whose components are the derivatives with respect to 

individual coordinates and the superscript, T, indicates the transpose of the 

vector.

Much more rapid convergence is achieved if second derivatives are used to guide 

the minimisation, in which the successive values of the variables are calculated 

according to:

where the matrix H = W*1, in which the elements Wy are the second 

derivatives:

x(n+i) = xfn) - H(n).g(n) , (2.5.4)
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2.5.1 Updating Algorithm

The improved speed of convergence is easily lost in the extra computational cost 

required to calculate and invert the second derivative matrix for each iteration. 

However algorithms are available which enable the second derivative matrix to 

be updated without recalculation and inversion. The algorithms are approximate 

and it is therefore necessary to recalculate H every few iterations. The most 

widely used of these is the Davidon-Fletcher-Powell algorithm (Davidon 1959, 

Fletcher and Powell, 1963) in which the matrix, H, is updated each iteration 

according to the formula:

The number of iterations after which H is recalculated is also crucial to the speed 

of minimisation, calculations (chapters 4, 5 and 6) have shown that the optimum 

number of iterations after which H should be recalculated varies from 5 to 20 for 

the various systems considered, with the time for the minimisation being reduced 

considerably by making the optimum choice. There is however no method of 

determining the optimum number of iterations after which H should be 

recalculated without first performing the minimisation.

(2.5.6)

Where = g(n+1) - g(n)

Ax(n) = x(n+0 - x(n)

(2.5.7)

(2.5.8)
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One major limitation with the Newton-Raphson method, is the enormous c.p.u. 

memory requirement for storing the inverse of the second derivative matrix, 

which may become prohibitive even with large memory computers for the 

structures with large number of atoms in the unit cell or for defects with very 

large sizes of region I.

In the appendix we address the calculation of the long range Coulombic terms by 

application of the Ewald method for systems with three-dimensional periodicity 

and the Parry method for systems with two-dimensional periodicity. These 

methods for calculating the Coulombic terms enable a substantial reduction in 

the computational time required for the calculations to be made and are inherent 

in all the static simulation codes.

2.6 Summary

The techniques described above allow atomistic simulation methods to address 

important problems including the structure and stability of pure and defect 

crystal and their surfaces and interfaces. The following chapter describes how 

the potentials are derived for implementation simulation.
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CHAPTER 3

POTENTIAL MODELS
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3.1 Introduction

All calculations in this work were undertaken using static lattice minimisation 

methods which employ interatomic potentials to describe the interactions 

between the ions in the crystals. The reliability of the results thus depends on the 

accuracy of the potentials used, all of which were based on the Bom model of 

the ionic solid (Bom 1954), which uses a classical description of the crystal, 

including a long range Coulombic interaction and a short range term to model 

the Pauli repulsions and van der Waals attractions between electron charge 

clouds. In this theory, the pair potential approximation is employed, as there is 

good evidence that the approximation is acceptable for strongly ionic materials, 

although we note that three-body potentials have been employed in modelling 

semi-ionic systems (Sanders et al. 1984 and Titiloye et al. 1989).

3.2 The Born model of the ionic crystal

The energy of a perfect crystal within the pair potential approximation can be 

written as follows:

U—  = + £ > ( ' « )  • (3-Dij

where N is the total number of atoms in the crystal.

The first term describes the Coulombic interactions between a pair of atoms or 

ions with charges qA and qj separated by distance r̂ -. This provides the attractive 

component of the crystals cohesive energy.
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The second term, 0(1*^), represents the short range interactions acting between 

the atoms, which includes contributions from many terms including covalency, 

non-bonded repulsion and dispersion. These short range interactions provide the 

repulsive forces which are very high at low values of r.

We have noted that only pair potentials are included in our model, as such 

interactions can reproduce the crystal properties with reasonable accuracy for 

strongly ionic materials. In chapter 6, however, we study the application of 

atomistic simulation to heteroepitaxial interface systems, where the misfit 

between the overlaying material and substrate will have to be accommodated by 

either an expansion or a contraction of the materials at the interfacial plane. The 

inclusion of three-body terms may have a larger effect on the relaxational 

behaviour and interfacial stability of such systems than is the case for surface 

relaxation or defect energy calculations. A useful extension to this work would 

therefore be to study the effect of the three-body and higher order terms on the 

interfacial energies and structures.

The calculation of the lattice energy as the sum of the total Coulombic and short 

range energies is difficult as the former converges slowly. This problem was 

solved by Ewald (1921) using a technique that partitioned the Coulomb sum into 

two parts: one converges quickly in real space and the other is rapidly 

convergent in reciprocal space. Further details will be given in chapter 2.
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3.3 Short range interactions

3.3.1 Two-body bonded interactions

These are interactions which occur between open-shell atoms and normally 

involve covalent bonds. The simplest and most widely used function applied to 

a bonding pair of atoms is the bond harmonic function:

where re is the equilibrium bond distance and K is the bond force constant. 

Functions of this type are quite adequate for small deviations from the 

equilibrium bond distance. However, the anharmonicity of real systems is not 

represented in this expression. Greater reliability over a wider range of 

separations can be achieved by using the Morse function, which has the form:

where De is the dissociation energy of the bond, re is the equilibrium bond length 

and p is a variable parameter, which can be determined from spectroscopic data 

(assuming the potential well is harmonic at re).

O (ry) = % K [flr, - rjl - re ]2 . (3.2)

3> (ry) = De {1 - exp [-P (|rj - rj| - re )]}2 - De * (3.3)

P = tOe V (H /2D e) , (3-4)

where CDe is the vibrational frequency and p is the reduced mass.
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The Morse potential is employed to describe the bonding interactions between 

atoms of organic molecules when modelling the adsorption of gaseous molecules 

including NO and CO onto the surfaces of a solid material (chapter 5).

3.3.2 Two-body non-bonded interactions

These are interactions between closed-shell species such as inert gas atoms and 

ions in crystals. The most widely used function is the Lennard-Jones potential 

(employed almost exclusively for simulations of molecular systems ) which is of 

the form:

*  G«) = 12
r. -r. -r,i j » j

(3.5)

where the first term represents the Pauli repulsion and the second, the van der 

Waals attraction; A and C are variable parameters. C depends on the 

polarisability of the interacting ions as it represents the dispersive, induced 

dipole-dipole interactions between the ions.

The majority of the potential functions employed in this thesis employ the 

Buckingham potential, in which the r 12 term of the Lennard-Jones potential is 

replaced by an exponential repulsive term, giving:

<D (r„) = A exp

/ Ar-r.i j C

P r 6
V

(3.6)
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A and p depend on respectively the size and hardness of ions (Busing 1970); the 

attractive C/r6 term is included to take account of the van der Waals, dispersive 

and covalent interactions. When the C/r6 term is omitted, the potential function 

is known as B om -M ayer potential.

3.4 Ionic polarisability

Although rigid ion models have be applied to defect studies (Gillan and Dixon 

1980), accurate calculations of defect energies generally require the inclusion of 

polarisable ions. Omission of polarisability moreover limits the ability of the 

model to calculate accurately, for example, lattice dynamical properties (Woods 

et. al. 1960) and segregation energies (Colboum and Mackrodt 1985). 

Furthermore, the rigid ion model implies the optic (high frequency) dielectric 

constant is unity and therefore is unable to reproduce this property of the crystal.

The most effective way of including of ionic polarisability is to use the shell 

model of Dick and Overhauser (1958), which treats an ion as a core of charge X 

in which all the mass is concentrated, surrounded by massless spherical shell of 

charge Y (which is nevertheless a point entity). The core positions represent the 

positions of the ionic nuclei, and the shell, those of the valence shell electrons, 

although little physical interpretation can often be assigned to the shell charge 

which may indeed sometimes be positive. The formal charge of the ion is 

(X+Y); core and shell are coupled by a harmonic spring of constant k. The free 

ion polarisability, a , of an ion of type i is given by:

oti = Y i* / k i , (3.7)
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and the core/shell self energy :

(3.8)

The parameters Y and k are obtained by empirical fitting to dielectric data, 

elastic constants or phonon dispersion curves. For defect and surface 

calculations, a quadratic k' term may be added to the anion-anion core-shell self 

energy. This is necessary because during relaxation, some core-shell separations 

become excessive and physically unreasonable. The interaction between core 

and shell then becomes:

The polarisability therefore varies non-linearly with the electrostatic field for 

high fields. The advantage of this added potential form is that the calculated 

structure, high frequency and static dielectric constants remain unchanged in 

near-equilibrium geometry while preventing large electric fields from separating 

cores and shells during the relaxation process.

Since polarisation is described in terms of the displacement of the shells relative 

to the core, and since the short-range repulsions are generally taken to act 

between the shells only, the model includes the required coupling between short 

range repulsion and polarisation. The Coulomb forces act between all cores and 

shells except for the cores and shells belonging to the same ion. The relative 

merits of the shell model description of polarisability in ionic solids are 

discussed in more detail by Catlow and Mackrodt (1982) and Catlow (1986).

Oj (rj) = kjrf2 + kj'rj4 (3.9)
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3.5 Derivation of short range potential parameters

There are two main ways in which short range interatomic potentials are derived; 

the first is based on empirical fitting of the parameters so that the calculated 

physical properties are in agreement with the experimental data, while in the 

second, the parameters are obtained from quantum mechanical techniques which 

are used increasingly to calculate the short range interactions.

Empirical potentials rely on the validity of the analytical forms used for the 

potential when they are extrapolated to interatomic separations that differ 

substantially from those used in the parameterisation. Non-empirical potentials 

offer the promise of greater reliability in describing the short range potential 

energy terms for a wide range of interatomic separations, provided that 

theoretical methods of sufficient accuracy are available. They have therefore 

major potential advantages for systems which exhibit substantial deviations in 

interatomic separations, as in defect calculations where interatomic spacings in 

interstitial sites can be up to lA  closer than the corresponding equilibrium 

separation. Empirical potentials do, however, perform well in comparison to 

their non-empirical counterparts as the deficiencies in the analytical form of the 

empirical methods may be compensated, in part, by the fitting procedure. 

Although an obvious disadvantage of these methods compared to non-empirical 

procedures is that if no experimental data exists, the procedure cannot be 

applied; furthermore the accuracy of the empirical potential can not exceed the 

accuracy of the experimental data. These two different approaches are now 

discussed in greater detail.
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3.5.1 Empirical potentials

This is the simplest and most widely used way to obtain potentials. In this work, 

the analytical term employed to describe the short range potential energy 

between anion-anion is the Buckingham interaction (equation 3.6). The 

parameters A, p and C are determined by a least squares fitting routine to the 

available experimental crystal properties such as the lattice energy, lattice 

constant, dielectric and elastic properties and phonon frequencies. In practice, 

the procedures employed for calculation of properties are "run in reverse", with 

potential parameters being adjusted until the best agreement is achieved between 

calculated and experimental properties.

3.5.2 Electron gas potentials

The "electron gas" method is a simplified form of the local density functional 

theory and is based on methods developed by Wedepohl (1967) and subsequently 

applied by Gordon and Kim (1972). This method was applied to calculate the 

intermolecular forces between open-shell systems (Harrison and Sokel 1976), to 

closed-shell systems (Clugston 1978), and has been extensively applied to ionic 

systems by Mackrodt and Stewart (1979).

The advantage of this method is that it is computationally inexpensive as it is 

based on a formalism for treating electrons in an atom or ion as a degenerate 

Fermi gas. This density functional approach assumes we have a uniform 

electron gas which is spherically symmetrical with the electron distribution being 

the same for all inter-nuclear separations. Thus the electron density of a lattice 

of ions is assumed to be the sum of the electron densities of the individual
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isolated ions, which is a reasonable approximation only for closed shell atoms or 

ions, and as such might be expected to be acceptable for the potentials for classic 

ionic materials. In contrast, we would expect there to be distortions of the 

individual electron distributions for more covalent systems.

The electron densities of the component ions are commonly determined by 

calculating the wave functions for the ions in the electrostatic crystal 

environment, i.e. the wave function is centred at a Madelung well. This is 

important for anions especially for 0 2~ where the second negative charge is 

unbound (Grimes 1990), whereas cation electron densities are strongly bound 

and there is therefore very little effect on the wave function of the applied fields; 

hence the free ion densities are used.

The Madelung well used in calculating anionic wave functions is spherically 

symmetric and has the form:

Where V0 is the well depth which will be negative for electrons of anion (and 

positive for those of a cation); rx is the ionic radius.

In this work, the cation densities were calculated numerically (Herman and 

Skillman 1963) and incorporated a relativistic correction (Cowan and Griffin 

1976). For the oxygen density, the radial function of the spherical harmonic 

wave function is defined as expansions in analytic Slater (Clementi and Roetti 

1974) functions; the initial potential or electron density is estimated, and the

V(r) = V0 

V(r) = V0 rx / r

for (r < rx) 

for (r > rx)

(3.10)

(3.11)
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atomic densities will be calculated using the Hartree-Fock exchange potential 

(Harker 1974).

Having calculated the electron density of the interacting ions, the total energy is 

written as:

^total =  J^coul ^kin ^exch ^corr ^disp (3-12)

where the terms are defined as follows:

Ecoul : the Coulomb energy which includes the electron repulsion energy, the 

nuclear repulsion energy and the electron - nuclear attraction energy.

: the kinetic energy calculated directly from the kinetic energy of a 

uniform electron gas which is proportional to the 5/3 power of the 

electron density.

EexCh ‘ the exchange energy of electrons in the overlap region of the interacting 

atoms/ions. This is a repulsive energy and is proportional to the 4/3  

power of the electron density.

Ecorr : the short range correlation energy which is proportional to the l/3 power 

of the electron density 

Edisp : the non-overlap long range part of the correlation or dispersive energy 

which includes the van der Waals interaction. This interaction arises 

from coupling between instantaneous electric multipole moments in 

participating atoms, and can be calculated using formulae of Slater 

and Kirkwood (1931).
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Details of the calculation of the individual components of the energy together 

with the discussions of assumptions made in the derivation of interionic 

potentials based on using electron gas methods are given in Gordon and Kim

(1972), Clugston (1978), and Harding and Harker (1982). Using potentials 

derived by the electron gas method, early studies of perfect lattice properties 

were reported by Kim and Gordon (1974), Cohen and Gorgon (1975 and 1976), 

Wedepohl (1977a, 1977b), and of defect properties by Keeton and Wilson

(1973), Catlow and Norgett (1973), Catlow et al. (1977), and Mackrodt and 

Stewart (1977 and 1979).

In the present study, a program WEDEPOHL (Harding and Harker 1982), an 

interatomic potential generator which takes the numerical representation of the 

electron densities as input was used to calculate the interaction energies between 

ionic wave functions using the method outlined above (Wedepohl 1967). In the 

final stage of the procedure, the resulting potential is fitted to a Bom-Mayer 

functional form by least square fitting over a wide range of interionic 

separations.
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3.5.3 Modified (or empiricised) electron gas potentials

The short range potentials for dopant/anion interactions used in this thesis are 

derived initially by the electron gas method as in several cases there is an 

inadequate range of data for deriving an empirical model. Previous experience 

has indicated that poor results will be obtained if potentials from the electron gas 

methods are used in conjunction with empirical potentials (Butler et al. 1983). 

This problem can be solved first by evaluating using the electron gas method, the 

difference between a dopant-lattice and a reference lattice-lattice potentials, (e.g. 

dopant-oxygen and cerium-oxygen for the case of dopants in C e02). We then 

add this difference to the values obtained empirically for reference interactions 

(V11̂ ) .  These new values are finally fitted to the Buckingham form to yield an 

"empiricised" electron gas potentials (Grimes et al. 1989).

V * empiridsed W  = Fitted { [ \ \ G  (r) - V*EG(r)] + (r)} (3.13)

This is acceptable, as although the absolute values of electron gas potentials may 

be inconsistent with the empirical potentials, the difference between them are 

considered to be reliable. This method therefore provides a consistent set of 

potential parameters for the dopant-anion interactions which are used in defect 

calculations for precious metal ions interacting with the ceria support in chapter 

5.
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3.6 Comparison of different potentials for cerium dioxide

Three sets of potentials for C e02 are evaluated by reference to perfect lattice and 

defect properties of C e02. In particular, the following models were considered.

Potential 1 was derived by Butler (1983), and is a combination of empirically 

derived potentials for anion-anion interactions (Catlow 1977a) and electron gas 

potentials for the cation-oxygen interactions.

Potential 2 was derived by Grimes and Catlow (1991) for all interactions using 

the electron gas method.

Potential 3 is the same as potential (1) with an additional C/r6 term for the 

cerium-oxygen interaction, which together with a change in values of the shell 

charge Y results in a slight modification to the ionic polarisabilities, i.e. an 

increase in polarisation of the oxygen and decrease in that of the cerium.

In all calculations using these three sets of potentials, the Ce4+-Ce4+ short range 

potential is set to zero.
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Table 3.1 Short range potential parameters for C e02

A P C Y k a
(eV) (A) (eV /A6) (lei) (e V /A 2) (A3)

(1) O 22764.30 0.149 43.83 -2.83 257.89 0.45

Ce 1986.83 0.35107 0 . 0 9.38 201.62 6.28

(2 ) O 108.00 0.38 56.06 -4.4 296.80 0.94

Ce 1984.20 0.3494 26.44 -7.3 1957.0 0.39

(3) O 22764.30 0.149 43.83 -6 .1 291.75 1.84

Ce 1986.83 0.35107 20.40 7.7 419.874 2.03

Table 3.2 Physical properties

Lattice
Energy

(eV)

Dielectric constant
High Static

Cn C12 C44

(1 0 n dyn cm2)

Lattice
constant

(A)

( 1) -104.602 5.412 22.578 49.022 14.042 13.227 2 . 7 3 4 3

(2) -106.303 1.934 17.112 53.472 13.746 7.371 2.6917

(3) -105.635 3.996 19.548 50.471 14.294 1.603 2.7055

expt -109.0** 4.0* 18.6-20* 2.7055*

Table 3.3 Intrinsic defect energies (eV)

V " o V Ce"" o r Schottky
E«

Anion
Frenkel-E*.

(Es-2 EF)

(1) 15.642 83.601 -10.407 10.282 5.235 -0.188

(2) 16.023 85.461 - 9.636 11.204 6.387 -1.570

(3) 16.342 83.519 -10.432 10.568 5.624 -0.680

(* Samsonov 1982 and ** La 1980)
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One of the most striking features of the potentials apparent from the parameters 

reported in table (3.1) is the variation of the oxygen polarisability. The 

polarisability of cerium is fourteen times that of oxygen in potential ( 1 ) and 

slightly higher that of oxygen in potential (3), whereas it is only half that of 

oxygen in potential (2 ) owing to a higher value of the cerium spring constant. 

Although there is no reported polarisability for cerium, it is expected to be lower 

than that of the highly polarisable oxygen; potential (2 ) would therefore be a 

better set if polarisability only is taken into account. However, the high 

frequency dielectric constant of potential (2 ) is only half that of the experimental 

value indicating the lattice is insufficiently polarisable, whereas it is 30% higher 

than the experimental value for potential (1) as a result of the very high Ce 

polarisability.

In this work, potential (3) was chosen as it yields the most accurate lattice 

parameter which is an important requirement especially for the study of the 

interfaces between ceria and alumina. In addition, the dielectric constants are in 

reasonable accord with experiment which is of considerable importance in 

modelling defect properties.

Lattice energies and intrinsic atomic defect formation energies vary very slightly 

for potentials considered. The values of (Es - 2EF) reported in table 3.3 are of 

special significance and will be discussed later in the chapter.

The reliability of the potentials derived are usually assessed on the basis of the 

accuracy of the modelling of the perfect lattice properties, in particular the lattice 

energy, dielectric constants, elastic properties and lattice constant. Only 

dielectric and lattice constant data are available for C e0 2. It would be helpful if
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elastic data were available as we note that there are appreciable differences 

between the calculated values for the three potentials. In particular, a low value 

of C4 4  constant is calculated for potential (3) which it would be useful to verify 

experimentally.

Having chosen the potentials for the study of perfect lattice and intrinsic defects 

in ceria, the next step is to derive a suitable set of short range potentials for 

extrinsic defect-oxygen interactions. This is achieved by the electron gas 

method, by first choosing a suitable oxygen wave function to obtain the electron 

densities for the interacting species and subsequently suitable cerium-oxygen 

short range parameters which are then used as a reference for derivation of metal 

defect-oxygen short range parameters according to procedure described in 

section (3.5.3). Oxygen wave functions of four different well depths are 

considered (Harker 1974).
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3.7 Derivation of the metal dopant-oxygen short range parameters

Four sets of short range potentials for cerium-oxygen interactions are calculated 

by the electron gas method employing four Madelung well depths in calculating 

the electron density for the O2- ion. In particular, we have used well depths V0 

equal to 0.5, 1.0, 1.5 and 2.0 atomic units (appendix 3). As noted earlier, the 

well has the form:

V(r) = - V0 r < r x

V(r) = -V 0 rx/ r  r > r x ,

where rx is the Bom ionic radius (= 2.57 bohr). The 'free ion' electron density is 

used for all cations because the 'free ion' radial distribution functions do not 

change appreciably in the lattice.

Illustrated below is a comparison of the difference in physical properties and 

intrinsic defects in ceria using cerium-oxygen potentials calculated using the 

electron gas method with oxygen wave functions obtained using various oxygen 

well depths. Values of Y for both anion and cation are kept constant and the 

same as in potential (3); the oxygen-oxygen empirical potential is also that of 

potential (3).
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Table 3.4 Physical properties of C e0 2

Lattice
Energy

(eV)

Dielectric
High

Constant
Static

c„ c12
1 0 n dyn/cm2)

C44 Lattice
Constant

(A)
(0.5) -104.053 3.917 26.932 47.877 12.345 0.316 2.7277

(1 .0 ) -108.700 4.482 21.891 55.974 16.230 0.732 2.6298

(1.5) -110.880 4.637 16.609 60.165 19.269 2.063 2.5987

(2 .0 ) -112.572 5.059 19.949 63.433 2 0 . 0 2 1 0.681 2.5527

Table 3.5 Intrinsic defect energies (eV)

V o V " "  y  Ce O'i Schottky
Es

Anion 
Frenkel - Ep

(Es - 2Ef)

(0.5) 15.116 81.494 - 10.093 7.673 5.023 - 2.373

(1 .0 ) 16.547 85.168 -11.139 9.562 5.408 - 1.254

(1.5) 17.626 87.632 - 11.662 12.004 5.964 0.076

(2 .0 ) 17.653 87.950 - 12.133 10.684 5.520 - 0.356
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From tables 3.4 and 3.5, we note that the discrepancy between the calculated and 

experimental lattice constant of ceria increases with increase in the well depth. 

However, another important criterion in assessing the suitability of potentials for 

ceria is the relationship between Schottky and Frenkel energies, where the 

Schottky defect is created in a perfect crystal by transferring atoms in 

stoichiometric proportions from lattice site in the bulk of the crystal to a surface 

site and a Frenkel defect is created when an atom is transferred from a lattice site 

to an interstitial site.

The defect reactions for these processes can be represented as follows:

Frenkel type : Ox0  = V" 0  + O"

Schottky type : CexCe + 2 OxQ = V""Ce + 2 V" 0  + C e0 2

where V 'o : Oxygen vacancy

O'' : Oxygen interstitial

V""ce : Cerium vacancy

C e0 2 : Mole of ceria

Ce*Ce : Cerium in lattice site

Oxo : Oxygen in lattice site

On combining these two reactions, we can demonstrate the relationship

/. (Es - 2EF) = E(V""Ce) - 2 E (0 ") + E(Ce02) , (3.14)

where the energies on the right hand side of this equation refer to the energies of 

the species in the brackets.
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The importance of equation (3.14) can be shown as follows. First we consider 

the accommodation of excess oxygen in the lattice of C e0 2 ; a similar formalism 

would apply to doped system. In particular, we consider reactions:

0 2 —» 2  0 "} + 4 holes (E ^

C e0 2 + 0 2 -> 2 C e0 2 + V""Ce + 4 holes (E2)

.*. E2 -E j = C e0 2 + V ""^  - 2 0"j

(from equation 3.14)

E2 -E ! = Es - 2Ef  (3.15)

The equihbria governing the above equations are:

k t = exp (- E,/RT) = ( [ 0 " P  [hole] 4 ) / PG2 

k2 = exp (- E2/RT) = ( [V '"'cJ [hole] 4 ) / PQ2

(k2 /k , ) =  [V""Ce] / [0"]2 = exp{- 1/r t (E2 - E2) }

and from (3.15), (k2 /k !)  = exp{-*/RT(Es - 2EF)}

••• [V""Ce] = exp {- 1 / r t  (Es - 2 Ep)}. [0" ,P  (3.16)

From equation (3.16),

If (Es - 2EP) > 0 then [V'"'Ce] «  [O",]

If (Es - 2Ep) < 0 then [ V ^ ]  »  [O"]
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Thus the significance of these expressions is that if (Es - 2EF) is negative then 

cation vacancy disorder will dominate in doped or oxidised system; if positive, 

oxygen interstitials will be the major species. The latter is generally thought to 

apply, which is clearly of considerable significance if C e0 2 is to be used as an 

"oxygen reserve" in an environment operating under widely varying oxygen 

pressures.

An essential criterion in choosing the suitable potentials for C e0 2 is therefore the 

value of (Es - 2EF) which should be > 0. The small positive value of (Es - 2EF) 

of potential with well depth 1.5 Hartrees shows that this potential is most 

suitable for our work related to catalyst activity.

In previous studies, the variation in Madelung well depth has been found to have 

very little effect on the potentials derived (Lawence 1988), the relaxations of five 

different surfaces of Cr20 3, {0001}, {1120}, {1010}, {1012} and {1011} are 

insensitive to the well depths used in calculating electron densities for O2" ions 

which were used in the electron gas calculations of the potentials. Also, Fowler 

and Tole (1988) compared the electronic structures of the O2" and F* anions (in 

MgO and LiF) at unrelaxed surfaces, steps and comers with those from bulk 

calculations, and found that anion polarisabilities increase with decreasing 

coordination, the rate of increase was much greater for O2- but partially reduced 

by surface relaxation . The increase freedom for the electron density of an ion at 

the surface due to lower coordination, which is equivalent to a shallower 

Madelung well depth, is balanced by an increase in the electrostatic field at the 

ion site pulling the electron back into the solid. The effective size and shape of 

anions at the surface sites are very little different from those in the bulk. A 

similar conclusion was drawn by Causa et al. (1986). The transferability of
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potentials was also demonstrated by Mackrodt and Tasker (1989) who found a 

good agreement between calculated and experimental segregation energies of Ca 

at the surface of MgO, and of Mg and Y at the surface of a-A l20 3. However, 

different results are obtained in this study which have appreciable variation of 

calculated bulk defect energies with the Madelung well depth employed.

No single set of potentials with the Madelung depths considered reproduces 

acceptable properties for ceria as compared to potentials (1), (2) and (3). This is 

not surprising considering the approximations made in the simple model. The 

use of a formalism appropriate to the uniform electron gas and the omission of 

any variation of the wave functions of the interacting species with the 

interatomic spacing are obvious sources of error. Also more subtle errors arise 

from effects such as the inclusion of interactions between orbitals that are in fact 

symmetry forbidden in a more detailed quantum mechanical treatment (Duffy et 

al. 1992, Wood and Pyper 1981). Nevertheless, for dopant-oxygen interactions, 

these methods provide the only viable approach and enable us to derive Pd2+- 0 2_, 

Pd2+- 0 2', Rh3+- 0 2- and Ce3+-0 2- potentials, employing an oxygen Madelung well 

depth of 1.5 Hartrees. The potentials were subsequently empiricised using the 

Ce4+- 0 2_ electron gas potential obtained for the same well depth following the 

procedure described in section (3.5.3). The resulting parameters are reported in 

table (3.6).
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Table 3.6 a) Short range potential parameters V(r) = Aexp(-r/p) - C/r6

Interactions A (eV) P(A) C (eV/A6)

o2- - o2- 22764.3 0.149 43.83

Ce4+ - o2- 1986.83 0.35107 20.4

Ce3+ - o2- 1731.61808 0.36372 14.43256

Pd2+ - o2- 1145.21168 0.38335 32.50181

Pt2+ - o2- 1541.41055 0.37292 25.07525

Rh3+ - O2 1404.42826 0.36482 13.12242

b) Shell model parameters V(r) = lqr2 + k^r4

Y (lei) kj (eV/A2) k2 (eV/A4)

Ce4+ 7.7 291.75 0 . 0

Ce3+ 7.7 291.75 0 . 0

o2- -6 . 1 419.874 1 0 0 0 0 . 0
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3.8 Summary

In this chapter we have reviewed the various analytical forms that have been 

employed to describe interatomic potentials in solids. We have concentrated on 

pairwise interactions which have been successfully employed to model ionic 

systems, although we note that for systems with a higher degree of covalency, 

higher order terms must be included. For ionic systems, polarisation terms must 

be included in the calculation, which is successfully achieved by implementing 

the shell model. Two methods - empirical and electron gas - of deriving short 

range potential parameters have been described. Two existing sets of potentials 

for ceria are compared and contrasted which leads to a slight modification of one 

set to produce a more suitable set of potentials for the calculations of extrinsic 

defects in ceria. Finally short range potentials for precious metal ion - oxygen 

interactions have been derived using the modified electron gas method from a 

selected Madelung well depth for 0 2\
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CHAPTER 4

SURFACES OF CERIA
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4.1 Introduction

In this chapter, we employ simulation techniques to model the surfaces of ceria, 

paying special attention to the effects of these properties on catalytic activity. 

The first stage in investigating the surface properties of ceria is to study surface 

structure and energies. Low energy surfaces are generally more significant and 

will dominate the morphology of the material. Intrinsic defects in ceria such as 

the oxygen vacancy, which is known to play an important role in catalytic 

reactions and to be responsible for the oxygen storage ability of ceria (Yao and 

Yao 1984), will be investigated together with the migration mechanism and 

activation energies of the oxygen vacancy. Finally, the role of lattice oxygen and 

the oxygen vacancy in ceria in the oxidation of carbon monoxide will also be 

studied.

Ceria (chemical formula C e02) is the binary solid oxide of cerium which 

possesses the fluorite structure with each Ce4+ cation surrounded by eight 

equivalent nearest O2- anions forming comers of a cube and each O2' anion is 

surrounded by a tetrahedron of four cerium ions. The lattice can be described as 

a simple cubic array of oxygen anions, where half the cube centres are occupied 

by cations which are connected by edge sharing with lattice parameter of 5.411

A .

The formation of a stable surface will occur only if the Madelung sums converge 

with increasing crystal size. This convergence only occurs when the crystal is 

electrically neutral and has no dipole moment perpendicular to the surface 

(Tasker 1979). Indeed, Bertaut (1958) showed that a dipole moment 

perpendicular to the surface would lead to an infinite surface energy. Such



67

surfaces which include rocksalt ( 1 1 1 ) and fluorite ( 1 0 0 ) are unstable and are not 

observed without substantial reconstruction or adsorption of foreign ions to 

remove the dipole.

The necessity of substantial reconstruction, can be illustrated by considering the 

continuum approximation of the interaction between charged planes. The 

electrostatic potential at any plane P (figure 4.1.a) due to two planar sub lattices, 

of charge density of ± 9/A and at a perpendicular distance z and (z+8 z) 

respectively, reduces to a simple form in the continuum approximation, when z 

is greater than a few interatomic spacings (8 z):

V(z) = +
2n

qz — q(z + 8 z) 
A

2  n *
 q oz

A
(4.1)

For N sets of planes, the electrostatic potential increases without limit and is 

given by:

V(z) = - 2 rcqSz
N (4.2)

These types of surfaces are, following Tasker (1979), designated Type 3 

surfaces. An example is the (100) surface of ceria.

A second case exists where the crystal is constructed of a neutral block of planes 

(figure 4.1.b). The potential at any plane P is given by:
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V(z) = +
271. 
— 2 qz 
A

— q(z + 8 z) 
A

~ q ( z - 8 z) = o (4.3)

Here the contributions to the potential from the planes cancel for each neutral 

repeat unit and the potential becomes zero at large distances. These are 

designated Type 2 surfaces which are composed of charged layers but they form 

a charge neutral repeating stacking sequence which has a mirror plane parallel to 

the surface as is observed by the (1 1 1 ) surface of ceria.

P_______________________  Surface plane P_________________________

T

z  (-q)

'I - 8 z

(+q)------------------------------   (+2 q)

+ 8 z + 8z

(-q)-----------------------------------------------------   (-q)

a) b)

Figure 4.1 Schematic representation of two charged planes of

a) type 3 and b) type 2 surfaces.
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A final case exists where each individual plane maintains electroneutrality. 

These surfaces are designated Type 1 surfaces which are charge neutral with 

stoichiometric proportions of anions and cations in each plane (parallel to the 

surface). Examples include the (110) and (310) surfaces of ceria. For a type 1 

surface, the potential for each plane is exactly zero due to the cancellation of the 

effects of the positive and negative charges.

We also note that the relaxation of a surface will result in the formation of a 

small dipole, the effect of which is independent of depth of the crystal; reliable 

interatomic potentials are crucial for the accurate calculation of the magnitude of 

this relaxation.

The above points are illustrated further in figure 4.2 showing three types of 

surfaces which are now discussed in more detail.

Type 1 is represented by the (110) and (310) surfaces of ceria; this type surface 

has an equal number of cations and anions on each plane. It has no dipole 

moment perpendicular to the surface and the potential (see equation 4.1) is zero 

for each plane. Additional neutral planes added to the surface, will make no 

contribution to the energy of the ions in the bulk of the crystal. The lattice sums 

required for the Madelung energy to converge at any ion site, require only a few 

planes either side of the site. Other examples of this surface include rocksalt 

( 1 0 0 ) and (1 1 0 ) and the perovskite ( 1 0 0 ).

The type 2 surface is represented by the (111) surface of ceria. The surface 

terminates with a single anion plane and consists of a neutral three plane repeat 

unit and hence there is no dipole moment perpendicular to the surface. Each
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plane will contribute a term to the potential sum which cancels over the three 

plane repeat unit. Addition of further three plane repeat units to the surface will 

again make no contribution to the energy of the ions in the bulk of the crystal. 

This type of surface is similar to a type 1 surface, except that each repeat, has a 

finite thickness.

The type 3 surface is represented by the (100) surface of ceria. It consists of 

alternating charged planes which introduce a dipole moment perpendicular to the 

surface. These surfaces are unstable and are generally not observed in ionic 

crystals. CoO and U 0 2 have been observed to accommodate type 3 structures. 

However, both these substances can support complex defect structures (Hall et 

al. 1985). Other example of this surface include the rocksalt (111).
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Figure 4.2 Structural representation of four surfaces of C e0 2

Type 1 is illustrated by the (110) and (310) surfaces

Type 2 is illustrated by the ( 1 1 1 ) surface

Type 3 is illustrated by the (100) surface of ceria
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4.2 Pure surface energy calculations

The relative stability of surfaces described in figure 4.2 is studied by the use of 

the energy minimisation code MIDAS (greater details of which are given in 

chapter 2). MIDAS was used to model the (111), (110), (100) and (310) surfaces 

of C e0 2 with potentials ( 1 ) and (3) (chapter 3); their surface energies are 

subsequently calculated and compared. The (310) surface was chosen because it 

has distinct step sites which might be proposed as the active sites for dissociation 

or other reactions (figure 4.3). A very important feature of the techniques 

available in MIDAS is that ions are allowed to relax to their equilibrium energy 

configurations. (Mackrodt et al. 1987) has shown that the inclusion of lattice 

relaxation leads to modified surface energies and crystal mophologies in good 

agreement with experiment for oc-A120 3 and a-Fe20 3.

Surface energies of these surfaces are calculated by the following expression:

where Es = Energy of surface region (eV)

Eb = Energy of the perfect crystal (eV)

A = Surface area.

The calculation of the surface energy for the dipolar (type 3) surface (100) of 

C e0 2 is made possible by stabilising the surface with the inclusion of defects 

such as vacancies or addatoms. By transferring half the charge of the upper face 

of the block to the lower face, the electric field at the central plane is zero and
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hence the surface energy of the block is finite. This is illustrated in figure 4.4.

Comeri Flat

Step

Figure 4.3 Diagrammatic representation of the (310) surface of ceria showing 

three distinct sites - step sites, flat sites and comer sites
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p Surface plane P

(-q) — - (- Vi q)

(+q) — - (+ q)

(-q) — - - I  =» -----(-q)

<+q) — -

a) b)

l 
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1 
1

/-
“

N A; 
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&

Figure 4.4 Schematic representation of stabilising a dipolar surface (a) by 

transferring charge from the surface to a lower plane (b)
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It has been shown by Levine and Mark (1966) that charged surfaces of ionic 

crystals of general formula MX are less stable than the uncharged surfaces. For 

our C e0 2 surfaces, of general formula MX2, the uncharged (111), ( 1 1 0 ) and 

(310) surfaces indeed are more stable than the charged ( 1 0 0 ) surface as shown 

by lower calculated surface energies after relaxation (table 4.1). The stability of 

surfaces follows the order: (111) > (110) > (310) > (100) which is applies both 

before and after relaxation. This order of stability remains the same for both 

potentials (1) and (3). However, there is a slight increase in the surface energies 

with potential (3) as a result of adding the C term to the short range potential of 

cerium which includes the interactions due to covalency, dispersion and van der 

Waals forces. These extra terms increase the attractive forces between cerium 

and oxygen atoms and therefore higher energies are required to form the 

surfaces. Potential (1) will be used throughout this thesis for the study of 

intrinsic defects in ceria such as oxygen and cerium vacancies whereas potential 

(3) will be used for the calculations involve extrinsic defects in ceria.

Table 4.1 Calculated surface energies of C e0 2 surfaces

Surface Surface Energy (J/m2)

Unrelaxed Relaxed

(1 1 1 ) 1.638 1.053

(1 1 0 ) 3.471 1.188 *Potential (1)

(1 0 0 ) 6.226 3.109

(1 1 1 ) 1.707 1.195

(1 1 0 ) 3.597 1.575 ♦Potential (3)

(310) 11.577 2.475

* Details of potential parameters are given in chapter 3
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Table 4.1 shows that relaxation energies are substantial. The relaxed energies 

are -30%  lower than those for the unrelaxed (111) surface, -60%  lower for the

(110) surface and -80%  lower for the (310) surface. Surface relaxation cannot 

therefore be omitted in any quantitative study of surface energies.

It is also observed that the more stable (111) surface exhibits smaller relaxation 

than the (110) surface as is clear from table 4.2 which compares the percentage 

ionic relaxations for the two lowest index neutral ( 1 1 1 ) and ( 1 1 0 ) surfaces of 

ceria as a function of distance (plane number) from the surface. Also, a 

comparison of ionic displacements at the surface planes only is illustrated in 

table 4.3 which includes the less stable (310) surface with the three distinct sites.

In table 4.2, a similar trend is observed for both surfaces. Cerium cations being 

smaller exhibit a greater relaxation compared to the more bulky oxygen anions. 

The relaxation of both cations and anions for both surfaces decreases with 

distance from the surface and approaches zero at the third repeat neutral layer for 

the (111) surface and at the 10th layer for the (110) surface. Clearly ions close to 

the ( 1 1 1 ) surface experience less strain than those for the ( 1 1 0 ) surface where 

both cations and anions are on the same plane, and where the relaxation extends 

further into the bulk than for the ( 1 1 1 ) surface.

The relaxation of ions on the surfaces can also be studied by comparing the 

displacement of ions on the surfaces of ceria.



77

Table 4.2 The percentage ion relaxations for ceria surfaces in the x direction 

(perpendicular to the surface). Negative values indicate that ions relax out of the 

surface whereas positive values indicate that the ions relax into the bulk of the 

crystal. The relaxations are calculated as percentage displacement relative to 

their interplanar spacing.

Plane Percentage Edisplacements

Number (1 1 1 ) (1 1 0 )

Cerium Oxygen Cerium Oxygen

1 u> VO 1 O 12.7 -2.5

2 -0.2 -2.7 -15.6 -0 . 6

3 0 . 0  1 .0 7.2 -1.5

4 0 . 2 6 . 6 0 . 2

5 0 . 0 3.7 -0.7

6 -3.1 0 .1

7 1 .8 -0.4

8 -1.5 0 .1

9 0.9 -0 . 2

1 0 - 0 . 8 0 . 0
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Only very small displacements of ionic positions are observed for the (111) 

surface, due to lower strain on the surface plane where anions and cations are in 

separate planes. For the (110) and (310) surfaces where both cations and anions 

are in the same plane, higher ionic relaxations are observed resulting in a greater 

reduction on the surface energies. Again, in all cases, cerium cations experience 

more relaxation than oxygen anions. For the (310) stepped surface, ions on the 

surface include both cations and anions which are not closely packed; they 

therefore will relax in such as way to increase the surface ionic density. Thus, 

ions at the step sites which have low coordination show movements into the 

crystal whereas those at the comer sites show an outward movement, whereas 

ions on the flat sites on the surface show similar behaviour to the ( 1 1 1 ) and ( 1 1 0 ) 

surfaces - inwards for cations and outwards for anions.

Table 4.3 Percentage displacement of ions on the surfaces relative to 

interatomic distance. (Inward and outward movements refer to the movement of 

ions into the bulk and out of the surface respectively).

Surface Ionic

Cation

Relaxation

Anion

(1 1 1 ) 4% Inward 0.7% Outward

(1 1 0 ) 13% Inward 2.5% Outward

(310) 45% Inward 0 . 1  % Inward Step site

18% Inward 13% Outward Flat site

53% Outward 1 1  % Outward Corner site
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On the surface energies after relaxation, we find that the (111) and the (110) 

have very similar energies, the difference between the energies of these two 

surfaces after relaxation being close to the limits of reliability of this method. 

We can not therefore say which surface is more stable. In contrast, the (310) 

step surface is unstable owing to a high surface energy which may result in it 

being more catalytically active. However, since it has lower stability we would 

expect that this surface will be present only in low proportions unless it is 

stabilised by defects. In the next section, we will investigate the effects of the 

defects on the surfaces and in the bulk of ceria.
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4.3 Oxygen Vacancy Formation in Ceria

As discussed earlier, ceria is added to the automotive three-way catalyst as an 

'oxygen storage' component in the automobile catalyst (Yao and Yao 1984, 

Gandhi et al. 1976, Yu Yao and Kummer 1987, Shyu et al. 1988). Thus ceria is 

able to provide oxygen for the oxidation of H2, CO and hydrocarbons in the rich 

region of exhaust gas cycles, and to store oxygen in the lean region thus 

promoting conversion of nitrogen oxides. The reversible removal of oxygen 

from ceria is possibly due to the ease of changing oxidation states of cerium ions 

in ceria (i.e. the compound is non-stoichiometric) and to the mobility of oxygen 

in ceria.

To gain a more detailed understanding of this key effect, we need information on 

the formation energies of the oxygen vacancies in ceria. The calculated energies 

of formation for bulk defects in ceria are performed using the energy 

minimisation code CASCADE and for defects at and near surfaces using 

CHAOS (both codes being described in chapter 2).

4.3.1 Oxygen vacancy formation energy as a function of depth

Oxygen vacancies play a central role in the defect chemistry of C e0 2_x. 

However, oxygen vacancies in the bulk will not contribute directly to catalytic 

reactions which normally take place on the surface. We therefore need to study 

the stability of the oxygen vacancy at various distances from the surface.
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The dependence of the oxygen vacancy formation energy on the distance from 

both the (111) and (110) surfaces is illustrated in figure 4.5 (and appendix 4). 

The formation energy of a vacancy in the bulk is included for comparison. All 

energies calculated by CHAOS are adjusted to account for the Madelung shift 

effect which as discussed in chapter 2 is required if we are to make proper 

comparison with the vacancy formation energies in the infinite bulk. The 

energies calculated for the oxygen anion vacancies refer to the first 10 planes for 

the (111) surface and the first 5 planes for the (110) surface.

As observed from figure 4.5, the energies of the oxygen vacancy increase with 

distance from both surfaces and converge to the bulk values at distances of ~ 22 

A  into the bulk of the crystal. Oxygen vacancies are therefore more stable at the 

surfaces. We also observe that the formation energy of oxygen vacancies at the

(111) surface which terminates with only oxygen anions is lower than that at the 

(110) surface, which is due to the extra energy required to overcome the 

attractive forces between anions and cations at the latter surface plane. The 

energies required to remove oxygen from the second plane of both surfaces are 

similar as ions now have the same coordination as those in the bulk; the surface 

effect is therefore reduced.

Clearly the formation of oxygen vacancies in ceria surfaces is 

thermodynamically more favourable than in the bulk. However, as ceria is used 

as an oxygen donor in catalytic processes, it is essential to examine not only the 

energy of oxygen vacancy formation but also the mobility of oxygen in the 

lattice, from which we may learn how easily oxygen ions from the lower layers 

may migrate to these surface vacancies - a vital process in catalytic reactions. 

Calculations of migration energies are reported next.
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Figure 4.5 The variation of oxygen vacancy formation energy as a function 

of distance from the surfaces of ceria
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4.3.2 Oxygen Vacancy M igration in the Lattice of Ceria

Figure 4.6 shows the migration of an oxygen vacancy in three different pathways 

from the (110) surface of ceria; all assume that the oxygen vacancy is following 

the shortest distance between its initial and final site. The mechanisms and 

calculated activation energies are summarised in table 4.4 and figure 4.6.

Table 4.4 Activation energy for different pathways of oxygen vacancy

migration in the lattice of ceria.

Pathway Activation Energy (eV)

(a) the nearest lattice site on the surface 1.00

(b) the first nearest lattice site on the second layer 0.12

(c) the second nearest lattice site on the second layer 0.21

(d) oxygen vacancy migration in the bulk 0.36

The results summarised in table 4.4 and figure 4.6 show that oxygen migration 

across the surface (pathway a) requires the highest activation energy of 1.00 eV, 

and that the activation energy for a similar process in the bulk (d) is 0.36 eV; this 

refers to a <100> jump of the oxygen vacancy with a saddle point located where 

the migrating anion is equidistant from the two lattice sites involved in the jump, 

(points either side of the saddle point are also considered and proved to have 

lower energies). This indicates that it is more difficult for oxygen vacancy 

migration to occur on the surface compared with bulk of the crystal. Our result 

on the activation energy for the migration of the oxygen vacancy in the bulk of 

ceria is lower than the value of 0.53eV reported by Butler (1983). This could



84

probably be due to the bigger region size used in our model, which is allowed by 

modem computer resources.

Migration of an oxygen vacancy from the surface into the bulk, however requires 

less energy than for both migration across the surface and into the bulk, as is 

illustrated by the calculated activation energies of pathways (b) and (c) where the 

oxygen vacancy is migrating from the surface layer to the lattice sites in the 

second layer. Notice that the migration of the oxygen vacancy to the first nearest 

neighbour site via pathway (b) does not have an activation barrier but an energy 

requirement of 0.12eV whereas pathway (c) necessitates overcoming a barrier of 

0.2leV  to the second nearest lattice site on the second layer. We note that the 

experimental activation energy of an oxygen vacancy hopping between trap sites 

at a second neighbour around Cd in C e02 is 0.55 eV (Su et al. 1990) in the 

temperature range of 77K to -573K. This activation energy is expected to be 

higher than our result due to the contribution of extra attractive interactions with 

Cd which was not present in our calculated bulk value.

In summary, oxygen ions are less mobile in the bulk than at surfaces. Migration 

from the second layer to the surface layer is much easier and indeed requires 

very little activation energy (0.1 to 0.2 eV). The migration is expected to 

become more difficult on going from the third to the second layer and to increase 

further on going into the bulk until it reaches the bulk value.
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Figure 4.6 Activation energy of the migration of oxygen vacancy in three 

different pathways from the (110) surface of ceria, all assuming that oxygen 

vacancy follows the shortest distance to:

a) the nearest lattice site on the surface

b) the first nearest lattice site on the second layer

c) the third nearest lattice site on the second layer

d) the nearest lattice site in the bulk of ceria
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4.4 Oxygen Vacancy Formation Energy and Its Role in

the Oxidation of CO

We have noted that non-stoichiometry of ceria which arises from the fact that 

cerium can readily change its oxidation state enables the reversible addition and 

removal of oxygens which allows cerium dioxide to act as an oxygen storage 

material in oxidation reactions. We now therefore calculate the energy for 

carbon monoxide oxidation using oxygen donated from ceria, both from the bulk 

of the material and from the surface sites.

The relaxed structures of the three surfaces investigated earlier are used for the 

calculations of formation energies of the isolated defect including the oxygen 

vacancy and reduction of cerium species using CHAOS. The corresponding 

calculations were also performed for the bulk crystals using CASCADE. We 

next calculated the energies of the reduction for the reaction:

O x0  + 2  CexCe -> V‘‘0  + 2  Ce'Ce + 1/2 0 2  (4.5)

where, by Ce'Ce, we represent the reduction form, Ce3+. The results are 

presented in table 4.5.
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Table 4.5 Defect equilibria for the carbon monoxide oxidation in ceria support

Energy (eV)

Defect Equilibria Bulk ( 1 1 1 ) (1 1 0 ) (310)

(a) 2 Ce4+L —» 2 Ce3+L 73.91 70.45 68.36 63.55

(b) 2 Ce4+eo + 2 e M -» 2 Ce3+M -73.52 -73.52 -73.52 -73.52

(c) o \ —> 0 2M + V"o 16.06 15.65 14.56 13.59

(d) o -» o. + 2 e M -7.29 -7.29 -7.29 -7.29

(e) o_ -» Vi 0 2(g) -2.58 -2.58 -2.58 -2.58

(f) Ox0 + 2 Ce*re -> Vi 0 2(g) + 6.58 2.71 -0.47 -6.25

V o + 2 Ce'Ce

(g) CO(g) + l/i 0 2(g) — » C02(g) -2.93 -2.93 -2.93 -2.93

(h) CO(g) + C e0 2 -» co2(g) + 3.65 -0.22 -3.40 -9.18

V* o + 2 Ce'Ce

Binding Energy* -0.60 -0.40 0.57 7.25

(h) Cluster Effect** 3.05 -0.62 -2.83 -1.93

* The difference between the formation energies of isolated defects 
and their corresponding neutral cluster

** Energy of reaction (h) with addition of binding energy



(a) Substitution energy of Ce4+ for Ce3+ in the lattice

(b) The fourth ionization energy of cerium

(c) Oxygen vacancy formation in the lattice

(d) 1 st and 2 nd electron affinity of oxygen

(e) Bond dissociation of oxygen

( 0 Formation of oxygen molecule from cerium oxide

(g) Enthalpy of carbon monoxide oxidation

(h) Overall reaction

Three main points emerge from these calculations. First, the energies of the 

oxygen vacancy and the reduced Ce3+ are lower on the surface than in the bulk. 

Second, the energy of the formation of oxygen molecule from ceria (equation (f) 

in table 4.5) is more exothermic for both surfaces than for the bulk, showing that 

it is easier to abstract oxygen from the surface. In addition, the energies of 

reduction on the ( 1 1 0 ) and (310) surfaces are more exothermic owing to the 

lower oxygen vacancy formation energy and lower reduction energy. This 

behaviour may be correlated with the fact that the ( 1 1 0 ) and (310) surfaces are 

less stable and hence more active. While no direct comparison can be made with 

the calculated energies, a few experimental values for the relative partial molar 

enthalpy of bulk ceria oxygen atom have been reported to be 4.09eV at 

temperature, T = 1123K (Brauer et al. 1960), 4.467eV at T= (910-1440K) (Allas 

1968), 4.77eV at T = 1353K (Campserveux and Gerdanian 1974, Tetot et al. 

1987), and 4.98 ± 0.33eV at T = 1073 - 1273K (Chang and Blumenthal 1988) . 

The corresponding value at OK would be expected to be higher and as such 

would be comparable to the bulk value of 6.58eV.
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The inclusion of clustering brings the calculated values for the overall reaction 

of the (1 1 0 ) and (310) closer and more positive while those of the bulk and ( 1 1 1 ) 

surface become more negative. This is explained by the fact that ions in the bulk 

are closer and clusters are more closely bound whereas, on the surface, cluster 

binding decreases in order of decreasing stability, (111) > (110) > (310). With 

the inclusion of the cluster binding effect, the ( 1 1 0 ) surface has been shown to be 

the most active surface for the oxidation of carbon monoxide using oxygens 

donated from ceria.

The most important single result of this study is therefore the demonstration that 

the oxidation of carbon monoxide using oxygen from C e0 2 is favourable at the 

less stable ( 1 1 0 ) surface due to its high exothermic energy; the enthalpy for the 

reaction in the bulk is endothermic indicating an unfavourable reaction. Thus we 

predict that any processing conditions which favour the formation of the ( 1 1 0 ) 

surface will show this enhanced activity towards oxidation (figure 4.7).
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Figure 4.7 Schematic representation of the oxidation CO using 

oxygen donated from the ( 1 1 0 ) surface of ceria
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CHAPTER 5

THE INTERACTIONS BETWEEN 

PRECIOUS METAL IONS AND CERIA
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5.1 Introduction

As discussed in chapter 1, the addition of ceria to ceramic supports of alumina 

and transition metals such as Pd, Pt and Rh has been shown to enhance the 

effectiveness of the three way catalyst reactions in automobile exhaust catalysis, 

whose importance lies in its ability to convert carbon monoxide, nitrogen oxides 

and hydrocarbons into non-toxic products. The role of ceria in the exhaust 

catalyst is complex and not yet clearly understood, although it is clear that 

variable valence plays an important role, which permits the reversible addition 

and removal of oxygens thus allowing cerium dioxide to act as an oxygen 

storage in oxidation reactions (Summers and Ausen 1979, Yu Yao 1984, Yao 

and Yao 1984, Gandhi et al. 1987, Oh and Eickel 1988, Shyu et al. 1988, Shyu et 

al. 1989). A comprehensive knowledge of the effects of impurity defect 

concentration on the behaviour of oxide material is therefore of critical 

importance in the design and the implementation of catalytic devices containing 

ceria.

The aim of this chapter is therefore to investigate the interaction of ceria with 

impurities, particularly rhodium, palladium and platinum. These precious metals 

have been shown to promote the reduction of Ce4* to Ce3+ (Yao and Yao 1984). 

The presence of the metal on the ceria surface may facilitate a charge transfer 

from the metal to Ce which also results in a higher oxidation state of the precious 

metals. A study of the Rh/Ce02/Al20 3 system by Oh and Eickel (1988) has 

shown that addition of C e0 2 decreases the apparent activation energy for CO 

oxidation and suppresses the inhibition effect of CO on the oxidation rate. They 

proposed a mechanism involving the reaction between adsorbed CO and lattice
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oxygen from the Rh/Ce02 interface. Similar observations were made by Yu Yao 

(1984) for both CO and hydrocarbon oxidation.

The effects of adding C e0 2 to y-alumina, studied by X-ray photoelectron 

spectroscopy (XPS), X-ray diffraction (XRD) and temperature programmed 

reduction (TPR) have shown that on heating in air at 800°C, Pt on both C e0 2 

and C e0 2/Al20 3 yielded a platinum-ceria interacting species with an oxidation 

state of Pt2+, attributed to PtO, which would be completely reduced to Pt metal 

by H2 at 500°C (Shyu and Otto 1989). C e0 2 also promotes the oxidation of Pd 

to PdO at 800°C both with and without alumina. This lowers the rate of propane 

oxidation (Shyu et al 1988) and methane oxidation (Hicks et al. 1990). Thus 

when platinum and palladium are used under oxidising/fuel lean conditions, 

ceria promotes oxidation to the metal oxides that are poor catalysts for alkane 

oxidation. Hence, by adjusting the air/fuel ratio to the stoichiometric ratio we 

can ensure a high metal dispersion in alumina and maintain oxygen storage in 

automobile exhaust catalysis.

It is clear that the ceria stoichiometry and the oxidation state of the metals play 

an important role in the reactivity of the catalyst. However, the exact oxidation 

states of the precious metals when interacting with ceria is unknown. The 

energetics of the most common valence states for the metal atoms were therefore 

investigated in this simulation study. The variation of the energy with depth 

below the surface and the ability of defects to segregate to the surfaces of ceria 

were also studied. The simulation were carried out using standard procedures 

discussed in chapter 2, employing the energy minimisation codes CASCADE for 

the bulk, and the MIDAS and CHAOS codes for the surface simulations.
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The reactivity of a surface depends on the defects and impurity species present. 

Impurity concentrations are strongly dependent on the segregation energies. The 

interactions of defects with these species may play an important role in 

determining surface active sites in processes such as oxidation and catalysis. 

Here, we consider the substitution energies of the aliovalent impurities Ce3+, 

Rh3+, Pd2+, Pt2+ species and the formation energies of oxygen vacancies at both 

bulk and surface sites. Neutral clusters of these species were also considered.

The substitutions for aliovalent impurities Pd4+ and Pt4+ were also considered 

and shown to be unstable with respect to the Pd2+ and Pt2+ impurities. This can 

be demonstrated by considering the equilibrium reaction as follow:

For the (111) surface, the energy of the reaction in eV is illustrated below for 

palladium impurity,

E(PdxCe) + OxL -> E(Pd"Ce) + E(V’*o) + ViOatg) -

IPd (ii-ni) - IPd (in-iv) - E0  (ist+2nd) - Vi De (o-o)

(5.1)

-2.99 -> 58.94 + 15.65 - 32.93 - IPd <m-iv) - 7.29 - 2.58

-2.99 -> 58.94 + 15.65 - 32.93 - I Pd(in-iv) - 7.29 - 2.58

-2.99 —» 31.79 - IPd (in-iv)
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Where:

E(PdxCe)

E(Pd"Ce)

E (V 0)

Ipd (n-m) 
IPd (m-iv)

E q  (lst+2nd)

De (o-o)

: Substitution energy of Pd4+ for Ce4+ ion in ceria lattice 

Substitution energy of Pd2+ for Ce4+ ion in ceria lattice 

Formation of oxygen vacancy on surface of ceria 

The 3rd Ionisation energy of palladium 

The 4th Ionisation energy of palladium 

1st and 2nd Electron affinity of oxygen 

Bond dissociation energy of oxygen

As there is no reported value for the 4th ionisation energy of Pd, the energy of 

the above reaction can not be evaluated. However, by assuming this value to be 

at least lOeV greater than the 3rd ionisation energy for Pd, the total energy on 

the right hand side is more negative than that on the left hand side which 

indicates that Pd4+ substitution is unstable with respect to the Pd2+ substitution.

The energy for equation (5.1) for palladium at the (110) surface is (-3.593 -»  

12.8 - IPd (m-rv)). Similar results were obtained for platinum at both surfaces.
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5.2 Potential Model

Below are the short range potential parameters for the interactions between metal 

ions and oxygens (see chapter 3); the dopant-oxygen and cation-cation 

interactions are set to zero.

Table 5.1 a) Short range potential parameters V(r) = Aexp(-r/p) - C/r6

Interactions A (eV) P(A) C (eV/A6)

O2 - O2 22764.3 0.149 43.83

Ce4+ - o2- 1986.83 0.35107 20.4

Ce3+ - O2 1731.61808 0.36372 14.43256

Pd2+ - o2 1145.21168 0.38335 32.50181

Pt2+ - o2 1541.41055 0.37292 25.07525

Rh3+ - o2- 1404.42826 0.36482 13.12242

Pd4* - o2- 1639.70843 0.35011 0 . 0

pt4+ - o2- 2273.57111 0.34228 0 . 0

b) Shell model parameters V(r) = Iqr2 + k2r4

Y (lei) kj (eV/A2) k2 (eV/A4)

Ce4+ 7.7 291.75 0 . 0

Ce3+ 7.7 291.75 0 . 0

O2 -6 . 1 419.874 1 0 0 0 0 . 0
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5.3 Formation of Isolated Defects in Ceria

Table 5.2 presents a comparison of the formation energies of isolated defects in 

ceria including the substitution energies of Ce3+, Rh3+, Pd2+, Pt2+ for the Ce4+ 

host cation. The energy of the oxygen vacancy (see also chapter 4) is also 

reported as it is the compensating defect. Both substitution and vacancy 

formation are less favourable in the bulk than at the surface. The substitution by 

divalent dopants requires, as expected, more energy than for the trivalent dopant 

cations. This is expected because of the mismatch in not only the difference in 

charge but also in the difference in ion size between host cerium ions (ionic 

radius = 0.92 A ) and substituting defects (0.80 A  for Pd2+ and Pt2+, 1.034 A  for 

Ce3+ and 0.68  A  for Rh3+).

Table 5.2 Formation energies (eV) of isolated defects in ceria

Ce3+ Rh3+ Pd2+ P t2+ V o

Bulk 36.96 34.41 61.63 62.88 16.06

(1 1 1 ) 35.22 33.59 58.94 59.25 15.65

(1 1 0 ) 34.18 32.68 55.60 56.11 14.56

(310) 31.78 30.32 54.90 55.37 13.59 Step

36.68 34.63 61.06 60.86 12.78 Flat

33.91 31.85 56.59 58.74 Comer
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The surfaces show the same trend for all defects: the least stable stepped (310) 

surface which is likely to be the most active surface, requires the lowest energy 

for defect formation, whereas, the most stable ( 1 1 1 ) surface requires the highest 

energy. The oxygen vacancy formation energy for the surfaces studied decreases 

in the order of:

(111) >(110) >(310)

The results suggest that substitutions are easiest at the step sites which are also 

the most accessible. The Madelung energies calculated for the surface ions are 

significant lower than the value in the interior of the crystal. Illustrated below 

are the Madelung energies associated with the three different sites of the (310) 

surface (relaxed structure).

Table 5.3 Madelung energies associated with the three different sites

of the (310) surface

Madelung energy (eV) Ce4+ o2-

Bulk site -30.26 -8.14
Step site -21.55 -4.51
Flat site -26.46 -6.49

C om er site -33.28 -10.02

Sites with a more negative Madelung energy will result in a higher substitution 

energy for divalent or trivalent ions. For anions, the sites with the least negative 

Madelung energies are the easiest to be removed, i.e. those nearer to the surface.
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5.4 Formation of Neutral Defect Clusters on the surfaces of Ceria

In this section, we will investigate the stability of neutral defect clusters in ceria. 

For cation substitutions, we use the step and comer sites which result in lower 

substitution energies (table 5.2) and for anion vacancies, the step and flat sites. 

On the (111) surface, the smallest neutral cluster is the one in which the defect 

impurities lie on the first plane of cations while the charge compensating oxygen 

vacancy is on the surface plane. In contrast, the atoms of the smallest cluster on 

the (110) surface all lie on the same surface plane. Three different clusters are 

investigated for the (310) surface based on the relative energies of the 

component isolated defects. Figure 5.1 shows the three combinations of sites: a) 

all defects come from step sites, b) cation defect substitutions are from step sites 

and the oxygen vacancy is from a flat site and finally, c) cation defect 

substitutions are from both step and comer sites and the oxygen vacancy is from 

a flat site.
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Figure 5.1 Schematic representation of three different combinations of sites 

in defect cluster calculation on the (310) surface of ceria:

a) all defects from step sites.

b) cation defect substitutions are from step sites 

and oxygen vacancy is from flat site.

c) cation defect substitutions are from both step and 

corner sites and oxygen vacancy is from flat site.
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Table 5.4 gives the formation energies of the neutral defect cluster at the surface 

and in the bulk. Again, the formation energy of the clusters is lower at the 

surface than in the bulk. The table shows that the (110) surface is the most 

favourable for extrinsic defect cluster formations while the (310) is optimal for 

the reduction of cerium (IV) to cerium (HI) - [2Ce/Ce-V ’0]x. Certain 

combinations of clusters in the (310) surface like the Rhodium cluster c), 

Palladium cluster a) and Platinum cluster b) show very similar energies to those 

at the (110) surface. This again supports the view that both (110) and (310) 

surfaces will be more catalytically active than the ( 1 1 1 ) surface, because the 

lower energy means that impurities will be concentrated at these sites. However, 

a further measure of their reactivity may be obtained by considering their binding 

energy, since if a cluster has a very high binding energy, the defect or impurity 

will be trapped preventing it from further chemical reactions.

Table 5.4 Formation energies (eV) of neutral defect clusters in ceria.

Cluster [2Ce'Ce-V olx [2Rh'Ce-V“0]x [P d V V o F [Pt'ce-Vol*

Bulk 89.36 84.23 76.48 77.71

(1 1 1 ) 85.70 82.29 73.06 73.69

(1 1 0 ) 83.48 80.36 70.27 70.73

(310) 84.39 81.86 71.22 71.81 (a)
80.11 82.12 71.35 69.09 (b)

82.98 79.72 (c)
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5.5 Binding Energy

The strength of the interactions between the components of a defect cluster is 

measured by its binding energy which is calculated as follows for the typical 

case of an oxygen vacancy binding to two Ce3+ substitutionals i.e.

2 Ce'Ce + V"o -> [2Ce'Ce-V“0]x

Binding Energy = E [Ce'Ce-V"0]x - 2E [Ce'Ce] - E [V“0]

The results of the calculations reported in table 5.2 for isolated defects and in 

table 5.4 for defect clusters are used therefore to calculate binding energies of 

the defect clusters with respect to their isolated components. Table 5.5 presents 

results for the defect clusters and for the binding energies of a cluster comprising 

an oxygen vacancy and reduced cerium ions in the bulk and at the two most 

stable low index surfaces of ceria. We note that the oxygen vacancy formation 

energy and the reduction of Ce4+ to Ce3+ take place most readily at the surface;

the ions in the clusters are bound together at the ( 1 1 1 ) surface but not at the

(110) surface. Aggregation is not therefore expected on the latter surface.
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Table 5.5 Defect Formation Energy (eV)

Bulk Surface 

(1 1 1 ) (1 1 0 )

V 'o 16.06 15.65 14.56

Ce'ce 36.96 35.22 34.18

2Ce'ce + V o 89.96 8 6 . 1 0 82.91

Cluster [2Ce'Ce-V“0]x 89.36 85.70 83.48

Binding Energy 0.60 0.40 -0.57

The binding energies for all clusters considered are summarised in table 5.6. We 

recall that a positive binding energy indicates a bound cluster and a negative 

energy indicates that the cluster is unstable with respect to the individual defects. 

Clusters in the bulk and at the (111) surface are therefore bound whereas those at 

the (110) surface are unbound. The (111) is a type 2 surface in which cations 

and anions are on two different planes; the cluster ions are therefore closer 

together compared to those at the ( 1 1 0 ) and (310) surface which are of type 1 in 

which ions are further apart in the same surface plane. For the step surface (310) 

which has three different types of sites, various combinations of the sites result 

in the cluster ions being closer together, but unbound cluster result owing to the 

high reduction in cluster relaxation.
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Table 5.6 Binding Energy (eV)

[2Ce'Ce-V*'0]x [2Rh'Ce-V”0]x [PdV V 'o l* [ P tV V ’oP

Bulk 0.60 0.64 1 . 2 1 1.23

(1 1 1 ) 0.40 0.54 1.53 1 . 2 1

(1 1 0 ) -0.57 -0.45 - 0 . 1 1 -0.06

(310) -7.25 -7.63 -2.73 - 2 . 8 6 (a)

-5.78 -8.69 -3.57 -0.94 (b)

-4.52 -4.76 (c)

The effects of surface relaxation energies also result in smaller clusters being 

more strongly bound than the bigger ones as a higher component of relaxation 

energy is lost in the latter. Indeed we note that the binding energies are twice or 

some cases five times higher for the di-ionic clusters, [Pd"Ce-V‘ 0]* and [Pt"ce- 

V"0]x than for tri-ionic clusters, | 2 Ce'Cc- V 0]x and [2 Rh'Ce-V 0]x-

The difference in surface and bulk binding energies is therefore controlled by a 

balance between steric strain due to the difference in ionic size (between defect 

impurity and host cations) and surface relaxation. A similar argument had been 

advanced by Mackrodt (1987) to account for the favourable segregation of Y3+ 

to the basal surface of a-A l20 3.
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5.6 Defect formation energy as a function of depth

Figure 5.2 shows the substitutional defect formation energies as a function of 

the distance from the (111) and (110) surfaces of C e0 2 for a) Ce3+, b) Rh3+, c) 

Pd2+ and d) Pt2+. The horizontal lines in the graphs show the relative energies of 

the bulk defects for comparison.

We have already noted that for both surfaces, the substitutions are more 

favourable at the surface than in the bulk. All defects at both surfaces have the 

lowest energy on the surface which then increases monotonically towards bulk 

values. Thus all impurities and clusters will segregate to the surface under 

equilibrium condition.

The results on cluster binding energies in table 5.6 for defects of the neutral 

clusters [2Ce'Ce- V 0]*, [2Rh'Ce-V"0]x, [Pd"Ce- V 0]x and [Pt,,Ce- V 0]x suggest 

that clusters need only be considered for the ( 1 1 1 ) surface while for the ( 1 1 0 ) 

and (310) surfaces, the highly negative binding energies indicate that defects will 

segregate to this surface as isolated ions (table 5.2).

In the next section, we will investigate the energies of defect segregation as a 

function of surface coverage.
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Figure 5.2 Defect formation energy as a function of distance from the (11 1 ) 

and (110) surfaces of ceria for a) Ce3+, b) Rh3+, c) Pd2+ and d) Pt2+
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5.7 Defect segregation to the surfaces of ceria

In this section, we will investigate the segregation of Ce3+, Rh3+, Pd2+ and Pt2+ to 

the (111) and (110) surfaces at five different coverages, 100 %, 75 %, 50 % 25 

% and 0 %. All these defect substitutions are accompanied by oxygen vacancies 

to achieve charge neutrality on the surfaces. The cluster orientations are chosen 

so that all defect ions lie in the first cation plane and the oxygen vacancies are on 

the surface plane; this is to ensure the highest possible binding energy. The 

segregation of aliovalent defects posed a numbers of problems as the charge 

imbalance at the surface will cause interactions with the space charge layer. 

However, in all cases, neutral clusters are considered so that space charge effects 

do not directly influence the segregation. The segregation energies per defect 

are illustrated in figure 5.3 and tabulated in table A5.2 of appendix 5.

Several points can be drawn from these results for both surfaces:

The results not only reinforce our earlier conclusion concerning the strong 

segregation due to the negative segregation energies, but also show that the 

segregation does not exhibit Langmuir behaviour, where the segregation energy 

is independent of coverage. One exception is for the rhodium impurity at the

(111) surface which shows a Langmuir-like segregation.

For the (110) surface, as the concentration of defects increases, the segregation 

energy decreases and reaches a minimum at 100% coverage. There is an 

decrease of 2.18eV for Ce3+, 1.85eV for Rh3+, l.OeV for Pd2+ and 3.96eV for 

Pt2+. From this we conclude that defects segregate at low concentration better 

than at high concentrations due to the rise in steric hindrance at the surface. This
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observation is in accord with the conclusions inferred from binding energy 

calculations in section 5.5.

The energies of segregation to the (110) surface are slightly more exothermic 

than those for the (111) surface. This can be explained by the fact that as the 

( 1 1 0 ) surface is more dense than the ( 1 1 1 ), removal of oxygen vacancies may 

have a larger effect in reducing the elastic strain at the surface.

Also, as observed from the figure, the segregation energies for the M2+ cations 

are larger than for the M3+ cations as the total number of vacancies which 

accompanies the substitutions of M2+ is twice that for M3+ substitutions, which 

again helps to reduce the strain on the surface. In addition the binding energies 

of divalent clusters are higher than for trivalent clusters. As Rh3+ (ionic radius of 

0 .6 8 A) is smaller than cerium (0.92A), and results in a lower segregation energy 

than Ce3+ (1.034A), the main driving force is probably the reduction in elastic 

strain. The larger the defect the higher the tendency to migrate to the surface as 

the segregation is driven by the release of strain obtained by incorporating large 

ions at the surface rather in the bulk.
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Figure 5.3 The calculated energies of segregation as a function of coverage for 

Ce3+, Rh3+, Pd2+ and Pt2+ at a) the (111) and b) the (110) surfaces of ceria.
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Rather different results are obtained for the (111) surface where the energy of 

segregation of tri-valent defects does not vary much with coverage, and for di

valent cations, Pd2+ appears to have a minimum in the heat of segregation at 

approximately 50 % of a monolayer coverage; Pt2+ shows two minima at 25 % 

and 75 % monolayer.

Figure 5.4 illustrates the ionic relaxation at the (111) surface of ceria where half 

of the Ce4+ monolayer is replaced by Pd2+. At the surface region, there is a 

substantial relaxation of ions resulting in an expansion of the surface structure. 

Both Pd2+ and oxygen ions relax outwards to form partial PdO clusters on the 

surface; there is also a smaller amplitude relaxation in the second layer of 

oxygens. As cerium ions are replaced by smaller Pd2+ ions, neighbouring lattice 

ions move from their original positions in order to release the lattice strain 

introduced by the ion size mismatch. The results shows that surface relaxation 

stabilises defect segregation.

To date, there is no experimental data with which we can compare our results, 

but the calculations reported above can be interpreted in terms of the formation 

of a stable coherent ordered second phase of the form CePd0 3 for palladium; 

and Ce3P t0 7 and CePt30 5 for platinum. It is important to note that further 

calculations need to be done at more coverages before the exact coverage at 

which the minimum occurs can be located and hence an accurate composition for 

this second phase can be predicted. A similar case was observed for calcium 

segregation to the (111) surface of cubic Z r02. which reveal the presence of a 

stable phase CaZr0 3 (Dwivedi and Cormack 1989, Kenway et al. 1992).



I l l

Figure 5.4 Structural representation of ion relaxation for 50% coverage 

of (PcT'q, V * ' o )  segregation to the (111) surface of ceria.
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As ceria is used at low concentrations as a secondary oxide together with 

alumina in automobile exhaust catalysis, it is important to consider aluminium 

ion impurity in ceria. The segregation of equal proportions of Al3+ and Ce3+ 

defects to the (111) and (110) surface of ceria is illustrated in figure 5.5 and 

tabulated in table A5.2 of appendix 5. The charge on the surfaces is again 

balanced by the formation of an oxygen vacancy.

Unlike the observations in figure 5.3, figure 5.5 shows that higher concentrations 

of defects tend to segregate better than low concentrations on the ( 1 1 1 ) surface 

of C e02. Indeed the results for this surface indicate the favourable formation of 

a stable phase of the form CeA103 at the (111) surface. The formation of 

CeA103 has been observed as the results of the interaction between dispersed 

C e0 2 and 7 -Al20 3 either reduced in H2 at 800°C or under vacuum at elevated 

temperatures by Shyu et al. (1988), Geller and Racal (1970). Shyu et al. found 

that upon H2 reduction, partial conversion of C e0 2 to surface CeA103 occurs at 

600°C and bulk CeA103 at 800°. CeA103 has a perovskite-like structure that is 

distorted from simple cubic perovskite form (Wyckoff 1967).

Some care should be taken when comparing the calculated results reported here 

with experiment, due to the approximations made in the model used. First, we 

assume that impurities segregate at planar and non-defective surfaces and 

second, we impose ordered arrangement of defects at all coverages. These 

assumptions may be an inaccurate representation of real systems. Nevertheless, 

the main conclusions regarding the segregation of impurities and the formation 

of surface phase are valid.
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Figure 5.5 The calculated energies of segregation as a function of coverage 

for [C e'oj-V ’o-Ce^ ] 31 at the ( 1 1 1 ) and ( 1 1 0 ) surfaces of ceria.
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Most experimental techniques measure the temperature dependence of the 

surface concentrations that are assumed to be in equilibrium with the bulk. 

Heats or enthalpies of segregation are extracted from the plots of the log of 

surface concentration against reciprocal temperature. These are usually assumed 

to follow Langmuir behaviour:

Cs 06 Q , exp (-Ah’ /  kBT) (5.1)

Where:

Cs : surface concentration

Cb : bulk concentration

kB : Boltzman's constant

T : temperature

Ah' : coverage independent heat of segregation

Equation 5.1 is true for low concentrations of impurities, but as the concentration 

of impurity increases, there is an increase in defect-defect interactions which also 

plays an important role in determining the segregation enthalpies; thus non- 

Langmuir behaviour is expected. The results in figure 5.3 which gives 

segregation energy versus coverage show that the variation of segregation energy 

with dopant concentration is non-linear. This has also been confirmed by 

atomistic simulation work on isovalent and aliovalent impurity segregation in a - 

A120 3 (Mackrodt and Tasker 1986, Mackrodt 1987 and Kenway 1989).

Mackrodt and Tasker (1986) have derived a coverage dependent segregation 

isotherm of the form:



115

xs = xb A exp
Ah + xs(x . + l ) f  dAh''

k BT v d xs J
(5.2)

LS •

A :

surface atomic ratio, xs = / (11s! + ns2), where ns 2 and ns2 are

the number of surface ions of type 1 and 2 respectively. This 

assumes there are 2  types of site in the crystal, surface and bulk, 

bulk atomic ratio.

pre-exponential factor incorporating the entropy of segregation

A = exp
AS + xs(xs + l) ( dASN

d x s )
(5.3)

dAh/dxs accounts for the change in the driving force for segregation as the 

surface defect concentration increases.

Using equation 5.2, the value of the surface coverage dependent heat of 

segregation Ah can be calculated from the slope of In (xs) against Vt when 

experimental data are available.

This simple statistical model allows us to study the variation of segregation 

enthalpy with surface coverage for an impurity or defect monolayer. The model 

only applies to systems where the number of bulk sites are very much larger than 

surface sites and the bulk concentration of impurities is low thus satisfying the 

dilute solution limit, i.e. isolated non-interacting bulk impurity atoms.

In order to investigate the variation of surface coverage with temperature, the 

pre-exponential factor, A, for impurity segregation which corresponds to the
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vibrational entropy of segregation is taken to be unity; this assumes the 

segregation entropy is zero. The vibrational entropy of segregation is generally 

small and was shown to be small for the case of 50% coverage of Ca2+ at the 

(100) surface of MgO by Masri et al.(1986). It should also be noted that where 

experimental values of A are available, the agreement between experimental and 

calculated isotherm is excellent (Mackrodt and Tasker 1989).

The equilibrium surface coverages of Pd2+ are plotted against the reciprocal 

temperature at the (111) surface of C e0 2 in figure (5.6.a). The bulk 

concentration is taken as Xb = 200ppm which is equivalent to [0.02 w/w  % Pd, 

and 13 w/w  % Ce] (Summers and Ausen 1979). For Rh3+, the bulk concentration 

of 145ppm (0.014 w/w  % Rh and 15 w/w  % Ce) is used (Oh and Eickel 1988) for 

the study of surface coverage as a function of temperature at the ( 1 1 1 ) and ( 1 1 0 ) 

surfaces of C e0 2 (figure 5.6.b).

Figure 5.6.a) shows that as the temperature increases from 900K the surface 

coverage of Pd2+ varies from -70%  to 64% of the (111) surface at 2500K. For 

Rh3+, figure 5.6.b) predicts that in the temperature ranges from 500K to 2500K, 

the equilibrium coverage varies from 8 6 % to 6 8  % of the ( 1 1 1 ) surface and from 

63% to 17% of the (110) surface.

We have also investigated the calculated surface coverage as a function of 

temperature of the (111) and (110) surfaces of C e0 2 by [A rCe-V"0 -Ce'Ce]x for a 

bulk concentration of 500ppm. We find that the surface layers are stable with 

100% defect concentration, i.e. A lCe03 formation is favourable at all 

temperatures.
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Having demonstrated the effects of defect inclusion in ceria, the next step is to 

study the adsorption of gaseous molecules in particular CO and NO on the 

surface of ceria.

5.8 The adsorption of small gaseous molecules at ceria surfaces

5.8.1 Introduction

When an interface exists between metal catalyst and support oxide material, 

there may be a transfer of electrons and oxygen between the metal and oxide 

support which modifies the properties of the metal as a catalyst. This 

phenomenon together with the migration of the support onto the metal and 

stabilisation of metal dispersion against sintering are called the strong metal 

support interaction (SMSI). The effects of SMSI on chemisorption and catalytic 

properties have been investigated for several metals and supports such as Pt/Ti02 

(Herrmann 1984 and Horsely 1979), Pd/Ti02 (Wang et al. 1981), Rh/Ti02 

(Resasco and Haller 1983), Pt/yttria-stabilised zirconia and Pt/Al20 3 (Metcalfe 

and Sundaresan 1986), and of course Pd, Pt, Rh/Ce02. C e0 2 interacts with 

noble metals and greatly affects both the metal dispersion in alumina and the 

three-way conversion activities (Summers and Ausen 1979, Yao and Yao 1984, 

Binet et al. 1992). The mechanism of oxygen storage of ceria is believed to 

occur at the gas/noble metal/ceria interface, although the reaction of metals on 

the ceria surface and the roles of ceria in the catalytic chemistry are not well 

understood.
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As discussed earlier, ceria enhances the rate of CO and hydrocarbon oxidation in 

fuel rich conditions by providing lattice oxygens (Yao and Yao 1984, Oh and 

Eickel 1988). However, under fuel lean conditions, it decreases the rate of CO 

oxidation over platinum and is relatively unaffected by Palladium and Rhodium 

(Summers and Ausen 1979). In this thesis, we only investigate the interactions 

of metals and the ceria promoter in conditions corresponding to a rich fuel where 

the oxygen vacancy formation in ceria plays an important role in catalytic 

reactions.

The addition of ceria has been found to affect significantly the kinetics of CO 

oxidation and NO reduction. The enhancement of CO oxidation can be 

explained on the basis of a mechanism involving C 0 2 formation via a reaction 

between CO adsorbed on the metal and surface oxygen derived from the 

neighbouring ceria whereas the NO reduction is via the enhancement of NO 

dissociation and low temperature N2 desorption due to the interaction between 

Ce and the metal. Several mechanisms have been suggested for the oxidation of 

CO, reduction of NO and CO-NO reaction under effects of ceria addition on an 

alumina-supported Rh catalyst (Zafiris and Gorte 1993, Oh 1990, Se H. Oh and 

Eickel 1988); Pt and Rh catalysts (Loof et al. 1991); Pd and Pt catalysts 

(Summers and Ausen 1979); Pd catalyst (Shyu et al. 1988b); Pd, Pt and Rh 

catalysts (Yu Yao 1984). Jin et al. (1987) found that the reaction between 

absorbed CO on Pt in ceria with lattice oxygen to produce C 0 2 (via an oxygen 

isotope exchange experiment) occurs readily at 400K.

In this work, we only consider the adsorption of CO and NO molecules on the 

(110) surface of ceria. The molecules are considered initially as vertically
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adsorbed with the negatively charged end of the molecule pointing to the oxygen 

vacancies formed on surfaces of ceria.

5.8.2 Potential model

In order to study these reactions, the interatomic potentials are required for the 

interactions between the absorbed molecules - C, N and O with C e02. The 

method of atom-atom potentials is used (Kieselev et al. 1985). The Lennard- 

Jones potentials are refitted to a Buckingham form before using in the 

simulations as the MIDAS code does not presently accept the former type of 

potential. Thus in the potential,

B
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r i " r i

(5.2)
r i - r i

where r : distance between centres of interacting atoms

C : constant of dispersion attraction

B : constant of repulsion,

the constant B was calculated from the equilibrium condition assuming that the 

equilibrium interatomic separation corresponds to the sum of the van der Waals 

radii (r{ and rj).

B = l/ i  C (q + rj)® (5.3)
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The dispersion constant C in the Lennard-Jones potential is calculated using the 

formula below which is obtained from the Slater-Kirkwood relation (Hirshfelder 

et al. 1954).

aoc:
(5.4)

Where ctj, 0 Cj

ni, nj

the static polarisabilities of the interacting species 

the number of electron in the atoms 

Bohr radius (= 0.53 A) 

electron charge

The resulting parameters are reported in tables 5.7 and 5.8

The main assumption in deriving these potentials is that both oxygen and cerium 

ions in the ceria crystal which interact with the molecules are assumed to be in 

the gaseous state.
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Table 5.7

Parameters for calculation of potentials of absorbate molecules and ceria

Atom a  (A) r (A) n Y (lei) Mass (a.m.u)

C(spi) 1.42* 1.80** 6 -0.0185 1 2 .0 1 1

N 0.97* 1.55** 7 0.0278 14.0067

O 0.85* 1.52** 8 15.9994

Ce 2.93 0.92 7 9 *** 7.7 140.115

* Pauling 1958 and Vereshtshagin 1980 

* *  Bondi 1964,

* * * The effective number of electrons in cerium IV ion is taken as that of the nearest
inert gas Xenon (Fowler et al. 1985) which was calculated by 16(C)2/9a3.

Table 5.8 Short range potential parameters V(r) = Aexp(-r/p (A) * C/r6

Interaction A (eV) P(A) C (eV/A6)

C - O 2 23626.04511 0.2197 23.359

01 11738.79587 0.2197 18.567

0 1 0 1 10390.1782 0.2197 17.426

C - Ce4+ 23048.74728 0.2155 59.7188

N - Ce4+ 10313.12391 0.2197 60.1358

O - Ce4+ 7613.86527 0.2174 41.8846
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For the intramolecular interactions (between the molecule themselves), the 

Morse potentials are adopted:

^(rij) = De {1 - exp[-P (|r, -rj| - r e)]P  - De (3.3)

where De: the dissociation energy of the bond, 

re : the equilibrium bond length 

(3 : a variable parameter = ©e[pV(2 De)] 

p : the reduced mass

The relevant parameters are reported in table (5.9)

Table 5.9

De (eV) re (A) p (gmol"1) C0 e (cm’1)

CO 11.108 1.1281 6.85841 2133.0

NO 5.290 1.0661 7.46881 2373.6

Herzberg (1950)

Ionic polarisability is needed for the calculation of the interionic van der Waals 

dipole-dipole dispersion coefficients of the short range interaction between 

interacting species. This yields the attractive part of the potential which plays an 

important role in large separations and thus contributes significantly to the total 

energy of the interaction. Although many potentials are approximately harmonic 

when close to the equilibrium configuration, there is no guarantee that they will 

remain so for larger distortions. The extreme is when the bond breaks.
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5.8.3 Results and discussions

Table 5.10 illustrates the calculated energies of the adsorption of CO and NO 

molecules on to the oxygen vacancies of the (110) surface of ceria. We give 

separately the interaction energies, the difference between the energy of the 

molecule/defect ceria system and the sum of the energies of the two subsystems 

separately (tables 4.5, 5.2, and 5.9). and the bond length of the adsorbed 

molecules after relaxation.

Table 5.10 Energies of defect-molecule interactions

Interaction Energy Interaction Bond length

(eV) Energy (eV) (A)

(a) [V"0 -CO]2+ 14.279 1.519 1.35

(b) [V''0 -NO]2+ 14.418 -4.438 1.44

In general, the adsorption of NO at this surface results in negative interaction 

energies whereas the adsorption of CO are positive, indicating that NO 

adsorption is more favourable than CO adsorption using our model.

If we consider the bond length of the molecules after relaxation, in processes (a) 

and (b) where the molecules NO and CO are adsorbed on to a positively charged 

surface (resulting from the formation of oxygen vacancies), both NO and CO 

move vertically out of the surface and their bond distance increases to the cut-off
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value, i.e. 1.35A for CO and 1.44A for NO. This conclusion has been confirmed 

by repeating the calculations with the cut-off increased to 1.7A, the results 

showed that bond length of both molecules increased to the increased cut-off 

value, i.e. the molecule is dissociating.

5.9 Summary

This chapter has demonstrated that by modelling impurity/defect formation and 

segregation to different surfaces of ceria, we can identify the ability of defects to 

stabilise the less stable surfaces such as (110) and (310). We have also shown 

that the noble metal cations - Rh3+, Pd2+and Pt2+ extensively segregate to the 

surfaces, a result which is clearly of significance for the catalytic activity of 

these materials.

The study of [Ce3+-V0-Al3+]x segregation to the surfaces of ceria has shown that 

segregation is most favoured at 1 0 0 % coverage of a monolayer of the ( 1 1 1 ) 

surface; this indicates the formation of CeA103 which is compatible with the 

experimental results.

If the results are to be compared to experimental data, care must be taken with 

the assumptions and approximations made here. With regard to our surface 

model, we have assumed a planar surface and an ordered segregated structure 

which neglects the presence of irregularities (such as kinks, ledges and terraces), 

which would affect the heat of segregation. We also assumed that there are only 

two types of site, surface and bulk sites which in turn assumes that all segregated 

impurities resides solely on the surface plane. Nevertheless, despite these
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limitations, the main qualitative conclusions regarding the segregation of 

impurities and the formation of surface phases are valid.

The study of the adsorption of small gaseous molecules like CO and NO on the 

(110) surface of ceria has shown that NO adsorption is more favourable than the 

CO adsorption, the results illustrate the tendency for bond breaking between the 

NO molecule which is an important and possibly rate determine step in the 

dissociation of NO which leads to the its reduction.
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CHAPTER 6

THE EFFECT OF DEFECT FORMATION 

AT THE INTERFACE BETWEEN 

Ce02 (111) THIN FILM AND 

(X-AI2O3 (0001) SUBSTRATE



128

6.1 Introduction

As described earlier in chapter 5, the 'three-way' automotive catalysts comprises 

of noble metals in conjunction with a support oxide which is constructed of an 

alumina substrate and an additional oxide ceria. Previous chapters concentrated 

on the effects of metal ions on cerium dioxide. We now continue with an 

investigation of the interactions between a-alumina and the most stable ( 1 1 1 ) 

surface of cerium dioxide. We note that y-alumina in practice used as the 

catalyst support. However, owing to its complex surface structure, which has a 

disordered arrangement of aluminium cations surrounded both by tetrahedral and 

octahedral oxygens, it is difficult to model the surfaces. Work on the a  phase 

provides method available primary study which will allow us subsequently to 

examine more complex systems.

In this chapter, we use the methodology that has been developed by Sayle (1992) 

for modelling ceramic heteroepitaxial interfaces at the atomic levels. This 

method was tested for a simple cubic system, BaO thin films on MgO substrate, 

and more complicated systems such as thin film superconductors. Many factors 

such as epitaxial constraints imposed on interfaces with high associated misfits, 

defects and dislocations, ionic interactions across the interface and relaxation 

have been found to contribute to the stability of the interface. The methodology 

developed by Sayle is modified in this work to study interfaces which 

accommodate hexagonal symmetry. We also calculate interfacial oxygen 

vacancy formation energies to investigate whether the effects of defect inclusion 

at the interfaces promotes the catalytic activity of ceria.
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6.2 Surface Crystal Structure

Both C e02( l l l )  and a-A l20 3(0001) surfaces exhibit a hexagonal surface 

structure, and C e02 (111) has been calculated to be the most stable low index 

surface (chapter 4). We note that oc-A120 3(0001) has the corundum structure 

which consists of hexagonal close packed oxygen anions with aluminium cations 

in two-thirds of the octahedral sites, leading to six coordinate aluminium and 

four coordinate oxygen.

CeO

Interface

Figure 6.1 Schematic representation of an interface between the C e02 (111) 

surface and the a-A l20 3 (0001) substrate. Oxygen anions are big open circles, 

cerium cations are big closed circles and aluminium cations are small closed 

circles.
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Figure 6.1 shows that both C e0 2 (111) and the basal structure of a-A l20 3 are of 

type 2 neutral surface (see chapter 4). While C e0 2 terminates with an anion 

plane, A120 3 terminates at the cation plane. This arrangement of unlike charged 

planes of ions from the two materials at the interface may promote the formation 

or stability of the interface. For A120 3, only one-third of the available surface 

cation sites are filled, and the ionic relaxation leads to a dramatic contraction of 

the free surface (Kenway 1989 and Mackrodt et al. 1987). An interface with 

ceria may reduce this contraction owing to the attractive interactions between the 

surface oxygen anions of ceria and the surface aluminium cations.

The lattice parameters of ceria and alumina are 2.7055A and 5.128A 

respectively. In C e02, the anions are roughly one and half the size of the cations, 

whereas in a-A l20 3 the anions are almost three times bigger.
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6.3 Potential model

The potentials employed for modelling ceria are described in chapter 3 and those 

for alumina were derived by Lewis and Catlow (1985). Table 7.1 a) and b) give 

the potentials used for the calculations of energy associated with interfaces 

between ceria and alumina. The calculations of interfacial energies employed a 

rigid ion model together with short range potentials illustrated in table 6.1. The 

use of rigid ions is a consequence of the large number of ions in the primitive 

unit cell for some of the interfaces between hexagonal symmetry systems; even 

then not all the interfaces can be suitably accommodated within the available 

computational resources. For our studies of defect formation at the interfaces, 

the shell model potentials were employed to allow comparison with the 

calculations of defect formations at ceria surfaces of ceria. We note that 

polarisation is a major term in the defect energy and is therefore necessary in the 

latter calculations, whereas for the studies of the perfect interface, the 

polarisation is not expected to contribute significantly to the energy as the 

symmetry of the system is very high for C e0 2 and a-A l20 3.
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Table 6.1
a) Short Range Potential Parameters V(r) = Aexp(-r/p) - C/r6

Interactions A (eV) P(A) C (eV/A6)

0 2- - o2- 22764.3 0.149 43.83

O*2- " O*2- 22764.3 0.149 27.88

o2- 0 *2- 22764.3 0.149 43.83

Al3+ - 0 2-/0 *2- 1474.4 0.3006 0 . 0 0

Ce4+ - 0 270*2- 1986.83 0.35107 20.4

Ce3+ ' 0 2 /0 *2- 1731.61808 0.36372 14.43256

Rh3+ “ 0 2 /0 *2- 1404.42826 0.36482 13.12242

where O*2- is the oxygen anion of alumina

b) Shell model parameters V(r) = Iqr2 + k2r4

Y.
(lei)

ki
(eV/A2) (eV/A4)

Mass
(a.m.u.)

Ce4+ 7.7 291.75 0 . 0 140.115

Ce3+ 7.7 291.75 0 . 0 140.115

O2- -6 .1 419.874 1 0 0 0 0 . 0 15.9994

Al3+ 1.458 1732.0 0 . 0 26.98

O*2- -3.0 60.78 1 0 0 0 0 . 0 15.9994



133

6.4 The Near Coincidence Site Lattice theory

In this chapter we use a near coincidence site lattice theory (NCSL) to identify 

and construct interfaces with lower associated misfits. In conjunction with the 

energy minimisation technique available in the MIDAS code (chapter 2), the 

relative stabilities of these interfaces can be calculated explicitly. As noted the 

effects of defects such as oxygen vacancies and metal ion substitutions will also 

be studied.

Due to the mismatch in lattice constants that exists between any two materials, 

one material must be either contracted or expanded to match exactly to the other, 

i.e. to achieve a0(overlayer) = a0 (substrate). The resulting interfacial stability 

was found to be heavily dependent on the magnitude of this mismatch (Sayle 

1992). The formation of a heteroepitaxial interface with configurations 

necessitating lower mismatches can be constructed using a near coincident site 

lattice theory which is a special case of coincidence site lattice theory (Bollmann 

1970, Smith 1976, Grimmer 1974, Balluffi 1982, Sutton 1987, Mykura et al. 

1980 and Gao 1988). This theory, based on purely geometrical criteria, has also 

been applied with success to explain the existence of many experimentally 

observed interfaces (Mykura et al. 1980, Gao 1988 and Hwang 1990). Recently 

the NCSL theory was applied to the cubic Ba0(100)/M g0(100) system to 

investigate the variation of interfacial stability with percent misfit using energy 

minimisation methods (Sayle et al. 1993). This system is relatively simple and is 

a representative of a heteroepitaxial interface with an incommensurate 

relationship between the lattice parameters of BaO and MgO; furthermore the 

system has been investigated experimentally by Cotter et al. (1988) and therefore 

useful comparisons with experimental were made by Sayle et al. (1993).
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The formation of coincident site lattice structures have been shown to be 

compatible with the observed experimental results. Mykura et al. (1980) showed 

that the preferred orientations for CdO/MgO interfaces correlates well with the 

Coincidence Site Lattice (CSL) model. Gao et al. (1988) studied the comparison 

between experimentally and observed low energy solid-solid interfaces and the 

special orientations predicted by CSL for Mg0(001)/Ni(001) surface system. 

The [001] twist boundaries in MgO were investigated theoretically (Sayle 1992) 

and experimentally (Sun and Balluffi 1982). The results appeared to be 

consistent with the CSL model for grain boundaries which suggests that this 

model holds for grain boundaries in ionic solids.
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Cubic System Hexagonal System

Figure 6.2 Schematic representations of the inter-phase boundaries of two 

materials with lattice parameters at and a2 for cubic and hexagonal systems, k, 1, 

m and n are integers and 0  is the rotational angle of one material with respect to 

the other.



6.4.1 The NCSL theory

The NCSL theory is a special case of the coincidence site lattice theory (CSL). 

The full three dimensional CSL theory for cubic crystals is given by Grimmer et 

al. (1974). In this section, we shall be concerned with the heteroepitaxial 

interfaces C e0 2( l l l ) /a -A l20 3(0001). The theory will be first outlined for both 

simple cubic and hexagonal systems and then applied to construct interfaces with 

low associated misfits.

The inter-phase boundaries of two materials with lattice parameters ^  and a2 can 

be considered as two-dimensional square lattices for cubic systems and two 

dimensional hexagonal lattices for hexagonal systems. A two-dimensional 

coincidence site lattice is produced by rotating one lattice with respect to the 

other about the axis normal to the interface (figure 6 .2 ) until three lattice sites of 

the two materials are in common. Exact coincidence occurs when

r \

v a2 j

n r +n' 
k2+l2 cubic (6 . l.a)

r \

va2 j

m + n + m n  
k2 -hi2 H-kl hexagonal (6 .1 .b)

Where k, 1, m and n are integers. The rotational angle associated with this 

coincidence site lattice to bring the two crystals into exact coincidence is:
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hexagonal (6 .2 .b)

The four fold symmetry of the square lattices and three fold symmetry of the 

hexagonal lattice ensure both positive and negative values of 0  give equivalent 

interfaces and therefore only values between 0° and 45° need to be considered 

for cubic, and between 0 ° and 60° for hexagonal systems.

planar reciprocal coincidence density of material 1 at the interface and is given

The superscript p is used to denote a planar two dimensional coincidence (Gao 

1988). Exact coincidence only occurs when equation (6.1) is satisfied exactly 

(i.e. a!=a2). However, this relationship can never be satisfied exactly for 

heteroepitaxial systems. The incommensurate relationship between the lattice 

parameters (for all known lattice parameters) ensures that the left hand side of 

the equation (6 .1 ) is irrational whilst the right hand side is always rational. 

Equation (6.1) can then be satisfied exactly if either one or both of the lattice 

parameters are changed i.e. if the crystals are expanded or contracted with 

respect to their optimum lattice parameter. This may be facilitated by matching

The density of planar coincidence sites T is defined as (1/ZjP) where EjP is the

by:

ZjP = (m2 + n2)

XjP = (m2 + n2 + mn)

cubic (6.3.a)

hexagonal (6.3.b)

E2p = (k2 + 12)

E2p = (k2 + 12 + kl)

cubic (6.4.a) 

hexagonal (6.4.b)
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the two materials at a particular temperature where the differences in the 

coefficients of linear expansion enable a particular NCSL to be in exact 

coincidence.

The misfit, F, which must therefore be accommodated by the expansion or 

contraction of the crystals is defined as the deviation from the exact coincidence 

condition, and designated a near coincidence site lattice. This misfit is given by:

A low value for the misfit resulting in a small loss in strain energy can always be 

achieved by increasing the size of 2X However, this increase may cause the size 

of the resulting primitive unit cell to become too large even for modem 

computers to accommodate, and the density of planar coincidence sites, T, low. 

A low value of T is undesirable, since it has been suggested by Brandan et al. 

(1964) that low values of T are conducive to lower interfacial stability.

The size of the unit cell which we are able to accommodate within the present 

simulation work is limited and therefore we are compelled to ensure the 

primitive cell size is suitably small (£ p < 20). This would result in a high value 

of T but it is also likely to result in a high value for the misfit, F . A compromise 

between the value of the misfit and primitive unit cell size must therefore be 

sought.

(6.5)
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6.4.2 Constructing interfaces using NCLS theory

We now apply a near coincidence site lattice theory to construct various 

C e0 2( l l l ) /a -A l 20 3(0001) interfaces, following which we calculate the relative 

interfacial stabilities based on the relaxed structures using minimisation 

techniques.

First it is necessary to calculate the lattice parameters of one to six layers of the 

overlayers of C e02. These values were then used to calculate the misfit using 

the NCSL theory. Such calculations are necessary as the thin films of overlaying 

material will exhibit a smaller lattice parameter than the bulk value. This is 

illustrated in figure 6.3 showing the variation of surface formation energies with 

lattice parameter for ceria. We find that the equilibrium lattice parameter for an 

isolated ceria monolayer is reduced by ~ 4.8% compared with the bulk value. 

This reduction decreases to 0.7% for six ceria layers, and if the number of layers 

is sufficiently high, the lattice parameter will reach the bulk value (table 6 .2 ).

Table 6.2 Lattice parameters of ceria as a function of number of neutral layers

Number of Layers r(A ) % Reduction

1 2.5770 4.8

2 2.6480 2 . 1

3 2.6683 1.4

6 2.6875 0.7

Bulk (r0) 2.7055 0 . 0
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a) b)

Lattice Parameter (A)
2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75

-102 

- 102.2 

-102.4 

- 102.6 

- 102.8 

-103 

-103.2 

-103.4 

-103.6

Lattice Parameter (A)
2.6 2.62 2.64 2.66 2.68 2.7

-208.55

-208.6

>  -208.65

-208.7 ■ •

C -208.75

-208.8

-208.85

C) d )

Lattice Parameter (A) Lattice Parameter (A)
2.64 2.65 2.66 2.67 2.68 2.69 2.7 2.68 2.685 2.69 2.695 2.7

-314.22

-314.24

-314.26

-314.28 ■

-314.3

-314.32 ■

-314.34

-314.36

■631.1

-631.11 ■■

>
S  -631.12-
>.
CDk-
O -631.13cUJ

-631.14

o

-631.15

Figure 6.3 The variation of Surface formation energy with lattice parameter for 

a) monolayer, b) bilayer, c) three layers and d) six layers of ceria.
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For monatomic square lattices, all the solutions of equations (6.1) and (6.2) are 

coincidence site solutions. Whereas for diatomic square lattices with the NaCl 

( 1 0 0 ) planar structure (type 1 surfaces), certain values of h, j, k  and 1 will also 

give a coincidence between two positive or two negative ions. From Mykura et 

al. (1980), these are designated 'anti-coincidence orientations' and they occur 

when one of £ }p, Z 2p is odd and the other is even. The NCSL primitive unit cell 

with anti-coincidence orientations will be assigned '(3' in this work. Mykura also 

suggested that these systems do not give minima in the interfacial energy, as they 

have either two positive or two negative ions in close proximity, which will be 

expected to destabilise the interface. However, in this work Coulombic forces 

are fully included which will enable the like charged ions to relax away from 

each other and may result in stable (3-type interfaces. Exact coincidence site 

orientations occur when both and E2p are odd and therefore will have one 

positive ion site and one negative ion site in coincidence per primitive unit cell; 

these will be assigned 'a '. For the hexagonal system, C e0 2/a-A l20 3, because 

each layer on either side of the interface contains only one type of ion, either 

anions or cations (type 2  surfaces - figure 6 .1 ), there is no like charge repulsion 

between them within a close proximity; a  therefore designates orientations when 

Ejp and E 2p are both odd or even, and [3 when one of them is odd and the other is 

even.

The interfaces predicted using the NCSL theory for C e0 2( l l l )  on a - 

Al20 3(0001) are given in table 6.3; interfaces are identified by the nomenclature 

S^p (overlayer) /  X 2p (substrate). We note that positive values of F indicate that 

the overlayer must be expanded to accommodate the mismatch and negative 

values indicate that the overlayer must be compressed to accommodate the 

mismatch. Only interfaces with the misfit lower then 6 % are considered,
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because interfaces with high misfits are found to be unstable (Sayle 1993) and 

therefore unlikely to exist.

Three common points emerge from these results. Firstly, when the overlayers 

must be expanded to accommodate the mismatch, the misfit decreases as the 

number of overlayers increases and when the overlayer must be compressed to 

accommodate the mismatch, the reverse applies. Secondly, we can see from 

table 6.3 that the misfit values start from high positive value (for expansion) then 

decreases until it changes to negative value (for compression), after which it 

increases again. This pattern is observed for all the of overlayers. Finally, as we 

increase the number of overlayers, the point of which there is a change from 

positive misfit to negative misfit also increases until n = 6  it is the same as the 

bulk value.
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Table 6.3 Coincidence interfaces predicted for C e0 2 (111) on a-A l20 3 (0001) 

using a near coincidence site lattice theory.

^ C e O ^ A k C b  

k 1 m n 0 /°

% Misfit for n Layers of Ce02 (102 F) 

n = 1 n = 2 n = 3 n = 6  Bulk

19/12 P 3 2 2 2 6.587 4.9 2 . 2 1.5 0.7 0.06

21/13 a 4 1 3 1 3.005, 35.209 1 2 1 2 05 -0.3 -0.9

31/19 a 5 1 3 2 14.465, 27.639 3.4 0.7 -0.04 -0 . 8 -1.4

61/37 a 4 5 3 4 1.045, 8.386 2.9 0 . 2 -0 . 6 -1.3 -2 . 0

61/36 P 4 5 0 6 26.330 1 .6 -1 . 2 -1.9 -2.7 -3.3

12/7 P 2 2 1 2 10.893 1 0 -1 . 8 -2.5 -3.2 -3.9

7 /4 P 1 2 0 2 19.107 -0.06 -2 . 8 -3.6 -4.3 -5.0

37/21 a 3 4 1 4 14.392, 23.822 -0.4 -3.1 -3.9 -4.6 -5.3

16/9 P 0 4 0 3 0 . 0 -0.9 -3.6 -4.3 -5.05 -5.7
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Figure 6.4 Diagrammatic representation of interfacial stability calculation
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Table 6.4 Calculated stabilities after relaxation, for the Ce0 2( l l l ) /a -A l 20 3  

(0 0 0 1 ) interfaces predicted using a near coincidence site lattice theory for one to 

six C e0 2 layers on the A120 3 substrate.

^ PCe02®A1203

0 /°

Interfacial Stability for n Ce02 layers (J/m2) 

n = 1 n = 2 n = 3 n = 6

21/13 a  3°

a  35.2° 

12/7 P 10.9° 

7/4 P 19.1° 

16/9 P 0 .0 °

1.453 1.419 1.244 1.560

1.246

1.794

1.574

1.954
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6.4.3 Factors influence the stability of interfaces

The calculated interfacial stabilities based on the relaxed structures of the 

interfaces given in table 6.3 for one to six C e0 2 overlayers, are presented in table 

6.4 (the percent misfit is accommodated entirely by the ceria overlayer). The 

interfacial stability energy, AE, is defined as the energy per unit interfacial area 

required to cleave the interface to form an A120 3 surface and a C e0 2 thin film 

each with its energy minimised lattice parameter (figure 6.4).

o v e r la y e r  ^ s u b s t r a t e )  ^ i n t e r f a c eAE = -------------------------------------  (6 .6 )
Areaintcrface

Only the interfaces which are believed to be reasonably stable based on those 

factors identified from the cubic system in previous work by Sayle et al. 1993, 

(i.e. low percentage mismatch, high planar density of coincidence lattice sites 

across the interface and low rotational angle), are considered here for C e0 2 thin 

films on an a-A l20 3 (0001) substrate. Also, as the size of the primitive unit cell 

of hexagonal systems is bigger than that for the cubic system, the high values of 

IP can not be accommodated by the available computational resources.

High positive values of the energies indicate that all the interfaces considered are 

stable with respect to the isolated C e0 2 'thin film' and A120 3 surface. This is 

attributed to the favourable attractive interactions between terminating ceria 

anions and aluminium cations at the interface.
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For one layer of ceria, it is expected that the interfacial stability increases with 

decreasing mismatch as the strain energy required to accommodate the mismatch 

will destabilise the interface resulting in a maximum stability at the lowest value 

for the mismatch. This is observed in cases when ceria must be expanded 

(positive misfit) to accommodate the mismatch. However, when the ceria 

overlayer must be compressed (negative misfit), the interfacial stability increases 

with increasing mismatch. Indeed, the EPCeCte^AhOs -  16/9 p (0°) is 

constrained to accommodate a -0.9% mismatch, yet the interfacial stability after 

relaxation indicates this interface is the most stable for monolayer coverage with 

a stability of 1.954 J/m2. This unexpected result can be explained by considering 

the effect of the relaxation of the interface which tries to reduce the strain energy 

in the system by allowing the ceria to relax in the direction perpendicular to the 

interface. The C e0 2 has initially been compressed to accommodate the 

mismatch and the 'excess' C e0 2 relaxes outwards to form a 'partial' second layer 

of oxygens on top of the surface. This type of behaviour is very pronounced for 

one ceria layer on the substrate, but for higher layer coverage, the reduced 

freedom of relaxational movement will prevent the overlayer from relaxing out 

of the interface region because of the layers above.

For the interfaces with ^ pC e0 2 ^ pAh03 = 21/13 (3°), as the number of ceria 

overlayers increases, the freedom of ionic relaxation at the interface decreases 

which results in a decrease in the interfacial energy despite a decrease in misfit. 

A high interfacial stability is calculated for six layers of ceria on alumina 

because of a low misfit, whereas for the lower number of layers, the interface is 

stabilised by relaxation.
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The results also show that for the ^ pCe02/̂ pAh03 = 21/13 interfaces, the lower 

angle NCSL results in a more stable interface. This is consistent with the results 

found for cubic heteroepitaxial interfaces by Sayle et al. (1993). The results of 

Mykura et al. (1980) for CdO on MgO suggest that the frequency of occurrence 

of a NCSL with two associated angles is higher for the higher angle NCSL in 

contrast to our predictions. The resolution of the experimental results, however, 

may prevent two similar angle NCSL's from being adequately resolved and 

therefore attributing a higher frequency to an incorrectly assigned NCSL.

In summary, the interfacial energy cannot be determined purely by considering 

the percent misfit as other factors have been shown to contribute, including ionic 

relaxations at the interface and the rotational angle. In addition, as suggested by 

Sutton (1987) the higher planar density of coincidence sites (smaller X number) 

which results in the high density of favourable interactions across the interface is 

responsible for the increased interfacial stability. Experimentally, random 

deposition of thin film overlayers onto a substrate leads to the rotation of one 

material with respect to the other. This is due to the drive to minimise the 

interfacial energy with respect to the orientation of the film.
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6.4.4 Relaxed structures of the interfaces

We now investigate the detailed relaxed structure of the interfaces between ceria 

and alumina detail of which are given in table 6.4. In all cases, the full number 

of ceria overlayers is shown, but only a few layers of the alumina substrate are 

displayed for clarity; also ionic relaxations are only appreciable within a few 

layers of the interface for the alumina crystal. Ion sizes are scaled to optimise 

the display, but their relative values remain constant.

Figure 6.5 shows the relaxed structure of the ^ pC e0 2 ^ pAh03 = 7/4 (0=19.1°) 

interface. The upper figure gives a projection across the interface whereas the 

lower one views the ceria overlayer with alumina underneath. It can clearly be 

seen that there is substantial relaxation of ions at the interface. Such relaxations 

reduce the strain introduced into the system when ceria is constrained to 

accommodate the misfit (-0.06%). After relaxation, the hexagonal symmetry of 

ceria oxygens within the primitive unit cell is retained (lower figure). But within 

each, the central oxygen relaxes outwards to form a partial layer on the surface 

(upper figure).

Figure 6 . 6  shows both the unrelaxed structure a) and relaxed structures b) and c) 

of the SpCe02^-pAl203 = 16/9 (0=0°) interface. Figures a) and b) view across 

the interface and c) views onto the ceria overlayer with alumina underneath. By 

comparing a) and b), we can see that due to the 0.9% compression of ceria 

initially to match the substrate, both ceriums and oxygens of ceria appear to relax 

outwards to form a partial layer, and those ions in the centre of the primitive unit 

cell are observed to relax more. This behaviour is predicted for interfaces with 

high negative misfit as ions within the unit cell will tend to relax away from each
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other and out of the surface to reduce the strain created by a high compressional 

mismatch. The ceria overlayer relaxes to form a regular array of triangles which 

in turn rearrange themselves to form hexagons (figure c).

Figure 6.7 shows the relaxed structure of the SpC e 0 2 ^ pAl203 = 12/7 (0=10.9°) 

interface. Again, the triangular arrangement of the relaxed ions is observed, but 

no hexagonal pattern is seen. The pattern of the relaxed ion positions in the X 

pCe0 2 ^ pAl2 0 3  -  16/9 and the EpCe0 2 ^ pA h 0 3  = 12/7 structures bear some 

similarities to each other. However, they depend on sign of the misfits, the size 

of unit cell and also angles of rotation as illustrated in figure 6 . 8  for the ZpCe0 2  ̂

^A hCte = 21/13 structure.

Figure 6 . 8  shows the relaxed structures of the 2>Ce02^-pAl203 = 21/13 with two 

different associated angles 0 = 3° (upper) and 0 = 35.2° (lower). The figure 

shows a projection across the interfaces with a C e0 2 monolayer on an A120 3 

substrate. Despite the fact that both interfaces have the same misfit, the resulting 

relaxed structures bear some differences from each other. For the higher angle 

interface, the ceria overlayer appears to form small isolated clusters within the 

primitive unit cell size. This is generally a consequence of high positive 

mismatch between ceria and alumina.

Figure 6.9 shows the relaxed structures of the 2>Ce02^pAh03 = 21/13 a  (0=3°) 

interface. The figure shows a projection across the interface of (a) three 

overlayers (b) two overlayers and (c) six overlayers of C e0 2 on A120 3. After 

relaxation, a wave like pattern of both oxygens and ceriums is clearly seen from 

all three interfaces. The amplitude of the wave appears to diminish on moving 

from the interface to the surface of ceria suggesting that the wave like pattern is
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a result of the minimisation optimising the favourable interactions across the 

interface as opposed to reducing the strain in  the system. For all interfaces 

considered, the figures show that relaxation falls off rapidly away from the 

interface.
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Figure 6.5 Structural representation of the 2>C e02^pAl203 = 7/4 (0=19.1°) 

interface after relaxation of C e0 2 (111) monolayer on a-A l20 3 (0 0 0 1 ) substrate. 

Oxygen anions of ceria and alumina are coloured red and yellow respectively, 

ceriums are white and aluminium cations are blue. The upper figure shows a 

projection viewing across the interface whereas the lower views the ceria 

overlayer with alumina underneath.
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Figure 6 . 6  Diagrammatic representation of the unrelaxed a) and relaxed b) and 

c) structures of 2 >Ce0 2 ^ pA b 0 3  = 16/9 (0 =0 °) interface, a) and b) viewing 

across the interface and c) viewing from the C e0 2 (111) monolayer on top of the 

a-A l20 3 (0001) substrate. Oxygens are big circles, ceriums are small light 

circles and aluminums are small dark circles.
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Figure 6.7 Diagrammatic representation of the relaxed structure of 

ZpCe0 2 ^ pAl2 0 3  = 12/7 (0=10.9°) interface, viewing from the C e0 2 (111) 

monolayer on top of the a-A l20 3 (0001) substrate. Oxygen anions of ceria and 

alumina are coloured red and yellow respectively; ceriums are white and 

aluminium cations are blue.
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Figure 6 . 8  Structural representation of the ^ pC e 0 2 ^ pAl203 = 21/13 interface 

after relaxation of C e0 2 (111) monolayer on a-A l20 3 (0001) substrate. Oxygen 

anions of ceria and alumina are coloured red and yellow respectively, ceriums 

are white and aluminium cations are blue. The upper figure shows a projection 

across the interface associated with a rotational angle of (0=3°) and the lower 

figure associated with a rotational angle of (0=35.2°).
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Figure 6.9 Structural representation of the ^ pC e 0 2 ^ pAh03 = 21/13 (0=3°) 

interface after relaxation, viewing across the interface of a) Three layers, b) Two 

layers and c) six layers of C e0 2 (111) on an a-A l20 3 (0001) substrate. Oxygen 

anions of ceria and alumina are coloured red and yellow respectively, ceriums 

are white and aluminium cations are blue.
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6.5 The Effect of Defect Formation at the Interface

The inclusion of defects is sometimes essential to stabilise an interface such as 

those between NiO and BaO (Tasker and Stoneham 1987) which include cation 

vacancies. The present work has shown that the interface between ceria and 

alumina is very stable, (interfacial stability energies > 1 .2  J/m2). The catalytic 

activity for oxidation reactions is however dependent on the oxygen activity 

which is controlled by the oxygen vacancy formation energy.

There is experimental evidence for oxygen migration from ceria to precious 

metals such as Rh at low temperature found by Zafiris and Gorte (1993). In the 

study of CO adsorption on Rh/Ce02 by temperature programmed desorption 

(TPD), the formation of C 0 2 was not affected substantially by the decrease in Rh 

coverage from five layers to a quarter of monolayer. This suggests that oxygens 

must migrate from ceria to the Rh surface. Furthermore, the Rh may be partially 

oxidised. The reduction by Rh of NO which leads to dissociation and N2 

desorption has also been shown to be significantly modified. Zafiris and Gorte 

(1992) have also found that the interactions between Pt and ceria are relatively 

weaker. The driving force for migration of oxygen is therefore not a property of 

ceria alone but is related to the specific metal which is being supported. A 

comparison can be made with the studies on the desorption of NO on Rh 

(Altman and Gorte 1988a) and CO on Pt or Rh (Altman and Gorte 1988b) 

supported on a-A l20 3 (0001) without ceria.

Ceria strongly modifies the catalytic properties of these supported catalysts, 

especially for the CO + Vi 0 2 —> C 0 2 and NO + CO —> Vi N2 + C 0 2 reactions. 

These effects were studied for Pt, Rh, (Pt and Rh) supported on C e02, A120 3,
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(A120 3 and C e02), which are shown to be associated with the interaction of 

highly dispersed noble metals with oxygen vacancies in the reduced ceria 

support (Loof et al. 1991 and Oh 1990).

The existence of the interface between ceria and alumina destabilises the ions 

near the interface region as a result of the unfavourable interactions of like 

charged ions in near proximity to the two materials. The ceria overlayer 

therefore becomes a more active surface and possibly a better support for 

catalytic reactions. Oxygen vacancy formation and migration in ceria play 

important roles in catalytic reactions. The difference in the oxygen vacancy 

formation energy in a pure C e0 2 surface compared to a C e0 2 thin film on an 

A120 3 support may be an indication of the change in catalytic activity resulting 

from the A120 3 support.

Recently, platinum and palladium were found to form stable interfaces with both 

aluminium and oxygen faces terminating a-A l20 3 (0001) whereas only the 

aluminium interface is stable with rhodium (Ward 1993). Thus, we only 

investigate the formation energy of the oxygen vacancy at the interface of the 

two systems, a) where the charge created by vacancy formation is partially 

balanced by the reduction of cerium (IV) to cerium (III) and b) by the 

substitution of cerium (IV) by rhodium (III). The oxygen vacancy is formed first 

at an interface of a monolayer of ceria (on alumina substrate) which consists of 

two planes of oxygens, surface plane ( 1 ) and interface plane (2 ); and second, at 

an interface between three layers of ceria on alumina substrate consist of 6  

planes of ceria oxygens, surface plane (1) and interface plane (6 ) (figure 6.9.a). 

MIDAS is used to calculate the formation energies of -14.3% coverage of 

oxygen vacancies at the interface (E ^ and at the pure/free ceria surface (E2).



159

The concentration of the rhodium substitutions at the interface is -28.6%  of 

monolayer coverage. The difference between Ej and E2 shows the change in the 

vacancy formation energy due to the interface (figure 6.10). Negative value of 

(Ei - E2) indicates that it is easier to form an oxygen vacancy at the interface 

with the ceria support.

Interface

Surface

E i

E,

Figure 6.10 Diagrammatic representation of defect formation at the interface 

of ceria (Ej) compared to those at the pure ceria surface (E2).
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Because of the limited computer resources, only the SpCe02^-pAl203 = 7/4 (0= 

19.1°) interface with the lowest misfit of -0.06% and smallest primitive unit cell 

is considered for the study of defects. As noted earlier, the shell model is used to 

describe the polarisability and the results are presented in table 6.5.

Table 6.5 Defect formation energies (eV) per oxygen vacancy at the interface of 

ceria supported on alumina (Et) compared to those at the free/pure surface of 

ceria (E2).

Oxygen plane [2Ce'

E,

-V‘‘ 1
Ce O j

(Ej - E2)

[2Rh>

E,

-V" 1 
Ce O j

(Ej - E2)

Surface plane (1) 83.16 -3.34 80.99 -1.73 1 Layer

Interface plane (2 ) 87.97 + 1.47 82.45 -0.27 of Ceria

Surface plane (1) 8 6 . 2 0 -0.30 81.12 -1.60 3 Layers

Interface plane (6 ) 82.37 -4.13 79.26 -3.45 of Ceria

E2 (pure ceria) 86.50 82.72

The lattice spacing of ceria varies with the number of layers considered. The 

oxygen vacancy formation energies will therefore vary with the thickness of the 

thin ceria films. The values for the oxygen vacancy formation energies are 

therefore corrected to take account of this. The correction is obtained from the 

difference in the energies for defect formation at the pure ceria surface using
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bulk equilibrium and compressed lattice parameters. This correction value also 

varies for different numbers of ceria overlayers.

There are two main driving forces for defect formation at the interfaces: first, the 

image charge (Jennings and Jones 1988) will stabilise a charged defects near an 

interface of higher dielectric constant, ( 2 0  for ceria as compared to 1 1  for 

alumina), second, the epitaxial constraints may require the formation of 

vacancies at the interface to obtain a good charge matching and reduce 

unfavourable interactions e.g. like charge repulsion of ions in near proximity 

(Tasker et al. 1985). The latter is important for our system whereas the former is 

not as the overall charge is neutral.

For most systems considered in table 6.5, oxygen formation energies are lower at 

the interface (Ej) than at the pure ceria surface (E2), i.e. (Er E2) is negative. This 

indicates that the interfacial oxygens are far less stable than the pure surface 

oxygens. The interface between ceria and alumina therefore enhances the 

formation of the oxygen vacancy making ceria a better oxygen donor source.

For a monolayer of ceria on alumina, the oxygen vacancies are more stable at the 

surface than at the interface, because oxygens from both layers of the ceria 

monolayer are more affected by the ionic interactions at the interface. Those at 

the surface are, however, more accessible than those at the interface. And as 

discussed earlier, due to a small percentage contraction of ceria to match with 

alumina substrate initially, after relaxation some oxygens at the surface layer 

(plane 1 ) relax outwards to form a partial layer at the surface, which makes the 

surface oxygens become even more weakly bound than those below.
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In contrast, for three layers of the ceria overlayer, oxygen ions at the interfaces 

(plane 6 ) are more unstable as a results of possible unfavourable interactions 

between the two materials. The highly negative values of (Er E2) for the 

interface plane also indicates that there is a high possibility for oxygen migration 

to the surface layer during an oxidation reaction in a catalytic process. The 

surface oxygens in this case are however, far away from the interface and behave 

similar to those at the pure ceria surface, the energy difference between E! and 

E2 are therefore smaller for the interface plane.

The reduction of cerium (IV) to cerium (III) has been shown to stabilise the 

surface oxygen vacancy more effectively than rhodium for a monolayer of ceria, 

whereas rhodium (HI) will enhance the formation of surface oxygens which is 

independent of the ceria thickness. In summary, the results show that the 

existence of the interface between ceria and a-alumina increases the stability of 

surface oxygen vacancies which may make ceria a better oxygen source to 

oxidation reactions in automobile exhaust catalysts.

6.6 Summary

The work in this chapter has shown that a simple geometrical argument i.e. near 

coincidence site lattice theory together with the resulting misfit to accommodate 

epitaxial matching can predict whether an interface is likely to be stable, but the 

method has very little quantitative predictive power. However, when coupled 

with the computer simulations, the method has yielded good quantitative 

information about the interfacial energy, structure and the mechanisms by which 

the interface is stabilised or destabilised. In particular, we have found that the
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interfacial stability is heavily dependent on the percentage mismatch. Other 

factors like the high planar density of coincidence lattice sites across the 

interface, the associated angle of rotation and ionic relaxation also contribute to 

the interfacial energy. The relaxational behaviour of the thin film overlayer 

enables this strain energy to be significantly reduced resulting in a stable 

interface. For several overlayers on an substrate, however the resulting strain 

energy from each overlayer will destabilise the interface and the resulting 

stabilising relaxation is inhibited.

It has been suggested by Balluffi et. al. (1982) that the misfit at the interface is 

accommodated by the presence of defects or misfit dislocations. Indeed, the 

defects such as the oxygen vacancy whose formation is accompanied by the 

reduction of cerium IV to cerium EH (or substitutions of metal ions with lower 

oxidation states) have been shown to stabilise the interface which may assist the 

oxidation reaction in automobile exhaust catalysis. Further work may elucidate 

which interfaces (i.e. different alumina planes or indeed different substrates) will 

enhance or inhibit catalytic activity.

A useful extension to this work would be the examination of the interfaces 

between a more reactive substrate y-alumina with the less stable surfaces such as 

the (110) surface and (310) step surface of ceria which have been shown to be 

less stable and therefore may stabilise the interfaces even more and hence 

enhance further the activities of catalysts.
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CONCLUSIONS

Surface and bulk computer simulation techniques have been employed 

successfully in this thesis to study the crystal properties of ceria, the effects of 

metal defect inclusion and oxygen vacancy formation and their importance in the 

reactions in exhaust control catalysis.

The investigation of the pure and defect properties (reported in chapter 4) for 

both bulk and surfaces of ceria, emphasises the importance of surface oxygen 

vacancies in ceria. Defect simulations reported in chapter 5 clearly demonstrated 

that the precious metal ions are extensively segregated to the surfaces of ceria 

both as isolated ions and neutral clusters. The calculations also predict the 

formation of coherent second order phases at the (111) surface for palladium and 

platinum. Further calculations are required to determine the exact composition 

of these second phases.

The study of the adsorption of the small molecules, CO and NO is only 

preliminary due the limitations of classical simulation methods. The tendency of 

dissociation is observed for NO adsorption due to lattice relaxation. A further 

and more appropriate investigation of this type of work can be done using 

quantum mechanics.

A major success of this work has undoubtedly been the study of oxygen vacancy 

formation in pure ceria and at its interface with a-alumina (chapter 4 and 6). 

Here, the formation energies of the surface oxygen vacancy together with the 

reduction of cerium has been shown to favour energetically the oxidation of 

carbon monoxide, which is also evident from experimental work. Further more,
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when ceria is interfaced with a-alumina, the oxygen vacancy is even more stable 

and therefore may assist the oxidation reaction in automobile exhaust catalysis 

more effectively. Chapter 6  also demonstrated that with a simple geometrical 

argument of near coincidence lattice site theory together with a resulting misfit 

to accommodate the epitaxial matching, it is possible to predict interface 

stabilities, structures and the mechanisms by which the interface is stabilised.

To conclude, the work in this thesis has successfully demonstrated that computer 

simulation techniques can be applied to study structural and defect properties of 

oxides and their interfaces. Furthermore, the study of interfacial stability 

between ceria and alumina has opened a door to the investigation of defect 

properties at the interface between two oxide materials. Future work therefore 

could be extended to investigate defect properties and the interactions between 

metals-ceria and y-aluminium oxide support. Quantum mechanical studies of 

reaction mechanisms on C e02/precious metal surfaces would also be desirable.
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Appendix 1

A l.l Ewald method - Summation of the 3-Dimensional Coulombic Terms

As noted in section 2.5, the calculation of the lattice energies of the systems 

investigated in this thesis include contributions from pair potential energy terms 

only. The total potential energy of the lattice U ^ )  is given by:

The first term in equation (A l.l)  is the long range Coulombic interaction which 

accounts for about 80% of the lattice energy. The summation o the 1/r term is 

very slowly converging in real space. However, its convergence acn be greatly 

accelerated by using the Ewald summation technique (Ewald 1921), the basis of 

which is the fact that Vr can be expressed in integral form:

where t and T| are variables, chosen to optimise the speed of convergence of the 

system. The first integral term (Ij) of equation (A 1.2) can be transformed into 

reciprocal space by Fourier analysis:

(A1.2)

= J r  f exP(-r2t2)dt = y  eXP( l ^ )  ' 6XP (_i &£) (A L 3 )
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where G is the reciprocal lattice vector and V, the volume of the unit cell. The

second integral term in equation (A 1.2) can be evaluated in real space:

12 = —nr f exp(-r2t2)dt = -  erfc(t|r) (A1.4)
7t Jti r

where erfc(r) is the complimentary error function and is related to the standard 

error function by:

erfc(r) = 1 - erf(r) (A 1.5)

The total Coulombic contribution to the lattice energy therefore becomes:

y  M i  =
r.

expr - G 2 ^

4rj
S ij qflj exp(-iG.rij) + £ . . qiqj

erfc (r^Tj)

rij

(A 1.6)

The summation is now rapidly convergent with increasing G and r.
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Appendix 2

P arry  m ethod - Sum m ation of the 2-Dimensional Coulomb Term s

The treatment of the Coulombic terms in a two-dimensional lattice is calculated 

by an analogous method, first considered by Parry (1975a, 1975b). The identity 

Vr is again split into two parts - a real space summation and a reciprocal 

summation. The real space contribution, I2  is given by equation (A 1.4) without 

the self interaction term. The reciprocal space summation is different from the 

three-dimensional case as there remains a G = 0 contribution. In the three- 

dimensional case, this term disappears because of the charge neutrality of the 

unit cell. At surfaces the contribution from the Coulombic terms are summed on 

each plane of the crystal and unless the planes are charge neutral, the G = 0 term 

must be included. Furthermore the surface relaxation causes a rumpling effect in 

the surface ions and therefore induces a dipole perpendicular to the surfaces of 

crystals with charge neutral planes such as MgO (100) and C e0 2 (110). The 

reciprocal lattice contribution to the Coulomb energy is given by:

+ y X  ~  (B+C) exp(i G.p )
A  G * 0

(A 1.7)

Where A : is the area of the unit cell,

G : is the reciprocal lattice vector 

B = exp(G.Ujj) erfc [(G/2t|) + (t|Ujj)] 

C = expC-G.Ujj) erfc [(G/2t|) -  (T]Ujj)]

(A1.8) 

(A 1.9)
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Ijj is resolved into two components, perpendicular to the interface and p^ in 

the interfacial plane. 2r\/nm  is subtracted from equation (A 1.7) to remove the 

self interaction term and the infinite sums are truncated when a suitable accuracy 

criterion is met.

Appendix 2

Table A2.1 Variation of oxygen vacancy formation energy as a function of

region I size (figure 2.2.a in section 2.2.1)

Size of Region I (l.u.) Defect Energy (eV)

1.5 17.050

1.9 16.955

2.9 16.870

3.2 16.550

3.4 16.510

3.9 16.505

4.5 16.500

5.0 16.495

6 . 0 16.490

7.0 16.490

8 . 0 16.490
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Table A2.2

Variation of oxygen vacancy formation energy as a function of cut-off potential

(figure 2 .2 .b in section 2 .2 .1 )

Cut-off Potential (l.u.) Defect Energy (eV)

1 . 0 16.461

1.5 16.485

2 . 0 16.513

2.5 16.533

3.0 16.537

3.5 16.540

4.0 16.542

4.5 16.544

5.5 16.545
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Appendix 3

As noted in section 3.7, the parameters of the analytic Hartree-Fock wave 

functions for the O2" ion in stabilising potential wells of various depths , V0  

Hartrees, are tabulated in table A.3.1

Table A3.1

1 n z < 0 II o In

o
•

II Vo = 1.5 II to ©

0 0 7.6126 0.937176 0.937045 0.936965 0.936919

0 0 13.3654 0.039048 0.039072 0.039082 0.039079

Is 0 1 3.2045 0.001712 0.001905 0.002062 0 . 0 0 2 2 1 0

0 1 6.2896 0.035237 0.035281 0.035296 0.035287

0 1 1.7637 0.000653 0.000640 0.000621 0.000596

0 1 0.5000 0.000015 0.000005 -0 . 0 0 0 0 0 1 -0.000004

0 0 7.6126 -0.215935 -0.217381 -0.218042 -0.218314

0 0 13.3654 -0.002048 -0.000320 0.000703 0.001390

2s 0 1 3.2045 0.455608 0.428414 0.410342 0.396730

0 1 6.2896 -0.094891 -0.086133 -0.080641 -0.076723

0 1 1.7637 0.662592 0.687018 0.703721 0.716363

0 1 0.5000 0.024465 0.013570 0.005028 -0.001543

1 1 1.7424 0.442193 0.479299 0.534144 0.586367

1 1 3.4363 0.281250 0.268794 0.251841 0.235945

2p 1 1 0.8565 0.432905 0.453384 0.407721 0.353612

1 1 0.4700 -0.017573 -0.107260 -0.118883 -0.113412

1 1 7.8070 0.012479 0.014921 0.017767 0.020356
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Table A3.2 Eigenvalues of O2" in stabilising wells: total energies

expectation values of stabilising potential <V> in Hartree units.

V0 State Eigen
value

< V >

Is -20.2499 -0.5000

0.5 2 s - 0.8974 -0.4978

2 p -0.1775 -0.4811

Total -79.3053

Is -20.6360 -1 . 0 0 0 0

1 . 0 2 s - 1.3228 -0.9960

2 p - 0.6064 -0.9728

Total -84.2064

Is -21.0562 -1.5000

1.5 2 s - 1.7726 -1.4993

2 p - 1.0563 -1.4669

Total -89.1299

Is -21.4907 -2 . 0 0 0 0

2 . 0 2 s -2.2318 -1.9926

2 p -1.5152 -1.9632

Total -94.0645
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Appendix 4

Table A4 The variation of oxygen vacancy formation energy as a function of

distance from surfaces of ceria (figure 4.5 in section 4.3.1)

r

(A)

Defect Energy (eV) 

(111) (110)

1.98 14.275

2.28 13.626

3.14 14.513

3.51 14.381

5.13 15.750

5.70 15.700

6.78 16.006

7.54 16.295

8.43 15.573

9.52 15.798

1 0 . 0 1 15.647

11.58 15.730

13.18 15.686

14.17 15.519
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Appendix 5

Table A5.1 Defect formation energy as a function of distance from the

(111) and (110) surfaces of ceria (figure 5.2 in section 5.6)

r

(A)

Defect Form ation Energy 

Ce3* Rh3+ Pd2+

(eV)

Pt2+

3.120 35.224 33.593 58.938 59.251

6.239 26.784 34.310 61.487 62.674

9.367 37.032 34.472 61.904 63.172 ( 1 1 1 )

12.489 37.024 34.460 61.846 63.116 Surface

15.614 37.019 34.452 61.819 63.093

24.988 36.992 34.427 61.714 62.986

2.156 34.178 32.676 56.952 57.458

3.528 35.808 33.337 60.101 61.221

7.527 36.600 34.058 61.287 62.536 ( 1 1 0 )

9.636 36.970 34.405 61.723 62.995 Surface

11.420 36.956 34.419 61.717 62.973

17.234 37.007 34.439 61.762 63.037

21.052 36.990 34.426 61.703 62.973
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Table A5.2 Segregation energy as a function of coverage for the (111) and

the (110) surfaces of ceria (figures 5.3 and 5.5 in section 5.7).

%

Coverage Ce3+

Segregation Energy (eV) 

Rh3+ Pd2+ P t2+ Ce3+/Al3+

Surface

1 . 0 0 -1.094 -0.880 -2.576 -3.702 -5.422

0.75 -1.131 -1.031 -3.790 -4.149 -5.315

0.50 -1.273 -0.759 -4.567 -2.994 -4.830 a n )

0.25 -1.813 -1.129 -3.680 -4.275 -4.926

0 . 0 0 -1.934 -0.943 -2.047 -3.342 -3.825

1 . 0 0 -1.346 -0.404 -4.791 -2.558 -6.127

0.75 -1.624 -1.175 -4.311 -5.195 -5.725

0.50 -1.773 -1.585 -4.824 -5.598 -6.662 (1 1 0 )

0.25 -2.392 -1.750 -5.863 -5.913 -6.767

0 . 0 0 -3.524 -2.260 -5.779 -6.514 -6.140
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Table A5.3

Calculated equilibrium surface coverage of neutral defects at the 

the (111) and (110) surfaces of ceria (figure 5.6 in section 5.7)

Tem perature

(K)

Surface Coverage (Xs)

Pd2+

( 1 1 1 )

Xb = 200ppm

Rh3+

( 1 1 1 ) ( 1 1 0 ) 

145ppm 145ppm

2500 0.636 0.675 0.168

2250 0.646 0.711 0.218

2 0 0 0 0.656 0.737 0.402

1750 0.667 0.758 0.468

1500 0.677 0.777 0.508

1250 0.691 0.798 0.543

1 0 0 0 0.703 0.818 0.573

900 0.708 0.826 0.583

750 0.838 0.598

650 0.847 0.611

600 0.857 0.617

500 0.863 0.628
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Appendix 6

Variation of surface formation energy with lattice parameters of ceria 

(figure 6.3 in section 6.4.2)

Table A6.1 Table A6.2

Monolayer of C e0 2 Bilayer of C e0 2

r ( A ) Energy (eV)

2.6000 -208.6153

2.6250 -208.7437

2.6300 -208.7815

2.6400 -208.8024

2.6480 -208.8072

2.6500 -208.8069

2.6600 -208.7954

2.6700 -208.7686

2.6850 -208.7005

2.7000 -208.6002

r  (A) Energy (eV)

2.4055 - 1 0 2 . 1 0 2 0

2.4500 -102.7745

2.5000 -103.2547

2.5250 -103.3976

2.5432 -103.4640

2.5770 -103.5120

2.5900 -103.5050

2.6100 -103.4690

2.6500 -103.3120

2.7055 -102.9270
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Table A6.3

Three layers of C e02

r(A ) Energy (eV)

2.6485 -314.2964

2.6550 -314.3229

2.6600 -314.3361

2.6650 -314.3431

2.6683 -314.3442

2.6700 -314.3441

2.6750 -314.3391

2.6800 -314.3282

2.6900 -314.2891

2.7000 -314.2276

Table A6.4

Six layers of C e02

r  (A) Energy (eV)

2.6800 -631.1323

2.6850 -631.1446

2.6860 -631.1456

2.6870 -631.1461

2.6875 -631.1462

2.6880 -631.1462

2.6900 -631.1449

2.6950 -631.1332

2.7000 -631.1098


