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Sum m ary

Processor speed is still increasing. Memory cycle time cannot keep up with this devel

opment and is proving to be the limiting factor in high performance architectures. The 

gap between processor and memory speed must be bridged if future processors are to 

reach their full potential. In this dissertation an attem pt has been made to solve the 

problem by increasing instruction density. A new computer architecture based on dense 

computer instruction sets is presented. Experimental results show that most of the com

piled code can be generated using a small number of opcodes. Entropy measurements 

reveal very low entropy in instruction streams especially when treated as higher order 

Markov sources. Arithmetic coding, a coding technique capable of encoding close to the 

entropy bound, is used to encode and decode the instruction stream. A high level VLSI 

design is suggested for the architecture. Simulation results show a significant reduction 

in memory-processor bandwidth using a context dependent model for instruction set 

encoding.



A cknowledgm ent

Thanks are expressed to my supervisor, Jeremy Bennett, for support and advice during 

this research work.

My appreciation also extends to other members of the University o f Bath: Geoff Smith 

for proof-reading and many helpful discussions, Robert Oddy and Francesco Arci for 

proof-reading, and Chris Burdorf for valuable help with my publications.

I am also grateful to my parents for their constant support during this period.

A special thank you to Elisabeth without whose moral support and encouragement I 

would probably never have experienced university life.

Financial support for this research work from Siemens is kindly acknowledged.



Preface

Each new generation of processing technology produces faster, dynamic RAMs with 

larger capacity than before. Nevertheless, the main memory cycle time has been de

creasing less rapidly than the clock period for processors [Hennessy & Patterson 1990]. 

Although today’s computer designer can choose from a wide variety of communication 

organizations, interaction between memory and processor remains a focal point in the 

design of high performance systems. As processors get faster more and more perfor

mance is lost to the memory system. A new memory-processor organization has to 

be evolved to supply instructions to the execution unit fast enough, and thus reduce 

communication delays.

In this dissertation I present a computer architecture based on dense computer in

struction sets [Schoepke 1992d, Schoepke 1992g] to overcome the problem of increasing 

memory latency by the drastic reduction of memory-processor bus traffic through com

pact encoding. Dense computer instruction sets are the most promising way to reduce 

memory-processor bus traffic considerably, and thus reduce memory latency, to improve 

overall system performance. In developing this methodology an advanced architecture 

has been designed and its implementation simulated.



C ontents

1 Introduction  1

1.1 A rch ite c tu re s ........................................................................................................  1

1.2 Program S i z e ...................................................................   3

1.3 Memory L a te n c y .................................................................................................. 4

1.4 Memory-Processor C o n n e c tio n ........................................................................ 4

1.5 N etw o rk in g ...........................................................................................................  5

1.6 Information Theory ...........................................................................................  6

1.7 S u m m a ry ...............................................................................................................  6

2 Background T heory 7

2.1 Analysis of High Level Language Usage ........................................................  7

2.2 Analysis of Instruction S e t s ...............................................................................  10

2.3 Computer A rch itec tu res ..................................................................................... 12

2.3.1 RISC A rch ite c tu re ................................................................................... 13

2.3.2 Shared Memory A rc h ite c tu re ...............................................................  14

2.3.3 Improving Main Memory Perform ance............................................... 17

2.3.4 Cache Influence.........................................................................................  18

2.4 Instruction Execution ........................................................................................ 19

2.5 Architectural Solutions........................................................................................ 21

2.5.1 Superscalar D e s ig n s ...............................................................................  21

2.5.2 Primitive Based A rchitectures............................................................... 22

2.5.3 Very Long Instruction W o rd s ............................................................... 23

iv



2.5.4 Micro-Architectural Parallelism ............................................................ 23

2.5.5 Distributed Instruction Set Computer A rch itec tu re ........................ 24

2.6 Theoretical Analysis of Instruction S e t s ........................................................  25

2.6.1 O v e rv ie w ................................................................................................... 25

2.6.2 Replacement of Repeated S tr in g s ........................................................  28

2.6.3 Memory Referencing B ehaviour............................................................ 29

2.7 S u m m a ry ................................................................................................................ 30

3 A Target A rch itecture for E xperim ental C om pression 31

3.1 SPARC A rch itec tu re ............................................................................................  31

3.2 Instruction D escription......................................................................................... 33

3.3 Perform ance............................................................................................................  37

3.4 S u m m a ry ................................................................................................................ 38

4 C om pression Techniques 39

4.1 Non Suitable Compression T echn iques ............................................................ 40

4.2 Potentially Suitable T echniques......................................................................... 40

4.2.1 Huffman C o d in g .....................................................................................  40

4.2.2 A Universal Algorithm for Sequential D ata Com pression.............. 42

4.2.3 Prediction by Partial M atch in g ............................................................ 42

4.2.4 Arithmetic C o d in g .................................................................................. 43

5 T he Im plem entation  o f  A rithm etic C oding 45

5.1 The Idea of Arithmetic C o d in g ........................................................................  45

5.2 Models for Arithmetic C od ing ............................................................................ 46

5.3 Simple Character Set E x a m p le ......................................................................... 47

5.4 The Conventional Algorithm ............................................................................ 49

5.5 A Fast Decoding Algorithm for Arithmetic C o d in g .....................................  50

5.5.1 The Mathematics Behind Look-Up T a b le s ........................................  51

5.5.2 Im plem entation......................................................................................... 53

5.5.3 Experimental Results ............................................................................ 54

v



5.5.4 S u m m a ry .................................................................................................. 55

5.6 Hardware Im plem entation .................................................................................  56

5.7 S u m m a ry ..............................................................................................................  56

6 E xperim ental R esu lts 57

6.1 Experiments P e r fo rm e d ....................................................................................  57

6.2 Empirical A n a ly s is .............................................................................................. 59

6.2.1 O pcodes.....................................................................................................  59

6.2.2 Opcode p a i r s ...........................................................................................  60

6.2.3 Registers .................................................................................................. 60

6.2.4 C o n s ta n ts .................................................................................................. 63

6.2.5 Branch In s tru c tio n s ..............................................................................  64

6.3 E n t ro p y .................................................................................................................  66

6.4 Coding R e s u l t s ....................................................................................................  70

6.5 S u m m a ry ..............................................................................................................  72

7 Proposed  M odel for a Com pressed Instruction Set A rchitecture based

on SPA R C  74

7.1 Standard Execution Model .............................................................................. 74

7.2 Decode-Execution Model for Compressed C o d e ..........................................  76

7.3 Handling Control T ra n s fe rs .............................................................................. 77

7.3.1 Overview of the Problem ..................................................................... 77

7.3.2 Compiler In fo rm a tio n ...........................................................................  80

7.3.3 Solutions ..............................................................................................  . 80

7.3.4 Method Applied ..................................................................................... 82

7.4 Algorithms for Encoding and D ecoding..........................................................  82

7.5 Cache Influence..................................................................................................... 83

7.6 Hardware D e s ig n .................................................................................................  85

7.7 S u m m a ry ..............................................................................................................  90

8 D en se Instruction  Set C om puter A rchitecture Sim ulation 91

vi



8.1 Encoding and Decoding P rocess......................................................................... 91

8.1.1 E n c o d in g ...................................................................................................  91

8.1.2 D e c o d in g ...................................................................................................  94

8.2 A Simulator for Dense Instruction Set A rc h ite c tu re s ...................................  95

8.3 Simulation R e s u l t s ...............................................................................................  96

8.3.1 Compression A chieved............................................................................  96

8.3.2 Compression Results compared to T h e o ry ......................................... 97

8.3.3 Comparison between Zero and First Order M odel...........................  98

8.3.4 Effectiveness ............................................................................................  99

8.3.5 The Effect of Fetch W id th ...................................................................... 100

8.4 Architecture L im its ...............................................................................................  101

8.5 S u m m a ry ...........................................................  102

9 C onclusion 103

vii



List o f Figures

1-1 Memory h ie ra r c h y ..............................................................................................  3

2-1 Multiprocessor Bus Interconnection................................................................. 15

2-2 Multiprocessor Crossbar Interconnection.......................................................  16

2-3 Multistage Interconnection N e tw o rk .............................................................. 16

2-4 Interleaved memory o rg an iz a tio n ....................................................................  17

2-5 Instruction p ipe line ..............................................................................................  20

2-6 Instruction super p ip e lin e .................................................................................  21

2-7 Superscalar s tru c tu re ........................................................................................... 22

3-1 Instruction fo rm a ts ................................................................  34

3-2 SPARC register w indows....................................................................................  36

6-1 Positive constant d is tr ib u tio n ..........................................................................  63

6-2 Negative constant d istribution ..........................................................................  63

6-3 Positive branch d is tr ib u tio n ..............................................................................  64

6-4 Negative branch distribution ........................................................................... 65

6-5 Entropy for symbols and o p co d es ....................................................................  67

6-6 Register entropy for the dynamic c a s e .........................................................  68

6-7 Register entropy for the static c a s e ................................................................ 68

6-8 Entropy for conditional and immediate field for the dynamic case . . . .  69

6-9 Entropy for conditional and immediate field for the static c a s e . 69

7-1 Instruction execu tion ..........................................................................................  75

viii



7-2 Compressed object code e x e c u tio n ..................................................................  76

7-3 C code for and for  s ta te m e n t........................................................................  78

7-4 Assembler language for i f  and for s ta te m e n t.................................................  78

7-5 Encoding algorithm ............................................................................................ 83

7-6 Decoding algorithm ...............................................................................................  84

7-7 VLSI Design for the dense instruction set computer architecture . . . .  86

7-8 Hardware design for arithmetic c o d in g ...........................................................  87

7-9 Address decoder ..................................................................................................  88

7-10 Symbol f in d e r ......................................................................................................... 89

8-1 Encoding g ra p h ...................................................................................................... 92

8-2 S im u la to r ...............................................................................................................  95

ix



List o f Tables

2.1 High level language u s a g e ..................................................................................  8

2.2 Speed changes for caches...................................................................................... 18

2.3 Entropy obtained by Bennett...............................................................................  27

2.4 H  obtained by Hammerstrom and Davidson.................................................... 30

3.1 Instruction descrip tion .........................................................................................  35

5.1 Simplified character set for arithmetic c o d in g ............................................... 47

5.2 Calgary compression c o rp u s ...............................................................................  50

5.3 Average number of search loop executions during decoding ......................  51

5.4 Miss distribution for the improved decoding a lg o ri th m ..............................  54

5.5 Improved decoding r e s u lts ..................................................................................  55

6.1 Opcode distribution ............................................................................................  59

6.2 Distribution of opcode p a i r s ...............................................................................  60

6.3 Register distribution for the static ca se ............................................................ 61

6.4 Register distribution for the dynamic c a s e .....................................................  61

6.5 Register d is tr ib u tio n ............................................................................................  62

6.6 Branch d istribu tion ................................................................................................ 66

6.7 Program d e sc r ip tio n ............................................................................................  70

6.8 Encoded object code results for a fixed model in static c a s e ....................  71

6.9 Encoded object code results for a fixed model in dynamic case ................ 71

6.10 Compression schem es............................................................................................  72

6.11 Encoding results published by Bell et.al............................................................  72

x



7.1 Static and dynamic branch frequency...............................................................  79

8.1 Compression results using a zero order m o d e l ............................................... 97

8.2 Compression results using a first order m o d e l ...............................................  97

8.3 Compression results compared to entropy using a zero order model . . .  98

8.4 Compression results compared to entropy using a first order model . . .  98

8.5 Entropy improvement from zero to first order m o d e l ...................................  99

8.6 Comparison between zero and first order m o d e l............................................ 99

8.7 Effectiveness .........................................................................................................  100

8.8 Wasted bits using a zero order m o d e l...............................................................  100

8.9 Wasted bits using a first order m o d e l...............................................................  101

xi



G lossary

AMAT Average Memory Access Time

BN Branch Never

CISC Complex Instruction Set Computer

CPI Cycles per Instruction

CPU Central Processing Unit

DISC Distributed Instruction Set Computer Architecture

DMC Dynamic Markov Compression

DRAM Dynamic Random Access Memory

EX Execution

HLL High Level Language

IF Instruction Fetch

LZ Lempel and Ziv compression algorithm [Ziv Sz Lempel 1978]

LZB LZ Bell [Bell 1987]

LZFG LZ Fiala and Greene [Fiala Sz Greene 1989]

LZW Lempel Ziv Welch [Welch 1984]

MEM D ata Memory Access

MIN Multistage Interconnection Network

PC Program Counter

PPM Prediction by Partial Matching

PPMC PPM using method C [Moffat 1990]

RAM Random Access Memory

RF Register Fetch



RISC Reduced Instruction Set Computer

SPARC Scalable Processor Architecture

VLIW Very Long Instruction Word

VLSI Very Large Scale Integration

WR Write Register Result



C hapter 1

Introduction

The main thrust in computer architecture design in the seventies was to reduce the 

semantic gap between high-level languages and machine language. Complex instructions 

were designed to denote a more substantial component of the user’s intended application. 

One consequence was that a program composed of complex instructions performed the 

same task as before, but required less memory traffic during execution. In theory such 

instruction set also allowed the execution unit to run at peak performance more often. 

An im portant goal in high-performance architectures is to keep traffic density low on 

long and shared interconnections [Stone 1990].

1.1 A rchitectures

In the eighties RISC (Reduced Instruction Set Computer) technology [Fox et al. 1986, 

Hopkins 1987, Katevenis 1984, Patterson & Sequin 1982] has emerged to simplify com

puter architecture. Instructions are few and simple and control can often be imple

mented in hardware, removing the overhead of microcode. Design complexity is re

duced.

One problem is that static object code size and dynamic object code size 1 could be

1 Static  code .size is used to mean the code generated by the compiler, prior to execution, and describes 
the amount of memory occupied by the compiled program. Dynamic code size  is used to mean the code 
executed during program run time. Thus, for example, a loop can occupy very little static code size, 
but huge dynamic code size (depending on the number of loop executions).

1



significantly larger than for CISCs (Complex Instruction Set Computers). As a result, 

more memory is required. This applies to caches, main memory, and secondary memory. 

In addition, memory-processor bus traffic is increased. Much of the work, in particular 

the design of an advanced architecture, will aim to minimize dynamic code size, since 

this will increase execution speed.

The problem of increased traffic is multiplied in shared memory multiprocessors 

where several processes require access to one memory bus. To accommodate several 

high-performance processors on a single memory bus, the architecture must reduce the 

bus demands of each processor.

Today the trend is towards an architecture with the best of both worlds. Multicycle 

instructions can be incorporated successfully into RISC architecture if they improve 

overall performance without compromising the basic cycle time. This dissertation a t

tempts to increase the benefit of both design methodologies, more object code compact

ness and less bus loading than CISC, but more speed than RISC.

The increased traffic, both on- and off-chip, requires drastic changes in computer 

architecture, more so because of the increasing gap between memory and processor cy

cle time [Hennessy & Jouppi 1991, Hennessy & Patterson 1990, Klaiber & Levy 1991, 

Kurian et al. 1991].

There are several techniques used to hide memory latency, such as caches both on- 

and off-chip which certainly reduce the amount of data transferred between memory 

and processor. But no technique known to the author actually decreases memory- 

processor bus traffic down to the bounds possible [Hammerstrom & Davidson 1977, 

Schoepke 1992c] according to information theory. Experiments carried out show very 

low entropy for higher order Markov sources [Abramson 1963] in static as well as dy

namic object code [Bennett 1988, Schoepke 1992c]. Such low entropy requires a com

pression technique which can encode into less than one bit per character.

While a number of research projects are focused on building scalable multiproces

sors (scalable to hundreds or thousands of processors) using microprocessor technology, 

most of the focus in industry is on building small, bus-based machines that support 

cache coherency [Hennessy & Jouppi 1991], To accommodate several high-performance
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processors on a memory bus, the architecture must reduce the bus demands of each 

processor. However, as machine organizations graduaUy succeed in sustaining multiple 

instructions execution concurrently in each processor, they will demand greater band

width from local memory.

The work performed by Wade and Stigall [Wade & Stigall 1975], Hammerstrom and 

Davidson [Hammerstrom & Davidson 1977], and Bennett [Bennett 1988] already show 

what can be achieved in instruction design.

1.2 Program  Size

Programs get larger and larger and the demand for large memory continues to in

crease [Hennessy & Patterson 1990]. The tendency to use larger memory systems re

duces speed as well. The program used requires memory on disk before loading, needs 

space on the bus during loading and main memory during run time, thus wasting space 

with redundant information. Figure 1-1 gives us an example of a typical memory hier-

instruction fetch program loading

-------------------
Cache

I/OCPU Memory
I/O

bus bus bus
CPU Memory

Register _____ ^  Cache  ^  Memory  Paging Disk

reference reference reference reference reference

Figure 1-1: Typical memory hierarchy with instruction and reference paths.

archy and the instruction path as well as the memory reference path.

Measurements by Bennett [Bennett 1988] have shown that most of the time people 

sit in huge programming environments, using commands with small execution times.
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Therefore loading times are much more important than is usually appreciated. The 

memory used by the object code is also in competition with the data memory needed 

by the average program.

1.3 M em ory Latency

Main memory satisfies the demands for caches and vector units as well as serving as the 

I/O  interface. Unlike caches, performance measures of main memory emphasize both 

latency and bandwidth whereas main memory latency (which affects the cache miss 

penalty [Hennessy & Patterson 1990]) is the primary concern for caches. A 16MHz PC 

for example with only one wait state in its memory is slower than another PC that 

runs at 12MHz with no wait state. Even if the wait state penalty may be only one 

cycle, it occurs for every memory reference. Techniques tha t can cope with the large 

latency of memory accesses [Gupta et al. 1991] are essential for achieving high processor 

throughput. Coherent caches allow shared read-write data to be cached and significantly 

reduce the memory latency seen by the processor.

Prefetching techniques hide latency by bringing data close to the processor before it 

is actually needed. These techniques provide performance improvement, but were found 

to be very application dependent [Gupta et al. 1991]. Furthermore, prefetching instruc

tions increases the number of instructions transferred between memory and processor 

and can end up in prefetching instructions that will never be executed.

1.4 M em ory-Processor Connection

Researchers already talk about processors with 1000MIPS and their associated prob

lems. Available bandwidth and latency, not computational speed, will be the main 

constraint to increase processor performance in the future.

For the 80386 or RISC architectures like SPARC, RISC I or RISC II, where only 

a single memory port is used for instructions and data access, compact code is even 

more im portant. One memory port means that only one access may be in process at 

any time. The SPARC and 80386 processor for example are both based on the load
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and store von Neumann architecture. Hence, both can be significantly limited by the 

memory bandwidth. Assuming a cache hit on SPARC no penalty is incurred. For a 

cache miss, however, the processor stalls twelve cycles while the line is loaded into the 

cache. Many cycles are potentially wasted for data transfer operations between the main 

memory and the CPU internal registers. The data traffic is also competing against the 

instruction flow from main memory to the CPU, because only a single memory port 

is provided. Recent work by Ousterhout [Ousterhout 1990] shows that programs run 

slower on fast machines than the raw speed up would indicate. He believes tha t low 

memory bandwidth is one of the reasons for these results.

Introducing caches improve performance significantly, but cache misses are costly. 

Consider the Fairchild Clipper which has a four kbyte instruction and a four kbyte data 

cache. The average cache access time is 90nsec, the average memory access time is 

400nsec. Assuming a hit rate of 90% the average access time would be 130nsec 2. This 

is an increase of nearly 45% in access time compared with a 100% cache hit rate.

Branch prediction strategies are used to improve system performance after a branch 

has occurred through prefetching instructions at the address concerned. One problem 

with branch prediction strategies is that unnecessary memory accesses for instructions 

can be made which will never be executed. This can drastically reduce the amount of 

memory bandwidth available to the processor. An investigation into this problem has 

been published by Kaeli and Emma [Kaeli & Emma 1991]. They concluded th a t branch 

history tables are an effective approach to reduce latencies that arise looking at taken 

branches.

1.5 N etworking

In networked systems the problem of large object code gets even worse, and swapping 

and paging across the network seems to be the biggest memory problem for diskless 

stations. Networks, built with server and several diskless stations, are most common

2The formula for the average cycle time t ej  f is te/ /  =  t cache +  (1 — h ) tmain where h is the probability  
of a cache hit and the tim e t cachc and t main are the respective cycle tim es of cache and main memory. 
The quantity (1 — h) is the probability of a cache miss.
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these days. Serving several Mbyte of code to many diskless stations is not an easy 

task: disk I/O  and transfer through the network account for most of the time spent for 

executing a short command of up to ten seconds execution time [Bennett 1988]. Loading 

times, especially across the network, are a far bigger problem than often expected. 

Object code is a major factor for bus traffic.

1.6 Inform ation Theory

According to information theory, object code compression by more than factor ten 

is possible considering a fifth order model using eight bit long symbols on SPARC 

[Schoepke 1992c]. The amount of memory used to store information needed for encoding 

and decoding is related directly to the order of the model used. Using models of order 

ten brings the entropy down to 0.06 bit per symbol, but the amount of memory necessary 

to store the context information is tremendous.

1.7 Sum m ary

For RISCs, the amount of memory which is occupied by object code has increased. 

Furthermore, dynamic code size increases and therefore memory-processor bus traffic 

increases. Drastic changes in the architecture are required to deal with this demand. 

The solution I am looking for is a compromise of the compression ratio achievable with 

high order Markov sources (such as order ten) and the amount of memory acceptable 

to store the necessary information.
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C hapter 2

Background Theory

In this chapter background information is provided on usage of high level languages 

(HLLs), instruction sets, strategies for architecture improvements, and information the

ory. 1 “In any design work it is im portant to get a feel for the overall structure of 

languages.” [Bennett 1988]

2.1 A nalysis o f High Level Language U sage

Analysis of HLL usage is essential to get information about instruction usage and the 

related problems. Several researchers examined language and instruction usage on dif

ferent machines for various programming languages to find the best representation of a 

HLL program for execution. From the code size point of view, static measurements of 

programs are interesting. From the performance point of view, dynamic measurements 

of programs are generally more interesting than static measurements, but they are also 

more difficult to collect. Consequently there are fewer of them.

Weiker published a summary of sixteen analyses of high-level language usage gath

ered by several researchers [Weiker 1984]. He made an attem pt to construct a synthetic 

benchmark program “Dhrystone” based on these recent statistics, particularly in the 

area of systems programming.

1The term instruction set refers to the interface presented to the compiler writer by the architecture. 
T he term architecture means the com plete hardware of the computer, supporting the instruction set.
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Weiker gave a brief characterization of all sixteen different data collections and 

several tables, which summarized the static statistics as well as dynamic statistics. 

Table 2.1 shows the variety of collected data for several HLL constructs for static as 

well as dynamic case. In all cases the three constructs of assignments, procedure calls, 

and conditional branches dominated.

Language U sage
assig n m en ts calls if o th e r

s ta t ic 33.7-54.0% 12.0-40.3% 8.8-21.1% 7.9%-31.9%
dy n am ic 41.9-67.0% 4.0-32.8% 7.7-36.0% 1.2%-21.8%

Table 2.1: High level language usage published by Weiker. Information is given about 
the distribution of different language statements.

In several other tables Weiker shows types of assignments, the distribution of the 

number of parameters in calls, number and type of operators and the locality of variables. 

The average number of parameters in calls varies from 0.9 [Cook &: Lee 1982] to 2.1 

[DePry cker 1982].

Weiker’s work is an excellent summary -  as has been shown by the great amount 

of interest in his Dhrystone Benchmark. Dhrystone is also used in this dissertation to 

measure the improvement achieved on reduced memory-processor bus traffic. It is worth 

looking in more detail at some of the work he summarizes and at more recent work.

Knuth was the first to publish work of analysis of the use of existing machines to 

provide data  for future design for computer architecture [Knuth 1971]. He examined 

a range of FORTRAN programs from industry and academia. He discovered that the 

average expression has only two operands, indicating that support for complex expres

sion evaluation is perhaps unjustified. In particular he noted tha t a large number of 

expressions were of the form x +  1 (40%) or y2 (39%).

About 4% of the statements were do loops of which most were quite short involving 

only one or two statements. Only 13% had more than five statements.

Knuth also distinguished between static and dynamic statistics, showing for the first 

time tha t optimization for program size and program speed require different concepts. 

When he examined twenty-four special programs, he showed how the relative frequency
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of statement types changes (although not greatly) when the counts are dynamic instead 

of static. Overall, K nuth’s study showed that a small number of basic patterns account 

for most of the programming constructions in use and that programs generally are very 

simple.

Alexander and Wortman studied the static and dynamic characteristics of programs 

written in the language XPL [Alexander & Wortman 1975]. The nineteen XPL pro

grams they examined included compilers written by undergraduate and graduate stu

dents as well as two principal components of the XPL system. For numeric constants 

they obtained the interesting result that 56% of all numeric constants could be repre

sented using four bits, and 98% could be represented using 12 bits or less. Many of the 

numeric constants greater than 210 were, in fact, masks.

Tanenbaum made an empirical study of more than 10,000 lines of program text to 

propose an advanced machine architecture specifically designed for structured programs 

[Tanenbaum 1978]. The programs examined for his research were all written by the 

faculty and graduate students of a computer science group. Although this work was 

done much later and concerned a different language, in general they got the same result 

as Knuth during his FORTRAN study, i.e. programs tend to be very simple.

Patterson and Sequin looked at the frequency of classes of variables in high-level 

language programs (written in the programming languages C and Pascal) during their 

RISC project [Patterson & Sequin 1982]. Their most im portant observation was that 

integer constants appeared almost as frequently as arrays or structures. More than 80% 

of the scalars were local variables and more than 90% of the arrays or structures were 

global variables.

Bennett describes static frequencies of various BCPL statements [Bennett 1988]. In 

line with other researchers’ results his figures are dominated by assignment, procedure 

call and conditionals, which together account for 82.7% of all statements.

Sum m ary

Different analyses of language usage show that programs of a wide variety of types 

are generally very simple. During procedure calls only a few parameters are passed
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and immediates and branch displacements use only a few bits to represent their value. 

These analyses suggest a great deal of redundancy in computer programs.

2.2 A nalysis o f Instruction Sets

Looking at high level constructs is not always a sufficient way of analysing language 

usage since the representation of statements with instructions differs widely. Assigning 

a constant to a simple variable is inevitably less verbose than assigning a result of a 

function call to a member of a structure. To get a feel of instruction set usage it is 

helpful to look at compiled code rather than a HLL.

Alexander and Wortman also studied instruction set usage during their XPL pro

gram analysis [Alexander &: Wortman 1975]. They found a dominance of the load in

struction: more than one out of four compiled or executed instruction is a load. Branch 

and condition and store instructions are both about as frequent, in the range 10-15%.

They also looked at instruction pairs and triples. They found that thirty out of 

forty-five distinct instructions emitted by the XPL compiler had fewer than four dif

ferent instructions as possible successors. Therefore these instructions contain more 

information than just their own function, since they also constrain the possible instruc

tions that might be executed next.

An analysis of branch instructions showed that 55% of the executed branches and 

36% of the compiled branches were unconditional. It is interesting to note that over 

half the branches were no more than 128 bytes away from the location of the branch 

instruction. That means branch instruction carry a lot of redundant information in 

them.

Sweet and Sandman, using an analysis of the Mesa byte-stream instruction set, 

describe the refinement of the instruction set [Sweet & Sandman 1982]. They provide a 

formalization of the statistics required and the method to be used. Under their scheme 

to  reduce the static size of compiled code, they propose a five stage design process:

1. Normalize the object code:

Many of the instructions in existing object code were special versions of generic
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instructions dealing with common cases. These were replaced by their generic 

instructions, to eliminate pre-supposition about what were “good” instructions. 

For example jump not zero was replaced by load zero followed by jump not equal.

2. Collect statistics by pattern matching:

2.5 million bytes of code were analysed to find particular statistical information.

• Static opcode frequency: count the number of occurrences of each opcode;

• Operand values: for each opcode, get a histogram of operand values;

• Popular opcode pairs: for each opcode, get a histogram of the set of next 

opcodes in the code sequences; this includes opcode predecessors and opcode 

successors; these are the same items of information, but different representa

tions are more useful at different times.

3. Propose new instructions:

The statistics gathered were used to suggest new instructions through combin

ing opcodes, opcode and argument, or arguments. The instruction pair L I 0, 

L I 0 (Load Immediate Zero) for example led to a new instruction LIDO (Load 

Immediate Double Zero).

4. Peephole optimization:

Convert to new opcodes by peephole optimization.

5. Repeat steps 2 through 4 until you have enough instructions.

Normalization is an im portant concept in refining instruction sets. The existing 

instruction set utilized 240 out of a possible 256 instructions. Sweet and Sandman’s 

normalized instruction set had 100 generic instructions, leaving scope for 156 new in

structions.

For static frequencies Sweet and Sandman obtained the result that load immediate 

and load local variable were the most common instructions with 16.90% and 12.68% 

respectively. Over 6% of the instructions were procedure calls. In fact, only six instruc

tions account for more than 50% of the opcodes. For load immediate instructions they 

found tha t 45.83% of arguments are zero and 14.01% are unity.
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Cook describes a static analysis of the instructions used to implement the system 

software on the Lilith computer, including editors, document processors, window pack

ages and other modules [Cook 1990]. The analyzed software was from 180 modules with 

2236 procedures, comprised of 146293 instructions. All programming on Lilith was done 

in Modula-2.

Cook obtained the result that 20 out of 256 possible opcodes represent 50% of the 

usage of all instructions. Overall Cook got comparable results as Sweet and Sandman 

[Sweet & Sandman 1982] during their analysis about the Mesa instruction set.

During static analysis Bennett obtained similar results for BCPL programs namely 

that only a few instructions built most of the compiled code [Bennett 1988].

A recent analysis of MIPS and SPARC instruction set utilization using the SPEC 

benchmarks is given by Cmelik et.al. [Cmelik et al. 1991]. Although no details are 

given for single instruction or register usage, the results give a good overview on how 

instruction categories are used. In particular, their integer benchmark indicates tha t 

between 20.26% and 26.51% of all SPARC instructions measured are control transfer 

instructions (depending on the benchmark program used).

Sum m ary

Different analyses of instruction set usage show that most of the compiled code is built 

with only a few instructions, far less than the number of instructions provided by the 

architecture. New instructions built from frequently used opcodes or opcode pairs can 

reduce program size. The analyses shown (undertaken by several researchers) demon

strate the simplicity of generated instruction streams.

2.3 Com puter A rchitectures

Several techniques are known that can hide memory latency. Instruction sequencing, 

scheduling, and pipelining are only a few of them. Hiding memory latency is one of 

the main concerns of computer architects as the gap between memory and processor 

cycle times is still widening [Hennessy Sz Patterson 1990]. Caches can only alleviate this
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problem as they have to be both, large and on-chip. Furthermore, the cache memory 

cycle time increases for larger cache size due to additional decode logic and loading of 

the bus (both internal and external to the memory chip) [Krick & Dollas 1991]. Certain 

memory organizations are able to reduce latency times, but not the amount of data 

transferred between memory and processor. Some can even increase traffic, such as 

prefetch techniques.

2 .3 .1  R IS C  A r ch itec tu re

Patterson and Sequin [Patterson &: Sequin 1982] describe the Reduced Instruction Set 

Computer Project. The purpose of their project was to explore alternatives to the gen

eral trend towards architectural complexity. They expected a reduction in design time 

and design errors and much faster execution time for individual instructions. P atter

son’s and Sequin’s project is one of the research projects that lead the way to the RISC 

architecture.

While there are many variations on the theme, most RISC processors have the 

following attributes in common [Colwell et al. 1985]:

Fewer instruction

Studies in the early days of RISC showed that most compilers used only 30% of the 

instruction sets provided by CISCs, such as DEC’s VAX. RISC processors attem pt to 

implement only that 30%, allowing the chip to be smaller, cheaper, and (in theory) 

faster.

Fewer instruction  form ats

RISCs generally have only a few instruction formats to maintain simplicity. Usually, all 

instructions are the same length such as in SPARC. Furthermore, on most processors 

instructions and data words are of the same size. For SPARC this means it can take 

more than one instruction to load a constant of more than 13 bits as the immediate 

operand is only 13 bits long. However, as most constants in computer programs are 

small numbers, a single add or or instruction suffices in most cases.
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D um m y register

Most RISCs have a dummy register, a register with the hardwired value zero. Such a 

register is a convenient way to turn an instruction with two sources into an instruction 

with a single source without complicating the instruction set.

Load and store architecture

In most cases load and store instructions are the only instructions to access memory. 

All other instructions effect only the on-chip registers. This rule is violated on SPARC 

by allowing atomic load and store such as the swap instruction.

Lim ited addressing m odes

Most RISCs have only simple addressing modes (indirect through a register), doing all 

address calculations in registers. However, implemented chips such as SPARC, allow also 

register-plus-displacement modes and some processors support a third addressing mode 

through forming a memory address by adding the contents of two internal registers.

Single cycle execution

Most RISC instructions are simple enough to require only one cycle. On some architec

tures multiple cycles are required by instructions such as load or store.

D elayed control transfers

To avoid wasted time, most RISCs allow an additional instruction to be inserted into 

the “delay slot” after the control transfer instruction before the branch is actually taken. 

Some processors such as SPARC can annul 2 this instruction.

2 .3 .2  S h ared  M em o r y  A rch itec tu re

Shared memory architecture accomplishes interprocessor coordination by providing a 

global, shared memory that each processor can address. Commercial shared memory

2See section 3.1.
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architectures were introduced during the 1980s. A typical first generation system was 

the Balance 8000 from Sequent Corporation, offered in 1984 with two to twelve National 

32032 microprocessors. The 8000 was updated two years later by the 21000, offering up 

to 30 microprocessors. Two further commercial shared memory architectures are the 

Flex/32 from Flexible Corporation and the Multimax from Encore Computer. These 

architectures involved multiple general-purpose processors, sharing memory. Processes 

communicate through shared variables in memory. However, synchronization must be 

available to coordinate processes.

Shared memory computers avoid some of the problems encountered by message pass

ing architectures, but the problems of data access synchronization and cache coherency 

must be solved. Typically, each processor in a shared memory architecture has also a 

local memory used as a cache. Multiple copies of the same shared memory data may 

therefore exist in various processors’ caches at any given time. Maintaining a consistent 

version of such data is the cache coherency problem.

To maintain cache coherency a special protocol, called snooping, can be used. Each 

cache controller monitors, or snoops, on the bus to determine whether they have a 

shared block of data. This technique is popular on shared memory systems as it can 

use a pre-existing connection: the memory bus.

Processor ProcessorProcessor

MemoryMemory Memory

Figure 2-1: Multiprocessor Bus Interconnection

There are a number of ways of connecting multiple processors to shared memory 

[Duncan 1990]. Bus interconnection (Figure 2-1) offers the simplest way to give multiple 

processors access to shared memory. A single time-shared bus efficiently accommodates
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a moderate number of processors, limited by the fact that only one processor may use 

the bus at any given time.

Memory Memory

Processor

Processor

Figure 2-2: Multiprocessor Crossbar Interconnection

Crossbar interconnection (Figure 2-2) uses a crossbar switch of n2 crosspoints to 

connect n processors to n memories. Processors may contend for access to a mem

ory location, but crossbars prevent contention for communication links by providing a 

dedicated pathway between each possible processor/memory pairing.

^------------

Processor 0 0 Memory
11

Processor 1 1 Memory
22

> < r

Processor Memory
33

0
0

Processor Memory
44 1 1

Figure 2-3: Multistage Interconnection Network
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The multistage interconnection network (MIN) shown in Figure 2-3 strikes a com

promise between the price/performance alternatives offered by crossbars and buses. An 

n * n MIN connects n processors to n memories by deploying multiple stages or banks 

to switches in the interconnection network pathway. A processor making a memory 

access request specifies the desired destination and pathway by issuing a bit-value that 

contains a control bit for each stage. Multiprocessor performance heavely depends on 

the performance of the whole system when sharing data.

2 .3 .3  Im p ro v in g  M ain  M em o ry  P erform an ce

cache

CPU memory

bus bus
CPU

memory 
bank 2

memory 
bank 3

memory 
bank 4

memory 
bank 1

register cache memory
reference reference reference

Figure 2-4: Interleaved memory organization with four memory banks.

Main memory can be organized in banks (Figure 2-4) to give access to multiple 

words at a time rather than single words. The banks are one word wide so that cache as 

well as bus width need no changes. Organized in banks, main memory allows one clock 

cycle for each write (provided the writes are not destined to the same memory bank). 

This “mapping” of addresses to banks affects the memory behaviour as the memory 

address is interleaved.

The original motivation was to interleave sequencial memory accesses and to allow 

multiple independent accesses. This method, however, does not decrease the number of 

bytes to be transferred between main memory and processor. The memory bus is still
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the main bottleneck in the system.

2 .3 .4  C ach e In flu en ce

One of the most im portant hardware techniques used to improve performance during 

the past decade has been caching; a technique which relies on using more hierarchical 

memory to achieve higher performance. Many researchers have investigated caches, their 

performance and improvements, and influence on different architectures, for example 

[Eickemeyer &: Patel 1988, Farrens & Pleszkun 1989].

An instruction cache greatly speeds the instruction-sequencing requirements of the 

instruction fetch unit. A cache hit must occur to improve the apparent memory cycle 

time. To attain a peak execution rate of one instruction per cycle, the cache memory 

must have a cycle time less than or equal to the instruction fetch time. Memory access 

time, however, has to be “reasonable” so cache misses are not too costly. Second level 

caches between the primary cache and main memory can be used to reduce cache miss 

time.

Speed Changes
H it R a te

percent
H it T im e

percent
M iss T im e

percent
T o ta l T im e

percent
100% 100% 0% 100%
99% 99% 26% 125%
98% 98% 52% 150%
95% 95% 130% 225%

Table 2.2: Speed changes as hit rate varies for the SPARCstation 2 with 26 cycle miss 
costs. The hit rate reduces from 100% to 95%. The effect on hit time, miss time and 
total time is shown.

Although the cache hit ratio is largely affected by cache size, increase in size must also 

be weighed against longer access time and higher costs. For a given memory technology, 

the cache memory cycle time increases for larger cache size due to additional decode 

logic and loading on the bus. Cache efficiency depends heavely on the cache hit rate. 

Table 2.2 provides information about speed changes for the SPARCstation 2 with a 

cache miss cost of 26 cycles [Cockcroft 1991] as the cache hit rate varies. Although a
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hit rate of 95% sounds high, there is a dramatic increase in execution time compared 

with a 100% hit rate.

2.4 Instruction Execution

Instruction sequencing is one of the fundamentals for von Neumann architectures, but 

it is complicated by interdependencies between instructions. High performance systems 

use a number of strategies to address these interdependencies in order to improve sys

tem performance. Krick and Dollas [Krick &: Dollas 1991] discuss several aspects of 

instruction sequencing such as memory bandwidth, instruction buffers, and caches.

The memory address that contains the next instruction to be executed must be 

known before the instruction can be fetched and executed. A processor can achieve 

peak performance only when it does not have to wait for memory to provide the in

struction required for execution. During the execution phase of each instruction, the 

processor determines the memory location of the next instruction to be executed. In

structions such as conditional branches can affect the address of the next instruction and 

the memory response could affect the availability of an instruction for execution. “De

layed jumps” as used in SPARC or R3000 offer the opportunity to insert an additional 

instruction in a branch slot which will be executed before the branch will be taken. 

Prefetching of instructions into a buffer and caches are two solutions which improve 

system performance [Hennessy & Jouppi 1991].

The past decade has seen renewed interest in instruction sequencing. Designers 

have proposed a variety of hardware and software approaches such as branch prediction 

strategies and instruction-scheduling techniques to further improve system performance.

Instruction scheduling or pipeline scheduling was first used in the 1960s and became 

an area of major interest in the 1980s, as pipelined machines became more widespread. 

The CDC 6600, delivered in 1964 by Control Data, was one of the first machines using 

an instruction scheduler [Thorlin 1967]. Rather than allowing a pipeline to stall, a 

compiler could try to avoid these stalls by rearranging the code sequence generated. 

Measurements undertaken with the DLX pipeline show that 54% of loads result in a
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pipeline stall when using the gcc compiler. Using instruction scheduling the number 

decreases to 31% [Hennessy & Patterson 1990]. These pipelining hazards occur when, 

for example, the result of a load instruction is used by the next instruction as a source 

operand.

Instruction pipelining is a technique which allows the decomposition of instruction 

execution into a series of autonomous stages which can be executed independently. The 

first general-purpose pipelined machine is considered to be the IBM 7030. The more 

recently Mips R3000 architecture is implemented with a five stage pipeline. Figure 2-5 

shows an example for a simple pipeline structure with three pipe stages.

IF RF EX MEM WR

IF RF EX MEM WR

IF RF EX MEM WR

Figure 2-5: A simple machine pipeline with three pipe stages. (IF is used to mean 
instruction fetch, RF register fetch, EX execution, MEM data memory access, and WR 
write register result.)

In pipelining systems, subsequent instructions can be requested before the execution 

of the previous instruction has been completed. The problem is that conditional branch 

instructions, however, can alter the request of subsequent instructions in a pipelined 

system.

Pipelining improves the throughput of a machine by exploiting instruction-level 

parallelism without changing the basic cycle time. In fact, the execution time of each 

individual instruction can increase slightly due to overhead in the pipeline control. 

Instruction-level parallelism is available when instructions in a sequence are independent 

and can thus be executed in parallel by overlapping [Hennessy & Jouppi 1991]. The 

machine attains its performance benefits by increasing the number of pipeline stages in 

the processor and keeping all stages busy.
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However deeply pipelined processors have relatively low issue rates 3 due to depen

dencies between instructions [Farrens & Pleszkun 1991]. Multiple instruction issue is 

offered by machines such as Apollo DN10000 and Intel i860.

Super pipelining increases performance even further. Using this technique, one step 

in the pipeline can be done in less than a machine cycle. Figure 2-6 shows an example 

for a simple pipeline structure with three pipe stages. The Mips R4000 architecture is 

implemented with a eight stage super pipeline using half the cycle time internally than 

externally. For R4000 super pipelining has been chosen against superscalar because it 

need less implementation logic on-chip [Gansheimer & Reisch 1991].

IF RF EX MEM WR

IF RF EX MEM WR

IF RF EX MEM WR

Figure 2-6: A simple machine super pipeline with three pipe stages.

2.5 A rchitectural Solutions

2 .5 .1  S u p ersca lar  D esig n s

Superscalar designs are architectures that can execute more than one instruction per cy

cle. Hardware can be used to identify independent instructions which can be executed in 

parallel. Two major studies of scalar oriented programs have shown the practical level of 

exploitable parallelism to be around two operations per clock [Hennessy Sz Jouppi 1991]. 

All superscalar machines built to date restrict the combination of instructions tha t can 

be issued in one clock. One implementation is the IBM RS/6000 [Grohoski 1990]. Ini

3The process of letting an instruction move from the instruction decode stage into the execution  
stage o f the pipeline is called instruction issue; the instruction that has made this step is said to have 
issued.
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tial results from this work are very promising, and the commercial implementation and 

availability of these processors demonstrate a mature technology. The Intel 960 CA and 

Tandem Cyclone are two examples of superscalar machines with complex instruction 

sets. Figure 2-7 shows an example for a simple superscalar structure with two pipe 

stages.

IF RF EX MEM WR

IF RF EX MEM WR

IF RF EX MEM WR

IF RF EX MEM WR

Figure 2-7: A simple superscalar structure with two pipe stages.

The limiting factor in increasing the instruction issue rate for a superscalar machine 

is probably the difficulty in fetching, decoding, and issuing an ever-larger number of 

instructions in the same clock cycle. One question yet to be resolved is whether the main 

memory organization of such processors can follow conventional designs, or whether the 

increased traffic requires drastic changes.

2 .5 .2  P r im it iv e  B a sed  A rch itec tu re s

Fritsch et.al. [Fritsch et al. 1990] maintain that the only way to raise performance if 

code fetch bandwidth is limited, is to increase code density. For this purpose and to 

reduce the cycle time required by any conventional RISC architecture, they define a 

family of Primitive Based Architectures, characterized by uniformity of coding and fast 

parallel decoding. The difference between instructions and such primitives is tha t an 

instruction completely defines an operation, while a primitive of order n expresses the n 

elemental actions to be carried out, on arguments possibly defined by preceding actions.
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For a primitive set for order two, for which they obtained the shortest code length, 

Fritsch et.al. evaluated primitive formats and a primitive set including conditional and 

unconditional branching, operations, memory access and other features like long literal 

handling and stack operations. Assuming the same register-window configuration as 

the Berkeley RISC-II [Katevenis 1984] and four stage pipeline in the processor, Fritsch 

et.al. achieved shorter code length and faster execution than the RISC-II machine 

during simulation.

2 .5 .3  V ery  L ong In stru c tio n  W ords

Another approach to increase concurrency uses Very Long Instruction Words (VLIWs) 

[Fisher 1987]. Memory words contain more than one instruction, so each memory ref

erence fetches multiple instructions. This architecture relies heavily on sophisticated 

compilers to generate the code required to use machine resources efficiently. A m ajor 

impediment to such architectures is the conditional branch. When a conditional branch 

is pending, scheduling useful computations is difficult until the execution path becomes 

known.

In contrast to superscalar architectures, in VLIW architectures the compiler has 

complete responsibility for creating a package of instructions that can be issued simul

taneously and the hardware does not makes the decisions about multiple issue. TRACE 

-  built by Multiflow Computer -  is a VLIW architecture [Colwell et al. 1987].

2 .5 .4  M icro -A rch itec tu ra l P a ra lle lism

Hwu and Chang [Hwu &: Chang 1988] evaluated micro-architectural parallelism, includ

ing multiple instructions issued per cycle, multiple result distribution buses, multiple 

execution units and pipelined execution units. All of their architecture variations had a 

split register organization with 32 integer and 32 floating point registers. Code was gen

erated with a prepass code generation strategy, which performed instruction scheduling 

before register allocation. Using the Livermore Loop and Linpack subroutines as bench

marks, Hwu and Chang concluded that, when used together, multiple instruction issue 

and pipelined execution units produced a speedup greater than the sum of speedups
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of each taken separately. They also found that issuing more than two instructions per 

cycle produced little additional speedup.

Higher instruction execution rate also led to an increase in bus traffic as more in

structions were fetched from memory per processor cycle.

2 .5 .5  D is tr ib u te d  In stru c tio n  S et C o m p u ter  A rch itec tu re

The Distributed Instruction Set Architecture (DISC) employs a new parallel instruction 

set and a distributed control mechanism to explore fine-grained parallel processing in a 

multiple-functional-unit system. Multiple instructions axe executed in parallel and/or 

out of order at the highest speed of n instructions per cycle, where n is the number of 

functional units. Wang and Wu [Wang Sz Wu 1991] developed a hardware system and 

studied the performance level, the effect on program size and the hardware utilization. 

Their simulation results show that a DISC system incorporating 16 functional units can 

run 7.7 times faster than a single-functional-unit DISC system. DISC presents three 

major contributions in the domain of fine-grained multiprocessing:

1. Fast multiple instruction issuing mechanism: no decoding work is needed prior to 

issuing an instruction. Multiple instructions are fetched from memory and issued 

directly to multiple functional units.

2. Parallel and/or out-of-order execution: data dependency among functional units 

is maintained in a distributed manner. No hardware is required to coordinate 

multiple instruction executions. This minimizes the inter-unit communication 

and speeds up the overall execution rate.

3. Software dataflow: the post compiling idea is to tag each instruction with its data 

tag. This is equivalent to generating the data token in software and combining 

it with the instruction token. It pioneers a software dataflow control scheme for 

multiple-functional-unit systems.

In contrast to dense instruction sets, DISC is based on instruction independency. 

The results provided in Section 6.3 question these independencies. However, executing 

more than one instruction per cycle also implies that more instructions per cycle have
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to be fetched from memory. Assuming an execution of two instructions per cycle, bus 

traffic at least doubles.

Sum m ary

Bus demands increases not only for shared memory multiprocessors. In addition for 

processors which are able to execute more than one instruction per cycle the increasing 

bus traffic requires changes in the architecture to supply instructions to the execution 

unit fast enough.

2.6 Theoretical A nalysis of Instruction Sets

The concepts of information theory and its mathematical analysis are established in 

Shannon’s source coding theorem [Shannon 1948]. Many textbooks now provide an in

troduction to information theory, for example [Abramson 1963], A number of attem pts 

have been made to use information theory in instruction set design [Bennett 1988]. 

Modelling the structure of instruction sets has been used to estimate the most compact 

instruction set [Flynn & Hoevel 1984]. Entropy has been considered to examine static or 

dynamic code size [Bennett 1988, Wade &: Stigall 1975] and redundancy in addressing 

[Hammerstrom &: Davidson 1977].

Analysis involving the entropy of instruction streams offer far more hope. Entropy 

[Abramson 1963, Thomas 1991] is the key to compression and understanding entropy is 

vital to understanding compression.

2 .6 .1  O v erv iew

A zero-memory source is given by a sequence of symbols from an alphabet S

S  =  {«i,«2, - (2-1)

where the occurrence of a symbol is independent of previous symbols. Such an infor

mation source is described completely by the source alphabet S  and the probabilities
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with which the symbol occurs:

P(a1) ,P (s1) , . . . ,P ( s , ) .

If symbol s, occurs, one obtains an amount of information equal to

I(si)  = —log2 P{si) bits (2-2)

according to information theory [Shannon 1948]. The average amount of information 

obtained per symbol is thus

H (S) = Y i P (s i) I(s i) bits 
1 = 1

where Ylt=i means the summation over all q symbols. This quantity, H (S ), the average 

amount of information per source symbol, is called the entropy of the zero-memory 

source. When a stream of symbols is encoded so it can be expressed in the fewest 

possible bits per symbol, it is said to be encoded optimally. An optimal encoding of a 

stream of symbols uses H (S ) bits.

To get more information about the source 5 one must deal with blocks of symbols 

rather than individual symbols. In a more general type of information source symbol 

Si is dependent on one or more preceding symbols. This leads to a generalization of 

the zero-memory source and to the m</l-order Markov information source with a set of 

conditional probabilities.

For an mt/l-order Markov source, the probability tha t a given symbol appears de

pends on the m  preceding symbols. Considering the preceding m  symbols,

( S j l , Sj2 , . • • , Sjm )

as a single state then the conditional probability of the next symbol Si is

P(S{/ S ji, SJ2-, • • • »$ jm ) •
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The information obtained if s,- occurs while one is in state (S j \ , S j 2 , . . .  , S j m ) is

/(S j/S ji, Sj2, . • • , Sjm ) — &j\i ^j2 ? • • • ? Sjm ) • (^*3)

The average amount of information or entropy of the mt/l-order Markov source S:

H (S ) = — P (sj i i sj2 , . . . , Sjm, Si)log2P (si/s ji,S j2  ,. . . , Sjm ) (2-4)
S m+1

where S m+1 is the (m + l ) f/l extension of the zero-memory source S. The probability 

of state ( s j i , Sj2 ? • • •  ̂ S{) is P^Sji, s j2, • • •  ̂<Sjm, Sj):

P ^Sji, Sj2 , . . . , <Sjm , 5i) = P (S i/s ji,S j2, • • • ,Sjm )P(SjU Sj2 , . . . , Sjm ). (2.5)

A computer program is assumed to consist of a stream of symbols, the instructions. 

Measurements by Bennett [Bennett 1988] have already shown the dependency between 

opcodes and complete instructions. His entropy observations are shown in Table 2.3, 

giving the entropy for different order models.

Entropy
O rd e r O pcodes O nly

b i t s / s y m b o l
C o m p le te  In s tru c tio n s

b i t s / s y m b o l
0 3.98 3.24
1 2.87 2.64
2 2.35 2.28
3 2.03 2.01
5 1.19 1.26

10 0.13 —

25 0.01 —

Table 2.3: Entropy obtained by Bennett.

The reduction in entropy is nearly 28% from the zero order to the first order process. 

For fifth order he reaches one bit requirement per symbol and for higher order even less.
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2 .6 .2  R ep la cem e n t o f  R e p e a te d  S tr in gs

Wade and Stigall used information theory (and the concept of entropy) to attem pt 

to estimate how much space object code should require [Wade &: Stigall 1975]. Their 

approach was to treat instruction streams as a sequence of (independent) symbols. One 

of the simplest and most common ways to reduce the length of a symbol stream is to 

identify repeated strings and replace them with a single symbol [Wade & Stigall 1975]. 

If one assumes the string

S i , S2. . .Sfc

occurs with probability Ps and is replaced by the new symbol s' whenever it occurs, 

then Wade and Stigall show the new value of entropy H ' is given by

The number of symbols to represent a string is reduced by factor

i -  (k -  1 )PS

The resulting change in entropy normalized to the length of the original string is given 

by

Hn -  H  = (1 -  (k -  1 )PS)H ' -  H  . (2.9)

where Hn is the normalized entropy. Wade and Stigall then considered the values of Ps 

for which the replacement results in a decrease of entropy. For small Ps they showed 

tha t this is given by
k

Pa>eY[Pi
t = l
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where e is the base of the natural logarithm. Their result quantifies the idea that a 

rarely occurring long string of symbols can often be replaced by a new symbol and save 

memory, while a shorter string must occur often to save memory.

The assumption made by Wade and Stigall that a stream of instructions can be 

considered as a sequence of independent symbols is very weak as shown by Bennett 

[Bennett 1988]. His opcode and instruction measurements show high dependency.

2 .6 .3  M em o r y  R eferen c in g  B eh a v io u r

Hammerstrom and Davidson [Hammerstrom & Davidson 1977] used a similar analysis 

to estimate the information content of a memory referencing stream in the IBM S/360, 

using information theory. Specifically, they present techniques for analyzing computer 

addressing architectures and techniques for analyzing the efficiency of the addressing ar

chitecture and memory/CPU traffic of existing machines with regards to the information 

theory boundaries.

To obtain further improvement in memory/CPU bandwidth and CPU addressing 

efficiency, they suggest looking at higher order memories and accompanying radical 

changes in CPU architecture and compilation techniques. For the extension to higher 

order conditional probabilities they find a more useful definition of entropy.

Hammerstrom and Davidson also define the absolute entropy

H ^ S )  = lim H n(S). (2.10)
n—*oo

The calculation of H ^ S )  for a finite program trace is impossible, since as n approaches 

the length of the trace, H n(S ) approaches 0 and is no longer meaningful. Therefore, 

Hammerstrom and Davidson introduced a variable H , which is an estimate of H ^ S )  

based on the general structure of, but not on complete knowledge of, the trace. Their 

results (the estimated entropy, H , and the addressing overhead, A  4) collected on the 

IBM 360 machine compiled with the Fortran G compiler are shown in Table 2.4. The

4The addressing overhead is defined as the amount of bits necessary for the addressing process divided 
by the number of com putational process references (which is built by the number of references minus 
the sum of instructions without reference bits plus the amount of data references).
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Gauss program is a Gaussian elimination on a 14x14 matrix, the Error program is a 

floating point benchmark for the IBM 360. These results indicate there is a lot of

P ro g ra m  A H
bits/reference bits/reference 

Gauss 17.2 1.64
Error 10.0 0.01

Table 2.4: H  obtained by Hammerstrom and Davidson, 

redundancy in instruction streams.

2.7 Sum mary

Study of the relevant literature shows that memory-processor bandwidth is a serious 

problem, especially for multi processors with shared memory where the reduction in 

memory-processor bus traffic promises performance improvement. Furthermore, slow 

memory latency time can reduce system performance. Treating instructions as higher 

order Markov sources shows great redundancy in instruction streams. Therefore, re

ducing redundancy in instruction streams is a plausible strategy to improve system 

performance.
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C hapter 3

A Target A rchitecture for 

E xperim ental Com pression

The SPARC architecture has been chosen as the basis on which to implement and 

simulate the dense architecture developed. Therefore, information is provided about 

instructions and timings using SPARC.

In 1987, Sun Microsystems announced the Sun-4, the first computer based on the 

new SPARC (Scalable Processor Architecture) RISC processor. The RISC architecture 

philosophy evolved from research projects at the University of California at Berkeley 

and Stanford University in the early 1980s and is already described in Section 2.3.1. 

Many of their features are part of the SPARC architecture. Like most RISC chips 

SPARC uses pipelining to allow concurrent execution.

3.1 SPARC A rchitecture

Features

The SPARC architecture provides the following features: Simple instructions as most in

structions require only a single arithmetic operation; few and simple instruction formats 

as all instructions are 32 bits wide; register intensive architecture as most instructions 

operate on either two registers or one register and a constant; a large windowed register
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field] delayed control transfer as the processor always fetches the next instruction after 

a control transfer; one cycle execution; concurrent floating-point] and a co-processor 

interface.

Instruction  T ypes

The SPARC instructions fall into six basic categories:

• Load/store:

These instructions are the only instructions that access memory. They use two 

integer unit registers or an integer unit register and a signed immediate value 

to calculate the memory address. Integer load and store instructions support 

halfword, word, and double word accesses. Floating-point and co-processor load 

and store instructions support word and double word accesses.

• Arithmetic/logical/shift:

These instructions (with one exception) compute a result that is a function of two 

source operands; they either write the result into a destination register or discard 

it. The exception is a specialized instruction used to create 32 bit constants in 

two instructions.

• Control transfer:

Control transfer instructions include jumps, calls, traps and branches. Control 

transfer is usually delayed, but a special bit can cause the delay instruction (the 

instruction following the branch instruction) to be annulled 1 if the branch is 

not taken. Branch and call instructions use PC-relative displacement. Jump 

and link uses a register-indirect displacement. The branch instruction provides 

a displacement of 8Mbytes. Branch instructions and procedure calls use a fixed 

displacement field (disp22 and dispSO respectively) multiplied by four and added to 

the program counter to get their destination address. Jump instructions, mostly

^ n  conditional branch instructions the annul bit changes the behaviour of the delay instruction. If 
the annul bit is set and the branch in not taken, the delay instruction is not executed, i.e. it is annulled. 
If the branch is taken, the annul bit is ignored and the delay instruction is executed.
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used to return from subroutines, use a register indirect address, calculated at 

program run time. A jump and link instruction with destination register 15 can 

be used as a register indirect call. As the call instruction writes its address in out 

register seven, the jump and link instruction (used as return) is able to return to 

the instruction following the call delay instruction.

• Read/write control register:

Read and write instructions are provided to read and write the contents of the 

various control registers.

• Floating-point operate:

Floating-point operate instructions perform all floating-point calculations, which 

are register-to-register instructions that use the floating-point registers. The result 

is a function of two source operands.

• Co-processor operate:

Co-processor instructions are defined by the implemented co-processor, if any. The 

architecture supports 1024 distinct co-processor arithmetic instructions.

3.2 Instruction Description

The SPARC instructions shown in Figure 3-1 can be classified into three different in

struction formats, two of which include subformats. The instruction format one is used 

for the call instruction only and contains two different bit fields, the instruction format

two is used for sethi and branch instructions, floating point and co-processor branches

inclusive, and the instruction format three is used for all other instructions.

The terms used are:

• op is the opcode bit field which places the instruction into one of the three formats.

• op2 selects the instruction from the second format.

• opS selects the instruction from the third format.
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op disp 30
31 29 0

op rd op2 imm22
31 29 2 4  21 0

op c cond op 2 disp22
31 29 28 24 21 0

op rd op3 rs l i asi rs2
31 29 24 18 13 12 4 o

op rd op3 rs l i sim m l3
31 29 24 18 13 12 0

op rd op3 rsl opf rs2
31 29 24 18 13 4 o

Figure 3-1: Instruction formats for the SPARC instruction set.

• rd specifies the destination register for all instruction with the exception of the 

load instruction where it describes the source register.

• a is the annul bit in format two.

• cond selects the condition code for format two instructions.

• imm22 is the 22 bit constant value used by sethi.

• disp22 is the 22 bit displacement value for branch instructions.

• dispSO is the 30 bit displacement value for call instructions.

• i specifies whether the second operand in format three is a register or a constant.

• asi is the address space identifier (available to the external system) which distin

guishes up to 256 address spaces. In the SPARC architecture asi bits define four 

address spaces: user or supervisor instruction space and user or supervisor data 

space.
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• rsl specifies the source register one.

• rs2 specifies the source register two.

• sim m lS  is the 13 bit value used as a second operand if the i bit is one.

• opf identifies a floating point operate instruction.

In Table 3.1 a short instruction description is given for all instructions mentioned, 

except for branch instructions which are shown in Table 6.6.

Instruction  D escription
opcode parameter operation
add regrsi 1 regjorJm m , regrd add
and regrs\ , reg .orJm m , regrd and
andcc regrs\ , reg .orJm m , regrd and and modify icc
call label call
jmpl address, regrd jump and link
Id [address], regrd load word
ldsb [address], regrd load signed byte
ldub [address], regrd load unsigned byte
lduh [address], regrd load unsigned halfword
or regrsi , reg .orJm m , regrd or
orcc regrsi, reg .orJm m , regrd or and modify icc
restore regrsi , regjorSm m , regrd restore caller’s window
sethi imm22, regrd set high 22 bits of register
sll Tegrs\ , r e g .o r jm m , regrd shift left logical
srl regrsi ? reg .o rJm m , regrd shift right logical
st regrdi [address] store word
stb regrd, [address] store byte
sub regrsi , reg .orJm m , regrd subtract
subcc regrs\ , reg-orJm m , regrd subtract and modify icc

Table 3.1: Instruction description.

The terms used are:

• reg.or.imm  is either regTS2  or simmlS.

• reg is an integer unit register. regrs\ is the 5 bit rs l field, which selects the first 

source operand. regr s 2 is the 5 bit rs2 field, which selects the second operand
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and regrd is the 5 bit rd field, which selects a register to be the source for store 

instructions and the destination for all other instructions.

• icc is integer condition code.

• address is one of the following: rtgTSj, regTS\ -f regrs2 , regrs\ +  sim m  13, regrs 1 — 

sim m  13, s im m lS  or s im m lS  -f regrs 1 .

R egister W indow s

An im portant SPARC concept is register windowing. At any given time, a running 

program has access to 32 32-bit processor registers. These includes eight global registers, 

g0 to g>7, and 24 further registers belonging to the active register window. Of these 24 

registers, eight are local, eight are passed in from the previous window, and eight will 

be passed back from the next window as illustrated in Figure 3-2.

previous window

ins

locals active window

outs ins

locals next window

outs ins

locals

global outs

Figure 3-2: Register windows for the SPARC architecture. The diagram shows three 
different register windows with the overlapping parts for in and out registers.

One register window is reserved for traps or interrupts. A single instruction is used 

to switch in a new register window.

Up to six parameters can be passed as the other two registers are used to hold the 

return address and the old frame pointer. Additional parameters are passed on the 

stack.

When all register windows have been used, a trap occurs and one window is copied

36



on the stack.

3.3 Perform ance

A rchitecture

The current SPARC architecture is divided into two families: The SSI family (SSI, SLC, 

SS1 + and IPC) use the Fujitsu processor; the SS2  use the Cypress processor [Sun 1990]. 

SSI and SLC have a 2 0 MHz clock, SS1 + and IPC have a 25MHz clock and SS2  has a 

40MHz clock. The Fujitsu processor provides seven register windows, the Cypress eight. 

All machines have a 64kbyte write-through cache 2  [Cockcroft 1991] with 16 byte cache 

line 3. The drawback of write-through caches is the increased traffic between cache and 

main memory which slows down the system performance. The advantage is that cache 

and main memory are always consistent.

Instruction  T im ings

Most SPARC instructions can be executed in only one cycle if the assumption is true 

tha t instruction fetches, load instructions, and store instructions never have to wait 

upon the memory system. The instructions which cannot be executed in one cycle are 

single word load Id (two cycles), double word loads Idd and single word stores st (three 

cycles), and double word stores std  and atomic load store instructions Idstub and swap 

(four cycles).

In most cases branches (which includes floating point branches) take one cycle, but 

on the Fujitsu chip untaken branches consume two cycles. For either chip if the delay 

slot of the branch was annulled an additional one cycle penalty will be incured since the 

delay instruction is still fetched. If the instruction following a delayed control transfer 

instruction cannot be filled with a useful instruction then an additional one cycle penalty 

is effectively incured.

2The term write-through  is used to mean that the information written into the cache is also written  
to memory.

3T he term cache line m eans the minimum number of bytes which will transfer between itself and 
main memory. For example, a four bytes memory request results in a 16 bytes cache read.
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Jumps, indirect calls, returns, and trap returns take two cycles whereas direct calls 

take only one cycle. A trap incurs an additional three cycle penalty as the pipeline is 

drained and refilled.

Floating point instructions on the Weitek 3170 co-processor used in SSI, 1 + , SLC, 

and IPC machines can use up to 118 cycles.

M em ory T im es

The timings given in subsection 3.3 all assume that instructions do not have to wait 

for the memory or bus system. Measuring memory access times is very difficult due to 

a number of factors such as cache size, cache organization and DRAM access times as 

well as interference by instruction fetches. The following timings are given for the SSI 

family which has been used throughout this dissertation.

Assuming a cache hit no penalty is incured. Thus, for example, a single word load 

still takes two cycles. If a cache miss occurs the processor will stall while the address is 

translated and the memory is accessed. The stall lasts for twelve cycles while the line 

is loaded into the cache. For a store the stall lasts three cycles, causing a single store 

to take six cycles.

On the ELC and SS2 , the cache miss costs are 26 cycles. This is mainly due to the 

SBus 4  used on this machines which runs at half the CPU clock rate.

3.4 Sum mary

Many of the features of the original RISC architecture have been implemented in the 

SPARC architecture. Most of the instructions can be executed in one cycle but instruc

tion timings are radically effected by the need to use the memory bus. Processor stall 

times are about 1 2  cycles for the SSI family if a cache miss occurs and increase with 

higher performance chips.

*SBus is the Sun bus system  used on Sun machines.
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C hapter 4

C om pression Techniques

This chapter considers some techniques which may be suitable when compression on 

instruction sets is used to decrease object code size.

The aim of object code compression is to reduce the time to transm it the code over 

a channel of given bandwidth, or to remove redundant information. For the purpose of 

instruction encoding and decoding, only reversible, or lossless, compression is suitable as 

encoded instructions have to be recovered exactly from the compressed version. Several 

lossless compression techniques are in use to reduce the number of bytes needed to 

store or transfer information. Not all of them are suitable for encoding and decoding 

instruction streams as the encoding has to be done on static code, and decoding on 

dynamic code. Furthermore, for the purpose of encoding instruction streams only fixed 

models are suitable, as one cannot adapt the model during decoding in the same manner 

as during encoding. Techniques such as Ziv and Lempel’s (LZ) algorithm cannot be 

used, even if it is one of the fastest decoding algorithm around, since LZ works with an 

adaptive dictionary.

There are two general methods for compression: statistical and dictionary coding. 

The better statistical methods are based on arithmetic coding, the better dictionary 

methods use LZ variants.

Furthermore, the compression process can be split into two separate parts: Modelling 

and coding. Models provide (probability) information about the data to compress, 

coding actually produces the compressed bit-stream. The model can split further into
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non-adaptive, or fixed, and adaptive models. Fixed modelling uses the same model for 

all data. Adaptive modelling, on the other hand, updates its model during encoding and 

decoding. Semiadaptive modelling uses a different model for each item of data being 

encoded.

Algorithms using a fixed set of compression information are more likely to reduce 

data size only for specific groups of data only such as numbers. In contrast, adaptive 

compression algorithms perform much better on a wide variety of data.

4.1 N on Suitable Com pression Techniques

Several problems are encountered when using general compression methods [Held 1987] 

such as null compression, bit mapping, run length compression, pattern substitution, and 

relative encoding when integrated into computer systems:

1 . Poor run time execution speed interferes with the attainm ent of very high data 

rates.

2 . Most compression techniques are not flexible enough to process different types of 

redundancy.

3. Blocks of compressed data that have unpredictable lengths present storage space 

management problems.

Each compression strategy poses a different set of problems and consequently the 

use of each strategy is restricted in application. None of these schemes is an appropriate 

technique that can be used for efficient and effective object code compression as object 

code structure varies.

4.2 Potentia lly  Suitable Techniques

4 .2 .1  H u ffm an  C od in g

One common element of the previously discussed data compression techniques is tha t 

they all operate upon symbol codes of a fixed bit size. Shortly after Shannon’s work,
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Huffman discovered a way of constructing codes from a set of symbol probabilities 

which gives greater compression. Huffman coding [Huffman 1952] takes advantage of 

the probabilities of occurrence of single symbols and groups of symbols. Short codes 

can be used to represent very frequently occurring symbols while longer codes are used 

to represent less frequently encountered symbols. The statistical encoding process can 

be used to minimize the average code length of the encoded data.

The Huffman code is a “minimum redundancy” code that produces the shortest 

possible average code length given the symbols probability distribution and individual 

encoding of symbols. It can be shown that redundancy of Huffman codes, defined as the 

average code length less the entropy, is bounded by p -f 0.086, where p is the probability 

of the most likely symbol [Bell et al. 1989]. Huffman codes also have a prefix property 

which means that no short code group is duplicated as the beginning of a longer group. 

An im portant property of the Huffman code is that it can be decoded instantaneously 

as the coded bits in the compressed data stream are encountered.

Huffman coding translates fixed-size pieces of input data into variable-length sym

bols. The standard Huffman encoding procedure prescribes a way to assign codes to 

input symbols such that each code length in bits is approximately log2 (p) where sym

bol probability p is the relative frequency of occurrence of a given symbol expressed as 

probability. For example, if the letter Z is found to occur with a frequency of 0 .1 %, i.e 

p =  2 -10, of the time, it is represented by 1 0  bits.

In normal use, the size of the input symbol is limited by the size of the translation 

table needed for compression. A table is needed that lists each input symbol and its 

corresponding code. A second problem is the complexity of the decompression process. 

The length of each code to be interpreted for decompression is not known until possibly 

all but one bits are interpreted.

Huffman coding can be used to encode and decode instruction streams as encoding 

can be done on static code and decoding on dynamic code. The disadvantage is that 

Huffman coding can encode symbols to a minimum of one bit only. Often far less 

encoding is necessary and therefore Huffman coding has not been used for instruction 

set encoding.
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4 .2 .2  A  U n iv ersa l A lg o r ith m  for S eq u en tia l D a ta  C o m p ression

One of the best known dictionary methods in compression is the algorithm developed 

by Ziv and Lempel [Ziv &: Lempel 1977] and the variation [Ziv & Lempel 1978]. The 

algorithm developed is a universal algorithm for sequential data compression. In their 

scheme, pointers denote phrases in a fixed-sized window tha t precedes the coding po

sition. There is a maximum length for substrings that may be replaced by a pointer, 

given by a parameter F  (typically 1 0 -2 0 ). These restrictions allow LZ to be implemented 

using a ‘sliding window4 of N  characters. Of these the first N  — F  have already been 

encoded and the last F constitute a lookahead buffer.

To encode a character, the first N  — F  characters of the window are searched to find 

the longest match with the lookahead buffer. The match may overlap with the buffer 

but cannot be the buffer itself.

The longest match is then coded into a triple < i , j ,a  > , where i is the offset of the 

longest match from the lookahead buffer, j  is the length of the match, and a is the first 

character that did not match the substring in the window. The window is then shifted 

right j  -f  1 characters, ready for another coding step. Attaching the explicit character 

to each pointer ensures that coding can proceed even if no match is found for the first 

character of the lookahead buffer.

Decoding is very simple and fast. The decoder maintains a window in the same way 

as the encoder, but instead of searching it for a match it copies the match from the 

window using the triple given by the encoder.

Advantages of the LZ compression technique are very fast decoding and good com

pression results on text and program source code. The disadvantage for the purpose of 

instruction set encoding is the adaptive property of the algorithm and the factor of only 

1.5 which can be achieved for object code compression [Welch 1984].

4 .2 .3  P r e d ic tio n  b y  P a r tia l M a tch in g

The Prediction by Partial Matching (PPM) data compression algorithm developed by 

Cleary and W itten [Cleary & W itten 1984b] is capable of very high compression rates. 

Moffat [Moffat 1990] describes an implementation of the PPM scheme. In particular,
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he describes a variant that encodes and decodes at over four kbyte per second on a 

small workstation, and operates within a few hundred kilobyte of data space. The sheer 

magnitude of sample space for predictions using a long context makes them almost 

impossible to manage for practical compression. Even restricting the context to four 

prior characters will mean (using typically eight bit bytes) that there are in excess of 

four billion contexts possible. Moffat describes an alternative scheme. He makes the 

scheme adaptive, so the statistics will be built up as the stream of symbols is processed, 

without the need for a large model to be stored. This reduces the space requirements 

significantly.

Because short adaptive models are quick to establish useful statistics, but attain 

only limited compression, Moffat uses a model based on variable length context. At 

each coding step the longest previously encountered context is used to predict the next 

character. If the symbol is novel to the context, an escape mode is used and the 

context shortened by dropping one symbol. This process continues until the symbol is 

successfully transm itted.

The advantage of the PPM technique is that very good compression can be achieved. 

The disadvantage for the purpose of instruction set compression is the adaptive property 

of the algorithm.

4 .2 .4  A r ith m e tic  C o d in g

Entropies associated with instruction sets are often much less than one bit per symbol. 

For their encoding and decoding a technique is needed that can get close to the entropy 

and is able to encode a symbol in less than one bit. Arithmetic coding (described 

in Chapter 5) is the technique which comes closest to meeting these requirements. 

Furthermore, arithmetic coding is suitable for different kinds of models, and therefore 

the compression scheme can be implemented using different order models if necessary.

The state of the art method of data compression is arithmetic coding [Langdon 1984, 

W itten et al. 1987], not the better known Huffman [Huffman 1952] method. It gives 

greater compression [Bell et al. 1990], and it clearly separates the model from the cod

ing process. Arithmetic coding is a lossless coding technique that gives very high com-
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pression efficiency for a variety of data types, as well as being amenable to both software 

and hardware implementations [Bassiouni et al. 1988]. It actually approaches the the

oretical entropy bound [Schoepke 1992f].
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C hapter 5

T he Im plem entation o f  

A rithm etic Coding

Instead of replacing an input symbol with a specific code, arithmetic coding takes a 

stream of input symbols and replaces it with a single output number [Langdon 1984]. 

The encoding and decoding algorithms perform arithmetic operations on the code string. 

Symbols with high probability reduce the given range less than symbols with low prob

ability. Probabilities close to one can be encoded very efficiently.

5.1 The Idea of A rithm etic Coding

In arithmetic coding a message is represented by an interval of real numbers on the 

number line between 0 and 1. As the message becomes longer, the interval needed to 

represent it becomes smaller, and the number of bits needed to specify that interval 

grows.

Successive symbols of the message reduce the size of the interval in accordance with 

the symbol probabilities generated by the model. Characters with high probabilities of 

occurrence (and, hence, larger intervals) have less effect on narrowing the interval than 

characters with small probabilities. Assigning larger intervals to the most frequent char

acters therefore increases the compression efficiency since more characters (on average) 

can be encoded in the same fixed-length field.
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The commoner symbols reduce the range by less than rare symbols and hence add 

fewer bits to the message. The coding algorithm is symbol wise recursive; it operates 

upon and encodes (decodes) one data symbol per iteration or recursion. On each recur

sion, the algorithm successively constructs a subinterval of the real interval [0 , 1 ), and 

scales the subinterval to give it unit length, and identifies the new interval with [0 , 1 ). 

The location and length of the subinterval selected for this treatm ent is determined by 

the data  symbol being encoded. By keeping track of this process, one obtains a repre

sentation of a string of symbols as a single subinterval of [0 ,1 ). Intervals may be stored 

via their end-points, or by specifying one end point and the length of the interval.

This procedure is invertible, essentially because the scaling and translation maps 

involved in the algorithm are all injective. Thus decoding is possible.

Before anything is transm itted, the range for the message is the interval between 0  

and 1. As each symbol is processed, the range is narrowed to tha t portion of it allocated 

to the symbol. After seeing the first symbol the encoder narrows the interval to the 

range given by the probability of the symbol. The second symbol will narrow this new 

range down taking into account its allocation.

The most im portant properties of arithmetic coding are:

• It is able to code a symbol Si with probability p(st ) in a number of bits arbitrarily 

close to — log2 p(s;).

• The symbol probabilities p(st ) may be different at each step, i.e. the encoding 

may be adaptive.

• It requires very little memory considering a zero-order model.

• There are very fast implementations.

5.2 M odels for A rithm etic Coding

Arithmetic coding is suitable for both fixed and adaptive models. The simplest kind of 

model is one in which symbol frequencies are fixed (fixed model). This model can be 

calculated and transm itted before the message is sent. Performance of the fixed model
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can be improved by ordering the ordinary fixed model in the cumulative frequency table 

according to the symbol frequency. The so called sorted model achieves much better 

performance. In both cases (fixed and sorted model) an exact model is used which 

was built by a previous run over the source to be coded. This minimizes the effect 

of additional bit shifting operations during the encoding and decoding process, which 

could influence the performance [Witten et al. 1987],

An adaptive model [Abrahamson 1989] uses the changing symbol frequencies seen 

so far in a message. The model itself is updated as each symbol is seen. Provided both 

encoder and decoder use the same updating algorithm, their models will remain in step. 

The encoder receives the next symbol, encodes it, and updates the model. The decoder 

identifies it according to its current model and then updates its model. It is shown 

by Cleary and W itten [Cleary & W itten 1984a] that, under quite general conditions, 

the fixed model will not give better overall compression than the adaptive model. As 

the adaptive model cannot be used for encoding and decoding instruction streams, no 

further information is given.

5.3 Sim ple Character Set Exam ple

The following example demonstrates the main idea of arithmetic coding and how it 

works. Consider a simplified set of three characters whose probabilities of occurrence 

and their assigned intervals are given in Table 5.1. It is assumed that the character 

will be used only to indicate the end of an encoded portion of data and therefore cannot 

occur in the input data itself.

Sim plified Character Set
character probability interval

A 0.4 [0.0, 0.4)
1 0.4 [0.4, 0.8)
@ 0 . 2 [0 .8 , 1 .0 )

Table 5.1: Simplified character set with probability and assigned interval.
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The intervals in arithmetic coding are nonoverlapping as seen in Table 5.1. S tart

ing the encoding process with the initial interval [0 .0 , 1 .0 ) the interval then narrowed 

repeatedly (as characters are processed), thus each interval is totally contained in the 

preceding one. Supposing that one encodes the two-character message “1A”: Upon 

receiving the first character, the initial interval is transformed into the new interval 

I \ =  [0.4,0.8) which corresponds to the code range of character “1 ” in Table 5.1. Dur

ing encoding of the second character the interval I\ is narrowed to I 2 =  [0.4,0.56) which

represents a subinterval of I \ corresponding to the range of character “A” .

Generally, if I k = [ak,bk) is the current interval, and the range of the next character 

is given by [5 , / ) ,  the next interval Ik+i = [afc+i,&ifc+i) is computed as follows:

ak+1 = ak +  s(bk -  ak) (5.1)

bk+i = ak + f ( h  ~ ak) (5.2)

Thus Ik+1 is a subinterval of the interval Ik . Furthermore, the following relationship 

holds true:

length(Ik+i) = ( /  — s)length(Ik) (5-3)

where

length(Ik) =  bk -  ak. (5.4)

The encoding string “1A” is transformed from the interval

I 2 = [0.4,0.56) (5.5)

to the final interval

I3 = [0.528,0.56) (5.6)

by appending the end of message character “(§>”.

The decoding process of the above message uses primarily the same logic. When 

the decoder receives the value 0.53, it knows that the first character has to be “1” since

the value 0.53 is contained in the interval [0.4,0.8) corresponding to the character in
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Table 5.1. By examining the next value the decoder concludes that the next character 

has to be “A” since this is the only character which can transform the interval into an 

interval containing the value seen. The decoder continues in this fashion until it finds 

the end of message character.

The decoder does not really need to know both ends of the range (or one end and 

the range). Instead, a single number within the range is suffice as the decoding ends 

with the end of message character.

During encoding, the code range narrows and the top bits of the two values rep

resenting the interval become the same. Since these bits cannot be affected by future 

narrowing, they can be sent immediately and new bits can be shifted into the encod

ing unit. However, precautions have to be taken to prevent a precision, or underflow, 

problem.

5.4 The Conventional A lgorithm

The algorithm described by W itten et.al. [Witten et al. 1987] is based on integer rather 

than floating point arithmetic. The intention was to simplify necessary arithmetic op

erations and to speed up the coding process.

The encoding process is described as incremental transmission. The top bits of the 

lower and upper bound can be transm itted immediately if they are the same, since future 

narrowing cannot affect them. As a result a stream of bits flows out of the encoder.

During the decoding process ( incremental reception) a stream of bits is fed into the 

decoder. After identifying the symbol the decoder shifts out equal bits from the upper 

and lower bound. New bits from the encoded bit stream replace them.

During decoding a search loop is used to find the symbol concerned. The search is 

insufficiently fast for more distributed data (such as object code) even if the symbols 

are ordered according to their probability so that less time is needed to find frequent 

symbols and more time to find rare symbols. A faster search algorithm is necessary to 

decode object code.
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5.5 A  Fast D ecoding A lgorithm  for A rithm etic Coding

Here I present a fast decoding algorithm for arithmetic coding developed in co-operation 

with Geoff C Smith which utilizes a fixed model. Decoding performance improves by 

up to 18%, depending on the target data, with an average of 7.47%. The algorithm’s 

performance is never worse than that of the rival techniques when applied to input data 

from the Calgary corpus described in Table 5.2 [Bell et al. 1990]. The improvement 

has been achieved by using fast look-up tables (of size only four kbyte) instead of the 

original search algorithms used in [Witten et al. 1987].

C a lg a ry  T ex t C om pression  C o rp u s
abbrev source
bib Bibliographic files (refer format)
bookl Hardy: Far from the madding crowd
book2 W itten: Principles of computer speech
geo Geophysical data
news News batch file
ob jl Compiled code for VAX: compilation of progp
obj2 Compiled code for Apple Macintosh: Knowledge support system
paperl W itten, Neal and Cleary: Arithmetic coding for data compression
paper2 W itten: Computer (in)security
pic Picture number 5 from the CCITT Facsimile test files (text+drawings)
progc C source code: compress version 4.0
progl Lisp source code: system software
progp Pascal source code: prediction by partial matching evaluation program
trans Transcript of a session on a terminal

Table 5.2: A brief description of the Calgary text compression corpus as used throughout 
this thesis is given.

The Calgary corpus is used in the book Text Compression [Bell et al. 1990] and 

several other researchers are now using it to evaluate text compression schemes. The 

corpus represents nine different types of text, and to confirm that the performance 

of schemes is consistent for any given type, many of the types have more than one 

representative. Details of the individual texts are given in [Bell et al. 1990], a brief 

summary is given in Table 5.2.

The decoding process of arithmetic coding is about 30% slower than encoding
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[Witten et al. 1987], due to the difficulty of finding symbols in the cumulative frequency 

table. For the adaptive model W itten et.al. [Witten et al. 1987] have shown that during 

decoding between 33% and 39% (depending on the data) of the time is spent calculating 

cumulative frequency and finding the correct symbol via a search loop.

Table 5.3 shows the number of search loops necessary for nine out of 14 different 

source codes from the Calgary corpus using the fixed sorted model. It is worth noting 

tha t the worst problem is in decoding compressed object code, the particular area of 

interest.

S earch  L oop E xecu tions
p ro g ram average number
bib 14
bookl 8

geo 36
news 14
objl 37
paperl 1 2

pic 2

progc 14
trans 17
average 17

Table 5.3: Average number of search loop executions during decoding to find the correct 
symbol in the cumulative frequency table.

The data given in Table 5.3 and in particular the poor decoding performance on 

object code were the main reasons for constructing an improved decoding algorithm 

[Schoepke &: Smith 1993].

A modification of the algorithm was sought which was significantly faster in decod

ing, and did not incur an unacceptable space overhead.

5 .5 .1  T h e  M a th em a tic s  B eh in d  L ook -U p  T ab les

In the model used there are 257 subintervals which partition the unit interval, and the 

elements of this partition will typically have differing lengths, and represent different 

symbols. The 257 symbols involved are the ASCII characters together with an “end
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of message” symbol. The dynamic representation of the encoded message is a number 

in one of the subintervals of the partition. How does one tell which subinterval in the 

partition includes the message subinterval?

It clearly suffices to identify the subinterval in the partition which includes any given 

point of the message subinterval. This can be done by a divide and conquer search taking 

/o<72256 =  8  steps.

The explanation has been in terms of real intervals, but in practice one must render 

this process discrete. The role of the unit interval is replaced by the integers in the 

range [0 , 2 14). This particular number range is selected to be consistent with W itten’s 

implementation [Witten et al. 1987], and thus facilitate a realistic comparison of the 

algorithms. The encoded message is a t all times actually a single number rather than 

an interval, and at each stage of the decoding process the encoded message number is 

recalculated by a process analogous to scaling and translation.

This range is divided into 21 1  ranges of length 2 3. All bar at most 256 of these ranges 

correspond to a well-defined symbol to be decoded. At most 256 of these ranges leave 

the issue unresolved, the problem being that the range of length 8  is straddling at least 

one boundary.

Thus one makes a primary look-up table of 2 1 1  rows, each one pointing either to the 

symbol to be decoded, or if this is not resolved, to a secondary extension table giving 

a precise description of the neighbourhood in question. Each secondary extension table 

will have 2 3  rows.

Thus, to find the next symbol to be decoded, the encoded message string is taken, 

which might be 11100011100011 and look at the first 11 binary digits of this 14 digit 

binary. This is 11100011100. The primary look-up table is used to find the symbol to 

be decoded. In the event of failure, an extension table with 2 3  entries has to be used. 

One has to look at 0 1 1  in this table to determine the symbol to be decoded.

The sizes of the primary table and the extension tables have been selected to mini

mize the overall space overhead. One justifies this assertion under the assumption that 

all 256 extension tables will actually be needed.

The range has length 2 14. One divides the range into 2 14-n intervals of length 2 n.
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Thus one needs a primary look-up table of length 2 14-n and at most 2 8  extension look-up 

tables of total length 2 n+8. Thus the total length of all the look-up tables is 2 14-n +  2 n+s. 

This is minimized when n =  3, when one needs a total table size of 2 1 2  rows.

In fact experiment indicates that these values for the sizes of the tables are reasonably 

robust, and that the simplifying assumption is not leading far astray. Suppose that, in 

practice, only 64 secondary tables are needed. In this case, one should seek to minimize 

214-n  _|_ 2 n + 6  w h i c h  happens when n is 4. One now needs a total of only 21 1  rows. The 

saving in space is 50%. Since the space in question is rather small, it is unclear that 

such an optimization is worthwhile.

One could, of course, refine this technique still further, and have deep nests of look

up tables. For this purposes the saving in space is not really justified, since the necessary 

extra table-chasing will degrade the speed of the decoding process.

5 .5 .2  Im p le m e n ta tio n

Our implementation for look-up tables uses a primary table of size 2 11, and 2 8  extension 

tables, each of size 2 3. The tables were built automatically by examination of the exact 

model. The time needed for the construction of the tables is included in the results, 

even though this is a one-off penalty. From the performance point of view it would be 

nice to get the right symbol out of the look-up table with one operation.

Of course, one could build a single comprehensive look-up table of size 214, but this is 

an unacceptable space overhead. In the look-up table there are 256 “bad points” which 

have to be considered. If it is not possible to track down the correct symbol via the 

primary look-up table (i.e. this is a “bad point”), one has to look at an extension table. 

This second operation slows down the whole process by about 2% as the information 

one is looking for has to be addressed for a second time. Table 5.4 gives the information 

about the percentage of misses for different kinds of input data. A hit means one can 

use the entry given in the primary look-up table. A miss means one has to look in the 

look-up extension which is more expensive since one must examine a secondary table.

Even for the particular interest, object code, the secondary table is only used in 15% 

of all cases.
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M iss D is tr ib u tio n
p ro g ram percent
bib 6.65%
bookl 3.58%
geo 15.64%
news 5.74%
objl 15.63%
paperl 5.98%
pic 6.00%
progc 7.11%
trans 4.94%
average 7.92%

Table 5.4: Miss distribution for different input data given in percentages.

5 .5 .3  E x p er im en ta l R e su lts

The experimental results shown in Table 5.5 are based on input data from the 

Calgary corpus and measured on a Sun SPARC ELC (25MHz), running SunOS 4.1.1 

Rev B with the gcc compiler [Stallman 1989] version 1.40 using optimizer option -O. 

The interference of I/O  is minimized by generating no output data during encoding 

and decoding. The timings shown are collected by using the UNIX tim e command, the 

program size by the UNIX Is  command.

The experimental results are based on the C implementation described by W itten 

et.al. as mentioned before [Witten et al. 1987]. The time needed to read the model 

is included in the results, but is negligible. The time needed to sort the model is 

again included in the results, but they did not have any visible effect (after allowing for 

experimental errors). The encoding times collected (not printed) confirm this.

The new algorithm performs best on object code and data which is difficult to com

press such as that in geo. This is not surprising as the number of loop executions needed 

to find the symbol during decoding increases with more random data (see Table 5.3). 

In fact, using data which is random one can improve performance by more than 50%. 

Table 5.5 shows the original file size in bytes, the remaining percentage after encoding, 

timing for the conventional and improved algorithm, and the improvement achieved
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Perform ance Im provem ent
name size

bytes

encoded conventional
algorithm

fis/byte

improved
algorithm

psfbyte

improvement
achieved

percent
bib 111 261 65.0% 35.95 33.26 7.48%
bookl 768 771 56.6% 32.91 31.22 5.14%
book2 610 856 59.9% 33.72 31.43 6.79%
geo 102 400 70.6% 41.99 34.18 18.60%
news 377 109 64.9% 35.80 32.88 8.16%
objl 21 504 74.4% 41.85 37.20 11.11%
obj2 246 184 78.5% 44.16 36.06 18.34%
paper 1 53 161 63.3% 33.86 33.86 0%
paper2 82 199 57.5% 32.85 31.63 3.71%
pic 513 216 15.2% 22.04 22.04 0%
progc 39 611 65.0% 35.34 32.82 7.13%
progl 71 646 59.6% 33.50 32.10 4.18%
progp 49 379 60.9% 34.43 32.40 5.90%
trans 93 695 69.2% 37.36 34.15 8.59%
average 224 356 61.47% 35.41 32.52 7.47%

Table 5.5: Comparison of decode times using the conventional and improved decoding 
algorithm. The program size, the remaining percentage after encoding, the decoding 
times of uncompressed data, and the improvement achieved is given. The times exclude 
I/O . The figures give user time from the UNIX tim e command and program size from 
the UNIX I s  command.

with the new algorithm.

Allowing for experimental errors, the encoding times (not printed) are equal for all 

three fixed models as there is no change in the encoding algorithm (except in the sorted 

case, though the time impact of this variation is nugatory).

5 .5 .4  S u m m a ry

With the algorithm presented it is possible to improve decoding performance for arith

metic coding utilizing fixed models by up to 18% measured against a sorted fixed model. 

The results presented show clearly the improvement gained with only four kbyte of ad

ditional memory. Especially for data which is difficult to compress, notably object code, 

the algorithm performs extremely well compared with the rival technique. This favours 

the new algorithm for this purpose.

55



Furthermore, with the improved algorithm, hardware implementation is much eas

ier as no search algorithm has to be implemented. Instead, finding a symbol in the 

cumulative frequency table requires one comparison only with the one-off penalty of 

four kbytes of additional memory.

5.6 Hardware Im plem entation

Due to the complexity of most compression methods, past implementations of data 

compression techniques have mostly been restricted to software. Only a few hard

ware designs using associative memory [Lea 1978], and microprocessor based systems 

[Hawthorn 1982] have been reported. A proposed design for compression by textual 

substitution is given in [Gonzalez-Smith &: Storer 1985] and a brief discussion of the 

hardware design of the LZW algorithm using hash tables is given in [Welch 1984]. A fast 

VLSI implementation of the Huffman’s scheme is given in [Mukherjee & Bassiouni 1987] 

and a high level description of a VLSI chip for the implementation of a modified arith

metic coding scheme is given in [Bassiouni et al. 1988]. A hardware implementation of 

the Q-Coder is described by Mitchell and Pennebaker [Mitchell & Pennebaker 1988].

The arithmetic coding scheme consists of arithmetic operations such as addition and 

multiplication and hence can be implemented in hardware. Parallel and very wide buses 

can be used on-chip without regard to pinout limitations. Clock rates can reach a few 

gigahertz within a chip module, because the dimensions are very small and reflections 

die out quickly [Storer Sz Szymanki 1982].

5.7 Sum mary

In arithmetic coding a suitable coding technique for encoding and decoding an instruc

tion stream efficiently and effectively has been found. W ith this technique encoding as 

close to entropy as desired is possible. The technique can be implemented in hardware 

which is a necessary feature for the purpose of this work. Furthermore, the fast decod

ing algorithm developed gives a significant speed advantage over the rival technique, 

especially for object code as shown in Table 5.5.
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C hapter 6

E xperim ental R esults

Experimental results gathered on the SPARC architecture are essential to deal with 

instruction dependency and to exploit the structure given in the instruction stream 

[Glass 1991, Sun Microsystems Inc. 1987]. The experiments were made regarding the 

information necessary to encode and decode an instruction stream efficiently and effec

tively. Information about SPARC field distributions and their entropy was gathered for 

this purpose.

6.1 E xperim ents Performed

The workload for the experiments performed is built with a set of real programs t'lat 

includes a C compiler (GNU gcc [Stallman 1989]), a statistics program, a word pro

cessing system (T^X), part of the X window system, the command interpreter (tcsh), 

a terminal emulation program (xterm), and a debugger (GNU gdb). These programs 

have been chosen not only because of their size but also because of their availability, 

The quantity of information that needs to be gathered about the dynamic character

istic of program execution depends very much on the cost one is willing to pay for 

the information. Sample programs from which the dynamic characteristics of programs 

are collected are a C compiler (GNU gcc [Stallman 1989]), a statistics program, the 

command interpreter (tcsh) and a debugger (GNU gdb), because the results could be 

collected relatively easily. All these statistics are program and compiler dependent, as
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different classes of applications typically use different language features [Weiker 1984]: 

Numeric programs frequently use floating-point arithmetic and often operate on arrays; 

business application programs are mostly dominated by I/O  activities; system program 

often use enumeration, record, and pointer data types. Moreover, it is unavoidable that 

such a study will also measure the ability of a compiler to generate efficient code.

Statistics about static characteristics of programs are based on more than 500000 

instructions. The statistics of the dynamic characteristics are based on more than ten 

million instructions executed. The code is compiled for SPARC. All the presented data 

are average values from the above programs. Special program behaviour is pointed out 

separately. Floating-point and co-processor operations are not the subject of this study.

Instead, the purpose of this study is to gather information about the usage of in

struction set constructs. Information that has been found to be useful for this purpose 

includes

• Distribution of opcodes;

• Distribution of opcode pairs;

• Distribution of registers (global, local, in and out register);

• Distribution of constants;

• Distribution of branches.

Static information about instruction sets can be obtained by writing a special pro

gram analyzer or by modifying an existing compiler. This data was collected by a 

program analyzer counting the number of occurrence of each instruction achieved from 

the relevant instruction fields. The relevant addresses of executable program parts were 

taken from the symbol table.

Dynamic information about instruction sets can be obtained by either writing an 

interpreter or by writing a trace program. Of course, tracing a program is very expen

sive; the time to trace a program and analyze the data produced is several orders of 

magnitude greater than the time required to simply execute the program to be traced. 

The data presented here was collected by tracing the program.
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6.2 Em pirical Analysis

6 .2 .1  O p co d es

Static C haracteristic D ynam ic C haracteristic
opcode percent cum.per. opcode percent cum.per.
sethi 19.71 19.71 Id 12.36 12.36
Id 15.54 35.14 sethi 12.21 24.57
or 14.07 49.22 add 11.49 36.06
call 5.72 54.94 subcc 8.33 44.39
st 5.26 60.20 or 8.30 52.69
subcc 4.54 64.74 bne 5.33 58.02
add 4.53 69.27 orcc 4.37 62.39
orcc 3.65 72.92 sll 3.91 66.30
ba 3.64 76.56 be 3.73 70.03
be 3.36 79.93 ldsb 3.47 73.50
bne 3.04 82.96 st 2.90 76.40
sll 1.95 84.91 ba 2.53 78.93
jmpl 1.52 86.43 stb 1.82 80.75
sub 1.48 87.91 and 1.59 82.34
ldsb 1.19 89.10 jmpl 1.58 83.92
restore 1.07 90.17 call 1.54 85.46
and 0.97 91.14 srl 1.52 86.98
stb 0.89 92.03 bl 1.47 88.45
ldub 0.74 92.77 andcc 1.31 89.76
lduh 0.73 93.50 sub 1.23 90.99

Table 6.1: Distribution of twenty most frequently used opcodes given in percentage and 
cumulative percentage for static as well as dynamic case.

The static as well as dynamic frequency of opcodes is provided in Table 6.1. Only 

a small number of opcodes occurs with high frequency [Bennett Sz Smith 1989]. The 

instruction sethi 0, %g0 is equivalent to nop and or %g0, register-or-immediate, register 

is equivalent to move register-or-immediate, register where %g0 is the global register 

zero. For the static case just three opcodes (sethi, Id and or) together account for 

nearly 50% of all opcodes. Just sixteen opcodes account for more than 90%.

In the dynamic case the observation is more spread. The opcodes Id, sethi and 

add account for more than 36% and twenty opcodes account for more than 90% of 

all opcodes executed. The detailed figures (not printed) show there is no great dif
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ference between distinct applications. These results match very well with earlier work 

[Alexander & Wortman 1975].

In static as well as dynamic cases with a small number of opcodes most of the 

compiled code can be built thus a reduced instruction set is a valid approach.

6 .2 .2  O p co d e  pairs

Static C haracteristic D ynam ic C haracteristic
pred. succ. percent cum.per. pred. succ. percent cum.per.
sethi Id 7.18 7.18 sethi Id 3.76 3.76
sethi or 6.44 13.62 sethi or 2.81 6.57

call sethi 4.86 18.48 Id add 2.29 8.86
sethi sethi 3.29 21.77 add st 2.07 10.93

or call 3.28 25.05 orcc bne 1.87 12.80

Table 6.2: Distribution of five popular opcode pairs given in percentages (percent) and 
cumulative percentages (cum.per.) of all pairs examined. Pred. and succ. describe 
predecessor and successor respectively.

The frequencies of different SPARC opcode pairs are given in Table 6.2. Just five 

pairs account for more than 25% of all pairs in the static case and about 13% in the 

dynamic case. Each of these high frequency pairs is a potential candidate for becoming 

a single opcode in an improved computer architecture [Sweet & Sandman 1982]. This 

result in particular shows the dependency between instructions.

Foster and Gonter [Foster & Gonter 1971] got equivalent results for their observa

tions of successors, namely that an opcode is followed mainly by one of seven opcodes. 

The results provided by Alexander and Wortman [Alexander & Wortman 1975] are sim

ilar although they got a higher percentage in the dynamic case.

6 .2 .3  R eg is ter s

For a RISC architecture it is very im portant to get good support for registers because 

of its register structured architecture. The SPARC architecture provides seven banks of 

windowed registers: global, local, in and out registers and floating-point registers. The 

usage of floating point registers is application dependent and therefore not discussed
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here. A co-processor was not installed.

S ta tic  C h a ra c te r is tic
re g is te r no. 0 no. 1 no. 2 no. 3 no. 4 no. 5 no. 6 no. 7 sum.
global 91.60 8.24 0.08 0.05 0.02 0.01 0.00 0.00 100.00
local 21.93 17.48 12.01 11.62 10.23 9.11 8.46 9.17 100.01
in 17.05 9.06 7.40 6.93 8.94 16.05 30.29 4.27 99.99
out 40.55 19.71 11.51 8.26 6.67 5.80 2.87 4.63 100.00

Table 6.3: Distribution of registers for the static case given in percentage for each 
register bank separately.

D ynam ic  C h a ra c te r is tic
re g is te r no. 0 no. 1 no. 2 no. 3 no. 4 no. 5 no. 6 no. 7 sum.
global 84.35 15.04 0.62 0.03 0.00 0.00 0.00 0.00 100.04
local 5.92 8.37 25.18 8.14 13.18 6.34 22.39 11.50 101.02
in 11.54 12.13 8.15 10.39 12.26 15.14 27.12 3.26 99.99
out 33.41 18.72 11.63 8.72 9.06 13.30 2.53 3.87 101.24

Table 6.4: Distribution of registers for the dynamic case given in percentage for each 
register bank separately.

The examination of register usage (including registers as source and destination) 

shows some interesting results. Table 6.3 provides the information for the static case x. 

The eight global registers provided by the Sun SPARC architecture are seldom used in 

the static case with the one exception of global register zero which accounts for 91.6% 

of global register use. The explanation is that global register zero always contains zero 

and is therefore often used to set other registers to zero. A surprising observation is 

that global register seven was never used in all sample programs. Global register six 

is used three times and then only if register optimization is in use. Therefore it is not 

shown in Table 6.3.

It is a different case for in, out, and local registers which are used with higher 

frequencies. The first three out registers account for more than 70% of eight out registers. 

In register number six is the frame pointer and in register number seven is the return

C u m u la tive  percentage does not sum to 100.00% due to rounding and truncation of data.
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address. Not surprisingly the frame pointer is the most used in register with more than 

30% in the static case. The distribution of local registers in the static case is more or 

less as expected: Registers with lower numbers are more likely to be used than registers 

with higher numbers.

Table 6.4 provides the information for the dynamic case. Global registers four and 

five, which are rarely used in the static case, are not mentioned in the dynamic case, 

because they occur only in the X window system, which is not used for dynamic char

acteristics. The results of global registers are quite comparable to the static case. In 

and out registers are primarily used for passing parameters to and from subroutines and 

the results lead us to the assumption that usually only a few parameters are passed 

between procedures in the sample programs. Tanenbaum [Tanenbaum 1978] discovered 

that the average number of parameters is 1.5 (2.0) for the static (dynamic) case for 

SAL programs. The overwhelming majority (at least 97%) of procedures in system 

code take fewer than six parameters and the average number of parameters, measured 

statically and dynamically is no greater than 2.1 in any of the studies cited by Weicker 

[Weiker 1984].

The statistics represent only average values. The property of each sample program 

could be quite different: e.g. the statistics program uses local register two much more 

frequently than the average value provided in Table 6.4 suggests. The explanation is that 

a loop variable which is used extremely frequently is stored in this particular register. 

The same explanation applies for the program from the operating system (tcsh).

R egister
c h a ra c te r is tic global local in out
s ta tic 32.73% 11.51% 22.77% 32.99%
d ynam ic 30.52% 11.74% 11.47% 46.27%

Table 6.5: Distribution of all registers for static and dynamic case.

Table 6.5 shows the results for register usage as a whole. It is a good illustration as to 

which register bank is used most and it is shown that there is quite a difference between 

static and dynamic observations regarding in and out registers. Since the caller’s out
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register become the callee’s in register the results show that more parameters are passed 

to the callee’s than results received from them.

6.2 .4  C on stan ts

percent

 dynamic
. . . static

30 _

2 0 .

1 0 _

12 number o f  bits0 2 4 6 8 10

Figure 6-1: The distribution of positive immediate values is shown. The x axis shows 
the number of bits needed to represent the magnitude of an immediate value -  0 means 
the immediate field value was 0.

percent

  dynamic
. . . static

30 _

2 0 .

1 0 .

12 number o f  bits0 2 8 104 6

Figure 6-2: The distribution of negative immediate values is shown. The x axis shows 
the number of bits needed to represent the magnitude of an immediate value -  0 means 
the immediate field value was 0.

Those instructions dealing with constants use a signed immediate constant that fits
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in 13 bits. Figure 6-1 provides the results for positive constant arguments 2. Dif

ferent results than other program statistics are obtained [Alexander Sz Wortman 1975, 

Sweet & Sandman 1982] presumably because of the different way of setting registers to 

zero. The results provided in Table 6.3 and Table 6.4 reinforce this assumption. In 

any case, it is interesting to note that in the static case 46.12% of all positive constants 

could be represented using 4 bits and 75.59% using 7 bits or less.

In the dynamic case the results are even more significant. 48.80% of all positive 

constants could be represented using 3 bits or less. With five bits or less one can 

represent about 70% of all positive constants. The high frequency of the constant one 

in the dynamic case suggests that an instruction dealing with this particular constant 

could be useful.

Results for negative constants are provided in Figure 6-2 and they are similar. In the 

static as well as the dynamic case more than 80% of all constants are between —[2° — 27).

6.2 .5  Branch Instructions  

percent

  dynamic
. . . static

3 0 .

2 0 .

1 0 .

0 2 4 6 8 10 12 14 number of  bits

Figure 6-3: The distribution of positive displacement values is shown. The x axis shows 
the number of bits needed to represent the magnitude of a displacement value.

Branch instructions build their destination by multiplying the contents of the instruc

tion field by four and than adding it to the PC (Program Counter) to calculate the 

destination. The branch instruction causes a PC-relative, delayed control transfer to

2T he im m ediate field o f the sethi instruction is not included here.
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percent

  dynamic30 _

2 0 .

1 0 .

0 2 4 6 8 10 12 14 number of  bits

Figure 6-4: The distribution of negative displacement values is shown. The x axis shows 
the number of bits needed to represent the magnitude of a displacement value.

the address

PC  + (4 * sign.extend(distance)).

The sign.extend distance bitfield is 22 bits long. The distances which are given in Fig

ure 6-3 and Figure 6-4 are the results collected by the bit field of all branch instructions.

The static analysis of positive branch instructions shows that about 60% of the 

branch destinations fit into four bits or less and about 85% of them fit into six bits or 

less. With only ten bits one can describe 99% of all positive branch destinations.

The observation in the dynamic case is similar. With four bits one can describe 

about 47%, with six bits about 85% and with ten bits about 98% of all positive branch 

destinations. There is no positive branch destination with more than 14 bits in the 

sample programs in the static or the dynamic case.

The distribution of negative branch destinations is similar. In the static (90.17%) 

as well as the dynamic (92.89%) case more than 90% of all branch destinations use a 

distance between — [2° — 27).

Therefore most branch instructions use destinations that are near to the location of 

the branch instruction itself. This result depends very much on the compactness of the 

code emitted by the compiler. But it shows that there is great redundancy in branch 

fields because they comprise 22 bits for the SPARC architecture.

Alexander and Wortman’s [Alexander &: Wortman 1975] observations during their
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study of XPL programs are similar: they found that 54.4% of the branches were no 

more than 128 bytes away from the location of the branch instruction.

B ran ch  In s tru c tio n s
opcode operation s ta t ic dynam ic
ba branch always 3.64 2.53
bcc branch on carry clear 0.16 0.39
bcs branch on carry set 0.15 0.34
be branch on equal 3.36 3.73
kg branch on greater 0.21 0.20
bge branch on greater or equal 0.53 0.56
bgu branch on greater unsigned 0.17 0.92
bl branch on less 0.52 1.47
ble branch on less or equal 0.35 0.24
bleu branch on less or equal unsigned 0.10 0.24
bn branch never 0.00 0.00
bne branch on not equal 3.04 5.33
bneg branch on negative 0.02 0.35
bvc branch on overflow clear 0.00 0.00
bvs branch on overflow set 0.00 0.00

Table 6.6: Distribution of all branch instructions in alphabetic order given in percentage.

More detailed information about branch instruction is provided in Table 6.6. To

gether, 6a, be and bne account for about 10% (12%) of all opcodes and about 82% (71%) 

of all branch instructions in the static (dynamic) case, respectively. All other branch 

instructions (except 6/ in dynamic case) are used not at all or only rarely.

6.3 Entropy

Figure 6-5 shows the entropy for both the static and dynamic instruction stream. Graph 

a) shows the instruction stream treated as eight bit symbols, graph b) looks at just 

the opcode of the instruction. For eight bit long symbols as well as opcodes entropy 

decreases significantly to about 0.2 bits for the fifth order Markov source from the 

zero order Markov source in the dynamic case [Schoepke 1992b]. These results re

flect the considerable structure in compiled code and show there is great redundancy 

in such instruction streams and great dependency between instructions following each

66



other which leads to very high conditional probabilities and thus to very low entropies. 

Such entropies as shown in Figure 6-5 imply one can generate more compact code 

[Schoepke 1992h] because the entropy H (S ) gives the number of bits for optimal encod

ing. The decrease is of about 90% in entropy for the fifth order Markov source from 

the zero order Markov source for symbols in the static case. In the dynamic case one 

achieves even lower entropy.

entropy entropy
bits /sym bol b its /op cod e

 static

. . . dynamic

6

5

4

3
2

1

0
order

6  static

. . . dynamic5

4

3

2

1

0
order

a) b)

Figure 6-5: Average entropy of m tm order Markov sources in bits per eight bit long 
symbol and bits per opcode for static as well as dynamic case.

Redundant information can also be found in addresses, and, furthermore, as address 

space and their corresponding address words have grown in size from 16 to 24 to 32 to 

64 bits, so has the percentage of a given address word containing redundant information 

[Farrens & Park 1991].

One can exploit the structure of the instruction stream and calculate the entropy 

for different instruction fields.

The results shown in Figure 6-6, Figure 6-7, Figure 6-8, and Figure 6-9 confirm the 

view that instruction streams have considerable structure. The graphs shown provide 

information for register fields rsl, rs2, and rd as well as cond and imm22 bit fields 

in both static and dynamic cases. In the dynamic case the entropy drops much more 

sharply than in static case. In the case of register fields (which includes registers as
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entropy entropy
bits/register field bits/register field

 rsl field4
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  rd field4
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0
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a) b)

Figure 6-6: Average entropy of m -th order Markov source in bits per register field for 
the dynamic case, a) shows the register fields r s l  and rs2, b) shows the register field 
rd.

entropy
bits/register field

entropy
bits/register field

  rsl field

. . . rs2 field
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order
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  rd field4

3

2

1

0

order

b)

Figure 6-7: Average entropy of m-tli order Markov source in bits per register field for 
the static case, a) shows the register fields r s l  and rs2, b) shows the register field rd.
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entropy
bits/imm22 field

  cond field4
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imm22 field4
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Figure 6-8: Average entropy of m-th order Markov source for the dynamic case in bits 
per cond field for case a) and bits per imm22  field in case b ) .

entropy 
bits/cond field

entropy
bits/imm22 field
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a) b)

Figure 6-9: Average entropy of m-th order Markov source for the static case in bits per 
cond field for case a) and bits per imm22  fields in case b).
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source and destination) the entropy decreases rapidly to about 0.2 bits per register field 

for the fifth order Markov source in the dynamic case. About the same decrease in 

entropy can be found for the cond and imm22 bit fields.

Further experiments resulted in a variable reduction in entropy although some bit 

fields (such as the asi field) are difficult to measure as they occurred only rarely in the 

examples used. However, the entropy does not differ significantly from other bit fields 

and is therefore not printed here.

Wade and Stigall and Hammerstrom and Davidson already show what can be a- 

chieved in instruction design. But the work performed does not reduce redundancy to 

the amount possible according to information theory.

6.4 Coding R esults

The programs used for experimental results and comparisons are described in Table 6.7. 

All experiments are performed on SPARC.

P ro g ra m  D escrip tio n
nam e p ro g ra m  d esc rip tio n size in b y tes
progl Simple C program with a small loop, compiled for 

SPARC using gcc 1.4 without optimization
24 468

prog2 Coding program written in C, encoding a C file, 
compiled for SPARC using gcc 1.4 without optimization

2 432 976

gperf Perfect hash function generation for six key words, 
compiled for SPARC using gcc 1.4 without optimization

698 436

dhry Dhrystone benchmark for 100 runs through Dhrystone 
version 2.1, C language, compiled by gcc 1.4 without 
using the “register” attribute and optimization

640 340

objl executable file for VAX, 
compilation of a program

21 504

obj2 executable file for Apple Macintosh, 
“knowledge support system program”

246 814

Table 6.7: Description of programs used for experimental results, p ro g l, prog2, g p e r f , 
and dhry are used for experiments on the SPARC architecture.

The experimental results with arithmetic coding on static object code, using the 

zero and first order Markov model, are shown in Table 6.8 [Schoepke 1992f]. Static
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Static C ode
nam e o b je c t code

size in symbols
e n tro p y

order 0
encoded

bits/symbol
e n tro p y

order 1
en co d ed

bits/symbol
gdb 362 112 5.65 5.64 3.91 3.84
emacs 404 656 5.77 5.77 3.92 3.87
X 269 896 6.35 6.35 4.58 4.54
stat 40 144 6.12 6.12 4.00 3.95
tcsh 184 200 5.44 5.47 3.87 3.83

Table 6.8: Encoded object code in bits per symbol with entropy in bits per symbol given 
for the fixed zero and first order model in static case.

entries such as symbol tables or string tables are not used to build the statistics. Only 

the object code to be executed is examined. As a comparison the entropy is given, 

which provides information about the achievable compression results with arithmetic 

coding, measured also in bits per symbol. In the static as well as the dynamic case 

the stream to be encoded is built with eight bit long symbols and a fixed model is 

used [Witten et al. 1987]. The fixed model is built by a previous run over the object 

program so that an exact model for the object code to be compressed is used. Allowing 

for experimental errors the entropy bound is achieved.

D ynam ic C ode
n am e o b je c t code

number of 
symbols executed

e n tro p y
order 0

encoded
bits/symbol

e n tro p y
order 1

encoded
bits/symbol

progl 24 468 5.90 5.90 2.53 2.53
prog2 2 432 976 5.94 5.95 2.90 2.90
gperf 698 436 5.94 5.94 2.91 2.95
dhry 640 340 6.00 6.00 2.89 2.87

Table 6.9: Encoded object code in bits per symbol with entropy in bits per symbol given 
for the fixed zero and first order model in the dynamic case.

The results for dynamic object code, using the zero and first order Markov model, is 

shown in Table 6.9. Compression on dynamic object code means every symbol executed 

during program run time is compressed. The same symbols are used to calculate the 

entropy. Again (considering experimental errors) the entropy bound is achieved.
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C om pression  Schem es
schem e d esc rip tio n
PPMC [Moffat 1990], based on a method proposed by Cleary and W itten, one 

of the best finite-context modelling methods [Cleary &: W itten 1984b] 
HUFF [Gallager 1978], adaptive Huffman coding, using an order zero model
LZFG [Fiala h  Greene 1989], a coding technique based on LZ78 family

[Ziv &: Lempel 1978], fast encoding and decoding, and good 
compression without undue storage requirements 

LZB [Bell 1987], gives generally the best compression of the LZ77
family [Ziv & Lempel 1977] of Ziv-Lempel coders 

DMC [Cornack & Horspool 1987], Dynamic Markov Compression, the only
finite-state modelling method described in the literature that works 
fast enough to support practical text compression

Table 6.10: A brief description of some compression schemes.

E x p e rim e n ta l R esu lts
nam e size P P M C H U F F  LZFG LZB D M C

size in bytes bits/symbol
objl 21 504 3.76 6.06 4.08 4.26 4.56
obj2 246 814 2.69 6.30 2.96 3.14 3.06

Table 6.11: Experimental results published by Bell et.al. given in bits per symbol.

Table 6.11 provides results of other coding techniques published in [Bell et al. 1989], 

also given in bits per symbol. The schemes mentioned are described briefly in Table 6.10.

6.5 Sum m ary

This type of data provides the information required to optimize the design of a computer 

for the execution of programs or building an instruction set. The statistics show that 

there is a certain number of pairs which can be used to build a new opcode, but the 

benefit of an additional opcode has yet to be investigated [Bennett & Smith 1989].

The experimental analysis shows great redundancy in the instruction stream as most 

of the executable code is built with only a small number of opcodes and constants and 

branches use mainly a small number of bits. These occur with considerable regularity,
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reflected in the low entropy when treated as higher order Markov source. This implies 

tha t highly dense instruction streams are possible.

In arithmetic coding a suitable coding technique for encoding and decoding an in

struction stream efficiently and effectively has been found. With this technique encoding 

as close as desired to the entropy is achievable, and the execution of compressed object 

code is possible [Schoepke 1992a,].
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C hapter 7

Proposed M odel for a 

Com pressed Instruction Set 

A rchitecture based on SPARC

The experiments carried out show it is possible to generate high density instruction 

streams, especially when treated as higher order Markov source because of dependencies 

between instructions. Because of high redundancies in instruction streams very low 

entropy can be reached and encoding into less than three bits per symbol is possible 

using only a first order model. This is a reduction of nearly 70%.

In this chapter a model is proposed to execute such dense object code and to imple

ment the system.

7.1 Standard Execution M odel

SPARC is characterized by the following concepts:

1. The main units are a control unit, arithmetic and logic unit, a memory, and input 

and output facilities.

2. Programs and data share the same memory, thus the concept of a stored program 

is fundamental.
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3. The control and arithmetic units, usually combined into a central processor, de

termine the actions to be carried out by reading instructions from the memory.

It follows that a program consists of a set of instructions that are examined one after 

another; a program counter (PC) in the control unit indicates the next location in 

memory from which an instruction is to be taken.

The three distinct phases that constitute the sequencing of each instruction for this 

architecture are

1. Determining the memory address which contains the instruction,

2. Fetching the instruction from memory and

3. Executing the instruction.

Branch taken/not taken

PC
increment

Execution
unit

Fetch
unit

Control
unit

Memory

Figure 7-1: Instruction execution: Instructions are fetched from main memory into the 
fetch unit and provided to the execution unit to execute. If a branch has been taken, 
the new memory location hats to be calculated. If no branch has been taken, the PC is 
incremented to the next instruction.

Before a processor can execute an instruction it must fetch the instruction from 

memory. Before this operation can occur, the instruction pointer must be updated. 

If a branch has been taken, the address of the next instruction to be executed has to 

be calculated. Therefore the rate at which the processor executes instructions cannot 

exceed the rate at which instructions are fetched from memory. During the execution
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phase of each instruction, the processor determines the memory location of the next 

instruction to be executed. Figure 7-1 shows an example of a von Neumann architecture.

7.2 D ecode-E xecution  M odel for Com pressed Code

Branch taken/not taken

Fetch
unit

PC
increment

Control
unit

Memory
Decoding

unit

Execution
unit

Branch taken/not taken

Figure 7-2: Execute Compressed Object Code: Chunks are fetched from main memory 
into the fetch unit and decoded in the decoding unit. Decoded instructions are provided 
to the execution unit to execute. If a branch has been taken, the new memory location 
has to be calculated and the decoder has to be re-initialized. If no branch has been 
taken, the PC is incremented to the next instruction.

To execute compressed object code is more complicated than for conventional un

compressed object code. Before executing an instruction it is necessary to fetch new 

information, the chunks, from the main memory or RAM through the fetch unit into the 

decoder, only if required. The term chunk is used to describe eight bits of the encoded 

bit stream. Operating independently as far as possible from the execution unit the fetch 

unit fetches four chunks from main memory which stores the dense instruction stream. 

The size 32 bits is chosen as no change in the fetch width of the processor is made. 

The decoding unit decodes the fetched chunk, builds the instruction, and provides it for 

the execution unit to read. Having done that, the execution unit is able to execute the 

instruction after reading it from the decoding unit.
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Because of the dense instruction stream (provided by the main memory), it is not 

always necessary to fetch new chunks for the decoder after executing one or more instruc

tions. In the worst case, i.e. after taking control transfers, new chunks are required for 

the decoder, but in the best case, several instructions can be executed without another 

memory access.

Figure 7-2 gives an example of a suggested architecture to execute compressed object 

code with only one instruction stream to be decoded. For decoding several streams 

reflecting the structure (i.e. different fields) given in an instruction stream, the given 

architecture has to be multiplied by the number of streams to be coded including an 

on-chip connection between the decoding units for communication. Fetch and decoding 

units can operate most of the time independently of the execution unit, unless the flow 

of control is altered. Therefore the decoding unit can decode the next instruction in 

advance if possible. Fetch, decoding, and execution units are assumed to be on one chip.

The changes in the architecture proposed compared to the existing architecture are 

kept to a minimum -  no changes in the instruction set executed are made.

7.3 H andling Control Transfers

One of the most difficult problems is how to handle control transfers, because control 

transfer instructions not only alter the control flow of the program from sequential 

execution. They also effect the whole encoding and decoding phase as encoding has to 

be on static code and decoding on dynamic code. Several provisions are necessary to 

handle these cases correctly.

7 .3 .1  O v erv iew  o f  th e  P ro b lem

Like sequencing instructions [Krick & Dollas 1991], compressed object code execution 

suffers after having taken control transfers, because the new memory address has to 

be calculated and new chunks are necessary to continue decoding the dense instruction 

stream. Furthermore, one cannot rely on information further back and therefore the 

context is lost. This influences the compression results on both the static and dynamic
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code when higher order models are in use. The coding algorithm has to be restarted 

with only little or no knowledge of the context and at an addressable memory location.

i f  ( i  == 0 ) f o r  ( i  = 0; i  <= 3; i++ )
i++; {

e ls e  j++;
i ~ ;  }

Figure 7-3: C Code for the i f  and for  Statement

Id [ '/.fp-20] ,  y,oo St •/.go,

i—
i

0CN1a,«HL_l

tst XoO L3:
bne LI Id [•/.fp-20] ,  y.oo
nop cmp y.oo, 3
Id [•/.fp-20] ,  y,oo bg L4
add oorHo

nop
St y.o0 , [‘/ .fp -20] Id [ '/.fp -2 8 ], '/.oO
b L2 add y.oo, i ,  y.oo
nop St y.oo, ['/.fp-28]

Id [•/.fp-20] ,  y,oo
Id ['/.fp-20] , */,o0 add */.o0,

oo

add '/.oO, - 1 ,  '/.oO St */.o0, [*/,fp -2 0 ]
St */.o0, ['/.fp-20] b

nop
L3

L4:

a) i f  s ta tem en t b) for s ta tem en t

Figure 7-4: SPARC assembler language for statements in Figure 7-3

Figure 7-3 provides C code for an i f  statement in case a) and for a for  statement in 

case b ). The SPARC assembler language for both statements is provided in Figure 7- 

4 (generated by the gcc compiler without optimization [Stallman 1989]). For case a) 

the compiler generates a conditional branch forward (after the i f  condition) and an 

unconditional branch forward (after statement i++). For case b) a conditional branch 

forward (after the loop condition has been examined) and an unconditional branch 

(after statement j++  and the loop conditions) has been generated. These two examples
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demonstrate the frequency of control tranfers for two common C HLL statements and 

emphasize the problems in handling branches (and control transfers) effectively and 

efficiently.

Assume the first encoding phase starts at the first Id  of the i f  statement. The 

encoder can encode the instruction stream until it reaches the LI label. At this point 

the encoding process is interrupted and the second encoding phase has to be started 

because LI can be an entry point during program run time. The second encoding phase 

is interrupted at the second label L2 and so on. However, the number of instructions 

to be encoded for each coding phase depends on the compiler used, the application to 

encode, and the target architecture. The influences on the compression results have not 

been investigated. In the for statement case L3 and L4 interrupt the encoding process.

B ran ch  F req u en cy
static 12.25%
dynamic 16.30%

Table 7.1: The average branch frequency for static and dynamic cases is shown. The 
data was collected for the SPARC architecture.

Table 7.1 shows the branch frequency for the static as well as the dynamic case 

collected for the SPARC machine. In the static case about every eighth instruction is a 

branch instruction. In the dynamic case branches are more frequent, about every sixth 

instruction is a branch instruction.

The detection of branch targets can be done by the compiler as the compiler “knows” 

these entry points. It then can pass the information on to the encoder. It may, however, 

turn out that destinations of indirect jumps are undetectable if the user decides the jump 

destination during program run time.

The scheme of “windowing” instructions is based on the observation that many 

data files exhibit a strong locality behaviour of references. In the example of DISC, a 

“window” is defined as a group of instructions which are issued to functional units for 

execution at the same cycle [Wang Sz Wu 1991]. Entry into a window takes place only 

at the leader, and exit from a window can occur at any instruction. A leader is defined
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as either the first instruction of the program or any branch-target instruction. The size 

of the window, or the number of instructions in the window, depends on the number of 

functional units in the system.

The window is therefore similar to a “basic block” in source-language code. However, 

a basic block can only be left from the last instruction. Thus, an instruction following a 

branch instruction cannot reside in the same basic block as the branch. This constraint 

is not imposed in the window. This means that a window can contain multiple basic 

blocks. In windows all instructions between branch instruction and branch target form 

the base for one coding step. The disadvantage from the compression point of view is 

the loss of context between windows and therefore the loss of compression.

7 .3 .2  C o m p iler  In form ation

Detecting entry points can be done by the compiler. This involves branch instructions 

and function calls with fixed displacement, the jump and link instruction, and trap 

instructions. However, the destination of register indirect jumps is difficult to calculate if 

not used for function returns. It is not possible to detect all control transfer destinations 

since changes caused by the user cannot be predicted or calculated in advance.

7 .3 .3  S o lu tio n s

In itialize C oder w ith  Sim ple C ontext

Reinitialize the decoder after a branch has been taken by clearing all coding information 

is a simple way to solve the problem. On the one hand we lose all the context infor

mation and therefore get worse compression results. On the other hand this method 

is considerably faster due to fewer memory accesses and it is simpler to implement. 

Furthermore, no memory is required to store context information.

R ein itia lize D ecoder w ith  C ontext Inform ation

One way to avoid loss of context during coding is to store all context information at each 

branch target address. After a branch has been taken, the coder can be reinitialized with 

all the relevant context information required to continue coding. The great advantage is

80



one does not suffer from loss of structure and therefore one can reach higher compression. 

On the other hand it is very time and memory expensive to store all necessary context 

information at each branch target. Consider the gdb program with 90528 instructions. 

If every eighth instruction is a destination address the amount of memory needed to 

store the context information for a first order model is about llkby te . Since different 

applications use different destinations it is necessary to load the correct table with each 

application. Therefore this solution is not practicable.

V ariable Length C ontext

W ith variable length contexts one can solve many of the above problems. After a 

branch has been taken, one starts the decoding phase with no information about the 

instruction stream seen so far, i.e. a zero-order model. After the first symbol has been 

coded, one can use a higher order model, i.e. the first-order model. Continuing in this 

fashion one can get a higher order after each symbol has been coded until a control 

transfer instruction alters the control flow. The advantage is that one loses not all of 

the structure given in an instruction stream after a control transfer has been taken and 

tha t one can reach high order after coding a few instructions. The disadvantage is that 

during decoding one has to change the order to keep in step with the encoder.

E xecute G raphs

Static object code, on which the encoding process has to be done, is provided in linear 

order. In contrast, looking at dynamic code (on which decoding has to be done), it is 

more like executing a graph than executing linear code. During program execution the 

linearity is broken by branches taken or subroutine called.

To achieve very high compression it is necessary to know the context of each in

struction to be encoded. This problem could be solved by transforming linear code 

into a graph representing executable code. At each branch target address one splits the 

code into two parts: the “linear” part which represents the non taken branches and the 

“graph” part which represents the taken branches. During program run time one now 

gets different context for the linear part than for the graph part. The great advantage
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is tha t compression can be done with an ideal model, as the context is always adequate. 

The great disadvantage is tha t one has to store several object code parts in graph mode 

for one part in the original linear code. This makes the solution probably unworkable 

in practice as the increase in static code size would be tremendous. This method has 

yet to be investigated.

7 .3 .4  M e th o d  A p p lied

The influence of control transfer instructions on the dense instruction set architecture 

should not be underestimated. Reducing static code size depends not only on the model 

used but also on the method used on how to handle entry points effectively.

The method used has to be balanced carefully against the compression ratio achiev

able (especially with higher order Markov sources), the amount of memory required to 

store the context information, and the time required by the method used for decoding.

Due to the complexity of designing and implementing different methods in the time 

available the simplest method described was implemented, initializing the decoder with 

a simple context.

7.4 A lgorithm s for Encoding and D ecoding

The encoding process must be preceded by post compiling to add information neces

sary to decode the given instruction stream. The algorithms described in Figure 7-5 

[Schoepke 1992b] give a brief overview how post compiling has to be done to detect con

trol transfer instructions during the encoding process and how the decoder can examine 

the dense instruction stream to provide instructions to the execution unit for correct 

execution.

A new phase of encoding has to be started at each entry point. This includes 

ending the current encoding phase through outputting remaining bits from the encoder, 

inserting an additional decode instruction so that the decoder is able to recognize the 

entry points, and initializing the encoder for further encoding. This influences the 

achievable compression results especially as one knows that only a few instructions
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Encoding_Program ()
{

Initialize_Arithmetic_Encoder (); 
while !( EOF )
{

read ( instruction ); 
if ( instruction == entry_point ) 

Encoding_Procedure ( instruction ); 
Encode_Instruction ( instruction );

}
}

Encoding_Procedure ( instruction )
{

End_Current_Arithmetic_Encoding_Phase() ; 
Insert_Decode_Instruction (); 
Initialize_Arithmetic_Encoder (); 
return;

}
Figure 7-5: Encoding algorithm

are between branch instruction and branch target. After initializing the encoder, the 

instruction can be encoded.

The decoding algorithm (Figure 7-6) shows a brief summary of the decoding and 

execution phase. The decoder gets one chunk from main memory, decodes it, and 

supplies the symbol to build the instruction. Building an instruction depends heavily 

on the number of instruction streams, the size of the symbol to be decoded and the 

type of the instruction to be built. Therefore several steps could be necessary to build 

an instruction. If the instruction is a decode instruction, the decoder has to be re

initialized. The same is necessary in the case of a branch taken where the new memory 

address also has to be calculated.

7.5 Cache Influence

The cache organization for the proposed architecture can be done in several different 

ways.
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Decoding_Program ()
{

Initialize_Arithmetic_Decoder () ;
read ( chunk );
while !( program_end )
{

Decode_Symbol ( chunk );
Build_Instruction ( symbol );
if ( instruction == decode.instruction )

Initialize_Arithmetic_Decoder (); 
else

if ( instruction == branch_instruction )
Decode_Procedure ( instruction ); 

else
Execute.Instruction ( instruction ); 

read ( chunk );
}

}

Decoding_Procedure ( instruction )
{

Execute_Branch_Instruction (); 
if C branch.taken )
{

Initialize_Arithmetic_Decoder ();
Determine_New_Address ();

}
return;

}

Figure 7-6: Decoding algorithm

1. Fetched chunks from memory can be stored in the on-chip cache. The advantage 

is that several chunks are available without another memory reference except after 

taken control transfers. The disadvantage is that these chunks have to be decoded 

before execution. Therefore this is not a desirable solution.

2. Decoded instructions can be stored in the on-chip cache. The advantage is that 

the decoding is already done and the instruction can be read by the execution 

unit ready for execution like in any similar architecture. The disadvantage is that 

more cache memory is needed to store the decoded instruction than the chunks.
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3. Fetched chunks, as well as decoded instructions, can be stored in the on-chip cache. 

This solution combines some of the advantages and disadvantages of the previous 

ones, e.g. availability of instructions for the execution unit.

Furthermore, the proposed architecture would gain from a second level cache that could 

hold a large number of encoded chunks as dense object code size is much smaller than 

uncompressed object code. How different solutions improve system performance and 

their influence on compressed code has yet to be investigated.

7.6 Hardware D esign

A high level hardware design example for a VLSI chip to implement dense instruc

tion set computers using four decoders [Schoepke 1992g] is given in Figure 7-7. The 

architecture proposed is based on a decoder with eight bit input and output. The whole 

decoding unit is assumed to be on one chip. During execution the fetch unit fetches 

information from memory 32 bit wide into a fetch buffer and provides eight bit long 

chunks to the decoder as required. The decoders decode the chunks and provide each 

eight bits to build the instruction which is transferred to the CPU for execution. The 

CPU has to acknowledge the decoder after a control transfer has been taken or a block 

entry point has been reached to reset the decoder. The decoding process can be done in 

parallel to the instruction execution until the control flow is altered. In this particular 

example four decoders are used.

Figure 7-8 shows a design to implement arithmetic coding [Schoepke 1992g]. The 

decoder has eight bit input and output, a connection to the memory containing prob

ability information, and a connection to the CPU providing information about control 

transfers and their targets. The address decoder, using Current C (the current lower 

coding point) and Current A  (the current interval width), calculates the address which 

is used by the symbol finder to get the symbol from RAM. The symbol is then provided 

to build the instruction. In parallel to other CPU activities the decoder calculates the 

values for N ew  C and New A in two different cycles. The new low point New C of the 

next interval is the sum of the current low point Current C , and the product of the
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decoding unit

decoder
8 bit

8 bit

8 bit
8 bit

32 bit32 bit

CPU
bus

memory
bus 8 bit

8 bit

8 bit
8 bit

instructionchunks

branch taken /no t taken

RAM

RAM

RAM

RAM

CPUfetch
unit

Figure 7-7: VLSI design for the dense instruction set computer architecture with four 
decoders. The fetch width from memory is 32 bits. The fetch unit provides chunks 
of eight bit to the decoding unit as required. The decoders supply eight bit each to 
build the 32 bit instruction. The decoding unit provides the instruction to the CPU for 
execution.
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8 bit input

8 bit Address decoder RAM

output

Current C

Symbol finder

P ( s i )  P( « )

I
Multiplexcer

£
Multiplier

Demultiplexer

1
Adder Current A -----»

New C New A

reset ; branch taken /no t taken

Figure 7-8: Hardware design for arithmetic coding. The arithmetic decoder takes an 
eight bit input (the chunk), decodes it, and supplies an eight bit output to build the 
instruction. The arithmetic decoder uses the address decoder and the symbol finder for 
decoding. The CPU connection reinitializes the current lower point, Current C, and the 
interval width, Current A , if necessary.
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current interval width Current A and the cumulative probability P{s{) of the symbol 

S{ to  be encoded:

New C = Current C +  (Current A  * P(s{)) (7-1)

The new interval width N ew  A is a product of the current interval Current A and the 

probability p(s{) of the symbol s,- to be encoded:

New A = Current A * p(s{) (7-2)

The calculation is as follows: In the first cycle the product from Current A  multi

plied by the cumulative probability P(si) has to be calculated and in the second cycle 

the decoder calculates the product Current A multipied by the probability p(s{) and 

the sum Current C plus the product Current A multiplied by the cumulative proba

bility P(s{), which has been done in the first cycle. Assuming a cycle time for this stage 

only double the speed of the processor cycle time, the calculation finished at the same 

time the CPU has executed a one cycle instruction.

-Current C8 bit input

1/Current Aadder

multiplier

P(si)

Figure 7-9: The diagram shows the hardware design for the address decoder. The 
address decoder needs the current lower point C, the current interval width A, and the 
eight bit long input to calculate the cumulative probability, P (s,). The quantity P(si) 
is supplied to the symbol finder.

A high level hardware design for the address decoder [Schoepke 1992e] is given in
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Figure 7-9. The address has to be calculated as follows:

address = (8JbitJnput — C urrent C )/C urren t A  (7.3)

The resulting address is a close one, but not the exact address one is looking for. A 

symbol finder (Figure 7-10) [Schoepke 1992e] therefore has to search in the cumulative 

probability table for a symbol with an address equal or less to the address calculated. It 

then provides the probability and cumulative probability of the symbol to the arithmetic 

coding unit. Using the enhanced algorithm provided in Section 5.5 finding a symbol in 

the cumulative frequency table reduces to one comparison.

P(si)

f

RAM

r

compare

P(symbol) p(symbol)

Figure 7-10: The hardware design for the symbol finder is shown. The symbol finder 
takes the cumulative probability, P(si), supplied by the address decoder and compares 
it with the information provided in the RAM. It then delivers the probability of the 
symbol, p(symbol), and the cumulative probability of the symbol, P(symbol), to the 
arithmetic decoder.

The whole process of decoding an instruction has to be done as far as possible in 

parallel to the instruction execution as real time decoding is necessary. Assuming the 

current environment of a 25MHz SPARC station and 100MHz adder/multiplier, one is 

able to decode an instruction in half the CPU cycle time. The address calculation can 

also be done with the same speed, but some calculations have to be done sequentially. 

Increasing processor clock rates only would, of course, change this ratio.

W ith the decoding algorithm developed the symbol finder can be implemented with 

one comparison only considering a look-up table of size four kbyte for a zero order 

model. For higher order models the look-up table size increases.

In parallel to instruction execution New C  and New A can be calculated but both

89



values are needed in the address decoder to decode the next symbol. Therefore faster 

units are needed to decode in real time. Furthermore, precautions have to be taken to 

deal with the under- and overflow problems.

7.7 Sum m ary

A description of the dense instruction set architecture and the algorithms used is given. 

The proposed decode-execution model seen in Section 7.2 is able to handle the decoding 

phase. W ith arithmetic coding and a fixed model it is possible to handle control transfers 

efficiently.
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C hapter 8

D ense Instruction Set C om puter  

A rchitecture Sim ulation

In this chapter I analyze the results obtained by simulation of the architecture given in 

Chapter 7, show the limits of the work done, and discuss the differences between theory 

and the results.

8.1 Encoding and Decoding Process

During the encoding phase on the static object code, entry points are detected and the 

instruction stream is compressed. During decoding on the dense dynamic object code 

the instruction stream is de-compressed.

8 .1 .1  E n co d in g  

E ntry P oints

The encoding process is preceded by post-compiling to get the information necessary 

to encode and decode the instruction stream. The object code has to be examined for 

branch targets, function calls and returns, and jump and link instructions as well as 

trap instructions. This information must be passed on to the encoding unit. Detecting 

branch targets, whether unconditional or conditional, can be done by reading the disp22
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Source

--------1

Object Code

Dense 
Object Code

Post Compiler

Encoder

Compiler

Figure 8-1: The encoding graph is shown. The compiler compiles source code to object 
code and supplies information to the encoder about entry points. This information is 
used during post-compiling of the object code. Then the encoder encodes the object 
code to the dense object code.

bit field from the branch instruction. The destination is then given by the program 

counter plus disp22 multiplied by four. During the encoding phase the program counter 

is initialized to zero. The target address found is an entry point where the arithmetic 

encoding (and decoding) process has to be restarted. This involves a re-initialization 

of the coding range with lower and upper bound (Chapter 5) and ending of the current 

coding phase, which involves outputting the remaining bits for the encoder. If a higher 

order model is in use, the context of the next symbol to be encoded or decoded must 

be initialized.
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The same method of finding the entry point has been used for call instructions. The 

dispSO bit field multiplied by four provides the target address (the program counter is 

again initialized to zero). The target address found is again an entry point where the 

same actions are necessary to encode and decode the instruction stream.

For function returns (a register indirect jump and link instruction) finding the right 

target address is more complicated as the address can change during program run time. 

This information cannot be collected by examining just the object code, since register 

contents and thus return address can change. Therefore the current architecture is 

restricted. Changing the return address during run time to an unknown entry point, 

i.e. in between two entry points, is not tolerated. Using the jump and link instruction 

in such manner results in a program run time error. Changing the address to any other 

entry point (such as another procedure return address) is possible as these points are 

already treated as entry points.

During simulation it became clear that not all addresses created by the jump and 

link instruction within the examples analyzed are known entry points. In particular, 

some library routines linked into the object code use addresses tha t are not known to the 

encoder so far. The restrictions imposed can be abolished when compiler information 

is available to the encoder regarding addresses used by control transfer instructions.

Encoding M odel

Symbol context is needed to encode (and decode) with higher order models. The in

formation concerned could be stored in on-chip RAMs but it was found to be an un

acceptable overhead since the context could be different for each entry point. Instead, 

common context information has been used. The loss of context and re-initialization of 

the coder influences the compression results and the results achieved during program 

execution as will be seen.

E ncoding P rocess

The encoding process depends on the model used and the technique chosen to  encode 

the instruction stream. The simulator divides the 32 bit long instruction into four eight
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bit symbols. The encoder encodes each eight bit symbol separately in the order of 

their occurrence. That means the last symbol of the previous instruction is the context 

information for the first symbol in the current instruction. If the fetch unit fetches an 

instruction from a location that is an entry point, the encoder puts out the remaining 

bits and re-initializes the coding range via lower and upper bounds. As the fetch unit 

during decoding uses the same 32 bit alignment during program run time as the original 

architecture, the encoder must ensure that the first byte that is put out by the encoding 

unit (the chunk) is on a 32 bit alignment. This alignment leads to wasted bits th a t fill 

the gap between the last chunk written by the encoder and the 32 bit alignment.

The encoding process ends after all instructions have been encoded. As it was 

not always possible to distinguish between data and instructions with the method used 

(examining object code only), data that could not be distinguished is also encoded. This 

is of no importance during simulation as the data references are done on the original 

program. The data that can be recognized (such as data from the data segment) was 

not encoded.

8 .1 .2  D e c o d in g

The decoding process is time critical as it has to be done during program run time. The 

program is loaded into main memory. During program execution the fetch unit fetches 

information from main memory in 32 bit blocks, i.e. four chunks. The decoders decode 

the information provided by the fetch unit and build an executable instruction for the 

execution unit. The instruction then can be executed. The process is straightforward 

until a control transfer instruction alters the control flow or an entry point has been 

reached. Coming into this stage involves further actions other than just decoding and 

executing an instruction. Reaching an entry point means re-initialization for the de

coder, and restarting the decoding process with a known range to remain in step with 

the encoder. The new fetch address has to be calculated.
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8.2 A  Sim ulator for D ense Instruction Set A rchitectures

data reference memory

control transfer 1 taken

Fetch UnitDecoder

CPU

Dense 
Object Code

Data

-4 ------------------------------------  -4  ' ■ -4 ----------------

instruction chunk four chunks

Figure 8-2: The simulator for decoding and instruction execution. The data path 
between memory and CPU has not been changed. On the instruction path four chunks 
are fetched from memory (supplying dense object code) and stored in a fetch buffer 
32 bits wide. One chunk is fed in the decoder. The decoder output is stored in an 
instruction buffer until building of the instruction is completed. The instruction is then 
supplied to the CPU.

The dense instruction set architecture was simulated on the SPARC machine using 

two child processes traced by a parent process. For the first process main memory 

supplies a stream of four chunks from the dense object code to the processor fetch unit. 

The fetch unit transfers one chunk to the decoder if required. This technique requires a 

buffer of 32 bits in the fetch unit. Between fetch and execution unit the decoder decodes 

the encoded instruction stream and builds the instruction that is fed into the execution 

unit. The instruction supplied to the execution unit has to be 32 bits wide as there is 

no change in the instruction set finally executed on the machine. In the execution unit 

the instruction is executed.

In the simulation system one decoder decodes every chunk sent by the fetch unit. 

Therefore, one decoder has to transm it four bytes as four bytes are necessary to build 

an instruction 32 bits wide.

Executing a control transfer instruction or reaching an entry point involves the action 

of re-initializing the decoder, and starting with new coding range as mentioned before. 

New chunks have to be supplied to the fetch unit from an addressable memory location
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before decoding can continue. The symbol context has to be initialized.

A further problem exists in how to recognize an entry point during run time which 

is not preceded by a taken control transfer. The simulator uses a table of entry points, 

built during encoding, to detect them.

Some compilers use space between blocks of compiled code to store data. This can 

result in smaller code size, but makes analyzing object code an impossible task as data 

cannot be distinguished from instructions. The simulator implemented therefore uses 

two different environments (running in two different child processes) and is thus able to 

deal with instructions as well as data references. One environment (supplying chunks) 

simulates the fetch, decode, and execution unit, i.e. it can handle all instruction refer

ences. The second environment (supplying the data segment) deals with data references. 

As a result, instructions are fetched from the encoded program, data from the original 

program. As there axe no changes in the data address space, the program executes 

correctly.

8.3 Sim ulation R esults

The results are based on simulations done on SPARC, using the same object programs 

as used during experiments with arithmetic coding. During simulation no on-chip cache 

was used.

8 .3 .1  C o m p ressio n  A ch iev ed

Table 8.1 shows the compression results obtained by the four programs using a zero 

order model. The average reduction is about one bit per symbol which results in an 

average decrease in program size of about 12%.

Table 8.2 shows the compression results obtained by the four programs using a first 

order model. The average reduction achieved is more than three bits per symbol or 

about 44%.
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C om pression R esults
Zero Order M odel

p ro g ra m ach ieved
bits/symbol

re d u c tio n
percent

progl 7.06 11.75%
prog2 6.81 14.88%
gperf 7.13 10.88%
dhry 7.10 11.25%
average 7.03 12.19%

Table 8.1: The compression results using a zero order model are shown. The information 
is given in bits per symbol and in percentage of reduction.

C om pression  R esu lts  
F irs t O rd e r M odel

p ro g ra m achieved
bits/symbol

red u c tio n
percent

progl 4.48 44.00%
prog2 4.00 50.00%
gperf 4.53 43.50%
dhry 4.97 37.88%
average 4.50 43.85%

Table 8.2: The compression results using a first order model are shown. The information 
is given in bits per symbol and in percentage of reduction.

8 .3 .2  C o m p ressio n  R e su lts  com p ared  to  T h eo ry

Table 8.3 shows the compression results compared to the theoretically possible entropy 

using a zero order model. On average the compression result achieved is about one bit 

higher than the entropy bound.

Table 8.4 shows the compression results compared to the theoretically possible en

tropy using a first order model. On average the compression result achieved is about 

1.7 bits higher than the entropy bound.

In both cases, it is not possible to achieve the optimum entropy as the compression 

results are largely affected by control transfers as encoding has to be done on static 

code and decoding on dynamic code. Another factor is the model used, since one model
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C om pression R esults com pared to Entropy
Zero Order M odel

p ro g ra m e n tro p y
bits/symbol

ach ieved
bits/symbol

progl 5.90 7.06
prog2 5.94 6.81
gperf 5.93 7.13
dhry 6.00 7.10
average 5.94 7.03

Table 8.3: The compression results using a zero order model are shown. The information 
is given in bits per symbol.

C om p ressio n  R esu lts  co m p ared  to  E n tro p y  
F irs t  O rd e r  M odel

p ro g ra m e n tro p y
bits/symbol

achieved
bits/symbol

progl 2.53 4.48
prog2 2.90 4.00
gperf 2.96 4.53
dhry 2.89 4.97
average 2.82 4.50

Table 8.4: The compression results using a first order model are shown. The information 
is given in bits per symbol.

cannot represent all applications.

8 .3 .3  C o m p arison  b e tw een  Zero and  F irst O rder M o d el

Table 8.5 shows the entropy results comparing zero and first order model. It illus

trates the improvement achieved using a context dependent model.

Table 8.6 shows the compression results comparing zero and first order model and 

illustrates the improvement achieved using a context dependent model, i.e. a first order 

model, rather than an independent model, i.e. a zero order model. The improvement 

achieved is on average 17% less than the entropy suggests.
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E n tro p y  Im p ro v em en t 
Z ero  an d  F irs t O rd e r  M odel

p ro g ra m e n tro p y  
zero  o rd e r  firs t o rd e r

im p ro v em en t

bits/symbol bits/symbol percent
progl 5.90 2.53 57.12%
prog2 5.94 2.90 51.18%
gperf 5.93 2.96 50.08%
dhry 6.00 2.89 51.83%
average 5.94 2.82 52.53%

Table 8.5: The entropy results comparing zero and first order model are shown. The 
information is given in bits per symbol for zero and first order model and in percentage 
of improvement from zero to first order model.

C o m pression  Im p ro v em en t 
Zero  an d  F irs t O rd e r  M odel

p ro g ra m achieved  
zero  o rd e r  firs t o rd e r
bits/symbol bits/symbol

im p ro v em en t

percent
progl 7.06 4.48 36.54%
prog2 6.81 4.00 41.26%
gperf 7.13 4.53 36.47%
dhry 7.10 4.97 30.00%
average 7.03 4.50 35.99%

Table 8.6: The compression results comparing zero and first order model are shown. The 
information is given in bits per symbol for zero and first order model and in percentage 
of improvement from zero to first order model.

8 .3 .4  E ffec tiv en ess

Table 8.7 shows the effectiveness of the dense architecture. The results gathered by 

simulation are compared to the entropy bound.

For the zero order model a decrease of about 26% is possible and a reduction of 

about 12% has been achieved. This results in an effectiveness of 47.09%. For the first 

order model a reduction of 65% is possible. During simulation a decrease of 44% has 

been achieved. This results in an efficiency of 67.57%. The results are better for the first 

order model as a context dependent model is able to represent the code more accurately.
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E ffectiveness
zero  o rd e r firs t o rd e r

entropy
achieved

5.94 bits/symbol 
7.03 bits/symbol

2.82 bits/symbol 
4.50 bits/symbol

effectiveness 47.09% 67.57%

Table 8.7: Effectiveness

8 .3 .5  T h e  E ffect o f  F etch  W id th

Table 8.8 provides the information on how many bits are wasted using 32 bit fetch width 

against eight and one bit fetch width for the zero order model.

A verage  P e rc e n ta g e  o f  W asted  B its  
Zero O rd e r M odel

fe tch  w id th w asted  b its
bits percent

1 bit 0%
8 bits 3.01%

32 bits 14.18%

Table 8.8: The average percentage of wasted bits by 32 bit fetch width compared to 
eight bit fetch and one bit fetch width using a zero order model is given.

Using eight bit fetch width only 3.01% of bits is wasted. Using 32 bit fetch width, 

however, already one out of eight bits is wasted.

Table 8.9 provides the information on how many bits are wasted using 32 bit fetch 

width against eight and one bit fetch width for the first order model.

As in the previous case only a small number of bits is wasted using eight bit fetch 

width instead of one bit fetch width. Using 32 bit fetch width this increases to nearly 

two out of eight bits.

Comparing both tables the increase for eight bit fetch width from zero to frst order 

is about 22%. For 32 bit fetch width the increase is about 59%.
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A verag e  P e rc e n ta g e  o f  W aste d  B its  
F irs t O rd e r M odel

fe tch  w id th w asted  b its
bits percent

1 bit 0%
8 bits 3.67%

32 bits 22.62%

Table 8.9: The average percentage of wasted bits by 32 bit fetch compared to eight bit 
fetch and one bit fetch width using a first order model is given.

8.4 A rchitecture Limits

In the current state the simulated dense architecture has some limits. The simulation 

used is concerned with single tasks only, using a simple model for encoding and decoding. 

Applying the solution to a more general architecture involves further steps which have 

not yet been investigated.

Building the architecture proposed one has to consider task changes, interrupts and 

other mechanisms which can occur. Task changes, for example, require saving the coder 

status (this is lower and upper bound for the decoder and the bits left in the fetch 

unit). Therefore, task changes become more costly for the dense architecture than for 

the conventional architecture.

Analyzing object code only is not sufficient to build a dense instruction set as not 

every entry point can be calculated. That means compiler changes are necessary to deal 

with register indirect control transfers. The experience gained shows that most of the 

time the entry point is already known, but the method cannot deal with all applications 

and compilers or languages.

Self-modifying code is not supported on the dense architecture as the coding process 

is based on streams of symbols rather than individual symbols.
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8.5 Sum m ary

The dense architecture has been simulated on the SPARC machine. The post-compiling 

process on the object code to compress provides the necessary information about entry 

points (a minor number of entry points had to be treated separately). The encoder then 

encodes the instruction stream considering a specific model. During program run time 

the decoder decodes the dense instruction stream using the same model. Reaching an 

entry point, the decoder re-initializes the coding ranges and fetches new chunks from 

memory.

The compression results show a substantial reduction in instruction bandwidth, es

pecially with a first order model. Comparing the results to the entropy bound the 

effectiveness achieved approaches 68%. The percentage of bits wasted using 32 bit fetch 

width instead of one bit fetch width reaches 23%.
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C hapter 9

C onclusion

In this dissertation I present one direction to improve system performance (especially 

for multiprocessors with shared memory) using dense computer instruction sets. This 

proposal has certain advantages over existing approaches. I have shown it is possible to 

reduce memory-processor bus traffic by a factor of about two on the SPARC architec

ture with a simple first order model. This work is not complete as necessary compiler 

modifications are not yet implemented. Further reduction in memory-processor bus 

traffic can be achieved with more sophisticated models which exploit the structure of 

instruction streams. This is, however, a task of considerable proportion going beyond 

the frame of this dissertation. Still, this dissertation opens up an avenue for further 

research into instruction set compression.

There is no reason why the dense instruction set computer architecture cannot be 

built in VLSI. Despite the changes necessary to accommodate various requirements 

in different architectures (such as different instruction sets and addressing modes) the 

principles of this work remain valid.

As arithmetic coding is suitable for different order models this offers the possibility 

of further work for even more efficient object code compression. New techniques are 

sought which can cope with increasing requirements (such as faster CPU cycle times) 

without creating insuperable problems to the dense architecture.
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