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A bstract

Let G be a transitive permutation group acting on a set 0 . A cycle c is 

involved in a permutation g if and only if gc~l fixes all points of Supp(c). We 

define a function Cyc(G) which takes the permutation group G to the group 

generated by all cycles involved in elements of G. A group is called cycle 

closed if it satisfies Cyc(G) = G. We will look at the problem of determining 

the least k such that Cyck(G) = Cyck+1(G) (where Cyc1(G) =  Cyc(G) and 

Cycl+l(G) =  Cyc(Cycl(G))) for finite and infinite groups. When Q is a finite 

set of size n, it is shown that for all groups other than Cp := ((1, 2, ...,p)) for 

prime p, we have that Cyc3(G) =  Sn. Groups such that Cyc2(G) ^  Sn are 

characterised. We look at the cyclizer function on certain infinite groups and 

give examples of cycle closed permutation groups on infinite sets.
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Introduction

In a permutation group each element is a product of disjoint cycles. In this 

thesis we take the set of cycles that occur in the cycle decomposition of ele

ments of a group and use this set to generate a new group. The inspiration 

for this came from looking at the set of cycles involved in elements of a group, 

which is the union of the sets acted on in Parker’s Lemma (Theorem 1.4). 

Chapter 1 recalls standard definitions from group theory and introduces some 

possibly non-standard notation before formally defining the cyclizer function, 

which takes a group to the group generated by its cycles. We then begin by 

looking at transitive finite groups and the sequences produced by repeated ap

plications of the cyclizer function. It is quickly established that all but cyclic 

groups of prime order in their natural representation produce a sequence of 

groups terminating with the symmetric group. The question then becomes 

how long does it take to get to the symmetric group. The number of repeated 

applications of the cyclizer function is bounded by considering imprimitivity 

and by noting that the function takes primitive groups to primitive groups. 

The rest of the consideration of finite groups is concerned with establishing 

which groups give rise to sequences of maximal length.

For infinite groups the definition of cyclizer needs adjusting to ensure we
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get an analogous sequence of groups. We then consider the sequences resulting 

from an infinite cyclic group and an infinite dihedral group. The thesis ends 

with some more observations about cyclizers of infinite groups. In the infinite 

case it has not been possible to bound the length of the sequence.

Some of the results contained in this thesis also appear in a paper by Pe

ter Cameron [2]. I discovered the existence of this paper only after having 

begun the work contained in this thesis. Unfortunately, on finding the pa

per I discovered that the work I had completed on finite groups and the first 

three groups in the cyclizer sequence of the infinite cyclic group had already 

been published. Subsequent work extended the ideas introduced in Cameron’s 

paper. The paper looks firstly at finite groups, showing that a cycle-closed 

group can be reached after taking cyclizers at most three times. Cameron 

then goes on to look at infinite groups, defining four types of cyclizer and giv

ing some analogues of the finite results. The work contained in this thesis was 

done completely independently except where stated. At the end of his paper 

Cameron poses several open problems, one of which ( “which finite transitive 

groups G satisfy Cyc2(G) ±  Cyc3(G)?”) is answered by Chapter 3 of this 

thesis. Another of the open problems is to prove or find a counter example 

to the conjecture that Cyc3(G) = CycA{G) for all groups. This thesis and 

Cameron’s paper show that this is true for finite groups and infinite cyclic 

groups. However this thesis makes no further progress in answering the ques

tion, which remains open. Interestingly Cameron notes tha t this work has an 

application. A paper [8] by C.Lenart and N.Ray on Hopf algebras quotes and 

makes use of Theorem 2.3.
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The main body of this work is followed by two appendices. The first is 

an acknowledgement of the substantial role that GAP [4] has played in the 

research behind this thesis. Although no results depend on them, the calcu

lations performed helped enormously in formulating and checking hypotheses. 

The second appendix is a short unrelated topic that resulted from a prelimi

nary research project.

I am deeply indebted to both my supervisor Geoff Smith, for his help and 

humour, and my partner Daniel Holley, for his encouragement and care (and 

for trying very hard to remember what a group is). I must also acknowledge Pe

ter Neumann’s helpful communication that inspired the proof of Theorem 2.7.
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Chapter 1

Definitions and notation

Section 1.1 is an outline of the group theoretic prerequisites to this thesis. The 

details of this section will be very familiar to anyone with a knowledge of group 

theory, however the reader is encouraged to read this as some notation may be 

nonstandard. The reader requiring more details is referred to Dixon [3]. This 

chapter also introduces some notation from graph theory. We then look at 

Parker’s Lemma and introduce the cyclizer function on permutation groups.

1.1 P erm utation  groups

A p e rm u ta tio n  7r, of a set S7 is a bijection from Q to itself. Let Sym(Q) 

denote the set of all bijections on Q. Composition of functions gives us a 

binary operation on this set, under which the set Sym(fl) becomes a group, the 

sy m m etric  group. When is finite of size n we may also use the notation 

Sn for Sym(fi). A permutation 7r : »-)> Q can be written as a product of

disjoint cycles where the occurrence of the cycle (a i, <*2,..., a n) (a* G £2) in the
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Definitions and notation Permutation groups

cycle decomposition of ir tells us that

cxi+1 if  i G { 1 , . . . ,  n  — 1}
(a*) 7T =  <

I oi\ if i = n

Points of D occurring in cycles of length 1 are fixed points of the permutation 

and these cycles are usually omitted from the cycle decomposition. The sup

port of a permutation 7r, written Supp(7r), is the set {cu G f2|(u;)7r ^  to}. A 

cycle with support of size k is a /c-cycle. Cycles of length 2 are known as trans

positions. Permutations of finite sets (elements of Sn for n G N) are products 

of transpositions. A permutation is said to be even if it can be written as a 

product of an even number of transpositions and odd if it can be written as 

the product of an odd number of transpositions. It is well known that per

mutations cannot be both even and odd. The set of even permutations on n 

points is a subgroup of «Sn, called the alternating group and is written An. 

A group G is said to be a perm utation group on the set Q if G is a subgroup 

of Sym(Q). The degree of G is the size of the set Q (|f2|) (where Q, is a set of 

minimal size) and the order of G is the size of the group (|G|).

Let G be any group, then an action of G on a set Q is a map a : Q x G  

where a(u,g)  is more commonly written (uj)g. The map a must satisfy the 

conditions that for all uj G (a;)Id =  u  and (cj)(gh) = ((uj)g)h for all g,h  G G. 

If such a map exists, then G is said to act on Q and is called a G-set. This 

map yields a homomorphism r  : G —> Sym(fi) by (g)r : u  i->> (u>)g for all 

g G G. The image of r  (Im(r)) is a subgroup of Sym(fl) and is therefore a 

permutation group. If r  is injective, then G is isomorphic to the permutation
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Definitions and notation Permutation groups

group Im(r) and is said to act fa ith fu lly  on Q. All groups are isomorphic to 

permutation groups and in particular all groups can be made to act faithfully 

on themselves via (h)g := h * g (where * is group multiplication). This is a 

faithful action of G on the set of elements of G. This representation of G is the 

r ig h t reg u la r rep resen ta tio n , regular referring to the fact that for any two 

points of the set (in this case also the group) there is a unique element of the 

group taking one to the other. A group can also act on itself via con jugation , 

that is (h) g =  g~l h g. We will use the notation h9 to mean conjugation of h 

by g.

A permutation group G is tra n s itiv e  if for all a, f3 G £1 there exists an ele

ment g G G such that (a)g = (3. If D is a G-set, then so is Qk := Q, x • • • x
^    ss 1" " ^

k times
G acts naturally on Qh by

(cji, .. . , u k)g = ((wi)g, . . . ,  (cok)g).

Let C Dk be the set of ordered fc-tuples (oq,. . .  ,Luk) consisting of distinct 

elements u>i G f h  If the action of G on is transitive, then G is said to 

act /c-transitively on Q. Note that fc-transitivity implies fc'-transitivity for 

k' < k.

If a group G acts on a set fi, then G also acts on the power set of $1 (the set 

of all subsets of Q.) by (A)g =  {(<5)g | S G A} for A C Q. If for all g G G the 

sets (A )g and A are either disjoint or equal, then A is said to be a G-block. 

Obviously the whole set D is a block for all group actions, as are all subsets 

of size 1, these are trivial blocks. If a group action has no non-trivial blocks,
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Definitions and notation Permutation groups

then it is prim itive, otherwise G is im prim itive. Note that if G acts on a 

finite set and the action is imprimitive and transitive, then the size of each 

block must divide the size of £7, as every block is associated with a system 

of blocks that partition Q into sets of equal size. Let S  := {A i,--- ,A^} 

be such a system of blocks then there exists a homomorphism from G into a 

permutation group on S  by considering how elements of G move the blocks in 

S. The image of this homomorphism is labelled Gs .

If T  = { # ! ,. .. ,  gk} is a set of elements of a group G, then (T ) is the smallest 

subgroup of G which contains gi for % G {1, . . . ,  k}. The elements of T  are said 

to generate the group (T). For any group G a set of generators for G is 

a set T  such that (T) = G. A word in the elements {#i, . . .  ,gk} is a string 

S\ ’ ' ’ Si where each Sj = g\J with Sj G Z. The com m utator of two elements 

g,h £ G is the product g~l h~l g h written [g,h]. It will be useful to know 

commutators of generating elements when rewriting words in these generators 

via gh = hg[g,h]. The set of commutators generate a subgroup of G this is 

the derived subgroup and is denoted G'.

The s tab ilize r of a point a  G is the subgroup of G consisting of all 

elements which fix a  (i.e all g G G such that (a)g = a). This subgroup will be 

denoted Ga. Similarly we define the point-wise stabilizer of a subset T C Q to 

be the group of elements that fix all points of T, written Gr (so Gr =  n aGrG a). 

The set-wise stabilizer of T is the group of g G G such tha t (7)g, (7)g~l G T 

for all 7 G T, and this is written G{r}. By ignoring the action G has on points 

of D that are not in the set T we can define a map from G{r} to a group acting 

on T, the image of this map is G^r j.
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For a point a  E ft the orbit of a, Orb(a'), is the set {(a)g \ g G G}. Orbits 

under the action of G partition the set ft. There is a bijective map from the 

cosets of Ga to Orb(a) which maps Gax to (a)x and hence |O rb(a)|-|G a | =  |G|, 

known as the orbit-stabilizer theorem. If G is transitive, the orbit-stabilizer 

theorem gives the result that |ft| |G|.

If G acts on ft, then there is also a natural action by conjugation on the 

subgroups of G. If H  ^  G, then the conjugate of H  by g is the set

H 9 := {g~lhg\h 6 H).

The stabilizer of the group H  under this action is called the normalizer of H  

in G and is written Nq(H).

An autom orphism  of a group G is an isomorphism 7r : G —> G. The 

automorphisms of G form a group Aut G under composition of functions. An 

automorphism 7r is an inner autom orphism  if there exists some x £ G 

such that (g)n = gx for all g G G. The inner automorphisms form a set 

Inn G. In fact Inn G is a normal subgroup of Aut G. If H  < G is invariant 

under the action of every inner automorphism (H x = H  for all i G G ) ,  then 

H  is a norm al subgroup of G. If H  is invariant under all automorphisms 

of G = H  for all 7r G Aut G), then the subgroup H  is said to be

characteristic .

If ft is a infinite set of cardinality A, then Sym(ft) is a group of order 

2a. For an infinite cardinal k the bounded sym m etric group, BS(D,k)  on 

ft is the group of permutations in Sym(ft) with support of size less than k. 

The group B 5 (ft, No) is the group of permutations with finite support, these
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ri r s r7
71
72

7m

Figure 1.1: The se tT  x A  can be thought of as |A| copies ofT.

permutations are f in ita ry  permutations and this group is also known as the 

finitary symmetric group or FS(D).  All finitary permutations are either odd 

or even. The alternating group (Alt(f2)) on an infinite set is the subgroup of 

FS(fl)  consisting of even permutations.

Let G and H  be permutation groups acting on finite sets T := {7 1 ,..., 7m} 

and A := {<5i , . . . ,  £n} respectively. The group B  := G x G x  • • • x  can act

on T x A by
n times

((7*}< y ) ( 0 1 , . . . , 0 n )  =

Let Vi := {(7j,£*)|l < j  < C T x A as illustrated in figure 1.1. Each copy 

of G in B  acts on one of the columns in the diagram. The group H  also acts 

on T x A (written H rxA) via

((7i, <*;))/* =  (7<,(<5j)ft).

in this action H  is permuting the T^s ( (Pi)h =  Tj when (Si)h =  Sj ). The 

w rea th  p ro d u c t of G by H , written G Wr H  is the group B  • H TxA. The 

group B  is the base g roup  of the wreath product, G is called a base factor 

group and H  is the com plem ent group of the wreath product. The group

9
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G Wr H  has a block system, S', of |A| blocks each of size |T|. The action of 

G Wr H  on any one of these blocks is isomorphic to the action of G on T and 

(G Wr H )s “  H A.

L em m a 1.1. Wreath products are associative i.e for permutations groups G, 

H  and K  (G Wr H) Wr K  = G Wr (H Wr K).

Proof: Let G, H  and K  be groups acting on sets T, A and Q respectively 

and consider the group (G Wr H)  Wr K.  This group has a block system 

S  := { r i , r 2, r n} where n = |A| • |Q| and |r»| =  |T| for all i such that

((G Wr H)  Wr K f f a  = G.

Now consider the action of the group on the set S.  The group (G Wr H )s is 

isomorphic to H  therefore

((G Wr H)  Wr K ) s = H  Wr K.

So by the above we have that (G Wr H)  Wr K  = G Wr {H Wr K). □

The ex p o n en t of a group G is the smallest natural number e such that

for all g € G ge = Id. Let p be a prime number, a p-group is a group G in 

which every element has p-power order. Cauchy’s theorem [9] tells us that if a 

prime p divides |G|, then G contains an element of order p and therefore also 

a subgroup of order p. The following theorem shows that G also contains a 

subgroup of order pr where pr is the highest power of p that divides |G|. A

subgroup of this order is called a Sylow p-subgroup  of G.

10
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T h eo rem  1.2. (Sylow’s Theorem). Let G be a finite group and p a prime. 

Write |G| =  prm where p does not divide m.

(i) There is at least one subgroup P of order pr in G;

(ii) the subgroups of order pr form a single conjugacy class in G;

(Hi) if X  is any p-subgroup of G, then X  ^  x ~ lP x  for some x G G;

(iv) if n is the number of subgroups of order pr, then n\m and n =  l(mod p).

Consider the group S pn which has order pn\. The largest power of p dividing 

the order of this group is pl+p+p2+-+pn \  The group

P  ;= ( .. .  (Cp Wr Cp) Wr • • •) Wr Cp ^  Spn

has order p1+P+P2+'"+Pn 1 and is therefore a Sylow p-subgroup. All other Sylow 

p-subgroups are conjugate to P  in Sp*, they are therefore isomorphic to P. 

Hence P  contains copies of all p-groups that are subgroups of the symmetric 

group on pn points.

Lemma 1.1 shows that wreath products are “associative” , hence we can 

refer to the group Cp Wr Cp Wr • • • Wr Cp without too much ambiguity.

The following theorem is known as the Frattini argument.

T h eo rem  1.3 . For a group G with a finite normal subgroup H  let P  be the 

Sylow p-subgroup of H , then G = Nc(P)  • H.

P roof: Let g be an element of G. The conjugate of P  by g is a subgroup 

of H  as H  is normal, it is therefore a Sylow p-subgroup of H  and by Sylow’s 

theorem is a conjugate of P  by something in H.  So P g = P h for some h G H  

and hence gh~l G Nq{P)- n

11



Definitions and notation Graph theory

1.2 Graph theory

We will also need a few definitions from graph theory, for further information 

the reader is referred to [12]. A graph is a vertex set V  and an edge set E  

that is a subset of the set of unordered pairs of V. The degree of a vertex v 

is the size of the set {u\{v,u}  E E}.  A path in our graph is a sequence of 

elements from E  of the form

{^o, vi}, {vu v2}, { 2̂, ^ } > {vn-i ,  vn}-

If each edge occurs no more than once in a path and the initial vertex Vq is 

equal to the final vertex t/n, then the path is called a circuit. The length of a 

path or a circuit is the number of edges in the sequence. If for any two vertices 

V\ and V2 there exists a path with v\ as an initial vertex and V2 as a final vertex, 

then the graph is connected. The distance between the points v\ and V2 is 

the minimum length of a path with initial vertex v\ and final vertex v2. We 

will only be interested in trees, that is connected graphs that do not contain 

any circuits. In particular we will be interested in regular trees, these are 

trees that contain a (distinguished) root vertex of degree p for some prime p, 

a p-th power number of leaf vertices of degree one and other vertices all of 

degree p +  1; in addition to this any two vertices at equal distance from the 

root must have the same degree. The height of a regular tree is the distance 

from the root vertex to any of the leaf vertices, a regular tree of height zero 

is the trivial tree consisting of one vertex and no edges. Figure 1.2 shows a 

regular tree of height two where p =  3.

12



Definitions and notation Parker's lemma

A A A
Figure 1.2: A regular tree.

A su b tre e  of a regular tree is a subset of vertices of the tree such that they

and the edges between them also form a regular tree. An au to m o rp h ism

of a tree is a map from V  to V  that preserves distances. An automorphism

of a regular tree must preserve the root node and move leaf nodes to other

leaf nodes. The automorphism group of a regular tree is Sp Wr Sp • • • Wr Sp
s v '

h times
where h is the height of the tree, and is generated by maps that swap pairs of 

adjacent subtrees of equal height.

The trees that will be considered later are w eighted , this simply means 

that each vertex is labelled by some number, in our case labels will be from 

the integers modulo p.

1.3 Parker’s lem m a

Let G be a permutation group acting on a set A cycle c is said to be 

involved in g 6 G if gc~l fixes all points of the support of c (i.e a cycle 

is involved in an element of G if it occurs in the cycle decomposition of that 

element). Let Ck denote the set of all fc-cycles involved in elements of G. Then 

G acts on the set Ck by conjugation.

13



Definitions and notation Parker’s lemma

Theorem  1.4. (Parker’s Lemma) For a finite group G, let Pk be the number 

of orbits of the action of G on Ck, and define Ck(g) to be the number ofk-cycles 

involved in g. Then

Pk =
1 1 g e o

Proof: Note that when k — 1 this becomes what is known as Burnside’s 

counting lemma. The following proof of Parker’s lemma is by double count

ing in a similar fashion to the proof of Burnside’s lemma. Let T be the set 

{(c>#)\g £ G,c  is a k-cycle involved in g} and let

rc := {(c,g)\g G G,c is involved in g}.

Then

£>(*) = |r| = ]T |rc|
g€.G cECjt

Now let Ck = U i h  Cki where the C^  are the orbits of Ck-

E ir‘i = E E ir«i
cGCfc i = l  c £ .C k i

An element g is in the stabiliser of c if and only if some power of the cycle c 

is involved in g. Define a homomorphism

4/ : Stab(c) —» (7)

where (7) is the cyclic group of order fc, by 4/(g) =  7J if gc~i fixes all points

14
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in the support of c. The homomorphism 'P is surjective hence the number of 

elements of G such that g) =  7 is

y ^  y ^  |p | _  y ^  y~^ |StaMc)l _  y ^  |CfcJ-|Stab(c)| _  ^  JGj
„ „ k k k

z = l  cCCk- 1 = 1  c£Cki t = l

□

The Parker Vector of a group is then defined to be P(G) = (Pi, P 2 , Pn). 

Work has been done to look at what extent the Parker vector determines a 

group. Daniele Gewurz [5] shows that the Parker vector of An belongs uniquely 

to A n and that P(Sn) =  P(G) for non-symmetric G only when n =  6 and 

G = PG L(2, 5). This thesis will not add to the knowledge of Parker vectors, 

but it was in considering Parker vectors that the following function arose.

1.4 T he cyclizer function

As before, for a permutation group G the set Ck contains all k-cycles involved 

in elements of G.

D efinition. For a finite permutation group G on a finite set of size n, let C 

be the set of all non-trivial cycles involved in elements of G, so C  := Ufc=2^- 

The cyclizer ofG, written Cyc(G), is the group generated by the elements of

C. A group is said to be cycle-closed if G = Cyc(G).

By repeatedly taking cyclizers we get a sequence of groups.

G = G° < G l < ... < G k < ...

15



Definitions and notation The cyclizer function

where Gl+1 — Cyc(Gl) (We will usually denote Gl by Cycl(G)). The group 

Cycl{G) < Sn for all z, hence there exists a minimal k € N0 such that 

Cyck(G) = Cyck+l(G) then we say k is the length of the cyclizer sequence 

for the group G.

E xam ple. Let G be the cyclic group of order 4 generated by the permuta

tion (1, 2, 3, 4). Then Cyc(G) = ((1, 2, 3, 4), (1, 3)) the dihedral group on four 

points. We can then repeat this process to get Cyc2(G) = S4 and so here the 

length of the sequence is two.

C4 •—y D2A 1—̂ ^4

Two questions arise immediately. Firstly, which finite groups are cycle- 

closed? And secondly, what is the maximum length of a sequence of cyclizers of 

a group? Both of these questions will be answered in the following chapters, we 

will also classify finite groups according to the length of their cyclizer sequence 

(with the exception of certain 2-groups).

The definition of the cyclizer of a group can be extended to infinite groups. 

For a group G acting on an infinite set, as in the finite case, let Cyc(G) be the 

group generated by all cycles involved in elements of G. If G contains elements 

involving an infinite number of cycles, then G ^  Cyc(G), so it is natural to 

also look at the group Cyc(G) := (Cyc(G),G). Later we will begin our study 

of the infinite case by looking at the cyclizer of an infinite cyclic group where 

the functions Cyc and Cyc coincide, and then at other examples of infinite 

groups.
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Chapter 2

Cyclizers of finite groups

Recall that for a finite permutation group G and C  the set of all cycles involved 

in elements of G, Cyc(G) = (G). In this chapter we will consider cyclizers of 

finite groups and answer the two questions posed in the introduction.

1. Which finite groups are cycle-closed?

2. What is the maximum length of a cyclizer sequence?

In this investigation we will consider only transitive groups. It is easily seen 

that if G i , ..., Gm are the transitive constituents of G, then

Cyc(G) =  CyciGJ  x Cyc{G2) x • • • x Cyc(Gm)

and hence G is cycle-closed if and only if all transitive constituents are. Also 

the length of the associated sequence will be the maximum of the lengths of 

the sequences of the transitive constituents.
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Cyclizers o f finite groups Finite cycle-closed groups

Throughout this chapter G will be a finite transitive permutation group 

of degree n acting on a set Q. In this and subsequent chapters reference to 

“prime cyclic groups” will mean cyclic groups of prime order in their natural 

representation, that is ((1,2, for some prime p.

2.1 F in ite cycle-closed  groups

In this section it will be shown that the only finite, cycle-closed, transitive, 

permutation groups are symmetric or prime cyclic.

Lemma 2.1. If  G is a cycle-closed transitive permutation group of degree n 

containing a transposition, then G is a symmetric group.

Proof: Assume that G is a cycle-closed transitive permutation group on 

{1, ...,n} =  £7 which contains a transposition. W ithout loss of generality we 

can assume that this transposition is (1, 2). Transitivity of G implies that for 

all ol £ fl there exists /? £ such that (a,/3) G G. Let a  ~  (5 if (a,/?) G G 

or a = (3, then ~  is an equivalence relation (as ( a , /?),(/?,7) G G implies 

(/3, 7 )(a, /?)(/?, 7) =  (a, 7) G G). Label the equivalence classes f21?.., 17*. It 

suffices to show that there is only one equivalence class as then G will contain 

all transpositions and hence be a symmetric group. Assume for contradiction 

that k > 1. W ithout loss of generality let 1,2 £ and consider a point x  G Ft 

such that x  is not in fii. As G is transitive and cycle-closed there is a single 

cycle element (a permutation involving exactly one nontrivial cycle) g G G 

such that (I)# =  x. Now either (2)g = 2 or (2)g ^  2.

If (2)g =  2, then g~1( l i 2)g = (x ,2) £ G hence x  £ Qi giving a con-
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Cyclizers o f finite groups Finite cycle-closed groups

tradiction. Otherwise g — (1, x , .., 2 , (l , x,  2,...) or (1, x , ..., 2). Now let 

h =  <7 ( 1 , 2) and we get that h = (1, x, ...)(2,...), (1, x )(2 ,...) or (1, x , ...) respec

tively. In each case let hi be the cycle of h that moves the point 1 then hi is a 

single cycle element taking 1 to x and fixing 2, so now we get a contradiction 

as before using hi instead of g. □

Corollary 2.2. Any transitive cycle-closed group of even degree is a symmetric 

group.

Theorem  2.3. If  a permutation group G is transitive and cycle-closed, then 

it is prime cyclic or symmetric.

Proof: Let G be a cycle-closed transitive permutation group, proof follows 

by induction on the degree of G. For n = 1,2 or 3 G is automatically prime 

cyclic or symmetric. Assume that the theorem holds for all groups of degree 

less than n and consider G a transitive, cycle-closed, permutation group on 

{1,..., n} = Q. As G is cycle-closed all point stabilisers Ga for a  G are also 

cycle-closed although not necessarily transitive. By induction G1 is the direct 

product of prime cyclic or symmetric groups. One of three situations occur.

• One of the transitive constituents of G1 is Sm for some m  > 2 hence G 

contains a transposition and therefore by Lemma 2.1 G = Sn.

• The stabiliser G\ is trivial. Then the stabiliser of each point is trivial and 

therefore all elements of G move all points of fI. The group G involves 

only n-cycles hence n is prime and G is an n-group. But G < Sn so 

|G| =  n and G is a prime cyclic group.
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• The stabiliser G\ is the direct product of prime cyclic groups and trivial 

groups but is not itself trivial. If any of these cyclic groups are of order 

2, then the lemma applies and G is symmetric, so assume that none 

is. Each stabiliser partitions into transitive components, each compo

nent corresponding to a prime cycle from the direct product (As Gi is 

conjugate to Gj for all i , j  G FI the transitive partitions corresponding 

to each stabiliser will be of the same shape). Assume for contradiction 

that G\ partitions Ft into more than two transitive constituents. One 

of these must be {1}, consider also the largest component and without 

loss of generality assume that this is {2, ..,p +  1} where p is prime. The 

partition that G2 imposes on Ft must be the same as G i except on the 

points {1, 2, . . . ,p + 1} where the partition must be{2}{1,3...,p + 1}. The 

group G therefore contains two p-cycles, one with support {2, . . ,p +  1} 

and another with support {1, 3, ...,p +  1}. Both these p-cycles are ele

ments of the group Gp+2, which exists by assumption. Thus {1, . . . ,p + 1} 

is a subset of a transitive constituent of Gp+2, contradicting the choice 

of p as the size of the largest constituent. Therefore Gi has only two 

transitive constituents, one of which is {i} and the other containing p 

points for p an odd prime. The stabilisers Gi are odd prime cyclic for all 

i, thus G has even degree and is symmetric by Corollary 2.2. □
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Cyclizers o f finite groups Bounds on the length of a cyclizer sequence

2.2 B ou n d s on the length  o f a cyclizer sequence

The previous section has shown that for any transitive permutation group 

which is not symmetric or prime cyclic there exists a sequence of groups

G = G° < Gl < • • • < Gk

such that G% — Cycl(G) and G1 ^  Gl+l for all i. We know that Gk is symmetric 

or prime cyclic, but as a prime cyclic group has no nontrivial subgroups Gh =  

Sn where n is the degree of G. In this section we are interested in finding a 

bound on k i.e. finding some N  such that CycN+l(G) = CycN(G) for all finite 

groups G.

2.2.1 P r im it iv ity

Let A C  be a non trivial block of the action of Cyc(G) on ft. The group G 

is a subgroup of Cyc(G) and so A is also a block under the action of G. We 

have that primitivity of G implies primitivity of Cyc(G). Therefore either the 

groups in the sequence are all primitive or there exists some I < k such that 

the Gl are imprimitive for i < I and primitive for i > I.

Theorem  2.4. For a primitive permutation group G of degree n exactly one 

of the following applies:-

1. G is prime cyclic,

2. Cyc(G) = Sn,

3. Cyc(G) = A n.
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Cyclizers o f finite groups Bounds on the length of a cyclizer sequence

The proof of this theorem depends on a result of Williamson [11].

L em m a 2.5 (W illiam son). A primitive subgroup of Sn is Sn or An whenever 

it contains an m-cycle for some m satisfying the bound

1 < m < (n — m)\.

P ro o f  o f T h eo rem  2.4: Let G be a primitive permutation group such that 

Cyc(G) /  Sn,A n. By the lemma Cyc(G) cannot contain any single m-cycle 

elements where 1 < m < (n — m)!, therefore all single cycle elements must 

be cycles of length at least (as [ |J  < [f]!). This means that every cycle 

involved in an element of G must be of length at least . So all elements in 

G are single cycle elements and G = Cyc(G). We have already seen that any 

non-symmetric transitive group with G — Cyc{G) is prime cyclic. □

C o ro lla ry  2.6. In any cyclizer sequence at most three primitive groups can 

appear. In particular any primitive group will have a cyclizer sequence of length 

less than three.

Now we will consider the case when G is an imprimitive group. The set Q 

contains a nontrivial block Ai for G of size r. Transitivity gives us that the 

action of G partitions Q into ^ blocks of size r. Let g be an element of G 

such that the orbit of Ai  under g is {A2, A3, ..., A5, Ai} with A i ^  Aj and 

s > 2. Now consider the product of cycles involved in g tha t move Ai, call 

this g G Cyc(G). The element g is one of three following types:-

1. g is an element of Cyc(G) involving more than one cycle.
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2. g is a single rs-cycle and there exists an integer 2 that properly divides 

rs but such that 2 does not divide s and s does not divide 2 . Note that 

as g is a single cycle it is of the form

(ou j ol2 , . . . ,  ,

without loss of generality let a\ G Ai then G Ax for alH  =  1 mod s.

3. g is a single rs-cycle and there is no integer 2 as above. This means that 

all factors of rs are either multiples or factors of s therefore rs is a prime 

power.

We will consider these cases one at a time.

1. There exists cycles of g §1, §2 E Cyc(G) such that Supp(^x) f 1 Supp(p2) =  

0 and g = ^1̂ 2, but now g[ must move some points of Ax and fix others 

so A x is not a block under the action of Cyc{G).

2. The element gz is of the form

(OfX, <az-x-X; •••? —l)z+l) (^2? •••) * ' * Q̂ rs)-

We will consider the cycle involved in gz that moves the point ax- Note 

that this cycle moves all points of Ax if and only if 2 divides s and that 

all points in this cycle are points of Ax if and only if s divide 2. As we 

have chosen 2 so that neither of these possibilities can occur this cycle 

must move some points of Ax away from the set Ax and leave others 

fixed. Therefore Ax is not a block under the action of Cyc(G).
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Cyclizers o f finite groups Bounds on the length of a cyclizer sequence

3. Let r = pp and s — pa ,

9 ~  (a i? Mpp+v)

and oti G Ai for all z =  1 mod pa. The element gp involves the cycle 

(Oil , Ofp+1> • • • > Of pP + <T — p+i). Let this be h then h is an element of the group 

Cyc(G). The element gh_1 involves the cycle h := (au, a 2, ap) which 

moves exactly one point of Ai. This cycle is an element of the group 

Cyc2(G) and hence Ai is not a Cyc2(G)~block. Also the cycles h and h 

move exactly one common point and therefore the commutator [h, h] is 

a 3-cycle and Cyc2(G) > An.

So for any G-block one of 1,2  or 3 from above applies. If all G blocks are 

of types 1 and 2 , then Cyc(G) is primitive. Otherwise there exists a G-block 

of type 3 and then Cyc2(G) is primitive, when this happens note that then 

C y c \ G ) =  Sn.

Theorem  2.7. If  a group G is such that Cyc(G) is imprimitive, then G is a 

p-group.

Proof: The group G must be imprimitive and satisfy the conditions of sec

tion 3 above, that is that all blocks are of p-power size for some prime p and 

blocks are only moved by p-power cycles. Let g be a pn-cycle involved in an 

element of G that moves a block Ai (we can assume that |A i| =  pn~l ) and let 

Supp(p) =  n , we will first consider the setwise stabilizer of Q in G acting on Q, 

let this group be H. The set is partitioned into blocks A i, A2, ..., Ap, any el

ement of H  that moves these blocks will be known as a threading element, and
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Cyclizers o f finite groups Bounds on the length of a cyclizer sequence

elements that fix the blocks setwise will be known as null elements. Assume for 

contradiction that H  contains an element of order q for some prime q ^  p then 

this element must be a null element. Let K  < H  be the set of null elements 

and let Q be a Sylow g-subgroup of if , hence Q < K.  The Frattini argument 

(theorem 1.3) tells us that H  =  Nh{Q)  • K.  The group Q is not transitive on 

Q and therefore partitions it into more than one Q-orbit. At least one of these 

orbits is of size one, as q does not divide |Q| =  pn and at least one is larger 

than this as Q is a non-trivial group. Let h G H  be an element of Nh(Q)  but 

not of K.  The element h normalizes Q and therefore acts on the Q-orbits, as 

we have seen these orbits are not of a uniform size and so the group generated 

by h cannot act transitively on them. This contradicts h being a threading 

element and therefore no elements of order q can exist. The same argument 

follows for any g £ G that moves blocks and as G is transitive we can conclude 

that G does not contain any elements of prime order for primes other than p. □

Theorem  2.8. I f  G is a transitive, imprimitive permutation group such that 

Cyc(G) is primitive, then Cyc2(G) is the full symmetric group.

Proof: First we need a lemma.

Lemma 2.9 (Hall [6]). Let G be a primitive permutation group on n points, 

and let H  be a transitive subgroup ofG o n m  points, fixing the remaining n — m  

points. Then G is doubly transitive.

The group Cyc(G) contains elements which are single cycles and generate 

cyclic subgroups. These cyclic subgroups are transitive on their support and
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Cyclizers o f finite groups Bounds on the length o f a cyclizer sequence

fix the remaining points of the set. Therefore by the lemma Cyc(G) is doubly 

transitive. It follows that Cyc2(G) is a primitive group containing a transpo

sition and so by Lemma 2.5 is the full symmetric group. □

C oro lla ry  2.10. For all finite groups G, Cycz(G) = Ch/c4(G).

E xam ple . The cyclic group C9 =  ((1, 2,3,4, 5, 6, 7, 8, 9)) has maximal chain 

length.

Cyc{C9) “  C3 Wr C3,

Cyc2(C9) £ M 9,

Cyc3(C,) =  S9.

Cameron concludes his paper with several ideas for further research, one 

of which is to classify the groups finite groups that have a maximum chain 

length.
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Chapter 3

W hich finite transitive  

perm utation groups G satisfy

Cy<?(G) ?  Cy<?(G)1

We have already seen that such groups are p-groups for p an odd prime, and 

transitivity gives us that they must be permutation groups of prime power 

degree. We will begin by looking at p-groups of degree p2.

3.1 G roups o f degree p 2

T h eo rem  3.1. If  G is a transitive p-group of degree p2 and exponent p, then 

Cyc(G) is primitive.

P roof: Let G be such a group. We have already seen that blocks of Cyc(G) 

are also blocks of G. Let A be a nontrivial block of the group G and a, P € G 

be such that a  € A, (5 £  A. Then, by transitivity, there exists a p-cycle c,
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Finite groups with maximal sequence length Groups o f degree p2

involved in an element of G, such that (ct)c =  /?; this cycle is an element of 

the group Cyc(G). As c moves p points and |A| =  p, the set A must contain 

at least one fixed point of c. Call this point 7 . We have that 7  £ A n (A)c so 

A D (A)c ^  0 and also /3 0 A so A ^  (A)c, hence A is not a block of Cyc(G). 

The group Cyc(G) can have no nontrivial blocks and so is primitive. □

We can say more than just that Cyc(G) is primitive. Lemma 2.5 tells us 

that Cyc(G) is in fact Api. So we have the following corollary.

Corollary 3.2. If  G is a transitive p-group of degree p2 and exponent p, then 

Cyc2(G) = Sp2.

Definition. The Frattini subgroup, $(G), of a finite group G ^  1 is the in

tersection of all maximal subgroups of G. The Frattini subgroup of the trivial 

group is defined to be the trivial group.

We remind the reader of the classical argument that the Frattini subgroup 

consists of the non-generators of G. Assume that G /  1. An element g G G 

is a non generator if {X,g) = G implies that (X) = G for every I C G .  If 

g is a non-generator of G and A  is a subset of G that generates a maximal 

subgroup M, then (X,g)  will also generate M, hence g € $(G). Conversely 

if g G $(G) and {X, g) =  G but (X) ^  G , then (X ) is a subgroup of some 

maximal subgroup M  < G. However g £ M  else M  = G. This contradicts g 

being an element of the Frattini subgroup and so no such set X  exists and g 

is a non-generator.

The Frattini subgroup of G is clearly a characteristic subgroup, in particular 

it is normal in G.
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Finite groups with maximal sequence length Groups of degree p2

T h eo rem  3.3. (The Burnside Basis Theorem) Let G be a group of order pn 

and $(G) be its Frattini subgroup. Then $(G) = G'GP (where Gp =  {gp : g G 

G}) so the factor group G/<b(G) =  A is an elementary abelian group. If  the 

order of A is pr, then every generating set for G of size s contains a subset 

of size r that generates G. The natural projection from G onto A will carry 

any minimal generating set to an Wp-basis of A, and conversely any set of r 

elements that are mapped to a basis for A will be a minimal generating set for 

G.

P roof: See Hall [6].

T h eo rem  3.4. The Cyclizer of a cyclic group generated by a p2-cycle is iso

morphic to the group Cp Wr Cp.

P roof: let g be a p2-cycle, without loss of generality assume that this cycle is

(0 ,1 ,2 ,.., p2 - 2 ,  p2 - l ) .

The only elements of the group generated by this cycle which are not p2-cycles 

are powers of gp. The element gp is a product of p cycles of length p, call these 

cycles po> ••■>£<* where d — p — 1 and such that the cycle gi moves the point 

i. Note that the cycles pi, ...,p<f are all conjugates of the cycle go by powers 

of g. Therefore the group Cyc({g)) is generated by the cycles g and go and is 

isomorphic to Cp Wr Cp. □

The group Cyc2((g)) (where g is a p2 cycle as above) is a primitive group 

and is therefore by Lemma 2.5 either alternating or symmetric. However all
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cycles involved in Cyc({g)) are cycles of odd length, therefore Cyc2({g)) — Ap2 

and Cyc3({g)) =  Sp2.

Theorem  3.5. If  G is a transitive p-group of degree p2 and exponent p2, then 

either G =  Cp Wr Cp or Cyc(G) = Cp Wr Cp (and hence Cyc2(G) = Ap2 

and Cyc3{G) = Sp2).

Before proving we will look in more detail at the group Cp Wr Cp. The 

group W  := Cp Wr Cp is a Sylow p-subgroup of Sp2 and hence contains copies 

of all p-groups of degree p2. The base group of this wreath product is B  := 

Cp x • • • x Cp. The complement group of the wreath product is W / B  and is
v-------------v -------------'

p times
isomorphic to Cp, an Abelian group of exponent p. Therefore W'  ^  B  and 

W p ^  B.  By Burnside’s basis theorem the Frattini subgroup of W  is W 'W P 

which is also a subgroup of B. As <$(W) < B  we have that Cyc($(W))  ^  

Cyc(B) = B  ^  W.  The group W  is not cyclic and can be generated a p2-cycle 

and a p-cycle, hence W  is a 2-generator group. Therefore the basis theorem 

also tells us that any two independent elements (i.e one is not a power of the 

other modulo <F(W)) of W  — $(W ) will generate W.

As before let g be the p2-cycle ( 0 , 1 , 2 , p2 — 2, p2 — 1), g0 be the p-cycle 

(0,p, 2 p , ( p  — l)p) and let W  := Cyc((g)) = (g,go) =  Cp Wr Cp. Recall that 

gp was the product of p-cycles po<7i • •' Qd- The cycles go> are &U disjoint 

and therefore commute, the cycle g commutes with the other cycles as follows

[di, 9] = 9i 9i = 9i 9j where j  = i +  1 mod p.
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L em m a 3.6. All elements of the group W  can be written uniquely in the form

9tg go1 ■■■9d

where each s is from the set {0 ,

P roo f: There are pp+1 elements of this form and pp+1 elements of the group 

W . It therefore suffices to show that any two elements of this form are indeed 

distinct elements of W . The supports of the cycles g o , g d  form a block system 

for our group. The identity element fixes these blocks and therefore if we write 

the identity element in the form g£g g 0̂ • ♦ • gedd we must have that eg =  0 . The 

cycles go, ■■■,gd are disjoint and so we also have that £o =  • • • =  £d — 0 , thus 

the identity element can only be written in this form as g°g$ • • • gd.

Assume that g£g g^° • • • g6/  = g5g g5Q° • • • gdd, with each e and S G {0,..., d}.

Id =  g5» So°' " 9dd 9d>d ' '  ■ 9 o S° 9~S‘

=  9s’ 9~Sg 9Sg 9o°~S° ' ' '  9dd~Sd 9~Sg

= g!g- Sg g l% s° ■■■g£dd- t d *

and hence eg =  Sg and £{ — Si for all i £ { 0 , d}. □

L em m a 3.7. The Frattini subgroup of W  is the set of elements of the form 

9o° "  ' dT such that J2i=o £i — ® m°d P-

*Here the  subscrip ts and  powers are taken m odulo p
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P roof:
W' = {[gl}g\ = gi gi+i\i G { 0 , rf})

=  S 2o° ^ i1 • • • 9d £i =  0 mod P

W p = {wp\w G W }

=  { 9 l£0 g \  • • • g l

< W'

Hence $(W ) (the Frattini subgroup of W)  is

W 'W p = { g£0° g? • • • ge/ £i =  0 mod ■
i= 0

□

Now we will consider the group generated by the p2-cycle G and the non

generators of the group W

(g, $(W))  = (g) • *(W ) = { g{1 • • • geJ

L em m a 3.8. Elements of (g) • $(W ) of the form

£i =  0 mod p > .
i= 0

with eg /  0 are p2-cycles.

P roof: The group (g) • $(W ) has order pP. The centralizer of a p2-cycle in 

(g) • $(W ) is the group generated by that cycle and so has order p2. Each

32



Finite groups with maximal sequence length Groups of degree p2

conjugacy class of p2-cycles inside (g) • $(W ) is therefore of size p9-2. There 

are (p — l ) ] / -1 elements of the form g£g g£Q° • • • g£dd in (g) • <L(VF) (as we have 

p — 1 choices of eg and p choices each of £o, •••>£<*-1 whence is fixed). It 

therefore suffices to show that (g) • <L(VF) has (p — 1 )p conjugacy classes of 

p2-cycles.

We will show that the (p — 1 )p elements of the form gQ£Qg£gg£Q (0 < < d,

1 < £g < d) are all in different conjugacy classes of {g) • $(VF).

First note that gQ£°g£9go° = g£gg f £°go° and so these elements are all in 

the group (g) • $(W).  Now assume that a := gQ£°g£9g£Q and {3 := gQSog5ggQ0 

are conjugate in (g) • <F(W). So there exists some 7  G {g) • $ (W )  such that 

7_1q;7/3_1 =  Id. Let 7  := gG g%° • • - with J2t=0 C* =  0 mod P-

Id =  /y~1a ryp~1

= g~Cg g£g gCg g~5gp

for some (p E $(W).  Hence sg = Sg.

Now we have

7 - 1ffoE°ff£affo°7 =  9 o SO(f 39 Sa a n d  

9So0'r~19o£°9es9o°'f9oS° =  9e’ ■

Therefore gl0r)gQ50 6 (g) < (g) • $(W ). Rearranging gives

9o°'f9o>° =  9^’ flo°' ' ' 9dd 9(° 9oS° 

and as J2i=o& =  ® mo<̂  P we must have that £0 =  do. Hence a  and j3 are
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equal. □

P roof of Theorem  3.5: Let G be a transitive p-group of degree and exponent 

p2 such that G /  Cp Wr Cp. The group G contains a p2-cycle, g. As before 

let gp =  gQ • • • gq. We have Cyc(G) > Cyc((g)) =  Cp Wr Cp. Once again we 

will let W  (g,go) =  Cp Wr Cp. As G ^  W  and W  is a 2-generator group, 

it must be the case that G < {g,$(W))  =  (g).$(W).  Now if x  is an element 

of G, then x  must satisfy at least one of the following conditions:

•  X  €  { g ) ,

. 1 6  $(W ),

• x — ge9.p where <p E <&(W) and 1 < eg < d.

If x falls in to the first or second categories, then we have seen above that 

all cycles involved in x will be elements of W.  If a; is in the third category, 

then x  is a p2-cycle and this cycle is an element of W.  Hence Cyc(G) — W.  □

Corollary 3.9. A transitive p-group G of degree p2 is such that Cyc2(G) ^  

Cyc3(G) if and only if the exponent of G is p2 and G ^  Cp Wr Cp.

3.2 E xtend ing  th is result to  p-groups o f degree

Let P(p,n) be the group Cp Wr Cp Wr • • • Wr Cp of degree pn. When the prime 

p is unimportant we shall refer to this group as Pn. Similarly we will later
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define a group Mn which will be denoted as M(p>n) if refering to a particular 

prime. Then Pn is a Sylow p-subgroup of Spn and hence contains copies of all 

transitive p-groups of degree pn, in particular it contains copies of all G such 

that Cyc2(G) /  Cyc3(G). As in the previous example we will define a normal 

form for elements of this group. Let Pn act on pn points numbered in base p, 

so for example C3 Wr C3 Wr C3 acts on the points

Ft =  {000,001,002,010, 011,..., 220, 221, 222}.

Let g be a pn-cycle from PP)U and without loss of generality let it cycle the 

points in numerical order. In the following let p — 1 =  d. The element gp will 

involve p cycles of length pn_1. Call these cycles po,Pi, •••gd and label them so 

that the point 0 is in the support of go, the point 1 is in the support of pi and 

so on. In our example these cycles are

g0 = (000, 010, 020, 100, 110, 120, 200, 210 , 220)

pi =  (001,011,021,101,111,121,201,211,221)

p2 =  (002, 012, 022, 102, 112, 122, 202, 212, 222).

Now consider the pth power of the cycle p*. It involves p cycles of length pn_2. 

Call these poi, pn, •••, gdi and again label them so that each contains the number 

by which it is indexed. Returning to the example p0i =  (001,101, 201) ,pn = 

(011, 111, 211) and g2\ =  (021, 121, 221). This process can be continued until 

we have pn_1 p-cycles; each labelled by a string of k digits, for 1 ^  k ^  n -  1. 

In C3 Wr C3 Wr C3 this process gives one 27-cycle p, three 9-cycles po,Pi and 

p2 and nine 3-cycles p00, . . . ,  p22-
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Call a cycle a level k cycle if it is indexed by a k digit number (the cycle 

g is the level 0 cycle). The level n — 1 cycles generate the base group of 

Pn = Cp Wr (Cp Wr Cp Wr • • • Wr Cp). The support of each of these cycles 

is therefore a Pn-block. The level n — 2 cycles act on the set of level n — 1 

blocks as a cyclic group of order p and therefore the level n  — 1 and n — 2 cycles 

together generate the base group of Pn — (Cp Wr Cp) Wr (Cp Wr • • • Wr Cp). 

Inductively we can see that the level 0 to level n —1 cycles generate Pn and that 

the support of each cycle is a block under the action of Pn. Let the support of 

a level k cycle be called a level k block, then the set of level k blocks forms a 

complete block system for each k G { 0 , 1 , d} (where the level 0 block system 

consists of a single block containing all points). The set of level k blocks 

will be labelled by flk, so ^  and define fln to be the set of singletons

{{c<;}|u; G fl}. Let Aj  = Supp(gj) for all j  G {0,1, 2,..., 00,01,02,..., d • • -d} 

so for example the level 1 block system consists of the blocks A0, A i , ..., Aj.

Theorem  3.10. The level 1 to level d block systems are the only non-trivial 

block systems of the action of Pn on the pn points.

Proof: Let T C Q, be a block of Pn. Since Pn is a transitive p-group, |r |  =  pk 

for some k ^  n. The blocks in the set f ln-k partition fI into blocks of size pk. 

Choose i such that there exists a point a G T n  Ai, where Ai  G The

cycle gi is in the group Pn and therefore T is either fixed set-wise or displaced 

to a disjoint set by this cycle. It can not be the case that (T)pi n  T =  0 (as 

this would require |Supp(#)| > 2 |r |, but we know |Supp(p;)| =  |T|) hence gi 

is a permutation of the points of V and r  =  A*. □

36



Finite groups with maximal sequence length Groups of degree pn

Later we will need to consider the set-wise stabiliser of A0 acting on A0 

written

p  Ao 
n {A0} '

The set-wise stabilizer for each of the level i blocks is

(Cp Wr • • • Wr Cp) x • • • x (Cp Wr • • • Wr Cp),V--------------------------------v-------------------------------- ,
p  copies

hence Pnfy 0} is isomorphic to Pn-\.  We will also be considering the action of 

Pn on f2n_i, written

D^n — 1 n

This is the complement group of the wreath product

Pn =  Cp Wr (Cp Wr • • • Wr Cp),

and hence is also P„_i.

It is necessary to know the commutation relations between these cycles 

as we will then use this information to construct a normal form and to define 

subgroups of Pn. Distinct cycles from the same level commute as their supports 

are disjoint. We will begin by looking at commutators in C3 Wr C3 Wr C3 as 

an example.

bo, 9} = 90 1 9\ -  9l 9\ Poo 0io 02o> ( as 9o 1 =  0o 9m 9lo 9m)

bi, 9] =  9 i l 92 =  Pi 92 P01 011 021>
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boo,9o] = 9oo 9oo = 9m 9\o and

boo, 9 ] — 900 900 =  900 9oi- 

Now let ga and g& be two of the specified cycles from Pn (a and b are numbers 

in base p). The commutator will be trivial unless ga and have supports that 

intersect. This only happens when a and b are in different levels (so without 

loss of generality assume that a is an r digit number and b is an s digit number 

with r > s) and when the number b occurs as the last s digits of the number 

a. When this happens

, qi qc : when r = n — 1
=  =  < (3 .1)

g i  9 c  9 i a  9 2 a '  ■ • 9 d a  ■ w h e n  r  <  n  -  1 .

If the number a is ai Q2 • • • as as+i • • • ar (each a* representing a sin

gle digit), then c is the number a\ a2 ••• as a s+i ••• ar where as+i =  

as+i + 1 mod p.

Theorem  3.11. Each element of Pn can be written in the normal form

9C’ 5o° 911 ■■■ 9?  3oo°  9 i t : l  (3-2)

where all s ’s are from the set {0, l...,d}.

Proof: The proof is by induction. We have already seen that this holds for P2, 

now assume that it also holds for Pn-\.  The group Pn has order pl+p+p2+-+pn 1. 

This is the also the number of elements of the form (3.2). It therefore suffices 

to show that two elements of this form written differently really are distinct.
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Let

,£0 ~£l ,£d ~£00a : = g 9 gp • • • g j  gpp  ̂d d1 * d
iJdd-d

with each s G {0,1..., d}

b : = g *• 9o° Si1 • • • A  ffoS0 .........

with each 5 G {0,1..., d}

and assume that ab~l =  Id. Note that if an element of this form (3.2) is 

the identity element, then the exponent of every cycle must be zero. Using 

the commutator data (3.1) from above we can rewrite ab~l so that it starts 

ge9g~s9... and no other occurrences of the cycle g appear in the word. Hence 

£g = 6g and we are left with a word in the cycles gi such that the exponent of 

g is zero. This word is an element of the base group Pn_i x Pn- \  x • • • x Pn_i. 

Now considering the element ab~l restricted to each transitive constituent and 

using the inductive hypothesis we get that e* =  Vi. □

Let Dn be the subgroup of Pn generated by the commutators of the cycles 

<7, . . .  gd-.d- Through similar analysis to the case for Cp Wr Cp we can show

that Dn is the set of elements which when written in normal form satisfy the 

following conditions:

Eg =  0 and
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= ® mod p

Ei=00 £i =  0 mod p

E t t o ^  =  0mod P-

The commutator of any two elements from Pn also satisfies these conditions 

when written in normal form, hence Dn is the derived subgroup. It is also pos

sible to show that the pth power of any element from Pn is in this group, so 

in fact Dn =  $(Pn).

We can use this normal form to define another subgroup of Pn in the follow

ing way. Form a subset Mn of Pn by taking all elements which when written 

in normal form satisfy the following conditions:

EiLo =  0 mod P

E t o  £ij =  0 mod p Vj 6 {0 , . . . ,  d}

J2i=o £ij =  0 mod P Vj G {00, . . . , d d }  (3.3)

E t o  £ij = 0 mod p Vj G {0 • • • 0 , . . . ,  d • • • d}.

(Here i j  means the digit i followed by the digits of j.)

The set Mn is a subgroup of Pn. We can see this by induction on n. Let 

mi  := g£g go° -' - g£/ , m 2 9Sg 9o°"  ’9d* elements of the set M2, then 

mx.m2 1 — 9£g 9o° ” ’ 9dd 9d6d ’ ''  9oS° 9~5g • Using the commutator data ( 3.1 

top line only) and the fact that ]C to  £i = d mod P and E t o  =  0 m°d P 

we can see that when rearranged to be in normal form satisfies the
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conditions above and hence M2 is a group. Now assume that Mn is a group 

for all n ^  k — 1 and the elements mi := g£g g^0 • • • g£dd • • • g£dd̂ f  and m2 := 

9S9 9o°' ” 9dd ' ' '  9dd-d are m Mk- Now g~£gmi  and g~6gm 2 are (by induction) 

elements of the group Mk-\  x Mk~\ x • • • x Mk-\  and hence the element 

m i.m J1 =  g£g g~egmig6g g~Sgm 2 is in the set M*.

3 .2 .1  Pn acts on w eigh ted  trees

We can associate the elements of Pn in normal form with weighted regular trees 

with each vertex corresponding to a cycle from the normal form. An element of 

Pn written in normal form corresponds to a weighted tree, where the weight of

each vertex is the power of the cycle that it represents. Let the root of the tree

correspond to the pn-cycle g. The vertices directly beneath g correspond to the 

level 1 cycles, beneath those the level 2 cycles and so on, arranged so that the 

support of a cycle is a subset of the support of the cycles occurring above it. 

The leaf vertices have weights corresponding to powers of the level n — 1 cycles.

E xam ple. Elements of the group 

C3 Wr C3 Wr C3 can be represented 

by weighted regular trees of height
£0 El £2

three. An element in normal form 

from this group is represented by the 

tree shown. £°° 610 620 £01 611 £21 £°2 £l2 £22

We will be considering the action of Pn on its set of associated trees. If
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1 0 0 1 1 0 0 0 0  1 0 0 0 1 1 0 0 0

Figure 3.1:

a, (3 G Pn and Ta is the tree associated with the element a, then (Ta)fi =  Tap. 

It is enough to understand how a single cycle acts on the set of trees, as the 

action of other elements is equivalent to repeated action of single cycles (the 

action of the element g gi is obviously equivalent to the action of g followed 

by the action of g{). The cycle gi acts on a tree by rotating the subtree 

that is rooted at the vertex corresponding to the cycle gi and increasing the 

weight of that vertex by one. This rotation is actually a cyclic permutation of 

the subtrees with root vertices immediately beneath the vertex corresponding 

to the cycle gi. Figure 3.1 shows pictorially the element 00o020oo0oi0n  G 

C3 Wr C3 Wr C3 (left) and its image under the action of the cycle gi (right). 

The calculation is given below.

00o(020oo0oi0n) * 9i  =  99o 9 i 9 i 1 {929oogoign)gi

—  9 9 o9 i 929oo 9 \ 1{9oi9 i i ) 9 i

— 0000102000011021

For a tree Ta , let w a ( g i )  be the weight of the vertex that corresponds to 

the cycle gi. To multiply a  by another element (5 of Pn we can consider the

42



Finite groups with maximal sequence length Groups of degree p n

multiplication one cycle at a time starting from level 0 and working down to 

level n — 1. This gives the result that

w a p ( g )  = W a ( g )  +  W p ( g )  mod p

and if i is a k digit number with the digits U, • • • ik, then

w a p ( g i )  =  w a ( g r ) +  w p { g i )  mod p

where r is the k digit number r i r 2 • ■ • r* and r* =  ik +  w p ( g ) m o d  p  and r$ =  

i j  +  w p ( g i j + l i j + 2 . ..i k ) mod p  for all other j .

Using this formula and noticing that the identity is associated with the tree 

where all vertices have zero weight, we get that

w a - i  ( g )  = - w a ( g )  mod p

and for i  as above

w a - i { g i )  = - w a ( g r )  mod p

where as before r  is the k digit number r i r 2 • • and =  ik +  wpig) and 

r j  =  i j  +  w p { g i j + l i j + 2. . . i k )  for all other j .

Figure 3.2 shows the associated trees of an element and its inverse as cal

culated with the above formula.

Define the value of a vertex to be the sum modulo p  of the weights of the 

vertices immediately beneath it, with the stipulation that if a vertex has no 

branches coming from it (i.e it is a level n — 1 vertex ), then it has zero value.
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1 0 0 1 1 0 0 0 0  2 0 0 2 0 2 0 0 0

Figure 3.2:

For an element a  G Pn let va(gi) be the value of the vertex corresponding the 

cycle gi in the associated tree Ta. Then

Vap(g) =  va(g) +  vp{g) mod p

and

Vap(gi) = Va{gr) +  Vp(gi) mod p

where as above i = i\ • • • ik and r is the k digit number rpr2 • • • and r* 

ik +  wpig) and rj = ij +  wp(gij+1ij+2...ilc) for all other j .  From this we get

Va-i(g) = -Va(g) mod p

and

Va - i { g i )  = -Va{gr) mod p

for i and r as before. With this definition the elements of the group Mn are 

precisely those elements where every vertex has value zero. It can be seen from 

the above that multiplication and taking inverses preserves this property.
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T h e o rem  3.12. I f  H  ^  Pn such that Cyc(H) ^  Pn, then H  ^  Mn.

P roof: This is by induction on n. We have already seen that this is the 

case for groups of degree p2 so it suffices to show that the inductive step holds 

Assume that H  ^  Pk and Cyc(H) = Pk implies that H  ^  Mk for all k ^  n ~  1 

Now let H  ^  Pn be such that Cyc(H) =  Pn hence

C y c (H $ o)) < p nf i o} p n^  

but we know from our assumption that this means

H fco, <  Mn.y.

The group is in fact the group generated by the cycles ga: where a

represents a k digit number (1 ^  k ^  n — l ) i n  base p with the last digit being 

0. By considering this and the fact that H ^  Mn_i for all % € {0 ,1, . . . ,  d) 

we obtain that elements of H  written in normal form must satisfy the following 

conditions:

E i U  £d =  0  (m o d  P) Vj G { 0 , . . . ,  d }

E?= o eij =  0  ( m o d  P) ^  {00, .- - ,dd}

E?=o £d = 0 (mod p) Vj e {0 • • • 0 , . . . ,  d • • • d}.

Finally if we consider then we know that

C y c ( H ° ”- ' )  =  Pnn—  S  Pn_ u
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hence H nn~l ^  Mn_i and we have the final condition.

d
^  et = 0 (mod p).
i=o

□

T h eo rem  3.13. If  H  ^  Mn is transitive, then Cyc(H)  =  Pn.

Before proving this we will first need to show that if an element h € Mn 

(when written in normal form) has sg /  0, then h is a pn -cycle. Looking at 

the element

J~i . __ n 9̂ n ........................n ^dd---dn  • —  9 9q 9\  9d 9 o o  9dd -d

from Mn we see that if eg =  0, then h will fix the blocks in set-wise, and 

therefore cannot be a pn-cycle. By considering the possible choices for £; we 

can see that the group Mn has order p1+(p- 1)+(p2-p)+-+(pn 1- Pn 2) =  pPn 1 and 

the number of elements h with eg ^  0 is

—

P J

It now suffices to show that the group Mn contains this many pn-cycles. Let 

c be a pn-cycle then the centralizer of c in Mn is (c) (we have seen above that 

commutators of pn cycles with other elements are non trivial). If we consider 

the group Mn acting on itself by conjugation, then the centralizer of c is the 

stabilizer under this action and the orbit is a conjugacy class. The orbit- 

stabilizer theorem gives us that the conjugacy class containing c will be of 

size pPn 1-n. Similarly this will be the size of all conjugacy classes containing

46



Finite groups with maximal sequence length Groups of degree pn

pn-cycles.

L em m a 3.14. The elements g,g2, • • • gp~l are in distinct conjugacy classes of 

M n.

P roof: Assume for contradiction that ga =  gr where a  G Mn and r G 

{2,3, ...,p — 1}. Then

Let k be the least integer such that rk = l(mod pn) (such a k does exist as the 

Fermat-Euler Theorem [7] gives =  l(m o d p n) where <p(n) is the Euler

phi function, counting numbers less than and prime to n. On prime powers 

(p(pn) = pn — pn~1)- Now we have

( a k )g{ } = g  = g

and hence a k is in the centralizer of g in Mn which is (g), but a  0  (g). If 

a kl = g for ki < k, then this would contradict our choice of k as minimal such 

that rk = l(mod pn), hence a k = g. The element a  must therefore be a power 

of g and this contradicts the assumption that r ^  1. □

There are (p — l)pn_1 elements of the form

A - y * A  (3.4)

w V iP rP  \  n £° n £°° n £°°  . . . n £° ° ............. n £ 0 0 -0  n £ 0 0 -0  . . . ^ £ 0 0 -0wnere a  g0 gQ0 g01 -god g00...0 goo -i  9m- d

for eg G {1, 2, . . . ,p  — 1} and  all o ther  e G {0 ,1 , 2, . . . ,p  — 1}.
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L em m a 3.15. Elements of the form ( 3.4) are members of the group Mn

P roof: The element g^eo g£g gl° when written in normal form is gSg g f £o ĝ f 

which is an element of M 2. Assume for induction that the lemma holds for 

group Mn for n ^  k — 1. Consider \ ~ 1gC9\  with A as above, by induction this

is equal to 9o_oE00f ° ' '  •%o°°d°9tgl  9m.-a So"'-'i ' ' ' ffoo°''j0 with 9Cs7 €

Mk~\. Rearranging this we get

ne9 n ~ e00 - 0 n ~^00- -0 -̂£00 - 0 ,̂ ,*£00--0 ,~e00--0 „£00-0
S  y e q0 - 0  i / e - 0 - 1  ' ”  y e a0 - d  I yO O -O  V0 0 - 1  * ' ' i/O O -d

  neg^/n~£DO'"0 n~e00--0 ,*-e00--0 n 0̂0- -0 ,~E00-0 n £00- -0
~  y  yyegO-O yeg0---1 yeg0-d  i/00-0 i/oo - l i/oo-d

which is in the group M*,. □

We will now see that any two elements of this form are not conjugate ir. 

M n. Assume that two elements ot~1gaa, (3~lgb(3 of the form (3.4) are in the 

same conjugacy class, where

a  : =  So° <?o§° 9lf • • • So”  f l K  9oS“'.i° • • • 9 ^  a n d

P  J o  Joo ,*<$00 ,*<$00 „<$oo---o „<$oo---o Joo—o
P •— y 0 y 00 i/oi i / o d  yoo-o i/00-1 * ” yoO-d-

Then there exists some 7  G Mn such that

Py~1a~1gaayp~1 = gb.

The proof of Lemma 3.14 gives us that a = b and a y  ft-1 G (g) and hence
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7  =  a ~ l g c P  for some c ^  p n .

The element 7 is in the group Mn and hence all vertices of its associated 

tree have zero value. From above we have that

0 =  v 7 ( g )  =  v a - i  gc p ( g )

= v a - i  { g )  +  v g c ( g )  + v p ( g )  ( mod p )

=  -eo +  0 +  So ( mod p )

and hence e0 = S0.

Now let i be a k — 1 digit number

g' (9i) =  vQ-i ( g r )  +  vgc(g { ) (mod p)+ Vi 

=  -  Eo^o +  0 (mod p )

k zeros

therefore

0 7̂ (.Qi) ^a-1 g°P̂ 9i)

=  vQ-i gc{gr) +  Vp(9i) (mod p)

= -  £0^0 +  ^ 0  (mod p)
k zeros k zeros

and hence eo-o, — ^0-0 for all k € {1, ...,n}. So we have a = j3.
k zeros k zeros

We have now shown that all elements of the form ( 3.4) are in distinct 

conjugacy classes, hence there are at least p n ~ l ( p —  1) conjugacy classes. This 

gives at least

pn- \ p  -  l y - 1-"  =  ( ^ )  f " 1

^Here r  is as defined on page 44 , however in the  tree  corresponding to  ot~l the  value of 
all level A: — 1 vertices is the same.
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p n-cycles in M n and therefore all h with e9 ^  0 must be pn-cycles.

L em m a 3.16. C y c ( M n) =  Pn.

P roof: The pn-cycle g is an element of M n and we therefore have Pn < 

C y c ( M n). It suffices to prove that if a is an element of Mn, then all cycles 

involved in a are elements of Pn. Let

Id + a = gc• So° Pi1 ' ' '  5 ?  3oo° S t i f j  € Mn.

If e g 7  ̂ 0, then the above argument tells us that a  is a pn-cycle, which is clearly 

in Pn as a  is. Let T a be the tree associated with a. If w a (g)(:=  eg) = 0, then 

remove the top vertex and all adjacent edges from Ta. Next look at the level 1 

vertices and again remove any that have weight zero along with their adjacent 

edges. Any level 1 vertices with non zero weight are now roots of subtrees of 

T a , all vertices beneath these cannot now be removed. Continue to remove 

vertices of weight zero until T a has been partitioned into subtrees each of which 

has a root of non-zero weight.

The tree shown, T a , is composed o f  fivi 

subtrees, two o f  height 1 and three of 

2 height 0. The e lem en t a is the produc,

/ \  of the elements associated with these sub-

\  trees.
1 2 0
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As these subtrees are disjoint and each have a root of non-zero weight they 

correspond to disjoint single cycles in M n . Now the element a  is the product 

of these disjoint cycles, as each one is an element of M n they are also elements 

of Pn and we are done. □

P ro o f  of T heorem  3.13: If H  is transitive, then there is some h  E H  such 

that when h is written in normal form, the power of g is non zero. Other 

cycles in the normal form fix the blocks of f^ . By the above argument this 

element h  is then a pn-cycle. The cyclizer of the cyclic group (h ) is Pn hence 

C y c ( H )  ^ Pn . We have already seen that C y c ( H )  ^ Pn and so they must be 

equal. □

T h eo rem  3.17. I f  H  is a transitive p-group o f  degree p n and  C y c ( H )  ^  

Pn , then  \C yc(H )\  is even. This m eans that C y c 2(H )  is a p r im it ive  group 

conta in ing  a transposition and is therefore S pn.

Before proving this it will be useful to note the following. If G  is a transitive 

group with a non-trivial block system consisting of blocks A 1} A2, ..., An, then 

let G A denote the action of G  on the set {A ;|l ^  i ^  n}. There is an obvious 

surjective homomorphism from G  onto G A and hence |GA| |Cr|. It is well 

known that the order of a stabilizer divides the order of the group. Also note 

that C y c ( G A ) =  C y c (G )A . Similarly if a group G  acts on Q, and T  C  then 

C y c ( G {r}) ^  C y c ( G ){r}.

P roof: Assume that H  ^ Pn but C y c ( H )  ^  Pn , then H  contains some element
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involving a cycle c which is not an element of Pn . If a cycle c is involved in an 

element of Pn , then it is a pfc-cycle for some k. If it also does not break any 

of the block systems on Pn , then in particular it does not break the blocks of 

size p k in the the block system f l n-k- Therefore Supp(c) =  A; for some n  — k  

digit i and c must be a power of the cycle gi and is therefore an element of 

the group Pn . It follows from this that our cycle c which is involved in an 

element of P n but not itself in the group Pn , must break at least one of the 

block systems fti,

Choose r to be the least number such that f^o, ^ i , Qr are all block systems 

of C y c ( H )  but fir+i is not, and let r  4- s be the least number greater than r  

such that Q r +s  is a block system of C y c (H )  (note that r  and s do exist as f l 0 

and On are trivially block systems). Now we consider the group C yc (H )^_ ^Ai 

for a fixed A* £  Q r , where r 2r + s |Ai is the set of A j  e  r i r+5 such that A j  C  A*.

N O T E :  This group is the set-wise stabiliser o f  a level r  block A;, acting on 

the set o f  level r  4- s blocks that are subsets o f  A*. H ence it has degree p s . The  

only non-trivia l blocks this group could have, would correspond to non-trivia l  

Pn -blocks f ro m  levels r  +  l  to r  +  s — 1, but we have chosen r  and s  so that 

this cannot happen, hence this group is prim itive . The  group H  is a p-group, 

therefore the subgroup H ^ ^ Ai is also ap-group and hence contains an element  

which involves ap -cyc le .  This p-cycle is in C y c ( H ^ ^ Ai) ^ C y c ( H ) ^ ^ Ai.

By the earlier Lemma 2.5, primitive groups of degree p s with s ^  2 which 

contain ap-cycle are either alternating or symmetric. The group C y c ( H ) ^ ^ Ai
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is the cyclizer of a p-group, it is primitive and contains a p-cycle, therefore

C y c ( H y ( g p  S' A p

The important point is that the order of this group is even. Now we can see 

that

I V I  =  I Cyc(Hf{Z F \C y c (H )\

and we are done. □

If H  ^  C 3 Wr C3 Wr C3 and C y c ( H )  /  C3 Wr C 3 Wr C3, then there are 

three cases. Either is not a block system in C y c ( H )  or is not a block 

system of C y c { H ) or neither of them are. In the first case C y c ( H )  =  A 9 Wr C3, 

second C y c ( H )  =  C 3 Wr A 9 and third C y c (H )  = A 27. Obviously in all cases 

C y c 2 (H )  =  S 2J.

Corollary 3.18. Up to isom orphism  o f  perm uta tion  groups, the f in ite  groups 

G  fo r  which C y c 2(G) 7̂  C y c 3(G) are precisely the transitive  subgroups o f  the 

groups M n fo r  n e N , n ^ 2 ,
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Chapter 4 

Classification of finite groups 

according to sequence length

We are now in a position to classify finite transitive groups, other than 2- 

groups, according to the length of their cyclizer sequence. We will also s?e 

why the classification of 2-groups is an open problem.

P rim itive groups which are not prime cyclic

Theorem 2.4 says that the cyclizer of a primitive group that is not prime cyclic 

is Sn or An. A primitive group of even order must contain an element tin t 

involves a transposition hence its cyclizer is Sn. A non-prime-cyclic primi

tive group, G, of odd order will only involve cycles of odd length and heme 

Cyc(G) =  An, it follows that Cyc2(G) =  Sn.

We have shown that a primitive group has a cyclizer sequence of length 1 

if it has even order and length 2 if it has odd order.
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Classification of finite groups according to sequence length

Im p rim itv e  g roups (o th e r th a n  p-groups)

By Theorem 2.7 if G  is imprimitive but not a p-group, then C y c (G )  is prim

itive. Hence if |G| is even, then C y c (G )  contains a transposition and is 

S n by lemma 2.5. If |G| is odd, then C y c (G )  < A n and by Theorem 2.8 

C y c 2(G) =  S n .

So an imprimitive group, which is not a p-group has a cyclizer sequence 

of length 1 if it has even order and of length 2 if it has odd order (as with 

primitive groups).

p-groups (for p an  o d d  prim e)

Chapter 3 gives us that a p-group G  has a cycliser sequence of length 3 if and 

only if it is a transitive subgroup of the group M n . If G  £  M n then it has a 

cycliser sequence of length two as C y c (G )  < A pn.

So a p-group G of degree pn (with p odd) has a cyclizer sequence of length 

3 if it is a transitive subgroup of the group M(P)„) and of length 2 otherwise.

2-g roups

If G  is a 2-group, then either C y c (G )  =  S n or C y c (G )  is imprimitive and 

C y c 2(G) =  S n as it is primitive and contains a transposition. We are now re

quired to determine when C yc(G )  is imprimitive. Through a similar argument 

to that in Chapter 3 we can see that C y c (G )  =  C 2 Wr C 2 • • • Wr C 2 when G  

is a subgroup of M(2ln) for some n. However these are not the only groups to 

have C y c (G )  imprimitive. For example the group of quarternions in its right
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Classification of finite groups according to sequence length

Cyclizer length Groups

0
•  Cp for p  prime
• S n

1
• Primitive groups of even order
• Imprimitive groups of even order 
( except certain 2 -groups)

2

• Primitive groups of odd order
• Imprimitive groups of odd order except those specified 
in Chapter 3
• 2-groups G  such that C y c (G )  ^  S n

3 •  p -groups (p 7̂  2) as specified in Chapter 3

Figure 4.1: A partial classification o f  groups according to the length o f  their  
cyclizer sequence

regular representation has the following cyclizer sequence.

Q h >C 2 W r5 4 ^  S 8.

In order to complete this classification we need to answer the following 

question.

For which im prim itive  groups G  is C y c ( G ) also im pr im it ive?

In other words we want to know which imprimitive G  have a system of non

trivial blocks that is respected by all cycles involved in elements of the group. 

We leave this as an open question and hence the classification is not quite 

complete.

We summarize the classification information in Figure 4.1.
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Chapter 5

The infinite cyclic group

It has already been noted that for an infinite group G it is not necessarily 

the case that G < Cyc(G). If a group contains a permutation involving an 

infinite number of cycles, then it seems natural to look at the group Cyc(G)

('G,Cyc(G )). For finite groups and groups whose elements involve only a 

finite number of cycles the two definitions of cyclizer coincide. In his paper 

Cameron [2] defines four different functions; the two we have already seen, 

R(G)  := ({cr|ap € G, a and p are disjoint permutations }) the group generated 

by all restrictions of elements of G and C +(G) := ({<?| if c is involved in g 3h G 

G such that c is involved in h}). For the purposes of this thesis we will look 

only at the functions Cyc and Cyc.

We begin our investigation of infinite groups by considering the infinite 

cyclic group on the integers, generated by a where (x)a = x  +  1 for all x  G Z. 

All elements of this group involve only a finite number of cycles hence all def

initions of cyclizer seen above coincide.
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The infinite cyclic group

Figure 5.1: A pictorial representation o f  the perm u ta tio n  m .

D efin ition . A perm u ta tio n , p, o f  the integers is modular i f  there exists som e  

n  G N such that fo r  every k  G {0 ,1 ,...,n  — 1} 3 ik G Z and (x )p  =  x  +  i^

w henever  x  = k (mod n). The least possible n  in  this context is the period o f

the modular perm uta tion .

E xam ple . The fo llowing perm uta tion , m ,  is modular with n  =  2 (see fig

ure 5.1).

( x  +  1 : x  =  0 (m od 2 )

x  +  3 : x  =  l (m o d 2 )

Note that if m i  and m 2 are modular permutations with period t \  and t2 

respectively, then the permutation m im 2 is also modular and has period di

viding lcm (ti,t2). The set of modular permutations form a group which we 

shall call M .  The cycles involved in elements from M  are either finitary (they 

fix all but a finite number of points) or they are infinite cycles which are them

selves modular. Hence C y c ( M )  =< M, FS{fL) > where F 5 (Z ) is the group of 

finitary permutations on Z.

T h eo rem  5.1. Let := (a), the infinite  cyclic group, then  :-

(i) C y c (C 00) =  M

(u) C y c \ C oo) = <  M , F S ( Z) >.
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The infinite cyclic group

0

Z

Figure 5.2: The elementary permutation 7t3)1.

P roof: (z)The group Cyc(Coo) is generated by the cycles involved in powers 

of a. These cycles are 7 1 for i E  N, j  E  Z, 0 < j  < i where

x  +  i if x =  j  (mod i)

x otherwise

We will call these 7r elementary permutations. For example 7r3)1 is the 

following elementary permutation (see figure 5.2).

x +  3 if x =  1 (mod 3)

x otherwise

For n E  N let Mn be the subgroup consisting of those p 6 M  with period 

dividing n and note that M n < Mm whenever n divides m. For each of 

these subgroups there exists a natural homomorphism <Fn : Mn — > Sn into 

the symmetric group of degree n by looking at Mn acting on residue classes 

modulo n on Z, so that

(&)($„(p)) =  k +  ik (mod n) Vfc E {0,1 , n — 1} 

where (x)p = x  +  ik for x =  k (mod n) . The kernel of this homomorphism is
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The infinite cyclic group

the group of permutations that respect the residue classes, denote this by R^.

Notice that all the elementary permutations 7r are modular therefore 

Cyc(Coo) < M,  hence it suffices to show that M  < Cyc(Coo). This will be 

done by firstly showing that Rn < Cyc(Cof) for all n € N, and then that for 

any n 6 N $ n(Cyc(C'0O) n  Mn) =  S n .

Consider r £ Rn and the action this element has on the residue class con

taining 0. If 0 is fixed, then r acts as the identity on this residue class, otherwise 

due to the modularity of r  the action on the residue class containing 0 will 

be completely defined by where it sends 0. Let (0)r =  k n  then the cycles in

volved in r which affect this residue class will be (..., 0, k n , 2k n , ...), (..., n, (k +  

1)77,,...),..., (..., —n, (k — l ) n , ..) all of which are elementary permutations. Sim

ilarly for other residue classes, so r  is a finite product of elementary permuta

tions and hence is in Cyc(C'00).

Now we are required to show 3>n(Ch/c(Coo) fl Mn) =  Sn. Note that it is 

sufficient to show that $ m(Cyc(C00) fl Mm) — Sm for any m  a multiple of n. 

We will show it holds for np where p is the smallest prime that is not a factor 

of n. Let Hnp := ^^(CyciCoo)  D Mnp), the cycle a is in Cyc(Coo) D Mnp and 

=  (0,1, 2 , np -  1) Vn so ( 0 , 1 , 2 , np -  1) G Hnp.

The following lemma will be used.

Lemma 5.2. (Jordan) A  p r im it ive  subgroup o f  S n is equal to S n or A n when

ever it contains a q-cycle fo r  som e q < n  — 3.

In  particular a p r im it ive  subgroup o f  S n containing an odd p erm u ta tion  and a

3-cycle will be the whole o f  S n fo r  n  > 6.

The odd permutation (0,1 ,.. . ,np — 1) is in the group Hnp, to satisfy the
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The infinite cyclic group

conditions of the lemma we need Hnp to be primitive and contain a 3-cycle. 

The image of the following commutator is a 3-cycle from H np.

kp,0, TTn.o] =  ( - ,  3p, 2p,p , 0, - p ,  ...)(...3n, 2n, n, 0, - n , ...)

(••• -  P , 0,p, 2p, - n ,  0, n, 2 n ,...)

=  ...(0, n ,p ) (n p ,  n p  +  n , n p  + p )(2np , 2n p  +  n, 2np +  p)...

([̂ "p,05 ”̂n,o]) (fh^bP) ^ Hnp

As ( 0 , 1 , np  — 1) G Hnp any non trivial block in iPnp must be of the form 

A =  {0, k, 2/c,..} for some k  dividing np. If such a block exists, it cannot 

contain both n  and p  as they are co-prime, but it does contain 0. If we let

g = (0,n ,p ), then (A )g and A are neither equal or disjoint and thus no non

trivial blocks exist and Hnp is primitive. The conditions of the lemma are 

satisfied giving us that Hnp = Snp and hence C'yc(C'oo) =  M.  (i i) follows 

immediately from (i). □

The cyclizer of the infinite cyclic group was looked at by Cameron [2], The 

following is taken from that paper and completes the investigation into the 

infinite cyclic group as started above (everything that has come before was 

done independently of Cameron).

T h eo rem  5.3. (i) Cyc3(C'00) is the set o f  all p e rm u ta tions  g o f  Z f o r  which 

there exist r  > 0 and h +,h -  E M  such tha t  (x )g  =  {x)h+ fo r  x  > r  and  

(x)g  =  ( x ) h -  fo r  x  < —r.

(ii) C y c 3(Coo) =  C y c A(Coo), that is, C'yc3(C00) is cycle-closed.
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The infinite cyclic group

Figure 5.3: The permutation 7t2)o(0, 1)7t2 {

P roof: (i) These elements occur as there are some cycles involved in elements 

of Cyc2 (Coo) that are not modular, for example consider the cycles involved 

in the permutation 7t2)o(0, illustrated in figure 5.3.

We show first that any cycle of an element of Cyc2(Coo) satisfies the speci

fications of (i). This is clear for a finite cycle, so let g be an infinite cycle. The 

two ‘ends’ of g agree with those of two cycles (possibly equal) of an element of 

M. Since M  contains all infinite cycles of all its elements, the result is true. 

It follows that any element of Cyc3(Coo) has the form (i).

To conclude, we must show that every permutation of the form (i) belongs 

to Cyc3(Coo)- So let g be such a permutation. By multiplying g by h i 1, we 

may assume that h_ =  1. Now any cycle of h+ is either ascending, descending, 

or finite. (We call an infinite cycle ascending if some power of it translates 

points in its support by a positive number; see the argument later on the flow of 

a permutation. Descending cycles are defined analogously.) Our permutation 

g must have equal numbers of descending and ascending cycles as it is only 

one ended. Thus we may pair the ascending and descending cycles of h+. We 

can find an element of Cyc2(Coo) with a cycle which agrees with the product 

of a paired pair of cycles of h+ on the positive end of Z, and fixes the negative 

end pointwise. (This element is the product of the two paired cycles and a
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The infinite cyclic group

transposition interchanging points in the two cycles.)

It remains to deal with finite cycles. Now the finite cycles of h+ fall into 

congruence classes modulo n, for some n. We express the product of the 

positive cycles as an element of Cyc3 (Coo)- Take one congruence class of 

cycles, defining a permutation g. Suppose first that some congruence class (say 

x  mod n) is fixed. Let y mod n be a congruence class moved by g. There is a 

permutation gx satisfying (kn + x)g = k(n — l ) + x  and (kn + y)g =  k(n-\-1)H-y 

for sufficiently large k, all negative points being fixed. (Take §i to be the 

product of two infinite cycles and a transposition interchanging points in the 

two cycles.) Then gg has a single infinite cycle g on the positive end of Z, fixing 

the negative end pointwise. On the other hand, if g has no fixed points, we 

can write it as a product of two permutations in Cyc3 (Coo) with finite cycles, 

each of which has fixed points; then the positive end of each factor belongs to 

Cyc3(Coo), and hence so does the positive end of g.

(ii) Finally we show the Cyc3(Coo) is cycle-closed. Clearly it contains all 

the finite cycles. Any infinite cycle of a permutation satisfying (i) itself satis

fies (z), and so also belongs to Cyc3(Coo)- □
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Chapter 6

The infinite dihedral group

We now find the cyclizer sequence for the infinite dihedral group D =< <j, r  > <  

Sym(Z) where (x)a =  x + \ and { x ) t  =  1 — x for all x  G Z. The group Cyc(D)  

is generated by the elementary permutations, iq j, and a transposition from r , 

say (1 ,-1 ). Hence Cyc(D) contains Cyc(Coo) as a subgroup.

Lem m a 6.1. The group of modular permutations, Cyc(Coo) is highly transi

tive.

P roof: Suppose that (ai, ...,an) and (&i, are sets of n distinct points of

Z. Let s := m a x { a i , a n, 6 i , bn} and r := m i n { a i , a n, 6 i , bn} and 

let m  be the difference m  := s — r. We can construct a finite permutation 7r on 

the interval [r, s] such that (a^ir =  for all i. By repeating the pattern of this 

permutation throughout the integers at intervals of m  +  1 we can construct a 

modular permutation a with period m  +  1 that also satisfies (a*)a =  6* for all 

z. □
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The infinite dihedral group

As Cyc(D) is highly transitive and contains a transposition, it also has 

the finitary symmetric group F S ( Z) as a subgroup. We therefore have that 

Cyc(D)  — Cyc2{Coo). If follows that Cyc2(D) = Cyc3(Coo) which has al

ready been shown to be self-cyclising. It is natural to consider next the group 

Cyc(D) \=< Cyc(D),D  >, which is generated by the elementary permuta

tions 7Tijj a transposition (1, —1) and the reflection r.

T h e o rem  6.2. The group Cyc(D) =  Cyc2{C00)\JCyc1{C0o)T, where Cyc2{C00)r =  

{9r\g G Cyc*(Coo)}.

P roof: Let g G Cyc(D),  then g =  aiTa2T...an- i r a n for some ol{ G Cyc2(CQQ) 

and 77, G Z. However tq ^ t =  a] G Cyc2(Coo) so for odd n  we have

g =  Q l  T 0 2 T  a 3 T O 4 T  . . . T O L n - x T  Q n G C y C 2 ( C o o )  

eCyc2(Coo) eCyc2(Coo) eCyc2(Coo)

and for even n we have

o i  r a 2T 0 3  r o 4 r  . . .  r a n T  r  G C y c 2 ( C o o ) r .  

G Cyc2(Coo) GCyc2(Coo) e C y c 2(C«>)

□

We can see from Theorem 6.2 that Cyc(D) contains Cyc2(Coo) as a sub

group of index two. We have already looked at this subgroup so it remains 

to understand elements of the type gr where g G Cyc2(Coo)- These elements 

will still exhibit repetitive patterns (i.e with the exception of some finite region 

they can be defined on an interval of the integers). However the presence of the
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The infinite dihedral group

reflection r  means that there is no longer any bound on the distance an integer 

is moved by the permutation. The reflection also causes all integers outside 

some central finite region to be mapped to an integer the other side of zero 

(negatives are mapped to positives and positives are mapped to negatives).

To overcome these difficulties we can reorder the integers so that our group 

acts on Nq : = N U  {0}, via the bijection /  : Z »-> Nq.

/(*) = <

0

2 x -  1 

—2x

x =  0 

x > 0 

x < 0

Pictorially this bijection is a folding of the integers, see figure 6.1.

Z

-1 -2 -3 -5 -6

Y—Y—Y—Y—Y—Y—Y—Y—Y—Y—Y—Y -Y —Y-a
(J 1 2 3 4 5 6 7 8 9 1011 12 13

Nn

Figure 6.1: The bijection f  : Z i—> No-

Let F  : Sym(Z) i-» Sym(N0) map permutations on Z to permutations on 

N0 via this folding of the integers. The generators of D  become t =  F(r)  and 

<r =  F{p) where

( x ) f  =
x — 1 : x = 1 ( mod 2)

x +  1 : x =  0 ( mod 2)
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The infinite dihedral group

Figure 6.2: t

^ N o

and

(x)d = <

1 : x = 0

x +  2 : x = 1 ( mod 2)

x — 2 : x =  0 ( mod 2), x ^  0

Figure 6.3: d

We can now define modular permutations on No analogous to those on Z.

D efin ition . A permutation, p G SV/m No is modular if there exists some r ,n  G 

N such that for every k G {0,1, ...,n  — 1} 3 ik G Z such that (x)p = x +  ik 

whenever x > r and x = k (mod n). The period of a modular permutation is 

the smallest n that can be used in this context.

The modular permutations on No form a group (M(No)) which contains 

both oft  and all finitary permutations of No. Moreover this group is cycle- 

closed as any infinite cycle involved in an element from the group must itself 

be modular.

T h eo rem  6.3. Iff; is a modular permutation on Z7 then £ =  F(£) is a modular 

permutation on No.

P roof: For clarity, relabel the group of modular permutations in Z as M(Z). 

Let £ G M(Z) be a modular permutation with period n, then for all k G
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The infinite dihedral group

{0,1, ...,n  — 1} there exists u  G Z such that (z)£ = z + ik whenever z =

k( mod n). Let m  G Z such that |z — (;z)f| ^  m  for all z G Z. Then notice

that under the isomorphism /  positive integers are mapped to odd numbers 

and negative integers are mapped to even numbers moreover if 2 =  k( mod n) ,  

then

! 2k — 1 ( mod 2n) : z > 0

—2k ( mod 2n) : z ^  0

for all z G Z. Hence if £ =  F(£), then for all i  G Nq greater than 2m

£ +  2ik : x =  2k — 1 ( mod 2n)
=

a: — 2ik : a: =  —2k ( mod 2n)

and therefore £ G M(No) and is a permutation with period n or 2n. □

Let M2n(No) be the set of elements of M (N0) which have period dividing

2n  and consider an element p of this set. Partition No into disjoint intervals 

{k2n , ( k +  l)2n — 1} for k G No. On each of these intervals the permutation 

induces a map Z2n —> Z2n. Because of the modularity of p there will be a 

unique map that occurs an infinity of times p : Z2n —> Z2n. Let N  be the 

smallest integer such that |(x)p — x\ < N  Vax Then there exists a sequence 

of 2N  +  1 consecutive intervals which all give rise to the map p. Assume for 

contradiction that p is not a bijection. Then there is some point i G Z2n that 

is not in the image of p. If the equivalence class [z] is not in the image, then 

consider the representative of this class from the set in the centre of the 2N  +1 

consecutive sets ((N  +  l)2n +  i). There must be a point a G No such that
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The infinite dihedral group

(a)p = (TV +  l)2n +  z. However as the equivalence class [z] is not in the image 

of p, a cannot be a member of the chosen 2N  +  1 sets. It also cannot be in the 

complement of these sets as no point is moved more than N  places. Therefore 

the map p is a bijection. We are now in a position to define a homomorphism

0 2n : M2n(No) —> 5 2n 

that takes each modular permutation to the particular p that it induces on Z2n.

E xam ple. The following modular permutation p has period 4 (Figure 6.Jf).

1

x  — 1

( x ) p  =  {  X  +  4

X

x — 3

x = 0

x  =  0 ( mod 4) ,x > 4 

x = 1 ( mod 4) 

x = 2 ( mod 4) 

x = 3 ( mod 4)

Figure 6.4: A permutation with period 4. 

Under the homomorphism p is sent to an element from S±.

0 4(p) =  ( 0,3)(1)(2)
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The infinite dihedral group

We return now to the group Cyc(D) in order to determine the image of this 

group under the above homomorphism. We know that Cyc(D) = Cyc2(C00) U  

Cy(T{C^)T and we have already seen that elements of Cyc2(Coo) are modular 

on the integers except possibly on a finite region. Now we will consider the 

action of Cyc(D) on N that comes from the folding bijection and we will 

be looking at what happens to these permutations under the homomorphism 

defined above. We want to know which permutations of {[0], [1],..., [2n — i]} 

are images of permutations from Cyc(D) under the homomorphism 0  (where 

the [z] are equivalence classes mod 2n) .

Figure 6.5 shows how the residue classes modulo n on Z map to residue 

classes modulo 2n on Nq. Consider first the elements of C?/c2(C00). Except 

on a finite central region these act as modular permutations (on Z) and hence 

we can find elements of Cyc2(Coo) that will induce arbitrary permutations 

on { 1 , 2 , . . . ,n} and hence also on the set {[1], [3], . . . ,  [2n — 1]}, whence the 

same permutation will be induced on the sets (1, 2 , . . . ,  h} and {[2n — 2], [2n — 

4] , . . . ,  [2], [0]}. Elements of Cj/c2(C00)r  exchange the two sets {1,2, . . . ,  n) 

and {[1], [3], . . . ,  [2n — 1]} and hence their images under F  will exchange the 

two sets {[1], [3], . . . ,  [2n — 1]} and {[2n —2], [2n — 4] , . . . ,  [2], [0]}. So the group 

Cyc(D) acts on the residue classes {[1], [2],. . . ,  [2n — 1]} of N0 like Sn x C2 

acting on 2n points.

The following lemma will be required for the exploration of Cyc2(D).

L em m a 6.4. The group Sn Wr C2 is a maximal subgroup of S 2n.

P roof: The group SnWr C2 is a transitive imprimitive group with a unique 

nontrivial block system consisting of two blocks of size n. Any element of S2n
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_ Y _ y _ Y _ Y _ Y _ Y _ Y _ Y _ Y _ Y -
[0] [1] [2] [2n-

Figure 6.5: Residue classes modulo n under the map f .

that preserves this block system either fixes both blocks and is therefore an 

element of Sn x S n < Sn Wr C2, or it exchanges the blocks and is therefore also 

an element of Sn Wr C2. Consider a group G such that Sn Wr C2 < G < S2n 

then any system of blocks in the group G must contain the two blocks from 

Sn Wr C2 as a sub-system, hence G either preserves the two blocks or is prim

itive. G is strictly greater than Sn Wr C2 and so contains elements that do 

not preserve the blocks and therefore is primitive. G contains a three cycle 

and odd elements and so by Lemma [11] is the whole of S2n for n > 3. When 

n = 2 inspection shows that Sn Wr C2 is also maximal in S 2n. When n =  1 

S2n and 5nWr C2 coincide. □

T h eo rem  6.5. Cyc2(D) is the group of modular permutations on No and is 

therefore cycle-closed.

Proof: As before we will analyze the action on the residue classes of Z and 

N0. The group Cyc3(Coo) is contained in Cyc2(D). Elements of this group act 

as modular permutations on each end of the integers so we can now induce any
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permutation on the set {1,2, . . . ,  fi} and at the same time any permutation on 

the set {1 ,2 , . . . ,  n}. We can still exchange these sets via the reflection r  and 

hence Sn Wr C2 < 0 2n(Cyc(.D) flM 2n(No)). However this is a strict inequality 

as the following is an example of an element that is not in S„Wr C2. We will 

consider a permutation m E Cyc2(Coo) pictured in Figure 6.6 acting on Z.

( x  +  3 : x  =  0 ( mod 2) 

x — 1 : x  =  1 ( mod 2)

0

Figure 6.6:

The permutation m r  E Cyc(D)  involves two cycles, which are pictured in 

figure 6.7.

I—(a;+  3) : x = 0 ( mod 2)

— (x — 1) : x  =  1 ( mod 2)

Each of which is itself a permutation of Cyc2(D ), and both take some

positive integers to negative integers, but not all. Hence under the map F

their action on the residue classes will break the block structure of SnW rC 2. 

Lemma 6.4 gives us that the group 0 2n(C,yc2(D) n  M2n(N)) is therefore the 

whole symmetric group.

The kernel of 0  2n ^  (N0) is the group of modul&r permutcitioris thcit
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Figure 6.7:

preserve the residue classes modulo 2n on No. For any such permutation the 

pre-image under F  preserves the residue classes modulo n on Z and is modular 

on both ends of the integers. We know all such permutations are contained 

in the group Cyc3(C0Q) and hence are in Cyc2(D), so in the action on N0, 

Cyc2(D) =  M(N). □
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Chapter 7

Other infinite groups

7.1 F in itary groups

Obviously the group F S ( Z) of finitary permutations on Z is cycle closed. The 

following lemma and theorem from Cameron’s paper [2] will be necessary later.

L em m a 7.1. Let g and h be permutations on both of which are prime 

cycles, such that their supports are neither equal nor disjoint. Then the group 

generated by the cycles g and h has even order.

P roof: Let G := (g , h) and u  G Supp(h). The conjugates of g by powers of h 

generate a group,in which the stabilizer of lu is transitive on f2\{o;}. Hence G 

is two transitive and therefore has even order. □

T h e o rem  7.2. If  G is an infinite transitive permutation group on Ll, then 

Cycs(G) contains FS(£l).

P roof: The proof is similar to the finite case. If G is imprimitive and contains
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some element that acts as a finite cycle on blocks, then the finite argument 

can be used. If G is imprimitive and moves blocks only in infinite cycles, then 

the elements that move the blocks must do so with more than one cycle and 

therefore these are not blocks of Cyc(G).

Suppose that G is primitive. If G involves a cycle of finite length, then 

Cyc(G) contains a prime cycle g. The support of g is not a block of Cyc(G) 

and therefore there is some conjugate of g whose support is neither equal to nor 

disjoint from the support of g. By Lemma 7.1 Cyc(G) contains a subgroup of 

even order giving that Cyc2(G) contains a transposition and Cyc3(G) contains 

FS(0) .  We have already seen that Cyc3(Coo) contains all finitary permuta

tions and therefore if G involves only infinite cycles, the theorem still holds. □

The above theorem shows in particular that all finitary groups G are such 

that Cyc3(G) =  C yc \G ) .

7.2 F in ite  flow perm utations

We now give another example of a cycle closed subgroup of Sym(Z).

D efin ition . For a permutation p and each n E Z -f |  := {x  +  \  \x £ Z} define 

two maps from S ym (Z) to N by

K ( p ) 10 ^ 0)P > n }\ and

K i p )  ' •= 10 e (Op < n } \ -
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A permutation p G Sym {Z) is said to have finite flow if $ f(p )  and <Fn (p) are 

finite for all n £ Z +  | .

For a permutation p with finite flow let <£n(p) =  $ H p ) ~  ®n(p)-

T h eo rem  7.3. For a given p with finite flow, the value of $ n(p) constant 

for all n  G Z -fi \  .

P roof: Let n, m  G Z +   ̂ with n < m  and note that as there are only finitely 

many integer points between n and m

< n ,n  < (i)p < m}\ -t- |{z G Z |m < i ,n  < (i)p < m}\

= |{i G Z |n  < i < m, (z)p < n}| +  |{z G Z |n < i < m ,m  < (z)p}|.

So that

*n(p) =  $ £ ( p ) -$ ~ (p )

=  |{z G Z|z < n ,n  < (i)p < m}| +  |{z G Z|z < n , m  < (i)p}|

- \ { i e z \ n  < i < m, (i)p < n}| — \{i G Z|z > m, (i)p < n}|

=  |{z G Z |n < i < m ,m  < (i)p}| +  |{z G Z|z < n , m  < (i)p}|

— |{z G Z|m < i ,n  < (i)p < m}\ — |{z G Z|z > m, (z)p < n}| 

=  $m(p) -  $ m(P) =  ®m(p)-

□

As the flow of a finite flow permutation is constant for all n  G Z +   ̂we can 

talk unambiguously of the flow of a permutation, and write 3>n(p) as <£(p).
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T h e o r e m  7 .4 . I f  two permutations p,q G Sym (Z) have finite flow, then the 

product pq also has finite flow. In fact $(pq) =  $ (p ) +  $(q)-

P ro o f :  Let p,q G Sym (Z)  b e  perm utations w ith finite flow and n G Z +  

then  $+(pq) -  $~(pq)  =

^|{z G Z\i <  n , (z)p >  n} | +  |{z G Z\i < n, (i)p < n, (i)pq >  n} |

- |{ z  G Z|z <  n, (i)p > rz, (i)pq < 71}

— ( | 0  G Z|z > n, (i)p < 71} | +  |{z G Z\i > n, (i)p > n, (i)pq < n}\

- |{ z G Z |z  > n, (i)p < n, (i)pq > n}|^

=  | {z G Z|z <  n, (i)p > n}\ — |{z G Z|z >  n, (i)p < 71} |

+  ^|{i G Z|z < 71, (i)p < n, {i)pq > 7i}| +  |{z G Z|z > n, (i)p < n, (i)pq > n

- ( j { i  G Z |i < 71, (i)p > 7i, (i)pq < n ) | +  |{* e > 71, (i)p > n, (z)pg < 7i}|^

=  |{z G Z\i <  7i, (z)p >  n} | — |{z G Z|z >  71, (z)p <  7i} |

+  |{z G Z|z <  71, (z)g >  7i } | — |{z G Z|z >  ti, (z)g <  rz}|

=  (P) -  $ n (?) +  (9) -  (?)

Hence =  $ (p ) 4- $((?) as required. □

Also we have $ (p -1 ) =  — $ (p ), so the elements of SymifL)  th a t  have finite 

flow form a group. Moreover this group is cycle closed as if c is a  cycle involved
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in a permutation p, then $+(c) <

Another example of an infinite cycle closed group is the group of elements 

of Sym(Z) which have bounded movement. By bounded movement we mean 

that for a permutation g there exist a constant kg such that for all x E Z 

\ x -  (x)g\ < k9.

7.3 P erm utations w ith  “m odular en d s”

Recall that if CcQ is the infinite cyclic group, then Cyc3 (Coo) (where Cyc(G) := 

(Cyc(G),G)) is the set of all permutations g of Z for which there exist r  > 0 

and h+,h- modular permutations of Z, such that (x)g = (x)h+ for x > r and 

(x)g = (x)h-  for x < —r. This group Cyc3(Coo) will be denoted by M E (I j) as 

it contains permutations with “modular ends” . We will now consider finitely 

generated transitive subgroups of M E (Z) and show that they have a cyclizer 

sequence of length at most six.

Consider an infinite cycle p E  ME(7j) such that Supp(p) =  Z. We can 

reorder the integers via a bijection p so that ((x)p)p = (x)p +  1. Now on 

the reordered integers Zp, the permutation p is the infinite cycle that we have 

studied before and therefore Cyc3((p)) = ME(Zjp). A s p has modular ends so 

must the bijection p, so the group ME(%P) is the same as the group ME{7j).

Recall that when looking at modular permutations we defined the period of 

repetition as the size of the smallest set of consecutive integers on which the 

permutation can be defined. We then looked at the natural subgroups Mn(Z) 

of M(Z) consisting of permutations with period a factor of n. A homomor

phism, <$n : Mn(Z) i-» Sn was defined by looking at how residue classes modulo
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n are permuted. We can define a similar homomorphism on the group M E (Z). 

There are two periods associated with a permutation from the group Mi£(Z), 

that of the modular permutation on the negative end of the integers (the neg

ative period) and that of the permutation on the positive end of the integers 

(the positive period). The group M E  {If) therefore has subgroups M2£m>n(Z) 

of elements whose negative period is a factor of m  and positive period is a 

factor of n. We can now define a homomorphism Xm,n • ME{Ij) \ S m x Sn. 

If p G M E min(Z), then there exists r e  Z and g- e  Mrn('L),g+ e  Mn{Ij) such 

tha t for all x > r (x)g =  (x)g+ and for all x < — r {x)g =  (x)g— We then 

define xm,„(p) =  $m(p-) x $ n(p+)- Where : Afn(Z) «-* Sn as above. Let 

Rm^nifL) be the kernel of Xm,n and note that this is the group of elements g as 

above such that p_ G i?m(Z) := K e r($ m) and g+ G Rn{Z) := Ker(Qn).

For the remainder of this section G is a transitive subgroup of ME(7j) with 

finite generating set { p i , , gn}- If all elements of G involve only finite cycles, 

then we have already seen that Cyc3(G) = F S {Z), so assume that there is an 

element in G involving the infinite cycle c.

Let M  (respectively N)  be the lowest common multiple of the negative 

periods (positive periods) of the permutations p i , . . . ,  gn and the cycle c, hence 

G A/J5'yv)A/(Z).

T h eo rem  7.5. The group Rm ,n is a subgroup o f Cyc(G)

P roof: We consider just the positive end of the integers as similar results will 

hold for the negative end. It is sufficient to show that there exists an element
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of G which involves a cycle 

(  , Xq, £o +  N, xq +  2N, xq +  3N, c ........................J
V .  . . . . .....   v  ■■ *•' v

any permutation permitted pattern repeats

for some xq £ Z. Such a cycle does occur in a power of the cycle c as we know 

that the positive period of c is some factor of N. This cycle is involved in an 

element of G and will therefore be an element of the group Cyc(G). As the 

group G is transitive we can conjugate this cycle to take Xq to any integer. 

These cycles together will generate the group R m ,n • a

L em m a 7.6. If  H  is a primitive permutation group on a finite set SI such that 

there exists A c H ,  |A| > 1, with Sym (A) < H , then H  = Sym(Pl).

P roof: Let A be the largest subset of Pi such tha t S y m (A) < H. As H  is 

primitive there exists h G H  such that (A)/i n  A is non empty and not equal 

to A. Hence (K ,h~ lKh) = Sym {A u  (A )h). Thus contradicts the hypothesis 

so H  is the full symmetric group on Pt. □

T h eo rem  7.7. The group X m , n { G v ( ? ( G ) D M E m , n { % ) )  =  S m  x  S n -

P roof: Let XM,N{Cyc3(G )r\M E M,N(%)) = H 1 x H 2 and X m , n ( G )  =  i f 1 x i f 2. 

The groups are finite and transitive, hence Cyc3(Ki) are primitive. This 

gives us that

C y c \ XM A G ))  = Cyc3(Ki) x Cyc3(K2)

XM,N(Gyc3(G) n MEm,n{%)) = Hi x  H2
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so the groups Hi are primitive. We also know that Cyc3({c)) = ME(Supp(c)) 

so the groups Hi satisfy the conditions of the above lemma and are therefore 

S m and S n respectively. □

C oro lla ry  7.8. The group M E m ,n is a subgroup of Cyc3(G).

Proof: We saw above that R n ,m < Cyc2(G) < Cyc3(G) and also

X m , n { C y c 3 ( G )  n M E mtn(Z)) = Sm x Sn

from which the result follows. □

In particular the group Cyc3(G) contains the infinite cycle a where

{x)a =  x  +  1 Vx G Z.

Therefore

{<j) < C y c \G )

M E{Z)  =  Cyc3((a)) < Cyce(G) < M E (Z )

and G has reached a cycle closed group after taking cyclizers at most six times.
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Chapter 8

Conclusions and open problems

This thesis replicates and then extends the work of Peter Cameron’s paper [2]. 

(Replication occurred as the author was unaware of the existence of the paper 

until after completing the work on finite groups and the second cyclizer of the 

infinite cyclic group.) In the study of cyclizers of finite groups we determine the 

maximum length of a cyclizer sequence and those groups which have cyclizer 

sequences of maximal length, in doing so we answer the question “which finite 

transitive permutation groups G satisfy Cyc2(G) 7  ̂ Ch/c3(G)?” posed in the 

paper [2]. The investigation of cyclizers of finite groups is almost exhausted, 

however there remains the question of distinguishing 2-groups with cyclizer 

length 1 from 2-groups with cyclizer length 2. This problem would be solved 

by finding which groups have imprimitive cyclizers, which we leave as an open 

problem. Another avenue that could be explored is to look at whether the 

length of the cyclizer sequence of a particular group is dependent on how that 

group is presented as a permutation group. The section on finite groups is 

concluded with a summary of results in Chapter 4.
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Conclusions and open problems

Investigation into cyclizers of infinite groups is far from exhausted. We 

have only looked at particular examples of infinite groups and made no new 

statements about cyclizers of infinite groups in general. However in inves

tigating particular infinite groups we have highlighted the existence of some 

interesting infinite groups, such as the group of modular permutations and 

the group of permutations of finite flow. This thesis makes no contribution 

to answering another question from Cameron’s paper, that is to determine if 

Gyc3(G) = Cyc4(G) for all permutation groups G. Given the vast range of 

possibilities for infinite groups it seems hard to believe that this is the case. 

A further research project could be to try to construct a counter example to 

this claim.
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A ppendix A

G AP code

Whilst none of the results in this thesis depends on computational calculations, 

extensive use was made of GAP [4] to investigate the cyclizer function. The 

following three short functions take a permutation g in cycle notation and turn 

it into a list of the cycles it involves, which is then used in the function Cyc 

to generate the cyclizer of a group G.

ListToCycle:=l->Product(List([ 2 ..Length(l)],
i-Xl[l],l[i])));

ListListToCycle:=l->List([1..Length(l [1])], 
i->ListToCycle(1[1][i]));

PermToCycles:=function(g) local c,d,e; 
c:=LargestMovedPointPerm(g); 
d :=[List([1..c],k->OrbitPerms([g],k))]; 
e :=ListListToCycle(d); return e; end;

This function is then used to write a procedure which calculates Cyc(G) 

given G.
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GAP code

Cyc:=function(G) local n,j,x,b,c,d,U,H,J; 
n :=LargestMovedPoint(G);
U:=ShallowCopy(G);
H :=ConjugacyClasses(G);
J:=List([1..Length(H)],c->Representative(H [c])); 
for x in J do j :=1; 
b :=PermToCycles(x); 
c:=SSortedList(b);
RemoveSet(c,1);
while j<=Length(c) do d:=c[j];
U:=ClosureGroup(U,d); j:=j+l; od; 
if Size(U)=Factorial(n) then break; fi; 
od; return U; end;

GAP was particularly useful in getting a feel for which finite groups had a 

cyclizer sequence length of three. The following function calculates the length 

of the cyclizer sequence for a given group, this was used inside procedures 

that worked through the library of transitive groups in GAP and stored those 

which had a sequence of length three.

SeqLength:=function(G) local n,i;
i:=0; n :=LargestMovedPoint(G);
while not G=SymmetricGroup(IsPermGroup,n) do;
if i<=10 then G:=Cyc(G);
i:=i+l;
else i:=ShallowCopy(G);
G:=SymmetricGroup(IsPermGroup,n); 
fi; od; return i; end;

It is not a very efficient program and many minor changes were made to 

decrease the computation time. For instance it is obviously quicker to return 

those groups G such that Cyc2(G) ^  Sn than to explicitly calculate Cyc3(G).
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A ppendix B

Swap connected groups

The work in this appendix is completely unrelated to the main body of the 

thesis; it is a project I worked on during my first year as a postgraduate. There 

is scope for further investigation of this topic, however I did not pursue this 

as other interests took hold.

B .l  Introduction  and defin itions

For a given group G we will study the relationships within r n (G) the set of 

generating sets for G of cardinality n.

Definition. Let ( a i ,. . .a n) be an ordered generating set for our group G. 

For any permutation 7r of 1,2, ...,n  and Si =  ±1 for i 6 { l,...,n } , let (fi : 

(o;i,..., a„) ..., this is a perm utation autom orphism . The

automorphism given by p : (ou, 02 ,..., a n) (o^ct,, 02 ,..., o n) and its inverse 

p' : (ai, 0 2 , . . . ,  a n) (aiictj1, 0 2 , . . . ,  a n) are N ielsen autom orphism s.

Definition. Two generating sets /i, A G r n (G) are N ielsen  equivalent, writ-



Swap connected groups Free groups

ten p if there exists a sequence of Nielsen automorphisms from one to

the other.

D efin ition . A sw ap takes one generating set to another of the same cardi

nality if they differ in only one elem,ent.Two generating sets p, A € Tn(G) are 

sw ap equivalen t, written p ~ s  A, if there exists a sequence of swaps taking 

one to the other.

It is easily seen that both ~yv and ~ s  are equivalence relations. A group 

G will be called swap connected (Nielsen connected) if Tn(G) has only one 

swap equivalence class (Nielsen equivalence class) for n — rank{G). The 

term connected coming from the graph that can be constructed with Tn(G) as 

vertex set and edges representing elementary swaps (elementary Nielsen auto

morphisms). Note that Nielsen equivalence implies swap equivalence but the 

converse does not hold. In 1992 overwhelming evidence led Raymond Tennant 

and Edward Turner [4] to conjecture that all groups were swap connected, but

[3] showed that this is not the case. However, as we shall illustrate, there are 

many examples of classes of groups that are swap connected. It will also be 

shown that if a group of rank 2 is known to be swap connected, then the swap 

graph associated with that group will contain a Hamiltonian path. Lastly we 

shall see an example of a group that is not swap connected.

B .2 Free groups

The automorphism group of a free group of finite rank is generated by per

mutation and Nielsen automorphisms [2] so the free group is both Nielsen and
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swap connected.

In the free abelian group

7----^  9* z
[Fn, Fn]

any generating set {a\ = ( a ^ i , a i )n) , a n =  (an,i, •••, <̂ n,n)} is a basis of 

the vector space Zn and can be written as a matrix M  = (aij) € GLn(Z). 

An application of a Nielsen automorphism taking this generating set to an

other is equivalent to pre-multiplying by one or a combination of the following 

matrices:-

/ 1 0 . 0

0 0

0 1 1
swap automorphisms:

1 0

V  v ° V
1 0 . . . . 0

0

1 . . 1
Nielsen automorphisms:

1

V
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T h eo rem  B .l .  For any M \  6 GLn{Z) representing the generating set A of Zn 

there exists N \ = N \N 2...Nk such that N \M \  =  In and each Ni is a Nielsen 

transformation.

P ro o f  Proof follows by induction on n. When n — 2 M  = (ctij) where 

{(oi,d <̂1,2), (a 2,i, 0:2,2)} generate Z2. As gcd(oi)i, qj2,i) =  1 Euclid’s algorithm

gives a method for reducing M  via Nielsen transformations to Mi =

Now pre-multiply by

1 a

1° V
to get Mil =  / 2.

v° w
Suppose now that this holds for Zfc and consider M  representing the gen

erating set {<2i , a ^ + i }  of Z fc+1. Again g c d f a ^ i , =  1, so Euclid’s 

algorithm gives a method of reducing M  to

Mi =

1 <2l • • Gfc+1

0

v °
This is still a generating set so there exist a linear combination of rows 2 to
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k + 1 equal to (0, a i , a ^ + i )  hence Mi can be reduced to

Mil =

1 0 

0

V°

and thus by induction to Ik+i- □

C oro llary  B.2. Zn has only one Nielsen equivalence class (and therefore only 

one swap class).

P ro o f  If M \  and represent generating sets A and p for Zn, then there 

exists Nx^Np such that N XMX = In = N^M^. Thus N ~ l N xMx =  M(  and so 

M \  and are Nielsen equivalent. □

If G is a group of rank n such that for any epimorphism <f> : Fn —>• G 

Fn)) =  r(G ) holds, then it follows from swap connectedness of Fn that G 

is swap connected.

B .3  T he prim itive property

D efin ition . For 7  G Tn(G) let e1 be the natural epimorphism from Fn to G. 

An element g G G is said to be primitive if it is contained in some minimal 

generating set for G, a set is said to be primitive if it is a subset of some
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minimal generating set for G (here minimal generating set is taken to mean

if £j(Prim (Fn)) = Prim(G) (£1(Primic(Fn)) =  Primk(G)) for all 7 .

The following proposition and theorem are from [4].

P ro p o sitio n  B.3. The k-primitive property of G does not depend on the 

choice of generating set 7 . Furthermore, G has the k-primitive property if 

and only if  for any ordered 7 , 7 /  G Tn(G); there is a 7 ft 7 '  such that yft

agrees with 7  in the first k entries.

P ro o f  We use the fact that 71 72 if and only if there is an automorphism

a of Fn such that the following diagram commutes.

It then follows that the ^-primitive property of G relative to 7  depends only 

on the Nielsen class of 7 . Now let 7 1 ,7 2  be elements of rn(G) , 71 =  ( g i , g n) 

and suppose that G has /c-primitive property relative to 72. Let {wi, ...,wn} G 

T(Fn) (Fn =  F[x 1 , 2 7 ] )  be a primitive set such that el2{wi) =  g fi  1 < i < k, 

define a  G Aut(Fn) by a(xf) — Wi and let 72/ =  {£72(a(a;i))|l < i < n}. Then 

72/ agrees with 71 in the first k entries of n and since 721 ~ n  72 ,G  has the k- 

primitive property relative to 72/. For any {hi,..hk}  C { ^ i , .. y  =  * 6  r„(G), 
we can similarly get an automorphism (5 so that in the following diagram, the

that the set contains no redundant elements). Let Prim(G), Primk{G) be the 

set of primitive elements and the set of primitive sets of cardinality k respec

tively. Say that a group G has p rim itiv e  p ro p e rty  ^ -p r im itiv e  property ,)

a

G
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right hand triangle commutes on the subgroup F[x i, 

F a   ̂ F  __ @-+- Fn ± n 1 n

But since a  is the identity on F[x i ,  . . . , X k ] ,  the large triangle commutes as 

well; thus {hi, ..h*} =  e7l {xi, ...,£*;} and G has the h-primitive property rela

tive to 7 i.

T h eo rem  B.4. I f  r(G) = n and G has the (n — l)-primitive property, then 

any two minimal generating sets are swap equivalent.

Suppose 71 and 72 are two minimal generating sets. The preceding propo

sition says that 72 is Nielsen equivalent (and so swap equivalent) to 72/ so that 

72/ agrees with 71 in all but the last entry. Then 72/ is swap equivalent to 71.

B .4  Som e swap connected  groups

T h eo rem  B.5. Finitely generated abelian groups are swap connected [f]. 

P roof: A finitely generated abelian group G has canonical representation as

G =  HI © Zmi © ... © Zmki m i+11ITli

As we have already shown that free abelian groups are swap connected we may 

assume that r  =  0. Let M7 be the matrix whose rows form the generating set
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7 . M7 reduces to

M y  f  -----

a  P2 

0

• Pk

V° /

where a generates Zmi. Since the rows of My, generate G,

(0,p2, ...}pk) =  l\9\t + ••• +  lk9k*, 7 ' =  - >flrfc/)-

Considering the first coordinate, 0 =  Zia(modmi). But then /1 =  O(modmi) 

and so /1 =  O(modmi), 1 < i < k. Thus we can assume that l\ =  0 and further

reduce M7, to

M y n  —

V° /

At this point we can swap the first row to (1, 0 ..., 0) and proceed as before, com

pleting the proof by induction. This swap may be necessary as if m ±  2,3 ,4  or 

6 , then Zm has a generator a / ±  1 and {1} and {a} are not Nielsen equivalent. 

□

T h eo rem  B .6 . Finite p-groups are swap connected.
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Proof: By Burnside’s basis theorem a finite p-group (for p prime) G is such 

that $(G) =  G'GP, where $(G) is the Frattini subgroup of G. Thus X  will 

generate G if and only if the image of X  generates G/G'GP. The group GjG'Gp 

is abelian of exponent p and as p is prime is a vector space, thus G/G'GP is 

swap connected. The group G/G'GP is swap connected if and only if G is. So 

now we have that G is connected. □

T h eo rem  B.7. Finitely generated nilpotent groups are swap connected.

P roof: A finite nilpotent group is the direct product of its unique Sylow p- 

groups, so we can move from one generating set to another by concentrating 

on each p-group one at a time and the connectedness of the p-groups will en

sure that the whole group is swap connected. Similarly for a finitely generated 

nilpotent groupG, X  generates G if and only if X  and G' generate G. The 

group G /G 1 is the cartesian product of a finite abelian group and a free abelian 

group of finite rank, which have already been shown to be swap connected and 

cartesian products of connected groups are also connected. □

B .5 Swap connected  groups o f rank 2

In this section all groups discussed have minimal generating sets of cardinality 

two. We will take a closer look at the swap graphs of rank two groups.

D efin ition . For a group G the com plem ent of any g £ G is the set of 

elements h £ G such that (g , h) =  G.
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T h eo rem  B.8. The complement, g of an element g is

G \  (J m,
m (zM

where M  is the set of all maximal subgroups of G that contain g.

P ro o f  For h e G \  UmeM m > 9) 1S either contained in some maximal sub

group of G or it is equal to G. But due to our choice of h (h,g) cannot be 

contained in a maximal subgroup, therefore (h,g) =  G and so h G g.

Conversely if h G L L e M ’ then i ^ 9 )  1S contained in some maximal sub

group of G and hence (h, g) /  G. □

For a group G construct a complement graph with vertex set G\{1} and

edges joining elements g and h if g G h (this is not a digraph as g G h

implies h £ g). We can now construct the dual of this graph by making a

dual vertex for every edge in the complement graph and joining vertices whose 

corresponding edges are adjacent. Notice that the dual of the complement 

graph is the swap graph for our group G. Swap connectedness is therefore 

equivalent to complement connectedness. This can be used to give another 

example of a swap connected group.

T h eo rem  B .9. Any group of order pq where p < q are prime has a con

nected complement graph and hence be a swap connected group. Moreover the 

complement graph will have diameter 2.

P roof: By Cauchy’s theorem the group has an element, and thus a cyclic sub

group, of order q, say a. As p < q this cyclic subgroup is maximal hence any
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3 4

i

Figure B.l: The complement and swap graph for D2.3. The swap graph is 
shown with highlighted Hamiltonian path.

non-identity element of (a) will be connected to all other elements of G\(a). 

Now there exists a path of length 2 connecting any two non-identity elements 

of (a) via any g0 G G\{a). Any g,h  G G\(a) are connected via a. And all an, 

1 < n < q are connected to all g G G\(a). The diameter is not less than two 

as (an, am) = (a). □

E xam ple. The dihedral group of order 6 , D2.3.

Figure B .l shows the complement graph for D2.3, by drawing a vertex for 

every edge we get its dual, the swap graph of D 2.3 also shown in this Figure.

It is clear that both are connected but also as illustrated the swap graph is 

Hamiltonian (there exists a closed path that passes through every vertex once 

and once only). This Hamiltonian path is not unique.

W h en  is th e  sw ap graph H am ilton ian?

As taking the dual of a graph sends edges to vertices, any map that has a 

Eulerian path will have a Hamiltonian dual. However the converse is not true
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b b2

Figure B.2 : Lifting the Hamiltonian path back to the complement graph.

as can be seen in Figure B.2 . If we lift the Hamiltonian path of the swap 

graph to the complement graph, then we do not even get a path. What we do 

get contained in the lift is a closed path such that any edge not in the path is 

adjacent to one that is.

T h eo rem  B .1 0 . A graph T has a Hamiltonian dual if and only if it contains 

a closed path such that any edge not in the path is adjacent to one that is.

P ro o f

<= Given a Hamiltonian path in the dual graph it can be lifted to give either 

a Eulerian path in the original graph or it will contain a closed path that is 

adjacent to every edge.

=> If 7  contains a closed path such that any edge not in the path is adjacent 

to one that is, then taking the dual of T (D(T))  will map this path to a closed 

path in D(F)  that either goes through every vertex or that can be adapted to 

go through every vertex. Consider a section of the path in T as in Figure B.3. 

This maps to the path in D(T) shown in Figure B.4.

Which can be adapted to go through all three vertices, as shown in Fig

ure B.5.
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Figure B.3: A section of a path from T.

3

1

Figure B.4: The image of this section of path in D(T).

Hence -D(r) is Hamiltonian.

L em m a B . l l .  Any two vertices in the complement graph of G form one side 

of a triangle. (A tr ian g le  being defined as a complete graph on three vertices.)

P ro o f  If vertices a and b are connected by a single edge in the complement 

graph, then (a, b) = G therefore (a, ab) — (a&, b) =  G. ab /  a and ab ^  b as G 

is noncyclic. Hence the vertices a,6 and ab form a triangle. □

T h eo rem  B.12. All connected complement graphs contain a closed path such 

that any edge not in the path is adjacent to one that is.

P ro o f  Let C  be a circuit in the complement graph of G that does not fit the 

above specification, we will show that it can be added to to make a path as
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3

1

Figure B.5: Adapting the path to go through all three vertices.

Cl

Figure B.6 :

required. In G there exists vertices a and b as illustrated in Figure B.6 , where 

the C passes through Ci and c2 but not a and b. □

By Lemma 1, there exists t\ and i2 (possibly not distinct) that form trian

gles with the edges Ci,a and a,b respectively. Now a path C' can be drawn 

that is all of C with the illustrated extra triangles included, see Figure B.7.

Note this method of creating C' will still work even if either t\ or £2 are 

already in C. In this way C  can be adapted until it does fit the requirements 

of the theorem.
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Cl

Figure B.7:

C oro llary  B.13. Any group G whose complement graph is connected has a 

Hamiltonian swap graph.

B .6  A  group th at is not swap connected

Roman’kov [3] gives an example of a group which is not swap connected and 

thus refutes the conjecture made by Tennant and Turner, that all groups were 

swap connected. W hat follows is a brief outline of the proof given in [3] that 

a free meta-abelian group of rank 3 is not swap connected.

For a group, G of rank n with presentation < xi, ...xn\R >, (rci,.., x n) is the 

image of ( / i , ..., f n) the basis of the free group rank n, Fn, under the natural 

epimorphism from Fn to G. A basis (<7i,...,<7n) for G is called tame if the 

automorphism of G, </> given by (p : Xi —> gi is the lift of an automorphism of 

the free group. Using previous notation {g\ , ...,gn} £ Primk{G) and so by the 

above section on the primitive property, groups where all bases are tame are 

swap connected. An automorphism of G is called tame if it is induced by an 

automorphism of the free group, hence if all automorphisms of G are tame,
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then G is swap connected. For a free meta-abelian group Mn = -§7 Bachmuth” n

[1] and Roman’kov have shown that all automorphisms are tame when n — 2 

or n > 4. In the exceptional case M3 Roman’kov has shown that there exist 

bases that are not tame (references can be found in [3]) and it is this that 

leads to showing M3 is not swap connected.
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