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ABSTRACT

The //„ optimization control strategy has been developed to produce a robust 

controller for active vibration control of a rotor-bearing system. The system consisted 

of a flexible rotor, supported by journal bearings, together with a magnetic control 

actuator and a magnetic disturbance force generator. Real time digital control was 

realized using transputer hardware. Attenuation of synchronous, non-synchronous, and 

transient lateral vibration of the system was considered. The emphasis was on a closed 

loop system that could achieve vibration reduction, robustness in the presence of 

unwanted disturbances, and avoidance of spillover problems.

The detailed procedure of applying H„ control design in rotor-bearing systems was, 

for the first time, presented and included dynamic analysis of the uncontrolled system, 

model reduction, evaluation of actuator dynamic characteristics, measurement error, 

determination of weighting function matrices, formulation of the //„ problem and 

derivation of the controller. Computer simulation was carried out to predict the 

dynamic characteristic of the controller and responses of the uncontrolled and 

controlled systems. The theoretical results predicted that the controller had the 

designed properties.

The control strategy was implemented on an experimental rig and was validated by 

novel experimental results. Furthermore, the spectra of the rotor surface roughness was 

included into the control design and this was shown to improve the performance of 

the closed loop system at lower rotational speeds. The results showed that significant 

vibration reduction was achieved for both the steady state and transient mass loss 

cases especially around critical speeds. No spillover instability in the closed loop 

system was observed. It was also demonstrated that the controller was not sensitive 

to the variation of the system structure.
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NOTATION

full order system matrix

state space matrices of the augmented system

state space matrices of the controller

high order system matrix in modal space 

reduced order system matrix in modal space 

state space matrices of the filter

state space matrices of control force weighting function

state space matrices of measured state weighting function

state space matrices of controlled state weighting function

full order disturbance input matrix

control force distribution matrix

high order disturbance input matrix in modal space

high order control input matrix in modal space

reduced order disturbance input matrix in modal space

reduced order control input matrix in modal space

journal bearing coefficient

full order control input matrix

damping matrix

full order control output matrix

bearing centre

journal centre



full order measurement output matrix

disturbance input vector in Laplace space

feedforward matrix from disturbance due to high order modes 
to controlled output

feedforward matrix from disturbance due to high order modes 
to measured output

feedforward matrix from disturbance due to surface roughness 
to measured output

Young’s modulus 

force vector

oil film force in direction r 

oil film force in direction t 

oil film force in direction x 

oil film force in direction y 

shear modulus

transfer function matrix of the rotor-bearing system

transfer function matrix of the augmented system

controllability gramian matrix

observability gramian matrix

disturbance distribution matrix

partition of transfer function matrix

finite element gyroscopic matrix

transfer function matrix of the reduced order system

controller transfer function matrix

second inertia moment of area

unit matrix

diametral moment of inertia per unit length of finite element 

stiffness matrix



IP finite element stiffness matrix

L bearing land length

M  inertia matrix

Mre finite element translational mass matrix

Mte finite element angular mass matrix

N  measurement noise vector in Laplace space

Nm feedforward matrix from measurement noise to measured output

Nr translational displacement shape function

N t angular displacement shape function

P  modal state vector in Laplace space

P, retained modal state vector in Laplace space

Ph high order modal state vector in Laplace space

Q global coordinate vector

R bearing radius

Tg kinetic energy of finite element due to gyroscopic moment

Tt finite element kinetic energy

U control input vector in Laplace space

l/L left eigenvector matrix

l/R right eigenvector matrix

l/,R partition of right eigenvector matrix relative to retained modes

t/hR partition of right eigenvector matrix relative to high order
modes

V0 bias input voltage to magnetic bearing
Vx input control voltage to magnetic bearing coils in horizontal

direction

Vy input control voltage to magnetic bearing coils in vertical
direction

Wf(j) filter transfer function matrix

Wa(s) transfer function matrix of the weighting on control force vector
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transfer function matrix of the weighting on measured output 
vector

transfer function matrix of the weighting on controlled output 
vector

fixed coordinate system 

state vector in Laplace space 

filtered measured output vector in Laplace space 

measured output vector in Laplace space 

controlled output vector in Laplace space 

observed output vector in Laplace space 

weighted controlled force vector in Laplace space 

weighted controlled state vector in Laplace space 

weighted measured state vector in Laplace space 

radial clearance of journal bearing 

journal bearing damping coefficients

disturbance vector due to force acting on the rotor

disturbance vector due to high order modes on controlled output

disturbance vector due to high order modes on measured output

disturbance vector due to measurement noise on measured 
output

force vector

forcing vector acting on finite element

control current input to magnetic bearing coils in horizontal 
direction

control current input to magnetic bearing coils in vertical 
direction

(-If

shear factor



power amplifier coefficient 

force-voltage coefficient of magnetic bearing 

stiffness coefficient of magnetic bearing 

journal bearing stiffness coefficients

mass per unit length of finite element

lubricant film pressure

modal state vector

retained modal state vector

high order modal state vector

displacement vector

finite element displacement vector

finite element displacements

disturbance input vector

Laplace transform variable

time

control input vector

translational displacement vector of the infinitesimal disc of the 
finite element

angular displacement vector of the infinitesimal disc of the 
finite element

state vector

state vector of the augmented system 

controller state vector 

filter state vector

state vector of control force weighting 

state vector of measured state weighting 

state vector of controlled state weighting



filtered measured output vector 

measured output vector 

controlled output vector 

observed output vector 

weighted controlled force vector 

weighted controlled state vector 

weighted measured state vector 

inverse impedance matrix 

flexibility matrix 

transverse shear effect 

eccentricity ratio of bearing 

j th modal damping coefficient

angular coordinate with respect to the maximum film thickness 

singular value

rotation angle of infinitesimal disc of the finite element

eigenvalue

lubricant viscosity

distance from finite element left end

angle between load line and line of centres of journal and 
bearing

share angle of infinitesimal disc of the finite element 

j th modal frequency



CHAPTER 1 INTRODUCTION

1.1 Vibration Problems In Rotating Machinery

The application of high speed rotors in modem rotating machinery includes gas 

turbines, steam turbines, compressors, and centrifuges. Rotor unbalance, which is 

caused by manufacturing processes, assembly errors, and thermal effects, is a common 

source for vibration excitation. Under these conditions, the rotor can experience very 

high vibrational amplitudes, which may lead to large forces being transmitted to the 

supporting structure and possibly collision between the rotor and stator components, 

with damaging effect.

Research into rotor dynamic behaviour was started by Rankine [64] in 1869 and more 

detailed and accurate results were obtained by Jeffcott [39] in 1919. It was shown that 

there were certain critical speeds at which the rotor vibration could become large. 

Rotors may be required to pass through several critical speeds or even operate near 

a critical speed. It was thought that the severe vibrations at these speeds could be 

avoided as long as some damping force was introduced. However, severe vibrations 

were later found to occur even when the rotor was running at speeds far away from 

critical speeds [57]. This initiated research on instability problems in rotor-bearing 

systems. The vibration control of rotor-bearing systems must therefore take account 

of attenuation of rotor vibration amplitudes and, in addition, maintain a stable system. 

This is still a central issue in present research in control of rotor dynamic vibration.

The introduction of journal bearings into systems as supports may cause instability 

under certain conditions. This phenomenon is called self-excited whirl in which the 

whirling frequency is usually less than half the rotor running speed. Large vibrations
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can be observed even when rotor is well balanced. The problem of finding effective 

methods to attenuate rotor vibration is now discussed.

1.2 Vibration Control In Rotor-Bearing Systems

1.2.1 Passive Control Devices

Research into vibration control can be traced back to the 1920’s when Ormondroyd 

[59] used ’fixed point’ theory to determine the optimum damping so as to reduce the 

vibration response. Since then, different methods of vibration control have been 

developed and used in rotor-bearing systems. Proper design of a rotor-bearing system 

is certainly the simplest way to avoid vibration. The system is designed in such a way 

that the vibration level remains small by ensuring that rotor critical speeds are not 

coincident with the operating speed or any other excitation frequency. However, 

required system performance often conflicts with the rotor dynamic performance. The 

use only of structured design for vibration control is difficult in modem rotating 

machinery since rotors may be required to pass through several critical speeds during 

operation.

The use of passive devices, such as dynamic vibration absorbers and squeeze film 

dampers provides an alternative way for rotor vibration control. The dynamic vibration 

absorber consists of an additional mass connected to the main system via a spring and 

damper. It can reduce the vibration level of the main system at a particular frequency. 

Squeeze film dampers are used increasingly and extensively in controlling rotor 

vibrations [14,19,22,35]. An oil film is formed between the outer race of a rolling 

element bearing (or the bush of a sleeve bearing) and its housing. It is this oil film 

which generates a damping force acting on the rotor to attenuate the rotor vibration 

amplitude and the force transmitted to the foundation. Passive devices only dissipate 

energy and may not be effective at every operating condition, especially when several



modes of vibration are excited. Active techniques of vibration control are therefore 

increasingly being used in place of passive control.

1.2.2 Active Control Devices

The active vibration control of a rotor-bearing system has been a major subject in the 

research of rotating machinery for more than two decades. Goodwin [30] introduced 

a variable stiffness squeeze film damper bearing which enables system critical speeds 

to be tuned away from the instantaneous running speed, due to its feature of having 

variable stiffness and damping. Furst [28] used an active support system for a rotor 

with oil-film bearings to attenuate vibration. The rotor was supported by journal 

bearings which were mounted via electromagnetic actuators on a foundation plate. 

Different control strategies were used to determine the control forces, which were 

applied to the rotor via bearing housings. The improvement of the dynamic behaviour 

of the rotor was demonstrated.

An adaptive squeeze film bearing was introduced by Burrows [9] in 1984. The oil 

supply pressure was treated as a controllable element and adjusted so that optimal 

damping forces could be selected for different operating conditions. Significant 

reduction of both the maximum rotor response amplitudes and the transmitted forces 

was achieved. Instead of changing oil supply pressure, variation of clearance and land 

length of squeeze film bearings provides an alternative means for active control of 

rotor vibration [53]. The difference between this device and a normal squeeze film 

damper lies in the profiles of the outer housing and inner ring, which are truncated 

cones. The radial clearance and land length are adjusted to give the optimal dynamic 

coefficients of the bearing for variable operating conditions. The possibility of 

controlling rotor vibration was demonstrated in simulated performance. A squeeze film 

damper with an electro-rheological fluid [52] is another active control device in which
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the film viscosity is changed by the application of an electric field. Thus the support 

damping capacity can be adjusted continuously to remain at the optimal values for 

different rotor operating conditions. This has been demonstrated with experimental 

tests in [52].

Rotor active ’anti-swirl’ control methods were developed by Muszynska [55] and a 

tangentially directed fluid flow against rotation is internally generated or externally 

injected into the rotor/stator clearance. This will reduce the flow velocity and hence 

increase the stability threshold. The use of piezoelectric actuators in rotor vibration 

reduction was examined by Palazzolo et al [60]. These devices are formed from stacks 

of piezoelectric ceramic discs which are connected electrically in parallel. When 

electrical voltage is applied, the stack expands and the resulting force acts on the rotor 

through a squirrel cage bearing support.

The development of electro-magnetic bearings provided the means of avoiding 

problems associated with conventional bearings such as friction and lubrication. Rotors 

could be suspended by electromagnetic forces without any contact. This basic feature 

results in the following advantages when compared with conventional bearings:

No wear, allowing unlimited life of rotating machinery 

No lubrication needed, allowing elimination of pumps, filters, pipings, 

and fluid contamination

Greatly reduced thermal losses, allowing much higher speeds than 

conventional hydrodynamic bearings

Insensitivity to hostile environments such as vacuum and steam.

The other important inherent feature is that the bearing forces can be applied in a 

controlled manner. Thus the magnetic bearing can be used as a control actuator as



well as a supporting bearing. This leads to the following applications:

For attenuating unbalance vibration amplitudes, or for counteracting 

self-exciting forces due to, for example, other conventional bearings 

For precise control of rotor motion allowing more efficient machinery 

design, such as closer clearances between fans and stators 

For dynamic identification or condition monitoring by applying test 

forces

However, some disadvantages also exist in magnetic bearing applications:

Increased complexity in that microprocessors, sensors and software are 

added to the system

Electrical power is required to drive magnetic bearings

They have reduced load carrying capacity compared with conventional

bearings

The idea of suspending a rotor using magnetic forces was used as early as 1964 when 

Beams [1] studied a high speed centrifuge rotor whose vertical position was 

maintained by the magnetic field of an axial solenoid. Schweitzer [72,73,74] was 

among the first researchers to combine modem control theory with magnetic bearings 

for rotor vibration control. The magnetic bearing was regarded as a control actuator 

with control current as input and electromagnetic force as output. The rotor was 

considered as the plant so that the whole system formed a control loop. The relations 

between electromagnetic force and flux density, number of windings, air gap, and 

input electrical current was derived. Extensive design research was carried out later.

Imlach et al [36] examined the magnetic component design using the optimization 

method. The bearing consisted of four radial magnets and its optimum parameters
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were obtained by solving nonlinear equations. The closed-loop stiffness and load 

capacity of an industrial magnetic bearing were examined later [37] and the agreement 

between the predicted and the measured values was demonstrated. Bomstein [7] 

developed equations to express the maximum dynamic load capacities of magnetic 

bearings in terms of amplifier size, frequency of excitation, magnetic air-gap, method 

of force actuation, and geometry factor relating the magnetic area to the inductive 

area. Maslen et al [50] examined load capacity requirements for active bearings 

supporting a flexible rotor subject to harmonic loading.

1.2.3 Review Of Magnetic Bearing Control

The use of magnetic bearings for automatic rotor balancing is another research area. 

Magnetic forces acting on a rotor can make its spinning axis correspond with the 

principal axis of inertia and consequently no reaction force is transmitted through the 

bearings. Higuchi [32] studied a system composed by a rigid rotor supported vertically 

by an axial magnetic bearing and two radial magnetic bearings. A digital controller 

for automatic balancing using an observer was developed and implemented. The 

effectiveness of using magnetic bearings for automatic balancing was demonstrated 

by numerical simulation and experiments. Kanemitsu et al [42] examined a system 

consisting of a flexible rotor supported by two radial magnetic bearings and located 

by a thrust magnetic bearing. Analog and digital compensators were designed by the 

so-called ’effective coefficient method’ and used for real time balancing. The other 

control scheme used for rotor balancing by magnetic bearings is based on the state- 

space approach in which output regulator with internal stability concepts was 

introduced and demonstrated by simulation [41].

Magnetic bearings can also be used to suppress the rotor self-excited vibration caused 

by journal bearings. Burrows et al [16] examined a flexible rotor supported by two
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journal bearings and a magnetic actuator. It was shown that instability due to oil whirl 

at high running speeds may be controlled by the actuator. Keith et al [44] designed 

a digital controller based on the proportional-derivative method, which was used to 

operate magnetic bearings on a test rig. Williams et al [80] compared analog and 

digital control for reducing rotor vibration by magnetic bearings. Nomami et al [58] 

examined a rotor supported by two ball bearings and two magnetic bearings. Direct 

output feedback control was applied to the system. Hisatani et al [33] discussed 

several strategies for direct output feedback control design in rotor-magnetic bearing 

systems and examined the system stability. Schmied [71] described theoretical and test 

results of the vibrational behaviour of a 6MW pipeline compressor supported on 

magnetic bearings. Kirk et al [45] gave design and test results for a high-speed eight 

stage centrifugal compressor supported by active magnetic bearings.

Bleuler et al [4] studied a system consisting of a rigid rotor supported by two 

magnetic bearings. The concept of decentralized optimal state feedback was used to 

design the controller. Salm [68] examined two magnetic bearings to support and 

control a flexible rotor. The direct-output feedback scheme was applied to the control 

design. However, it was found that the controller designed using a reduced order 

system may cause an unstable full order closed loop system. This spillover problem 

can be solved by adding the constraint condition of co-located actuators and sensors 

[67]. Lee et al [47] used a suboptimal output feedback controller to control unstable 

or lightly damped vibration with a magnetic bearing. Spillover was prevented using 

constrained optimization and incorporating the spillover term into the performance 

index. Chen and Darlow [17] used a magnetic bearing combined with three parallel 

feedback control loops with velocity and acceleration observers to attenuate vibrations. 

The measured feedback displacements and estimated velocity were used to provide the 

stiffness and damping forces. Feedback estimated acceleration was used to create



rotating forces which cancelled the unbalance forces and other external disturbances.

The problems caused by spillover effect in the closed-loop control of rotor bearing 

systems led Burrows and his colleagues to develop an open-loop strategy [10]. The 

case of a flexible rotor supported by two journal bearings was examined and a 

magnetic actuator was used to estimate system characteristics and apply the optimum 

control forces to minimize synchronous vibration. The control forces were determined 

without any prior knowledge of the system and significant vibration reduction was 

achieved [11,12,13,15]. Recently, the work has been extended to use closed-loop 

feedback control designed based on pole assignment theory. The comparison was 

made between the open-loop adaptive control and the closed-loop control results [16]. 

Larsonneur et al [46] demonstrated the use of magnetic bearings together with 

feedforward compensation control to reduce unbalance vibration amplitudes for 

flexible rotors.

The recent development of H„ based control techniques has been brought into the 

research area of vibration control of rotor-bearing systems. Fujita et al [27] carried out 

H„ control design for a magnetic suspension system in which a flexible beam was 

supported by a hinge at one end and suspended by a electromagnet at the other end. 

The rig was modelled with two states as a single-input single-output system. It was 

demonstrated that the designed magnetic suspension system was robustly stable against 

various parameter changes. Herzog and Bleuler [31] implemented Hm control theory 

to a magnetic bearing used for reducing vibration of milling tools. Their research 

focused mainly on trade-offs involved in the frequency domain in the controller 

design. The application of the optimization technique to a pair of magnetic 

bearings used to support and control a flexible rotor was examined by Mu et al [54]. 

The comparison was made between Hx and LQG controller designs. It was indicated
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that a rotor can pass through several critical speeds at low vibration amplitudes by 

using the H„ strategy. It was also shown that the rotor vibration can be reduced 

significantly and the controller does not suffer from modelling uncertainty 

spillover.

It is seen from the foregoing survey that there are still problems in the vibration 

control of rotor-bearing systems. It is these problems which resulted in the motivation 

of the research work in this thesis.

1.3 Justification Of Present Research

The spillover effect arising in closed-loop control systems is due both to measurement 

error and control signals. Real signals obtained by a controller, which is designed 

based on a modelled system, are contaminated by noise and may cause the closed-loop 

system to be unstable. The signal coming from a controller, which is designed based 

on a reduced order model, acts on the full order system and may result in the 

instability by excitation of neglected modes. The use of the open-loop adaptive control 

strategy developed by Burrows [10] avoids the possibility of instability associated with 

a closed-loop structure and the rotor vibration level is reduced significantly with the 

full utilization of the magnetic bearings as active elements. However, the work has 

been restricted to the control of synchronous vibration in rotating machinery. Also, a 

controller design based on real-time least squares estimation is not robust to system 

parameter changes. These may be caused by the rotor speed dependent parameters 

such as unbalance forcing and journal bearing characteristics. The control of both 

synchronous and transient vibration and avoidance of instability is the general aim of 

the work in this thesis.

The H„ optimization technique is a method for designing a robust controller and the
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possibility of overcoming the spillover problems, which are usually caused by 

modelling uncertainty and measurement disturbance in rotor-bearing systems, is 

therefore feasible. Furthermore, this closed-loop control method is capable of dealing 

with both synchronous and transient conditions. So far, little work has been done in 

robust control design for rotor-bearing systems. Research on using Hx techniques for 

robust control in the rotor-bearing systems is sparse with no experimental results for 

rotor vibration control existing in the open literature. Therefore the present work will 

give a detailed insight into the systematic process of applying H„ control design in 

rotor-bearing systems and to validate the control experimentally.

1.4 Structure Of The Thesis

The modelling of flexible rotor-bearing systems is given in Chapter 2. Chapter 3 

begins with a survey of control theories that have been applied in rotor-bearing 

systems and specifies their advantages and disadvantage. Then the design procedure 

for an H„ controller is described in detail and the resulting controller form is 

expressed. Chapter 4 discusses the theoretical model of the rotor-bearing system under 

consideration with computer simulation. This includes analysis of critical speeds and 

modes, model reduction, formulation of a standard equation of H„ problem for a 

rotor-bearing system, off-line design of controllers, and simulation of H„ controlled 

system dynamic response. ,

Details of the experimental rotor rig are given in Chapter 5 and the data acquisition 

system and computer hardware/software set-up are described. In Chapter 6, the control 

strategies are applied to the experimental rig and the simulated results are given. 

Experimental results are considered in Chapter 7 including the control achieved under 

both steady state and transient conditions. Conclusions and recommendations for 

further work are given in Chapter 8.
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CHAPTER 2 REVIEW OF ROTOR-BEARING SYSTEM MODELLING

2.1 Introduction

Physical motion of mechanical components such as rotors and bearings can be 

modelled by mathematical means. The development of computers has enabled 

engineers to use the models to evaluate designs and predict system performance. 

Continuous systems have an infinite number of degrees of freedom and their 

behaviour is described by partial differential equations. However, these may be 

discretised in order that numerical analysis can be performed computationally. Several 

numerical methods have been developed to model rotor-bearing systems with a finite 

number of degrees of freedom. These include the use of:

Transfer matrices 

Model analysis 

Influence coefficients 

Stiffness coefficients 

Finite elements techniques

The procedure for modelling journal bearing characteristics consists of simplifying the 

Navier-Stokes equations to the Reynolds equation and solving for lubricant pressure.

Modelling methods are included in this thesis in order that their suitability for control 

design can be assessed. They are described in outline only since they are available in 

the open literature.

2.2 Modelling Of Rotors

Usually rotors have rather complicated geometries and some assumptions should be 

made before any modelling is to be carried out. This is not only to simplify the 

problems, but also to enable engineers to focus more attention to the main feature of



the system they are interested in. The following assumptions are made in the 

modelling in this thesis:

The rotor is symmetric about its axis of rotation 

The rotor material has linear isotropic properties 

The rotor is initially straight 

The axial load is negligible

The rotor lateral vibration is decoupled from applied torques

2.2.1 Modelling Methods

There are several methods for system modelling. Among them, transfer matrix 

methods [63] are efficient in evaluating low frequency vibrational modes. The shaft 

is divided into different segments according to the shaft geometry. The elastic 

properties of a segment can be expressed by introducing state variables at each end 

and whose relationship is given by a transfer matrix. The combination of transfer 

matrices of all segments, together with application of boundary conditions, will form 

the complete system equations. The main benefit of the method lies in the small 

memory needed in computer calculation, while the disadvantage is that the higher 

modes can not be guaranteed to be accurate.

The influence coefficient method [78] provides an alternative way of modelling a rotor 

system in which the elastic properties of the rotor system are embodied in a flexibility 

matrix. The element at position ( i j ) of the matrix is the generalized deflection at the 

i-th station caused by a unit generalized force exerted at the j-th station. After the 

flexibility matrix has been obtained, the system dynamic equation is of the form

A.(Mq) + M C q )  + q = A / C2-1)

where A is the flexibility matrix, M  is the inertia matrix, C is the damping matrix, q 

is the displacement vector, a n d /is  the force vector. However, care must be taken in
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using this method since the matrix may be ill conditioned, for example, when a free- 

free rotor is considered.

If, instead of flexibility matrix being introduced, its inverse is formulated, then this 

matrix is called the stiffness matrix. An element at position ( i j ) in the matrix is the 

generalized force required at a station i when a unit generalized deflection occurs at 

station j. The method is called the stiffness coefficient method and the system dynamic 

equation can be expressed as:

Mq + Cq + Kq = / (2.2)

where K  is the stiffness matrix. If inversion of K  is permissible, the method is 

basically equivalent to influence coefficient method since A=/T1.

Modal analysis requires system equations to be constructed and then decoupled into 

individual differential equations each having a single-degree-of-freedom representation. 

If equation (2.2) is placed into the well known state space form, then

(2.3)

Since the system matrix in equation (2.3) is not symmetric, modal analysis requires 

solution of both left and right eigenvectors. Let the left eigenvectors form the matrix 

U L and the right eigenvectors form U R. It follows that

4 0 I q
+

0

4 _ -M XK -M~lC 4 _ M -y

0 I

-M XK  -M 'C
UR

is a diagonal matrix. Therefore, by the coordinate transformation,

= Us p (2.4)
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the system equations can be transformed to

\
P = a>i2+2jCicoi p  + {UL)T 

\ M ■/

0
(2.5)

The finite element technique is a more accurate method of constructing the 

mathematical system model. Instead of discretising the mass and stiffness at each 

element end, as in the stiffness coefficient method, the inertia and the stiffness 

properties of the rotor are formed in a distributed manner. This is the main reason for 

the relatively high accuracy when compared to the conventional lumped parameter 

approach. In recent years, the finite element method has been used for rotor dynamics 

analysis [25,56]. Although the method requires more computer time and storage than 

other methods, it provides significantly greater accuracy for a given rotor 

discretization. The construction of the mathematical model that follows is carried out 

by the finite element method and is based upon Timoshenko beam theory.

2.2.2 Coordinates And Shape Functions Of Finite Element Method 

Most flexible rotors are composed of shaft elements and discrete discs. A typical rotor 

element is illustrated in figure 2.1, together with the coordinate system used to 

describe the end point displacements. Here (X, T, Z) is a fixed coordinate system with 

the Z axis coinciding with the undeformed centreline of the element. The element is 

considered to be initially straight and is modelled as an eight degree of freedom 

element system with two translation and two angular displacements at each end point 

of the element. The cross-section of the element is annular.

Let the element coordinates be written in the vector

= K  %  93, ^  9s, ?«, <?7, 98]t (2.6)
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where ql9....^qA correspond to the right end, whilst q5,....,q& correspond to the left end. 

The translation and angular displacements at a distance ^ from the right end can be 

described in terms of q* as

Vx W x
= • ■ = Nt(Z,)q\i) , " (U )  = - • = Nt£)q'( t )  (2.7)

vr wy

respectively, where

m y  =
" a 0 0 N a N a 0 0

0 N a ■X* 0 0 -w t4 0

' o 0 0 -W 3 0

0 0 N * 0 0
N & )  =

are the translational and angular displacement shape functions.

(2.8)

In order to derive the above expressions, the deformation including shear effect in the 

x-z plane is examined. The rotation of the infinitesimal disc of the element can be 

written as

3v_
0 = —i. (2.9)

where dvx /  is the gradient of the neutral axis and (J)̂  is the shear angle. For static 

equilibrium,

M  d \  0(1)& dM.. dF_

%  %
= 0 (2.10)

The shear angle is

♦ f a  it A G
(2.11)
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Appropriate shape functions can be derived by assuming a cubic displacement along 

the element into the above equations,

(2.12)

where the constant are determined on substitution of the boundary conditions. For 

example, for Ntl(Q,

Ntl( 0)= 1 ,

dK
-  + <l> = 0 ,

4=0

dK
“ + <t>4*

(2.13)

=  0 .

4=*

The shape functions for the angular displacements, NJ]Q, can also be derived in the 

same manner. Both translational and angular shape functions can be written as:

l+<& 

i = 1,2,3,4

(2.14)

a tl = 1 -3lv2+2v? , a t2=/(a)-2/o2-Ko3) , p tl = l-\) , p t2 = i.(u -\)2) 

a t3=3a)2-2a)3 , a t4 = i.(-2a)2+2i)3) , pt3=i) , pM=i.(-\)+t)2)

(2.15)

a rl = I(6 \)2-6'u) , a r2 = l-4i)+3a)2 , prl=0 , Pr2 = l-\) 

a r3= l(-6 i)2+6D) , ocr4=3t)2-2i) , Pr3=0 , pr4=i)

(2.16)

where

<I> =
12 E l  

kAG l2
0) =1  

/
(2.17)
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2.2.3 Element Equation Of Motion

By examining the rotor element shown in figure 2.1, the differential strain energy of 

an infinitesimal disc due to bending and shear can be written as

dU = l£ /{ v b" }T{v„" }<% + -L*Ag{v/}T{f/}<£ (2.18)

where vb and vs denote the translations from the bending and shear respectively. 

Substituting the displacement equations (2.7) into (2.18) and then integrating over the 

length of the element, the total strain energy for the element is of the form

U = i  q ,T K e q° (2.19)

where K* is the element stiffness matrix and is of the form

K '
=  /J 0

El N,tb N,tb 12
~m2

K ' f K ' ]  U  <2-20>

The kinetic energy of the infinitesimal disc due to translational and angular mass can 

be written as

dTt = i  m(g)vTvd£> + h j ^ ) w Twd^ 
£ &

(2 .21)

where m(^) and 7d©  are mass and diametral moment of inertia per unit length 

respectively. The total kinetic energy is

T. = I q*r
x 2

M* + Mre (2.22)

where the element translational and angular mass matrix are

M te = f  m g) NtT N  d\  , M  e = f  7dg )  NrT Nr d \  (2, 
J 0 J 0

23)
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The kinetic energy due to the gyroscopic moments is given by

0 -1 
1 0

wd%

and the total kinetic energy is given

1T = L Q .q tTG*qf 
2

where the element gyroscopic matrix is

(2.24)

(2.25)

G
■ y.® 0 -1 

1 0
(2.26)

The detailed forms of all above matrices can be found in Appendix A.

By using the Lagrange method, the equation of motion of the element can be 

expressed by

(m,‘ + M ; ) ?  -  + K ' q '  = / '  <2-27)

where /*  is the forcing vector.

2.2.4 Rotor Equation Of Motion

Without considering the supports, the rotor equation can be built up by introducing a 

new global coordinate system,

Q = [<7l <?2 ....

where n is the number of the rotor elements. The new global mass, stiffness, 

gyroscopic and force matrices can be assembled by using their corresponding element 

matrices in the element equations. The resulting rotor dynamic equation with damping 

included can be written as

M Q + C Q + K Q  = F  (2.28)a s s ^  s
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Components such as impellers, flywheels, which are mounted on the rotor, can be 

assumed to be rigid discs which are described by mass, transverse moment of inertia 

and polar moment of inertia. Usually, elements are chosen in such way that the discs 

are located at their ends. Hence, the equation of the system consisting of flexible shaft 

and rigid discs can be formed by adding the mass, gyroscopic, and force terms in 

equation (2.28). The new equation can be written as

/  \ r \
^ , + E  Md Q + c s  E  c d Q * KtQ = Ft + £  Fd

V discs  ̂ discs J discs

2.3 Modelling Of Journal Bearings

Journal bearings are used to support rotors. The pressure built up in the oil film 

generates the supporting force. The dynamic characteristics of journal bearings have 

a great influence on the vibration of rotor systems, both in response to disturbance and 

in stability of running. Mathematical modelling of journal bearings is based upon 

hydrodynamic lubrication theory. Some assumptions in the modelling of journal 

bearings made here are:

The oil film thickness is much smaller than journal dimensions 

The inertia of oil film is negligible 

The flow in the oil film is laminar

The viscosity and density of oil are constant throughout the bearing 

The oil is a Newtonian fluid with viscosity independent of shear rate

2.3.1 Reynolds Equation For Oil Film

The geometry of the journal bearing and the coordinate system are shown in figure 

2.2. The bearing centre is Q  and the journal centre is displaced to Cj. The attitude line 

through CbCj intersects the film thickness between bearing and journal at its maximum 

and minimum values. Cs is the journal centre under static load. ( X, Y ) is a fixed
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reference frame with its origin located at the C„, while ( r, s ) is a fixed coordinate 

with some angular difference from the coordinate ( X , Y).  Another coordinate system 

( 1 ,2 )  rotates with the maximum clearance position when rotor rotates. The Reynolds 

equation for a journal bearing can be deduced as [34]

1 9 ( h , dp'\ 3
r  aer  ae / dz

h dp_
dz

= 12n—  + 6(i2-2<j>)^—  
dt K Y' 30

dh (2.30)

where the film thickness for a circular bearing is given by

h = c (1 + e cos 0)

2.3.2 Non-linear Oil Film Force

For short bearings whose length to diameter ratio is small, reliable results may be 

obtained by ignoring the first term of the left-hand side of equation (2.30) [34]. In this 

case, the equation becomes

dz
h * ! k

dz
= i2n—  + 6 ( n - 2 $ ) n £ ! l  

31 v T/ 30
dh (2.31)

Integration of equation (2.31) subject to the boundary conditions p  = 0 at z = 0 and 

z = L results in the expression of oil film pressure as

3z{z-L)\i (2ecos0 -  (£2-2(j>)esin0) 
^  c 2(l+ eco s0 )3

(2.32)

By integrating equation (2.32) in the positive pressure region, the oil film force in 

directions 1 and 2 can be derived as

F = - \iL3R
2c

7t(l+2e2)/e _ 2(£2-2<fr)e: 
(1 - e 2)5/2 2\2( 1 - e 2)

=
2c

4ee  _ (£2-2<f>)7t e 
( 1 - e 2)2 2(1 - /e 2)3/2

(2.33)
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2.3.3 Expression Of Linearised Oil Film Force

It is clear that oil film forces are highly non-linear functions of journal position and 

velocity. They are usually linearised so that dynamic analysis of a rotor system can 

be carried out. Suppose that the position under the action of the external static load 

is Cs, which can be expressed by e0 and <|>0, and the CjCs is small compared with QC,.. 

The journal is assumed to have small oscillations about the position Cs. By resolving 

the oil film forces in directions r, s and linearizing them about Cs, the oil film forces 

become

F = - c r - k r  + c s - k s - Fr rr rr rs rs ro

F* = + " C*J ~ K*S + FS ST S f SS SS SO

(2.34)

The corresponding dynamic force expression in the fixed X-Y coordinate system is of 

the form

F, = -V  - v  - K x  -  K , y  +

F -  -c x -  c y - k x - k y + F
y yx yy-' yx yyJ yo

(2.35)

Here both the coefficients and the constants in equation (2.34) are functions of the e0 

and <|>0. As long as the static load is known, they can be obtained by solving a 

nonlinear algebraic equation. Hence all stiffness and damping coefficients can be 

deduced by substituting e0 and <j)0 into the coefficient expressions. The detailed 

expressions are given in Appendix B.

2.4 Complete Rotor-Bearing System Equations

Having linearised the oil film force, the whole system equation may easily be obtained 

by simply adding the stiffness and damping matrices due to the oil film force of the 

bearing into the rotor equation (2.29). Suppose an oil film bearing is mounted on the
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rotor at the i-th node position. The stiffness matrix Kh of the bearing has non-zero 

elements

tfb(4(i-l)+l , 4 (i-l)+ l) = ^  , A„(4(i-1)+1 , 4(i-l)+2) = ^

/Tb(4(i-l)+2 , 4(i-l)+ l) = k^  , JKb(4(i-l)+2 , 4(i-l)+2) = k„

The damping matrix Cb due to the bearing can be built up in the same way with non

zero elements

Cb(4(i-1)+1 , 4 (i-l)+ l) = c„ , Cb(4(i-1)+1 , 4(i-l)+2) = cxy

C„(4(i-l)+2 , 4(i-l)+ l) = Cyx , Cb(4(i-l)+2 , 4 (i- l)+2) = Cyy

The rotor-bearing system equation can be obtained, by adding the stiffness and 

damping matrices due to oil film bearing to the rotor equation (2.29), as

m , + Y ,
V discs )

Q * CJ+ S  Cb Q *
V discs bearings )

E  * b | e  = ^ . + E
V bearings )  discs

(2.36)

The resulting equations of motion for the rotor-bearing system can be re-written in the 

familiar form as

MQ + CQ + KQ = F (2.37)

The damping matrix C and stiffness matrix K  are non-symmetric and are functions of 

the rotor rotational speed. This is due to the effect of the journal bearings and 

gyroscopic terms.

2.5 System Dynamic Analysis

The system dynamic analysis can be performed after the system equation (2.37) has
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been constructed. The work is usually associated with rotor unbalance response and 

stability analysis.

2.5.1 Unbalance Response Analysis

If the principal axis of inertia of the rotor does not coincide with the rotor geometric 

axis, a centrifugal force will be generated when the rotor is rotating about the 

geometrical axis along the rotor. This force is synchronous with the rotor running 

speed and causes whirl motion of the rotor, and synchronous vibration in the structure 

of the rotating machinery through the bearing supports.

The unbalance force on the rotor is of the form

F = F e jnt + F e~jQt (2*38)O O
where F0 is complex unbalance amplitude. The steady response is

Q = 8 0em  + e„e"JQ' (2-39)
where

Qo = [K -  n2M + j£ ic ]" V 0

defines elliptic orbits at the rotor element nodes.

2.5.2 Stability Analysis

System instability is another source of rotor vibration. Even if the rotor is perfectly 

balanced, a small disturbance can lead to severe vibrations for unstable systems. This 

is sometimes referred to as self-excited vibration.

For stability analysis, the unforced system equation can be written as

MQ + CQ + KQ = 0 (2-4°)
which can be conveniently transferred to the first order form
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z  =
0 I

-M lK -M  'C
where

Z = Q T Q r

Assuming a solution in the form

Z = Z e Xt

this leads to the standard eigenvalue problem

(2.41)

(2.42)

f
0 I

XI - z  = 0

V

**1 - M XC J
0

(2.43)

System stability can be judged from the real parts of the eigenvalues. If one or more 

of the real parts is positive, then the system is unstable. Otherwise the system is 

stable.
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Fig. 2.1 Rotor finite element and coordinates (<=o signifies linear 
displacements, signifies angular displacements )

External load force

Fig. 2.2 Geometry and coordinate axes of oil-film bearing
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CHAPTER 3 REVIEW OF CONTROL STRATEGIES FOR ATTENUATING

ROTOR VIBRATION

3.1 Introduction

The development of sophisticated electromagnetic actuators enables control strategies 

to be implemented for the control of rotor vibration. Usually, introduction of active 

control to the system focuses attention on the need to develop effective strategies 

rather than on component hardware design. In rotor-bearing systems, successful 

implementation of a control strategy is considered after achieving the following 

criteria:

Minimisation of rotor vibration amplitudes 

Control forces are within the capability of the actuator 

The system is stable

The system is robust to imperfection in plant model

This chapter will consider a brief review of the previous work concerned with active 

control strategies. Then the advantages and disadvantages of different strategies are 

summarized and the associated problems are detailed. Finally, the H„ optimization 

control design method is introduced.

3.2 Review Of Control Strategies

Different control strategies have been developed and implemented in rotor-bearing 

systems. They range from the simple local control to more complex centralized control 

in the categories:

Local control 

Decentralized control 

Centralized control
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3.2.1 Local Control

Suppose that actuators and sensors are collocated and there is no interaction between 

different positions, i.e. the control signals are obtained directly from the measured 

signals at the same position. This is known as a local control strategy. There are 

several control design algorithms for local control. One is damping control which is 

based upon the theory that there are frequencies at which the vibration amplitude is 

independent of the system damping constant [21]. These frequencies are usually 

known as ’fixed points’. The theory was applied to a system consisting of a flexible 

shaft supported on oil-film bearings for minimizing the synchronous response [22]. 

The theory was also applied to an ’on-off adaptive squeeze film damper for rotor 

vibration control [9]. Good vibration control of a light flexible transmission shaft 

having an arbitrary unbalance mass distribution was achieved.

In contrast with damping control, stiffness control is carried out by the modification 

of the system stiffness so as to shift the system natural frequencies. Thus, the system 

operating speed can always be kept away from the critical speeds so that the system 

vibration response can be reduced significantly. The effect of changing the support 

stiffness and thus altering the system critical speeds has been examined by Sandler 

[69]. In rotor-bearing systems, an adaptive stiffness control strategy by Redmond [65] 

resulted in avoidance of the shaft critical speeds and a low response level even in the 

absence of system damping. However, lack of the damping could mean poor 

robustness of the controller. Therefore, the better alternative is to use combined 

damping and stiffness control theory. This theory was used by Cunningham [20] to 

design a squeeze-film damper for a multi-mass flexible rotor. The influence of flexible 

damped supports on rotor amplitudes and forces transmitted was examined over the 

speed range encompassing several critical speeds. An investigation of the application 

of stiffness and damping control to a flexible rotor was also carried out in [43]. The
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optimum frequency dependent stiffness and damping coefficients of the system were 

determined and the overall maximum shaft response amplitude was minimized.

3.2.2 Decentralized Control

A system is assumed to be decomposed into a number of sub-systems as

x. = A.*, + B f t  + R. , i = 1,2,...,/?

where

P
= £ A irr i = 1,2 ,...,/>

j=l
are interaction terms of each sub-system. The control can be designed based upon the 

sub-systems with ignored interconnections. The performance index of each sub-system 

is formulated and the decentralised control design is carried out by optimizing each 

index as if the sub-systems are decoupled. When the sub-systems are coupled together, 

the interactions act as perturbations which may worsen each sub-system performance 

index. Finally, the resulting controller should be applied to the overall system so that 

the stability of the overall closed-loop system can be examined.

A decentralized optimal state feedback control was derived for a magnetic rotor- 

bearing system by Bleuler [4]. The rotor was modelled as being rigid on two magnetic 

bearing supports. It was indicated that a reduction in complexity of the problem can 

be included without significant loss in system performance. More detailed work was 

given later in [5]. The theory was also applied to the vibration control of an active 

rotor isolation system [48]. It was demonstrated by analytical and simulation work that 

the system can be decomposed into four sub-systems with the symmetrical pattern of 

interactions. The Linear Quadratic (.LQ) control methods were then utilized to design 

the control for each sub-systems in a decentralized manner. It was shown that the 

resulting controller had vibration isolation characteristics and also maintained the 

overall system stability.
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3.2.3 Centralized Control

Differing from both local and decentralized controls, the centralized control system 

is not required to be decomposed and the control design is based on the overall 

system. The most commonly used methods are Linear Quadratic Gaussian (LQG) 

control, pole assignment, and open loop adaptive control.

3.2.3.1 Linear Quadratic Gaussian Control

LQG control is a strategy which can lead to a stabilizing linear controller. The 

problem is formulated from the system equations

x  = A x  + Bu + w
(3.1)

y = Cx + wJ  y

where wu and wy are random white noise disturbances. The quadratic performance 

index to be minimized is defined by

J = -L f ( x TQx + u TRu)dt  (3-2)
2 J o

where Q and R  are two matrices chosen by the controller designer. By solving the 

Riccati equation, the control force can be expressed from the system states as

« = -Hx  (3-3)

However, it is difficult to implement full state feedback control even with a rigid 

rotor. In practical applications, only a few of the states can be measured. Therefore, 

observers have to be introduced to estimate the complete set of states. Another way 

is to use the direct output feedback method in which the performance index is of the 

form

1 r 00
J = J - j  (y TQyy + u TR u)d t  (3-4)

The objective of the closed loop control is to find a feedback gain matrix Hy such that
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u = -Hy y  (3.5)

where the performance index is minimized and the closed loop system

x  = (A -B H yC)x  (3.6)

has designed characteristics. The method was used in a rotor-bearing system by Salm 

[68] to calculate the state feedback matrix. Then the approximative optimal direct 

output feedback control was obtained by using the pseudo-inverse method.

3.2.3.2 Pole Assignment

The system is described by equation (3.1) and the state feedback gain matrix H  is 

calculated in such a way that the poles of the closed loop system, i.e. the eigenvalues 

of the matrix A—BH , are located at desired positions. Similarly, the output feedback 

gain matrix Hy can be determined according to the position of the desired closed loop 

poles, i.e. the eigenvalues of matrix A—BHyC.

In the state feedback case, an observer can be used to estimate the unmeasured states 

under the condition that system is observable. In the output feedback case, the gain 

matrix can be obtained either by approximative methods or by solving a set of linear 

algebraic equations. The method was used to design a output feedback controller in 

a system consisting of rotor, oil film bearings, and a magnetic bearing [76]. The rotor 

vibration level was brought down by the control.

3.2.3.3 Open Loop Adaptive Control

This approach was developed by Burrows et al [8]. The system equation is of the 

form

Mq  + Cq + Kq = /  (3-7>
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which can be expressed in the frequency domain as

(-CO2M + K + jcoC )0(jco) = F(jco) (3.8)

By introducing the inverse impedance matrix

A(jo)) = ( - 0)2M + K  + jcoC)1
it follows that

(3.9)

<2(jco) = A(jco)F(jco) (3.10)

The synchronous rotor response due to unbalance force F0(jco) is

e o(jco) = A(jco)Fo(jm) (3.11)

When control forces U are included, the controlled response can be expressed as

where R is a matrix containing the columns of the inverse impedance matrix 

corresponding to the control force variables. This equation can be rearranged as

If the structural parameters of the system and the out-of-balance responses are known, 

either by measurement or by calculation from an estimation, the equation can be 

considered to be a linear stochastic equation with the unknown parameter vector U and 

the error term Qc. Therefore the least-squares approach can be applied to estimate the 

control force vector U so as to minimize the controlled response Qc.

The approach was applied to a system consisting of flexible rotor supported on two 

oil-film bearings. A magnetic bearing actuator was employed to supply control force. 

The optimum control force was determined without any prior knowledge of the 

bearing or rotor characteristics or the distribution of out-of-balance. As the result, the 

synchronous vibration of the rotor was attenuated significantly by the method [13,15].

flcGCO) = e 0(jcD) -  F(jco)t/(jco) (3.12)

<2o(jco) = /?(jco)l7(jco) + 0 c(jco) (3.13)
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3.3 Some Control Problems

Although the above control strategies have been utilized in rotor-bearing system 

applications, neither of them is completely satisfactory in control. The local control 

method is easy to use and the spillover problem can be avoided because the condition 

of collocated actuators and sensors is certainly satisfied [67]. However, local control 

is equivalent to a passive spring and damper with variable stiffness and damping 

coefficients. Thus, the potential of active control is not fully utilised. Compared with 

local control, decentralized control behaves more satisfactorily in the sense of 

efficiency. The method makes the control design easier when compared with 

centralized control methods. However, the full potential of the controller is still in 

doubt. Of more importance, the controller design is based upon sub-systems, which 

ignore interconnections, and it is not possible to guarantee system stability.

The LQG method is a well known centralised approach to feedback control design and 

is widely used. In the method, the uncertainty is modelled as a white noise Gaussian 

process added as an extra input to the system. Unfortunately, this is not true with 

parameter uncertainty. Therefore, it can not cope directly with model uncertainties and 

may result in a design which is not robust. Research has shown that its stability 

margins can be arbitrarily small [23]. Furthermore, the assumption of white noise 

process disturbances is not the case for rotor-bearing system forcing.

The pole assignment method is an easy way to design a feedback controller. As with 

the LQG method, it can not deal with the problem of model uncertainty. Because 

model reduction techniques have to be used in most applications, the controller 

designed by the pole assignment method based upon the reduced order system may 

cause severe spillover problems when applied to the full order system.
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The open loop adaptive control is very effective in attenuating the vibration of rotor- 

bearing systems. The control can be carried out without any prior knowledge of the 

system characteristics and the possibility of the instability can be avoided. However, 

the work has been restricted to the control of synchronous vibrations. It can not cope 

with transient vibrations due to, for example, sudden imbalance of blade loss or the 

rotor running up and down quickly in speed. However, the method has been adapted 

in a closed loop procedure for transient vibration control [3]. Transient behaviours of 

a rigid rotor supported by magnetic bearings after the loss of a blade was also 

examined by Viggiano using both decentral and central control method [79].

The previously mentioned problems raise the question of using a more effective 

control strategy which is robust, can deal with both synchronous and transient 

vibrations, and can avoid spillover problems. The control approach is now 

discussed.

3.4 H„ Optimization Control

In the 1960s, considerable research was carried out for optimal control, which resulted 

in the well-known state space LQG approach to feedback design. The method can be 

used to design a controller in multivariable systems. However, it can not deal with the 

problem of model plant uncertainty. Since the 1980’s, a major development in 

feedback control design has centred on optimization and has become more popular 

in control design. The work originated from the study of Zames [81] and can be seen 

as a protracted return to the ideas and principles developed by Bode in the 1940s. The 

theory was developed in the frequency domain [26] and has now been successfully 

extended to state space form [24], which is easier in practical applications.
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3.4.1 Definitions And Objectives

The central issue in the Hx control design is the introduction of the infinity norm of 

a transfer function matrix as a measure of gain. Consider a linear system in state space 

form

* = A * +B u  (3.H)
y = Cx + Du

where u is a vector of inputs, y is the vector of outputs, and x  is the state vector. An 

equivalent expression in the Laplace domain is

Y(s) = G(s)U(s) (3.15)

where the transfer function matrix G(s) relating the input and output vectors is given 

by

G(s) = C(sl + D (3-16)

G is a real rational matrix, i.e. its elements are rational functions of s with real 

coefficients. It is said to be stable if all of its elements have no poles in the closed 

right-half complex plane, Re(5) > 0, and proper if all of its elements are finite at £=<». 

The norm of the transfer matrix is defined as the maximum over all real co of the 

largest singular value of G(jco):

IIG|L = SUP a(G (jco)) (3.17)
co

where co is system vibration frequency. The H„ norm can, equivalently, be written as

lG = SZ  1—if (3-18)w*0 l»  I,

which is related to notional input and output signal energies
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/  \ 1/2 f  >|1/2

IIm ||2 = I uT(t)u(t)dt
« /—o o

\\y\\2 = J y T(t)y(t)dt (3.19)

I ) \

provided that they exist. Thus, the H„ norm also provides an upper bound on the 

output to input energy ratio over all possible finite energy input signals. Physically, 

it provides the worst-case gain between the input and output and, therefore, 

minimization of the Hx norm is equivalent to minimizing the square root of the 

maximum energy gain from system input to output.

3.4.2 The H„ Problem Formulation

A standard configuration used in HM literature is shown in figure 3.1. The state space 

representation is

x  = A x  + Bxw + B2u

z = CjX + Dn w + Dn u (3.20)

y =C2x  + Da w + Da u

Here, the vector w is regarded as an input due to modelling uncertainty, physical 

disturbances, and noise, whilst vector u is control input. The two output equations 

represent measured states y  together with states to be controlled z, which may include 

errors, process outputs and control inputs. The transfer function relationship between 

inputs and outputs must be of the form

z Gn(s) Gn(s) w

y_ G2lW G22^ u

where
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Gn0) G12(s) 

G21(s) G22(s)

Dn b h-L
1 l

+
P n ^22

---1

( s i -A  )"1[B1 B2] (3.22)

For a linear controller, u = H(s)y, the closed-loop transfer function from w to z can 

be expressed as

&(GM)  = Gn +G12H  (I -G22H)~l G21 

The ’H^ control problem’ is to find the controller H(s) such that

II Gn + G12t f ( / - G 22/ 7 ) 1G21) L

(3.23)

(3.24)

is minimised under the constraint that the system is stable, i.e. to reduce the signal 

energy transfer from the input to the control states.

3.4.3 Solution of general //„ problems in state space

Solving the H„ problem is equivalent to finding the solution of a minimax 

optimization problem. The original solution procedure was carried out in the frequency 

domain. It involved steps such as factorization of functions, converting the standard 

problem into a model-matching problem, which can be further reduced to a Nehari 

problem, minimal realization of functions in state space, solving the Lyapunov 

equations etc [26]. In a mathematical sense, the procedure solved the problem. 

Unfortunately, the complexity associated with computation and the lack in the 

explanation associated with physical meaning made it very difficult to obtain a 

solution. The recent developments in state space formulation for H„ control have 

shown that the problem can be reduced to the solution of algebraic Riccati equations 

arid has similarities with the LQG theory [24]. In fact, the LQG problem can be 

regarded as a special case of HM problems.
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The system equation for standard H„ problems is denoted by equation (3.20). By a 

technique given in [29], the system can be transformed to the one with the conditions

Dn  = 0 , Da  = 0 

DaT [C, Du ] = [ 0 /  ] .
V

f 
1 

, 
°

'to K> 1

21 I

(3.25)

Therefore the equation of the standard problem can, without loss of generality, be 

represented as

x  = A x  + Bt w + B2u

z = Cj x + Dn u 

y  = C2x  + Du w

(3.26)

The controller is of the form

i  = A x n + B yc c c c*'

u = C x  +D vc c  e * '

(3.27)

where

- a-y->Yxj-'Yc;c2

(3.28)

Ac = A + y H B 1B 1T- B 2BiT)X^

B = (I-y~2Y X  T l Y C2C ' I oo ©o' oo

C = -* ,TX_

O c = 0

in which ^  and are the symmetric positive solutions of the algebraic Riccati 

equations

A TX„ + X A  + X J y - t B t f - B 2B2t)X„ + C^C, = 0 

A y . + y„A t + y„(7 "2c,1Tc 1- c 2Tc 2)y .  + = o
(3.29)
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The controller transfer function is of the form

H(s) = Cc(sl  -  A c)~'Bc + Dc (3.30)

If the condition

p ( X y j < Y 2 (3.31)

holds, where pC ^T J denotes the square of largest eigenvalue of the relative matrix 

the H„ norm of the transfer function form w to z will satisfy

||Gn + Gn H ( r - G n H) ' Ga )|_  < Y (3.32)

It is obvious that the HM control is equivalent to the LQG control if y— The 

calculation of the H„ controller is an iterative procedure which starts from some initial 

values of y. The optimal solution is associated with the minimal value of y which 

makes the relation (3.32) remain true, i.e. the least upper bound.

w

u

H(s)

Fig. 3.1 The block diagram of a standard H„ control problem
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CHAPTER 4 APPLICATION OF CONTROL DESIGN TO ROTOR- 

BEARING SYSTEMS

4.1 Introduction

In this chapter, the characteristics of a general rotor-bearing system are analyzed. The 

work considers model reduction of the full order system and system controllability and 

observability. The formulation of a standard HM problem is then carried out. The 

process of the formulation includes characteristic analysis of system input 

disturbances, choice of weighting functions, and formation of an augmented model of 

a system consisting of the rotor-bearing system and weighting function matrices. 

Application of the design process to an experimental rig is considered in Chapter 6.

4.2 Theoretical Model Of Rotor-Bearing System

The equation of motion for lateral vibration of a passive rotor-bearing system 

modelled with finite elements has been considered in Chapter 2. If actuators are also 

included in the system for control purposes (figure 4.1), the equation of the motion 

may be written as

MQ + C(C3,)Q + K(Q)Q = B,u * Gtd  (4 1 )

where Q is the vector of generalised coordinates, u is the dimensionless control force 

vector scaled to have maximum amplitude of unity, and d is the vector of physical 

disturbance forces acting on the rotor. Suppose that n elements have been used to 

model the rotor. According to Chapter 2, the dimensions of the mass, damping, and 

stiffness matrices M, C, K  will be nd x nd, where nd=4n+4. Gf will have dimensions 

nd x Vmd since disturbances generally act laterally at each node point. If there are na 

actuators, each of which can apply forces in two directions, then B{ will have 

dimensions nd x 2 ^
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The state space representation follows from the transformation

x
Q 

Q
(4.2)

and is of the form

x  = A x  + B ,d  + B ud a
(4.3)

where

A =
0 I

- M ' K  -M~lC (2ndx2nd) (4.4)

Usually, the states to be controlled and states to be measured are not the same. 

Suppose that they can be defined respectively from the state vector by

Cc has dimensions x 2nd, where is determined by the number of the states 

required to be controlled. Cm has dimensions iv  x 2nd, where nm is the number of 

measured states.

4.2.1 Model Reduction

Typically, the modelled system will have a large number of generalised coordinates 

(and states). It is difficult therefore to design a controller based directly on this 

system. To overcome the problem, model reduction techniques are introduced. The 

first step in model reduction is to solve the eigenvalue problem for the system (section 

2.5). Then the states of the system are transformed into modal coordinates by

zr = C x  , z = C xc c in m
(4.5)

x  = U s p
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where U R is the right eigenvector matrix. If the moduli of the eigenvalues imaginary 

parts are ordered in ascending frequency and the modal vector is partitioned into low 

and high frequency states by

P =

P\

Ph

-  low frequency modes

-  high frequency modes

(4.6)

then equation (4.3) yields the system

Pi p.
... = (U l)tA U * ...

/V Pk

+ (U L)TB Ad + (U l)tB u (4.7)

where U L is the left eigenvector matrix. From Chapter 2, (Uh)TAU  R is a diagonal 

matrix. With appropriate partitioning, the modal form of the state equation is

(4.8)

Pl = AlPl * Bnd + Bwu
h  = \ P i + Bhdrf + Bh„“

Zc =  C *  , zm =  cmx 

x  = 17, V , + U * p h

where A, and Ah are diagonal. The representation of the model in the frequency 

domain is

P, = ( s i - A x)~lBxJ )  + ( s i - A y)~lBxJ J  

Ph = ( s I - A J - ' B ^ D  + ( s I - A hy 'B haU 

Z =  C X  , z _  = c _ x
(4.9)

in m

which is shown in figure 4.2. The system can be expressed in a standard way with
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where

X  = Gw(s)V + Dt

Z = C X  , Z = C Xc c ’ m m

Dr = Gti(s)D +Gm(s)D +Gha(s)U 

G „C *) = { / « ( , / -A, ) - ‘B |u 

Gu(s) = ^ “ ( r f - A , ) - ^

GhdW = v kR(.si-Aby'Bhi 

G J a) = D’/ ( r f - A 1)-‘* ta

which is shown in figure 4.3.

(4.10)

The full order system (4.8) has been converted to a reduced order system G,U(V). The 

input to the reduced order system is control signal U only. The disturbance Dr is 

composed of three terms. The first is Gld(s)D, which contains the response of the 

retained lower frequency modes due to the physical disturbances in D. The second 

term Ghd(.y)Z) contains the response of the higher frequency modes due to the physical 

disturbances in D. The final term Ghu(s)U contains the response of the higher 

frequency modes due to the control forces in U. The retained modes in the reduced 

order system will be determined by certain criteria. They should be controllable and 

observable and the desired characteristics of the full order system should remain in the 

reduced order system. It is also advisable that the achievable frequency bandwidth of 

the controller should cover the frequency range of the reduced order system.

It is emphasized here that the controller design will be based on a reduced order 

system, where the neglected high frequency mode effects have been included in the 

disturbance terms. In many control design procedures, high frequency disturbance 

terms are ignored. However, controllers designed in this way may cause a spillover
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problem in the closed-loop system. Hence, those disturbance terms due to the effects 

of high frequency modes should remain so that a controller can be designed for 

robustness and the elimination of spillover problems.

4.2.2 Analysis Of Controllability And Observability Of The Reduced Order System 

It is impossible to control and observe all modes of the full order system with a 

limited number of actuators and transducers. Therefore model reduction techniques 

have to be carried out to eliminate all uncontrollable and observable modes from the 

reduced order system. The reduced order system in state space is derived from 

equation (4.8) as

Pi = A iPi * Bud * K u
(4.11)

= Cn,U,RP1 +CmU * Pi

The controllability and observability of the reduced order system can be analyzed by 

calculating the controllability gramian matrix [40]

G = \°°e 'A'BwBtW A'd* (4.12)
J 0

and the observability gramian matrix

e ,A|(C U,R)T(C V.R) e zA'd l  (4-13)'  m l 7 '  m l '

A system is said to be controllable and observable if and only if the gramian matrices 

are positive definite. Since the matrices are symmetric, their eigenvalues are real. 

Moreover, they are positive definite if and only if every eigenvalue is positive. 

Therefore the eigenvalues of Gc and G0 may be used to assess system controllability 

and observability. Physically, a non-controllable mode will occur when all actuators 

coincide with node points in that mode. A non-observable mode will occur when all 

measurement transducers are at the node points.
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4.3 Formulation O f The Standard H„ Problem

The closed-loop system with H„ controller to be designed can be obtained from the 

open-loop system expressed by equation (4.10). It is noted that errors due to shaft 

surface roughness and/or electrical noise in the rotor-bearing system have not yet been 

included in the measurement states Zm. When a controller is also included, the closed- 

loop system can be represented by

X  = G Js)U  + Dt

Z  = Ccx  , z m = c mx

Ym -  Z * N  (4.14)m m

Y, = W’a.w r.
U = H(s)Yt

Here N  contains the errors due to shaft surface roughness and electrical noise, which 

must be added to the measurement states Zm. It follows that Ym represents the 

measurement states as picked up by the measurement transducers. In any practical 

implementation of a control system, the measured signals Ym will also be conditioned 

by transducer characteristics, amplifier and filters before entering the controller. The 

matrix W ^ s )  represents this conditioning and Yt contains the signals representing the 

measurement states that enter the controller H(s).

4.3.1 Augmented Equations

Weighting function matrices Wn(s), ITz(s), Wy(s) are introduced to allow flexibility in 

the controller design. These operate on the control signals Uy the control states Zc , 

and the measured signals ym, respectively. The augmented closed-loop system is then 

of the form
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X = Glu(s)U + Dr

z „  = C X  , z_  = c _ x

Y = Z + IVm m

I? = //(.?) Ff 

Z„ =

m m

(4.15)

Z - W M Z .  ,

which is shown in figure 4.4. It is noted that there are transfer function matrices 

relating input disturbances Dr and N  to control signals U, control states Zc, and

contaminated measurement states Ym, in the form

= T
D r , Z = T Dr

u N 9 c z N Y  = T
D
N

(4.16)

The matrices are given by

r  = [T„ Tm] , Ty = [ r yl r „ , ]  ( 4 .1 7 )

where

= ( /  -  HWtnCmG J  'HW,mCm 

Tm = ( /  -

r .  = C (G. r  . t f l  , T = C G. Tzd c '  lu ad  7 ’ zn c lu un

T , -  C (G. T ,+I) , r  = C G J  +/yd m '  la  i d  ;  ’ yn m lu un

The H,. controller design is then the solution obtained by minimization of the H„

norm

W Tu u

W Tz  z

WyTy

( 4 .1 8 )

Clearly, the choice of weighting function matrices has a significant influence on the

52



controller design. These must be considered with regard for the vibration reduction 

required, the avoidance of spillover effects and the capabilities of the control actuators. 

Guidelines for the weighting function selection are detailed in section 4.4.

4.3.2 State Space Realisation Of The Augmented System

The system analysis in the frequency domain mentioned above is very useful for 

aiding the choice of weighting function matrices. However, it is very difficult to solve 

the H„ problem in the frequency domain. In contrast, the solution can be easily 

obtained in the state space domain. From equations (4.8) and (4.14), the reduced order 

equation of the rotor-bearing system in state space is of the form

Pi = AiPi + Bud + Bi.u
-  C j ,  + c chph (4.19)

yn = -  c'n.h/’h - «
where

C . . - W  .

Co = W  , Cmh = c mu h»

and n is a vector of shaft surface roughness and electrical noise time domain signals 

appropriate to the measurement locations. It is noted that terms CA ph and Cmh p h can 

not describe the disturbances acting on the measured states accurately due to the 

uncertainty of the high frequency modes. Furthermore, in any finite element analysis, 

the dimension of ph will be large making it computationally inefficient to include the 

high frequency modes in the system equations. However, the dimensions of the 

controlled and measured states are likely to be much smaller.

An alternative form of (4.19) is now derived to reduce the computational problems 

incurred on retaining ph . Let Dc be a diagonal matrix with dimensions nc x nc . Let 

each non-zero element correspond to the maximum value of each control state
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variable. It follows that ^ „
Q  pb = DA

where || dc || < 1 and dc represents any time variation of the control states due to high 

frequency modes. A similar procedure may be used to define a r^  x diagonal 

matrix Dm for the measurement states:

r̂nh Ph = Dmdm

where |[ dm || < 1. Also for the shaft roughness and electrical noise

n  = n n

where Dn is an nm x nm diagonal matrix and || dn || < 1.

It now follows that equation (4.19) may be replaced by

Pi  =  A lPl + B lid  + B u u

Zc = Cc|p, + Dcdc (4.20)

v = C jj. + D d  + D d
*  in ml* I m m  n  n

It is remarked that exact forms of the Dc , Dm , Dn matrices and dc , dm , dn vectors 

are not required in an H„ controller design. It need only be recognised that they 

represent the uncertain modelling and measurement parameters in the system.

The state space equations of three weighting function matrices Wa ,W Z , and Wy are

(4.21)
4. = ( > .  * D. “

x, = A x ,  + B z  
1 11  1 '  (4.22)

+
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The equations of the filter are

*, = V *  + Byy ™

z y =  C x y +  D yym

xt =  AfXf  +  Bfy t

y ,  = c f * , + D ,y ,

Hence, the equations of the augmented system are

x - A x  + B r  +  B u

where

z -  C x  +  D r  +  D uaz a azr azu

y = C x  +  D r + D uJ  f  ay a ayr ayu

= [PU <  Xl  Xl  V ]

Z ~  |^ZU> Z2) Zy j

'  = [<*T> d c\  dm\  d j J

(4.23)

(4.24)

(4.25)

A 0 0 0 0 * ld 0 0 0 lu
0 ^u 0 0 0 0 0 0 0 B u

A =a B C c] 0 0 0 B =ar 0 j3Dz c 0 0 -
0

ByCml 0 0 A y 0 0 0 * P m B Dy n 0

B fCm{ 0 0 0 1 0 0 BP* BPry 0

0 Cu 0 0 0 “ 0 0 0 0 DU

Ca2 = ^ zCc. 0 cz 0 0 D =azr 0 D Dz c 0 0 0 azu = 0

_^yCml 0 0 Cy 0 0 0 DPm D Dy n_ 0

Cay = [ D f ml 0 0 0 CJ Dayr = [0 0 DtDm D f i n] 

This is the state space formulation of the Hx problem.

= [o]
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4.4 Controller Design

The most important detail in the H control design is the choice of weighting function 

matrices so that the resulting controller can make the closed-loop system achieve 

required characteristics. The choice depends mainly on the characteristics of the 

actuators, robustness requirements, characteristics of input disturbances and 

performance requirements.

4.4.1 Characteristics Of Control Forces

A magnetic bearing has low pass characteristic between output forces and input 

voltages. Cut-off frequencies depend on the bearing design parameters and power 

amplifier coefficients. The control forces will therefore be the series combination of 

the controller design and the magnetic bearing characteristics.

4.4.2 Characteristics Of Disturbance Forces

Within the scope of this thesis, three types of disturbance forces will be considered

(a) Steady synchronous forcing due to unbalance.

(b) Steady non-synchronous forcing due to external excitation.

(c) Sudden forcing due to mass loss.

In case (a) the forcing is at a single frequency (co = Q) with an amplitude proportional 

to Q,2. In case (b) the forcing is also at a single frequency (co = cos, cos * £2) with a 

fixed amplitude. Case (c) corresponds to unbalance forcing with a step change in 

amplitude.

4.4.3 Characteristics Of Disturbances Forming P ,

According to equation (4.10), as stated in section 4.2.1, the full order system
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disturbance terms in Dr are dependent on the direct forcing terms in D and the control 

forces in U. Specifically the terms involved are

Gld(s)D - excitation of low frequency modes by direct forces 

Ghi(s)D - excitation of high frequency modes by direct forces 

Ghu(s)U - excitation of high frequency modes by control forces

The degree to which D influences Dr depends on the type of disturbance force and 

transfer function matrices Gld($), Ghd(s) and Ghu(s).

In the case of steady synchronous unbalance forcing, the system response will be 

synchronous and large around critical speeds. Since the low frequency modes are 

within the running speed range, significant contributions from G,d(s)D must be 

expected. However, if the high frequency modes are well away from the maximum 

running speed then the contributions from Ghi(s)D will be small.

A similar argument may be applied to the case of steady non-synchronous forcing. 

The excitation occurs when the forcing frequency is in the domain of the higher 

frequency modes in which case the GhA(s)D term may give rise to a significant system 

response.

The case of a sudden change in unbalance condition will cause all modes to be excited 

simultaneously. To see this, lctfx and/y be the unbalance force components in a rotor 

plane due to an mass eccentricity me that results after t -  0. Then

f ,  
f ,
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In the Laplace transform domain

m Q2_  e s
Fy(s) (s2+£l2) O

The poles at s = ± j£2 give rise to mode excitations. The proximity of s = ± jO to the 

system poles or eigenvalues determines the levels to which the modes are excited. The 

running speed dependence is obvious and large responses will occur if mass loss 

occurs at or near to critical speeds.

The final term contributing to the disturbance Dr is the control force excitation of the 

high frequency modes. The controller design could ensure that this term is minimised, 

thus avoiding controller spillover. If this is not the case then the controller may cause 

the rotor to respond unnecessarily. In other words, since the modelled high frequency 

modes are considered to be uncertain, it is not feasible to control these modes in the 

physical system. One of the consequences of this is that disturbance forces that cause 

significant responses of high frequency modes will only be partially compensated for 

( through the low frequency modes ).

4.4.4 Characteristics Of The Shaft Surface Roughness And Electrical Noise 

Consider shaft roughness nk appropriate to the k th transducer position. This may be 

specified by the Fourier decomposition

\  = £  V * 19 (4-28)
1

where 0 is a circumferential coordinate around the shaft. When the rotor rotates at 

speed O, nk is of the time dependent form

\  = E  (4.29)
1
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where (f)̂  is a phase angle. It is apparent that the amplitudes of the surface roughness 

harmonic components will remain the same whatever the rotational speed is. However, 

in the frequency domain, the components are at frequencies that are multiples of Q. 

As the rotor speed increases, these components sweep through the frequency range in 

a manner shown in figure 4.5. Therefore, if the maximum rotational speed is known, 

the spectrum of nk over the whole frequency range can be identified and bounded by 

an enveloping curve.

It is to be noted that one option is to eliminate the surface roughness from the 

measurement signals by subtracting off ’slow roll’ measurement signals. However, 

each controller implementation would require tuning. The alternative approach taken 

in this thesis is to incorporate the roughness into the controller design through an 

enveloping spectrum. In this way, rotor manufacturing tolerances may be incorporated 

and different controller implementations should not require any tuning.

Electrical noise will also contaminate the measurement signals. The spectrum of any 

noise will be speed independent and will include high frequency components. When 

combined with the surface roughness spectrum, a complete enveloping spectrum can 

be defined for N(jco).

4.4.5 Choice Of Weighting Functions

Wa - Wa should reflect the frequency response characteristics of the system magnetic 

actuators and ensure that the maximum control forces are within the limits of 

their capabilities. The weighting should also ensure that the controller does not 

excite the neglected high frequency modes. The maximum singular value of 

the weighting function inverse will then have a characteristic similar to the 

magnetic bearings characteristics. It should also have a low value in the
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frequency range of the neglected high order modes. Figure 4.6 shows the 

anticipated variation of maximum singular value of the weighting function 

matrix with frequency.

Wz - This weighting function matrix modifies the controlled output Z c. It should be 

chosen to have a maximum singular value that is large in the frequency range 

in which vibrations are required to be attenuated, and small otherwise. 

However, it is argued that a weighting function with a low pass characteristic 

or even constant weighting can also be chosen. The low pass characteristic 

means that more importance to vibration reduction at low frequencies is 

assigned, while the constant weighting simply means that the vibration control 

is regarded as being equally important at all frequencies. Furthermore, choice 

of either low pass or constant weighting function will reduce the order of the 

augmented system compared with a band pass weighting. These choices can 

be seen in figure 4.7.

Wy - This weighting function matrix is related to the contaminated measured output 

Ym = Zm + N. In terms of any vector norm, it follows that

llir j l  -  m i  < IIZJI <; \\YJ + m  (4.30)

Ideally, Zm = 0 in the controlled system. However, the controller utilises the 

Ym states and it is not possible to achieve perfect control. For example, it 

follows from (4.31) that

(a) \\YJ = 0 implies ||Z J | = \\N\\

(b) \\YJ = ||iV|| implies 0 < ||Z J | < 2||7V||

Provided the error term N  is within acceptable bounds, either of the above 

constraints may be chosen. For this thesis only case (b) is considered. An 

enveloping bound on N  is shown in figure 4.8 covering both shaft surface

60



roughness and electrical noise. Ideally, in order that ||Fm|| = ||iV||, the 

maximum singular value of Wy should have an inverse characteristic similar 

in shape to the enveloping bound on N. However, it is now recognised that a 

conflict may arise with the objectives of the controller weighting function 

matrix Wa. This was defined to limit the controller ability of exciting neglected 

high frequency modes. Therefore, it is accepted that high frequency mode 

signals may be present in the measured states Ym if excited by other external 

forcing (eg. mass loss). Now

IIYJ  = ll^+JVII < I I I I  + 1*1 (4.31)

where represents possible high frequency mode signals. The spectrum of 

\\Ymh\\ is therefore added to || N  || so that the maximum singular value of Wy 

is chosen to have an inverse characteristic similar in shape to an enveloping 

bound on || ymh|| + || N  || (figure 4.8).

4.4.6 Resulting Controller

After the suitable choice of weighting functions, equation (4.25) can be solved to 

obtain the controller. However, it is noted that equation (4.25) has a solution only 

if some controllability and observability conditions are held. Furthermore, the matrix 

A c of the controller will have the same dimensions as matrix Aa of augmented system 

(4.25). This may result in a high order controller and if no further model reduction is 

done, may leave the problem either unsolvable or very difficult to apply in practice. 

Therefore, model reduction must be performed on the augmented equation (4.25) so 

that unobservable/uncontrollable states in the system can be removed and control law 

complexity reduced to meet practical requirements.

The balanced truncated model reduction method [51] was used in the augmented
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system, in which an n th order full order system

G,(s) = C ,(sI-A ,)-lB. + *>, <4-32)

can be approximated by a k th order reduced model

Gr(s) = C O /  -  Ar)-'Br + i) r (4.33)

such that

|G„(jo» -  G (jco)|L * 2 E  (4'34)
i=k+l

where & are square roots of the eigenvalues of Ga(s). Then the resultant reduced order 

controllable/observable equation can be performed by the same procedure described 

in Chapter 3 and the H„ controller can be represented in state space form by

*c = A cx c + Bcyt (4.35)
u =  Ccx c +  D cy t
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Fig. 4.2 Block diagram of the full order system
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Fig. 4.3 Block diagram of the full order system with low and high 
frequency mode partitioning

64



w r -+Zy

Wa

D.

N

" ‘■ T  " u 1"

Q
Z,. wTUZi

r — i

Fig. 4.4 Block diagram of the augmented closed loop system

Harmonic magnitude

Roughness bound

M in M in 3 ^  M ix  M ax

Frequency

Fig. 4.5 Shaft surface roughness signal component variation with 
rotational speed / frequency

65



m i lTTTT

1111m uI I ILL
Frequency

rad/s

Fig. 4.6 General form of weighting function Wu

Constant characteristics 

V .Band pass characteristics

pass characteristics

A System response 
(schematic)

J-LLLL

Frequency
rad/s

Fig. 4.7 General forms of weighting function Wz



M
ax

im
um

 
sin

gu
la

r 
va

lu
e

Frequency
rad/s

(b) General form of weighting function Wy

Fig. 4.8 Enveloping bounds and measurement state 
weighting function characteristic

Bound of | y„h| + | N  |

"Spectrum due to high : 
frequency modes | :

/  Bound of surface 
roughness and electrical 

noise | N  \

Frequency
rad/s

(a) Enveloping bounds of surface roughness, noise and 
high frequency modes

67



CHAPTER 5 CONTROL IMPLEMENTATION ON AN EXPERIMENTAL 

RIG

5.1 Description Of The Experimental System

The real-time implementation of the control strategies was carried out on the rig 

shown in figure 5.1. The rotor is of an industrial size and supported by oil-film 

bearings. It has the capability of running above its first flexural critical speed and 

therefore can be regarded as a flexible rotor. The presence of the end mounted disks 

means that gyroscopic moments are important Two electromagnetic actuators were 

used to supply control and disturbance forces.

5.2 Details Of The Rotor-Bearing Assembly

5.2.1 Flexible Rotor

The rotor consisted of a mild steel shaft and two steel disks mounted at each end of 

the shaft with ETP bushes. The shaft diameter and nominal length were 100 mm and 

2385 mm respectively, while the disk diameter and thickness were 406 mm and 90 

mm respectively. There were eight equally spaced holes on each face of the disks for 

the purpose of rotor balancing and introducing known unbalance into the system.

5.2.2 DC Motor And Coupling

The rotor was driven by a 25 kW variable speed DC motor through a stub shaft via 

a 1:1.89 step-up flexible tooth belt drive. The motor speed range was 0 to 3000 

rev/min (314 rad/s). Thus the maximum running speed of the rotor was 5670 rev/min 

(594 rad/s). A regenerative braking system was introduced for the variable speed drive 

so as to provide a means of decelerating the rotor. A universal coupling was used to 

link the stub and main shafts so that no lateral forces from the stub shaft could be 

transferred to the main shaft.
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5.2.3 Oil-Film Bearings

Two oil film bearings were mounted near the two end disks and used to support the 

rotor. Each bearing consisted of a housing and two brass bushes having 35 mm land 

length. A 10 mm circumferential groove was left between the two bushes so that oil 

could be fed into it from a supply hole on top of the bearing. The bushes were 

designed to give the nominal diametral clearance of 0.25 mm. Thermocouples were 

attached to the end face of each bush for monitoring the bearing oil-film 

temperatures.

5.2.4 Lubrication System

Tellus oil T15 was used as lubricant. The lubrication system is shown in figure 5.2. 

A perplex shield arrangement was supplied to collect and drain oil to a small tank. A 

level switch was appended to the tank to ensure that the oil pump would force oil up 

to the header oil tank. A ten micron filter was fitted immediately after the pump. The 

high mounted header tank resulted in 0.4 bar supply pressure at the journal bearing 

housing.

5.3 Electromagnetic Bearing Actuators

Two electromagnetic actuators were used to apply forces to the rotor. The control 

actuator was located at a position to guarantee that the rotor system was controllable. 

The second actuator was located in a similar off-centre position and was used to apply 

disturbance forces. Both actuators consisted of a magnet unit, a rotor sleeve, and an 

emergency bearing. The magnet units had eight poles with coils on each of them. The 

coils of each pole-pair were connected together and consequently produced a 

configuration of four U-shaped magnets ( figure 5.3). When electrical current passed 

through the coils, magnetic flux was generated and closed by a ferromagnetic ring on
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the rotor sleeve. Emergency bearings were fixed within the actuator housings to limit 

the motion of rotor and avoid contact between the magnets and sleeves. The gap 

between the magnet pole face and the sleeve was 1.2 mm. Between the emergency 

bearing and the sleeve the gap was 1.0 mm.

Each actuator had a power amplifier. The applied voltage of both amplifiers was 310 

V. For the control amplifier, the range of input control voltage and maximum output 

current of each channel was ± 10 V and 2.5 A respectively, while, for the second 

amplifier, these were ± 50 V and 25 A respectively.

5.3.1 Dynamic Characteristic Of The Control Magnetic Actuator 

An input-output system consisting of magnetic actuators and power amplifiers is, 

strictly speaking, a non-linear system. The power amplifier was designed in such a 

way that control currents, i+x, z_x, i+r i.y, and input control voltage Ux and Uy had the 

following linearized relation in the working range:

i = k ( V + V )  , i = k ( V - V )+x a v o x 7 ’ -x a v o x 7

i = k ( V + V )  , i = k ( V - V )+y a v o y ~y a v o y

where V0 is the bias input voltage which was equal to the maximum possible value of 

the input control voltage Vx or V . The actuator characteristics can be linearized using 

premagnetization and differential currents in opposite faced pairs of magnets [73]. 

Therefore the overall linearized relation between input control voltages and output 

magnetic forces were

Fx = W  * ksx

F y  =  K V y +  k . y

where and ks are force-voltage and stiffness coefficients, which had values
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approximately 225 N/V and 1740 N/mm respectively, x and y are rotor displacements 

at the position of the actuator.

The characteristic of the actuator-amplifier system is shown in frequency domain in 

figure 5.4 . It is indicated that the system is similar to low pass filter with cut off 

frequency 150 rad/s. Consequently, the maximum force amplitude of 1200 N can be 

delivered by the actuator below this frequency, while the amplitude reduces by 20dB 

per decade at frequencies above 150 rad/s.

5.3.2 Dynamic Characteristic Of The Second Magnetic Actuator 

The dynamic characteristics of the second magnetic actuator are similar to the control 

actuator. The actuator and power amplifier were designed in such a way that the 

maximum force the actuator could deliver was 1000 N. However, this maximum force 

can be applied up to 314 rad/s, compared with the control actuator force of 700 N at 

frequency 314 rad/s. This is expressed in figure 5.5.

The second magnetic actuator was used only as a disturbance force generator. The 

excitation frequency and amplitude of force could be adjusted to supply either a non- 

synchronous excitation, or simulated noise with high frequency components.

5.4 Data Acquisition System

5.4.1 Transducers

Six eddy current transducers were used to measure the shaft displacement. Their 

effective measurement range was from 0.48 mm to 4.8 mm. Signals with frequency 

up to 10 kHz (62.8xl03 rad/s) could be detected by the transducers. The transducers 

were mounted horizontally and vertically at three locations, including the control 

actuator position.
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An incremental encoder was connected to the shaft at the driven end of the rotor. TTL 

compatible pulses of 1/rev and 256/rev were provided by the encoder. These pulse 

signals entered an interface board for initiating the A/D conversion and supplying the 

rotor speed measurement.

5.4.2 Filter Circuits

In real time control systems, physical variables measured are continuous-time signals, 

which should be converted into digital form by a A/D convertor in order that control 

process can be carried out digitally in computers. The conversion is performed at the 

sampling time. Computers interpret the signals as a sequence of digital numbers, 

process them according to an algorithm, and give a new sequence of digital numbers 

as a output. The output numbers can be converted to analog signals by a D/A 

convertor, which can be used to drive control actuators. A problem is then raised that 

sampled signals may be contaminated by high frequency noises. Thus, filters are 

needed to prevent signal contamination.

Filter circuits were placed between the displacement transducers and the A/D 

convertor. They were used to avoid the possibility of aliasing corrupting results of the 

measurements. If signals with maximum frequency fmax are required to be measured, 

the sampling frequency/s must be at least twice of fm̂ . The frequency fJ2  is refereed 

as Nyquist rate. A component above this frequency ya may appear as a aliased image 

ya’ in low frequency range shown in figure 5.6. This will result in a spurious 

component which does not actually exist in the real signals. If the controller acts on 

this false component, the performance of the closed-loop system may worsen. 

Therefore a filter was added immediately before A/D convertor.
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The diagram of the filter circuitry is shown in figure 5.7. The filter actually consisted 

of two parts. The first part had high pass characteristics, while the second part had 

low pass characteristics. As a whole, the filter had band pass characteristics with 

frequency bandwidth from 10 to 2513 rad/s as shown in figure 5.8. It then can be used 

to block the DC and alias components. The form of W (from equation (4.14) ) is 

given in Appendix C.

5.4.3 RTI-815 Interface Board

The RTI-815 board is a multi-function data acquisition card which can be plugged in 

a personal computer so as to provide a real-time direct interface between the analog 

signals in real world and digital signals in computer. It is a 12-bit A/D and D/A 

convertor and has the feature of analog I/O, digital I/O, and timer-counter pulse I/O.

5.4.3.1 Analogue Input / Output Feature

The board contained a 12-bit analog-to-digital convertor with conversion speed 

between 25 ps to 30 ps. It had 16 channel single ended analog inputs or, alternatively, 

8 channel differential analog inputs. By choosing different configuration of the board, 

the input voltage could be set at ranges of 0 to +10 V, -5 to +5 V, and -10 to +10 V. 

A on-board amplifier with several gain selection was included and could be used to 

condition low-level analog input signals so that accurate measurement can be obtained. 

The 12 bit (4096) counts provided a LSB (least significant bit) 4.88 mV when in the 

±10 V range. There were two modes for data acquisition. The first was the collect 

mode for single input and the second was the scan mode for multiple channel input. 

The scan mode, with automatic wrap around when the last channel conversion was 

finished, was performed to convert analog signals to digital form, channel by channel 

sequentially, together with the direct memory access (DMA) circuitry of the board. 

This mode was used in the project.
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The board also contained two independent 12-bit digital-to-analog convertors with 

settling time 20 (is for full-scale step changes. These two output channels could be set 

individually to a voltage within the range of 0 to +10 V or -10 to +10 V. The 12 bit 

(4096) resolution provided a LSB 4.88 mV when in the ±10 V range, and 2.44 mV 

when in the 0 to +10 V range.

5.4.3.2 Time - Related Digital Input / Output Feature

A 16-bit counter/timer chip was included in the board which could be used to measure 

the rotational speed of the rotor. The 256/rev TTL signals from the encoder was linked 

to the input part of the chip. The frequency measurement range was 0 to 100 kHz 

(628x103 rad/s).

5.5 Personal Computer

An IBM AT-compatible computer (Opus V) was used as a frame to hold the RTI-815 

interface board. The speed of the computer CPU was 12 MHz with turbo mode on, 

and 8 MHz with turbo mode off. The 8 MHz speed option was applied since the RTI- 

815 board could work only in the non-turbo mode. The PC was used to act as a 

mainframe for performing data acquisition and direct communication with the 

transputer.

5.6 Transputer Hardware

5.6.1 Introduction

For rotor bearing systems with high rotational speed, a fast processor capability is 

essential for implementing real-time control strategies. This requirement may be 

feasible on a very expensive single processor computer. Alternatively, a relatively low 

cost multiprocessor computer called a transputer can be used to achieve satisfactory 

results. A transputer is both a computer on a chip and a silicon component like a
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transistor. It has conventional CPU, links, on-chip RAM etc, similar to a computer. 

However, each one of them can be treated as a component and they may be connected 

together by on-board links to form a parallel computer. This leads to faster calculation 

and communication than is available with conventional computers.

5.6.2 Structure Of Transputers

Inmos T800 transputers constituted the main part of the parallel computer for the 

project. The Inmos T800 is a processor consisting of a 32-bit CPU, a 64-bit floating 

point unit (FPU), 4KB of fast on-chip RAM, an external memory interface, four serial 

links, and internal timers. The block diagram of a T800 transputer is shown in figure 

5.9. The FPU provides single and double length operations for floating point 

arithmetic. The on-chip RAM provides a maximum data rate of 80 Mbytes/s with 

access from both the processor and links. A DMA block transfer mechanism was used 

to transfer messages between memory and other transputers via the links which have 

a maximum operating speed of 20 Mbits/s. The external memory interface used 

multiplexed data and address lines and provided a data rate of up to 26.6 Mbytes/s. 

The internal processor speed could be generated by a 5 MHz external clock and, 

hence, the CPU clock speed could be scaled up to 25 MHz.

5.6.3 Structure Of Parallel Computer

The parallel computer hardware for the project consisted of nine transputer boards 

which were hosted by a rack made up of the following processing boards:

1) Six Inmos T800 boards to supply the main computational power.

2) One I/O board to provide input-output capability.

3) One link topology configuration board to configure the topology of all

the boards.

4) One graphics board to provide high resolution graphics.
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The communication between the T800 processing boards was achieved via the four 

links on each transputer. A unique number was assigned to each transputer rack. The 

four links were generally referred to as link 0 to link 3. The interconnection of all the 

transputer rack is shown in figure 5.10.

A total of four transputers were used for the project. The transputer connected to the 

PC executed a control server program and a user monitor program executed on a 

second transputer. The third one was used to create high resolution graphics and the 

fourth ran system network management software and text input/output.

5.7 Operating System

An operating system developed in 1986, called Helios Parallel Operating System, was 

used in the parallel computer. The idea of the system was based upon the Client- 

Server model with inter-processor communication handled transparently by the system 

kernel.

According to the communication methods used, programming philosophy can be 

categorised into four types in applications in follows:

1) Single processor programs. Helios contains libraries for FORTRAN, C, 

and Posix (UNIX functions which provide a transparent interface to the 

operating system facilities).

2) Multiprocessor task force. The Component Distribution Language 

(CDL) can be utilised to define parallel task components which can be 

then loaded and executed by Helios with defined logical interconnected 

communication via pipe streams.
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3) Distributed servers. Helios can be used to run a number of servers 

distributed around a processor network. The server accepts requests 

from clients, then performs the requested service, and finally sends 

back a reply.

4) Stand-alone programs. Some transputers can be booted with Helios 

stand alone run-time programs that use the links directly without Helios 

being loaded. This was required if the processor had limited memory 

or full control of some transputers was needed.

5.8 Software Configuration

The software for on-line control executed on the transputers under Helios Parallel

Operating System to execute the control process. The general arrangement of the

control system is shown in figure 5.11. In the project, the control law had the state

space form

*c = AcXc + BJ

« =  Ccxc + Dcy

It can be diagonalised by the eigenvector matrix transformation

x = V q cc -* c

where V  is the eigenvector matrix for Ac. This leads to

q -  A q + B y■*c q * c q*'

u =  C a  + D \q *  c q*7

where

A  = V~lA V  , B = V , C = C V  , D = Dq c ’ q c ’ q c ’ q c

and Aq is a diagonal matrix.
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This continuous form the controller can be converted to digital form with the bilinear 

transform the Laplace transform variable

2(1 - z ' 1) s = —1---------
r . a + z - 1)

to give

= a a + B i (yk +y kJ

“ k.i = +

where
/

2̂ j
\

r-A

-l /  \  

J L /+ A 5 ,  =

/  \  

1 / - A
T, q

J
rjl q

I s )
’ d j  q

 ̂ s >

In practice, the above matrices may be multiplied by a set of fixed scaling factors 

which map the ADC and DAC values to standard units. This is more efficient than 

scaling the input/output variables for every sample.

After discretzation, the control process could be executed on the computer. The 

control software consisted of three bits: RTILINK, DCLSRV, and DCLMON.

5.8.1 Data Acquisition Program - RTTLINK

This program was executed on the PC to handle analogue data input/output and the 

data transfer to/from transputers. It carried out following steps: 

while(Mode != Exit)

{ Check frequency counter

Input data from transputer link

Set analogue outputs

Read analogue inputs

Output data to transputer link }
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5.8.2 Digital Control Loop Server Program - DCLSRV

This server program ran on the transputer as a controller. It was used to set control 

parameters and collect data. The server was implemented as a number of cooperating 

processes:

1) Timer process which was programmed to generate a software interrupt 

at regular intervals;

2) Control process which was programmed to wait for timer interrupt, get 

inputs from the PC, check trip limit, calculate control output, and send 

output to the PC;

3) Communication process which could update or inspect the shared data 

while the control process was waiting for the timer interrupt;

4) Event process which performed fast data logging and could transfer 

data concurrently with the control calculation.

5.8.3 Digital Control Loop Monitor Program - DCLMON

This program ran on the transputer and a shell with built-in commands for 

input/output of coefficient matrices, conduction of the DCLSEY server, data logging, 

data saving, and data plotting.

79



View of the experimental rig
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CHAPTER 6 APPLICATION OF H„ CONTROLLER DESIGN 

PROCEDURE TO EXPERIMENTAL RIG 

6.1 Introduction

In this chapter, a model of the experimental rig described in Chapter 5 is analyzed. 

The analysis follows the procedure described in Chapter 4 and the characteristics of 

the full order and reduced order open loop systems are obtained by computer 

simulation. The surface roughness signals were obtained by measurement and digital 

signal processing. The general forms of the H„ controller weighting function matrices 

are then chosen based on these results. After forming the standard H„ equation, the 

controller is derived. Characteristics of the controller and the closed loop system are 

then analyzed in different situations and vibration reduction capability is evaluated 

theoretically.

6.2 Dynamic Analysis Of The Theoretical Model

The equation of the rotor-bearing system can be written in the form of equation (4.1). 

In order to model the rotor-bearing system accurately, 11 finite elements were chosen 

as a division of the rotor (figure 6.1). Thus the mass, damping, and stiffness matrices 

M, C, K  of the equation (4.1) have dimensions 48x48. Bt and Gf have dimensions 

48x24 and 48x2 respectively. Therefore, in the state space equations (4.3) and (4.6), 

matrices A, Bd and B a have dimensions 96x96, 96x24 and 96x2 respectively. Figure

6.1 also shows the measurement states (nm = 6 displacements) and the control states 

(r^ = 16 displacements and velocities). Thus Cc has dimensions 16x96 and Cm has 

dimensions 6x96.

6.2.1 The System Critical Speeds And Modal Analysis

The first and second natural frequencies of the free-free rotor were calculated without
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the 2nd magnetic bearing sleeve to be 290 rad/s and 906 rad/s. These compare with 

the measured natural frequencies of 301 rad/s and 919 rad/s [2] and demonstrate that 

the theoretical model of the system without bearings is accurate up to a frequency 

around 950 rad/s with error around 3%. When gyroscopic effects and oil-film bearings 

are introduced, the system matrices are a function of the rotational speed and, 

consequently, the eigenvalues of the rotor-bearing system are also functions of the 

rotational speed.

The variation of the imaginary part of the eigenvalues with the rotational speed is 

shown in the Campbell diagram of figure 6.2. Intersections of the synchronous 

excitation line co = Q and lines of imaginary part of the eigenvalues indicate 

approximate critical speeds of the system. They are 228, 249, 271, 309,467, 559,630, 

and 809 rad/s respectively. The divergence of the eigenvalues with speed shows the 

effect of gyroscopic moment and oil-film bearings on the system.

Mode shapes corresponding to the lower critical speeds are shown in figure 6.3. The 

first two represent nearly rigid body modes, whilst the third and fourth represent the 

first order rotor flexural modes, which are split due to gyroscopic coupling and 

bearing asymmetry. The fifth represent the split of second order rotor flexural modes. 

It is indicated that the oil-film bearing positions are close to the nodes of the first 

order rotor flexural mode shapes.

The variation of eigenvalues with the rotational speed in the complex plane is shown 

in figure 6.4. It is indicated that the system becomes unstable as the rotational speed 

increases beyond 588 rad/s. This is caused by the oil-film bearings and the frequencies 

of the unstable modes are below half of the rotor rotational speed. This is related to 

oil whirl instability.
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The rotor-bearing system is multi-input, multi-output by nature and may be 

represented by a transfer function matrix G(V). The generalised frequency response for 

such a system may be obtained in terms of the maximum singular value of G(s) 

(denoted by a(G(jco)) in section 3.4.1). It is also noted that a(G(jco)) will be speed 

dependent. Figure 6.5 shows the generalised frequency responses over a frequency 

range 0 - 1000 rad/s and for a range of rotational speeds 0 - 346 rad/s. These show 

that only two modes around the frequency 300 rad/s are lightly damped. This is due 

to the fact that the bearings are close to the nodes of the rotor first and second flexural 

modes. The damping contribution from the bearings to the third and fourth critical 

speed modes (271 rad/s, 309 rad/s) is therefore small.

6.2.2 Model Reduction

The reduced order system can be obtained by truncating the full order system at a 

frequency just above the frequencies of the lightly damped modes. Since the system 

response over the frequency range 0 - 1000 rad/s is due mainly to the lightly damped 

modes, a reduced model chosen in this way retains most of the desired characteristics 

of the full order system.

The characteristics of the reduced order system, which retains the first four modes 

(four conjugate pair of eigenvalues/vectors), are evident from the maximum singular 

value plot in figure 6.6. Comparison with figure 6.5 shows that the reduced order 

system has the same characteristics as those of the full order system for frequencies 

0 - 346 rad/s and eliminates all resonance effect above this frequency range.

For the reduced order system with 4 retained modes (4 conjugate pairs of system 

eigenvalues/vectors), eigenvalues of the controllability and observability gramians of 

the system at rotational speed 309 rad/s are 

2.49x1 O'3; 3.25xl0'3; 0.83; 1.15; 162; 163; 189; 190
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and

2.78xlO'8; 3.30xl0'8; 3.47xl08; 4.19xl0'8; 7.89xl0'8; 7.90xl0'8; 1.80xl0'7; 1.81xl0'7 

respectively. The first four correspond to the rigid body modes, whilst the second four 

correspond to the split first order rotor flexural modes. It is indicated that the modes 

in the reduced order system can be controlled and observed.

For a reduced order system including the split second order rotor flexural modes (i.e. 

6 retained modes), eigenvalues of controllability and observability gramians relating 

to the extra modes are

0.178; 0.219; 3.28; 4.87

and

1.23xl010; 1.87xlO'10; 1.26x10*; 1.56xl09 

respectively. These values indicate that, although the extra modes are still controllable 

and observable, they are less so than the lightly damped first flexural modes. Since 

these modes are also well damped and the control force required by the actuator is not 

very large around these frequencies, the reduced order system was chosen to retain the 

first four modes only.

6.3 Measured Surface Roughness

Six displacement transducers (figure 6.1) were used to measure rotor vibration. 

However, these also detected surface roughness. At slow rotational speeds, dynamic 

motion of the rotor will be negligible and the transducer signals will almost entirely 

be due to the roughness. Figure 6.7 shows the transducer displacement measurements 

at a rotational speed of 21 rad/s. The time base covers approximately two shaft 

revolutions. Figure 6.8 shows the corresponding discretised frequency spectra of the 

measured displacement signals. For the particular rig or rotor, it is seen that harmonics 

higher that 5th order are not significant. The importance of obtaining the frequency
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spectra of the roughness signals was detailed in section 4.4.4 and figure 4.5. Suppose 

that the maximum rotational speed is 3300 rev/min (346 rad/s). Figure 6.9 shows how 

the set of roughness spectra shift in frequency with this rotational speed change. A 

bounding curve has also been drawn to encompass the spectra. In some cases this 

bound is clearly conservative, but when included in the controller design there should 

be no complication arising due to measurement spillover.

6.4 Analysis And Design Of The H„ Controller

Ideally, for a rotor-bearing system with rotational speed dependent coefficients, the 

controller should be designed at every rotational speed. Practically, this is not possible 

because a large amount of computer memory and calculation is needed. To 

compromise, a step change controller can be used. The rotational speed range is 

divided into several sub-ranges. A controller designed at one specific speed within 

each range can then be applied when the rotational speed remains in this range. When 

the speed moves into another range, the controller can be switched. In this way, less 

computer memory and calculation are required. Therefore, the better approach is to 

design a controller with a minimum number of the ranges whilst retaining the required 

closed loop system performance characteristics.

As remarked in Chapter 4, three types of forcing were considered:

(a) Steady synchronous forcing due to unbalance.

(b) Steady non-synchronous forcing due to external excitation.

(c) Sudden forcing due to mass loss.

Controllers were designed for each case and the differences in the designs will be 

explained in the following sections. The differences arise in the choice of weighting 

function matrices Wa, Wz, Wy as outlined in section 4.4.4. For reference, the different 

forms of the weightings are specified in Appendix C.
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6.4.1 Choice Of Controller Weighting W„

In fact the first weighting function Wa did not vary between force types. The 

frequency characteristic of the control magnetic bearing was similar to a first order 

low pass filter with cut-off frequency 150 rad/s (figure 5.4). The chosen weighting 

function maximum singular value therefore had the form of the high pass 

characteristic shown in figure 6.10. The break point frequency of its inverse was 150 

rad/s, the same as that of the magnetic bearing controller. The characteristic also 

limited the ability of the controller to excite neglected high frequency modes. Since 

the third and fourth modes varied only slightly with rotational speed the weightings 

Wa was not varied with speed.

6.4.2 Controller Design In The Case Of Steady State Response

Controllers were designed at rotational speeds 100, 150, 200, 250, 309 rad/s to cover 

speed ranges 0-125, 125-175, 175-225, 225-275, 275-350 rad/s respectively. The last 

speed 309 rad/s was chosen to correspond with the fourth critical speed where large 

responses are expected.

6.4.2.1 Controller Design At Fourth Critical Speed 309 rad/s 

This speed is considered in the first instance since the critical speed around 309 rad/s 

will involve large amplitude rotor vibration. Options in the choices of Wz and Wy are 

studied with regard to their influence on the controller performance.

The full order system was transformed into the reduced order system with four 

retained modes. The weighting Wy was chosen to have the maximum singular value
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low pass characteristic of figure 6.11. A break point was chosen at 1000 rad/s. The 

aim of TTy is to reduce measurement states 7m down to the level of the roughness 

bound in figure 6.9, but to allow the high frequency modes to be evident in these 

states above 350 rad/s. The frequency characteristic of the magnetic bearing means 

that control capability is greatly reduced above 350 rad/s.

Three choices of Wz were considered with maximum singular values having band pass, 

low pass, and constant characteristics as shown in figure 6.12. They were chosen to 

be effective in achieving attenuation of rotor vibration around the critical speeds of 

271 rad/s and 309 rad/s (see figure 6.5).

The controller was obtained using the procedure in the section 4.4. For the three forms

of Wz, the maximum singular values of the controllers are plotted in figure 6.13. It is

clear that the controllers all have low pass characteristics and, hence, can filter out

high frequency mode effects in the full order closed loop system. It is also seen that

there are no large differences between the controller designs. To see this the lightly

damped third and fourth modes of the full order system at speed 309 rad/s had open

loop eigenvalues -1.9 ± j271, -3.36 ± j309. The controller shifted these as follows:

Wz band pass: -28 ± j252, -60 ± j293

Wz low pass: -26 ± j261, -106 ± j330

Wz constant: -30 ± j262, -98 ± j316

respectively. However, the controllers have different number of states:

Wz band pass: 12

Wz low pass: 12

Wz constant: 10

It is seen that no loss of controller performance occurs when lowest order controller
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(Wz constant) is selected. Table 6.1 presents some eigenvalues (with their imaginary 

parts < 1500 rad/s) of the open and closed loop system at 309 rad/s.

Table. 6.1 Some eigenvalues of the open and closed loop system at 309 rad/s

Open loop
Closed loop Closed loop Closed loop

Wz band pass Wz low pass Wz constant

-42.3 ± j264 -36.7 ± j245 -731 ±j237 -315 ± j214

-33.2 ± j244 -28.0 ± j252 -32.1 ± j242 -31.8 ± j243

-1.90 ± j269 -60.3 ± j293 -25.8 ± j261 -29.8 ± j262

-3.40 ± j309 -217 ±j381 -106 ±j330 -97.8 ± j316

-57.3 ± j504 -127 ±j385 -126 ±j387 -1075 ±j356

-194.1 ± j867 -57.3 ± j467 -714 ± j485 -122 ±j388

-158.0 ±j943 -59.0 ± j507 -57.9 ± j505 -57.2 ± j502

-192 ±j865 -194 ± j872 -188 ±j872

-153 ±j941 -155 ±j944 -155 ±j945

6.42.2 Controller Design At Other Rotational Speed

At low rotational speed, surface roughness has an increasingly important effect on the 

measurement of the rotor displacement states. This is reflected in the measurement 

state weighting Wy. As in the 309 rad/s design, Wy had a low pass characteristic. The 

magnitude of this characteristic increased with speed in the manner shown in figure 

6.14. The weighting Wz was, based on the experiences of the design at 309 rad/s, 

chosen to have a constant maximum singular value that shifted the lightly damped
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third and fourth modes of the full order system as follows:

open loop closed loop

100 rad/s -0.78 ± j282 -63 ± j294

-1.15 ± j295 -67 ± j311

150 rad/s -0.97 ± j279 -65 ± j243

-1.60 ± j298 -100 ± j332

200 rad/s -1.20 ± j276 -47 ± j248

-2.10 ± j301 -117 ±j339

250 rad/s -1.40 ± j273 -36 ± j256

-2.60 ± j305 -89 ± j314

The maximum singular values of Wz are indicated in figure 6.15 for each case. The 

maximum singular values of the resulting controllers are shown in figure 6.16. Again 

the controllers have low pass characteristics where values increase with rotational 

speed.

6.4.2.3 Higher Reduced Order Model

Consider the controller design at 309 rad/s. If higher modes are required to be 

controlled, they should also be included in the reduced order system. If the fifth and 

sixth modes corresponding to open-loop system eigenvalues -57 ± j504 and -194 ± 

j867 are included, the maximum singular value of the controller designed, based on 

this model and with the same weightings as in section 6.4.1.1, is shown in figure 6.17. 

The eigenvalues of the open-loop system -57 ± j504 and -194 ± j867 were shifted to
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-63 ± j508 and -203 ± j835 respectively by the controller. It is obvious that the 

magnetic controller actuator can not do much about the higher frequency modes due 

to the inherent low pass characteristics. This confirms that it is sufficient to retain only 

the first four modes in the reduced order system.

6.4.3 Simulation Of Steady State Responses

The series of the controllers designed at the rotational speeds 100, 150, 200, 250, 309 

rad/s were used to simulate control of the rotor-bearing system in the speed ranges 0- 

125, 125-175,175-225,225-275,275-350 rad/s respectively. This is referred to overall 

as a five speed controller. The synchronous unbalance responses of the controlled 

system are shown in figure 6.18 in which the vibration amplitudes are at the positions 

of stations 1, 5, 12 of figure 6.1. The unbalance was a nominal 5 g mass on the non

driven end disk at a radius of 200 mm. The uncontrolled responses are also shown in 

figure 6.18. It is seen that the vibration levels of the system are reduced significantly 

by the five speed controller. The controlled system experiences both low level and 

smooth responses, especially around the critical speeds.

Instead of using the five speed controller as above, only the two controllers designed 

at 100 rad/s and 309 rad/s were used. Switching between controller occurred at speed 

250 rad/s and overall it is referred to as a two speed controller. Figures 6.19 shows 

the controlled and uncontrolled synchronous responses and comparison with the five 

speed controller results indicates that the vibration reduction is not affected 

significantly when the two speed controller is used. The reasons for this are:

1) The 309 rad/s controller was designed when the disturbance Dr was a 

maximum at fourth critical speed, ie, in the worst case. Hence, it should cover 

the other cases.
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2) The dynamic characteristics of the system on which the control design was 

based varied little in the speed range 0-250 rad/s. Any small variations can 

always be compensated by a controller designed for robustness. The reason the 

100 rad/s controller was applied was for coping with the effect of the dominant 

surface roughness at low rotational speeds. This effect becomes relatively 

smaller when the rotational speed increases.

6.4.4 Controller Design In The Case Of Sudden Mass Loss

Suddenly applied forcing on rotor-bearing systems due to, for example, mass loss can 

cause large rotor vibration amplitudes. It may also excite many modes simultaneously 

and the system may take a long time to settle down from one steady state condition 

to the other. For the system under consideration the fourth critical speed (309 rad/s) 

is an important reference case to examine.

The weighting function Wa remained the same as in the steady state case. Wz was 

chosen to have a maximum singular value to be constant and twice as large as that in 

steady state case to reflect the fact that transient responses may include overshoot. The 

low pass characteristic of Wy was increased accordingly. Both the maximum singular 

values of Wy and Wz are shown in figure 6.20. The characteristic of the resultant 

controller is shown in figure 6.21. It is clear that the maximum singular value of the 

controller (and hence control force) are larger than in the steady state case, but the 

high frequency uncertain modes are still filtered out by the controller.
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6.4.5 Transient Responses

The controller designed at the fourth critical speed 309 rad/s, but for transient 

vibration control, was implemented numerically in the full order rotor-bearing system 

model. The transient responses of the controlled system in the time domain when the 

rotational speed was 290 and 309 rad/s are shown in figures 6.22 and 6.23. These 

responses were caused by a nominal mass loss of 20 g on the non-driven end disk at 

a radius of 200 mm. The vibration amplitudes at the stations 1, 5, 12 (figure 6.1) are 

plotted together with the responses of uncontrolled system. It is seen that the vibration 

levels of the controlled system are reduced significantly by the controller. The settling 

time of the controlled system from one steady state condition to another is much less 

than that of the uncontrolled system (around 0.1s from 0.5s). Furthermore, the large 

jumps in the responses of the uncontrolled system are nearly eliminated by the 

controller.

6.4.6 Effect Of The Surface Roughness On Control Design

The effects of the shaft surface roughness was included in the control designs 

previously mentioned. Consider now the controller designed at the rotational speed 

100 rad/s. Suppose that all conditions are the same as in the section 6.4.1.2 except that 

no surface roughness term is included, i.e. w=0 in equation (4.23). The maximum 

singular value of the resultant controller is shown in figure 6.24 and is larger than that 

of the controller including the roughness. This may result in large control forces being 

applied even when the displacements are contributed mainly by the surface roughness. 

The controller acting on these false (vibration) displacement signals may degrade the 

performance of the closed loop system.
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The procedure may be repeated for controller design at rotational speed 309 rad/s, 

without consideration of the roughness. The maximum singular value of the controller 

is shown in figure 6.25 together with the controller of 6.4.1.1 including roughness. 

The differences are small since the displacements are due mainly to rotor vibration 

and the roughness error is therefore small. The effect of the surface roughness must 

be taken into account in the control design, especially in a control design for use at 

low rotational speeds.

6.4.7 Effect Of Filters And Measurement Time Delay On Control Design

If the transfer function matrix Wfm (Appendix C) due to the measurement filter and 

time delay is ignored, the same control design procedure as in the section 6.4.1.1 will 

lead to a controller characteristic shown in figure 6.26. The phases of the transfer 

function from x-direction displacement to x-direction control force at the control 

magnetic actuator position are plotted for the cases with and without the matrix 

in figure 6.27. It is seen that phase differences of around 180° may occur. If the 

controller with consideration of the filter effect stabilizes the closed-loop system, the 

other controller with the 180° phase lag will certainly result in an unstable closed loop 

system.

6.4.8 Effect of Structure Variation On Control Design

The same control design procedure as in section 6.4.1 was carried out at 309 rad/s, but 

the model on which the control design was based had the second actuator sleeve 

removed from the shaft (figure 6.28). To the system with the second sleeve included, 

this system could be regarded as inaccurate. The controller can be regarded as a.one 

designed when model error occurred. The third and fourth theoretical critical speeds
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of the system without the second sleeve were 279 and 322 rad/s. Comparison with 271 

and 309 rad/s in the system with the second sleeve indicates the extent of this 

modelling error. Figure 6.29 shows the maximum singular values of the controllers 

which were designed on the model with and without the second sleeve . The results 

indicate that the small variation of the system structure leads to a correspondingly 

small change in the controller.

6.5 Stability Considerations

The stability of a closed loop system can be examined by checking its eigenvalues. 

Consider the controller of section 6.4.1.1 designed at 309 rad/s. The two lightly 

damped eigenvalues of the open loop system are shifted in the complex plane at the 

rotational speed 309 rad/s as specified in section 6.4.1.1. At the rotational speed 588 

rad/s, where open loop system instability occurs, unstable eigenvalues are 

+0.02 ± j304

It is noted that the imaginary part of the eigenvalue is about half of the rotational 

speed and this is due to oil whirl in the journal bearings. When the controller was 

implemented, however, the closed loop system was stabilised. The eigenvalue with the 

smallest stability margin was 

-1.70 ± j284

It has therefore been shown that the implementation of the controller can not only 

reduces vibration levels, but also increases stability margins, although the later effect 

is too small to be of any real benefit.

99



268268 225130 150 130268268225

100 dia.

160 dia. 130 ^  160 dia.

(a) Finite element discretisation

} displacements

(b) Measurement states
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Mode shape at second critical speed (249 rad/s)

Mode shape in at third critical speed (271 rad/s)

Fig. 6.3 (continued)
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Mode shape at fourth critical speed (309 rad/s)

Mode shape at fifth critical speed (467 rad/s)

Fig. 6.3 (continued)
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CHAPTER 7 EXPERIMENTAL RESULTS

The implementation of the controller designs from Chapter 6 to the experimental 

rig leads to the results of this chapter. The controller was tested for attenuation of 

rotor synchronous response, non-synchronous response, and transient response due to 

mass loss. The rotor responses of the uncontrolled and controlled system were 

measured for each case. Comparisons were then made to evaluate the effectiveness of 

the controllers for vibration reduction. The rotor speed was varied over the range 0 - 

3300 rev/min (346 rad/s) so that it could pass the third and fourth critical speeds.

7.1 Brief Description Of Experimental Procedure

Firstly, the rotor was balanced to a level to enable it pass the critical speeds in the 

uncontrolled state. The synchronous rotor unbalance responses in both horizontal and 

vertical directions for the uncontrolled system were measured at the six displacement 

transducer positions. A series of tests were then carried out for the controlled case. 

Rotor synchronous responses were obtained for the following controller 

implementations:

(a) Five speed H„ control ( section 6.4.2 )

(b) Two speed control (section 6.4.2 )

(c) Open-loop adaptive control

(d) Two speed control design without considering rotor surface 

roughness

(e) Two speed H„ control design based on inaccurate model

(f) Two speed H„ control with transducer positions changed

(g) Two speed control with transducers removed
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Secondly, non-synchronous response tests were conducted on the rig. Starting with the 

uncontrolled rotor, a disturbance force from the second magnetic actuator was applied 

to the rotor. The frequency of the disturbance was varied so that the rotor was excited 

by a combination of non-synchronous disturbance force and synchronous unbalance. 

The rotor was more finely balanced than in the synchronous response tests so that it 

could pass safely through the critical speeds when the disturbance force frequency 

coincided with rotor critical speeds. The rotor responses for both uncontrolled and 

controlled systems were measured. The open loop adaptive control was not 

implemented since it was designed specifically for synchronous control only.

Finally, transient response tests were conducted on the rig. A mass was attached to the 

non-driven end rotor disk using a simple tie on technique. Before a test, the rotor 

condition was such that it was better balanced with the tied on mass than without the 

tied on mass. A test was conducted by running the rotor up to a selected running 

speed. The tied on mass was then removed using a cable operated blade mechanism 

(figure 7.1). The rotor responses for the uncontrolled and controlled system were 

measured in the time domain.

7.2 Synchronous Control

7.2.1 Uncontrolled Response

The rotor responses of the uncontrolled system were measured at different rotational 

speeds and the results are shown in figure 7.2. The responses show the two critical 

speeds at 270 rad/s and 305 rad/s, first rotor flexural mode split by bearing 

asymmetry. The rigid body critical speeds do not appear in the responses since these 

modes are highly damped. These results are consistent with the theoretical results in 

Chapter 6.
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7.2.2 Five Speed H„ Controller Case

The controllers designed at the rotational speeds 100, 150, 200, 250, 309 rad/s were 

implemented for each of the speed ranges mentioned in Chapter 6 and the response 

results are shown in figure 7.2. Significant vibration reduction is achieved, especially 

around the critical speeds. The maximum amplitude of the rotor response was reduced 

from 0.23 mm for the uncontrolled system to 0.04 mm for the controlled system. The 

two critical speed peaks of the uncontrolled system are totally suppressed and the 

resulting controlled responses are flat over the complete rotational speed range.

7.2.3 Two Speed Controller Case

The two controllers designed at speeds 100 and 309 rad/s were used on the system in 

the speed ranges 0 - 250 rad/s and 250 - 345 rad/s respectively and the results are 

shown in figure 7.3, with the uncontrolled responses. The results show that the 

controller can achieve nearly the same vibration reduction as that achieved by the five 

speed controller.

7.2.4 Open-loop Adaptive Controller Case

For the purpose of comparison, the open-loop adaptive control strategy described in 

Chapter 3 was implemented and the results are shown in figure 7.4. The rotor 

vibration levels over the rotational speed range are reduced significantly. By 

comparing the results shown in figures 7.3 and 7.4, it is seen that the H„ controller 

can achieve similar vibration attenuation as the open-loop adaptive controller.

7.2.5 Two Speed Controller Designed Without Considering The Rotor Surface 

Roughness

The controller that was obtained without taking the surface roughness into account in 

the design was implemented and the results are shown in figure 7.5. These indicate
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that the response amplitudes without considering the roughness effect are larger than 

those of the uncontrolled system in the low speed range below 150 rad/s where the 

roughness has a relatively larger influence on the measurements. In contrast, 

consideration of the roughness effect in the control design results in a controller which 

decreases the vibration levels almost uniformly over the complete speed range (figure 

7.3).

7.2.6 Two Speed //„ Controller Based On Inaccurate Model

The controller in this section was designed based on a rotor model in which the 

second magnetic actuator sleeve attached to the shaft was removed from the original 

model. This resulted in the two measured critical speeds being changed from 270 rad/s 

and 305 rad/s to 277 rad/s and 315 rad/s respectively. The controller can therefore be 

regarded as the one designed when model error exists. The controller was 

implemented and the results obtained are shown in figure 7.6. Slight differences 

appear between these results and those shown in figure 7.3. This demonstrates that the 

controller is robust to the small changes in the system structure.

7.2.7 Inaccurate Sensor Position Case

Here the two speed H„ controller was used in the test. The position of the two 

displacement transducers at the rotor non-driven end was moved approximately 10 cm 

towards the journal bearing direction (figure 7.7). This is equivalent to designing a 

controller when certain transducer positions are not accurately known. The results are 

shown in figure 7.8. Since the transducer positions at the non-driven end were 

changed, comparison with non-driven end responses shown in figure 7.3 can not be 

made. However, comparison can be made at both driven end position and the control 

magnetic actuator position. It can be seen that the reduction of the uncontrolled 

responses remains significant and no large differences exist. This demonstrates that
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the controller is not sensitive to perturbations of the position of a pair of transducers.

7.2.8 Two Speed //„ Control With Transducers Removed

The test procedure was same as that of section 7.2.2 except that the non-driven end 

horizontal transducer signal was removed from the system. This simulates a failed 

transducer. The rotor responses are shown in figure 7.9. No large differences exist 

when compared with all transducer working normally (figure 7.2). Similar results were 

also obtained when the pair of transducers at the non-driven end were removed (figure 

7.10). Therefore, it can be concluded that the H„ controller is not sensitive to 

transducer failure.

7.3 Non-Synchronous Control

The amplitude of the input voltage to the second actuator amplifier was set in such 

a way that the maximum amplitude of the rotor always remained within safe limits, 

particularly when the disturbance frequency was coincident with the rotor critical 

speeds. Since the system response was non-synchronous, the maximum amplitude of 

each transducer measurement was recorded at each running speed. The two speed 

controller was implemented in the non-synchronous case.

7.3.1 Disturbance Frequency Near The Critical Speeds

The disturbance frequency was set to 48 Hz (302 rad/s) and the force was applied in 

the horizontal direction. The maximum amplitudes of the rotor response at the three 

transducer positions are shown in figure 7.11 for both uncontrolled and two speed H„ 

controlled conditions. The response of the uncontrolled system shows large amplitudes 

around and above the critical speeds. The maximum amplitude of the rotor response 

was reduced from 0.22 mm for the uncontrolled system to 0.06 mm for the controlled 

system. Similar results were obtained when the force was applied in the vertical
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direction (figure 7.12). It is noted that the response of the controlled system is slightly 

worse than that of the uncontrolled system below the critical speeds at the rotor non- 

driven end position. However, the controller has a clear beneficial effect overall for 

vibration reduction.

7.3.2 Disturbance Frequency Below The Critical Speeds

The test was carried out for the disturbance frequency set to 40 Hz (251 rad/s) . The 

maximum amplitudes of the rotor are shown in figure 7.13 for both uncontrolled and 

two speed Hw controlled conditions. The response of the uncontrolled system has two 

amplitude peaks at the critical speeds. The maximum amplitude of the rotor response 

was reduced by the controller from 0.16 mm to 0.06 mm. Similar results were also 

obtained when the disturbance force was applied in vertical direction (figure 7.14).

7.3.3 Disturbance Frequency Above The Critical Speeds

The frequency of the disturbance force was set to 60 Hz (377 rad/s). This force could 

be viewed as a high frequency disturbance. The vibration amplitudes are shown in 

figure 7.15. The maximum vibration level was brought down by the two speed H„ 

controller from 0.13 mm to 0.06 mm. Similar results were observed when the 

disturbance force was applied to the rotor in vertical direction. These are shown in 

figure 7.16.

7.4 Transient Control

Sudden mass loss causes a step change in the rotor balance condition resulting in 

transient rotor vibration. Twenty transient response tests were carried out including 

the rotational speeds of 262, 270, 278, 283, 288, 293, 301, 305, 309, 314 rad/s for 

uncontrolled and controlled cases respectively. The controller designed at 309 rad/s 

for the transient case was used (section 6.4.4). Speed 262 rad/s is below the third
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critical speed, speed 270 rad/s coincides with the third critical speed, speeds 278 - 

301 rad/s are between the third and fourth critical speeds, speed 305 rad/s coincides 

with fourth critical speed, and speeds 309 and 314 rad/s are above the fourth critical 

speed. The shaft surface roughness signals are subtracted from the time history 

responses in all cases.

7.4.1 Mass Loss Below Third Critical Speed

The measured responses of the rotor for both uncontrolled and controlled cases at 

speed 262 rad/s are shown in figure 7.17. An unbalance mass of 42 g was added to 

the non-driven end disk of the well balanced rotor. A similar mass was tied on 180° 

further round and it was removed with the blade mechanism (figure 7.1). It is seen 

that the transient responses of the uncontrolled system experience overshoot. The 

settling time from one steady state condition before mass loss to another after mass 

loss is about 0.6 s. For the controlled system, however, no overshoot occurs and the 

settling time is below 0.1 s. Since the vibration amplitudes of the uncontrolled system 

are not very large, the effectiveness of the controller does not appear to be significant, 

especially at the two end positions of the rotor. However, the overall vibration level 

was brought down from 0.15 mm to 0.05 mm by the controller after the mass loss.

7.4.2 Mass Loss At Third Critical Speed

The attached mass of 42 g was removed at the speed 270 rad/s and the transient 

response results are shown in figure 7.18 for the uncontrolled and controlled systems. 

The uncontrolled rotor experiences larger vibration levels before and after the mass 

loss when compared with the 262 rad/s case. The maximum amplitude of the 

uncontrolled system was 0.08 mm before the mass loss and 0.2 mm after mass loss. 

For the controlled system, however, these amplitudes are below 0.06 mm. 

Furthermore, the controller suppresses the large overshoot experienced by the
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uncontrolled system. The controller can respond to the sudden unbalance change with 

a settling time of around 0.1 s.

7.4.3 Mass Loss Between Third And Fourth Critical Speeds

The mass loss tests were conducted at the speed 278, 283, and 288 rad/s respectively 

and the unbalance mass was 42 g. The transient response results are shown in figures 

7.19, 7.20, and 7.21 for the uncontrolled and controlled systems respectively. The 

maximum amplitude of the uncontrolled system was 0.23 mm for the 278 rad/s case, 

0.27 mm for the 283 rad/s case, and 0.4 mm for the 288 rad/s case. For the controlled 

system, however, these amplitudes are below 0.08 mm, 0.075 mm, and 0.1 mm 

respectively. Furthermore, the controller suppresses the overshoot experienced by the 

uncontrolled system. The controller can respond to the sudden unbalance change with 

a settling time below 0.1 s for all three cases.

For safety reasons, an unbalance mass of 16 g was used when mass loss occurred at 

speed 293, 301 rad/s. The transient response results are shown in figures 7.22 and 7.23 

for the uncontrolled and controlled systems respectively. The maximum amplitude of 

the uncontrolled system was 0.2 mm for the 293 rad/s case, and 0.4 mm for the 301 

rad/s case. These amplitudes were reduced to 0.04 mm and 0.05 mm by applying the 

controller.

7.4.4 Mass Loss At Fourth Critical Speed

It is noted that the rotor could not pass through the fourth critical speed with an 

unbalance mass of 16 g. Therefore, an unbalance mass of 7 g was used when mass 

loss occurred at speed 305 rad/s. The transient responses for the uncontrolled and 

controlled systems are shown in figure 7.24. It is indicated that the uncontrolled 

maximum amplitude was 0.1 mm before the mass loss and 0.25 mm after mass loss.
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When the controller was implemented, the maximum amplitude was below 0.02 mm 

both before and after mass loss. The controller can cope with the sudden unbalance 

change with a settling time below 0.1 s.

7.4.5 Mass Loss Above Fourth Critical Speed

The attached mass of 7 g was used when mass loss occurred at speeds 309 and 314 

rad/s. The transient responses for the uncontrolled and controlled system are shown 

in figures 7.25 and 7.26. The uncontrolled maximum amplitude was 0.08 mm before 

the mass loss and 0.2 mm after mass loss for the 309 rad/s case, and 0.05 mm and 

0.16 mm for the 314 rad/s case. When the controller was implemented, the maximum 

amplitudes were below 0.04 mm before and after mass loss. The controller suppressed 

transient vibration in such a way that the transient period was reduced below 0.1 s for 

the controlled system.

7.5 Discussion Of Results

The results demonstrate that the Hw controller is effective in the vibration attenuation 

of rotor-bearing systems. In the tests, no spillover phenomenon was observed when 

the H„ controller was implemented. The controller was designed to ensure a stable 

closed loop system.

The Hm controller was insensitive to the variation of rotational speed. Since the 

variation of speed causes a change of system parameters, the HM controller is robust 

to the system structure change. This conclusion was further demonstrated with the 

implementation of a controller which was designed when model error existed.
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ôogdooo©00 O OO OO * 
<* 9 9 £ °* (*<*<* 9 **

■1   I_______________I---------------------- 1-----------------------1-----------------------1-----------------

178



M
ax

im
um

 
am

pl
itu

de
 

M
ax

im
um

 
am

pl
itu

de

2.5

° " Uncontrolled 

* - Controlled

1.5 Actuator position, horizontal direction

To

0.5

00 oo o
O %

0 Q00n0

n* * * * * * %  0 ♦,
0 o o 0 °  * * ************** J$ * 0 8

50 100 150 200 250

Rotational speed 
rad/s

300 350

2.5

1.5

to

0.5

o - Uncontrolled 

* - Controlled

Actuator position, vertical direction

e o

° 0
o 0 o . Vo * ***̂  ■* «* *

* * P *° ° *° * 0 9 ° « °* 0 O o * *

50 100 150 200 250 300 350

Rotational speed 
rad/s

Fig. 7.15 (continued)

179



M
ax

im
um

 
am

pl
itu

de
 

M
ax

im
um

 
am

pl
itu

de

2.5

2

1.5
B

7O
1

0.5

0
0 50 100 150 200 250 300 350

Rotational speed 
rad/s

2.5

2

1.5
B
7O

1

0.5

0
0 50 100 150 200 250 300 350

Rotational speed 
rad/s

Fig. 7.15 (continued)

180

0 " Uncontrolled 

* - Controlled

Non-driven end, vertical direction

0
°  i * * *  * 0 ^ ** *** o Q)° ° 000

* ° °* * ° 9 *° * * * ? * 8 *

------- 1   1--------------- 1--------------- 1---   1--------------- r

o - Uncontrolled 

* - Controlled

Non-driven end, horizontal direction

*
0 *o

 1------------ 1------------ 1------------ 1------------ 1------------ L

* * * * **
* * * * o o

o ° 0  „O O O O ° CXjOCPQoC) 0
O o O o 0 0 o

o



M
ax

im
um

 
am

pl
itu

de
 

M
ax

im
um

 
am

pl
itu

de
2.5

2

1.5
S

?
o
r*H

1

0.5

0
0 50 100 150 200 250 300 350

Rotational speed 
rad/s

2.5

2

1.5

6
To
^  1

0.5 

0
0 50 100 150 200 250 300 350

Rotational speed 
rad/s

Fig. 7.16 Comparison of uncontrolled and two speed H„  
controlled measured non-synchronous responses 
with 377 rad/s disturbance force in vertical 
direction

 1 1 1------

o - Uncontrolled 

* - Controlled

Driven end, vertical direction

------ 1—------------- 1--------------- 1--------------- 1--------------- 1 T

o - Uncontrolled 

* - Controlled

Driven end, horizontal direction

8° ^
0 o q 0 0  

•  o » <o ^  « •  * o* f  9  &  ° *  ° *  *°> v * * * * * * * * ® 0*0* * * *  *

_i------------ i------------ 1------------ 1------------ 1------------ 1---------

181



M
ax

im
um

 
am

pl
itu

de
 

M
ax

im
um

 
am

pl
itu

de

2.5

o - Uncontrolled 

* - Controlled

1.5 Actuator position, horizontal direction

to

0.5

CD 0 0

O O

<p

0  * 6 o * « *0 9 o o o  t> S <* * °* ° * *

50 100 150 200 250

Rotational speed 
rad/s

300 350

2.5

0  - Uncontrolled 

* - Controlled

1.5 Actuator position, vertical direction

To

0.5

o %
<9
o

o o n o o °o ̂
♦****** v

t  » 8  *° ** o  o  * * •  O* o •  o* <* O* <*■ *

50' 100 150 200

Rotational speed 
rad/s

Fig. 7.16 (continued)

182

250 300 350



Ma
xim

um
 

am
pl

itu
de

 
M

ax
im

um
 

am
pl

itu
de

2.5

2

1.5

£
To
r-H

1

0.5

0
0 50 100 150 200 250 300 350

Rotational speed 
rad/s

2.5

2

1.5

a
To

1

0.5

0
0 50 100 150 200 250 300 350

Rotational speed 
rad/s

Fig. 7.16 (continued)

183

o - Uncontrolled 

* - Controlled

Non-driven end, vertical direction

o 0o
*°. 0 * 0 *  * Q)0° OO'

6 o*

o - Uncontrolled 

* - Controlled

Non-driven end, horizontal direction

o o 
o

*0 0 0



Uncontrolled2

0

Horizontal direction 
Driven endJ______ I---------- 1---■2

1.6 1.8 21.41.20.6 0.8 10.40.20
Time

----------------1--------  I -------1----------------1----------------1---------- -—1--------- • 1 1
Controlled

i

Horizontal direction
j Driven end

. ,_i----------------1----------------1----------------1---------------- *---------------- 1---------- .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

Uncontrolled

-AVtO'vMA/Vwvvvvvvyi/vwvm

Vertical direction 
Driven end

Controlled2

VAVvWvVAW'AVv/vWM\WAWA^vWAWAWAW,aaWWWWAaAWAWAVAW0

Vertical direction 
Driven end■2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

Fig. 7.17 Measured transient responses o f uncontrolled and
//„  controlled system due to sudden mass loss at 
speed 262 rad/s



Am
pl

itu
de

 ̂
Am

pl
itu

de
^

s
7 0o

-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

s

2

E
7 0o

-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

s

2

E
T 0 
o

-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

s

2

E
r o 
o

-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

s

Fig. 7.17 (continued)

185

t  i--------------1-------------- 1-------------- 1--------------r
Controlled

Vertical direction 
Magnetic actuator

T--------------------------1-------------------------- 1-------------------------- 1-------------------------- 1-------------------------- 1----------—

Uncontrolled

Vertical direction 
Magnetic actuator

Controlled

Horizontal direction 
Magnetic actuator

i---------- 1---------- 1-----------1---------- 1--- —-----1- --------- 1-----------1---------- r
Uncontrolled

Horizontal direction 
Magnetic actuator



-2 Horizontal direction 
Non-driven end

* ■ i i i i < i i
2  - Controlled

o MAMM/vwaamm/wwvwamm/^^

- 2 -
Horizontal direction 
Non-driven end

■1 I_____________ I______________I_____________ I_____________ I_____________ I______________I_____________ L.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

2 -
Uncontrolled

- 2 -
Vertical direction 
Non-driven end

-J---------------------L-

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

-2

Controlled

VVWWVWw w v w w w w w w w w w \a w v w w w w w w w w w v w w w w w w w v w w w w v \a

Vertical direction 
Non-driven end

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

Fig. 7.17 (continued)



Am
pl

itu
de

 
Am

pl
itu

de

b
t  o|m/W\MA/\/VV\/\avww\/wwwwwwwwwwwvwwvwwvvv^ ^

2  L Horizontal direction
l” Driven end------1-------- 1-------- 1---------1-------- 1-------- 1-------- 1-------- 1_____ L.
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

- 1" 1 i i t ........—  r --------- t ------------ 1----------
Controlled

1 1

Horizontal direction 
Driven end---- 1---------------- 1----------------1----------------1----------------1----------------1---------- ----- 1------

B
T 0

-2
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time

Uncontrolled2

0

Vertical direction 
Driven end■2

21.6 1.80.8 1.2 1.40.2 0.4 0.6 10

?o

2

B
T 0 o

-2

Time

i ---------- 1---------- r
Controlled

Vertical direction 
Driven end

-J_____________ I_____________ I l—

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

Fig. 7.18 Measured transient responses of uncontrolled and
H„ controlled system due to sudden mass loss at
speed 270 rad/s

187



Am
pl

itu
de

 
Am

pl
itu

de
 

Am
pl

itu
de

 
Am

pl
itu

de 6

-2
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time
s

2

6
T 0 
o
r-H

-2
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time
s

g

Controlled

Horizontal direction 
Magnetic actuator

T---------- 1------
Uncontrolled

Horizontal direction
Magnetic actuator

1
Time

s

Uncontrolled

Vertical direction 
Magnetic actuator

2

-2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

s

Fig. 7.18 (continued)

188

Controlled

Vertical direction 
Magnetic actuator



(panupuoo)

9W1JT
3 S' I 91 VI Z'l I 8 0 9 0 fr*0 3 0 0

PU3 U3AUp-U0{sI
uoipsiip j^DiysA

k/VV\MAAAAAAAA/V\AAAAAAA/VV\AAAAA/\AAAAAAAAAAAA/VWMA/VWWVVV\AAA/VVVWVV\AMAAAAArVWVVW

s

z-

dUfJI
8'I 91 VI Z'l I 8*0 90 fr’O Z'O 0

pus USAUp-UOfsI 
uoipsiip f^opjSA

pSpOXJUOSUQ-I----------1----------1----------1--------- 1----------1______ I______ L_

z-

a m i
Z 8'1 9'I VI Z'l I 80 90 frO 30 0

pus USAUp-UOfsJ 
UOXPSJIp tBJUOZUOH

s

3-

9WJX
81 91 VI Z'l I 80 90 frO 30 0

pus USAUp-UON 
uoipsjip {uiuozuoh

pSpOJJUOOUQ
_l_____________ I_____________ I______________I-------------------- L.

3-



Am
pl

itu
de

 
Am

pl
itu

de
 

Am
pl

itu
de

 
Am

pl
itu

de
 

10
"4 

m 
IQ

-4 
m 

K)
-4 

m 
10

"4 
m

-2

-»---------- 1-----------r
Uncontrolled

Horizontal direction 
Driven end

0 0.2 0.4 0.6 0. 1
Time

1.2 1.4 1.6 1.8 2

Controlled2

0

Horizontal direction 
Driven end■2

0 0.2 0.4 0.6 0.8 1.21 1.4 1.6 1.8 2
Time

-2
-I---------------------L.

Uncontrolled

Vertical direction 
Driven end

0 0.2 0.4 0.6 0.1 1
Time

1.2 1.4 1.6 1.8 2

Controlled2

0

Vertical direction 
Driven end•2

0.8 1.8 20 0.2 0.4 0.6 1 1.2 1.4 1.6
Time

Fig. 7.19 Measured transient responses o f uncontrolled and
H„ controlled system due to sudden mass loss at 
speed 278 rad/s

190



Am
pl

itu
de

 
Am

pl
itu

de
 

10
-4 

m 
lC

r4 
m 

1C
T4 

m 
10

-4 
m

0

-2
0  0 .2  0 .4  0 .6  0 .8  1 1 .2  1 .4  1 .6  1 .8  2

Time
s

2

0

-2
0  0 .2  0 .4  0 .6  0 .8  1 1 .2  1 .4  1 .6  1 .8  2

Time
s

2

0

-2
0  0 .2  0 .4  0 .6  0 .8  1 1 .2  1 .4  1 .6  1 .8  2

Time
s

2

0

-2
0  0 .2  0 .4  0 .6  0 .8  1 1 .2  1 .4  1 .6  1 .8  2

Time
s

Fig. 7.19 (continued)

191

i------------- 1--------------1--------------1--------------1--------------r
Controlled

Vertical direction 
Magnetic actuator

t------------- 1 i--------------1--------------1------------- 1--------------1-------------- i--------------r
Uncontrolled

Vertical direction 
Magnetic actuator

T--------- 1--
Controlled

Horizontal direction 
Magnetic actuator

Uncontrolled

Horizontal direct on 
Magnetic actuator



Am
pl

itu
de

 
Am

pl
itu

de
 

Am
pl

itu
de

 
Am

pl
itu

de
2 -

"i-----------r
Uncontrolled

B 
7 0

-2- Horizontal direction 
Non-driven end

-I_____________ I , J______________I_____________ I .. I

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time

2- Controlled

-2- Horizontal direction 
Non-driven end

-I_____________ I______________I______________I_____________ I______________L.

2 -

B
Y 0 o

-2 -

0.2 0.4 0.6 0.8 1 1.2 1.4
Time

1.6 1.8 2

-I--------------1-

Uncontrolled

Vertical direction 
Non-driven end

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1
Time

8 2

Controlled2

0

Vertical direction 
Non-driven end■2

21.80 0.2 0.4 0.6 0.8 1.2 1.4 1.61

B
io

Time

Fig. 7.19 (continued)

192



-2

-i---------- 1----------- 1-----------rUncontrolled

fV\MA/\A/VVWWWW\/WWŴ
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CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS

Theoretical and experimental research on the active vibration control of a flexible 

rotor-bearing system using H„ control strategies has been carried out. The control 

strategies were implemented in a rotor-bearing system using a magnetic actuator. Real 

time digital control was realized using transputer hardware. Both steady state and 

transient vibration reduction were considered and the control design was also carried 

out to achieve controller robustness and avoidance of spillover problems.

The Hx controller design procedure for rotor-bearing systems involved analysis of the 

open-loop system, model reduction, the control actuator, measurement noise, 

guidelines of choosing weighting functions, the formulation of the H„ problem, and 

derivation of the controller. The dynamic analysis of the open-loop system produced 

an overall view on how the system responses are distributed in the frequency domain. 

This information was used to determine the retained modes in the model reduction and 

the choice of a weighting function matrix. The results from the analysis of the actuator 

and measurement noise were used to determine two other weighting function matrices. 

Guidelines for weighting choices were presented. Computer simulation was used to 

predict the dynamic response of the system. The main characteristics and dynamic 

responses of both open loop and closed loop real system were then obtained. Errors 

were incurred since the unbalance mass distribution was unknown and the dynamic 

model of the journal bearings used was based on isoviscous theory.

Significant steady state synchronous vibration reduction was achieved by 

implementing the H„ controller on the experimental system with unknown unbalance 

forcing. In order to provide a performance case to compare with, the responses from
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the open loop adaptive controlled system were measured. These responses were 

optimised in a least-squares sense. Similar performance for vibration reduction was 

achieved using control.

Vibration reduction was also obtained in the non-synchronous response case, in which 

the rotor was excited by both the unbalance forcing and disturbance forces from a 

second magnetic actuator. The rotor vibration levels were brought down significantly 

using the H„ controller whenever the disturbance frequency was above, near, or below 

the system critical speeds. Exact forms of disturbance forcing were not required in the 

control design. This was the reason that the H„ controller could cope with a wide 

range of disturbances.

Transient vibration of the experimental system was excited by sudden loss of mass. 

Transient vibration levels were reduced significantly using the H„ controller together 

with the transition time from one steady state condition to another. Consequently, the 

responses of the controlled system could pass the transient period far more smoothly 

and quickly than those of the uncontrolled system. This demonstrates also that the Hn 

controller is well qualified to control transient vibration of rotor-bearing systems.

The robustness of the controller was also examined. It was found that the H„ 

controller was not sensitive to the variation of the system structure coefficients, which 

may be caused by the rotational speed variation and/or inaccurate modelling. 

Furthermore, inaccurate modelling of the rotor and bearings could be compensated by 

the controller. It was also found that the controller was not sensitive to the variation 

of the measurement positions. Of course, the above conclusions may not be valid if
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the changes are large. In the case where a displacement transducer away from the 

actuator failed (zero signal), it was found that the controller still worked well. 

However, this is not true for the transducers at the actuator position, since system 

instability may result.

The dynamic analysis of the H„ controller showed that it had a low pass 

characteristic, which prevented high frequency signals leaving the controller. Hence, 

the neglected high frequency modes were not excited by the control forces. This was 

used to avoid spillover. Although model reduction method was used in the control 

design process, the formulation of H„ problem required that the neglected high 

frequency modes should remain as a disturbance to the system. The minimization of 

the influence from the disturbance to the system output constitutes a basis for the HM 

control design. The results obtained from the experimental tests confirmed this. 

Whenever tests were carried out either in steady state or transient cases, no spillover 

problem was observed.

Other advantages also exist in applying the HM controller. In some applications, where 

a direct output feedback control is used, differential circuitry is required to obtain the 

velocities of the rotor lateral motion. Not only is extra hardware needed, but the 

velocity signals, obtained by differentiating displacement signals, can be contaminated 

easily by high frequency noise. Moreover, spillover may occur. However, these 

weaknesses could be avoided by using the controller. Open loop adaptive control 

is effective in both vibration reduction and spillover avoidance, but is not robust to 

the variation of the system structure and on-line estimation must be carried out at 

different rotational speeds. In contrast, the H„ controller could cope with a large
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rotational speed range.

The effect of shaft surface roughness on the control design was introduced to improve 

the controlled system response. Without considering it, the controller may make the 

responses of the controlled system worse at low rotational speeds where the 

measurement signals are due mainly to the roughness. If the rotor surface is not very 

smooth, it may be incorporated into the controller design.

The work in this thesis has, for the first time, successfully developed HM controllers 

for a flexible rotor-bearing system. Also steady state and transient vibration control 

was demonstrated experimentally. Another feature, not considered in other published 

work, was the inclusion of shaft surface roughness spectra in the controller designs. 

As a result the designed controllers did not suffer from the usual problem associated 

with closed loop instability. Controller tuning was not required. The work has 

therefore highlighted an improved approach to rotor vibration control.

Further investigation exists for the application of the control strategy to a fully 

magnetically suspended rotor system. In the present project, the journal bearings 

provided support for the rotor and suppressed instability. The potential of the H„ 

strategy has not been fully evaluated. Thus, the application of the design to a fully 

magnetically suspended rotor system may give a deeper insight into the effectiveness 

of this method.
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A PPENDIX A FINITE ELEM ENT M ATRICES

Finite element stiffness matrix

= __ —__ ( K ‘ + ®K,*)
l \ l + 4 >) # 1

0 12 sym

0 -61 412

61 0 0 4/2
-12 0 0 -61 12
0 -12 61 0 0 12

0 -61 212 0 0 61 412

61 0 0 212 -61 0 0

0 0 sym

0 0 12

0 0 0 12

0 0 0 0 0

0 0 0 0 0 0

0 0 - I 2 0 0 0

0 0 0 - I 2 0 0
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Finite element translational mass matrix

Mte =
m l

420(1+0)'
.(Mtoe + OM tle + 0 2Mt2e)

M  e =

156 
0 

0 

221 
54 

0 

0 

-13/

156

-221 4 /2 

0 0
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54 -13/

13/ -3 /2

0 0

sym

4 /2

13/ 156
0 0 156

0 0 22/ 4 /2

-3 /2 -22/ 0 0 4 /2

0 294 sym

0 -38.5/ 7 /2

38.5/ 0 0 7 /2
126 0 0 31.5/ 294
0 126 -31.5/ 0 0 294

0 31.5/ -7 /2 0 0 38.5/ 7 /2

-31.5/ 0 0 -7 /2 -38.5/ 0 0

M  e =

140
0 140

0 -17.5/ 3.5/2

17.5/ 0 0 3.5/2
70 0 0 17.5/ 140
0 70 -17.5/ 0 0 140

0 17.5/ -3.5/2 0 0 17.5/

-17.5/ 0 0 -3.5/2 -17.5/ 0

sym

0

7 /2

3.5/2
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Finite element rotational mass matrix

in
M *  = ----- £------ (Af#e + OMrle + 0 2Mr2e)

480/(1 +0)2

AT e =r0

36
0 36 sym

0 -3/ 4 /2

3/ 0 0 4 /2
-36 0 0 -31 36
0 -36 3/ 0 0 36

0 -3/ - / 2 0 0 3/ 4 /2

3/ 0 0 - / 2 -31 0 0

r l

0
0 0 sym

0 15/ 5 Z2

-15/ 0 0 5 /2
0 0 0 15/ 0
0 0 -15/ 0 0 0

0 15/ -5 /2 0 0 -15/ 5/2

-15/ 0 0 -5 /2 15/ 0 0

M  e =r2

0
0 0 sym

0 0 10Z2

0 0 0 10/2
0 0 0 0 0
0 0 0 0 0 0

0 0 5 /2 0 0 0 10/2

0 0 0 5/2 0 0 0 10/
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Finite element gyroscopic matrix

G e =
m d 1

p r(G0e + O G ^ + 0 2G2e)
240/(1+0)'

<v =

0
36 0 skew
-3/ 0 0

0 -31 4 /2 0
0 36 -31 0 0

-36 0 0 -31 36 0

-3/ 0 0 12 31 0

0 -31 - I2 0 0 3/

o

412 0

0
0 0 skew sym

15/ 0 0

0 15/ 5/2 0
0 0 15/ 0 0
0 0 0 15/ 0 0

15/ 0 0 5 /2 -15/ 0 0

0 15/ -5 /2 0 0 -15/ 5I2

0
0 0
0 0 0

0 0 10/2 0
0 0 0 0
0 0 0 0

0 0 0 -51

0 0 5/2 0

skew sym

0
0 0

0 0 0

0 0 10/2 0
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APPENDIX B JOURNAL BEARING STIFFNESS AND DAM PING

COEFFICIENTS

The oil film force expressions obtained by Holmes [33] are as follows:

where

F = - c t  -  k r  + c s  -  k s  -  Fr rr rr rs rs ro

F = c r + k r - c s - k s + FS ST ST SS SS SO

F
k_ =

8(1 +eo2)

(1 — ®02) [ tc2( 1 _ e <,2) + 16®02'
1/2

K ( 1 - 8 / )2\l/2

r ni/2
tu2( 1 - bo2) + 1 6 bo2]

F
k = - I

tt(1+ 2 b 2)
1/2

B (1 -  B 2)1/2 7U ( l  ~ B ) +1 6 Bn  '  n  '  '  n  '  t

k = F- i
7C2( 1 - b 2) + 1 6 b'  A ' t

1/2

C -  C -rs sr

2k
SS

“ q Css =
rs

I T
2k

c = — 1
a

Qb 2\iL 3R One \iL3R
F = 0 r  F =

2 \ 2c (1 -e„ ) 4c (1 -e„ )2 \3/2

The corresponding dynamic force expression in the fixed x-y coordinate system is of 

the form
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Fx = - V  - c„ y  ~ krxx  ~ K yy  + F ,

F -  -c x -  c y -  k y -  k y + Fy yx yyJ yyJ y®

where the stiffness and damping coefficients in the fixed x-y coordinate system can 

be obtained by the following transformation

(c» +c„)

( Cn~CJ

( Cr,~CJ
~(c +c )v rs s ry

( K - k J

( k ~ k j

xy

yx

yy

xy

yx

yy.

-c crs sr

- Csr Crs

Css Crr

K K s

K K

~ K ~ K

K K

1
o

1
o

<

cos2(|)o

sin2<t>0

cos()>osin(])o

cos(|)0 —sin<(>0 

sinc^ cos<j>0

-F

If the static load is known, the static eccentricity and angular position can be derived 

by solving the following algebraic equation

F = J F  2+Fo V ro s

tan<|>0 = J f y
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APPENDIX C W EIGHTING FUNCTION M ATRICES

C.l Weighting Function Matrix W„

0.00675 + 1

W(s)  =
0.00015 + 1

0

0

0.00675 + 1 
0.00015 + 1

C.2 Weighting Function Matrices At 309 rad/s Controller Design 

Wz band pass:

w ,0) =
0.748.S2 + 1.5x100+5.99X104 

i 2+6xl02i+8xl04

J 16x16

Wz low pass:

W(s)  =
2x 10_55 +  1 

2x 10‘ 55 + 4x 10"2

J 16x16

Wz constant:

W(s) = 25.0

16x16

Wy(s) =
9.923xl0“45 + 1 

9.923x10^5 +0.1

J6x6
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C.3 Weighting Function Matrices At 100, 150, 200, 250 rad/s Controller Design 

£2 = 100 rad/s:

r  -I

Wy(s) =
S ^ x l O ^  + l 

S ^ x lO ^ + O ^
Wz(s) = 50.0

6x6

£2 = 150 rad/s:

Wy(s)
8.84xl0-4̂ + 1 

8.84x10”4j +0.333
W(s)  = 40.0

16x16
6x6

£2 = 200 rad/s:

Wy(s) =
9.38x10^ + 1 

9.38x10^5+0.25
W(s)  = 35.0

16x16
6x6

£2 = 250 rad/s:

Wy(s) =

r

9.62x10^,5 + 1
W(s) = 30.0

9 . 6 2 X W 4 s + 0 . 2

6x6
L. -1 16x16
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C.4 Weighting Function Matrices At Transient Controller Design

Wy(s) =

-  _

10'3i  + l Wt(s) = 62.0
10'3i  +4xl0'2

6x6
L J 16x16

C.5 Transfer Function Matrix W,fin

Transfer function matrix W^  consists of three parts, i.e. high pass part

T s
1 +T s

low pass part

l+10’2r b5

i

and the part due to measurement time delay which can equivalently be modelled as

l - - l s
2

1 + — - S  
2

where Ta=94 ms, Tb=0.398 ms, and Ts=1.344 ms. The resulting Wfm is of the form

-5.03xl0'10i 3 -6.28xl0‘5i 2+9.4xl0‘2i  
2.51xl0"®s3 + 1.01xl0"4s 2+9.51xl0"2i  + l

J6x6
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