

University of Bath

PHD

Iterative solutions of large sparse matrices arising from groundwater flow problems

Hagger, Mark Julian

Award date:
1995

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 22. May. 2019

Iterative solutions of large sparse
m atrices arising from

groundwater flow problem s
subm itted by

Mark Julian Hagger
for the degree of Ph.D

of the

University of Bath
1995

Attention is drawn to the fact tha t copyright of this thesis rests with its author. This

copy of the thesis has been supplied on the condition tha t anyone who consults it is

understood to recognise th a t its copyright rests with its author and th a t no quotation

from the thesis and no information derived from it may be published without the prior

written consent of the author.

This thesis may not be consulted, photocopied or lent to other libraries without the

permission of the author for ten years from the date of acceptance of the thesis.

Signature of A u th o r ...

Mark Julian Hagger

UMI Number: U601860

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation Publishing

UMI U601860
Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

1‘r t iV f J , .) Y O f LATH
UiiHAPY

Hi -A JIJL 1095
PH-D

i g S 3

Sum m ary

In this thesis we consider iterative solutions of the large sparse symmetric positive

definite linear systems arising from finite element discretisations of a groundwater flow

model. Realistic rock formations give rise to models which feature highly discontinuous

coefficients caused by variations in rock type. In addition highly unstructured grids

are used to produce accurate models, typically with large numbers of freedoms. These

features combine to produce very large, and poorly conditioned, linear systems, hence

standard iterative methods can perform very poorly. Two main problems are considered,

one in 2D and one in 3D, each arising from an actual physical problem.

We first investigate the use of conjugate gradients as an iterative solver with simple

diagonal preconditioning. A two grid method is discussed with a number of “matrix-

free” smoothers, including conjugate gradients. Additionally the two grid method is

extended to a three grid method, and we also test the effectiveness of the two grid

method as a preconditioner to conjugate gradients. A possible extension to the two grid

method for non-symmetric problems is briefly considered, using conjugate gradients on

the normal equations as the smoother.

The use of polynomial preconditioners is examined in some detail, we discuss both

the least squares and Chebyshev polynomials. Finally the incomplete factorisation

preconditioner for the conjugate gradient algorithm is examined, and an “off the shelf”

implementation is tested for effectiveness.

2

Dedicated to the memory of my sister, Joanne Francis Oliver.

I’d like to thank loads of people who have given me much help and support in the last

few years. In no particular order:

• My supervisor, Alastair Spence, for many useful comments and suggestions and

for patiently correcting my continual use of “ing” .

• My industrial supervisor, Andrew Cliffe, for his helpful hints on how to make

NAMMU perform in a way th a t I would like. Plus of course his tireless help in

getting me set up each time I arrived at Harwell to find one machine or other had

“changed” . Thanks also go to both the Theoretical Physics division a t Harwell

and the EPSRC for providing funding for me for the last three years.

• My parents and family, for not looking too bemused when I explained (no doubt

very badly) what I have been doing in the last few years. Thanks for all their

support and encouragement.

• My office mates of 1W3.5: Rob Slade for introducing me to C and accompanying

me for many coffee breaks. Simon Juden for numerous things, including convincing

me to try cricket. Rob Collins, for introducing me to Murphys. Jon Ashman for

his amusing stories. Thanks to the others on the BBB development team for many

hours of enjoyment.

• Thanks to all those who have shared a house with me over the last few years,

Claire and Philippa in particular, one way or another you’ve all kept me sane.

• The support staff for their many comments and help over the last few years.

• Anyone else tha t I’ve missed.

“A mathematician is a device for turning coffee into theorems” - P. Erdos

4

Contents

1 Introduction 16

1.1 The aim of the w o r k .. 16

1.2 NAMMU - A groundwater flow p a c k a g e .. 18

1.2.1 The NAMMU c o d e .. 19

1.2.2 A groundwater flow m odel.. 20

1.2.3 A finite element m o d e l... 21

1.3 Discretisations of example problems ... 25

1.3.1 Grids and rock ty p e s .. 26

1.3.2 Finite e le m e n ts ... 29

1.4 A direct solution technique .. 30

1.4.1 The Frontal m e th o d .. 31

1.4.2 Work and storage co n s id era tio n s ... 32

1.4.3 Harwell frontal c o d e .. 34

1.5 Storage of the stiffness m a tr ix .. 34

5

CO NTENTS

1.5.1 A storage e x a m p le ... 35

1.5.2 Preferred storage m e t h o d ... 39

1.6 A first iterative m e th o d .. 39

1.6.1 General theory of iterative methods .. 40

1.6.2 Conjugate Gradients (CG) .. 41

1.6.3 Convergence of conjugate g rad ien ts ... 43

1.6.4 Lanczos connection to CG a lg o rith m .. 45

1.6.5 P reconditioners... 46

1.6.6 Poor performance of CG on a realistic p ro b le m 49

1.7 Overview of thesis and re s u lts ... 51

2 Tw o Grid M ethod 54

2.1 In troduction .. 54

2.1.1 Notation and coarsening s tra te g y .. 56

2.2 Two Grid Method.......... .. 57

2.2.1 P ro lo n g a tio n ... 59

2.2.2 Restriction .. 60

2.3 Different smoothers on a model p ro b le m ... 61

2.3.1 Theoretical Modal A n a ly s is .. 63

2.3.2 Richardson iteration - Analysis for a model p ro b le m 65

6

CONTENTS

2.3.3 Gradient m e th o d .. 68

2.3.4 Conjugate Gradients and Conjugate Residuals 68

2.3.5 Computational Modal A n a ly s is .. 71

2.4 Preconditioned Conjugate G ra d ie n ts ... 75

2.4.1 Convergence ana ly sis .. 77

2.4.2 General convergence.. 79

2.5 A three grid m e th o d ... 80

2.6 Numerical Results .. 80

2.6.1 Results for 2D example... 81

2.6.2 A three grid m e th o d .. 90

2.7 A non-symmetric e x te n s io n .. 92

2.7.1 Results ... 93

2.8 C onclusions.. 94

3 Two grid m ethod on a 3D problem 96

3.1 In troduction .. 96

3.2 Results on a 3D prob lem ... 97

3.2.1 TGM on the 3D e x a m p le .. 98

3.2.2 Different level of coarsen ing ... 99

3.2.3 3GM re su lts .. 100

7

CONTENTS

3.3 Prolongation ca lcu la tio n ... 101

3.4 C onclusions.. 103

4 Polynom ial Precondition ing 104

4.1 In troduction .. 104

4.2 Choosing the polynom ial... 106

4.2.1 Least Squares Polynomials .. 107

4.2.2 Chebyshev P o ly n o m ia ls .. 117

4.2.3 Im plem entation... 120

4.3 Numerical re s u lts .. 122

4.4 C onclusions.. 126

5 ILU P recondition ing 127

5.1 In troduction .. 127

5.2 Incomplete L U ... 129

5.2.1 The basic approach.. 129

5.2.2 Modified I L U .. 132

5.2.3 Stability of ILU : M-matrices and Non M -m a tric e s 134

5.3 M atrix storage considera tions... 138

5.3.1 An example of storage re q u ire m e n ts ... 140

5.4 Numerical Experiments ... 142

CO NTENTS

5.5 Element-by-element preconditioning ... 147

5.6 C onclusions.. 148

6 Future W ork 150

9

List of Figures

1-1 Sample grid for realistic 2D problems.. 26

1-2 Permeability regions corresponding to the 2D grid in figure 1-1, actual

values are given in table 1.1.. 26

1-3 3D grid cross section.. 27

1-4 3D grid cross section .. 28

1-5 3D grid cross section .. 28

1-6 Partially eliminated banded matrix, showing the frontal matrix, Bk, and

the k X k eliminated region.. 32

1-7 Node points o f the 2D 9 node quadrilateral.. 36

1-8 Node points o f the 3D 21 nodes cuboid.. 38

1-9 Simple grid for a model 2D problem... 50

1-10 Convergence o f diagonally preconditioned CG, on a model 2D problem

with a regular mesh, for 2 sizes of FEM discretisations o f (1.2.3)... 50

1-11 Convergence o f diagonally preconditioned CG, on a 2D realistic problem,

for 3 sizes o f FEM discretisations of (1.2.3)... 51

1 0

LIST OF FIGURES

(2.3.1). Note that 1 < k < 212 corresponds to a fine grid with N j = 1056. 72

in figure 2-1 (so that the horizontal axis actually runs from k = 1, ..,212). 73

2-1 Plot of maximum components, a*k (see (2.3.28)), in the error expansion

(2.3.1). Note that 1 < k < 212 corresponds to a fine grid with N j = 1056. 72

2-2 Computational Modal Analysis with Richardson Smoothing, with axes as

in figure 2-1 (so that the horizontal axis actually runs from k = 1, ..,212). 73

2-3 Computational Modal Analysis with Gradient Smoothing, with axes as in

figure 2-1 (so that the horizontal axis actually runs from k = 1,..,212). . 73

2-4 Computational Modal Analysis with Conjugate Gradient Smoothing., with

axes as in figure 2-1 (so that the horizontal axis actually runs from k =

1....212 ; .. 74

2-5 Computational Modal Analysis with Conjugate Residual Smoothing, with

axes as in figure 2-1 (so that the horizontal axis actually runs from k =

1....212) .. 74

2-6 Problem 2.1 (2D): Richardson as smoother.. 84

2-7 Problem 2.1 (2D): Gradient method as smoother.. 84

2-8 Problem 2.1 (2D): Conjugate gradient method as smoother.......................... 85

2-9 Problem 2.1 (2D): Conjugate residual method as smoother.......................... 85

2-10 Problem 2.1 (2D): “Best” results from each smoother.................................... 86

2-11 Problem 2.2(2D): Conjugate Gradients as Smoother...................................... 87

2-12 Comparison o f CG smoothing (p = AD) on Problem 2.1 (2D) and CG

smoothing on Problem 2.1 (2D) with k constant on entire domain. Unless

otherwise stated diagonal preconditioning is used for the smoothing steps. 88

2-13 Problem 2.1 (2D): Comparison of TGM preconditioning and CG smoothing. 89

2-14 Problem 2.2(2D): Comparison of TGM preconditioning and CG smoothing. 89

11

LIST OF FIGURES

2-15 Problem 2.1 (2D): Comparison of TG M preconditioned CG and Richard

son smoothing.. 90

2-16 Problem 2.3(2D): 3GM, with conjugate gradient smoother........................... 91

2-17 Problem 2.3(2D): Comparison o f TG M and 3GM, with conjugate gradient

smoother.. 91

2-18 Simple nonsymmetric model problem with TGM (with a CGN smoother),

Bi-CG and CGN .. 94

3-1 Problem 3.1: TGM results for CG smoothing on a 3D problem.................. 98

3-2 Problem 3.1: TGM results for CG smoothing on a 3D problem.................. 99

3-3 Problem 3.1: TGM results for CG smoothing, with p = 160, on a 3D

problem, with different levels o f refinement on the coarse grid.................... 100

3-4 Problem 3.2: 3GM results with CG smoothing, with a varying number of

smoother steps.. 101

3-5 Comparison of. best results from TGM and 3 G M 102

3-6 Comparison o f 3GM with different levels o f coarsening for the middle and

coarse grids. 160 smoother steps are used in each case................................ 102

4-1 Residual polynomials, R m+i(A) = 1 — Pm(A)A with a = j3 = —0.5 112

4-2 Residual polynomials, P m+1(A) = 1 — Pm(A)A with a = (3 = —0.5 113

4-3 Residual polynomials, R m+i(A) = 1 — Pm(A)A with m = 4 and varying a, (3113

4-4 Chebyshev Residual polynomials, P m+i(A) = 1 — Pm(A)A, on the region

[1,10].. 119

1 2

LIST OF FIGURES

4-5 Chebyshev Residual polynomials, R m+i(A) = 1 — Pm(A)A, on the region

[0.1,10].. 119

4-6 Error vs. CPU time for CG and PCG on a simple mesh problem 123

4-7 Error vs. CPU time for CG and TGM of chapter 2....................................... 124

4-8 Error vs. CPU time for CG and P C G .. 124

4-9 Error vs. CPU time for CG and P C G .. 125

4-10 Error vs. CPU time for CG and P C G .. 125

5-1 The envelope o f a symmetric matrix.. 130

5-2 Sparsity pattern o f a finite element stiffness matrix for Laplace’s equation

in 2D, with 1056 degrees of freedom ... 131

5-3 Sparsity pattern o f storage for full LU decomposition o f the matrix in

figure 5-2... 131

5-4 Diagonally preconditioned conjugate gradients, using element matrix stor

age.. 143

5-5 Comparison o f timings for diagonal preconditioned CG, with element and

sparse storage schemes, using 1000 iterations... 144

5-6 Comparison o f diagonal preconditioned CG and incomplete LU precondi

tioned CG.. 144

5-7 Comparison o f timings for element stored diagonal preconditioned CG

and incomplete LU preconditioned CG .. 145

5-8 Comparison o f timings for element stored diagonal preconditioned CG

and incomplete L U preconditioned CG, including setup times for the IL U

version... 146

13

LIST OF FIGURES

5-9 Comparison o f timings for two grid method and incomplete L U precondi

tioned CG, including setup times for the IL U version.......................................146

14

List of Tables

1.1 Permeability coefficients corresponding to the rock regions in figure 1-2 . 27

1.2 Work and storage counts for the frontal method on finite element discreti

sations. Here n is the number of elements in each spatial direction. . . . 33

4.1 Table of relative condition numbers and relative work co u n ts 115

5.1 Table showing storage requirements for the stiffness matrices for element

and sparse matrix storage schemes. Note that this problem features 3684

elements each requiring a 9 x 9 matrix o f reals and 9 integers for the

element scheme. The sparse scheme only stores the lower triangle of this

symmetric matrix, which has 122992 non-zero entries.................................. 141

5.2 Table o f total storage requirements for the two grid method and incomplete

factorisation method, neglecting CG vector requirements. The two grid

method only requires storage o f the stiffness matrix (as elements) whilst

the IL U method requires storage of the stiffness matrix and the incomplete

factorisation (both in sparse form at).. 142

LIST OF TABLES 15

Chapter 1

Introduction

1.1 The aim of the work

Finite elements are used in a great many applications to discretise partial differential

equations (pdes). The work involved in setting up the problem in a finite element setting

varies considerably, depending on

• the form of the pde

• the accuracy of the solution required

• the type of basis element used

• the nature of the grid over the domain

• the smoothness of the (unknown) solution.

Irrespective of these points, it will generally become necessary, at some core level, to

solve linear systems of the form

Ax = b. (1.1.1)

Here, A E R NxN is an N x N matrix, and x, b € MN.

16

C h a p t e r 1 In t r o d u c t i o n

Modern demands involve solving ever more challenging problems. These often feature

more complicated pdes or systems of pdes and require a greater refinement of grid,

perhaps to give more accurate solutions, or model larger domains. The net result is

th a t the size of the linear system, N, is made increasingly larger.

Traditional numerical techniques for solving (1.1.1) involve performing Gaussian elim

ination, albeit in a sophisticated form. These methods can be generally made very

robust, as long as the system is not too badly conditioned, and give an exact solu

tion. The major disadvantage of these approaches is in the scaling of the work as the

problem becomes larger. In particular for 3D problems, even modest discretisations pro

duce large systems, into the millions and beyond, so tha t direct solution techniques are

completely unfeasible, since they would require huge amounts of storage and computer

processing time. W ith the relatively recent advent of vector processing, distributed pro

cessing, massively parallel computer architectures and many other computing hardware

advances a further difficulty with direct methods is coming to light. It is generally very

difficult to write direct solution software that takes full, or even a reasonable, advantage

of these computer hardware technologies.

As a result of these points, attention, over the last decades, has increasingly focussed

on iterative methods, in order to find a good approximation to the solution of (1.1.1).

Typically we start with a guess to the solution, update it in some fashion and continue

until we decide th a t we have a “good enough” solution. The great advantage of the

majority of iterative methods is tha t the computational work involved scales at a much

slower rate than th a t for direct solvers. A second, and very im portant advantage, is that

iterative processes generally can be adapted to utilise well the features of more modern

computer architectures.

In the majority of the academic world iterative processes for solving large linear systems

are the de facto standard, it is very rare to find modern research codes using direct

solving techniques for large systems of the form (1.1.1). In the industrial world there

often exists a very different story. The typical industrial code is sold to a number of

users and it is necessary to be able to guarantee tha t it will work in most cases. It is here

tha t the main drawback of the iterative process lies. Research codes typically mention

words like “effective preconditioning” or “poor convergence rates” . These terms are very

1.1. THE AIM OF THE WORK 17

C h a p t e r 1 In t r o d u c t i o n

worrying from the point of view of the industrialist, who requires a product th a t works

all the time with little, or no, fine tuning effort from users of the package. Nonetheless,

the cost savings of using iterative techniques make them a very attractive approach.

Clearly the answer is to produce an iterative method th a t is guaranteed to work well

for any problem. Unfortunately this has yet to be achieved, indeed different methods

are known to work well on certain classes of problems, but fail on others.

This project is motivated by the need for such an implementation for solving large lin

ear systems arising from discretisations of groundwater flow problems (see §1.2.2) in

the Harwell AEA Technology finite element code called NAMMU. The basic aim is to

investigate a number of iterative schemes, to determine which approach gives the best

performance. The iterative scheme will be required to significantly outperform the di

rect method before it can be considered as a replacement technique. This is more likely

to happen for the much larger three dimensional problems. For the two dimensional

case merely producing a method that requires the same amount of computational time

as the direct method will be a fair indication of success. The hope is to produce an

iterative solver tha t could replace the direct solver as a solution technique for a gen

eral linear system. Essentially we are then looking for a “black box” approach th a t

could be applied to any problem. It is therefore not feasible to make any assumptions

about the underlying problem, eliminating, for example, any possibility of using some

form of a domain decomposition technique (see [44, §11] for a introduction to domain

decomposition methods).

Chapters 2 and 3 are concerned with an iterative method tha t meets these criteria

more than adequately, for a certain problem. The iterative method discussed there

outperforms the direct method in both two and three dimensions.

1.2 N A M M U - A groundwater flow package

NAMMU is an acronym for Numerical Assessment Method for Migration Underground.

It was developed over a number of years by the Theoretical Physics Division at Harwell

AEA Technology. Specific details on the NAMMU package are available in [48].

1.2. NAMMU - A GROUNDWATER FLOW PACKAGE 18

C h a p t e r 1 In t r o d u c t i o n

Principally NAMMU models (a) groundwater flow in a saturated medium, (b) coupled

groundwater flow and heat transport, (c) radionuclide transport, (d) groundwater flow in

the undersaturated zone, (e) radionuclide transport in the undersaturated zone, (f) cou

pled groundwater flow and heat transport in the undersaturated zone, and (g) coupled

flow and solute transport with the fluid density strongly dependent upon concentration.

The basic conceptual models underlying all these processes are flow and transport in a

porous medium, which is primarily governed by Darcy’s law, an empirical law which re

lates fluid pressure to fluid velocity, see (1.2.2). This project is concerned with solutions

of the first of these, namely groundwater flow in a saturated medium.

The NAMMU package uses the finite element method to discretise for all the processes

mentioned above. There are a number of reasons for this choice, see Johnson[56, p i 1]

and also comments in [48]. In particular, compared to finite differences, the finite

element methods allow easier modelling of complicated geometry, such as the complex

geological structures seen in real applications. In addition general boundary conditions

can be handled relatively easily. These are clearly im portant aspects when dealing with

a package designed to handle a number of different pdes and user specified geometries.

Input to the NAMMU package is given by a sequence of simple commands, specifying

the geometry and grid to use, the problem to be solved and the types of output tha t

are desired.

1.2.1 The N A M M U code

It is im portant to realise tha t NAMMU is a very large package, incorporating many

hundreds of subroutines with well over a million lines of fortran code. Built up over a

large number of years, no one person is exactly sure what every bit of the code does.

In the past, in order to minimise the size of the source code, most of the comment lines

have been removed! Documentation is also not available at this time, although work

on this is in progress. Many restrictions exist on data types, storage and the overall

structure of any additional code. As in any large package a number of undocumented

“features” still exist, these can cause unwanted side affects to certain test problems and

test code.

The NAMMU code 19

C h a p t e r 1 In t r o d u c t i o n

In total these features mean tha t even the most trivial modification of the original code

can be very challenging. This is particularly so when attem pting to make the code do

something that it was never intended to do, as was the case in the two and three grid

methods of chapters 2 and 3.

1.2.2 A groundwater flow m odel

Steady state groundwater flow in a saturated porous medium is modelled in terms of

pressure, p, and Darcy velocity q, using the following equations and assuming constant

fluid density,

V .q = 0 (Continuity equation) (1.2.1)

and
k

q = — (Vp) (Darcy's law), (1.2.2)

together with a mixture of Dirichlet and Neumann boundary conditions. The coefficient

k represents the rock permeability, and fi the fluid viscosity, which is assumed constant

over the entire region. The two equations (1.2.1) and (1.2.2) may be combined into a

single second-order differential equation for p,

- V.(fcVp) = 0, (1.2.3)

which is called the pressure equation.

Clearly if k were constant the problem would reduce to the classical Laplace’s equa

tion, for which there is considerable work on solution techniques. However, for realistic

geological situations the permeability k , is position dependent, and can vary consider

ably over the entire region. This is one of the features th a t provides the interest and

difficulties in this thesis. The variation in k will be discussed in more detail in §1.3.

A groundwater flow model 2 0

C h a p t e r 1 In t r o d u c t i o n

1.2.3 A finite elem ent m odel

A standard Galerkin formulation of the finite-element method is used to solve equation

(1.2.3). The NAMMU package allows use of many different types of basis function, but

principally, for the problems we consider, piecewise biquadratic basis functions on 9 node

isoparametric quadrilateral elements (see figure 1-7) are used for the 2D discretisation.

In the 3D case quadratic basis functions on 27 node (see figure 1-8) isoparametric cuboid

elements are used.

We first formulate the problem as: find p such th a t

-V.(JbVp) = 0 on n (1.2.4)

with

p = h on dQ0 (1.2.5)

Vp.n — g on dfii. (1.2.6)

Here dO,Q + dQi = d£l, and n denotes the outward unit normal. Equations (1.2.5) and

(1.2.6) represent the Dirichlet and Neumann boundary conditions respectively.

Now let the space U be the Hilbert space i f 1 (£2), and let V be the subspace of U such

tha t V = {v E H 1 : v = 0 on fi0}- Then a variational formulation of the problem

(1.2.4- 1.2.6) is given by: find p 6 1/ such tha t

{ p - h) e V (1.2.7)

and

a(p>v) = f i v) Vv 6 V, (1.2.8)

where

a (u ,v) = I k'Vu.'S/v (1.2.9)
Jet

f (v) = f kvg. (1.2.10)
*/

A solution p of (1.2.4- 1.2.6) is a solution of (1.2.8 - 1.2.10) since by multiplying (1.2.4)

A finite element model 2 1

C h a p t e r 1 In t r o d u c t i o n

by v £ V, integrating and using Green’s formula[28, pl4] we obtain

I kV p .V v — / vkV p .n = 0.
J 9̂ 1

A solution of the variational formulation (1.2.8 - 1.2.10) is then a weak solution of (1.2.4

- 1.2.6). It is not immediately clear th a t a weak solution p of (1.2.8 - 1.2.10) is also

a classical solution of (1.2.4 - 1.2.6) since this requires p to be sufficiently regular tha t

V.(fcVp) is defined in a classical sense, which in turn requires k to be sufficiently regular.

Existence and uniqueness of a solution of (1.2.8 - 1.2.10) follow from an application of

the Lax-Milgram lemma given by [28, Theorem 1.1.3]

T heorem 1.2.1 (Lax-M ilgram Lem m a) Let V be a Hilbert space, let a(-, •) : V X

V —► M be a continuous V-elliptic bilinear form, in the sense that

3 a > 0, Mv £ V , such tha t a || v ||2< a(v,v).

Further let f :V —> M be a continuous linear form.

Then the abstract variational problem: Find an element u such that

u £ V and Vv £ V , a(u,v) = f (v),

has one and only one solution.

P ro o f See [28, pp8-9]. □

A more complete discussion of the existence and uniqueness of the solution to this

problem can be found by examining the example problem in Ciarlet [28, p20], which

discusses a more general case of the problem we consider here.

From the variational formulation (1.2.8 - 1.2.10) the finite element method proceeds by

choosing a set of element basis functions in some finite dimensional finite element

A finite element model 2 2

C h a p t e r 1 In t r o d u c t i o n

space, and seeking a solution of the form

TV

p = Y^xj®j, (1.2.11)
j =1

where the Xj represent the unknown nodal values of p. Using (1.2.8 - 1.2.10) we then

obtain the linear system

A x = b , (1.2.12)

where A is the stiffness m atrix and b depends on the boundary conditions. For more

details on the finite element method see Johnson[56] and Ciarlet[28].

From the weak form (1.2.8 - 1.2.10) it is clear tha t the stiffness matrix, A, is symmetric,

since the bilinear form is symmetric. Since k > 0 then the bilinear form is also positive

definite and hence the resulting stiffness matrix is also positive definite. It is well known

tha t a positive definite m atrix is non-singular[44, §2.10], and so the linear system (1.2.12)

has a unique solution.

We also note tha t A is sparse, by which we mean tha t only comparatively few entries in

A are non-zero. This follows from the fact that the basis functions are chosen to be only

non-zero on a small number of intervals in the domain, and hence many of the integrals

(1.2.9) are zero,

C onditioning o f th e stiffness m atrix

We conclude this section by briefly looking at the condition number of the finite ele

ment stiffness m atrix arising from discretisations of the (1.2.3). As will be seen later this

quantity is very im portant in the discussion of the convergence rate of iterative meth

ods. Typically large condition numbers imply poor convergence properties of iterative

methods.

Recall tha t the condition number, k, of a symmetric positive definite matrix A is given

by the ratio of maximum and minimum eigenvalues of A, i.e.

= few- “•“ >

A finite element model 23

C h a p t e r 1 I n t r o d u c t i o n

In Johnson[56] the condition number of the problem of the form (1.2.3) with constant k

is analysed, for a two dimensional problem. It is a relatively simple m atter to adapt this

approach to include the varying coefficient k. We note tha t the bilinear form (1.2.9) is

V - elliptic (this being one of the conditions in the Lax-Milgram lemma), ie

a(v, v) > a || v | | y Vv 6 V, a > 0. (1.2.14)

For varying k it is then sufficient to assume th a t a — C ikm-m, where C\ is a positive

constant.

Under certain regularity assumptions on the grid size, the following result allows us

to estimate the maximum and minimum eigenvalues. Here the grid is assumed quasi

uniform in the sense th a t all the elements are roughly the same size, a more precise

definition of this is given in Johnson [56, ppl41-142]. The grid size parameter h relates

to the average size (area or volume) of each element. For example in ID a truly uniform

grid, over [0,1] with Dirichlet boundary conditions, would have h = 1 /A , where N is

the number of nodes.

Lemma 1.2.2 (cf. Lemma 7.3 o f [56]) There are constants C2 and C3 independent of

the grid size h, such that for all v = Xj$,-

C2h2|x |2 < || v ||2< C3h2|x |2 (1.2.15)

and

a(u, v) = [k \V v\2dx < kma,xC3h~2 \ \ v \\2 . (1.2.16)
Jn

where || v ||= || v | | l 2(o)-

Hence from (1.2.15) and (1.2.16)

^ < C ,kmax Vx € (1.2.17)

From (1.2.14) and (1.2.15) we have, since trivially || v ||v > || v ||,

x A x _ a (v iv) y a £m.niL!L[L > C6a k mmh2 Vx G MN. (1.2.18)
x r x x

A finite element model 24

C h a p t e r 1 I n t r o d u c t i o n

Hence equations (1.2.17) and (1.2.18) show th a t k (A) = 4““ < 2 so th a t the
v ' ^ m i n ^ i n i n

condition number increases as kmax/k min increases or as h decreases. Note th a t an

analogous result holds in three dimensions.

For problems considered here, the ratio km&x/ k m-m will be often large, however, as will

be seen in chapter 2, by a diagonal scaling of the stiffness matrix A the effect of this

ratio can be almost removed.

In problems that we will consider the grid is rarely uniform, however, by setting h =

mini(hi), where hi relates the size of each element, the above analysis still holds. The

result of this is that for grids of the type seen in figure 1-1 the condition number of the

stiffness matrix can be very high.

Finally we briefly comment on the discretisation error in the finite element method

when using quadratic basis functions. From Johnson[56, §4.3] we have an estimate of

the following form

II u ~ uh IU2(n)< C hr+1 |u |i/r+i(fl), (1.2.19)

where u is the exact solution, uh is the approximate solution and r > 1 is the degree of

the polynomial used in the basis function. Hence for the quadratic basis function case,

i.e. r = 2, it is clear that in the T2-norm the discretisation error is 0 (h 3).

1.3 Discretisations of exam ple problems

Apart from some calculations on two simple model problems, the results presented in this

thesis arise from a physically realistic problem in 2D and 3D. The 2D problem models

a geological region from a location in the UK and the 3D problem is taken from the

dataset used to model the groundwater flow and saline transport at the Gorleben site in

Germany[22]. In the 3D problem N « 172,000, and in the 2D case N « 60,000. In the

2D problem piecewise biquadratic basis functions on 9 node isoparametric quadrilateral

elements are used for the discretisation, see figure 1-7. In the 3D case quadratic basic

functions on 27 node cuboid elements are used, see figure 1-8.

1.3. DISCRETISATIONS OF EXAMPLE PROBLEMS 25

C h a p t e r 1 In t r o d u c t i o n

1.3.1 Grids and rock types

As mentioned in §1/2, we shall assume that the rock permeability coefficient k in the

pde (1/2.3) is always piecewise constant, with large variations in values in realistic rock

formations. In addition, the creation of an accurate model of a typical underground rock

structure often leads to highly unstructured grids with a range of element sizes. Figure

1-1 demonstrates a typical grid for the 2D problem, with approximately N = 3500.

Figure 1-2 shows the regions in this grid with different rock permeabilities. Table 1.1

gives the actual values of rock permeabilities for this problem, in the x and y directions.

Figure 1-1: Sample grid for realistic 2D problems.

ROCK 1 ROCK 2 ROCK 3 ROCK 4 ROCK 5 ROCK 6 ROCK 7 ROCK 8 ROCK 9

Figure 1-2: Permeability regions corresponding to the 2D grid in figure 1-1, actual values
are given in table 1.1.

For the 3D problem typical grids are shown in figures 1-3 - 1-5, these figures also show

the different rock regions. For this problem the k values are in the range 10-5 to 10-10.

Grids and rock types 26

C h a p t e r 1 In t r o d u c t i o n

Region Type K ky
1 2.5E-12 1.0E-14
2 3.0E-13 3.5E-14
3 2.5E-15 2.25E-15
4 1.75E-15 1.75E-15
5 4.0E-15 4.0E-15
6 1.0E-17 1.0E-17
7 1.5E-12 1.5E-12
8 1.0E-14 1.0E-14
9 5.0E-15 4.0E-18

Table 1.1: Permeability coefficients corresponding to the rock regions in figure 1-2

ROCK 4

ROCK 2

ROCK 1

ROCK 3

Figure 1-3: 3D grid cross section.

Grids and rock types 27

C h a p t e r 1 In t r o d u c t i o n

ROCK 4

ROCK 3

ROCK 2

ROCK 1

Figure 1-4: 3D grid cross section.

ROCK 4

ROCK 3

ROCK 2

ROCK 1

Figure 1-5: 3D grid cross section.

Grids and rock types 28

C h a p t e r 1 I n t r o d u c t i o n

However, we shall see in chapter 2 th a t diagonal preconditioning can mitigate the effect

of discontinuities in k , as has been stated before, see, for example [74] and [40]. Never

theless, even after diagonal scaling the resulting system is still very badly conditioned,

due mainly to the highly irregular grid. Hence methods which perform well on more

straightforward problems, like conjugate gradients or polynomial preconditioned conju

gate gradients, perform extremely poorly for this problem. This poor performance will

be discussed in more detail in §1.6.

1 .3 .2 F in ite e le m e n ts

Use of quadratic basis functions does have some drawbacks from the point of view

of iterative methods. In particular, unlike the linear basis functions case, it is no

longer guaranteed th a t the resulting stiffness matrix is “diagonally dominant” or an

“M-matrix” . Generally this means tha t it is hard to produce quantatative convergence

statements for iterative methods. For example the standard results relating conver

gence of Jacobi, Gauss-Seidel and SOR, which depend on the M-matrix property, see

[44, §6.4-§6.6], cannot be applied. In addition incomplete factorisations (see chapter 5)

cannot be guaranteed to exist and be numerically stable for problems th a t have neither

of these properties.

We define diagonal dominance by

D efin ition 1.1 An N X N matrix A is diagonally dominant if

N

I^u| ^ ^] 10>ij I; i — 1, ..., iV.
j =1

Whilst an M-matrix is given by

D efin ition 1.2 A matrix A is an M -m atrix if

(1) A is non-singular.

Finite elements 29

C h a p t e r 1 In t r o d u c t i o n

(2) dij < 0, i ± j .

(3) a ^1 > 0, V i,j .

To see tha t neither of these properties hold in our case we merely need to examine an

element stiffness m atrix for a square 2D 9 node region, (of the type shown later in figure

1-7). From the finite element formulation this involves calculating the 9 biquadratic basis

functions, <!>*, and computing

dij = J J V ^ . V ^ , for i j = 1,9.

This results in the 9 x 9 matrix,

28 1 1 1 1 1 1 1 16
45 30 45 30 5 9 9 5 45

1 28 1 1 1 1 1 1 16
30 45 30 45 5 5 9 9 45

1 _1_ 28 _1_ 1 1 1 1 16
45 30 45 30 9 5 5 9 45

1 1 1 28 1 1 1 1 16
30 45 30 45 9 9 5 5 45

1 1 1 1 88 16 0 16 16
5 5 9 9 45 45 45 15

1 1 1 1 16 88 16 n 16
9 5 5 9 45 45 45 u 15

1 1 1 1 n 16 88 16 16
9 9 5 5 45 45 45 15

1 1 1 1 16 n 16 88 16
5 9 9 5 45 45 45 15

16 16 16 16 16 16 16 16 256
45 45 45 45 15 15 15 15 45

(1.3.1)

Clearly, this m atrix is not diagonally dominant, and the presence of positive off-diagonal

entries implies th a t it is not an M-matrix. These properties are extremely likely to be

carried forward to the full stiffness matrix, since it is merely a summation of matrices

of the form in (1.3.1).

1.4 A direct solution technique

For problems involving finite elements, one of the standard direct solution techniques is

the frontal method. This method is essentially Gaussian elimination, but is performed

in such a way as to avoid assembling the stiffness matrix. In this section we give a brief

1.4. A DIRECT SOLUTION TECHNIQUE 30

C h a p t e r 1 In t r o d u c t i o n

overview of the frontal method. For more detailed accounts on the frontal method and

its variants see Johnson[56, §6.5] and Duff et al[32, §10.5].

1 .4 .1 T h e F ron ta l m e th o d

For finite elements, the stiffness m atrix can be written in terms of its element stiffness

matrices as the sum

A = ’£ , A m, (1.4.1)
I

where each has entries only in the principal submatrix corresponding to the freedoms

in element I and represents the contributions from this element. In a real application

these submatrices would be stored in a packed form as small matrices, see (1.3.1), with

an additional vector to specify the freedoms present. The formation of the sum in (1.4.1)

is called assembly and involves operations of the form

aij = aij + a[J. (1.4.2)

An entry in the matrix A is denoted fully summed when all contributions of the form

(1.4.2) have been summed.

The basic operation of Gaussian elimination performed on the matrix A , is given by

a<;+1) = «<*> - (g a<‘>. (1.4.3)

The key point, first noted by Irons[55], is tha t this operation can be performed before all

the assemblies in (1.4.2) are finished, provided th a t the three terms a**,, a*,*;, a*,- in (1.4.3)

are fully summed. In essence this means th a t the kth freedom can be eliminated as soon

as all the entries in the kth row and kth column are fully summed, which will happen as

soon as the last element matrix A ^ referring to this freedom has been processed. Hence

the elimination process can be confined purely to the submatrix of rows and columns

corresponding to freedoms that have not yet been eliminated, but are currently involved

in an elimination process, i.e. one or more of their elements has been assembled. These

freedoms in this submatrix are referred to as the active freedoms. At any one time the

working is then done on a full matrix, the size of which increases as new freedoms are

The Frontal method 31

C h a p t e r 1 In t r o d u c t i o n

introduced or decreases as freedoms are eliminated. If the elements are ordered in some

systematic fashion from one end of the domain to another, the active freedoms form

a front that moves along systematically through the ordering. Hence the full matrix

where all the working is done is called the frontal matrix and the resulting technique

is called the frontal method. In figure 1-6 this idea of the frontal matrix, denoted B k,

is demonstrated. Note that this frontal matrix will generally be far smaller than the

original matrix, and so can be reasonably stored in a full form.

k

k

Figure 1-6: Partially eliminated banded matrix, showing the frontal matrix, Bk, and the
k x k eliminated region.

Clearly ordering of the nodes plays a major role in determining the frontwidth, ordering

algorithms such as the “reverse Cuthill-Mckee” algorithm are often used to minimise

the frontwidth, see Duff et al[32] for more discussion on this.

1.4.2 Work and storage considerations

The amount of work, or arithmetic operations, and storage required for this method is

closely related to the size of the frontal matrix required, this maximum size is called

the frontwidth. The size of the front required is controlled by the bandwidth of the

matrix. For finite elements using meshes with approximately n elements in each spatial

direction, this is generally 0 (n d_1), where d is the dimension of the problem. Table

1.2 shows the approximate work and storage requirements for the frontal method for

Work and storage considerations 32

C h a p t e r 1 I n t r o d u c t i o n

2D and 3D finite element discretisations. Note th a t for a 3D problem full Gaussian

elimination would require 0 (n 9) operations to factorise the stiffness matrix.

2D 3D
Frontwidth n n2

Storage n2 7l4
Work nA n7

Table 1.2: Work and storage counts for the frontal method on finite element discretisa
tions. Here n is the number o f elements in each spatial direction.

It is clear that for large problems the cost of computing the solution rapidly becomes

prohibitively large, particularly in 3D. Indeed to put this into perspective consider the

following “thought experiment” . Working in 3D, we s ta rt with a discretisation tha t

requires 30 seconds of computer time to solve, for some computer. Doubling the mesh

size in each direction gives a problem requiring 1 hour to solve, doubling again requires

over 5 days of computer time.

Now compare this with a typical iterative method, say conjugate gradients (see §1.6).

This method requires one matrix-vector multiplication per iteration, the cost of which

is 0 (N), where N is the size of the matrix (i.e. n2 in 2D and n3 in 3D). In addition we

can expect the method to converge in 0 (n) steps, hence the method has work counts

of approximately 0 (n 3) in 2D and 0 (n 4) in 3D. This means th a t if conjugate gradients

required the same CPU time of 30 seconds on the small problem then the “5 day

problem” could be solved iteratively in less than 1 hour, a very significant saving on a

machine where you might be billed for each minute of CPU time. A further issue is th a t

for 3D problems the storage requirement of the frontal method is generally larger than

that of an iterative method, by a factor of n, this follows from the fact tha t the frontal

method requires full storage of the front matrix, of size n2 x n2, whereas an iterative

method like conjugate gradients requires only storage of the stiffness matrix, which, for

finite elements, requires 0 (n 3).

Work and storage considerations 33

C h a p t e r 1 In t r o d u c t i o n

1 .4 .3 H arw ell fron ta l co d e

The frontal code used in the NAMMU package, up until June 1994, is called MA32.

An updated version called MA42 has been recently implemented, although this version

is based on exactly the same method, the code now implements a number of improved

features, including wide use of BLAS routines.

Both of these frontal codes use the methodology developed by Duff et al, the MA32

version is the one discussed in [32]. Developed over a number of years these frontal

codes form a package tha t has been highly optimised and runs very fast on the Cray

YMP. The MA32 code, and the rest of the routines from the Harwell subroutine library

are widely believed to be the best of their kind anywhere in the world. Indeed timings

and performance from these routines are often used as benchmarks.

As discussed in the previous section, iterative methods generally have a significant

advantage for large problems, especially in 3D. Nonetheless, it was not expected a t the

outset of the project tha t the frontal solver could be beaten for 2D problems, without

considerable optimising of any iterative code. Results in chapter 2 are therefore very

encouraging.

1.5 Storage of the stiffness matrix

Any iterative method for the solution of (1.2.12) will require matrix-vector multiplica

tion operations. Hence before discussing iterative methods it will first be necessary to

decide on the storage format of the finite element stiffness matrix, A. Clearly the stor

age method will directly affect the implementation of the matrix-vector multiplication

routine.

In the existing NAMMU code this matrix is never fully assembled from its element

stiffness matrices (see 1.3.1) as this is not necessary for the frontal solver technique

discussed in §1.4.

For the iterative schemes requiring the matrix-vector operation there are two alterna

tives:

Harwell frontal code 34

C h a p t e r 1 In t r o d u c t i o n

• Fully assemble the element matrices into a sparse matrix storage scheme

• Retain the element matrix form.

Each option has its own merits: clearly assembly and representation by a sparse scheme

will require extra work, but manipulations of the matrix, or parts of the matrix, are pos

sible. By retaining the element format only the matrix-vector multiplication operation

is possible, so iterative methods are limited to the so called “matrix-free” methods.

Note tha t, in the element scheme, computing the full matrix-vector multiplication is

achieved by computing a series of small matrix-vector multiplications and summing the

result. With only a careful ordering of the loops it is possible to, in theory, achieve

near maximum machine performance on the Cray YMP. By this we mean tha t the full

capability of the computer architecture can be realised, and computational work can

be performed at nearly the maximum rate tha t the machine can achieve. However,

in practice this was never actually managed since the lowest level loop needed to be

implemented in Cray assembler, as the fortran compiler was not advanced enough to

recognise the full optimisation potential of the code.

1 .5 .1 A s to ra g e e x a m p le

In order to compare and contrast the two storage schemes discussed above we consider

a simple example, using the most common type of 2D and 3D element used in NAMMU

models. For the sake of simplicity the effects of Dirichlet boundary conditions on the

problems will be neglected. The notation n will denote the number of elements in any

one spatial direction. The system considered will be on a grid with n X n elements, or

in a 3D case n X n X n elements.

For the sparse m atrix storage scheme it is generally required th a t each stored real

value requires an associated index pointer, which is usually an integer value. Although

in practice slightly more storage than this is required, nonetheless this gives a good

indication of the best sparse storage method.

Also note th a t on Cray architecture all reals are double precision and integers take

A storage example 35

C h a p t e r 1 In t r o d u c t i o n

the same amount of storage space as the reals. Clearly this will be an important

consideration when discussing the sparse storage schemes.

It is important to realise that the sparsity of the fully assembled stiffness matrix is

highly dependent on the type of element used and the degree of basis function. In

the following discussion we will consider quadrilateral elements and quadratic basis

functions. A basis function is associated with an element and is defined to be zero on

any nodes lying outside the element. Hence non-zero entries in the stiffness matrix only

arise in the case where a node is connected, via the basis function, to another node on

elements where the basis function is not defined as zero. For example a node on the

edge of an element is potentially connected to all the nodes in that element, plus all

the nodes in the adjacent elements that share this node. The use of quadratic basis

functions mean that nodes up to “two nodes away” are potentially connected in this

sense.

We also remark tha t whilst this discussion centers on strictly square and cuboid ele

ments, the NAMMU code uses isoparametric transformations to map these into other

rectangular or cuboidal shapes. More details on these transformations are given in

Johnson [56, §12].

T he 2D case

The 2D element we consider with its associated node points is given in figure 1-7.

?------•------T

0 • O

 1------------- • ------------- i

Figure 1-7: Node points of the 2D 9 node quadrilateral.

A storage example 36

C h a p t e r 1 In t r o d u c t i o n

Consider first the number of non-zero entries in the fully assembled sparse storage

scheme associated with each element. For each element we need to consider (a) the

corner nodes, (b) the edge nodes, and (c) the centre nodes. Clearly each of these types

of nodes appears in a different number of elements: 4 for the corners, 2 for the edges,

and 1 for the centres. Hence a corner node is “connected” to 5 x 5 other nodes, but this

contribution is “shared” by 4 elements. A similar consideration can be constructed for

the edge and centre nodes.

In total we have the following contributions from each element:

corners 4 x 25 x 7 = 2 5

cell edge 4 x 15 x | = 3 0

cell centre 1 x 9 = 9

64

Each entry requires one real and one integer and there will be n2 elements. Hence the

total required storage is 128n2.

For the element storage case we require a 9 X 9 matrix for each element plus 9 integer

pointers, hence the total storage will be 90n2.

We can see th a t in the 2D quadrilateral case we would need approximately 42% more

storage to assemble the full matrix in a sparse form. Note tha t this analysis is only for

a machine like the Cray where integers/reals take the same storage space. Nonetheless,

even on machines where the integers take half the storage than the reals (or double

precisions) the element form is still likely to win, or at least be comparable. In the

above case we would then be comparing 90n2 for the element case with 92n2 for the

sparse case.

T h e 3D case

The 3D element we are considering together with its associated node points in given in

figure 1-8.

A storage example 37

C h a p t e r 1 In t r o d u c t i o n

Figure 1-8: Node points of the 3D 27 nodes cuboid.

As for the 2D case, we consider corner nodes, edge nodes, centre nodes, and also for

this case, face centre nodes. Here a corner node is “connected” to 5 X 5 X 5 other nodes,

but this contribution is shared by 8 other elements.

In total for the sparse storage case per element we have the following contributions:

corners 8 x 125 x | = 125

cell edge 12 x 75 x i = 225

cell face centre 6 x 45 x | = 135

cell middle 1 x 27 = 27

512

As before each entry requires one real and one integer and there will be n3 elements.

Hence the total required storage is 1024w3.

The corresponding element storage case requires a 27x27 matrix plus 27 integer pointers

per element, hence the total storage is 756n3.

In a similar fashion to the two dimensional case we again need more storage for the

sparse approach than in the element storage approach, approximately 35% in this case.

A storage example 38

C h a p t e r 1 In t r o d u c t i o n

1 .5 .2 P re ferred s to r a g e m e th o d

There would appear to be no performance loss when using element matrices rather

than a sparse matrix format. Although results in §5.3 indicate th a t a sparse scheme

is potentially detrimental to the performance of the matrix-vector multiplications, this

is mainly due to the difficulty in produced effective code when working with a sparse

scheme. More effective implementations of sparse techniques have been shown to give

performance tha t is comparable with the element storage scheme. Finally note that

the speed of the matrix-vector multiplications will have a marked effect on the overall

solution time of the linear solver.

1.6 A first iterative m ethod

Given the restriction of using a “matrix-free” method (see §1.5), even a relatively quick

review of iterative methods immediately points to the conjugate gradient method of

Hestenes and Stiefel[49] as an “obvious choice” . Although originally devised in 1952,

this method was not originally widely considered for use as an iterative solver until

around 1971, when Reid[75] re-introduced the method and advocated its use for sparse

matrices. Prior to this paper the numerical analysis community was not satisfied with

either the understanding of this method or its speed (preconditioners were not widely

known at this time). Since then it has become a very popular method in a wide range

of applications and many variants and modifications on the original idea have been

produced, see Ashby et al[10, 6].

More complete discussions on the conjugate gradient method are given in Golub and

van Loan [38, §10], Hackbusch[44, §9], and Johnson[56, §7.3]. A detailed history of the

development of the method is given in Golub and O’Leary[37].

In this section we shall introduce some background to the method, discuss its con

vergence properties and briefly give some results for a test problem. Throughout the

section the matrix will be assumed to be symmetric positive definite.

Preferred storage method 39

C h a p t e r 1 In t r o d u c t i o n

1 .6 .1 G en era l th e o r y o f ite r a t iv e m e th o d s

A general iterative method for the solution of (1.2.12), with an initial starting guess x 0,

produces a sequence of iterates x fc given by

jfc-i

X* = Xj,_ ! + '%2'0kjrj , (1.6.1)
j = 0

where r)k j G M are suitably chosen for convergence and we define the residual, r^, by

r j = b — Axj. (1 . 6 .2)

The error in solution at the k th step, e k, is defined by

ejfc = x — xjfc. (1.6.3)

The iterative process (1.6.1) may be called a polynomial method, by which it is meant

tha t the error (1.6.3) can be written in the form

ek = p k{A)e0, (1.6.4)

where pk(A) is a polynomial of degree fc, and hence from (1.6.4) we may also write

r* = pk(A) r 0 ,

since Aek = Ax — Ax* = b — Axk = r k. This polynomial is called the residual or error

polynomial. Note tha t this polynomial must satisfy the condition pjb(O) = 1 since if

A = 0 then clearly = b — Ax* = b Vfc. Hence if r k = Pfc(0)r0 then pk(0)=l.

For a method tha t converges well, e k should be as “small” as possible, in some sense.

The most likely choice being that || e* || is small for some chosen norm. However, it

is clear th a t for large problems the recursion (1.6.1) would be impractical, as it would

require storage of all previous residuals. A more practical version could be given by

xjb = X f c_ i + Ofcdfc,

where d fc, which we call a direction vector, is a linear combination of a few previous

General theory of iterative methods 40

C h a p t e r 1 I n t r o d u c t i o n

residuals {rjfc_i,...,rfc_4} and a few previous direction vectors {d fc_1,...,djb_1}, for some

integers s and t. The value a k E M is suitably chosen to satisfy some minimisation

property. Since the method is required to converge monotonically, then clearly we also

require

II ejfc || < || e fc_i ||

i.e.

II x - x fc_i - ajkdjk || < || x — x*_! || .

1 .6 .2 C o n ju g a te G r a d ie n ts (C G)

From the definition of r* we can re-arrange (1.6.1) to show th a t it is equivalent to

writing

xjfc=x0 + v , v e span {r0, A r0, .., Afc_1r0}. (1.6.5)

We call span{r0, A r0, .., Afc-1r 0} a Krylov subspace of dimension a t most k , denoted by

£fc(r0, A).

Consider an iterative method given by choosing d*, E ICk(r0,A) such th a t || e* || is

minimised a t each step, for some norm. The CG method is then given by measuring

the error in the following norm

| | . | |A= < i4 . , - > * . (1.6.6)

Since)Ck-i C K k it follows tha t || e*, ||A<|| ||A, i.e. the error is monotonically

non-increasing.

The minimisation of the error in this A-norm is achieved by requiring th a t e k ± A /C*, i.e.

all components of the error lying in K k have been removed (cf. Johnson [56, ppl33-134])

and thus

< A ek, y > = 0 Vy E JCk(r0lA). (1.6.7)

This is turn means d k E ICk and d* ± A JCk- \ . So an A-orthogonal basis {pfc}*=1, for K k

is found. By construction p* E ICk and p k ± A Since ek L A /C*_i it follows that

Conjugate Gradients (CG) 41

C h a p t e r 1 I n t r o d u c t i o n

d k = ® k P k , OLk 6 M.

From the requirement th a t ek -La &k we determine a k thus

0 = < Aek, p k > = < A(ek_i - a kp k) , p k >

and hence a k =

= < A ek_u p k > - a k < A p k, p k >
< Ae*_1}p k >
< A p k,p k >

< r*_i,p* >
< A p k, p k >

We next quote a result about the CG method from Golub and van Loan [38],

Theorem 1.6.1 (Theorem 10.2,2) A fter k iterations o f the CG algorithm we have

I** = r*_i - a kA p k (1.6.8)

< P j,r k > = 0, 1 < j < k (1.6.9)

sp a n { p !,... ,p fc} = span{r0, ...,rjfc_i} (1.6.10)

= span{b, A b ,..., A*-1b}.

From (1.6.10) it is apparent tha t we can write

k

Pfc + l = k̂ ^] fik,iPi
j = l

with fik i = (1.6.11)< A p j , p , >

However, from (1.6.8) and (1.6.10) together with the fact th a t p, ± A p j, i / j , ie

< A p j,p t > = 0

it is clear tha t (3k)i = 0, Vi < &. Hence

P*+i = r * (1. 6. 12)

Writing /3k for f3ktk and, for computational convenience, re-arranging the expressions for

Conjugate Gradients (CG) 42

C h a p t e r 1 I n t r o d u c t i o n

a k and /?*, see [38, pp522-523], gives the usual algorithm for CG.

Algorithm 1.1 [x =CG(A,b,x0)] From some initial guess x0, this algorithm applies

CG until a specified convergence criterion is mevt.

r0 = b — Ax0

P i = ro

for Ar = 1,2, ...until converged
^]>

a k = ---------:-------------------< A p fc,p fc >
Xjfc = Xjb_n + OjfcPjfe

r Jfe = rjfc_u — a kA p k

* < r k, r k >
Pifc + l = rjfe — P k P k

end

Note tha t from this implementation it is clear th a t only one matrix-vector multiplication

and two inner products are needed per step of tlhe algorithm.

1 .6 .3 C o n v e rg en ce o f co n ju g a te g r a d ie n ts

Firstly we remark th a t since eN L A ICn = space, then, in absence of round-off error,

eN = 0, i.e. CG converges in at most N steps. M ore precisely define

d(r0,A) = dimension of largest Kry/lov space defined by (r0,A)

< number of distinct eigenwalues of A.

Then in exact arithmetic CG converges to the exact solution in precisely d(r0, A) steps.

The convergence of the CG method is strongly/ dependent on the condition number

of the m atrix A, defined as (see also definition 1.2.13) n = k (A) = Xmax/ \ min- The

following theorem gives a bound on the convergemce of CG.

Convergence of conjugate gradients 43

C h a p t e r 1 I n t r o d u c t i o n

T heorem 1.6.2 (cf. T heorem 9.4 .12 in H ackbusch[44]) The error ek = x — x*

after k steps o f the C.G. method satisfies:

P ro o f We follow the treatm ent in Hackbusch[44]. From (1.6.4) and using the fact tha t

the CG method is an optimal polynomial method, then clearly: || e* ||^

where Xjfe(0 is anY polynomial of degree k satisfying Xfc(O) — 1- Now, write e 0 =

i 7 j vj, where Vj are eigenvectors, and also write a = Amir,(A), b = Amax(A). Then

the following holds

XJfc(^)e0 |U = ^ T j ^ X ^ A j) 2̂

< max | x*(Aj) | | |e 0 ||A
j

< max | Xk{t) | | |e 0 |U .
t e (a , b)

(1.6.13)

For a general polynomial Xk{t) the best bound for (1.6.13) is well known to be given by

the scaled and translated Chebyshev polynomial [76]

x*W =
b + a 21
b — a b —̂)] / h (&) (1.6.14)

For t E [a, 6] the numerator in (1.6.14) lies in [—1,1]. The kth. Chebyshev polynomial is

given by

so that

Tk(t) = 2 [(* + v/£r r T)fc + (t - y / V ^ T) 1

/ 6 4- g \ 1 (1 + 1 / \ A \
k \ b - a) ~ 2 ^ 1 - 1 / v ^ J

and the result follows. □

Note tha t if it was desired that the relative error satisfy the following

Cfc \\a

e o I U

Convergence of conjugate gradients 44

C h a p t e r 1 In t r o d u c t i o n

then the bound in the previous theorem can be re-arranged to obtain

k > 2 I n̂ (e/2) | V x , (1.6.15)

which gives the required number of iterations to achieve this tolerance. From this result

it can be seen th a t the CG algorithm converges at a rate determined by y/R.

It is well known th a t the CG algorithm often converges faster than (1.6.15) would

indicate. This is primarily due to the convergence rate depending on the entire eigen-

spectrum of the m atrix A, not just the extreme values. Clustering of eigenvalues plays

a very im portant role in the convergence rate, see van der Sluis and van der Vorst[87].

Considerable work has been done on the conjugate gradient method and its convergence

for certain classes of problems, see Axelsson et al[16, 15, 12, 13], van der Sluis and van

der Vorst[88], Ramage[74], Greenbaum et al[40, 39, 41] and many others.

1 .6 .4 L an czos c o n n e c t io n to C G a lg o r ith m

The Lanczos algorithm, for computing eigenvalues and eigenvectors of symmetric posi

tive definite matrices is closely connected to the CG algorithm as is now outlined. Note

tha t this connection is the basis for a slightly modified CG algorithm tha t can solve

symmetric indefinite systems. It is also sometimes used in order to calculate the eigen

values of the system whilst a CG solve is being performed, perhaps to determine when

to halt the algorithm, by estimating the condition number[7], or adaptively determine

a preconditioner[3, 8].

The Lanczos method generates orthonormal vectors in the following way: Let v 0 be a

vector such tha t || v 0 ||2= 1 and let v _ x = 0. An orthogonal basis for /Cjk(v0, A) can be

constructed by the recurrence:

7 i+ iv i+1 = A vj - 6j vj - j jV j - u 0 < j < k - 1 (1.6.16)

where Sj = (v,-, Av;) and 7 ;-+x is chosen such that || Vj+X 112= 1.

Write Vk = [v0, . . ,v fc_x] and Tk = tri[yj ,6j ,~fj+1], 0 < j < k - 1, then (1.6.16) is

Lanczos connection to CG algorithm 45

C h a p t e r 1 In t r o d u c t i o n

equivalent to

AVi = V*rt + 7t [0 ,. . ,0 ,v J (1.6.17)

and Vjf AVk = Tk. The Lanczos algorithm constructs the orthonormal set {vj} and uses

the eigenvalues of the Tk as estimates of the the eigenvalues of A.

Now, consider the case for the CG algorithm, the residual and direction vectors satisfy

a relation of the form:

r i+i = rj ~ aj A (rj + A - iP j - i)

= — oij A t j + (l + ^ g= i) Tj - (M = i) rj_i,

i.e. A R k = R kSk ~ — [0, . . , 0 , r j . (1.6.18)
OLk

Here we have written

Rk

Sk = tri
C t i - i

 l_ , P j-i 13j
? “r

O'; OLj _ i Oti

Now write A k = diag(|| r 0 H2 , •*, || r k H2) and postmultiply (1.6.18) by A fc 1 whilst setting

Vk = R kA k1 to obtain

AVt = Vkf k - ^ ± [0 , . . ,0 ,v j .

This is of an identical form to (1.6.17) so tha t we have Vk = Vk and Tk = Tk. This

means th a t the normalised residuals generated by CG are the Lanczos vectors. In fact

the CG iterates x* can be recovered directly from the Lanczos iterates.

1 .6 .5 P r e c o n d it io n e r s

We can define a preconditioning of the linear system by the following

D efin ition 1.3 Given a linear system

A x = b, (1.6.19)

Preconditioners 46

C h a p t e r 1 In t r o d u c t i o n

where A is symmetric positive definite, we define a symmetric positive definite matrix

M as the preconditioner such that we solve the equivalent problem

M ~ 1Ax. = M -1b. (1.6.20)

Clearly, the system (1.6.20) is not symmetric, but it can be shown tha t, in the CG

algorithm, solving the symmetric positive definite preconditioned system

(m - 1/2A M ~1/2) M 1 /2 x = M - 1/ 2b ,

is equivalent to solving a system of the form (1.6.20).

Implementation of the preconditioning (1.6.20) in the CG algorithm involves one extra

computational step per iterate, more details are given in Golub and van Loan[38, §10].

This extra step involves solutions of the linear system

M z k = rk. (1.6.21)

Since r* is the residual at the kth step, the vector z k is often referred to as the

preconditioned residual. We remark th a t z k is often used in the stopping criterion

(rather than r k) since, on the assumption th a t the preconditioner approximates A, then

Zfc = M ~ 1rk « A ~lrk = ek.

For the matrix M to be an effective preconditioner we generally require tha t

• linear systems of the form M z = r are easy to solve,

• convergence of the preconditioned problem (1.6.20) is faster, in terms of compu

tational time, than the original problem (1.6.19).

The preconditioned problem has convergence properties dependent on the eigenspec-

trum of the preconditioned m atrix M ~ lA. Hence the condition number of the symmet

rically preconditioned matrix M ~ 1l2A M ~ 1l2 is im portant, (cf. (1.6.15)). Clearly a good

preconditioner M would be such tha t M ~ lA « I .

Preconditioners 47

C h a p t e r 1 In t r o d u c t i o n

D iagonal scaling

One of the most commonly used preconditioners is diagonal scaling. Here the precon

ditioner M is taken to be the diagonal of the matrix A. Solutions of the linear system

involving M are clearly very straightforward.

Although very simple, this preconditioning is often highly effective. One of the reasons

why this is so is because a diagonal preconditioner is equivalent to scaling the problem

by the diagonal. The following simple example illustrates the potential effect of this.

E x am p le 1.1 Consider CG applied to a problem with

A =
1 - I t) ”5

_ 10- 5 10-8

The standard “condition number” theory o f theorem 1.6.2 would indicate that a problem

that featured this form o f entries would converge in 0 (104) steps, since the condition

number is O(108). However, by symmetrically diagonally scaling this matrix we are

essentially applying CG to the problem

1 - 0.1

- 0.1 1

This has condition number 0 (1), and hence would be expected to converge in just a

single CG step.

Where possible, this diagonal scaling is often implemented in an explicit fashion, i.e.

the m atrix is actually symmetrically scaled and CG applied to the problem

M ~ ^ A M ~ ^ x = b,

or

A x = b.

In some cases this then allows a small reduction in the work per matrix-vector multpli-

Preconditioners 48

C h a p t e r 1 I n t r o d u c t i o n

cation, since the diagonal is then known to be unity.

A number of authors have commented on the effect of diagonal scaling, see for example

Ramage and Wathen[74] and Greenbaum et al[41, 40]. In particular the diagonal scaling

is known to greatly mitigate the effect of the discontinuous coefficients for discretisations

of problems such as (1.2.3). In particular this effect is illustrated in figure 2-12, where

we compare the convergence of the two grid method in the cases with and without for

diagonal scaling for cases with and without discontinuous coefficients.

1 .6 .6 P o o r p er fo rm a n ce o f C G on a r e a lis t ic p ro b lem

In spite of the nice theoretical properties of the convergence of the conjugate gradient

method, in practice CG with no preconditioning often performs very poorly indeed.

Convergence is either extremely poor or sometimes there is no noticable convergence

at all. It is generally believed tha t the main reason for this is due to computational

round-off in the CG algorithm, and so in practice some form of preconditioning is often

required to give convergence.

In this section we very briefly give some results showing the convergence of the conjugate

gradient algorithm: First a model problem on a regular mesh, with two different levels

of refinement, resulting in discretisations of sizes N = 32896 and N = 56616, and second

on a problem arising from a physical realisation of (1.2.3) in 2D with three different sizes

of discretisation, N = 3684,14736,58944. The first problem is based on a regular mesh

of the type given in figure 1-9 and has a constant permeability over the entire domain.

Quadratic basis elements are again used for this discretisation. The second problem

uses meshes th a t are all based on a grid of the form in figure 1-1 with permeability

coefficients in table 1.1. For the reasons discussed above a diagonal preconditioner is

used for all these problems.

In figure 1-10 we plot the log of the 2-norm of the relative error in solution against CG

iterations for the first problem. It is clear th a t CG converges reasonably well in these

cases, although we note th a t the direct solver requires less CPU time than the iterative

method for both N = 32896 and N = 56616.

Poor performance of CG on a realistic problem 49

C h a p t e r 1 I n t r o d u c t i o n

Figure 1-9: Simple grid for a model 2D problem.

N = 32896
N = 56616

-4

0 100 500 600200 300

CG iterations
400

Figure 1-10: Convergence of diagonally preconditioned CG, on a model 2D problem with
a regular mesh, for 2 sizes of FEM discretisations of (1.2.3).

Poor performance of CG on a realistic problem 50

C h a p t e r 1 In t r o d u c t i o n

In figure 1-11 we plot the log of the 2-norm of the relative error in solution against

CG iterations for the realistic problem. It is immediately apparent that diagonally

preconditioned CG converges very poorly in this case. Even for the small problem

convergence is very slow indeed, for the larger problems there is very little convergence

at all. The highly irregular mesh would appear to be the main cause of the difficulties

for this problem. It is im portant to note that the frontal solver gives a solution in

significantly less time than tha t taken by any of the iterative results shown in figure

1- 11 .

-0 .5

— N = 3684
— N = 14736

s— N = 58944

o

- 2.5

- 3.5
500 1000 1500

CG iterations
2000 2500 3000

Figure 1-11: Convergence of diagonally preconditioned CG, on a 2D realistic problem,
for 3 sizes o f FEM discretisations of (1.2.3).

To solve this problem effectively in an iterative fashion it will be necessary to find a much

better preconditioner than diagonal scaling. Choices such as a two grid preconditioner

(§2.4), a polynomial preconditioner (chapter 4) or an incomplete factorisation, (chapter

5) may be the answer to this. An alternative approach may be to try a different iterative

method, such as the two grid method in chapter 2.

1.7 Overview of thesis and results

In chapter 1 we have introduced the groundwater flow model (§1.2), and the finite

element discretisation being used (§1.3). The direct method currently being used in the

1.7. OVERVIEW OF THESIS AND RESULTS 51

C h a p t e r 1 I n t r o d u c t i o n

Harwell code NAMMU has been discussed (§1.4). Issues relating to the implementation

of a solution method, particularly the storage of the finite element stiffness matrix (§1.5)

have been addressed and a discussion of conjugate gradients has been given in (§1.6).

It is clear tha t conjugate gradients alone is not sufficient to provide a robust solution

technique for the physical problems we are considering. The remainder of the thesis is

therefore concerned with discussing other iterative methods or variants on the original

conjugate gradient method.

Chapter 2 introduces the two grid method. For finite difference methods on uniform

meshes this method is very widely used, and has been shown to be highly effective,

especially in the more general multigrid. The use of the two grid method for solving

linear systems arising from finite element methods does not appear to be so common,

particularly with non-uniform meshes. However, although almost all the theory for

these methods has been developed with finite difference methods in mind, this is not a

requirement for two grid methods. Implementation for finite elements therefore follows

the same general approach, the main difference being th a t for finite elements there is

a very natural way of performing the grid transfer operations required for the two grid

method, this is discussed in some detail in §2.2. For two grid methods the effectiveness

of the smoothing operation is very important. We discuss a number of possible choices

of “matrix-free” smoothers (§2.3) and give results for their effectiveness on both a simple

model problem and a more complicated physical example (§2.6). These results indicate

tha t use of conjugate gradients as a smoother in the two grid method is highly effective

for the problems we are concerned with. For a reasonably large 2D problem (60,000

unknowns) the two grid method is able to produce a solution in nearly a third of the

time required by the direct solver. A three grid method is also briefly discussed in this

chapter, although for the problems we discuss it is found to be less effective than the two

grid method. In §2.7 the use of the two grid method for solving non-symmetric linear

systems arising from finite element discretisations of a radionuclide transport problem

is briefly discussed. This method differs from the symmetric case only in tha t a non-

symmetric smoother is now neeeded. For this we use conjugate gradients applied to the

normal equations. For a small simple model problem on a uniform mesh this approach

seems to work well.

Chapter 3 is primarily concerned with the use of the two grid method, discussed in the

1.7. OVERVIEW OF THESIS AND RESULTS 52

C h a p t e r 1 In t r o d u c t i o n

previous chapter, applied to a large 3D problem. Here we are only concerned with using

conjugate gradients as a smoother. In this case the two grid method is considerably

faster than the original direct method, mostly as a result of the n7 work scaling for the

direct solver on 3D problems, where n corresponds to the number of elements in each

spatial direction. The three grid method is also tested on this problem, and once again

it is not as effective as the two grid method, although does show slightly more uniform

convergence properties.

Chapter 4 is concerned with the use of polynomial preconditioners for the conjugate

gradient algorithm. The idea here is produce a low order polynomial in the problem

m atrix A such tha t it can be used as a preconditioner. We discuss two approaches to

finding such polynomials, resulting in least squares polynomials and Chebyshev poly

nomials. We test these polynomials on both a large problem with a uniform mesh and

a large 2D problem from a physical application. This polynomial approach is found to

be ineffective a t producing a preconditioner th a t allows fast solutions of the problems

we are concerned with.

Chapter 5 discusses the use of the incomplete factorisation methods as a preconditioner

for conjugate gradients. We discuss the various issues relating to the use of incomplete

factorisations, in particular the problems with the method for the matrices from our

application. An “off the shelf” implementation is briefly discussed and we present

results for a large 2D problem. This implementation is shown to be very ineffective for

our problem.

Chapter 6 gives some brief indication of the areas tha t still require future work.

Chapters 2 and 3 have been written as a paper and submitted to the Journal of Com

putational Physics.

1.7. OVERVIEW OF THESIS AND RESULTS 53

Chapter 2

Two Grid M ethod

2.1 Introduction

In this chapter we shall demonstrate the effectiveness of the two grid method as a

solution technique for discretisations of (1.2.3), for groundwater flow problems of the

type introduced in chapter 1.

A number of different choices of iterative methods for use as a smoother in the two grid

method are considered. In particular conjugate gradients is shown to be a very effective

choice.

Extensive literature is available on the subject of two grid methods or the more general

multigrid methods. Considerable work in this area has been done by Hackbusch et al, in

particular see [43, 44, 45, 46]. The use of conjugate gradients as a smoother in multigrid

methods is discussed by Bank and Douglas[19], Kettler[63], Deconinck and Hirsch[31],

and Braess[23]. We will discuss more on the available theory for this combination in

§2.3.4.

In all cases where it is appropriate, the CPU time taken by the two grid method will

be compared with the CPU time taken by the direct solver MA32 from the Harwell

subroutine library.

54

C h a p t e r 2 T w o G r i d M e t h o d

As discussed in chapter 1, the use of biquadratic finite elements on quadrilaterals results

in stiffness matrices tha t are unlikely to be either diagonally dominant or M-matrices,

and hence much of the standard convergence theory for iterative methods (e.g. as

discussed in [43, §6]) is not applicable. Also there are restrictions in the choice of

smoothers, since the NAMMU package provides the stiffness matrix in an element form.

In this form matrix-vector multiplications can be carried out very efficiently, but more

complicated operations, involving the whole m atrix A, or parts of the matrix, are not

easily performed. For this reason when discussing the smoothers in this chapter we will

restrict attention to iterative methods tha t only require matrix-vector multiplications.

This eliminates Gauss-Seidel and SOR smoothers.

The plan of the chapter is as follows. The standard formulation of a two grid method

is stated in §2.2, and follows the description in [43]. In §2.3 the following choices of

smoother are considered:

• Richardson iteration

• Gradient method

• Conjugate gradients (CG)

• Conjugate residuals (CR).

Each of these methods is a “matrix-free” method, where the linear system matrix is only

known by its action on a vector, i.e. only matrix-vector multiplications are required.

In each case the linear system is either symmetrically diagonally scaled or a diagonal

preconditioner is used. Note tha t Richardson’s method with a diagonal preconditioner

is identical to Jacobi’s method. Also, in order to analyse the effect of the smoothers

discussed above we carry out a “computational modal analysis” on a 2D model problem,

with N = 1000, to compare their effectiveness.

In §2.4 the use of the two grid method as a preconditioner for the conjugate gradient

method is explained.

In §2.5 an extension to the two grid approach, now using three grids, is briefly discussed.

The impressive results from much of the literature on multigrid methods, for model

2.1. INTRODUCTION 55

C h a p t e r 2 T w o G r i d M e t h o d

problems, would indicate tha t more levels of grids than just two are needed to take full

advantage of the general approach. Using three grids is then seen as a first step towards

a full multigrid approach.

In §2.6 we first present results for a 2D problem arising from an actual physical real

isation of an underground rock structure. Both the two grid method (§2.2), with the

various smoothers, and the preconditioned conjugate gradient method (§2.4) are consid

ered. The conjugate gradient and conjugate residual methods are shown to be effective

smoothers, whereas use of Richardson iteration or the gradient method as smoother

gives poor overall rates of convergence. To illustrate tha t diagonal scaling can mitigate,

almost completely, the ill-conditioning due to the variations in k, we also compare re

sults for two related problems. Both use the same grid, but one has k = 1 uniformly

over the entire region, instead of the variations given in table 1.1. Using the two grid

method as a preconditioner for the conjugate gradient method is shown to give sat

isfactory convergence, although inferior to the standard two grid method with either

conjugate gradients or conjugate residuals as a smoother. Some results from the three

grid method (§2.5) are also presented in §2.6.2.

In §2.7 we briefly discuss an extension of the two grid method to a non-symmetric prob

lem arising from a radionuclide transport problem. The conjugate gradient smoother

is now replaced by conjugate gradients applied to the normal equations. On a prob

lem involving a uniform mesh this approach seems to give a good rate of convergence.

Note th a t merely using conjugate gradients on the normal equations does not give an

adequate rate of convergence.

In §2.8 we summarise our experiences with the two grid method on the 2D problems.

The two grid method is seen to be reasonably effective for the problem discussed here,

converging to a solution in less computational time than required by the direct solver.

2 .1.1 N o ta t io n an d co a rsen in g s tr a te g y

For the rest of this chapter we shall denote a fine grid linear system problem as

Af X = b,

Notation and coarsening strategy 56

C h a p t e r 2 T w o G r i d M e t h o d

this being a problem with N j degrees of freedom. The corresponding coarse grid problem

will have N c degrees of freedom and the associated stiffness matrix will be denoted A c,

and we shall assume tha t each coarse grid point is also a point on the fine grid.

The strategy employed in order to obtain the coarser grids is to halve the number of

elements in each spatial direction on the fine grid to produce the coarse grid. Since, for

the finite element method, the number of degrees of freedom in the resulting stiffness

matrix is proportional to the number of elements this means th a t N c « in the 2D

case. However, it is worth noting a t this stage th a t we will never consider a coarsening

th a t removes any of the permeability regions completely. As a result of this there is a

finite limit to the number of coarser grids tha t can be considered. This is particularly

true in the 3D case, discussed in chapter 3 where there will already be only a few

elements in each spatial direction for each permeability region. This is principally the

reason why a full multigrid method, with a large number of grids, is not considered at

this point. In addition, by using this method of coarsening, problem dependent methods

for the prolongation, such as in [30], are not required.

2.2 Two Grid M ethod

The two grid method employed, which will henceforth be referred to as TGM, is taken

from [43]. We denote prolongation and restriction matrices th a t transfer vectors between

the grids by P and R respectively. Also we assume tha t an LU factorisation of A c has

been obtained before starting any TGM steps and so solves on the coarse grid require

only forward and back substitutions.

The steps in the TGM are as follows: from an initial vector x 0 we perform a coarse grid

correction followed by //(> 1) smoothing steps to produce x i:

r = b - Afx 0 (2.2.1)

rc = R r (2.2.2)

d c = A ; 'r c (2.2.3)

Xi
2

= x 0 + P d c (2.2.4)

2.2. TW O GRID METHOD 57

C h a p t e r 2 T w o G r i d M e t h o d

Xi = 5 /i(x i) (2.2.5)

Note tha t steps (2.2.1-2.2.4) can be together written as the coarse grid correction step

x i = x 0 + P A ~ l R{b - A /x 0). (2.2.6)

Step (2.2.5) represents the application of p steps of the smoothing iteration and one

step of the TGM can be written as

Xi = ^ [x o + P A ~ l R (b - AfXo)]. (2.2.7)

In order to solve a given problem, this two grid step is applied a number of times until

some preset convergence criterion is met.

It should be noted th a t coarse grid correction steps by themselves are insufficient to

guarantee a convergent algorithm as is illustrated in the following example taken from

[43]. Note, however, th a t the addition of one smoothing step is, in general, sufficient to

ensure convergence.

Example 2.1 Consider applying the TGM steps above with p = 0, i.e. no smoothing

steps. Since the restriction matrix, R, is rectangular it has a non-trivial kernel. So,

choose 0 ^ w G ker(R) and set x0 = A j 1^ — w). Thus r = w and since R w = 0 ,

x i = x0. Thus there is no improvement in x0.

Consider further the addition o f one step o f a Richardson iteration as a smoother, i.e.

write

x 0 = x0 + (b - Af X0) = x0 + w

and now apply the coarse grid correction step on the residual r = w — A fW . Assuming

that A fW does not lie in the kernel of R then the coarse grid correction step now gives

an improvement. Generically we would expect this to be the case.

The choices of smoothers will be examined in more detail in §2.3, together with some

2.2. TWO GRID METHOD 58

C h a p t e r 2 T w o G r i d M e t h o d

discussion on convergence analysis. In the following two subsections we consider the

choice of prolongation and restriction matrices for the finite element discretisation of

(1.2.3).

2 .2 .1 P r o lo n g a tio n

First denote the ith FEM nodal basis function for the fine grid as , and the m th coarse

grid basis functions as Qcm. By requiring th a t all coarse grid points are also fine grid

points it is immediately apparent tha t the coarse grid basis functions can be written in

terms of the fine grid basis functions, that is

= (2 .2 .8)
1 = 1

for some coefficients ajm\ Hence, if r j denotes the j th fine grid node point then clearly

= a 'm) (2.2.9)

since the nodal basis functions satisfy (r f) = 6^.

In order to define the prolongation matrix from TBLNc to MNf, consider any vector qc E

with (qc)m = <?£,. There is a corresponding function in the coarse finite element space

defined by

?‘M = E (2.2.10)
m=1

Evaluation of (2.2.10) at the fine grid nodes r j , j = 1, ...,iVy, gives the corresponding

fine grid vector, q- ,̂ with the j th component given by

N c

« / = (2-2.11)
m= 1

Hence,

qf = P q c (2.2.12)

Prolongation 59

C h a p t e r 2 T w o G r i d M e t h o d

where the rectangular matrix P is given by

Pjm = ajm\ (2-2.13)

these coefficients aj being given in (2.2.9) above. As a result of our imposed require-

ment on the choice of coarse grid, see §2.1.1, the coefficient k does not appear in the

prolongation.

2 .2 .2 R e str ic tio n

First note tha t in the matrix-vector description of the TGM the restriction operation

in (2.2.2) acts on the fine grid residual and produces a “coarse grid residual” . To define

an appropriate restriction for the FEM it is natural to consider the residuals of an

approximate solution to the weak form of the pde with respect to both the fine and

coarse meshes.

Given some approximate solution on the fine grid, p*, the i th residual corresponding to

the ith basis function is given by

r{ = f kV p f .V<f>{ - f <&{kVp*.n (2.2.14)
Jtl J dCl

where Q and dQ. denote the domain and the domain boundary respectively, n denotes

the outward unit normal and 3>f is the ith fine grid basis function. Correspondingly, on

the coarse grid the m th residual corresponding to pf is

r‘m = f k V p > .W m - f Vmk V p f .n (2.2.15)
J n J dfi

where is the m th coarse grid nodal basis function. Using (2.2.8) we have

rcm = y '< 4 m) (f kV p f.V ® ! - f O fkV p 1.n) (2.2.16)
\ J n JdCL J

which by (2.2.14), gives

rcm = ' £ a t)r{. (2.2.17)

Restriction 60

C h a p t e r 2 T w o G r i d M e t h o d

In matrix form we can write

r c = R rf (2.2.18)

where r c and denote the vectors with components and r{ respectively. The

rectangular matrix R is given by

R mj = a'",) (2.2.19)

with the coefficients o f 1 given by (2.2.9) above. Again there is no dependence on the

coefficient k.

Finally, by comparing the definitions of the prolongation and restriction matrices, i.e.

(2.2.13) and (2.2.19), we see tha t

R = P t . (2.2.20)

From a computational point of view this has obvious advantages; only the prolongation

matrix needs to be calculated thus halving both the calculations required and the storage

requirements for this one off calculation. Standard NAMMU routines exist to perform

the majority of the above calculations, so in the NAMMU environment implementing

this approach is relatively simple. In addition, when the two grid iteration is used as

a preconditioner for the conjugate gradient method (§2.4), the choice (2.2.20) ensures

that the preconditioning matrix is symmetric, which is im portant to ensure tha t the

resulting method will converge, see [38, §10.3]. In Hackbusch[43, §3.6], this relation

between R and P is discussed, in a more abstract form, and is called the “canonical”

choice for a finite element method. The idea of using the weak form of the pde to define

the restriction matrix, which links the residuals on the two grids, is well known, see for

example [31].

2.3 Different sm oothers on a model problem

The overall philosophy of the two grid method, and multigrid methods in general, is

well known (see [19, 43, 24]) and so we merely sketch the main points which are relevant

to the convergence of the two grid method. In order to provide an efficient solution

procedure the smoother and coarse grid solver must work in tandem. For theoretical

2.3. DIFFERENT SMOOTHERS ON A MODEL PROBLEM 61

C h a p t e r 2 T w o G r i d M e t h o d

purposes only, consider an expansion of the error in a fine grid solution, x t- say, of the

form ATj
e i - x — x,- = ^ 2 a\J\ j (2.3.1)

3=1

where Vj are eigenvectors of A j, corresponding to eigenvalues Xj(X\ < A2 < ... < A ^) .

As a rough classification, the error components, cx^\ for j = 1, ...,A C are termed the

“low frequency” components, and for j = N c + 1 ,..., N f they are the “high frequency”

components. (Recall th a t for a typical 2D problem we will have N c « \N j) . Now, the

hope is tha t the smoothing iteration should damp out the high frequency errors, while

the coarse grid correction should reduce the low frequency errors. However, as is seen

by the simple example in [43, p27] and §2.3.1 given below, the coarse grid correction

step also redistributes the error over all frequencies. We see this effect clearly in a

computational modal analysis on a model problem later in §2.3.5.

Recall tha t for our smoothers we only consider iterative methods tha t are based on

matrix-vector multiplications. This leads to the four choices: Richardson iteration,

gradient method, conjugate gradient method and conjugate residual method. For each

of these methods a diagonal preconditioning is also applied. For more details on these

iterative methods see [38, 44].

In order to understand the convergence properties of stationary smoothers it is common

to examine the reduction on each eigenmode, or frequency, of the error, see Hackbusch

[43, §2.4], For example, the following simple analysis gives the best choice of damping

for the Richardson method on a 2D problem. Define the damped Richardson method

as:

x t+i = X,- + w (b - Ax,-), (2.3.2)

now, by writing the error as in (2.3.1) we can write the error component in the j th

eigendirection after one Richardson step as

«S+i = (1 - w A > ! j) .

With the need to smooth high frequency components in mind, we require tha t |1

be minimised for all those eigenvalues in the fine grid component range, which, for the

2.3. DIFFERENT SMOOTHERS ON A MODEL PROBLEM 62

C h a p t e r 2 T w o G r i d M e t h o d

2D problem, is taken to be approximately

< Xj < XN

corresponding to the high frequency range of eigenvectors (when N c ~ | Nf) . We deduce

th a t the best choice for u> is

^best = TT • (2.3.3)
5A^

For the theoretical modal analysis to be useful for general matrices and other smoothers

it is best if simple expressions for the eigenvectors are known. In §2.3.1 we discuss,

for completeness, the standard approach to analysing the convergence of the two grid

method on a model problem, where these expressions are known. However, for the ma

trices derived from the FEM with biquadratic basis functions over 9 node quadrilaterals

simple expressions are not known. In general theoretical analysis of the non-stationary

smoothers is not easy and it is difficult to interpret the results in a helpful way. Hence

the “computational modal analysis” in §2.3.5 is used to compare the four smoothers

discussed here.

2 .3 .1 T h eo re tica l M o d a l A n a ly s is

From the literature there appears to be two main approaches to the analysis of the

convergence of the two grid method or TGM. However, the common s ta rt point is to

consider the idea of an iteration matrix, th a t is, we look for a matrix M such th a t

em+1 = M em (2.3.4)

where em is the error at the m th step.

By re-arranging (2.2.7) the TGM iteration can be equivalently written in the form of

(2.3.4) by

M tgm = M tg m M = S ^ I - P A ~ l RAj) (2.3.5)

which represents a coarse grid correction followed by the application of ju smoothing

steps. Note tha t a different, but related method, can be produced by considering the

Theoretical Modal Analysis 63

C h a p t e r 2 T w o G r i d M e t h o d

reverse of this, that is p smoothing steps, followed by a coarse grid correction, this gives

the alternative form

Mtgm = M tg m M = (I - P A ~ 1R A j) S \ (2.3.6)

For simple problems and stationary smoothers it is then possible to compute p(M TGM),

the spectral radius, giving an exact convergence rate, this will be done later for a simple

model problem in §2.3.2. For harder problems and for non-stationary smoothers, this

is less easy.

It is here that the literature differs slightly, Hackbusch[43, 44] analyses the convergence

by writing (2.3.6) in the form

M tgm = [A / S ^ A p - PA -^R] (2.3.7)

and then

II M tGM ||< || A ,S “ || || A J 1 - P A ~ l R || . (2.3.8)

The two expressions on the right hand side are then estimated separately, the idea

being tha t it is easier to form these estimates individually than to analyse the whole

expression. The factor || A j 1 — P A ~ 1R || is referred to as the approximation property,

whilst || A jS ^ || is referred to as the smoothing property. More details on these ideas,

and some estimates of these properties for a number of model problems, are given in

Hackbusch[43, §6.1-6.3].

In contrast Bank and Douglas[19] try to estimate convergence by analysing how the

smoothing iteration complements the coarse grid correction step. If it is assumed that

the coarse grid essentially removes all the low frequency errors then any work done by

the smoother on these errors is extra work. The effectiveness of the smoother is then

considered by examining how it performs on the error components not touched by the

coarse grid. If this can be done it leads to a much sharper estimate of convergence rate;

however, in general, it is hard to calculate these estimates, see §2.3.4.

Theoretical Modal Analysis 6 4

C h a p t e r 2 T w o G r i d M e t h o d

2.3.2 R ichardson iteration - A nalysis for a m od el problem

As mentioned earlier in §2.3.1 the “ideal” approach to analysing convergence of the two

grid method would involve estimating the spectral radius of the iteration matrix Mtgmj

quite straightforward fashion.

Wc shall now consider the use of the two grid method with Richardson iteration as a

smoother on the following model problem

with Dirichlet boundary conditions, r(0) = w(l) = 0. The fine grid is assumed to be

uniform and has h = 2-1 -/, where / is some positive integer, hence Ay, the number of

nodes on this grid, is given by Ay = ^ — 1 and is clearly an odd integer.

The coarse grid will be assumed to have twice the grid spacing of the fine grid, i.e.

hc = 2hy, so tha t N c is also odd. Using aFEM discretisation, with linear basis functions,

gives the matrix problem

for the fine grid.

For the following analysis we require the eigenvalues and eigenvectors of the fine and

coarse matrices from (2.3.10), so put

with A as Ay and Ac for the fine and coarse grid respectively. These eigenvectors have

given in (2.3.5). For model problems on uniform grids this can often be performed in a

- u " (x) = f (2.3.9)

2 - 1

- 1 2 - 1

x = b (2.3.10)

- 1 2 - 1

-1 2

V* = V%h {sin(ijirh))y=1, for i = 1,.., A (2.3.11)

Richardson iteration - Analysis for a model problem 65

C h a p t e r 2 T w o G r i d M e t h o d

corresponding eigenvalues given by

Aj = Ah~1sin 2{i'Khj2). (2.3.12)

From this formulation it is now possible to give a convergence analysis for the TGM

using Richardson iteration, with diagonal preconditioning, as a smoother.

In order to find an estimate for the convergence rate of the TGM the standard method

proceeds in the following way: begin by writing the damped Richardson iteration matrix

as

S = I - u D - 'A f (2.3.13)

and the usual damping coefficient for this problem is to take [43, §3.2]

u = (2.3.14)

Note tha t an argument similar to th a t in §2.3 would suggest the best choice is given

by u) = 2/3, since in this case the maximum eigenvalue is bounded by 2. However, the

choice (2.3.14) does give an error reduction in the high frequencies of a t least 1/2 per

Richardson step and also greatly simplifies the following analysis.

Now, by constructing unitary transformation matrices Q j and Qc by a suitable ordering

of the eigenvectors (2.3.11), as follows

Qj = [V 1 1 VNf , v 2 , ^Nf-1 , •••» v ^ c , v JNf+1_Nc, v ^ c + 1] (2.3.15)

and

Qc = K ,v ^ , . . . ,v ^ c_1,v^rJ . (2.3.16)

Now define the similarity transformed matrices,

^ tg m = Qj 1-^tgmQ/5 S = Q j 1S Q f , A j = Q j lA jQ f ,

A c = Q ; 'A CQC, P = Q J1P Q C, R = Q ;1R Q ,

these matrices can be shown to have diagonal block structure, see [43, p26], and hence

Richardson iteration - Analysis for a model problem 66

C h a p t e r 2 T w o G r i d M e t h o d

the analysis of the iteration matrix (2.3.5) can be reduced to looking at the following

set of sub-matrices:

A (t) = 4hJ1
5? 0

0 cj
(1 < t < N c), A [jNc+1) = 2 k]1

S {t) = I - \ h 7 'A ? =
c; 0

(1 < t < N c), S {Nc+1) = I

R (t) = V2 c? - * t

II

c2c t

_

A f II 00

°
1

Ls 2c 2 (1 < t < N c + 1) ,

, (1 < t < N c)

(2.3.17)

(2.3.18)

(2.3.19)

(2.3.20)

where we define

2 . 2 I tTrhf\ 2 2s: = sin c: = cos

Hence we combine (2.3.17 — 2.3.20) with (2.3.5) to give the blocks for the TGM iteration

matrix as

^TGM —

1cswC'J
i

c2 0

c2 c2

1

o
i

(2.3.21)

The first matrix corresponds to the coarse grid correction and the second to fi steps

of the smoothing process. Recall tha t these 2x2 matrices were constructed such that

complementary high and low frequency errors were grouped together (see equations

(2.3.15) and (2.3.16)). It is clear from this th a t the coarse grid correction step has the

effect of averaging the error components corresponding to these complementary high

and low frequency errors, whilst also reducing both in magnitude. In §2.3.5 this effect

will be demonstrated more clearly.

The overall convergence rate of the TGM iteration can now be estimated by the largest

spectral radius of the matrices given by (2.3.21). For varying n we find, see [43, Thm

2.4.4], tha t p(M TGM) has an asymptotic behaviour of approximately cx/fi for large /z,

where Ci = 1/e « 0.3679, hence the iteration will indeed converge.

Richardson iteration - Analysis for a model problem 67

C h a p t e r 2

2 .3 .3 G ra d ien t m e th o d

T w o G r i d M e t h o d

The gradient method is based on the idea of minimising the error in a certain direction.

These “directions” being often referred to as search directions. For the standard gradient

method the residual vectors are taken as the search directions and the iteration proceeds

as follows:

x m+i = x m + a rm (2.3.22)

where rm = b — Ax.m. The optimal coefficient a can be calculated exactly in terms of

the residual vector, rm and Arm, see [44, §9.2].

It is im portant to note tha t, applied as a solution technique to a linear system, the

gradient method will converge at least as fast as Richardson’s method with optimal

damping. This is a consequence of the fact th a t the optimally damped Richardson’s

method has a convergence rate given by

^ m a a r (-d .) ~ ^ m i n (^) ~ 1 / n o

^max{A) + ^m»n(A) K(A) + 1

where «(A) is the condition number of the matrix A. The convergence rate given by

(2.3.23) is precisely the same as that for the gradient method, see [44, pp252-253]. For

this reason it is perhaps to be expected tha t Richardson’s method (see §2.3.2) as a

smoother is quantitatively the same as for the gradient method.

2 .3 .4 C o n ju g a te G r a d ien ts and C o n ju g a te R e s id u a ls

Analysis for these methods, even in the simple Id problem case, is by no means straight

forward, primarily due to the fact that they are non-stationary methods. An attem pt

to produce an analysis along the lines of tha t given for Richardson’s method in §2.3.2

soon becomes very unwieldy and generally unhelpful if more than a handful of steps are

considered.

Some attem pt at producing a theoretical framework for the convergence of these meth

ods has been done by Bank and Douglas[19]. Although the theory and approach consid

ered there is of some theoretical interest, it is, however, difficult to see how this approach

Gradient method 68

C h a p t e r 2 T w o G r i d M e t h o d

applies in a useful practical way to any general problem. They consider the case where

the initial error is written as e 0 = Z n li civ »? where v* is an eigenvector corresponding

to an eigenvalue A,-. Then the error after m steps of the CG method can be written as

em = E i l i CiVipm(Xi) where

m

PmW = I I (1 - 7i ' l i)> (2-3 '24)
j = l

and the Tj lie in (0,1]. Bank and Douglas then give the following theorem

T h e o re m 2.3.1 (cf. T h eo re m 11 o f [19]) Suppose there exists k > 1, independent

of j , such that for u £ M f _ x fl M j ,

II « ||o< k 1/2 || it || .

Let S GG be generated by the conjugate gradient algorithm. Then

||C1/2(,SSg (C1/ 2W)) | |< 7 c g II H I ,

where

7 c g = £1/2 f (m , 1/2),
P m (t) , P m { 0) = 1

and f (m , 1/2) = supi6[01] \tll 2pm(t)\.

In this theorem k represents the generalised condition number of the matrix A and

the smoothing matrix, somewhat analogous to computing the condition number of the

preconditioned m atrix M -1A in a preconditioned iterative method setting (cf. equation

(1.6.20) of chapter 1). In this case the condition number is computed in the subspace

orthogonal to the coarse space. The notation Al j represents the finite dimensional

subspace corresponding to the jfth level of a sequence of discretisations, ie for the two

grid approach j — 1 would represent the fine grid and j = 0 the coarse grid. Finally S CG

and C represent the action of the CG smoother and the coarse grid solve respectively.

It is unclear how the coefficient 7cg would be computed in a practical situation, since

the polynomial pm in (2.3.24) would depend on both the matrix A and the right-hand

Conjugate Gradients and Conjugate Residuals 69

C h a p t e r 2 T w o G r i d M e t h o d

side of the linear system problem. For this reason the usefulness of this theorem is

limited.

We can, however, give a heuristic argument about the effectiveness, or applicability, of

these methods as smoothers for the TGM. First write the error after m steps of CG as

e m = x m — x = QVi, (2.3.25)
i

for some unknown c*, which are assumed to have approximately the same order for each

i.

Now, each successive step of CG minimises the error in the A-norm, given by

II em II A = eZ A em = G - v fA C j V i = ^ C -At . (2.3.26)
i i

Clearly there is an inherent bias towards large eigenvalues in the minimisation of

(2.3.26). So applying CG when the error is such tha t c, « Cj V*,y, will correspond to

damping the larger eigenvalue components more than the low eigenvalue components.

This is precisely the effect we would desire from a smoother.

For the conjugate residual method the error is minimised with respect to the A2-norm,

so tha t (2.3.26) becomes

II em ||A*= em AAem = c*vf AAciVi = c-A-. (2.3.27)
i i

This potentially gives an even greater bias towards the high frequencies and so we might

expect this method to be even more effective in the two grid setting.

In the simple model problem case examined in §2.3.5 we do indeed see th a t the conjugate

residual method is marginally more effective. However, for the larger problems discussed

in §2.6 the conjugate residual method is found to be no better, in term s of computational

time, than the conjugate gradient method.

Conjugate Gradients and Conjugate Residuals 70

C h a p t e r 2 T w o G r i d M e t h o d

2 .3 .5 C o m p u ta t io n a l M o d a l A n a ly s is

To try to gain some understanding of the performance of the smoothers th a t we have in

troduced we shall now consider a discretisation of (1.2.3), over a rectangular 2D domain

with constant k (hence (1.2.3) reverts to Laplace’s equation, V 2p = 0). We construct

a uniform mesh of quadrilaterals and use biquadratic basis functions such tha t the fine

grid problem has 1056 degrees of freedom and the corresponding coarse grid problem has

289. The NAMMU code was used to generate the fine and coarse grid stiffness matrices.

For a fine grid problem of this size we can compute both the exact solution, using the

direct solver, and all the eigenvectors and eigenvalues of the fine grid stiffness matrix.

Hence we can explicitly calculate the error components in the expansion (2.3.1). This

is useful because, as was said earlier, it is not possible to carry out a modal analysis

along the lines of [43, p25].

In order to see the distribution of error over the entire eigenspectrum we plot the

modulus of the coefficients against the eigenmode number j , though in order to

improve readability and understand better the qualitative features of the results we

group the error components in sets of 5 and plot the maximum modulus in each

set. More precisely we plot the sequence

where k runs from 1 to [Nj j 5] + 1.

In figure 2-1 we plot these maxima, on a log scale, after one coarse grid correction.

The continuous line gives a qualitative idea of the distribution of the maximum error

components over the entire frequency range.

To show how the iteration proceeds for each particular smoother, four TGM steps are

performed, each with five smoothing steps. For the Richardson method the damping

coefficient given by (2.3.3) is used. In figures 2-2 - 2-5 we compare the smoothers, each

figure having the same structure, namely: writing v as the TGM step number, on the

first row the error distribution is shown after:

(a) A coarse grid solve

a*k = max{|a|,(0 I
5 (J f c - l) + l b ' • (2.3.28)

Computational Modal Analysis 71

C h a p t e r 2 Two G r i d M e t h o d

2

1

oo

bJO

1

-2

■3
50 100 150 200

k

Figure 2-1: Plot of maximum components, a*k (see (2.3.28)), in the error expansion
(2.3.1). Note that 1 < k < 212 corresponds to a fine grid with N f = 1056.

(b) one smoothing step (p = 1)

(c) three smoothing steps (p = 3)

(d) five smoothing steps (p = 5)

The second, third and fourth rows then show the maximum error components after two,

three and four TGM steps.

As predicted, in figure 2-2 we see that the damped Richardson method is indeed success

ful at reducing the high frequency error components well. It is also clear from this figure

that the coarse grid correction step reduces the error over the coarse grid frequencies

but also redistributes the error over all the frequencies.

Figure 2-3 shows the effect of using the gradient method. Comparing this with the

previous Richardson figure it can be seen that there is little difference. However, as

already mentioned, this is not surprising since the gradient method has a convergence

rate very similar to that of the optimally damped Richardson iteration.

From figures 2-4 and 2-5, it is clear that both CG and CR are greatly superior to

either the Richardson or gradient smoother, for this simple problem at least. Also the

Computational Modal Analysis 72

C h a p t e r 2 Two G r i d M e t h o d

a*k after
coarse solve

o
V = 1 -2

-4

V = 2

200

200

v = 3 _2
-4

2
„ 0^ = 4 _2

-4.

200

200

p = 1

o

-4,----------

0

-4

p = 3

10 2 0 0 c1 200 0

|Hw\
-4 I----------

2
0

-2
-4rv

2

2 *

0 200 (> 200 ^ 0

CM
O

CM
r

j

2
0
-2
-4P\A 1

0 2 0 0 (3 2 0 0 0

2

0 2 0 0

2
0

-2
A3 200

_______^
J

o
CM

O
OJ

^

p — 5

200

200

200

200

Figure 2-2: Computational Modal Analysis with Richardson Smoothing, with axes as in
figure 2-1 (so that the horizontal axis actually runs from k = 1 , . . , 2 1 2 ^ .

v = 1

ac*k after
coarse solve

2
p = 1 p = 3 p = 5

_ o K ^ « f V n
.4L--------- _4L---------- A-------- A— J * -
0 200 0 200 0 200 0 200

,=2 jpn ĵ *v -t*V
4° 200 4° 200 4° 200 4° 200

v = 3

200 200 200 200

v = 4

200 200 200 200

Figure 2-3: Computational Modal Analysis with Gradient Smoothing, with axes as in
figure 2-1 (so that the horizontal axis actually runs from k = 1 , . . , 2 1 2 ,1 .

Computational Modal Analysis 73

C h a p t e r 2 Two G r i d M e t h o d

a*k after
coarse solve

v = 2

i/ = 3

v = A

200

200

200

0 200

p = 1

rvi
0 200

200

0

200

200

p = 3 p = 5

-4
0 2 0 0 4 ° 2 0 0

CM CVJ
O

CVJ
^

1

1

0 2 0 0

2
0

0 2 0 0

2
0

0 2 0 0

2
0

- 2

0 2 0 0

2
0

- 2_4Ik ,»>, ...
0 2 0 0

0 2 0 0

Figure 2-4: Computational Modal Analysis with Conjugate Gradient Smoothing., with
axes as in figure 2-1 (so that the horizontal axis actually runs from k = 1,.., 212,1.

<
co<

- JA

after
irse solve

0

p = 1 p = S

N v n I

p = b

. . . |
4

3 200 "c

J|
> 200 ’° 200 ’(

* N n I k ^ 1
3 200

V v w f
-4c

2
o 0^ = 3 _2

-4c

3 200 4(

2
0

•TW/lrV ̂ -2

3 200 c

3 200 ^

2
0

-2

3 200 (

3 200 "c

2
0

i
3 200 c

3 200

3 200

v = 4
2 2 2 2
0 0 0 0

-2
-4 dMMA-i ju _4 ^ — i

200 200 200 200

Figure 2-5: Computational Modal Analysis with Conjugate Residual Smoothing, with
axes as in figure 2-1 (so that the horizontal axis actually runs from k = 1 , 2 1 2

Computational Modal Analysis 74

C h a p t e r 2 Two G r i d M e t h o d

conjugate gradient and conjugate residuals show little apparent difference. Comparison

of the final few pictures indicate tha t the conjugate residual smoother has performed

slightly better than the conjugate gradient smoother.

These results are presented purely in terms of iterations, which is potentially mislead

ing since the CG and CR methods require more work per iteration than either the

Richardson or gradient method. Later results in §2.6, on a problem from a realistic rock

structure, will demonstrate tha t this extra work per step is well worth the effort.

For this model problem at least, whilst all the smoothers work, the CG and CR

smoothers are easily the most effective, converging significantly faster than either the

Richardson or gradient method. For problems with k not a constant we would reason

ably expect the C G /C R methods to be even more effective than the Richardson/gradient

methods, since the C G /C R methods are more adaptive in their suppression of the error

components.

2.4 Preconditioned Conjugate Gradients

As discussed in chapter 1, simple diagonal preconditioners of CG fail to give an adequate

rate of convergence for the physical problem discussed in this thesis. Hence a more

natural idea is to use a preconditioner th a t encapsulates more of the features of the

underlying pde. One way this can be achieved is to use the TGM as a preconditioner

for the CG method. This method is quite widely used in the literature, see for example

work by Kettler [63] and Braess [23].

Use of the TGM as a preconditioner can be examined by rewriting the TGM iteration

from (2.3.5) as

W t g m (x * + i - x d = b - A/x,-, (2.4.1)

where

M tgm — I ~ W^tgmAu (2.4.2)

The matrix IFtgm is then the preconditioner used for the CG method. In order to ensure

th a t the preconditioned CG method is guaranteed to converge we require th a t JFtgm

2.4. PRECONDITIONED CONJUGATE GRADIENTS 75

C h a p t e r 2 Two G r i d M e t h o d

is both symmetric and positive definite. This symmetry condition can be achieved by

the choice of P and R in §2.2 and by using pre- and post- smoothing steps, and S%

constructed such that = (S%)T- The TGM iteration m atrix can be guaranteed to be

positive definite by requiring th a t the two grid method converges in its own right. This

follows from Hackbusch[44] where a result of the following form is given

Lem m a 2.4.1 (cf. Lem m a 10.7.1 o f [44]) Assume the the two grid iteration is a

symmetric process. Then if the iteration converges, it converges monotonically with

respect to the energy norm || . ||Af , and the corresponding iteration matrix (cf. (2.4-1))

is positive definite.

P ro o f See Hackbusch[44, p351]. □

The usual preconditioning step for the CG algorithm involves solving

M z k = rk

for z*:, where M is some preconditioning matrix and r* is the residual at the kth step,

see [38, §10.3]. For the TGM preconditioning this is replaced by applying one step of

the TGM, i.e. as given in the steps (2.2.1 - 2.2.5), applied to the problem

Af z k = rk

with an initial guess of zjj.0̂ = 0 (see [63]).

In our numerical experiments a single step of diagonally preconditioned Richardson’s

iteration is used for each of the pre- and post-smoother steps. By writing this Richardson

step, for solutions of Ax = b, as

x t+1 = Xj -f- loD~^ (b - A f Xi) (2.4.3)

it is now possible to write down an exact iteration matrix for the preconditioning step

such tha t we can later analyse the effect of this preconditioning on a model problem.

S tart with

4 0) = 0 (2.4.4)

2.4. PRECONDITIONED CONJUGATE GRADIENTS 76

C h a p t e r 2 T w o G r i d M e t h o d

the pre-smooth step becomes

4 1} = 4 0) + - Af z i°}) = u D - 'v k (2.4.5)

the coarse solve step is given by

4 2) = zik] + Af Z {̂)

= (u D - 1 + PA~c l R - u P A - ' R A j D - 1) ^ (2.4.6)

and the post-smooth step is

4 3) = 4 2) + ^ _1(r - t - ^ / 4 2))

= {uD~l + P A - ' R - u P A ~ 1R A f D~1 + w Z T 1 - lj2D ~ 1A j D~1

- w D - ' A j P A - ' R + r f D - ' A j P A - ' R A j D - 1) ^ . (2.4.7)

Note that = z*, now collecting terms in (2.4.7) gives

M " 1 = 2 uD~l + P A ^ R - ^ D - ' A f D ' 1 +u>2D - lA f P A cR A j D ~ l

— (u)PA~1R A j D ~ 1 + u D ~ l A f P A ~ l R) (2.4.8)

and since P = R T and both A j , A c are symmetric this implies

(M~ l)T = M ~ l

with positive definiteness being assured by the convergence of (2.4.3) and lemma 2.4.1.

We next use the formulation (2.4.8) to analyse a simple model problem.

2 .4 .1 C o n v erg en ce a n a ly s is

It is known tha t with no preconditioning conjugate gradients converges a t a rate con

trolled by the condition number of the matrix (see §1.6.3). Using a symmetric positive

definite preconditioner M then gives a method tha t has a convergence rate dependent

on the condition number of the preconditioned system M ~ 1/2A M ~ 1/2, which is given

Convergence analysis 77

C h a p t e r 2 T w o G r i d M e t h o d

by the maximum and minimum eigenvalues of M A.

For the simple ID model problem, discussed in §2.3.1, and using the same unitary

transformation ideas, it is possible to give some indication of the effectiveness of using the

TGM as a preconditioner by examining the condition number, k, of the preconditioned

matrix, i.e. Xmax(M~ 1 A) / Xmin(M~ 1 A) . Our analysis will be based on estimating the

condition number of the matrix preconditioned by a single TGM step.

Using precisely the same transformations as in §2.3.2 we obtain the same blocks for the

matrices P , R, A / and A c, again with

sf = sin2(twhf /2), c2 = cos2(tirhf/2)

as before. Now substitute the blocks from §2.3.2 into (2.4.8), and collect terms, to give

the blocks of M -1A as

cf + s} + sfcf - c f s f

- s f c f sf + cf + sfcf

for 1 < t < N c

and

To estimate

r _ i ^ __ ^ m a x (- ^ f A 'j
k (M ~ A) =

Xmin(M ~ 1A)

we merely have to find the maximum and minimum eigenvalues of each of the block

matrices given in (2.4.9).

By re-writing the 2x2 block matrices as

cf + (l - c f) 2 + (l - c f) 2cf - c f (1 - c f)

- (1 - c f) 2cf (l - c 2) + c f + { l - c f) c f
(2.4.10)

it is easy to show tha t (1 — 1)T is always an eigenvector, with corresponding eigenvalue

Convergence analysis 78

C h a p t e r 2 Two G r i d M e t h o d

1. Bounds on the second eigenvalue can then be obtained from the sum of the diagonal

entries of the 2x2 matrix, this is found to lie in the range [|,1]. Hence the condition

number of the TGM preconditioned system is given by

= = (2.4.11)

Note that this is independent of the grid spacing parameters, hj and hc.

2 .4 .2 G e n e ra l co n v erg en ce

Using the combination of conjugate gradients and TGM can be equivalently considered

as either a TGM preconditioned conjugate gradients or a conjugate gradient accelerated

TGM. In the latter form the convergence properties of this method are considered by

Hackbusch[44, §10.8.3]. Assume for the TGM we have a convergence rate given by

< j (M t g m) < 7 < 1* (2.4.12)

From the formulation (2.4.1) and equation (2.4.2) we relate the convergence rate of the

TGM, i.e. 7 , to the eigenspectrum of the preconditioned system, i.e. W ^qMA j , by using

equation (2.4.12). This gives

1 — 7 < <t{W'ygmA j) < 1. (2.4.13)

Hence the condition number of the matrix A j preconditioned by the two grid iteration,

is given by k(Wtgm) = Since k steps of the CG algorithm give a reduction in error

of at least 2 [(>/k — \) / (yJH+ 1)]*, then the overall convergence rate is given by

2 (t § T t) = 2 7 < V (l + V r 3 7) 2 l « 2 (^ + 0 (7 2)) ‘ . (2.4.14)

On the assumption th a t 7 is small, it is clear tha t the convergence rate of the resulting

method will be at least 4 times faster than the original multigrid method. This result

is, to some extent, borne out by the numerical results presented later in figure 2-15 in

§2 .6 . 1.

General convergence 79

C h a p t e r 2 T w o G r i d M e t h o d

In §2.6 we will present results for the use of TGM to precondition CG and compare

with the TGM method discussed in §2.2.

2.5 A three grid m ethod

A natural question to ask is “would a three grid method perform better than the TGM

in these examples?” Despite the restriction on coarsening as discussed in §2.1, in our

problems it is possible th a t three grids, fine, middle and coarse, can be constructed,

giving 3 stiffness matrices denoted A j , A m, A c. In this case it then becomes possible

to produce a three grid method, which will henceforth be referred to as 3GM. We now

need two prolongation and restriction matrices, denoted R f , P * for transfers between

the fine and middle grids and R C,P C for middle to coarse grid transfers.

The extension from two to three grids is straightforward, we replace the original coarse

grid correction step, i.e. (2.2.3), with a smoothing step on the middle grid, using Am,

and a coarse grid correction step using A c. This gives a method which is often called

a V-cycle, denoting the fact th a t we move down through the grids to the coarsest level

and then back up again to the finest level. Note th a t an alternative implementation

is possible, where we perform a coarse grid correction, smooth on the middle grid,

and coarse grid correct again before transferring back to the fine grid. This version is

commonly called a W-cycle.

For the implementation used here, the same smoother will be used on the middle and

fine grids, along with the same number of smoother steps per three grid iteration. The

coarse grid solve is again performed exactly, using pre-calculated LU factors.

2.6 Numerical R esults

For the results presented here we consider a 2D groundwater flow problem for complex

geological mediums with realistic contrasts in the permeability field. Results being given

for the TGM with the various smoothers considered in §2.3, along with comparisons

with the two grid preconditioned conjugate gradient algorithm of §2.4, and finally for

2.5. A THREE GRID METHOD 80

C h a p t e r 2 T w o G r i d M e t h o d

the 3GM of §2.5. More details, including pictures of the coarse grid, with N c « 3500,

are given in chapter 1, figure 1-1, with the permeability regions being shown in figure

1-2. Actual permeability coefficients for this grid are given in table 1.1.

2.6.1 R esults for 2D exam ple

Two combinations of grids are considered to compare the effectiveness of the four choices

of smoothers from §2.3 and the TGM preconditioned conjugate gradient method of §2.4.

P roblem 2.1 Consider a 2D fine grid mesh with Nj = 58944, the coarse grid was

obtained by roughly halving the number of elements in each spatial direction, resulting

in N c = 15021 « N f / 4.

A second discretisation with an even coarser grid was also set up.

P rob lem 2.2 Consider a 2D fine grid mesh with Nj = 58944, the coarse grid was

obtained by essentially quartering the number of elements in each spatial direction, re

sulting in N c = 3827 « N f / 16.

Note tha t we expect problem 2.2 to require more overall smoother steps to produce

a solution of the same accuracy, since the coarse solution will not represent the fine

solution as well as in problem 2.1. This is confirmed by the results in figure 2-8. Further

note tha t the coarsening used in problem 2.1 represents the approach commonly used

in the literature.

All the results presented here were run on a Cray YMP. In all cases the methods are

compared to the direct frontal solver, the Harwell MA32 code, which requires 45 seconds

to produce a solution to the fine grid problem to the level of machine accuracy. This

solution is assumed “exact” and will be used to estimate the error for the iterative

methods. Where possible this direct solution time will be indicated on the graphs by a

“V ” , (see figure 2-6). The code MA32 was also used to find the LU factors of A c tha t

are needed for the coarse grid solves (see (2.2.3)). For N c = 15021, which is the case in

problem 2.1, the cost of this one-off factorisation was only 2.69 seconds. For all the runs

Results for 2D example 81

C h a p t e r 2 T w o G r i d M e t h o d

an upper limit of approximately 1400 applications of smoother steps was set, by which

we mean one step of Richardson, Jacobi, CG or CR. Inside of this limit convergence was

reasonably expected, although at this limit considerably more CPU time would have

been used than for the frontal method.

The exact solution on the fine grid is available, which means tha t a stopping criteria

could be based on a reduction in error. However, we prefer to choose a convergence

criterion more appropriate to an iterative method where the solution is unknown. To

this end our convergence criterion requires tha t

< 1(T7 (2.6.1)

where r t = b — AjXi, and D is the diagonal of the stiffness matrix A. This is one of the

simplest choices, particularly for the CG-like methods where the quantity

II | |d - i= rjD~xri (2.6.2)

is computed as a direct process of the algorithm. (For the purposes of our graphs we will

in fact plot the actual solution error, since this is available for our test problems). Note

tha t the choice (2.6.2) of convergence test is superior to just using a relative residual

convergence test, as is now discussed. Standard error analysis, see for example [7], gives

the following

" e<" < « (A) M (2.6.3)
llx ll II r 0
e t I U ^ A i n - 1 / 2 A II r * l l -D- 1< k*(D ~1/2A P ~ 1/2) t] D~ (2.6.4)
x IIa II r o IId - 1
l l e i | | ^ a / 4 J | e * I U

< i t - (2-6-5)ii-Mi IIx IU

Now combining (2.6.4) and (2.6.5) gives

I M < (2.6.6)
llX ll || To ||d- i

In addition a result in [35], shows tha t, for symmetric positive definite matrices A, with

diagonal D,

k (D - 1/2A D ~ 1/2) < k(A). (2.6.7)

Results for 2D example 82

C h a p t e r 2 T w o G r i d M e t h o d

If we compare (2.6.3) with (2.6.6) and bear in mind (2.6.7) we would expect our stop

ping test (2.6.1) to be at least as good as a test based on (2.6.3), and, depending on

the reduction in the condition number after diagonally scaling, potentially significantly

better.

From a practical point of view we would wish to stop when the relative error, i.e.

I l e . l l / II e o | | ,

had been reduced to a level comparable with the error in the FEM discretisation, see

§1.2.3. In all the cases presented here tha t converged, this level of error was in fact

reached.

R esults for the Sm oothers

For each of the smoothers we present results for three different values /i and compare

the overall solution time. Before presenting the results, we should point out th a t since

the maximum eigenvalue of the fine grid matrix, Aj , is not known a priori, the damping

coefficient u used for the Richardson method (cf. §2.3 is taken as simply 2/Ag, where

Ag is a Gershgorin estimate of the largest eigenvalue of the diagonally scaled matrix

Aj . Note th a t this choice is sufficient to guarantee tha t the Richardson method, and

hence the two grid method, will converge, since Richardson is known to converge for all

damping coefficients in the range 0 < u < (2/Amaa.) (see Hackbusch [44, pp82-83]).

Consider first the results for problem 2.1. The first thing to point out about the Richard

son and gradient method smoothers is tha t they failed to reach the convergence criterion

in all cases. In fact, as can be seen from figures 2-6 and 2-7, after an initial promising

start, subsequent convergence of the error was very slow. It is, however, of some interest

to note that the gradient method version shows very little dependence on the number

of smoother steps performed prior to a coarse grid solve.

The results for the conjugate gradient method in figure 2-8 are much more satisfactory,

the convergence criterion was met in all cases, moreover convergence was achieved in

less than one third of the CPU time required for the direct solve for almost all of the

Results for 2D example 83

C h a p t e r 2 Two G r i d M e t h o d

-2

-3
o

bioO
-4

100
CPU tim e/s

Figure 2-6: Problem 2.1 (2D): Richardson as smoother.

o

-4

100
CPU tim e/s

Figure 2-7: Problem 2.1 (2D): Gradient method as smoother.

Results for 2D example 84

C h a p t e r 2 T w o G r i d M e t h o d

o

-4

100
CPU tim e/s

Figure 2-8: Problem 2.1 (2D): Conjugate gradient method as smoother.

o

— f.i = 10
— u = 20
— fi = 40

-2

-3

4

-5

-60 10 20 30 40 50 60 70 80 90 100
CPU tim e/s

Figure 2-9: Problem 2.1 (2D): Conjugate residual method as smoother.

Results for 2D example 85

C h a p t e r 2 T w o G r i d M e t h o d

number of smoother steps tested. In addition we see a marked difference in performance

depending on the number of smoother steps used, the fi = 10 case takes nearly 30%

more time than the n = 20 case, while with ^ = 40 convergence is faster again. It is also

far more apparent from these graphs at which point the coarse grid corrections occur,

and the associated improvement that they give to the solution.

In a similar way to the conjugate gradients case, the conjugate residuals used as a

smoother, are seen to be effective, see figure 2-9. In addition the CR smoothers also show

an improved overall convergence rate for larger numbers of smoothing steps. However,

comparisons of these two methods show little apparent difference in convergence rates.

In figure 2-10 the “best” results, in terms of convergence rate, from each of the four

methods are compared. It is clear that the CG and CR smoothers are significantly better

than either of the Richardson or gradient smoothers, despite the fact that they require

more work per iteration. The indication is that relatively simple iterative methods are

incapable of solving these problems efficiently, and since the more complicated Gauss-

Seidel, SOR etc have already been ruled out, see §2.1, methods based on CG would

seem to be the natural choice. Finally note that the gradient method performs better

than the Richardson iteration, which is perhaps expected, since in our formulations

the gradient method is essentially an “optimally” damped version of the Richardson

iteration.

o

-1
— Richardson, ^ = 10
— Gradient, a = 40— Gradient

• j
\ .

-5

-6j ----------------- 1------------------1------------------1------------------1________ i________ i___________ i___________ i___________ i____________i

0 10 20 30 40 50 60 70 80 90 100
CPU tim e/s

Figure 2-10: Problem 2.1 (2D): “Best” results from each smoother.

Results for 2D example 8 6

C h a p t e r 2 T w o G r i d M e t h o d

Next consider the CG smoother for problem 2.2. In figure 2-11 we compare the results

for CG with fi = 10,20 and 40. Again the performance with ^ = 10 is very poor, indeed

in this case it now takes more time than the direct solver to converge. As for problem

2.1 it is again found that ^ = 40 gives the best performance.

o

— u = 10
— f-i = 20
— jj. = 40

•1

-2

-3

b€
-4

-5

-6
10 20 600 30 40 50 70 80 90 100

C PU tim e/s

Figure 2-11: Problem 2.2(2D): Conjugate Gradients as Smoother.

As a final comparison, working again with problem 2.1, we compare the error reduction

versus iterations, by which it is meant the number of smoother iterations, a comparison

of these results with those in figure 2-10 show very little difference, despite the fact

that both the conjugate gradient and conjugate residual algorithms require significantly

more work, in terms of scalar products, than the other methods. This is an indicator of

how much the matrix-vector multiplications dominate the overall work.

For all four of the smoothers considered here it is by no means obvious how to choose

the number of smoother steps per TGM step, for optimal convergence. Certainly for

the CG and CR cases there is a marked difference in performance between the smallest

and largest numbers. From the results presented here it would seem that choosing a

large number (// = 40) is best.

Finally, to illustrate a point made earlier in §2.1, that diagonal scaling essentially re

moves the ill-conditioning due to variations in &, we compare the results for two related

problems. The first is just problem 2.1, whilst the second uses the same grid as in

problem 2.1, but here the permeability coefficient is set to a constant over the entire

Results for 2D example 87

C h a p t e r 2 Two G r i d M e t h o d

— k ^const.
— k ^const. (no prec.)
— ■ k =const.
■••• k =const. (110 prec.)

fedO

-4

100 120 140 160

itera tions

Figure 2-12: Comparison of CG smoothing (p = 40,) on Problem 2.1(2D) and CG
smoothing on Problem 2.1 (2D) with k constant on entire domain. Unless otherwise
stated diagonal preconditioning is used for the smoothing steps.

region. For both these problems TGM with 40 steps of CG smoothing are used to

obtain a solution. Results in figure 2-12 show relatively little difference in convergence

of the two problems, as was expected. Note that, for completeness, this graph also

shows the convergence of both problems, with no diagonal preconditioning used. It is

also clear from this that use of diagonal preconditioning for the smoother is vital to the

convergence of the overall method.

TGM preconditioning (cf. §2.4)

First consider problem 2.1. For comparison purposes the results for the best CG

smoothed TGM are also plotted, see figure 2-13. The CG smoothed code is clearly

more effective, although it should be borne in mind that this is for the “best” choice

of number of smoothing steps, which is not something that can be predicted prior to

running the code. For comparison purposes again recall tha t the direct solver takes 45

seconds to solve the problem, and a V is used to denote this direct solver time on the

graphs.

In figure 2-14 the results for problem 2.2, which has the less refined coarse grid, are

given. Again we find that the CG smoothed TGM algorithm is far superior.

Results for 2D example 8 8

C h a p t e r 2 T w o G r i d M e t h o d

— TGM PCG
— CG, n = 40

-4

C PU tim e /s

Figure 2-13: Problem 2.1 (2D): Comparison of TGM preconditioning and CG smoothing.

o

— TGM PCG
— CG, p = 401

•2

-3

b£)
-4

-5

-60 5 10 15
C PU tim e /s
20 35 40 45 50

Figure 2-14: Problem 2.2(2D): Comparison of TGM preconditioning and CG smoothing.

Results for 2D example 89

C h a p t e r 2 Two G r i d M e t h o d

o

— TGM PCG
— Richardson1

•2

•3

-4

-5

-60 50 100 150

Iterations

Figure 2-15: Problem 2.1(2D): Comparison of TGM preconditioned CG and Richardson
smoothing.

It should be noted that for both these examples the convergence does become quite

slow in the later stages, perhaps indicating that this method is not so robust as the CG

smoothed TGM.

Finally in figure 2-15 a comparison of Richardson smoothed TGM, together with CG

preconditioned by the same Richardson smoothed TGM is made. In this cases one step

of pre-smoothing and one step of post-smoothing is used. The figure shows a plot of

error versus iteration count and we do indeed see a speedup of at least 1/4 as predicted

by the result from Hackbusch[44, §10.8.3].

2.6.2 A three grid m ethod

We finally consider the performance of the 3GM on the 2D problem. As for the TGM,

performance of the method is tested for a number of different smoother steps. The

following combination of grids is used to test the code.

P r o b l e m 2 . 3 Consider a 2D fine grid mesh with N j = 58944, the middle and coarse

grids were obtained by essentially halving the number of elements in each spatial direc

tion, resulting in N m = 15021 « Nf / 4 and N c = 3827 « N f / 16.

A three grid method 90

C h a p t e r 2 T w o G r i d M e t h o d

For the results considered in this section, CG is used as a smoother both on the fine

and middle grid. In addition the same number of smoothing steps is used on each of

the grids.

o

— /! = 10
— Li = 20
— p = 40

n = 80

•1

-2

2
-3

-4

-5

-60 10 20 30 40 50 60 70 80 90 100
CPU tim e/s

Figure 2-16: Problem 2.3(2D): 3GM, with conjugate gradient smoother.

— TGM, a = 40
— 3GM, fi = 20

-2

-4

CPU tim e/s

Figure 2-17: Problem 2.3(2D): Comparison of TGM and 3GM, with conjugate gradient
smoother.

In figure 2-16 we compare 10,20,40 and 80 steps of CG smoothing. It is clear that, as

in the two grid case, each of these cases converges in less time than the direct solver

requires to solve the problem exactly. For this particular problem 20 steps seems to give

the best convergence.

A three grid method 91

C h a p t e r 2 Two G r i d M e t h o d

In figure 2-17 we compare the convergence of the TGM and the 3GM. The TGM is clearly

faster than the 3GM, converging in 74% of the time required by the 3GM. However,

the 3GM shows less of a tendency to “tail-off” at the later stages of convergence, this

is clearly an im portant issue. It is possible th a t there are problems for which the TGM

stops converging at all, but the 3GM can still solve well.

2.7 A non-sym m etric extension

Finally in this chapter we very briefly examine a modification of the two grid approach

to a non-symmetric problem. This arises from a problem first mentioned in §1.2, which

involves modelling radionuclude transport in a saturated medium. Unlike the previous

case of groundwater flow in a saturated medium this does not produce a symmetric

linear system, as we now indicate.

In the steady-state case the nuclide concentration, N a , is modelled by the following

equation

V .(q N a) — V.(<^DaViVa) = —\ a(f>RaN a + Aa_i (j>Na_i + <j>fa . (2.7.1)

Here R a and Aa are constants, (f> and f Q are functions of position, and D a is a function

of position and the Darcy velocity q. In a normal situation the Darcy velocity q will be

obtained after an initial steady-state calculation of the pressure, using the groundwater

flow model discussed in §1.2, (c.f equations (1.2.2) and (1.2.3)). Note th a t solutions of

the pressure equation form the primary goal of the work in this thesis.

A finite element discretisation of equation (2.7.1) would give rise to a linear system, with

a non-symmetric stiffness m atrix because of the V.(qiVa) term. It is clear that, apart

from the smoother we use, the two grid method does not rely on the stiffness matrix

A being symmetric, and so the coarse grid correction step, as outlined in §2.2, would

proceed exactly as before. Note tha t the techniques for computing the prolongation and

restriction are unchanged, since (2.7.1) is linear.

In order to use a two grid approach to solve the linear system we need to consider a

smoother appropriate for non-symmetric matrices, with preferably the high frequency

2.7. A NON-SYMMETRIC EXTENSION 92

C h a p t e r 2 T w o G r i d M e t h o d

damping properties th a t we desire from a smoother. The first option is to apply CG to

the normal equations, th a t is

ATAx = A t b.

Clearly this linear system is now symmetric, so the convergence properties of CG now

apply. Based on our experience in the symmetric case we would again advocate the use

of diagonal scaling as a preconditioner. Hence by writing D as the digaonal of A, we

therefore apply CG to the problem

D - xATD~ lAyL = D~ 1ATD~ 1b.

It is well known th a t using CG on the normal equations may not give very satistactory

results, since the condition number of ATA can be very large. However, as we have

seen in the symmetric case, it is not a strict requirement th a t the smoother converges

very well in order for the two grid method to be effective. Further options would be to

consider other “matrix-free” iterative methods tha t can be applied to a non-symmetric

system and use them as a smoother. For example Bi-CG [34], or GMRES [80], although

clearly CGN is one of the simplest methods.

2 .7 .1 R e s u l ts

We briefly test the two grid method with CG on the normal equations (CGN) for a

very simple model problem, arising from (2.7.1), on a uniform mesh. We test the TGM

with both 20 and 40 smoother steps per two grid iteration. This problem features 3600

degrees of freedom, and as usual the coarse grid is obtained by halving the number of

elements in each spatial direction, resulting in N c « 900. For comparison purposes we

also show results for both the Bi-CG method of Fletcher[34] and CGN, where these

iterative methods are applied as solutions techniques in their own right. At this stage,

since we are only testing small problems, the interest lies in whether the overall method

works effectively, hence we present the results in terms of iterations. From the experience

in the symmetric problems, it is clear tha t much larger problems than these would be

needed to see the iterative method taking less CPU time than the frontal method.

Results 93

C h a p t e r 2 T w o G r i d M e t h o d

o

— TGM, ll — 20
— TGM, p = 40
-•B i-C G
•••• CGN

■1

-2

-3

-4

-5

-6

-7

0 20 40 60 80 100 120 140 160

itera tions

Figure 2-18: Simple nonsymmetric model problem with TGM (with a CGN smoother),
Bi-CG and CGN.

In figure 2-18 we compare TGM, Bi-CG and CGN. It is clear that the TGM, with the

smaller number of smoother steps has the fastest convergence rate. Although CGN does

not appear to converge at all, it does in fact finally converge, but only after nearly 3000

iterations. Bi-CG would appear to competitive with TGM, although the convergence

does tail off dramatically at the end.

We finally note that a small number of experiments, again using TGM with the CGN

smoother, were performed on a larger, more difficult problem, arising in this case from

the Jacobian formulated from applying Newton’s method to a nonlinear pde. It was

found that the convergence of the two grid method was very slow, although it was

unclear exactly what the effect of the Newton iterations was on the overall method. In

this case it is believed that a more effective smoother is needed to solve the problem,

perhaps Bi-CG or GMRES.

2.8 Conclusions

For FEM discretisations of (1.2.3), where the grid is highly non-uniform and the coeffi

cients k are discontinuous, the two grid approach with conjugate gradients as a smoother

is an effective method. For the 2D problem a large number of smoother steps, would

2.8. CONCLUSIONS 9 4

C h a p t e r 2 T w o G r i d M e t h o d

seem to be the best choice.

For the large 2D problem considered here, with nearly 60,000 degrees of freedom and

run on a Cray YMP, the two grid method with a conjugate gradient smoother gives a

solution in less than 30% of the time taken by the MA32 direct solver (over 3 times

faster). In addition using a two grid method to precondition a conjugate gradient

method, whilst giving a method th a t converges, uses about twice as much CPU time as

the standard two grid method, for the 2D problem tested here.

The three grid method was found to be no better than the two grid method, at least

for the problem considered here. In fact the TGM took only 74% of the time the 3GM

required to solve the 2D problem.

The two grid method was also applied to a small (approximately 3600 degrees of free

dom) non-symmetric linear system, arising from the finite element discretisation of a

radionuclide problem. Conjugate gradients applied to the normal equations was used as

a smoother in this case and for this problem with resulting two grid method would ap

pear to be effective. However, for a less trival problem the results are not so promising,

perhaps indicating tha t more effective smoothers are required.

2.8. CONCLUSIONS 95

Chapter 3

Two grid m ethod on a 3D

problem

3.1 Introduction

In this chapter the two grid method (TGM), and the three grid method (3GM), discussed

in chapter 2 are applied to a 3D problem.

The main elements of the theory from chapter 2 apply directly to this problem, apart

from some of the eigenvalue considerations in §2.3, so essentially we shall merely present

the results for a 3D problem.

It is, however, im portant to note th a t the 3D problem case does differ from the 2D case

in a number of aspects. Consider the case where we denote the number of elements in a

single spatial direction by n. Firstly the scale of the problem is very different. In 2D it is

generally possible to make highly refined grids tha t model the physical regions very well,

without requiring a prohibitive number of freedoms, since the size of the corresponding

matrix problem is 0 (n 2). For the same size region, but now in 3D, we would require

0 (n 3) freedoms for the same level of discretisation. The effect is then either to force

the model to be less refined or greatly increase the number of freedoms. As an example

of this consider th a t n « 240 in the 2D case from chapter 2, whereas n « 56 in the 3D

9 6

C h a p t e r 3 Two GRID M ETHOD ON A 3D PROBLEM

case in this chapter.

The second issue concerns the use of the frontal solver method, for the results in this

chapter the MA42 version is used. As discussed in chapter 1, the frontal solver work

is 0 (n 7) for 3D problems (in 2D it is only 0 (n 4)). Clearly the problem size does not

need to be very big before a large amount of CPU time is needed to solve the problem

exactly (see the “thought experiment” on this in §1.4.2). For our 2D problems we have

been discussing CPU time on the scale of a minute; for the 3D problem in this chapter

nearly an hour is needed to solve directly. Under some assumptions on the rate of

convergence of the iterative method, it is not unreasonable to argue tha t the iterative

method requires 0 (n 3) operations in 2D and 0 { n A) in 3D, so tha t the “advantage” in

3D is 0 (n 3), which is considerable higher than the advantage of only 0{n) in 2D. Hence

we would expect the iterative method to be considerably faster than the direct solver

in the 3D case.

3.2 R esults on a 3D problem

The 3D problem discussed in this section arises from the Gorleben site in Germany,

discussed in more detail in [22], Various cross sections of a coarse grid for this problem

are given in chapter 1 in figures 1-3 - 1-5. Note th a t these figures also show the four

regions of rock types, these have permeabilities ranging from 10-5 to 10“ 10.

The problem being solved is

P ro b le m 3.1 Consider a 3D fine grid mesh with N j = 172254. The coarse grid was

obtained by roughly halving the number of elements in each of the three spatial directions,

resulting in N c = 22667 « N f / 8.

As in the 2D case in chapter 2, the results are again obtained using a Cray YMP, and

are compared against the direct solver. In this case the direct solver requires 3525

seconds, nearly an hour, to solve the problem exactly. In order to factorise the coarse

grid problem into an LU form, we now require 47.56 seconds of CPU time. Note th a t for

these results only the TGM with the CG smoother is considered. As has already been

3.2. RESULTS ON A 3D PROBLEM 9 7

C h a p t e r 3 Two GRID METHOD ON A 3D PROBLEM

seen in the 2D results, the CG method is far superior to the Richardson and gradient

methods, and also outperforms the CR method.

Once again, the exact solution is available to determine a stopping criterion, but again

we use a criterion based on reduction in relative preconditioned residual, as in equation

(2.6.1), although this time a slightly higher criterion of 10-8 is used. Since both the

TGM and 3GM are considerably faster than the direct solver for the 3D problem it is

not feasible to mark the direct solver time on the graphs we present in this section.

3.2.1 T G M on the 3D exam ple

We first present results for the TGM for p between 20 and 320 in figures 3-1 and 3-2.

It is clear that, in a similar way to the 2D case, a relatively large number of smoother

steps, fi = 160, gives the fastest rate of convergence, in terms of CPU time. Indeed,

the p = 160 case converges in less than 8% of the time the direct solver requires, a

considerable saving of CPU time.

I m

qjOO

0

— • LL = 20
— p = 40
— p = 80

1

-2

-3

-4

-5

-6
250 300 350 400 450 500

CPU tim e /s
o 50 100 150 200

1

Figure 3-1: Problem 3.1: TGM results for CG smoothing on a 3D problem.

TGM on the 3D example 98

C h a p t e r 3 Two GRID METHOD ON A 3D PROBLEM

o

bJOO
-4

100 150 200 250 300 350 400 450 500
CPU time/s

Figure 3-2: Problem 3.1: TGM results for CG smoothing on a 3D problem.

3.2.2 Different level of coarsening

A further question that we could address is related to the issue of coarsening. In the

2D case we coarsened such that the coarse grid had 1/4 of the freedoms that the fine

grid had. A natural question might be to try coarsening in 3D such that we again have

this balance between fine and coarse grids. In the following we will use the notation

(a,6,c), to represent the coarsening used to generate the coarse grid, where a, b and c

denote the coarsening factor in the x , y and z direction respectively. In this notation

the situation for problem 3.1 would be denoted by (| , |) .

In figure 3-3 this approach for the coarse grid is considered, comparing results for the

original coarse grid, and grids that are coarsened in only in the y and z direction,

and only the x and y direction. It is clear that this has some considerable effect on

the convergence, and perhaps by carefully choosing the coarsening directions a faster

converging method could be produced. Our choices of directions for the coarsening were

quite arbitrary, and use no knowledge of the physics of the situation, so in a sense are

very naive choices. In a practical situation we would invisage a coarse grid being set up

and then refined in perhaps the areas needing higher accuracy. This of course would

depend highly on the physics of the regions.

Finally, note that for these choices factorising the coarse grid problem now takes nearly

Different level of coarsening 99

C h a p t e r 3 Two GRID METHOD ON A 3D PROBLEM

5 times longer than the choices discussed in the previous section.

-4

100 150 200 250 300 350 400 450 500
CPU tim e/s

Figure 3-3: Problem 3.1: TGM results for CG smoothing, with p = 160, on a 3D
problem, with different levels of refinement on the coarse grid.

3.2.3 3GM results

We finally consider the performance of the 3GM, discussed in chapter 2, on the 3D

problem. As in the two grid case, performance of the code is tested for a number of

different smoother steps. The following combination of grids is used to test the code.

P ro b lem 3.2 Consider a 3D fine grid mesh with N j = 172254. The medium grid was

obtained by roughly halving the number of elements in each of the three spatial directions,

resulting in Nm = 22667 « N j / 8. The coarse grid was obtained from halving again to

obtain N c = 3126 « N m/ 8.

In figure 3-4 the 3GM is tested with a range of numbers of smoothing steps. As in the

two grid case using the higher number of smoothing steps, i.e. p = 80 or p = 160, gives

best convergence rates.

Figure 3-5 compares the fastest convergence for the TGM with the fastest convergence

for the 3GM. The TGM is clearly faster, although the 3GM appears to have a more

uniform convergence rate. For another problem this may be a significant issue, we might

3GM results 1 0 0

C h a p t e r 3 Two GRID METHOD ON A 3D PROBLEM

— 11 — 20
“ p = 40
- • /i = 80
■••• p = 160

400 500 600 700100 200 300
C PU tim e /s

Figure 3-4: Problem 3.2: 3GM results with CG smoothing, with a varying number of
smoother steps.

perhaps conceive of a case where the TGM converges to some level of accuracy and then

stops converging, but the 3GM is able to converge to a higher level of accuracy.

Finally we compare the convergence of the 3GM for grids with different levels of refine

ment for the middle and coarse grids. The notation used is as in §3.2.2. In figure 3-6

we compare the convergence for 3 sets of grids, each using 160 smoother steps. As in

the TGM case for this approach it is clear that this can have a marked affect on the

convergence rate, although in this case there is no advantage. Again a more careful se

lection of coarse grid, using the underlying physics of the problem could have a marked

effect on the convergence rate.

3.3 P rolongation calcu lation

We finally comment on the calculation of the prolongation and restriction matrices, P

and R. As was seen in chapter 2, this involves calculating the quantity

3 = * = 1 (3.3.1)

3.3. PROLONGATION CALCULATION 101

C h a p t e r 3 Two GRID METHOD ON A 3D PROBLEM

0

TGM, n = 80
3GM, n = 160

-2

•3

-4

-5

■60 50 100 150 200 250 300 350
CPU time/s

Figure 3-5: Comparison of best results from TGM and 3GM.

o

1

-2

-3

-4

-5

•60 50 100 150 200 250 300 350 400 450 500
CPU tim e/s

Figure 3-6: Comparison of 3GM with different levels of coarsening for the middle and
coarse grids. 160 smoother steps are used in each case.

3.3. PROLONGATION CALCULATION 102

C h a p t e r 3 Two GRID M E TH O D ON A 3D PROBLEM

In practice each fine grid point, £*, lies on only one coarse grid element, and so only

a small number of calculations of the form (3.3.1) need to be performed. In fact for

the 3D elements used here there will be 27 of these calculations per fine grid point.

Hence we will need 27N j basis function evaluations for the 3D problem in order to

calculate the prolongation. In 2D the requirement was only 9N j and the time to perform

this calculation was not significant. However, in the 3D case this time has become

very significant. For the TGM results in §3.2 460 seconds are needed to calculate

the prolongation matrix, which is actually longer than the time taken to perform the

iterative solve. Although the combined time is still far less than the frontal solver time.

The code used to calculate the basis function evaluation is one of the NAMMU internal

routines, and one of the reasons why this time is so high is probably because this code

was almost certainly never designed to perform so many evaluations in one go. It is

probable th a t if this routine was optimised the CPU time spent in performing this

calculation could be considerably reduced.

3.4 Conclusions

As one would expect, use of the TGM or 3GM gives a far more significant gain in 3D

than in 2D. The 3D test problem, with over 172,000 degrees of freedom, is solved to an

acceptable level of accuracy in less than 8% of the time required by the direct solver.

Again the 3GM approach is not competitive with the TGM, the TGM converges in less

than 90% of the time required by the 3GM, although it is im portant to note th a t the

3GM does show a more uniform convergence rate than the TGM.

3.4. CONCLUSIONS 103

Chapter 4

Polynom ial Preconditioning

4.1 Introduction

In this chapter we consider the use of polynomial preconditioners for the conjugate

gradient algorithm to solve the positive definite linear systems arising from finite element

discretisations of (1.2.3).

First recall tha t the principle requirements of the preconditioner are tha t

• M _1A « / , i.e. the preconditioned problem is easier to solve than the original

problem.

• the linear systems, M z = r, are easy to solve.

The essential idea of the polynomial preconditioning is to use a polynomial in A, of

degree m, as the preconditioning m atrix M ~ x. T hat is, write

A T 1 = Pm(A). (4.1.1)

This form of preconditioning is attractive for two main reasons.

104

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

• Implementations of this form of preconditioning are relatively simple once the

polynomial coefficients have been calculated, since only a matrix-vector multipli

cation routine is needed in order to implement the preconditioner.

• A major effect of this preconditioning is essentially to concentrate the solver work

in the matrix-vector operations. Recall tha t conjugate gradients normally requires

1 matrix-vector multiplication and 2 scalar products per iteration.

The first point is of some relevance, since this preconditioning is then ideal for so

called, “matrix-free” computations, where the matrix is not explicitly formed. This is

principally the situation considered in this thesis, where the action of the matrix on a

vector is available through a matrix-vector multiply.

The second point is an im portant issue for implementation on a supercomputer, such as

the Cray YMP. As has been discussed before, the matrix-vector multiplication operation

can be constructed to run very quickly. Scalar products, however, are serial operations

and cannot generally be constructed to perform well on high performance computer ar

chitectures. At least one aspect of the effectiveness of the method will be related to how

quickly the matrix-vector operations are performed compared to the scalar products.

Perhaps the simplest example of a polynomial preconditioner can be seen by considering

the following:

E x am p le 4.1 Suppose we can write the matrix A as A = (I — G), where it is assumed

that || G ||< 1, for some matrix norm. Then using the Neumann series the following is

obtained

(I - G y 1 = A-1 = I + G + G2 + G3 + ... (4.1.2)

So in this case the preconditioner polynomial could be taken as

Pm(A) = I + G + G2 + G3 + ... + Gm (4.1.3)

i.e. a simple truncation o f this series.

We will see in §4.2 why (4.1.3) might be considered a reasonable preconditioner.

4.1. INTRODUCTION 105

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

Polynomial preconditioning is not a new, or indeed even recent, idea, one of the early

references was made by Lanczos, in the 1950s, see Lanczos[65]. W ith the advent of the

high performance parallel computing polynomial preconditioners have been increasingly

im portant, and much research has been done in this area. Recent work has been done

by Ashby, Manteuffel, and Saylor in [3, 4, 8, 9]. See also work by Johnson et al in [57],

Saad[78], Fisher and Freund[33], Ruggiero[77], and 0 ’Leary[72].

The remainder of this chapter proceeds as follows: §4.2 discusses some of the choices

of polynomial, in particular a least squares polynomial and the Chebyshev minimax

polynomial. In §4.3 some numerical results for the polynomial approach are given.

Finally in §4.4 we sum up our experience with polynomial preconditioning.

4.2 Choosing the polynomial

Having defined what is meant by a polynomial preconditioner in (4.1.1) we now consider

how to select the polynomial Pm(A). First recall tha t one of our aims in finding a good

preconditioner M is to choose it such that

M - ' A n I

in some sense. To this end it is required tha t the quantity given by

I - P m(A)A is “small" (4.2.1)

in some sense. For example, in the context of the Neumann series with || G ||< 1

considered previously in example 4.1,

I - P m(A)A = Gm+1,

and || I — Pm(A)A || would be small for sufficiently large m.

Now transform the condition (4.2.1), into an equivalent scalar condition by requiring

tha t

1 — Pm{A)A is “small" (4.2.2)

4.2. CHOOSING THE POLYNOMIAL 106

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

for all eigenvalues, A, in the eigenspectrum of A. However, in general the entire eigen-

spectrum of A is not known, but we might expect to have, at worst, a reasonable

approximation to the smallest and largest eigenvalues, which will be denoted by Aj and

Ajv respectively. These approximations might perhaps be produced by performing a few

steps of CG and using the Lanczos connection (§1.6) to obtain the estimates.

It is now possible to produce our preconditioner by selecting a norm and finding the

polynomial that minimises (4.2.2) in th a t norm, for A E [Ai, Ajv]-

Two choices of norm will now be considered, both of which yield well known polynomials.

Note tha t since this polynomial is to define a preconditioner for the CG method, we

ask tha t it be strictly positive on the eigenspectrum of A. Hence Pm (A) will be positive

definite, and the CG method is guaranteed, in the absence of rounding error, to converge.

4 .2 .1 L east S q u ares P o ly n o m ia ls

We first consider choosing a norm so as to minimise the overall error in (4.2.2). This is

accomplished by choosing a norm defined by the following:

II/(*) 111= r " l / (A) |M A)d A (4.2.3)
J Ai

for some suitable weight function, w(A), th a t is strictly positive on the eigenspectrum

of A. This is usually referred to as the least squares norm.

We now state a result from [57] tha t allows us to show a class of polynomials tha t satisfy

the positivity condition required by the preconditioner.

T h eo re m 4.2.1 Let Sj(A), i = 1,2, . .. ,m + l be orthonormal with respect to the arbitrary

weight w(X) > 0,A E [Ai,A^] and be normalised so that St(0) > 0. The solution q* to

the problem of finding a polynomial that minimises

/ (1 - ?(A))2w(A)dA
J Ai

is positive on [A1? Ajv] whenever each s*, i = 1,2, ...ra+1 attains its maximum on [Ai, X^]

Least Squares Polynomials 107

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

at X = Xi.

P ro o f See [57] §5 for details. □

For certain specific choices of weight function the solution to the resulting polynomial

approximation problem is well known. In particular for a Jacobi weight, i.e.

ti;(A) = (XN - X)a(X - X (4.2.4)

with a > — 1 and (3 > — 1, then the form for the polynomials is well known, see [21]. In

particular they can be produced by a simple recursion of the form given in (4.2.8).

If a and (3 are now restricted such tha t the condition

P > a > - \ (4.2.5)

holds, then from a result in Szego[84] about orthogonal polynomials, it is possible to

show th a t all Jacobi polynomials in this set achieve their maximum at Ai. Hence an

application of theorem 4.2.1 shows tha t the resulting polynomial is strictly positive and

hence can be used as a conjugate gradient preconditioner. It should be pointed out tha t

in [57] condition (4.2.5) is incorrectly stated as a > (3 > — Surprisingly this incorrect

form has propagated through a considerable amount of the literature on this subject,

although since nearly all practical methods have considered the cases where a — (3

this has not caused any problems. Finally note tha t the commonly used cases where

a = (3 = 0 and a = (3 = — | are generally referred to as the Legendre and Chebyshev

least squares weights respectively.

A further advantage of using Jacobi weighted polynomials is tha t the polynomial can

be calculated in a recursive fashion, since the Jacobi polynomials satisfy a three term

recursion and the actual coefficients of Pm{X) need never be calculated. Following the

approach in [8], we consider the residual polynomials defined as

iW i(A) = l - P m(A)A. (4.2.6)

First note tha t these polynomials are orthogonal with respect to the weight function

Least Squares Polynomials 1 0 8

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

ip (A) A and consequently also satisfy a three term recursion which will be taken to be of

the form

fl*+1(A) = (<M + i>k)Rk(X) - tkR k-i{X) (4.2.7)

with the coefficients <f>k,il>k,€k being generated recursively. In §4.2.1 we will discuss this

recursion in more details.

Jacobi Least Squares polynom ials

In order to calculate the coefficients <f>k and £k we follow the approach given in [57]. First

require th a t there exists a three term recurrence relation for the polynomials {sm} which

are orthogonal with respect to the weight function w(X) on [A1? Ajv] and normalised such

that sm (0) = 1. To obtain this form we start by considering the interval [—1,1] where

the Jacobi polynomials, (which we shall denote as with weight function

w(fi) = (1 — /^)a (l + p Y , , satisfy the following three term recursion

M.7 + ~ j + l)^ + iM = (v + l)M ^ + 2)// + c*2 - /32]J?M

- 2 (j + a) (j + p)(v + 2

(4.2.8)

where v = a-\-(3 + 2 j and «/-i(A) = 0, J0(X) = 1, and Ji(A) = | (a + /3 + 2)/x + | (a - (3).

Now shift and scale these polynomials by writing

„ m - i g « .2 .S)

where n = - 1 + 2 - ^ — ^ - (4.2.10)
(An ~ Ai)

and no = ~ ^ N ^ (4.2.11)
*N T

and combine (4.2.9) and (4.2.8) and re-arrange to produce a three term recurrence for

the Sj

- (i / + l)i/(i/ + 2)/isi (A)Ji (/*0) = (i/+ 1)(Q!2 ~ P2)sjJj{Vo)

- 2 v{j + 1) { v - j + l)s j+1(\) J j+1{no)

Least Squares Polynomials 1 0 9

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

—2 (j + a) (j + /5) (zx + 2)sj_!(A)

(4.2.12)

Re-arranging and using (4.2.10) and (4.2.11) the following is obtained

-Asj(A) = -
(j + l)(u — j + 1)(A^ - AJ

%(i/+ l)(i/ + 2)
(Ai + Xn) {a2 — (32) (\ N — Ai)

2 2i/(i/-|-2)
(i + a)(i + /5) (Ajv — ^i) j

°j-1

5j+i(A)

5; _i(A) (4.2.13)

where

which itself satisfies the recursion

SJ =_ Jj+i (/^o)
j j (mo)

(4.2.14)

with Sn =

{y + l)[v(v -f- 2)//0 + £*2 + /?2]
2 i / (i + l) (i / - j ' 4 - 1)

(i + a) (i + ^)(y + 2) t
+ 1)(^ — i + !) J_1

(a + /? + 2)^0 ot — P

(4.2.15)

(4.2.16)

This then gives the recursion for Sj(A), for some j , as

A-Sj(A) = T j S j + i(A) — (r j i j)sj(X) - \ - t j S j _ i(A) (4.2.17)

where rj and tj are defined from (4.2.13).

Again following the form of [57] note tha t the optimal polynomial, of degree m, tha t

satisfies the minimal norm condition can be expressed as

= Sim (4 - 2 - 1 8 1

(4.2.19)

Least Squares Polynomials 110

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

where

Dm(A) = (4 ^ 2 0)

A

Hence given tha t Sj(A) satisfies a recursion of the type in (4.2.17) the ^j(A) satisfy a

related recursion of the form

- A^-(A) = rj+1uj+ i(A) - (tj+1 + r*j)uJ (A) + ti ui _1(A). (4.2.21)

Finally, the residual polynomials given by

Rm+i (A) = 1 — q*m+l (A) = 1 — Pm(A)A

satisfy the recursion

^<a> =

+ < 2 i a ± l d J i £ l R A A)
rj+i vj+1 (0)

So that, in the context of (4.2.7), the following hold

(4.2.23)

(4.2.24)

(4.2.25)

where all of these coefficients can be calculated in the recursive fashion shown in this

section.

i>k =

4>k = ~

6: =

{ t k+i +rk) vk(0)
rk+i Vjb+i(0)

f̂c(O)
Tk+lVk+l(0)

t kVk-i{ o)
nfc+i^+i(0)

To illustrate these polynomials we have chosen the interval [0,10] and plotted the resid

ual polynomials, P m+1(A) for varying m, a and (3. See figures (4-1, 4-2, 4-3). In partic

ular two commonly used choices of a and (3 are illustrated. Firstly, the a = (3 = —0.5

Least Squares Polynomials 111

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

case, for which the corresponding polynomials are often referred to as the Chebyshev

least squares polynomials. This is the case demonstrated by Saad [78] and considered

by Ashby et al [8]. Secondly, we show the a = (3 = 0 case, which give the Legendre

least squares polynomials, this choice is the main case considered by Johnson et al [57].

— m = 2
— m=5
— m = 8

0.6

I 0.2

- 0.2

-0.4

A

Figure 4-1: Residual polynomials, P m+1(A) = 1 — Pm(A)A with a = (3 = -0 .5

It is an open question which choice of a and (3 will give optimal performance for a

particular eigenspectrum. From figure 4-3 it is clear tha t increasing (3 over a will reduce

the residual at the higher end of the spectrum but only at the cost of increasing it on

the lower spectrum. This perhaps indicates that this using this preconditioning, with a

suitable selection of a and (3 might be appropriate for use as a smoother in the two grid

method of chapter 2. In addition it would appear that the Chebyshev choice provides

a best choice for an overall minimum, biased towards neither end of the spectrum.

Least Squares Polynomials 1 1 2

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

0.8 — m = l l
— m=14
— m=17

0.6

^ 0.4

ft?
I 0.2

- 0.2

-0.4

A

Figure 4-2: Residual polynomials, P m+1(A) = 1 — Pm(A)A with a = (3 = —0.5

0.8 — a = (3 = -0 .5
— a = f t = 0
— a = -0 .5 , (3 = 0

0.6

^ 0.4

ftf
I

- 0.2

-0.4

A

Figure 4-3: Residual polynomials, R m+i{A) = 1 — Pm(A)A with m = 4 and varying a, (3

Least Squares Polynomials 113

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

Effectiveness of the least squares polynomials

It is known, see §1, tha t the conjugate gradient algorithm converges, at least in a

heuristic sense, in 0 (\ J k(A)) iterates. This leads us to the question of how a least

squares polynomial of degree m affects the condition number and hence the number

of iterates to convergence. We first use the fact tha t polynomial solutions of the least

squares problem (4.2.3) minimise || R m+1 ||w, over all polynomials R of degree < m -f 1,

such tha t R (0) = 1. Hence

II R m+i(A) IU<ll<3m+i(A)||„ (4.2.26)

for all polynomials Q of degree m + 1, such tha t Qm +i(0) = I-

Now examine the polynomial given by

Clearly,

|(A i + XN) — Xi
m+1

Hence, from (4.2.26),

*

This implies that the norm of R m + 1 tends to zero as m tends to infinity at least geo

metrically. Which in turn implies tha t Pm(A)A tends to I as m tends to infinity (cf.

§1.6.5).

Another question that might be asked is how the extra matrix-vector multiplies required

for each step of the CG algorithm affect the overall work count to produce a solution.

Heuristically we can argue as follows: Assume CG converges in kcg steps, which in turn

means &cg matrix-vector operations and 2&cg scalar products. Similarly for PCG with

Least Squares Polynomials 114

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

degree m polynomial, we require fc p c G ^ + l) matrix-vector operations and 2kPCG inner

products.

Next note that

kcG = 0 |\ j

W = 0 (J

and since both A and Pm(A) are symmetric, positive definite,

«(A) = A^v/Aj

K(Pm(A)A) = (/>m(AN) / JPm(Ai))(A7V/Ai) for m even.

For the following case consider the Jacobi weighted Least Squares polynomials with

a = /? = -0.5.

m V Pm (AO
0 1 1
1 0.5590 1.1180
2 0.3780 1.1339
4 0.2335 1.1677
8 0.1325 1.1921
16 0.0710 1.2071

Table 4.1: Table of relative condition numbers and relative work counts

In table 4.1 it can be seen that as the degree, m, of the preconditioning polynomial is in

creased the conditioning of the preconditioned system decreases, as expected. However,

when we consider what this means in terms of the number of matrix-vector multiplies it

can be seen that as the degree of polynomial is increased the overall number of matrix-

vector multiplication operations increases.

So heuristically PCG requires more matrix-vector operations to reach comparable errors,

for this choice of polynomial. Although of course in reaching this degree of error we

will require fewer inner-products, which, as has been mentioned before, is one of the

main aims of this type of preconditioning, as we are considering the inner-products to

Least Squares Polynomials 115

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

be relatively expensive compared to the matrix-vector products.

Finally recall th a t conjugate gradients with no preconditioning can itself be considered as

a polynomial iterative method. Where the polynomial is dependent on both the matrix

and initial residual and is effectively chosen to minimise the error in the || . H .̂ Since

this polynomial is optimal, in this A-norm, preconditioning with some other polynomial,

based on some other norm, would seem to be a conflicting idea. Again the key idea lies

in the saving of the inner-products. The net result is then to minimise the error in some

norm tha t is a combination of the || . \\A and the norm we construct our polynomial

preconditioner from.

Practical least squares

In practice maximum and minimum eigenvalues, i.e. Ai and XN, would not be known,

and although a good approximation to the largest eigenvalue could be obtained reason

ably cheaply by, for example, the power method, a good approximation to the small

est would be difficult to obtain cheaply. However, Saad[78] has advocated using least

squares preconditioners where Aj is taken as 0 and a Gershgorin estimate is used for the

largest eigenvalue. This is motivated by the fact th a t the least squares polynomial is

only marginally affected by the smallest eigenvalue. This method is attractive in th a t

once the preconditioner is set up no further processing is required, and in addition no

estimates of eigenvalues are ever needed, except the relatively cheap calculation of the

Gershgorin estimate.

More recent work by Fischer and Freund[33] has used a more general weight function

tha t is designed to reflect the full distribution of eigenvalues. In essence the method

would build up an approximation to the eigenspectrum using a Lanczos or similar

method, this eigenspectrum would then be used to create a suitable weight function.

In this case, since the weight function is of a more general form, we cannot produce an

exact formula for the preconditioning polynomial and hence are required to calculate it

in some iterative fashion. Their results suggest th a t this approach shows some promise,

and certainly appears more effective than simple using a simple Legendre, or Cheby

shev weight. In contrast 0 ’Leary[72] investigates the use of a polynomial preconditioner

Least Squares Polynomials 116

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

based on the residual polynomial arising from use of the conjugate gradient algorithm.

She suggests tha t this technique has an advantage over the least squares approach in

tha t no eigenvalue estimates are ever needed. She then goes on to comment tha t, from

her experiments, it would appear th a t “the least squares polynomial preconditioner of

ten provides a saving in matrix-vector multiplications, but not much saving in number

of iterations.”

4 .2 .2 C h e b y sh ev P o ly n o m ia ls

We now seek a polynomial tha t minimises

II1 - Pm(A)A !!«,= max |1 - Pm(A)A|. (4.2.28)•̂ G[Ai,AArJ

Solutions to this are well known, and are in fact given by the Chebyshev minimax

polynomials.

Choosing these minimax polynomials for our preconditioner has two main advantages.

Firstly, this polynomial has an equioscillation property in tha t the oscillations of Pm(A)A

are equal about 1, in [A1? Ajv], This means tha t the resulting preconditioning polynomial

has no bias in its reduction of the eigenspectrum. This is in contrast to the least squares

polynomials, where the reduction tends to be greatest in the upper end of the spectrum.

A second advantage of the Chebyshev choice is th a t as long as the estimates for Ax and

XN strictly contain the entire spectrum of A, then

Pm(A)A C [1 — em, 1 + €m\ (4.2.29)

where

= 1 1 1 — Pm(A)A [| c o < 1 , A G [Al, X N] , (4 .2 .3 0)

Hence the preconditioned matrix, Pm(A)A, is necessarily positive definite, this being

one of our main requirements for the preconditioner.

Using the norm given in (4.2.28), we now write our polynomial Pm(A) as a shifted and

Chebyshev Polynomials 117

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

scaled Chebyshev polynomial

(4.2.31)

where Tm((i) is the m th Chebyshev polynomial. In a very similar fashion to the least

squares polynomial, this also can be computed from a three-term recursion.

The Chebyshev preconditioner also satisfies the following property

rn (Ajy+Ai — 2A \

±m U n - a J

T h e o re m 4.2.2 The polynomial, P, that minimises

K(p(A)A) = (4 2 ^
nnnAe<7(A)|-P(^j^l

where a (A) is the eigenspectrum of A, is given by the Chebyshev preconditioning poly

nomial (4-2.31)

P ro o f We follow the proof given in [8]. First note th a t we may assume th a t P(A) A > 0

for A € ct(A). Now consider only polynomials, P , where

1 (^(A)A) (P (m - 1 = *

So now (4.2.32) becomes a problem of minimising the quantity Which is equivalent

to finding a solution to the earlier problem (4.2.2). □

In figure 4-4 we show the residual polynomials of degrees 2,5 and 8 on the interval [1,10].

Comparing these polynomials with similar ones for the least squares polynomials in

figure 4-1, it would appear to indicate tha t the Chebyshev polynomials are far superior.

However, note the considerable difference when the interval is changed to [0.1,10] in

figure 4-5. Unlike the least squares polynomials, the Chebyshev polynomials are very

sensitive to changes in the smallest eigenvalue.

Chebyshev Polynomials 118

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

0.8 i

0.6

cs °-4
a*

I 0.2

- 0.2

-0 .4

A

Figure 4-4: Chebyshev Residual polynomials, R m+i(A) = 1 — Pm(A)A, on the region
[1, 10].

0.8
— m=2
— m=5
— m=8

0.6 ^

^ - 0.2

-0 .4

s/

- 0.6

- 0.8

0 2 6 8 104

A

Figure 4-5: Chebyshev Residual polynomials, R m+i(A) = 1 — Pm(A)A, on the region
[0.1, 10].

Chebyshev Polynomials 119

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

P ra c tic a l C h eb y sh ev

To work effectively this type of polynomial preconditioner generally requires good es

tim ates of the upper and lower eigenvalues bounds. In particular the bounds must

contain the entire spectrum or the polynomial cannot be guaranteed to be positive def

inite. Considerable work on this type of polynomial preconditioning has been done by

Ashby[3, 8, 4], with an emphasis on adaptive algorithms that estimate the upper and

lower eigenvalues as the CG iteration proceeds, modifying the polynomial accordingly.

For problems with eigenvalues spread relatively uniformly around the interval, Ashby[8]

reports good results for this form of polynomial.

4 .2 .3 I m p le m e n ta t io n

We conclude this section by discussing how the polynomial preconditioning would be

implemented in practice. From the residual polynomial formulation, e.g. (4.2.7), it

is then possible to actually implement the polynomial preconditioning. Note tha t the

technique used is similar to tha t in [4]. Suppose tha t we were using a polynomial

iterative method to solve the linear system Ax = v. This polynomial method would

then have an associated residual polynomial, i?m(A), such that

Rm(A) = I — p m (A) = I — C(A)A. (4.2.33)

We wish to use the polynomial C(A) as our preconditioner, and hence need to be able

to compute the quantity C(A)v.

Assume tha t the polynomial iterative method has iterates x 0,X!,..., with associated

residuals r m, such that

r m = v — Axm = R m(A)r0. (4.2.34)

If we assume tha t the iteration method starts with x 0 = 0, then clearly

= R m{A)v = {I - C(A)A)v (4.2.35)

Implementation 120

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

and hence

em = x - x m = (I - C (A) A) e m (4.2.36)

= (A-1 - C(A))v, (4.2.37)

since

A l r = e.

So, using (4.2.35) and (4.2.37), we have

x m = C(A)v. (4.2.38)

Hence the m th step of the polynomial iterative method gives us the preconditioned

vector we desire.

Finally, using a result in Hageman[47, pp40-41], the three term recursion for the residual

polynomial, i.e. (4.2.7), can be used to formulate a corresponding three term recursion

for the iterates, see [47, theorem 3-2.1] for more details.

We now present an algorithm for implementing the polynomial preconditioning using

the three term recursion in (4.2.7).

A lg o rith m 4.1 [w = Pm(A)v = C(A)v] This algorithm multiplies the vector v by the

polynomial in A, given by the three term recursion for the residual polynomial (4.2.7).

w 0 = 0

r 0 = v

A 0 = —0oro

loop i = 0 ,..., m — 1

W<+1 = w t- + A*

r,-+i = v - A w i+1

Aj+i = £i+i A,- — 0i+iTi+1

Implementation 121

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

endloop

It is also worth noting th a t the quantities rm and A m, in algorithm 4.1, do not need to

be calculated, thereby saving one matrix-vector multiply.

4.3 Num erical results

For the results presented here we first consider a 2D problem with a very simple mesh

of the form given in figure 1-9, and constant permeability over the entire region. This

problem has 56616 degrees of freedom. A second 2D problem arising from a physical

problem is also considered. This problem has 58944 degrees of freedom. In order

to improve convergence the stiffness matrices for both problems were symmetrically

diagonally scaled prior to running the conjugate gradient code. As was seen in chapter 2,

this diagonal scaling greatly mitigates the effect of the discontinuities in the permeability

coefficient, k.

The polynomials tha t we decided to use were least squares polynomials based on Jacobi

weights, with a = ft = —0.5. Where we use the Saad idea of taking Xi = 0 and a

Gershgorin estimate for the largest eigenvalue, A

The reasoning behind trying this form of polynomial is th a t its implementation is the

most straightforward and the literature comparing and describing various polynomial

preconditioners [8, 33] would suggest that whilst other types of polynomials can produce

faster solutions, in terms of CPU time, this relatively simple version of preconditioning

is indicative of the effects of such preconditionings.

Various degrees of polynomial were tried, and in all cases we compare the || . ||2 of the

error at each successive iterate with the CPU time used.

For the first problem we use polynomials of degrees 5, 10 and 20. In figure 4-6 we com

pare CG with polynomial preconditioned CG. It is clear tha t in all cases the method

4.3. NUMERICAL RESULTS 122

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

converges well, although the fastest rate of convergence is given by CG with no polyno

mial preconditioner at all. For this problem the frontal solver requires approximately

the same amount of CPU time as the CG. As a final comparison for this problem in

figure 4-7 we compare the TGM from chapter 2, with 20 smoothing steps, with CG. It

is immediately clear that the TGM is considerably faster in this case.

— m = 0
— m=5

— m=10
m=20

-2

hOO

- 4

-6

0 10 15 35 405 45

Figure 4-6: Error vs. CPU time for CG and PCG on a simple mesh problem.

In figures 4-8, 4-9, 4-10 we plot log10 || e ||2 versus CPU time used in seconds. In all

cases we plot the output for CG with no polynomial preconditioning (solid line) for

comparison purposes.

In figure 4-8 we see that degree 4 and 7 polynomials have very little effect at all, the

lines diverge very slightly in the favour of the polynomial method. Figures 4-9 and 4-10

show marginally more difference, with the polynomials again performing very slightly

better.

4.3. NUMERICAL RESULTS 123

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

CG
TGM

-2

bOO

- 4

- 5

0 5 10 15 35 40 45

Figure 4-7: Error vs. CPU time for CG and TGM of chapter 2.

m=0
m=4
m=7

-0 .0 5

- 0.1

-9L
C

x

-0 .2 5

-0 .3

0 50 150

Figure 4-8: Error vs. CPU time for CG and PCG

4.3. NUMERICAL RESULTS 124

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

-0 .0 5

- 0.1

tSo-I'
- 0.2

-0 .2 5

-0 .3

0 50 CPU tim e/s° 150

Figure 4-9: Error vs. CPU time for CG and PCG

-0 .0 5

- 0.1

tioo
- 0.2

-0 .2 5

-0 .3

0 15050

Figure 4-10: Error vs. CPU time for CG and PCG

4.3. NUMERICAL RESULTS 125

C h a p t e r 4 P o l y n o m i a l P r e c o n d i t i o n i n g

4.4 Conclusions

As can be seen from the graphs, CG with no preconditioning, as applied to the sym

metrically scaled system, performs very poorly on the “hard”problem. When we apply

polynomial preconditioning there is little apparent change in the convergence rate based

on error reduction vs. CPU time. There is some apparent difference in error reduction

between CG and PCG, in all cases for the realistic problem the polynomial precondi

tioned CG performed at least as well as standard CG, this is perhaps reassuring, since

in all preconditioned cases more matrix-vector multiplies were required to achieve the

same level of accuracy.

It is believed tha t with a better implementation of the matrix-vector multiplication

routine this difference could be increased, although it should be pointed out th a t the

architecture of the computer plays a major factor in any speedup. However, it would

seem tha t polynomial preconditioning is unable to affect the underlying convergence of

the CG method.

For this reason we shall consider the polynomial preconditioning as a potentially effective

implementation of the CG method rather than a preconditioning of the system in the

sense tha t convergence is improved.

4.4. CONCLUSIONS 126

Chapter 5

ILU Preconditioning

5.1 Introduction

In this chapter the incomplete LU (ILU) factorisation, eg [62], is used as a preconditioner

for the conjugate gradient (CG) method, to solve the linear systems arising in the finite

element discretisation of the groundwater flow model discussed in chapter 1. Here L

and U denote lower and upper triangular matrices respectively.

To motivate the preconditioner we first recall the two im portant properties of precon

ditioners for the CG algorithm. Firstly, given a preconditioner M , it should be possible

to solve the system M ~ 1A quicker, in terms of CPU time, than the original system

involving A. An im portant factor in this is tha t computations of the form M -1v are

simple and quick to compute.

Clearly we could choose M = A, and perform the LU factorisation of M to enable

us to compute the action of the preconditioner. This would satisfy some of the re

quirements outlined above, although this is obviously not a practical choice, due to the

high cost of the LU factorisation. Suppose, however, tha t some preconditioner M were

stored as an LU factorisation, but tha t both L and U were sparse in some sense. Then

the computations involving the action of the preconditioner would take little time to

perform.

127

C h a p t e r 5 I L U P r e c o n d i t i o n i n g

In the ILU method we form a preconditioner M by calculating an approximation to the

standard LU factorisation of A, based on Gaussian elimination, e.g. [38, §3.2], so tha t

we have

LU « LU = A. (5.1.1)

Here L and U reflect something of the sparsity pattern in A. The CG preconditioner M

is then given by writing M = L U . This approximation is generally called an incomplete

factorisation.

By controlling how the LU factors are produced, particularly considering stability and

storage issues, various types of incomplete factorisations can be created.

The incomplete factorisation is very widely used as a preconditioner, with notable early

work by Meijerink and van der Vorst in [68], Kershaw[62] and Gustafsson[42]. Since then

considerable work in the area has been done by Axelsson et al in [14, 13, 15, 16], with

other references including [69, 90, 25, 70, 71, 50, 81, 88], although there is a vast amount

of literature available on this subject. One of the main reasons for the popularity of

the incomplete factorisation is the fact that it is a “black box” preconditioner, in the

sense that no assumptions about the problem involved need to be made. The matrix is

merely “fed” to the incomplete factorisation code and a preconditioner is created. This

is both a strength and a weakness in the method, a “black box” technique is very useful,

but the lack of reliance on the problem means th a t it can often not work at all, usually

“fine-tuning” is needed to obtain satisfactory results.

It must be made clear th a t the main thrust of this chapter is not to re-invent the

incomplete factorisation, nor to produce a new method or code. Rather we merely wish

to view the effectiveness of a standard, easily implemented, “off the shelf” ILU code,

for the groundwater flow problem and compare the results with the two grid method

from chapter 2. In particular the following issues need to be addressed:

(a) convergence of the method

(b) performance in terms of CPU time

(c) storage requirements

(d) overall comparison of the method with both a direct, ie exact, solver and an

5.1. INTRODUCTION 128

C h a p t e r 5 I L U P r e c o n d i t i o n i n g

effective iterative solver, e.g. the two grid method, discussed in chapter 2.

Point (a) is clearly very important, as is seen in chapter 1 §1.6, where we considered

merely diagonal scaling as a preconditioning technique. An effective preconditioner is

vital to ensure robust convergence for the problems considered here. Points (b) and (c)

relate more to the effect of using sparse m atrix techniques than the ILU factorisation

method itself. Point (d) is an issue of direct relevance, since the two grid method, from

chapter 2, has already been shown to be a competitive method.

The structure of the chapter proceeds as follows: in §5.2 a general overview of the

incomplete factorisation approach for symmetric positive definite systems is given, to

gether with some discussion of the problems caused by the matrices not being diagonally

dominant or M matrices. In §5.3 further issues relating to the particular NAMMU code

implementation are reviewed, although this is mainly concerned with the effect of using

a sparse storage scheme. In §5.4 the ILU code is tested with a relatively simple prob

lem, and comparisons are made between results from this and simple diagonally scaled

conjugate gradients. In §5.5 brief comments are made about the element-by-element

approach to forming a preconditioner. Finally we summarise our experience with the

incomplete factorisation in §5.6.

5.2 Incom plete LU

5 .2 .1 T h e b a s ic a p p ro a c h

The simplest approach to forming the incomplete factors in (5.1.1) is to use zero fill-

in: exactly follow the standard LU factorisation method, except tha t only entries in

the LU factors that correspond to non-zero entries in the original matrix are allowed

to be written to with any other entry being discarded. Note that, in general, an LU

factorisation of a very sparse matrix will require considerably more storage than the

original matrix. The zero fill-in approach clearly means tha t the sparsity, and therefore

storage requirements, of the original matrix are preserved in the preconditioner. The

potential for lost entries in the approximate LU factors can be seen in a more precise

way (see [14, pp38-39]) by examining the envelope of non-zero entries of the sparse

5.2. INCOMPLETE LU 129

C h a p t e r 5 ILU P r e c o n d i t i o n i n g

matrix. Suppose that we have an N X N symmetric matrix A. Define the following

m(i) = m in{j; (1 < j < i) fl (a# / 0)}, i= l ,2 , . . , J V (5.2.1)

i.e. aiifn(f) is the first non-zero entry in the ith row. Then the envelope of entries

containing all the non-zero entries of A are given by the set of index pairs

S = { (h j) U < j < i, 1 < i < N j . (5.2.2)

The area of fill-in produced during the LU factorisation is then contained within this

envelope. This point is illustrated in figure 5-1, where the diagonal lines show the

envelope of potential fill-in.

X X

X X

X X X
X X X

Figure 5-1: The envelope of a symmetric matrix.

For a 2D or 3D finite element problem the resulting stiffness matrix typically has a

large envelope that contains mostly zero entries. In the following simple example we

demonstrate a finite element matrix with a large envelope. For convenience the L and

U factors are displayed in one matrix.

E x a m p l e 5 . 1 Consider the stiffness matrix arising from the two dimensional finite el

ement discretisation of Laplace’s equation, using biquadratic basis functions on quadri

T h e b a s ic a p p r o a c h 1 3 0

C h a p t e r 5 ILU P r e c o n d i t i o n i n g

lateral elements. For a problem with 1056 degrees of freedom, the sparsity pattern of the

matrix can be seen in figure 5-2. I f we perform a full LU decomposition on this matrix

it is found that the sparsity pattern of this decomposition is now of the form seen in

figure 5-3. Note that whilst the original matrix required only 15996 non-zeros, the full

LU factors require 140182 non-zeros, a gain of nearly a factor of 10.

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

Figure 5-2: Sparsity pattern of a finite element stiffness matrix for Laplace’s equation
in 2D, with 1056 degrees of freedom.

100
200

300

400

500

600

700

800

900

1000

0 200 400 800 1000600

Figure 5-3: Sparsity pattern of storage for full LU decomposition of the matrix in figure
5-2.

In our case the matrix under consideration is symmetric positive definite, and hence it

makes more sense to consider an Incomplete Cholesky factorisation, often denoted in

the standard literature as an IC factorisation. If this is then used as preconditioner in

a CG method then the resulting algorithm is denoted by ICCG.

The basic approach 131

C h a p t e r 5 I L U P r e c o n d i t i o n i n g

5 .2 .2 M od ified IL U

Many modifications of the simple ILU factorisation approach outlined in §5.2.1 exist.

In some versions the entries in the LU factors tha t would have caused fill-in are not

discarded but are instead added to the corresponding diagonal entry on tha t row. The

algorithm presented below incorporates this feature. Gustafsson[42] and Axelsson and

Munksgaard[17] examined this particular modification. It is generally found tha t for

matrices arising from finite element methods this approach is more effective than the

zero-fill in approach partly because more of the matrix properties, such as row sums,

are preserved.

Axelsson and Barker[14, §7.2] define a method tha t they term the modified incomplete

factorisation. Here the incomplete factorisation described previously is modified such

tha t the new method is mathematically equivalent to applying the incomplete factori

sation, as in §5.2.1, to a m atrix with a shifted diagonal, i.e. A + D. This method was

principally developed with matrices from finite element methods in mind, since after

selecting the shifting diagonal in a particular fashion, they are able to prove a reduction

in the condition number, k, of the finite element stiffness matrix, if the matrix belongs

to a certain class of M-matrices. More specifically they show tha t

k (M ~ 1A) = 0(ac(A)2), N ^ oo (5.2.3)

where N is the size of the matrix. Note that, using finite elements on our problem, we

would expect to have /s(A) = 0 (N 2). Since the number of iterations to convergence

of the conjugate gradient algorithm is proportional to a/k, this can be a very powerful

form of preconditioner.

Another approach to improve the effectiveness of the factorisation is to allow a certain

degree of fill-in to take place, using some pre-determined strategy. One simple approach

to this is to select some area within the envelope of fill-in, based perhaps on knowledge

of the structure of the matrix. This method is often denoted by ICCG(n) or ICCG(n,m),

as in [68] and [69, §2.1.2 - §2.1.6], where n and m denote the levels of extra fill-in allowed

by the algorithm, perhaps determined by knowledge of the sparsity pattern. A second,

and perhaps more general approach, is to discard only those fill-in entries tha t lie outside

Modified ILU 132

C h a p t e r 5 ILU P r e c o n d i t i o n i n g

some given tolerance, for example as compared to the size of the corresponding diagonal

entry. This tolerance is sometimes referred to as a drop tolerance, see Axelsson[13, §7.1].

By varying the tolerance the degree of fill-in can be controlled. The major disadvantage

with this method is tha t the amount of required storage, or indeed the sparsity pattern

of the storage, cannot be easily predicted prior to performing the factorisation.

Algorithm 5.1, given below, is a typical incomplete factorisation algorithm, taken from

[14]. The set of indices J specifies the sparsity of the incomplete factorisation. Clearly

setting J 3 5 , where S is the envelope of fill-in given in (5.2.2), would give complete LU

factors of A. Conversely, if J C S then, in general, the LU factors are incomplete. The

simplest zero fill-in choice involves setting J = {(*, j) ; A(i , j) ^ 0}, this is the choice we

shall use for our implementation.

A lg o rith m 5.1 [A =M ILU (A ,/)] This algorithm overwrites the N X N sparse matrix

A with a modified incomplete factorisation of A. Where fill-in, outside of the set J ,

would have taken place the entry is instead added to the relevant diagonal.

for r = 1, N — 1
d = A(r, r)
for i = r + 1, N

if (z,r) G J and A (z , r) ^ 0 then
e = A(i, r) /d
A(z, r) = e
for j = r + 1, N

if (r >j) C J and A (r , j) / 0 then
if (i , j) € J then

A (i J) = A(i , j) - e x A(r , j) (5.2.4)
else

A(i , i) = A(i , i) — e x A(r , j) (5.2.5)
end

end
end

end
end

end

Note that (5.2.5) corresponds to the simple modification of adding entries, tha t would

Modified ILU 133

C h a p t e r 5 I L U P r e c o n d i t i o n i n g

normally have been discarded, to the diagonal.

5 .2 .3 S ta b ility o f IL U : M -m a tr ic e s and N o n M -m a tr ic e s

Two im portant issues with the incomplete factorisations are:

(a) Is the factorisation process numerically stable?

(b) Does the factorisation exist? By this we mean th a t the algorithm does not break

down, i.e. LU, exists in the sense th a t none of the diagonal entries in the factori

sation ever become 0 .

For (a), the idea of stability is taken to mean tha t the incomplete factorisation is equal

to an exact factorisation of the original problem perturbed by some small amount. We

introduce the concept of a “growth factor” [14, §1.4,p42], defined by

q =: m a x |a -^ |/m ax la j. l > 1. (5.2.6)*,j\r J ij

Here aty is the 1,7th entry in the partially factored m atrix A, created after r pivot steps

of the incomplete factorisation process. Stability is now defined by requiring tha t the

“growth factor” remains reasonably bounded.

We illustrate this concept with the following simple example.

E x am p le 5.2

1 0 - 7 - 1 0 " 4 - 1 0

A = - 1 0 " 4 1 0

- 1 0 " 4 0 1

Note that this matrix is symmetric positive definite, but is not diagonally dominant

although it is an M-matrix. For convenience, we have written the combined upper and

lower triangular LU factors as one matrix, i.e. L-\-U (the diagonal of L is not considered

Stability of ILU : M-matrices and Non M-matrices 134

C h a p t e r 5 ILU P r e c o n d i t i o n i n g

in this as they are all ones). A full LU decomposition of this matrix would be given by

10-7 - 10“4 - 10"4

-1 0 3 0.9 -0 .1 .

-1 0 3 -0.1111 0.8889

Apply an ILU factorisation o f the form given in algorithm 5.1, with no modification and

no fill-in, to the matrix A. The first, and last ILU step (since the second step would

merely have produced fill-in), produces

A™ =

10"7 - 104 - 10"4

-1 0 3 0.9 0

-1 0 3 0 0.9

Giving, in this case, a growth factor q = 10 /1 = 1000

The stability of the incomplete factorisation is closely related to the stability of the full

decomposition, performed without any pivoting, a fact which is discussed in more detail

in [6 8].

The standard theory for the stability of the incomplete factorisation methods is generally

given for specific classes of matrices. For example, Axelsson and Barker[14] give the

majority of their theory for a class of matrices tha t they call diagonally dominant M

matrices.

Firstly, recall tha t diagonal dominance was defined in definition 1 .1 . We also introduce

the following notation for any matrix A such tha t an / 0, i = 1 ,..., N — 1,

n(i) = max{j; (1 < j < N) fl (a^ / 0)}, i = 1 1.

Hence at-)n(t) is the last non-zero entry in the zth row.

Then we have the following,

D efin ition 5.1 An N X N matrix A is an M -m atrix if

Stability of ILU : M-matrices and Non M-matrices 135

C h a p t e r 5 ILU P r e c o n d i t i o n i n g

(1) an > 0 , i — 1 ,2 , N — 1; > 0.

(2) aij < 0, i, j = 1 ,2 ,..., N, i / j .

(3) n(i) > i, i = 1 , N — 1.

Note th a t this definition of an M -matrix is similar to the more standard concept of an

M -matrix, defined in §1.3. However, a matrix being an M -matrix does not necessarily

imply th a t it is an M -matrix, or vice versa. This is illustrated by the following examples

E xam ple 5.3 a) The matrix given by

1 - 1
A =

- 1 0

is an M -matrix, but is not an M-matrix, since it does not satisfy condition (3) of the

definition.

b) The matrix given by

2 -1 0

A = -1 2 0

0 0 2

is an M-matrix, but is not an M-matrix, since it does not satisfy condition (3) of the

definition.

Axelsson and Barker then give the following result:

T h eo re m 5.2.1 (T h m 1.15, p44 o f [14]) The incomplete factorisation is a stable

numerical process, (in the sense that the “growth factor”, i.e. (5.2.6), is exactly 1),

if A is a diagonally dominant M-matrix.

P ro o f See p44 of [14]. □

Other authors consider further special classes of matrices, Notay[70] considers incom

plete factorisations of non-singular (or singular) Stieltjes matrices. These are positive

Stability of ILU : M-matrices and Non M-matrices 136

C h a p t e r 5 ILU P r e c o n d i t i o n i n g

definite (or semidefinite) matrices with non-positive off-diagonal elements. Note, that

a symmetric M -m atrix is also a non-singular Stieltjes matrix, although an M -m atrix is

not, necessarily, a Stieltjes matrix, as can be seen from example 5.3. Meijerink and van

der Vorst[6 8] also give theory and results for M-matrices, in particular they give the

following theorem on p i52,

T h e o re m 5.2.2 I f A is an M-matrix, then the construction of an incomplete LU de

composition is at least as stable as the construction o f a complete decomposition A = LU ,

without any pivoting.

The existence of the factorisation, i.e. point (b) above can also be proved for specific

classes of matrices. For example Axelsson and Barker [14, Theorem 1.17] choose the

following:

T h e o re m 5.2.3 Let A be a diagonally dominant M -m atrix with symmetric structure,

and suppose that at least one row sum is positive. Then the factorisation exists.

P ro o f See [14, p47]. □

Kershaw [62, p48] does discuss incomplete factorisations of matrices th a t are merely

symmetric positive definite, the algorithm he proposes dynamically modifies the fac

tors, to ensure the factorisation does not break down, at each stage. It is unclear

what effect this has on the resulting factorisation. Axelsson and Lindskog [15, p482]

also briefly mention the existence of incomplete factorisations for M -matrices. Varga,

Saff and Mehrmann[90] discuss a version of incomplete Cholesky factorisations for H-

matrices, incorporating a graph technique for fill-in. The emphasis of their paper is on

the “regularity” , or existence, of the factorisation. Buoni[25] gives a condition for the

existence of incomplete factorisations of M -matrices, his paper also discusses a method

of fill-in using a matrix graph technique. Not ay [71] discusses the robustness of the

incomplete factorisation, particularly for diagonally dominant Stieltjes matrices.

For a general symmetric positive definite matrix there is nothing in the literature about

the stability, or indeed existence, of the incomplete factorisation. In our case, as has

been discussed in chapter 1 , the possible use of basis functions, in the finite element

Stability of ILU : M-matrices and Non M-matrices 137

C h a p t e r 5 ILU P r e c o n d i t i o n i n g

discretisation, that are not linear means tha t the resulting stiffness m atrix cannot be

guaranteed to be either diagonally dominant or an M matrix. In this case the construc

tion of the incomplete factorisation can fail as a result of non-positive diagonal entries

being produced by addition of negative values. In addition the creation of small positive

diagonal entries can also cause stability problems in the factorisation. Three relatively

standard approaches to this problem are given in Meijerink and van der Vorst[69, §3]:

(i) If a diagonal entry of less than a prescribed positive value is encountered during the

construction of the L L T decomposition then some already computed off-diagonal

entries in the corresponding column of LT are set to zero.

(ii) The diagonal entry is enlarged if necessary, e.g. by neglecting some of the Gaussian

elimination corrections, (i.e. if a Gaussian elimination step would cause problems

with a small or negative diagonal entry then the diagonal entry is left alone).

(iii) We can also add a l to the matrix, i.e. perform an ILU decomposition on i + a l.

If a is large enough then the problem will not occur.

The incomplete factorisation code used in this chapter, uses a simple version of approach

(ii). Specifically, diagonal entries of the factorisation that are less than or equal to zero

are simply set to unity, thereby avoiding the difficulty. Whilst this is perhaps not the

best choice for our particular problem, it should be emphasised th a t the purpose of

this chapter is to compare a relatively simple incomplete factorisation method with a

method tha t is already known to be effective, namely the Two Grid method in chapter

2. In fact for the actual problem tha t we solve this criterion is not in fact ever used.

5.3 M atrix storage considerations

In previous chapters we considered the situation where the matrix was only required

in order tha t matrix-vector multiplications could be carried out. As a result of this

the matrix could be stored in an element form, precisely as was produced by the fi

nite element code. This had a number of advantages, as was seen in chapter 1, most

notably the savings in storage for the Cray YMP and the speed of the matrix-vector

multiplications, which on the Cray could be made to vectorise very well.

5.3. MATRIX STORAGE CONSIDERATIONS 138

C h a p t e r 5 I L U P r e c o n d i t i o n i n g

However, in the case of the incomplete factorisation, the matrix is required to be fully

assembled in order to carry out the incomplete factorisation. Hence, in order to im

plement any incomplete factorisation preconditioner, it is necessary to (a) decide on a

sparse storage technique and (b) using the storage technique, produce efficient versions

of both a matrix-vector multiplication routine and an incomplete factorisation routine.

For the purposes of this chapter, at least initially, the main interest is whether using

the incomplete factorisation is sufficient to ensure th a t the preconditioned conjugate

gradient method can be made to converge satisfactorily. For this reason it was decided

to use a standard package th a t could perform an incomplete factorisation of a general

matrix and use it as a preconditioner for CG. The Sparse Linear Algebra Package

(SLAP), discussed in detail in [82], was found to provide the necessary routines. The

matrix is supplied to these routines in a particularly simple format, called the SLAP

Triad Format. In this format each entry in the matrix requires two integers to specify

the column and row, and one real value for the entry itself. Note tha t the entries can

appear in any order, so this form is very simple to set up. More complete details can

be found in [82, §10.2]. In fact this particular storage format is not very effective on

the Cray YMP, as it does not allow the multiply routine to vectorise at all, which

will seriously limit the performance. However, the standard routines are designed to

convert the SLAP triad storage format to another method called the SLAP column

format, where the entries appear in a more ordered fashion, sorted by columns. This

format allows a more efficient computation of both the matrix-vector multiplies and the

LU backsolves since the operations now lend themselves more readily to vectorisation.

We illustrate these storage formats with the following example, which is non-symmetric

to fully illustrate the format.

E x am p le 5.4 Start with the original 5 x 5 matrix

1 1 1 2 0 0 15

2 1 2 2 0 0 0

0 0 33 0 35

0 0 0 44 0

51 0 53 0 55

5.3. MATRIX STORAGE CONSIDERATIONS 139

C h a p t e r 5 ILU P r e c o n d i t i o n i n g

The SL A P Triad format could store this matrix as follows:

A : 51 1 2 1 1 33 15 53 55 2 2 35 44 2 1

IA : 5 1 1 3 1 5 5 2 3 4 2

JA : 1 2 1 3 5 3 5 2 5 4 1

Conversely, the SLAP column format would store the matrix as:

A : 1 1 2 1 51 2 2 1 2 33 53 44 55 15 35

IA : 1 2 5 2 1 3 5 4 5 1 3

J A : 1 4 6 8 9 1 2

Notice th a t for the column storage format, the columns are sorted by order, but with

the diagonal appearing first, the “IA” entry specifies the row for each entry and the

“JA ” entry is used to determine where each column starts, the last “JA ” entry specifies

the number of non-zero entries in A.

One of the main problems with this method of storage is tha t it is not immediately

clear, at the time of starting to assemble the matrix in sparse format, just how much

storage will be required, this being a consequence of converting from an element format.

Again this is one of the drawbacks of using sparse storage techniques.

It is clear tha t, unlike the element storage technique, integer storage requirements are

much higher with the sparse storage, as pointers are needed for each entry. On archi

tectures where integers require the same storage space as reals, such as the Cray YMP,

this is an im portant issue, which we now explore.

5 .3 .1 A n e x a m p le o f s to ra g e req u ir em en ts

To illustrate the storage requirements for the two methods, we will briefly consider a

relatively small 2D problem with 14736 degrees of freedom. The grid and finite element

discretisation used results in 3684 9x9 element matrices, which when fully assembled

give a stiffness matrix with 122992 non-zero entries. In table 5.1 a comparison of storage

for the matrix is made, between both the SLAP Triad format, the SLAP column format

An example of storage requirements 140

C h a p t e r 5 I L U P r e c o n d i t i o n i n g

and the element storage format. Note tha t the sparse scheme only stores the lower

triangle of the matrix, but the element scheme stores each entire element and therefore

the entire matrix. It is clear tha t, for this problem, the Triad format requires most

storage, then the element scheme and finally the Column scheme. However, it should

be made clear that, as is discussed in chapter 1 , larger problems always require more

storage for sparse schemes of the type discussed here. This is mainly due to the high

numbers of integer pointers required for the sparse format.

Method Element SLAP Triad SLAP Column
REALS 298404 122992 122992
INTS 33156 245984 137728

TOTAL 331560 368976 260720

Table 5.1: Table showing storage requirements for the stiffness matrices for element
and sparse matrix storage schemes. Note that this problem features 3684 elements each
requiring a 9 x 9 matrix of reals and 9 integers for the element scheme. The sparse
scheme only stores the lower triangle o f this symmetric matrix, which has 122992 non
zero entries.

Now consider the situation for the incomplete factorisation and compare this with the

requirements for the two grid method. Storage of the incomplete factorisation clearly

doubles the requirement, since we now have to store the matrix and its incomplete

factorisation. For the two grid method it is only necessary to store the matrix, the

rest can be reasonably stored out of main memory with no significant performance

loss, as this data is only needed for the coarse grid solve step, see chapter 2 for more

details on this. In table 5.2 the storage requirements for the two grid method are

compared with those for the incomplete factorisation. It is clear from this tha t the

incomplete factorisation method requires more storage than the two grid method even

for a small problem like this one. As discussed in chapter 1 §1.5 the sparse scheme will

always require more storage than the element scheme, so tha t use of the incomplete

factorisation, where the m atrix is effectively stored twice, always has a higher storage

requirement.

An example of storage requirements 141

C h a p t e r 5 I L U P r e c o n d i t i o n i n g

Method Two Grid ILU
REALS 298404 260720

INTS 33156 260720
TOTAL 331560 521440

Table 5.2: Table of total storage requirements for the two grid method and incomplete
factorisation method, neglecting CG vector requirements. The two grid method only
requires storage o f the stiffness matrix (as elements) whilst the ILU method requires
storage of the stiffness matrix and the incomplete factorisation (both in sparse format).

5.4 Num erical Experiments

For the results presented here we consider a model problem for groundwater flow in a

complex geological medium with realistic contrasts in the permeability field. A sample

grid, with only a few thousand degrees of freedom, is given in chapter 2, figure 1-1.

Comparisons are made between the sparse and element m atrix storage schemes and

the direct solver, the MA32 frontal solver from the Harwell subroutine library. Where

appropriate, time plot graphs will show the time taken by the direct solver with a “V” .

The sample problem considered here has 14736 degrees of freedom, the direct solver

requires 4.3 seconds to solve this problem exactly. Note tha t, for this problem, use of

a simple diagonal scaling preconditioner is not sufficient to achieve reasonable rates of

convergence. Figure 5-4, shows the rate of convergence of diagonally preconditioned

conjugate gradients, using the element storage scheme. Although the method converges

quite well for this problem, nearly 10 times more CPU time is used than the direct

solver. As this is a relatively small problem this is not too discouraging a result, since

if this rate of convergence were maintained for larger problems then the iterative solver

is highly likely to be significantly faster than the direct solver. Nonetheless, in order for

the incomplete factorisation preconditioner to be considered effective, we would expect

to see a marked improvement in the rate of convergence.

When considering the sparse storage scheme, and the incomplete factorisation, there is

an additional timing overhead involved in assembling the matrix into the sparse format

and computing the incomplete factorisation. Indeed for the problem considered here,

62.48 seconds are required to form the factorisation, which already is considerably more

5.4. NUMERICAL EXPERIMENTS 142

C h a p t e r 5 ILU P r e c o n d i t i o n i n g

0.5

-0.5

X -1
OH60

.2 -1.5

-2.5

0 10 20 30 40 50
CPU tim e/s

Figure 5-4: Diagonally preconditioned conjugate gradients, using element matrix storage.

time than the direct solver needs to exactly solve the problem. This time should, to

some extent, be ignored since the implementation does not appear to be very effective

on the Cray YMP.

To see fully the effect on performance due to using the sparse storage scheme we firstly

compare the results for a diagonally preconditioned conjugate gradient method using

both the element scheme and the sparse scheme. In terms of iterations we would expect

these to give almost identical results, since they are both working on the same problem.

Any difference would be wholly due to numerical difference in the two methods due to

rounding errors. Results in figure 5-5 demonstrate that the element scheme is superior,

in terms of error reduction achieved for processor time used. In this case the time to

compute the assembled sparse matrix is neglected. The sparse storage scheme takes

approximately 3.5 times longer to perform the same number of iterations as the element

storage scheme.

In figure 5-6 a comparison of diagonal preconditioning and incomplete LU precondition

ing is made, based on error reduction against iterations. It is clear from this that the

5.4. NUMERICAL EXPERIMENTS 143

C h a p t e r 5 ILU P r e c o n d i t i o n i n g

— 1000 its. element storage
— 1000 its. sparse storage

- 0.1

Cl
x -0.2
oHbO

_0

-0.3

Ci

c

o

-0.4

-0.5

0 5 10 15 20 25 30 35
CPU tim e/s

Figure 5-5: Comparison of timings for diagonal preconditioned CG, with element and
sparse storage schemes, using 1000 iterations.

— DIAG
— ILU

- 0.2

-0.4
N . ^

c
bO

- 1.2

6000 200 400 800 1000
CG Iterations

Figure 5-6: Comparison of diagonal preconditioned CG and incomplete LU precondi
tioned CG.

5.4. NUMERICAL EXPERIMENTS 144

C h a p t e r 5 IL U P r e c o n d i t i o n i n g

incomplete factorisation does indeed give faster convergence, but not significantly faster

as might perhaps be hoped. A comparison of error reduction against CPU time used

is given in figure 5-7. Here we see nearly 5000 iterations of diagonally preconditioned

CG, in the element storage format, compared with 1000 iterations of the incomplete

method. Note that in this figure the sparse matrix and incomplete factorisation setup

times are neglected. Figure 5-8 again shows the same results as the previous figure but

now the setup times for the ILU method are included. Note the considerable difference

between this and the previous figure, nearly a factor of 2.

— 4880 Its. DIAG
— 1000 Its. ILU-0.5

o
£

-2.5

0 10 20 30 40 50 60 70 80
CPU tim e/s

Figure 5-7: Comparison of timings for element stored diagonal preconditioned CG and
incomplete LU preconditioned CG.

We finally comment on how this method compares with the two grid method from

chapter 2. For the problem of this size the two grid method is able to achieve convergence

in almost the same time as the direct solver. This is a considerably better situation than

we have for the incomplete factorisation method, which, after this same amount of CPU

time, had barely even begun to converge. Figure 5-9 shows how the two grid and ILU

methods compare, in terms of convergence against CPU time.

5.4. NUMERICAL EXPERIMENTS 145

C h a p t e r 5 I L U P r e c o n d i t i o n i n g

— 4880 Its. DIAG
— 1000 its. ILU-0.5

o

t>0
o

bOO

-2.5

0 100 15050
CPU tim e/s

Figure 5-8: Comparison of timings for element stored diagonal preconditioned CG and
incomplete LU preconditioned CG, including setup times for the ILU version.

IT

0

-0.5

-1

-1.5

X -2

hO
■2 -2.5

-3

-3.5

-4

— TGM
— ILU

50 100
CPU tim e/s

150

Figure 5-9: Comparison of timings for two grid method and incomplete LU precondi
tioned CG, including setup times for the ILU version.

5.4. NUMERICAL EXPERIMENTS 1 4 6

C h a p t e r 5 I L U P r e c o n d i t i o n i n g

5.5 Elem ent-by-elem ent preconditioning

We conclude this chapter by briefly discussing a further approach to incomplete fac

torisation preconditioning, which would seem to by-pass at least some of the problems

tha t were discussed in the previous sections. In this approach an LU factorisation of

each element is produced and these are then combined to form a preconditioner for

the conjugate gradient method. This results in an element-by-element preconditioned

conjugate gradient method, or EBEPCG. For more details on these methods see work

by Hughes et al[54, 53, 52, 51], and Wathen[66, 92].

As an example of an element-by-element factorisation, using a similar approach to tha t

given in [92, §2], we see tha t the method proceeds in the following way: Assume the

fully assembled stiffness matrix, A, is assembled from small element matrices E e. Then

denote A e as the assembled contribution to the full matrix from the element e, hence

A = (5.5.1)
e

Now write each A e as an LU decomposition

A e = L eUe (5.5.2)

and so the global element-by-element preconditioner is written as

M = I I *
_e = l . e = l

(5.5.3)

where nei is the total number of elements.

Clearly, with this approach, use of the preconditioner, M , to solve M z = r involves a

series of forward and back substitutions.

This method would certainly appear to solve some of the problems tha t have been men

tioned earlier, in particular we no longer need to fully assemble the matrix and so can

avoid having to use the slower, and less efficient, sparse storage format. However, as is

discussed in some detail by Lee and Wathen in [66, §4], problems arise with EBE ap-

5.5. ELEMENT-BY-ELEMENT PRECONDITIONING 147

C h a p t e r 5 ILU P r e c o n d i t i o n i n g

proaches when there is a discontinuous coefficient in the pde. In particular they report

tha t the EBE preconditioning becomes increasingly worse, in the sense th a t the condi

tion number of the preconditioned m atrix is poorly reduced, as the discontinuity grows

worse. They conclude by saying th a t “For problems where coefficient discontinuities do

not play a major role, it (EBEPCG) appears to be a competitive method, particularly

on advanced hardware.” . Unfortunately, as has been discussed in detail in chapter 1,

the pde we are mainly concerned with here is of the form

—V.(fcVp) = 0

where the coefficient k is highly discontinuous. Hence, following the advice in [66], the

EBE method would appear to be of no practical use. For this reason we chose not to

develop and test code for the EBE approach.

5.6 Conclusions

From the results in §5.4 it can be seen th a t use of the sparse storage scheme, i.e. the

SLAP column format, severely limits the performance of the conjugate gradient code.

W ith the stiffness matrix stored in the fully assembled sparse format, a single matrix-

vector multiply, which is the core routine of the conjugate gradient code, requires 3.5

times as much CPU time as when the matrix is stored by elements. In addition the

time to perform the incomplete factorisation appears to be very high, nearly 65 seconds

for a problem with 14,000 degrees of freedom, indicating tha t the implementation is not

very effective for the Cray YMP architecture. Storage requirements for the incomplete

factorisation are also much higher, which is partly a result of using a sparse storage

technique and partly due to needing additional storage for the incomplete factors.

Our test example, with 14,000 degrees of freedom, shows very poor performance of a

relatively simple incomplete factorisation code. Whilst convergence of the conjugate

gradient algorithm is faster than for the simple diagonal preconditioning, the extra time

required to perform the incomplete factorisation, coupled with the much slower matrix-

vector multiply performance, results in a method th a t hardly begins to be competitive

with the direct solver, MA32. In addition the ILU method does not compare well

5.6. CONCLUSIONS 148

C h a p t e r 5 I L U P r e c o n d i t i o n i n g

with the Two Grid method, which, for this problem, converges in the same time as

the direct solver. Other, more complicated, techniques for forming the incomplete

factorisation exist, as was discussed in §5.2, and it is possible th a t use of these methods,

coupled with a better implementation, may allow a better performance of the incomplete

factorisation. However, the main point of this chapter was to investigate the effectiveness

(or non-effectiveness) of a simple, standard, ILU code. Our results indicate tha t a simple

implementation is not sufficient.

5.6. CONCLUSIONS 149

Chapter 6

Future Work

The results in chapters 2 and 3 indicate tha t the two grid method is very effective at

solving the linear systems arising from the groundwater flow problem (see §1.2). A more

complete evaluation of the two grid method for much larger problems is needed, mainly

to confirm tha t there are no problems with the convergence of the method for larger

problems. A more thorough investigation of the effect of the number of smoothing steps

per two grid step is also needed, our numerical experience so far indicates th a t larger

(or harder) problems need more smoothing steps to give best rates of convergence.

The three grid method would also benefit from testing on large problems, again to

see how it converges in this case and contrasts with the two grid method. A W-cycle

implementation of the three grid method would also be of some interest.

The non-symmetric problem briefly discussed in §2.7 needs much more consideration. A

successful implementation of a non-symmetric two grid solver would be of considerable

interest to Harwell, since many of the NAMMU applications produce non-symmetric

linear systems (including the non-linear pdes which are solved by Newton’s method).

Further approaches to finding an effective method would certainly include considering

other non-symmetric iterative methods, for example Bi-CG, GMRES, or QMR. The

non-symmetric case might also benefit from trying a three grid approach, again with

the various choices of smoothers, and using a V-cycle or W-cycle approach. A further

possible area of research concerns the coarse grid correction step, the natural choice

150

C h a p t e r 6 F u t u r e W o r k

for prolongations and restrictions for a finite element method outlined in §2.2 is not

the only possible choice, for example we could use a higher order interpolation to give

the prolongation matrix. It is unclear whether this would be advantageous. A further

possibility, only appropriate in the three grid case, is to use a damped coarse grid

correction, where we replace the coarse grid correction step (c.f 2.2.4) by

x i = x 0 + u;Pdc,

for some damping coefficient u . This approach is discussed in more detail in Hackbusch

[44, §10.8.2],

151

Bibliography

[1] L. A dams , M-step preconditioned conjugate gradient methods, SIAM J. on Scientific

and Statistical Computing, 6 (1985), pp. 452-463.

[2] F. A lvarado and H. D a g , Sparsified and incomplete sparse factored inverse

preconditioners. Proc. Copper Mountain Conference on Iterative Methods, April

1992.

[3] S. F. A shby , Polynomial Preconditioning for Conjugate Gradient methods, PhD

thesis, University of Illinois, 1987.

[4] ------ , Minimax polynomial preconditioning for Hermitian linear systems, SIAM J.

on M atrix Anal, and Appl., 12 (1991), pp. 766-789.

[5] S. F. A shby , R. D. Fa lg ou t , S. G. Smith , and A. F. B. T om pso n , Mod

eling groundwater flow on MPPS, in Proceedings of the scalable parallel libraries

conference, 1993.

[6] S. F. A shby and M. H. Gu tknecht , A matrix analysis o f conjugate gradient

algorithms, Tech. Report UCRL-JC-113560, Lawrence Livermore National Labo

ratory, March 1993.

[7] S. F. A shby , M. J. Ho l st , T . A. Manteuffel , and P. E. Saylor , The role of

the inner product in stopping criteria for conjugate gradient iteration, Tech. Report

UCRL-JC-112586, Lawrence Livermore National Laboratory, November 1992.

[8] S. F. A shby , T. Ma nteuffel , and J . S. Ot t o , A comparison of adaptive

Chebyshev and least squares polynomial preconditioning for Hermitian positive def

inite linear systems, SIAM J. on Scientific and Statistical Computing, 13 (1992),

pp. 1-29.

152

Bibliography

[9] S. F . A s h b y , T . A . M a n t e u f f e l , a n d P . E . S a y l o r , Adaptive polynomial

preconditioning for Hermitian indefinite linear systems, B I T , 29 (1989), pp. 583-

609.

[10] ------ , A taxonomy for conjugate gradient methods, SIAM J. on Numer. Anal., 27

(1990), pp. 1542-1568.

[11] 0 . A x e l s s o n , A survey of preconditioned iterative methods for linear systems of

algebraic equations, BIT, 25 (1985), pp. 166-187.

[12] ------ , Bounds of eigenvalues o f preconditioned matrices, SIAM J. on Matrix Anal.

and Appl., 13 (1992), pp. 847-862.

[13] ------ , Iterative solution methods, CUP, 1994.

[14] O . A x e l s s o n a n d V . A . B a r k e r , Finite element solution o f boundary value

problems - theory and computation, Academic press, 1984.

[15] O . A x e l s s o n a n d G. L i n d s k o g , On the eigenvalue distribution o f a class of

preconditioning methods, Numer. Maths., 48 (1986), pp. 479-498.

[16] ------ , On the rate of convergence of the preconditioned conjugate gradient method,

Numer. M aths., 48 (1986), pp. 499-523.

[17] O . A x e l s s o n a n d N. M u n k s g a a r d , A class o f preconditioned conjugate gradient

methods for the solution o f a mixed finite element discretization o f the biharmonic

operator, Internat. J. Numer. Methods Engrg., 14 (1979), pp. 1001-1019.

[18] R. E . B a n k , A multi-level iterative method for nonlinear elliptic equations, in

Elliptic Problem Solvers, M. H. Schultz, ed., Academic Press, New York, 1981,

pp. 1-16.

[19] R. E. B a n k a n d C. C. D o u g l a s , Sharp estimates for multigrid rates of con

vergence with general smoothing and acceleration, SIAM J. on Numer. Anal., 22

(1985).

[20] R. B e a u w e n s a n d M. B. B o u z i d , On sparse block factorization iterative methods,

SIAM J. on Numer. Anal., 24 (1987).

[21] P . B e c k m a n n , Orthogonal polynomials for engineers and physicists, Golem Press,

1973.

153

Bibliography

[22] P . B o g a r i n s k i , e d . , IN TRAVEL Phase II. working group 3 report, te c h . re p o r t,

N u clea r E n erg y A gen cy , 1994 . In p rep a ra tio n .

[23] D . B r a e s s , On the combination o f the multigrid method and conjugate gradients,

in M u ltig r id M e th o d s II, W . H ack b u sch an d U . T ro tten b erg , ed s., S p r in ger-V er lag ,

1985 .

[24] A. B r a n d t , Multi-level adaptive solution to boundary-value problems, M a th .

C o m p ., 31 (1 9 7 7), pp . 3 3 3 -3 9 0 .

[25] J . J . B u o n i , Incomplete factorizations o f singular M-matrices, S IA M J. A lg . D isc .

M e th ., 7 (1 9 8 6), pp. 1 9 3 -1 9 8 .

[26] N . N . C h a n a n d K .-H . L i, Diagonal elements and eigenvalues of a real symmetric

matrix, J. M a th . A n a l, and A p p l., 91 (1 9 8 3), pp . 5 6 2 -5 6 6 .

[27] M . T . C h u , A simple application o f the homotopy method to symmetric eigenvalue

problems, L inear A lg eb ra and it s a p p lic a tio n s , 59 (1 9 8 4), pp. 8 5 -9 0 .

[28] P . G. C i a r l e t , The finite element method for elliptic problems, N o r th -H o lla n d ,

1978 .

[29] P . C o n c u s , G. H . G o l u b , a n d G. M e u r a n t , Block preconditioning fo r the

conjugate gradient method, S IA M J. on S cien tific an d S ta t is t ic a l C o m p u tin g , 6

(1 9 8 5) , pp . 2 2 0 -2 5 2 .

[30] P . M . DE Z e e u w , Matrix-dependent prolongations and restrictions in a blackbox

multigrid solver, Jou rn al o f c o m p u ta tio n a l and ap p lied m a th e m a tic s , 33 (1 9 9 0) ,

p p . 1 -2 7 .

[31] H. D e c o n i n c k a n d C . H ir s c h , A multigrid finite element method for the tran

sonic potential equation, in M u ltig r id M e th o d s , W . H ackbusch an d U . T r o tte n b e r g ,

ed s ., S pringer-V erlag , 1981 .

[32] I. S . D u f f , A . M . E r is m a n , a n d J . K . R e id , Direct methods for sparse matrices,

O xford U n iv ers ity P ress , 1986 .

[33] B. F i s c h e r a n d R. W . F r e u n d , On adaptive weighted polynomial preconditioning

for Hermitian positive definite matrices. T o ap p ear.

154

Bibliography

[34] R. F l e t c h e r , Conjugate gradient methods for indefinite systems, in Lecture Notes

in Mathematics 506, Springer-Verlag, Berlin, Heidelberg, New York, 1976, pp. 73-

89.

[35] G. E. F o r s y t h e a n d E. G. S t r a u s , On best conditioned matrices, Proc. Amer.

M ath. Soc., 6 (1955), pp. 340-345.

[36] L. Fox a n d D. F. M a y e r s , Computing methods for scientists and engineers,

Oxford, 1968.

[37] G. H. G o l u b a n d D. P . O ’L e a r y , Some history of the conjugate gradient and

Lanczos algorithms: 1948-1976, computer science technical report series, University

of Maryland, June 1987.

[38] G. H. G o l u b a n d C. F. v a n L o a n , Matrix Computations, second edition., John

Hopkins University Press, 1989.

[39] A. G r e e n b a u m , A comparison o f splittings used with the conjugate gradient algo

rithm;, Numer. Maths., 33 (1979), pp. 181-194.

[40] , Diagonal scalings o f the Laplacian as preconditioners for other elliptic dif

ferential operators, SIAM J. on M atrix Anal, and Appl., 13 (1992), pp. 862-846.

[41] A. G r e e n b a u m , C. L i , a n d H. Z. C h a o , Parallising PCG algorithms, Comp.

Phys. Comm., 53 (1989), pp. 295-309.

[42] I. G u s t a f s s o n , A class o f first order factorization methods, BIT, 18 (1978),

pp. 142-156.

[43] W . H a c k b u s c h , Multigrid Methods and Applications, Springer-Verlag, 1985.

[44] , Iterative Solution o f Large Sparse Systems o f Equations, Springer-Verlag,

1994.

[45] W. H a c k b u s c h a n d U. T r o t t e n b u r g , eds., Multigrid Methods, Springer-Verlag,

1982. From the International Conference on Multigrid Methods, Cologne-Porz.

[46] , eds., Multigrid Methods II, Springer-Verlag, 1986. From the 2nd European

Conference on Multigrid Methods, held a t University of Cologne.

155

Bibliography

[47] L. A. H a g e m a n a n d D. M. Y o u n g , Applied iterative methods, Academic Press,

1981.

[48] L. J . H a r t l e y a n d C. P . J a c k s o n , NAM M U (Release 6.1) User Guide, AEA-

D&R 0472.

[49] M. R. H e s t e n e s a n d E. S t i e f e l , Methods o f conjugate gradients for solving

linear systems, J. Res. Nat. Bur. Standards, 49 (1952), pp. 409-436.

[50] M. C. H i l l , Solving groundwater flow problems by conjugate-gradient methods and

the strongly implicit procedure, Water resources research, 26 (1990), pp. 1961-1969.

[51] T . J . R. H u g h e s , The Finite Element Method: Linear Static and Dynamic Finite

Element Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1987.

[52] T . J . R. H u g h e s , R. M. F e r e n c z , a n d J. O. H a l l q u i s t , Large scale vec

torized implicit calculations in solid mechanics on a Cray X-M P/48 utilizing EBE

preconditioned conjugate gradients, Comp. Meth. Appl. Mech. Engrg., 61 (1987),

pp. 215-248.

[53] T. J. R. H u g h e s , I. L e v i t , a n d J . W i n g e t , Element-by-element implicit algo

rithms for heat conduction, J. Engrg. Mech., 109 (1983), pp. 576-585.

[54] ------ , An element-by-element solution algorithm for problems of structural and solid

mechanics, Comp. Meth. Appl. Mech. Engrg., 36 (1983), pp. 241-254.

[55] B. M. I r o n s , A frontal solution program for finite-element analysis, Int. J. Numer.

Meth. Engr., 2 (1970), pp. 5-32.

[56] C. J o h n s o n , Numerical solution of Partial Differential Equations by the Finite

Element method, CUP, 1987.

[57] O. G. J o h n s o n , C. A. M i c c h e l l i , a n d G. P a u l , Polynomial preconditioners for

conjugate gradient calculations, SIAM J. on Numer. Anal., 20 (1983), pp. 362-376.

[58] T. L. J o r d a n , Conjugate gradient preconditioners for vector and parallel proces

sors, 1984.

[59] E. F. K a a s c h i e t e r , A practical termination criterion for the conjugate gradient

method, BIT, 28 (1988), pp. 308-322.

156

Bibliography

[60] ------ , Preconditioned conjugate gradients for solving singular systems, J. Comp.

and Appl. Maths, (1988), pp. 265-275.

[61] ------ , A general finite element preconditioning for the conjugate gradient method,

BIT, 29 (1989), pp. 824-849.

[62] D. S. K e r s h a w , The incomplete Cholesky - conjugate gradient method for the iter

ative solution o f systems o f linear equations, J. Comput. Phys., 26 (1978), pp. 43-

65.

[63] R. K e t t l e r , Analysis and comparison o f relaxation schemes in robust multigrid

and preconditioned conjugate gradient methods, in Multigrid Methods, W. Hack

busch and U. Trottenberg, eds., Springer-Verlag, 1981.

[64] J . R. K n i g h t l y a n d I. P . J o n e s , A comparison of conjugate-gradient precon

ditionings for 3-d problems on a Cray-1, Computer Physics Communications, 37

(1985), pp. 205-214.

[65] C. L a n c z o s , Chebyshev polynomials in the solution of large-scale linear systems.

Proc. of the Association for Computing Machinery, Toronto, Sauls Lithograph Co.,

Washington D.C, 1953.

[66] H. L e e a n d A. J. W a t h e n , On element-by-element preconditioning for general

elliptic problems, Comp. Meth. in Appl. Mechanics and Engineering, 92 (1991),

pp. 215-229.

[67] M. M. Magolu , Modified block-approximate factorization strategies, Numer.

Maths., 61 (1992), pp. 91-110.

[68] J . A. M e ij e r in k a n d H. A. v a n d e r V o r s t , An iterative solution method for

linear systems o f which the coefficient matrix is a symmetric M-matrix, M athem at

ics of computation, 31 (1977), pp. 148-162.

[69] -------, Guidelines for the usage of incomplete decompositions in solving sets o f linear

equations as they occur in practical problems, J. Comp. Phys., 44 (1981), pp. 134-

155.

[70] Y. N o t a y , Incomplete factorizations o f singular linear systems, BIT, 29 (1989),

pp. 682-702.

157

Bibliography

[71] ------ , On the robustness o f modified incomplete factorization methods, Int. J. Comp.

Meth., 40 (1992), pp. 121-141.

[72] D. P . O ’L e a r y , Yet another polynomial preconditioner for the conjugate gradient

algorithm, Linear Algebra and its applications, 154 (1991), pp. 377-388.

[73] B. N. P a r l e t t , The symmetric eigenvalue problem, Prentice Hall, 1980.

[74] A. R a m a g e a n d A. J . W a t h e n , On preconditioning for finite-element equations

on irregular grids, SIAM J. on M atrix Anal, and Appl., 15 (1994), pp. 909-921.

[75] J. K. R e i d , On the method o f conjugate gradients for the solution o f large sparse

systems of linear equations, in Large sparse sets of linear equations, J. K. Reid, ed.,

Academic Press, 1971.

[76] T . J . R i v l i n , The Chebyshev polynomials, Wiley, 1974.

[77] V. R u g g i e r o , Polynomial preconditioning on vector computers, Applied mathe

matics and computation, 59 (1993), pp. 131-150.

[78] Y. S a a d , Practical use o f polynomial preconditioning for the conjugate gradient

method, SIAM J. on Scientific and Statistical Computing, 6 (1985).

[79] ------ , Krylov subspace methods on supercomputers, SIAM J. on Scientific and Sta

tistical Computing, 10 (1989), pp. 1200-1232.

[80] Y. S a a d a n d M. H. S h u l t z , GMRES: A generalized minimal residual algorithm

for solving non-symmetric linear systems, SIAM J. on Scientific and Statistical

Computing, 7 (1986), pp. 856-869.

[81] S. S a u t e r , The ILU method for the finite-element discretisations, J. Comp. Appl.

Maths., 36 (1991), pp. 91-106.

[82] M. K. S e a g e r , A SLA P for the masses, in Parallel Supercomputing: Methods,

Algorithms and Applications, G. F. Carey, ed., Wiley, 1989, ch. 10, pp. 135-155.

[83] G. S t r a n g , Introduction to applied mathematics, Wellesley Cambridge Press,

1986.

[84] G. S z e g o , Orthogonal polynomials, vol. XXIII, American M athematical Society

Colliquiem publications, 3rd ed., 1967.

1 5 8

Bibliography

[85] M. T i s m e n e t s k y , A new preconditioning technique for solving large sparse linear

systems, Linear Algebra and its applications, 154-156 (1991), pp. 337-353.

[86] A. v a n d e r S l u i s , Condition numbers and equilibration o f matrices, N u m er.

Maths., 14 (1969), pp. 14-23.

[87] A. v a n d e r S l u i s a n d H. A. v a n d e r V o r s t , Rate o f convergence of conjugate

gradients, Numer. M aths., 48 (1986), pp. 543-560.

[88] H. A. v a n d e r V o r s t , Conjugate gradient type methods and preconditioning, J.

of Computational and Applied Maths, 24 (1988), pp. 73-87.

[89] R. S. V a r g a , Matrix Iterative Analysis, Prentice Hall, 1962.

[90] R. S. V a r g a , E. B. S a f f , a n d V. M e h r m a n n , Incomplete factorization of

matrices and connections with H-matrices, SIAM J. on Numer. Anal., 17 (1980),

pp. 787-793.

[91] A. J . W a t h e n , Realistic eigenvalue bounds for the Galerkin mass matrix, IMA J.

Numer. Anal., 7 (1978), pp. 449-457.

[92] ------ , An analysis o f some element-by-element techniques, Comp. Meth. Appl.

Mech. Engrg., 74 (1989), pp. 271-287.

[93] J . H. W i l k i n s o n , The algebraic eigenvalue problem, Oxford, 1965.

159

