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Abstract

The functional role of two aromatic substructures and the ‘flexible loop’ region 

of bovine a-lactalbumin (LA) have been investigated using protein engineering and X-ray 

crystallography. An efficient non-fusion protein expression system has been developed to 

produce LA in E. coli. Twenty mutant LAs, containing single-site substitutions in a 

cluster of four invariant residues (aromatic cluster I), the hydrophobic box and a flexible 

loop adjacent to the cleft, have been expressed, purified and kinetically characterised. 

Changes in aromatic cluster I and the flexible loop have specific effects on LA’s ability to 

modulate the substrate specificity of bovine galactosyltransferase (GT) in the lactose 

synthase complex. Substitutions at His-107, Gln-117 and Trp-118 reduce affinity for GT, 

whereas changes at Phe-31 and His-32 predominantly affect LA’s ability to promote 

glucose binding and have lesser effects on affinity. In contrast, substitutions at the 

hydrophobic box affect the folding and integrity of the native conformation of LA.

The crystal structure of the parent recombinant LA (mLA) has been determined 

using X-ray crystallography and refined at 2.3A resolution. Several of the variant LAs 

have been crystallised but their structures have not been elucidated. In parallel studies, 

the three-dimensional structures of LA from goat and guinea-pig milk have been 

determined at resolutions of 1.9A and 2.3A respectively. Although the three structures 

are very similar, significant differences are observed in conformation of residues 105- 

110. The LA crystal structures demonstrate that this ‘flexible loop’ region is particularly 

mobile and that it can adopt a number of different conformations depending on the



Abstract

conditions used to obtain crystals. The general observation that LA’s interaction site for 

GT is located in the flexible C-terminal portion of the molecule implies that 

conformational adjustments may be important for the formation and function of the 

lactose synthase complex.
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Abbreviations

AD-LAB In-house Siemens area detector

AU Crystallographic asymmetric unit

BBLA Baboon milk alpha-lactalbumin

CD Circular dichroism

ChB N, N' diacetylchitobiose

CNBr Cyanogen bromide

EDTA Ethylenediaminetetraacetic acid

F(hkl) or F(hkl) Observed structure factor and its amplitude

Fcaic Calculated structure factor

FFT Fast Fourier transform

GOLA Goat milk alpha-lactalbumin

glc glucose

GlcNAc N-acetyl glucosamine

GPLA Guinea-pig milk alpha-lactalbumin

GT UDP-galactose-P-N-acetylglucosaminide-pl ,4
galactosyltransferase (E.C. 2.4.1.38)

HEWL Hen egg-white lysozyme

HLA Human milk alpha-lactalbumin

HPLC High performance liquid chromatography

LA Alpha-lactalbumin

LS Lactose synthase (E.C. 2.4.1.22)

LYZ C-type lysozyme

MAD Multiwavelength anomalous diffraction

MIR Multiple isomorphous replacement

mLA methionine alpha-lactalbumin (recombinant bovine LA)

MR Molecular replacement

NCS Non-crystallographic symmetry

NMR Nuclear magnetic resonance

PAGE Polyacrylamide gel electrophoresis
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PCR Polymerase chain reaction

PEG Polyethylene glycol

RBR Rigid-body refinement

rms(d) Root mean square (difference)

SDS Sodium dodecyl sulphate

Tris Tris-(hydroxymethyl)aminomethane

UDP Uridine diphosphate

X30Y Denotes amino acid at position 30 was changed from X to Y

Symbols:

a  Phase angle

a , p, y Eulerian angles

B Isotropic temperature factor

E Normalised structure factor

hy ky I or h Miller indices

/  Diffraction intensity

Km Michaelis constant

X Wavelength

R Crystallographic residual

a  Standard deviation

jc, y ,  z  Cartesian coordinates

One and Three Letter Amino Acid Codes:

A Alanine (Ala) M Methionine (Met)

C Cysteine (Cys) N Asparagine (Asn)

D Aspartic acid (Asp) P Proline (Pro)

E Glutamic acid (Glu) Q Glutamine (Gin)

F Phenylalanine (Phe) R Arginine (Arg)

G Glycine (Gly) S Serine (Ser)

H Histidine (His) T Threonine (Thr)

I Isoleucine (lie) V Valine (Val)

K Lysine (Lys) w Tryptophan (Trp)

L Leucine (Leu) Y Tyrosine (Tyr)
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Chapter

Introduction

Enzyme activity is regulated by a multitude of different mechanisms. Control is 

typically maintained either via covalent mechanisms, such as protein phosphorylation or 

proteolytic cleavage, or via non-covalent mechanisms. Non-covalent regulation of 

enzyme activity is often mediated through reversible heterologous protein-protein 

interactions. This type of regulation is commonly mediated either directly or indirectly by 

conformational changes. In some cases, such as the activation of cyclin-dependent 

kinases by cyclin, the extent of molecular adjustment in the enzyme’s structure can be 

quite startling (Jeffrey et al., 1995). However, detailed understanding of the structural 

basis that underlies these modulations is, in most cases, quite limited. Clearly, a general 

feature of this type of regulation will involve a certain degree of conformational 

flexibility in the relevant molecules but it is not apparent whether this generalisation 

applies in all cases.

The enzyme lactose synthase (LS; E.C. 2.4.1.22) provides an ideal, albeit 

unusual, system in which to study heterologous protein-protein interactions. The 

catalytic activity of this enzyme, and the concomitant rate of milk lactose biosynthesis, is

1



1: Introduction

regulated by an unique mechanism. In this enzyme complex, the catalytic potential of a 

glycosyltransferase, UDP-galactose-p-N-acetylglucosaminide-pl ,4 galactosyltransferase, 

is temporarily ‘hijacked’ and its substrate specificity is altered through an interaction with 

a ‘specifier’ protein (a-lactalbumin). As a result, the transferase’s affinity for glucose 

increases dramatically and this facilitates the biosynthesis of lactose. Such ‘affinity 

control’ of pre-existing enzyme activity is unusual as the majority of regulation 

mechanisms, mediated by modulatory proteins, involve unequivocal changes in activity.

In the LS complex, the role of the specifier protein, LA, is akin to that played by metal 

ions in the activation of certain enzymes both in terms of its kinetic effects and functional 

nature (Khatra et al., 1974).

LA, the ‘specifier’ protein in the LS complex and the subject of this work, is a 

globular, low molecular weight (~14KDa) protein component of the whey (non-casein) 

fraction of milk. It is expressed exclusively in the lactating mammary gland and, after 

fulfilling its modulatory role, is secreted into the milk. LA possesses a number of other 

interesting biological features in addition to its role in the LS complex. It is homologous 

to the C-type lysozymes, despite a radical change in biological activity, and represents an 

extreme example of functional divergence (Brew et al., 1967). The structure-function 

relationships of lysozymes and LA are of particular interest both in terms of protein 

evolution and the way in which new biochemical functions arise. LA also readily forms a 

number of relatively stable, molten globule intermediates that are relevant to protein 

folding. The molten globule state of LA is extensively studied and is considered to be an 

archetypal folding intermediate (Kuwajima, 1989; Radford and Dobson, 1995). Finally 

LA is a calcium-binding metalloprotein (Hiroaka et al., 1980) and, unlike lysozymes,

2
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binds a number of different metal ion species that affect its conformational properties 

(Kronman, 1989).

The remaining sections in this chapter give a brief overview of the function and 

molecular properties of LA with particular emphasis on its role in the LS complex. 

Further details can be found in a number of recent reviews (Kronman, 1989; McKenzie 

and White, 1991; Brew and Grobler, 1992).

1.1 Previous Studies on LA

1.1.1 Role in the Lactose Synthase Complex

Milk is a complex mixture of proteins, carbohydrates, lipids and inorganic 

components and its composition varies significantly between various extant mammals. 

Lactose is the major free carbohydrate of most milks and accounts for about 3 to 7% of 

the total milk weight (Jenness, 1970). In addition to its nutritional role, lactose is also the 

principal osmotically active substance in milk and is responsible for generating most of 

the aqueous phase (Linzell and Peaker, 1971). Early studies showed that, although the 

majority of the carbon in lactose is derived from blood glucose, the precursors of the 

glucose and galactose moieties of lactose are not the same. Wood and co-workers 

suggested that lactose is enzymatically synthesised from UDP-galactose and glucose (see 

Brew and Hill, 1975). Subsequent studies demonstrated that the enzyme responsible for 

lactose biosynthesis, lactose synthase (LS), exists as a microsomal enzyme in the 

mammary glands of lactating cows and guinea-pigs (Watkins and Hassid, 1962) and in a 

soluble form in unpasteurised cow milk (Babad and Hassid, 1964; 1966). Brodbeck and 

Ebner (1966) demonstrated that LS is composed of two protein components (designated

3



1: Introduction

‘A’ and ‘B’). In isolation, neither the ‘A’ or ‘B’ proteins has synthase activity, but when 

these two components are recombined full activity is regained.

Further studies identified LA as the ‘B’ protein of the LS complex (Ebner et al., 

1966; Brodbeck et al., 1967). The so-called ‘A’ protein is a galactosyltransferase that 

catalyses the following manganese-dependent reaction in the absence of LA (Brew et al., 

1968):

UDP-Gal + GlcNAc > Galpl-4GlcNAc + UDP [Eq. 1.1]

In this reaction, galactose is transferred from UDP-galactose into a (3-linkage with the 4- 

hydroxy group of N-acetylglucosamine (GlcNAc). This transferase, UDP-galactose-|3-N- 

acetylglucosaminide-pl,4 galactosyltransferase (GT; EC 2.4.1.38), is a 55KDa type II 

membrane glycoprotein of the trans-go\g\ membranes of the mammary gland and other 

tissues (Strous, 1986). In the golgi apparatus, GT, along with other glycosyltransferases, 

participates in the biosynthesis of oligosaccharide chains of secretory and membrane- 

bound glycoconjugates (Paulson and Colley, 1989). GTs are also found on the cell 

surface where they function as recognition molecules during a variety of cell-cell and 

cell-matrix interactions (Pierce et al., 1980; Shur, 1984; Shaper and Shaper, 1992).

In vivoy golgi GT’s main substrate is p-linked N-acetylglucosaminyl moieties of 

N-linked oligosaccharides of glycoproteins and glycolipids. This terminal glycosylation 

represents one of the final stages in glycoprotein processing and accounts for the 

majority of GT’s workload in the golgi apparatus of secretory cells. GT does not catalyse

4
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the biosynthesis of lactose (Eq. 1.2) in the absence of LA due to a poor affinity for 

glucose (Kmg]c of about 2M).

UDP-Gal + G lucose » Galpl^4Glucose + UDP [Eq. 1.2]
(Lactose)

In the LS complex, LA promotes the binding of glucose to GT, by reducing the 

Km&lc by about three orders of magnitude (to the low millimolar range), and enables 

lactose to be synthesised at physiological concentrations of glucose. LA also acts as a 

competitive inhibitor of galactosyl transfer to glycoprotein and extended oligosaccharide 

substrates (Powell and Brew, 1976b; Bell et al., 1976). This inhibition arises due to 

mutually exclusive binding of LA and oligosaccharides to GT. In the case of free 

GlcNAc as substrate, LA binding to the complex reduces the Km and Vmax so that 

activation is obtained at low substrate concentrations and inhibition at higher 

concentrations due to the decrease in product release (Brew and Grobler, 1992). The 

transfer of galactose to glycoproteins is not completely abolished in lactating mammary 

gland epithelial cells as LA dissociates from the LS complex at the end of each catalytic 

cycle. Therefore, the degree of glycoprotein terminal glycosylation and lactose 

biosynthesis catalysed by GT is determined by the relative concentrations of both GT and 

LA present in the golgi apparatus. Current understanding of the kinetic mechanism of the 

LS complex is discussed in more detail in Chapter 2.

1.1.2 Regulation of Lactose Biosynthesis

The regulatory role of LA is exerted through its presence or absence in the LS 

complex and this is reflected in the rate of lactose synthesis. LA is expressed specifically

5
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in the rough endoplasmic reticulum (RER) of the lactating mammary gland epithelial 

cells as a pre-protein with a hydrophobic leader sequence (Hall and Campbell, 1986).

The cellular expression of LA increases dramatically at parturition due to the hormonal 

influences of prolactin, insulin and hydrocortisone (Turkington et al., 1968). Studies on 

mammary gland explants demonstrate that the initial expression and subsequent 

accumulation of LA is primarily under prolactin control (Dodd et al., 1994). Induction of 

LA is critical for both the production of milk lactose and normal milk. Mice who lack the 

LA gene, due to gene targeting, cannot sustain their offspring due to the production of 

reduced amounts of thickened milk that contains no detectable amounts of lactose 

(Stinnakre et al., 1994; Stacey et al., 1995). Normal milk production can be restored by 

introducing a functional LA gene at the mouse LA locus (Stacey et al., 1995).

In addition to hormonal control, the regulation of milk lactose production is 

controlled by the nature of the subcellular organisation of the LS complex (Brew, 1969). 

LA is translocated from the site of translation across the ER and transported to the golgi 

apparatus. Here it interacts with the catalytic domain of GT, which projects into the 

lumen, to form the LS complex. LA's participation in the complex is temporary and on 

dissociation, it is secreted into the milk, along with lactose and the other milk proteins, 

by exocytosis. Additional regulation of lactose synthesis may be exerted through a Ca2+- 

dependent release of LA from the RER membranes (Berliner and Koga, 1987; Brew and 

Grobler, 1992). The amount of LA in milk varies from trace levels (some monotremes 

and marine mammals) to concentrations of about 5g I"1 (McKenzie and White, 1991). In 

humans, LA plays an important role in infant nutrition and accounts for about 30% of the 

total protein in milk (Heine et al., 1991). Despite the inherent regulation of lactose

6
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biosynthesis resulting from the organisation of the LS complex, other external factors, 

such as the availability of glucose and UDP-galactose in the golgi, will also influence the 

rate of milk lactose production in vivo (Brew and Grobler, 1992).

1.1.3 Role of Metal Binding

Twelve years after its function had been realised, Hiroaka and co-workers 

demonstrated that LA was a calcium binding metalloprotein (Hiroaka et al., 1980). LA 

derived from milk contains a single, tightly bound calcium ion that has an association 

equilibrium binding constant (tfaapp) of the order 107 M'1 (Kronman et al., 1981; 

Permyakov et al., 1981a). The bound ion stabilises LA against denaturation and its 

removal has profound effects on the protein’s physico-chemical properties (Kuwajima et 

al., 1986; Kronman, 1989).

The observation that the calcium coordinating ligands are highly conserved in all 

LA sequences (Shewale et al., 1984; Stuart et al., 1986) suggests that calcium binding is 

important for biochemical function of LA. Calcium is required for the efficient folding 

and correct disulphide bond formation of LA in vitro (Rao and Brew, 1989). However, 

correctly-folded Ca2+-ffee LA (apo-LA) is just as active in lactose biosynthesis as the 

holo protein (Kronman et a/., 1981; Murakami and Berliner, 1983; Musci and Berliner, 

1985). Although this effect is unlikely to have any physiological relevance, as all LA will 

be in the holo Ca2+-bound state when it interacts with GT in the lumen of the golgi 

apparatus, it demonstrates that the modulatory properties of LA are not directly 

dependent on calcium binding. LA’s calcium binding properties are also unlikely to be 

important for infant nutrition as only between 0.15% and 1% of the calcium content of

7
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milk is associated with LA (McKenzie and White, 1991). Therefore, it appears that the 

role of calcium binding in vivo is to mediate the release and folding of nascent LA at the 

site of translation (Brew and Grobler, 1992). Similar calcium-dependent regulation 

mechanisms mediate the transport of a number of secretory proteins in the endoplasmic 

reticulum (Sambrook, 1990).

LA also binds more than fifteen different metal ion species in addition to calcium. 

These metals perturb both the conformational state and the physico-chemical properties 

of the protein. These effects are exceedingly complex and beyond the scope of the 

present work. For further details, the reader is referred to a review by Kronman (1989 

and references therein). Some aspects of LA’s additional metal binding properties may 

have physiological significance. GT, the catalytic component of the LS complex, contains 

binding sites for both Mn2+ (high affinity site I) and Ca2+ (low affinity site II) (Powell and 

Brew, 1976a). Although endogenous non-metal factors probably activate GT at the low 

affinity site in vivo (Kronman, 1989; Kuhn et al., 1992), metal binding at the high affinity 

site is critical for GT catalysis. This cation dependence of GT raises the possibility that 

metal-liganded states of LA may have some functional relevance. In addition to 

manganese, zinc can act as a primary cation activator of GT (O’Keefe et al., 1980a). It is 

noteworthy that both these metals bind to LA at sites that are distinct from the high 

affinity calcium binding site (Murakami and Berliner, 1983; Gerken, 1984; Musci and 

Berliner, 1985; Ren et al., 1993). Both metals also have significant effects on the 

conformation of LA and may therefore play a role in either the formation of the LS 

complex or the subsequent catalytic events.

8



1: Introduction

1.2 Structural Characteristics of LA

1.2.1 Primary Sequence

A number of complete amino acid sequences have been determined for LAs from 

the milk of different species. Representative sequences are available for most of the 

subclasses of the extant mammals including the eutherians (11), marsupials (2) and the 

monotremes (1). An alignment of all the available LA sequences is shown in Figure 1.1 

along with examples of conventional and calcium-binding C-type lysozymes (LYZ).

The length of the protein varies at the C-terminus where LA’s from most species 

have three residues following Cys-120; the rabbit protein has two (Hopp and Woods, 

1979), the marsupial and monotreme LAs have none (Shewale et a l, 1984; Shaw et al., 

1993) and the rat protein has an additional 20 residues (Prasad et al., 1982). There are a 

few other notable differences between the sequences. Platypus LA contains six additional 

residues not present in the eutherian sequences; a two residue insertion occurs between 

14 and 15 (bovine LA numbering) and a three residue insertion occurs between 63 and 

64 after optimal alignment The sixth additional residue in platypus LA, which is also 

present in the marsupial LA sequences, occurs between residues 96 and 97 after optimal 

alignment. The marsupial LAs also differ from the eutherian LAs in the location of the 

amino terminal gap (between residues 13 and 14) that is required for optimal alignment 

of the sequences (see Figure 1.1). These deletions must have occurred since the 

divergence of the marsupial, monotreme and eutherian lines (Shewale et al., 1984). LA 

from pig’s milk is unusual among the eutherian sequences in that proline 67 is deleted 

(Godovac-Zimmermann et al., 1990). Nonetheless, it is noteworthy that all

9
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insertions/deletions in the LA sequences are located in loop regions in the three- 

dimensional structure and are unlikely to affect the overall conformation of the molecule.

All the LA sequences, apart from the guinea-pig (Brew, 1972), wallaby and those 

of Perissodactyl origin (horse, donkey and camel), contain a characteristic N- 

glycosylation Asn-X-Ser sequence motif (residues 45-47). Rabbit, rat and platypus LAs 

are uniformly glycosylated at this site (Hopp and Woods, 1979; Prasad et al., 1982;

Shaw et al., 1993). In contrast, glycosylated forms of bovine LA account for only 10% 

of the total protein. The remaining LAs do not exhibit significant post-translational 

modification.

The overall sequence identity in the LA family ranges from 40% (e.g. platypus vs. 

wallaby) to 94% (e.g. bovine vs. goat). This relatively wide variation in amino acid 

sequence suggests that LA’s modulatory properties are dependent on a relatively small 

portion of the protein chain. There are 30 invariant residues in all the LA sequences 

(those boxed in Figure 1.1) of which 12 are conserved across the whole LA/LYZ 

superfamily (boxed and shaded). A further group of residues (indicated by hashes in 

Figure 1.1), involved in the ligation of calcium, are strictly conserved in all LAs and 

moderately conserved in the calcium-binding LYZs. The functional significance of these 

invariant residues is discussed further in Section 1.3.2.

10
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Figure 1.1 (overleaf) — Alignment of all LA sequences with some selected LYZ 
sequences
The alignment shows groups of a few select C-type LYZs (top group: sequences 1-9), 
Ca2+-binding LYZs (middle group: 10-12) and all LA sequences (bottom group: 13-26). 
The numbering on the top of each aligned block of sequences is that of hen egg-white 
LYZ and the numbering on the bottom corresponds to that of bovine LA. Areas of 
sequence identity are boxed in both the LA and LYZ sequences. The boxed and shaded 
areas correspond to residues that are invariant across the entire LA/LYZ superfamily. 
Residues in LA that form the calcium binding site are indicated by hashes (#). All the 
sequences are derived from the PIR and SWISS-PROT databases and were aligned using 
the GCG package of programs (Devereux et al., 1984). A minimum number of gaps (.) 
were introduced to achieve an optimal alignment. This figure was produced by the 
program ALSCRIPT (Barton, 1993)
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11



1: Introduction

Cecropia LYZ 
Homworm LYZ 
Drosophilia LYZ 
Trout LYZ 
Mouse LYZ 
Bovine LYZ 
Human LYZ 
Chick LYZ 
Hoatzin LYZ

Bovine LA 
Human LA 
Sheep LA 
Goat LA 
Pig LA
Guinea-pig LA 
Rabbit LA 
Rat LA 
Mouse LA 
Horse LA 
Donkey LA 
Camel LA 
Wallaby LA 
Platypus LA

Cecropia LYZ 
Homworm LYZ 
Drosophilia LYZ 
Trout LYZ 
Mouse LYZ 
Bovine LYZ 
Human LYZ 
Chick LYZ 
Hoatzin LYZ

Echidna LYZ (Ca) 
Pigeon LYZ (Ca) 
Horse A LYZ (Ca)

Bovine LA 
Human LA 
Sheep LA 
Goat LA 
Pig LA
Guinea-pig LA 
Rabbit LA 
Rat LA 
Mouse LA 
Horse LA 
Donkey LA 
Camel LA 
Wallaby LA 
Platypus LA

K R F T V Q E R R L
R R Q

R T M D R M S N L
K V Y D R K A S

K K L

AAA M K R H
R E H

20

. . . G ^  D E T  L M S N  

. . . G F P E N L M R D  

. . . G V P R D Q L N K  
G M D G Y  A G N S L  P N  
G M A G Y Y G V S L  A D  
G L  D G Y K G V S L  A N  
G M D G Y  R G I S L A N  
G L  D N Y R G Y S L G N  
G F E G F E G T T I  A D

30

K I L K K Q E L | HK N L V A Q G M N G Y Q H I  T L P N
K D I P r [51e l v k i  L R R H G F E G F V G K T V A N
K V F S K KSJE L A H K L K A Q E M D G F G G Y S L A N

E Q L 
K Q F 
E Q L 
E Q L 
K Q F  
K Q L  
T Q L 
T E F TEL KQF KQF KQF 
I D Y 
R I F

R K 
Q I

®JE V F R E 
E L S Q L 
E A F Q K 
E V F Q K 
E L S Q V 
A L S H E 
E L T E K 
E V S H A I 
K V S H A I 
E L S Q V L 
E L S Q V 
K L S D E 
Q A S Q I 
E L S R V

I
10

60

. L K G Y G G V S L  

. I D G Y G G I A L 

. L K D Y G G V S L  

. L K D Y G G V S L  

. M D G Y G D I  T L  

. L A G Y R D I  T L  

. L D G Y R D I  S M S  

. M D G Y Q G I 

. I D G Y Q G I 

. M D G Y K G V T L  

. M D G Y K G V T L  

. M N G H G G I  T L  
G M D . . K V I P L  
G L G G F H G V S L

S L 
S L

m V f IL V E NwV c L V E N
wA G 1 A E H
w V GL S K WwV C L A Q H
wL Ci L T K W
w M c L A K W
wV c A A K F
Vi 1 £ L V Q H

w V PI T A F HwV c L V K H
VLV £ M A E Y

wv PI T T F H
L 1 c T M F H
WV c T A F Hwv G T A F H
Wl c T 1 F H
WL c 1 1 F H
Wl C T L F H
WT c V L F H
WA c V L F H
Wl c T 1 F H
Wl c T 1 F H
Wl c 1 1 F H
L V c T M F H
WL £ V 1 F H

E l  ES 
E :S Ei 
E $  
E $
e isES

E l iES!

G R F

40

In
S R Y T
S Y R T
S Y N T
N Y N T
S Y N T
G Y N T
N F N T
D Y N QJ
S Y N m
G Y R T
N F N L

D K I 
D K V 
G V V 
Q A T RAT 
K A T RAT 
Q A T 
E A Y

T A 
R A

G K V N K N G
G R V N K N G
G P E N Y N G
N R N T . D G
N Y N R G D Q
N Y N P S S E
N Y N A G D R
N R N T . D G
N N N G P . .

MG
S :gSiG
WG
S;iG
SSG
WG
WG
WGWG
WG&G
WG

Y D T E A
Y D T Q A
Y D T Q A

L D T K I

Y D T Q T
Y D T E T 
L S T Q A

20 30

jS!;GlY D S Q A L 
I
40

70 80

T N H N T . D GlSl
F N N N G P N .  S
F N G K N A N G[£J

1 V Q N . . N D S
1 V E N . . N E S
1 V Q N . . N D S
1 V Q N . . N D S
1 V H D . . N G S
1 V K N . . S D H
T V N N . . N G S
1 V K N . . N G S
V V N D . . N G S
1 V K N . . N G K
1 V K N . . N G K
V V S N . . N G N
E V N N . . H S N
L N Y Y . .

1

N G S

90

DYl 
D Y ;$  
D Y S I  
D Y i'S I  
D Y S  I 
D Y G  I 
D Y iS  
D Y !S

F b K Y w t i S K . . . G T T P G .
N D K Y WO s N . . . G S T P G .
N D Y Y WG A P . . . P S G R F S Y
N S R Y w e D D . . . G R T P G A K
N S R Y WG N D . . . G K T P R A V
N S K W WC N D . . . G K T P N A V
N S R Y WC N D . . . G K T P G A V
N S R W WC N D . . . G R T P G S R
N S K Y w c N D . . . G K T s G A V

w S R Y w c H D . . . G K T P G S K
N s K Y w c N D . . . G K T R G S K
In JN K W w c K D . . . N K . R S S S

1  
C
c  e C 
c  
C i  G

D G SJH

K D 
K D

D G

N V 
N V 
G L 
G I 
G I 
H V 
H L 
N I I

P N Q L L T D D 1
c S D L L 1 D D 1
e N A L L T D D 1
c S Q L L T A D L
s S A L L Q D D 1
c R E L M E N D 1
c S A L L Q D N 1
c S A L L S S D 1
£ S E L M T N D L

S V A A T  
T K A S T
T H S V R
T V A I R
T A A I Q
A K A V A
A D A V A
T A S V N
E D D I K

Si  A 
6 A  
G A 
C A  
G A 
C A  
G A

K K I 
K K I 
Q K V 
K R V 

R V 
H I 
R V 
K I 
K I

S [CIS K 
N m s  K 
M C S  K

D D D I DDL
D D N I A D D IDEN D D D I

T E Y P ! L f S i N N K 1 WP K N . . . D Q D P H S S N 1 [Si N 1 S m D K F L D D D L T D D i M fflV K K 1
T E Y G L F S ; i S N K L W C K S . . . S Q V P Q S R N 1 c D 1 S GD K F L D D D 1 T D D i M c A K K 1
T E Y G L F SM N N K 1 W c K D . . . D Q N P H S R N 1 c N 1 S c D K F L D D D L T D D i V GA K K 1
T E Y G L F f l N N K 1 W c K D . . . D Q N P H S R N 1 c N 1 S c D K F L D D D L T D D i V GA K K 1
T E Y G L f  ;s:i N N K L W c R D . . . N Q 1 Q S K N 1 c G 1 S c D K F L D D D L T D D M M c A K K 1
K E Y G L f  q :i N D K D F c E S . . . S T T V Q S R N 1 c D 1 S c D K L L D D D L T D D 1 M c V K K 1
T E Y G f  m N S K L W c V S . . . K Q N P Q S K N 1 c D T P c E N F L D D N L T D D V K c A M K 1
T E Y G L f  m S N R N W c K S . . . S E F P E S E N 1 c D 1 S c D K F L D D E L A D D 1 V c A K K 1
T E Y G L f  ®:I S D R F W c K S . . . S E F P E S E N 1 c G 1 S c D K L L D D E L D D D 1 A c A K K 1
T E Y G L f S i N N K M W c R D . . . N Q 1 L P S R N 1 c G 1 S GD K F L D D D L T D D V M &A K K 1
T E Y GL f  M\ N N K M W c R D . . . N Q 1 L P S R N 1 c G 1 S c N K F L D D D L T D D V M c A K K 1
R E Y GL f  m  

FM\
N N K 1 W c R D . . . N E N L Q S R N 1 c D 1 S g:D K F L D D D L T D D K M c A K K 1

K E Y G 1 S N N G W c A E . . . K Q E D V A N S V c G 1 L c S K F L D D D 1 T D D 1 E c A K K 1
S S H £ L F Q 1 N Q P Y W £. D D X D S E S T E P S V N A £ Q 1 P £ S K L L D D D 1 L D D 1 E & A K K 1

50 60 70 80

100 110 120

Cecropia LYZ Y k . R H K F D A m Y h W K N H p i Q H G . L P D 1 S D . m
Homworm LYZ Y K . R H K F Q A w Y G W R N H c Q G S . L P D 1 S S . G:
Drosophilia LYZ 
Trout LYZ

L S . Q Q  G W S A w S T W . H Y c S G W . L P S 1 D D . C F .
V L D P N G 1 G A w V A w R L H 0 Q N Q D L  R S Y V A G C G V

Mouse LYZ V R D P Q G 1 R A w V A w R A H c Q N R D L  S Q Y 1 R N C; G V
Bovine LYZ V S E . Q G 1 T A w V A w K S H G: R D H D V S S Y V E G c T L
Human LYZ V R D P Q G 1 R A w V A w R N R C Q N R D V R Q Y V Q G Gi G V
Chick LYZ V S D G N G M N A w V A w R N R 0 K G T  D V Q A W I R G c R L
Hoatzin LYZ A R D A H G L T  P w Y G w K N H £ E G R D L S S Y V K G I I

Echidna LYZ (Ca) 
Pigeon LYZ (Ca) 
Horse A LYZ (Ca)

A G E A K G L T  P IV A w K S K l R  G H D L S K F K m
A
V

R E A R G L T  P 
R D P K G M S A

V
Ik

A
A

w
W

K K Y C Q G K D L S S Y V  
V K h [£ |k D K D L S E Y L

R G 
A S

c
£ N L

Bovine LA 
Human LA 
Sheep LA 
Goat LA 
Pig LA
Guinea-pig LA 
Rabbit LA 
Rat LA 
Mouse LA 
Horse LA 
Donkey LA 
Camel LA 
Wallaby LA 
Platypus LA

. D K V

. D I K

. D K V

. D K V

. D N E

. D I K

. D K E

. A I K  

. A I K  

. D S E

. D S E

. D K E
Q L P E

V K E P K

P 1 N Y Ew L pT H K A L p S E K . F D Q W L . . m E K L ................................................................
G 1 D Y w L A H K A L c T E K . L E Q W L . . C E K L ................................................................
G 1 N Y W L A H K A L C S E K . L D Q W L . . c E K L ................................................................
G 1 N Y w L A H K A L c S E K . L D Q W L . . e: E K L ................................................................
G 1 D Y w L A H K A L c S E K . L D Q W L . . c E K M ................................................................
G 1 D Y w L A H K P L c S D K . L E Q W Y . . G E A Q ................................................................
G 1 D H w L. A H K P L c S E N . L E Q W V . . Ci K K ....................................................................
G 1 D Y w K A H K P M Ci S E K . L E Q W R . . c E K P G A P A L V V P A L N S E T P
G 1 D Y w K A Y K P M c S E K . L E Q W R . . £ E K P ................................................................
G 1 D Y w L A H K P L c S E K . L E Q W L . . G E E L ................................................................
G 1 D Y w L A H K P L c S E K . L E Q W L . . c E E L ................................................................
G 1 D Y w L A H K P L Ci S E K . L E Q W Q .  . c E K W ................................................................
G L G Y w K A H E T F c 1 E D . L D Q W R . . Ci
Q. 1 T A VIE A W Q  P F £ N S D . L D QW K . . [£
100 110 120

12



1: Introduction

1.2.2 Relationship with C-type Lysozymes

The evolutionary relationship between LAs and chicken (C-) type lysozymes 

(LYZ) was first demonstrated by sequence studies of bovine LA and hen egg-white 

lysozyme (Brew et al., 1967). This relationship has been unequivocally confirmed by 

protein sequences of other LAs, gene sequences and structures of LAs and LYZs (Hall et 

al., 1982; Qasba and Safaya, 1984; Hall et al., 1987) and by the three-dimensional 

structures of LAs and LYZs (Acharya et al., 1989).

The C-type LYZs form a subgroup of a much larger family of anti-microbial 

endo-N-acetylmuramidases which have a wide distribution in the animal kingdom. In 

addition to the C-type LYZs, typified by hen egg-white LYZ (HEWL) but also found in 

mammalian secretions, the LYZ family includes the goose-type LYZs, found in the eggs 

of the swan, goose and ostrich, and the phage-type LYZs, found in the lysate of bacterial 

viruses (typified by bacteriophage T4 lysozyme). Although there is no sequence 

homology between these three classes of LYZs, they share similar tertiary structures and 

active site architectures and are believed to have diverged from a common ancestor 

(Griitter et al., 1983).

LAs share about 40% sequence identity with both mammalian and avian C-type 

LYZs (Stuart et al., 1986). However, their functional properties are quite different; LA 

has no discernible catalytic activity whereas LYZs have no detectable effect on the 

activity of GT. LA has lost both residues involved in LYZ’s catalytic activity during 

evolution. Glu-35 (residue 33 in LA) has been replaced by a number of different residue 

types while Asp-52 (residue 49 in LA) has been exclusively replaced by a glutamate in all
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LA sequences apart from that of the platypus (Figure 1.1). The trace levels of catalytic 

activity reported for LAs from a number of sources (McKenzie and White, 1987) are 

surprising considering the essential role of Glu-35 in LYZ catalysis (Malcolm, 1989). 

Minimal catalytic activity can however be endowed on goat LA by replacement of exon 2 

(residues 28 to 86) with its homologue from hen egg-white LYZ; but this chimeric 

protein is unable to act as a specifier in the LS complex (Kumagai et al., 1992).

As LAs are confined entirely to mammalian species, it is reasonable to assume 

that the progenitor of the LA/LYZ superfamily was an ancestral lysozyme gene. The 

common view is that the LAs diverged from the LYZs, via gene duplication, prior to the 

divergence of the tetrapods and the fishes (400 million years ago) but probably more 

recently than the divergence of the insects from the line that gave rise to the vertebrates 

(Dautigny et al., 1991; Prager and Wilson, 1988; Grobler et al., 1994). However, their 

exact evolutionary relationship is the subject of much debate (see Brew and Grobler, 

1992). The point of contention (Figure 1.2) is whether the ability of some LYZs and the 

LAs to bind calcium is a recently acquired trait or an ancient feature of the superfamily 

which has been lost from the conventional LYZ line (Nitta and Sugai, 1989; Grobler et 

al., 1994). The latter view is supported by the observation that only two amino acid 

substitutions are required to create a high affinity Ca2+ site in human LYZ that is closely 

similar in structure to that of LA (Kuroki et al., 1989; Inaka et al., 1991).

Clearly, the development of mammalian lactose biosynthesis was dependent on 

the acquisition of LS activity. More specifically, the emergence of this new biochemical 

activity resulted from the evolution of the specifier protein (LA) as GTs are found in a 

number of non-mammalian species (Brew and Grobler, 1992). However, as described
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above, recent studies suggest the LA gene line originated considerably earlier in 

evolution than either the origins of lactation or the development of lactose synthesis 

(Grobler et al., 1994). Hopper and McKenzie (1974) reported that a protein fraction 

from echidna milk was found to have both a LYZ activity and a low level of LA activity 

in the LS complex. Although this surprising activity requires further investigation 

(McKenzie and White, 1991), the existence of a ‘dual activity’ protein, representing an 

intermediate in LA evolution, remains a possibility.

a.
INSECT

LYZs
CONVENTIONAL C»**-BINDING 

LYZs LYZs

Lossol 
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u
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Lott or 
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Figure 1.2 —  Evolutionary development of the LA/LYZ superfamily
Two general rooted trees that schematically illustrate the possible development of the superfamily, 
a. Scheme in which the ability to bind calcium was an ancient feature of the superfamily but has 
been lost in some evolutionary lines (Grobler et al., 1994). b. More conventional scheme in which 
the progenitor of the LAs and Ca2+-binding LYZs acquired the ability to bind calcium (Nitta and 
Sugai, 1989). Thick lines indicate groups that bind calcium. Figure reproduced from Grobler et al. 
(1994)

1.2.3 Three-dimensional Structure

Initial attempts to solve the structure of LA were hindered by a number of 

unforeseen practical problems (Phillips et al., 1987). In the meantime, two homology 

models, based on the observed sequence similarity between LA and LYZ, were 

constructed for LA (Browne et al., 1969; Warme et al., 1974). These studies
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demonstrated that the differences between LA (bovine) and LYZ (HEWL) sequences 

were compatible with their having similar conformations. These conclusions were 

confirmed when, nearly a decade after the crystallographic studies on LA had been 

initiated, the structure of baboon milk LA was reported first at 4.5A resolution (Smith et 

al., 1987) and subsequently at high resolution (Acharya et al., 1989; 1990). More 

recently, the structure of human LA has been determined to a resolution of 1.7A 

(Acharya et al., 1991).

LA is a globular protein and ellipsoidal in shape with dimensions of 23A x 26A x 

40A (Acharya et al., 1989). Like LYZ, the structure belongs to the a  + p class of protein 

folds. The molecule is divided into two ‘domains’ by a deep cleft, that is analogous to the 

active site of LYZ. Residues 1-34 and 86-123 form an all helical domain (a-domain) 

while residues 35-85 form a smaller irregular p-domain (Figure 1.3). The structure is 

stabilised by the bound calcium ion and four disulphide bonds. Two of the disulphides (6- 

120 and 28-111) are in the a-domain, one is in the p-domain (61-77) and one (73-91) 

links the two domains together. The calcium binding site is located in a helix-tum-helix 

motif that bridges the two domains. The calcium ion is coordinated by five protein and 

two solvent ligands (Stuart et al., 1986). The topology of the binding loop (‘elbow’) is 

distinct from the E-F hand motif that binds calcium with comparable affinity in proteins 

such as calmodulin and parvalbumin (Stuart et al., 1986; Strynadka and James, 1989).
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Figure 1.3 —  Overall topology of the LA structure.
The three-dimensional structure of human LA is schematically represented. The all-helical 
a-domain (grey) and the irregular P-domain (white) are shown along with the four 
disulphide bridges, calcium binding site (light grey sphere) and the N and C termini. The 
figure was produced with M O L S C R IP T  (Kraulis, 1991).

Identification of the calcium ligands in LA allowed Stuart and coworkers to propose that 

some LYZs may bind calcium (Stuart et al., 1986). Subsequently, horse, donkey, dog, 

pigeon egg-white and echidna LYZs, which all have similar residues to LA’s conserved 

calcium ligands, have been shown to bind calcium with a comparable affinity (Nitta et al., 

1988; Godovac-Zimmermann et al., 1988; Grobler et al., 1994). The discovery of this 

subgroup of conventional LYZs has had a significant impact on comparative studies of 

the evolutionary relationships within the LA/LYZ superfamily (Brew and Grobler, 1992).
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The conformation of LA is very similar to HEWL and, as with other homologous 

protein families, all the amino acid insertions/deletions between the sequences occur loop 

regions of the structure. The root mean square deviation between the C“ atoms of 

equivalent residues in LA and LYZ ranges from about 1.4A to 2.0A (Acharya et al., 

1989; Acharya et al., 1994). One unique feature of LA’s structure, in comparison to 

HEWL, is the blockage of the upper cleft region by the sidechain of Tyr-103; and the 

resultant formation of a new hydrophobic ‘box’ that includes Tyr-103, Trp-104, Trp-60 

and Ile-95 (Browne et al., 1969; Koga and Berliner, 1985; Acharya et al., 1989).

NMR studies on LA have predominantly focused on the A-state (see below) and 

information about the conformation of native state of LA in solution is limited. A 

complete assignment of the spectra from LA in solution has not yet been accomplished. 

Nevertheless, NMR spectroscopy has been successfully used to study the local 

environments of aromatic and histidyl residues in LA and its metal ion binding properties 

(Bradbury and Norton, 1975; Gerken, 1984; Harushima and Sugai, 1989; Alexandrescu 

et al., 1992).

1.2.4 The N and A States

In spite of LA’s well defined conformation in the crystalline state, the protein has 

extremely complex conformational properties and exhibits a multiplicity of different 

conformers in solution. Exposure of the native protein (N state) to acidic conditions 

(pH<4.0) results in a reversible, conformational change to the acid (A-) state. A similar 

transconformation can be induced by elevated temperature, addition of certain metal ions 

(e.g. Zn2+), low concentrations of denaturants, alkaline pHs and removal of the bound
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calcium by chelators. Both the N- and A-states are characterised by a multitude of 

conformers with distinct properties depending on the protein’s metal ligation state (for a 

review see Kronman, 1989).

The A-state (and related denatured forms) is of considerable interest in terms of 

protein folding as it represents a stable intermediate in the (un-)folding of LA. This so- 

called ‘molten globule state’ is characterised by a compact, native-like secondary 

structure with minimal tertiary interactions (Kuwajima, 1989). Similar conformational 

states have been observed for a number of other proteins. Due to the expanded nature of 

LA’s molten globule, it has an increased propensity for self-association and ability to 

bind hydrophobic dyes. Even in the absence of extensive sidechain packing, the molten 

globule state of LA contains a significant amount of ‘native-like’ tertiary structure in the 

a-domain (Baum et al., 1989; Alexandrescu et al., 1993; Peng et al.y 1995; Wu et al.y 

1995).

1.3 Structural Basis of LA Function

1.3.1 Chemical Modification

Classical chemical modification studies have provided equivocal information 

about the functional involvement of specific amino acid residues of LA in the LS 

complex (reviewed in Brew and Hill, 1975; McKenzie and White, 1991). Nitration of the 

two tyrosine residues in human LA (18 and 103) has no effect on LA activity but more 

extensive treatment results in both loss of activity and perturbations of the three- 

dimensional structure. This loss of activity is specifically associated with the modification 

of Trp-104 (Prieels et al., 1975). In bovine LA, modification of either Trp-60 or Trp-118
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results in a significant reduction in affinity for GT or complete inactivation (Schecter et 

al., 1974; Bell et al., 1975). More informative results have been obtained from the 

modification of histidine residues in LA. Specific ethoxyformylation of His-32 with 

diethyl pyrocarbonate in human and bovine LA results in a complete, but reversible, 

elimination of activity (Schindler et al., 1976). In contrast, specific carboxymethylation 

of His-32 produces only a partial loss of activity. These results indicate that the N1 (N51) 

atom of His-32 is directly involved in LA’s function in the LS complex. The partial loss 

of activity that accompanies the carboxymethylation of the N3 (Ne2) atom of His-32 

probably arises due to either steric or conformational effects resulting from the 

modification (Prieels et al., 1979).

The role of certain amino acid residues in complex formation with GT has been 

investigated by trace-labelling studies. Of the thirteen amino groups studied, the 

reactivities of only two of these, Lys-5 and Lys-114, were significantly perturbed on 

formation of the LS complex (Richardson and Brew, 1980). Further studies identified 

Lys-108, a residue close to the Lys-5 and Lys-114 in the three-dimensional structure of 

LA, as the major site of cross-linking between LA and GT in the LS complex (Sinha and 

Brew, 1981).

1.3.2 Functional Sites in LA

Comparative sequence analysis has identified a series of invariant residues that 

are, by their conserved nature, probably critical for LA function (see Figure 1.1).

Shewale and coworkers (1984) divided these conserved residues into four functional 

groups. More recently, Kronman (1989) and Brew and Grobler (1992) have re-evaluated
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this classification in terms of the three-dimensional structure of baboon LA and the more 

diverse database of LA sequences (Table 1.1).

Table 1.1 —  Residues conserved in LAs and / or LYZs

Group* Residues’* Role

IA Cys 6 ,2 8 ,6 1 ,7 3 ,7 7 ,9 1 ,
111,120 Essential for maintaining the
Ser-34 characteristic LA /  LYZ tertiary
Gly-51 fold
Trp-104

IB Gln-54 Directly or indirectly involved
___________ I]e-_55_____________________mji^trate_bmding_in LYZ__

II Leu-81, Asp-82 ^  ^  2+
Asp-83, Asp-87 Components of the Ca -
Asp-88 bmd.ngs.te

IIIA Phe-53
Ile-95 Possible structural roles
Gly-100
Ala-106

m s Phe-31, His-32 Components of the GT binding
Leu-115, Gln-117 site
Trp-118

me Glu-25 Residues with unknown
Gly-35 function
Lys-94

* Groups are different to those defined by Shewale et a l 1984 
b Residue numbers refer to bovine LA numbering 
Figure adapted from Table 3 in Brew and Grobler (1992).

Briefly, group I comprises residues, conserved across the entire LA/LYZ 

superfamily, that are either responsible for maintaining the integrity of the tertiary 

structure (IA) or involved in substrate binding in the LYZs (IB) (Warme et al., 1974; 

Acharya et al., 1989). Residues in group II form the calcium binding site in LAs and the 

Ca2+-binding LYZs. These residues are strictly conserved in the LA sequences but are 

more variable in the Ca2+-binding LYZs. Nevertheless, the residues that are responsible 

for calcium ligation (Asp-82, 87, 88) are all invariant. Finally, group HI comprises of 

residues that are conserved only in LAs and are therefore likely to be important in LA’s

21



1: Introduction

function. These group III residues can be subdivided into three classes: those that 

perform a unique structural role in LA (IIIA), components of the GT binding site (IIIB) 

and those with unknown function (DIC).

A. B.

tfs32

Trplll G ln ll7

Trp60' Trpl04

.eu26.

Figure 1.4 — Location of proposed GT binding sites in terms of LA’s structure
Schematic representations of the three-dimensional structure of human LA showing the secondary 
structure and the locations of the two regions implicated in LA function in the LS complex.
A. Aromatic cluster I. The positions of the four conserved residues (Phe-31, His-32, Gln-117 and 
Trp-118) are illustrated; B. Aromatic cluster II (‘hydrophobic box’). This cluster is composed of 
two invariant residues (Phe-53, Trp-104) and three further positions that contain buried 
hydrophobics (26,60 and 103). This group of residues forms the core of LA. The orientation of LA 
is identical in A and B and the residues are illustrated as ‘space-filling’ representations. The figure 
was produced using M O L S C R IP T  (Kraulis, 1991).

The results from chemical modification and trace labelling studies, as well the 

nature of the invariant residues in all LA sequences, suggest that LA’s binding site for 

GT is composed of Phe-31, His-32, Gln-117 and Trp-118 (Warme et al., 1974; Shewale 

et al., 1984; Brew and Grobler, 1992). These residues are located on the surface of LA, 

adjacent to the lower cleft region, and form a predominantly aromatic cluster (aromatic
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cluster I; Figure 1.4a). This cluster is flanked by two lysine residues (Lys-5 and Lys-114) 

whose reactivity is perturbed in the LS complex (Richardson and Brew, 1980). The 

‘hydrophobic box’ (aromatic cluster II; Figure 1.4b) has also been linked to LA’s 

function in the LS complex (Koga and Berliner, 1985). This region is distinct from 

aromatic cluster I and is part of the hydrophobic core that stabilises the LA fold. It is 

unclear whether this region is involved in LA’s interaction site for GT as most of the 

residues are buried within the interior of the protein. In addition, the nitration of Tyr-103 

does not appear to affect LA activity.

Although LA cannot bind saccharide substrates in isolation, the possible 

provision of a partial monosaccharide site in cleft of LA, that facilitates saccharide 

binding in the LS complex, remains an intriguing possibility. It is interesting that, out of 

the four exons that constitute the LA and LYZ genes, exon 2, which encodes the 

substrate binding residues of LYZ, is the most highly conserved (Hall et al., 1982). In 

hen egg-white LYZ, there are six subsites (A-F) in the active site cleft that are capable of 

binding substrate (Imoto et al., 1972). In the case of LA, the cleft region is shortened as 

subsites A and B are blocked by the sidechain of Tyr-103 (Warme et al., 1974; Acharya 

et al., 1989). Nonetheless, subsites D-F may be capable of supporting monosaccharide 

binding in the LS complex. Although this hypothesis is attractive, especially in terms of 

LA’s evolutionary relationship with LYZ, there is no compelling evidence that such a 

situation prevails. Resonance energy transfer measurements between sites on LA and GT 

led O ’Keefe and coworkers to conclude that the cleft of LA is probably located some 

distance from the acceptor binding site in the LS complex (O’Keefe et al., 1980b).
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Nevertheless, the existence of a partial functional monosaccharide binding site in the cleft 

cannot be ruled out.

1.3.3 Functional Sites in GT

Relatively little is known about the three-dimensional structure and functional 

sites in GT. cDNA and partial protein sequences have been determined for human, 

bovine and mouse GTs (for a review see Paulson and Colley, 1989). Sequence analysis 

indicates that, like other glycosyltransferases, the enzyme consists a short N-terminal 

domain, a hydrophobic transmembrane domain, and a stem region (~60 residues) and 

catalytic domain (~320 residues) that project into the lumen of the golgi. The N-terminal 

domain, absent from the soluble, proteolytically-cleaved forms of GT, is not required for 

catalytic function but may play a role in subcellular targeting (Evans et al., 1994). 

Retention of the enzyme in the golgi apparatus is mediated by the transmembrane domain 

(Aoki et al., 1992). The catalytic domain appears to be composed of two separate sub- 

domains; one involved in LA and acceptor substrate binding (N-terminal residues 79- 

250) and the other, comprising the C-terminal region (residues 275-402), which is 

involved in UDP-galactose binding (Yadav and Brew, 1990; 1991). A disulphide bond 

that connects the two catalytic sub-domains (Cysl34-Cys247) is critical for GT and LS 

activity (Boeggeman et al., 1993; Wang et al., 1994). In addition, chemical modification 

and site-directed mutagenesis studies have demonstrated that a number of aromatic 

residues are critical for GT catalysis and/or UDP-galactose binding (Takase and Ebner, 

1984; Aoki et al., 1990; Zu et al., 1995).
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There are several lines of evidence that the galactosyl acceptor substrate and LA 

binding sites on GT are in close proximity and that they do not coincide with the UDP- 

galactose binding site. A photoaffinity analogue of UDP-galactose specifically labels 

GT’s UDP-galactose binding domain in the presence and absence of acceptor substrates 

and LA (Lee et al., 1983). LA and extended oligosaccharides bind to GT in a mutually 

exclusive manner (Khatra et al., 1974; Bell et al., 1976). Competitive inhibition is also 

observed between LA and (31-glycosides of glucose and GlcNAc (O’Keefe et al., 1980a; 

Lambright et al., 1985). A methyl substituent is sufficient to elicit competitive binding. 

This observation suggests that, in the LS complex, a group on LA is only about 1.5A 

from the p i hydroxyl of the galactosyl acceptor (Takase and Ebner, 1984).

Indirect evidence for the nature of the LA binding site comes from similar 

studies. Hydrophobic p 1-glycoside derivatives of GlcNAc and glucose cause as much as 

a 1000-fold decrease in the apparent K,» of the galactosyl acceptor while having minimal 

effects on the Vwax.(Takase and Ebner, 1984). This effect is proportional to the size of 

the substituent. Therefore, it seems likely that the site adjacent to the P-OH position of 

the galactosyl acceptor, presumably the LA binding site, is relatively hydrophobic in 

nature. This is consistent with the view that the majority of the residues proposed to be 

involved in the interaction site on LA are hydrophobic in character (see Section 1.3.2).

1.3.4 Monosaccharide Bridge Model of LA Action

A model has been proposed to explain LA’s action in the LS complex that does 

not invoke any allosteric effects from LA binding (Lambright et al., 1985; Brew and 

Grobler, 1992). The model is illustrated in Figure 1.5. It has been dubbed the
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monosaccharide bridge model due to the stabilising nature of monosaccharide binding 

between LA and GT.

Figure 1.5 —  Monosaccharide bridge model
A model that describes the molecular basis of LA’s action in the LS complex is 
illustrated above. See text for details (Adapted from Brew and Grobler (1992)).

The galactosyl acceptor site of GT is envisaged to contain two or more subsites 

for the binding of monosaccharides; one (Sm o n o )  capable of accommodating galactosyl 

acceptors such as free GlcNAc (and glucose albeit with low affinity) and another (Se x t )  

capable of binding an additional sugar in extended substrates. The binding site for LA 

(affinity control site) overlaps the Se x t  site, in a manner consistent with the mutually 

exclusive binding of LA and oligosaccharides, and brings a region of LA close to the 

S m o n o  site. This site in LA (Sl a )  forms favourable stabilising interactions with

LACTOSE SYNTHASE
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monosaccharide bound at Sm ono  and gives rise to the observed synergism of binding 

between glucose and LA (Khatra et al., 1974).

1.4 Present Work

The present work aims to clarify and extend our current understanding of the 

molecular mechanism of LA action in the LS complex. An ideal approach would be to 

determine the three-dimensional structure of the lactose synthase complex. Unfortunately 

this has been hampered by a variety of reasons including the heterogeneous nature of 

soluble GT purified from natural sources, problems associated with the solubility and 

lability of GT, and the relatively poor stability of the LS complex (Brew and Grobler, 

1992). Although a number of these problems are now being addressed, such as the ability 

to produce relatively large quantities of soluble GT by recombinant methods (K. Brew, 

personal communication), crystallographic determination of the structure of the LS 

complex will not be accomplished in the near future. Consequently, information about 

the molecular basis of lactose synthesis must be obtained indirectly.

The ‘monosaccharide bridge’ model predicts that functional regions on the 

surface of LA, although closely interrelated, should be structurally distinct. If the model 

accurately describes the molecular action of LA in the LS complex, there should be one 

region on LA that is solely involved in binding to GT and another (Sla) that stabilises the 

binding of monosaccharides. Several potential functional sites in LA (aromatic cluster I 

and II) have already been implicated by chemical modification studies and comparative 

sequence analysis. In particular, a cluster of aromatic residues on the surface of LA 

(aromatic cluster I) appears to be critical for LA’s action in the LS complex.
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In collaboration with Dr. Keith Brew at the University of Miami Medical School, 

we have set out to ascertain which residues are involved in LA’s interaction with GT and 

whether any regions in LA facilitate glucose binding in the LS complex. Site-directed 

mutagenesis, a powerful technique that facilitates the dissection of protein structure- 

function relationships, has already been used in Miami to study the functional importance 

of several residues on the surface of LA and to test the validity of the monosaccharide 

bridge model (Brew et al., 1993). In the current work, these mutagenesis studies are 

expanded and the structural consequences of particular sidechain substitutions are 

investigated.

The following chapters document the progress made in identifying the functional 

regions of LA using protein engineering and correlating the resulting functional effects 

with the three-dimensional structure of LA.
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Chapter

Recombinant Bovine LA

2.1 Previous Expression Systems

In general, detailed investigation of the structure-function relationships of a 

protein require that sufficient quantities of both wild type and variant forms of the 

protein are available. In such cases, bacterial expression systems can provide an ideal 

source of material for kinetic and structural studies. Suitable expression systems must 

allow the generation of relatively large quantities of homogeneously pure protein with 

the minimum of effort. Although several expression systems for LA have been reported 

in the literature, their success has been mixed. A yeast expression system for bovine LA 

yielded a product that was identical in amino acid sequence to the wild type milk protein 

and had a similar ability to modulate the affinity of GT. However, the final yields of this 

system were modest with expression levels of between 0.5 and 2mg/l (Viaene et al., 

1991). Similarly, an E. coli fusion system for goat LA (GOLA) only yielded about 

1.5mg/l of protein after cleavage (Kumagai et al., 1990). Furthermore, this product 

possessed only 12% of the activity expected for goat milk LA (Kumagai et al., 1992).
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2: Recom binant Bovine LA

A more successful bacterial expression system has been developed in Dr. Keith 

Brew’s laboratory at the University of Miami School of Medicine (Wang et al., 1989). 

The product, a fusion protein consisting of the mature form of bovine LA connected by a 

short linker to an amino terminal portion of cathepsin D, was produced at levels of about 

50mg/l prior to the refolding and cleavage steps. The folded fusion protein had about 

25% of the activity expected for the wild type protein but, after cleavage with trypsin, 

was essentially indistinguishable from bovine milk LA. However, the authors pointed out 

that one potential disadvantage of this system in the study of mutant LAs, is that 

mutations that destabilise the native conformation may exhibit less specific cleavage of 

the fusion protein. To reduce this possibility, the system was further developed so that it 

allowed a more specific cleavage of the folded fusion protein. A methionine residue was 

introduced prior to the coding region of the mature bovine LA using M13 site-directed 

mutagenesis. In addition, the coding region of LA was rendered resistant to CNBr 

cleavage by the replacement of methionine 90 with a valine. This substitution was 

considered to be relatively conservative as a valine is found in this position in several 

LAs from other species. Using this new construct (pC-LA), a recombinant form of 

bovine LA (M90V-LA) could be obtained, by specific cleavage of the expressed fusion 

protein with CNBr, that was essentially identical to the wild type protein in terms of 

kinetic parameters and CD spectra. The final yields were also improved by the 

introduction of this specific cleavage site and about lOmg folded protein could be 

consistently obtained per litre of bacterial culture. This expression system was 

subsequently used successfully to study the effects of various amino acid substitutions in 

aromatic cluster I of LA (Brew et al., 1993).
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2.2 Construction of a Non-fusion Expression System

2.2.1 Introduction

This was the current situation as the author travelled to Miami to purify sufficient 

quantities of recombinant and mutant LAs for X-ray crystallographic studies. However, 

it soon became apparent that the current expression system was not able to produce the 

quantities of protein required for structural analysis. Despite the reasonable final yields 

obtained for M90V-LA, the site-directed mutants could only be recovered in small 

amounts. These low yields appeared to be due to both the oxidative effects of CNBr and 

inefficient cleavage of the fusion product. As a result about 70% of the expressed 

product was lost during the purification procedure. Consequently, my arrival served to 

expedite the development of a non-fusion expression system that Keith and his 

postgraduate student had been considering for several months. Theoretically, a non

fusion system would avoid the CNBr cleavage step and should enable sufficient 

quantities of protein to be obtained both for kinetic and structural characterisation.

2.2.2 Construction of the Expression Vector

The expression vector was generated by cloning the coding sequence for bovine 

LA into the pET3a vector (Novagen, Madison, WI). The pET vector range is a 

powerful, high yield system for expressing recombinant proteins in E. coli (Studier et al., 

1990; Rosenberg et al., 1987; Studier and Moffat, 1986). Target genes are introduced so 

that they are under the control of strong bacteriophage T7 transcription and translation 

signals. Subsequent protein expression is achieved by transferring the recombinant 

plasmid to a host that possesses a chromosomal copy of the T7 RNA polymerase gene.
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Commonly used hosts are lysogens of the bacteriophage XDE3, which contain the 

polymerase gene under the control of the inducible lacUVS promoter. Induction of the 

T7 polymerase gene with isopropylthio-P-D-galactoside (IPTG) enables the target DNA 

in the expression vector to be specifically transcribed. The polymerase is so active that 

the target gene product can comprise more than 50% of the total cell protein a few hours 

after induction.

The cloning procedure is summarised in Figure 2.1. The coding region of bovine 

LA was amplified from the fusion vector (pC-LA) by the polymerase chain reaction 

(PCR) using primers designated NF-N and NF-C (see Appendix). These primers were 

designed to incorporate a unique Ndel restriction site at the 5’ end and a BamHI site at 

the 3’ end (after the stop codon) of the LA coding sequence. The Ndel restriction site 

also introduced an initiator methionine codon immediately prior to the first codon of LA. 

The amplification product was isolated by agarose gel electrophoresis and digested with 

Ndel and BamHI. This digested product was then cloned into pET3a vector that had 

been digested with the same restriction enzymes. The ligated product was transformed 

into competent DH5a subcloning efficiency cells (Gibco BRL, Gaithersburg, MD) and 

the transformants were screened for correctly inserted DNA using Ndel/BamHI and 

BamHI/Sall double digestions (see Appendix). Twelve of the transformant colonies 

screened contained the correct insert.
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T7 promoter
ori

Ndel

pC-LA
(5719bp) LA

Amp ‘STOPr_ J

T7 terminator BamH I

CD
NF-N

LA

NF-C

STOP
H.

Digestion with Nde I and BamHI 

^ 3 ^  Ligate into Nde I / BamHI cut pET3a

T7 promoter
ori

Ndel

p-MLA
(4979bp)

LA

Amp1 BamH I

T7 terminator

Figure 2.1 — Construction of p-MLA expression vector from pC-LA.
(1) The mature protein region of bovine LA was amplified from the pC-LA fusion protein 
vector using two oligonucleotide primers designed to introduce a 5' N d e l  and a 3’ B a m H I  
restriction site (CD represents the cathepsin D portion of the fusion protein). (2) The 
purified PCR product was digested using these restriction enzymes and (3) ligated into 
pET3a vector. See text and the Appendix for details.

The new expression vector (p-MLA) was transformed into competent BL21(DE3) 

expression cells, a lysogenic E. coli strain carrying the bacteriophage T7 polymerase 

gene, and ampicillin resistant transformants were selected. p-MLA was sequenced using 

an automatic DNA sequencing system (Applied Biosystems) to confirm that the LA
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coding region was correctly inserted and that no undesired mutations had been 

introduced during the PCR amplification.

2.3 Generation and Purification of Recombinant LA

2.3.1 Expression and Initial Extraction

Cultures of E. coli strain BL21(DE3) transformed with p-MLA were grown 

overnight in Luria-Bertani (LB) medium containing 100|ig/ml ampicillin at 37°C. An 

aliquot of the overnight culture was washed and diluted (1:100) in fresh medium 

containing lOOpg/ml antibiotic and incubated at 37°C. When the A6oo of the culture 

reached 1.0 (usually after 2hrs), expression of the host T7 polymerase gene was induced 

by adding IPTG to a final concentration of 0.4mM. Maximal levels of expression were 

observed at about 3hrs post-induction. After three hours, the cells were harvested by 

centrifugation at 4000rpm and the inclusion bodies, containing recombinant LA (mLA), 

were isolated using the lysozyme lysis method (Sambrook et al., 1989; see Appendix). 

The inclusion body pellet was solubilised by incubation for two hours at 37°C in 20mM 

Tris-HCl pH 8.5 containing 8M urea and 20mM dithiothreitol (approximately 8-10mls 

per litre of bacterial culture). The resulting extract was loaded onto a column (26mm x 

95mm) of Macro-Prep Q50 strong anion exchange support (Bio-Rad) that had been pre

equilibrated with running buffer (20mM Tris-HCl pH 8.5, containing 4M urea). The 

column was mounted on an EconoSystem™ (Bio-Rad) with a flow rate of 2.5ml/min. 

The column was washed with equilibration buffer until the absorbance at 280nm was 

reduced to the baseline level. Bound protein was then eluted with a linear gradient of 

buffer B (20mM Tris-HCl pH 8.5 containing 4M urea and 0.5M NaCl) at a rate of 1.1%
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buffer B/min. Fractions of 2.5ml were collected and the elution process was constantly 

monitored by absorbance at 280nm (Figure 2.2). Analysis of the collected fractions by 

SDS polyacrylamide gel electrophoresis (SDS-PAGE) showed that the major peak, 

eluting at about 30min, contained mLA. This initial purification step was found to be 

highly effective in separating mLA from the inclusion body lysate and only small amounts 

of protein contaminants were present in the fractions containing mLA (Figure 2.3).
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Figure 2.2 — Elution of urea-solubilised mLA from the anion exchange matrix.
See text for details. The black bar represents the fractions (2.5ml) containing mLA.
These were collected and folded to the native fonn using equilibrium dialysis. The 
continuous line corresponds to the absorbance at 280nm and the dotted line represents 
the concentration of NaCl used in the buffer B elution gradient.

2.3.2 Folding

Disulphide-containing proteins, such as LA, require an alkaline pH and the 

presence of thiol/disulphide compounds for (re-)folding and correct disulphide bond 

formation (Saxena and Wetlaufer, 1970; Creighton, 1980). In addition, LA is unusual in 

that it requires calcium in a 1:1 stoichiometry for efficient folding in vitro (Rao and 

Brew, 1989). Native mLA was generated by progressive dialysis steps against decreasing
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urea concentrations in the presence of a redox folding buffer. The folding buffer (10X) 

contained 200mM Tris-HCl, lOmM CaCL, 50mM (3-mercaptoethanol and 5mM 2- 

hydroxyethyldisulphide with a pH adjusted to 9.0.

1 2 3 4 5 6 7 8

Figure 2.3 —  SDS-PAGE analysis of mLA at various stages during purification.
The SDS-PAGE gel (20% polyacrylamide) above was run using standardised amounts of 
protein (1:20000) from various stages during the purification procedure. Lane 1,
Molecular weight markers1 (from bottom: lysozyme (18.5K), soybean trypsin inhibitor 
(27.5K), carbonic anhydrase (32.5K), ovalbumin (49.5K). bovine serum albumin (80K), 
phosphorylase b  (106.5K)); Lane 2, 20pg commercially prepared bovine milk LA (Sigma); 
Lane 3, Uninduced expression cells; Lane 4, 3hrs post-induction; Lane 5, Urea solubilised 
inclusion bodies; Lane 6, Pooled Q50 purified fraction; Lane 7, Post dialysis refolding; 
Lane 8, Pooled G-75 purified fraction.

Fractions from the mono-Q separation containing expressed mLA were pooled 

and the protein concentration was adjusted to about 1 mg/ml with folding buffer (IX) 

containing 2M urea. The protein concentration was estimated from the absorbance at 

280nm assuming a value of 2.0 for £ 2°8o%(Hill and Brew, 1975). For variant LAs, in

1 In the case of the prestained SDS-PAGE standards (BioRad) used here, the covalently bound dye alters 
the molecular weight of the protein. The values given in parentheses therefore correspond to the 
apparent molecular weights of the markers. For example, lysozyme, which has a molecular weight 
similar to LA (~14.5KDa), runs with an apparent molecular weight of 18.5KDa in its prestained form.
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which tyrosine or tryptophan residues had been inserted or removed, the £ 2°8o% was 

calculated using the method described by Gill and von Hippel (1989). The diluted protein 

solution was then dialysed against folding buffer at 4°C. Dialysis was carried out for at 

least 6hrs against solutions of folding buffer containing 2M, 1M and OM urea 

respectively. The resulting solution, containing refolded mLA, was then dialysed against 

30mM ammonium bicarbonate and lyophilised. The urea (Sigma) stock solution was pre

filtered through a column containing a mixed-bed resin (AG501 X8(D), 20-50 mesh 

(Bio-Rad)) to remove cyanate and other contaminants.

2.3.3 Final Purification

mLA was finally purified by gel filtration with columns (80mm x 500mm) of 

Superdex G-75 equilibrated with 30mM ammonium bicarbonate containing 10p,M CaCL. 

The refolded mLA from a 6 litre preparation was typically dissolved in 10ml of 30mM 

ammonium bicarbonate and applied to the column. Elution was performed at room 

temperature (about 22°C) with 30mM ammonium bicarbonate containing 10|iM CaCL at 

a flow rate of 2.5ml/min. mLA eluted as a sharp single peak (Figure 2.4). The fractions 

containing mLA were pooled and lyophilised. The purity of the expressed protein was 

assessed by SDS-PAGE and analytical ion-exchange high performance liquid 

chromatography. HPLC separations were carried out with a Hewlett-Packard 1090 

liquid chromatograph fitted with an ion-exchange column (see Appendix). Both bovine 

milk LA and mLA eluted after about 30 min.
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The expression system was relatively efficient and final yields of mLA 

consistently exceeded 35mg/litre of bacterial culture. The final product ran as a single 

band on SDS-PAGE and had a mobility that was essentially identical to the bovine milk
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Figure 2.4 —  Final purification of mLA by gel filtration.
After treatment to generate native folding, the lyophilised material was dissolved in 
buffer and loaded onto a column containing Superdex G-75 (see text for details). 
The fractions containing mLA are marked by the black bar. This elution profile is 
typical of those obtained for the mutants that folded efficiently. Mutants that folded 
incorrectly exhibited large amounts of aggregated material in the void volume and 
an increased peak around fraction 16. SDS-PAGE shows that this latter peak (#16) 
contains LA but most likely represents an aggregated dimeric form of the protein.

protein (Figure 2.3). Amino-terminal sequencing of mLA produced a single sequence 

with methionine as the amino terminal residue followed by the expected amino terminal 

sequence of bovine LA. Sequencing was performed using an Applied Biosystems protein 

sequencer (model 470A) fitted with a phenylthiohydantoin-derivative analyser (model 

120A) and a sequence assignment data analysis system (model 900A).
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2.4 Generation and Expression of Mutant mLAs

2.4.1 Mutant Design

The mutations introduced into mLA were directed to three separate regions of 

the structure (Table 2.1). The first region to be investigated comprised the invariant 

positions in aromatic cluster I (Phe-31, His-32, Gln-117 and Trp-118). These residues

Table 2.1— Primers used for the PCR mutagenesis.

Primer Sequence Orientation

F31E 5' -CTGTACC ACGGAA CAT ACC AGTGG-3 ’ Coding
F31L 5 ’ -CTGTACC ACG TTA CATACC AGTGG-3 ’ Coding
F31S 5 ’ -CTGTACC ACG 7TTCATACC AGTGG-3 ’ Coding
F31Y 5' -CTGTACC ACG TA 7G AT ACC AGTGG-3 ’ Coding

H32A 5 ’ - ACC ACGTTTGG4 ACC AGTGG-3’ Coding
H32E 5 ’ - ACC ACGTTTGA4 ACC AGTGG-3 ’ Coding
H32N 5 ’ - ACC ACGTTTAATACC AGTGG-3 ’ Coding
H32Y 5 ’ - ACCACGTTT7A TACC AGTGG-3 ’ Coding

Y103A 5' -GGCC A ACC AGGCGTT A ATTCC -3 ’ Complementary
Y103P 5 ’ -GGCCAACCAGGGGTT A ATTCC -3 ’ Complementary

W104A 5 ’ -GCTTTATGGGCCAACGCGTAGTTA ATTCC -3 ’ Complementary
W104L 5' -GCTTT ATGGGCCAACA4 GT AGTT A ATTCC -3 ’ Complementary
W104Y 5 ’ -GCTTTATGGGCCA AG TA GTAGTT A ATTCC -3 * Complementary

H107A 5 ’ -C AG A AC AG AGTGCTTTA GCGGCCAACC AG -3 ’ Complementary
H107Y 5 ’ -CAGAACAGAGTGCTTTA TA GGCC A ACC AG-3 ’ Complementary
H107W S’ -CAGAACAGAGTGCTTTCCAGGCCAACCAG-3 ’ Complementary

A109P 5 ’ -C AG AAC AG AG 7GGTTT ATGGGCC -3 ’ Complementary

L110E 5 ’ -GCTTCTC AG A AC ACrCTGCTTT ATGGGC -3 ’ Complementary
L110H 5 ’ -GCTTCTC AGAACAA 7GTGCTTT ATGGGC -3 ’ Complementary
L110R 5 ’ -GCTTCTC AG AAC ACCGTGCTTTATGGGC-3’ Complementary

Q117A 5 ’ -GAGAAGCTGGATGC7TGGCTCTG-3 ’ Coding
Q117D 5 ’ -G AG AAGCTGG ATG47TGGCTCTG -3 ’ Coding
Q117R 5 ’ -GAG AAGCTGG ATCG7TGGCTCTG-3 ’ Coding
Q117S 5 ’ -GAG AAGCTGG ATAG7TGGCTCTG-3 ’ Coding

W118H 5 ’ -GG ATC AGCA TCTCTGTG AG-3 ’ Coding
W118Y 5 ’ -GGATCAG TA TCTCTGTGAG-3 ’ Coding

are conserved only in LA sequences and, as discussed in Chapter 1, have been implicated 

in LA function by a number of different studies. The choice of substitutions at these sites 

was based primarily on the nature of the residues found at the corresponding positions in 

lysozymes although additional changes were designed to examine the effects of different
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sidechain types at a particular position. For example, His-32 was changed to an Asn and 

Tyr (as in several lysozymes), a Glu (to investigate the effect of introducing a charged 

group into the cluster) and an Ala (essentially removing the sidechain contribution).

The second group of mutations were directed at the ‘hydrophobic-box’ residues 

(aromatic cluster II) Tyr-103 and Trp-104. Other residues in cluster II (positions 26,53, 

60, 95) were not altered on account of their completely buried environments in the three- 

dimensional structures of both LA and lysozyme. The sidechain of Tyr-103 is located in 

the cleft region and results in the blockage of the A and B subsites that bind saccharide in 

lysozyme (Warme et al.y 1974; Acharya et al.y 1989). This tyrosine is present in all LAs 

sequenced to date apart from rabbit (His) and platypus (Ala). The corresponding position 

in the lysozymes (residue 107) is occupied by either an alanine or a proline (see Figure 

1.1). Tyr-103 was replaced with either an Ala or Pro to investigate their influence on LA 

function. Changes at Trp-104, which is totally conserved in both LAs and lysozymes, 

were designed to ascertain the effect of decreased hydrophobic sidechain size at this 

position (W—»Y, L, A).

The third set of mutations were made in a region adjacent to aromatic cluster I 

comprising residues 105-110 (hereafter referred to as ‘the flexible loop region’). There is 

some evidence to suggest that this region is likely to be in close proximity to GT in the 

LS complex and it may even be an important interaction site. Studies have shown that 

Lys-108 is the major site of cross-linking in the LS complex (Brew et al., 1975). 

Moreover, the conformation of this region is very flexible in the three-dimensional 

structure of HLA and adopts two alternate conformations depending on the conditions 

used to obtain crystals (Harata and Muraki, 1992). Substitutions at His-107 (H—>A, Y,
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W) were designed to favour the helical conformation, that is observed in HLA crystals 

grown at physiological conditions, in which the sidechain of residue 107 is buried. Tyr is 

found at this position in mouse LA and a Trp is present at this site in both platypus LA 

and all known lysozymes. Ala-109 was changed to a proline which is found at this 

position in several LAs. This substitution was based on the tenet that a proline would be 

incompatible with the observed helical conformation and such a change should favour the 

loop conformation seen in HLA crystals grown at pH 4.2. The final set of substitutions in 

this region were made at position 110 (L—»E, H, R). These changes were designed to 

investigate the effects of various sidechain types. Much the same variability in sidechain 

character is seen in the corresponding position in lysozymes (Arg in human and chick 

LYZ and a His in several LYZs including bovine, trout and hoatzin).

2.4.2 PCR Mutagenesis

The single-site substitutions were introduced into p-MLA using the PCR 

Megaprimer method (Sarkar and Sommer, 1990). This site-directed mutagenesis method 

utilises three oligonucleotide primers to perform two separate PCRs. The product of the 

first reaction is subsequently used as a ‘megaprimer’ in the second amplification. This 

procedure is simpler than four primer/three PCR single site-directed mutagenesis method 

(Higuchi et al., 1988) and is also less likely to introduce unwanted mutations as fewer 

PCR cycles are required. p-MLA was used as a template in all the amplifications. 

Depending on the location of the target amino acid, the first PCR was performed with 

either the T7 promoter or T7 terminator primer (Novagen) in conjunction with the 

mutagenic primer (see Table 2.1 for the sequences and orientation of the mutagenic 

primers). The product of the first PCR was directly isolated from the amplification
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reaction using the Magic™ PCR Preps Purification Kit (Promega Co., Madison, WI). 

The isolated megaprimer was then used in the second amplification with the same 

template (p-MLA) and the cognate T7 primer to generate the full length product. The 

final PCR product was isolated, purified, digested and cloned into cut pET3a as 

described for mLA (see Section 2.2.2). Mutant expression vectors were characterised by 

restriction mapping and automated DNA sequencing.

All the sequence changes, except for those at positions 117 and 118, were made 

with relative ease using the above protocol. In four cases, an additional single base 

change was erroneously introduced by the mutagenesis procedure resulting in an extra, 

unwanted amino acid substitution. These were F31E-mLA, where a methionine was 

substituted for valine 8, and all the LI 10 variants where a lysine was substituted for 

leucine 115 in all cases (henceforth double mutants are referred to as F31E* and LI 10*). 

Changes at positions 117 and 118 proved particularly difficult to engineer using the 

primers that had been designed. On numerous occasions transformants were obtained but 

subsequent DNA sequencing and activity assays of the expression products revealed that 

the PCR mutagenesis had failed as the DNA sequences and protein activities were 

identical to the parent mLA. This was thought to be primarily due to the primer design. 

The 117 and 118 mutagenic primers, initially designed specifically for the fusion protein 

system, were orientated with respect to the coding strand of LA. As a result, the 

products of the first PCR reaction were relatively small (<80bp) and could not be 

isolated using the Magic™ PCR Preps Purification Kit as the reported recovery rate for 

this size of fragment is very low (<5%). These mutants were subsequently constructed 

successfully using appropriate modifications to the standard mutagenesis protocol. The
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small megaprimers were separated by electrophoresis on a 12% polyacrylamide gel, 

isolated by Maniatis’ ‘crush-and-soak’ method (Sambrook et al.y 1989) and used in the 

second PCR reaction to generate the full length product containing the desired mutation 

(J. Grobler, personal communication).

2.4.3 Expression, Folding and Purification

The variant LA vectors were transformed into BL21 DE3s and the mutant LAs 

were expressed and purified as described for mLA (see Section 2.3). Folding of the 

variant LAs was performed in a similar fashion to that used for mLA. In two cases 

(H32A and Y103P), 10% (v/v) glycerol was included in the folding buffer to try to 

increase the folding efficiency. Table 2.2 summarises the yields obtained at various stages 

during the purification procedure. Although initial levels of expressed protein for the 

mutant LAs were reasonably constant, the final yields varied considerably and the 

majority of the mutant LAs were recovered in much smaller amounts compared to mLA. 

SDS-PAGE had previously shown that mLA was the major protein component (>95%) 

after the initial anion exchange separation in urea with only low levels of protein 

contaminants (Figure 2.3). Therefore, as initial levels of expressed protein were fairly 

constant, the decreased yields appear to be due entirely to a reduction in the variant’s 

folding efficiency in vitro. No specific attempts were made to alter the folding conditions 

for the mutants obtained in low yields, except for cases where 10% glycerol was added 

to the folding mixture. Particular substitutions appear to be incompatible with native 

folding, under the conditions employed, based on the minimal yields obtained: F31E*, 

F31L, H32E, H32N, Y103A, W104A, W104L and W104Y. This inability to fold 

correctly was characterised by large amounts of aggregated protein eluting in the void
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volume of the gel filtration separation. In contrast, the mutants that folded relatively 

efficiently (F31Y, H32Y, Y103P, H107’s, A109P, L110*’s) behaved in a similar fashion 

to mLA during gel filtration.

Table 2.2 — Yields of mLA and mutants at various stages during purification.

Protein Total Protein post 
MacroPrep Q50

Total Protein 
post G75

Yield*

mg/litre of bacterial culture %

mLA 107 40 100
F31E* 78 8.8 (0)b oc
F31L 63 5.5 (0) oc
F31S 60 16.5 (1.0) 4C
F31Y 71 25.5 95
H32A 55 10.0 (1.0) 5C
H32Ad 73 28.5 (5.7) 21°
H32E 66 nde (0) 0
H32N 58 nd (0) 0
H32Y 47 17.5 100
Y103Pd 53 17.7 29
W104A 53 nd (0) 0
W104L 43 nd (0) 0
W104Y 59 nd (0) 0
H107A 79 18.1 61
H107W 94 16.3 46
H107Y 67 25.5 100
A109P 58 16.0 73
L110E* 63 4.7 20
L110H* 35 7.5 34
L110R* 34 7.2 59'
a Yield for mLA after gel filtration was designated 100%. The yields for the mutants were calculated

relative to mLA 
b Values in parentheses are yields after ion exchange HPLC 
0 Yields calculated after HPLC separation 
d Folded in the presence of 10%(v/v) glycerol
e nd, no gel filtration step used. Mutants purified directly by HPLC ion exchange

mLA and the correctly-folded mutants eluted as single peaks on HPLC analysis at a 

similar NaCl concentration to that characteristic of bovine milk LA (Figure 2.5a). Other 

mutants had more complex HPLC elution profiles. Mutant mLAs with non-native folds, 

such as F31E* and F31L, showed no peak eluting at the same time as mLA but a major
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peak eluting at high NaCl concentration (Figure 2.5b). This is presumably due to the 

aggregation of the incorrectly folded protein. A second group of mutants, with lower 

folding efficiency (F31S and H32A), consisted of both correctly and incorrectly folded
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Figure 2.5 — Separation by HPLC anion exchange chromatography.
a. mLA; b. F31L-mLA; c. F31S-mLA. See text for details.
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forms of the protein as HPLC analysis showed both the native and aggregated peaks 

(Figure 2.5c). F31S and H32A-mLA were subsequently purified exclusively by HPLC 

ion exchange to ensure the homogeneity of the final material. Sufficient amounts of 

protein were obtained for mLA, F31S, F31Y, H32A, H32Y, Y103P, H107A, H107W, 

H107Y, A109P, L110H* and LI 10R*. All the samples were judged to be homogeneous 

and of high purity (>99%) by SDS-PAGE and HPLC analysis.

2.4.4 Summary

The T7 polymerase expression system described above was found to be 

extremely powerful and allowed high yields of native and mutant mLAs to be obtained 

with relative ease. This system represents a significant improvement over those that have 

been previously described for LA (see Section 2.1). The Megaprimer method used to 

construct the site-directed mutants introduced several unintended mutations but this was 

a small sacrifice when balanced against the facility of the procedure. The problem 

appears to be associated with Taq polymerase’s 3' terminal transferase activity which 

results in the addition of an extra base at the mutated end of the megaprimer. This effect 

could be overcome by taking extra precautions when designing primers so that any 

additional base added by the transferase activity can be accommodated without 

generating a protein sequence change. Alternatively, improved efficacy could be obtained 

with the use of a less error-prone polymerase.

Several conclusions can be made regarding the effect of various substitutions on 

the folding efficiency of recombinant LA. In general, replacement of aromatic sidechains 

in the clusters I and H with non-aromatics resulted in low final yields. This is presumably
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due to either a destabilisation of the native conformation or to a more general effect of a 

particular substitution on the in vitro folding kinetics of the variant LAs. This 

observation is highlighted by the changes at positions 31 and 32 where only Tyr- 

substituted variants (F31Y and H32Y) were obtained in respectable final yields. In the 

case of H32A, addition of 10% glycerol to the folding mixture resulted in a 5-fold 

increase in the final yield of folded protein as reported for marginally stable mutants of 

lysozyme (Sawano et al., 1992). Virtually all changes in aromatic cluster II tended to 

seriously affect the folding of LA. Although substitution of Tyr-103 with a proline 

resulted in reasonable final yields, two of the three substitutions made at position 104 

(alanine and leucine) did not fold correctly. Some monomeric W104Y-mLA was isolated 

by gel filtration but preliminary characterisation using CD measurements suggest that this 

variant may have significant alterations in the conformation of its hydrophobic box (K. 

Brew, personal communication). In contrast, changes at positions 107,109 and 110* had 

minimal effects on LA’s folding efficiency.

2.5 Kinetic Characterisation of mLA and the mLA Mutants

2.5.1 Kinetic Mechanism of GT and the Lactose Synthase Complex

The role of LA in the lactose synthase (LS) complex has already been briefly 

described in Chapter 1. In the complex, interaction of LA with GT modulates the affinity 

of GT for acceptor substrates, enhancing the binding of glucose and other 

monosaccharides while acting as a competitive inhibitor with respect to extended 

oligosaccharide substrates, such as N, N* diacetylchitobiose (ChB), and glycoproteins 

(Khatra et al., 1974; Powell and Brew, 1976b; Bell et al., 1976). Substrate inhibition is
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also observed with glucose, and other weaker binding monosaccharides, at high 

concentrations of LA and/or acceptor due to the formation of dead-end inhibitory 

complexes (Morrison and Ebner, 1971b). The main consequence of this affinity 

modulation is to increase GT’s affinity for glucose 1000-fold, thereby allowing the 

efficient synthesis of lactose at physiological concentrations of glucose.

To date, no universal mechanism has been proposed that can account for all the 

steady-state kinetic data. Three alternative schemes, representing the mechanism of 

lactose synthase, have been suggested. The major differences between these schemes 

concern the point at which LA becomes involved and the level of randomness in the 

reaction. In the earliest studies, Morrison and Ebner suggested that the substrates of the 

transferase reaction add in an ordered manner with Mn2+ as the first substrate followed 

by the sequential addition of UDP-galactose, acceptor and finally LA (Morrison and 

Ebner, 1971a,c). A series of subsequent studies suggested that the reaction was best 

represented by a partially ordered mechanism, in which UDP-galactose binds to a 

GT*Mn2+ complex prior to the random equilibrium binding of LA and glucose (Khatra et 

al., 1974; Powell and Brew, 1976b). A third scheme proposes that lactose synthesis 

proceeds by a completely random equilibrium addition of substrates (UDP-galactose, LA 

and acceptors) to a GT*Mn2+ complex (Bell et al., 1976). In spite of the inherent 

differences and kinetic implications of the three schemes, there is a more general 

agreement that the modulatory effects of LA involve a random, but highly synergistic, 

binding with glucose to GT complexes. All three mechanisms propose that LA attaches 

to GT prior to the release of products and dissociates from the complex at the end of
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each catalytic cycle. In the case of larger acceptor substrates, such as ChB and 

ovalbumin, the binding of LA and acceptor is mutually exclusive.

2.5.2 Interpretation of Steady State Kinetic Measurements of LA 
Activity

The activity of mLA and the mutant mLAs in promoting glucose binding to 

bovine GT was determined by a radiochemical assay as in previous studies (Brew et al.> 

1968; Khatra et al., 1974). To simplify interpretation of the kinetic data from mLA and 

the mutants, the conditions used for the activity assays were designed to essentially 

saturate GT with Mn2+ and UDP-galactose. Therefore, regardless of which mechanism 

provides the best representation of the LS system, all the GT will be distributed in 

complexes containing both Mn2+ and UDP-galactose. The GT assay used here is 

described in full in the Appendix. Manganese (Mn2+), in the form of MnCL, was used at a 

concentration of lOmM; this compares to dissociation constants of Mn2+ from the two 

non-equivalent metal-binding sites on GT of 2pM and 2mM (Powell and Brew, 1976a). 

UDP-galactose was present at a concentration of 330pM (compared to Km and K* values 

of 60 and 25pM).

As GT is saturated with Mn2+ and UDP-galactose, the relevant part of the kinetic 

mechanism can be represented by the following equilibria:

GT * +LA < K'A > GT * LA [Eq. 2.1]

GT * +glc <-----»GT * -glc [Eq. 2.2]

GT * glc -l- LA <-----»GT * LA • glc [Eq. 2.3]

GT * LA + glc < *e  > GT * LA ■ glc [Eq. 2.4]
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GT * LA • glc < Kca‘ > GT * +LA + products [Eq. 2.5]

where GT* represents the GT-(Mn2+)2-UDP-galactose complex.

A low concentration of glucose was used in the assay (lOmM compared to its Km 

of 2M), so that enzyme complexes containing glucose but not LA (Eq. 2.2 and 23) were 

insignificant In this case, if rapid equilibrium binding of LA and glucose is assumed 

(Khatra et al., 1974; Bell et al., 1976), the rate equation reduces to:

y=  Kf«[LA][glc]-----------
*\mK 'c + R  [LA] + [LA] [glc] H

where Vma* is the maximum velocity (&Car[GT]), [LA] and [glc] are the concentrations of 

LA and glucose, K tA is the dissociation constant for LA from the GT*Mn2+*UDP- 

galactose-LA complex, and K j ,c is the K,„ for glucose at saturating levels of LA. In a 

rapid equilibrium mechanism, the K J lc is equal to the equilibrium dissociation constant of 

glucose from the GT*Mn2+*UDP-galactose*LA'glucose complex. Kt* is the dissociation 

constant of LA from the same complex that produces competitive inhibition with respect 

to extended substrates (e.g. ChB), and can therefore be determined separately as the 

inhibition constant (Ki) for that reaction.

The action of LA in activating the catalysis of lactose synthesis by GT, at a fixed 

concentration of glucose, reflects an increase in the enzyme complexes which can give 

rise to products (i.e. GT*-LA-glc). This is dependent on both the affinity of LA (and the 

mutants) for GT (K tA) and its effects on glucose binding (Kmglc). A secondary, double 

reciprocal plot of Eq. 2.6 (LS activity versus [LA]) will have an intercept/slope ratio 

(1 /Kr™) of:

50



2: Recom binant Bovine LA

[Eq. 2.7]
K t4

from which Kmglc can be determined using the value of Kt* obtained from the inhibition

of galactosyl transfer to ChB. Alternatively, the apparent V ^ 2 for lactose synthesis can

corresponding plot for bovine milk LA under the same conditions. The affinity of LA for 

the GT-Mn2+-UDP-galactose complex can be measured independently from glucose 

binding by using LA as a competitive inhibitor of galactosyl transfer to extended 

substrates. For the ChB reaction (see Appendix), apparent Ki values can be obtained 

from the intercept/slope ratios of Dixon plots (1/v versus [LA]). The true Ki values can 

then be calculated using the relationship:

where Km is the Km for ChB3 and [S] is the concentration of ChB (0.5mM). This

glucose at saturating concentrations of LA.

2.5.3 Functional Properties of mLA and the Mutants

The effects of the amino acid substitutions were characterised by using the parent 

and mutant mLAs as activators of lactose synthesis and as inhibitors of galactosyl

be used to determine K J 'C by comparison with the parameters obtained for a

^ (ffue)_ £ 1(apparent) [Eq. 2.8]

inhibition constant {Kt*) can subsequently be used in Eq. 2.7 to calculate the Km for

2 Vmax (true)
Vmax (apparent) = ~r

f  K m  >
1 + ------

V tgiciy
3

separately determined to be 1.14mM under these conditions (see Appendix)
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transfer to ChB. mLA is kinetically very similar to the bovine milk protein (BOLA). This 

is not particularly surprising as mLA only differs from the BOLA by the presence of an 

additional N-terminal methionine residue and a conservative internal methionine to valine 

change (M90V). Due to the way in which mLA was constructed, the additional amino 

terminal methionine residue, introduced by the cloning procedure, could be removed by 

CNBr cleavage to yield a product that differed from the milk protein at only one 

position. Nevertheless, it was deemed appropriate to investigate the structure-function 

relationships in LA without removing the NH2-terminal methionyl residues of the mLA 

mutants because of the similarity of mLA to the wild type protein in terms of kinetic and 

physical properties. However, only protein preparations that were ‘native-like’ based on 

chromatographic behaviour, homogeneity on HPLC ion exchange chromatography and 

near and far UV CD spectra were used for studying protein structure-function 

relationships. This was to ensure that any functional differences observed with the variant 

LAs only reflected local structural alterations.

The kinetic activities of mLA, Y103P-mLA and A109P-mLA are similar whereas 

all the other mutants are considerably less active than the parent protein (Table 2.3). 

Figure 2.6 shows the activities of mutants with substitutions for Phe-31 and His-32 as 

activators of lactose synthesis and inhibitors of galactose transfer to ChB. Half the 

substitutions at positions 31 and 32 are incompatible with the folding of LA under the 

conditions used here to generate the native protein. Inspection of the activity profiles for 

those variants of positions 31 and 32 that could be folded (F31S, F31Y, H32A, H32Y) 

show reduced lactose synthase activity even at relatively high concentrations of LA. As 

discussed in Section 2.5.2, changes in the apparent Vmax of the lactose synthase reaction

52



2: Recom binant Bovine LA

Table 2.3 —  Kinetic parameters determined for mLA and mutants with bovine GT.

Protein Kiu Change 
in K t

K 8lc Change 
in ATmb

pM mM
Bovine LAC 17 1 0.9 0.9

12.3 1 0.9 0.6
mLA 17±2 1 1.6±0.4 1
F31S 655 39 157d 98
F31Y 38 2.2 10.5d 7
H32A 509 30 nde nd
H32Y 201 12 213d 133
Y103P 15 0.9 2.0 1.3
H107A 168 10 1.2d 0.8
H107W 40.5 2.4 1.0d 0.6
H107Y 138 8 0.7d 0.4
A109P 15±3 0.9 1.7 1.1
L110E* nd nd nd nd
L110H* 632 (650/ 37 (3 8 / 2.7 (2 .8 / 1.7 (1 .7 /
L110R* 284 (168/ 17 (1 0 / 30.4d (5 0 / 19 (3 1 /
Q117A 135 8 3.2 2
Q117D 57 3.4 2.1 1.3
W118H 1766 104 nd nd
W118Y 1488 88 1.7 1.1
* Change in K, is the value for KiU  divided by the corresponding value for mLA 
b Change in Kmg,c divided by corresponding value for mLA
c Powell and Brew, 1974 
d Kms'c determined using Vinaxapp
* nd, parameter could not be reliably determined from data
f Values in parentheses correspond to kinetic parameters for reconstructed 110 mutants.

reflect effects on LA’s ability to promote glucose binding. This observation is best 

illustrated by the variant F31Y-mLA. It has a much lower ability to promote glucose 

binding (reflected by a 7-fold increase in Kmglc) but only a slightly worse affinity for GT 

when compared to mLA (2-fold). This general effect on LA’s ability to promote glucose 

binding is also observed in the variants F31S, H32A and H32Y but is combined with 

major reductions in GT affinity (Table 2.3). Despite the low levels of activity observed 

for the variants at position 32, it appears that these mutants are even more deficient than 

the position 31 mutants in their effects on glucose binding. Encouragingly, these kinetic
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results are consistent with previous mutagenesis studies carried out in the fusion protein 

system (Brew et al., 1993).

As described in the previous section, alterations at the hydrophobic box residues 

103 and 104 appear to be incompatible with the native folding of LA and only one of the 

five mutants (Y103P-mLA) allowed generation of the native protein. This mutation does 

not appear to significantly affect the function of LA (Table 2.3). Although Y103P-mLA 

had a higher affinity for GT, compared to mLA, its ability to promote glucose binding 

was slightly reduced and, consequently, it had a similar overall activity to mLA in the LS 

reaction (data not shown). The consequence of this substitution, in contrast to the 

Y103A-mLA which did not fold correctly, was initially of interest as both proline and 

alanine are observed in the corresponding position in the lysozymes. Furthermore, an 

alanine occupies this position in LA from platypus milk. However, automated sequencing 

of the Y103A-mLA mutant indicated that a single base deletion had occurred in the 

expression vector. Subsequent reconstruction of this mutant, using a different primer, 

yielded a ‘native’ product that had a greatly reduced activity in both kinetic assays as 

well as an altered CD spectra (K. Brew, personal communication). Therefore, it appears 

that the varying functional effects observed with the position 103 mutants may arise from 

differential effects on the stability of the native protein due to a destabilisation of the 

hydrophobic box region. This conclusion is consistent with recent data on the stability of 

mLA variants which demonstrates that Y103P-mLA has essentially the same stability as 

mLA. In contrast, the stability of other variants at positions 103 and 104 are considerably 

reduced (up to 2.6kcal/mol lower than mLA; K. Brew, personal communication). In
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summary, the results from the substitutions in aromatic cluster II suggest that this region 

has a predominately structural role in LA.

In contrast to the substitutions at Phe-31 and His-32, changes in the flexible loop 

region (105-110) have major effects on LA’s Kt* (Figures 2.7 and 2.8). Changes at His- 

107 have negligible effects on LA’s ability to promote glucose binding but significant 

effects on affinity (Table 2.3). These variants were originally designed to restrict the local 

flexibility in this region by favouring the helical conformation where this residue is 

buried. Surprisingly, the alanine and tyrosine substitutions have the largest effect on LA’s 

affinity for GT whereas substitution with the bulkier tryptophan sidechain has a minimal 

effect. It is difficult to reconcile these observations with the conformational flexibility of 

the 105-110 loop region. Hopefully crystallographic studies on the His-107 variants will 

demonstrate the structural consequences of these substitutions and facilitate 

interpretation of the kinetic results.

Substitutions at Leu-110 have more equivocal effects on LA function. Although 

the L110E*-mLA can be refolded to a form similar to the wild type (e.g. similar HPLC 

profile and thermal stability), it has no detectable affinity for GT, even at high 

concentrations, and thus it was impossible to determine the effect on glucose binding 

(Figure 2.8). The changes to arginine and histidine were more informative. Both
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Figure 2.6 —  The effects of substitutions for Phe-31 and His-32 on LA activity.

(a) activation of lactose synthase; (b) inhibition of galactose transfer to chitobiose. The results for the 
lactose synthase activity assay have been normalised against that of mLA. Data were fitted to the 
appropriate equations using the curve fitter function of SigmaPlot for Windows™. O , mLA; □ , F31S; 
A, F31Y; V, H32A; 0% H32Y.
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Figure 2.7 —  The effects of substitutions for His-107 on LA activity.
(a) activation of lactose synthase; (b) inhibition of galactose transfer to chitobiose. The results for the 
lactose synthase activity assay have been normalised against that of mLA. Data were fitted to the 
appropriate equations using the curve fitter function of SigmaPlot for Windows™. O , mLA; □ , H107A, 
A, H107W; V. H107Y.

57



2: Recom binant Bovine LA

a
1.0

0.8 -

0.6 -

£w
0.4

oo
3

0.2 -A

0.0
0 20 60 8040

[mLA variant] jaM

b

4 -

T3
<0
§o
Z

200 40 60 100 14080 120 160

[m LA variant] |o.M

Figure 2.8 — The effects of substitutions for Ala-109 and Leu-110 on LA activity.
(a) activation of lactose synthase; (b) inhibition of galactose transfer to chitobiose. The results for the 
lactose synthase activity assay have been normalised against that of mLA. Data were fitted to the 
appropriate equations using the curve fitter function of SigmaPlot for Windows™. O, mLA; □ , A109P, 
A, L110E*; V, L110H*; ^,L110R*.
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L110H*-mLA and L110R*-mLA have decreased affinities for GT (37-fold and 17-fold 

respectively) but, whereas the change to histidine has a minimal effect on LA’s ability to 

promote glucose binding, L110R* is about 20-fold worse than mLA with respect to 

glucose binding. This is visually apparent in Figure 2.8, where LI 10H* is far more active 

in promoting lactose synthesis than LI 10R* (Figure 2.8a), even though both L110H* 

and LI 10R* are poor inhibitors of galactosyl transfer to ChB (Figure 2.8b).

Interpretation of the results from changes made at position 110 is complicated by 

the additional mutation introduced during PCR mutagenesis. Sequencing of these 

mutants indicated that the conserved leucine at position 115 had been replaced by a 

lysine in all cases. These mutants have subsequently been reengineered so that they only 

contain the change at position 110. Characterisation of their kinetic behaviour shows that 

LI lOH-mLA and LI lOR-mLA behave in essentially the same way as the double mutants 

(K. Brew, personal communication; see Table 2.3). In contrast to the substitutions at 

position 110, the single change investigated at Ala-109 (A109P) had a negligible effect 

on either facet of LA function. Changes at positions 117 and 118 also had significant 

effects on LA’s ability to bind to GT rather than on the promotion of glucose binding. 

These effects are far more pronounced in the position 118 variants and, in the case of 

W118H-mLA, the activity was so low that its influence on glucose binding could not be 

reliably determined from the data (J. Grobler, personal communication).

2.5.4 Significance of Kinetic Parameters and Assessment of Errors

The validity of the values obtained for the and K j lc for the various mutants 

is supported by the close agreement between the values obtained for the bovine milk 

protein and mLA with those obtained for bovine LA in more detailed kinetic studies
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(Table 2.3). However, the low affinity for GT exhibited by several of the mutants could 

introduce significant errors into the calculated Kt* values. This potential error is 

compounded by limitations in the concentration range over which it was feasible to 

perform the inhibition studies due to the small quantities of folded protein obtained for 

some of the mutants. As the Kmglc values are calculated using the Kt* values from the 

inhibition assays, any errors in the latter parameter will also be reflected in the former. It 

must therefore be emphasised that the mutant’s kinetic parameters can only be used as a 

rough qualitative guide of the importance of a particular sidechain in LA function. 

Furthermore, the proximity of the sites on the surface of LA that interact with GT and 

glucose introduce a further convolution into any attempt to map them by site-directed 

mutagenesis. Any alteration in a component of one site might influence the functional 

properties of the adjacent site via steric, electrostatic or localised conformational effects.

However, as the values of Kmgk and Kt* defined in Section 2.5 represent 

equilibrium dissociation constants (Khatra et al., 1974; Bell et al., 1976), they can be 

used to calculate Gibbs free energy changes (Table 2.4). In general, such SAG values 

(AGjula- AGmutant= -RTln {KniLAJKmutan,}), give the most reliable measurements of 

incremental changes in the respective binding energies that result from alterations in 

molecular contacts as a consequence of a particular sidechain substitution. An additional 

benefit of using such values is that errors in the calculated kinetic parameters become less 

significant. For example a 25% error in a 10-fold change in Kt* represents an error of 

about ±0.74kJ/mol in a SAG value of 5.94kJ/mol.

Due to the proximate nature of LA’s functional sites, values for SAGgic-  SA G gt 

(= -RTln {K j lc(v/t)*KiGT(mut)/Km8lc(mut)*KiGT('wt)}) have also been calculated (Table
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2.4). These values are a measure of the difference in the effects of a mutation on the free 

energy changes for the interaction with GT and the interaction of the GT-LA complex 

with glucose. Effects on glucose binding are highlighted by positive differences while 

negative values reflect a more pronounced effect on GT binding.

Table 2.4 —  Effects of LA mutations on GT binding and ability to promote glucose binding in the 
LS complex.

mLA mutant SAGgic* SAGgt*
kJ/mol

SAGgic—SAGct

F31S

00 9.41 2.41
F31Y 4.85 2.07 2.78
H32A nd 8.76 nd
H32Y 12.61 6.37 6.24
Y103P 0.58 -0.31 0.89
H107A -0.74 5.90 -6.65
H107W -1.21 2.24 -3.45
H107Y -2.13 5.40 -7.53
A109P 0.16 -0.31 0.47

L110H* 1.35 (1.44)° 9.32 (9.39)c -7.97 f-7.95)c
L110R* 7.59 (8.87)c 7.26 (5.9)c 0.33 (1.69)°
Q117A 1.79 5.34 -3.55
0117D 0.7 3.12 -2.42
W118H nd 11.97 nd
W118Y 0.16 11.53 -11.37

SAG values are AGmLA-AGmutant-  RTln { Kmutam} 
b Values in bold and/or underlined represent SAG’s that exceed ±1.5kJ/mol 
c Values in parentheses correspond to the reconstructed 110 mutants

When the effects of the substitutions are represented in this fashion one can 

clearly see that changes at Phe-31 and His-32 predominantly influence LA’s ability to 

promote glucose binding (H32Y> F31Y> F31S> L110R). On the other hand, changes at 

His-107, Leu-110 (L110H), Gln-117 and Trp-118 modulate LA’s ability to bind to GT 

(118Y> 110H> 107Y> 107A> 117A> 107W> 117D). It is interesting to note that when 

the effects of the L110R substitution are represented in this way, the difference 8AGgic -  

SAGgt value is positive. This result, taken together with the effects on GT affinity of the 

LI 10H substitution, indicate that the introduced arginine sidechain has a significant
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influence on LA’s ability to promote glucose binding. The difference in effect observed 

with the histidine and arginine substitutions at 110 is probably caused by an electrostatic 

or steric effect. A more detailed discussion of these results, in terms of the three- 

dimensional structure of mLA, is given in Chapter 8.

2.5.5 Summary

The site-directed mutants of LA were constructed to probe the roles of aromatic 

clusters I and II and the ‘flexible loop’ region in the LS complex. As described in 

Chapter 1, both aromatic substructures are located in the cleft region of LA and have 

been implicated by a variety of studies as possible binding sites for GT (Shewale et al.> 

1984; Koga and Berliner, 1985). Although the results from a considerable number of 

chemical studies suggest that aromatic cluster I is essential for LA function in the LS 

complex, the possibility that cluster II might play a functional role could not be excluded 

by previous data. However, the present results from the mutagenesis of Tyr-103 and 

Trp-104 in aromatic cluster II indicate that this region has a predominately structural role 

in LA. Substitutions at these positions clearly influence the folding kinetics of the protein 

as most of the aromatic cluster II variants did not fold correctly under the conditions 

used. Recent NMR studies have demonstrated that this region is particularly important 

for the stability of the molten globule state of LA. In the A-state, the sidechains of Tyr- 

103, Trp-104 and His-107 form a well-defined hydrophobic cluster that is different from 

the one observed in the fully folded protein (Alexandrescu et a l , 1993; Smith et al.y 

1994). Nevertheless, the fact that Y103P-mLA has a similar stability to mLA and can be 

obtained in reasonable yields indicate that this region can accommodate other residue 

types without overly affecting the folding mechanics of the protein.
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In contrast, mutations in both aromatic cluster I and the flexible loop region 

result in variant LAs that are functionally deficient. These deficiencies are manifested in 

three main ways:

• essentially normal affinity for GT but reduced ability to promote glc binding

• essentially normal ability to promote glc binding but reduced affinity for GT

• both reduced affinity for GT and ability to promote glc binding 

Alterations in the flexible loop region at positions 107,109 and 110 (LI 10H) 

predominantly affect LA’s ability to bind to GT. Position 110 is of considerable interest 

as the nature of the substituted sidechain at this site produces contrasting functional 

effects. The results from substituting a His and Arg for Leu-110 suggest that this residue 

probably lies extremely close to the monosaccharide binding site in the LS complex. 

Although both substitutions effect LA’s ability to bind to GT, only the longer Arg 

sidechain causes a decrease in the promotion of glucose binding. At present there is still 

insufficient information regarding the Leu-110 mutants and it is hoped that the structural 

studies will be able to shed more light on the causes of these mutants’ functional 

differences.

The effects of substitutions in aromatic cluster I can be divided into two groups. 

Residues 31 and 32 appear to influence both the strength of binding to GT and the 

enhancement of glucose binding in the LS complex. In the case of F31Y-mLA, the 

effects on GT binding are minimal and the reduced LS activity of this variant is almost 

entirely attributable to a lowered ability to promote glucose binding. It appears that the 

additional phenolic hydroxyl present in the F31Y-mLA variant directly interferes with 

monosaccharide binding in the LS complex via a steric or electrostatic effect. On the
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other hand, residues 117 and 118 only influence the strength of LA binding to GT. 

Although the importance of His-32 and Trp-118 in LA function has been demonstrated 

(Prieels et a l , 1979; Schechter et al., 1974; Bell et al., 1975), the critical functional roles 

of Phe-31 and Gln-117 have not previously been demonstrated experimentally.

These results have significant relevance in terms of the molecular basis of LA’s 

action in the LS complex. In the proposed ‘monosaccharide bridge’ model (see section

1.3.4), the interaction of LA with GT and its enhancement of glucose binding are 

associated with distinct but adjacent regions on the surface of LA (Brew et al., 1979; 

Lambright et al., 1985). In the mutagenesis experiments, we have been able to separately 

perturb, albeit to varying degrees, both aspects of LA’s function as predicted by the 

model. If however, the action of LA on GT was of an allosteric nature, the two facets of 

LA action would undoubtedly be intrinsically linked. The proximity of the two functional 

regions on the surface of LA is highlighted by the fact that different mutations at the 

same site affect both facets of LA function by differing amounts. These results tentatively 

support the monosaccharide bridge model for LA action in the LS complex.

Substitutions in the flexible loop (comprising residues 105-110), adjacent to aromatic 

cluster I, suggest that this region, in conjunction with Gln-117 and Trp-118, forms an 

important interaction site between LA and GT in the LS complex. Further extensive 

mutagenesis experiments carried out in Miami indicate that certain substitutions at Ala- 

106 (A106K) and Lys-114 (K114N) perturb LA’s ability to bind to GT in the LS 

complex (K. Brew, personal communication). In addition, truncation of the LA molecule 

after Trp-118 does not compromise its ability to bind to GT or promote glucose binding. 

These results confirm that LA’s interaction site for GT is confined to a relatively small
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surface area in the C-terminal portion (residues 105-118) of the molecule. The size of 

the proposed interaction site is consistent with LA’s weak affinity for GT {k& 10'5M).

The mutagenesis studies have also provided the first direct evidence that residues 

from LA are involved in binding the galactosyl acceptor. This feature of LA function has 

long been suspected given its relationship with lysozyme. The critical roles of Phe-31, 

and His-32 in promoting monosaccharide binding in the LS complex suggests that LA 

may have retained some vestigial sugar binding properties during its evolutionary 

development All three of these residues are located at the lower end of the cleft in a 

region which in lysozyme corresponds to subsite F (Blake et al.t 1967b; Perkins et al.> 

1981). This functional correlation between LA and LYZ is considered in more detail in 

Chapter 8.
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Chapter

Crystallisation

3.1 Introduction

In the structure determination process, the first potential stumbling block is 

usually obtaining crystals of the macromolecule being studied. Crystals must not only be 

grown but they must be of a suitable size and quality to enable high resolution X-ray 

diffraction analysis. In some cases, this is fairly straightforward but often the process can 

be fraught with problems and for many proteins suitable crystals prove to be elusive.

Why is this crystallisation step often such an obstacle? Unlike the crystallisation

of small molecules, the success of macromolecular crystallisation depends firstly on a

large numbers of parameters, such as temperature, pH and the nature of the buffers,

precipitants and additives used to obtain crystals and, secondly, on the complex 
*

behaviour of macromolecular systems under these conditions. Proteins are inherently 

labile and particularly sensitive to their environment. These factors preclude the use of 

classical crystallisation techniques, such as evaporation or the addition of strong organic 

solvents. Crystals must therefore be grown using much gentler and restrictive methods. 

Furthermore, the physical forces behind crystal growth, particularly in the case of
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biological macromolecules, are still poorly understood. Protein crystallisation is therefore 

still, to some extent, an art rather than a science and success is based on both luck and 

intuition as well as applying certain generalised rules that have been formulated from the 

vast number of previous crystallisation studies. A brief overview of some of the 

crystallisation screening methods is given below. For a more detailed exposition on the 

theoretical and practical aspects of macromolecular crystallisation, the reader is referred 

to several excellent reviews (Blundell and Johnson, 1976; McPherson, 1990; Gieg6 and 

Ducruix, 1992; Weber, 1991).

3.1.1 Screening Methods

Optimal growth conditions for protein crystals are very difficult to predict a 

priori due to the vast number of considerations that need to be taken into account. The 

inordinate number of variables that influence crystal growth and the often limited 

amounts of a protein preclude an exhaustive, systematic screening of all possible 

conditions. Intelligent and intuitive experimental design and subsequent evaluation of the 

individual and collective trials is therefore essential. Many different methods have been 

devised to efficiently screen various conditions that may be important when trying to 

crystallise a new macromolecule. A number of these have been based on incomplete 

factorial designs that simultaneously evaluate a number of different possible conditions 

(Carter and Carter, 1979; Carter, 1992). These methods attempt to reduce the possible 

number of variables by identifying important ‘factors’ via simultaneous random screening 

with different reagents, in different mother liquors and at different pHs. A further 

simplification of this approach has been to bias the initial matrix design towards 

crystallisation conditions that have been reported for other macromolecules. This sparse
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matrix method, or ‘Magic 50’ as it has become known in our laboratory, has proved to 

be particularly successful in identifying initial crystallisation conditions for a number of 

unrelated proteins (Jancarik and Kim, 1991).

A more classical, but related approach to identifying conditions that are 

conducive to crystallisation is to investigate the optimal pH for protein solubilisation and 

hence crystallisation, optimal concentration of a particular precipitant, and the effect of 

temperature. Successful crystal growth depends on reducing the protein’s solubility in 

solution and appropriate crystallisation agents must be selected to gradually force the 

molecule to a state of minimum solubility. pH is a particularly important variable as it can 

be used to alter the protein’s charge and hence solubility. These various factors can be 

evaluated in simple grid screens (McPherson, 1990; Weber, 1991). A typical grid matrix 

can explore the effects of a coarse range of pHs and precipitant concentrations at various 

temperatures. As with the other crystallisation screens mentioned above, finer grid 

screens can then be constructed around any promising conditions. Crystal quality can 

often be further optimised by the addition of small amounts of electrostatic crosslinkers 

and organic molecules such as isopropanol and detergents (McPherson et al.y 1986; 

Cudney et al.y 1994).

3.1.2 Sample Purity

Although crystallographers have little control over many of the parameters that 

influence crystal growth, they can ensure that the biological macromolecule being studied 

is highly pure. Not only should the starting material be free of contaminants, but it must 

also be conformationally homogeneous i.e. free from denatured forms of the protein.
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These precautions will ensure that all the molecules have the same surface properties, 

such as charge distribution, since this will influence the internal structure of the crystal 

and hence the final crystal quality. Often, unsuccessful attempts to obtain high quality 

crystals for diffraction studies can be attributed entirely to the purity of the starting 

material. In the case of proteins obtained by recombinant methods, maintaining the 

homogeneity of the sample during purification is made easier as the action of proteases, 

that often give rise to microheterogeneity, is limited. In terms of the present study, the 

only major concern about sample purity was the presence of misfolded forms of LA. 

Particular care was taken during purification of mLA and the mLA variants to remove 

these and only protein preparations that appeared ‘native-like’ were used for the kinetic 

and crystallisation experiments.

3.1.3 Crystalline Forms of LA

Historically, crystallisation has often been used in the purification of proteins 

from relatively crude samples. LA was first crystallised using ammonium sulphate in 

1899 by Wichmann and this technique was later used to isolate and identify LA as the 

‘B’ protein of the lactose synthase complex (Brodbeck et al., 1967). Several crystal 

forms of bovine LA have been obtained (Inman and Bryan, 1966; Fenna, 1982a). 

Although several of these were suitable for X-ray diffraction studies, determination of 

the bovine three-dimensional structure was hindered by non-isomorphism of the 

derivative crystals (Phillips et al., 1987). Often, in situations where initial attempts to 

define the structure of a particular protein have been unsuccessful, significant progress 

has been made by switching to other sources of the protein (Kumar et al., 1992). This 

proved to be the case with the elucidation of the three-dimensional structure of LA.
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After a brief dabble with goat LA (Aschaffenburg et al., 1972a,b), attention was focused 

on LA from human and baboon milk (Aschaffenburg et al., 1979; Fenna, 1982b). 

Nevertheless, although suitable crystals could be grown, it was only after several 

frustrating years searching for heavy atom derivatives, that the structures of baboon and 

then human LA were finally determined (Smith et al., 1987; Acharya et al., 1991). The 

following sections document my attempts to obtain suitable crystals for the refractory 

bovine milk LA (BOLA).

3.2 Initial Crystallisation Screens

3.2.1 Experimental Design

As mentioned above, several different crystal forms, suitable for high resolution 

diffraction analysis, can be grown for BOLA (Fenna, 1982a). Even though both the 

hexagonal and trigonal crystal forms obtained in this study were reported to be suitable 

for further studies, no significant progress has been made (reflected by a total absence of 

reports in the literature over the last 12 years). Therefore, a variety of screening methods 

have been employed to try to obtain some novel crystal forms that are more amenable to 

structure analysis. These have included coarse screens around the published conditions of 

human and baboon LA, commercially available sparse matrix screens similar to those of 

Jancarik and Kim (1991), and grid screens using both ammonium sulphate (AS) and 

polyethylene glycol (PEG) 4000 as precipitating agents. Details of the various screening 

procedures are given in the Appendix and Figure 3.1.

Crystallisation trials were carried out using the vapour diffusion method with 

either hanging or sitting drops (McPherson, 1982). Initial trials were performed using
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commercially available BOLA purified from cow’s milk (Sigma; cat. # L5385). This 

relatively impure material (approx. 85% LA by SDS-PAGE), was purified further using

AMMONIUM 
SULPHATE 
CONCH(M )

VARIATION O F  pH

AC AC CA CA PI HP
4.< 5J> S.5 AO (.5 7.0

I I H H
HP TR TR TR
7.5 5.0 5.5 9.0

HU

HUH HU

PEG 4K 
CONC* (w/v)

VARIATION O F  pH -

AC AC CA CA BE PI 
4.5 5.0 5.5 6.0 5.5 6.5

BE HP HP TR TR TR
7JO 7j0 7.5 $j 0 5.5 9.0

HUH HUH
3%
6%
9%

12*

15% 
18% 
2 1 %  < 

24% <

H U H  H U H

Figure 3.1 — Design of grid screens
a. Ammonium sulphate; b. PEG 4K. The grid screens were designed to evaluate different 
pHs (varied horizontally) and the precipitant concentrations (varied vertically). The trials 
were set up as follows: Each well, represented by each box above, contained 0.7ml of 
reservoir solution made up of the both buffer and precipitant at the appropriate 
concentrations. Drops, consisting of 3pl of protein stock (20mg/ml) and 3pl of reservoir 
solution, were suspended over the reservoir from siliconised coverslips. All buffers were 
present at a concentration of 0.1M. The buffers abbreviated above are AC, sodium acetate; 
CA, sodium cacodylate; BE, (N,N-bis[2-hydroxyethyl]-2-aminoethanesulphonic acid 
(BES); PI, 1,4-piperazine diethanesulphonic acid (PIPES); HP, (N-[2- 
hydroxyethyl]piperazine-N’-[2-ethanesulphonic acid] (HEPES) and Tr, Tris-HCl.

HPLC anion exchange chromatography as described for mLA (see Appendix). The 

elution profile exhibited one major peak and several side peaks (data not shown). These 

side peaks probably correspond to either contaminants in the preparation (e.g. p-
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lactoglobulin) or molecular isoforms of LA (Baumy and Fauquant, 1989). Protein from 

the major peak (HPLC-BOLA) was collected, dialysed against distilled water, lyophilised 

and stored at -20°C. Subsequent crystallisation trials were performed using highly 

purified samples of mLA and several of the variant mLAs obtained in Miami (see 

Chapter 2). Crystallisation conditions were also screened for goat LA (GOLA) using 

material kindly supplied by Dr. Keith Brew (University of Miami Medical School). 

Protein stock solutions (20-40mg/ml) were prepared by dissolving the lyophilised 

material in MilliQ water or lOmM Tris-HCl, pH 8.0 and centrifuging at 13000rpm for 10 

min to remove any undissolved particulate matter. These protein stocks could be stored 

at -20°C for at least one month without any noticeable effect on the crystallisation 

process.

In several cases, crystals of sufficient size could not be obtained from ‘primary* 

vapour diffusion experiments. Macroseeding techniques were used to improve the size of 

the initial crystals. In this technique, small pre-formed crystals are introduced into a pre

equilibrated protein and precipitant solution. The precipitant concentration should be at a 

level at which spontaneous nucleation is prevented but, will allow controlled crystal 

growth if an external nucleation centre is added. Various different seeding methods have 

been described and the reader is referred elsewhere (Stura and Wilson, 1992). In the case 

of the monoclinic IE form of mLA, needles were carefully removed from their parent 

sitting drop and washed several times with an appropriate reservoir solution. The crystals 

were then ‘etched’ in a similar solution containing a lower concentration of PEG (about 

1% lower) to produce a clean growth surface. These crystals were then introduced into 

sitting drops that had been equilibrated for 3-5 days (lOmg/ml, 16°C) against a reservoir
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solution that did not yield spontaneous crystal growth within the duration of the pre

equilibration period. This seeding process was repeated until the crystals had reached a 

size sufficient for X-ray analysis.

3.2.2 Bovine Milk LA (BOLA)

Several crystal forms were obtained for the commercially available bovine milk 

LA when the various crystallisation screens were carried out (Table 3.1). Two of these 

forms (trigonal and hexagonal) have been previously grown using batch methods (Fenna, 

1982a). The other crystal forms of LA obtained in the screening process have not been 

reported prior to this work.

The first form was identified using the sparse matrix screen (condition #42:

0.05M Potassium phosphate, 20% PEG 8K). Lozenge-shaped crystals appeared after 

about 3 days and reached a maximum size (approximate dimensions of 0.7mm x 0.5mm x 

0.3mm) after 7-10 days. Further characterisation showed that these crystals were 

orthorhombic, space group P2i2i2, having systematic absences for hOO and 0&0 

reflections with h and k odd. Diffraction was observed to at least 2.5A using the in-house 

area detector (AD). The crystal's unit cell dimensions are a=72.3A, b=105.lA, 

c=l 17.7 A. Assuming that there are eight molecules in the crystallographic asymmetric 

unit (AU), the volume occupied per dalton of protein (Vm) is 1.97A3 per dalton; this is 

well within the range commonly found for protein crystals (Matthews, 1968).
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Table 3.1 — Crystal Forms of BOLA

Crystal form Growth conditions* Space Group Cell dimensions
(A)

N** vMc Comments

Rhombohedral
20mM CaCl2 

29.5% PEG 4K 
0.2M PIPES'1, pH 6.6 

20mg/ml, 37°C

ND®
a=b= 112.9 

c= 111.2
7̂ =120°

- -
Crystals are small and 

diffract weakly.

Orthorhombic
0.05-0.08M KP 
15-20% PEG 8K 

10-15mg/ml, 16-20°C
P2{2{2

a=72.3
b=105.1
c=117.7

8 1.97
Diffract to at least 2.5 A 
spacings. Crystals can 
also be grown using 

sodium acetate (pH 5.0)

Monoclinic
1.8M AS 

lOmM CaCl2 
0.1M PIPES, pH 6.5-6.6 

40mg/ml, 37°C

P2X
a=63.6 

b= 197.9 
c= 137.0 
P=93.4°

24 2.53
Occasionally obtained 

using the trigonal 
conditions. Crystals 

diffract poorly.

Trigonal
1.8M AS 

lOmM CaCl2 
0.1M PIPES, pH 6.5-6.6 

20-40mg/ml, 37°C

P321
a=b=93.8 

c=66.9 
a p=90°7^120°

2 or 3 2.99 or 1.99
Large crystals grown with 

HPLC purified material 
diffract to beyond 2 k

Hexagonal
1.8MAS 

lOmM CaCl2 
0.1M PIPES, pH 6.5 
20-40mg/ml, 37°C

P622
a=b=93.8 

c=66.9 
ap=90° 7̂ =120°

1 2.99
Growth under the 

conditions given is highly 
variable. Crystals diffract 

to medium resolution

4 Growth conditions refer to that o f the reservoir. Protein concentration is that prior to setting up the drop 
b N , number of molecules in the asymmetric unit. 
c Vm, A3/dalton (Matthews, 1968).
d Abbreviations used: PIPES, 1,4-piperazine diethanesulphonic acid. KP, Potassium dihydrogen orthophosphate. AS, ammonium sulphate. 
c ND, space group not determined precisely due to poor and incomplete data.
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Similar crystals were also observed in the PEG 4K grid screen at 16°C (lOmg/ml protein, 

0.1M sodium acetate pH 5.0, lOmM CaCl2, 15-18% PEG 4K) and could be obtained 

using a variety of different PEG polymer chain lengths (3350-8000). Unfortunately, due 

to the large number of molecules in the crystallographic asymmetric unit, this form is 

unsuitable for further detailed structural studies.

A second crystal form was obtained using both Crystal Screen I  and the PEG 4K 

grid screen at 16°C (0.1M Tris pH 8.0-9.0, lOmM CaCl2, 18-24% PEG 4K). These 

crystals typically grew as clusters of thin fragile needles. Unfortunately, all attempts to 

improve these crystals failed and further analysis was not possible. The third new crystal 

form was rhombohedral (R3 or R32) with unit cell dimensions a=b=l 12.9A, c=l 11.2A, 

a=(3=90° 7^=120°. These hexagonal rods grew at 37°C but diffracted poorly to a 

maximum resolution of 4A. Attempts to improve crystal quality using macroseeding 

were largely unsuccessful and so further studies on this crystal form were abandoned.

The two most promising forms of BOLA were the trigonal and hexagonal 

crystals described by Fenna (1982a). Unlike the new crystal forms, these appear to be 

suitable for detailed diffraction analysis. Trigonal (P321) crystals were obtained over a 

wide range of ammonium sulphate concentrations at 37°C using the ammonium sulphate 

(AS) grid screen. Large triangular ellipsoid crystals were obtained using hanging drops, 

consisting of 5pl 40mg/ml HPLC-BOLA stock and 5pl reservoir solution, equilibrated 

against a reservoir of 0.1M PIPES pH 6.5 containing 1.8M AS and lOmM CaCl2. These 

crystals appear after about 7 days and typically reach a maximal size of 0.7mm in width 

and 0.3mm thick after 14 days. The unit cell dimensions are: a=b=93.7A, c=66.9A and 

the crystals diffract strongly to Bragg spacings of at least 2A. The space group

75
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assignment was confirmed by examining pseudo precession plots using the program 

HKLVIEW (CCP4,1994). Theoretical solvent calculations, based on the unit cell volume 

and molecular weight of BOLA (14200Da), suggested that each crystallographic AU 

contains either two (59% solvent) or three (38% solvent) LA molecules. Both cases, 

lying at the upper and lower limits normally observed for globular proteins (Matthews, 

1968), are possible and could not be distinguished at this stage. On several occasions, 

crystals of a different morphology to the trigonal form grew in the same drop. These 

crystals are monoclinic but have extremely large unit cell dimensions and an estimated 24 

molecules per AU. Hexagonal crystals (P622) were more difficult to obtain but grew 

under essentially the same conditions as the trigonal form (Table 3.1). The hexagonal cell 

dimensions are very similar to the trigonal form and there is only one LA molecule per 

AU. Although they did not diffract as strongly as the trigonal form, reflections were 

observed to at least 2.9A.

3.2.3 Recombinant LA (mLA)

mLA differs from the wild type protein (BOLA) only by the presence of an 

additional methionine residue at its N-terminus and an internal methionine to valine 

substitution (M90V). These changes have minimal effects on the protein's kinetic and 

spectral properties and it was hoped that the majority of the crystal forms seen with 

BOLA (Table 3.1) could be repeated for mLA. In hindsight, this assumption was 

misguided. Neither the orthorhombic (P2i2i2), nor the trigonal (P321) forms seen for 

BOLA have been reproduced for the recombinant protein. Despite numerous trials, mLA 

has not yet been crystallised in the trigonal form. Nonetheless, large hexagonal crystals,
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Table 3.2 — Crystal Forms of mLA

Crystal form Growth conditions8 Space Group Cell dimensions
(A)

N* v Mc Comments

Orthorhombic 0.2MAS 
30% PEG 8K 

0.1M Cacod, pH 5.23 
20mg/ml, 16°C

P2l2l2l a=58.3 
b= 115.0 
c= 153.5

8 2.26 Diffract to 3A but have 
a large number of 

molecules in the AU

Monoclinic I 0.15MNaAc 
22-25% PEG 4-8K  

0.1MBTP, pH 8.0-8.2 
20mg/ml, 16°C

P2i a=78.0 
b=60.6 
c= 117.2 
P=97.2°

8 2.4 Crystals diffract poorly

Monoclinic II 0.15MNaAc 
22-25% PEG 6K 

0.1M BTP, pH 8.0 
lOp.1 toluene 

20mg/ml, 16°C

P2y a=78.1 
b=60.7 

c= 172.4 
P=97.0

12 2.38 Crystals diffract poorly

Monoclinic III 0.15MNaAc 
lOmM CaCl2 

22-25% PEG 4K 
0.1M Tris-HCl, pH 8.0 

20mg/ml, 16°C

P2i a=58.0
b=60.6
c=76.7
P=96.9

4 2.37 Diffract to 3A in-house 
but are very sensitive to 
temperature and X-rays. 
Larger crystals can be 

grown using MgAc

Hexagonal 1.8M AS 
lOmM CaCl2 

0.1M PIPES, pH 6.5 
1-5% glycerol 

20-40mg/ml, 37°C

P622 a=b=93.8 
c=67.6 

a p=90 7^120

1 3.02 Crystals diffract to at 
least 2.5A.

* Growth conditions refer to that o f the reservoir. Protein concentration is that prior to setting up the drop 
b N, number o f molecules in the asymmetric unit.
0 Vu, A3/dalton (Matthews, 1968).
d Abbreviations used: PIPES, 1,4-piperazine diethanesulphonic acid; KP, Potassium dihydrogen orthophosphate; AS, ammonium sulphate; Caco, Sodium 

cacodylate; NaAc, Sodium acetate; BTP, bis-Tns propane; MgAc, Magnesium acetate.



3: Crystallisation

identical to those seen with BOLA, can be reproducibly grown for mLA under 

conditions where the calcium levels are saturating (Table 3.2). The quality of these 

crystals is further improved by the addition of small amounts of glycerol (1-5% v/v). The 

inability of mLA to adopt the packing required for trigonal crystal formation was initially 

ascribed to mLA’s additional N-terminal methionine residue. However, subsequent 

crystallisation trials with a sample of mLA that had been treated with CNBr, to 

specifically remove the additional N-terminal residue, exclusively yielded the hexagonal 

form. These crystals diffracted to Bragg spacings of at least 2.5A and looked promising 

for further analysis. Although removal of the N-terminal methionine did not influence the 

space group of the crystals, there was a noticeable improvement in crystal size and 

quality when the CNBr-treated mLA was used. Pseudo precession plots displayed with 

HKLVIEW (CCP4) were used to confirm the previous space group assignment.

In addition, several other crystal forms have been grown for mLA using the 

various screening procedures (Table 3.2). Orthorhombic crystals can be grown for mLA 

but they are different from those obtained with BOLA. These crystals were grown using 

conditions similar to Crystal Screen /  *15 (0.2M ammonium sulphate, 0.1M sodium 

cacodylate pH 5.23, 25% PEG 8K) at 16°C. Further analysis showed that the space 

group was P2i2i2i with unit cell dimensions of: a=58.3A, b=115.0A, c=153.5A. Based 

on theoretical solvent content calculations (Vw=2.26), this form is estimated to contain 

eight molecules per asymmetric unit As with the orthorhombic form of BOLA, these 

crystals are probably not suitable for further study.
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3: Crystallisation

Figure 3.2 —  Crystal Forms of BOLA and mLA.

The morphology of some of the crystal forms obtained for bovine milk LA and the 
recombinant LA are shown. The forms are trigonal (P321) BOLA (top left), 
orthorhombic (P2i2i2) BOLA (top right), monoclinic III (P2i) mLA (Mg2+ form; bottom 
left) and hexagonal (P622) mLA {bottom right).
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A second crystal form was also observed in the sparse matrix screen at 16°C. 

Crystal Screen I 's condition *22 (0.2M sodium acetate, 0.1M Tris-HCl pH 8.5, 30%

PEG 4K) produced clusters of very fine needles. Extensive refinement of this condition 

yielded a form that appeared to be amenable to further studies. These crystals have a 

‘blade-like’ morphology -  relatively broad in one dimension but very thin in the other 

two (Figure 3.2). Initial attempts to improve the crystal size succeeded in increasing the 

broadness but had little effect on the other two dimensions. It became apparent that a 

more radical change in growth conditions was required and so a range of different 

buffers were tested. When bis-Tris propane was used instead of Tris-HCl, a significant 

improvement in all the crystal dimensions was seen. These larger crystals are monoclinic, 

space group P lu  having systematic absences for 0&0 reflections with k odd. This form, 

termed monoclinic I, has unit cell dimensions of a=78.0A, b=60.6A, c=l 17.2A, p=97.2° 

and an estimated 8 molecules per AU. A related form (monoclinic II) has approximately 

12 molecules per AU; a result of a 50% increase in the c dimension of the unit cell (Table

3.2). Both these monoclinic forms (I and II) were clearly unsuitable for further study due 

to the complexity of their crystallographic AUs.

Finally, the crystallisation condition that yielded the original needles was re

examined. Repeated macroseeding was used to improve the crystal size sufficiently to 

allow further characterisation. Analysis showed that these crystals (monoclinic III) have 

unit cell dimensions of: a=58.0A, b=60.6A, c=76.7A, p=96.9°, giving a unit cell volume 

of 2.70 x 10s A3. If there are 4 molecules per asymmetric unit, the Vm is 2.37 A3 per 

dalton which is well within acceptable limits (Matthews, 1968). Careful refinement of the 

growth conditions, by replacing sodium acetate with magnesium acetate and switching
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from hanging to sitting drops, resulted in an appreciable increase in crystal size. 

Subsequent analysis indicated that this Mg2+ form was essentially isomorphous with the 

monoclinic in Na+-form with only a subtle change in cell dimensions. Unfortunately, 

both forms often exhibit contact twinning on planes parallel to the b axis and extreme 

care was required when selecting crystals for diffraction analysis. Nonetheless, these 

crystals were suitable for further studies and diffracted to at least 3A on the in-house 

area detector.

3.2.4 mLA Mutants

Due to the limited amount of material available for most of the mLA variants and 

the poor success of the screening procedures in identifying new forms of mLA, 

crystallisation trials on the mutants were initially confined to those used to obtain the 

monoclinic in form. Although two mutants (H32Y, H107W) crystallised under these 

conditions, the crystals were very small and severely twinned. Subsequently, it became 

apparent that the monoclinic III form was not ideal for studying the mutant proteins due 

to a combination of reasons that are described in the following chapters. As no suitable 

form of mLA had been obtained, cross-seeding techniques could not be used (Stura and 

Wilson, 1992). Screening using both Crystal Screen I  and II failed to produce any 

useable crystals. However, good quality crystals were subsequently grown at 37°C using 

the hexagonal conditions (0.1M PIPES pH 6 .5 ,1.8-1.95M AS, lOmM CaCL, 1-5% 

glycerol). Crystals can be grown for the mLA mutants F31Y, H32Y, Y103P, A109P and 

H107Y using hanging drops consisting of 3pl 20mg/ml protein stock and 3pl reservoir 

solution. Characterisation of the A109P-mLA crystals showed that they are identical to
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the hexagonal form of both BOLA and mLA. Diffraction was observed to at least 2.5A 

on the in-house detector.

3.2.5 Goat LA (GOLA)

Initial crystals were obtained using condition #20 from Crystal Screen I  (0.2M 

AS, 20-25% PEG 4K, 0.1M sodium acetate pH 4.5) and a 20mg/ml GOLA stock 

solution. The crystals appeared as clusters of thin plates within 7 days and reached their 

maximum size after several weeks. Unfortunately, the growth conditions were not 

particularly reproducible and considerable variation in crystal quality was observed under 

the same condition. The crystal size and quality could sometimes be improved by the 

addition of 0.5% (w/v) P-octylglucoside. Further analysis showed that these crystals are 

monoclinic (P2i), having systematic absences for OK) reflections with k odd. This crystal 

form is similar to one grown by dialysis under low salt conditions (Aschaffenburg et al.> 

1972a). The unit cell dimensions are: a=32.5A, b=89.7A, c=45.2A, p=94.5° giving a unit 

cell volume of 1.32 x 105 A3. Each of the two AU’s probably contains two LA molecules 

(Va#=2.31A3 per dalton). Despite their small size, these crystals diffracted strongly to 

better than 2.5A resolution and were suitable for detailed analysis.

3.3 Summary

The crystallisation trials were a mixed success. Numerous different crystal forms 

could be obtained for both wild type and recombinant bovine LA but, in nearly all cases, 

the crystals were not ideal for further study. This was often due to the size and 

complexity of their crystallographic asymmetric units and their poor diffraction quality. 

The uncommonly large numbers of molecules in most of the crystal forms studied
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appears to reflect bovine LA’s aggregation properties in solution (Hill and Brew, 1975; 

Kronman, 1989). The primary aim of the present structural studies was to determine 

whether the altered functional behaviour of the mLA variants is due to local 

conformational changes at the mutation site. Therefore, crystal forms that contain large 

numbers of molecules in the AU are not ideal as any subtle conformational changes 

resulting from the mutations will probably be masked due to the numerous 

intermolecular contacts. This is particularly pertinent in this work as the majority of the 

mutation sites are located on the surface of the LA molecule. Nonetheless, the 

crystallisation trials produced a couple of crystal forms that were suitable for detailed 

analysis. The hexagonal form is the most promising as good quality crystals can be 

obtained for both mLA and a number of the variants.

During the crystallisation trials, it became apparent that the recombinant mLA 

had an altered behaviour in solution, compared to BOLA. mLA exhibits a reduced 

solubility compared to the wild type protein, that is particularly noticeable at low pH. 

This change in mLA’s physical properties might result from the additional methionine 

residue present at its N terminus. Although this additional hydrophobic residue does not 

affect the recombinant LA’s function in the lactose synthase complex (see Chapter 2), it 

might make the protein more susceptible to aggregation and limit the number of possible 

crystal forms. Removal of the additional methionine has no effect on the crystals 

obtained with the recombinant protein at 37°C. However, widespread trials with the 

CNBr-treated mLA have not been performed due to the lack of success in finding a 

suitable crystal form for the wild type protein. Another factor that might contribute to 

the different behaviour of mLA and BOLA is the use of lyophilisation in the purification
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of mLA and the mutants. Lyophilisation can affect the conformation of macromolecules 

and laser Raman scattering studies have shown that lyophilisation alters the three- 

dimensional structure of LA (Yu, 1974). Obviously the effect of such damage on the 

crystallisation of LA requires further investigation.
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Chapter

Data Collection and Processing

4.1 Diffraction Theory

X-ray diffraction is the classical method for determining the three-dimensional 

structures of proteins and nucleic acids at atomic resolution. This visualisation process is 

analogous to that carried out with an optical microscope. The sample is illuminated by 

electromagnetic radiation of a suitable wavelength and the resulting diffraction pattern is 

recorded and recombined to generate an image of the sample. X-rays are used because 

they have a wavelength that is close to the interatomic distance of most atoms. This 

relationship is important because the variation in diffraction intensity with direction, 

resulting from the scattering of X-rays by the electron clouds of atoms within a molecule, 

arises because the path differences taken by the scattered X-ray beams are of the same 

magnitude as the separation of the atoms within the molecule.

In order to study atomic structure by X-ray diffraction, the sample must first be 

crystallised. This is because single molecules diffract X-rays weakly and only a little 

structural information can be obtained. Crystals, on the other hand, consist of regular 

arrays of molecules arranged in identical orientations so that the diffracted beams are
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amplified to produce strong, detectable X-ray beams. The resultant diffraction pattern 

therefore reflects a whole series of molecules within the crystal. Consequently, the final 

X-ray structure is a spatially averaged representation of the protein. A brief overview of 

the principles of X-ray diffraction is given below but, for a more detailed description, the 

reader is referred to several excellent texts (Blundell and Johnson, 1976; Rhodes, 1993; 

Drenth, 1994).

4.1.1 Laue Conditions

Diffraction is only observed from a crystal when the phase difference between the 

waves scattered by successive unit cells is equal to an integral multiple of 2n. These 

conditions are mathematically expressed by the Laue equations:

a *S = h 

b*S = k 

c*S = /

[Eq. 4.1]

where a, b, c are the unit cell vectors, S is the diffraction vector and ht k , and / are 

integers (reflection indices).

4.1.2 Bragg’s Law

Another representation of these diffraction conditions is given by the well known 

Bragg’s Law.

nX = 2dsin0 [Eq. 4.2]

where n is an integer, X is the wavelength, d is the interplanar spacing and 0 is the 

incidental angle of the X-ray beam. W. L. Bragg visualised X-ray diffraction as a simple
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reflection of the X-ray waves against an imaginary series of planes within the crystal. 

Bragg’s Law states that if the path difference for waves reflected by successive sheets of 

atoms is a whole number of wavelengths, the resultant waves will combine to produce a 

strongly diffracted beam. In other words, beams diffracted from a set of parallel crystal 

planes with interplanar spacing dhki will interfere constructively only when the incidental 

angle of the X-rays (0) satisfies the Bragg equation (i.e. resulting in an integral number 

(n) of wavelengths). As the angle of diffraction (0) is inversely related to the interplanar 

spacing (d/,*/), planes that are close together will produced scattered beams at large 

angles. This equation is central to our understanding of diffraction and it can be used to 

predict the position of any diffracted ray.

4.1.3 Reciprocal Lattice and Ewald Sphere

A crystal can be regarded as a three-dimensional lattice that produces a three- 

dimensional X-ray diffraction pattern. There is a inverse relationship between the 

diffraction pattern and the crystal lattice. The reciprocal (diffraction) lattice, derived from 

the crystal lattice, is a theoretical, imaginary lattice that is useful for constructing the 

directions of diffraction by a crystal. In the case of orthogonal unit cells, the reciprocal 

unit cell has axes a* lying along a, b* lying along b and c* along c and units of A'1.

The principle of diffraction, embodied by Bragg’s Law and the Laue equations, is 

best illustrated by a geometric construction proposed by Ewald (Figure 4.1). As the 

crystal is rotated in the X-ray beam, the reciprocal lattice moves about a fixed origin. 

Diffraction arises when each point in the reciprocal lattice passes through a sphere, 

termed ‘the sphere of reflection’.
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► i

Figure 4.1 —  The Ewald construction
See text for details. The sphere has radius Ifk. s0 indicates the direction 
of the incident beam; s indicates the direction of the scattered beam. The 
grid represents a portion of the a*b* plane of a reciprocal lattice. S is the 
reciprocal lattice vector S = //a* + kb* + /c*.

The crystal (C) is taken as the centre of a sphere with radius 1 fk. The origin of the 

reciprocal lattice (O) is placed at the point at which the X-ray beam (s0), travelling in the 

direction AC, exits the sphere after passing directly through the crystal. As the crystal is 

rotated, diffraction will occur in the direction § when the reciprocal lattice point B (/*,&,/) 

passes through the sphere. The point B represents the 050 reflection arising from the 

planes of spacing doso- As the angle OCB =20 and the vector S (OB) is perpendicular to 

the diffracting crystal plane, it can be shown that OB = 2 x CO x sin0 = 2 x (1A) x sin0. 

Furthermore, OB has a length l/doso > so l/doso  = 2 x (1/A.) x sin0 which is Bragg’s Law 

(Eq. 4.2). Therefore under these circumstances Bragg’s Law is fulfilled and a reflection 

is observed.
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4.1.4 Electron Density Equation

What is the relationship between the observed diffraction pattern and the atomic 

structure? One of the drawbacks of using X-rays to visualise atomic structure is that 

there is no physical means to focus the diffracted beams and reconstruct the image as can 

be done in the optical light microscope. In order to reconstitute the image, the diffraction 

pattern must be mathematically recombined in the correct phase relationship. This can be 

achieved using the electron density equation:

F(hkl)e-™ux [Eq. 4.3]
V h=̂ *> l=-ook=-°o

where V is the volume of the unit cell, hkl are indices of the diffracted ray arising from 

planes d(hkl), and F(hkl) is the structure factor of the diffracted ray. The structure factor 

F(hkt) is a complex quantity that is used to represent the amplitude, F(hkl), and phase, 

a  (hkl), of a particular reflection:

F(hkl) = F(hkl)eiaihm
n  rpn 4  41

_  y *  y  g -f ln (s in 28 A 2 ) g 2 ro (/lx n + *y„ + & „) 

n -1

where N  is the number of atoms in the unit cell, x„, yn, z„ are the fractional coordinates of 

the nth atom,/„ is the atomic scattering factor and Bn is the Debye-Waller temperature 

(B-) factor for the nth atom. The 5-factor accounts for reductions in reflection intensities 

due to the thermal motion of atoms ( B = 8tc2u2 where u 2 is the isotropic mean square 

amplitude of vibration perpendicular to the reflecting planes).

The amplitude can be determined directly from the intensity I(hkf) of each 

reflection recorded in the diffraction pattern (where \F(hkl)\2 °c I  (hkl)). In contrast, the
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phase angle a(hkl) of each diffracted X-ray beam, relative to the unscattered beam, is 

lost on recording the diffraction pattern and must be calculated indirectly. This so-called 

‘phase problem’ can be overcome by using methods such as isomorphous replacement 

(SIR and MIR), multiwavelength anomalous diffraction (MAD) and molecular 

replacement (MR). In the following chapter, determination of protein phase angles using 

the MR method is described in more detail.

Therefore, if the amplitudes and phases are known for all reflections, the electron 

density can be calculated for each point xyz in the unit cell (Eq. 4.3). This electron 

density can then be interpreted to reveal the three-dimensional structure of the molecule. 

For a number of reasons, initial phase estimates often contain a significant error. 

Consequently, once the initial structure has been determined, structure factors can be 

calculated from the positional and thermal parameters of the atoms (Eq. 4.4) and used to 

improve the protein phases through refinement.

4.2 In-House Data Collection

4.2.1 Introduction

One of the most important advances in modem day crystallography has been the 

development of sophisticated recording devices (electronic area detectors and image 

plates) that allow the rapid acquisition of X-ray diffraction data. These instruments have 

revolutionised protein X-ray crystallography by considerably reducing crystal exposure 

times, the time taken to process data and as a consequence the time required for data 

collection.
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Electronic area detectors (multi-wire proportional counters) are based on gas- 

filled ionisation chambers. The gas-filled chamber has two cathodes and an anode, each 

consisting of either horizontal or vertical parallel wires about l-2mm apart. X-ray 

photons enter the detector via a beryllium window and cause the ionisation of xenon gas 

atoms. The liberated electrons ionise neighbouring atoms resulting in a collision cascade 

that produces about 300 ion and electron pairs per absorbed X-ray photon (X=1.55A). 

The subsequent secondary ionisation produced as the electrons are accelerated in an 

electric field between the first cathode and the anode, results in a measurable signal. The 

electrons hit the anode and the ions hit the second cathode. Each ‘hit’ is registered as one 

count and the position of the incident photon is electronically determined.

Area detectors are very sensitive and, combined with rapid data processing, allow 

data to be collected approximately 50 times faster than film based methods. Area 

detectors also differ from film-based methods in that they can scan through a diffraction 

spot every 0.2°. This is made possible by the immediate processing of data from each 

frame. This contiguous, incremental measurement of each diffraction spot results in a 

low background and allows the construction of a three-dimensional profile for each 

reflection. This is particularly advantageous in the measurement of weak reflections. 

During an experiment, the detector’s acquisition and analysis software automatically 

combines the experimental data into a complete frame of information. Each ‘frame’ 

contains the reflection positions and intensities gathered by the detector at a specific set 

of goniometer angles over a specified period of time.

Due to non-uniform sensitivity and the geometric distortion produced by the 

system, careful calibration of the detector is required. Variation in sensitivity over the
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detector surface is measured at a particular crystal-to-detector distance by collecting a 

‘flood field’ from an 53Fe source. Geometric distortion is measured using a ‘brass plate’, 

a precision-tooled grid of holes that covers the detector screen. Spots from the grid are 

accumulated using the 53Fe source and this information is used by the data processing 

software to account for the distortion.

4.2.2 Experimental Methods

X-ray diffraction data were collected at room temperature on the in-house 

Siemens X-1000 Area Detector System. X-rays were generated using a Siemens copper 

rotating anode (0.3mm x 0.3mm effective source size) typically operating at 40kV and 

70mA. CuKa radiation (X=l.5418A) was selected using a graphite monochromator with 

a limiting collimator aperture of 0.5mm in diameter. Crystals were mounted in thin- 

walled quartz capillaries and stored at 16°C until required. Before any experimental data 

were collected, the crystal-to-detector distance was set according to the crystal’s unit 

cell dimensions (usually maximum cell edge / 10) and the detector calibrated as described 

above. Crystals were mounted on a goniometer with plasticene and aligned in the X-ray 

beam so that the crystal remains in the beam during rotation about the spindle. Frames of 

data were recorded with the crystal oscillating through 0.25° steps using a variable 

exposure time. X-ray data from each crystal were processed with the XDS package of 

programs. Datasets from different crystals were merged together using XSCALE to obtain 

a final set of scaled intensities.
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4.2.3 Data Processing and Analysis

Diffraction data were processed using the programs XDS and XSCALE (Kabsch, 

1988a,b; Kabsch, 1993). This software allows rapid data processing even in cases where 

the space group and unit cell dimensions are initially not known. The individual steps of 

data processing are summarised in Figure 4.2. The program is run as a batch file with the 

user supplying various information such as the brass plate image, location and name of 

the diffraction data, 20 swing angle, coordinates for the centre of the beam and details of 

the crystal spacegroup and cell dimensions. The program carries out a number of user- 

defined steps. XYCORR calculates a look-up table of spatial correlations using the brass 

plate image. Due to the nature of the detector geometry, spots cast by the brass plate 

deviate from their theoretical positions and so the observed distortions in both the x  and 

y  directions are calculated. INIT estimates the initial background signal by first analysing 

the readings at each pixel over the first ten oscillation images and then smoothing these 

values according to a known function (Kabsch, 1988b). COLSPOT locates strong 

diffraction spots for determination of the crystal orientation. IDXREF calculates the 

reduced cell, indexes the spots found by COLSPOT and automatically rates all 44 of the 

possible lattice types (Kabsch, 1993). At this stage, the user can obtain the probable 

lattice type and cell dimensions for an unknown crystal. Individual three-dimensional 

reflection profiles are collected by COLPROF from the remainder of the rotation images, 

and the background at each pixel is updated. COLPROF also periodically refines 

experimental parameters such as the unit cell dimensions, beam centre and crystal-to- 

detector distance. PROFIT estimates the intensity of each reflection from its three
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dimensional profile by integration. In CORRECT, these integrated reflection intensities are 

corrected by the Lorentz, polarisation and air absorption factors.

PROFIT
Estimates the intensity of each 

reflection from its 3D profile

XYCORR
Calculates a look-up table of spatial 
correlations at each detector pixel

COLPROF
Extracts the 3D profiles for all reflections, 
updates the background at each pixel and 

periodically refines all parameters

COLSPOT
Locates strong diffraction spots occuring in 

the first few frames

GLOREF
Refines diffraction parameters using 

all strong reflections. Lists refined 
unit cell dimensions and positional

INIT
Estimates the initial background at each pixel 

and determines the trusted region of the 
detector

CORRECT
Applies various correction factors Prints R-factor statistics 

and intensities of reflections with type hOO, OkO, 001. 
Reindexes reflections and saves corrected reflection 

intensities and sd's in a file.

IDXREF
Extracts a reduced cell and indexes all the spots found 
in COLSPOT. Automatically rates all 44 possible lattice 

types and outputs the information to allow manual 
interpretation. Refines all parameters controlling the 

diffraction experiment to match the experimental data

Figure 4.2 —  Data processing using XDS

The data is scaled and merged to produce a dataset containing only reflections of one 

asymmetric unit. Various statistics and other information are output to aid in the 

determination of the correct space group if it is not already known. All reflections are
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reindexed and their corrected intensities and standard deviations are output. Finally, 

GLOREF refines the experimental parameters using all the strong reflection spots.

The final stage of data processing is to analyse and merge data from different 

data collection runs or from different crystals. This was carried out using the program 

XSCALE. This program performs in a similar fashion to CORRECT in XDS but provides 

additional statistics and can also be used to merge and scale separate datasets. The 

output statistics include correlation coefficients for the various datasets and merging and 

statistical /^-factors. The /^-factor for symmetry equivalent reflections (Rsym) is:

_ Xfhki [ V in  I — -  average,hkl
sym

j^Lhkl r  hkl.i I

[Eq. 4.5]

Structure factor amplitudes were calculated from the XSCALE output using either X2L (in- 

house program, G. Taylor) or TRUNCATE (CCP4).

4.2.4 Diffraction Data

Due to the many different crystal forms observed with BOLA, mLA and mLA 

mutants, a large number of different X-ray datasets have been collected. Only those that 

have subsequently been used for structure solution are reported below.

4.2.4.1 BOLA Trigonal (P321)

The triangular ellipsoid crystals were aligned so that the triangular face was 

normal to the X-ray beam. Data were collected from two crystals using a crystal-to- 

detector distance of 120mm and an exposure time of 150-180sec/frame. The 20 swing 

was fixed at 25° so that diffraction at the edge of the detector screen corresponded to a

95



4: D ata Collection and Processing

resolution of approximately 2A. Initially 504 frames were collected from the first crystal; 

this crystal was then translated and a further 134 frames were collected. Finally, a third 

dataset, comprising of 242 frames, was collected from the second crystal.

Table 4.1 —  XSCALE  merging statistics for trigonal AD-LAB1 data.

Resolution
shell
(A)

Total No. 
Observed 

Reflections

Total No. 
Unique 

Reflection 
s

/?gym
(%)

Total No. 
Possible 

Reflections

Completeness
(7 > 0 o )

(%)

oo18 387 170 3.5 226 75.2
1 0 .0 -6 .0 2127 718 4.2 722 99.4
6 .0 - 4 .0 6362 2104 4.2 2113 99.6
4 .0 - 3 .0 11166 4016 5.9 4027 99.7
3 .0 - 2 .5 11491 4970 11.5 5001 99.4
2.5 -  2.4 3190 1518 16.6 1528 99.3
2 .4 - 2 .3 3600 1802 18.0 1826 98.7
2 .3 - 2 .2 3870 2134 19.0 2175 98.1
2 .2 -2 .1 3997 2429 24.7 2582 94.1
2 .1 - 2 .0 3210 2208 29.2 3141 70.3

oo — 2.0 49400 22069 7.0 23341 94.6

Table 4 .2  — AGROVATA merging statistics for trigonal AD-LAB2 data.

Dmin
(A)

R merge/1) Rcum I/O Total N o  
Observed 

Reflections

Total No. 
Unique 

Reflections

Multi
plicity

Complete
ness

(7 > 0 o )
(%)

8.47 0.029 0.029 21.0 837 307 2.7 88.6
6.00 0.037 0.033 17.4 1892 594 3.2 100
4.90 0.039 0.036 16.9 2509 752 3.3 100
4.25 0.038 0.037 16.5 2864 865 3.3 99.2
3.80 0.043 0.039 15.3 3372 994 3.4 100
3.47 0.050 0.041 13.1 3592 1075 3.3 99.2
3.21 0.059. 0.044 11.6 3840 1160 3.3 99.5
3.00 0.077 0.046 8.9 4050 1265 3.2 100
2.83 0.093 0.049 7.6 4099 1320 3.1 99.5
2.69 0.114 0.053 6.1 4178 1400 3.0 99.8
2.56 0.128 0.056 5.3 4204 1467 2.9 100
2.45 0.151 0.059 4.7 4280 1533 2.8 99.8
2.36 0.174 0.062 4.0 4265 1590 2.7 99.6
2.27 0.192 0.065 3.5 4263 1667 2.6 100
2.19 0.207 0.068 3.4 4015 1698 2.4 99.2
2.12 0.269 0.071 2.6 3820 1751 2.2 99.1
2.06 0.276 0.073 2.5 3394 1727 2.0 95.3
2.00 0.330 0.075 2.0 2409 1482 1.6 79.2

«>-2.0 - 0.075 8.8 61883 22647 2.8 97.7
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As there are two alternative, non-equivalent ways that diffraction spots can be 

indexed in the trigonal space group, particular care was taken when the three datasets 

were merged. To avoid possible problems in later stages, two different scaled datasets 

were produced. The first (AD-LAB1) consisted of only reflections from the first 504 

frames collected from the first crystal. The XSCALE merging statistics for this dataset 

show a reasonable R ^  and completeness to 2 k  (Table 4.1). The second dataset (AD- 

LAB2) comprised all the data. Due to disagreements in the scaling of intensities between 

the two crystals, it was necessary to swap the h and k indices of the data collected from 

the second crystal. Failure to do this resulted in a of 11.4% and the rejection of

more than 10% of the data. Data from all three crystals were merged using ROTAVAT A/ 

AGROVATA (CCP4) with the unique hkl files from XDS. Inclusion of the extra data had a 

minimal effect on the merging /^-factor and also improved the completeness in the low 

and high resolution shells (Table 4.2).

4.2.4.2 mLA Monoclinic III (Na* Form)

Numerous datasets were collected for this crystal form of the recombinant LA. 

During the data collection process it became apparent that the maximum resolution that 

could be obtained using the in-house facilities was about 3A. An initial dataset (AD- 

LAB1), intended for use in structure solution with molecular replacement (see following 

chapter), was collected from four crystals. Extreme care was taken in crystal mounting as 

these monoclinic crystals typically grew in closely stacked clusters. The crystal-to- 

detector distance was 120mm (20=10°) and the exposure per frame was 180sec. 

Although all four crystals diffracted to 2.9A, the higher resolution data was weak and 

had poor merging statistics. Therefore, only data to 3.5A was used in the initial dataset
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(Table 4.3). A subsequent dataset (AD-LAB2) was collected, that had better correlations 

between high resolution reflections (3-3.5A shell). This dataset was used in the 

preliminary refinement of the molecular replacement solution (see Chapter 7).

Table 4.3 —  XSCALE  merging statistics for in-house mLA monoclinic data (AD-LAB1).

Resolution
shell
(A)

Total No. 
Observed 

Reflections

Total No. 
Unique 

Reflections

•Rsym
(%)

Total No. 
Possible 

Reflections

Completeness
(7 > 0 o )

(%)

oo— 10.0 1203 291 4.8 313 93.0
1 0 .0 -8 .0 1153 274 6.3 290 94.5
8 .0 - 6 .0 2314 740 8.8 787 94.0
6 .0 - 5 .0 2380 913 10.2 996 91.7
5 .0 - 4 .5 1937 783 11.5 855 91.6
4 .5 - 4 .0 2971 1234 14.8 1355 91.1
4 .0 - 3 .9 767 320 21.6 358 89.4
3 .9 - 3 .8 776 345 26.7 394 87.6
3 .8 - 3 .7 926 397 21.1 453 87.6
3 .7 - 3 .6 880 397 25.7 460 86.3
3 .6 - 3 .5 1071 478 26.8 549 87.1

<*> — 3.5 16378 6172 10.4 6810 90.6

4.2.4.3 mLA Hexagonal (P622)

The hexagonal recombinant LA crystals diffracted significantly better than those 

obtained for the wild type protein. Diffraction data were collected to a resolution of 2.9A 

from three crystals using a crystal-to-detector distance of 120mm, a 20 swing of 10° and 

an exposure time of 250sec/ffame. A total of 528 frames of data were collected from 

these crystals. As for previous crystal forms, diffraction in the higher resolution shells 

(2.9-3.1 A) was poor and not included in the final merged dataset. The final dataset had a 

reasonable R^m and was essentially complete to 3.2A (Table 4.4).
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Table 4.4 —  XSCALE  merging statistics for mLA hexagonal data.

Resolution shell
(A)

Total No. 
Observed 

Reflections

Total No. 
Unique 

Reflections

Rsym
(%)

Total No. 
Possible 

Reflections

Completeness
(7 > 0 c )

(%)

OO — 10.0 1369 136 5.4 140 97.1o001ooiH 1257 113 5.7 113 100
8 .0 - 6 .0 2581 296 7.7 296 100
6 .0 - 5 .0 2560 355 9.0 355 100
5 .0 - 4 .0 5448 786 9.6 786 100
4 .0 - 3 .5 4868 780 13.1 780 100
3.5 -  3.4 1249 210 17.1 210 100
3 .4 - 3 .3 1354 243 17.1 243 100
3 .3 - 3 .2 1383 270 19.5 272 99.3

0 0 - 3 .2 22069 3189 9.9 3195 99.8

Table 4.5 —  XSCALE  merging statistics for GOLA monoclinic data.

Resolution
shell
(A)

Total No. 
Observed 

Reflections

Total No. 
Unique 

Reflections

Rsym
(%)

Total No. 
Possible 

Reflections

Completeness
(7 > 0 o )

(%)

8 1 o o 637 147 4.9 152 96.7
1 0 .0 -8 .0 499 130 5.2 132 98.5
8 .0 - 6 .0 1282 383 6.2 387 99.0
6 .0 - 4 .0 4884 1523 7.1 1543 98.7
4 .0 - 3 .0 8552 2948 11.1 2983 98.8
3 .0 -2 .5 8337 3585 18.7 3728 96.2
2.5 -  2.4 1893 960 26.3 1172 81.9
2 .4 - 2 .3 1151 739 21.4 1357 54.5
2 .3 - 2 .2 766 638 8.9 1647 38.7
2 .2 -2 .1 793 697 8.8 1941 35.9
2 .1 - 2 .0 617 591 26.0 2366 25.0

oo — 2.0 29429 12359 9.6 18280 67.6

4.2.4.4 GOLA Monoclinic (P2i)

Numerous crystals were examined due to the contact twinning exhibited by the 

GOLA monoclinic crystals. In the end, data from four crystals were scaled and merged 

(Table 4.5). Although diffraction was observed to Bragg spacings of 2.0A, only one of 

the four crystals chosen for final merging diffracted to this resolution. The other three 

crystals diffracted to a maximal resolution of 2.3A. The resultant dataset was essentially 

complete to a resolution of 2.5A. At higher resolution, the completeness falls off sharply 

so that between 2.1 and 2.0A only a quarter of the possible reflections are represented.
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4.3 Synchrotron Data Collection

4.3.1 Introduction

The use of high energy synchrotron sources in X-ray crystallography has had a 

considerable impact on the field. Synchrotron radiation is produced when electrons and 

positrons move at relativistic energies in a circular path. This radiation is generated in 

synchrotrons, where powerful dipole magnets steer trajectories of charged particles in a 

circular orbit within the storage ring. These particles emit a continuum of synchrotron 

radiation whose spectral range depends on the particle’s energy and the field strength of 

the bending magnets. The emitted radiation beam typically covers a wide spectrum, has a 

high spectral brilliance and is extremely collimated.

Synchrotron radiation has several advantages over conventional X-ray tube 

sources for use in X-ray diffraction studies. Firstly, its high intensity facilitates data 

collection from weakly diffracting specimens, such as very small crystals or those with 

extremely large unit cell dimensions. Secondly, as synchrotron radiation consists of a 

smooth, continuous spectrum it can be tuned. Short wavelengths are often selected 

(about 1 A) because at these lower wavelengths, absorption by the air and crystal are 

reduced. This latter factor, combined with decreased exposure times, results in an 

appreciable reduction in the radiation damage to the protein crystal (approximately 5- 

fold). Radiation damage is also decreased as the emitted radiation is pulsed so that the 

crystal is subjected to short, intense bursts of X-rays. At the Synchrotron Radiation 

Source (SRS) at the Daresbury Laboratory, 160 circulating electron bunches produce 

120ps bursts followed by a 2ns pause. The variable wavelength is also useful for 

optimising the anomalous scattering signal for particular atoms present in the crystal.
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This tunability can now be used in MAD phasing, a powerful new technique which 

eliminates the need to screen for heavy atom derivatives (Hendrickson, 1991).

4.3.2 mLA Monoclinic (Mg2+ Form)

It was hoped that the shorter wavelength available at the SRS would allow the 

collection of higher resolution diffraction data for the monoclinic (III) form of mLA to 

augment the in-house data. As described in section 4.2.4.2, in-house diffraction data 

could only be collected to a maximum resolution of 3A. This was probably due to the 

thin nature of the crystals and their extreme susceptibility to radiation damage. 

Preliminary tests on Station 9.5 at the SRS showed that the monoclinic crystals diffracted 

to better than 2.3A. This improvement in resolution was due in part to the improved 

signal to noise ratio, resulting from the natural collimation and spectral purity of 

synchrotron radiation, but also to increases in crystal size produced by manipulating the 

crystallisation conditions (see Chapter 3). Subsequent data collection was mainly 

hindered by problems associated with ‘invisible’ contact twinning of the crystals and their 

susceptibility to radiation damage. The crystal twinning made it impossible to ascertain 

whether a crystal was affected prior to exposure. As a result, over sixty crystals had to 

be examined, before a nominally complete dataset could be obtained.

Data was collected on all three protein crystallography stations at the SRS. The 

station parameters for each trip are summarised in Table 4.6. On the majority of 

occasions, short wavelengths could be used and this had the effect of increasing the 

crystal’s lifetime in the beam. On Station 7.2, most of the data was not as reliable as that 

from other stations due to rapid radiation damage caused by the relatively high, fixed
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wavelength (A=1.488A). Diffraction data was collected from crystals cooled to 15°C and 

recorded on MAR Research image plates (30cm on stations 9.5 and 9.6; 18cm on station

7.2). Most of the crystals diffracted to a resolution of 2.3A but the higher resolution

Table 4.6 — Station statistics.

Data Collection Trip 8/9/94 23/10/94 2/11/94 24/11/94 20/12/94

Station 9.6 7.2 9.5 9.6 9.5
Crystal-to-detector 315 131 431 369 455

distance (mm)
Wavelength (A) 0.882 1.488 0.9457 0.87 0.9199
Exposure time* 90 40 90 100-120 60-90

(sec)
No. crystals usedb 1 1 1 3 2
Rotation per image 2.0 1.5 1.5 1.5 2.5

(degrees)

Itnax (mA) 210 280 290 170 170
ICRmax (V) 0.8 1.2 1.5 2.0 1.4

* Two oscillations per image
b Number of crystals used refers to the data that were used in the final dataset

reflections were often extremely weak. The program DENZO was used to process and 

reduce the diffraction data. Integrated intensities from different crystals were scaled and 

merged using the program SCALEPACK  (Otwinowski, 1993; Gewirth, 1995). The final set 

of merged and scaled intensities were converted to structure factor amplitudes using 

TRUNCATE (CCP4).

The choice of which data to include in the final merging and scaling was a 

difficult one. Ideally, the final dataset ought to be a balance between data quality and 

completeness. In this case, data quality had to be compromised, to some extent, so that a 

relatively complete dataset could be obtained. A total of ninety-three images (derived 

from eight crystals) were used in the final merging with SCALEPACK  (Table 4.7). Eight of 

these were subsequently rejected due to high merging -factors.
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Table 4.7 —  Summary of each image used in final merging.

Image
No.

No. of 
obs

<Vo> Mosaicity •̂ merge(f) Image
No.

No. of 
obs

<I/o> Mosaicity >3 S

1 626 8.7 0.331 0.089 48 1267 5.8 0.308 0.095
2 718 8.6 0.352 0.067 49 1226 5.3 0.320 0.108
3 683 7.9 0.343 0.065 50 1164 6.6 0.369 0.100
4 735 8.7 0.328 0.052 51 988 6.1 0.444 0.111
5 684 8.0 0.344 0.060 54 457 6.9 0.563 0.106
6 692 8.1 0.351 0.056 55 568 6.9 0.553 0.081
7 736 7.9 0.281 0.046 56 571 6.6 0.530 0.064
8 745 8.1 0.279 0.046 57 573 7.0 0.567 0.063
9 718 8.0 0.333 0.049 58 563 6.9 0.565 0.057
10 711 7.7 0.322 0.049 59 550 6.5 0.550 0.059
11 622 7.5 0.302 0.048 60 575 7.1 0.527 0.058
12 700 6.0 0.253 0.065 61 547 7.2 0.573 0.053
13 711 6.4 0.317 0.066 62 559 6.9 0.548 0.055
14 777 7.0 0.338 0.052 63 552 6.9 0.500 0.058
15 708 6.8 0.325 0.064 64 568 6.7 0.540 0.068
16 766 6.9 0.367 0.058 65 561 6.7 0.518 0.058
17 748 7.3 0.330 0.044 66 545 6.6 0.470 0.065
18 728 7.0 0.348 0.063 67 567 6.5 0.474 0.070
19 733 7.8 0.342 0.059 68 546 6.1 0.455 0.078
20 734 7.5 0.359 0.071 69 466 6.7 0.462 0.073
21 776 8.1 0.320 0.071 70 470 6.4 0.510 0.094
22 748 7.9 0.321 0.053 71 463 6.0 0.623 0.081
23 745 7.4 0.387 0.081 72 335 5.8 0.758 0.086
24 669 7.6 0.382 0.056 73 327 5.8 0.824 0.080
25 734 7.6 0.333 0.079 74 402 6.0 0.551 0.119
26 761 7.1 0.372 0.092 75 369 6.7 0.612 0.095
27 643 7.7 0.346 0.068 76 470 6.8 0.418 0.112
28 498 6.9 0.565 0.069 77 542 6.1 0.371 0.100
29 673 6.5 0.569 0.093 78 576 6.4 0.308 0.091
30 734 6.6 0.533 0.094 80 517 7.0 0.319 0.087
31 675 6.2 0.517 0.083 81 579 6.7 0.300 0.085
32 730 5.9 0.475 0.089 82 521 6.2 0.315 0.112
33 547 5.6 0.520 0.097 83 549 6.8 0.305 0.086
39 409 7.2 0.457 0.064 84 574 7.3 0.345 0.091
40 536 6.3 0.341 0.088 85 493 6.6 0.343 0.093
41 538 6.1 0.303 0.102 86 546 5.8 0.274 0.089
42 534 5.7 0.350 0.094 87 627 6.1 0.310 0.083
43 463 4.8 0.331 0.112 88 645 5.9 0.260 0.096
44 1126 6.3 0.278 0.080 89 634 5.8 0.331 0.081
45 1250 6.2 0.311 0.093 90 634 5.5 0.307 0.106
46 1206 6.5 0.354 0.085 91 631 5.3 0.253 0.096
47 1225 6.1 0.329 0.084 92 656 5.8 0.230 0.101

93 540 5.4 0.317 0.085

TOTAL 56008 6.7 0.400 0.078
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Table 4.8 —  Summary of merging statistics for the SRS monoclinic data.

Resolution
Shell
(A)

Total No.
unique

reflections

■Rmerge(0 Completeness
(7>0o)

(%)

99.00-5 .71 1282 0.059 79.1
5.71 -4.53 1408 0.063 89.7
4 .5 3 -3 .9 6 1420 0.067 90.9
3 .96 -3 .60 1442 0.078 92.4
3 .60-3 .34 1430 0.088 92.3
3 .34-3 .14 1436 0.119 92.6
3 .14 -2 .99 1410 0.141 91.5
2 .9 9 -2 .8 6 1288 0.150 83.9
2 .86-2 .75 1176 0.116 75.6
2.75-2.65 1142 0.147 74.0
2 .65 -2 .57 1142 0.203 74.1
2.57 -  2.49 1115 0.215 72.4
2.49 -  2.43 1053 0.246 69.1
2 .43 -2 .37 972 0.268 62.2
2 .3 7 -2 .3 2 913 0.300 60.8
2 .32 -2 .27 525 0.335 34.3
2 .2 7 -2 .2 2 311 0.294 20.0
2 .22 -2 .18 259 0.394 16.7
2 .18 -2 .14 273 0.445 17.8
2 .1 4 -2 .1 0 253 0.444 16.5

°o — 2.10 20250 0.078 65.4

All the data were included and no sigma cutoffs were used. The cell dimensions and 

crystal orientation were refined for each batch of data but the mosaicity of each image 

was refined individually. The final mosaicity values varied from 0.25-0.8°. The merging 

statistics are given in Table 4.8. The completeness of the data decreases gradually but 

drops off significantly at resolutions higher than 2.3A. The merging statistics reflect the 

weak nature of the high resolution reflections and the decreased signal-to-noise ratio. 

The poor merging statistics may also reflect the effects of radiation damage on the high 

angle reflections. Attempts to merge the synchrotron data with the low resolution in- 

house data were unsuccessful due to the differences in unit cell dimensions between the 

Na+ and Mg2+ monoclinic in crystal forms.
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4.3.3 Summary

Undoubtedly, the monoclinic mLA data is not of the highest quality but it does 

represent a significant improvement over the ‘in-house’ datasets in terms of resolution. 

The data quality primarily reflects the properties of the monoclinic crystals. Crystal 

twinning was compounded by a short lifetime in the beam. The dramatic fall-off in the 

diffracted intensities at high Bragg angles is probably entirely due to packing disorder 

within the monoclinic crystals. This is reflected in the mosaicity values for the data which 

have an average of 0.4°. There is no doubt that cryocooling would have improved the 

quality of the final dataset (Petsko, 1975; Garman, 1985). However, the crystals were 

extremely sensitive and we had no facilities available at Bath to flash freeze the crystals 

prior to the synchrotron trips.

The considerable amount of time that was invested in collecting high resolution 

data was justified by the fact that the structure of the monoclinic form had been solved at 

3A (see following chapter). Furthermore, at the time the data collection was in progress, 

this monoclinic form was the most promising in terms of studying the structures of the 

recombinant and variant LAs. However, in hindsight it was probably not the best choice 

and more time should have been invested in studying other crystal forms. Nonetheless, 

the monoclinic mLA structure is the only structure of bovine LA that has been 

determined to date and has provided a useful insight into properties of the recombinant 

protein.
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Chapter

Molecular Replacement

5.1 The Molecular Replacement Method

Molecular replacement (MR) can be used to obtain an initial phasing model for 

an unknown structure. This technique involves finding the orientation of a ‘search 

model’, a structure homologous to the unknown, in the unit cell of the unknown crystal 

that produces the best agreement between the calculated and observed diffraction data. 

Once this orientation has been found, initial phase estimates can be calculated from the 

reorientated search model and used for crystallographic refinement. In most cases, a 

suitable search model can be identified on the basis of sequence identity with the target 

structure as proteins, homologous in amino acid sequence, tend to adopt very similar 

tertiary folds. MR has therefore become an extremely useful technique for protein phase 

angle determination due to the rapid increase in the number of successful protein 

structure determinations.

In the simplest case, with one molecule in the crystallographic asymmetric unit, 

three rotational and three translational parameters fully describe the orientation of the 

search model in the unit cell of the unknown crystal. A full six-dimensional search is
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impractical due to the enormous number of trial orientations and positions for the 

phasing model. However, the search can be reduced to a three-dimensional rotation 

search (‘rotation function’) followed by a three-dimensional translation search 

(‘translation function’) without overly affecting the end result. A number of different 

approaches have been proposed for these two searches since the pioneering studies of 

Rossmann and Blow (Rossmann and Blow, 1962; Rossmann, 1972; Lattman, 1985; 

Machin, 1985; Dodson eta l., 1992).

5.1.1 Patterson Function

The cornerstone of the MR method is the Patterson function (Patterson, 1934). 

The Patterson function P(u v w) is a Fourier summation with intensities as coefficients 

and with all phase angles equal to zero. The value at a particular point u(w,v,w) is 

calculated from the product of the electron density at position x and the electron density 

at position x + u.

= J p(xyz)p(jc + u, y + v, z + w)dv
V

= — ̂ \F (h k l)\2cos[2n(hu + kv + lw)] [Eq. 5.1]
V hkl

where «, v and w are relative coordinates in the unit cell and V is the volume of the unit 

cell. As the Patterson function is the Fourier transform of \F(hkl)\2 it may always be 

calculated from a set of experimental diffraction intensities.

In essence, the Patterson function represents a map of the interatomic vectors. 

These vectors are of two types: relatively short self-Patterson vectors arising from pairs 

of atoms in the same molecule and longer cross-Patterson vectors arising from pairs of

107



5: Molecular Replacem ent

atoms in different molecules related by the crystal symmetry. Therefore, as the self 

vectors are independent of the position of the molecule in the unit cell, they can be used 

to obtain the rotational relationship between the known and unknown structures. In 

contrast, the intermolecular vector set are dependent on both the molecular structure and 

its orientation and position in the unit cell. Consequently, if the orientation is known, the 

intermolecular vectors can be used to determine the position of the molecule relative to 

the crystal’s symmetry elements.

5.1.2 Rotation Function

The rotational relationship between the search model and the unknown structure 

can be calculated by a Patterson overlap function (.R).

/?(a,p,y) =j P( u) xP, (ur)du [Eq. 5.2]
U

where P(u) is the Patterson function, Pr(ur) is the rotated Patterson and U is the volume 

in the Patterson map where the self-Patterson peaks are located. This product function 

depends on the rotation angles (a,p,y) and will have a maximum value for the correct 

overlap. The rotated Patterson Pr(ur) can either be of the same crystal lattice (self

rotation function) or a different crystal lattice (cross-rotation function). The self-rotation 

function is particularly useful for detecting local (non-crystallographic) symmetry within 

the asymmetric unit. Rossmann and Blow’s (1962) original formulation of the rotation 

function is,

R (a,p,y) = - ^ X I > ( h ) | > ( h f  x G[-(h + [C‘‘}i')l [Eq. 5.3]
y  h h'
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where |F(h)|2 is the intensity of the unknown structure, |F(h')| is the intensity of the

known structure, C 1 is the transpose of the rotation matrix C and G is the Fourier 

transform of the shape function U. For convenience, U is assumed to be spherical and its 

size is chosen to maximise the number of self-Patterson vectors used in the calculation 

and to limit the number of short intermolecular vectors. The size of the shape function is 

often critical for the success of the rotation function. Short intermolecular Patterson 

vectors can seriously affect the calculation and their influence is reduced by placing the 

search model in a large, artificial triclinic unit cell that has no crystallographic symmetry.

Strong reflections tend to dominate the calculation of R (Eq. 5.3). Normalisation 

of the structure factors can compensate for the fall off in /w ith  resolution giving a more 

even distribution of |F |2. This prevents the rotation (and translation) function from being 

dominated by a few large |F|2 terms. The normalised structure factor is defined as,

Eh = /. ,2 \i/2 tEcl- 5-4]
Fj.

where (|f |2 ) is the root mean square value of the structure factor amplitudes with sin0

values close to that of Fh. The effective size of the calculation is reduced as both low and 

high resolution data can be excluded. Low resolution terms (below 10A) are relatively 

insensitive to rotation and are primarily dominated by the solvent. On the other hand, 

higher resolution reflections (>3.0A) will differ markedly between homologous 

structures as they reflect precise conformations of residues. These factors effectively 

limit the rotation search to a resolution range of about 10 to 3A. The original Rossmann
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and Blow function has subsequently been modified by a number of workers to improve 

its speed and accuracy (Lattman, 1985 and references therein).

5.1.3 Translation Function

Once the known Patterson has been correctly orientated by the rotation function, 

the relative translation needed to overlap one molecule onto the other in real space must 

be determined. The translation function is inherently less robust than the rotation 

function because the only difference between correctly and incorrectly positioned 

molecules are the intermolecular vectors. The success of the translation function is 

therefore highly dependent on the accuracy of the solution to the rotation function. The 

different methods that are used to determine the position of a properly orientated 

molecule, can be divided into two main groups.

5.1.3.1 Patterson Searches

In this method, a translation function is calculated that gives the correlation 

between a set of cross-Patterson vectors for the search model and the observed Patterson 

function of the crystal. The most commonly used translation functions (7, 77, 72) are 

those derived by Crowther and Blow (1967). These are most easily comprehended in 

their real space formulation. The basic 7  function compares both intra- and 

intermolecular vectors of the unknown and model structures1.

1 Notations used: Pc, calculated Patterson function for the model structure; Po, experimental Patterson 
function for the unknown structure; P^, calculated intermolecular Patterson for the asymmetric units j  
and k of the search model; P\\, calculated intramolecular Patterson for the l’th subunit of the search 
model; t, translation vector for the identity asymmetric unit; 7^, pairwise translation function for 
asymmetric units j  and k, T l^  T function with subtraction of intramolecular vectors; 72, TO function 
with subtraction of intra- and known intermolecular vectors; u, vector in Patterson space; v,
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[Eq. 5.5]

In the 77 function, the intramolecular self-Patterson vectors are calculated for each 

molecule in the unit cell and removed from the function.

Both the T and 77 translation functions are two-dimensional and for a complete 

positional solution, the various two-dimensional translation functions must be combined. 

This is especially complicated in high symmetry spacegroups and for this reason the T 

and 77 translation functions are not widely used. The T2 function, derived originally by 

Crowther and Blow (1967), is now preferred as it represents a full, three-dimensional 

function utilising all symmetry operators simultaneously.

Subsequent formulations of the T2 function enable all vector components of the 

translation to be determined in a single calculation (Tickle, 1985; Rius and Miravitlles, 

1986). Further modifications have allowed contributions from molecules, related by non- 

crystallographic symmetry, to be taken into account when searching for additional 

‘subunits’ (Driessen et al., 1991; Tickle, 1992).

5.1.3.2 Correlation Searches

In these methods the correctly orientated molecule is systematically translated 

through the asymmetric unit and a measure of the correctness is calculated for each 

sample point. Usually structure factors are calculated and compared with the observed

intermolecular vector between local origins of asymmetric units j  and k\ V, unit cell volume (see 
Appendix I of Tickle, 1992).

77* (v) = | v(Po(u) - Pu (u)) P* (u, v) du [Eq. 5.6]

T2( t) = Jv(/M u) -  £ , f t  (u))(Pc(u,t) -  X , f t  (u))du [Eq. 5.7]
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structure factors using an R -factor or correlation coefficient as a function of the 

molecular position. The correlation coefficient tends to be a better indicator than the R- 

factor because it is independent of the relative scale of the observed and calculated data. 

One disadvantage of these kinds of searches is that they are computationally very 

expensive as every sample point evaluated requires a loop over all reflections. This is 

especially relevant when the asymmetric unit contains more than one molecule. The 

translation function implemented in X-PLOR is one of the more commonly used correlation 

searches (see section 5.2.2).

5.2 Software

Two main implementations of the MR method have been used in the current 

work. These two packages differ significantly and I will briefly describe them before 

documenting my attempts to solve the structures of the various crystal forms of LA.

5.2.1 Automatic Molecular Replacement (AMoRe)

As its name suggests AMoRe allows fast, automatic exploration of many potential 

rotation function solutions (Navaza, 1994; Navaza, 1992). This strategy has been 

particularly successful especially in cases where the correct orientation was not at the top 

of rotation function (Saludjian et al., 1992; Lescar et al., 1993). An overview of the 

AMoRe procedure is given in Figure 5.1.

AMoRe consists of four main programs: TABLING, ROTING, TRAING and FITING.

TABLING produces the arrays of Fourier coefficients of the model densities corresponding 

to the search molecules. Unlike many MR packages, this is the only step where the
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atomic coordinates of the search model are used. Subsequent structure factor 

calculations are performed by simple interpolation.

SORTING
Sorts input reflection file and 
prepares it for AMoflt input

FITING
Performs rigid-body refinement for 

selected solutions

ROTING
Calculates structure factors for the model 

in a suitable cell and spherical harmonics for 
the crystal and model. Calculates 

the Crowther and Blow rotation functions

SHIFT
Calculates the appropriate rotation and translation 
parameters to apply to the input model using the 

centre of mass of the model and the Euler ian angles 
which were applied to the model in TABLING

TABLING
Translates model coordinates so that their 

centre of gravity is at the origin and rotates them 
so that the principal ax es of inertia of the 
model are parallel to the orthogonal axes. 

Prepares a set of finely sampled 
inverse Fourier coefficients

TRAING
Calculates the translation function for a given 

set of rotation peaks. In later stages allows 
some molecules to be fixed so that a translation 

search can be performed for additional molecules. 
Structure factors calculated from the fixed 

molecules are added to those generated for 
the search molecules

Figure 5.1 —  The A M o R e  procedure

R O T I N G  calculates Crowther's fast rotation function but uses numerical integration, rather 

than Fourier-Bessel expansions in the radial variable, to give more accurate results 

(Crowther, 1972; Navaza, 1987). However, unlike Crowther’s formulation of the fast 

rotation function, there are no limitations on the maximum radius of integration for a 

given resolution of data. R O T I N G  also uses a novel algorithm that enables enhancement of 

the rotation peaks by skipping low angular resolution contributions (Navaza, 1990).
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TRAING performs the Crowther and Blow Patterson 72 overlap function (Crowther and 

Blow, 1967; Harada et al., 1981). In cases where there is more than one molecule in the 

crystallographic asymmetric unit, TRAING allows the position of models already placed to 

be fixed while secondary translation searches are performed to locate the remaining 

molecules. Potential solutions are output at each stage and can be monitored by a R- 

factor2

- i

Rf =^m H |F(obs)H |-|FH (a,p,y,jr,y ,z)|x  ^ttm |F(obs)H |

and correlation coefficient

[Eq. 5.8]

Cc = ^mHA|F(obs)HlA|fii(a,p,Y,^,y,z)|

x
[Eq. 5.9]

£ /m i(A |F (o b s )H |)  x  ^ m H [A |F H(a ,p ,y ,^ ,y ,z ) |]
. H J L H

The final stage of the MR procedure is to improve the rotational and translational 

parameters. FITING performs a fast, least-squares rigid-body refinement procedure, first 

developed by Huber and Schneider (1985), and subsequently modified for use in AMoRe 

(Castellano et al., 1992). During the procedure, optimal overall scale and temperature 

factors are determined before minimisation of the positional parameters of the search 

model. AMoRe is part of the CCP4 suite of programs (CCP4, 1994).

2
Notation used: H=(hjk,l), reciprocal-space crystal vector; F(obs)H, Fourier coefficient of the crystal 

electron density; Fr, Fourier coefficient of the model electron density; (oc,p,y), Euler rotation angles; 
(x,y,z), fractional translation coordinates; A|Fh|, stands for |Fh| -  (|Fk|)k . (see Navaza, 1994)
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5.2.2 X-PLOR Molecular Replacement

The X-PLOR package includes programs to perform rotation and translation 

functions (Briinger, 1992a). The implemented rotation search employs the real-space 

Patterson method (Huber, 1985, Briinger, 1992a). Model Patterson vectors, typically 

calculated in a large orthorhombic box (100A3), are selected according to length and 

rotated using Eulerian angles (0 i,02,03) (Rossmann and Blow, 1962). Product 

correlations with the crystal Patterson are computed by linear eight-point interpolation. 

Lattman’s pseudo-orthogonal Eulerian angles3 (0+,0_,02) are used to sample possible 

orientations of the search model (Lattman, 1985). The rotation search is restricted to an 

asymmetric unit that is dependent on the Patterson symmetry of the probe and unknown 

(Rao et al., 1980). The rotation peaks are sorted with respect to their product 

correlation value (RF) and then subjected to a cluster analysis. This analysis effectively 

reduces the number of peaks that need to be tested. Patterson correlation (PC) 

refinement can then be used to filter the rotation peaks with the aim to ‘promote* the 

correct peak to the top of the rotation function output (Briinger, 1990b). In essence, this 

procedure performs a three-dimensional search to find the optimal coordinates for each 

of the selected rotation function peaks. A standard linear correlation coefficient (PC) is 

calculated between the squares of the normalised observed and calculated structure 

factors, as a function of the coordinates of the centre of gravity of the search model,

[Eq. 5.10]

Lattman’s Eulerian angles are defined as 0+ = 0i + 03, 0- = 0i -  03* 02 = 02-
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where Ex denotes normalised observed structure factors, and Em(Q) denotes the 

normalised structure factors of the search model placed in the unit cell of the crystal in an 

arbitrary position and orientated according to the rotation matrix (Q) without 

considering the crystallographic symmetry mates. The angle brackets denote an 

averaging over the set of observed reflections expanded to PL Refinement is carried out 

against -PC  and solutions close to the correct orientation should give a relatively large 

correlation coefficient at the end of the refinement

This refinement of the MR model prior to the translation function suppresses 

noise peaks in the original rotation function and ultimately reduces the number of 

orientations that need to be tested in subsequent translation searches. The PC-refined 

model's position in the crystallographic unit cell is then determined by a translation 

function based on the correlation coefficient of Fujinaga and Read (1987). The equation 

used is identical to that for PC-refinement (Eq. 5.10) except that Em is replaced with Pcaic 

(the normalised structure factor of the search model and its symmetry mates) and the 

averaging operations are performed over an asymmetric unit of diffraction data. The 

highest peaks of the translation function are output along with a packing value (Briinger, 

1992a). Potential MR solutions can be improved and evaluated using rigid-body 

refinement with the free P-factor (Briinger, 1992b). This translation function is generally 

more sensitive than those that make use of Patterson functions but has the drawback of 

being extremely slow (Briinger and Nilges, 1993).
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5.3 Results

High resolution, three-dimensional crystal structures have been previously 

determined for LA (Acharya et al., 1989; Acharya et al., 1991). Both the observed 

similarity between these two structures and the high level of homology within the LA 

family suggested that, in the majority of cases, phasing using MR would be fairly 

straightforward. Unless stated otherwise, the same search model was used in all cases. 

The MR search model was based on the crystal structure of human LA (Acharya et al., 

1991). Sequence differences between the human and bovine protein (31 of the 123 

residues) were incorporated into the crystal structure and the altered sidechains were 

subjected to 10 cycles of real-space refinement using FRODO (Jones, 1985). The C- 

terminal tripeptide (121-123) was omitted from the final model as it is flexible and 

poorly defined in both the human and baboon crystal structures. The temperature factors 

for human LA were also included in the model. B-factors tend to be closely correlated 

between related structures and their inclusion in the model should result in the generation 

of more accurate structure factor amplitudes. In the following sections, the MR 

strategies used for the various crystal forms of LA are described.

5.3.1 Recombinant LA (mLA)

5.3.1.1 Monoclinic III Form

The in-house diffraction data was sufficiently complete within the resolution 

range typically required for MR (Table 4.3). As there are an estimated four molecules 

per AU, the first stage in the MR process was to try to identify the non-crystallographic
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symmetry (NCS) operators that relate the four molecules. To do this, the crystal 

Patterson was rotated against itself using a so-called self-rotation function.

90.0

180.0

270.0

Figure 5 .2 —  Self-rotation function for monoclinic mLA.

Stereographic projection of the k = 180° section of the Patterson self-rotation function 
for monoclinic III data (Na+ fonn). The self rotation function was calculated using data 
between 8 and 4 A (3658  reflections) with an integration radius of 21 A . The data was 
sharpened using a temperature factor of -20A 2. The stereographic plot is contoured 
from 30% to 100% (origin peak) in 5% steps. The section has co=0 or 180° at the 
centre, co=90° around the edge and <|) as marked around the periphery.

5.3.1.1.1 Self-Rotation Function

A Patterson self-rotation search was performed using the program POLARRFN 

written by W. Kabsch (CCP4). Spherical polar angles, rather than Eulerian angles, are 

used as they clearly indicate the presence of non-crystallographic symmetry. The self

rotation function was carried out by varying <|> and co in steps of 5° in the range <j)=0 to 

180°, co=0 to 180° while k  was held fixed at either 90° (fourfolds) or 180° (twofolds).

118



5: Molecular Replacement

Using observed reflections between 8 and 4A, a very clear peak (77.9% of the origin), 

representing a strong non-crystallographic two-fold symmetry operator, was observed at 

<J)=0, co=83.8°, k = 180.0° (and by symmetry <J)=0, 0=173.8°, k = 180.0°) (Figure 5.2). This 

result suggested that the four molecules in the AU were arranged as a pair of dimers.

Table 5.1 —  Top cross-rotation function peaks.

The columns correspond to the peak numbers, orientation Euler angles (a,p,y) and the correlation 
coefficient (CC) respectively. The correct orientations are shaded. The mean and sigma of the 
rotation function map were 0.0 and 3.34 respectively.

Peak a P Y CC

1 7.31 92.51 199.55 24.2
2 188.14 106.27 201.93 21.9
3 136.85 70.35 141.18 18.3
4 253.84 100.45 134.40 16.8
5 71.66 96.84 121.05 14.9
6 309.41 14.89 43.41 13.5
7
o

277.91
314.03

29.21
C C \  C O

125.10
1 C A  Z O

13.4
1 0  A8 59.59 150.68 13.2

5.3.1.1.2 Cross-Rotation and Translation Functions

In the cross-rotation function, calculated with AMoRe (CCP4 v2.6), using data 

between 8-4A and all model Patterson vectors with lengths of between 0 and 21 A, three 

of the correct orientations could be clearly distinguished (Table 5.1). A translation 

function (TF), using data between 8 and 4A, confirmed the correctness of these rotation 

peaks. Subsequent two-, three- and four-body TF’s unambiguously defined the four 

positions of search molecule within the AU. Rigid-body refinement with FITING, using 

data between 15 and 3.5A, gave a final /?-factor of 39.2% and correlation coefficient of 

56.6% for the quartet of solutions (Table 5.2). The four correct orientations 

corresponded to the first, second, third and eighth peak in the rotation function.
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Table 5.2 —  Summary of translation functions peaks.

The columns correspond to the orientation Euler angles (a,p,y), the positional parameters TA, TB, 
Tc (fractions of the unit cell) and the correlation coefficient (CC) and ^-factor (Rf) respectively. 
For each translation function, the four correct solutions are followed by the highest incorrect 
solution (separated by a dashed line and in i t a l i c s ) .  In the n-body translation function (n=2,3,4) 
the /?-factor and correlation coefficient are only given for the ‘free’ peaks. Abbreviations used: 
TF-n, n-bodied translation function; RBR, rigid-body refinement.

a P Y Ta Tb Tc CC R f

7.31 92.51 199.55 0.13816 0.00000 0.09694 18.7 48.5
188.14 106.27 201.93 0.36184 0.00000 0.07143 18.7 48.4

TF-1 136.85 70.35 141.18 0.35526 0.00000 0.42347 11.3 49.9
314.03 59.59 150.68 0.18421 0.00000 0.05612 12.1 50.1

309.41 14.89 43.41 0.06579 0.00000 0.15816 ~ 5 0 3

7.31 92.51 199.55 0.13816 0.00000 0.09694 -
188.14 106.27 201.93 0.85783 0.92133 0.56822 33.0 45.0

TF-2 136.85 70.35 141.18 0.67328 0.05518 0.02817 26.6 46.7
314.03 59.59 150.68 0.32199 0.87382 0.58885 23.5 47.3

253.84 100.45 134.40 0.26601 0.60526 0.99235 18.4 48.6

7.31 92.51 199.55 0.13816 0.00000 0.09694
188.14 106.27 201.93 0.85783 0.92133 0.56822 - -

TF-3 136.85 70.35 141.18 0.67326 0.05527 0.02719 42.5 42.0
314.03 59.59 150.68 0.32130 0.87482 0.58839 38.6 43.3

253.84 100.45 134.40 0.97101 0.17589 0.83280 2 9 3 46.9

7.31 92.51 199.55 0.13816 0.00000 0.09694
188.14 106.27 201.93 0.85783 0.92133 0.56822 -

TF-4 136.85 70.35 141.18 0.67326 0.05527 0.02719
314.03 59.59 150.68 0.32242 0.87449 0.58768 47.9 40.7

253.84 100.45 134.40 0.26694 0.61235 0.99490 37.7 44.0

8.94 93.24 200.60 0.14005 0.00014 0.09883 56.6 39.2
RBR 188.91 106.72 202.42 0.85742 0.92123 0.57144 56.6 39,2

136.56 68.62 140.98 0.67546 0.05527 0.02943 56.6 39.2
315.77 57.45 150.28 0.31643 0.87690 0.58792 56.6 39.2

5.3.1.1.3 The Solution

The four rotation and translation solutions were applied to the initial search 

model and the positions of the resultant molecules were visually examined for close 

contacts using FRODO. The four molecules are arranged as two non-equivalent dimer 

pairs in the crystallographic asymmetric unit. The same non-crystallographic symmetry 

operator, running parallel to the x  axis, relates both dimer pairs (Figure 5.3). The four 

molecules packed together very well and there were no significant clashes between either 

themselves or their symmetry equivalents. Further indications to correctness of the
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solution were given by the presence of large positive peaks of electron density, in the 

initial a^-weighted 2F0-FC map (Read, 1986; 1990), in positions corresponding to the 

calcium binding site of each molecule. In addition, extra density was observed at the N- 

terminus of each molecule and the density for the sidechain at position 90 was truncated. 

These are all features of mLA that were not included in the search model. High 

resolution refinement of this structure is described in Chapter 7.

a.

Y

Z z

c.

z

X

Figure 5.3 — Arrangement of molecules in the monoclinic asymmetric unit

a. Molecules A and B and b. molecules C and D viewed down the local two-fold. c. 
contents of the AU viewed perpendicular to the local symmetry axis. Molecules A 
and B are located nearest to the z  axis.
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5.3.1.2 Hexagonal Form (A109P-mLA)

Attempts to solve the structure of this form of mLA have been largely 

unsuccessful. Diffraction data from hexagonal crystals of the variant LA (A109P-mLA) 

was used for the majority of these studies due to its higher quality (FJ)W=8.8%) and 

overall completeness (99.4% ©o-2.9A (94.3% 3.0-2.9A) I>0a). Nevertheless, the 

rotation and translation peaks obtained with this data are identical to those observed 

when using data from either native or mLA hexagonal crystals.

It was not necessary to perform a self-rotation function for this data because the 

hexagonal crystals only contain one molecule per AU. A series a cross-rotation functions 

performed over different resolution ranges (between 15 and 3A) using different model 

Patterson vectors (between 0 and 25A) gave a single, consistent solution that was 4.7- 

5.1a above the mean and 0.9-1.3a above the next highest peak. The peak had Euler 

rotation angles (a,p,y) of 1.5±0.5°, 71.6±0.1° and 138.0±0.2° respectively (Table 5.3). A 

similar peak was obtained when normalised structure factors were used instead of Fs.

Table 5.3 —  Top peaks for a typical rotation function against the hexagonal data.

The columns correspond to the peak numbers, orientation Euler angles (ot,p,y) and the correlation 
coefficient (CC) respectively. This data is taken from a rotation function using data between 8 
and 4 A and a Patterson sphere of 21 A. The mean and sigma of the rotation function map were 
0.0 and 3.59 respectively.

Peak a P Y CC

1 0.57 71.54 137.92 17.5
2 34.01 58.75 72.59 13.1
3 35.18 61.46 191.02 11.5
4 18.56 57.03 307.09 10.6
5 27.42 70.34 135.98 10.6
6 38.5 25.88 1.50 10.5
7 35.13 26.91 8.50 10.4
8 2.01 76.40 256.03 10.3
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However, in subsequent translation functions, no correct solutions were obtained for any 

of the top 50 peaks from the rotation function regardless of the resolution range used. In 

all cases, the correlation coefficients were unexpectedly low after rigid-body refinement 

(CCmax=36%), despite reasonable R-factors (43-48%). Visual examination of position of 

the search model in the unit cell, after applying the calculated rotational and translational 

elements, revealed that every MR solution located the model on either the two- or six

fold symmetry axes. To ensure that the rotation function gave consistent results, the 

search model was rotated and used in ROTING with a series of different resolution ranges 

and Patterson spheres. These searches gave a clear, consistent peak (a=52°, (3=72°, 

7^217°), that was identical to that obtained with the original model. The failure of the 

translation function was very puzzling. Translation functions (T2 and T 0 /0 )t calculated 

using the rotation peaks obtained in AMoRe and the program TFFC (CCP4), gave similar 

results to TRAING with all the peaks located on the crystallographic symmetry axes.

To clarify the situation, the rotation and translation functions were calculated 

with X-PLOR. The rotated search model was placed in a orthorhombic cell (105A on the 

edge) and the computed model Patterson vectors were selected according to length. 

Cross-rotation peaks were systematically identified using a variety of resolution ranges, 

Patterson vector lengths and PC refinement strategies. The searches were restricted to an 

asymmetric unit of 0+=O -  720°, 02=0 -  90°, 0_=O -  60° (Rao et al., 1980). PC- 

refinement of the overall orientation (Q) of the molecule consisted of 15 cycles of Powell 

conjugate gradient energy minimisation. A consistent peak was obtained after PC- 

refinement: 0i=51.5±O.9 02=72.O±O.7 03=25.5±1.1 (RF value=1.4a). Comparison of this 

peak with the one obtained in AMoRe revealed that they were similar and related by
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symmetry. Encouraged by the fact that two very different rotation function methods had 

given the same peak, attempts were made to determine the position of the orientated, 

PC-refined model using the X-PLOR translation function.

Translation functions were performed over a series of resolution ranges (15-4A, 

15-3.5A, 12-6A, 8-4A) using a sampling interval in x, y and z set to a third of the high 

resolution limit. The asymmetric unit used for the translation function was from 0 -  1 on 

x  and y and 0 -  0.5 on z. Potential solutions were first evaluated on packing criteria to 

eliminate peaks that gave rise to considerable mainchain overlaps with their symmetry 

mates. Reasonably packed solutions were then analysed by a rigid-body refinement 

strategy using the free P-factor. This involved 30 cycles of rigid-body refinement using 

data between 15 and 3.5A resolution (10% flagged for P^e calculation). Several 

reasonably packed solutions were identified but initial, ax-weighted 2F0-F c maps were 

extremely poor and showed no indications of a bound ion in the calcium binding site.

There are a number of possible reasons why the molecular replacement method 

can fail to give a satisfactory solution. These include the quality of the experimental data, 

the suitability of the search model and the symmetry of the target Patterson function. In 

this case, doubts about the search model are not a major concern as it is highly 

homologous to the target structure and has been used to solve five different LA 

structures. The experimental data quality is acceptable (^^=8.8% ) and virtually all the 

reflections within the resolution limits required for MR have been observed. Therefore, 

the failure to find a correct solution is probably due to the high symmetry of the target 

crystal (P6/mmm). High symmetry can give rise to heightened noise levels in both the 

rotation and translation functions resulting in difficulties in peak identification.

124



5: Molecular Replacem ent

Nevertheless, rotation functions using both AMoRe and X-PLOR appeared to give a clear 

and identical peak. It may be possible that the failure of the subsequent translation 

function was due to a freak crystallographic situation such as the alignment of the 

Patterson vector set parallel to a crystallographic symmetry element Whatever the 

reason, it appears that additional phasing information, such as a single heavy atom 

derivative, is required to solve this form of LA.

5.3.2 Bovine Milk LA

Several attempts have been made to solve the structure of the trigonal (P321) 

form using the both AMoRe and X-PLOR. Both strategies have suggested potential solutions 

but, as will be discussed, problems were encountered during their preliminary refinement

The first ambiguity with this crystal form was the number of molecules present in 

each crystallographic asymmetric unit. Fenna (1982a) reported that the asymmetric unit 

contains two molecules based on the unit cell volume and the molecular weight of 

BOLA. This assumption is perfectly acceptable and gives a theoretical solvent content 

(59%) which is around the upper range commonly found for protein crystals (Matthews, 

1968). However, initial attempts to solve the structure with AMoRe, consistently 

suggested that there may be three molecules per asymmetric unit. Self rotation functions 

with POLARRFN (CCP4) did not however show any non-crystallographic relationship 

within the asymmetric unit. This was unexpected as the diffraction pattern clearly 

indicates the presence of a non-crystallographic 2-fold axis (Fenna, 1982a).
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Table 5.4 —  Top rotation function peaks.

The columns correspond to the peak numbers, orientation Euler angles (a,p,y) and the correlation 
coefficient (CC) respectively. The potential ‘correct’ orientations are shaded. This data is taken 
from a rotation function using data between 8 and 4A and a Patterson sphere of between 4 and 
21 A. The mean and sigma of the rotation function map were 0.03 and 3.07 respectively.

Peak a P Y CC

1 0.65 108.34 316.86 16.6

2 70.85 108.89 315.68 15.0

3 53.51 110.06 315.90 14.2

4 96.41 57.44 71.43 12.0

5 83.02 154.48 182.51 11.9

6 30.30 58.24 72.48 11.8

7 18.50 109.72 313.96 11.7

8 91.83 109.88 315.01 11.7

9 101.93 61.54 190.83 10.8

10 86.34 119.05 13.02 10.2

Table 5.5 —  Summary of translation functions peaks.

The columns correspond to the orientation Euler angles (a,(3,y), the positional parameters TA, TB, 
Tc (fractions of the unit cell) and the correlation coefficient (CC) and /^-factor (Rf) respectively. 
For each translation function, the three potential solutions are followed by the two next highest 
peaks (separated by a dashed line and in i t a l i c s ) .  In the n-body translation function (n=2,3) the R -  
factor and correlation coefficient are only given for the ‘free’ peaks (these values are meaningless 
for the FIXed peaks). Abbreviations used: TF-n, n-bodied translation function; RBR, rigid-body 
refinement.

a P Y Ta Tb Tc C C Rf

0.65 108.34 316.86 0.17640 0.02857 0.24280 19,8 48.1
TF-1 70.85 108.89 315.68 0.97985 0.93021 0.47922 13.2 50.4

53.51 110.06 315.90 0.02866 0.02776 0.43952 16.6 49.8

18.50 109.72 313.96 0.02060 0.12677 0.38418 13.1 49.4
83.02 154.48 182.51 0.07976 0.08160 0.37679 14.6 51.0

0.65 108.34 316.86 0.17640 0.02857 0.24280 ¥ _

TF-2 70.85 108.89 315.68 0.79664 0.51787 0.90695 24.8 47.5
53.51 110.06 315.90 0.49623 0.83291 0.57211 23.7 47.3
91 i r ~109lf ~  1/5.0;“ _  0.99T3J 0.98427 ~  0.72000 l o T
18.50 109.72 313.96 0.16555 0.02698 024434 20.4 48.9

0.65 108.34 316.86 0.17640 0.02857 0.24280
TF-3 70.85 108.89 315.68 0.79664 0.51787 0.90695 - -

53.51 110.06 315.90 0.49727 0.83249 0.57170 32.2 46.1
18.50 109.72 313.96 0.16107 0.02690 024191 26.0 47.7
83.02 154.48 182.51 0.01382 0.95996 0.73759 23.9 48.1

1.77 107.57 316.92 0.17437 0.02626 0.23794 . .
RBR 69.91 107.83 315.78 0.79405 0.51812 0.90945 *■ -

55.21 108.04 317.75 0.49840 0.82951 0.56981 46.3 42.8
T 7 j f i w i r ~31678~ “  0./5544 0.03780 ~  023986 ~ 39.8
96.45 55.64 70.17 0.08782 0.89404 0.94715 34.1 46.6
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5.3.2.1 AMoRe

Cross rotation functions using a variety of different resolution shells, Patterson 

spheres and normalised structure factors (£'s) as well as F s consistently gave similar 

results. All the searches resulted in three rotation peaks that were distinct from the rest 

(Table 5.4). The same results were obtained using either the AD-LAB1 or AD-LAB2 

datasets. Subsequent translation searches (8-4A) suggested a good orientation for three 

molecules in the asymmetric unit. A three-body rigid-body refinement, using data 

between 15 and 3.5A, yielded a solution with a correlation coefficient 12% higher and an 

/^-factor approximately 4% lower than the next best peak (Table 5.5).

The molecular packing of this solution was encouraging and showed no major 

clashes between the three molecules and their symmetry mates. In contrast, packing 

analysis of the other potential ‘solutions’ from TRAING showed major mainchain overlaps. 

Although conventional positional refinement, simulated annealing and grouped B-factor 

refinement reduced the conventional /^-factor from 44.0 to 25.9% (using data between 

10 and 2.5A with NCS restraints), the free /^-factor showed no significant improvement 

(/?freCm=44.5, /?frcc°ut=44.1)4. Further refinement confirmed that something was wrong 

with the AMoRe solution. Cycles of refinement and rebuilding resulted in a stagnation of 

both the conventional and free ^-factors (about 24% and 40% respectively). The 

electron density maps were unexpectedly poor and there was also a poor correlation of 

the B-values for bonded atoms.

4 See Chapter 7 for description of crystallographic refinement using X-PLOR. The free ^-factor was 
calculated against a random 10% of the data (1156 reflections).
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Table 5.6 —  Evaluation of potential solutions using the free /?-factor.

The top solutions after a two-body translation function (with Peak 1 and 2’s positions fixed) are 
listed. The conventional P-factor and free P-factor (10% data) are given for each of the peaks 
after 35 cycles of rigid-body refinement in X - P L O R  (using 15-3.5A data, 3 separate bodies). The R  
and Rfree for peaks 1 and 2 alone are 47.5 and 47.0 respectively.

Peak a P Tc

1 0.26 107.58 317.65 0.17623 0.02961 0.24242 _ _

2 70.92 107.22 316.16 0.79868 0.51721 0.90884 - -

3
4

55.05
95.97

108.51
58.70

317.61
72.30

0.49613
0.83536

0.83239
0.04848

0.57342
0.47640

45.0
48.1

46.3
47.1

5 89.01 120.82 252.24 0.02693 0.15387 0.02686 48.1 47.1
6 85.21 120.60 12.52 0.11916 0.98804 0.53134 48.1 49.9
7 101.65 59.00 191.19 0.08164 0.15596 0.44166 48.4 48.0
8 20.23 107.88 315.99 0.30405 0.70783 0.03478 47.7 53.2
9 85.56 60.57 193.24 0.83969 0.78453 0.47048 48.6 50.4
10 66.50 44.27 18.83 0.09552 0.90519 0.90285 48.2 50.0
11 94.93 121.44 8.19 0.87682 0.98493 0.26228 48.7 48.3
12 87.19 150.90 167.07 0.99468 0.07863 0.14346 49.1 48.4
13 15.60 57.77 308.88 0.30665 0.09602 0.86811 48.3 46.9

R Rfree

Table 5.7 —  Top rotation function peaks after PC refinement.

Model Patterson were computed in an orthorhombic box of 120xl20xl20A. The rotation search 
was restricted to an asymmetric unit of 0+=O -  720, 0_=O -  12O,02=O -  90. PC-refinement 
consisted of 10 cycles of Powell energy minimisation.

Rotation Function P C  Refinement

Resolution M aximum Resolution Top Rotation Function Peaks RF value
Range Patterson Range 0i 02 03 (a)

(A) vector (A) (A) (°)
358.28 74.42 316.29 0.95

2 0 - 4 30 2 0 - 4 356.22 73.84 267.63 1.03
357.04 75.76 285.78 0.99
353.26 76.48 336.11 0.99

358.51 74.30 315.68 1.40
1 0 - 4 30 1 0 - 4 356.31 73.58 267.70 1.43

357.33 75.74 285.60 1.36
352.40 75.22 336.05 1.38

358.47 74.50 315.24 1.65
8 - 4 25 8 - 4 355.05 73.93 267.82 1.64

352.36 73.95 336.27 1.61
357.18 76.06 285.34 1.56

358.47 74.50 315.24 2.45

00 1 21

•"T100 356.47 74.77 265.03 2.42
352.47 74.31 336.37 2.45
357.23 76.24 285.16 2.34

Despite numerous different approaches, such as fixing the positions of different 

solutions after the first translation function, the set of three peaks highlighted in Table
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5.4 always gave the best statistics and free R -factor values after rigid-body refinement 

(Table 5.6).

5.3.2.2 X-PLOR

To clarify the situation, the MR process was repeated using the real-space 

methods implemented as part of the X-PLOR package of programs. Cross-rotation peaks 

were systematically identified using a variety of resolution ranges, Patterson vector 

lengths and PC refinement strategies. Several different orientations were identified and 

four of these consistently appeared regardless of the resolution range used (Table 5.7).

An initial translation function (15-3.5A) for orientation A (356°, 74°, 267°) 

identified a clear peak at txA=0.14, tyA=0.022 and tzA=0.424 in fractional coordinates that 

was 7.1a above mean and 1.4a above the next highest peak. Subsequent translation 

functions (15-4A, 8-4A) for orientation B (358°, 74°, 316°), using partial contributions 

from the correctly-positioned molecule A, yielded the position of the second molecule 

(txB=0.699, tyB=0.237 and tzB=0.098). Attempts to locate the position of a third molecule, 

using the other rotation function orientations, were unsuccessful. Rigid-body refinement 

(15-3.5A) of the two correctly positioned molecules improved both the conventional and 

free /^-factors by about 1.5% (flout: 48.2, Rfc™1: 49.8). However, subsequent positional 

refinement at 2A failed to improve the free R. At this stage a aA-weighted 2FQ-F C 

electron density map was calculated from the positions of the two molecules in the AU. 

Visual inspection of the map showed a large area of weak density that was unaccounted 

for and indicated that an additional molecule may be present.

The positions of the two molecules determined using X-PLOR were identical to 

those obtained with AMoRe (peaks 1 and 3 in Table 5.4) differing only by an origin shift of
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z+1/2. More surprisingly, the third molecule from the AMoRe's best set of solutions could 

account remarkably well for the additional density seen in the CJA-weighted 2F0-F c map 

after the appropriate superpositions (using the two common molecules) had been 

performed. This independent verification that the three molecular orientations found 

using the AMoRe procedure were likely to be correct, was very encouraging. However, it 

provided no explanation as to why this ‘correct’ MR solution could not be refined.

As described in section 5.3.1.2 failure of the MR method in this case is most 

probably caused by the high symmetry of the target Patterson function (P3m). Although 

there was also some doubt as to the number of molecules in each crystallographic 

asymmetric unit, the results from the rotation searches clearly indicate the presence of 

three molecules. The strength of diffraction observed with the trigonal crystals, 

compared to other forms of LA, is also consistent with a low solvent content. The 

inability to refine the AMoRe three-molecule solution suggested that there was a major 

problem. However, independent identification of the same solution with X-PLOR MR was 

greeted by surprise and consternation. Clearly there must be some degree of truth in the 

solution. Although the does not decrease significantly on refinement, a value of 40- 

44% (8-2A) seems remarkably low. These observations suggest that perhaps only one of 

the six rotational and translational parameters may be in error. Translational errors of this 

kind are not uncommon and can result in the correct phasing of a considerable number of 

reflections. If initially undetected, such errors typically manifest themselves in the later 

stages of refinement in the form of poor quality electron density maps and uncorrelated 

temperature factors for bonded atoms (Derewenda et aL, 1990; Dodson, 1992). An 

unambiguous solution to the problem would be to obtain suitable, additional phasing
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information from a single heavy atom derivative and perform a phased translation 

function.

90.0

180.0

270.0

Figure 5.4 — Self-rotation function for GOLA monoclinic crystals.
A stereographic projection of the k  = 180° section of the Patterson self-rotation function 
for monoclinic data of GOLA. The self-rotation function was calculated using all data 
between 8 and 4A with an integration radius of 21 A. The data was sharpened with a 
temperature factor of -20A2. The plot is contoured from 30% to 100% (origin peak) in 
steps of 5%.

5.3.3 Goat Milk LA

5.3.3.1 Self-Rotation Function

The GOLA monoclinic crystals contain two molecules per asymmetric unit based 

on theoretical calculations. A self-rotation search was performed using the program
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POLARRFN (CCP4) to locate the non-crystallographic symmetry operator that relates the 

two molecules. The self-rotation function was carried out by varying $ and 0) in steps of 

5° in the range <J)=0 to 180°, co=0 to 180° while k  was held fixed at 180°. Using observed 

diffraction data between 8 and 4A, a clear peak (81.6% of the origin), representing a 

strong non-crystallographic twofold symmetry operator, is seen at <|)=0, 0=85.5° (and by 

symmetry <|>=0, 0=175.5°) (Figure 5.4). This peak was strikingly similar to that observed 

in the self-rotation function for the monoclinic mLA (Figure 5.2) and suggested that the 

direction of the non-crystallographic axis was essentially the same in both cases.

5.3.3.2 Cross-Rotation and Translation Functions

A search model was constructed for GOLA as described in Section 5.3. The final 

model consisted of all GOLA’s amino acid sequence apart from the C-terminal tripeptide 

which, for reasons discussed previously, was omitted. In the cross rotation search data 

between 8 and 4A were used and model Patterson vectors were selected according to 

length (between 21A and 4A). The two correct orientations were easily identifiable at the 

top of the rotation function output. The two solutions had correlation coefficients 

approximately 6% higher than the next best solution (Table 5.8). The positions of the 

molecules within the Cheshire cell were determined by an one-body TF using data 

between 8 and 4A. A subsequent two-body TF, with the position of one of the molecules 

kept fixed, allowed the relative positions between the two molecules to be determined.
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Table 5.8 —  Summary of A M o R e  solution for GOLA.

The columns correspond to the orientation Euler angles (a,p,y), the positional parameters Ta,T b, 
Tc (fractions of the unit cell) and the correlation coefficient (CC) and /?-factor (Rf) respectively. 
In the two-body translation function the /?-factor and correlation coefficient are only given for the 
‘free’ peak. Abbreviations used: RF, cross-rotation function; TF-1, translation function; TF-2, 
two-body translation function; RBR, rigid-body refinement.

a P Y Ta Tb Tc CC Rf

RF 262.34 84.62 15.52 - - - 21 1 -

100.29 96.96 186.23 - - - 20.3 -

TF-1 262.34 84.62 15.52 0.33333 0.00000 0.17308 22.5 52,5

100.29 96.96 186.23 0.30556 0.00000 0.30769 22.5 53.2

TF-2 262.34 84.62 15.52 0.33333 0.00000 0.17308 - -

100.29 96.96 186.23 0.30600 0.25796 0.30043 42.6 46.2

RBR 262.48 84.85 14.76 0.33264 -0.00034 0.17661 54.1 44.2

100.50 95.97 185.74 0.30478 0.25840 0.29834 54.1 44.2

Figure 5.5 —  Arrangement of the GOLA molecules in the asymmetric unit.
The two molecules are shown viewed a. along the local two-fold and b. perpen
dicular to the local symmetry axis.

5.3.3.3 The Solution

The two MR solutions were applied to the initial search model and the positions 

of the resultant molecules were visually examined for bad contacts using 0. The
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correctness of the solution was confirmed by the presence of a large positive peak of 

electron density, in an initial aA-weighted 2F0-F c map, in a position corresponding to the 

calcium binding site of each monomer.

The two molecules are arranged as a dimer in the asymmetric unit as predicted by 

the self-rotation function (Figure 5.5). The non-crystallographic axis, that relates the two 

molecules, is oriented parallel to the jc axis. Although the direction of this local two-fold 

axis is the same in both the GOLA and mLA monoclinic crystals, the relative orientation 

of LA molecules in the dimers is different. Refinement of this structure at 2.3 A resolution 

is described in Chapter 7.

5.4 Summary

As expected, obtaining a MR solution for some of the LA structures, the GOLA 

and mLA monoclinic forms, was relatively straightforward. However, the problems 

encountered with the hexagonal and trigonal forms were not anticipated. These 

difficulties primarily reflect the high symmetry of the target Pattersons. These forms are 

also unusual for a number of other reasons. Firstly, the two forms are obtained under 

identical growth conditions. They do not however appear in the same drop and the 

environmental factors that favour a particular form are not clear. Secondly, both the 

hexagonal and trigonal crystals have virtually identical unit cell dimensions (see Tables

3.1 and 3.2). This similarity is also highlighted in the MR studies where the trigonal and 

hexagonal forms share a common rotation function peak (P321: 0.65°, 108.3°, 316.92°; 

P622: 0.57°, 71.54°, 137.92°). This peak may be an artefact or ghost peak but raises the 

intriguing possibility that the internal packing within the two forms is very similar. A
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similar conclusion was reached by Fenna based on the similarity in intensity distribution 

in certain zones of the diffraction patterns of the trigonal and hexagonal crystals (Fenna, 

1982a).

Clearly, the difficulties encountered with the MR procedure can probably only be 

overcome by MIR methods. In both cases, a good single derivative should enable the 

molecules to be correctly positioned in the AU. Certainly, the observed similarity 

between the hexagonal and trigonal forms, combined with the information derived from 

the rotation function, should facilitate the identification of heavy atom sites in any 

potential derivatives.
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Chapter

The Quest for Derivatives

6.1 Introduction

A preliminary screening of potential heavy atom derivatives has been carried out 

for the mLA hexagonal crystals due to the failure of the molecular replacement method. 

As described in the previous chapter, a clear peak was obtained in the rotation function 

but subsequent translation functions failed to yield a suitable positional solution. 

Additional phasing information from a reasonably good, single derivative should facilitate 

the determination of the position of the molecule in the unit cell through a phased 

translation function (Bentley, 1992).

The isomorphous replacement method can be used to estimate initial protein 

phase angles. Ideally, a small number of additional ‘heavy’ atoms must be incorporated at 

distinct sites in all the unit cells of the native crystal. These bound atoms will give rise to 

changes in the relative reflection intensities that, when compared to the native reflection 

intensities, can be used to determine their positions. Location of the bound atoms is the 

starting point for estimating the protein phase angles. A full treatise on the determination

136



6: Q uest for Derivatives

of protein phases from heavy atom derivatives is given elsewhere (Blundell and Johnson, 

1976; Drenth, 1994).

Suitable heavy atom derivatives must yield measurable changes in at least a 

modest number of reflection intensities. These intensity differences must also be large 

enough to measure accurately. In addition, the bound heavy atoms must not disturb 

either the packing or the conformation of the protein to any great extent In other words, 

the native and derivative crystals must be relatively isomorphous so that the observed 

intensity differences are solely due to the attached heavy atoms. Although, perfect 

isomorphism between the native and derivative crystals is rare, slight changes in the 

protein’s structure can often be tolerated. The presence of non-isomorphism is often 

signalled by a change in the unit cell dimensions. Theoretical calculations have shown 

that a 0.5% change in all unit cell dimensions will give rise to about a 15% change in 

intensity in the 3A shell (Crick and Magdoff, 1956). Consequently, more substantial 

changes in cell parameters will seriously limit the effective phasing power of the 

derivative at high resolution.

The preparation of heavy atom derivatives is essentially an empirical method but 

the choice of reagents can be directed by the protein’s chemical and physico-chemical 

characteristics. Information about the protein’s amino acid sequence, its biological 

substrates and cofactors and the composition of the crystallisation medium can be useful 

when selecting heavy atom reagents. Further details on the preparation of heavy atom 

derivatives are given in several excellent texts (Chapter 8 in Blundell and Johnson, 1976; 

Petsko, 1985; Leslie, 1991).
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6.2 Experimental Methods

Hexagonal crystals (P622) were grown for the recombinant LA as described in 

Chapter 3. The CNBr-treated material was used as bigger and more ordered crystals 

could be grown after the removal of additional N-terminal methionine. Heavy atom 

compounds were dissolved in a solution consisting of 0.1M PIPES pH 6 .5 ,1.9M 

ammonium sulphate and lOmM calcium chloride at the desired concentration. Soaking 

studies involved transferring native crystals into sitting drops containing 15-20pl of 

heavy atom solution. Although the hexagonal crystals can only be grown around 37°C, 

they are quite stable at room temperature. The soaking studies were therefore carried out 

at between 18-20°C.

Table 6.1 —  Station Statistics

Station 7.2 9.5

Wavelength (A) 1.488 1.0
Distance (cm) 199.8 490.0
Resolution at edge (A) 3.5 3.4
Oscillation per image (°) 2.5 2.5
Recording device 18cm MAR 30cm MAR
Exposure (sec) 60 70
Derivative datasets 8 7
collected

After the desired soaking time had elapsed, the crystals were mounted in thin- 

walled quartz capillaries and the majority of the heavy atom solution was removed. 

Medium resolution diffraction data were collected at the SRS, Daresbury Laboratory on 

stations 7.2 and 9.5. Various station parameters including crystal-to-detector distance, 

resolution at the edge and oscillation steps are given in Table 6.1.
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DENZO and SCALEPACK  were used to process and reduce the diffraction data 

(Otwinowski, 1993). Structure factor amplitudes were calculated in TRUNCATE (CCP4) 

and the programs LOCAL and SCALEIT (CCP4) were used to obtain an initial estimate of 

the quality of each potential derivative (Aiso, RdcnvX Subsequent analysis was carried out 

using the PH ASES  package of programs (Furey and Swaminathan, 1990).

In addition to the soaking trials, attempts were made to replace LA’s tightly- 

bound calcium ion with a heavier atom prior to crystallisation. A calcium-free (apo-) 

form of bovine milk LA was prepared using the acid displacement method (Kronman and 

Bratcher, 1983). A sample of LA was run down a G-15 Superdex column that had been 

equilibrated with lOmM HC1 (pH 2). The eluted apo-LA was dialysed against distilled 

water (metal-free) and lyophilised. For the crystallisation trials, the apo-LA was 

dissolved in 0.1M PIPES pH 6.5, containing the desired concentration (2.5 and 5mM) of 

heavy metal, and equilibrated for 15mins. The final concentration of protein was 

20mg/ml. Crystallisation trials were then carried out as described in Chapter 3 except 

that no CaCL was added to the crystallisation medium. The rare earth metals lanthanum 

(La(Ac)s), samarium (SmCl3) and gadolinium (Gd(N03)3) were chosen to replace the 

calcium due to their similar atomic radii (Drenth, 1991).
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Table 6.2 — Derivative Statistics

Compound Cone
(mM)

Soak
(hrs)

R sytafJ) Nref Compb
(%)

Aisoc
(%)

d̂criv*1
(%)

Cell Dimensions (A) 
a b c

Native - - 6.0 2589 97.8 - - 93.68 93.68 67.04
Gd(N03)3 5.0 1.5 5.4 2246a 68.7 13.5 5.9 93.78 93.78 67.24

2.5 24 5.5 2309a 88.6 21.2 9.6 93.81 93.81 67.23
1.0 24 7.3 1981 74.7 24.2 10.2 93.66 93.66 67.14

La(Ac)3 2.5 24 8.7 2311a 92.8 25.8 11.3 93.22 93.22 66.44
1.0 24 7.0 2468 92.6 12.6 5.1 93.66 93.66 67.17

KzPtCU 5.0 1.5 10.2 2414a 95.0 25.8 10.3 93.75 93.75 67.36
2.5 24 12.2 2466a 96.7 22.9 8.2 93.88 93.88 67.50
2.5 384 9.8 1593 60.1 27.1 11.6 93.40 93.40 67.14
1.0 24 5.4 2296 86.2 28.4 7.4 93.60 93.60 67.28

U 02(N 03)2 2.5 24 7.5 1740a 68.7 22.8 7.9 93.80 93.80 67.19
pCMBS 1.25 24 4.2 1837a 72.3 8.7 3.6 93.89 93.89 67.34
Na2IrCl6 1.0 24 19.5 1353 51.0 27.4 10.0 93.40 93.40 66.70

KI 2.0 24 4.7 2506 94.7 11.5 4.5 93.47 93.47 66.90
K 2H g l 4 1.0 24 3.9 2209 82.9 9.4 3.7 93.70 93.70 67.17

* Data collected to 3.5A. In all other cases diffraction data was collected to 3.4A. 
b Completeness <*> -  Resmax ( / > Oo)
c RMS fractional isomorphous difference (Ajso) calculated by LOCAL

d Rdcm calculated by SCALEIT. Defined as X | FPH -  FP | / X |  FP |
hkl /  htt
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6.3 Results

Attempts to obtain derivatives using the calcium replacement strategy were 

relatively unsuccessful. Although cocrystals were obtained for Sm3+ and Gd3+-treated 

apo-LA, initial diffraction analysis showed that they were non-isomorphous with the 

native hexagonal crystals and had extremely large cell dimensions (&*200A). Further 

analysis showed that these crystals are similar to a monoclinic form that is sometimes 

observed at 37°C (see Table 3.1).

In the soaking studies, a number of different heavy metal compounds were 

evaluated. Several could not be dissolved in the mother liquor due to the high 

concentration of ammonium sulphate (e.g. NaAuCL*). A summary of the derivative 

statistics is given in Table 6.2. In general, the crystals were fairly tolerant to a wide 

variety of compounds. Crystals cracked in only two cases: in the presence of pCMBS at 

concentrations higher than 1.25mM and at all concentrations of SmCL tested. Heavy 

metal soakings caused no appreciable changes in the hexagonal cell (Table 6.2). The 

maximum change in cell dimensions was observed for a La(Ac)3 derivative (2.5mM, 

24hrs) where a and b decreased by 0.5% and c decreased by 0.9%. Pt and Ir-soaked 

crystals exhibited a slight colour change indicating that heavy atom binding may have 

occurred. However, a marked deterioration in the diffraction quality of the IrCl6-soaked 

crystals was observed during data collection and this is reflected by an extremely large 

RsymiO- Although, future soaking studies with IrCL should involve lower concentrations 

of this reagent, the rapid deterioration of the diffraction quality with time suggests a 

substantial increase in the crystal’s susceptibility to radiation damage in the presence of 

this reagent.
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KI, K2HgI4, pCMBS and La(Ac)3 soaked crystals were essentially ‘native’ based 

on their relatively low mean fractional isomorphous differences and Rdcm values (Table

6.2). It is unlikely that any heavy atom binding occurred in these cases. Of the remaining 

derivative datasets, only the Gd3+ and PtCL*2' appeared to be more promising. Subsequent 

examination of all the isomorphous difference Pattersons failed to yield any strong, clear 

peaks on the Harker sections (w, v and w = 0). In some cases, several self-consistent 

peaks were identified but initial phases, calculated from these sites, had very poor 

statistics (PHASIT). /̂ centric values were used as a primary indicator of potential heavy atom 

sites and none of the potential sites examined had values below 0.70.

6.4 Summary

The replacement of the calcium ion in LA with a suitable heavy atom was an 

extremely attractive way to obtain the additional phasing information required to solve 

the structure. The calcium binding site is well defined in the LA molecule and the calcium 

ion can be removed without denaturing the protein. The failure to obtain hexagonal 

crystals could be due to a number of reasons. The first possibility is that none of the 

heavy atom occupied the vacated binding site. However, the observation that protein 

crystals could be obtained at all suggests that the calcium binding site was occupied by 

the desired heavy atom. Previous studies have shown that apo-LA cannot be crystallised 

in the absence calcium (unpublished observations). Calcium rebinding due to 

contamination of the reagents was considered unlikely due to the large excess of rare 

earth metal used in the initial equilibration.
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A second possible explanation for the failure to obtain hexagonal crystals is that 

the rare earth, metal-loaded apo-LA has a different conformation from the native 

calcium-bound protein. LA is known to undergo a series of conformational changes in 

the presence of various metal ions (see Kronman, 1989). Although a slight 

conformational change may affect packing interactions between the LA molecules, it 

seems likely that such an effect does not take place as the monoclinic crystal form, that 

was obtained in the cocrystallisation trials, is sometimes observed with native LA under 

the hexagonal conditions. A more plausible explanation is that the excess heavy atoms 

directly influence the crystallisation process. Rare earth metals are known to bind to at 

least two other low affinity sites in LA that are distinct from the calcium binding loop 

(Kronman, 1989). Binding at these additional sites may influence the packing and final 

spacegroup of the crystals. Therefore, preparation of a lanthanide-loaded form of apo- 

LA in a 1:1 stoichiometry, targeting the high affinity site, might remedy the current 

situation.

The lack in finding any suitable derivatives in the soaking studies may be due to 

the high concentrations of ammonium sulphate (1.9-2.0M) present in the mother liquor. 

Ammonium sulphate is known to be a poor mother liquor due to the production of NH3 

nucleophiles which can compete with heavy metals for binding sites on the protein 

(Sigler and Blow, 1965). A possible solution would be to replace the ammonium 

sulphate with another salt, such as sodium or lithium sulphate, or polyethylene glycol 

(PEG). Ammonium sulphate also has a high ionic strength. This tends to weaken 

electrostatic interactions and may prevent heavy atom binding. Results from the 

preliminary screening suggest that some heavy atom binding might have occurred but it
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is associated with a multitude of poorly occupied sites. Therefore, switching to a PEG- 

based mother liquor, may improve the quality of heavy atom binding.

The present work represents a preliminary screening of a subset of potential 

heavy atom reagents. Lack of success in a more exhaustive search may prompt the use of 

alternative strategies. A more radical approach would be to try to insert a mercury atom 

into the hyper-reactive 6-120 disulphide bond (Ikeguchi et al., 1992). This technique 

was critical in the structure determination of LA from baboon milk (Smith et a l,  1987). 

As long as the disulphide bond is accessible in the hexagonal crystals, derivatisation can 

be accomplished in the crystalline state (Ely et al., 1973). If all else fails, the recombinant 

LA could be genetically altered with relative ease so that it contains additional heavy 

atom ligands. Potential modifications include the introduction of a free cysteine residue 

in an accessible region of the protein or the incorporation of selenomethionine in the 

place of methionine (Tucker et al., 1989; Nagai et al., 1991). The structure of the latter 

could then be solved by the multiwavelength anomalous diffraction (MAD) technique. 

However, such genetic alteration is not always straightforward as there is no guarantee 

that crystals of the variant LA will be isomorphous with the ‘native’ hexagonal form.
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Chapter

Refinement and Model Building

7.1 Refinement Methods

7.1.1 Introduction

In order to obtain an accurate description of a protein’s atomic positional and 

thermal parameters (jc, y, z, F), the initial model must be altered in such a way as to 

maximise its agreement with the experimental observations. This can be achieved by 

minimising the sum of the squares of the differences between the observed and calculated 

structure factors,

<|> =  £ w h  f l f t t a  ( h ) |  -  | f U  (h)|)2 [Eq. 7.1]
h

where h  represents the reflection hkl and are the weights associated with F o b s (h ) .  In 

protein crystallography, this is achieved by methods involving least squares minimisation 

and empirical energy minimisation. Although true least squares minimisation can in 

principle be performed if the number of observations exceeds the number of parameters, 

the degree of experimental error in protein crystallography often dictates that the ratio of 

observables (Fobs) to unknowns (atomic positions, F-factors etc.) is considerably higher
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than is often available. In a few cases, true least-squares refinement methods can be used 

if atomic resolution data is available (Dauter et al., 1992; Wilson, 1994). However, most 

protein structures can only be determined at less than atomic resolution (1.5-3.0A) and 

consequently the observation to parameter ratios are relatively low. As a result, gross 

distortions of stereochemistry tend to be introduced into the structure due to the atomic 

shifts calculated from the least squares equations. Furthermore, the inaccuracy of initial 

protein structures, combined with the non-linear nature of the refinement process, 

typically results in convergence to a false minimum if true least squares methods are 

used. Therefore, in order to accurately refine protein structures at less than atomic 

resolution, the least squares equations are modified to incorporate physical and chemical 

information relevant to macromolecular structures (Hendrickson, 1985). Stereochemical 

restraints, such as bond distances and angles, the chirality of amino acids and the 

planarity of peptide bonds and aromatic rings, serve to increase the number of 

observations and augment the diffraction data.

Additional procedures that have been developed to improve the refinement of 

protein structures include combination of the restrained, least squares procedure with 

energy minimisation and the use of molecular dynamics to escape ‘local’ minima during 

the refinement process (Jack and Levitt, 1978; Briinger et al., 1987). The rest of this 

section will briefly describe the refinement process implemented in the X-PLOR package of 

programs (Briinger, 1990a; 1992a).
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7 .1.2 X-PLOR

7.1.2.1 The Energy Function

X-PLOR provides all the tools required to carry out the crystallographic refinement 

of proteins. The aim of the refinement is to find the global minimum of the target 

function,

E  =  EcHEMICAL +  WXRAY ExRAY  [Eq. 7.2]

where E c h e m i c a l  comprises information about known chemical interactions, E x r a y  is the 

crystallographic residual and wxray is an appropriate weight (Jack and Levitt, 1978). The 

rationale for refining against an empirical energy function is the assumption that the true 

protein structure is at an energy minimum as well as being a best fit to the experimental 

observations. In the X-PLOR energy function, the total energy (E t o t a l ) consists of two 

separate terms.

E t o t a l  =  E e m p r i c a l  +  E e f f e c t i v e  [Eq. 7.3]

E e m p i r i c a l  encompasses the geometric and stereochemical restraints used in the 

refinement. It is analogous to E c h e m i c a l  (Eq. 7.2) and describes the energy of the 

molecules within the AU through a geometric energy function consisting of covalent 

interactions (bond lengths, bond angles, dihedral torsion angles, chiral centres and 

planarity of aromatic rings) and non-bonded (Van der Waals, hydrogen bonds and 

electrostatic) interactions. The force and geometric constants used in E e m p i r i c a l  are 

derived from small molecule crystallography and those used in X-PL0R3.1 are taken from a 

recent comprehensive survey of the Cambridge Crystallographic Database (Engh and 

Huber, 1991). The non-bonded energy terms in E e m p ir i c a l  (electrostatic and Van der
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Waals) are subdivided into terms that describe intramolecular, crystallographic and non- 

crystallographic interactions (Briinger, 1992a).

The E e f f e c t i v e  term in Eq. 7.3 consists of restraining energy terms that use 

experimental information such as structure factor amplitudes (E x r e f ) and non- 

crystallographic symmetry (E m c s)• The most commonly used form of E x r e f  is the 

crystallographic residual (similar to Eq. 7.1) with suitable weights. A scale factor (k) is 

applied to the Fcajc terms to minimise the residual. Computation of the structure factors 

(Fcaic) is accomplished by Fast Fourier transformation of the electron density (Briinger,

1989). If local symmetry is present, NCS-related molecules cm  either be treated as being 

strictly identical or atomic positions within the related molecules can be restrained to 

their average position. Similarly, NCS-related temperature factors can be restrained to 

their average value in the refinement of individual B-factors. The use of NCS restraints 

considerably improves the effective observation to parameter ratio and also speeds up 

convergence of the refinement procedure. More detailed descriptions of the various 

effective and empirical energy terms are given elsewhere (Briinger, 1992a).

7.1.2.2 Monitoring the Refinement

Progress in the refinement process is traditionally measured by the B-factor, 

defined as

£ ||F o b .(h ) |-£ |F c,ic(h)||

I * . ( b )  [ E q - 7 ' 4 ]

h

B-factors vary from 59% for a random acentric structure to values of between 10 and 

20% for final refined protein structures. These values contrast the noise level in the
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diffraction data which is estimated to be about 5%. The discrepancy between the final 

protein /^-factor and the noise most likely results from an inability to correctly model 

thermal atomic motion, disordered regions of the protein and the disordered nature of the 

bulk solvent

The /^-factor is closely related to the crystallographic residual. By increasing the 

number of model parameters and refining against the crystallographic residual, the R- 

factor can be reduced to a relatively small value. In other words, during refinement the 

diffraction data can be significantly ‘overfitted’ (misfitted) even though there is no 

concomitant improvement in the ‘correctness’ of the atomic model. As a result, an 

incorrect model can often be refined to a respectable R -factor (Branddn and Jones,

1990). The advent of sophisticated refinement methods has compounded this problem. A 

common concern during refinement is whether the alterations made to the model actually 

improve the accuracy of the phase angles or merely overfit the structure factor 

amplitudes. To overcome the impressionable nature of the conventional /^-factor,

Briinger proposed a second reliability index, the free /^-factor (Rfrcc) (Briinger, 1992c).

Rfne is a statistical quantity that measures the agreement between observed and 

calculated structure factors for a set of reflections (7) that are omitted from the 

refinement. Rtec is defined as,

^  ||F<,b. (h)| -  k\Fa\c (h)||
Rt». = hgr -------- :-------- [Eq. 7.5]

h cr

where h c z T  represents all the reflections (hkl) belonging to the test set (T) of 

reflections. R^cc is highly correlated to the phase accuracy of the atomic model and is
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independent of the number of model parameters and restraints used (Briinger, 1993). It is 

particularly useful for distinguishing correct and incorrect molecular replacement 

solutions (Briinger, 1992b), checking for over-fitting and generally guiding the 

refinement protocol. It can also be used to optimise the overall weighting between the 

diffraction data and the chemical restraints (viVay in Eq. 7.2) and to choose an appropriate 

temperature-factor model (Briinger, 1993). Free 7?-factors tend to be higher than 

conventional R-factor values and reported values for Rt<x range from the low 20s to the 

mid thirties for macromolecular structures. As a rule of thumb, the final free R value is 

generally equal to the sum of the final conventional R-factor and the merging R-factor of 

the diffraction data (Kleywegt and Jones, 1995b).

7.1.2.3 Generalised Refinement Protocol

A standard procedure has been used to refine the initial structures determined by 

molecular replacement Today’s refinement methods are open to considerable abuse and 

this has prompted considerable attention recently (Brandon and Jones, 1990; Kleywegt 

and Jones, 1995a,b). The use of powerful minimisation techniques such as molecular 

dynamics, a judicious choice of weights ( w x r a y )  and over-enthusiastic refinement of 

atomic temperature factors, especially in cases where there are insufficient observations, 

can reduce the /^-factor to an unrealistic value. Therefore, considerable care needs to be 

taken during the refinement procedure. In most cases, initial refinement procedures 

should restrict the number of degrees of freedom of the model so as to limit erroneous 

adjustments in the model. In this case, these considerations have not been rigorously 

applied as the high resolution structures of several LAs, on which the MR search model

150



7: Refinement and Model Building

was based, have been determined independently. Nevertheless, NCS restraints and R^cc 

have been used in the present work wherever possible.

X-ray diffraction data were converted into X-PLOR format using MTZ2VARI0US 

(CCP4) and subsequently divided into the two reflection sets required for the Rbcc 

calculation. The test set (7) typically consisted of either 5 or 10% of randomly selected 

reflections. Molecular topologies, describing the model’s atomic and covalent properties, 

were created using GENERATE. The first refinement step after molecular replacement was 

a rigid-body refinement. In this method, groups of atoms, typically the molecules in the 

AU, are treated as rigid bodies and three rotational (01,62,63) and three translational 

(x,y,z) degrees of freedom are minimised against E t o t a l .

After rigid-body refinement, the models were refined using a generalised 

refinement and rebuilding protocol (Figure 7.1). Prior to each refinement cycle, the ideal 

weight (WA) between E x r e f  and E e m p ir i c a l  was calculated (CHECK). This empirical method 

typically over-determines the value of WA by a factor of 2 or 3. A better estimate of the 

weight can be obtained by minimising R ^  using simulated annealing (Briinger, 1993). 

The molecule was subjected to both conventional and simulated annealing positional 

refinement. At all stages, the refinement process was monitored by R^cc and the number 

of cycles of minimisation were adjusted to minimise 7?free. In PREPSTAGE and POS, the 

model was subjected to conventional positional refinement using the conjugate gradient 

method of Powell (1977). In this method, the coordinates of all the free atoms are used 

as variables in the minimisation of E t o t a l . Strain and bad contacts introduced by manual
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QUALITY
CONTROL

ANAL
Determines deviations 

from ideality

PROCHECK
Performs a detailed 

analysis of the model

REBUILDING
Interactive, manual rebuilding of 
the model using FRODO or O

POS
Conventional positional 

refinement with assigned 
temperature factors

PREPSTAGE
Relieves strain and bad contacts 
introduced by manual rebuilding

POS
Conventional positional refinement using 

Powell's conjugate gradient method

CHECK
Determines the ideal weight between 

Exhef  and Eempircal via molecular 
dynamics

BREF
Grouped or individual, restrained B- 
factor refinement using CGM. In the 
presence of NCS, individual B's are 

restrained to their average values

MAP CALCULATION
Difference Fourier syntheses of the kind 

2F0te-Fcac and FoCe-Fcdc are used with the 
appropriate weighting scheme to calculate 
electron density maps for model rebuilding

SLOWCOOL
Simulated annealing using molecular 

dynamics coupled to a heat bath. The 
system is cooled slowly from a starting 

temperature of 3500°K to allow 
equilibration at each stage

Figure 7.1 —  Generalised refinement protocol.

rebuilding were relieved in PREPSTAGE by initially using a non-bonded ‘repel’ function 

without any electrostatic energy terms. After between 5 and 40 cycles of the repel step, 

depending on the state of the refined model, the repel function was turned off and the 

model was subjected to 100-200 cycles of conventional Powell minimisation. If further 

Powell minimisation was deemed beneficial, additional cycles were performed in POS.
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The next step in the refinement protocol utilised simulated annealing (SA) 

through molecular dynamics (SLOWCOOL). This method is particularly useful in the early 

stages of refinement as it allows both uphill and downhill search directions to overcome 

barriers in the energy function. S A methods allow the sampling of a large area of 

conformational space and consequently have a large radius of convergence. Considerable 

improvements in the model’s R -factor and geometry can be achieved using this technique 

(Briinger et al., 1987; Kuriyan et al., 1987). SA is also beneficial in cases where initial 

phase estimates have been obtained through MR, as it can remove most of the inherent 

bias towards the phasing (search) model. The ‘slow-cooling’ protocol used here typically 

involved heating the system up to 3500°K and then cooling to 300°K at a rate of 1°K per 

femtosecond (Briinger et al., 1990c). The slow-cooling step was rounded off with up to 

150 cycles of Powell energy minimisation. This relieves any geometric distortions that 

might have been introduced into the structure during the annealing process.

In BREF, the temperature factors of the model were refined. Temperature factor 

refinement is accomplished by tightly restraining the variance of the interatomic distances 

so that the £ -factors of bonded atoms are correlated. The target function is minimised 

using the Powell conjugate gradient method. Although there was sufficient data to refine 

individual atomic B-factors in all cases, during the early stages only two temperature 

factors were refined per residue (grouped B-factor refinement). In the grouped 

refinement, the mainchain and sidechain atoms were allocated one parameter each. Once 

B-factors had been assigned to the atoms, the final step in the refinement protocol 

involved 50-100 cycles of positional refinement (POS).
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7.1.2.4 Map Calculation

To minimise model bias in the calculated electron density maps, the program 

SIGMAA (CCP4) was used to obtain weighted map coefficients for the use in the 

difference Fourier syntheses. Structure factors were calculated for the refined model 

using SFALL (CCP4) and subsequently scaled with the observed structure factors using 

RSTATS (CCP4). Weighted Fourier coefficients were calculated from the calculated 

phases of the model using the program SIGMAA (CCP4) (Read, 1986; 1990). Initially 

SIGMAA estimates a value for oA over a series of resolution shells using normalised 

structure factors. A figure of merit for each reflection and the coordinate error in the 

model are then calculated. The output map coefficients were subsequently used in FFT 

(CCP4) to obtain difference maps of the type:

m|Foi,|-D|/rcaic|<;“ t“ ‘ and 2m|Fol)s|-D|Fcaic|e2”“̂  

where m is the figure of merit and D is the coordinate error defined by Luzatti (1952). In 

the later stages of refinement and rebuilding, unweighted electron density maps were 

calculated using X-PLOR.

7.1.2.5 Manual Rebuilding

Both FRODO and 0 have been used for manual rebuilding (Jones, 1985; Jones et 

al.y 1991; Jones and Kjeldgaard, 1993). FRODO was run on an Evans and Sutherland 

PS390 and 0  (versions 5.9 and 5.10) was run on a Silicon Graphics Indigo2 workstation. 

Due to the relatively high homology between the MR search model and the bovine, goat 

and guinea-pig LAs, rebuilding was fairly straightforward and mainly involved correcting 

sidechain torsion angles and adding tightly bound solvent molecules. Nevertheless, the
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rotamer library in 0  was particularly useful for determining the conformation of 

problematic sidechains (Zou and Mowbray, 1994).

7.1.2.6 Assessing Model Quality

The refined model’s stereochemical and geometric characteristics were routinely 

analysed at the end of each refinement cycle. Two methods were used; the first involved 

X-PLOR's internal geometric analysis (ANAL) which produces a list of r.m.s deviations from 

ideality for bond lengths and angles, dihedral and improper angles and non-bonded and 

crystal packing contacts. The model’s stereochemistry was also analysed using the 

program PROCHECK (Laskowski et al., 1993). PROCHECK evaluates a series of parameters 

such as the quality of the Ramachandran plot, peptide bond geometry, bad contacts, 

hydrogen bond energies and sidechain geometry. PROCHECK was used to assess the 

overall quality of the model at different stages of refinement and also during manual 

rebuilding to identify potential problem areas in the structure. Other quality checks used 

during the refinement process included analysis of 5-factors and, where appropriate, 

comparisons between NCS-related molecules.

7.2 Monoclinic mLA

7.2.1 Refinement

The AMoRe solution was initially refined against a 3 A in-house dataset (AD- 

LAB2) collected from the monoclinic in crystals (sodium form). Seventy cycles of rigid- 

body refinement (RBR), using data between 10 and 3.5A (5737 reflections) with each of 

the four molecules in the AU as a separate entity, did not reduce the conventional R- 

factor (38.8%). This was not surprising as the MR solution had already been subjected to
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RBR in AMoRe (FITING). Subsequent positional refinement (conventional and simulated 

annealing at 3500°K), using all data between 15 and 3.5A (8199 reflections) and NCS 

restraints, reduced the conventional /^-factor to 21.1%. The only rebuilding performed at 

this stage was the modification of the calcium binding ligands (Asp 82, 87 and 88) so 

that a calcium ion could be incorporated in each molecule.

High resolution refinement was begun after a relatively complete 2.3A dataset 

had been collected from the monoclinic III crystals (magnesium form) at the SRS. A 

summary of the various cycles of refinement are given in Table 7.1.

Cycle la  — Due to the slight unit cell differences between the sodium and magnesium 

forms of the monoclinic crystals (0.6A in a, 0.4A in b, 0.6A in c and 0.15° in p), RBR 

was initially used to adjust the position of the model. Five percent of the diffraction data 

(971 reflections) was partitioned into the test set (7) for the R t« calculation. Fifty cycles 

of four-body RBR, using data between 10 and 3.5 A reduced the conventional and free 

R-factors to the low 30s. Shifts produced by RBR were less than 1.8° for the angular 

parameters and less than 0.8A for the translational parameters.

Cycle lb  — Immediately after the RBR, the model was subjected to conventional 

positional and individual B-factor refinement using all the data between 8 and 2.5A. The 

atomic positions of the four molecules (A-D) in the AU were restrained using the 

available non-crystallographic symmetry. At the start of the refinement all the atomic B- 

factors were set to 15A2. Molecule A was rebuilt manually using 0. The additional N- 

terminal methionine residue, clearly visible in both the a A-weighted 2F0-F c and FQ-F C 

maps, was incorporated into the model. This residue was designated IX so that it did not
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interfere with the numbering of the wild type protein. The amino acid substitution at 

position 90 was also clearly visible, appearing as

Table 7.1 —  Summary of the mLA refinement.

Cycle Atoms Protocol11 NCSC Resolution 
Range (A)

No. of1 
Reflection

/?-factor Free /?-factor
Protein Other* IN OUT IN OUT

la 3864 4 RBR 4 body 10-3.5 5581 39.4 32.2 38.4 30.9
lb 3864 4 Pr/P/B/P restrain 8 -2 .5 14534 46.8 25.7 46.9 35.4

2 3896 4 Pr/P/S/B/P restrain 8 -2 .5 14534 35.7* 24.0 37.4* 31.3

3 3896 0 Pr/S/B/P restrain

V)c4I00 14534 26.7 20.0 31.3 30.5
4 3896 3 Pr/S/B/P none 8 -2 .3 17711 25.1 21.7 31.4 30.9
5 3896 64 +4 Pr/B/P none 8 -2 .3 17711 25.9 21.3 31.1 29.5
6 3922 90 + 4 Pr/S/B none 8 -2 .3 17711 25.7 21.5 31.2 32.0
7 3979 88 +4 Pr/B/P none 8 -2 .3 17711 23.1 20.4 32.1 31.9
8 3957 16 + 2 Pr/B/P none 8 -2 .3 17711 23.3 21.4 30.0 30.3
9 3941 87+4 Pr/B/P/B/P none 8 -2 .3 18605 25.0 20.9 - -

10 3975 106+4 P/B/P/B/P/B/P none 8 -2 .3 18605 31.9* 20.8 - -
11 3958 60 + 4 P none 8 -2 .3 18605 20.8 20.8 - -

* Non-protein atoms are water molecules and calcium ions (italics)
b Abbreviations used: RBR, rigid-body; Pr, PREPSTAGE; P, POS; S, SLOWCOOL; B, BREF (individual) 
c NCS restraints equivalenced molecule A with the other three molecules using a 250kcal/mol-A2 effective force constant 
d Number of reflections refers to those in the ‘woiking set' (i.e. used for refinement)
* fi-factors reset to 30A2 prior to refinement

a truncation of the sidechain density in the 2F0-F c map, and the methionine in the search 

model was replaced with a valine. All the other alterations to the model involved the 

tweaking of sidechain torsion angles. Molecules B, C and D were generated from the 

rebuilt molecule A, using the least-squares superposition (LSQ) option in 0, and the 

resultant model was re-refined.

Cycle 2 — A similar refinement protocol to cycle lb was used apart from an additional 

SA step (2500°K). This procedure improved both R -factors and the model’s deviations 

from ideality. On viewing the 2FQ-F C and F0-F c maps, it became clear that all four 

molecules were slightly different and so each one was individually rebuilt. The electron 

density for the two dimer pairs (AB and CD) was radically different Molecules A and B 

exhibited weak density for residues 43-47,71-78 and 112-117 whereas molecules C and
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D were poorly defined in the regions 1-4, 40-48 and 52-78. The disordered nature of 

these regions is reflected in their final 5-values (Figure 7.4). Major alterations at this 

stage included fitting residues 41-48 into the electron density and adjusting the torsion 

angles of residues 45 and 46 in each protomer so that they fell into allowed regions of 

the Ramachandran plot and correcting the geometry of the calcium binding sites.

Cycle 3 —  The resultant model was refined using a similar protocol to cycle 2 whilst still 

maintaining NCS restraints. Although each of the protomers had been rebuilt separately, 

the extent of the data at 2.5A resolution was deemed to be insufficient to permit a release 

of the restraints. At the end of the refinement, the conventional and free 5-factors had 

improved by 4% and 0.8% on the values obtained after cycle 2. Residues 45 and 46 in 

each protomer required further torsional adjustments. In addition, electron density for 

the bound calciums was particularly weak, especially in molecules C and D where the B- 

factors were 50.33A2 and 51.67A2 respectively. The mainchain of calcium binding sites 

in molecules C and D was also distorted between residues 82 and 84. This scenario 

would become a recurrent theme during the rest of the refinement Consequently, all four 

calcium ions were excluded from the model to see if they would return as peaks in the 

F0-F c difference density.

Cycles 4 to 8 — During these cycles, the high resolution limit was increased to 2.3A and 

the NCS restraints were removed. The addition of water molecules and further rebuilding 

had a minimal effect on 5 free and it stagnated at around 30%. The excluded calcium ions 

reappeared in the F0-F c difference density and were incorporated into the model over the 

next two cycles (4 and 5). After cycle 5, the C-terminal tripeptide (Glu-121 to Leu-123) 

was included in molecule C as the electron density in this region was reasonably well-
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defined; in the following cycle, the C-termini (poly-alanine) were tentatively added for 

molecules A, B and D. The occupancy and geometry of the calcium sites of molecules C 

and D continued to cause problems and so simulated annealing omit maps were 

calculated over this region. In each case, residues 79 to 89 were omitted along with a 

surrounding 8A sphere and the remaining atoms were subjected to SA from a starting 

temperature of 1000°K. The calcium binding loops were rebuilt with a bound ion using 

the resultant omit maps. These maps indicated that there was no significant change in the 

calcium coordination in molecules C and D. The primary cause of the problems 

encountered in this part of the structure appears to be associated with its high 

temperature factors. A significant number of the water molecules that were added in each 

rebuilding step refined with 5-values greater than 50A2. This can be attributed to the 

high overall B-factor applied to the data and water molecules were only included in the 

model if they fulfilled strict hydrogen-bonding criteria and had 5-values that were less 

than 60A2.

Cycles 9 to 11 — By this stage of the refinement, alterations to the model did not 

improve 5 free and therefore all the data to 2.3A was used in the last two refinement 

cycles. A series of positional and temperature factor refinements improved the 

conventional 5-factor by 0.7% and gave a final value of 20.8%. Manual rebuilding was 

entirely focused on the positions of water molecules and the C-terminal tripeptides of 

each molecule. The large rise in the 5-factor between the end of cycle 9 and 10 was due 

to resetting all the temperature factors to 30A2. The 5-factors were subsequently 

reassigned using a series of short conventional positional refinements interspersed with 

individual 5-factor refinements until the 5-factor converged. Residues 122 and 123 in
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molecule C had extremely poor density and were removed from the model. Solvent 

molecules with temperature factors above 60A2 were removed from the final model 

before carrying out a final five cycles of positional refinement. The final structure had a 

R -factor of 20.8% for all data between 8 and 2.3A (18605 reflections).

Table 7.2 —  Statistics for the final mLA structure.

Molecule All A B C D

Protein atoms 3958 992 983 983 1000
Water molecules (calcium ions) 60(4) 26(1) 20(1) 8(1) 6(1)

Rmsd bond lengths* (A) 0.011 0.012 0.012 0.010 0.011
Rmsd bond angles* (°) 1.73 1.81 1.80 1.63 1.66
Rmsd dihedrals* (°) 24.70 25.60 24.54 24.00 24.70
Rmsd impropers* (°) 1.55 1.56 1.59 1.55 1.52

Average overall £-factor5 (A2) 48.39 40.15 40.43 54.04 59.10
Rms AB bonded atoms'* (A2) 4.08 4.33 4.33 3.90 3.76
Average mainchain £-factor5 (A2) 47.60 38.98 39.46 53.18 58.67
Average sidechain £ -factor5 (A2) 49.41 41.20 41.48 55.16 59.69
Average solvent £ -factor5 (A2) 40.58 42.45 37.88 37.36 45.79
Average calcium £-factor5 (A2) 49.45 35.18 43.38 63.11 56.12

Ramachandran plot,
Most favoured areas0 (%) 81.6 83.2 80.4 83.9 78.9
Additional allowed areas0 (%) 17.5 15.9 18.8 15.2 20.2
Generously allowed areas0 (%) 0.9 0.9 0.9 0.9 0.9
Disallowed areas0 (%) 0.0 0.0 0.0 0.0 0.0
Non-rotamer sidechain 4.3 4.9 6.6 1.6 4.0
conformations0 (%) 
Overall G-factor° 0.12 0.09 0.13 0.15 0.11
a Calculated using X-PLOR geometric analysis tools 
b Calculated using 4D_MOLEMAN 
c Defined by PROCHECK

7.2.2 Assessment of the Quality of the Final Model

The final structure consists of 4022 atoms of which 3958 are protein, 60 are 

solvent and 4 are calcium ions. It proved impossible to completely define the positions of 

all 124 residues in each protomer due to the flexibility of the C-terminal tripeptide.
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Molecule A comprises residues 1X-1221, molecules B and C of residues 1X-121 and 

molecule D of residues IX-123. Despite the poor definition of some regions of the 

structure, the final model has acceptable stereochemical and geometric statistics (Table

7.2). The mean coordinate error is estimated by SIGMAA to be 0.46A (5-2.3A). This is a 

little higher than the range commonly observed for refined protein structures (0.2-0.3A) 

and probably due to a combination of the effects of radiation damage on the crystals and 

the relatively poor quality of the high resolution diffraction data.

A. Agreement with the Electron Density

The electron density is continuous along the whole protein backbone apart from a 

few surface loops. A representative portion of the electron density is shown in Figure 

7.2. Although the overall electron density is good, there are several regions that are 

extremely poorly defined. The exposed loop regions of molecules A and B, consisting of 

residues 45-47 and 63-65, have weak electron density and there are several breaks in the 

continuity of the mainchain electron density. Residues 112-117 and those after Leu-119 

are also poorly defined. Mobility at the C-terminus is highlighted by the extremely poor 

density for the SY atom of Cys-120.

In contrast, molecules C and D are poorly defined at the N-terminus (Glu-1 and 

Gln-2) and around residues 43-47, 56-78 and those after Cys-120. The majority of the 

mainchain electron density breaks occur in the second half of the p-domain. This region 

in molecules C and D is not involved in any crystal contacts and is particularly mobile 

(Figure 7.4).

1 IX refers to the additional N-terminal methionine residue present in the recombinant mLA structure.
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Figure 7.2 —  Representative portion of the 2 F 0- F C electron density with the final mLA 
structure.

The view shows the electron density in the core of the a-domain of molecule A. Residues 
Phe-53 (centre), Tyr-50 (lower middle), Trp-26 and Trp-104 are shown. The calcium 
binding site is also apparent on the far right hand side of the plot. The two mainchain 
calcium ligands (Lys-79 and Asp-84) are shown along with the carboxylate group of Asp-88. 
The resolution is 2.3A and the map is contoured at la  (where a  is the root mean square 
density throughout the unit cell). Crosses indicate the positions of water molecules. Figure 
produced with 4 D _ 0 P L 0 T .

B. Ramachandran Plot and General Stereochemistry

Analysis with the program PROCHECK shows that the final model has acceptable 

stereochemistry and geometry. All eleven parameters evaluated are either within (6), or 

better than (5) the bounds established from well refined structures of an equivalent 

resolution. None of the non-glycine residues are located in disallowed regions of the 

Ramachandran plot and only four residues (Asn-45A, Lys-114B, Ala-40C, Glu-121D), 

are located in a generously allowed region (Figure 7.3). All these residues are located in 

ill-defined and highly mobile regions of the structure.
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Phi (degrees)

Figure 7.3 —  Ramachandran plot for the mLA monoclinic structure.
All four molecules in the asymmetric unit are shown. The various shaded areas of the 
plot correspond to the most favoured (A.BJL), additional allowed (a,b,l,p) and 
generously allowed (~a,~b,~l,~p) regions. The glycine residues are shown as triangles. 
Those residues that fall in the generously allowed regions are highlighted. The plot 
was produced with P R O C H E C K  (Laskowski e t  a l . ,  1993).

C. Temperature Factors

The average overall 5-factors for all four molecules are quite high. This can 

probably be attributed to the scaling process where data, from a relatively large number 

of crystals, had to be merged to obtain a reasonably complete set of data. The high 

overall 5-factor applied in TRUNCATE (38.1 A2) reflects the weak nature of the high 

resolution data. Nevertheless, the isotropic 5-factor model used during refinement 

appears to have been appropriate as there is a good correlation between the 5-values for
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bonded atoms (Table 7.2). The molecules within the two dimers (AB and CD) also have 

similar overall, mainchain and sidechain average temperature factors even though, for 

most of the refinement, the 5-values were not restrained between NCS-related 

molecules (Figure 7.4). The large differences in the thermal mobility of the two dimers 

that is apparent in Figure 7.4 probably reflects their different environments within the 

crystal. Nevertheless, the overall trend of the temperature factors, with respect to 

residue number, is similar for each dimer pair and parallels the variation seen for other 

LA structures (Acharya et al., 1989; 1991; see also Figures 7.7 and 7.10).
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Figure 7.4 —  Average temperature factors for the mLA structure.
The upper panel shows average temperature factors for sidechain atoms, and the lower panel 
shows average temperature for mainchain atoms, against residue number. All four molecules in 
the AU are shown -  A (black), B (blue), C (red), D (green). The positions o f the major 
secondary structural elements are indicated.

D. Similarity of NCS-Related Molecules

As with the temperature factors, the mainchain conformation of the molecules 

within each dimer is similar but the conformation of molecules from separate dimers
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differs significantly (Table 7.3). This breakdown in NCS probably reflects the different 

packing forces that the flexible regions in the LA are subjected to in the crystal. The 

major conformational differences between the four molecules occur in the solvent 

exposed regions Argl0-Aspl4, Gln43-Asp46, Lys62-Gln65 and Seri 12-Aspl 16 (only in 

the AB pair). These regions are poorly defined and exhibit relatively high thermal 

displacements (Figure 7.4). Furthermore, it appears that the conformational differences 

between molecules from each dimer (i.e. AC, AD, BC, BD) are compounded by relative 

mobilities of each dimer pair. The average mainchain B-factor for the AB pair is 39.2A2 

compared to 56A2 for the less well-defined CD dimer.

Table 7.3 —  Comparison of NCS-related molecules.

The dimer pairs (AB and CD) are shaded. The molecules were superposed using the L S Q _ E X P  
command in 0  and the various root mean square deviations were calculated with the program 
4DRMSPDB.

Molecule AB AC AD BC BD CD

Rmsd NCS-related C“ atoms8 (A) 0.28 0.60 0.66 0.59 0.64 0.41
Rmsd all NCS atoms8 (A) 0.96 1.12 1.35 1.26 1.35 1.15
Rmsd core C° atoms'5 (A) 0.20 0.31 0.36 0.33 0.37 0.3
Residues with A<J> > 10° (%) 29.8 43.0 40.5 50.4 45.5 43.0
Residues with Ay > 10° (%) 32.2 44.6 49.6 47.1 49.6 47.1
Rms A B  NCS-related Ca atoms8 (A) 5.10 22.6 25.27 22.66 24.07 6.78
Rms A B  all NCS atoms8 (A) 6.49 23.53 26.05 23.48 25.14 8.12
a Residues M et-IX  to C ys-120
b C ore defined as residues 5-11, 23-43 ,48-61  and 73-111

What are the underlying causes of these differences? Clearly, the packing forces 

within the crystal are partly responsible. Although the local symmetry relates the AB and 

CD molecules, there are no intermolecular contacts either within or between the dimers 

in the crystallographic AU. Furthermore, the dimers are stabilised to different extents by 

the neighbouring molecules in the crystal (Table 7.4). Consequently, the relative 

variation in temperature factors with residue number in each molecule is highly
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correlated with the crystal contacts. For example, virtually all the intermolecular contacts 

made by molecules C and D involve residues at the C-terminus (Leul05-Glnll7) and it 

is understandable why this region is one of the most rigid parts of the structure (Figure

7.4). Conversely, no crystal contacts stabilise this region (Seri 12-Gln-l 17) in molecules 

A and B and, as a result, it is poorly defined. Finally, the absence of any crystal contacts 

involving residues 34-105 in molecules C and D probably explains why this region 

exhibits considerably higher mobility than the corresponding regions in molecules A and 

B (see Figure 7.4).

In summary, the breakdown of local symmetry appears to be almost entirely due 

to differences in the conformation of the poorly defined regions of the structure. Clearly, 

it would be wrong to assume that the NCS-related molecules are identical. Realistic 

differences between molecules related by local symmetry are estimated to be between 0.2 

and 0.3A (Kleywegt and Jones, 1995b). In this case, the deviations are quite large and it 

appears that, for whatever reason, some overfitting may have occurred during the 

refinement. In hindsight, it may been more appropriate to maintain the NCS restraints 

throughout the refinement process given the poor quality and completeness of the high 

resolution data. Nonetheless, these considerations do not reduce the significance of the 

final model as long as one accepts that the differences between the four LA molecules 

are unrealistic. Better quality diffraction data will be required if the conformations of the 

various molecules are to be accurately modelled.
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Table 7.4 — Intermolecular crystal contacts for mLA.

Atom Symm Atom Distance 
__ _____

Atom Symm Atom Distance
(A)

MOLECULE A M OLECULEB
Gln2A N*2 1-A Leul05C O 2.76
Gln2A O Lysl08C N5 2.79 Gln2B NE2 l-A Leul05DO 2.80
Lys5A N Alal09C O 3.07 Lys5B N Alal09D O 3.00
Lys5A Nc Glull3C Oel 3.08 Lys5B N? Glull3D 0*1 3.09

Asn56A N*2 2+A-B Aspl 16C 0*2 2.94 Gln43B NE2 2 Aspl 16A 0 82 3.20
Trp60A N*1 Aspll6C 0 52 3.17 Asn56B N52 2+A+C AsplieDO^ 2.94
His68A N*2 2+A-B+C Glnll7D Oel 2.91 Trp60B NE1 Aspll6DOs2 3.17
Val 99A O 2+A-B Ser22C Oy 2.60 His68B NE1 2+A Lys5C N5 3.11

Asnl02A N*2 Glu25C Oe2 3.07 Val99B O 2+A+C Ser22D Ot 2.60
Lysl08A Serll2CO Y 2.93 Lysl08B N; Seri 12D Ot 2.71

Aspl 16A 0 52 2-B Gln43B NE2 3.20
Glul21A 0*2 2+A Asn45C N52 2.89

MOLECULE C MOLECULE D
Lys5C N5 2+A-B His68B N®1 3.11
Ser22C Oy 2+A Val99A O 2.60 Ser22D Oy 2+A-B+C Val99B O 2.84

Glu25C 0 £2 Asnl02A Ns2 3.07 Leul05D O 1+A Gln2B NE2 2.80
Asn45C N52 2+A-B Glul21AOEl 2.89 Alal09D O Lys5B N 3.00
Leul05C O 1+A Gln2A NE2 2.76 Seri 12D Ot 2+A-B+C Lysl08B N5 2.71
Lysl08C Ne Gln2A O 2.79 G lull3D O El 1+A Lys5B Ns 3.09
Alal09C O Lys5A N 3.07 Aspll6D Os2 Trp60B NE1 3.05
Serll2C Oy 2+A Lysl08A 2.93 Aspll6D Os2 Asn56B Ns2 2.75

Glull3C Oe1 1+A Lys5A N? 3.08 Glnll7D Oe1 2+A+C His68B NE2 2.91
Aspl 16C 0*2 2+A Trp60A NE1 3.17
Aspl 16C 0*2 Asn56A N82 2.94
Symmetry operators: (1) x, y, z; (2) -x, 1/2+y, -z

7.3 Goat LA

7.3.1 Refinement

The AMoRe solution was refined at 2.3A  resolution using all the data between 8 

and 2.3 A. A summary of the various cycles of refinement are given in Table 7.5.

Cycle la  — RBR was initially used to adjust the positions of the MR solution. Ten 

percent of the diffraction data (1045 reflections) was partitioned into the test set (T) for 

the Rfnc calculation. Fifty cycles of two-body RBR, using data between 15 and 3.0A 

reduced the conventional and free /^-factors to the mid forties. Shifts produced by RBR 

were less than 1° for the angular parameters and less than 0.5A for the translational 

parameters.
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Cycle lb  — Immediately after the RBR, the model was subjected to conventional 

positional and grouped 5-factor refinement using all the data between 8 and 2.3A. The 

atomic positions of the two molecules (A and B) in the AU were restrained using the 

available non-crystallographic symmetry. At the start of the refinement all the atomic B- 

factors and occupancies were set to 15A2 and 1.0 respectively. Molecule A was rebuilt 

manually using 0. The bound calcium ion was clearly visible in both the ox-weighted 

2Fq-F c and F0-F c maps and was incorporated into the model. The other major alterations 

made to the model involved regions 66-69 and 105-110. Residues 105-110 in particular 

needed considerable rebuilding due to significant conformational differences between the 

MR model and the goat structure. In GOLA, the electron density for this region 

appeared to be ‘looped-out’ away from the body of the protein. The C-terminal 

tripeptide (121-123) was also included (poly-alanine). Molecule B was generated from 

the rebuilt molecule A using the least-squares superposition (LSQ) option in O and the 

resultant model was re-refined.

Table 7.5 — Summary of the GOLA refinement.

Cycle Atoms Protocol NCSC Resolution 
Range (A)

No. o f  
Reflection

/?-factor Free /?-factor
Protein Other* IN OUT IN OUT

la 1938 0 RBR 2 body 15-3 .0 4460 47.0 45.6 46.8 46.6
lb 1938 0 Pr/P/Bg/P restrain 8 -2 .3 9107 47.1® 28.3 48.3* 34.3
2 1968 0 + 2 Pr/P/S/B/P restrain 8 -2 .3 9107 32.6 23.4 32.3 29.8
3 1968 0 + 2 Pr/P/S/B/P restrain 8 -2 .3 9107 32.2 21.7 31.5 28.7
4 1979 41 +2 Pr/P/S/B/P none 00 1 N> U) 9107 29.3 19.4 27.8 27.5
5 1938 42 + 2 Pr/P/B/P none

cn100 9107 28.7* 20.6 28.4* 28.1

6 1938 23 +2 Pr/P/S/B/P none 8 -2 .3 9107 21.3 19.3 26.7 27.0
7 1938 60 + 2 Pr/P/B none 8 -2 .3 9107 20.2 19.8 27.1 27.0

8 1938 70 + 2 Pr/P/B/P none 00 1 N> 10138 20.9 20.2 - -

9 1938 75+2 Pr/P/B/P none 00 1 u> 10138 20.6 19.8 - -
10 1938 68+2 Pr/P/B/P none 8 -2 .3 10138 20.5 19.5 - -

* Non-protein atoms are water molecules and calcium ions (italics)
b Abbreviations used: RBR, rigid-body; Pr, PREPSTAGE; P, POS\ S, SLOWCOOL, Bg, BREF (grouped); B, BREF(individual) 
c NCS restraints equivalenced molecule A with the other three molecules using a 300kcal/mol-A2 effective force constant 
d Number of reflections refers to those in the ‘woiking set’ (i.e. used for refinement)
* B-factors reset to ISA2 prior to refinement

168



7: Refinement and Model Building

Cycle 2 and 3 — A similar refinement protocol to cycle lb was used apart from an 

additional S A step (3000°K). The atomic positions of the two molecules in the AU were 

restrained to their average positions. This procedure improved both the conventional and 

free /^-factors. The conformation of residues 44-47, 66-69 and 105-110 was improved by 

manual rebuilding so that all the residues fell in allowed regions of the Ramachandran 

plot. The 2F0-F C electron density for the C-terminal tripeptide of molecule A was 

extremely ill-defined and this region was removed from the model. After the third 

refinement cycle, several water molecules were assigned to strong peaks (3a) in the 

F0-F c electron density map.

Cycle 4 to 7 —  At this stage in the refinement, virtually all the residues had acceptable <|> 

and \|r angles and so the NCS restraints were removed. Omit maps were used to 

unambiguously define the conformations of residues 44-47, 66-69 and 105-110. In 

contrast, the conformation of the three residues at the C-terminus continued to cause 

problems. In a final attempt to determine whether these residues should be included in 

the model, a 2F0-F c electron density map was calculated with residues 121-123 omitted. 

These omit maps failed to show any significant continuous electron density and so no 

further attempts were made to model this region in either molecule. Additional water 

molecules were also included in the model. Both the conventional and free /^-factors 

converged by cycle 7.

Cycle 8 to 10 — In the last three refinement cycles all the data between 8 and 2.3A was 

used. The bound water molecules were tidied up and those that had B-values greater 

than 50A2 were removed. The final model, consisting of residues 1-120 in molecules A 

and B, has an a R-factor of 19.5% for all data between 8 and 2.3A (10138 reflections).
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7.3.2 Assessment of the Quality of the Final Model

The final model consists of 2008 atoms of which 1938 are protein, 68 are solvent 

and 2 are calcium ions. A summary of the model’s stereochemical and geometric 

statistics is given in Table 7.6. The mean coordinate error is estimated by SIGMAA to be 

0.30A (5-2.3A).

Table 7.6 —  Statistics for the final GOLA structure.

Molecule All A B

Rmsd bond lengths8 (A) 0.011 0.011 0.012
Rmsd bond angles8 (°) 1.64 1.63 1.65
Rmsd dihedrals8 (°) 23.83 23.07 23.74
Rmsd impropers8 (°) 1.41 1.45 1.36

Average overall 2?-factor” (A2) 19.62 20.20 19.05
Rms AB  bonded atoms” (A2) 3.57 3.57 3.58
Average mainchain B-factor” (A2) 16.85 17.34 16.35
Average sidechain B-factor” (A2) 21.02 21.46 20.57
Average solvent B-factor” (A2) 39.0 41.39 36.28
Average calcium B-factor” (A2) 18.23 17.53 18.93

Ramachandran plot,
Most favoured areas0 (%) 87.4 86.5 88.3
Additional allowed areas0 (%) 12.2 13.5 10.8
Generously allowed areas0 (%) 0.45 0 0.9
Disallowed areas0 (%) 0 0 0
Non-rotamer sidechain 0.83 1.7 0
conformations0 (% )
Overall G-factor° 0.23 0.24 0.22
* Calculated using X-PLOR geometric analysis tools 
b Calculated using 4D_MOLEMAN 
0 Defined by PROCHECK

A. Agreement with the Electron Density

The electron density is essentially continuous along the whole protein backbone. 

The fit of atoms to the final 2F0-F c electron density map is shown in Figure 7.5. The 

density for residues 63A-68A is particularly ill-defined and a break in the mainchain 

density occurs at Asn-66A. Several of the long, hydrophilic sidechains that are on the 

exterior of the protein are also partially disordered (Gln-IOA/B, Lys-llA , Lys-98A/B,
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Lysl08A/B, Lys-114A, Lys-58B, Lys-94B). The lack of density in these regions 

correlates with their high atomic temperature factors (Figure 7.7).

Figure 7.5 —  Representative portion of the 2 F 0- F C electron density with the final GOLA 
structure.

This view shows the electron density in the hydrophobic box region of molecule A. The four 
principal hydrophobic box residues Ile-95, Trp-104, Tyr-103 and Trp-60 (labelled in a 
clockwise direction) are apparent in the upper portion of the figure. In the lower portion, the 
view includes residues in the core of the a-domain (Trp-26 and Leu-15). The resolution is 
2.3A and the map is contoured at la  (where a  is the root mean square density throughout the 
unit cell). Crosses indicate the positions of water molecules. Figure produced with 4D _O P LO T.

B. Ramachandran Plot and General Stereochemistry

Analysis with the program P R O C H E C K  shows that the final model has acceptable 

stereochemistry and geometry. All eleven parameters evaluated are either within (3), or 

better than (8) the bounds established from well refined structures of an equivalent 

resolution. None of the non-glycine residues are located in disallowed regions of the
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Ramachandran plot and only one residue, Gln-54B, is located in a generously allowed 

region (Figure 7.6).

Phi (degrees)

Figure 7.6 —  Ramachandran plot for the GOLA monoclinic structure.

Both molecules in the asymmetric unit are shown. Those residues that fall in the 
generously allowed regions are highlighted. The shaded areas are the same as those 
defined in Figure 7.3. The plot was produced with P R O C H E C K  (Laskowski e t  a l ., 1993).

C. Temperature Factors

Figure 7.7 shows a plot of the average mainchain and sidechain £ -factors for 

both molecules. The most mobile regions in the structure correspond to the two solvent- 

exposed loops in the p-domain of LA (Gln43-Ser47 and Asp63-His68). Regions that are 

involved in the formation of the hydrophobic core of LA (part of helix H2 and residues
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Tyr50-Phe53) and the calcium-binding site (residues in the Lys-79 to Asp-88 region) 

represent the most rigid parts of the structure. A similar variation in temperature factors 

is also observed for the mLA and GPLA structures (Figures 7.4 and 7.10) and is fairly 

typical for LA (Acharya et al., 1989).
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Figure 7.7 —  Average temperature factors for the GOLA structure.
The upper panel shows average temperature factors for sidechain atoms, and the lower panel 
shows average temperature for mainchain atoms, against residue number, factors for both 
molecule A (solid line) and molecule B (dotted) are shown. The positions of the major 
secondary structural elements are indicated.

D. Similarity of NCS-Related Molecules

The two molecules in the asymmetric unit of the crystal are very similar (Table 

7.7). All the quality criteria evaluated, apart from the A<J> and Ay values, are within the 

strict ranges suggested by a recent analysis of model quality (Kleywegt and Jones, 

1995b). The differences between the two NCS-related molecules are localised in the
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flexible regions of the structure. Almost all of the large deviations in backbone torsion 

angles (A(|>, A\|/) are confined to the Gln43-Ser47 and Asp63-Arg70 loops.

Table 7.7 —  Comparison of NCS-related molecules.

The molecules were superposed using the LSQJEXP command in 0 and the various root mean 
square deviations were calculated with the program 4DJRMSPDB. The comparison included all 
120 residues and the core region was defined as residues 5-11,23-43,48-61 and 73-111.

Rmsd NCS-related C“ atoms (A) 0.28
Rmsd all NCS atoms (A) 0.87
Rmsd core Ca atoms (A) 0.23
Residues with A<)> > 10° (%) 20
Residues with A\j/ > 10° (%) 16.7
Rms AB NCS-related C“ atoms (A) 4.39
Rms AB all NCS atoms (A) 5.72

The environments of molecules A and B are very similar within the crystal. The 

dimer is stabilised by a number of interactions between molecules A and B (Table 7.8). 

The major contact regions are the Gln43-Ser47 loop and the C-terminal tail (Glull3- 

Glnl 17). In contrast, there are relatively few intermolecular contacts between the dimers 

in the crystal. The majority of these involve residues Aspl4-Glyl9 in one molecule and

Table 7.8 —  Intermolecular subunit contacts between molecules A and B.

Atom Atom Distance
(A)

Atom Atom Distance
(A)

Gln2A N*2 Leu3B O 3.21 Leu3B O Gln2A N'2 3.21
His32A N*1 Wat 138B 3.00 His32B N81 Wat 130A 3.44
Gln43A N Glnll7B O 'l 2.97 Gln43B N Glnl 17A O 'l 3.01
Gln43A O Glnll7B N*2 3.20 Gln43B O Glnl 17A N'2 2.99
Asn45A N Glull3B O 'l 3.19 Asn45B N Glull3A O 'l 3.13

Ash45A Osl Glull3B 0*2 2.87 Glull3B O 'l Asn45A N 3.19
Glull3A O 'l Asn45B N 3.13 Glnl 17B O 'l Gln43A N 2.97
Glnll7A 0*1 Gln43B N 3.01 Glnll7B N'2 Gln43A O 3.00
Glnl 17A N'2 Gln43B O 2.99 Wat 138B Wat 130 A 3.35

Arg-70 in a neighbouring molecule. In only one case do the crystal contacts affect the 

mobility protein. Residues Leu-105-Leu-110 in molecule B appear to be stabilised by a 

intermolecular hydrogen bond between the N51 of His-107 and the carboxylate of Glu-
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7B in a neighbouring molecule. Consequently this region has lower overall temperature 

factors than the corresponding region in molecule A despite having a virtually identical 

conformation (Figure 7.7).

7.4 Guinea-pig LA

7.4.1 Refinement

The structure of an orthorhombic form {P2\2{1\) of guinea-pig LA (GPLA), 

previously solved using MR with the program MERLOT (Fitzgerald, 1988; K.R. Acharya, 

unpublished results), was refined at high resolution. The cell dimensions of the crystals 

are a=32.59A b=64.87A c=49.0lA and there is one molecule per asymmetric unit 

Although the diffraction data extended to 1.8 A, it was fairly incomplete and only data to 

1.9A was used in the refinement (88% complete _ I.9A). The structure was initially 

refined using X-PL0R2.1 but was subsequently briefly re-refined using X-PLOR3.1 and the 

Engh and Huber geometric parameters. A summary of the various refinement cycles is 

given in Table 7.9.

Table 7.9 —  Summary of the GPLA refinement.

Cycle Atoms* Protocol11 Resolution 
Range (A)

No. of 
Reflection

7?-factor
Protein Other* IN OUT

1 995 56 + 7 P/Pr/S/B/P 8 -1 .9 7694 35.4C 19.7
2 995 58 + 7 Pr/P/S/B/P 8 -1 .9 7694 27.9c 18.4
3 995 66 + 7 Pr/P/S/B/P 8 -1 .9 7694 19.3 17.5
4 995 71 + 7 Pr/P/S/B/P 8 -1 .9 7694 24.9 17.0
5 995 77 + 7 Pr/P/B/P/S 8 -1 .9 7694 17.5 15.9

6 995 70 + 7 Pr/P/B/P 8 -1 .9 7694 17.4 17.8
7 995 86 + 7 Pr/P/B/P 8 -1 .9 7694 19.1 18.2
8 995 73 + 7 Pr/P/B/P 8 -1 .9 7694 18.2 17.9

* Non-protein atoms are water molecules and calcium ions {italics) 
b Abbreviations used: Pr, PREPSTAGE; P, POS; S, SLOWCOOL; B, BREF (individual B's) 
c B-factors reset to 15A2 prior to refinement.
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Cycle 1 — Conventional positional refinement, simulated annealing (4000°K) and 

restrained, individual 5-factor refinement reduced the 5-factor to below 20%. The 

majority of the model rebuilding was carried out using FRODO. Only minor alterations 

were required, such as the adjustment of some sidechain torsion angles and the removal 

of poor water molecules. Attempts were made to define the conformation of the C- 

terminal tripeptide even though the 2F0-F c and F0-F c maps indicated that this region was 

flexible and adopted at least two distinct conformations.

Cycles 2 to 5 — Subsequent refinement and rebuilding improved the structure and 5- 

factor. Two loops in the (3-domain (Asn44-His47 and Ser64-Thr66) were poorly defined 

and required substantial torsional adjustments to locate all the residues in allowed 

regions of the Ramachandran plot. After cycle 5, the model exhibited reasonable 

stereochemistry with r.m.s deviations for ideal bond lengths and angles of 0.022A and 

3.34° respectively. These deviations from ideality were acceptable given the nature of the 

CHARMM force and geometric constants used in this version of X-PLOR. (Briinger, 1990a).

Cycles 6 to 8 — The model was refined with a newer version of X-PLOR3.1 using the Engh 

and Huber force and geometric constants. As the major part of the refinement was 

carried out with X-PLOR2.1, the free 5-factor was not used to monitor the progress of the 

refinement. The conventional 5-factor increased slightly but the overall geometry and 

stereochemistry of the model was considerably improved (Table 7.10). The final model, 

consisting of all 123 residues, 73 water molecules and one calcium ion, has a 5-factor of 

17.9% for all the data between 8 and 1.9A (7694 reflections).
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7.4.2 Assessment of the Quality of the Final Model

A summary of the model’s stereochemical and geometric statistics is given in 

Table 7.10. The mean coordinate error is estimated by SIGMAA to be 0.19A (5-1.9A).

Table 7.10 —  Statistics for the final GPLA structure.

Rmsd bond lengths8 (A) 0.009
Rmsd bond angles8 (°) 1.517
Rmsd dihedrals8 (°) 23.427
Rmsd impropers8 (°) 1.321

Average overall B-factorb (A2) 20.08
Rms A B  bonded atoms'3 (A2) 5.34
Average mainchain £-factorb (A2) 16.54
Average sidechain B-factor13 (A2) 21.12
Average solvent B-factorb (A2) 36.99
Average calcium B-factorb (A2) 8.31

Ramachandran plot,
Most favoured areas0 (%) 84.3
Additional allowed areas0 (%) 14.8
Generously allowed areas0 (%) 0.9
Disallowed areas0 (%) 0.0
Non-rotamer sidechain 2.4
conformations0 (%)
Overall G-factor° 0.27

a Calculated using X-PLOR geometric analysis tools 
b Calculated using 4D_MOLEMAN 
c Defined by PROCHECK

A. Agreement with the Electron Density

The electron density is continuous along the whole protein backbone apart from a 

few surface loops. Residues 43 to 47 and 66 to 68 are poorly defined and two breaks in 

the mainchain electron density occur in these regions. Electron density for the C-terminal 

tripeptide (121-123) is also particularly weak. Some of the long, hydrophilic sidechains 

that are exposed on the surface of the protein are also partially disordered (Lys-1, Arg- 

19, Lys-58, Lys-79, Lys-108, Lys-114 and Gln-117). Nevertheless, the remainder of the 

protein is extremely well defined (Figure 7.8).
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Figure 7.8 —  Representative portion of the 2F 0- F c electron density with the final 
GPLA structure.

The portion shown corresponds to the calcium binding site. The site is viewed 
perpendicular to the pentagonal plane and shows the three carboxylate (Asp-82, 87, 88) and 
the two water ligands. The calcium is in the centre of the plot. The resolution is 1.9A and 
the map is contoured at lo  (where a  is the root mean square density throughout the unit 
cell). Crosses indicate the positions of water molecules. Figure produced with 4D _O P L O T .

B. Ramachandran Plot and General Stereochemistry

Analysis with the program PROCHECK shows that the final model has acceptable 

stereochemistry and geometry. All eleven parameters evaluated are either within (3), or 

better than (8) the bounds established from well refined structures of an equivalent 

resolution. None of the non-glycine residues are located in disallowed regions of the 

Ramachandran plot and only one residue, His-47, is located in a generously allowed 

region (Figure 7.9). This residue is located at the end of a flexible p-bend that connects 

strands S1 and S2.
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Phi (degrees)

Figure 7.9 —  Ramachandran plot for the GPLA structure.
Those residues that fall in the generously allowed regions of the plot are highlighted. The 
shaded areas are the same as those defined in Figure 7.3. The plot was produced with 
P R O C H E C K  (Laskowski e t  a t . ,  1993).

C. Temperature Factors

Figure 7.10 shows a plot of the average mainchain and sidechain B-factors for the 

GPLA structure. The majority of the above average mainchain temperature factors are 

located in two loop regions (43-47 and 64-69) and the C-terminus (120-123). These 

parts of the molecule are very exposed to solvent and have similarly high ^-factors in 

other LA structures. The remainder of the structure is highly ordered. The most rigid
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Figure 7.10 — Average temperature factors for the GPLA structure.
The upper panel shows average temperature factors for sidechain atoms, and the lower panel 
shows average temperature for mainchain atoms, against residue number. The positions of 
the major secondary structural elements are indicated.

parts of the molecule correspond to regions involved in the a-domain’s hydrophobic 

core (helix H2 and H3) and the calcium binding site (Lys-79-Asp-88).
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Chapter

Description of the S tructures

8.1 Introduction

In the absence of any structural information on the variant LAs, the following 

discussion is concerned with the structures of mLA, goat and guinea-pig LA. The 

structures are examined both in terms of their similarity to those previously determined 

for LA and also with regard to the function of LA in the lactose synthase complex.

The sequence identity between the bovine (mLA), goat and guinea-pig LAs 

varies from 64% (GOLA vs GPLA) to 92% (mLA vs GOLA). This range is considerably 

broader than that exhibited by human and baboon LA (93% identical), for which the 

crystal structures have been previously determined (Acharya et al., 1989, Acharya et al., 

1991), and provides an ideal opportunity to investigate the possible structural 

heterogeneity that exists between LAs from different species. The lack of immunological 

cross-reactivity between LAs from different species (Brodbeck et al., 1967; McKenzie 

and White, 1991) and the interspecies variation in the rate of lactose synthesis (Ley and 

Jenness, 1970; Khatra et al., 1974; Quarforth and Jenness, 1975) suggests that some 

structural differences may exist.
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8: Description of the Structures

8.2 Similarity of the Structures

8.2.1 Overall Similarity

The overall features of the refined mLA, GOLA and GPLA structures are similar 

to those reported for human (HLA) and baboon (BBLA) LA (Acharya et al., 1989; 

1991). In the following analysis, the structures of all the LAs determined in the present 

work are compared with that of HLA. In the case of GOLA and mLA, where there are 

more than one molecule in the crystallographic asymmetric unit, the ‘subunit’ with the 

lowest overall average temperature factor (molecule A in both cases) was used in the 

analysis.

8.2.1.1 Secondary Structure

As described in Chapter 1, the LA structure is divided into a large (a-domain)

and small domain (p-domain) by a deep cleft (Figure 8.1). The a-domain comprises 

residues 1 to 34 and 86 to 123 and is composed of three major a-helices (HI: 5-11; H2: 

23-34; H3: 86-98). The P-domain comprises residues 35 to 85 and has little regular 

secondary structure. It is composed of a series of loops, a small antiparallel p-pleated 

sheet (SI, S2, S3) and a short 3io helix (h2: 77-80).

The major secondary structural elements (Hl-3; S1—3; hlb, 2, 3c) are conserved 

in all the LA structures (Table 8.1). However, a few regular secondary structural
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8: Description of the Structures

Figure 8.1 — Three-dimensional structure of LA.
The structure of GPLA is schematically represented. The all helical a-domain is highlighted in red 
and the |3-domain in light blue. The four disulphide bridges (white) and the bound calcium ion 
(light green sphere) are also shown. The secondary structural elements of GPLA are labelled (see 
Table 8.1). The figure was created with M O L S C R IP T  (Kraulis, 1991) and rendered using R A S T E R 3 D  
(Merritt and Murphy, 1994).
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Table 8.1 — Secondary structural elements in the LA structures.
The secondary structure of GPLA, mLA, GOLA and HLA is that defined by PROCHECK (Laskowski 
et al., 1993) and DSSP (Kabsch and Sander, 1983).

GPLA mLA GOLA HLA

HELIX (H)
1 5 - 1 1 5 - 1 1 5 - 1 1 5 - 1 1
2 2 3 - 3 4 2 3 - 3 4 2 3 - 3 4 2 3 - 3 4
3 8 6 - 9 8 8 6 - 9 8 8 6 - 9 9 8 6 - 9 8

4a 102-105 — — —

4b - 105-110 - 1 0 6 -1 1 0

STRAND (S)
1 4 1 - 4 4 4 1 - 4 3 4 1 - 4 3 4 1 - 4 3
2 4 7 - 5 0 4 8 - 5 0 4 8 - 5 0 4 8 - 5 0
3 5 5 - 5 6 5 5 - 5 6 5 5 - 5 6 5 5 - 5 6

310 HELIX (h)
la - 1 3 - 1 5 1 3 - 1 5 1 3 - 1 5
lb 1 8 - 2 0 1 8 - 2 0 1 8 - 2 0 1 8 - 2 0
2 7 7 - 8 0 7 7 - 8 0 7 7 - 8 0 7 7 - 8 1
3a - 101 -  103 101 - 1 0 3 101 - 1 0 3
3b — — 108-111 —

3c 115-118 115-118 11 5-118 1 1 6-1 18

elements are not observed in all structures. In particular, the conformation of residues in 

the region 103-111, and hence the secondary structure, shows considerable variability.

8.2.1.2 Tertiary Structure

In general, the structures are very similar and reflect their high level of amino acid 

sequence identity. The r.m.s. deviation for the 120 equivalent C“ atoms ranges from 0.9A 

to 1.6A (Table 8.2). R.m.s. deviations for the core of the molecule, defined as all 

residues apart from the external loops and the C-terminal tail, are between 0.5A and 

0.9A.

The differences in mainchain conformation are confined to several distinct regions 

of the structure. Figure 8.2 highlights the root mean square deviations between the mLA, 

GOLA, GPLA and HLA structures in terms of the overall conformation of the molecule.
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Table 8.2 —  Comparison of the various LA structures
The r.m .s deviations and average deviations (in parentheses) are given. In the case o f  m LA , the additional N- 
term inal m ethionine residue w as not included in the com parison. T w o sets o f  values have been calculated. 
Those indicated in boldface represen t the r.m .s deviation for all 120 C“ residues o f LA after superposition with 
the program  ASH (D.I. Stuart, unpublished program ). T he values in norm al typeface are for the core C“ residues 
calculated using 4D_RMSPDB. The core region is defined as residues 5-11, 23-40, 50-61 and 71-104.

mLA GOLA GPLA HLA

mLA

GOLA

GPLA

HLA

0.60 (0.49) 

0.49 (0.44) 

0.69 (0.62)

1 .1 4  (0 .7 5 )

0.76 (0.67) 

0.88 (0.79)

1 .4 2  (0 .8 6 )

1 .3 5  (1 .0 )

0.70 (0.64)

0 .9 2  (0 .7 5 )

1 .3 5  (1 .0 4 )  

1 .5 8  (1 .1 0 )

Figure 8.2 — Conformation differences between the LA structures.
The r.m.s differences between HLA, mLA, GPLA and GOLA are schematically represented in 
relation to the three-dimensional structure of GPLA. GPLA’s secondary structural elements are 
shaded (blue through red) according to the average Ca r.m.s deviations between the four structures. 
Regions coloured in blue are identical whereas regions in red exhibit considerable heterogeneity in 
mainchain conformation (C“ r.m.s.d > 2.8A). Regions coloured in white are intermediate. The parts 
of the structure that exhibit the highest degree of variability are labelled. The figure was created 
with B O B S C R IP T (R. Esnouf’s modified version of M O L S C R IP T  (Kraulis, 1991)) and rendered using 
R A S T E R 3 D  (Merritt and Muiphy, 1994).
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Variation in the polypeptide backbone occurs in two loops in the p-domain (43-47 and 

62-65), the region between helix HI and H2 (residues 13-18) and in the ‘flexible loop’ 

adjacent to the lower end of the cleft (residues 105-111). There are also considerable 

differences in the conformation of the C-terminal tail, in particular the tripeptide after 

Cys-120. As mentioned in Chapter 7, the conformation of this region of LA is highly 

mobile in both crystal structures that have been previously determined (Acharya et al., 

1989; 1991). Due to the disordered nature of this part of the molecule, it has not been 

included in the analysis. The differences in the other regions of the structure are 

described briefly below.

Residues 13-18

This region lies between helix HI and H2 in the a-domain and contributes several 

sidechains to the a-domain’s hydrophobic core. The first three residues (13-15) form a 

3io helix (hla) in all the structures apart from GPLA (Table 8.1) and the remaining 

residues (15-18) adopt a standard type II turn motif. The mainchain conformations of 

mLA, GOLA and GPLA are very similar but HLA exhibits a marked difference in 

backbone topology. This probably results, at least in part, from changes in the sidechain 

character of the buried residues of HLA in this region. The replacement of Trp-26 

(GOLA, GPLA, mLA) in HLA by a leucine results in a rearrangement of part of the a- 

domain’s hydrophobic core. Although the reduction in sidechain size at position 26 in 

HLA is compensated for by an increase in the sidechain size at position 30 (Met in HLA 

compared to Thr, Ala, lie in mLA, GOLA, GPLA respectively), the packing of the 

sidechains in the cluster is subtly different. In HLA, the 3io helix (hla) does not pack as 

close to the protein as in the other LA structures. Consequently, the core of the a-
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8: Description of the Structures

-domain, involving a number of hydrophobic residues (including Leu-12, Leu/Ile-15, 

Val/Ile-21, Trp/Leu-26, Phe-53, Val/Ala-92, Leu-96 and Ile-101), is not as compact in 

HLA as it is in the mLA, GOLA and GPLA structures (Figure 8.3). The observation 

that the BBLA structure has an identical conformation to HLA in this region suggests 

that this effect is entirely sequence dependent (BBLA exhibits identical amino acid 

sequence changes at positions 26 and 30). An identical double substitution (W26L and 

X30M) is present in the wallaby LA amino acid sequence (Shewale et al., 1984) and a 

similar local conformation to that of HLA is predicted for this region.

Figure 8.3 —  Packing differences in the core of LA.
The hydrophobic core packing around residue 26 is schematically represented for a) GPLA and b) HLA. 
The white chicken wire mesh denote cavities in the core of the proteins. The pseudo cavities were 
calculated with the program V O ID O O  (Kleywegt and Jones, 1994) using a 0.5A accessible probe radius. 
Residues in the a-domain core are labelled.
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Residues 43-47 and 62-65

Both these regions are located in the p-domain and form flexible, solvent exposed

loops. Residues 43 to 47 forms a P-bend that links SI and S2 while residues 62 to 65 

form a type III turn at the top of the cleft (Acharya et al., 1989). In all the structures, at 

least one of these loops is involved in crystal contacts and this accounts for the variation 

in mainchain conformation.

Residues 105-111

This region lies adjacent to the lower end of the cleft and interacts with the C- 

terminal end of helix H2. It adopts two distinct conformations in the LA structures 

determined to date. In mLA and HLA, the polypeptide backbone adopts a distorted a- 

helical conformation (H4b). In contrast, the mainchain is looped out away from the body 

of the protein and exposed to solvent in the GPLA and GOLA crystal structures (Figure

8.4).

The observed structural heterogeneity in this region is associated with the 

conditions used to obtain crystals. At high pH (6.5-8.0), the helical conformation is 

observed (HLA and mLA) whereas at low pH (4.6), the looped out form predominates 

(GPLA and GOLA). This pH effect has been previously noted in HLA and is associated 

with His-107 (Harata and Muraki, 1992). In the low pH crystal forms, complete burial of 

a fully protonated histidine would be very unfavourable and therefore a helix-to-coil 

transition occurs to locate this residue in the bulk solvent. The ‘looped out’ 

conformations are remarkably well-defined in the electron density of the GPLA and 

GOLA structures. In GPLA, the hydrogen-bonded loop is stabilised by extensive crystal 

contacts involving His-107, Lys-108 and Leu-110 (see Table 8.3). However, the
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Figure 8.4 — Conformation of residues 105-110.
The stereo plots of conformation of the 105-110 region are schematically shown for a. 
HLA, b. GOLA and c. GPLA. All three molecules are viewed in the same orientation. 
The figure was produced by M O L S C R IP T  (Kraulis, 1991).

TYR103

LEU105
HIS107

GLU25

ALA 106

HIS 32

LEU110

PHE31

LYS106

ALA109

ALA 106

LEU105

GLU25

LYS108

HIS32

PRO 109

nipiw

PHE31

189



8: Description of the Structures

Table 8.3 — Protein-protein intermolecular contacts in the GPLA crystal.

Atom Symm Atom Distance
(A)

Atom Symm Atom Distance
(A)

Asnl3 0*1 4-A+C Glu62 Oel 2.96 Arg70 NH1 2+B LeullO O 2.62
A spl4082 Asp780*1 2.73 Asn71O Hisl07 N8! 2.56
Aigl9 O 2+B-C Gln68 3.06 Cys73 O 4-A+C Gln39 N*2 3.09
Aigl9 O Gln68 Oel 2.99 Asp74 O Gln39 N*2 2.75

His32 N£2 4 Ala 122 O 2.60 Asp78Osl 4 Aspl4 O ^ 2.73
Gln39 N*2 4+C Asp74 O 2.75 Asp78Os2 Lys93 3.08
Gln39 Ne2 Cys73 O 3.09 Asp84 Os2 Tyr50 OH 2.62
Tyr50 OH 4+C Asp84Os2 2.62 Leu85 N Ser64 O 3.05
Glu62 O 'l A snl3081 2.96 Thr86 Ot1 Ser64N 2.99

Sei64N Thr86 Ot1 2.99 Lys93 N? Asp78 O ^ 3.08
Ser64 O Leu85 N 3.05 Aspl02Osl 2+B-C Ser69 O 2.81

Glu68 Oel 2+B Aigl9 O 2.99 His 107 N8! Asn71O 2.56
Glu68N52 Atgl9 O 3.06 Lysl08 O Arg70NHl 2.83

Ser69 O Asp 102 Osl 2.81 LeullOO Arg70 NH1 2.62
Arg70 NH1 Lysl08 O 2.83 Alal22 O 4-A His32 N*2 2.60

Symmetry operators: (1) x, y, z; (2) 1/2-x, -y, 1/2+z; (3) -x, 1/2+y, 1/2-z; (4) 1/2+x, 1/2-y, -z

observed helix-to-coil transition is not solely driven by crystal packing forces as the 

analogous loop in GOLA does not participate in any crystal contacts.

Although the helical conformations of mLA and HLA are identical, the two loop 

structures show considerable heterogeneity (Figure 8.4). This reflects both sequence 

differences and the degree to which the loop conformations are stabilised in GPLA and 

GOLA structures. In GPLA, the polypeptide backbone forms a single turn of a-helix 

(H4a: Asp 102-Leu 105) and then loops out to form an exposed hydrogen-bonded turn 

(Alal06-Cysl 11). In GOLA, the polypeptide backbone adopts a similar initial helical 

conformation (h3a: Ilel01-Tyrl03), loops in a short bend (Leul05-Hisl07) before 

returning to a helical path (Lysl08-Cysl 11). The conformation of the 105-110 region in 

GOLA can therefore be considered to be intermediate between that of mLA (and HLA) 

and GPLA. The underlying reason for the subtle differences in mainchain conformation 

between the low pH forms of GPLA and GOLA is probably sequence related. Although 

the amino acid sequence of all LAs is highly conserved in the 104-111 region, some 

variability occurs at position 109. Bovine, ovine, caprine and human LAs have an alanine
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at this position whereas all others sequenced to date have a proline. Pro-109 in GPLA 

probably restricts the flexibility of the polypeptide backbone, due to the constrained 

nature of its backbone dihedral angles, and accounts for the differences between the 

conformations of the C-terminal portion of the 105-110 region in GPLA and GOLA. 

However, the presence of a proline at position 109 is not expected to preclude helix 

formation in the 105-110 region of GPLA. Modelling studies demonstrate that the 

backbone dihedral angles in the helical conformation (<|) -65°, y  -47°) observed in mLA 

and HLA are compatible with a proline residue.

Given the overall similarity of the structures, it is not clear why LAs from 

different species exhibit a lack of immunological cross-reactivity. However, the surface 

characteristics of the various LAs do show some variation, particularly in the small p- 

domain which contains the major antigenic determinants in the homologous LYZs 

(Benjamin et al.y 1984). The high degree of variability in this part of the LA sequence 

(residues 61 to 77) appears to be mainly responsible for generating the observed lack of 

antigenic response.

8.2.2 Conformation of the Calcium Binding Site

In general, the calcium binding site in the various LA structures is very similar 

both in terms of conformation and ligand coordination (Table 8.4). The calcium is 

cradled in a helix-tum-helix motif that spans the interface between the a- and p-domains. 

The ion is coordinated by a constellation of seven oxygen groups that form a distorted 

pentagonal bipyramid. Five of the seven oxygen ligands are contributed by the protein 

mainchain and sidechains. One of these ligands originates from helix h2 (Lys-79), two
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are from the Asx turn (Asp-82 and 84) and two from helix H3 (Asp-87 and 88). In 

addition to the five protein ligands, the calcium is also coordinated by two water

w
n

1

Figure 8.5 —  Calcium binding site of LA.
The calcium binding site of GPLA is viewed along the pentagonal plane. The calcium ion (green 
sphere) is shown along with the protein and solvent ligands (light red spheres). The atoms that 
coordinate the ion are labelled. The figure was created with M O L S C R IP T  (Kraulis, 1991) and rendered 
using R A S T E R 3 D  (Merritt and Murphy, 1994).

molecules. The three carboxylate groups (Asp-82, 87 and 88) and the two water 

molecules form the pentagonal plane that includes the Ca2+ and the mainchain carbonyl 

groups of Lys-79 and Asp-84 are positioned at the apices of the bipyramidal arrangement 

above and below the central plane (Figure 8.5). All the protein ligand-calcium distances
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are between 2.15-2.5A. This geometry is typical of that observed in other calcium- 

binding proteins (Strynadka and James, 1989).

The stabilisation of the three-dimensional structure of LA that is conferred by 

calcium binding is reflected by the temperature factors in the vicinity of the calcium 

binding loop. This region is the most rigid part of the HLA (Acharya et al., 1991),

Table 8.4 —  Calcium -  ligand distances and temperature factors.

Calcium -  ligand distance A (B-factor A2)
Residue Ligand mLA HLA GPLA GOLA

Lys-79 O 
Asp-82 081 
Asp-84 0 
Asp-87 051 
Asp-88 051 

WAT (int) OW 
WAT (ext) OW 

Calcium -

2.15 (39.6) 
2.40 (35.4) 
2.24 (32.7) 
2.49 (30.8) 
2.59 (33.1)

a

a

(35.2)

2.34 (8.4)
2.35 (11.0) 
2.24 (5.8) 

2.40 (10.4) 
2.42 (7.3) 
2.30 (7.9) 

2.50(19.1)
(6.2)

2.24 (10.8) 
2.42(12.1) 
2.16(10.3)
2.44 (10.1)
2.33 (10.8)
2.44 (8.6)

2.33 (21.8) 
(8.3)

2.30 (14.0) 
2.50 (34.4) 
2.28 (20.3) 
2.41 (27.9) 
2.47 (12.5)

a
a

(17.5)
* In mLA and GOLA, the solvent ligands are not well defined and were therefore not included in 

the final structures

GOLA and GPLA structures (see Figures 7.7 and 7.10). The differences in the relative 

atomic temperature factors of the calcium ligands in the HLA, GOLA and GPLA 

structures reflect the different resolutions at which the structures were determined.

In the mLA structure, the stabilising effects of the bound ion are less apparent 

and the calcium binding site in all four molecules is surprisingly mobile. The temperature 

factors for the calcium ion ranges from 35 to 63A2 and the coordinating ligands also have 

relatively high 5-values. These values are consistent with the overall disorder observed in 

the mLA structure. In all four molecules of monoclinic mLA structure, the calcium 

binding site is clearly occupied by an ion that is coordinated by five protein ligands. The
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two additional solvent ligands are not apparent at the resolution (2.3A) at which the 

structure was determined.

One concern during the initial stages of model refinement was to what extent the 

high concentrations of divalent cation (Mg2+) required to grow the monoclinic mLA 

crystals would influence the recombinant LA’s structure. Magnesium, along with a large 

number of metal ions, binds to LA with an affinity in the millimolar range (Kronman, 

1989). It is unlikely, however, that mLA’s metal binding loop is occupied by magnesium 

rather than calcium ions. Firstly, LA’s high affinity for calcium suggest that this ion has 

remained bound throughout the preparative and crystallisation procedure. Furthermore, 

although magnesium does bind to apo-LA, it does not appear able to either displace 

calcium from native holoprotein or alter the native conformation (Permyakov et al.y 

1981b; Kronman, 1989). Secondly, there is no evidence from the coordination state of 

the bound cation that suggests it is magnesium rather than calcium. Magnesium has a 

smaller atomic radius than calcium and its coordination is characterised by shorter ligand- 

metal distances (about 2.1 A) and a coordination number of six rather than seven 

(Strynadka and James, 1989).

8.2.3 Solvent Structure

It is difficult to make a detailed comparison of the solvent structures of the four 

LAs as only two (HLA and GPLA) have been determined to high resolution. The 

positions of at least two internal waters are conserved in all the LA structures. One water 

(water 2, see Figure 8.6) hydrogen bonds to four protein ligands (O Thr-38, N Leu-52,

O Phe/Leu-80, Os2 Asp-88); the other (water 3) hydrogen bonds to three
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groups (O Tyr-50, N Phe-53, Os2 Asp-88). This high degree of interaction with the 

protein is reflected by the relatively low temperature factors exhibited by these two 

water molecules. Both these water molecules are located in a solvent channel that runs 

along the domain interface. This channel originates at the calcium binding site and runs 

along helix H3 for a distance of between 10A and 14A. The channel also includes one 

of the water molecules that is involved in calcium ligation (water 1 in Figure 8.6). The 

three water molecules seem to be trapped inside the protein and are probably not free to 

exchange with the bulk solvent. Given that an identical solvent channel is present in the 

crystal structure of HEWL, it seems likely that this feature fulfils a general structural 

role in LA and LYZ.

C a l c i u m

Figure 8.6 — Structural solvent channel.
The solvent channel that runs from the calcium binding site towards the cleft region in GPLA is shown. 
The calcium ion is shown as a green sphere and the three water molecules as blue spheres. The water 
molecules are number from one to three (see text for details). The cream-coloured chicken wire mesh 
denotes the extent of the channel. This was calculated with the program VO ID O O  (KJeywegt and Jones, 
1994) using a 0.5A accessible probe radius. The backbone conformation of GPLA is schematically 
represented by the yellow ribbon.
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8.3 Functional Regions in LA

8.3.1 Aromatic Clusters I and II

Aromatic clusters I and II have a similar conformation in all the LA structures. 

The site-directed mutagenesis studies on mLA (Chapter 2) have highlighted the 

importance of the residues in aromatic cluster I in LA function. This cluster comprises of 

the invariant residues Phe-31, His-32, Gln-117 and Trp-118. Phe-31 and His-32 are 

located at the end of helix H2 immediately adjacent to the lower reaches of the cleft and 

Gln-117 and Trp-118 are located in the flexible C-terminal tail of LA. The cluster is 

flanked by Tyr-36 and lies on top of the Cys28-Cysl 11 disulphide bridge. Consequently, 

the cluster is one of the most rigid parts of the LA structure and all four residues exhibit 

low temperature factors. The Cys28-Cysll 1 disulphide bridge appears to be required for 

maintaining the structural integrity of the cluster as its removal eliminates LS activity (K. 

Brew, personal communication).

The environments of the four residues in the cluster are quite different Phe-31 

and Gln-117 are quite exposed to solvent (40-70% of surface area accessible). In 

contrast, His-32 and Trp-118 are somewhat shielded from solvent by the surrounding 

residues. The low pK& values (5.18-6.06) reported for His-32 in solution (Alexandrescu 

et al.t 1992) result from its close contact with Phe-31 and Leu-110. In the four 

structures, there are only small differences between the orientations of the sidechains 

despite their location on the surface of LA (Figure 8.7). Phe-31 exhibits some rigid-body 

movements in the direction of the ring plane. The orientation of imidazole ring of His-32 

appears to be primarily influenced by the conformation of the flexible loop region (see 

section 8.3.2).
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..Tyr-103

Tyr-36

Trp-118

Figure 8.7 —  Conformation of Aromatic cluster I.
The relative orientation o f the sidechains in aromatic cluster I are shown for HLA (blue), mLA 
(red), GPLA (green) and GOLA (yellow). The structures were superposed using all 120 
equivalent C® atoms using the program A S H  (D.I. Stuart, unpublished program). The flexible loop 
region (upper right) and Leu-110 are also shown. The figure was produced by M O L S C R IP T  (Kraulis, 
1991).

lie—55
lle-95

Tyr-103

Trp-104

Leu/ Trp-26

Figure 8.8 — Sidechain orientation in Aromatic cluster II.
The relative orientation of the sidechains in aromatic cluster II are shown for HLA (blue), mLA 
(red), GPLA (green) and GOLA (yellow). Only the sidechain atoms are shown. The structures 
were superposed using all 120 equivalent C® atoms using the program A S H  (D.I. Stuart, 
unpublished program). The figure was produced by M O L S C R IP T  (Kraulis, 1991).
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The sidechains in aromatic cluster II (hydrophobic box) adopt identical 

orientations (Figure 8.8). This is consistent with the cluster’s role in the folding and 

stabilisation of the tertiary fold of LA (Smith et al.y 1994). This buried cluster forms part 

of a more extensive hydrophobic core that stretches from the middle of the cleft into the 

centre of the a-domain. This closely packed structural unit involves residues from both 

the helical a-domain and the loops of the p-domain. It comprises residues Phe-53 (P), 

Ile-55 (P), Phe/Trp-60 (p), Ile-95 (a), Tyr-103 (a) and Trp-104 (a). The sidechain of 

Tyr-103 projects into the cleft and is sandwiched between Trp-104 and the position 60 

aromatic (either Trp or Phe). The sidechains of the cluster make hydrogen bonds in 

addition to their Van der Waals contacts. The phenolic OH of Tyr-103 is hydrogen- 

bonded to the mainchain nitrogen of Asn/Ser-56 and the ring nitrogen of Trp-104 is 

hydrogen-bonded to the carbonyl oxygen of Phe-53.

8.3.2 Flexible Loop Region

The conformation in this part of LA (residues 105-110) is particularly interesting 

in terms of LA function, given that it comprises part of the GT interaction site. Amino 

acid substitutions at positions 106, 107 and 110 primarily influence LA’s ability to bind 

to GT (see Chapter 2). The crystal structures demonstrate that this region is particularly 

mobile and can adopt a number of different conformations depending on the conditions 

used to obtain crystals. Although this region exhibits a few well-defined conformations in 

the crystalline state, it seems likely that it is highly fluctuating in solution. This is
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highlighted by the fact that both the helical and loop conformer crystal forms of HLA are 

significantly populated at pH 6.5 and room temperature (Harata and Muraki, 1992).

The two distinct conformations exhibited by the LA crystal structures have 

dramatic effects on the sidechain environments of the residues in this region. In the 

helical conformation, Leu-105 and Leu-110 are relatively exposed to solvent (60-90% 

surface area accessible to solvent). In contrast, these positions are completely buried in 

the GPLA structure (0-17% surface area accessible to solvent). Due to the intermediate 

nature of the GOLA conformation in the ‘flexible loop’, Leu-105 is buried and Leu-110 

is relatively exposed (50% accessible). The environment of His-107, the residue 

implicated in the helix-to-coil transition, is also radically different in the two 

conformations. In the helical conformer, the histidine is totally buried and forms a 

hydrogen bond (Ne2) with the carboxylate of Glu-25 whereas in the GPLA and GOLA 

structures this sidechain is very exposed. Another consequence of the observed helix-to- 

coil transition, is that it leads to a subtle change in the environment of His-32. In GPLA, 

about 55% of the surface area of His-32 is solvent accessible; this compares to values of 

43, 40 and 37% for His-32 in GOLA, mLA and HLA respectively. This difference is due 

to a change in the relative orientation of Leu-110 in the flexible loop region (see Figure 

8.4 and 8.7). In the HLA, mLA and GOLA crystal structures the exposed sidechain of 

Leu-110 makes significant Van der Waals contacts with the imidazole ring of His-32. In 

the GPLA structure, however, Leu-110 is buried and as a result His-32 is considerably 

more accessible to solvent.

The slow exchange rates of His-107 indicate that this residue is partially buried in 

solution (Bradbury and Norton, 1975; Alexandrescu et al.t 1992). However, the pK&
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value measured for this residue suggests that its environment in LA structure does not 

influence its innate electrostatic properties (Alexandrescu et al., 1992). These results are 

difficult to reconcile with the known conformations of the 105-110 region in the various 

LA structures. His-107 is buried in the high pH conformer but its interaction with Glu-25 

would undoubtedly affect its pKa. Further studies are clearly required to define the 

conformation of this part of the LA molecule in solution. It is possible that the 

conformation of this region in the LS complex is different from that observed in any of 

the LA crystal structures. The conformation of this region is constrained to some extent 

by the tertiary fold of LA. Nevertheless, the subtle differences exhibited by the GOLA 

and GPLA crystal structures suggest that there is some scope for conformational 

adjustment in the 105-110 region. The inherent flexibility of this region may have some 

functional importance. Certainly the proximity of this region to residues implicated in 

glucose binding (Phe-31 and His-32) and its influence on the conformation of the cleft 

could be important for either the formation of the LS complex or the subsequent 

molecular processes.

8.3.3 The Cleft Region

Certain substitutions at Phe-31, His-32 and Leu-110 perturb LA’s ability to 

promote monosaccharide binding in the LS complex. These residues are located in the 

subsite F region of HEWL and are homologous to residues that have been implicated in 

binding one of the saccharide units.

The active-site cleft region of LYZ consists of series of subsites (A-F) that are 

each capable of binding one saccharide unit of the hexasaccharide substrate (Blake et a/.,
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1967a,b). Crystallographic studies on the binding of GlcNAc, (GlcNAc)3, N- 

acetylmuramic acid (NAM) and NAM-GlcNAc polysaccharides to HEWL has provided 

detailed information about sugar binding in subsites A, B, C and D (Blake et al.t 1967b; 

Perkins et al., 1978; Strynadka and James, 1991; Hadfield et al., 1994). Until recently, 

only limited structural information has been obtained about saccharide binding in the E 

and F subsites. The nature of the protein-monosaccharide interactions in these sites have 

mainly been inferred from molecular modelling studies and the results of 

transglycosylation reactions (Blake et al., 1967b; Imoto et al., 1972; Pincus and 

Scheraga, 1981; Post et al., 1986). The binding of saccharides in the E and F subsites is 

believed to provide the energy required for converting non-productive substrate binding 

into the productive binding required for catalysis (Holler et al., 1975; Perkins et al.,

1981; Weaver et al., 1995).

The structural nature of saccharide binding in the E and F subsites was 

highlighted in a recent crystallographic study of human lysozyme (HLYZ) co-crystallised 

with hexa-N-acetyl-chitohexaose (Song et al., 1994). Although the hexasaccharide had 

been cleaved, (GlcNAc)2 was observed to bind in a region close to the E and F subsites 

proposed on the basis of model building. Modelling and energy minimisation studies on 

saccharide binding mode in subsite F indicate that the protein-saccharide interactions 

involve the guanidino group of Arg-114 (with sugar ring O and p i OH), the mainchain 

oxygen of Phe-34 and the sidechain nitrogen of Asn-37 (with primary alcohol 06) (Blake 

et al., 1967b; Pincus and Scheraga, 1981). The role of Asn-37 is indirectly supported by 

site-directed mutagenesis studies as replacement of this residue alters HEWL’s substrate- 

binding mode (Kumagai et al., 1993). The subsite F  ligands in the human LYZ /
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hexasaccharide crystal structure are similar and involve the mainchain carbonyls of Ser- 

36 (with primary alcohol 06) and Trp-34 (with 03  hydroxyl) and the of Lys-33 (with 

0 7  of the N-acetyl group) (Song et al., 1994). These different binding modes exhibited 

by the model and crystal structures may reflect the intermediate state of the HLYZ / 

product complex. When the LA and LYZ crystal structures are superimposed with SHP 

(Stuart et al., 1979), Phe-31 (LA) is structurally equivalent to Lys-33 (HEWL /  HLYZ), 

His-32 (LA) to Phe/Trp-34 (HEWL /  HLYZ) and Leu-110 (LA) to Arg-114 (HEWL). 

Although there is some uncertainty about the exact location of subsite F, this functional 

correlation with LYZ, combined with the fact that substitutions at any of these residues 

in LA perturbs its ability to promote monosaccharide binding in the LS complex, 

provides strong evidence that a region analogous to the F subsite participates in the 

binding of monosaccharides in the LS complex.

The overall conformation of the cleft around subsite F is similar in the LA and 

HEWL structures. The subsite is located at the lower end of the cleft where it broadens 

out on the protein’s surface and, unlike the C and D subsites, is relatively shallow and 

accessible to solvent. In LA, the shape of cleft around subsite F is influenced, to some 

extent, by the conformation of the flexible loop (105-110) which flanks the pocket 

(Figure 8.9). In the GPLA structure, the sidechains of Lys-108 and Pro-109 in the loop 

conformer form a slight ‘wall’ on the external (right-hand) side of the subsite (Figure 

8.9). In contrast, the subsite is more accessible when residues 105-110 adopt a helical 

conformation in HLA and mLA (inset in Figure 8.9). The functional significance of this 

difference, however, is difficult to quantify due to the unknown nature of the 

monosaccharide binding site in the LS complex. It is unlikely that the monosaccharide
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binding mode in the F subsite of LYZ and the LS complex are the same and it would be 

naive to assume that this region functions in an identical fashion in both proteins. Given 

that GT is capable of binding glucose, albeit weakly, it seems likely that the sidechains of 

Phe-31 and His-32 provide stabilising interactions for the bound monosaccharide in the

LS complex as suggested by the monosaccharide bridge model.

Figure 8.9 —  Relationship between the functional residues in LA and the F subsite region.
The relationship between residues that have been implicated in the function of LA and the overall 
structure of LA are shown. The molecular surface of GPLA is shown in blue. Residues that appear to 
be important for LA’s ability to promote glucose binding in the LS complex are shown in red and 
those important for affinity are shown in green. Leu-110 is coloured in yellow as changes at this 
position have differential effects on LA’s function depending on the nature of the sidechain 
substituent. The approximate location of the analogous F subsite region of LA’s cleft is indicated. 
Inset: The inset depicts the same region in mLA and shows the effect of the helical conformation of 
residues 105-110 on the structure of the F subsite. The residue colour scheme is the same as the 
main picture. Figure produced with G R A S P  (Nicholls e t  a l . ,  1991).

203



8: Description of the Structures

8.4 General Discussion

It has long been suspected that LA utilises residues in the cleft region to stabilise 

monosaccharide binding in the LS complex given its relationship with the C-type LYZs. 

The results from the site-directed mutagenesis of Phe-31, His-32 and Leu-110 

demonstrate for the first time that LA and LYZ utilise a common subsite in their 

respective activities. Furthermore, amino acid changes at positions analogous to 

components of subsites C, D and E in LYZ have no specific effect on glucose binding in 

the LS complex (K. Brew, personal communication). Taken together, these results 

support the hypothesis that, in the LS complex, a region analogous to the F subsite 

participates in the binding of monosaccharides.

Monosaccharide binding sites are usually found in a cleft between either two 

domains or two proteins. Binding is mediated by hydrogen bonds between the sugar 

hydroxyls and polar groups in the protein as well as non-polar interactions between 

aromatic sidechains and the sugar rings (Quiocho, 1986; Johnson et al., 1988). Due to 

the lack of information about the nature of the monosaccharide binding site in GT, it is 

difficult to predict to what extent Phe-31 and His-32 participate in the binding of glucose 

in the LS complex. Phe-31 may make Van der Waals contacts with the glucose ring as 

substitutions that remove the aromatic ring (e.g. F31S) have major effects on LA’s 

ability to promote glucose binding. In the case of F31Y-mLA, the introduction of an 

additional phenolic hydroxyl causes a smaller reduction in LA’s ability to promote 

glucose binding in the LS complex (7-fold) while having a minimal effect (2-fold) on 

affinity. The reduced ability to promote glucose binding in this variant may be due to an 

unfavourable electrostatic effect between the phenolic hydroxyl and the bound
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monosaccharide. The functional consequences of substitutions at His-32 demonstrate 

that this residue is also critical for monosaccharide binding, probably more so than Phe- 

31. Mutations at this position result in a drastic reduction of glucose binding in the LS 

complex combined with a lower affinity for GT. The ionisable sidechain of histidine has 

important sugar binding properties and it is involved in substrate binding in a number of 

glycosyl hydrolases (Qian et al., 1994; Barrett et al., 1995; Ducros et al., 1995) and

other oligosaccharide-binding proteins (Johnson et al., 1988). Given the specific

2

requirement of His-32 N 1 atom for LA activity (Prieels et al., 1979), it is tempting to 

suggest that this group makes direct contact with one of the polar hydroxyls of the 

galactosyl acceptor.

The results from these studies cannot completely rule out alternative mechanisms 

that might explain LA’s modulatory effects. It is possible that LA binding to GT causes a 

conformational change that results in a complex that has higher affinity for glucose. 

However, this explanation seems unnecessary given that GT is capable of carrying out 

the galactosylation of glucose in the absence of LA (Khatra et al., 1974). Spectroscopic 

measurements suggest that, although some sort of conformational change involving 

aromatic residues occurs on the addition of either UDP-galactose or UDP-galactose and 

GlcNAc to a GT-Mn2+ complex, no significant changes occur when LA is added (Geren 

et al., 1975; Takase and Ebner, 1981). Furthermore, large scale conformational changes 

on complexation are probably inconsistent with LA’s rapid equilibrium binding to GT 

(Khatra et al., 1974; Bell et al., 1976; Powell and Brew, 1976b). Nevertheless, the 

flexibility exhibited by part of the GT interaction site indicates that more subtle
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conformational changes may be important in the formation and function of the LS 

complex.

The interaction site for GT appears to involve a region on the surface of LA that 

is directly adjacent to the lower end of the cleft. Affinity for GT is selectively perturbed 

by substitutions for Ala-106 (Lys), His-107 (Ala, Tyr and Trp), Leu-110 (His), Lys-114 

(Asn), Gin-117 (Ala) and Trp-118 (Tyr). All these residues are located in the flexible C- 

terminal portion of the molecule. The differential effects of amino acid substitutions at 

Leu-110, depending on the nature of the sidechain substituent, may result from local 

conformational differences in the 105-110 region. The unusual degree of conformational 

adaptability exhibited by LA in solution, depending on its interaction with metal ions 

(Kronman, 1989), and the observation that the A-state of LA retains the modulatory 

properties, despite its lack of definable tertiary structure, argues that LA’s inherent 

ability to adjust its conformational state may be of paramount importance in the 

regulation mechanisms mediated by this unusual protein. Certainly, the various 

conformational forms of LA, especially those produced by physiologically relevant metal 

ions such as zinc, merit further investigation.

On a less speculative note, what are the future prospects of this work? Clearly, 

the mutagenesis studies have given us a greater insight into the functional regions of LA. 

The structural studies on the variant LAs should yield a plethora of information 

regarding the effects of particular substitutions. The current work has demonstrated that 

crystals, suitable for high resolution X-ray analysis, can be obtained for a number of the 

variants. Determination of these structures, in particular those involving the His-107 and 

Leu-110 variants, will undoubtedly facilitate a better understanding of the functional
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effects of amino acid substitutions at these positions. At present, it is unclear whether 

these amino acid changes elicit any local conformational changes. However, it is worth 

emphasising that although determination of the variant LA crystal structures may provide 

a vast amount of useful data, a full understanding of the molecular mechanisms that 

underlie LA’s biological function will require the elucidation of the three-dimensional 

structure of GT.

To the author’s knowledge, there are no structures available for any of the 

glycosyltransferases despite their importance in a multitude of biological processes. 

Structural information about the nature of GT’s active site and the LA interaction site is 

urgently needed before any significant advances can be made. Recent successes in 

cloning GT (Aoki et al., 1990; Krezdom et al., 1993; Boeggeman et al., 1993) and 

probing its functional residues by site directed mutagenesis (Zu et al., 1995) are 

encouraging. Significant progress has also been made in producing large quantities of a 

soluble recombinant form of bovine GT (K. Brew, personal communication) and this 

should eventually facilitate crystallographic studies. Hopefully, these ongoing studies will 

provide invaluable information about the functional properties of GT. Our present 

knowledge of the enzyme lactose synthase has increased dramatically over the past 30 

years. Nevertheless, many questions remain unanswered and a considerable amount of 

experimental work will be needed to fully understand the molecular basis of lactose 

biosynthesis.
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A1. DNA manipulation Protocols

A1.1 Materials

The pET3a vector, T7 promoter and terminator primers and lysogenic E. coli 

expression host (BL21 DE3s) were purchased from Novagen (Madison, WI.). Taq 

polymerase, DNA ligase, Ndel, BamHI and assorted reaction buffers were from 

Pharmacia LKB. BamHI and Sail used in the restriction mapping were from New 

England Biolabs. Magic™ PCR Preps Purification System was purchased from Promega 

Corp. (Madison, WI.). Subcloning efficiency cells DH5a™ and NuSieve™ agarose gel 

were purchased from Gibco BRL (Gaithersburg, MD.). Other reagents were of analytical 

grade.

A1.2 PCR Primers

The oligonucleotide primers were synthesised by Dr. Rudolf Werner, Department 

of Biochemistry and Molecular Biology, University of Miami. The sequences of the 

primers used for the construction of p-MLA and vector-encoded T7 primers are 

summarised in Table A l.l.

Table Al . l  -  Primers used for construction of pMLA and PCR mutagenesis

Primer Sequence Orientation

NF-N
NF-C

T7 Promoter 
T7 Terminator

5 ’ -CCATGCCACCCATATGGAACAGTTAAC-J 
5 ’ -GCAAAGACAGCGGATCCTCACAACTTCTC AC-J’

5 ’ -TA ATACG ACTC ACT AT AGGG-3 ’
5  ’ -GCT AGTT ATTGCTC AGCGG-3 ’

Coding
Complementary

Coding
Complementary
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A1.3 PCR Mutagenesis

The PCR reaction mixture consisted of 3pl 10X Taq reaction buffer (500mM 

KC1,15mM MgCl2, lOOmM Tris-HCl pH 9.0), 3pl 0.5mM dNTPs stock solution, 3pl 

1/1000 dilution pMLA stock (4pg/pl), 0.5pl T7 promoter or terminator primer 

(30ng/pl), 0.25pi Taq DNA polymerase (5000 units/ml) and milliQ water to a final 

volume of 30pl. For each amplification, 1.5pl 1/100 dilution of the desired mutagenic 

primer was added to the reaction mixture. The PCR protocol involved an initial DNA 

melting step for 2min at 94°C followed by 25 cycles of a melting, primer annealing, 

elongation regime (lmin at 94°C, 2min at 50°C, lmin at 74°C respectively) and a final 

cycle of elongation at 74°C for lOmin. The product of the first reaction (megaprimer) 

was purified using Magic™ PCR Prep columns (as documented in column’s Technical 

Bulletin). The purified megaprimer was eluted from the columns in 50pl milliQ, phenol- 

chloroform extracted, precipitated with ethanol and resuspended in 22pl milliQ. The 

second PCR amplification, using the cognate T7 primer, was carried as described above 

except that the megaprimer DNA replaced the milliQ in the reaction mixture (20pl). The 

full length PCR product was isolated by gel-purification on a 2% NuSieve™ agarose gel 

and purified directly from the excised band using the Magic™ PCR minicolumns (eluted 

in 45pl milliQ).

The isolated amplified DNA was double digested with BamHI and Ndel at 37°C 

for 2.5 hours. The reaction mixture (200pl) consisted of 30pl amplified DNA, 20pl 10X 

One Phor All Buffer PLUS™ (lOOmM Mg Ac, 500mM KAc, lOOmM Tris-acetate pH 

7.5), 150pl milliQ, 1.5pl BamHI (20000 units/ml) and 1.5pl Ndel (10000 units/ml). The 

digested PCR product was purified using the PCR minicolumns and ligated into 

Ndel/BamHI digested pET3a. The ligation reaction (40pl) consisted of 20pl cut 

amplified DNA, 4pl 10X One Phor All Buffer PLUS™, 4pl lOmM ATP, 2pl cut 

phosphatased pET3a, lOpl milliQ and 5pl T4 ligase (8000 units/ml). The ligated vector 

was transformed into competent subcloning efficiency DH5a cells according to the 

shipped protocol.
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Figure Al . l  -  Plasmid map of p-MLA.
The relevant restriction sites and the expected fragment sizes are shown

3708, Sal I

4087, Ndel

LA

4465, BamHI

Restriction Enzymes Expected Fragment Size
(b-p.)

Ndel/ BamHI 378
Sall/BamHI 757

A1.4 Restriction Mapping

Ampicillin-resistant transformants were characterised for correctly sized inserts 

using double digestions with Sail/BamHI and Ndel I BamHI. Digestions consisted of lOpl 

of mini-prepped DNA from each transformant and lOpl reaction mix (2pl 10X New 

England Biolabs buffer III, 0.2pl 100X bovine serum albumin, 10 units of BamHI and 

Sail). Digests were incubated at 37°C for 90min and then run on a 2% agarose gel. A 

fragment size of around 750 base pairs for the Sall/BamHI digestion indicated that the 

plasmids contained the correct insert (Figure A l.l).

A2. Purification Methods

A2.1 Isolation of Inclusion Bodies

Typically, the cells from a 6 litre expression run were harvested by centrifugation 

(30min @ 4100rpm). The cell pellet was resuspended in 40mls of lysis buffer (50mM 

Tris-HCl pH 8.0, ImM EDTA, lOOmM NaCl). The inclusion bodies were isolated by the 

lysozyme-lysis method (Sambrook et al., 1989).The bacterial cell wall was digested by
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addition of 900pl lOmg/ml lysozyme solution (Sigma) and incubation at RT for 20min 

with occasional stirring. The cell membranes were solubilised by addition of 250pl 

200mg/ml deoxycholic acid (Sigma) and incubation at 37°C. The DNA was then 

solubilised by incubation at RT for 45min with lOOpl lOmg/ml DNAsel (Boehringer).

The inclusion bodies were harvested by centrifugation (15min @ 11400rpm), washed and 

then re-centrifuged. The inclusion body pellet was either stored at -70°C or solubilised in 

urea for the anion exchange separation.

A2.2 HPLC Separations

Chromatography was carried out with a Hewlett-Packard 1090 liquid 

chromatograph fitted with a Hydrophase™ HP-PEI anion exchange column (Interaction 

Chromatography Inc., San Jose, CA.). Buffers used for the separation were : buffer A, 

20mM Tris-HCl pH 7.8 containing lOOpM CaCl2 and buffer B, 20mM Tris-HCl pH 7.8 

containing lOOpM CaCl2 and 1M NaCl. Typically, the column was equilibrated with 

85% buffer A, 15% buffer B and elution was performed with a linear gradient from 15 to 

60% buffer B over lhr. The separation was monitored by absorbance at 280nm. The 

column was run at a flow rate of l.Oml/min throughout. Native forms of bovine milk LA, 

MLA and mutants eluted at about 30min (0.375M NaCl).

A2.3 Determination of Protein Concentration

Protein concentrations were estimated from absorbance at 280nm. A value of 

20.1 was assumed for the f°r mLA and corresponding values for the variant LAs 

were calculated from their tryptophan, tyrosine and cysteine content (Gill and von 

Hippel, 1989).

A3. Kinetic Assay Protocols

A3.1 Lactose Synthase Assays

The activity of MLA and the mutants in promoting glucose binding to bovine GT 

was determined by a radiochemical assay as described in previous studies (Brew et a l y 

1968; Khatra et al.y 1974). All incubations were performed in lOOpl reaction mixture
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containing lOmM Tris-HCl pH 7.4, lOmM a-D-glucose, lOmM MnCL, 0.1% bovine 

serum albumin, lOpl bovine GT stock solution (see below) and varying concentrations of 

mLA (0-1 OpM). Assay mixtures were prepared on ice in duplicate and the reaction was 

started by the addition of lOpl radiolabelled UDP-galactose. After incubation at 37°C for 

lOmin, the reaction was stopped by the addition of lOOpl 0.1M EDTA. Appropriate 

controls were included to correct for the non-specific hydrolysis of UDP-galactose. 

Neutral sugars were then separated from the unreacted UDP-galactose by anion 

exchange. The reaction mixture was transferred to columns (0.5 x 4cm) of AG1-X8 

(chloride form; 200-400 mesh) strong anion exchange resin (BioRad) prepared in short 

glass Pasteur pipettes. The columns were pretreated with 0.1M lactose to minimise the 

non-specific binding of the radiolabelled product. The reaction tubes were washed twice 

with 0.5 and 1ml aliquots of milliQ water with both washings transferred to the columns. 

The column eluates were collected in vials, mixed with 5mls of EcoLume scintillation 

fluid and the radioactivity counted for 2min in a Packard Tri-Carb LKB scintillation 

counter. The radiolabelled UDP-galactose stock solution was prepared by adding 

tritiated UDP-galactose (UDP-D-[63H]galactose, purchased from Amersham) to a 3mM 

solution of unlabelled UDP-galactose (Sigma) so that the specific activity was 

approximately 1500cpm/pl. The GT stock solution used in the assays was prepared by 

dissolving lyophilised bovine milk GT (Fluka) in 0.1M Tris-HCl pH 7.4 to a 

concentration at which the amount used in the assay yielded a maximal activity of 

15000cpm. The GT stock solution was stored in 200pl aliquots at -70°C.

A3.2 Chitobiose Inhibition Assays

The ability of mLA and the mutants to inhibit galactosyl transfer to 

oligosaccharide substrates was measured in the same manner except that the reaction 

mixture contained 0.5mM N, N' diacetylchitobiose (Sigma) in place of glucose. A more 

concentrated range of mLA was also required (0-60pM). Due to the low activities of 

some of the mutants, much greater concentrations of mutant mLAs were required to 

accurately determine the kinetic parameters. The Km for ChB was determined in a similar, 

but separate, reaction in the absence of LA. The concentration of ChB used to determine
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the KmChB ranged from 0 to 1.5mM. The kinetic parameters were determined by fitting 

the kinetic data to the appropriate rate equations using the ENZFITTER program (Biosoft).

A4. Crystallisation Methods

All reagents were of analytical grade. All chemicals were obtained from Sigma 

unless stated otherwise. A variety of different screening methods were employed:

a) Crystal Screen I  and II: A commercially available reagent kit, designed to

provide a highly effective and rapid screening method for the crystallisation of 

macromolecules (Hampton Research, Riverside, CA, USA). The screens are 

based on the sparse matrix method of Jancarik and Kim (1991). The screens 

were carried out at 16°C, room temperature (16-20°C) and 37°C. The various 

screen conditions are given in Tables A1.2 and A1.3.

b) Grid screens:

i) Ammonium sulphate grid: The matrix was designed to cover a pH range of

4.6 to 9.0 in 0.5 pH unit steps and an AS concentration range of 1.4 to 

2.8M. lOmM calcium chloride was also included in the 8 x 10 grid to 

saturate the calcium binding site of LA. Separate trials were carried out at 

16 and 37°C.

ii) Polyethylene glycol 4000 (PEG 4K) grid: The matrix was designed with

PEG 4K as the sole precipitating agent over a range of concentrations from 

3 to 24% (w/v) and a pH range of 4.6 to 9.0 in 0.5 pH unit steps The 

resulting 8 x 12 grid, again including lOmM CaCl2, was screened at 16°C 

and 35°C.

Crystallisation trials were carried out using the vapour diffusion method with 

either hanging or sitting drops (McPherson, 1982). This method relies on the transport of 

either water or some volatile agent between a drop of mother liquor, usually lOfil in 

volume, and a much larger reservoir solution of 0.75-lml volume. Due to the large 

volume of the reservoir, relative to the drop, the final equilibration conditions are 

essentially those of the initial reservoir state.
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Table A 1.2—  Hampton Research Crystal Screen I conditions.

Tube# Salt Buffer Precipitant
1 0.02M Ca Chloride 0.1M Na Acetate pH4.6 30% (v/v) MPD
2 None None 0.4M K, Na Tartrate
3 None None 0.4M NH4 Phosphate
4 None O.IMTris HClpH 8.5 2.0M NH4 Sulphate
5 0.2M Na Citrate 0.1M Na HEPES pH 7.5 30% (v/v) MPD
6 0.2M Mg Chloride O.IMTrisHC1 pH 8.5 30% (w/v) PEG 4000
7 None 0.1M Na Cacody late pH 6.5 1.4M Na Acetate
8 0.2M Na Citrate 0.1M Na Cacody late pH 6.5 30% (v/v) 2-propanol
9 0.2M NH4 Acetate 0.1M Na Citrate pH 5.6 30% (w/v) PEG 4000
10 0.2M NH4 Acetate 0.1M Na Acetate pH4.6 30% (w/v) PEG 4000
11 None 0.1M Na Citrate pH 5.6 1.0M NH4 Phosphate
12 0.2M Mg Chloride O.IMNa HEPES pH 7.5 30% (v/v) 2-propanol
13 0.2M Na Citrate O.IMTris HClpH 8.5 30% (v/v) PEG 400
14 0.2M Ca Chloride 0.1M Na HEPES pH 7.5 28% (v/v) PEG 400
15 0.2M NH4 Sulphate 0.1M Na Cacody late pH 6.5 30% (w/v) PEG 8000
16 None 0.1M Na HEPES pH 7.5 1.5MLi Sulphate
17 0.2M Li Sulphate 0.1M Tris HClpH 8.5 30% (w/v) PEG 4000
18 0.2M Mg Acetate 0.1M Na Cacodylate pH 6.5 20% (w/v) PEG 8000
19 0.2M NH4 Acetate O.IMTris HClpH 8.5 30% (v/v) 2-propanol
20 0.2MNH4 Sulphate 0.1M Na Acetate pH4.6 25% (w/v) PEG 4000
21 0.2M Mg Acetate 0.1M Na Cacodylate pH 6.5 30% (v/v) MPD
22 0.2M Na Acetate O.IMTris HClpH 8.5 30% (w/v) PEG 4000
23 0.2M Mg Chloride O.IMNa HEPES pH 7.5 30% (v/v) PEG 400
24 0.2MCa Chloride O.IMNa Acetate pH4.6 20% (v/v) 2-propanol
25 None 0.1M Imidazole pH 6.5 1.0M Na Acetate
26 0.2M NH4 Acetate O.IMNa Citrate pH 5.6 30% (v/v) MPD
27 0.2M Na Citrate O.IMNa HEPES pH 7.5 20% (v/v) 2-propanol
28 0.2M Na Acetate 0.1M Na Cacodylate pH 6.5 30% (w/v) PEG 8000
29 None O.IMNa HEPES pH 7.5 0.8M Na, K Tartrate
30 0.2M NH4 Sulphate None 30% (w/v) PEG 8000
31 0.2M NH4 Sulphate None 30% (w/v) PEG 4000
32 None None 2.0M NH4 Sulphate
33 None None 4.0M Na Formate
34 None 0.1M Na Acetate pH4.6 2.0M Na Formate
35 None 0.1MNa HEPES pH 7.5 1.6M Na, K Phosphate
36 None O.IMTris HClpH 8.5 8% (w/v) PEG 8000
37 None 0.1M Na Acetate pH4.6 8% (w/v) PEG 4000
38 None 0.1M Na HEPES pH 7.5 1.4M Na Citrate
39 None 0.1M Na HEPES pH 7.5 2% (v/v) PEG 400 & 

2.0M NH4 Sulphate
40 None O.IMNa Citrate pH 5.6 20% (v/v) 2-propanol & 

20% (w/v) PEG 4000
41 None 0.1M Na HEPES pH 7.5 10% (v/v) 2-propanol & 

20% (w/v) PEG 4000
42 0.05M K Phosphate None 20% (w/v) PEG 8000
43 None None 30% (v/v) PEG 1500
44 None None 0.2M Mg Formate
45 0.2M Zn Acetate 0.1M Na Cacodylate pH 6.5 18% (w/v) PEG 8000
46 0.2M Ca Acetate 0.1M Na Cacodylate pH 6.5 18% (w/v) PEG 8000
47 None 0.1M Na Acetate pH4.6 2.0M NH4 Sulphate
48 None O.IMTris HClpH 8.5 2.0M NH4 Phosphate
49 1.0M Li Sulphate None 2% (w/v) PEG 8000
50 0.5M Li Sulphate None 15% (w/v) PEG 8000

214



Appendix

Table A1.2 —  Hampton Research Crystal Screen II conditions.

Tube# Salt Buffer Precipitant
1 2.0M Na Chloride None 10% (w/v) PEG 6000
2 0.01 M Cetyl trimethyl 

ammonium bromide
None 0.5M Na Chloride

3 None None 25% Ethylene Glycol
4 None None 35% (v/v) Dioxane
5 2.0M NH4 Sulphate None 5% (v/v) 2-propanol
6 None None 1.0M Imidazole pH 7.0
7 None None 10% (w/v) PEG 1000 

10% (w/v) PEG 8000
8 1.5MNa Chloride None 10% (v/v) Ethanol
9 None 0.1M Na Acetate pH4.6 2.0M Na Chloride
10 0.2M Na Chloride 0.1M Na Acetate pH4.6 30% (v/v) MPD
11 0.01M Co Chloride 0.1M Na Acetate pH4.6 1.0M 1,6-Hexanediol
12 0.1M Cd Chloride 0.1M Na Acetate pH4.6 30% (v/v) PEG 400
13 0.2M NH4 Sulphate 0.1M Na Acetate pH4.6 30% (v/v) PEG MME 2000
14 0.2M K, Na Tartrate O.IMNa Citrate pH 5.6 2.0M NH4 Sulphate
15 0.5M NH4 Sulphate O.IMNa Citrate pH 5.6 1.0M Li Sulphate
16 0.5 M Na Chloride O.IMNa Citrate pH 5.6 4% (v/v) Polyethyleneimine
17 None 0.1M Na Citrate pH 5.6 35% (v/v) teri-butanol
18 0.01 M Fe Chloride 0.1M Na Citrate pH 5.6 10% (w/v) Jeffamine M-600
19 0.01 M Mn Chloride 0.1M Na Citrate pH 5.6 2.5M 1,6-Hexanediol
20 None 0.1MMES pH 6.5 1.6M Mg Sulphate
21 0.2M Na/K Phosphate 0.1MMES pH 6.5 2.0M Na Chloride
22 None 0.1MMES pH 6.5 12% (w/v) PEG 20000
23 1.6M NH4 Sulphate 0.1MMES pH 6.5 10% (v/v) Dioxane
24 0.05M Ce Chloride 0.1MMES pH 6.5 30% (w/v) Jeffamine M-600
25 0.01M Co Chloride 0.1MMES pH 6.5 1.8M NH4 Sulphate
26 0.2M NH4 Sulphate 0.1MMES pH 6.5 30% (w/v) PEG MME 5000
27 0.01M Zn Sulphate O.IMMESpH 6.5 25% (w/v) PEG MME 500
28 None None 1.6M Na Citrate pH 6.5
29 0.5M NH4 Sulphate 0.1M Na HEPES pH 7.5 30% (v/v) MPD
30 None O.IMNa HEPES pH 7.5 10% (w/v) PEG 6000 

5% (v/v) MPD
31 None O.IMNa HEPES pH 7.5 20% (w/v) Jeffamine M-600
32 O.IMNa Chloride 0.1M Na HEPES pH 7.5 1.6M NH4 Sulphate
33 None 0.1MNa HEPES pH 7.5 2.0M NH4 Formate
34 0.05M Cd Sulphate O.IMNa HEPES pH 7.5 1.0M Na Acetate
35 None O.IMNa HEPES pH 7.5 70% (v/v) MPD
36 None 0.1M Na HEPES pH 7.5 4.3M Na Chloride
37 None O.IMNa HEPES pH 7.5 10% (w/v) PEG 8000 

8% (v/v) Ethylene Glycol
38 None 0.1M Na HEPES pH 7.5 20% (w/v) PEG 10000
39 0.2M Mg Chloride O.IMTris HClpH 8.5 3.4M 1,6-Hexanediol
40 0.1M Ca Chloride O.IMTris HClpH 8.5 25% (v/v) tert-butanol
41 0.01M Ni Chloride O.IMTris HClpH 8.5 l.OMLi Sulphate
42 1.5M NH4 Sulphate O.IMTris HClpH 8.5 12% (v/v) Glycerol
43 0.2M NH4 Phosphate 0.1MTris HClpH 8.5 50% (v/v) MPD
44 None O.IMTris HClpH 8.5 20% (w/v) Ethanol
45 0.01M Ni Chloride O.IMTris HClpH 8.5 20% (w/v) PEG MME 2000
46 O.IMNa Chloride 0.1M Bicine pH 9.0 30% (w/v) PEG MME 550
47 None 0.1M Bicine pH 9.0 2.0M Mg Chloride
48 2% (v/v) Dioxane 0.1M Bicine pH 9.0 10% (w/v) PEG 20000
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In the hanging drop procedure, a drop of mother liquor (3-5pl protein stock + 3 - 

5|il precipitating solution) is suspended from the underside of a siliconized microscope 

coverslip and placed over a reservoir containing 0.75ml of precipitating solution. 

Disposable plastic tissue culture plates (Linbro model, Flow Laboratories) were used for 

all the trials. The chamber formed by the reservoir and inverted coverslip was sealed with 

silicone grease. For the ‘sitting drop’ procedure, 5pl of protein stock and 5pi of 

precipitating solution were mixed in plastic microbridges (Crystal Microsystems, Oxford, 

UK), a small device that allows the drop to be suspended over the reservoir solution. The 

well was then sealed with an ordinary coverslip and some silicone grease. This method 

can accommodate larger drop volumes than the hanging drop procedure and also 

minimises drop flattening and spreading. It was found to be particularly beneficial in the 

case of the monoclinic III mLA crystals.

A5. Frequently Used Computer Software 

A5.1 Data Collection and Processing

X D S  and XSCALE  Wolfgang Kabsch’s processing and reduction programs
for the area detector diffraction data.

DENZO and SCALEPACK  Zbyszek Otwinowski’s processing and reduction/scaling
programs for image plate diffraction data.

X2L Garry Taylor’s in-house program to convert XSCALE
output to LCF format.

F2MTZ, LCF2MTZ, M TZ2VARI0US Various CCP4 programs allowing the interchange of the
format of reflection data files.

TRUNCATE CCP4 program to apply Wilson statistics to diffraction
data and conversion of reflection intensities to structure 
factor amplitudes.

A5.2 Molecular Replacement

A M oRe Jorge Navaza’s MR program (maintained by CCP4).

POLARRFN  Wolfgang Kabsch’s polar rotation function program used
for calculating self-rotation function (CCP4).

PDBUTILS In-house utility for manipulating PDB files. Primarily
used here for applying rotation and translations to the 
MR search model.
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X-PLOR

TFFC

No need for an explanation here. Also used for 
refinement.

Ian Tickle’s full symmetry translation function (CCP4).

A5.3 Model Building and Analysis

FRODO

o

PROCHECK

D S S P

CONTACT

ASH

SH P

Alwyn Jones’ original program modified for use on an 
Evans and Sutherland PS390.

State of the art rebuilding program. Includes a whole 
number of utility programs (see below)

Roman Laskowski’s model validation program.

Kabsch and Sanders secondary structure analysis 
program.

Calculates intra- and intermolecular contacts from a PDB 
input (CCP4).

David Stuart’s (Oxford) program for the superposition of 
protein structures using specific residue equivalencies.

David Stuart’s (Oxford) program for the dynamic 
superposition of protein structures. This does not require 
any prior knowledge of equivalences between the two 
structures.

A5.4 Uppsala utilities

4D_MAPMAN

4D_MOLEMAN  

4D_OPLOT  

4D_VOIDOO  

4D RMSPDB

General program for manipulation of electron density 
maps from contouring to changing the map sectioning. 
Also used for creating connectivity files for 0.

Utility for analysing model 5-factors etc.

Rendering 0  plot files for postscript printer.

Program to calculate cavities in protein structures.

Performing RMS deviation calculations.

A5.5 Heavy Atom Processing

PH ASES

SCALEIT

LOCAL

Complete package for interpreting heavy atom data. 

Scaling native and heavy atom data (CCP4).

Scaling native and heavy atom data (CCP4).
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A5.6 Map Calculation

PD BSET

SFALL

R STA TS

SIGMAA

FFT

A5.7 Graphical Display

G R A SP

M OLSCRIPT

BOBSCRIPT

RASTER3D

SH O W CASE

A LSCRIPT

CCP4 utility for manipulating PDB files.

Structure factor calculation (CCP4).

Scaling of F&s and Fcaic (CCP4).

Randy Read’s phase combination program used to 
calculated minimum bias coefficients for difference 
Fourier syntheses (CCP4).

Fast Fourier transform algorithm (CCP4).

Graphical program to display a number of different types 
of molecular surfaces.

Per Kraulis’ program for creating schematic plots of 
proteins.

Robert Esnouf’s (Oxford) modified version of MOLSCRIPT.

Ethan Merritt’s program for photorealistic surface 
rendering. Used in conjunction with M OLSCRIPT /  
BOBSCRIPT.

SGI’s general drawing program.

Geoff Barton’s program for producing figures from 
multiple sequence alignments.

This thesis was produced using Microsoft Word 6 for Windows™. All the graphs were 
drawn using SigmaPlot for Windows™ and some of the schematic figures were created 
using Microsoft PowerPoint 4.0.
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A new system  for the bacterial expression of a variant 
of bovine a-lactalbumin has been developed. E ighteen  
mutant proteins containing single site substitutions in  a 
cluster of predom inantly aromatic residues adjacent to  
the cleft (aromatic cluster I) and in  the hydrophobic box  
were expressed. The proteins were extracted from inclu
sion bodies and treated to generate native folding and 
disulfide bonds to provide appropriately folded protein  
samples for nine of the mutants. These were character
ized with respect to kinetic parameters reflecting as
pects of a-lactalbumin activity in modulating the speci
ficity of bovine galactosyltransferase. In aromatic 
cluster I, changes at tryptophan 118 or glutamine 117 
were found to specifically reduce affinity for galactosyl
transferase, whereas substitutions for phenylalanine 31 
or histidine 32 have major effects on the ability to pro
mote glucose binding (13-200-fold) and lesser effects on  
galactosyltransferase affinity (1.5-70-fold). Substitu
tions in  the hydrophobic box were found to affect fold
ing rather than activity. Thus, the binding of a-lactalbu- 
min to galactosyltransferase and its ability to promote 
glucose binding can be separately perturbed and are 
associated with distinct but adjacent structures. Aro
matic cluster I is directly involved in activity whereas 
the hydrophobic box appears to have a structural rather 
than functional role.

The milk whey protein, a-lactalbum in (LA)1 functions as the 
regulatory component of the lactose synthase enzyme system  
(EC 2.4.1.22) which catalyzes and regulates the biosynthesis of 
lactose in the lactating mammary gland (for reviews, see Refs.
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Research Grant GM21363. The costs of publication of this article were 
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therefore be hereby marked “advertisem ent”  in accordance with 18 
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§ Current address: Dept, of Medicine, Duke University Medical Cen
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and Molecular Biology, R-629, University of Miami School of Medicine, 
P.O. Box 016129, Miami, FL 33101. Tel.: 305-547-6297; Fax: 305-547- 
3955.

1 The abbreviations used are; LA, bovine a-lactalbumin; m lA , recom
binant bovine a-lactalbumin with NH2-terminal methionine and valine 
at position 90; GT, UDP-galactose iV-acetylglucosaminide 0-1,4 galac
tosyltransferase; ChB, IVjAT-diacetylchitobiose; HPLC, high perform
ance liquid chromatography; PCR, polymerase chain reaction. Mutants 
of mLA are designated X n Y -m L A , where n  indicates the sequence po
sition in bovine LA, X , the amino acid originally present at the site and 
y, the amino acid introduced at that site (single letter code). It should 
be noted that the true sequence position in mLA is n + 1, because of the 
presence of the additional residue at the amino terminus.

1-3). The catalytic component of lactose synthase is the enzyme 
UDP-galactose /3-A-acetylglucosaminide /3-4-galactosyltrans- 
ferase (GT1; EC 2.4.1.38), an intrinsic component of the trans- 
golgi membranes which, in  m ost cells, has the function of cata
lyzing the transfer of galactose from UDP-galactose to non
reducing terminal /3-linked iV-acetylglucosaminyl residues in  
the carbohydrate chains of glycoproteins and glycolipids. Al
though GT can catalyze lactose synthesis (transfer of galactose 
to free glucose) in  v i t r o ,  it is ineffective as a catalyst for this 
reaction under physiological conditions because of its low af
finity for glucose, reflected in  a K m of about 2 m . LA, a specific 
product of the lactating mammary gland, binds reversibly w ith  
GT to form 1:1 complexes w ith  a concomitant 1000-fold de
crease in the K m for glucose, thereby allowing efficient produc
tion of lactose under physiological conditions.

The relationship of structure and function in LA is of par
ticular interest for a number of reasons: (a )  it is sim ilar in  
sequence and three-dimensional structure to the type c lyso- 
zymes (4), providing a case of extrem e functional divergence in  
a pair of homologous proteins, (6) it represents an example of 
enzyme regulation at the level of specificity through a heter
ologous protein-protein interaction, (c) it contains a tightly  
bound Ca2+ ion (5) that has a major influence on its molecular 
stability and folding properties (6-8), and ( d )  under mildly 
denaturing conditions it can assum e a stable conformational 
state w ith the properties of a “molten globule,” an early inter
m ediate in protein folding (2, 3, 7).

Here, we describe a facile bacterial expression system  for a 
variant of bovine LA w ith which fully active recombinant LA 
can be generated in high yields. This system  succeeds an ear
lier system  in which bovine LA was expressed as a fusion pro
tein  (C-LA) from which a native, active protein was generated  
by lim ited proteolysis after extraction and treatm ent to gener
ate native folding and disulfide bond formation (9). With the 
new system , site-directed m utagenesis has been used to inves
tigate the roles of structural elem ents of the bovine LA mol
ecule in its activity. One region, defined by x-ray crystallo
graphic and NMR studies, is designated “aromatic cluster I” (4, 
10) and contains the side chains of the invariant amino acids 
Phe-31, His-32, Gln-117, and Trp-118, together w ith Tyr-36. 
This structure is adjacent to the cleft and has been implicated 
by chemical studies to be involved in  the interaction w ith GT 
(11-13). An alternative candidate for the GT binding site is a 
structure, designated the “hydrophobic box” or “aromatic clus
ter II” which includes Trp-26, Phe-53, Trp-60, Tyr-103, and 
Trp-104 (14). This structure is found both in  LA and lysozyme, 
but is distinct in  LA because of the presence of Tyr-103 (alanine 
in  most lysozymes), which blockades the LA cleft, making it a 
less open structure than in  lysozyme. To probe the roles of these  
substructures, we have constructed and expressed LA m utants 
with substitutions at selected sites in both clusters I and II. 
M utant proteins that allowed the generation of significant
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quantities of native protein after folding, in  v itro , were charac
terized w ith respect to the values of parameters that reflect 
different aspects o f LA action. The relevance of the results to 
structure-function relationships in LA and the mechanism of 
action of LA are discussed as w ell as the facility of the expres
sion system  in  comparison to others that have been previously  
described (9, 15, 16).

EXPERIMENTAL PROCEDURES 

M ateria ls

The sources of reagents for lactose synthase assays, protein, and 
DNA sequencing, and protein purification are the same as in previous 
publications (9, 17, 18). T7 promoter afid T7 terminator primers and 
pET3a vector were purchased from Novagen. HP-PEI anion exchange 
HPLC columns (7.8 x 100 mm) were obtained from Interaction Chro
matography Inc., San Jose, CA. Taq polymerase, DNA ligase, and 
Magic™ PCR Preps DNA purification systems were purchased from 
Promega Corp., Madison WI. DNA ligase, BamHI, and N deI were from 
New England Biolabs. N^V'-Diacetylchitobiose was supplied by Sigma. 
Other reagents were of analytical grade.

B acterial E xpression  a n d  Site-directed M utagenesis

Bovine LA was expressed in Escherichia coli strain BL21(DE3) by 
using a vector (pMLA) generated by cloning the coding sequence for LA 
into the pET3a vector at a site adjacent to the codon for the initiator 
methionine. The coding region for mature bovine LA in which the codon 
for methionine 90 was modified by M13 site-directed mutagenesis (19) 
to valine was amplified by PCR using the primers designated NF-N and 
NF-C (see Table I). These primers were designed to introduce a N de  I 
site at the 5' end and a BamHI site at the 3' end, together with an 
initiator methionine codon immediately preceding the bovine LA se
quence. The product of the amplification was purified by agarose gel 
electrophoresis, digested with N de  I and BamHI, and cloned into a 
preparation of the expression vector (pET3a) that had been previously 
digested with the same restriction enzymes. Further mutations were 
introduced by PCR using the “megaprimer” method (20) with this con
struct as the template. The amplification to generate the megaprimer 
was performed in each case with the synthetic T7 promoter primer or 
the T7 terminator primer together with an appropriate mutagenic 
primer. Table I lists the mutagenic primers that were used for the 
different substitutions. The megaprimer was purified by using the 
Magic™ PCR Preps Purification Kit and used in a second amplification 
with the same template and the cognate T7 primer. After purification by 
agarose gel electrophoresis, the final amplification product was digested 
and cloned into pET3a as described for mLA. The expression vectors for 
mLA and variants were characterized by restriction mapping and DNA 
sequencing (21).

G eneration a n d  P urifica tion  o f  N a tive  R ecom binant L A s

Extraction and In itia l Purification—Cultures of E. coli strain 
BL21(DE3) transformed with pMLA were grown and induced as de
scribed previously (8). Harvested cells were suspended in lysis buffer 
and lysed by treatment with lysozyme and deoxycholate. The extract 
was subsequently treated with DNAase (22). Inclusion bodies contain
ing mLA were isolated by centrifugation, washed by resuspension in 
lysis buffer containing 0.5% Triton X-100, and collected by centrifuga
tion. The protein from the inclusion bodies was solubilized by incuba
tion for 1-2 h at 37 °C with 8 m  urea containing 20 m u  tris base and 20 
nm dithiothreitol (about 10 ml/liter of culture). The pH of the extract 
was generally about 9.0. After centrifugation at 15,000 rpm for 10 min, 
the extract (from 4-6  liters of culture) was applied by pumping to a 
column (2 x 10 cm) of MacroPrep 50Q (Bio-Rad) equilibrated with 20 mM 
tris-HCl, pH 8.5, containing 4 m  urea at room temperature. After wash
ing with equilibration buffer until the absorbance at 280 nm was re
duced nearly to base line, the column was eluted with a linear gradient 
(total 225 ml) from 0 to 0.5 m  NaCl in 20 m M  tris-HCl, pH 8.5, containing 
4 m  urea. A flow rate of 2.5 ml/min was used throughout. SDS-gel 
electrophoresis of aliquots of different fractions indicated that a major 
peak, eluting at about 30 min, contained mLA.

Folding and Disulfide Bond Formation—Fractions containing mLA 
or a variant of mLA were pooled and the concentration of protein (es
sentially all ml A , based on SDS-gel electrophoresis) was estimated 
from the absorbance at 280 nm. A value of 2.0 for E ^  was assumed for 
mLA, and corresponding values for mutants were calculated from their- 
contents of tryptophan, tyrosine, and cystine (23). The protein was

diluted to a concentration of <1 mg/ml with 2 m  urea containing 0.02 m  

tris, pH 8.5, and mercaptoethanol, 2-hydroxyethyldisulfide, and CaCl2 
were added to give final concentrations of 5,0.5, and 1 m M , respectively. 
The solution was dialyzed successively against 2 m  urea, 1 m  urea, and 
water, all containing 0.02 m  tris-HCl, pH 8.5, 5 m M  mercaptoethanol, 0.5 
m M  2-hydroxyethyldisulfide, and 1 m M  CaCl2 at 4 °C. In some cases, 
glycerol (10%) was included in all solutions. Finally, the protein was 
either precipitated by adjusting the pH to 6.5 and adding ammonium 
sulfate to 80% saturation, or dialyzed against 30 mM ammonium bicar
bonate and lyophilized.

Final Purification—Recombinant LA and mutants were purified by 
gel filtration at room temperature (approximately 22 °C) with columns 
(5 x 25 cm) of Sephadex G-75 equilibrated with 30 m M  ammonium 
bicarbonate containing 10 pM CaCl2. Typically, the mLA from a 4-6-liter 
preparation was dissolved in 10 ml of ammonium bicarbonate and ap
plied to the column. Elution was performed with 30 mM ammonium 
bicarbonate containing 10 jo m  CaCl2 at a flow rate of 2.5 ml/min. An 
additional step of anion exchange HPLC was carried out in some cases 
using a Hewlett Packard 1090 liquid chromatograph fitted with a HP- 
PEI anion exchange column. Buffers used for this separation were: 
buffer A, 20 mM tris-HCl, pH 7.8, containing 200 pM CaCl2, and buffer 
B, 20 m M  tris-HCl containing 200 p M  CaCl2 and 1.0 m  NaCl. The column 
was equilibrated with 85% buffer A, 15% buffer B, and elution was 
performed by a linear gradient from 15 to 60% buffer B over 60 min. A 
flow rate of 1.0 ml/min was used throughout. Typically, native forms of 
bovine LA mLA and mutants eluted at 28-30 min, the presence of 
misfolded forms was indicated by peak(s) eluting at higher concentra
tions of NaCl.

G T  A ssa ys

GT assays were carried out by a radiochemical procedure using UDP- 
[3H]galactose, as in previous studies (17,18). All assays were performed 
in 10 m M  tris-HCl buffer, pH 7.5, 10 m M  MnCl2, 0.1% BSA, and 0.3 m M  

UDP-galactose at 37 °C. Recombinant LAs were compared with bovine 
LA as activators of lactose synthesis by conducting lactose synthase 
assays with increasing concentrations of LA at a fixed concentration of 
GT and 10 mM glucose and as inhibitors of galactose transfer to N N '  
diacetylchitobiose (ChB) where the acceptor concentration was 0.5 m M . 

The enzyme (GT) concentration was the same for each set of assays, and 
comparisons between assays conducted at different times with GT 
preparations of different activity were effected by relating activities for 
lactose synthesis to the apparent Vm determined by varying the con
centration of bovine LA. For inhibition assays with ChB, the activity 
obtained in the absence of LA at 0.5 mM ChB was arbitrarily designated 
as 1.0. Kinetic data were analyzed by fitting to appropriate rate equa- I 
tions using the ENZFITTER computer program (Biosoft).

In terpreta tion  o f  S tea d y  S ta te  K inetic  M easurem ents  
o f  L A  A ctiv ity

LA modulates the affinity of GT for acceptor substrates. It acts as a 
competitive inhibitor with respect to extended substrates such as N N '-  
diacetylchitobiose and enhances the binding of glucose and other mono
saccharides (17, 18, 24). With weaker binding substrates, such as glu
cose, inhibition effects resulting from effects on Vm are observed at high 
concentrations of LA and/or acceptor when dead-end inhibitory com
plexes are formed (25). We have assumed here that the mutant LAs act 
in a similar manner to bovine and other wild-type LAs.

Although there have been alternative proposals that the mechanism 
of lactose synthase is best represented by (a) a partially ordered mecha
nism in which UDP-galactose binds to a GT-Mn2+ complex prior to a 
random equilibrium binding of LA and glucose (17, 18) or (6) a com
pletely random equilibrium mechanism (24), there is agreement that 
the effect of LA involves a random highly synergistic binding with 
glucose to GT complexes or, in the case of larger acceptor substrates, 
exemplified by ChB, mutually exclusive binding of LA and acceptor with 
GT. Under the conditions used here for enzyme assays, GT is essentially 
saturated with Mn2+ at both metal binding sites (Mn2+ concentration of 
10 m M  versus Kd values of 2 j i m  and 2 h i m )  and with UDP-galactose 
(concentration of 330 j i m  versus K d and Km values of 25 and 60 p M , 

respectively (17, 26)) so that, irrespective of which mechanism provides 
the best model for enzyme system, essentially all of the GT will be 
distributed in complexes containing both Mn2+ and UDP-galactose. For 
lactose synthase assays, low glucose concentrations were also used (10 
m M  or less as compared with a Km of 2 m )  s o  that enzyme complexes 
containing glucose but not LA are insignificant. The section of the 
mechanism investigated can be consequently represented by the follow
ing steps:



5108 Site-directed Mutagenesis of a-Lactalbumin

GT* + LA «-> GT* • LA

GT* • LA + glc «—> GT* • LA • glc

GT* • LA • glc *—» GT* + LA + products

(Eq. 1)

(Eq. 2)

(Eq. 3)

where GT* represents a GT-(Mn2+)2-UDP-galactose complex.
If rapid equilibrium binding of LA and glucose is assumed, as indi

cated by previous kinetic studies (17, 18, 24) the rate equation (in the 
absence of products) becomes:

VJLA][glc]
+ K £ \ LA] + [LA][glc]

(Eq. 4)

where Vm is the maximum velocity (&cat[GT]), [LA] and [Glc] are the 
concentrations of LA and glucose, K }1*  is the dissociation constant for 
the LA from a GT-Mn2+ UDP-galactose>LA complex, and is the K m 
for glucose at saturating levels of LA. The latter is equal to the equi
librium dissociation constant of glucose from the GT-Mn2+-UDP- 
galactose-LA-glucose complex in a rapid equilibrium mechanism. K f *  is 
the dissociation constant of LA from the same complex that produces 
competitive inhibition with respect to ChB, and can therefore be eluci
dated separately as an inhibition constant (K J  for that reaction. The 
action of LA (and its mutants) in activating the catalysis of lactose 
synthesis by GT at a fixed concentration of glucose reflects an increase 
in the proportion of enzyme complexes containing both glucose and LA 
which can give rise to products (i.e. also containing Mn2+ and UDP- 
galactose), and is consequently dependent on both the affinity of LA for 
GT and its effects on glucose binding. From the above equation, it can 
be seen that a double reciprocal plot of lactose synthase activity versus 
[LA] will have an intercept/slope ratio equal to:

[glc]
K t + 1

(Eq. 5)

from which, K sJf can be determined, using the value for K f^  obtained 
from the inhibition of galactose transfer to ChB. Alternatively, the ap
parent Vm for lactose synthesis (= Vm(true)/{1 + ^/[glucose]} can be 
used to determine K m by comparison with the parameters obtained for 
a corresponding plot for bovine milk LA under the same conditions. 
K gn is the K m for glucose at saturating levels of LA and for a rapid 
equilibrium mechanism is equal to the equilibrium dissociation con
stant of glucose from the GT-LA-glucose complex. By using LA as a 
competitive inhibitor with respect to ChB, its affinity for the 
GT-gMn2+-gUDP-galactose complex can be measured separately from 
effects resulting from glucose binding, and used to calculate the K m for 
glucose at saturating [LA]. For the ChB reaction, K t values can be 
calculated from the apparent K t values obtained from the Dixon plots 
(intercept/slope) using the relationship given below:

A] (true) =
(apparent) 
. IS]
1 + K (Eq. 6)

where K m is the K m for ChB (separately determined to be 0.88 mM under 
these conditions) and [S], the concentration of ChB (0.5 m M ).

Spectroscopy

Near and far UV CD spectra of bovine LA and mutant LAs were 
determined with a JASCO J-710/720 spectropolarimeter. Twenty spec
tra were scanned for each sample at a speed of 100 nm/min which were 
subsequently averaged and smoothed. Near UV CD spectra (250-320 
nm) were determined using a cell with a path length of 1 cm, and far UV 
spectra (200-250 nm) using a cell with a path length of 0.1 cm. Proteins 
were dissolved in 0.02 M tris-HCl, pH 7.4, containing 0.1 m M  CaCl2, 0.01 
m  HC1 (pH 2) or 6  m  guanidine hydrochloride at concentrations between 
130 and 500 pg/ml.

O ther M ethods

The NH2-terminal sequence of mLA was determined using an Ap
plied Biosystems model 470A Protein/Peptide Sequencer fitted with a 
model 120A analyzer and a model 900A data analysis system for phen- 
ylthiohydantoin-derivative analysis and sequence assignment. Syn
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F ig .  1 . Purification of selected  recombinant LAs by gel filtra
tion with a column of Sephadex G-75. After treatment to allow 
native folding and disulfide bond formation, the protein was precipi
tated with 80% ammonium sulfate. The column size and separation 
conditions are described in the text. 80 ml of eluant was collected before
the first fraction. Separation of W118Y-mLA, ; separation of
W104Y-mLA, .

thetic oligonucleotide synthesis was carried out by Dr. Rudolf Werner, 
Department of Biochemistry and Molecular Biology, University of Mi
ami. Molecular models of mLA and some variants (lacking the NH2- 
terminal methionine) was constructed using the Hyperchem software 
package (Autodesk Inc., Sausalito, CA) by substituting its sequence into 
the baboon LA structure (4) and optimizing the geometry by AMBER 
force field energy minimization to an RMS gradient of <0.05 kcal/(A 
mol).

RESULTS

P re p a ra tio n  a n d  P ro p ertie s  o f  R e c o m b in a n t B o v in e  L A  
(m L A )—The system  described here w as designed to directly 
express the mature bovine LA sequence in E . coli. The substi
tution of valine for the single m ethionine at position 90 in  the 
mature LA sequence produced a  molecule which is resistant to 
CNBr cleavage. mLA was expressed, treated and purified as 
described in  “Experimental Procedures.” Fig. 1 shows typical 
elution profiles for the separation of two mLA variants (W118Y- 
mLA and W104Y-mLA) by gel filtration w ith Sephadex G-75 
after folding. The profile obtained w ith W118Y-mLA(Fig. la )  is 
typical of that obtained w ith recombinant LAs that folded effi
ciently, including mLA. The product from this step showed a 
single band with the sam e mobility as bovine LA on SDS-gel 
electrophoresis even at high loadings. The product also ran as 
a single component on anion exchange HPLC analysis. Final 
yields of mLA reproducibly exceeded 25 mg/liter of bacterial 
culture. W hen mLA was subjected to automated amino-termi
nal sequencing, a single sequence was obtained w ith methio
nine as the amino-terminal residue, followed by the expected  
amino-terminal sequence of bovine LA.

Because mLA was constructed to be devoid of internal m e
thionine residues, the N H 2-terminal methionine can be specifi
cally removed by CNBr cleavage without cleaving any internal 
peptide bonds. However, as described below, mLA is very sim i
lar in activity and physical properties to bovine milk LA. There
fore, it was concluded that it is appropriate to use variants of 
mLA to investigate structure-function relationships in LA w ith
out removing the amino-term inal methionyl residues.

G en era tion  a n d  P u r ific a tio n  o f  M u ta n ts  o f  m L A —The m uta
tions introduced into mLA are listed  in  Table I together with
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T a b l e  I
Primers used for construction o f  pM LA and for mutagenesis

P r im e r  S e q u e n c e  O r ie n ta t io n

NF-N CCATGCCACCCATATGGAACAGTTAAC Coding
NF-C GCAAAGACAGCGGATCCTCACAACTTCCAC Complementary
T7 promoter TAATACGACTCACTATAGGG Coding
T7 terminator GCTAGTTATTGCTCAGCGG Complementary
F31E CTGTACCACGGAACATACCAGTGG Coding
F31L CTGTACCACGTTACATACCAGTGG Coding
F31S CTGTACCACGTCTCATACCAGTGG Coding
F31Y CTGTACCACGTATCATACCAGTGG Coding
H32A ACCACGTTTGCAACCAGTGG Coding
H32E ACCACGTTTGAAACCAGTGG Coding
H32N ACCACGTTTAATACCAGTGG Coding
H32Y ACCACGTTTTATACCAGTGG Coding
Y103A GGCCAACCAGGCGTTAATTCC Complementary
Y103P GGCCAACCAGGGGTTAATTCC Complementary
W104A GCTTTATGGGCCAACGCGTAGTTAATTCC Complementary
W104L GCTTTATGGGCCAACAAGTAGTTAATTCC Complementary
W104Y GCTTTATGGGCCAAGTAGTAGTTAATTCC Complementary
Q117A GAGAAGCTGGATGCTTGGCTCTG Coding
Q117D GAGAAGCTGGATGATTGGCTCTG Coding
W118H GGATCAGCATCTCTGTGAG Coding
W118Y GGATCAGTATCTCTGTGAG Coding

the oligonucleotides used in  generating them. Sites of mutation  
included all invariant positions in cluster I (Phe-31, His-32, 
Gln-117, and Trp-118) together with Tyr-103 and Trp-104 of 
cluster II. Other residues in  cluster II were not altered because 
of variability in different LA sequences (3 ,13 ) or buried nature 
in  both LA and lysozyme (4 ,10). The choice of substitutions was 
based on either the nature of residues found at the correspond
ing site in  various lysozym es {e.g. Glu for Phe-31, A sn and Tyr 
at position 32, Pro and Ala at position 103, Ser and Ala at 
position 117, and TV1- position 118), while other substitutions 
were designed to be structurally conservative or to exam ine the  
effects of different side chain types at a particular site. Table II 
sum marizes the yields obtained at different stages during their 
production. For mLA and variants that folded efficiently in  
v itro , high yields of monomeric protein were obtained on puri
fication by gel filtration (Fig. la )  and further purification by 
HPLC anion exchange chromatography gave a single peak that 
eluted at a sim ilar NaCl concentration to bovine LA and mLA 
(see Fig. 2a). Variants of mLA that did not fold efficiently in  
v itro  in  some cases showed a large proportion of aggregated  
protein that eluted at the void volume on separation by gel 
filtration. With other m utants, aggregated protein was present 
together w ith a peak of monomeric protein which, on separa
tion by HPLC, did not show a peak eluting at the sam e tim e as 
mLA but did show a major peak eluting at high NaCl concen
tration. Some m utants were analyzed directly by HPLC after 
folding and were found to be devoid of native protein (H32E- 
mLA, H32N-mLA, W104A-mLA, and Wl04L-mLA). Fig. 16 
shows the separation of W104Y-mLAby gel filtration after fold
ing in the presence of 10% glycerol; monomeric protein was 
present which, on separation by HPLC, showed a major com
ponent that eluted at a later tim e and as a broader peak than  
mLA (Fig 26); additional m aterial eluted at high NaCl concen
trations. The m ain component was used in  further character
ization. In the case of H32A-mLA, the final yield o f folded 
protein increased 5-fold when glycerol (10%) was included dur
ing the folding process; however, the inclusion of glycerol did 
not allow the production of native protein from Y103A-mLA. 
SDS-gel electrophoresis showed that only low levels of protein 
contam inants were present after the initial separation by anion  
exchange chromatography in  4  M urea so that the in itial levels

T a b l e  II
Yields o f mLAs and variants during purification

P r o te in Y ie ld  fr o m  
0 5 0

Y ie ld  from  
G -75 Y ield "

mg /liter of culture %
mLA 107 40 100

F31E 77.5 8.8 (0)6 0C
F31L 62.5 5.5 (0) 0C
F31S 60 16.5 (1.0) 4 C
F31Y 32 5.5 46

H32A 55 10.0 (1.0) 5C
H32Ad 73 28.5 (5.7) 21c
H32E 65.5 NDe (0) 0
H32N 55.8 ND (0) 0
H32Y 47 17.5 100

Y103A 26.7 1.7 0
Y103P 53.3 17.7 29

W104A 53.3 ND (0) 0
W104L 42.5 ND (0) 0
W104Y 58.8 11.3 (2) (9K

Q117Ad 53.9 42.4 210
Q117Dd 62.2 29.3 126

W118Hd 54 15.6 77
W118Yd 53 29.8 150

° Yield for mLA after final purification was set at 100%. Yields for all 
other proteins are relative to that of met-LA.

6 Values in parentheses are yields sifter ion exchange HPLC. 
c Yields calculated for protein after HPLC separation. 
d Proteins were folded in the presence of 10% glycerol.
* ND, protein was separated by HPLC directly after treatment to 

generate native fold.
^The major component isolated for W104Y met-LA was not native 

based on chromatographic and physical properties.

o f expression of the different proteins varied only slightly a l
though there were major differences in  the final yields of the  
native protein. Based on m inim al yields of folded protein, the  
following mutations were incompatible w ith native folding un
der the conditions used here: F31E, F31L, H32E, H32N, 
Y103A, W104L, and W104A. Proteins obtained in  sufficient 
yield for detailed characterization had the following substitu
tions: F31S, F31Y, H32A, H32Y, Y103P, W104Y, Q117D, Q117A, 
W118Y, and W118H. W104Y-mLA is not included in  the list 
because the major product isolated by HPLC after folding has
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F ig .  2. Separation of representative recombinant LAs by HPLC anion exchange chromatography, a, mLA; b, W104Y-mLA. The 
conditions are those described in the text.

properties that suggest it  is in  a different conformational state 
from native mLA.

S tru c tu ra l and Physica l C haracterization o f  M u ta n t LA s— 
The purified proteins were all homogeneous on SDS-gel elec
trophoresis and anion exchange HPLC even at high loadings. 
The entire sequences of mLA and the m utants were checked by 
DNA sequencing, confirming the presence of the desired m uta
tion in each case. In two cases, an additional single base change 
w as present resulting in  an additional amino acid substitution, 
presumably being introduced by the PCR m utagenesis proce
dure. These were in  F31E-mLA where methionine w as substi
tuted for valine 8, and Q117D-mLA where lysine was substi
tuted for glutam ate 113.

The near and far UV CD spectra of mLA, and selected m u
tant proteins are shown in  Fig. 3 in  comparison w ith those of 
bovine LA at pH 2 (acid or molten globule state), pH 7.4 (native 
state), and in 6  m  guanidine HC1 (denatured state). These in
dicate that most of the m utant proteins which were character
ized w ith respect to functional properties are closely sim ilar in  
conformation to the native state of bovine LA. W118Y-mLAhad 
a slightly modified spectrum in  the near UV range, a feature 
that can be reasonably attributed to the nature of the sequence

change. There are pronounced differences between the CD 
spectra of the m utants w ith changes in the hydrophobic box 
residues, tyrosine 103 and tryptophan 104. Y103P-mLA, after 
purification by HPLC had near and far UV spectra that are 
closely sim ilar to those of bovine LA and mLA, whereas the  
monomeric form of Y103A-mLA, isolated by gel filtration in  low  
yield, had a molten globule spectrum, sim ilar to that of bovine 
LA at pH 2 (see Fig. 3, a and c). The major component isolated  
from W104Y-mLA by HPLC w as quite distinct. It has a pro
nounced near UV CD spectrum of sim ilar magnitude to mLA, 
but w ith major differences (Fig. 3c). The sm all trough at about 
295 nm is m issing and the m ain trough is red-shifted and 
altered in shape. The far UV CD spectrum also differs in  shape 
from that of mLA.

F unctiona l Properties o f  M u ta n t LAs—The activities of dif
ferent m utant LAs and mLA as activators of glucose binding 
are compared in Fig. 4. mLA and Y103P-mLA are closely sim i
lar in activity whereas other mLA variants are less active than  
the parent protein. Bovine LA is closely similar in activity to 
mLA (Table III). Visual inspection of the activity profiles sug
gests that some variants have reduced apparent Vm values (e.g. 
F31Y-mLA) while others have increased apparent K m values
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F ig. 3 . Near (250-320 nm) and far (200-250 nm) ultraviolet CD 
spectra of bovine LA and se lected  mLA variants, a, b o v i n e  L A  a t
p H  7 . 0 , ------ ; p H  2 , ........... ; a n d  i n  6  m g u a n i d i n e  h y d r o c h l o r i d e ,    b,
m L A ,  ; H 3 2 A - m L A ,  ; a n d  W 1 1 8 Y - m L A ,  , a l l  a t  p H  7 .0 .  c ,
m L A ,  ; Y 1 0 3 A - m L A ;  ; a n d  W 1 0 4 - m L A , ..... , a l l  a t  p H  7 .0 .  A l l
s p e c t r a  a r e  a d j u s t e d  t o  r e p r e s e n t  p r o t e i n  c o n c e n t r a t i o n s  o f  0 .5  m g /m l .

(e.g. W118Y-mLA). M utants w ith  substitu tions for h istid ine 32  
(tyrosine or alanine) showed very little  activity over a wide  
concentration range. W 104Y-mLA also had a low activity, but 
w as not isolated in sufficient q uantity to perform assays at high  
concentrations or to perform inhibition assays. The double m u
tant, Q117D/E113K-mLA displayed an activity profile th at is  
essen tia lly  superim posible on th a t o f Q117A-mLA (data not 
shown).

The different levels o f activity observed in the lactose syn
thase reaction can reflect changes in  either or both o f two 
param eters associated w ith  LA function, the affinity for GT 
(Kf*) and the ability a t saturation to promote glucose binding  
(K*8). As discussed in “E xperim ental Procedures,” changes in  
the apparent Vm in  the lactose synthase reaction at a fixed  
concentration of glucose are expected to reflect changes in  the  
la tter  parameter. Differences in  th e  affinity for GT were deter
m ined usin g  the LAs as inhibitors o f the catalysis of galactose  
transfer to ChB (Fig. 5). Arranged in term s o f decreasing effec
tiven ess as inhibitors, the m utant LAs are: Y 103P > bovine LA 
= mLA > F31Y > Q117D > H 32A > F31S > W 118Y = W 118H, the  
la tter  two mLA m utants having very low activities in th is  a s
say. A com parison of the activ ities o f the various proteins in  the  
two reactions (Figs. 4 and 5) ind icates that the relative effec
tiven ess o f pairs o f m utants, Q117A/F31Y, Q 117A/F31S, and

F ig . 4. Effect o f increasing concentrations of bovine LA and 
recom binant mutant LAs on lactose synthase activity o f bovine
GT. A s s a y s  w e r e  c o n d u c t e d  a s  d e s c r ib e d  u n d e r  “E x p e r i m e n t a l  P r o c e 
d u r e s ,” u s i n g  a  g lu c o s e  c o n c e n t r a t i o n  o f  1 0  m M . T h e  L A  v a r i a n t s  w e r e :  
m L A  O, Y 1 0 3 P - m L A  Y , Q 1 1 7 A - m L A  ■ ,  F 3 1 Y - m L A  • ,  W 1 1 8 Y -m L A  V , 
H 3 2 Y - m L A Q

T a b le  I I I
Kinetic param eters determined for mLA and variants with bovine GT

Protein KY' Change 
in  K,a

Kgu Change
in O ’

J I M m M

B o v i n e  L A  (R e f .  3 3 ) 1 7 1 0 .9 0 .9
2 6 1 0 .8 0 .7

m L A 2 1 1 1 .1 1

F 3 1 S 8 7 5 4 2 1 8 1 1 6 5
F 3 1 Y 3 9 2 1 6 1 5

H 3 2 A 7 1 6 3 4 N D C N D
H 3 2 Y 2 4 3 1 2 2 7 6 2 5 1

Y 1 0 3 P 1 5 1 2 .0 2

Q 1 1 7 A 1 3 5 7 3 .2 3
Q 1 1 7 D 5 7 3 2 .1 2

W 1 1 8 H 1 7 6 6 8 4 N D N D
W 1 1 8 Y 1 4 8 8 7 1 1 .7 1 .5

a C h a n g e  i n  K, i s  v a l u e  f o r  Kf4* d i v i d e d  b y  c o r r e s p o n d i n g  v a l u e  fo r  
m L A .

* C h a n g e  i n  K^c d i v id e d  b y  c o r r e s p o n d i n g  v a l u e  fo r  m L A .
° N D ,  c o u ld  n o t  b e  r e l i a b l y  d e t e r m i n e d  f r o m  d a t a .

W118Y/H32A are reversed. The explanation of this is shown in 
Table III, which gives the values for K j^  and K8Jf for the various 
proteins. The deficiencies in Q117A-mLA and W118Y-mLA spe
cifically reflect increased values for K}1̂, whereas F31Y-mLA 
has a slightly decreased affinity for GT (<2-fold) combined with 
a much lower ability to promote glucose binding (15-fold in
crease in K8Jf). The latter deficiency is displayed as a reduced 
lactose synthase activity a t high LA concentrations. A similar 
change is found in other m utants with substitutions for phe
nylalanine 31 and histidine 32, but combined with major re
ductions in affinity for GT. Although the low activity levels 
obtained with F31S-mLA, H32A-mLA, and H32Y-mLA intro
duce uncertainty regarding the precise values of their kinetic 
parameters, it appears th a t the position 32 m utants are even 
more deficient than the position 31 m utants in their effects on 
glucose binding. Y103P-mLA has a slightly higher affinity for 
GT than mLA and bovine LA (Fig. 5 and Table III) in conjunc
tion with a slightly decreased ability to promote glucose bind
ing. However its overall activity in the lactose synthase reac
tion is closely similar to th a t of mLA (Fig. 4).

D I S C U S S I O N

In this study we describe an expression system for bovine LA 
th a t is more expedient than fusion protein systems previously

0 20 40 60 80 100 120
[a-Lactalbumin] pM
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F ig .  5 .  Inhibition of activ ity  o f bovine GT for galactose trans- 
L fer to A^V'-diacetylchitobiose by bovine LA and recom binant 
I  LAs. T h e  s y m b o l s  a r e  t h e  s a m e  a s  i n  F i g .  4 .

I  developed in th is laboratory (9, 27). Two sequence changes 
I  introduced into the parent recom binant protein (mLA), the  
I  presence o f an additional m eth ionine at the N H 2 term inus and  
I  the substitution of valine for m eth ionine 90, have insignificant 
I  effects on its functional properties. Also, as shown in Fig. 3,
■ mLA and variants used in stu dies o f structure-function rela- 
I  tionsh ips have near- and far-UV CD spectra that are closely  
I  sim ilar to those o f bovine LA, and other studies2 indicate that
■  the m olecular stab ility  o f mLA is  closely sim ilar to that o f 
I bovine m ilk LA. These properties and the relative ease w ith  
I which high yields o f pure native protein can be generated in- 
[ dicate that the mLA expression system  is suitable for investi

gating the structural basis o f activity and stability in LA. Con
struction o f m utants usin g  the PCR “m egaprim er” m ethod  
resulted  in the introduction o f unintended m utations in  two

I cases, a relatively low error rate w hen balanced against the  
I facility o f the procedure. This system  has significant advan

tages over previously described expression system s for LA (9, 
I 15, 16). Thus, a yeast expression system  for a secreted form of 
f LA gave yields o f only 2 m g/liter o f culture (15), and a bacterial 

expression system  for goat LA as a fusion protein provided a 
product, after cleavage, w ith  only 12% o f the activity of goat LA 

I (16). This system  w as used to express lysozym e/LA chim eras,
I but the results are difficult to interpret w ith regard to struc

ture-function relationships in  LA since the physical properties 
o f the recom binant proteins w ere not exam ined.

The aim  of th is study w as to use site-directed m utagenesis to 
probe the roles o f two substructures o f LA, aromatic clusters I 
and II, in its action in lactose synthase. Both structures adjoin 
the cleft in LA and have been suggested as possible binding  
sites for GT (13, 14). The h igh ly conserved nature of cluster I 
and previous chem ical stu dies support the view  that th is struc
ture is im portant in the activity o f LA. Trace-labeling studies  
indicate that lysines 5 and 114, w hich flank cluster I, proxim ate  
the GT binding site  (11, 12) w h ile  chem ical m odification of  
histid ine 32 or tryptophan 118 has been found to disrupt the  
activity o f LA (28-30). C luster II, or the hydrophobic box, is  less  
conserved but is a site  o f structural difference betw een LA and  
lysozym e, resulting from the blockade of the LA cleft by the side  
chain of tyrosine 103 (alanine in  m ost lysozym es). GT binding  
would be expected to be associated w ith  such a region where LA 
and lysozym e differ in  structure since lysozym e does not bind  
GT. Although nitration o f tyrosine 103 does not disrupt the  
activity o f LA (31), the possibility  th a t cluster II plays a func
tional role in  LA could not be excluded by previous data. To

2 J .  A . G r o b le r , W . K . L i n n e r o o t h ,  a n d  K . B r e w , u n p u b l i s h e d  o b s e r v a 
t i o n s .

facilitate the characterization of th e  functional properties of 
m utant LAs a procedure was developed that allow s the distinc
tion of effects on affinity for GT from effects on the enhance
m ent of glucose binding. The valid ity  o f the values elucidated  
for and w ith the various m utants are supported by the  
close agreem ent betw een the values obtained for bovine LA and  
mLA with those previously obtained from more detailed kinetic  
stu dies w ith  bovine LA (see Table III). To ensure that any  
observed functional differences reflect local structural changes, 
only protein preparations that appear native based on chro
m atographic behavior, hom ogeneity on HPLC anion exchange  
chrom atography and near and far U V  CD spectra, were con
sidered suitable for probing structure-function relationships. 
Chrom atography was performed w ith  colum ns containing an  
organic m atrix w ith that is derivatized w ith polyethyleneim ine. 
Chrom atography on th is support therefore involves adsorption  
as well as ion exchange and, from our observations, separates 
protein forms w ith sim ilar ionic properties but different con
formations.

As shown in  Table II, despite sim ilar expression yields, the  
final yields o f folded protein varied greatly. Although a lim ited  
num ber of variants were generated, it appears that, in  general, 
the replacem ent o f arom atic residues in the clusters w ith  non- 
arom atics resulted in  low or insign ificant folding yields pre
sum ably reflecting a destabilization of the native fold. In one 
case (H32A-mLA) glycerol w as found to improve the yield  
(Table II) as previously reported for m arginally stab le m utants 
o f other proteins {e.g. see Ref. 32). The properties o f the m utant 
proteins confirm and extend previous chem ical studies of LA, 
the distinct effects of substitu tions in  clusters I and II serving  
to clarify the respective roles o f th ese  structures. In the case of 
cluster II one of five m utants, nam ely Y103P-mLA, was iso
lated  in native form in  good yield. Monomeric protein obtained  
from Y103A-mLA did not chrom atograph like native LA on 
HPLC and showed a CD spectrum  characteristic of the m olten  
globule state  o f LA. Two of the three m utants w ith substitu 
tions for tryptophan 104 (alanine and leucine) also did not fold. 
However, som e monomeric protein w as isolated from W104Y- 
mLA by gel filtration (Fig. 16) w hich on further separation by 
HPLC gave a major peak that e lu ted  later than the native  
protein. Because of the low yield, th is  protein w as not charac
terized as fully as other m utants. However, it  w as found to have  
a significant level o f activity in the lactose synthase reaction  
and to have a CD spectrum  which is  distinct from th at o f mLA  
but indicates the presence o f secondary and tertiary structure  
(Fig. 3c). Tryptophan 104 is  conserved in  all known LA and  
lysozym e sequences. In LA it  is  buried (4, 10) and is therefore  
unlikely to play a direct role in  interacting w ith  GT or glucose. 
Its structural im portance is supported by a previous study w ith  
hum an LA in which the nitration of tryptophan 104 abolished  
activity and altered the far UV CD spectrum  (31). The changed  
CD spectrum  o f W104Y-mLA can be, in  part, attributed to the  
nature of the sequence change. It is  more pronounced than the  
change seen  in W118Y-mLA (Fig 3, a  and c) which could reflect 
the different environm ents o f th ese  two tryptophans in  the  
native structure or a conform ational change in  W104Y-mLA. 
Energy m inim ization studies su ggest that the substitu tion of 
tyrosine in  position 104 m ay resu lt in  a rearrangem ent of the  
hydrophobic box and a more open cleft,2 which m ay serve to 
explain the increased retention tim e on HPLC. Studies are in  
progress aim ed at characterizing W104Y-mLA in detail but, 
based on present evidence, it  appears that the reduced activity  
of th is m utant results from a localized conformational change. 
The ability o f the Y 103P m utant to produce fully active native  
protein, in contrast w ith Y103A-mLA, is interesting since a la
nine and proline are found at th is  site  in various lysozym es. 
This m ay reflect the stab ilization  o f protein native structures
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F ig . 6 . A representation o f bovine  
LA show ing the locations o f arom atic  
clusters I and II. T h e  b a c k b o n e  o f  L A  i s  
s h o w n  i n  b l a c k  a n d  t h e  s i d e  c h a i n s  o f  r e s i 
d u e s  c o m p o s i n g  t h e  c l u s t e r s  i n  gray. R e s i 
d u e s  t h a t  w e r e  s u b j e c t e d  t o  m u t a g e n e s i s  
i n  t h e  p r e s e n t  s t u d y  a r e  s h o w n  i n  light 
gray  a n d  a r e  l a b e le d .
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tha t results from the introduction of proline at a compatible 
site which has been attributed to a resulting decrease in en
tropy, and concomitant increase in free energy, of the unfolded 
state (34). Overall, these observations indicate that the hydro- 
phobic box (aromatic cluster II) has a structural rather than 
functional role in LA (Fig. 6).

M utant LAs with substitutions for components of cluster I 
are distinct in properties as a class from those involving com
ponents of cluster II. A larger proportion of them (8 out of 12) 
allow the generation of native protein, and all of these show 
significant changes in functional properties. Therefore, this re
gion, which is more exposed to solvent than cluster II, is of 
functional importance in LA. In agreement with previous re
sults, it is shown th a t histidine 32 and tryptophan 118 play 
particularly important roles in LA action, all substitutions 
made at these sites producing major perturbations of activity. 
Two conserved residues adjacent to these, phenylalanine 31 
and glutamine 117, which had not been previously probed by 
chemical modification, are also implicated in the activity of LA. 
The kinetic properties of Q117A, W118Y and W118H-mLAs are 
consistent with direct or indirect roles for residues 117 and 118 
in the interaction with GT. Although the activity of W118H- 
mLA was so low th a t its effects on glucose binding were not 
determined, W118Y-mLA appears to be specifically reduced in 
affinity for GT (Table III). In contrast, the position 31 and 32 
m utants show changes in both kinetic parameters. The most 
informative protein in this group is F31Y-mLA whose low lac
tose synthase activity is almost entirely attributable to a re
duced (15-fold) ability to promote glucose binding. With the 
position 32 m utants the effect on glucose binding is decreased 
by up to two orders of magnitude. As far as we are aware, 
significant effects on this aspect of LA action resulting from a 
structural modification have not been noted previously. There
fore, the effects of changes in the residues composing cluster I 
divide them into two groups: residues 117 and 118 which spe
cifically influence the strength of binding with GT, and residues 
31 and 32 which influence both GT binding and the enhance
ment of glucose binding or in the case of F31Y-mLA, affect 
glucose binding with minimal effects on GT binding.

These results are relevant to the mechanism of action of LA. 
In one model previously proposed for its mechanism of action

LA

GT

Fig. 7 . The “m onosaccharide bridge” model for the LA-GT in 
teraction. Sgt d e n o t e s  t h e  i n t e r a c t i o n  s i t e  o n  L A  fo r  G T , a n d  Sglc, t h e  
p r o p o s e d  s i t e  t h r o u g h  w h i c h  L A  i n t e r a c t s  w i t h  a  m o n o s a c c h a r id e  i n  t h e  
l a c t o s e  s y n t h a s e  c o m p le x .

(35), LA binds to GT a t a site adjacent to the acceptor binding 
site and provides additional stabilizing interactions for a mono
saccharide located at the interface of the two protein compo
nents (a “monosaccharide bridge” arrangement as shown sche
matically in Fig. 7). The same mode of binding sterically 
prevents the binding of more extended acceptor substrates. The 
model implies that LA has a binding site for GT (Sgt) and an 
adjacent site which can interact favorably with a bound mono
saccharide in the lactose synthase complex (Sgic). Because the 
cleft in LA contains several conserved residues whose counter
parts in lysozyme act in carbohydrate binding, a region within 
the shortened cleft in LA may support glucose binding in the 
lactose synthase complex (12). In this model, the interaction of 
LA with GT and the enhancement of glucose binding to this 
complex are associated with distinct but neighboring regions of 
the LA molecule and would be separately affected by mutagen
esis. An alternative mechanism would be for LA to modulate 
the substrate specificity of GT through an allosteric effect. Al
though reasonable, this hypothesis implies an unusually ex
treme level of functional divergence at the molecular level be
tween LA and lysozyme and is also difficult to reconcile with 
the rapid equilibrium association of LA and GT (17, 24). The 
properties of the m utant LAs are more consistent with the 
former model for LA action since single-site substitutions are 
found to separately change the two aspects of LA activity. If the 
action of LA on GT was allosteric the two facets of LA action 
would be intrinsically linked. Therefore, these results ten ta
tively support the “monosaccharide bridge” model although 
more information regarding the structure of GT and the mo
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lecular basis of its action is required to reach a reliable conclu
sion.

The proximity of phenylalanine 31 and histidine 32 to the  
cleft suggest that part of th is region may act in supporting 
glucose binding. However, a contact site w ith GT that includes 
only residues 117 and 118 would be clearly insufficient to ac
count for the strength and specificity of the interaction between  
the two proteins. Studies are currently in progress to attem pt 
to further define the roles of other conserved residues in  LA in  

I its action in lactose synthase.
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